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P R E F A C E  

Game Theory studies the behavior of decision-makers ("players") whose 
decisions affect each other. As in one-person decision theory, the analysis is 
from a rational, rather than a psychological or sociological viewpoint. The term 
"garne" stems from the formal resemblance of these interactive decision 
problems to parlour games such as Chess, Bridge, Poker, Monopoly, Diploma- 
cy, or Battleship. To date, the largest single area of application has been 
economics; other important connections are with political science (on both the 
national and international levels), evolutionary biology, computer science, the 
foundations of mathematics, statistics, accounting, social psychology, law, and 
branches of philosophy such as epistemology and ethics. The applications are 
supported by a sizeable body of pure theory that is significant and important in 
its own right. Needless to say, the relation is two-sided: the theory influences - 
and is influenced b y -  the applications, both in the questions asked and in the 
answers provided. 

There is an important distinction between multi-person and one-person 
decision problems. In the one-person context, we are usually led to a well- 
defined optimization problem, like maximizing an objective function subject to 
some constraints. While this problem may be difficult to solve in practice, it 
involves no conceptual issue. The meaning of "optimal decision" is clear; we 
must only find one. But in the interactive multi-person context, the very 
meaning of "optimal decision" is unclear, since in general, no one player 
completely controls the final outcome. One taust address the conceptual issue 
of defining the problem before one can start solving it. Game Theory is 
concerned with both matters: defining "solution concepts", and then investigat- 
ing their properties, in general as weil as in specific models coming from the 
various areas of application. This leads to mathematical theories that ultimately 
yield important and novel insights, quantitative as well as qualitative. 

Game Theory may be viewed as a sott of umbrella or "unified field" theory 
for the rational side of social science, where "social" is interpreted broadly to 
include human individuals as weU as other kinds of players (collectives such as 
corporations and nations, animals and plants, computers, etc.). Unlike other 
approaches to disciplines like economics or political science, Garne Theory 
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does not use different, ad-hoc constructs to deal with various specific issues, 
such as perfect competition, monopoly, oligopoly, international trade, taxa- 
tion, voting, deterrence, animal behavior, and so on. Rather, it develops 
methodologies that apply in principle to all interactive situations, then sees 
where these methodologies lead in each specific application. 

One may distinguish two approaches to Garne Theory: the non-cooperative 
and the cooperative. A game is cooperative if commitments -  agreements, 
promises, t h r ea t s -  are fuUy binding and enforceable. 1 It is non-cooperative if 
commitments are not enforceable. (Note that pre-play communication between 
the players does not imply that any agreements that may have been reached 
are enforceable.) Though this may not look like a basic distinction, it turns out 
that the two theories have quite different characters. The non-cooperative 
theory concentrates on the strategic choices of the individual - how each player 
plays the game, what strategies he chooses to achieve his goals. The coopera- 
tive theory, on the other hand, deals with the options available to the group - 
what coalitions form, how the available payoff is divided. It follows that the 
non-cooperative theory is intimately concerned with the details of the processes 
and rules defining a game; the cooperative theory usually abstracts away from 
such rules, and looks only at more general descriptions that specify only what 
each coalition can get, without saying how. A very rough analogy - not to be 
taken too l i teral ly-  is the distinction between micro and macro, in economics 
as well as in biology and physics. Micro concerns minute details of process, 
whereas macro is concerned with how things look "on the whole". Needless to 
say, there is a close relation between the two approaches; they complement 
and strengthen one another. 

This is the first volume of the Handbook of Garne Theory with Econornic 
Applications, to be followed by two additional volumes. Game Theory has 
burgeoned greatly in the last decade, and today it is an essential tool in much 
of economic theory. The vision laid out by the founding fathers, John von 
Neumann and Oskar Morgenstern, in their 1944 book Theory of  Garnes and 
Econornic Behavior has become a reality. 

While it is no longer possible in three volumes even to survey Garne Theory 
adequately, we have made an attempt to present the main features of the 
subject as they appear today. The three volumes will cover the fundamental 
theoretical aspects, a wide range of applications to economics, several chapters 
on applications to political science, and individual chapters on relations with 
other disciplines. 

A list of the chapters planned for all the volumes is appended to this 

1This definition is due to John C. Harsanyi ('A general theory of rational behavior in garne 
situations', Econometrica, 34:616 (1966)). 
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Preface. 2 We have organized this list roughly into "non-cooperative" and 
"cooperative"; there are also some "general" chapters. The boundary is orten 
difficult to draw, as there are important connections between the categories; 
chapters may well contain aspects of both approaches. Within each category, 
some chapters are more theoretical, others more applicative; hefe again, the 
distinction is orten hazy. It is to be noted that the division of the chapters of 
the Handbook into the three volumes was dictated only partly by considera- 
tions of substantive relationships; another, more mundane consideration was 
which chapters were available when the volume went to press. 

We now provide a short overview of the organization of this volume. 
Chapters 1 through 11 may be viewed as "non-cooperative" and Chapters 12 
through 18 as "cooperative". The final chapter, Chapter 19, is in the "general" 
category. Most of the chapters belong to conceptually well-defined groups, and 
require little further introduction. Others are not so clearly related to their 
neighbors, so a few more words are needed to put them in context. (Thus the 
space that this Preface devotes to a chapter is no indication of its importance.) 

Historically, the first contribution to Game Theory was Zermelo's 1913 
paper on chess, so it is fitting that the "overture" to the Handbook deals with 
this grand-daddy of all garnes. The chapter covers chess-playing computers. 
Though this is not mainstream game theory, the ability of modern computers 
to beat some of the best human chess players in the world constitutes a 
remarkable intellectual and technological achievement, which deserves to be 
recorded in this Handbook. 

Chapter 2 provides an introduction to the non-cooperative theory. It de- 
scribes the "tree" representation of extensive games, the fact that for many 
purposes one can limit oneself to consideration of strategies, and the related 
classical results. Unlike in most of the other chapters, there is no attempt hefe 
at adequate coverage (which is provided in later chapters); it only provides 
some basic tools. 

Conceptually, the simplest garnes are those of perfect information: games 
like chess, in which all moves are open and "above board", in which there is 
no question of guessing what the other players have done or are doing. The 
fundamental fact in this area is the 1913 theorem of Zermelo (mentioned 
above), according to which each zero-sum game of perfect information has 
optimal pure strategies. In 1953 Gale and Stewart showed that this result does 
not always extend to infinite garnes of perfect information, and identified 
conditions under which it does. Chapter 3 deals with these results, and with the 
literature in the foundations of mathematics (set theory) that has grown from 
them. 

ZA fairly detailed historical survey of garne theory, with cross-references to the chapters of the 
Handbook, is planned for a subsequent volume. 
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Repeated garnes model ongoing relationships i the theory "predicts" phe- 
nomena such as cooperation, communication, altruism, trust, threats, punish- 
ment, revenge, rewards, secrecy, signalling, transmission of information, and 
so on. Chapters 4, 5, and 6 are devoted to repeated garnes. Though this theory 
is basically "non-cooperative", it brings us to the interface with the cooperative 
theory; it may be viewed as a non-cooperative model that "justifies" the 
assumption of binding agreements that underlies cooperative theory. 

Another such "bridge" between the non-cooperative and the cooperative is 
bargaining theory. Until the early eighties, most of bargaining theory belonged 
to the cooperative area. After the publication, in 1982, of Rubinstein's seminal 
paper on the subject, much of the emphasis shifted to the relation of 
non-cooperative models of bargaining to the older cooperative models. These 
and related developments are covered in Chapter 7. 

Chapter 7 is also the first of five chapters in this volume dealing with 
economic applications of the non-cooperative theory. Chapters 8 through 11 
are about auctions, location, entry deterrence, and patents. In each case, 
equilibrium analysis leads to important qualitative insights. 

Starting with Chapter 12, we turn to the cooperative theory and its applica- 
tions. Chapters 12 through 16 offer a thorough coverage of what is perhaps the 
best known solution concept in cooperative garne theory, the core. Chapters 12 
and 13 provide theoretical foundations, while Chapters 14, 15, and 16 cover the 
best known economic applications. 

Though the definition of the core is straightforward enough, it is perhaps 
somewhat simplistic; a careful consideration leads to some difficulties. Several 
solution concepts have been constructed to deal with these difficulties. O n e -  
historically the first cooperative solution concept - i s  the von Neumann- 
Morgenstern stable set; it is studied, together with some of its applications to 
economic and political models, in Chapter 17. Chapter 18 covers the extensive 
literature dealing with another class of "core-like" solutions: the bargaining set 
and the related concepts of kernel and nucleolus. 

Though Garne Theory makes no ethical recommendations- is ethically 
neut ra l -  game-theoretic ideas nevertheless do play a role in ethics. A fitting 
conclusion to this first volume is Chapter 19, which deals with the relation 
between Game Theory and ethics. 

ROBERT J. AUMANN and SERGIU HART 
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1. Introduction 

The game of chess has sometimes been referred to as the Drosophila of 
artificial intelligence and cognitive science research- a standard task that 
serves as a test bed for ideas about the nature of intelligence and computation- 
al schemes for intelligent systems. Both machine intelligence - how to program 
a computer to play good chess (artificial intelligence)-and human 
intelligence - how to understand the processes that human toasters use to play 
good chess (cognitive science)- are encompassed in the research, and we will 
comment on both in this chapter, but with emphasis on computers. 

From the standpoint of von Neumann-Morgenstern game theory [von 
Neumann and Morgenstern (1944)] chess may be described as a trivial game. It 
is a two-person, zero-sum game of perfect information. Therefore the rational 
strategy for play is obvious: follow every branch in the garne tree to a win, loss, 
or draw - the rules of the garne guarantee that only a finite number of moves is 
required. Assign 1 to a win, 0 to a draw, and -1  to a loss, and minimax 
backwards to the present position. 

For simple games, such as tic-tac-toe and cubic, the search space is small 
enough to be easily exhausted, and the games are readily solved by computer. 
Recently, the game of connect-four, with a search space of 1013 positions, was 
solved; with perfect play, the player moving first (white) will always win 
[Uiterwijk et al. (1989)]. This result was not obtained by a full search of the 
space, but by discovering properties of positions that, whenever present in a 
position, guarantee a win. In this way, large sub-trees of the game tree could 
be evaluated without search. 

The only defect in trying to apply this optimal strategy to chess is that 
neither human beings nor the largest and fastest computers that exist (or that 
are in prospect) are capable of executing it. Estimates of the number of legally 
possible games of chess have ranged from 1043 to 102°. Since even the smaller 
numbers in this range are comparable to the number of molecules in the 
universe, an exploration of this magnitude is not remotely within reach of 
achievable computing devices, human or machine, now or in the future. 

In the literature of economics, the distinction has sometimes been made 
between substantive rationaUy and procedural (a. k.a. computational) rationali- 
ty. Substantive rationality is concerned with the objectively correct or best 
action, given the goal, in the specified situation. Classical game theory has 
been preoccupied almost exclusively with substantive rationality. 

Procedural rationality is concerned with procedures for finding good actions, 
taking into account not only the goal and objective situation, but also the 
knowledge and the computational capabilities and limits of the decision maker. 
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The only nontrivial theory of chess is a theory of procedural rationality in 
choosing moves. The study of procedural or computational rationality is 
relatively new, having been cultivated extensively only since the advent of the 
computer (but with precursors, e.g., numerical analysis). It is central to such 
disciplines as artificial intelligence and operations research. 

Difficulty in chess, then, is computational difficulty. Playing a good game of 
chess consists in using the limited computational power (human or machine) 
that is available to do as weil as possible. This might mean investing a great 
deal of computation in examining a few variations, or investing a little 
computation in each of a large number of variations. Neither strategy can come 
close to exhausting the whole garne t r e e -  to achieving substantive rationality. 

2. Human chess play 

To get an initial idea of how the task might be approached, we can look at 
what has been learned over the past half century about human chess play, 
which has been investigated in some depth by a number of psychologists. There 
is a considerable understanding today about how a grandmaster wins games, 
but not enough understanding, alas, to make it easy to become a grandmaster. 

First, since the pioneering studies of the Dutch psychologist, Adriaan de 
Groot,  we have known that a grandmaster, even in a difficult position, carries 
out a very modest amount of search of the garne tree, probably seldom more 
than 100 branches [de Groot (1965)]. Even if this is an underestimate by an 
order of magnitude (it probably is not), 103 is a miniscule number compared 
with 1043. In fact, de Groot found it very difficult to discriminate, from the 
statistics of search, between grandmasters and ordinary club players. The only 
reliable difference was that the grandmasters consistently searched more 
relevant variations and found bettet  moves than the o t h e r s -  not a very 
informative result. 

It should not surprise us that the skilled chess player makes such a limited 
search of the possibilities. The human brain is a very slow device (by modern 
electronic standards). It takes about a millisecond for a signal to cross a single 
synapse in the brain, hence ten to a hundred milliseconds for anything 
"interesting" to be accomplished. In a serious chess game, a player must make 
moves at the rate of twenty or thirty per hour, and only ten minutes or a 
quarter hour can be allotted to even a difficult move. If 100 branches in the 
game tree were examined in fifteen minutes, that would allow only nine 
seconds per branch, not a large amount of time for a system that operates at 
human speeds. 

A second thing we know is that when grandmasters look at a chessboard in 
the course of a game, they see many familiar patterns or "chunks" (patterns 
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they have often seen before in the course of play). Moreover, they not only 
immediately notice and recognize these chunks whenever they encounter them, 
but they have available in memory information that gives the chunks signifi- 
cance-  teils what opportunities and dangers they signal, what moves they 
suggest. The capability for recognizing chunks is like a very powerful index to 
the grandmaster's encyclopedia of chess. When the chunk is recognized, the 
relevant information stored with it is evoked and recalled from memory. 

The grandmaster's vast store of chunks seems to provide the main explana- 
tion for the ability to play many simultaneous games rapidly. Instead of 
searching the game tree, the grandmaster simply makes "positionally sound" 
moves until the opponent makes an inferior move, creating a (usually slight) 
weakness. The grandmaster at once notices this clue and draws on the 
associated memory to exploit the opponent's mistake. 

Rough estimates place the grandmaster's store of chunks of chess knowledge 
at a minimum of 50,000, and there are perhaps even twice that many or more 
[Simon and Gilmartin (1973)]. This number is comparable in magnitude to the 
typical native language vocabularies of college-educated persons. 

There is good evidence that it takes a minimum of ten years of intense 
application to reach a strong grandmaster level in chess. Even prodigies like 
Bobby Fischer have required that. (The same period of preparation is required 
for world class performance in all of the dozen other fields that have been 
examined.) Presumably, a large part of this decade of training is required to 
accumulate and index the 50,000 chunks. 

It has sometimes been supposed that the grandmaster not only has special 
knowledge, but also special cognitive capabilities, especially the ability to grasp 
the patterns on chess boards in mental images. An interesting and simple 
experiment, which has been carried out by several investigators and is easily 
replicated, makes very clear the nature of chess perception [de Groot (1965)]. 
(The analogous experiment has been performed with other games, like bridge, 
with the same result.) 

Allow a subject in the laboratory to view a chess position from a well-played 
garne (with perhaps 25 pieces on the board) for five to ten seconds. Then 
remove the pieces and ask the subject to reconstruct the position. If the subject 
is a toaster or grandmaster, 90% or more of the pieces (23 out of 25, say) will 
be replaced correctly. If the subject is an ordinary player, only about six will be 
replaced correctly. This is an enormous and starting difference between 
excellent and indifferent chess players. Something about their eyes? 

Next repeat the experiment, but place the same pieces on the board at 

random [Chase and Simon (1973)]. The ordinary player will again replace 
about six on the right squares. Now the toaster or grandmaster will also only 
replace about six correctly. Clearly the expert's pre-eminence in the first 
version of the experiment has nothing to do with visual memory. It has to do 
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with familiarity. A chessboard from a well-played garne contains 25 nearly 
unrelated pieces of information for the ordinary player, but only a half dozen 
familiar patterns for the master. The pieces group themselves for the expert 
into a small number of interrelated chunks. 

Few familiar chunks will appear on the randomly arranged board; hence, in 
remembering that position, the expert will face the same 25 unrelated pieces of 
knowledge as the novice. Evidence from other domains shows that normal 
human adults can hold about six or seven unrelated items in short-term 
memory at the same time (equivalent to one unfamiliar telephone number). 
There is nothing special about the chess master's eyes, but a great deal that is 
special about his or her knowledge: the indexed encyclopedia stored in 
memory. 

In summary, psychological research on chess thinking shows that it involves 
a modest amount of search in the garne tree (a maximum of 100 branches, say) 
combined with a great deal of pattern recognition, drawing upon patterns 
stored in memory as a result of previous chess training and experience. The 
stored knowledge is used to guide search in the chess tree along the most 
profitable lines, and to evaluate the leaf positions that are reached in the 
search. These estimated values at the leaves of the miniature game trees are 
what are minimaxed (il anything is) in order to select the best move. For the 
grandmaster, vast amounts of chess knowledge compensate for the very limited 
ability of the slow human neurological "hardware" to conduct extensive 
searches in the time available for a move. 

3. Computer chess: Origins 

The idea of programming computers to play chess appeared almost simulta- 
neously with the birth of the modern computer [see Newell and Simon (1972) 
for a detailed history to 1970 and Welsh and Baczynskyj (1985) for a more 
modern perspective]. Claude Shannon (1950), the creator of modern informa- 
tion theory, published a proposal for a computer chess program, and A.M. 
Turing (1953) published the score of a garne played by a hand-simulated 
program. A substantial number of other designs were described and actually 
programmed and run in the succeeding decade. 

There was a close family resemblance among most of the early programs. 
The task was viewed in a game-theoretic framework. Alternative moves were 
to be examined by search through the tree of legal moves, values were to be 
assigned to leaf nodes on the tree, and the values were to be minimaxed 
backwards through the tree to determine values for the initial moves. The 
move with the largest value was then selected and played. The same search and 
evaluation program represented both the player and the opponent. 
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Of course the programs represented only the crudest approximations to the 
optimal strategy of von Neumann-Morgenstern game theory. Because of the 
severe computational limits (and the early programs could examine at most a 
few thousand branches of the tree), a function for evaluating the (artificial) 
leaves had to be devised that could approximate the true garne values of the 
positions at these nodes. 

This evaluation function was, and remains, the most vulnerable Achilles heel 
in computer chess. We shall see that no one, up to the present time, has 
devised an evaluation function that does not make serious mistakes from time 
to time in choosing among alternative positions, and minor mistakes quite 
frequently. Although the best current chess programs seldom blunder outright, 
they orten make moves that masters and grandmasters rightly regard as 
distinctly inferior to the best moves. 

In addition to brute force search, two other ideas soon made their appear- 
ance in computer chess programs. The first [already proposed by Shannon 
(1950)] was to search selectively, rather than exhaustively, sacrificing complete- 
ness in the examination of alternatives in order to attain greater depth along 
the lines regarded as most important. Of course it could not be known with 
certainty which lines these were; the rules of selection were heuristic, rules of 
thumb that had no built-in guarantees of correctness. These rules could be 
expressed in terms of position evaluation functions, not necessarily identical 
with the function for evaluating leaf nodes. 

Turing made the important distinction between "dead" positions, which 
could reasonably be evaluated in terms of their static features, and "live" 
positions having unresolved dynamic features (pieces en prise, and the like) 
that required further search before they could be evaluated. This distinction 
was incorporated in most subsequent chess programs. 

The second departure from the basic game-theoretic analogue was to seek 
ways of reducing the magnitude of the computation by examining branches in 
the best order. Here there arose the idea of alpha-beta search, which 
dominated computational algorithms for chess during the next three decades. 

The idea underlying alpha-beta search is roughly this. Suppose that, after a 
partial search of the tree from node A, a move, M1, has already been found 
that guarantees the player at A the value V. Suppose that after a partial search 
of one of the other moves at A, M2, a reply has been found for the opponent 
that guarantees him or her a value (for the player at A) of less than 17. Then 
there is no need to carry on further search at the subnode, as M2 cannot be 
better than M1. Roughly speaking, use of this procedure reduces the amount 
of computation required to the square root of the amount without the 
algorithm, a substantial reduction. The alpha-beta algorithm, which has many 
variant forms, is a form of the branch-and-bound algorithm widely used in 
solving various combinatorial problems of management science. 

While the alpha-beta algorithm provides a quite powerful tree-pruning 
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principle, when it is combined (as it must be in chess) with an evaluation 
function that is only approximate, it is not without its subtleties and pitfalls. 
Nau (1983) first demonstrated that minimax trees with approximate evaluation 
may be pathological, in that deeper search may lead to poorer decisions. This 
apparent paradox is produced by the accumulation of errors in evaluation. 
Although this important result has been ignored in the design of chess 
programs, pathology probably does occur in tree search, but not to the extent 
of degrading performance seriously. 

The dead position heuristic, alpha-beta search, and the other selective 
methods that served to modify brute-force game-theoretic minimaxing were all 
responses to the devastating computational load that limited depth of search, 
and the inability to devise, for these shallow searches, an evaluation function 
that yielded a sufficiently close approximation to the true value of the leaf 
positions. We must remember that during the first decade or two of this 
research, computers were so small and slow that full search could not be 
carried to depths of more than about two moves (four or five ply, or an 
average of about 1,000 to 30,000 branches). 

We might mention two programs, one of 1958, the other of 1966, that 
departed rather widely from these general norms of design. Both were planned 
with the explicit view of approximating, more closely than did the game-theory 
approximation, the processes that human players used to choose moves. 

The first of these programs had separate base-move generators and analysis- 
move generators for each of a series of goals: material balance, center control, 
and so on [Newell, Shaw and Simon (1958)]. The moves proposed by these 
generators were then evaluated by separate analysis procedures that de- 
termined their acceptability. The program, which was never developed beyond 
three goals for the opening, played a weak game of chess, but demonstrated 
that, in positions within its limited scope of knowledge, it could find reasonable 
moves with a very small amount of search (much less than 100 branches.) 

Another important feature of the NSS (Newell, Shaw, and Simon) program 
was the idea of satisficing, that is, choosing the first move that was found to 
reach a specified value. In psychological terms, this value could be viewed as a 
level of aspiration, to be assigned on the basis of a preliminary evaluation of 
the current position, with perhaps a small optimistic upward bias to prevent too 
early termination of search. Satisficing is a powerful heuristic for reducing the 
amount of computation required, with a possible sacrifice of the quality of the 
moves chosen, but not necessarily a sacrifice when total time constraints are 
taken into account. 

Another somewhat untypical program, MATER, was specialized to positions 
where the player has a tactical advantage that makes it profitable to look for a 
checkmating combination [see Newell and Simon (1972, pp. 762-775)]. By 
giving priority to forceful moves, and 10oking first at variations that maximally 
restricted the number of legal replies open to the opponent, the program was 
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able to find very deep mating combinations (up to eight moves, 15 ply, deep) 
with search trees usually well under 100 branches. 

An interesting successor to this program, which combines search and knowl- 
edge, with emphasis on the latter, is Wilkins' program PARADISE [Wilkins 
(1982)]. PARADISE built small "humanoid" trees, relying on extensive chess 
knowledge to guide its search. Within its domain it was quite powerful. 
However, like MATER, its capabilities were limited to tactical chess problems 
(checkmates and wins of material), and it could not perform in real time. 

During this same period, stronger programs that adhered more closely to the 
"standard" design described earlier were designed by Kotok, Greenblatt, and 
others [described in Newell and Simon (1972, pp. 673-703)]. Gradual improve- 
ments in strength were being obtained, but this was due at least as much to 
advances in the sizes and speeds of computer hardware as to improvements in 
the chess knowledge provided to the programs or more efficient search 
algorithms. 

4. Search versus knowledge 

Perhaps the most fundamental and interesting issue in the design of chess 
programs is the trade-off between search and knowledge. As we have seen, 
human players stand at one extreme, using extensive knowledge to guide a 
search of perhaps a few hundred positions and then to evaluate the leaves of 
the search tree. Brute-force chess programs lie at the opposite extreme, using 
much less knowledge but considering millions of positions in their search. Why 
is there this enormous difference? 

We can view the human brain as a machine with remarkable capabilities, and 
the computer, as usually programmed, as a machine with different, but also 
remarkable capabilities. In the current state of computer hardware and soft- 
ware technology, computers and people have quite different strengths and 
weaknesses. Most computer programs lack any capability for learning, while 
human brains are unable to sum a million numbers in a second. When we are 
solving a problem like chess on a computer, we cater to the strengths rather 
than the weaknesses of the machine. Consequently, chess programs have 
evolved in a vastly different direction from their human counterparts. They are 
not necessarily better or worse; just different. 

4.1. Search 

Progress in computer chess can be described subjectively as falling into three 
epochs, distinguished by the search methods the programs used. The pre-1975 
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period, described above, could be called the pioneering era. Chess programs 
were still a novelty and the people working on them were struggling to find a 
framework within which progress could be made (much like Go programmers 
today). By today's standards, many of the search and knowledge techniques 
used in the early programs were ad hoc with some emphasis on selective, 
knowledge-based search. Some (not all) programs sought to emulate the 
human approach to chess, but this strategy achieved only limited success. 

The 1975-1985 period could be called the technology era. Independently, 
several researchers discovered the benefits of depth-first, alpha-beta search 
with iterative deepening. This was a reliable, predictable, and easily im- 
plemented procedure. At the säme time, a strong correlation was observed 
between program speed (as measured by positions considered per second) and 
program performance. Initially, it was estimated that an additional ply of 
search (increasing the depth of search by a move by White or Black) could 
improve performance by as much as 250 rating points. 1 At this rate, overcom- 
ing the gap between the best programs (1800) of the middle 1970s and the best 
human players (2700) required only 4 ply of additional search. Since an extra 
ply costs roughly a factor of 4-8 in computing power, all one had to do was 
wait for technology to solve the problem by producing computers 4,000 times 
fastet than those then available, something that would surely be achieved in a 
few years. 

Unfortunately, the rating scale is not linear in amount of search, and later 
experience indicated that beyond the master level (2200 points), each ply was 
worth only an additional 100 points. And, of course, it is widely believed that 
the rate of gain will decrease even further as chess programs reach beyond the 
base of the grandmaster (2500) level. 

All the top programs today reflect this fascination with brute-force alpha- 
beta search, having an insatiable appetite for speed. The  major competitive 
chess programs run on super-computers (Cray Blitz), special purpose hardware 
(Belle, Hitech, Deep Thought), and multi-processors ( Phoenix). The best chess 
programs reached the level of strong masters largely on the coat tails of 
technology rather than by means of major innovations in software or knowl- 
edge engineering. 

Since 1985, computer chess has hit upon a whole host of new ideas that are 
producing an emerging algorithm era. The limit of efficiency in alpha-beta 
search had been reached; new approaches were called for [Schaeffer (1989)]. 
In quick succession, a number of innovative approaches to search appeared. 
Whereas traditional alpha-beta search methods examine the tree to a fixed 

1Chess performance is usually measured on the so-called Elo scale, where a score of 2,000 
represents Expert performance, 2,200 Master level performance, and 2,500 Grandmaster per- 
formance. There are both American and International chess ratings, which differ by perhaps 100 
points, but the above approximation will be sufficient for our purposes. 



10 H.A.  Simon and J. Schaeffer 

depth (with some possible extensions), the new approaches attempt to expand 
the tree selectively, at places where additional effort is likely to produce a 
more accurate value at the root. Alpha-beta relies on depth as the stopping 
criterion; removal of this restriction is the most significant aspect of the new 
ideas in search. 

Alpha-beta returns the maximum score achievable (relative to the fallible 
evaluation function) and a move that achieves this score. Little information is 
provided on the quality of other sibling moves. Singular extensions is an 
enhancement to alpha-beta to perform additional searches to determine when 
the best move in a position is significantly better than all the alternatives 
[Anantharaman et al. (1988)]. These singular or forced moves are then 
re-searched deeper than they normally would be. Consequently, a forcing 
sequence of moves will be searched to a greater depth than with conventional 
alpha-beta. 

The conspiracy numbers algorithm maintains a count of the number of leaf 
nodes in the tree that taust change value (or conspire) to cause a change in the 
root value [McAllester (1988)]. Once the number of conspirators required to 
cause a certain change in the root exceeds a prescribed threshold, that value is 
considered unlikely to occur and the corresponding move is removed from 
consideration. The search stops when one score for the root is threshold 
conspirators better than all other possible scores. 

Min/max approximation uses mean value computations to replace the 
standard minimum and maximum operations of alpha-beta [Rivest (1988)]. 
The advantage of using mean values is that they have continuous derivatives. 
For each leaf node, a derivative is computed that measures the sensitivity of 
the root value to a change in value of that node. The leaf node that has the 
most influence on the root is selected for deeper searching. The search 
terminates when the influence on the root of all leaf nodes falls below a set 
minimum. When min/max approximation and conspiracy numbers are used, 
alpha-beta cut-offs are not possible. 

Equi-potential search expands all leaf nodes with a marginal utility greater 
than a prescribed threshold [Anantharaman (1990)]. The utility of a node is a 
function of the search results known at all interior nodes along the path from 
the tree root to that node, together with any useful heuristic information 
provided by the knowledge of the program. The search terminates when all 
leaf nodes have a marginal utility below the prescribed threshold. 

In addition to these procedures, a combination of selective search with 
brute-force search has re-emerged as a viable strategy. 

Although many of these ideas have yet to make the transition from theory to 
practice, they are already strongly influencing the directions today's programs 
are taking. In some sense, it is unfortunate that computer chess received the 
gift of alpha-beta search so early in its infancy. Although it was a valuable and 
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powerful tool, its very power may have inadvertently slowed progress in chess 
programs for a decade. 

4.2. Knowledge 

In view of the obvious importance of evaluation functions, it may seem 
surprising that more effort has not been devoted to integrating knowledge in a 
reliable manner into chess programs. The reason is simple: program per- 
formance is more easily enhanced through increases in speed (whether hard- 
ware or software) than through knowledge acquisition. With present tech- 
niques, capturing, encoding and tuning chess knowledge is a difficult, time- 
consuming and ad hoc process. Because performance has been the sole metric 
by which chess programs were judged, there has been little incentive for 
solving the knowledge problem. 

Acquiring knowledge by having human grandmasters advise chess pro- 
grammers on the weaknesses of their programs has not proved effective: the 
two sides talk different languages. Consequently, few chess programs have 
been developed in consultation with a strong human player. 

Deeper search has had the unexpected effect of making chess programs 
appear more knowledgeable than they really are. As a trivial example, 
consider a chess program that has no knowledge of the concept of fork,  a 
situation in which a single piece threatens two of the opponent's pieces 
simultaneously. Searching a move deeper reveals the captures without the need 
for representing the fork in the evaluation of the base position. In this manner 
deep searches can compensate for the absence of some important kinds of 
knowledge, by detecting and investigating the effects of the unnoticed features. 

Arthur Samuel constructed, in the 1950s, a powerful program for playing 
checkers [Samuel (1967)]. The program's knowledge was embodied in a 
complex evaluation function (which was capable of self-improvement through 
learning processes), and the program's prowess rested squarely on the accuracy 
of its evaluations. The evaluation function was a weighted sum of terms, and 
the weight of each term could be altered on the basis of its influence on moves 
that proved (retrospectively) to have been good or bad. 

The published descriptions of Samuel's program provide a complete descrip- 
tion of the checkers knowledge incorporated in it. (Comparable detailed 
information is not available for most chess programs.) However, Samuel's 
program is now three decades old, and technology has improved machine 
speed by several orders of magnitude. Checkers programs today use less than 
half of the knowledge of Samuel, the programs depending on search to reveal 
the rest. The same holds true for chess programs. 

That skilled human players process chess positions in terms of whole groups 
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of pieces, or chunks, is recognized as important by chess programmers; but, 
with few exceptions, no one has shown how to acquire or use chunks in 
programs, particularly under the real-time constraints of tournament chess 
games. One of the exceptions is Campbell's CHUNKER program, which is 
able to group the pieces in king and pawn endgames and reason about the 
chunks in a meaningful way [Campbell and Berliner (1984)]. Although the 
search trees built by CHUNKER are larger than would be built by a skilled 
human player, CHUNKER,  in the limited class of positions it could handle, 
achieved a level of performance comparable to that of a grandmaster. 

Only recently has significant effort in the design of chess programs been 
re-directed towards the acquisition and use of chess knowledge. Knowledge is 
useful not only for position evaluation, but also to guide the direction of search 
effort. The Hitech chess program, one of the two or three strongest programs 
in existence today, employs high-speed, special-purpose parallel hardware, but 
also incorporates more complete and sophisticated chess knowledge than any 
other program built to date [Berliner and Ebeling (1989)]. Over a three-year 
period, and without any change in hardware to increase its speed, the program 
improved in strength from an expert to a strong master solely on the basis of 
software improvements - principally improvements of its chess knowledge. 

4.3. A tale of two programs 

It is interesting to compare the current two best chess programs. Both originate 
at Carnegie-Mellon University and both use special-purpose VLSI processors, 
but that is where the similarities end. Deep Thought concentrates on speed; a 
specially designed, single chip chess machine that can analyze 500,000 positions 
per second. Further, since the basic design is easily reproducible, one can tun 
multiple copies in parallel, achieving even better performance (the system 
currently uses up to 6). As a consequence, under tournament conditions the 
program can look ahead almost 2 moves (or ply) deeper than any other 
program. However, considerable work remains to be done with its software to 
allow it to overcome the many glaring gaps in its chess knowledge. 

Hitech also uses special-purpose chips; 64 of them, one for each square on 
the board. However, Hitech's speed is less than that of a single Deep Thought 
processor. Hitech's strength lies in its knowledge base. The hardware has been 
enhanced to include pattern recognizers that represent and manipulate knowl- 
edge at a level not possible in Deep Thought. Consequently, Hitech plays a 
more "human-like" game of chess, without many of the "machine" tendencies 
that usually characterize computer play. However, Deep Thought's tremendous 
speed allows it to search the game tree to unprecedented depths, offen finding 
in positions unexpected hidden resources that take both other computer 
programs and human players by surprise. 
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A game between Hitech and Deep Thought is analogous to a boxing match 
between fighters with quite different styles. Hitech has the greater finesse, and 
will win its share of rounds, whereas Deep Thought has the knock-out punch. 
Unfortunately for finesse, no orte remembers that you out-boxed your oppo- 
nent for ten rounds. All they remember is that you were knocked out in the 
eleventh. 

5. Computer chess play 

The current search-intensive approaches, using minimal chess knowledge, have 
not been able to eliminate glaring weaknesses from the machines' play. Now 
that machines can wage a strong battle against the best human players, their 
garnes are being studied and their soff spots uncovered. Chess masters, given 
the opportunity to examine the games of future opponents, are very good at 
identifying and exploiting weaknesses. Since existing computer programs do 
not improve their play through learning, 2 they are inflexible, unable to 
understand or prevent the repeated exploitation of a weakness perceived by an 
opponent. 

Learning, in the current practice of computer chess, consists of the pro- 
grammer observing the kinds of trouble the program gets into, identifying the 
causes, and then modifying the program to remove the problem. The pro- 
grammer, not the program, does the learningt 

The biggest shortcomings of current chess programs undoubtably lie in their 
knowledge bases. Programs are too quick to strive for short-term gains visible 
in their relatively shallow search trees, without taking into account the 
long-term considerations that lie beyond the horizons of the search. The 
absence of fundamental knowledge-intensive aspects of human chess play, such 
as strategic planning, constitute a major deficiency in chess programs. In 
addition, they are unable to learn from mistakes and to reason from analogies, 
so that they cannot improve dynamically from game to garne. 

On the other hand, chess programs are not susceptible to important human 
weaknesses. The ability to calculate deeply and without computational (as 
opposed to evaluational) errors are enormous advantages. They are also free 
from psychological problems that humans have to overcome. Humans, tuned 
to playing other humans, are frequently flustered by computer moves. Mach- 
ines do not subscribe to the same preconceptions and aesthetics that humans 
do, and offen discover moves that catch their opponents oft guard. Many 
games have been lost by human opponents because of over-confidence induced 
by the incorrect perception that the machine's moves were weak. 

20ther than to remember previous games played, so that they can avoid repeating the same 
mistake in the same opening position (but not in similar positions). 
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Further, a computer has no concept of fear and is quite content to walk 
along a precipice without worrying about the consequences of error. A human, 
always mindful of the final outcome of the garne, can be frightened away from 
his best move because of fear of the unknown and the risk of losing. 

Only recently have people questioned whether the human model of how to 
play chess well is the only good model of, indeed, even the best model. The 
knowledgeable chess player is indoctrinated with over 100 years of chess theory 
and practice, leaving little opportunity for breaking away from conventional 
thinking on how to play chess well. On the other hand, a computer program 
starts with no preconceptions. Increasingly, the evidence suggests that compu- 
ter evaluation functions, combined with deep searches, may yield a different 
model of play that is better than the one humans currently use! 

In fact, it is quite likely that computer performance is inhibited by the biases 
in the human knowledge provided to programs by the programmer. Since a 
machine selects moves according to different criteria than those used by people 
(these criteria may have little relation to anything a chess player "knows" 
about chess), it is not surprising that the machines' styles of play are 
"different" and that humans have trouble both in playing against them and 
improving their programs. 

6. The future 

In 1988, Deep Thought became the first chess program to defeat a grandmaster 
in a serious tournament garne. Since then it has been shown that this was not a 
fluke, for two more grandmasters have fallen. 3 Deep Thought is acknowledged 
to be playing at the International Master level (2400+ rating) and Hitech is not 
far behind. 

However, in 1989, World Champion Garry Kasparov convincingly demon- 
strated that computers are not yet a threat for the very best players. He studied 
all of Deep Thought's published garnes and gained insight into the strengths 
and weaknesses of the program's play. In a two-game exhibition match, 
Kasparov decisively beat Deep Thought in both garnes. 

It is difficult to predict when computers will defeat the best human player. 
This important event, so long sought since the initial optimism of Simon and 
Newell (1958) was disappointed, will be a landmark in the history of artificial 
intelligence. With the constantly improving technology, and the potential for 
massively parallel systems, it is not a question "if" this event will occur but 

3The Grandmaster Bent Larsen was defeated in November 1988. Subsequently, Grandmasters 
Robert Byrne (twice), and Tony Miles have fallen. As of April 1990, Deep Thought's record 
against Grandmasters under tournament conditions was 4 wins, 2 draws, 4 losses; against 
International Masters, 11 wins, 2 draws, 1 loss. 
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rather "when". As the brute-force programs search ever more deeply, the 
inadequacy of their knowledge is overcome by the discoveries made during 
search. It can only be a matter of a few years before technological advances 
end the human supremacy at chess. 

Currently, computer chess research appears to be moving in two divergent 
directions. The first continues the brute-force approach, building faster and 
faster alpha-beta searchers. Deep Thought, with its amazing ability to consider 
millions of chess positions per second, best epitomizes this approach. 

The second direction is a more knowledge-intensive approach. Hitech has 
made advances in the direction, combining extensive chess knowledge with 
fast, brute-force search. Commercial manufacturers of chess computers, such 
as Mephisto, limited to machines that consumers can afford, realized long ago 
that they could never employ hardware that would compete with the powerful 
research machines. To compensate for their lack of search depth (roughly 
10,000 positions per second), they have devoted considerable attention to 
applying knowledge productively. The results have been impressive. 

Which approach will win out? At the 1989 North American Computer Chess 
Championship, Mephisto, running on a commercially available micro-proces- 
sor, defeated Deep Thought. (Mephisto is rated 2159 on the Swedish Rating 
List on the basis of 74 garnes against human opponents.) The verdict is not in. 

7. Other games 

Many of the lessons learned from writing computer chess programs have been 
substantiated by experience in constructing programs for other games: bridge 
bidding and play, Othello, backgammon, checkers, and Go, to mention a few. 
In both backgammon and Othello, the best programs seem to match or exceed 
the top human performances. 

Backgammon is especially interesting since the interpolation of moves 
determined by the throw of dice makes tree search almost futile. As the basis 
for evaluating and choosing moves, programs rely on pattern recognition, as do 
their human counterparts, and exact probability calculations, for which the 
human usually approximates or uses intuition. Berliner's construction of a 
world-class backgammon program using pattern recognition [Berliner (1980)] 
paved the way for building a rich body of chess knowledge into Hitech. 

8. Conclusion 

We have seen that the theory of games that emerges from this research is quite 
remote in both its concerns and its findings from von Neumann-Morgenstern 
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theory, To arrive at actual strategies for the playing of games as complex as 
chess, the garne must be considered in extensive form, and its characteristic 
function is of no interest. The task is not to characterize optimality or 
substantive rationality, but to define strategies for finding good moves-  
procedural rationality. 

Two major directions have been explored. On the one hand, one can replace 
the actual garne by a simplified approximation, and seek the game-theoretical 
optimum for the approximation- which may or may not bear any close 
resemblance to the optimum for the real garne. In a garne like chess, usually it 
does not. On the other hand, one can depart more widely from exhaustive 
minimax search in the approximation and use a variety of pattern-recognition 
and selective search strategies to seek satisfactory moves. 

Both of these directions produce at best satisfactory, not optimal, strategies 
for the actual game. There is no a priori basis for predicting which will perform 
better in a domain where exact optimization is computationally beyond reach. 
The experience thus far with chess suggests that a combination of the two may 
be bes t -  with computers relying more (but not wholly) on speed of computa- 
tion, humans relying much more on knowledge and selectivity. 

What is emerging, therefore, from research on garnes like chess, is a 
computational theory of garnes: a theory of what it is reasonable to do when it 
is impossible to determine what is best - a theory of bounded rationality. The 
lessons taught by this research may be of considerable value for understanding 
and dealing with situations in real life that are even more complex than the 
situations we encounter in chess- in dealing, say, with large organizations, 
with the economy, or with relations among nations. 
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O. Introduction 

This chapter serves as an introduction to some of the basic concepts that are 
used (mainly) in Part I ("Non-Coopera t ive")  of this Handbook.  It contains, 
first, formal definitions as weil as a few illustrative examples, for the following 
notions: garnes in extensive form (Section 1), garnes in strategic form (Section 
3), pure and mixed strategies (Sections 2 and 4, respectively), and equilibrium 
points (Section 5). Second, two classes of garnes that are of interest are 
presented: garnes of perfect information, which always possess equilibria in 
pure strategies (Section 6), and garnes with perfect recall, where mixed 
strategies may be replaced by behavior strategies (Section 7). 

There  is no attempt to cover the topics comprehensively. On the contrary, 
the purpose of this chapter is only to introduce the above basic concepts and 
results in as simple a form as possible. In particular, we deal throughout only 
with f in i te  garnes. The reader is referred to the other chapters in this Handbook 
for applications, extensions, variations, and so on. 

1. Games in extensive form 

In this section we present a first basic way of describing a game, called the 
"extensive form".  As the name suggests, this is a most detailed description of a 
game. It teils exactly which player should move, when, what are the choices, 
the outcomes, the information of the players at every stage, and so on. 

We need to recall first the basic concept of a " t ree"  and a few related 
notions. The reader is referred to any book on Graph Theory for further 
details. 

A (finite, undirected) graph consists of a finite set V together with a set A of 
unordered pairs of distinct members I of V. See Figure 1 for some examples of 
graphs. An element v ~ V is called a vertex or a node,  and each {v I, v2} E A is 
an arc, a branch or an edge ("joining" or "connecting" the vertices v 1 and v2). 
Note that A may be anything from the empty set (a graph with no arcs) to the 
set of all possible pairs (a "complete"  graph2). An (open) path connecting the 
nodes Vl and v m is a sequence vl ,  v2, . . .  , U m of distinct vertices such that 
{v 1, v2}, {v 2, v » } , . . .  , {Vm_ 1, Vm} are all arcs of the graph (i.e., belong to A). 
A cycle (or "closed path")  is obtained when one allows v 1 = v m in the above 
definition. 

1Note that neither multiple arcs (between the same two nodes) nor "loops" (arcs connecting a 
node with itself) are allowed. 

2The complete graph with n nodes has n ( n -  1)/2 arcs. 
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(a) (b) 

Figure 1. (a) A graph: V = {a, b, c, d, e}; A = { { a , b } ,  {a,c}, {c,d}, {c,e}}. (b) A graph: 
V = {a, b, c, d}; A = {{a, b}, {b, c}}. 

A tree is a graph where any two nodes are connected by exactly one path. 
See Figures 2 and 3 for some examples of trees and "non-trees",  respectively. 
It is easy to see that a tree with n nodes has n - 1 arcs, that it is a connected 
graph, and that it has no cycles. 

Let T be a tree, and let r be a given distinguished node of T, called the root 
of the tree. One may then uniquely "direct" all arcs so they will point away 
from the root. Indeed, given an "undirected" arc {vl, v2}, either the unique 
path ffom r to v 2 goes through v 1 - in which case the arc becomes the ordered 
pair (va, v2) - or the unique path from r to v 1 goes through v 2 - and then the 
arc is directed as (v2, vl). The root has only "outgoing" branches. All nodes 
having only "incoming" arcs are called leaves or terminal nodes; we will denote 
by L =- L ( T )  the set of leaves of the tree T. See Figure 4 for an example of a 
" rooted  tree". 

Figure 2. A tree. 
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0 

(a) 

a b 

(b) 

Figure 3. (a) Not a tree (two paths from a to e). (b) NOt a tree (no path from a to b). 

Cl 

Figure 4. A rooted tree: root = a; leaves = d, e, f. 

We can now formal ly  define an n-person game in extensive form, F, as 
consist ing of  the following: 3 

(i) A set N =  {1,2 ,  . . . , n} o f p l a y e r s .  
(ii) A roo ted  t ree ,  T, called the game tree. 

4 (iii) A par t i t ion  of  the  set of  non- te rmina l  nodes  of  T into n + 1 subsets  
deno t ed  pO, p1, p2, n 0 P . T h e  m e m b e r s  of  P are called chance (or, nature) 
nodes; for  each  i C N,  the  m e m b e r s  of  p i  are called the nodes ofplayer i. 

(iv) Fo r  each node  in pO, a probabi l i ty  distr ibution over  its ou tgoing  
branches .  

(v) For  each  i E N ,  a par t i t ion of  Pi into k(i) information sets, 
uil, i i 

U 2 . . . .  , U~(i) , such that ,  for  each ] = 1, 2 , . . .  , k( i ) :  

3This definition is due to Kuhn (1953); it is more general than the earlier one of von Neumann 
(1928) [see Kuhn (1953, pp. 197-199) for a comparison between the two]. 

4A non-terminal node is sometimes called a "move".  
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(a) all nodes in U) have the same number of outgoing branches, and 
there is a given one-to-one correspondence between the sets of 
outgoing branches of different nodes in UI.; 

(b) every (directed) path in the tree from the root to a terminal node 
can cross each U~ at most once. 

(vi) For  each terminal node tEL(T) ,  an n-dimensional vector g(t)= 
(g l ( t ) ,  g 2 ( t ) , . . . ,  gn(t)) of payoffs. 

(vii) The complete description ( i)-(vi)  is common knowledge among the 
players.S 

One can imagine this game F as being played in the following manner.  Each 
player has a number of agents, one for each of his information sets [thus i has 
k(i) agents]. The agents are isolated from one another,  and the rules of the 
garne [i.e., (i)-(vii)] are common knowledge among them too. A play 6 of F 
starts at the root  of the tree T. Suppose by induction that the play has 
progressed to a non-terminal node, v. If v is a node of player i (i.e., v E pi), 
then the agent corresponding to the information set U I. that contains v chooses 
one of the branches going out of v, knowing only that he is choosing an 
outgoing branch at one of the nodes in U I. [recall (v) (a)]. If v is a chance hode 
(i .e. ,  v E pO), then a branch out of v is chosen according to the probability 
distribution specified for v [recall (iv); note that the choices at the various 
chance nodes are independent].  In this manner a unique path is constructed 
from the root  to some terminal hode t, where the game ends with each player i 
receiving a payoff gi(t). 

Rernark 1.1. The payoff vectors g(t) are obtained as follows: to each terminal 
node t E L there corresponds a certain "ou tcome"  of the garne, call it a(t). The 
payoff gi(t) is then defined as ui(a(t)), where u i is a von Neumann-Morgen-  
stern utility function of player i. As will be seen below, the role of this 
assumption is to be able to evaluate a random outcome by its expected utility. 

Example 1.2 ("Matching pennies").  See Figure 5: N = {1, 2}; root = a; pO = 
B; p1 = Ull = {a}; p2 = U 2 = {b, c}; payoff vectors (gl(t), g2(t)) are written 
below each terminal node t. Note that player 2, when he has to make his 
choice, does not know the choice of player l .  7 Thus both players are in a 

5That is, all players know it, each one knows that everyone else knows it, and so on; see the 
chapter  on 'common knowledge'  in a forthcoming volume of this Handbook for a formal treatment 
of this notion. 

6One distinguishes between a game and a play: the former is a complete description of the rules 
(i.e.,  the whole tree); the latter is a specific instance of the garne being played (i.e., just orte path 
in the tree). 

7This shows the role of information sets; the garne changes dramatically if player 2 knows at 
which node he is (b or c) when he has to make his choice - he can then always "win" (i.e., obtain a 
payoff of 1). 
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(l~-i) ( - i , I )  ( - I , i )  { I , - I )  

Figure 5. The game tree of Example 1.2. 

S. Hart 

u: 

I /  %2 

u; 

I /  \ 2  I /  \ 2  

hY'i1~1 k,/~ 7mln /o'Ip\q 
(2,0,0) (0,2,0)(0,2,5} (I,I,I) (0,0,0) (1,2,3) (2,0,0) (0,I,-I) (1,2,0) (i,-l,O 

Figure 6. The garne tree of Example 1.3. 
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similar situation: they do not know what is the choice of the other player; for 
instance, they may make their choices simultaneously. [] 

Example  1.3. See Figure 6: N = {1, 2, 3}; root  = a; pO = {d} ;  p1 = {a,  e, f } ;  
UI = {a}; U 1 = {e, f} ;  p2 = U~ = {b, c}; p3 = U3 = {g}; payoff vectors, the 
probability distribution at d, and the branches' correspondences [by (v) (a)] are 
all written on the tree. Note that at his second information set U12, player 1 
does not recall what his choice was at u x~; so player 1 consists of two agents 
(one for each information set), who do not communicate during the play. [] 

2. Pure strategies 

i Let  I g := {U~I, U~~, . . ,  Uk«)} be the set of information sets of player i; from 
now on we will simplify notation by using U ~ E I i to denote a generic element 
of I g. For  each information set U i of player i, let v =- v(U ~) be the number of 
branches going out of each node in U'; number these branches from 1 through 
v such that the one-to-one correspondence between the sets of outgoing 
branches of the different nodes of U g is preserved. Thus, let C(U ~) :-- 
{1, 2 , . . . ,  v(U/)} be the set of choices available to player i at any node in U g. 

A pure strategy s g of player i is a function 

i " s"  I'--+ {1, 2 . . . .  } ,  

such that 

sg(U g) @ C(U)  for all U g E 1i.  

That  is, s i specifies for every information set U i E I i of player i, a choice s~(U g) 
there. Let  S g denote the set of pure strategies of player i, i .e.,  
S g := Ylui~v C(Ug). Let  S := S 1 x S 2 x . - .  x S n be the set of n-tuples (or pro- 
files) of pure strategies of the players. 

For  an n-tuple s = (s 1, s 2 , . . ,  s n ) E  S of pure strategies, the (expected) s 
payoff hg(s) to player i is defined by 

hi(s) := ~ Ps(t)gi(t), (2 .1)  
t E L  

where,  for each terminal node tE  L(T),  we denote by ps(t) the probability 

SRecall Remark 1.1. 
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that the play of the garne ends at t when the players use the strategies 
1 2 S n s ,  s , . . . ,  . This probability is computed as follows. Let ~--~ ~-(t) be the 

(unique) path from the root to the terminal node t. If there exists a player 
i E N and a node of i on 7r at which s i specifies a branch different from the one 
along 7r, then ps(t)'= 0. Otherwise, ps(t) equals the product of the prob- 
abilities, at all chance nodes on the path 7r, of choosing the branch which is 
along 7r. The function 9 hi: S-+ ~R defined by (2.1) is called the payofffunction 
ofplayer i. 

Example 2.2. Consider again the game of Example 1.3. Player l has four pure 
strategies: (1, 1), (1 ,2 ) ,  (2, 1) and (2 ,2 ) ,  where (j~, J2) means that Jl is 
chosen at ull and Je is chosen at U~. Player 2 has two pure strategies: (1) and 
(2) ,  and player 3 has three pure strategies: (1),  (2) and (3). To see how 
payoffs are computed, let s = ((2, 1), (2),  (3));  then the terminal node q is 
reached, thus h l ( s ) = l ,  h 2 ( s ) = - l ,  and h 3 ( s ) = l .  Next, let s ' =  
((1, 15, (1) ,  (3)) ;  then h(s') : (1/2)(2,0,  O) + (1/6)(0, 2,0) + (1 /3) (0 ,2 ,3 )  
: (1, 1, 1). [] 

3. Games in strategic form 

A second basic way of describing a garne is called the "strategic form" (also 
known as "normal form" or "matrix fo rm") )  ° 

An n-person game in strategic form F consists of the following: 
(i) A set N = {1, 2 . . . .  , n} of players. 

(ii) For each player i ~ N, a finite set S i of (pure) strategies. Let S := S 1 × 
S 2 x . . .  x S" denote the set of n-tuples of pure strategies. 

(iii) For each player i E N, a function hi: S---~ ,eR, called the payofffunction 
of player i. 

In the previous section we showed how the strategic form may be derived 
from the extensive form. Conversely, given a garne in strategic form,  one can 
always construct an extensive form as follows. Starting with the root as the 
single node of player 1, there are 1Sl1 branches out of it, one for each strategy 
s 1 ~ S 1 of player 1.11 The ISll end-nodes of these branches are the nodes of 
player 2, and they all form one information set. Each of these nodes has [$21 
branches out of it, one for each strategy s 2 E S 2 of player 2. All these ISll-Is21 
nodes form one information set of player 3. The construction of the tree is 

9The real line is deno ted  9~. 
1°We prefer "strategic form" since it is more suggestive. 
l~The number  of elements of a finite set A is denoted by IAI. 
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[ Head 
S 1 

Tail 

Table 1 

Head Tail 

1, - 1  - 1 ,  1 

-1 ,  1 1, - 1  

continued in this manner: there are IS il branches - one for each strategy s i E S i 
of player i -  going out of every node of player i; the end-points of these 
branches are the nodes of player i + 1, and they all form one information set. 
The end-points of the branches out of the nodes of player n are the terminal 
nodes of the tree; ~2 the payoff vector at such a terminal node t is defined as 
(hl(s) ,h2(s) , . . ,  hn(s)), where s=-s(t) is the n-tuple of strategies of the 
players that correspond, by our construction, to the branches along the path 
from the root to t. 

Example 3.1. Let N =  {1,2}; S 1= S 2= {Head, Tail}; the payoff functions 
are given in Table 1, where each entry is hl(s 1, s2), h2(s 1, s2).  Plainly, the 
above construction yields precisely the extensive form of Example 1.2 ("match- 
ing pennies").  [] 

(o,2) (J,r) (2,o) (o,2) (2,o) (i,I) 

(e) (b) 

2,0 2,0 

0,2 I,I 

(c) 

Figure 7. Two games in extensive form, (a) and (b), with the same strategic form, (Q. 

12There are IS l = ISll • IS21.. . .  • IS"l terminal nodes. 
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It is clear that, in general, there may be many extensive forms with the same 
strategic form (up to "renaming" or "relabeling" of strategies). Such an 
example is presented in Figure 7. Thus, the extensive form contains more 
information about the garne than the strategic form. 

4. Mixed strategies 

There  are many situations in which a player's best behavior is to randomize 
when making his choice (recall, for instance, the game "matching pennies" of 
Examples 1.2 and 3.1). This leads to the concept of a "mixed strategy". 

We need the following notation. Given a finite set A, the set of all 
probability distributions over A is denoted A(A). That  is, A(A) is the (IAI - 1)- 
dimensional unit simplex 

A(A) :=IX:(X(a))aEA: x(a) />0 for all a E  A and ~] x(a) = 1}. 
a E A  

The set of mixed strategies X i o fp layer  i is defined as X i := A(Si), where S i is 
the set of pure strategies of player i. Thus, a mixed strategy x ~ = (x(s~))~iEs i E 
X ~ of player i means that i chooses each pure strategy s s with probability xS(si). 
From now on we will identify a pure strategy s i e  S s with the corresponding 
unit vector in X(  

Ler X := X 1 x X 2 x • • • x X n denote the set of n-tuples o f  mixed strategies. 
For every x = (x a, x 2, . . . , x ~) E X ,  the (expected) 13 payo f f  o f  player i is 

Hi(x)  . :  ~ x(s)hi(s), 
s @ S  

where x ( s ) :=  IIjc u xS(s s) is the probability, under x, that the pure strategy 

n-tuple s = (s 1, s ;, . . . ,  S )  is played. We have thus defined a payo f f f unc t ion  
Hi: X--~ 8i for player i. Note that F* := (N; (X~)iCN; (Hi)icN) is an n-player 
(infinite) 14 game in strategic form, caIled the mixed extension of the original 
garne F = (N; (Si)ieN; (hi)i~N). 

If the game is given in extensive form, orte obtains [from (2.1)] an equivalent 
expression for H ' :  

/ / ' (x)  Y, / = px( t )g  ( t ) ,  (4.1) 
t E L  

where,  for each terminal node t E L ( T ) ,  we let px(t) be the probability that the 
terminal node t is reached under x; i.e., px(t)  := 2scs x(s)ps(t) .  

13Again, recall Remark 1.1. 
14The strategy spaces are infinite. 
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5. Equilibrium points 

We come now to the basic solution concept for non-cooperative games. 
A (mixed) n-tuple of strategies x = (x 1, x 2, . . . ,  x n) E X is an equilibrium 

point  Is if 

Hi(x )>_ i - i  ~- H (x , y i )  

for all players i C N  and all strategies y i C X '  of player i, where 
- i  i -1 i+I x : = ( x  1 , . . . , x  , x  , . . , x  n) denotes the (n - 1 ) - t u p l e  of strategies, in x, 

of all the players except i. Thus x ~ X is an equilibrium whenever no player i 
can gain by changing his own strategy (from x ~ to yZ), assuming that all the 
other players do not change their strategies. Note that the notion of equilib- 
rium point is based only on the strategic form of the garne; various "refine- 
ments"  of it may however depend on the additional data of the extensive form 
(see the chapters on 'strategic equilibrium' and 'conceptual foundations of 
strategic equilibrium' in a forthcoming volume of this Handbook for a com- 
prehensive coverage of this issue). 

The main result is 

Theorem 5.1 [Nash (1950, 1951)]. Every (finite) n-person game has an 
equilibrium point (in mixed strategies). 

The proof  of this theorem relies on a fixed-point theorem (e.g., Brouwer 's  or 
Kakutani's). 

6. Games of perfect information 

This section deals with an important class of games for which equilibrium 
points in pure strategies always exist. 

An n-person garne F (in extensive form) is a garne ofperfect  information if 
all information sets are singletons, i.e., Iuil = 1 for each player i E N and each 
information set U i E  I i of i. Thus, in a garne of perfect information, every 
player, whenever called upon to make a choice, always knows exactly where he 
is in the game tree. 

Examples of games of perfect information are Chess, Checkers, Backgam- 
mon (note that chance moves are allowed), Hex, Nim, and many others. In 
contrast, Poker,  Bridge, Kriegsspiel (a variant of Chess where each player 
knows the position of his own pieces only) are garnes of imperfect information. 

15Also referred to as "Nash equilibrium", "Cournot-Nash equilibfium", "non-cooperative 
equilibrium", and "strategic equilibrium". 
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(Another  distinction, between complete and incomplete information, is pre- 
sented and analyzed in the chapter on 'games of incomplete information '  in a 
for thcoming volume of this Handbook. )  

The historically first theorem of Garne Theory  deals with a garne of perfect 
information.  

Theorem 6.1 [Zermelo (1912)]. In Chess, either 
(i) White can force a win, or 

(ii) Black can force a win, or 
(iii) both players can force at least a draw. 

We say that a player can force an outcome if he has a strategy that makes  the 
garne terminate  in that outcome,  no matter  what his opponent  does. Zermelo ' s  
T h e o r e m  says that Chess is a so-called "de te rmined"  garne: either there exists 
a pure  strategy of one of the two players (White or Black) guaranteeing that he 
will always win, or each one of the two has a strategy guaranteeing at least a 
draw. Unfortunately,  we do not know which of the three alternatives is the 
correct one (note that, in principle, this question is decidable in finite time, 
since the game tree of Chess is finite). 16 

The proof  of Zermelo ' s  Theorem is by induction, in a class of "Chess-l ike" 
garnes; 17'18 it is actually a special case of the following general result: 

Theorem 6.2 [Kuhn (1953)]. Every (finite) n-person game of  perfect informa- 
tion has an equilibrium point in pure strategies. 

Proof. Assume by induction that the result is true for any game with less than 
m nodes. Consider a game F of perfect information with m nodes, and let r be 
the root of the game tree T. Let  vl,  v 2 , . . ,  vn denote the "sons"  of r (i.e.,  
those nodes that are connected to r by a branch), and let Tl, T 2 , . . ,  T K 
(respectively),  be the (disjoint) subtrees of T starting at these nodes. Each such 
T k corresponds to a garne F« of perfect information (indeed, since F has perfect 
information,  every information set is a singleton, thus completely included in 
one of the Tk's); F~ therefore  possesses, by the induction hypothesis,  an 

i equilibrium point s k = (s~)i~ N in pure strategies. From these we construct a 
pure  equilibrium point s = (Si)i~N for F, as follows. If r is a chance node, then s 
is just the "combina t ion"  (of "concatenat ion")  of the sk's i.e., si(v) = s~(v) for 

16There are "Chess-like" games- for instance, Hex - where it can be proved that the first player 
can force a win, but nonetheless a winning strategy is not known. Other (simpler) games- e.g., 
Nim- have complete solutions (i.e., which player wins and by what strategy). 

17For example, see Aumann (1989, pp. 1-4). 
18Zerrnelo's Theorem 6.1 has been extended to two-person, zero-sum games by von Neumann 

and Morgenstern (1944, Section 15). 
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all nodes v of player i that belong to T k. I f r  is a node of, say, player i, then, in 
addition to the above "combinat ion" ,  we put 19 

si(r) : = argmax h ~ ( S k ) ,  
l ~ k ~ K  

i .e.,  player i chooses at his first node r a branch k that leads to a subgame F k 

where his equilibrium payoff  is maximal.  It is now straightforward to check 
that  s is indeed a pure equilibrium point of F. [] 

R e m a r k  6.3. The above proof  yields a construction of equilibrium points in 
pure  strategies by "backwards  induction",  f rom the terminal nodes to the 
root: 2° at each node of a player,  choose a branch which leads to a subtree with 
the highest equilibrium payoff  for that player; 21 at each chance node,  average 
the equilibrium payoffs of the subtrees. Note  that the equilibrium points 
constructed in this manner ,  when restricted to any subgame of the original 
garne, yield equilibria in the subgame as weil; such equilibria are called 
" (subgame)  perfect" .  The reader  is referred to the chapters on 'strategic 
equil ibrium' and 'conceptual  foundations of strategic equilibrium' in a forth- 

i ~ u 1 2  

/ X / \ 

(h-J,-2) (2,ö,o) (ho,2) (o,J,3) (õ,~,o) (4,~,2) (hz,-r) 
Figure 8. The garne tree of Example 6.4 and the construction of the pure equilibrium point. 

~gwe write h~ for the payoff function of player i in the subgame Fk, and "argmax" for a 
maximizer (il not unique, pick one arbitrarily). 

2°This is the standard procedure of "dynamic programming". 
alNote that some of these choices need not be unique, in which case there is more than one such 

equilibrium. 
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coming volume of this Handbook for a discussion of these issues of backwards 
induction and perfection in relation to equilibrium points. 

The following example illustrates the construction. 

Example 6.4. See Figure 8: arrows indicate the choices forming the equilib- 
rium strategies; the numbers in each node are the equilibrium payoffs for the 
subtree rooted at that node. The resulting equilibrium point is s = ( ( 2 , 2 ) ,  
(1, 2),  (2, 2}), with payoffs h(s) = (4, 1, 2). [] 

The reader is referred to Chapter 3 in this volume for the development of 
the topic of garnes of perfect information, in particular in infinite garnes. 

7. Behavior strategies and perfect recall 

A pure strategy of a player is a complete plan for his choices in all possible 
contingencies in the garne (i.e., at all his information sets). A mixed strategy 
means that the player chooses, before the beginning of the game, orte such 
comprehensive plan at random (according to a certain probability distribution). 
An alternative method of randomization for the player is to make an in- 
dependent random choice at each one of his information sets. That is, rather 
than selecting, for every information set, one definite cho ice-  as in a pure 
strategy - he specifies instead a probability distribution over the set of choices 
there; moreover, the choices at different information sets are (stochastically) 
independent. These randomization procedures are called behavior strategies. 

A useful way of viewing the difference between mixed and behavior 
strategies is as follows. One can think of each pure strategy as a book of 
instructions, where for each of the player's information sets there is orte page 
which states what choice he should make at that information set. The player's 
set of pure strategies is a library of such books. A mixed strategy is a 
probability distribution on his library of books, so that, in playing according to 
a mixed strategy, the player chooses one book from his library by means of a 
chance device having the prescribed probability distribution. A behavior 
strategy is a single book of a different sort. Although each page still refers to a 
single information set of the player, it specifies a probability distribution over 
the choices at that set, not a specific choice. 

We will see below that a behavior strategy is essentially a (special kind of) 
mixed strategy. Moreover, when a player has what is called "perfect recall", 
the converse also holds: every mixed strategy is fully "equivalent" to a 
behavior strategy. 
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We define a behavior strategy b' ofplayer i in the game F (in extensive form) 
as an element of 

Bi :  = I7[ A ( C ( U ) ) ,  (7.1) 
u i E I  i 

that is, b i = (bi(Ui))dcli,  where each bi(U i) is a probability distribution over 
the set C ( U )  of choices of player i at his information set U i. We will write 
bi(Ui; c), rather than the more cumbersome (bi(Ui))(c), for the probability 
that the choice of player i at U i is c E C(Ui);  thus Z«~cw~ ) bi(Ui; c) = 1 and 
bi(ui; c) PO. 

Note that the linear dimension of the space of behavior strategies B i of 
player i is Ej ( v i i -  1), whereas that of the space of mixed strategies X i is 
IIj vij - 1, where j ranges from 1 to k(i) = Irl and i j  _- iC(Ubl  Therefore 8 i is 
a rauch smaller set than X i. 

Actually, the set B i of behavior strategies of player i can be identified with a 
subset of the set X i of mixed strategies of i. Indeed,  given a behavior strategy, 
one may perform all the randomizations (for all information sets) before the 
game starts, which yields a (random) pure s t r a t eg y - i . e . ,  a mixed strategy. 
Formally, the mixed strategy x i corresponding to the behavior strategy b i E B i is 
defined by x i= ( x i ( s i ) ) s i ~ S i  , w h e r e  

xi(s i) := [ I  bi(Ui; si(Ui)) (7.2) 
u i c I  i 

for each pure strategy s i E S i. Since bi(Ui; si(Ui)) is the probability, under b i, 
that player i chooses si(U i) at the information set U i, it follows that xi(s i) is 
precisely the probability that all his (realized) choices are according to the pure 
strategy si; in short, xi(s i) is the probability, under b i, of using s i. The following 
lemma is thus immediate. 

Lemma 7.3. For any behavior strategy b i E B i o f  player i, the corresponding x i 
given by (7.2) is a mixed strategy of  i that is equivalent to b i. 

"We call the two strategies yi and z i of player i equivalent if they yield the 
same payoffs 22 (to everyone) for any strategies of the other players, i.e., 
HJ(y  i, x i) = Hj(z  i, x- i )  for all x -i and a l l j  E N. Note that the argument given 
above shows that a stronger statement is actually true: for each terminal hode 
t E L, the probabilities that t is reached under (b i, x /) and under (x/, x - /)  are 

- i  the same, for any x 

22We have defined the (expected) payoff functions H i for n-tuples of mixed strategies (see 
Section 4). The definition may be trivially extended to behavior strategies as well: use (4.1) with 
the probabilities px(t) computed accordingly. 



34 S. Hart 

The difference between behavior and mixed strategies can thus be viewed as 
independent  vs. (possibly) correlated randomizations (at the various informa- 
tion sets). This may be also seen by comparing directly the two definitions: B i 
is a product  of probability spaces [see (7.1)], whereas X i is the probability 
space on the product [i.e., A(IIvi~l l  c ( u i ) ) ] .  The following example is most 
illuminating. 

Example 7.4 [Kuhn (1953)]. Consider a two-player, zero-sum 23 game in 
which player 1 consists of two people, 24 Alice and her husband Bill, and player 
2 is a single person, Zeno.  Two cards, one marked "High"  and the other 
"Low" ,  are dealt at random to Alice and Zeno. The person with the High card 
receives $1 from the person with the Low card, and then has the choice of 
stopping or continuing the play. If the play continues, Bill, not  k n o w i n g  the 

o u t c o m e  o f  the deal, instructs Alice and Zeno either to exchange or to keep 
their cards. Again, the holder of the High card receives $1 from the holder of 
the Low card, and the game ends. See Figure 9 for the game tree (A = Alice, 

//•pO High to A /  \ Highl ~o Z 

2 0 - 2  0 

Figure 9. The game tree of Example 7.4. 

23A two-player game is a zero-sum game if h 1 + h z = 0, i.e., what one player gains is what the 
other loses. 

Z4With a joint bank account. 
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Table 2 
Strategic form of Example 7.4 

1•  (s) (c) 
(S,K) ½.1+1.(-1)=0 1-1+½-(-2)=-½ 

(S,E) 1-1+ ½.(-1)=0 ½.1+½-(0)-½ 

(C,K) ½.2+½.(-1)=½ ½.2+½.(-2)=0 

(C,E) ½.0+ ½-(-f)=-½ ½-0+ ½.(0)=0 
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B = Bill, Z = Zeno; S = Stop, C = Continue, K = Keep and E = Exchange; 
payoffs at the terminal nodes are those paid by player 2 to player 1). 

The strategic form of this garne is given in Table 2. Note that the strategies 
(S, K} and (C, E) of player 1 are strietly dominated (by (C, K) and (S, E) ,  
respectively). Eliminating them yields the reduced strategic form of Table 3. 

It is now easy to see that the unique optimal (mixed) strategies of the players 
are (0, 1/2, 1/2, 0) and (1/2, 1/2), respectively; 25 the value of the game is 1/4. 
Thus, in particular, player 1 can guarantee that his expected payoff will be at 
least 1/4, regardless of what player 2 will do. 

Suppose now that player 1 uses only behavior strategies. Let b 1 = (ba(UÄ), 
b i ( U 1 ) )  = ( ( a ,  1 - a),  (/3, 1 - / 3 ) )  E B 1, i.e., Alice chooses S with probability 
a and C with probäbility 1 - a, and Bill chooses K with probability/3 and E 
with probability 1 - /3 .  [Note that the mixed strategy corresponding to b I is 
(aß, a(1 - / 3 ) ,  (1 - a)/3, (1 - a)(1 - /3 ) )  - see (7.2).] Then player l 's ex- 
pected payoff is 26 ( 1 -  a ) ( / 3 -  1/2) if player 2 plays S, and a ( 1 / 2 - / 3 )  if 
player 2 plays C. So the maximum payoff that player 1 can guarantee when 
restricted to behavior strategies is 

Table 3 
Reduced strategic form of Example 7.4 

(s) (c) 
(S,E)  0 ½ 

(C,K) 21 0 

25A mixed strategy of player 1 is written as the vector of probabilities for his pure strategies 
(S, K), (S, E), (C, K), {C, E), in that order; for player 2, the order is (S), (C). 

Z6For example, the payoff if 2 plays S is computed as follows ( 1 / 2 ) - [ a - 1 + ( 1 - a ) .  
(t3.2 + (1 -/3). 0)1 + 0/2)- (-1). 



36 S. Hart 

max [min{(1 - cQ(/3 - 1 / 2 ) ,  « ( 1 / 2  - / 3 ) ) ]  
O~<a,~~l 

which equals 0, since ei ther/3 - 1/2 or 1 / 2 - / 3  is always ~<0. [] 

Thus, behavior strategies for player 1 do a poorer  job in this example than 
mixed strategies: player 1 can guarantee l / 4  with the latter, but only 0 with the 
former.  Indeed,  there is no behavior strategy corresponding to the unique 
optimal mixed strategy x 1 = (0, 1/2, 1/2, 0) of player 1, since x I requires the 
randomizations at his two information sets to be fully correlated (rather than 
independent) .  

The reason that behavior strategies are inadequate in Example 7.4 is that 
player 1 consists of two agents who are not allowed to communicate during the 
play. This implies that, in going from UÄ to U~, player 1 "forgets" what he 
knew, namely the outcome of the initial draw. Therefore  the player needs to 
correlate,  before the garne starts, the random choices of his agents at his two 
information sets. Conversely, if a player always remembers what he knew as 
well as what he chose at all his previous nodes - in which case we say that the 
player has "perfect  recall" - then he has no need to correlate the choices at his 
different information sets: indeed, being at any information set uniquely 
determines what happened at all the previous ones. 

Formally, given a garne tree T and a node v of T, we will denote by T(v) the 
subtree of T with root at v. For an information set U and a choice there 
c E C(U), we will write T(U; c) for the union of the trees T(w), where w is 
connected to some node v ~ U by a branch labeled c [i.e., T(U; c) is the 
" remainder"  of the game after the information set U has been reached, and the 
choice c has been made there by the corresponding player]. We will say that 
player i has perfect recall in the game F (in extensive form) if the following 
condition is s a t i s f i e d .  27 Let va, v 2 E pi  be nodes of player i, let U/1 3 v~ and 
Ui2 ~ v 2 be the corresponding information sets of i, and assume that v 2 E T(v~) 
(i.e.,  there exists a play of the g a r n e - a  p a t h - w h e r e  v 2 "comes after" va); 
then there exists a unique choice c E C(Uil) such that Uiz C T(ui~; c). A garne 
F in which every player has perfect recall is called a game ofperfect recall. Note 
that a player who is a single person has perfect recall; z8 isolated agents are not 
needed to play the garne for hirn. This is the case for most parlor garnes (but 
not  for Bridge, when viewed as a two-player garne, with each player consisting 
of two partners). 

The condition in the definition of perfect recall can be separated into two 
parts: 

27The original definition of Kuhn (1953) is different but equivalent to the one presented here; 
the advantage of the latter is that it is stated (and may be checked) directly on the structure of the 
tree. 

2•Provided he is not too absent-minded. 
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(i) "Player i recalls what he knew": ui2 C ~ i i T(U1), i.e., each node in U 2 has 
t U i \ T ( U  i ~ 29 to be reachable from some node in Uil. Otherwise, let v 2 E 2 \ 11; then, 

when reaching the information set Uiz, player i does not recall whether the play 
went through uil (as in v2) or not (as in v~) - he forgot what he knew (when he 
was at Ui~). If player i had perfect recall, then, at U2, he would be able to 
distinguish between v 2 and v~, according to whether or not he has already been 
called upon to make a choice at Uil; hence v 2 and v 2 would have lied in 
different information sets. In Example 7.4 above, player 1 does not have 
perfect recall, since, if the play is: 'player 1 gets "High" and decides "Con- 
t inue" ', then at U~ he no longer knows what he knew at uÄ (namely, the 
outcome of the draw). 

(ii) "Player i recalls what he c h o s e " :  ui2 C T(Uil; c) for a unique choice c at 
Uil. Otherwise, let v~ ~ T(Uil; c ')  D U 2 for some other choice c ' ¢  c; then, at 
Ui2, player i does not recall whether bis own choice at Uil was c (as is the case 
at Vz) or c' (as is the case at v~) - he forgot what he chose (at Uil). If player i 
had perfect recall, then the nodes v 2 and v~ would be distinguished by the 
choice he made at Uil, and would thus lie in different information sets. In 
Example 1.3 (in Section 1), for instance, condition (i) is satisfied but (ii) is not: 
U21 contains two nodes (e and f )  that follow different choices (1 and 2, 
respectively) of player 1 at Ulk. 

Example 7.5. In the garne tree of Figure 10, assume that the root and the 
nodes at the third level do not  belong to player 1 (it does not matter if they are 
chance nodes or personal nodes, and to which information sets they belong), 
and assume that all eight nodes at the fourth level are nodes of player 1. If 
player 1 has perfect recall, then condition (i) implies that {c, d, e, f}  is 
separated from {g, h, i, j} (i.e., there can be no information set of player 1 
containing nodes from both sets); condition (ii) separates {c, d} from {e, f} ,  
and { g , h }  from {i, j } .  The dashed lines in Figure 10 show this 
partitioning. [] 

Example 7.6. Modify Example 7.5 by putting the two nodes a and b at the 
second level in orte information set (of player 1). Then perfect recall for player 
1 implies that {c, d, g, h} must be separated from {e, f, i, j} [condition 
(ii)]. [] 

We come now to the main result of this section. 

Theorem 7.7 [Kuhn (1953)]. Let  F be a (f inite)  n-person game in which player 
i has perfect  recall. Then for  each mixed  strategy x i E X i o fp layer  i there exists a 
corresponding behavior strategy b i E B i that is equivalent to x i. 

zgA "V' denotes set subtraction. 
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u ~  
C 

: I : 
• i ° 

/ -  
Ployer I recells 
whot he chose 

: I : 
[ • 

F~ 
Player I r e c e l l s ~  
wh«t he knew 

Figure 10. The game tree of Example 7.5. 

Thus, having perfect recall is a sufficient 3° condition for restricting a player 
to behavior strategies instead of the (usually much) larger set of mixed 
strategies. 

P r o o f  (outline). Given a pure strategy s i e  S ~ and an information set 
U i E I i, we will say that U s is reachable under s i if there exists a play of the 
garne that goes through U s and is consistent with s s, i.e., there exists a path 7r in 
the tree that intersects U s and, at every node of the player i on 7r, the path ~- 
follows the choice dictated by s i. Given x i E  X i we define the corresponding 
behavior strategy b i e  B i as follows. For every information set U i ~ I  i, let 
~i(US) be the probability that U i is reachable under x i, i.e., ~ i (u i )  is the sum of 
xi(s i) over all s i e  S i under which U i is reachable. Similarly, for each choice 
c E C(U s) at U ~, let ~cS(US; c) be the probability, under x s, that U ~ is reachable 

3°Kuhn (1953) shows that it is also necessary. 
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and the choice there is c [i.e., the sum of xi(s ~) over all s s such that U i is 
reachable and si(U i) = c]. Finally, put 

bi(Ui; c):= «i(Ui; c)/«i(U s) (7.8) 

if the denominator  is positive, and define bi(U s) arbitrarily when «S(Ui) 
vanishes (it will not matter,  since then U s is never reached when i plays xi). 
One may interpret bi(U s) as the "observed (random) behavior" of player i at 
U i when he uses x i. 

Let  x -s be the strategies of the other players. We will show that 

p(x«x-i)(/) =p~»«~ ,)(t) (7.9) 

for each terminal node t E L (these are the probabilities that the play ends at 
t). Fix t, and denote  by ~-~ 7r(t) the path from the root to t. Let  o~ be the 
probability that chance and all players except i always choose, at nodes on ~r, 
the branches along 7r; note that « depends on x -s hut not on the choices of 
player i. Similarly, let ~ (respectively, /3) denote the probability under x i 
(respectively, b i) that all the choices of player i on 7r are along ~r. Then (7.9) 
becomes a - ~ = « •/3, and it suffices to show that ~ =/3 when ce > 0 (i.e., when 
t is reächable). 

Let  v I and v 2 be two consecutive nodes of i along 7r (i.e., there are no other  
• t nodes of i between them), and let U'I ~ v a and U 2 ~ v 2 be the corresponding 

information sets; let c be the choice at v I along 7r. Player i has perfect recall, 
therefore  ui2 C T(Uil; c), implying that ui2 is reachable if and only if Uil is 
reachable and the choice there is c. Hence ~S(u2) i i = ~ (U1; c); or, by (7.8), the 
denominator  of bs(U~; .) equals the numerator  of bs(Uil; c). To compute/3 we 
have to multiply the probabilities, under b i, of all the choices of i along ~-. We 

i i thus obtain a telescoping product that simplifies to/3 = ~ (U m; Cm), where c m is 
i i the choice of i along ~r at his last information set U~ on ~r. Now ~ (Um; Cm) is 

the probability, under x i, that U~ is reachable and the choice there is Cm, or, 
equivalently (again by perfect recall, using induction), the probability that all 
the m choices of i on 1r are of the branches along 7r; but this probability is 
precisely ~:. Therefore  /3 -- ~, and the proof is completed. [] 

Theorem 7.7 has been generalized to infinite games by Aumann (1964). As 
is pointed out there (p. 630), the extension of Kuhn's proof to the case where 
the length of the game as well as the number of choices at all information sets 
are at most countable poses no problems; the difficulties arise when there are 
uncountably many choices at some information set(s). In addition, games in 
which " t ime"  is continuous pose special problems of their own, and do not 
easily fit into the framework of this chapter (see Chapter 3 in this volume, and 
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chapters on 'two-player garnes', 'differential garnes' and 'economic applications 
of differential games' in forthcoming volumes of this Handbook for some 
examples). 
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1. Introduction 

The most seriously played games of perfect information (which we will call 
PI-games) are Chess and Go. But there are numerous other interesting 
PI-games: Checkers, Chinese Checkers, Halma, Nim, Hex, their misére var- 
iants, etc. Perfect information means that at each time only one of the players 
moves, that the garne depends only on their choices, they remember the past, 
and in principle they know all possible futures of the garne (a full definition is 
given in Section 2). For example War is not a PI-game since the generals move 
simultaneously, and Bridge and Backgammon are not PI-games because 
chance plays a role in them. However, as we shall see in Section 7, some cases 
of Pursuit and Evasion can be studied by means of PI-games, in spite of the 
simultaneity and continuity of the movements of the players. There exists a 
marvelous book, Winning Ways (Vols. 1 and 2), by Berlekamp, Conway and 
Guy (1982) which gives many old and new examples of PI-games and a deep 
(and light) development of their theories. Thus my first duty as a surveyor of 
this subject is to refer the reader to this book and to the literature quoted in its 
24 sections of references. But, to the less assiduous reader, I will suggest 
Martin Gardner's several chapters on garnes [Gardner (1983, 1986)], and the 
Boardgame Book by Bell [Bell (1979) and the references therein], and other 
relevant chapters of this Handbook. 

This survey will not overlap much with the above literature since I will focus 
here on infinite PI-games. If one wanted to play such a garne one would have to 
play infinitely many moves! So those garnes are not intended to be played in 
reality, and their theory has (as yet) no relevance for practical play of the finite 
garnes. The main chapters of game theory, which stem from von Neumann's 
Minimax Theorem, are much closer to real applications. But the theory of 
infinite PI-games is motivated by its beauty and manifold connections with 
other parts of mathematics. For example, it gave new insights or new points of 
view in descriptive set theory [see Kechris et al. (1977, 1979, 1981, 1985) and 
Moschovakis (1980)], general topology, some chapters of analysis developed 
by G. Choquet and others, and number theory [see the surveys of Piotrowski 
(1985) and Telgarsky (1987)]. As mentioned above they give also a natural 
mathematical theory for some garnes of pursuit and evasion (see Section 7 of 
this chapter). Finite and infinite PI-games are also used in model theory [see, 
for example, Ehrenfeucht (1961), Lynch (1985, 1992) and Hodges (1985), and 
references therein] and in recursion theory [see, for example, Yates 
(1974, 1976)]. 

Before dropping the subject of finite PI-games (to which we return only 
briefiy in Sections 5 and 6), let me emphasize the question: What additions to 
the general theory would be needed to make it relevant for Chess or Go ? We can 
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only say that in 1990 the state of the art is still confusing. On the one hand 
there exist machines playing Chess and Checkers well above the amateurish 
level, see Michie (1989) and references therein. Those machines rely essential- 
ly upon the high speed of special digital processors which allow them to 
examine a large number of possible future developments of the play and to 
choose a good move on account of this analysis. On the other hand we feel, 
and are told by masters, that the best human players do not think in this way! 
Moreover, those machines do not benefit from playing, they do not learn. So, 
in particular, we hesitate to call them intelligent since the ability to learn 
appears to us to be the single most important feature of intelligence. We think 
that a theory of long-range strategies or plans of attack and methods for the 
construction of a book or a classification of good moves will have to be 
developed for a more general and practical theory. We know only one general 
concept, called the temperature of a position, studied in Berlekamp et al. 
(1982), which appears to be practical; a similar concept is used in Chess- 
playing programs in order to decide if a given position should be analyzed 
further or not. In spite of the present shortcomings of the theory of finite 
PI-games its prospects are bright: a relevant general theory should yield a 
computer program such that anybody could code his favorite garne (for me it 
would be Hex, see Section 5), and after playing a number of garnes with the 
computer, the machine should get better and better, and eventually display an 
overwhelming superiority. But this goal still appears to be far ahead in the 
future, especially for the garne Go (see Chapter 1 of this volume). 

This chapter on PI-games is self-contained in the sense that in principle the 
proofs given below do not require any specialized knowledge. The necessary 
background is given, for example, in the beautiful short text of Oxtoby (1971). 

2. Basic concepts 

A triple (A, B, q~ ), where A and B are abstract sets and q~: A x B ~ ~, where 
= R U { - %  ~} and N is the set of real numbers, is called a garne. A is called 

the set of strategies of player I and B the set of strategies of player II. This garne 
is played as follows: player I chooses a E A and player II chooses b E B. Both 
choices are made independently and without any knowledge about the choice 
of the other player. Then II pays to I the value q~(a, b). [Of course p(a, b) < 0 
means that II gets from I the value Iq~(a, b)l.] Occasionally it will be conveni- 
ent to use also a dual definition in which I pays to II the value p(a, b). 

As usual we denote the set {0, 1 , 2 , . . }  by w and a = {~: ~:< «} for all 
ordinal numbers •. In particular {0, 1} = 2. For any sets X and Y, y X  denotes 
the set of all functions f :  X---~ Y. 

The intuitive idea of an infinite garne ofperfect  information is the following. 
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There  is a set P called the set of choices. Player I chooses P0 ~ P, next pla_yer II 
chooses Pl ~ P, than I chooses P2 ~ P, etc. Th'ere is a function f :  P~---> N such 
that "ä t  the end"  player Il  pays to I the value ]'(Po, Pl . . . .  ). More precisely, 
and consistently with the previous general definition of a garne, (A ,  B, q~ ) is 
said to be a garne ofperfect information (a PI-game) if there exists a set P such 
that A is the set of all functions 

a: U pn__~p, w h e r e P ° = { O } ,  
n<oJ  

B is the set of all functions 

b: U P ~ ~ P  
O<n-<to 

and there exists a function f :  P~---> ~ such that 

q~(a, b) = f (Po,  P, ,  P 2 , . . ) ,  

where Po = a(0), pl  = b(po), P2 = a(pa), P3 = b(po, P2), P4 = a(Pi, P3), • • • 
(see Figure 1). 

PO P2 P4 

Figure 1. 

From now on a g a m e (  A, B, q~) defined in this way will also be denoted by 
(P~,  f ) .  

The sequence p = (Po, Pl . . . .  ) defined as above will also be called a garne 
and any finite sequence (Po, • • •, P , -1 )  E P" is called a position. 

In the case when f is the characteristic function of  a set X C_ P~, i.e., f ( p )  = 1 
if p E X  and f ( p ) = O  if p ~ X ,  the garne (P~, f ) w i l l  also be denoted by 
<P~, X ) .  In this case we will say that player I wins the gamep i f f ( p )  = 1 and 
that II wirts the garne p if f ( p )  = O. 

A ga me <  A, B, ~ ) is called determined if 

inf sup ~(a, b) = sup inf q~(a, b) ,  
b E B  a E A  a E A  b E B  

(,) 

and the common value of both sides of this equation is called the value of  the 
garne (A ,  B, q~ ). The assertion that a garne is determined is also expressed by 
the phrase the garne has a value. Note: if the garne is not determined, then the 
left-hand side of  (*) is larger than the right-hand side of (*). 
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If the garne has the value V and there exists an a 0 such that ~(a0, b)/> V for 
all b, then a 0 is called an optimal strategy for I. If q~(a, b0) ~< V for all a, then b 0 
is called an optimal strategy for II. 

A game can be determined but no optimal strategies need to exist. For 
example,  this is so if A = B = the open interval (0, 1), and q~(a, b) = a + b. 
However ,  if the game is determined,  then for every e > 0 there exists a strategy 
a 0 which secures ~(a0, b) > V -  e for all b ~ B [or q~(a0, b) > e if V = +~]  and 
a strategy b 0 which secures ~p(a, b0) < V + e for all a E A [or q~(a, b0) < - e i f  
V =  - ~ ] .  It follows that, if the set of  values of  q~ is finite and the garne is 
determined, then both players have optimal strategies. We will say that (P° ,  X} 
is a win for I or a win for II if (P% X} has the value 1 or 0, respeCtively. 

Why can garnes like Chess or Go be viewed as garnes of the form (po,, f ) ?  
The interpretation is the following: P is the set of all possible configurations of 
pieces on the board. Any infinite sequence of configurations is accepted as a 
game but the first player who violates the rules loses, unless the previous 
position is ä win for one of the players or a draw. So f takes on three possible 
values: 1 (White wins), 0 (a draw) and - 1  (Black wins), and (P% f}  
represents the desired garne. We should add that this mathematical abstraction 
ignores some aspects of the reality. F o r  example, the rules about timing are 
essential in most Chess tournaments but here they are ignored. 

I f f :  po__> ~ has the property that there exists an n such that f(Po, P I , . . . )  
does not depend on the choices Pi with i > n, then (P~, f}  is called ä finite 
game. (Note that this does not imply that P is finite.) 

Proposition 2.1. Every finite garne has a value. 

Proof. It is clear that the proposition is true for n = 0 and it is easy to see 
that, if it is true for n = k, then it is also true for n = k + 1. [] (For another 
proof  see Proposition 3.2.) 

Proposition 2.1 was first stated as a mathematical theorem by Zermelo 
(1913). As we shall see in the next section, it fails for some infinite PI-games. 
The main goal of this chapter, the theorems in Sections 3, 8 and 9, will be 
refinements of this proposition relaxing the condition of finiteness in various 
ways. 

3. Open games are determined 

The first published paper devoted to general infinite PI-games is due to Gale 
and Stewart (1953). The material of this section is contained in that paper. 

For any set P we introduce the discrete topology in P and the corresponding 
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product topology in P~. That  is, the basic neighborhoods o f p  = (Po, Pl . . . .  ) 
P~ are of the form 

U(po . . . . .  Pù,-1) = { q E Po: qi = pi for i < m} . 

In contrast to Proposition 2.1 we have: 

Proposition 3.1. There exist sets X C {0, 1} o" such that the game ({0, 1} o,, X )  is 
not determined. 

Proof. Note that if we fix one strategy for one of the players, then all garnes 
in {0, 1} ~ which remain possible constitute a perfect set, i.e., a set which is 
non-empty,  closed and dense in itself. Now, it is an old and weil known 
theorem of Bernstein [see Oxtoby (1971)] that there exists a partition of any 
Polish space S into two parts such that none of them includes a perfect set. This 
depends on the fact that every perfect set has no less elements than the set of 
all perfect subsets of S, and on the Axiom of Choice (a well ordering of the 
space and of the set of its perfect subsets). To conclude the proof it suffices to 
pick for X any of the parts of a Bernstein partition of {0, 1}o'. [] 

The existence of non-determined infinite PI-games follows also from each of 
the Theorems 4.1, 4.2, 4.4 and 4.5 of the next section. 

However ,  we can rescue a part of Proposition 2.1 for the case of infinite 
garnes. The first step in this direction is the following. 

Proposition 3.2. If the set X C_ P~ is closed or open, then the game ( po,, X)  is 
determined. 

Proof. Assume that X is closed. If player II does not have a winning strategy 
(i.e., a strategy which secures p ~ X ) ,  then it is clear that player I can maintain 
that advantage, i.e., I has a strategy a 0 which secures that for every n < ~o the 
position (Po . . . .  , Ph-a) does not yield a winning strategy for II. In particular, 
a o guarantees that for all n we have 

U ( p o , . . . ,  ph_l)  D X ¢ 0 .  

Since X is closed, it follows that (Po, Ps . . . .  ) E X, and so a 0 is a winning 
strategy for I. 

If X is open the theorem follows by symmetry. [] 

Corollary 3.3. I f  f:  Po'--> ~ has the property that for every x E ~ the set 
{ p E P ~ :  f ( p ) < x }  or the set { p E P ~ :  f (p)<~x}  is open or closed, then the 
garne ( P°ù f )  is determined. 
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Proof. By Proposition 3.2 there exists v C ~ such that for every x < v the 
game (P~, A(x)), where A(x)= {pEP~:  f(p)<~x}, is a win for II, and for 
every x >  v the garne (P~, A(x)) is a win for I. It follows that v is a value of 

(p,o, f ) .  [] 

Of course, if the garne (P~, f )  is finite, then the function f is continuous and 
Corollary 3.3 yields Proposition 2.1. Much stronger results than Proposition 3.2 
and Corollary 3.3 will be presented in Section 8. 

4. Four classical infinite PI-games 

We discuss here four games which are related to classical concepts of real 
analysis. 

The first interesting infinite PI-game was invented by S. Mazur about 1935 
[see Mauldin (1981, pp. 113-117)]. We define a slightly different (but now 
standard) version of that garne which we call F 1 . A set Q and a set X C Q ° are 
given. The players choose alternately finite non-empty sequences of elements 
of Q. (As in Section 2, player I makes the first choice.) Those sequences are 
juxtaposed to form one sequence q in Q°. If q E X, I wins. If q SE'X, II wins. 
We take Q with the discrete topology and Q O~ with the product  topology. 

Mazur pointed out that if X is of the first category, then H has a winning 
strategy for 1"1. Then he asked if the converse is true and offered a bottle of 
wine for the solution. S. Banach won the prize proving the following theorem. 

Theorem 4.1. If II has a winning strategy for F 1 then X is of the first category. 

Proof. If Po, • • • , Pn are finite sequences of elements of Q, let PoP1 "'" Pn 
denote  their juxtaposition. Let  b 0 be a winning strategy for II. It is clear that in 
every neighborhood U(po) there is a neighborhood of the form U(pop~), 
where Po is the first choice of I and Pl = bo(Po). Hence,  proceeding by 
transfinite recursion we can construct a family F 0 of disjoint neighborhoods of 
the form U(poPl) such that their union is everywhere dense in QO,. Repeating 
the same construction within each neighborhood belonging to F 0 we obtain a 
family F 1 of disjoint neighborhoods U(poplp2p») such that Pl = bo(Po), 
P 3  = bo(Po, P2), U(PoPl)~ Fo and U ( F 1 )  is everywhere dense in Q~. We 
continue in this way forming a sequence of families F0, F 1 , . . . .  It is clear from 
this construction that if q E N i «  U (bi), then q is the juxtaposition of a game 
consistent with b 0. Hence,  since b 0 is a winning strategy we have X N N~<~ U 
(F,) = ~. And,  since all U (Fe) are dense and open in Q~, X is of the first 
category. [] 
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Our  second example F a was invented by L. Dubins. The rules are similar to 
those of F~ except that hefe it is assumed that Q = {0, 1} and that the choices 
of II  are sequences of length one, i.e., elements of Q, while the choices of I are 
still arbitrary finite sequences of elements of Q, but this t ime he can also 
choose the empty  sequence. It is easy to see that I has a winning strategy for F z 
iff X has a perfect subset (perfect means non-empty,  closed and dense in itself). 
[Hint: use again the fact that the set of all sequences which can occur when I 
plays any fixed strategy is perfect.] Fur thermore,  it is easy to see that H 
has a winning strategy if X is at most countable. Davis (1964) proved the con- 
verse: 

Theorem 4.2. I f  H has a winning strategy for/"2, then X is at most countable. 

Proof. Let  b 0 be a winning strategy for II. We claim that for every x E X 
there exists a finite sequence Po, P2, • - - ,  P2k (possibly empty)  of choices of I, 
such that x E U ( p o p  1. . .p2k+1),  where P s = b o ( P o ) ,  p 3 = b o ( P o ,  P 2 ) , . . ,  
P2k+l = bo(Po . . . . .  P2k), and such that for every choice P2k+2 of I we have 
x ~ U ( P o P l " ' "  P2~+2P2k+3), where P2~+3 = bo(Po, P 2 , . .  , P2k+2). Indeed,  if 
no such Po, P2, • • • ,  P2~ existed, then I could p lay  forever in such a way that 
x E U ( p o p l . . .  Ph), where Po, Pl ,  • • • , Pn is determined by his choices P2k and 
by b o. Hence  b 0 would not be a winning strategy. 

Now, to prove that X is at most countable,  it suffices to show that given 
Po, P2, • • • ,  P2k there is at most  one point x E X with the above property.  So 
suppose to the contrary that there are two such points x, x ' ~  U ( p o P l . . .  
P 2 ~ + l ) ,  where Ps = b o ( P o ) , . . ,  P2~+1 = bo(Po, P 2 ,  " '  , P2~)" Let  q be the 
longest initial segment of x which equals an initial segment of x'. Then I can 
choose P2~+2 such that PoP1 "'" P2k+lP2k+2 = q-  N o w ,  since Q = {0, 1}, either x 
or x '  belongs to U ( p o P l . . .  P2k+3), where P2~+3 = bo(Po, P 2 ,  . .  , P2k+2), 
contrary to our supposition about those points. This concludes the proof.  [] 

The third example F 3 is defined as follows. A set S is given. Player I splits S 
into two parts. Player I I  chooses one of them. Again I splits the chosen part  
into two disjoint parts and II  choses one of them, etc. I wins iff the intersection 
of the chosen patts  is not empty  and II  wins iff it is empty.  It is easy to see that 
I has a winning strategy iff ISI 1>2 s°, and that H has a winning strategy i f  
ISI ~< R 0. R.M. Solovay proved the converse. 

Theorem 4.3. I f  H has a winning strategy for 1"3, then ISI <~R o. 

Proof.  The  idea is similar to that of the former  proof. It  suffices to consider 
the case when S C_ E, and to restrict player I to such partitions of S which are 
induced by the partition of ~ into the rays {x: x < r} and (x: x/> r ) ,  where r is 
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a rational number.  Now we argue in the same way as in the proof  for F 2 that  if 
b 0 is a winning strategy for II,  then for every x E S there exists a sequence of 
parti t ioning rationals % , . . ,  rn such that x E  b o ( r o , . . . ,  rn) but for every 
rù+~, we have x ~ b o ( r o , . . . ,  r~, r~+a), and also that for every % , . . . ,  rù there 
exists at most  one such x. Of  course this implies I SI ~< N 0. [] 

Our  fourth example  F 4 is due to L. Harr ington and his analysis of F 4 given 
below simplifies former  work of Mycielski and Swierczkowski (1964). We 
consider the Cantor  set {0, 1}0" with its natural Borel  probabili ty measu re / z ,  
given by tx(U(q))  = 1/2  n for any q E {0, 1} n. A set XC_ {0, 1} ~ is given and F 4 
is played as follows. Player I chooses a rational number  e > 0 and a number  
Po E {0, 1}. Then I I  chooses a clopen (i.e.,  closed and open) set A 1 _C {0, 1} °' 
with / z ( A 1 ) <  e/4 .  At  stage n player I chooses P h - 1 C  {0, 1} and then I I  
chooses a clopen set A n C_ {0,1} ~ with / z ( A n ) <  e /4  n. Player I wins iff 
(Po, P~ . . . .  ) C X \ U l ~ / < ~  Ai.  Player II  wins otherwise. 

Harr ington has proved two facts about  F 4. 

Theorem 4.4. I f  X has inner measure zero, then I has no winning strategy for  
ra 

Proof.  Suppose to the contrary that I has a winning strategy a a. Let  A be the 
set of all sequences (Po, Pl ,  • • .) which can occur when I uses a o. Let  Ä be the 
set of all sequences of clopen sets A i C_ {0, 1} °' which can occur when I uses a o. 
Since {0, 1} ~ has countably many  clopen subsets we have a natural identifica- 

tion of Ä with o) ~. Providing w ~ with the natural product  topology we see that 
ao : Ä--+ A is a continuous surjection. Hence  A is an analytic set (the definition 
is given at the beginning of Section 9). It follows that A is measurable  [see 
Oxtoby (1971)] and, since A C_ X, / x (A)=  0. One checks now that there is a 
sequence of clopen sets Aa, A 2 ,  . . . , with/~(An)  < e /4"  (e being given to I by 
a0) such that A C A 1 U A z U • • • . This contradicts the assumption that a 0 was a 
winning strategy for I. [] 

Theorem 4.5. I f  111 has a winning strategy for  F 4, then tx(X)  = O. 

Proof. Let  b 0 be a winning strategy for Il .  Suppose to the contrary that X has 
outer  measure  ce > 0. Let  I play e < a. Then for each n there are only 2 n plays 
( P o , . .  - , Ph - l )  of I, and so at most  2 n answers A n = bo(e , P o , . .  • , Ph- l ) .  
H e n c e / x ( U ( p  ° ..... pn 1) A,,) ~< e /2  n. Let  A be the union of all the sets A n which 
II  could play using b 0 given the above e. So /~(A)  ~< e < a. Hence  I could play 
(Po, P l , . . . ) E X ~ A ,  contradicting the assumption that b 0 was a winning 
strategy. [] 
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Three  classical properties of sets are now seen to have a game theoretical 
role: 

Corollary 4.6. Given a complete separable metric space M and a set X C M 
which does not have the property of Baire, or, is uncountable but without any 
perfect subsets, or is not measurable relative to some Borel measure in M, one 
can define a garne ({0, 1} ~, Y)  which is not determined. 

Proof. By a well-known construction [see Oxtoby (1971)] we can assume 
without loss of generality that M = {0, 1} ~, with its product topology and with 
the measure defined above. Let  X C_ M be a set without the property of Baire, 
U be the maximal open set in M such that X N U is of the first category and V 
be the maximal open set such that V N (MkX) is of the first category. We see 
that the interior of M\(U U V) is not empty (otherwise X would have the 
property of Baire). Thus there is a basic neighborhood W C M\(U U V). We 
identify W with {0, I} °~ in the obvious way and define S to be the image of 
X N W under this identification. So we see that S is not of the first category 
and, moreover ,  for each Po of I, U(Po)N({0,  1}~\S) is not of the first 
category. Thus, by the result of Banach (4.1), neither II not  I has a winning 
strategy for the game F a. 

Now F 1 is a game of the form (po ,  Z ) ,  where P is countable. We can turn 
such a game into one of the form ({0, 1} °, Y) using the fact that the number  
of consecutive l 's  chosen by a player followed by his choice of 0 can code an 
element of P (the intermediate choices of the other player having no influence 
on the result of the game). 

For the alternative assumptions about X considered in the corollary we apply 
the results of Davis and Harrington to obtain non-determined garnes F 2 and F 4. 
(For/"2 we use the fact that a perfect set in {0, 1} °~ has cardinality 2 s°. For F 4 
we need a set S with inner measure 0 and outer measure 1. Its construction 
from X is similar to the above construction of S for F1.) [] 

All known constructions of M and X satisfying one of the conditions of 
Corollary 4.6 have used the Axiom of Choice, and, after the work of Paul 
Cohen,  R.M. Solovay and others, it is known that indeed the Axiom of Choice 
is unavoidable in any such construction. Thus Corollary 4.6 suggested the 
stronger conjecture of Mycielski and Steinhaus (1962) that the Axiorn of 
Choice is essential in any proof of the existence of sets X C C_ {0, 1} ~ such that the 
garne ({0, 1} °~, X )  is not determined. This has been proved recently by Martin 
and Steel (1989) (see Section 8 below). 

In the same order of ideas, Theorem 4.3 shows that the Continuum Hypoth- 
esis is equivalent to the determinacy of a natural class of PI-games. 
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For a study of some games similar to F 2 but with [ Q ] > 2 ,  see Louveau 
(1980). Many other  garnes related to F 2 and F 3 were studied by F. Galvin et al. 
(unpublished); see also the survey by Telgarsky (1987). 

5. The game of  Hex and its unsolved problem 

Before  plunging deeper  into the theory of infinite garnes we discuss in this and 
the next section a few particularly interesting finite garnes. We begin with one 
of the simplest finite garnes of perfect information called Hex which has not 
been solved in a practical sense. Hex is played as follows. We use a board with 
a honeycomb pattern as in Figure 2. The players alternatively put white or 
black stones on the hexagons. White begins and he wins if the white stones 
connect  the top of the board with the bottom. Black wins if the black stones 
connect  the left edge with the right edge. 

Theorem 5.1. (i) When the board is filled with stones, then one of the players 
has won and the other has lost. 

(ii) White has a winning strategy. 

Proof  (in outline). (i) If White has not won and the board is full, then 
consider the black stones adjacent to the set of those white stones which are 

~0~t~ 

Figure 2. A 14 × 14 Hex board.  
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connected by some white path to the upper side of the board. Those stones are 
all black and together with the remaining black stones of the upper line of the 
board they contain a black path from the left edge to the right edge. Thus 
Black is the winner. [For more details, see Gale (1979).] 

(ii) By (i) and Proposition 2.1 one of the players has a winning strategy. 
Suppose to the contrary that it is Black who has such a strategy b 0. Now it is 
easy to modify b 0 so that it becomes a winning strategy for White. (Hint: White 
forgets his first move and then he uses bo. ) Thus both players would have a 
winning strategy, which is a contradiction. [] 

Problem. Find a useful description of a winning strategy for White! 

This open problem is a good example of the general problem in the theory of 
finite PI-games which was discussed at the end of Section 1. In practice Hex on 
a board of size 14 x 14 is an interesting game and the advantage of White is 
hardly noticeable. It is surprising that such a very concrete finitistic existential 
theorem like Theorem 5.1(ii) can be meaningless from the point of view of 
applications. [Probably, strict constructivists would not accept our proof of 
Tlieorem 5. l(ii).] 

Hex has a relative called Bridge-it for which a similar theorem is true. But 
for Bridge-it a useful description of a winning strategy for player I has been 
found [see Berlekamp et al. (1982, p. 680)]. However, this does not seem to 
help for the problem on Hex. Dual Hex, in which winning means losing in 
Hex, is also an interesting unsolved garne. Here Black has a winning strategy. 

Of course for Chess we do not know whether White or Black has a winning 
strategy or if (most probably) both have strategies that secure at least a draw. 

It is proved in Even and Tarjan (1976) that some garnes of the same type as 
Hex are difficult in the sense that the problem of deciding if a position is a win 
for I or for II is complete in polynomial space (in the terminology of the theory 
of complexity of algorithms). 

It is interesting that Theorem 5.1(i) implies easily the Brouwer fixed point 
theorem [see Gale (1979)]. 

6. An interplay between some finite and infinite games 

Let G be a finite bipartite oriented graph. In other words G is a system 
(P, Q, E ) ,  where P and Q are finite disjoint sets and E _C (P x Q) U (Q x P) 
is called the set of arrows. We assume moreover that for each (a, b) ~ E there 
exists c such that (b, c) E E. A function q~: E---~ N is given and a point Pfirst E P 
is fixed. The players I and II pick alternately Po = Pfirst, q0 E Q, Pl E P, ql ~ 
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Q , . . .  such that (p~, qi) Œ E and (qe, P~+I) ~ E, thereby defining a zig-zag 
path composed of arrows. 

We define three PI-games. 

Ga: player II pays 

1 n--1 

lim sup ~n ~ 
n----~ cc i = 0  

to player I the value 

(q~(Pi, q~) + q~( q~, Pi+l)) " 

G2: player II pays to player I the value 

1 n--1 

l iminf  ~n ~'~ (~(Pi ,  qi) + q~(qi, Pi+I)). 
n-~~  i = 0  

G3: the game ends as soon as a closed loop arises in the path defined by the 
players, i.e., as soon as I picks any Pn E { P o , . . . ,  Pn-~} or II picks qn E 
{q0 . . . .  , qn-1}, whichever happens earlier. Then II pays to I the "loop 
average" v defined as follows. In the first case Pn =Pm for some m < n, and 
then 

U m 

n 1 1 
2 ( n -  m) i=m ~ (q~(Pi, qi) + ~(qi,  Pi+I)) ; 

in the second case qn = qm with m < n and then 

0 - -  

n - 1  1 
2 ( n -  m) i=m2 ((P(qi, P i + I )  q- q ~ ( P i + l '  q i + l ) )  " 

Thus in all three games the players are competing to minimize or maximize 
the means of some numbers which they encounter on the arrows of the graph. 

Since the garne G 3 is finite, by Proposition 2.1, it has a value V. Given a 
strategy er of one of the players which secures V in G3, each of the infinite 
garnes G 1 and G 2 c a n  be played according to er, by forgetting the loops (which 
necessarily arise). This also secures V [see Ehrenfeucht and Mycielski (1979) 
for details]. So it follows that the games G 1 and G 2 are  determined, and have the 
same value V as G 3. 

A strategy a for player I is called positional if a ( q 0 , . ,  qn) depends only 
only on qn. In a similar way a strategy b for II is positional if b ( P o , . . . ,  Ph) 
depends only on Ph- 

Theorem 6.1. Both players have positional strategies a o and b o which secure V 
for  each o f  the garnes G1, G 2 and G 3. 
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This theorem was shown in Ehrenfeucht  and Mycielski (1979). We shall not 
reproduce its proof  hefe but only mention that it was helpful to use the infinite 
garnes G t and G 2 to prove the claim about the finite game 63 and vice versa. In 
fact no direct proof  is known. So, there is at least one example where infinite 
PI-games help us to analyze some finite PI-games. 

An open problem related to the above games is the following: Is an 
appropriate version of Theorem 6.1, where P and Q are compact spaces and q~ 
is continuous, still true? 

7. Continuous PI-games 

In this section we extend the theory of PI-games with countable sequences to a 
theory with functions over the interval [0, ~). R. Isaacs in the United States 
and H. Steinhaus and A. Zieba in Poland originated this development.  Here  
are some examples of continuous garnes. 

Two dogs try to catch a hare in an unbounded plane, or one dog tries to 
catch a hare in a half-plane. The purpose of the dogs is to minimize the time of 
the garne and the purpose of the hare is to maximize it. We assume that each 
dog is laster than the hare and that only the velocities are bounded while the 
accelerations are not. There  are neat solutions of those two special games: at 
each moment  t the hare should run full speed toward any point a t such that a t is 
the most distant from hirn among all points which he can reach prior to any of 
the dogs (hefe "pr ior"  is understood in the sense of ~<). And the dogs, at each 
instant t, should run full speed toward that same point a t. (To achieve the best 
result the hare does not have to change the point a t during the garne.) 

Now, how to turn the above statements into mathematical theorems? Notice 
that the sets of strategies have not been defined so we have not constructed any 
garnes in the sense of Section 2. The main point of this section is to build such 
definitions which may be useful for a wide variety of games. The literature of 
this subject is rich [see, for example, Behrand (1987), Häjek (1975), Kuhn and 
Szegö (1971), Mycielski (1988), and Rodin (1987)], but the garnes are rarely 
defined with full precision. The fundamentals of this theory presented in this 
section will not use the concepts of differentiation or integration. 

Let  P and Q be arbitrary sets and F I C_ pI0.~) and F H C Q I0,~~ two sets of 
functions from [0, ~) to P or Q, respectively. We assume that Fx, for X = I, II, 
are closed in the following sense: if f is a function with domain [0, ~) such 
that for all T > 0 the restriction f I [0, T)  has an extension in Fx, then 
f ~ F »  

We will say that F x is saturated if it is closed under the following operations. 
For  every 6 > 0 if f E Fx, then f~ ~ Fx, where 
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f r (0 )  for 0 ~< t < 6, and 
f a ( t ) = { f ( t - 6 )  for t~>6 .  

Let  a function tO:F~ x F~I--> ~ be given. We will define in terms of tO the 
payoff functions of two PI-games G ÷ and G . In order for those garnes to be 
convincing models of continuous games (like the games of the above examples 
with dogs and a hare) we will need that tO satisfies at least one of the following 
two conditions of semicontinuity. 

($1) The space F I is saturated and for every e > 0 there exists a A > 0 such 
that for all 6 E [0, A] and all (p ,  q) E F~ x F~I we have 

tO(põ, q) ~< tO(p, q) + e .  

We consider also a dual property for tO: 
($2) The space F n is saturated and for every e > 0 there exists a A > 0 such 

that for all 6 E [0, A] and all (p ,  q) E F~ x F n we have 

tO(P, q~)/> 0 ( P ,  q ) -  e .  

The system (FI, Fix, tO) will be called normal iff F I and FII are closed and 
($1) or ($2) holds. 

Example 1. A metric space M with a distance function d(x, y) and two points 
Po, q0 E M a r e  given and P = Q = M. F I is the set of all functions p: [0, oo)---> M 
such that p(0) = Po, and 

d(p(q),  p(to)) < ]t~ - to[ for all to, t 1 ~ 0 .  

F~I is the set of all functions q: [0, ~)---~ Q such that q(0) = q0, and 

d(q(tl), q(to)) < v l t i  - t01 for all to, t I ~>0, 

where v is a constant in the interval [0, 1]. 
Now tO can be defined in many ways, e.g. 

tO(p, q) = d(p(1), q(1)) ,  

o r  

to(p, q ) =  lim sup d(p(t), q(t)). 
t---> 

It is easy to prove that in these cases the system ( F  I, FH, to) is normal. 
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Example 2. The spaces F~ and FI~ are defined as in the previous example but 
with further restrictions. For example, the total length of every p and/or  every 
q is bounded, i.e., say for all p ~ F I, 

~d((i) (i÷1)) 
~im.~o t' ~ ,p -T-  ~ / ' ;  

or P and/or  Q is ~" and the acceleration of every p and/or  every q is bounded, 
i.e., say for all p ~ FI, 

p(to ) / t o + t I ~ + p(q) - 2 p ~ - - - ~ ]  <~A(tt- to)  2 for all to, tl >~0. 

If the space F x (X = I, II) represents the possible trajectories of a vehicle, 
the above conditions may correspond to limits of the available fuel or power. 
Conditions of this kind and functionals O as in the previous example are 
compatible with normality. 

Example 3. F~ and F~~ are the sets of all measurable functions p: [0, ~) -+  B l 
and q: [0, ~)---> BH, respectively, where B~ and BII are some bounded sets in 
~~. And 

i 

~ p ( p , q ) :  f ( p ( t ) -q ( t ) )d t  I" 
0 

Such F x are called spaces of control functions. Again it is easy to see that the 
system (FI, F~I , 0 )  is normal. Similar (and more complicated) normal systems 
are considered in the theory of differential games. 

Given (FI, Fu, O ), with F I and Fi i  closed in the sense defined above, we 
define two PLgames G + and G-.  In G + player I chooses some S > 0 and a 
path Po: [0, S)--->P. Then II chooses q0: [0, S)-+ Q. Again I chooses 
Pl: [6, 26)--) P and II chooses q~: [6, 26)--+ Q, etc. If ( U  pc, U qi) E F t x Fn, 
then I pays to II the value ~o(U p~, U qs). If ( U  pi, U qc)~Fi x F,t , then 
there is at least an n such that Ui< ,  Pi has no extension to a function in F~ or 
Uz<~ q~ has no extension to a function in F m If n satisfies the first alternative, I 
pays ~ to II. Otherwise II pays ~ to I. 

The garne G -  is defined in the same way except that now player II chooses 
> 0 and q0: [0, 6)--~ Q and then I chooses Po: [0, S)--~ P, etc. Again if 

( U  pi, U qi) ~ F, x FH, then I pays to II the value O(U Pc, 0 q~) and again, if 
( U  Pi, U qi),~Fi x FH, the player who made the first move causing this pays 

to the other. 
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Since both G + and G -  are PI-games, under very general conditions about 0 
(see Corollary 3.3 and Theorem 8.1 in Section 8), both garnes G + and G -  have 
values. We denote  those values by V + and V-,  respectively. By a proof  similar 
to the proof  of Theorem 5.1(ii), it follows from these definitions that 

V+>~V - . 

We claim that if (FI,  Fii , O) is normal, then G + and G -  represent essential- 
ly the same garne. More precisely, we have the following theorem. 

Theorem 7.1. I f  V + and V exist and the system ( FI, FIt, O) is normal, then 

V + = V - .  

Proof. Suppose the condition (S 1) of normality holds. Choose e > 0. Given a 
strategy o-- for I in G -  which secures a payoff ~< V-  + e we will construct a 
strategy cr + for I in G + which secures a payoff ~< V -  + 2e. Of course this 
implies V + ~  < V-  and so V + =  V-. Let  o -+ choose 3 according to ($1), and 
Po( t )  =Po  for t E [ 0 ,  6). When II answers with some q0: [0, 6)--~ Q, then o "+ 
chooses p [  (t) = Pö (t - 8) for t E [8, 28),  where Pö = o--(q0). Then II chooses 
ql: [8, 28)--~ Q and o -+ chooses P2 (t) = p [ ( t  - 8 ) for t E [26, 36),  where P l  = 
o- (q0, q~), etc. Now the pair ( U  p ] ,  O qi) is consistent with a game in G -  

+ 

where I uses o--. Also, we have U Pi = ( O P ] ) ~ .  Hence,  by ($1), 

,/,(U p?, U q,) <~ ,/,(U p;-, U q,) + ~ ~< v -  + 2«. 

This concludes the proof  in the case ($1). In the case ($2) the proof  is 
symmetric. [] 

The theorems about the existence of values presented in Section 8 plus the 
above Theorem 7.1 encompass the existentiäl part of the theory of continuous 
PI-games over normal systems. However ,  we will consider an interesting case 
of continuous PI-games, called pursuit and evasion, which is not normal: 

M, P, Q, F I and Fri are defined as in Example 1, but now t)(p,  q) is the least 
t such that p(t)  = q(t), if such a t exists, and 0(P ,  q) = oo otherwise. It is easy to 
see that ~ violates (S1) and ($2). Still an interesting theory is possible. We will 
assume that the metric space M is complete, locally compact and connected by 
arcs of finite length. This is a natural assumption because under those 
conditions for every two points o f  M there exists a shortest arc connecting them. 
Then we can also assume without loss of generality that d is the geodesic 
metric, i.e.,  d(x, y) = length of the shortest arc from x to y. 
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Now consider the garne G-.  By Corollary 3.3, G -  has a value V . Of course 
I can be called the pursuer and II the evader, and G -  gives some tiny unfair 
advantage to the pursuer (because II has to declare first his trajectory over 
[0, 6),  then [6, 26), etc.). 

In this setting the dual game G + is uninteresting because, for trivial reasons, 
in most cases its value will be 2. However, there exists a similar garne G ++ 
which gives a tiny unfair advantage to the evader. In G ++ player II chooses 
first a number 6o>0,  then I chooses 6 and Po: [0, 6)-->M, then II chooses 
q0: [0, 6)--> M, and again I chooses Pl: [6, 26)--+ M, etc. Otherwise the rules 
are the same as in G +, except that now I pays to II the least value t such that 
the distance from p(t)  to q(t) is ~< v60, where p = (_.J pi and q = (_.J q~. Again, by 
Corollary 3.3, it is clear that G ++ has a value V ++. It is intuitively clear that 
V-  <~ V + +. Games very similar to G -  and G + + have been studied in Mycielski 
(1988) and the methods of that paper can be easily modified to prove the 
following theorems. 

Theorem 7.2. I f  v < 1, then V -  = V ++. 

(We do not know any example where v = 1 and V-  < V++.) 
By Theorem 7.2, for v < 1, it is legitimate to denote both V-  and V ++ by V. 
Now, given (M, d),  it is interesting to study V as a function of Po, q0 and v 

(we will omit the argument v when its value is fixed). The function V ( p  o, qo) is 
useful since the best strategy for I is to choose Pi: [i6, (i + 1)6 )--+ M such as to 
keep in F~ and to minimize V(pi( ( i  + 1)6), qi((i + 1)6)), and the best strategy 
for II, after his choice of 6, is to choose qi:[i& ( i+  1)6)--+M such as to 
keep in FII and to maximize inf{V(pi(( i  + 1)6), qi((i + 16)): Pi is any choice 
of I}. 

The function V(p ,  q, v) was studied in Mycielski (1988), where the follow- 
ing theorems are proved. 

Theorem 7.3. I f  v < 1, then 
(i) d(x, y) <~ V(x, y, v) <~ d(x, y)/(1 - v); 

(ii) [V(Xl, y, v) - V(x2, y, v)l «- d(xl ,  x2)/(1 - v); 
(iii) [V(x, Yl, v) - V(x, Y2, v)[ ~< d (y  1, y2)/(1 - v); 
(iv) if  0 <~ v 1 < v 2 < 1, then 

1 - -  U 1 
V(x, y, Ol) <- V(x, y, v2) <- ~ V(x, y, ~1) . 

We do not know if V(x, y, v)--+ V(x, y, 1) for v J' 1. 
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Fixing v < 1, the hext theorem gives a characterization of V(x, y) which does 
not depend on any garne theoretic concepts. 

Theorem 7.4. The function V: M x M---> R satisfies, and is the only function 
satisfying, the following four conditions: 

(i) V(p, p) = O; 
(ii) V(p, q ) -  d(p, x )~  sup{V(x, y): d(y, q)<~ vd(x, p)}; 

(iii) V(p, q) >! d(p, q); 
(iv) max(O, V(p, q) - (1/v)d(q, y)) ~> inf{V(x, y): d(x, p) <~ (1/v)d(q, y)}. 

The intuitive meaning of the inequality (ii) is the following: if I moves from 
p to x using the time d(p ,  x), then II has an answer y using the same time such 
that after those moves the value V(p, q) will not decrease by more than 
d(p, x). The intuitive meaning of (iv) is the following: if II moves from q to y 
using the time (1/v)d(q, y) <~ V(p, q), then I has an answer x using the same 
time such that the value V(p, q) will decrease at least by (1/v)d(q, y). 

The above theorem implies the Isaacs equation [see Behrand (1987) and 
Mycielski (1988)]. 

Corollary 7.5. If M & a Riemannian manifold with boundary, e.g., an 
n-dimensional polytope in Nn, Xo and Yo are in the interior of M, and V is 
differentiable at (Xo, Yo), then V satisfies the Isaacs equation 

[Iv~V(xo, Yo)[[-- 1 + v[[VyV(xo, Yo)l[, 

where V is the gradient operator. 

In spite of all those facts and properties of V(x, y), this function is still 
unknown, even for some simple spaces M such as a plane with the interior of a 
circle removed or if M is a circular disk. Those problems are discussed in 
Breakwell (1989) and Mycielski (1988). 

The following function W(x, y) could be useful: 

W(x, y) = sup{d(x,  z): d(x, z) > 1_ d(y, z ) } .  
u 

Problem. Is it true that V(X1, y) < V(X2, y) if W(xl, y) < W(x2, y)? 

If the answer is yes, then the best strategy for I is to minimize W, which, as a 
rule, is much easier to compute than V. For the two garnes with dogs and a 
hare defined at the beginning of this section the answer is yes, and this is easy 
to prove by means of the games G ÷+. 



60 J. Mycielski 

8. The main resuits of the theory of infinite PI-games 

The considerations of Sections 2 and 3 suggest the following general problem. 

Problem. Let g: A x B--+ C be a continuous function, where A, B and C are 
compact spaces. Suppose that for every continuous function f :  C---> R the garne 
( A , B ,  f o g )  is determined. Must it be also determined for every Borel 
measurable f ?  

This problem is open already for the case when C is the Cantor space 
{0, 1} ~, and instead of all Borel measurable functions we consider only 
characteristic functions of sets of class F~ or G~. 

The only known results about this problem pertain to the case of PI-games 
and do not assume compactness of the spaces A, B and C. In this case C = p o~ 
with the product topology (see Section 3), A and B a r e  defined as in Section 2 
and g(a, b) = (Po, Ps . . . .  ). Let us state immediately those results (which are 
the deepest theorems of the theory of PI-games), and explain later the concepts 
and terminology used in those statements. Part (il) of Theorem 8.1 will be 
proved in Section 9. 

Tbeorem 8.1. (i) I f  X C P  ~ is a Borel set, then the game ( P ° ' , X )  is de- 
termined (assuming the usual set theory ZFC).  

(ii) I f  X C_ po, is an analytic set, then the garne (P~, X )  is determined 
<o, 21,'1+~0] [assuming ZFC + there exists an Erdös cardinal e:--+ (Wl) A , where A = 

(iii) I f  X C o) °' and X E L(~) ,  then the game (o9 ~, X )  is determined (assum- 
ing ZFC + there exists a measurable cardinal with w Woodin cardinals below it). 

A brief history and some outstanding qualities of these results are the 
following. Theorem 8.1(i) is due to Martin (1975, 1985). Thereby he solved a 
problem already stated by Gale and Stewart (1953). This theorem is remark- 
able not only because of its very ingeneous proof but also because it was the 
first theorem in real analysis the proof of which required the full power of the 
set theory ZFC. Indeed, Harvey Friedman proved that Theorem 8.1(i) de- 
pends on the axiom schema of replacement, while all the former theorems of 
real analysis could be proved from the weaker axiom schema of comprehen- 
sion. We shall not include here any proof of Theorem 8.1(i) since it is not 
easier than that of 8.1(ii); the conclusion of 8.l(ii) is stronger, and we feel that 
the refinement of ZFC upon which 8.1(ii) depends is very natural. 

Theorem 8.1(ii) is also due to Martin (1970). Again its proof is very 
remarkable since it is the simplest application of an axiom beyond ZFC to a 
theorem in real analysis. A set X C P~ is called analytic if X is a projection of a 



Ch. 3: Games with Perfect Information 61 

closed subset of the product space P~ x wo, into P"~, where w o, has also the 
product topology (w ~ is homeomorphic to the set of irrational numbers of the 
real line). We will see in Section 9 that every Borel subset of Po, is analytic but 
not vice versa. So, as mentioned above, the conclusion of Theorem 8.1(ii) is 
stronger than that of 8.1(i) (at the cost of a stronger set theoretic assumption). 
The Erdös cardinal numbers will be explained in Section 9. A measurable 
cardinal K > ]PI would suffice since it satisfies the condition in 8.1(ii). 

Theorem 8.1(iii) was proved by Martin and Steel (1989) using a former 
theorem of H. Woodin (the proof of the latter is still unpublished). L(N) 
denotes the least class of sets which constitutes a model of ZF (i.e. ZFC 
without the Axiom of Choice), contains all the ordinal numbers and all the real 
numbers and is such that if x E L(N) and y E x, then y E L(N). Theorem 
8.1(iii) solves in the affirmative the problem raised in Mycielski and Steinhaus 
(1962) of showing that the Axiom of Choice is necessary to prove the existence 
of sets XC_ {0, 1} °, such that the game ({0, 1} ~, X)  is not determined. Also it 
yields a very large class F of sets XC_ w ~, namely F = 3°(w ~) 7 /L(R) ,  where 
~ ( S ) = { R : R C S } ,  such that all the games { w ° , X )  with X E F  are de- 
termined. This family F is closed under countable unions and complementa- 
tion, under the Souslin operation (see Section 9) and many other set theoretic 
constructions. In particular, F includes all projective subsets of w °~. For the 
case [PI = w the conclusion of Theorem 8.1(iii) is much stronger than that of 
8.100.  But, as we shall see in Section 10, Theorem 8. l(iii) would fail if w o, was 
replaced by P~ with an uncountable set P. 

The concept of Woodin cardinals will not be explained here since it is rather 
technical. But there are several possible additions to ZFC which are simpler, 
intuitively weil motivated and stronger than those of Theorem 8.1(iii). For 
example, the existence of 1-extendible cardinals [an axiom proposed by W. 
Reinhardt,  see Solovay et al. (1978)] implies the existence of a measurable 
cardinal with w Woodin cardinals below it. Again we cannot present here 
enough logic and set theory to explain the above axiom, but we can stäte an 
äxiom proposed by P. Vopenka which is still stronger and hence also suffices 
for the conclusion of Theorem 8.1(iii). 

(V) I f  C is a proper class of graphs, then there are two graphs in C such that 
orte is isomorphic to an induced subgraph of the other. 

The intuitive idea supporting (V) is the following: a proper class must be so 
large relative to the size of a set that a proper class of graphs must be repetitive 
in the sense expressed in (V). The proof of Theorem 8.1(iii) [even the part 
published in Martin and Steel (1989)] is much harder than the proof of 8.1(ii) 
given in the next section. 

Let us add that H. Friedman, L. Harrington, D.A. Martin and H. Woodin 
have shown that the set theoretic axioms in Theorem 8.1(0 , (ii) and (iii) are 
nearly as weak as possible for proving those theorems. 
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9. Proof of Theorem 8.1(ii) 

For any topological space S, a set X C_ S is called analytic if X is a projection of 
a closed subset of the product space S x w °' into S. For example, i f f :  w~--> S is 
a continuous function, then the image f [w °~] is the projection of thè graph o f f  
into S, whence f [w ~] is analytic. We list some elementary facts about analytic 
sets. 

9.1. A union of countably many analytic sets is analytic. 

This follows immediately from the fact that w ~ can be partitioned into w 
clopen sets homeomorphic to w ~. 

9.2. An intersection of countably many analytic sets is analytic. 

ProoL Let A0, A 1 , . . .  be analytic subsets of S. Let A~ be the projection of a 
closed set Cj __ S x (w~)j, where (wO)j is a homeomorphic copy of w °~. Let C~ 
be the cylinder over Cj in the product space S x IIi< ~ (w~)~. Then C~ is closed 
and Oi<~ A , .= the  projection of A~<o, C* into S. Since I/~<~(w~)i is 
homeomorphic to w ~ and O~<~ C* is closed, it follows that Oe<ù~ Ai is 
analytic. 

9.3. Every closed set is analytic and every open set in P~ is analytic. 

For closed sets the assertion is obvious and for open sets it follows from the 
easy fact that in the space po every open set is a countable union of clopen 
sets, and from 9.1. 

Corollary 9.4. All Borel subsets of P~ are analytic. 

This corollary is not true for all spaces. For example, the set 091 is open in the 
compact space w s + 1 with its interval topology, but w 1 is not analytic. 

If A C_ S is of the form 

A =  U ~ Fqrù, (1) 
q ~ c o  ~ n < c o  

where q r n = ( % , . . , q ~  i) and Fqt,  are closed subsets of S, then A is 
analytic. In fact, A is the projection into S of the set 

C = r~  U F q t n X U ( q  I n ) .  
n<~o q@w '» 
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It is easy to check that each union in this intersection is closed, and hence C 
itself is closed. 

Also if A C_ P~ is analytic, a projection of a closed set C C_ P~ x w ~, then A 
is of the form (1), where 

F q I , = { p E P O : ( U ( p  ~ n) x U ( q  I n ) ) A C # = O } .  

However ,  there are spaces S where not every analytic set is of the form (1). 
[The form (1) is called the Souslin operation or the operation (A) upon the 
system ( Fq rn). ] 

Finalty, let us recall that there exist analytic subsets of  {0, 1} ~ which are not 
Borel (for example, the set of all those sequences which code a subset of o~ x os 
which is not a well ordering of w). 

We now define the notion of an Erdös cardinal K. 
• f I X denotes the restriction of a function f to a subset X of its domain. 
• Every ordinal number  is identified with the set of all smaller ordinals. 
• Cardinals are identified with initial ordinals. 
• For  every cardinal «, a + denotes the cardinal successor of a. 
• For any set X, [X]" denotes the set of all subsets of X of cardinality n. 

For  any cardinals K, oz and A we write 

K ---> (a)~ ~ (2) 

iff for every function f :  Un<,o [K]'---> A there exists a set H C K of cardinality a 
such that, for every n < o9, f r [H]" is constant. If (2) holds K is called an 
Erdös cardinal for a and A, and H is called a homogeneous set for f. 

The  relation (2) has many interesting properties, in particular: 

Theorem 9.5. I f  o~ is infinite and K is the least cardinal such that i< ---> (o~)~ ~, 
<¢o then for every A < K we have K ----> (a)A , and K is strongly inaccessible. 

We refer the reader  to Drake (1974, pp. 221 and 239) for the proof  of the 
above theorem. For the proof of Theorem 8.1(ii) we need only a K such that 

J<-->(%)~~, where A = 2  IPl+s° . (3) 

By Theorem 9.5, if IP[ is less than the first strongly inaccessible cardinal, then 
(3) holds for the least K such that K---~(~ol) 2 . As mentioned above, every 
measurable cardinal K > IPI satisfies (3). The reader interested in those 
concepts should consult Drake (1974) and Solovay et al. (1978). Let  us only 
recall that the condition (2) implies that K is a very large cardinal number and 
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its existence does not follow f fom the axioms of Z F C  (not even for o~ = R O and 
)t = 2). 

We still need a technical lemma.  
Let  T be the set of finite sequences of integers, i.e., T = U , < ~  n .  We define 

a linear ordering < of T as follows: if a, b ~ T and a is a proper  initial segment 
of b, then b < a, while, if there exists an i such that both a and b a r e  of length 
i> i and a~ ~ b~, then a < b iff a~ < b~ for the least such i. This is called the 
B r o u w e r - K l e e n e  ordering of T. 

Lemma  9.6. I f  T O C T and T O does not contain any infinite subset linearly 
ordered by the relation "a is an initial segment ofj b",  then the Brouwer-Kleene  
ordering well orders T o. 

Proof. We can assume without loss of generality that T O is saturated in the 
sense that it contains all the initial segments of its elements. Then T o partially 
ordered by the relation "a  is an initial segment o f  b"  is a tree without infinite 
branches,  and has a root v 0. We define inductively a map p: T 0 ~  %.  We put 
p(v)  = 0 if v is at the top of a branch. Let  S v be the set of immediate  successors 
of  v, i.e., if v ~ w  n, then S ~ = { w E ~ o  " + ~ f 3 T 0 : v C w } .  Assuming p I Sv is 
already defined we put 

p(v) = sup{p(s)  + 1: s ~ So).  

It  is easy to check that this defines a map p and that p(v) increases as v runs 
towards the root along any branch. Now it is easy to prove L e m m a  9.6 by 
induction on p(Vo). It  is clear that if the Brouwer -Kleene  ordering restricted to 
any subtree T, s temming from s E So is a well ordering, then it is also a well 
ordering of the subtree T~ stemming from v. [] 

Proof of Theorem 8.1(ii). Let  A fi_ p,o be analytic, a projection of the closed 
set C C P~ x o) ~, and let (3) hold. Suppose that I I  does not have a winning 
strategy for the garne (P~, A ) .  We have to show that I has a winning strategy. 
First we define an auxiliary PI-game G defined by a closed set and show that I 
has a winning strategy for G. Then we deduce that I also has a winning strategy 
for (P~°, A ) .  

Let  T be (as above) the set' of all finite sequences of integers and t I , t e . . . .  be 
an o)-enumeration of T without repetitions. For q E pan and t n E T we shall say 
that  (q ,  th) is insecure (for I I )  if q and tn are initial segments of some p E P°' 
and r ¢ o) °~, respectively, such that (p ,  r ) ¢  C. Otherwise we say that (q ,  th) is 
secure (for II) .  

We define G as follows. The choices of 1 are still elements Pn E P but the 
choices of II  are pairs (qn, an), where qn ¢ P and % E K. Player II  wirts iff, 
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and 

% = 0 whenever ( ( P o ,  qo,  • • • , P ù - I ,  q n - 1 ) ,  th)  is secure, 

o~ù < Cm whenever  both ((p0, qo . . . . .  Pù-I ,  q~-l) ,  t~) and 

( ( P o ,  q o , . . .  , P r o - i ,  q m - l ) ,  tm)  are insecure and t m is a 

proper  initial segment of t,,. 

(4) 

(5) 

We claim that,  i f p  = (Po, q0, Pl ,  qa, • • .) and p E A, then II must have lost 
in G. Indeed,  if p E A, there exists a t E w ~ such that (p ,  t) E C and hence all 
the pairs ( p  r 2m, t I n) are insecure. If t I n = tk(n) and if II had won G, 
then by (5), %(0) > % ( t ) > " "  and this is impossible since K is well ordered.  
Hence,  since we assumed that II has no winning strategy for (P'°, A ) ,  Il has 
no winning strategy for G either. By (4) and (5) the set of player I in G is 
closed. Hence by Proposition 3.2, G is determined and I has a winning 
strategy, say s, for G. 

Now we will modify s to get a winning strategy s* for I for (P~, A }. 
Let  L = pD = the set of functions from D to P, where D = Un<~ p2n. So we 

have ILI = 2 lel+~° 
We define a map f :  Um<~ [K] m---~ L as in the definition of (3). For Q E 

[K] m, f ( Q ) :  D - - - > P  is defined by 

f ( Q ) ( p o ,  qo ,  . . . , p n - ~ ,  qn-1) = s ( (  qo,  % ) ,  . . , ( q ù - l ,  a n - z ) ) ,  

where s is the winning strategy for I for G, and % , . . . ,  o~n_ ~ are given by the 
following three conditions: 

if ( ( P o ,  qo ,  • • • ,  P ~ - I ,  qi  1), t i )  is secure, then a~ = 0 ; (6) 

if the set I = { i  < n:  ( ( P o ,  qo,  . . . , P i - 1 ,  q i - 1 ) ,  t i )  is insecure} has 
exactly I Q I elements, then the map ti ~ o~ i for i E I is the 
unique bijection into Q preserving the Brouwer-Kleene  ordering ; (7) 

if [II # IQI, then o~« = 0 for all i <  n .  (8) 

Let  H C_ K be a homogeneous set of order type w 1 for f ;  its existence follows 
from the assumption (3). Then we can define a function s*: Un<~ ph___> p 
inductively as follows: 

s * (  qo,  . . . , q n « )  = f ( Q ) ( P o ,  qo . . . . .  P » « ,  qù-~) ,  

P i = s * ( q o ,  " '"  , qi-1) for i < n ,  
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where Q is any set such that Q c H and IQI = III and I is as in (7). [Note that 
p0=s* (0 ) ,  i.e., Po is the first choice of I by s.] Notice that, since H is 
homogeneous for f ,  this definition of s* is correct because we can check by 
induction that the value of s* written above does not depend on the choice of 
Q, as long as Q c_ H and IQI = I/I . 

We claim that s* is a winning strategy for I for / P  ~, A}. Suppose to the 
contrary that there exists a p = (Po, q o , . . . ,  Ph, q . . . . .  ) E  P°'\A which is 
obtained when I plays by means of s*. We shall derive from this a contradiction 
by showing that there exists a game in G in which I plays s and II wins. To 
define this garne, let 

To = {th: ((Po, q 0 ,  • - , Ph-l ,  q n « ) ,  tù) is insecure for II, n < w} . 

Since p N 'A,  T O satisfies the assumption of Lemma 9.6, whence there exists a 
map a:  T 0---> H which preserves the Brouwer-Kleene ordering. Assign to p the 
garne in G where, after each choicepn_l of I, II chooses (qn 1, «(th)) if tn ~ To 
and (qn_l,0) if t ù ~ T  o. Clearly, conditions (4) and (5) are satisfied, which 
means that II wins, and this is the desired contradiction. 

This concludes the proof of Theorem 8.1(ii). 

10. The Axiom of Determinacy 

The results of Section 4 suggest the study of an abstract theory T =  ZF + 
AD + DC. Here Z F  is the set theory ZFC without the Axiom of Choice. AD, 
called the Axiom ofDeterminacy, tells that for all X C_ w ~ the garne (~~,  X)  is 
determined; DC, called the Axiom of Dependent Choices, teils that for any 
binary relation R C_ Y x Y, if Y¢~t  and Va ~ Y 3 b  E Y[(a, b) E R], then there 
exists an o)-sequence Y0, Y1 . . . .  such that Vn < w[(Yn, Yn+l) ~ R]. Notice 
that, by the coding described in the proof of Corollary 4.6, AD is equivalent to 
the statement that all garnes of the form (2 °', X)  are determined. AD was 
proposed by Mycielski and Steinhaus (1962). By Theorem 8.1(iii) of Martin 
and Steel (1989), we know that T is consistent. 

T is motivated by its deductive power, the coherence of its theorems and the 
interesting classes of sets which are known or conjectured to constitute models 
for T. For example, T proves (by the results of Section 4) that every 
uncountable set in a Polish space has a perfect subset and that every subset of a 
Polish space has the property of Baire and is measurable with respect to every 
Borel measure. T also yields many natural results about projective sets and 
projective well orderings of sets of real numbers [see Addison and Mos- 
chovakis (1968), Kechris et al. (1977, 1979, 1981, 1985), Martin (1968), and 
Moschovakis (1980)]. Those theorems solve problems which are not solvable in 
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ZFC,  and admit only unnatural solutions in Z F +  (V= L).  By Theorem 
8.1(iii), T is true in L ( ~ ) [ t h e  proof of DC is given in Kechris (1985)]. So all 
subsets of a Polish space in L (~ )  which are in L(~) ,  in particular all projective 
subsets, have the above properties. The advantage of proving those theorems 
in T is that T may have other models. For example, the class L(G~), where 0 is 
the class of all ordinal numbers. [L(G ~) is the least model of Z F  which 
contains all members of its members, and all to-sequences of ordinal numbers.] 
As rauch as we know L ( ~  °) may satisfy the following stronger version of AD.  
Let X C_ P~, where a is any ordinal number, and consider the game (P~, X)  of 
length o~ defined in a way similar to (P~, X ) ,  where player I rnakes all the even 
choices and player II all the odd choices. Perhaps, in the model L ( 6  °) for 
every a < o) 1 and every X C to « the garne ( to ~, X)  is determined [see Mycielski 
(1964, p. 217)]. 

Let  us still show without using the Ax iom of  Choice two facts which imply 
that the above refinement of A D  and Theorern 8.1(iii) are the strongest 
possible in a certain sense. 

10.1. There exists an X C_ 2 °~~ such that (2 ~1, X )  is not determined. 

10.2. There exists an X C_ to1 such that ( tox , X )  is not deterrnined. 

Proof of 10.1. Assume to the contrary that all games of the form (2 ~1, X)  are 
determined. This implies AD.  It follows that there is no injection wl--~ N. 
Indeed, if such an injection were to exist, Corollary 4.6 would imply that the 
image of 0) 1 in N would have a perfect subset; hence there would be a well 
ordering of N and, again by Corollary 4.6, a non-determined garne of the form 
(to~,x). 

Now for every ordinal number a < 0) I there exists a well ordering of to, i.e., 
a subset of to x to, of type o~. Consider the following garne (2 °«, X) .  Player II 
wins iff I always chooses 0 or, if a being the first ordinal for which I chose 1, 
the to choices of II following a constitute a sequence of 0's and l 's  coding a 
subset of to x to which is a well ordering of to of type a. It is clear that I has no 
winning strategy in that garne. But the existence of a winning strategy for II 
implies the existence of an injection of to1 into N. So we have a 
contradiction. [] 

The proof of 10.2 is quite similar to that of 10.1. 
Another  conjecture is the following: if « < to1, X C_ to~ and X is definable 

from an to-sequence of ordinal numbers, then the game (to~, X)  is de- 
termined. [The class of sets which are definable from a sequence of ordinals is 
definable, so the above conjecture can be expressed in the language of ZF. For 
a related conjecture see Addison and Moschovakis (1968).] 
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Let us return to the theory T. In 1967 R.M. Solovay showed that this theory 
proves that for  every partition w 1 = A tO B either A or B has a subset which is 
closed in o~ 1 and cofinal with w 1 [see Jech (1978); see also Martin (1968)]. This 
implies that T yields the consistency of the theory Z F C +  the  existence of a 
measurable cardinal number, and hence that T is a very strong theory. In 
particular it implies that Theorem 8.1(iii) could not have been proved without 
some additional axiom. 

We will not discuss here the consequences of T except to state the following 
important weak form of the Axiom of Choice or Selection Principle which is 
useful for the theory of capacities of Choquet [see Mycielski (1972), Srebny 
(1984, pp. 30-47), and Busch (1979)]. 

Theorem 10.3 (In the theory T).  For every S C E x ~, there exists a function 
f C_ S such that pr l (S ) \dom( f  ) is o f  Lebesgue measure zero and o f  the first 
category. 

This theorem was proved by R.M. Solovay around 1970; his proof is 
published in Busch (1979). 

The literature about A D  is large, see Kechris et al. (1977, 1979, 1981, 1985) 
and Moschovakis (1980), but let me add the following polemical remarks. 
First, Mycielski and Steinhaus (1962) overlooked that S. Ulam had already 
defined a garne [Mauldin (1981, p. 113)] which is equivalent to their garne 
(2 ~, X) .  Second, in the detailed monograph by Moschovakis (1980), the 
history of A D  is skewed. Namely on pages 9 and 287 the role of the papers by 
Mycielski and Steinhaus (1962) and Mycielski (1964, 1966) is ignored, and on 
pages 378-379 their mathematical motivation is criticized. The reader may 
check that in fact the motivation expressed in Mycielski and Steinhaus (1962) 
and Mycielski (1964, 1966) is identical to that in Moschovakis (1980). The only 
difference is that Moschovakis adopts a philosophy which tells that in this area 
we study a pre-existing Platonic reality discovered by Cantor, while Mycielski 
and Steinhaus would have told that we study here some new human construc- 
tions. Be that as it may, the idea of infinite PI-games has proved to be very 
stimulating and still presents many challenging open problems. 
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O. Summary 

The theory of repeated games is concerned with the analysis of behavior in 
long-term interactions as opposed to one-shot situations; in this framework 
new objects occur in the form of threats, cooperative plans, signals, etc. that 
are deeply related to "real life" phenomena like altruism, reputation or 
cooperation. More precisely, repeated garnes with complete information, also 
called supergames, describe situations where a play corresponds to a sequence 
of plays of the same stage garne and where the payoffs are some long-run 
average of the stage payoffs. Note that unlike general repeated garnes [see, for 
example, Mertens, Sorin and Zamir (1992)] the stage game is the same (the 
state is constant; compare with stochastic games; see the chapter on 'stochastic 
garnes' in a forthcoming volume of this Handbook) and known to the players 
(the state is certain; compare with garnes of incomplete information, Chapters 
5 and 6 in this Handbook). 

1. Introduction and notation 

A repeated game results when a given garne is played a large number of times 
and, when deciding what to do at each stage, a player may take into account 
what happened at all previous stages (or more precisely what he knows about 
it). The payoff is an average of the stage payoffs. 

More formally let G = G a be the following strategic form garne: ! is the finite 
set of players with generic element i (we also write I for its cardinality). Each 
player i has a finite non-empty set of moves (or actions) S i and a payoff 
function gi from S = I~j~ I S j into ~. X i will denote the set of randomized or 
mixed moves of i, i.e. probabilities on S ~. For x in X = II~ X ~, g(x) stands for 
the usual multilinear extension of g and is the expected vector payoff if each 
player i plays x ~. 

To G is associated a supergame F, played in stages: at stage 1, all players 
choose a move simultaneously and independently, thus defining a move profile, 
that is an I-tuple s 1 = {sil} of moves in S. s I is then announced to all players 
and the garne proceeds to stage 2. (Note that we are assuming full monitoring; 
all past behavior is observed by everyone. For a more general framework see 
Section 5.) Inductively at stage n + 1, knowing the previous sequence of move 
profiles (sl, s 2 , . . ,  sn), all players again choose their moves simultaneously 
and independently. This choice is then told to all and the garne proceeds to the 
next stage. 

A history (resp. a play) is a finite (resp. infinite) sequence of elements of S; 
and the set of such sequences will be denoted by H (resp. Ha). H n is the subset 
of n-stage histories. Histories are the basic ingredients of repeated games; they 
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allow the players to coordinate their behavior. Note that in the present 
f ramework histories are known by all players, but in more general models (see 
Section 5) they will lead to differentiated information. 

A pure strategy for player i in F is, by the above description, a mapping from 
H to S i, specifying after each history the action to select. A mixed strategy is a 
probability distribution on the set of pure strategies. Since F is a game with 
perfect  recall, Kuhn's theorem implies that it is enough to work with behavior- 
al strategies, a behavioral strategy eri of player i being a mapping from H to X i. 
Alternatively, er~ can be represented by a sequence {o-in}, er/n being a mapping 
from Hù_ 1 to X i that describes the "strategy of player i at stage n" .  Write X ' 
for the corresponding set and X = II ~i. 

Each pure strategy profile er induces a play ho~ in a natural way. Formally: 
sl = er(0), sn+l = er(si, s 2 ,  • • , sù) and ho~ = (s l, . . . , s ~ ,  . .). Accordingly, 
each er in X (or in the set of mixed strategies) defines a probability, say P~, on 
(H=, Y(=), where Yt°oo is the product o--algebra on Ha - S ~ (and similarly 2(ù on 
Hn); we denote  by E~ the expectation operator  corresponding to probability 
Pc" 

To complete the description of F it remains to define a payoff function q~ 
from ~ to R ( The theory of repeated games deals with mappings that are some 
kind of average of the sequence of stage payoffs (gl = g ( s l ) , . . ,  gn = 
g ( s n ) , . . )  associated with a play. This is (with the stationary structure of 
information) the main difference from multimove garnes where the payoff can 
be any function on plays. Three classes will be analyzed here. 

(i) The finite game G~. The payoff is the arithmetic average of the sum of 
the payoffs for the n first stages and is denoted by ~~; hence ~~(o-) = E~(~~), 
where ~. = (l/n)~,nm= I g(Sm) , n E N. G n is the usual n-stage garne where we 
normalize the payoffs to allow for a comparative study as n varies. 

(ii) The discounted garne G~. Here  ~o is the geometric average of the infinite 
stream of payoffs; it is written ~~ with ,~A(o-)=E~(Em=~ A ( 1 - A )  m-1 
× g(Sm)), A Œ (0, 1]. G~ is thus the game with discount factor A (where again the 
payoff  is normalized). 

In each of these two cases F is a well-defined game in strategic form, so that 
the usual concepts (like equilibrium) apply. The situation is a little more 
delicate in the final case. 

(iii) The infinite game G~. The payoff is taken here as some limit of ~n. 
Different  definitions are possible, because the above limit may not exist and 
one may choose liminf or limsup or some Banach limit, and because one can 
take the expectation first or the limit first. Finally, especially if the infinite 
garne is considered as an approximation of a long but finite garne, some 
uniformity conditions may be required for equilibrium. 

We will use mainly the following definitions: er is a lower (resp. upper) 
equilibrium if ~n(er) converges to some ,~(er) as n goes to infinity, and for each 
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~.i in ùa~ i and each i one has: liminf (resp. limsup) ~i (~j, o - - i )  ~ ,~i(o.) ' where as 
usual o--~ stands for the ( I -  1) tuple induced by o- on/~{i}.  

Similarly, o- is a uniform equilibrium if ~~(o-) converges and, moreover, 
Ve > O, 3N ,  n >i N ~ ~in(Ti , O "-i) ~ ~in(o- ) ~- E, for each ~.i and each i. In words, 
for any positive e, o- is an e-equilibrium in any sufficiently long garne Gù. 

When the payoff function is unspecified, the result will be independent of its 
particular choice. 

Remark.  One can also work with the random variables gn and say that a 
deviation is profitable if limsup gn increases with probability one. 

Recall, finally, that a subgame perfect equilibrium of F is a strategy profile o- 
such that for all h in H, o[h] is an equilibrium in F, where o-[h] is defined on H 
by o-[h](h') = o(h, h')  and (h, h ' )  stands for the history h followed by h'. 

The main aim of the theory is to study the behavior of long games. Hence, 
we will consider the asymptotic properties of G n as n goes to infinity or G A as A 
goes to 0, as weil as the limit garne G~. 

(Note once and for all that the 0-sum case is trivial: each player can play his 
optimal strategy i.i.d, and the value is constant - compare with Chapter 5 and 
the chapter on 'stochastic games' in a forthcoming volume of this Handbook.) 

Each of these approaches has its own advantages and drawbacks and to 
compare them is very instructive. G n corresponds to the "real" finite garne, but 
usually the actual length is unknown or not common knowledge (see Subsec- 
tion 7.1.2). Here the existence of a last stage has a disturbing backwards effect. 
G a has some nice properties (compactness, stationary structure) but cannot be 
studied inductively and here the discount factor has to be known precisely. 
Note that G A can be viewed as some G~, where 17 is an integer-valued random 
variable, finite a.s., whose law (but not the actual value) is known by the 
players. On the other hand, the use of G= is especially interesting if a uniform 
equilibrium exists. 

A few more definitions are needed to state the results. 
Given a normal form game F = (Y,, ~p), the set of achievable payoffs is 

A = {dEN~;  3O-EX,  q~(o-) = d} = q~(X); it is denoted by Dn, D A and D= for 
G n, G A and G~, respectively. 

Similarly, the set of Nash equilibrium payoffs is ~ = {d E Nz; 3o- E X that is 
an equilibrium in F with p(o-)= d}; it is denoted by En, E h or E= in the 
respective cases. Finally, ~ '  - and specifically, E ' ,  E] and EL -- will denote the 
set of subgame perfect equilibrium payoffs. 

D is the set of feasible payoffs with (public pure) correlated strategies in G1, 
or equivalently, if Co denotes the convex hull: D = Co D 1 = Co g(S). (This 
corresponds to the convex combination of payoffs in the original game G.) In 
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fact we shall see that repetition will allow us to mimic this public correlation in 
a verifiable way (because of the pure support ). 

The minimax level is defined by v ' =  min x imaxxigi(x i, x i) (recall that 
X - ;  = II~+eX j is the set of vectors of mixed actions of the opponents of i). If 
x- i ( i )  realizes the above minimum, it will be referred to as a punishing strategy 
of players in/k{i} against i, and fr(i) will be the best reply of player i to it. V 
with components  v i is the threat point. 

Finally, E is the set of individually rational (i.r. for short) and feasible 
payoffs: E =  { d E D; Vi E I, d~ »- v~}. 

We will be interested in studying the asymptotic behavior of the sets 
Dù, DA, E . . . . .  (all convergence of sets will be with respect to the Hausdorff  
topology) and in describing D~, E= and E ' .  We shall see that the sets D and E 
will play a crucial role. 

Before  letting the parameters vary, we note that the games (~, q~) for the 
first two classes (i) and (ii) have compact pure strategy spaces and jointly 
continuous payoffs; hence the following properties hold. 

Proposition 1.1. D~ and D A are non-empty, path-connected, compact sets. 

Proposition 1.2 (Nash). E, ,  E'n, E A and E x are non-empty, compact sets. 

Remarks.  It is easy to see that neither D n nor D A is necessarily convex, and 
neither E n nor E A connected. On the other hand, both D and E are convex, 
compact,  and non-empty,  since E contains E 1. 

The  following easy result illustrates one aspect of repetition: the possibility 
of convexifying the joint payoffs. 

Proposition 1.3. (i) D n converges to D as n goes to infinity. 
(ii) The same & true for D A as A goes to O. 

(iii) D~ = D. 

Proof. Note first that the random stage payoff takes its values in the closed 
convex set D and hence expectation, average and limits share the same 
proper ty  so that q~(o-) belongs to D for all 0-; thus A C D (but Co(A)= D).  
Now for every e > 0, there exists some integer p such that any point d in D can 
be e-approximated by a barycentric rational combination of points in g(S), say 
d ' =  Z m (qù,/p)g(Sm). Thus the strategy profile o- defined as: play cycles of 
length p consisting of qa times Sa, q2 times s2, and so on, induces a payoff near 
d '  in G n for n large enough. 

(ii) follows from (i) since the above strategy satisfies ~A(o-)-+ d '  as A-+O. 
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(iii) is obtained by taking for o- a sequence of strategies %,  used during n k 
stages, w i t h  I I~ .~ (~~)  - all--<- X/k. [] 

Note that D n may differ from D for all n, but one can show that D A coincides 
with D as soorl as A ~< 1 / I  [Sorin (1986a)]. 

It is worth noting that the previous construction associates a play with a 
payoff, and hence it is possible for the players to observe any deviation. This 
point will be crucial in the future analysis. 

The next three sections are devoted to the study of various equilibrium 
concepts in the framework of repeated garnes, using both the asymptotic 
approach and that of limit garnes. Section 2 deals with strategic or Nash 
equilibria, Section 3 with subgame perfection, and Section 4 with correlated 
and communication equilibria. 

2. Nash equilibria 

To get a rough feeling for some of the ideas involved in the construction of 
equilibrium strategies, consider an example with two players having two 
strategies each, Friendly and Aggressive. In a repeated framework, an equilib- 
rium will be composed of a plan, like playing (F, F) at each stage, and of a 
threat, like: "play A forever as soon as the other does so once". Note that in 
this way one can also sustain a plan like playing (F, F)  on odd days and (A, A) 
otherwise, or even playing (F, F)  at stage n, for n prime (which is very 
inefficient), as well as other convex combinations of payoffs. On the one hand 
new good equilibria (in the sense of being Pareto superior) will appear, but the 
set of all equilibrium payoffs will be much greater than in the one-shot game. 

In a discounted game two new aspects arise. One is related to the relative 
weight of the present versus the future (some punishment may be too weak to 
prevent deviations), but this failure disappears when looking at asymptotic 
properties. The second one is due to the stationary structure of the garne: the 
strategy induced by an equilibrium, given a history consistent with it, is again 
an equilibrium in the initial game. For example, if a "deviation" is ignored at 
one stage, then there is an equilibrium in which similar "deviations" at all 
stages are ignored. We shall nevertheless see that this constraint will generical- 
ly not decrease the set of equilibrium payoffs. 

In finite games, there cannot be any threat on the last day; hence by 
induction some constraints arise that may prevent some of the previous 
plan/ threat  combinations. Nevertheless in a large class of garnes, the asymp- 
totic results are roughly similar to those above. 

Let us now present the formal analysis. 
A first result states that all equilibrium payoffs are in E; obviously they need 

to be achievable and i.r. Formally: 
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Propos i t ion  2.0.  ~ C E.  

Proof.  Obviously ~ C D. Now let d be in E and o- be an associated equilib- 
rium strategy profile. Then player i can, after any history h, use a best reply to 
o--i(h). This gives him a (stage, and hence total) payoff greater than v i in Gù or 
GA. As for G= (if the payoff is not defined through limits of expectations), let 
g~ denote  the random payoff of player i at stage m, then the random variables 

i i zm = g m -  E(gml~m-1) are bounded,  uncorrelated and with zero mean and 
hence by an extension of the strong law of large numbers converge a.s. in 

i i Cesaro mean to 0. Since E(gml~m_l)>~o, this implies that player i can 
guarantee v i and hence d i ~  v i as well. [] 

It follows that to prove the equality of the two sets, it will be sufficient to 
represent  points in E as equilibrium payoffs. 

We now consider the three models. 

2.1. The infinitely repeated game G= 

The following basic result is known as the Folk theorem and is the cornerstone 
of the theory of repeated games. It states that the set of Nash equilibrium 
payoffs in an infinitely repeated garne coincides with the set of feasible and 
individually rational payoffs in the one-shot garne so that the necessary 
condition for a payoff to be an equilibrium payoff obtained in Proposition 2.0 
is also sufficient. 

Most of the results in this field will correspond to similar statements but with 
other  hypotheses regarding the kind of equilibria, the type of repeated game or 
the nature of the information for the players. 

T h e o r e m  2.1 .  E~ = E.  

Proof .  Let  d be in E and h a play achieving it ~ (Proposition 1.3). The 
equilibrium strategy is defined by two components: a cooperative behavior and 
punishments in the case of deviation. Explicitly, o- is: play according to h as 
long as h is followed; if the actual history differs from h for the first time at 
stage n, let player i be the first (in some order) among those whose move 
differs from the recommendation at that stage and switch to x(i) i.i.d, from 
stage n + 1 on. Note that it is crucial for defining tr that h is a play (not a 
probabili ty distribution on plays). The corresponding payoff is obviously d. 
Assume now that player i does not follow h at some stage and denote by N(s i) 
the set of subsequent stages where he plays s( The law of large numbers 
implies that ( l /  #N(si)) ~ nEN(s i) gi n converges a.s. t o  g(s i, x-i(i)) <~ t3 i as #N(s  ~) 
goes to ~ and hence limsup ~i ~< v ~, a.s. Moreover,  it is easy to see that o- 
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defines a uniform equilibrium, since the total gain by deviation is uniformly 
bounded. This proves that E C E= and hence the result by the previous 
proposition. [] 

Note that since we are looking only for Nash equilibria, it may be better for 
one player not to punish. This point will be taken into account in the next 
section. For a nice interpretation of and comments on the Folk Theorem, see 
Kurz (1978). Conceptual problems arise when dealing with a continuum of 
players; see Kaneko (1982). 

2.2. The discounted game G A 

Note first that in this case the asymptotic set of equilibrium payoffs may differ 
ffom E, see Forges, Mertens and Neyman (1986). A simple example is the 
following three-person garne, where player 3 is a dummy: 

((1, 0, 0) (0,1,0) 
(0, 1, 0) (1, 0, 1)) " 

This being basically a constant-sum garne between players 1 and 2, it is easy 
to see that for all values of the discount factor A, the only equilibrium (optimal) 
strategies in G A are (1/2, 1/2) i.i.d, for both, leading to the payoff ( l /2,  1/2, 
1/4). Hence the point (1/2, 1/2, 1/2) in E cannot be obtained. In particular 
this implies that Pareto payoffs cannot always be approached as equilibrium 
payoffs in repeated games even with low discount rates. 

In fact this phenomenon does not occur in two-person garnes or when a 
generic condition is satisfied [Sorin (1986a)]. 

Theorem 2.2. A s s u m e  I = 2 or that there exists a p a y o f f  vector d in E with 
d i > v i f o r  all i. Then E A converges to E. 

The idea, as in the Folk Theorem, is to define a play that the players should 
follow and to punish after a deviation. If I ~  >3 ,  the play is cyclic and 
corresponds to a strictly i.r. payoff near the requested payoff. It follows that 
for A smaU enough, the one-stage gain ffom deviating (coefficient A) will be 
smaller than the loss (coefficient 1 - A) of getting at most the i.r. level in the 
future. If I = 2 and the additional condition is not satisfied, either E -- {V} or 
only one player can profitably deviate and the result follows. [] 

2.3. The n-stage garne G n 

It is weil known that E n may not converge to E, the classical example being the 
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Prisoner's Dilemma described by the following two-person game: 

(3, 3) (0,4) 
(4,0) ( 1 , 1 ) / '  

where E~ = {(1, 1)} for all n. This property is not related to the existence of 
dominant strategies; a similar one holds with a mixed equilibrium in 

(2,0) (0, 1) 
(0, 1) (1, 0) / 

In fact, these games are representative of the following class [Sorin (1986a)]: 

Proposition 2.3.1. I f  E 1 = {V}, then E n = {V} f o r  all n. 

Proof. Let cr be an equilibrium in G n and denote by H(o-) the set of histories 
having positive probability under o-. Note first that on all histories of length 
(n - 1) in H(o-), o- induces V, by uniqueness of the equilibrium in 6 1  . NOW let 
m be the smallest integer such that after each history in H(cr) with length 
strictly greater than m, o- leads to V. Assume m ~> 0 and take a history, say h, 
of length m in H(o-) with o-(h) not inducing V. It follows that one player has a 
profitable deviation at that stage and cannot be punished in the future. [] 

The following result is typical of the field and shows that a good equilibrium 
payoff can play a dissuasive role and prevent backwards induction effects: 

Theorem 2.3.2 [Benoit and Krishna (1987)]. A s s u m e  that f o r  all i there exists 
e( i )  in E 1 with e i ( i ) >  v ~. Then E n converges to E. 

Proof. The idea is to split the stages into a cooperative phase at the beginning 
and a reward/punishment phase of fixed length at the end. During the first part 
the players are requested to follow a cyclic history leading to a strictly i.r. 
payoff approximating the required point in E. The second phase corresponds 
to playing a sequence of R cycles of length I, leading to ( e ( 1 ) , . . .  , e(I) ) .  Note 
that this part consists of equilibria and hence no deviation is profitable. On the 
other hand, a deviation during the first period is observable and the players are 
then requested to switch to x ( i )  for the remaining stages if i deviates. It follows 
that, by choosing R large enough, the one-shot gain is less than R x (ei(i) - v i) 
and hence the above strategy is an equilibrium. Letting n grow sufficiently 
large gives the result. [] 

Note that the above proof also shows the following: if E contains a strictly 
i.r. payoff, a necessary and sufficient condition for E n to converge to E is that 
for all i there exists n i and ei(i) in Eni with ei(i) > v i. 
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In conclusion, repetition allows for coordination (and hence new payoffs) 
and threats (new equilibria). Moreover, for a large class of garnes, the set of 
equilibria increases drastically with repetition and one has continuity at ~: lim 
E n = lim E A = E~ = E; every feasible i.r. payoff can be sustained by an equilib- 
rium. On the other hand, this set seems too large (it includes the threat point 
V) and a first attempt to reduce it is to ask for subgame perfection. 

3. Subgame perfect equilibria 

The introduction of the requirement of perfection will basically not change the 
basic results concerning the limit garne. Going back to the example at the 
beginning of Section 2, the length of the punishment (playing A) can be 
adapted to the deviation, but can remain finite and hence its impact on the 
payoff is zero. 

On the other hand, the specific features of the discounted garne (fixed point 
property) and of the finite garne (backwards induction) will have a much larger 
impact, being applied on each history. For example, if A is a dominant move, 
playing A at each stage will be the only subgame perfect equilibrium strategy of 
the finite repeated garne. 

As in the previous section we will consider each type of garne (and recall that 
~ ' C  ~). 

3.1. G= 

The first result is an analog of the Folk Theorem, showing that the equilibrium 
set is not reduced by requiring perfection. In fact, the possibly incredible threat 
of everlasting punishment can be adapted so that the same play will still be 
supported by a perfect equilibrium. 

Theorem 3.1 [Aumann and Shapley (1976), Rubinstein (1976)]. E'= = E. 

Proof. The cooperative aspect of the equilibrium is like in the Folk Theorem. 
The main difference is in the punishment phase; if the payoff is defined 
through some limiting average it is enough to punish a deviator during a finite 
number of stages and then to come back to the original cooperative play. It is 
not advantageous to deviate; it does not harm to punish. Explicitly, if a 
deviation happens at stage n, punish until the deviator's average payoff is 
within 1/n of the required payoff. Deviations during the punishment phase are 
ignored. (To get more in the spirit of subgame perfection, one might require 
inductively the punisher to be punished if he is not punishing. For this to be 
done, since a deviation may not be directly observable during the punishment 
phase, some statistical test has to be used.) [] 
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The interpretation of the "Perfect Folk Theorem" is that punishments can be 
enforced either because they do not hurt the punisher or because higher levels 
of punishment are available against a player who would not punish. This 
second idea will be used below. 

Remarks. (1) Note that a priori the previous construction will not work in G n 
or G a since there a profitable deviation during a finite set of stages counts, and 
on the other hand the hierarchy of punishment phases may lead to longer and 
longer phases. 

(2) For similar results with different payoffs or concepts, see Rubinstein 
(1979a, 1980). 

3.2. G a 

A simple and useful result in this framework, which is due to Friedman (1985), 
states that any payoff that strictly dominates a one-shot equilibrium payoff is in 
E~ for A small enough. (The idea is, as usual, to follow a play that generates 
the payoff and to switch to the equilibrium if a deviation occurs.) 

In order to get the analog of Theorem 2.2, not only is an interior condition 
needed (recall the example in Subsection 2.2), but also a dimensional condi- 
tion, as shown by the following example due to Fudenberg and Maskin 
(1986a). Player 1 chooses the row, player 2 the column and player 3 the matrix 
in the garne with payoffs: 

( ( 1 , 1 , 1 )  (0 ,0 ,0)  (0 ,0 ,0)  (0, 0))  
(o,o,o) (o,o,o)) and ( O, (0, 0, 0) ( 1 , 1 , 1 )  " 

Let w be the worst subgame perfect equilibrium payoff in G a. Then one has 
w ~ Ag a + (1 - A)w, where gl is any payoff achievable at stage 1 when two of 
the players are using their equilibrium strategies. It is easily seen that for any 
triple of randomized moves there exists orte player's best reply that achieves at 
least 1/4, i.e. ga >~ 1/4; hence w 1> 1/4 so that (0, 0, 0) cannot be approached in 
E~. 

A generic result is due to Fudenberg and Maskin (1986a): 

Theorem 3.2. I f  E has a non-empty  interior, then E '  A converges to E.  

Proof. This involves some nice new ideas and can be presented as follows. 
First define a play leading to the payoff, then a family of plans, indexed by I, 
consisting of some punishment phase [play x(i)] and some reward phase [play 
h( i )  inducing an i.r. payoff f(i)]. Now if at some stage of the garne player i is 
the first (in some order)deviator,  the plan i is played from then on until a new 
possible deviation. 
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To get the equilibrium condition, the length R of the punishment phase has 
to be adapted and the the rewards taust provide an incentive for punishing, i.e. 
for all i, j one needs f i ( j ) > f i ( i  ) (here the dimensional condition is used). 
Finally, if the discount factor is small enough, the loss in punishing is 
compensated by the future bonus. 

The proof itself is much more intricate. Care has to be taken in the choice of 
the play leading to a given payoff; it has to be smooth in the following sense: 
given any initial finite history the remaining play has to induce a neighboring 
payoff. Moreover, during the punishment phase some profitable and non- 
observable deviation may occur [recall that x(i)  consists of mixed actions] so 
that the actual play following this phase will have to be a random variable h'(i) 
with the following property: for all players j, j ~ i, the payoff corresponding to 
R times x(i) ,  then h(i)  is equal to the one actually obtained during the 
punishment phase followed by h'(i). At this point we use a stronger version of 
Proposition 1.3 which asserts that for all A small enough, any payoff in D can 
be exactly achieved by a smooth play in G a. [Note that h'(i) has also to satisfy 
the previous conditions on h(i).] [] 

Remarks. (1) The original proof deals with public correlation and hence the 
plays can be assumed "stationary". Extensions can be found in Fudenberg and 
Maskin (1991), Neyman (1988) (for the more general class of irreducible 
stochastic games) or Sorin (1990). 

(2) Note that for two players the result holds under weaker conditions; see 
Fudenberg and Maskin (1986a). 

3.3. Gn 

More conditions are needed in G n than in G a to get a Folk Theorem-like 
result. In fact, to increase the set of subgame perfect equilibria by repeating 
the game finitely many times, it is necessary to start with a game having 
multiple equilibrium payoffs. 

Lemma 3.3.1. I f  E~ = E I has exactly one point, then E" = E~ for  all n. 

Proof. By the perfection requirement, the equilibrium strategy at the last 
stage leads to the same payoff, whatever the history, and hence backwards 
induction gives the result. [] 

Moreover, a dimension condition is also needed, as the following example 
due to Benoit and Krishna (1985) shows. Player 1 chooses the row, player 2 
the column and player 3 the matrix, with payoffs as follows: 
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(0,0,0)  (0,0,0) and (0,1,1) (0,1,1) . 
(0, 1,1) (0, 0, 0) (0,1, 1) (0, 0, 0) 

One has V = (0,0,0);  (2, 2, 2) and (3, 3, 3) are in E t but players 2 and 3 
have the same payoffs. Let w n be the worst subgame perfect equilibrium payoff 
for them in G n. Then by induction w n/> 1/2 since for every strategy profile one 
of the two can, by deviating, get at least 1/2. (If player 1 plays middle with 
probability less than 1/2, player 2 plays left; otherwise, player 3 chooses right.) 
Hence E', remains far from E. 

A general result concerning pure equilibria (with compact action spaces) is 
the following: 

Theorem 3.3.2 [Benoit and Krishna (1985)]. Assume that for each i there 
exists e(i) and f ( i )  in E 1 (or in some En) with ei(i) > f i ( i ) ,  and that E has a 
non-empty interior. Then E'  n converges to E. 

Proof. One proof can be constructed by mixing the ideas of the proofs in 
Subsections 2.3 and 3.2. Basically the set of stages is split into three phases; 
during the last phase, as in Subsection 2.3, cycles of ( e ( 1 ) , . . ,  e(I)) will be 
played. Hence no deviations will occur in phase 3 and one will be able to 
punish "late" deviations (i.e. in phase 2) of player i, say, by switching to f ( i )  
for the remaining stages. In order to take care of deviations that may occur 
before and to be able to decrease the payoff to V, a family of plans as in 
Subsection 3.2 is used. One first determines the length of the punishment 
phase, then the reward phase; this gives a bound on the duration of phase 2 
and hence on the length of the last phase. Finally, one gets a lower bound on 
the number of stages to approximate the required payoff. [] 

As in Subsection 3.2 more precise results hold for I = 2; see Benoit and 
Krishna (1985) or Krishna (1988). 

An extension of this result to mixed strategies seems possible if public 
correlation is allowed. Otherwise the ideas of Theorem 3.2 may not apply, 
because the set of achievable payoffs in the finite garne is not convex and hence 
future equalizing payoffs cannot be found. 

3.4. The recursive structure 

When studying subgame perfect equilibria (SPE for short) in G~, one can use 
the fact that after any history, the equilibrium conditions are similar to the 
initial ones, in order to get further results on E A while keeping A fixed. 
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The first property arising ffom dynamic programming tools and using only 
the continuity in the payoffs due to the discount factor (and hence true in any 
multistage garne with continuous payoffs) can be written as follows: 

Proposition 3.4.1. A strategy profile is a SPE in G A iff  there is no one-stage 
profitable deviation. 

Proof. The condition is obviously necessary. Assume now that player i has a 
profitable deviation against the given strategy o-, say ~i. Then there exists some 
integer N, such that 0 ~ defined as "play ~.i on histories of length less than N and 
o -i otherwise", is still better than cr '. Consider now the last stage of a history of 
length less than N, where the deviation from ~r i to 0 i increase i's payoff. It is 
then clear that to älways play o -i, except at that stage of this history where z ~ is 
played, is still a profitable deviation; hence the claim. [] 

This criterion is useful to characterize all SPE payoffs. 
We first need some notation. Given a bounded set F of Et, let ~A(F) be the 

set of Nash equilibrium payoffs of all one-shot garnes with payoff Ag + (1 - 
A)f, where f is any mapping from S to F. 

Proposition 3.4.2. E'~ is the largest (in terms o f  set inclusion) bounded fixed 
point  o f  q9 A. 

Proof. Assume first F C q~A(F). Then, at each stage n, the future expected 
payoff given the history, say fn in F, can be supported by an equilibrium 
leading to a present payoff according to g and some future payofff~+l in F. Let 
o- be the strategy defined by the above family of equilibria. It is clear that in G A 
o- yields the sequence fn of payoffs, and hence by construction no one-stage 
deviation is profitable. Then, using the previous proposition, ~A(F)C E~. On 
the other hand, the equilibrium condition for SPE implies E~ C @(Eä) and 
hence the result. [] 

Along the same lines one has Eä = (-)n q)~(D') for any bounded set D '  that 
contains D. These ideas can be extended to a much more general setup; see the 
following sections. 

Note that when working with Nash equilibria the recursive structure is 
available only on the equilibrium path and that when dealing with G~ one loses 
the stationarity. 

Restricting the analysis to pure strategies and using the compactness of the 
equilibrium set (strategies and payoffs) allows for nice representations of all 
pure SPE; see Abreu (1988). Tools similar to the following, introduced by 
Abreu,  were in fact used in the previous section. 
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Given (I + i )  plays [h; h(i),  i ~ I], a simple strategy profile is defined by 
requiring the players to follow h and inductively to switch to h(i) from stage 
n + 1 on, if the last deviation occurred at stage n and was due to player i. 

Lemma 3.4.3. [h(O); h(i),  i E I] induces a SPE in G A iff for all j = 0 , . . ,  I, 
[h( j ) ;  h(i) ,  i C  I] defines an equilibrium in G A. 

Proof.  The condition is obviously necessary and sufficiency comes from 
Proposition 3.4.1. [] 

Define o-(i) as the pure SPE leading to the worst payoff for i in G A and 
denote by h*(i) the corresponding cooperative play. 

Lemma 3.4.4. [h*(j) ;  h*(i),  i @ I] induces a SPE. 

Proof. Since h*( j )  corresponds to a SPE, no deviation [leading, by o-(j), to 
some other SPE] is profitable a fortiori if it is followed by the worst SPE payoff 
for the deviator. Hence the claim by the previous lemma. [] 

We then obtain: 

Theorem 3.4.5 [Abreu (1988)]. Let o- be a pure SPE in G, and h be the 
corresponding play. Then [h; h*(i), i ~ I] is a pure SPE leading to the same 
play. 

These results show that extremely simple strategies are sufficient to represent 
all pure SPE; only (I + 1) plays are relevant and the punishments depend only 
on the deviator, not on his action or on the stage. 

3.5. Final comments 

In a sense it appears that to get robust results that do not depend on the exact 
specification of the length of the garne (assumed finite or with finite mean), the 
approach using the limit garne is more useful. Note nevertheless that the 
counterpart  of an "equilibrium" in G~ is an e-equilibrium in the finite or 
discounted garne (see also Subsection 7.1.1). The same phenomena of "discon- 
tinuity" occur in stochastic games (see the chapter on 'stochastic garnes' in a 
forthcoming volume of this Handbook) and even in the zero-sum case for 
games with incomplete information (Chapter 5 in this Handbook). 
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4. Correlated and communication equilibria 

We now consider the more general situation where the players can observe 
signals. In the ffamework of repeated games (or multimove games) several 
such extensions are possible depending on whether the signals are given once 
or at each stage, and whether their law is controlled by the players or not. 
These mechanisms increase the set of equilibrium payoffs, but under the 
hypothesis of full monitoring and complete information lead to the same 
results. (Compare with Chapter 6 in this Handbook.) 

Recall that given a normal form game F = (X, q~) and a correlation device 
C = (S2, sC, P; .ffi), i E I, consisting of a probability space and sub cr-algebras 
of ~ ,  a correlated equilibrium is an equilibrium of the extended game F c 
having as strategies, say ix i for i, sqLmeasurable mappings from O to X i, and as 
payoff q~(/x) = J q~(/x(w)) P(dw). In words, w is chosen according to P and j i  
is i's information structure. Similarly, in a multimove garne the notion of an 
extensive form correlated equilibrium can be defined with the help of private 
filtrations, say ~~ù for player i -  i.e. there is new information on ~o at each 
stage - and by requiring/xin to be ~/i n ® ~n measurable on a x H n. Finally, for 
cõmmunication equilibria [see Forges (1986)], the probability induced by P on 
s/~+ 1 is s/in ® YC n measurable, i.e. the law of the signal at each stage depends on 
the past history, including the moves of the players. 

Let us consider repeated garnes with a correlation device (resp. extensive 
correlation device; communication device). We first remark that the set of 
feasible payoffs is the same in any extended garne and hence the analog of 
Proposition 1.3 holds. 

For any of these classes we consider the union of the sets of equilibrium 
payoffs when the device varies and we shall denote it by cE=, CE= and KE=, 
respectively. It is clear that the main difference from the previous analysis 
(without information scheme) comes from the threat point, since now any 
player can have his payoff reduced to w i = miny-, maxxi gi(xi, y i), where y - i  
stands for the probabilities on S -~ (correlated moves of the opponent to i) and 
this set is strictly larger than X i for more than two players. Hence the new 
threat point W will usually differ from V and the set to consider will be 
C E = { d ~ D :  V i E I ,  d ~>~w~}. Then one shows easily that cE~=CE= = 
KE= = CE. 

There is a deep relationship between these concepts and repeated games (of 
multimove garnes) in the sense that given a strategy profile o-, Cn = 
(Hù, Y(n, P~) is a correlation device at stage n (where in the framework of 
Sections 1-3, the private o--algebra is N~ for all players). This was first 
explicitly used in garnes with incomplete information when constructing a 
jointly controlled lottery [see Aumann,  Maschler and Stearns (1968)]. For 
extensions of these tools under partial monitoring, see the hext section. 
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5. Partial monitoring 

Only partial results are available when one drops the assumption of full 
monitoring, namely that after each stage all players are told (or can observe) 
the previous moves of their opponents.  In fact the first models in this direction 
are due to Radner  and Rubinstein and also incorporate some randomness in 
the payoffs (moral hazard problems). We shall first cover results along these 
lines. Basically one looks for sufficient conditions to get results similar to the 
Folk Theorem or for Pareto payoffs to be achievable. In a second part we will 
present  recent results of Lehrer,  where the structure of the game is basically as 
in Section 1 except for the signalling function, and one looks for a characteriza- 
tion of E= in terms of the one-stage garne data. 

5.1. Partial monitoring and random payoffs (see also the chapter on 'principal- 
agent models'  in a forthcoming volume of this Handbook)  

5.1.1. One-sided moral hazard 

The basic model arises from principal-agent situations and can be represented 
as follows. Two players play sequentially; the first player (principal) chooses a 
reward function and then with that knowledge the second player (agent) 
chooses a move. The outcome is random but becomes common knowledge and 
depends only on the choice of player 2, which player 1 does not know. 
Formally,  let 22 be the set of outcomes. The actions of player 1 are measurable 
mappings ffom J2 to some set S. Denote  by T the actions set of player 2 and by 
Qt the corresponding probabilities on J2. The payoff functions are real continu- 
ous bounded measurable mappings, f on J2 x S for player 1 and g on 
22 x S x T for player 2. Assume, moreover,  some revelation condition (RC),  
namely that there exists some positive constant K such that, for all positive e, if 
Es,,g>~ Es,cg + e, then If to d Q t -  S o~ dQr  ] ~> Ke. In words, this means that 
profitable deviations of player 2 generate a different distribution of outcomes. 

It is easy to see that generically one-shot Nash equilibria are not efficient in 
such games. The interest of repetition is then made clear by the following 
result: 

Theorem 5.1.1 [Radner (1981)]. Assume that a feasible payoff d strictly 
dominates a one-shot Nash equilibrium payoff e. Then d E E~. 

Proof. The idea of the proof is to require both players to use the strategy 
combination leading to d, as in the Folk Theorem. A deviation from player 1 is 
observable and one then requires that both players switch to the equilibrium 
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payoff e. The main difficulty arises from the fact that the deviations of player 2 
are typically non-observable (even if he is using a pure strategy the Qt may 
have non-disjoint support). Both players have to use some statistical test, 
based for example on the law of large numbers, to check with probability one 
whether player 2 was playing a profitable deviation, using RC. In such a case 
they again both switch to e. [] 

By requiring the above punishment to last for a finite number of stages 
(adapted to the precision of the test), one may even obtain a form of "subgame 
perfection" (note that there are no subgames, but one may ask for an 
equilibrium condition given any common knowledge history); see again Rad- 
ner (1981). 

Similar results with alternative economic content have been obtained by 
Rubinstein (1979a, 1979b) and Rubinstein and Yaari (1983). 

Going back to the previous model, it can also be shown [Radner (1985)] that 
the modified strategies described above lead to an equilibrium in G A if the 
discount factor is small enough, and that they approach the initial payoff d. A 
similar remark about perfection applies and hence formally the following 
holds: 

Theorem 5.1.2. Let d be feasible, e E El ,  and assume d » e. Then for  all e > 0 
there exists A* such that for  all A ~< A*, d is e-close to E'» 

Other classes of strategies with related properties have been introduced and 
studied by Radner (1986c). 

5.1.2. Two sided moral hazard 

A model where both players have private information on the history has been 
introduced and studied by Radner (1986a) under the name partnership garne. 
Here the players are simultaneously choosing moves in some sets S and T. The 
outcome is again random with some law Qst. At each stage the information of 
each player consists of his move and of the outcome; moreover, his own stage 
payoff depends only on this information and the revelation condition is still 
required. Then the analogy of the previous Theorem 5.1.1 holds [Radner 
(1986a)]. Here also the construction of the strategies is based on some 
statistical test and uses review and punishment phases. 

Nevertheless, if one studies G A the previous arguments are no longer valid. 
More precisely, since none of the moves is observable it may be worthwhile for 
one player to deviate from the prescribed strategy when the sequence of 
records of outcomes starts to differ significantly from the mean and to try to 
"correct" it in order to avoid the punishment phase. (Note that when the 
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payoff is not discounted, by the strong law of large numbers, there is no gain in 
doing so.) 

In fact, an example of a partnership garne due to Radner, Myerson and 
Maskin (1986) shows that E h may be uniformly (in A) bounded away from the 
Pareto boundary. Schematically, the payoffs depend upon an outcome that 
may be good or bad and the game is symmetrical. If, at equilibrium, the future 
payoff is independent of the outcome one obtains only one-shot equilibrium 
payoffs. Thus, this future payoff has to be discriminating (higher for a good 
outcome than for a bad) and hence cannot be Pareto optimal in expectation. 
(See also the example in the next section.) 

5.1.3. Public signals and recursive structure 

We now turn to results that are not based on the use of statistical tests but 
rather on the recursive structure. 

A first model due to Abreu, Pearce and Stachetti (1986, 1990) considers an 
oligopoly with compact pure strategy sets where the I firms are only told, after 
each stage, the price, which is a random function of the moves with a fixed 
support. One can see that in this case Nash and "subgame perfect" equilibria 
coincide and, moreover, the recursive properties still hold. This allows us to 
give a nice description of the set of equilibrium payoffs by using its extreme 
points. 

Finally, in a recent work, Fudenberg, Levine and Maskin (1989) succeed in 
getting a theorem analogous to Theorem 3.2 in the following framework. 
Consider a garne where after each stage each player gets some private 
information on a random signal depending on the moves of all players at that 
stage. We call public those strategies that depend only on events known to all 
players. Note first that an equilibrium in the discounted garne restricted to 
public strategies is an equilibrium in the original game (given a best reply to 
public strategies, taking its conditional expectation on public events, is still a 
best reply) and that one can define "subgame perfect public equilibria" by 
introducing subgames related to public events. The tools of Subsection 3.4 are 
then applicable, and sufficient conditions are given, basically on the independ- 
ence of the conditional laws of the signals as function of the moves of each 
player - the strategy of the others being fixed - to ensure that the correspond- 
ing set of payoffs converges to E as A goes to 0. More precisely, it is shown that 
a smooth convex set F of payoffs included in E and at a small Hausdorff 
distance from it satisfies F C ~A(F) for A small enough. The main difficulty is to 
check the inclusion on extreme points. In fact, the above conditions allow us to 
compute explicitly the future payoffs by solving linear equations. 

Note that here a dimension condition is needed, even in the two-player case. 
Let  us consider the following garne, due to Fudenberg and Maskin (1986b). 
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The payoff matrix is 

(1,1) (0,0) ] 
(0,0) ( - 1 , - 1 ) / '  

the moves of player 2 are announced and a public signal with values (a, 13) has 
the following distribution: 

(3 /4 ,1 /4)  ( 1 / 2 , 1 / 2 ) )  
(1 /2 ,1 /2)  (1 /4 ,3 /4)  " 

Then (1, 1) is the only point in E~. In fact, denote by w the worst SPE, by s 
and t the corresponding random moves of both players at stage 1, and by 
wL~(>~w ) the expected payoff after Left and a, and so on. We note first that if 
s = 1 one has w ~> A + (1 - A)(3/4wL~ + 1/4wr¢),  and hence w/> 1. Otherwise 
one has: 

w = t ( ( 1 -  A)(1/2wL~ + 1/2wL¢)) 

+ (1-- t )(--A+ (1-- A)(1/4wn~ +3/4wRy))  

i> t(A + (1 - A)(3/4wL~ + 1/4wL~)) 

+ (1-- t)((1-- A)(1/2wR~ + 1/2wR¢)), 

so that t(1 - A)WL¢ + (1 -- t)(1 -- A)WR¢ /> 4A + (1 -- A)W. Substituting this into 
the first equality yields w 1> t + 1. 

Note that 0 is a subgame perfect public equilibrium payoff in G= (even if 2's 
moves are not announced) by asking the players to use their dominated move 
at each stage where the empirical past frequency of a is greater than 1/2. 
[Compare with Sorin (1986b).] 

On the other hand, 0 can be obtained as a perfect equilibrium in G, if l 's  
moves are observable by asking him to follow a history consisting of a sequence 
of 1 and - 1  inducing a payoff increasing to 0 and playing again the same move 
in the case of a deviation from - 1  to 0. In the previous framework player 1 
could pretend to punish even if he did not and hence the punishment was not 
credible and player 2 would deviate. 

It is important to remark that in these games the signals can be used as a 
correlation device or an extensive correlation device (recall Section 4 and see 
also Subsection 5.2). In particular, the set of equilibria can be larger than the 
set of public equilibria and can contain payoffs that are not i.r. (but in CE), if 
for example a subgroup of players get some common signal, unknown to the 
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others. (But if there are two players and one is more informed than the other 
one can always assume public strategies.) 

Finally, similar results are used in the framework of games with long-run and 
short-run players [Fudenberg and Levine (1989b)]. 

5.2. Signalling funct ions  

The results of this section are due mainly to Lehrer. We consider the infinitely 
repeated game G= of Section 1, but after each stage n, each player i is only told 

i i qn = Q (sn), sn being the I-action at that stage and Qi being i's signalling 
(deterministic) function, defined on S with values in some set Q. Each player's 
strategy is then required to be measurable with respect to his private informa- 
tion. Hence a pure strategy o-in is a mapping from sequences (qil, i • " , q ù - l )  to 
S i and perfect recall is assumed. 

Let us first consider the case of two players and a general signalling function 
(we shall assume in this section non-trivial information, namely that each 
player may, by playing some move, get some information about his opponent 's 
move, so that the players can communicate through their ac t ions-  the other 
case is rauch simpler to analyze). 

It is easy to see that, since the signals are not common knowledge, 
equilibrium strategies do not induce, after finitely many stages, an equilibrium 
in the remaining garne but rather a correlated equilibrium (see Section 4). 

Orte is thus led to consider extensive form correlated equilibria and in fact 
these are much easier to characterize. 

We first define two relations on actions by 

S i ~ ti~::~ Q - i ( t i ,  s - i )  = Q i(si, S - i )  for a l i s  - i  

(in words, in a one-shot garne player - i  has no way to distinguish whether 
player i is playing s i or ti); and 

s i > ti¢:>s i ~  t i and Qi(ti, s -i)  # Qi(ti, t -i)  implies 

Qi(si, s - i)  # Qi(si, t -i)  for all s i, t - i  

(player i gets more information on - i ' s  move by playing s i t h a n / ) .  
The crucial point is that player i can mimic a pure strategy, say ~.i, by any 

other o -i with oJ(h) > 7i(h), for all h, without being detected. [Inductively, at 
each stage n he uses an action sin > ~-i(h), h being the history that would have 
occurred had he used {t~}, m < n, up to now.] 
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Let P be the set of probabilities on S (correlated moves). The set of 
equilibrium payoffs will be characterized through the following sets (note that, 
as in the Folk Theorem, they depend only on the one-shot game): 

A i = ( p  E P: E p(s  i, s - i )g i ( s  i, s - i )  >~ E p(s  i, s - i )g i ( t  i, s - i )  for all s i 
s-i s-i 

and all t i with t i > s i }. 

B i = A i A X = {x E X:  gi(si, x - i )  >t gi(ti, x - i )  for all s i, t i with xi(s i) > 0 

and t i > S i}  . 

Write IR  for the set of i.r. payoffs and E~ (resp. cE~, CE~, KE~)  for the set 
of Nash (resp. correlated, extensive form correlated, communication) equilib- 
rium payoffs in the sense of upper, 5f or uniform, lE~ and lCE~ will denote 
lower equilibrium payoffs [recall paragraph (iii) in Section 1]. 

Theorem 5.2.1 [Lehrer (1992a)]. (i) cE~ = CE~ = KE= = g((-')i A i )  N IR.  
(ii) ICE~ = (-~i g(A~) fq IR.  

Proof. The proof of this result (and of the following) is quite involved and 
introduces new and promising ideas. Only a few hints will be presented here. 

For (ii), the inclusion from left to right is due to the fact that given 
correlated strategies, each player can modify his behavior in a non-revealing 
way to force the correlated moves at each stage to belong to A i. 

Similarly, for the corresponding inclusion in (i) one obtains by convexity that 
if a payoff does not belong to the right-hand set, one player can profitably 
deviate on a set of stages with positive density. To prove the opposite inclusion 
in (i) consider p in Oi  A/- We define a probability on histories by a product 
Q Pn; each player is told his own sequence of moves and is requested to follow 
i t .pù  is a perturbation of p, converging to p as n---~ 0% such that each / -move  
has a positive probability and independently each recommended move to one 
player is announced with a positive probability to his opponent. It follows that 
a profitable deviation, say from the recommended s i to {, will eventually be 
detected if { 7  z s i. To control the other deviations ( t / -  s i but t i J  si), note first 
that, since the players can communicate through their moves, one can define a 
code, i.e. a mapping from histories to messages. The correlated device can 
then be used to generate, at infinitely many fixed stages, say nk, random times 
m k in (n~_a, nÆ): at the stages following n k the players use a finite code to 
report the signal they got at time m~. In this case also a deviation, if used with 
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a positive density, will eventually occur at some stage m k where moreover  the 
opponent  is playing a revealing move and hence will be detected. Obviously 
f rom then on the deviator is punished to his minimax. To obtain the same 
result for correlated equilibria, let the players use their moves as signals to 
generate themselves the random times m k [see Sorin (1990)]. 

Finally, the last inclusion in (ii) follows from the next result. [] 

Theorem 5.2.2 ]Lehrer (1989)]. lE~ = Ni Co g(B i) N IR(=ICE~). 

Proof. It is easy to see that Co g(B i) = g(A ~) and hence a first inclusion by 
part (il) of the previous theorem. To obtain the other  direction let us 
approximate the reference payoff by playing on larger and larger blocks Mk, 
cycles consisting of extreme points in B ~ [if k ~ i (mod 2)]. On each block, 
alternatively, one of the players is then playing a sequence of pure moves; thus 
a procedure  like in the previous proof can be used. [] 

A simpler framework in which the results can be extended to more than two 
players is the following: each action set S i is equipped with a partition S ~ and 
each player is informed only about the elements of the partitions to which the 
other  players' actions belong. Note thät in this case the signal received by a 
player is independent  of his identity and of his own move. The above sets B i 
can now be written as 

C i = {x E X: gi(x) >~ g(x -i, yi) for all yZ with y~ = x z } 

where x i is the probability induced by x ~ on S i . 

Theorem 5.2.3 [Lehrer (1990)]. (i) E= = Co g(Ni  Ci) N IR. 
Ni  Co g(C i) N IR 

(ii) lE~= 

Proof. It already follows in this case that the two sets may differ. On the 
other  hand, they increase as the partitions get finer (the deviations are easier to 
detect)  leading to the Folk Theorem for discrete par t i t ions-  full monitoring. 

For  (ii), given a strategy profile o-, note that at each stage n, conditional to 
h~ = ( X l , . . . ,  x~_l) , the choices of the players are independent and hence each 
player i can force the payoff to be in g(C') ;  hence the inclusion of IE~ in the 
right-hand set. On the other hand, as in Theorem 5.2.2, by playing alternately 
in large blocks to reach extreme points in C 1, then C 2 , . . ,  one can construct 
the required equilibrium. 

As for E~, by convexity if a payoff does not belong to the right-hand set, 
there is for some i a set of stages with positive density where, with positive 
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probability, the expected move profiles, conditioned on hn, are not in C( Since 
h n is common knowledge, player i can profitably deviate. 

To obtain an equilibrium one constructs a sequence of increasing blocks on 
each of which the players are requested to play alternately the right strategies 
in Nj  C i to approach the convex hull of the payoffs. These strategies may 
induce random signals so that the players use some statistical test to punish 
during the following block if some deviation appears. [] 

For the extension to correlated equilibria, see Naudé (1990). 
Finally a complete characterization is available when the signals include the 

payoffs: 

Theorem 5.2.4 [Lehrer (1992b)]. I f  gi(s) ¢ gi(t) implies Qi(s)  5 ~ Qi(t) for all 
i, s, t, then E~ = IE= = Co g(Ni  ci)  N IR. 

Proof. To obtain this result we first prove that the signalling structure implies 
N i  Co g(B i) N IR = Co g(Ni  B i) N IR. Then one uses the structure of the 
extreme points of this set to construct equilibrium strategies. Basically, one 
player is required to play a pure strategy and can be monitored as in the proof 
of Theorem 5.2.10); the other player's behavior is controlled through some 
statistical test. [] 

While it is clear that the above ideas will be useful in getting a general 
formula for E~, this one is still not available. For results in this direction, see 
Lehrer (1991, 1992b). 

When dealing with more than two players new difficulties arise since a 
deviation, even when detected by one player, has first to be attributed to the 
actual deviator and then this fact has to become common knowledge among 
the non-deviators to induce a punishment. 

For non-atomic garnes results have been obtained by Kaneko (1982), Dubey 
and Kaneko (1984) and Masso and Rosenthal (1989). 

6. Approachability and strong equilibria 

In this section we review the basic works that deal with other equilibrium 
concepts. 

6.1. Blackwell' s theorem 

The following results, due to Blackwell (1956), are of fundamental importance 
in many fields of game theory, including repeated games and games with 
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incomplete information. [A simple version will be presented here; for exten- 
sions see Mertens, Sorin and Zamir (1992).] 

Consider a two-person garne G 1 with finite action sets S and T and a random 
payoff function g on S x T with Values in Nk, having a finite second-order 
moment (write f for its expectation). We are looking for an extension of the 
minimax theorem to this framework in Ga (assuming full monitoring) and 
hence for conditions for a player to be able to approach a (closed) set C in 
E h -  namely to have a strategy such that the average payoff will remain, in 
expectation and with probability one, close to C, after a finite number of 
stages. C is excludable if the complement of some neighborhood of it is 
approachable by the opponent. 

To state the result we introduce, for each mixed action x of player 1, 
P(x) = Co{ f (x ,  t): t E  T} and similarly Q ( y ) =  Co{f(s ,  y): s E S} for each 
mixed action y of player 2. 

Theorem 6.1.1 Assume that, for each point d ~ C there exists x such that if  c is 
a closest point to d in C, the hyperplane orthogonal to [cd] through c separates d 
from P(x). Then C is approachable by player 1. 

An  optimal strategy is to use at each stage n a mixed action having the above 
property, with d = g,n-1. 

Proof. This is proved by showing by induction that, if d n denotes the distance 
from gn, the average payoff at stage n, to C, then E(d 2) is bounded by some 
K/n.  Furthermore, one constructs a positive supermartingale converging to 
zero, which majorizes d a. [] 

If the set C is convex we get a minimax theorem, due to the following: 

Theorem 6.1.2. A convex set C is either approachable or excludable; in the 
second case there exists y with Q(y)  N C = O. 

Proof.  Note that the following sketch of the proof shows that the result is 
actually stronger: if Q ( y ) o  C =  0 for some y, C is clearly excludable (by 
playing y i.i.d.). Otherwise, by looking at the game with real payoff ( d -  
c, f ) ,  the minimax theorem implies that the condition for approachability in 
the previous theorem holds. [] 

Blackwell also showed that Theorem 6.1.2 is true for any set in N, but that 
there exist sets in N2 that are neither approachable nor excludable, leading to 
the problem of "weak approachability", recently solved by Vieille (1989) 
which showed that every set is asymptotically approachable or excludable by a 
family of strategies that depend on the length of the garne. This is related to 
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the definitions of lim v n and v~ in zero-sum games (see Chapter 5 and the 
chapter on "stochastic games" in a forthcoming volume of this Handbook). 

6.2. Strong equilibria 

As seen previously, the Folk Theorem relates non-cooperative behavior (Nash 
equilibria) in Ga to cooperative concepts (feasible and i.r. payoffs) in the 
one-shot garne. One may try to obtain a smaller cooperative set in G1, such as 
the Core, and to investigate what its counterpart in G= would be. This problem 
has been proposed and solved in Aumann (1959) using his notion of strong 
equilibrium, i.e., a strategy profile such that no coalition can profitably deviate. 

Theorem 6.2.1. The strong equilibrium payoffs in G= coincide with the ~-Core 
of  G 1 . 

Proof. First, if d is a payoff in the fl-Core, there exists some (correlated) 
action achieving it that the players are requested to play in G=. Now for each 
subset /kJ of potential deviators, there exists a correlated action o -J of their 
opponent that prevents them from obtaining more than d t\J, and this will be 
used as a punishment in the case of deviation. 

On the other hand, if d does not belong to the fl-Core there exists a 
coalition J that possesses, given each history and each corresponding correlated 
move I \J  tuple of its complement, a reply giving a better payoff to its 
members. [] 

Note the similarity with the Folk Theorem, with the/~-characteristic function 
here playing the role of the minimax (as opposed to the a-one and the 
maximin). 

If one works with garnes with perfect information, one has the counterpart of 
the classical result regarding the sufficiency of pure strategies: 

Theorem 6.2.2 [Aumann (1961)]. I f  G 1 has perfect information the strong 
equilibria of G~ can be obtained with pure strategies. 

Proof. The result, based on the convexity of the fl-characteristic function and 
on Zermelo's theorem, emphasizes again the relationship between repetition 
and convexity. [] 

Finally, Mertens (1980) uses Blackwell's theorem to obtain the convexity 
and superadditivity of the fl-characteristic function of G~ by proving that it 
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coincides with the «-characteristic function (and also the /3-characteristic 
function) of G~. 

7. Bounded rationality and repetition 

As we have already pointed out, repetition alone, when finite, may not be 
enough to give rise to cooperation (i.e., Nash equilibria and a fortiori subgame 
perfect equilibria of the repeated game may not achieve the Pareto boundary). 
On the other hand, empirical data as well as experiments have shown that 
some cooperation may occur in this context [for a comprehensive analysis, see 
Axelrod (1984)]. 

We will review hefe some models that are consistent with this phenomenon. 
Most of the discussion below will focus on the Prisoner's Dilemma but can be 
easily extended to any finite garne. 

7.1. Approximate rationality 

7.1.1. e-equilibria 

The intuitive idea behind this concept is that deviations that induce a small gain 
can be ignored. More precisely, o- will be an e-equilibrium in the repeated 
game if, given any history (or any history consistent with o-), no deviation will 
be more than e-profitable in the remaining game [see Radner (1980, 1986b)]. 
Consider the Prisoner's Dilemma (cf. Subsection 2.3): 

Theorem 7.1. 'de > 0, "d6 > 0, 3 N  such that for all n >i N there exists an 
e-equilibrium in G n inducing a payoff within 6 of the Pareto point (3, 3). 

Proofl Define o- as playing cooperatively until the last N O stages (with 
N O >/1/e),  where both players defect. Moreover, each player defects forever as 
soon as the other does so once. It is easy to see that any defection will induce 
an (average) gain less than e, and hence the result for N large enough. [] 

The above view implicitly contains some approximate rationality in the 
behavior of the players (they neglect small mistakes). 

7.1.2. Lack of common knowledge 

This approach deals with games where there is lack of common knowledge on 
some specific data (strategy or payoff), but common knowledge of this 
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uncertainty. Then even if all players know the true data, the outcome may 
differ from the usual framework by a contamination e f f e c t -  each player 
considers the information that the others may have. 

The following analysis of repeated garnes is due to Neyman (1989). Consider 
again the finitely repeated Prisoner's Dilemma and assume that the length of 
the game is a random variable whose law P is common knowledge among the 
players. (We consider here a closed model, including common knowledge of 
rationality.) If P is the point mass at n we obtain G n and " E  n = {1, 1}" is 
common knowledge. On the other hand, for any A there exists P,  such that the 
corresponding garne is G A if the players get no information on the actual length 
of the game. Consider now non-symmetric situations and hence a general 
information scheme, i.e. a correlation device with a mapping o ) ~  n(w) corre- 
sponding to the length of the garne at w. 

Recall that an event A is of mutual knowledge of order k [say mk(k)] at w if 
KiO . . . . .  Ki~(w) C A, for all sequences i 0 , . . .  , i~, where K i is the knowledge 
operator  of player i (for simplicity, assume g2 is countable and then Ki(B)= 
71{C: B C C, C is Mi-measurable}; hence K ~ is independent of P).  Thus mk(O) 
is public knowledge and mk(~) common knowledge. 

It is easy to see that at any o) where "n(o))" is mk(k), (1, 1) will be played 
during the last k + 1 stages [and this fact is even mk(0)],  but Neyman has 
constructed an example where even if n(w) = n is mk(k) at o9, cooperation can 
occur during n - k - 1 stages, so that even with large k, the payoff converges 
to Pareto as n ~ oc. 

The inductive hierarchy of K ~ at w will eventually reach games with length 
larger than n(w), where the strategy of the opponent  justifies the initial 
sequence of cooperative moves. 

Thus, replacing a closed model with common knowledge by a local one with 
large mutual knowledge leads to a much richer and very promising framework. 

7.2. Restricted strategies 

Another  approach, initiated by Aumann,  Kurz and Cave [see Aumann (1981)], 
requests the players to use subclasses of "simple" strategies, as in the next two 
subsections. 

7.2.1. Finite automata 

In this model the players are required to use strategies that can be im- 
plemented by finite automata. The formal description is as follows: A finite 
automaton (say for player i) is defined by a finite set of states K / and two 
mappings, a from K' x S -i to K / and/3 from K / to S i. « models the way the 
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internal memory or state is updated as a function of the old memory and of the 
previous moves of the opponents. /3 defines the move of the player as a 
function of his internal state. Note that given the state and/3, the action of i is 
known, so it is not necessary to define a as a function of S z. 

To represent the play induced by an automaton, we need in addition to 
specify the initial state ki0 . Then the actions are constructed inductively by 

i i - i  i ~(kl), a ( k o ) ,  o~(/3(k o, sa )) = . . . .  
Games where both players are using automata have been introduced by 

Neyman (1985) and Rubinstein (1986). 
Define the size of an automaton as the cardinality of its set of states and 

denote by G(K) the garne where each player i is using as pure strategies 
automata of size less than Ki. 

Consider again the n-stage Prisoner's Dilemma. It is straightforward to 
check that given Tit for Tat (start with the the cooperative move and then at 
each following stage use the move used by the opponent at the previous stage) 
for both players, the only profitable deviation is to defect at the last stage. Now 
if K z ~]Vl, none of the players can "count"  until the last stage, so if the 
opponent plays stationary, any move actually played at the last stage has to be 
played before then. It follows that for 2 ~< K ~ < n, Tit for Tat is an equilibrium 
in G, .  Actually a rauch stronger result is available: 

Theorem 7.2.1 [Neyman (1985)]. For each integer m,  3 N  such that n >i N and 
1/m Ki nm n <~ <~ implies the existence o f  a Nash equil ibrium in G , (K  1, /(2) with 

p a y o f f  greater than 3 - 1 / m  fo r  each player.  

Proof. Especially in large garnes, even if the memory of the players is much 
larger than the length of the game (namely polynomial), Pareto optimality is 
almost achievable. 

The idea of the proof relies on the observation that the cardinality of the set 
of histories is an exponential function of the length of the game. It is now 
possible to "fill" all the memory states by requiring both players to remember 
"small"  histories, i.e. by answering in a prespecified way after such histories 
(otherwise the opponent defects for ever) and then by playing cooperatively 
during the remaining stages. Note that no internal state will be available to 
count the stages and that cooperative play arises during most of the game. [] 

It is easy to see that in this framework an analog of Theorem 2.3 is available. 
Similar results using Turing machines have been obtained by Megiddo and 

Widgerson (1986); see also Zemel (1989). 
The model introduced in Rubinstein (1986) is different and we shall discuss 

the related version of Abreu and Rubinstein (1988). Both players are required 
to use finite automata (and no mixture is allowed) but there is no fixed bound 
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on the memory. The main change is in the preference function, which is strictly 
increasing in the payoff and strictly decreasing in the size [in Rubinstein (1986) 
some lexicographic order is used]. A complete structure of the corresponding 
set of equilibria is then obtained with the following striking aspect: K l =  K 2" 
moreover, during the cycle induced by the automata each state is used only 
once; and finally both players change their moves simultaneously. In particular, 
this implies that in 2 x 2 two-person garnes the equilibrium payoffs have to lie 
on the "diagonals". 

Considering now two-person, zero-sum garnes, an interesting question is to 
determine the worth of having a memory much larger than the memory of the 
other player: note that the payoff in G=(K ~, K 2) is weil defined, hence also its 
value V(K', K2). Denote by V the value of the original G 1 and by 17 the 
minimax in pure strategies. This problem has been solved by Ben Porath 
(1986): 

Theorem 7.2.2. For any polynomial P, limK2_,= V(P(K2), K 2) = V. There exists 
some exponential function gt such that limK2_~~ V(g*(K2), K z) = 17. 

Proof. The second part is not difficult to prove, player 1 can identify player 
2's automaton within gr(K2) stages. 

For the first part, player 2 uses an optimal strategy in the one-shot game to 
generate K 2 random moves and then follows the corresponding distribution to 
choose an automaton generating these moves. The key point is, using large 
deviation tools, to show that the probability, with this procedure, of producing 
a sequence of K 2 pairs of moves biased by more than e is some exponential 
function, ~, of - K  2. 82, Since player 1 can have at most K 1 different behaviors, 
the average payoff will be greater than V + e with a probability less than 
P(K~)~,(--K ~. e2). [] 

7.2.2. Strategies with bounded recall 
Another  way to approach bounded rationality is to assume that players have 
bounded recall. Two classes of strategies can be introduced according to the 
following definitions: o -i is of I- (resp. II)-bounded recall (BR) of size k if, for 
all histories h, o-i(h) depends only upon the last k components of h (resp. the 
last k moves of player - i ) .  

It is easy to see that Tit for Tat can be implemented by a II-bounded recall 
strategy with k = 1; to punish forever after a deviation can be reached by a 
I-BR hut not by a II-BR, and to punish forever after two deviations cannot be 
achieved with BR strategies (if the first deviation occurred a long time ago, the 
player will not remember it). Note nevertheless that with II-BR strategies the 
players can maintain the average frequency of deviations as low as required. 

Using I-BR strategies Lehrer (1988) proves a result similar to Theorem 7.2.2 
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by using tools from information theory. (Note that in both cases player 1 does 
not need to know the moves of player 2.) 

This area is currently very active and new results include the study of the 
complexity of a strategy and its relation with the size of an equivalent 
automaton [Kalai and Stanford (1988)], an analog of Theorems 3.1 and 3.2 in 
pure strategies for finite automata [Ben Porath and Peleg (1987)], and the 
works of Ben Porath, Gilboa, Kalai, Megiddo, Samet, Stearns and others on 
complexity. For a recent survey, see Kalai (1990). 

To end these two subsections one should also mention the work of Smale 
(1980) on the Prisonner's Dilemma, in which the players are restricted to 
strategies where the actions at each stage depend continuously on some 
vector-valued parameter. The analysis is then performed in relation to dynami- 
cal systems. 

7.3. Pareto optimality and perturbed games 

The previous results, as well as sections 2 and 3, have shown that under quite 
general conditions a kind of Folk Theorem emerges; rationality and repetition 
enables cooperation. Note nevertheless that the previous procedures lead to a 
huge set of equilibrium payoffs (including all one-shot Nash equilibrium 
payoffs and even the threat point V). A natural and serious question was then 
to äsk under which conditions would long-term interaction and utility maximiz- 
ing behavior lead to cooperation; in other words, whether we would necessarily 
achieve Pareto points as equilibrium payoffs. 

It is clear from the previous results that repetition is necessary and that 
complete rationality or bounded rationality alone would not be sufficient. In 
fact, one more ingredient- perturbation or uncertainty- is needed. Note that 
a similar approach was initiated by Selten (1975) in his work on perfect 
equilibria. 

A first result in this direction was obtained in a very stimulating paper by 
Kreps, Milgrom, Roberts and Wilson (1982). Consider the finitely repeated 
Prisoner's Dilemma and assume that with some arbitrarily small but positive 
probability one of the players is a kind of automaton: he always uses Tit for 
Tat räther than maximizing. Then for sufficiently long games all the sequential 
equilibrium payoffs will be close to the cooperative outcome. The proof relies 
in particular on the following two facts: first, if the equilibrium strategies were 
non-cooperative, the perturbed player may play Tit for Tat thus pretending to 
be the automaton and thereby convincing bis opponent that this is in fact the 
case; second, Tit for Tat induces payoffs that are close to the diagonal. 

These suggestive and important ideas will be needed when trying to extend 
this result by dropping some of the conditions. The above result in fact 



102 S. Sorin 

depends crucially on Tit for Tat (inducing itself almost the cooperative 
outcome as the best reply) being the only perturbation. More precisely a result 
of Fudenberg and Maskin (1986a) indicates that by choosing the perturbation 
in an adequate way the set of sequential equilibrium payoffs of a sufficiently 
long but finitely repeated game would approach any prespecified payoff. Now 
if all perturbations are allowed, each of the players may pretend to be a 
different automaton, advantageous from his own point of view. 

One is thus lead to consider two-person garnes with common interest: one 
payoff strongly Pareto dominates all the others. Assume then that each player's 
strategy is e-perturbed by some probability distribution having as support the 
set of II-BR strategies of some size k. Then the associated repeated garne 
possesses equilibria in pure strategies and all the corresponding payoffs are 
close to the cooperative (Pareto) outcome P(G). Formally, if pEr(resp, pE[) 
denotes the set of pure equilibria payoffs in the n-stage (resp. A-discounted) 
perturbed garne, one has: 

Theorem 7.3 [Aumann and Sorin (1989)].  limo__, o limn~ = pE~ = lim~_~ o lim~_~ o 
pE[ : P(G). 

Proof. To prove the existence of a pure equilibrium, one considers Pareto 
points in the payoff space generated by pure strategies in the perturbed garne. 
One then shows that these are sustained by equilibrium strategies. 

Now assuming the equilibrium to be not optimal, one player could deviate 
and mimic his best BR perturbation. Note that the corresponding history has 
positive probability under the initial strategies. Moreover, for n large enough 
(or A small enough) a best reply on histories inconsistent with the "main" 
strategy is to identify the BR strategy used and then to maximize agäinst it. For 
this to hold it is crucial to use II-BR perturbations: the moves used during this 
identification phase will eventually be forgiven and hence no punishment 
forever can arise. Finally, the game being with common interest a high payoff 
for one player implies the same for the other so that the above procedure 
would lead to ä payoff close to t h e  cooperative outcome; hence the 
contradiction. [] 

The cruciat properties of the set of perturbations used in the proof are: (1) 
identifiability (each player has a strategy such that, after finitely many stages he 
can predict the behavior of his opponent, if this opponent is in the perturbed 
mode); (2) the asymptotic payoff corresponding to a best reply to a perturba- 
tion is history independent. [For example, irreducible automata could be used; 
see Gilboa and Samet (1989).] 

The extension to more than two players requires new tools since, even with 
bounded recall, two players can build everlasting events (e.g. punish during 
two stages if the other did so at the previous stage). 



Ch. 4: Repeated Games with Complete Information 103 

To avoid non-Pareto mixed equilibria one has to ask for some kind of 
perfection (or equivalently more perturbation) to avoid events of common 
knowledge of rationality (i.e. histories in which the probability of facing an 
opponent who is in the perturbed mode is 0 and common knowledge). 

More recently, similar results, when a long-run player can build a reputation 
leading to Pareto payoffs against a sequence of short-run opponents, have been 
obtained by Fudenberg and Levine (1989a). 

8. Concluding remarks 

Before ending let us mention a connected field, multimove games, where 
similar features (especially the recursive structure) can be observed (and in fact 
were sometimes analyzed previously in specific examples). In this class of 
games the strategy sets have the same structure as in repeated garnes but the 
payoff is defined only on the set of plays and does not necessarily come from a 
stage payoff. A nice sampling can be founded in Contributions to the Theory of  
Games, Vol. III [Dresher, Tucker and Wolle (1957)], and deals mainly with 
two-person garnes. 

A game with two-move information lag was extensively studied by Dubins 
(1957), Karlin (1957), Ferguson (1967) and others, introducing new ideas and 
tools. The case with three-move information lag is still open. A general 
formulation and basic properties of games with information lag can be found in 
Scarf and Shapley (1957). A deep analysis of games of survival (or ruin) in the 
general case can be found in Milnor and Shapley (1957), using some related 
works of Everett (1957) on "recursive games". [For some results in the 
non-zero-sum case and ideas of the difficulties there, see Rosenthal and 
Rubinstein (1984).] 

The properties of multimove garnes with perfect information are studied in 
Chapter 3 of this Handbook. The extension of those to general games seems 
very difficult [see, for example the very elegant proof of Blackwell (1969) for 
~ô games] and many problems are still open. 

To conclude, we make two observations. 
The first is that it is quite difficult to draw a well-defined frontier for the field 

of repeated games. Games with random payoffs are related to stochastic 
garnes; games with partial monitoring, as well as perturbed garnes, are related 
to garnes with incomplete information; sequential bargaining problems and 
garnes with multiple opponents are very close . . . . .  To get a full overview of 
the field the reader should also consult Chapters 5, 6 and 7, and the chapter on 
'stochastic garnes' in a forthcoming volume of this Handbook. 

The second comment is that not only has the domain been very active in the 
last twenty years but that it is still extremely attractive. The numerous recent 
ideas and results allow us to unify the field and a global approach seems 
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conceivable [see the nice survey of Mertens (1987)]. Moreover, many concepts 
that are now of fundamental importance in other areas originate from repeated 
games problems (like selection of equilibria, plans, signals and threats, ap- 
proachability, reputation, bounded complexity, and so on). In particular, the 
applications to economics (see, for example, Chapters 7, 8, 9, 10 and 11 in this 
Handbook) as weil as to biology (see the chapter on 'biological garnes' in a 
forthcoming volume of this Handbook) have been very successful. 
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1. Introduction 

This chapter and the next apply the framework of repeated garnes, developed 
in the previous chapter, to garnes of incomplete information. The aim of this 
combination is to analyze the strategic aspects of information: When and at 
what rate to reveal information? When and how should information be 
concealed? What resources should be aUocated to acquiring information? 
Repeated garnes provide the natural paradigm for dealing with these dynamic 
aspects of information. The repetitions of the garne serve as a signaling 
mechanism which is the channel through which information is transmitted from 
one period to another. 

It may be appropriate at this point to clarify the relation of repeated 
incomplete information garnes to stochastic games, treated in a forthcoming 
volume of this Handbook. Both are dynamic models in which payoffs at each 
stage are determined by the state of nature (and the player's moves). However, 
in stochastic games the state of nature changes in time but is common 
knowledge to all players, while in repeated garnes of  incomplete information the 
state of  nature is fixed but not known to all players. What changes in time is 
each player's knowledge about the other players' past actions, which affects bis 
beliefs about the (fixed) state of nature. But it should be mentioned that it is 
possible to provide a general model which has both stochastic garnes and 
repeated games of incomplete information as special cases [see Mertens, Sorin 
and Zamir (1993, ch. IV), henceforth MSZ]. 

An important feature of the analysis is that when treating any specific game 
orte has to consider a whole family of  garnes, parameterized by the prior 
distribution on the states of nature. This is so because the state of information, 
which is basically part of the initial data of the game, changes during the play 
of the repeated garne. 

Most of the work on repeated games of incomplete information was done for 
two-person, zero-sum games, which is also the scope of this chapter. This is not 
only because it is the simplest and most natural case to start with, but also 
because it captures the main problems and aspects of strategic transmission of 
information, which can therefore be studied "isolated" from the phenomena of 
cooperation, punishments, incentives, etc. Furthermore, the theory of non- 
zero-sum repeated games of incomplete information makes extensive use of the 
notion of punishment, which is based on the minmax value borrowed from the 
zero-sum case. 



Ch. 5: Repeated Garnes of Incomplete Information: Zero-sum 111 

1.1. Illustrative examples 

Before starting our formal representation let us look at a few examples 
illustrating some of the main issues of strategic aspects of information. We start 
with an example, studied very extensively by Aumann and Maschler (1966, 
1967): 

Example 1.1. Imagine two players I (the maximizer) and II (the minimizer) 
playing repeatedly a zero-sum game given by a 2 x 2 payoff matrix. This matrix 
is chosen (once and for all) at the beginning to be either G 1 or G 2 where 

Player I is told which game was chosen but player II is not; he only knows that 
it is either G 1 o r  G 2 with equal probabilities and that player I knows which one 
is it. After the matrix is chosen the players repeatedly do the following: player 
I chooses a row, player II chooses a column (simultaneously). A referee 
announces these moves and records the resulting payoff (according to the 
matrix chosen at the beginning). He does not announce the payoffs (though 
player I of course knows them, knowing the moves and the true matrix). The 
game consists of n such stages and we assume that n is very large. At the end of 
the nth stage player I receives from player II the total payoff recorded by the 
referee divided by n (to get an average payoff per stage in order to be able to 
compare games of different length). 

So player I has the advantage of knowing the real state (the real payoff 
matrix). How should he play in this garne? 

A first possibility is to choose the dominating move in each state: always play 
Top if the garne is G1 and always play Bottom if it is G 2. Assuming that I 
announces this strategy (which we may as weil assume by the minmax 
theorem), it is a completely revealing strategy since player II will find out which 
matrix has been chosen by observing whether player I is playing Top or 
Bottom. Having found this, he will then choose the appropriate column (Right 
in G 1 and Left in G 2) to pay only 0 from then on. Thus, a completely revealing 
strategy yields the informed player an average payoff of almost 0 (that is a total 
payoff of at most 1, at the first stage after which the matrix is revealed, thus an 
average of at most 1/n). 

Another possible strategy for player I is to play completely non-revealing, 
that is, ignoring his private information and playing as if he, just like player II, 
does not know the matrix chosen. This situation is equivalent to repeatedly 
playing the average matrix garne: 
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1 " 

This game (which may also be called the non-revealing game) has a value 1/4 
and player I can guarantee this value (in the original game) by always playing 
Top and Bottom with equal probabilities (1/2 each) independently of  what the 
true matrix is. 

So, strangely enough, in this specific example the informed player is better 
oft not using his information than using it. As we shall see below, the 
completely non-revealing strategy is in fact the (asymptotically) optimal 
strategy for player I; in very long garnes he cannot guarantee significantly more 
than 1/4 per stage. 

Example 1.2. The second example has the same description as the first one 
except that the two possible matrices are now 

G I = (  - 1  0 00)' G 2 = ( ~  -01)" 

Following the line of discussion of the previous example, if player I uses his 
dominating move at each state, Bottom in G 1 and Top in G 2, he will guarantee 
a payoff of 0 at each stage and again this will be a completely revealing 
strategy. Unlike in the previous example, here this strategy is an optimal 
strategy for the informed player. This is readily seen without even checking 
other strategies: 0 is the highest payoff in both matrices. Just for comparison, 
the completely non-revealing strategy would yield the value of the non- 
revealing game 

0 

which is -1 /4 .  

Example 1.3. Consider again a game with the same description as the 
previous two examples, this time with the two possible matrices given by 

0 4 

Playing the dominant rows (Top in G 1 and Bottom in G 2) is again a completely 
revealing strategy which leads to a long-run average payoff of (almost) 0 (the 
value of each of the matrices is 0). Playing completely non-revealing leads to 
the non-revealing game 
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which has a value 0. So, both completely revealing and completely non- 
revealing strategies yield the informed player an average payoff of 0. Is there 
still another, more clever, way of using the information to guarantee more than 
0? If there is, it must be a strategy which partially reveals the information. In 
fact such a strategy exists. Here is how an average payoff of 1 per stage can be 
guaranteed by the informed player. 

Player I prepares two non-symmetric coins, both with sides (T, B). In coin 
C ~ the corresponding probabilities are (3/4, 1/4) while in coin C a they are 
(1/4, 3/4). Then he plays the following strategy: if the true matrix is G ~, 
k = 1, 2, flip coin C ~. Whichever coin was used, if the outcome is T play Top in 
all stages, if it is B ,  play Bottom in all stages. 

To see what this strategy does, let us assume that even player II knows it. He 
will then, right after the first stage, know whether the outcome of the coin was 
T or B (by observing whether player I played Top or Bottom). He will not 
know which coin was flipped (since he does not know the state k). However, 
he can update his beliefs about the probability of each matrix in view of a given 
outcome of the coin. Using Bayes' formula we find 

P ( G I I T ) = 3 / 4  and P ( G I l B ) = I / 4 .  

Given that player I is playing Top, the payoffs will be either according to the 
line (4, 0, 2) (this with probability 3/4) or according to the line (0, 4, - 2 )  (and 
this with probability 1/4). The expected payoffs given Top are therefore 
(depending on the move of player II) 

(3/4)(4, O, 2) + (1/4)(0, 4, - 2 )  = (3, 1, 1). 

Similarly, given that player I is playing Bottom, the expected payoffs are 

(1/4)(4, 0, - 2 )  + (3/4)(0, 4, 2) = (1, 3, 1). 

We conclude that in any event, and no matter what player II does, the 
conditional expected payoff is at least 1 per stage. Therefore the expected 
average payoff for player I is at least 1. We shall see below that this is the most 
player I can guarantee in this game. So the optimal strategy of the informed 
player in this example is partially to reveal his information. 

Let us have a closer look at this strategy. In what sense is it partially 
revealing? Player I, when being in G 1, will more likely (namely with probability 
3/4) play Top and when being in G a, he will more likely play Bottom. 
Therefore when Top is played it becomes more likely that the matrix is G 1, 
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while when Bot tom is played it becomes more likely that it is G 2. Generally, 
player I is giving player I1 information in the right direction, but it is not 
definite; player II will adjust his beliefs about the true matrix from (1/2,  1/2) 
to either (3/4,  1/4) or (1/4, 3/4) and with probability 3/4 this adjustment will 
be in the right direction, increasing the subjective probability for the true game. 
This idea of changing a player's beliefs by giving him a signal which is partially 
correlated with the true state is undoubtedly the heart of the theory of garnes 
with incomplete information. 

There  is one point we wish to add about the notion of revealing. In all three 
examples we discussed the informed player was revealing information when- 
ever he was using it. However,  in principle, and in fact in the general model 
which will be presented below, these are two distinct concepts. Using informa- 
tion means to play differently in two different informational states; for 
instance, in our first example player I was using his information when he was 
playing Top in G 1 and Bot tom in G 2. Revealing information is changing the 
beliefs of the uninformed player. Clearly, when the move of the informed 
player is observed by the uninformed player - which we shall later call the full  
monitoring case - the two concepts are two expressions of the same thing; the 
only way to play non-revealing is to play the same way, independently of one's 
information, i.e. not to use the information. This was the case in all our 
examples. More generally, the move of the informed player need not be 
observable. The uninformed player receives some signal which is correlated in 
an arbitrary way with the move of the informed player. It may then weil be 
that in order  to play non-revealing, a player has to use his information. 
Similarly, he may be revealing his information by not using it. 1 

2. A general model 

A repeated game of incomplete information consists of the following elements: 
• A finite set I, the set of players. 
• A finite set K, the set of stares of nature. 
• A probability distribution p on K, the prior probability distribution on the 

states of nature. 
• For  each i E I,  a partition K i of K, the initial information of player i. 
• For  each i E I and k @ K, a finite set S~, which is the same for all k in the 

same partition element of K i. This is the set of moves available to player I at 
state k. By taking the Cartesian product II~ S~ we may assume, without loss 
of generality, that the sets of moves S i are state independent.  Let  S = II~ S ~. 

1For examples, see MSZ (1993, ch. V, section 3.b). 
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• For each k ~ K, a payoff function G~: S--+ R(  That is Gk(s) is the vector of 
payoffs to the players when they play moves s and the state is k. 

• For each i E I, a finite alphabet A i, the set of signals to player i. Let A =IIgA i 
and s¢ = A(A) be the set of probability distributions on A. 

• A transition probability Q from K x S to d ,  the signaling probability 
distribution [we use the notation Qk(s) for the image of (k, s)]. 

On the basis of these elements the repeated garne (or supergame) is played in 
stages as follows. At  stage 0 a chance move chooses an element k E K 
according to the probability distribution p. Each player i is informed of the 
element of K i containing the chosen k. Then at each stage m (m = 1, 2 , . . . ) ,  

g E S i, a vector of signals a E A is chosen according to each player i chooses s m 
the probability distribution Qk(s) and a g is communicated to player i. This is 
the signal to player i at stage m. 

Notice that, as mentioned in the Introduction, the state k is chosen at stage 0 
and remains fixed for the rest of the game. This is in contrast to stochastic 
games (to be discussed in a forthcoming volume of this Handbook) in which 
the state may change along the play. Also note that the payoff gm at stage m is 
not explicitly announced to the players. In general, on the basis of the signals 
he receives, a player will be able to deduce only partial information about his 
payoffs. 

2.1. Classification 

Games of incomplete information are usually classified according to the nature 
of the three important elements of the model, namely players and payoffs, 
prior information, and signaling structure. 

(1) Players and payoffs. Here we have the usual categories of two-person 
and n-person games. Within the two-person games one has the zero-sum games 
treated in this chapter and the non-zero-sum games treated in Chapter 6 of this 
Handbook.  

(2) Prior information. Within two-person garnes the main classification is 
games with incomplete information on one side, versus incomplete information 
on two sides. In the first class are games in which one player knows the stare 
chosen at stage 0 (i.e. his prior information partition consists of the singletons 
in K) while the other player gets no direct information at all about it (i.e. his 
prior information partition consists of one element { K}). More general prior 
information may sometimes be reduced to this case, for example if one of the 
player's partition is a refinement of the other's partition, and the signaling 
distribution Q, as a function of k, is measurable with respect to the coarser 
partition. 

(3) Signaling structure. The simplest and most manageable signaling struc- 
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ture is that of full monitoring. This is the case in which the moves at each stage 
are the only observed signals by all players, that is A i = S for all i, and for all k 
and all s, Qk(s) is a probability with mass 1 at (s . . . .  , s). The next level of 
generality is that of state independent signals. This is the case in which Qk(s) is 
constant in k, and consequently the signals do not reveal any direct information 
about the state but only about the moves. Hence the only way for a player to 
get information about k is by deducing it from other players' moves, about 
which he learns something through the signals he receives. There is no 
established classification beyond that, although two other special classes will be 
treated separately: the case in which the signals are the same for all players and 
include full monitoring (and possibly more information), and the case in which 
the signal either fully reveals the state to all players or is totally non- 
informative. 

3. Incomple te  information on one side 

In this section we consider repeated two-person, zero-sum games in which only 
one player knows the actual state of nature. These garnes were first studied by 
Aumann,  Maschler and Stearns, who proved the main results. Later contribu- 
tions are due to Kohlberg, Mertens and Zamir. 

Since in this chapter we consider only two-person, zero-sum garnes it is 
convenient to slightly modify out notation for this case by referring to the two 
players as player 1 (the maximizer) and player II (the minimizer). Their sets of 
pure actions (or moves) are S and T, respectively, and their corresponding 
mixed moves are X = A(S) and Y = •(T). The payoff matrix (to I) at state 
k E K is denoted by G g with elements Gs~. The notation for general signaling 
will be introduced later. 

3.1. General properties 

We shall consider the games Fn(p), Fa(p) and Foo(p) which are defined with 
the appropriate valuation of the payoffs sequence (gm)~=l = (Gk(Sm))m=l " 
Before defining and analyzing these we shall first establish some general 
properties common to a large family of garnes with incomplete information on 
one side. 

The garnes considered in this section will all be zero-sum, two person garnes 
of the following form: chance chooses an element k from the set K of states 
(games) according to some p E A(K). Player I is informed which k was chosen 
but player II is not. Players I and II then, simultaneously, choose o -g E X and 
~-E ~,  respectively, and finally Gk(cr k, ~-) is paid to player I by player II. The 
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sets X and 3- are convex sets of strategies, and the payoff functions G~(cr ~, r) 
are bilinear and uniformly bounded on X x ~-. We may think of k as the type 
of player I which is some private information known only to hirn and could 
attain various values in K. This is thus a garne of incomplete information on one 
side, on the side of player II. 

Even though the strategies in X and ~-will usually be strategies in some 
repeated garne (finite or infinite), it is useful at this point to consider the above 
described game as a one-shot garne in strategic form in which the strategies are 
o - ~ X  ~ and ~'~ 9-, respectively, and the payoff function is GP(o-,r)  = 
E~ p~G~(o -~, ~'). Denote  this game by F(p) .  

Theorem 3.1. The functions ~ ( p )  = inf, sup~ GP(o -, 7) and w_(p) = 
sup~inf, GP(o ", ~) are concave. 

Proof. The argument is the same for both functions. We will show it for 
~ ( p ) .  Let  p = (Pe)eEÆ be finitely many points in A(K), and let a = («e)c~e be 
a point in A(E) such that Eee e aep c = p. We claim that ~ ( p ) t >  Ee~ e aeff:(pc). 
TO see this, consider the following two-stage game: chance chooses e E E 
according to the probability distribution a,  then k @ K is chosen according to 
Pc, the players then choose o -k E X and ~- E 3-, respectively, and the payoff is 
Gk(cr k, «~, V;~ .~: ~:: ':_:~: -:'~ » 7:~ '>.:-~~, ~ '»~~'~h vf w~~cb olayer I is informed of 

o~:y,.,~i~ ::; (.?:~::.: : a:«? ::::? .~:-~,;~,: . : ~ : e  ii  :~:~~:.« or r.~.ay a«~ !~e informed of the 

~ : , ; ,  '! ?a/:»~" i'~ .:~ i~ä ,:~:~~~! ä~': h ¢  o~~~:.~c/;,c~ e :~:,«: ~ituation following the 
first lottery i~ ~~]~:~i»a;:::a; :r~» ;'(y, ). Tnas, the inf~sup~ for the garne in which 
player II is informed of the outcome of the first stage is £ee£ O~eff2(Pe)" This 
garne is more favorable to Il  than the garne in which he is not informed of the 
value of e, which is equivalent to /~(~e OlePe)  ~- F(p) .  Therefore  we have: 

ff2(p) >! E °Zeff~(Pe). [] 
e E E  

Remark.  Although this theorem is formulated for games with incomplete 
information on one side it has an important consequence for garnes with 
incomplete information on both sides. This is because we did not assume 
anything about the strategy set of player II. In a situation of incomplete 
information on both sides, when a pair of types, one for each player, is chosen 
at random and each player is informed of his type only, we can still think of 
player II as being "uninformed"  (of the type of I) but with strategies consisting 
of choosing an action after observing a chance move (the chance move 
choosing his type). When doing this, we can use Theorem 3.1 to obtain the 
concavity of ~ ( p )  and w(p)  in garnes with incomplete information on both 
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sides, when p (the joint probability distribution on the pairs of types) is 
restricted to the subset of the simplex where player I's conditional probability 
on the state k, given his own type, is fixed. 

The concavity of w(p)  can also be proved constructively by means of the 
following useful proposition, which we shall refer to as the splitting procedure. 

Proposition 3.2. Let p and (Pe)eeE be finitely many points in A(K),  and let 
ol : (Ole)eE E be a point in A(E)  such that ~ e E E  OlePe : P" Then there are vectors 
( Ixk)~cK in A(E)  such that the probability distribution P on K x E obtained by 
the composition o f  p and (Ixk)~er (that is k E K is chosen according to p and 
then e E E is chosen according to tx k) satisfies 

P(" I e) = pe and P(e) ~--- Ole œ for all e E E . 

Proof. In fact, if ph = 0,/z k can be chosen arbitrarily in A(E). If ph > 0, /z k is 
given by/x~(e) = aeP~e/p k. [] 

Let player I use the above described lottery and then guarantee W(pe) (Up to 
e). In this way he guarantees ~"e °ZeW-W-(pe), even if player II were informed of 
the outcome of the lottery. So __w(p) is certainly not smaller than that. 
Consequently the function w(p) is concave. 

The idea of splitting is the following. Recall that the informed player, I, 
knows the state k while the uninformed player, II, knows only the probability 
distribution p according to which it was chosen. Player I can design a state 
dependent lottery so that if player II observes only the outcome e of the 
lottery, his conditional distribution (i.e. his new "beliefs") on the states will be 
Pe" Let us illustrate this using Example 1.3. At p = (1/2, 1/2) player I wants to 
"split" the beliefs of II to become Pl = (3/4, 1/4) or P2 = (1/4, 3/4) (note that 
p = l / 2 p l + 1 / 2 p 2 .  ) He does this by the state dependent lottery on 
{T, B}7 ]&l = (3/4, 1/4) and/z 2 = (1/4, 3/4). 

Another general property worth mentioning is the Lipschitz property of all 
functions of interest (such as the value functions of the discounted garne, the 
finitely repeated garne, etc.), in particular ~3(p). This follows from the uniform 
boundedness of the payoffs, and hence is valid for all repeated games discussed 
in this chapter. 

Theorem 3.3. The function ff,(p) is Lipschitz with constant C (the bound on 
the absolute value o f  the payoffs). 

Proof. Indeed, the payoff functions of two games F (p l )  and F(p2) differ by 
at most C]lPl-p2111. [] 

Let us turn now to the special structure of the repeated game. Given the 
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basic data (K, p, (Gk)kCK, A,  B, Q) (here A and B are the signal sets of I and 
II, respectively), any play of the garne yields a payoff sequence (gm)m=a = 
(Gk(Smtm))~=l. On the basis of various valuations of the payoff sequence, we 
shall consider the following garnes (as usual, E denotes expectation with 
respect to the probability induced by p, Q, and the strategies). 

The n-stage game, F~(p), is the garne in which the payoff is 
Yn = E(~ù) = E((1/n) En= a gin)" Its value is denoted by vA(p). 

The h-discounted garne, FA(p) (for ~ E (0, 1]), is the garne in which the 
payoff " = m -  a lS E(2m= a h(1 - A) gin)" Its value is denoted by vA(p). 

The values vù(p) and v;~(p) clearly exist and are Lipschitz by Theorem 3.3. 
As in the previous section, the infinite garne F=(p) is the game in which the 

payoff is some limit of gn such as lim sup, lim inf of, more generally, any 
Banach limit ~ .  It turns out that the results in this chapter are independent of 
the particular limit function chosen as a payoff. The definition of the value for 
F=(p) is based on a notion of guaranteeing. 

Definition 3.4. (i) Player I can guarantee a if 

Ve > 0, Bo-, BAr,, such that ~n(o-, z) i> a - «, Vz, Vn >/N~ . 

(ii) Player II can defend a if 

Ve > 0, Vo-, 3z, 3N, such that ~n(o-, z) ~< a + e, Vn t> N .  

v_(p) is the maxmin of ~=(p) if it can be guaranteed by player I and can be 
defended by player II. In this case a strategy o- associated with _v(p) is called 
é-optimal. The minmax fr(p) and e-optimal strategies for player I1 are defined 
in a dual way. A strategy is optimal if it is e-optimal for all e. 

The garne E~(p) has a value v~(p) iff v_(p) = 6(p) = v~(p). It follows readily 
from these definitions that: 

Proposition 3.5. I f  F=(p) has a value v=(p), then both limn_~=vn(p) and 
lima_~0v~(p) exist and they are both equal to v~o(p). An  e-optimal strategy in 
E=(p) is an e-optimal strategy in all En(p) with sufficiently large n and in all 
F~(p) with sufficiently small h. 

By the same argument used in Theorem 3.1 or by using the splitting 
procedure of Proposition 3.2 we have: 

Proposition 3.6. In any version of  the repeated garne (Fn(p) , F~(p) or F=(p)), 
if  player I can guarantee f (p )  then he can also guarantee Cav f (p ) .  

Here Cav f is the (pointwise) smallest concave function g on A(K) satisfying 
g(p) >~f(p), Vp E a(K). We now have: 
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Theorem 3.7. vn(p) and va(p) converge uniformly (as n--->o~ and h---~0, 
respectively) to the same limit which can be defended by player II in I2(p) .  

Proof.  Let % be an c-optimal strategy of player II in Fn(p) with • = 1/n and 
let vni(p ) converge to lim infn_~~ On(P). NOW let player II play rnl for ni+ 1 times 
(i = 1 , 2 . . . ) - t h u s  for n~.ni+ 1 per iods -be fo re  increasing i by 1. By this 
strategy player II guarantees lim infn_~~ v~(p). Since player II certainly cannot 
guarantee less than lim supn__,~ vn(p) , it follows that on(p) converges (uniform- 
ly by Theorem 3.3). 

As for the convergence of va, since clearly player II cannot guarantee less 
than limsupa_,0 vA(p) , the above described strategy of player II proves that 

lim sup va(p) <~ lim v n( p) . 
a----~ 0 n--~ 

To complete the proof we shall prove that limn_~= vn(p) <~ lim infa__,0 vA(p) by 
showing that limn~ ~ v , (p)  <~ va(p) for any • > 0. In fact, given A > 0 let ~'a be 
an optimal strategy of player II in the h-discounted game and consider the 
following strategy (for player II): start playing 7~ and at each stage restart ~a 
with probability ,~ and with probability (1 - ,~) continue playing the previously 
started z a. With this strategy, for any é > O, we have E(~ . )  ~< v a + • for all n 
sufficiently large (compared with l /h) .  It follows that limn__,=vù(p)~< 
vA(p). [] 

Remark. If we interpret the discounted garne as a repeated game with a 
probability A of stopping after each stage, then the convergence of v A can be 
generalized as follows. Let a = { a n } ~= a be a probability distribution, with finite 
expectation, of T - the stopping time of the g a m e -  and let va(p) be the value 
of this repeated game. If {at}~=l is a sequence of such distributions with mean 
going to infinity, then limz__,= va,(p ) = Cav u(p). 

3.2. Full monitoring 

The first model we consider is that of incomplete information on one side and 
with full monitoring. This is the case when the moves of the players at each 
stage are observed by both of them and hence they serve as the (only) device 
for transmitting information about the state of nature. The repeated garne with 
the data (K, p, S, T, (G~)gE«) is denoted by F(p) and is played as follows. 

At  stage 0 a chance move chooses k E K with probability distribution 
p @ A(K), i.e. ph is the probability of k. The result is told to player I, the row 
chooser, but not to the column chooser, player II who knows only the initial 
probability distribution p. 
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At stage m = 1, 2 , . . ,  player I chooses s m ~ S and II chooses, simulta- 
neously and independently, t m E T and then (sm, tm) is announced (i.e. it 
becomes eommon knowledge). 

Actually F(p) is not a completely defined garne since the payoff is not yet 
specified. This will be done later; according to the specific form of the payoff, 
we will be speaking of Fù(p) (the n-stage game), F~(p) (the diseounted garne) 
or F=(p) (the infinitely repeated garne). 

The main feature of these games is that the informed player's moves will 
typieally depend on (among other things) bis information (i.e. on the value of 
k). Sinee these moves are observed by the uninformed player, they serve as a 
channel which can transfer information about the state k. This must be taken 
into account by player I when choosing his strategy. In Example 1.1., for 
instance, playing the move s = 1 if k = 1 and s = 2 if k = 2 is a dominant 
strategy as far as the single-stage payoff is concerned. However, such behavior 
will reveal the value of k to player II and by that enable him to reduce the 
payoffs to 0 in all subsequent stages. This is of course very disadvantageous in 
the long run and player I would be better oft even by simply ignoring his 
information. In fact, playing the mixed move (1/2, 1/2) at each stage in- 
dependently of the value of k guarantees an expected payoff of at least 1/4 per 
stage. We shall see that this is indeed the best he can do in the long run. 

3.2.1. Posterior probabilities and nonrevealing strategies 

For n = 1 , 2 , . . ,  l e t  Hin I =  [S × T] n-1 be the set of possible histories for 
player II at stage n (that is, an element h n E H f f  is a sequence 
( S l ,  tx ,  S2,  t2;  • • • , Sn-1, tn 1) of the moves of the two players in the first n - 1 
stages of the garne). Similarly, H~  denotes the set of all infinite histories (i.e. 
plays) in the garne. The set of all histories is H n = Un>l Hin I. Let 9gin I be the 
er-algebra on H ~  generated by the cylinders above H~II and let Y(~ = V n > l  ~nII" 

A pure strategy for player I in the supergame F(p) is o-= (o-1, er2 . . . .  ), 
where for each n, o-ù is a mapping from K x y(ii to S. Mixed strategies are, as 
usual, probability distributions over pure strategies. However, since F(p) is a 
garne of perfect recall, we may (by Aumann's  generalization of Kuhn's 
Theorem; see Aumann (1964)) equivalently consider only behavior strategies 
that are sequences of mappings from K x ffLaIn I to X or equivalently f rom ffL°In I to 
X I(. Similarly, a behavior strategy of player II is a sequence of mappings from 
~~i (since he does not know the value of k) to Y. Unless otherwise specified 
the word "strategy" will stand for behavior strategy. A strategy of player I is 
denoted by o- and one of player II by ~-. 

Any strategies er and z of players I and II, respectively, and p E ZI(K) induce 
a joint probability distribution on states and his tor ies-  formally, a probability 
distribution on the measurable space (K x H~ ,  2K® Y(~). This will be our 
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basic probability space and we will simply write P or E for probability or 
expectation when no confusion can arise. 

Let  pl  -- p and for n/> 2 define 

k P(kl ~i,) Vk~K 

These random variables on y(i~ have a clear interpretation: pù is player II's 
posterior probability distribution on K at stage n given the history of moves up 
to that stage. These posterior probabilities turn out to be the natural state 
variable of the garne and therefore play a central role in our analysis. 

/~II,~co martingale, being a Observe first that the sequence (Pù)2=I is a w~ù Jn=~ 
sequence of conditional probabilities with respect to an increasing sequence of 
o--algebras, i.e. 

E(pù+~[Y(~ù~)=pn V n : l , 2 , . . .  

In particular, E(p~)  = p  Vn. Furthermore,  since this martingale is uniformly 
bounded,  we have the following bound on its L~ variation (derived directly 
from the martingale property and the Cauchy-Schwartz inequality): 

Proposition 3.8. 

1 ~ EHpm+I- 
n m = l  

pmll ~ Z  ~pk(1 _pk) 
k H 

Note  that 2 k ~/pk(1 -- p~) ~< V # K  - 1 since the left-hand side is maximized 
for pk _- 1 / ( # K )  for all k. Intuitively, Proposition 3.8 means that in "most  of 
the stages" Pm +1 cannot be very different from Pm" 

The explicit expression of Pm is obtained inductively by Bayes' formula: 
given a strategy o- of player I, for any stage n and any history h~ C H~n I, let 
o-(hù) k = (xù)«~ K denote the vector of mixed moves of player I at that stage. 

k That  is, he uses the mixed move x~ = (Xn(S))se s E X = A(S) in the garne GQ 
k k Given pù(hù)=pù, let Yn = ~'k~gPnXn be the (conditional) average mixed 

move of player I at stage n. The (conditional) probability distribution of Pn+l 
can now be written as follows: Vs E S such that 2 ù ( s ) > 0  and Vk ~ K, 

k k 
k II  pù+l(s) = P(kl ~n , Sù = S) -- p"Xn(S) (5.1) 

L(S) 

It follows that if x~ = 2 n whenever p~ > 0, then Pn+l = Ph, that is: 
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Proposition 3.9. Given any player H' s history hn, the posterior probabilities do 
not change at stage n i f  player I's mixed move at that stage is independent o f  k 
over all values o f  k for which p~ > O. 

In such a case we shall say that player I plays non-revealing at stage n and, 
motivated by that, we define the corresponding set 

N R = { x ~ X K I x k = x  k' Vk, k ' E K } .  

We see here, because of the full monitoring assumption, that not revealing 
the information is equivalent to not using the information. But then the 
outcome of the initial chance move (choosing k) is not needed during the 
garne. This lottery can also be made at the end, just to compute the payoff. 

Definition 3.10. For p E A(K) the non-revealing game at p, denoted by D(p) ,  
is the (one-stage) two-person, zero-sum garne with payoff matrix 

D(p)  = x~~ p~Gk " 
k G K  

Let  u(p) denote the value of D(p).  Clearly, u is a continuous function on 
k A(K) (it is, furthermore, Lipschitz with constant C = maxk,s« I Gs, I). 

So if player I uses NR moves at all stages, the posterior probabilities remain 
constant. Hence the (conditional) payoff at each stage can be computed from 
D(p) .  In particular, by playing an optimal strategy in D(p) player I can 
guarantee an expected payoff of u(p) at each stage. Thus we have: 

Proposition 3.11. Player I can guarantee u(p) in Fù(p), in Fa(p), and in 
F=(p) by playing i.i.d, an optimal strategy in D(p).  

Combined with Proposition 3.6 this yields: 

Corollary 3.12. The previous proposition holds if we replace u(p) by 
Cav u(p). 

ù , .  k {Jlven a strategy ~r of player I, let o- n = (xn)ge K be "the strategy at state n"  
[see MSZ (1993, ch. IV, section 1.6)]. Its average (over K) is the random 

k k variable ~n = E(o- n I Y(InX) = Ek pùo'~. Note that ~~ E NR. 
A crucial element in the theory is the following intuitive property. If the o-~ 

are dose  (i.e. all near dn) , Pn+l will be close to Ph. In fact a much more precise 
relation is valid; namely, if the distance between two points in a simplex [A(S) 
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or A(K)] is defined as the L 1 norm of their difference, then the expectations of 
these two distances are equal. Formally, 

Proposition 3.13. For any strategies ~r and • of the two players 

E([I«n - ~nll I ä~In I) = E ( I [ P n + I -  P~[[ [ ~I~~) • 

This is directly verified using expression (5.1) for P,+I in terms of on. 
Next we observe that the distance between payoffs is bounded by the 

distance between the corresponding strategies. In fact, given o- and ~- let 
Pn(Or, "r) = E(g~ [ ff/~InI), and  define fr(n) to be the same as the strategy o-except 
for stage n where õ-n(n) = dn, we then have: 

Proposition 3.14. For any ~r and T, 

[p.(o r, r) - p.(õ'(n), T)[ <~ CE(II«. - anltl x'. ') .  

ProoL In fact, since p, is the same under o- and under ~(n),  we have (for any 
o2 in H~):  

I p~(o-, z) - p,(~(n), ~-) I (¢o) ~< C ~ pn~(~o)ll O'n ~ - «nil 
k 

= C E ( I I ~ ~  - ~nlll~C'.')(o,) [] 

3.2.2. The limit values lim on(p) and voo(p) 

The  main consequence of the bound derived so rar is: 

Proposition 3.15. For all p E A(K) and all n, 

C 
on(p) ~ Cav u(p) + ~ ~ ~/p~(1 _ p h ) .  

Proof. Making use of the minmax theorem, it is sufticient to prove that for 
any strategy o- of player I in Fn(p), there exists a strategy z of player II such 
that 

C 
E « , ( g ù )  ~< Cav u(p) + ~ E ~/p~(1 - p k ) .  

k 

Given o- let z be the following strategy of player II: at stage m; m = 
1 . . . . .  n, compute p,, and play a mixed move Œm which is optimal in D(pm). 

By Proposition 3.14 and Proposition 3.13, for m = 1 . . . .  , n: 
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pro(er, "r) ~ pm(ö'(m), "t') + CE(Hpm+l --PraHl ~ 2 )  " 

NOW 

- k 

k 

with K m ~ NR and z m optimal in D(pm). Hence 

o~(a(m), ~) ~ u(p~) <~ Cav u(p~) , 

which yields 

pm(O r, T) ~ Cav U(pm)q- CE([Ipm+ 1 -p~ l l  I x ~ )  • 

I I  Averaging on m = 1 , . . . ,  n and over all possible histories o~ E H n we obtain 
[using E(Cav u(p,,(oo)) <~ Cav u(p) by Jensen's inequality]: 

E«#(~,)<~Cavu(p)+C ~ E[[p,n+I-Pm[[. 
H m - 1  

The claimed inequality now follows from Proposition 3.8. [] 

Combining Proposition 3.15 with Corollary 3.12 we obtain [Aumann and 
Maschler (1967)]: 

Theorem 3.16. For all p E A(K), limn~ ~ vn(p) exists and equals Cav u(p). 
Furthermore, the speed of convergence is bounded by 

C 0<~ vù(p) - Cav u(p) <~ ~ E ~/pk(1 _pk ) .  
rt 

The strategy in Proposition 3.15 yields also: 

Corollary 3.17. lima~ 0 va(p) exists and equals Cav u(p) and the speed of 
convergence satisfies 

O<~vA(p)_Cavu(p)~«~2_~h  ~ Vpk(l_ pk).  

This follows using 

~ h ( l_A,m- l~ , ,  k k ~/ A 
) LIIPm+,-P,ù[I~< ~ ~/Pk(1-P~), 

m = l  
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which is a consequence of the Cauchy-Schwartz inequality and Proposition 
3.8. 

Combining now Corollary 3.12, Theorem 3.16 and Theorem 3.7 establishes 
the existence of the value of the infinite garne F~(p) [Aumann, Maschler and 
Stearns (1968)]: 

Theorem 3.18. For all p E A(K) the value v=(p) of F~(p) exists and equals 
Cav u(p) .  

3.2.3. Recursive formula for vù(p) 

The convergence of vù(p) is actually a monotone convergence. This foUows 
from the following recursive formula for vù(p). Recall that x = (xk)~EI~E 
[A(S)] K is a one-stage strategy of player I (i.e. he plays the mixed move x k in 
game G~), then we have 

1 ~ } va+l(p) = ~ max m i n ~  k k.-~k p X t_,, + n ~ ZsVù(p~) , 
x t t k s C S  

where 2 = E h pkxk and for each s in S for which 2 s > 0, Ps is the probability on 
~ - G k denotes the t-th column of the matrix G k. K given by p~ =p x s/xs, and .,  

By this recursive formula it can be proved inductively, using the concavity of 
Va(p), that: 

Proposition 3.19. For all p E P, the sequence vn(p) is monotonically de- 
creasing. 

The above recursive formula and the monotonicity are valid much more 
generally than in the full monitoring case under consideration. They hold (with 
the appropriate notation) in any signalling structure in which the signal 
received by player I includes the signal received by player II. However ,  when 
this condition is not satisfied, vn(p) may not be monotone.  In fact, Lehrer  
(1987) has exhibited an example of a game with incomplete information on one 
side in which V 1 ~ 0 2 < V 3 . 

_ _ 

3.2.4. Approachability strategy 

Corollary 3.12 provides an explicit simple optimal strategy for player I in F=(p) 
which is played as follows. Express p as a convex combination p = Eee e Otep e of 
points (Pe)e~E in A(E) such that Cavu(p)=~ecEOteU(pe) .  Perform the 
appropriate lottery described in Proposition 3.2 to choose e E E, and then play 
i.i.d, at each stage an optimal strategy of the non-revealing game D(pe) (with 
the chosen e.) 
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On the other hand, the optimal strategy for player II provided by Theorem 
3.7 is far from easy to compute. We now describe a simple optimal strategy for 
player II, making use of Blackwell's approachability theory for vector payoff 
garnes. 

At  any stage (n + 1), given the history hn+ ~ = (sl, t l , . . . ,  sn, th), player II 
n k can compute ~~ = ~ 2ù,= 1 Gsmtm , which is what his average payoff would be up 

to that stage if the state was k. Since the prior distribution on the states is p,  his 
expected average payoff is ( p ,  ~n ) = Eke K pk~~. We shall show that player II 
can play in such a way that, with probability one, the quantity ( p ,  ~ù } will be 
arbitrarily close to Cav u(p) ,  for n sufficiently large. 

Having focused our attention on the vector of averages ~~ -k = (g,,)k~K, it is 
natural to consider the garne with vector payoffs in the Euclidean space R K. So 
when moves (s, t) are played, the resulting vector payoff is G~, E R K. 

Consider the garne F=(p). Let u(p)  be its NR-value function, and let 
l = (lk)kEK be the vector of intercepts of a supporting hyperplane to Cav u at p 
(see Figure 1); that is, 

C a v u ( p ) = ( I , p ) = ~ l k p  k and u ( q ) « . ( l , q )  for all q i n  a ( K ) .  
k 

If player II can play so that the average vector payoff gn will approach 2 the 
"corner set" C = {x ~ R K I x ~< l}, it will mean that VE/> 0, { p,  gn ) ~< { l, p ) + 
« -  Cav u ( p ) +  e, both in expectation and with probability one, for n suffi- 
ciently large. This is precisely the optimal strategy we are looking for. 

L 2 

I 

I 
I 
P 

Figure 1 

2That is, for any strategy of player I, the distance d(~~, C) tends to 0 with probability 1. See 
Blackwell (1956). 
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For any mixed move y E Y of player II let Q(y) = Co{Z t G,,y t Is E S}, 
where Co A denotes the convex hull of A. (This is the set in which lies the 
expected vector payoff when y is played.) A sufficient condition for the 
approachability of C by player II [Blackwell (1956)] is that for any g ~ '  C, he 
has a mixed move y such that if c is the closest point to g in C, then the 
hyperplane H orthogonal to [cg] through c separates g from Q(y) (see Figure 
2). 

1 
~ /  I ~  g I 

I 
I 

Figure 2 

To verify this condition in our case let q ~ A(K) be the unit vector in the 
direction (g  - c) and let H = {x E EK] ( q, x)  = ( q, c)}. Note that since C is a 
corner set, q ~> 0 and therefore (q,  c) /> (q,  c ' )  for all points c' in C, in 
particular ( q, c) /> ( q, l) .  Since c E C, we also have c ~< l, which implies 
( q, c) ~< ( q, l) ; hence l ~ H and C lay in the half space defined by H, which 
can be written as / /1  = {x E RK I (q,  x)  ~< (q,  l)}. Now, by playing optimally 
in the non-revealing game D(q),  player II guarantees 

qko-G~y<~u(q) Vo-~A(S). 
k ~ K  

This means that for any mixed strategy cr of player I, the vector payoff 
x = (o-Gky)kEK satisfies ( q , x )  <~ u(q)<~ (q, l), i.e. x ~ H 1 ,  establishing the 
approachability of C. 

The optimal strategy of player II in F=(p) can now be summarized as 
follows: 

(1) Choose l E NK such that (p ,  x) = (p ,  l) is the supporting hyperplane to 
the graph of Cav u at p. 

(2) Define the corner set C = {x E R ~: I x ~< l}, and at each stage n compute 
the average vector payoff gn up to that stage. 

(3) At  stage (n + 1), n = 1, 2 , . . . ,  if ~n E C, play arbitrarily. If ~~ ~ 'C ,  let 
c ~  C be the closest point to ~, in C, compute q = (~ù - c)/][~, n - cll G a ( K )  
and play an optimal mixed move in D(q). 
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3.2.5. The examples revisited 

Let us look again at the examples we discussed in the Introduction in view of 
the general results. 

In Example 1.1, D(p) is the matrix garne: 

0p 
p(10 ~ ) + ( 1 - p ) ( ~  0 1 ) : ( P  1 - ) '  

and its value is u(p)= p ( 1 -  p). Since this is a concave function, Cav u(p)= 
u(p) = p ( 1 -  p) and we have (see Figure 3) 

ILrn ~ vn(p) = [im° va(p) = v=(p) = p(1 - p ) .  

Example I. I  : 

Example 1,2: 

Example I. 3: 

I 

o 

o 

I 

± 
2 I p 

~ . . . 2 ,  p 

o 
p 

u(p)  

Figure 3 

o~ 
o i ± 

2 

0~ \ 
I $ 

Cav u(p) p 

In particular, for p = 1/2 this limit is 1/4. So asymptotically the value is that of 
the garne in which no player is informed about the value of k. In other words, 
the informed player has an advantage only in games of finite length. This 
advantage may be measured by vn(p)-v~(p) .  By Theorem 3.16 this is 
bounded by 

2 p~ /~  - p )  1 
vn(p) - p ( 1  -p)<~ v'-g ~< ~ "  

It turns out that for this specific garne this bound can be improved and the 
actual speed of convergence is [see Zamir (1971-72)] 

o(lnn) 
v n ( P ) - P ( 1 - P ) =  \ n / "  
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In Example 1.2, 

»~~~=~(-~ ~)+~~-~~(~ _~)=(ö ~ _~1°_~~), 

S. Zamir 

and its value is u ( p ) = - p ( 1 - p ) .  Since this is a convex function and its 
concavification is the constant function 0, Cav u(p)= 0 Vp E [0, 1] and we 
have (see Figure 3) 

lifn vù ( p ) = linòo vA(p) = v= ( p ) = O. 

For p = 1/2 (as we had in out example), the value is 0. 

In Example 1.3, 

(40 ~~t t°o 4 -~~) C 4-4ù 4ù-~~ D ( p ) = p  4 0 - + ( l - p )  4 = 4p 4 - 4 / ,  2 - 4 p ] '  

and its value is (see Figure 3) 

t 
4 p ,  0 ~ p ~ l / 4 ,  
2 - 4 p ,  1/4«-p<~1/2 ,  

u (p )=  4 p - 2 ,  1/2<~p<~3/4, 
[ 4 - 4 p ,  3 / 4 ~ < p ~ 1 .  

Therefore 

lim vn(p) = [im ° va(p) = va(p) = Cav u(p) , 

where Cav u(p) is (see Figure 3) 

f 4 p ,  0 ~ p ~ 1 / 4 ,  
Cav u(p)  = / 1 ,  1 / 4 < ~ p ~ 3 / 4 ,  

4 - 4 p ,  3 / 4 < ~ p ~ 1 .  

For p = 1/2 (as we had in our example), the value is 1. 

Remark.  To all results so far there are of course corresponding dual results 
for the case in which the informed player is player II (while player | is 
uninformed). In particular the dual to Theorem 3.18 is: 

Theorem 3.20. In the garne in which player H is informed and player ! is not, 
for all p ~ A(k) the value va(p) of  F~(p) exists and equals Vex u(p).  

Here Vex u(p) is the maximal convex function pointwise majorized by u(p).  
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3.3. The general case 

The main results so rar, specifically the existence of lim vù and of v=, extend to 
the general case without full monitoring, so we no longer assume that the 
moves are announced after each stage but rather that some individual message 
is transmitted to each of the players. This model was also treated by Aumann,  
Maschler and Stearns (1968), who proved the main result about the existence 
and the formula of v~(p). The generalization of the strategy for the un- 
informed player, using Blackwell approachability, is due to Kohlberg (1975a). 
Although the analysis follows the lines developed for the case of full monitor- 
ing, the mathematical details require several new ideas. These will be only 
outlined in this section [for the detailed proofs see, for example, MSZ (1993, 
Ch. V). 

Recalling the general model, we add a signaling structure - two finite sets of 
signals A and B and transition probability Q from K x S x T to A(A) x A(B). 
We denote by Qf, the probability distribution at (k, s, t). The repeated garne is 
played as in the previous model with the following modification. At  each stage 
n, n I> 1, instead of announcing the moves (sn, tn) , the signal a n is announced 
to player I and b n is announced to player II, where (an, bh) is chosen according 
to the distribution Q~ It turns out that the value of q}=(p) does not depend 

S n t  n • 

on the signaling structure to the informed player, so by abuse of notation we 
denote the marginal of Q on B also by Qk 

S n t  n * 

The generalization of the notion of non-revealing utilizes the property that 
when a non-revealing strategy is played by player I at a certain stage, the 
conditional probability on K does not change at that stage. This is equivalent 
to: 

Definition 3.21. x E X K is said to be non-revealing at p G A(K) il, for each 
move t E T of player II, the distribution of b (induced by t and x ~) in the kth 
state is the same for all k for which ph > 0. 

We denote by NR(p)  the set of non-revealing strategies in ~ ( p ) .  For 
p E A(K) let K(p)  C K denote the support of p. Then 

NR(p)  = (x E XK I x~Q k = xX'Q k' V(k, k') @ K(p)  x K(p)} 

Note that NR(p)C__ N R ( p )  whenever K(p)  D K(I~ ). Therefore NR(p)  is a 
"step set-valued function" on A(K) with possible discontinuities at the intersec- 
tions of two (or more) facets. NR(p)  may be empty for some p ~ A(K); 
however, if p is an extreme point of A(K), then N R ( p ) = X  K. This is 
in tu i t ive-  an extreme point of A(K) corresponds to a situation of complete 
information, where k is known to both players and hence every strategy of I is 
non-revealing since there is nothing to reveal. 
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The non-revealing garne (NR-garne), denoted by D(p) ,  is the (one-stage) 
two-person, zero-sum game in which player I's strategy set is NR(p), player 
II's strategy set is A(T) and for x = (Xk)gEr ~ NR(p) and y C A(T) the payoff 
is Ek~ r pkxkG~y. 

We denote by u(p) the value of D(p) and refer to it as the NR-value. If 
NR(p) = ~ [hence D(p) is undefined] we define u(p) = -00. Since u(p) is finite 
at least on the extreme points, it follows that Cav u(p) is weU defined [and 
Lipschitz on zI(K) with constant C]. 

Theorem 3.18 can now be proved for the general signaling case with this 
Cav u(p). The proof that player I can guarantee v(p) in F=(p) is the same as 
in the full monitoring case, that is, by applying an appropriate "splitting" 
followed by a non-revealing strategy. The major difficulty is in generalizing the 
optimal strategy of the uninformed player. The problem is that the above 
described optimal strategy for player II is based on the statistics ~ù = ( 1 /  

n n k n) Em= 1 gn" This is the vector whose kth coordinate is ( l / n )  Ere= 1 Gsmtm which 
is observable by player II in the fuU monitoring case since he observes the 
moves (Sm, t m). In the general case ~ù is not observable by player II. Another 
optimal strategy is to be provided which is based only on the history hù = 
( b i , . . . ,  bh) available to player II at each stage. 

For any signal b E B, and any move t ~ T at any stage n, let p~ be the 
proportion of stages, up to stage n, in which b was received by player II 
following a move t, out of all stages in which move t was played, i.e. 

~b # ( m [ m ~ n ,  bm=b, tm =t) 

tb The vector Pn = (Ph)t~T,bEB, which is observable by player II after each stage 
n, is the basis for his strategy. There is also a vector payoff ~n which plays the 
role of the non-observable gn. We do not define it formally here; it is, roughly 
speaking, the worst vector payoff which is compatible (up to a small deviation 
6) with the observed vectors Pl,-  • •,  Ph. To this vector payoff one applies 
Blackwell's approachability theory. The definition of ~ù and the strategy of 
player II are such that [for the details see Kohlberg (1975a, 1975b) or MSZ 
(1993, eh. V)]: 
oThe  ~-payoff, i.e. (p ,  ~) ,  will be as close as we wish to Cav u(p). 
• The actual unobserved payoff will not exceed the observed ~:-payoff by more 

than an arbitrarily small e. 
• Player II plays each mixed move in a large block of stages so that, using (an 

appropriate version of) the strong law of large numbers, both the signals 
distribution and the (unobserved) payoffs are close to their means. 
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4. Incomplete information on two sides 

The case of incomplete information on two sides is that in which each of the 
two players initially has only partial information about the state of nature, 
represented by a general partition of K. We denote these partitions by K I and 
Kno (The case in which one of the partitions is {{1}, { 2 } , . .  , {#K}} is the 
case of incomplete information on one side treated in the previous section.) By 
common terminology, the elements of K ~ and K n are called the types of 
players I and II, respectively. The initial probability p can then be thought of 
as a joint prior probability distribution on the pairs of types. 

A special case is that in which the types of the two players are independent, 
i.e. there exist two probability vectors qi and qH on the elements of K I and K II, 
respectively, such that 

p(Kjt A K~ l) = I II I K I ii Œ KII  qjq~ VKjE  and K l 

No general results are available for the whole class of these games. Most of 
this section is devoted to the special case in which Qk is independent of k. This 
will be called the case of state independent signaling. That is, the information 
gained at each stage does not depend on the state of nature and it is 
determined completely by the players' moves at that stage. We omit the index 
k and denote the signaling mechanism by one transition probability from S x T 
t o A x B .  

4.1, Minmax and maxmin 

Let ~~~ and ~~II be the o--fields generated by K I and K II, respectively. A 
one-stage strategy x = (xk)kEK of player I in X K is non-revealing if it is y{i 
measurable and Es~ s xk(s)Qs«(b) is independent of k for all t in T and b in B. 
In words, for each column of Q, the marginal probability distribution on B 
induced on the letters of that column is independent of the stare of nature k. 
The set of non-revealing one-stage strategies of player I is denoted by NR I. The 
set of non-revealing one-stage strategies of player II is defined in a dual way 
and is denoted by NR II. These sets are obviously non-empty; they contain, for 
instance, the strategies constant on K. Denote by D(p) the one-stage game in 
which players I and II are restricted to strategies in NR I and NR n, respectively. 
Let  u(p) be the value of D(p).  

Remarks. (i) The above definition of non-revealing strategy differs formally 
from Definition 3.21 in that there we required the induced distribution on B 
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(resp. on A) to be constant in k only on K(p) ,  while here we require it over all 
of K. However ,  it is easily seen that in this case the two definitions lead to the 
same u(p). Since all results are formulated in terms of u(p), we prefer to use 
here the above introduced definitions which have the advantage of making NR I 
and NR n independent of p. 

(ii) Note that u(p) is continuous in p on the simplex tl(K) of prior 
probabilities. 

We need now to generalize the notion of concavity and convexity: 
A function on t l(K) is said to be concave with respect to I (abbreviated w.r.t. 

I) if for every p = (pk)keK it has a concave restriction on the subset /7~(p) 
defined by 

/7~(p) = {(«kp~)keKI« k t>0 Vk ,~]  «kp~ = 1 and (a~)~eK 

is Y(~-measurable}. 

Interpretation: Given the prior probability distribution p on K and given any 
one stage strategy of player I (which is hence Y•I-measurable), the conditional 
probability distribution on K given the move of player I is an element of 
H~(p). In other words, when updating the distribution on K in view of 
observations on player I's moves only (knowing his strategy), the range of the 
posterior distribution is H~(p). 

A function on t l(K) is said to be convex with respect to II (abbreviated w.r.t. 
II) if for every p = (P~)k~K it has a convex restriction on the subset IIII(p) 
defined by 

/ / i i ( p ) = (  k k flk flklpk flk (f l  P )kEKI I>0 Vk,~". = I  and ( )kE« 
k 

is Y/n-measurable}. 

Note  that for any p in A(K) both III(p) and /7H(p)  are convex and compact 
subsets of t l (K) containing p, which justify the above definitions of concavity 
w.r.t. I and convexity w.r.t. II. 

In the independent case it is more convenient to work not with p in 
/7 = t l (K) but rather with the product probability ( q I  qI I )  E At X tlII, where A I 
and A H are the simplices of probability distributions on the types of player I 
(i.e. the elements o f  K I) and of player II, respectively. In this ease, 

li~(q~, qn) = { q i )  × A,I a n d  / i n ( q , ,  q i I )  _- A I × ( q t I }  . 
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Thus,  concavity w.r.t. I means simply concavity in the first variable qi (for any 
value of q~t), and similarly for convexity w.r.t. II. 

Given any function g on zI(K), the concavification of g w.r.t. I (denoted by 
Cav~ g) is the (pointwise) minimal function which is concave w.r.t. I and is 
greater  than or equal to g on ZI(K). Similarly, the convexification of g w.r.t. II 
(denoted by Vex H g) is the (pointwise) minimal function which is convex w.r.t. 
II and is less than or equal to g on zI(K). 

Remark.  Note that in the special case of incomplete information on one side 
(K I = {{1}, { 2 } , . . ,  {#K}} and K II= {K}), Cav I g is the usual Cav g and 

Vexii g is g. 

Theorem 4.1. The minmax of  F~(p) exists and is given by 

Ü(p) =Vexii Cav I u ( p ) .  

Similarly, Cav I Vexii u(p) is the maxmin of  F~(p). 

Proof.  The heuristic arguments of the proof are as follows. 3 Proving that the 
minmax of F~(p) is Vexii Cav I u(p) consists of two parts. 

Part (i): Player II can guarantee Vex H Cav~ u(p). If player II ignores his 
I I  - I I K I k 

private informat ion  (1.e. K ~) and If for each K E K let q = EkcK~ p and 
take as payoffs A K = (1/q K ) Ek~~~ pkGk (keeping the same distribution on 
signals), we obtain a game F (q )  with incomplete information on one side, with 
K ~ as the set of states of nature, with initial probability distribution q on it, and 
player I informed. In this garne, denoting the value of the non-revealing garne 
by w(q) ,  player II can guarantee Cav w(q).  Now by our construction w(q) -- 
u (p )  and Cav w(q) = Cav~ u(p) .  Finally, by the dual of Proposition 3.6, player 
II can also guarantee the Vexii of this function, namely Vexii Cav I u(p) (by 
applying the appropriate splitting procedure established in Proposition 3.2). 

Part (ii): Player I can defend Vexii Cav I u(p). Any pair of strategies o- and z 
of the two players induces a martingale of posterior probability distributions 
{Pn}~=~, converging with probability one and hence having .a bounded total 
variation: E«,~[Ek~ K Z~_ 1 (p~ k 2 - -Ph - l )  ]" Given any strategy r of player II, 
define % as a non-revealing strategy of player I inducing a martingale with 
N-stage variation e-close to the supremum, over all his non-revealing 

3The first proóf of this result, for a less general model (namely "the independent case"), is due 
to Aumann, Maschler and Stearns (1968), who also gave the first example of such a game in which 
Cav Vex u(p) ¢ Vex Cav u(p) and hence has no value. 
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strategies, of the total variation. Denoting by NR~ the set of all non-revealing 
strategies of player I, this means that % and N are defined by 

IN 1 m k 2 E«o,~ E E (P~ pù_x) 
k ~ K  n=l 

> sup E~, [  ~2 ~~ (pnk--pk_l)2] - 
o - @ N R  I L k ~ K  = 

E . 

By playing this % against r up to stage N, player I "exhausts" almost all the 
variation of the martingale, i.e. player II will be playing "practically non- 
revealing" from that stage on. Thus, the situation is almost that of incomplete 
information on one side in which player I is informed and he can then 
guarantee Cav~ U(PN) (where PN is the posterior probability at stage N). 
Finally, since up to stage N player I is playing non-revealing, we have 
pN E IIn(p) and E ( p N ) = p  implying that the expected average payoff to 
player I is at least E(Cav t U(PN) ) >t Vex n Cav I u(p). [] 

It should be noted that the formal proof of the above outlined arguments is 
quite intricate and non-trivial mainly because in a general signaling structure 
"exhausting" the information from the other player's strategy usually involves 
revealing the player's own information. Another general difficulty in all proofs 
involving the posterior probabilities pm of a certain player is that they have to 
be assumed computable by the other player as well, which is usually not the 
case when there is general signaling. The way to overcome these difficulties is 
the following. Assume that we want to prove that player I can guarantee a 
certain payoff level. We perturb the garne to make it slightly, more dis- 
advantageous to hirn. This perturbation consists of not giving player I his signal 
according to Q unless he buys it for an amount C. Furthermore, he is restricted 
to use this option of buying information exactly with probability 6 > 0 while 
with probability (1 - 6) he gets no information whatsoever. Whenever he does 
receive non-trivial information, his signal is completely known to player II. 
This implies that y(n D Y£I m and hence pro, the posterior distribution of player 
I, is also computable by player II. If, despite the disadvantageous modi- 
fications, player I can guarantee a certain amount (for sufficiently small 6 ) then 
he can also certainly guarantee it in the original garne. 

A corollary of Theorem 4.1 is that the infinite garne F=(p) has a value if and 
only if 

Cav I Vexii u ( p )  =Vexi i  Cav I u ( p ) .  

An example of a game without a value is the following game with independent 
types and full monitoring in which there are two types of each player with the 
payoff matrices given by 
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«1--(°°° °1) «--(~0 ~~~0) - 1  1 1 - ' 0 0 ' 

0 0 0 ' - 1  - 1  " 

That is, the set of states is K = {11, 12, 21, 22} and the partitions of initial 
information are K I =  {11, 12}{21, 22} and K n =  {11, 21}{12,22}. If, for in- 
stance, the initial probability distributions on types are q~= q n =  (1/2, 1/2), 
then 4 v__=(1/2, 1/2) = Cav IVex n u(1/2, 1/2) = - 1 / 4  and 6~(1/2, 1/2) = 
Vex n Cav I u(1/2, 1/2) = 0. 

4.2. The asymptotic value limn__,= vn(p) 

The non-existence of a value for infinite games with incomplete information on 
both sides is a very important feature of these garnes which, among other 
things, exemplifies the difference between repeated games with incomplete 
information and stochastic games, in which the value always exists. Given this 
result, the next natural question is that of the existence of the asymptotic value 
limn_,~ v(p). Here the result is positive [Mertens and Zamir (1971-72)]: 

Theorem 4.2. v(p) = limù__,= vn(p) exists for all p ~ A(K) and is the unique 
solution to the following set of functional equations: 

(1) f(p) =Vex H max{u(p) ,  f (p)} ;  
(2) f(p) = Cav I min{u(p) ,  f (p)} .  

Proof. To outline the main arguments let v_(p) and 6(p) be, respectively, the 
lim inf and lim sup of {vn}2= 1. Both functions are Lipschitz, v_ is concave w.r.t. 
I and O is convex w.r.t. II. For any strategy of player II consider the following 
response strategy of player I (actually a sequence of strategies one for each 
finite garne): play optimally in D(pm) at stage m as long as U(Pm) >~v__(pm). As 
soon as U(pm)< o_(pm) play optimally in the remaining subgame (Pro is the 
posterior probability distribution on K at stage m). This strategy guarantees 
player I an expected average payoff arbitrarily close to the maximum of u(p)  
and v_(p), for n large enough, proving that: 

(1') _v(p) ~> Vexii max{u(p) ,  _v(p)}, 

and similarly: 

(2') t~p)  ~< Cav I min{u(p) ,  fr(p)}. 

4For the detailed computations see Mertens and Zamir (1971-72). 
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Actually, this argument shows that if player I can guarantee f(p) in Fn(p) 
for large enough n, he can also guarantee Vexii max{u(p) ,  f (p)} .  

Now, since •(p) is convex w.r.t. II, it follows from (2') that 

(2") 6(p) <~ VexIi Cav I min{u(p) ,  Õ(p)}. 

Next, when a player plays an optimal strategy in D(pm) at stage m, his 
expected payoff at that stage differs from U(pm) by at most a constant times 
]Pm+l --Pm]" Combining this with Proposition 3.8 one shows that any function 
f (p)  satisfying f (p)  <~ Vexii Cav I min{u(p) ,  f (p)}  must satisfy 

2~ ~/pk(1 _ph) 
( f(p)  -- vn(p)) + <~ R , (5.2) 

n 

for some constant R. In particular, letting n---~~, this implies f(p)<~v. It 
follows now from (2") that 6(p)«.v_(p) and hence vn(p) converge to, say, 
v(p) with the speed of convergence of 1/x/-B. The limit is the smallest solution 
to 

f(p) >i Cav I Vex H max{u(p) ,  f ( p ) } ,  

and the largest solution to 

f ( p )  ~< Vexi~ Cav I min{u(p),  f (p)}  . 

It is then the only simultaneous solution to both. Finally, since v(p) is both 
concave w.r.t. I and convex w.r.t. II, it must also satisfy (1) and (2), and is the 
only solution to this system. [] 

The above outline can be made a precise proof for the case of full 
monitoring. For the general signaling case, one has to use a sequence of 
6-perturbations of the game. This provides the same results as rar as the 
functional equations are concerned but with different bound on the speed of 
convergence for vn(p), namely [see MSZ (1993)] 

Ivn(p) - v(p)l < d [Z~~~ ~/p~(1 - pk)12J3 

for some constant C which depends only on the game. 

(5.3) 

4.3. Existence and uniqueness of the solution of the functional equations 

The pair of dual equations (1) and (2) that determine v(p) are of interest and 
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can be analyzed without reference to garne theoretic context and techniques. 
This was in fact done [see Mertens and Zamir (1977b), Sorin (1984b)] and the 
results can be summarized as follows: 

Denote  by ~(A) the space of all continuous functions on the simplex za, and 
by U the subset of c~(A) consisting of those functions that are "u-functions": 
values of D(p) ,  for some two-person, zero-sum game with incomplete informa- 
tion F(p)  with full monitoring. Denote by ~ the mapping from U to ~(A) 
defined by q~(u) = v = lim v n [using Theorem 4.2, this mapping is well defined 
since lim v n is the same for all garnes F(p)  having the same u-function]. Let 
q~(Z~) be endowed with the topology of uniform convergence. 

Proposition 4.3. (a) U is a vector lattice 5 and a vector algebra 6 which contains 
all the affine functions. 

(b) U is dense in C~(A). 

Proposition 4.4. The mapping q~: U---~ C~( A ) has a unique continuous extension 
q~: ~(  A)---~ C~( A). This extension is monotone and Lipschitz with constant 1 [or 
non-expansive, i.e. l i d ( f ) -  ~(g)ll ~ I I f -g l l ) ]  

Theorem 4.5. Consider the following functional inequalities and equations in 
which u, f and g denote arbitrary functions on the simplex A: 

(a) f / >  Cav I Vexrl max{u, f} ; 
(/3) f<~Vex U Cav I min{u, f}  ; 
(a ' )  g =Vexii max{u, g} ; 
(/3') g = Cav Imin{u,  g}.  

There exists a monotone non-expansive mapping ~ : C( A ) ~  C( A ) such that, for 
any u E ~(A): 

(i) ~o(u) is the smaUest f satisfying (a) and the largest f satisfying (/3), and 
thus in particular it is the only solution f of the system (a)-( /3) .  

(ii) p(u) is also the only solution g of  the system ( a ' ) - ( / 3 ' ) .  

Theorem 4.6 [An approximation procedure for ~o(u)]. Define v_ o = - %  Vo = 
+ %  and for n = l , 2 , . ,  let v_ù+ l = C a v t V e x  nmax{u,_vn} and V~+x= 
Vex n Cavimin{u , iT}. Then {_v~}~= x is monotonically increasing, {v~}~=l is 
monotonically decreasing and both sequences converge uniformly to q)(u). 

Note that v a (resp. vl) is the maxmin (resp. minmax) of F~(p) if u(p)  is the 
value of D(p) .  

5That is, an ordered vector space V such that the maximum and the minimum of two elements of 
V exist (in V). 

6That is, the product of two elements of U is in U. 
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4.4. The speed of  convergence of  vn(p) 

As mentioned in previous sections, the proofs for the convergence of vn(p) 
yield as a byproduct a bound for the speed of convergence: 1/x/-g for the full 
monitoring case [inequality (5.2)] and 1/~/-gn for the general signaling case 
[inequality (5.3)]. It turns out that these bounds are the best possible. In fact, 
games with these orders of speed of convergence can be found in the special 
case of incomplete information on one side. 

Example 4.7. Consider the following game in which k = {1, 2}, player I is 
informed of the value of k, with full monitoring and payoff matrices: 

- 3  ' - 2  2 ' 

and the prior probability distribution on K is p, 1 - p ) .  

For this garne it is easily verified that v~(p )~0 .  More precisely, we have 
[see Zamir (1971-72)] 

p(1 - p) <~ vn( p ) <~ ~/p(1 - p )  (5.4) 
x/B x/B ' 

for all n and for all p ~ [0, 1]. 
Remaining in the framework of the previous example we change the payoffs 

and signals to obtain: 

Example 4.8. Let K = {1,2}. The payoff matrices G 1 and G 2 and the 
signaling matrices Q1 and Q2 (to player lI) are given by 

and 

2 3 -11) , G 2 = ( ~  - 2  -22) 

~1~~ (a c~) 
b c " 

Here the signals (to player II) are deterministic (e.g. if top and middle are 
played the signal is c, etc.). Observe that deleting the left strategy of player II 
and changing the signaling matrices to provide full monitoring we obtain the 
game in Example 4.7. It is easily verified that the differences between the 
examples do not affect the value and in the garne of this example we still have 
va(p)-~0. However, in the present example player II is not informed of the 
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last move of his opponent unless he chooses his left strategy which is strictly 
dominated in terms of payoffs. In other words, player II has to pay 8 units 
whenever he wants to observe his opponent's move. Since observing the moves 
of the informed player is his only way to collect information about the state k, 
it is not surprising that his learning process will be slower and more costly than 
in Example 4.7. This yields a slower rate of convergence of vn to v=, [see Zamir 
(1973a)] 

p(1 - p)  « V ~  - P) 

for some positive constant a, for all n and for all p E [0, 1]. 
The speed of convergence of v~(p) can also be of lower order, such as 

(In n) /n ,  1/n. There are some partial results for classification of games 
according to those speeds [see Zamir (1971-72, 1973a)]. 

The special role o f  the normal distribution 

One of the interesting, and still quite puzzling results in the study of the speed 
of convergence of vn(p) is the appearance of the normal distribution. Consider 
again the garne in Example 4.7. It follows from inequality (5.4) that for any 
0 < p  < 1, ~/-~vù(p) is bounded between p(1 - p )  and ~/p(1 - p ) .  A natural 
question is then: Does this sequence converge? If it does, the limit is the 
eoefficient of the leading term (i.e. 1/x/-g) in the expansion of vù(p)  - v=(p) in 
fractional powers of n [recall that v=(p)=-0]. The sequence does turn out to 
converge and the limit is the well-known standard normal distribution function: 

Theorem 4.9. For all p E [0, 1], 

lim x/-g vn(p)  = 4)(P) , 

where 

1 e_(1/2)x ~ 6 ( p )  = 

Xp 

1 f e (1/2)X2dx=p . and 

In words: the limit o f  x/g vn(p)  is the standard normal density function 
evaluated at its p-quantile. 

The proof is rather technical [see Mertens and Zamir (1976b)] and does not 
give the intuition behind the result. It is based on a general result about the 
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variation of martingales in [0, 1] [Mertens and Zamir (1977a)]. Let ~fn= 
P 

{Xm}~= ~ denote an n-martingale bounded in [0, 1] with E ( X ~ ) = p ,  and let 
V(~p)  denote its L 1 variation, i.e. 

n - 1  

V(~Up) : ~ E(IXm+ 1 - Xm[ ) . 
m = l  

Then we have 

Theorem 4.10. (The L 1 variation of a bounded martingale). 

[ 1 ; ) ]  
lim sup ~ V(~ = ~b(p). 

It turns out that this is not an isolated incident for this specific example but 
rather part of a general phenomenon. Consider a game with incomplete 
information on one side and two states of nature, each with a 2 × 2 payoff 
matrix. If the error term is of the order of 1 / ~ ,  then x / -g[vn(p) -v~(p) ]  
tends (as n ~ ~) to an appropriately scaled normal density function [Mertens 
and Zamir (1990)]. This result was recently further generalized by De Meyer 
(1989) to any (finite) number of states of nature and any (finite) number of 
strategies for each player. 

5. Incomplete information on two sides: The symmetric case 

In the general situation of incomplete information on two sides, the case of 
state independent signaling treated in the previous section is the case with the 
most complete analysis. In this section we consider a special case in which 
signaling may be state dependent but it is symmetric in the sense that at each 
stage both players get the same signal. 

Formally, we are given a finite collection of S x T payoff matrices {G~}k~K 
with initial probability p in H = A(K), and the players have no initial informa- 
tion about the true state k except the prior distribution p. We denote by A the 
finite set of signals and by A k the signaling matrix for state k. Given k and a 
pair of moves (s, t), a signal a is announced to both players according to a 
given probability distribution Ask , on A. Assuming perfect recall means in this 
framework that for all k and k' in K, s ~ s'  o r t  ~ t' implies that As~ and Ask,'t, 
have disjoint support. 

Denoting the above described infinite game by F~(p) the result is: 

Theorem 5.1. F~(p) has a value. 
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Proof. To see the idea of the proof consider first the special case in which the 
signals are deterministic - the support of As~t consists of a single element of A 
(which will also be denoted by k Ast ). Define the set of non-revealing moves: 

NR = {(«, t) E S x T [ A s ~  = Ast, ' V k ,  k' E K} .  

That is, a non-revealing move is one which gives no additional information 
about the state k and hence after a non-revealing move, the players face the 
same (infinite) garne as the one they faced before that move. Whenever a move 
(s, t) ~ N R  is played and a certain signal a is announced, a non-empty subset of 
K is eliminated from the set of possible states, namely all states k for which 
Ask , ¢ a. The resulting situation is a game having the same data as the original 
one but with K replaced by a proper subset of itself, and the prior probability 
distribution on this smaller set is the normalization of its marginal according to 
p. Now if we prove our theorem by induction on # K ,  then by the induction 
hypothesis the game resulting from a move not in NR has a value which can be 
guaranteed by both players from that stage on. In other words, using stochastic 
games terminology, the result of such a move is an absorbing state with payoff 
equal to that value. 

Writing this formally, for each move (s, t) and for each signal a let 
pk'. Kst(a ) = {k E K I As~ = a} and pst(a) = Ek,eK,,(a ) Let pa be the probability 

distribution on K«(a) given by p~ = pk/p«(a). Finally, denote by vst(a ) the 
value of the garne obtained from F~(p) when replacing K by Kst(a ) and p by 
Pa" The garne F=(p) is equivalent to an S x T garne with absorbing states in 
which the payoffs are given by (x* indicates an absorbing state with payoff x): 

{ p G st if (s, t) E NR ,  
(r.ùe A p~,(a)v«(a))* otherwise. 

Since this garne (like any finite stochastic garne) has a value, the original 
garne F=(p) also has a value, completing the inductive step of the proof. [] 

Remark.  It is worth noting that historically the reduction of symmetric garnes 
of incomplete information to garnes with absorbing states was done before the 
latter were known to have a value [see Kohlberg and Zamir (1974)]. In fact, 
this focused attention on games with absorbing states and on the particular 
example of The big match treated by Blackwell and Ferguson (1968). The 
general solution of these garnes by Kohlberg (1974) then led to the solution of 
general stochastic games [Bewley and Kohlberg (1976a, 1976b, 1978), Mertens 
and Neyman (1981)]. 

In the general signaling case a "revealing" signal need not eliminate ele- 
ments of K as impossible but rather it leads to a new (posterior) probability 
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distribution Pl ¢ P on K. The value function is then a continuous function on 
= A(K) and its existence is proved by induetion on the dimension of this 

simplex [see Forges (1982) and MSZ (1993)]. 

6. Games with no signals 

We consider here a class of games which was introduced by Mertens and Zamir 
(1976a) under the name "repeated games without a recursive structure". These 
games consist again of a finite collection of S × T payoff matrices G~, k E K, 
with an initial probability distribution p on K. No player is informed of the 
initial state. The signals are defined by a family of matrices A k with determinis- 
tic entries (the extension to random signals is simple). Moreover, we assume 
that in each matrix A k there are only two possible signals; either both players 
receive a "white" (totally uninformative) signal (0) or the garne is completely 
revealed to both players. We can thus assume in the second case that the 
payoff is absorbing and equal to the value of the revealed game from this time 
on. It is then enough to define the strategies on the "white" histories; hence 
the name "garne with no signals". Note that unlike the garnes considered in the 
previous section, the signal 0 does not include the moves of the players. By 
Dalkey's theorem [Dalkey (1953)], each player may be assumed to remember 
his own move, and hence the "white" signal is actually asymmetric infor- 
mation. 

For a typical simple example of such games consider a game with two states, 
# S  = # T  = 2 and signaling matrices given by 

To see the special feature of these games assume that in our example the prior 
probability distribution is (1/2, 1/2), both players play at the first stage the 
mixed move (1/2, 1/2) which results in (top, right) and a white signal (an event 
of probability 3/4). Consequently, the posterior probability distribution of 
player I is (1/3, 2/3) while that of player II is (2/3, 1/3). The "state variable" 
of the problem can no longer be just a probability distribution on K. A larger 
and actually unbounded dimensional space is needed, and hence the name 
"games without a recursive structure". The above mentioned example was 
introduced and solved in Mertens and Zamir (1976a). The general case (i.e. 
general K and general size A k) was solved by Waternaux (1983a, 1983b). 

The analysis of these games brought about a new tool. The minmax and the 
maxmin of the game F~ are equal, respectively, to the values of two auxiliary 
one-shot garnes G and G in strategic form. The pure strategies in each of these 
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games mimic strategies in F~, and the payoffs are defined to be the correspond- 
ing asymptotic payoffs in F~ to the strategies which are mimicked. Fix p and 
write F for F~(p), and g(F)  and v__(F) for its minmax and maxmin, respec- 
tively. 

Formally, define the (pure) strategy sets X and Y, in the one-shot game G, 
by 

x =  U a ( s ' )  x ~s,«, x s ' ,  
S ' C S  

g =  U k ( T ' )  x N T\T" , 
T ' C T  

where N is the set of positive integers. Given x in X (resp. y in Y) we denote 
the corresponding subset S' by S x, the first component by a x, the second by c x 
and the third by s x. 

The heuristic representation of the strategies in G is given by the following 
strategies in Fa. For x in X, player I plays i.i.d, the mixed move a x E k(S x) 
except for c(x) = E s c~ exceptional moves; each move s which is not part of the 
mixed move a x (i.e. s5gS x) is played c~ times uniformly distributed before 
some large state N 0. From stage N O on, player I uses the (pure) move s x. 

A strategy y E Y of player II has a similar meaning with the difference that, 
after stage No, he continues playing i.i.d, his mixed move (with no exceptional 
moves). 

Note that these (behavioral) strategies are specified only for uninformative 
histories of the type 0 . . . 0 .  As soon as a signal other than 0 appears, both 
players know the true payoff matrix G k and the payoff stream in the super- 
garne is assumed to be "absorbed" at v(G ~) from that stage on. 

The payoffs in G when x and y are used is defined as the asymptotic payoff 
corresponding to these strategies in the finite game [for formal definitions see 
Waternaux (1983a, 1983b) or MSZ (1993)]. 

Note that the players are not symmetric in G since this game is designed to 
provide the upper value ~(F).  In a dual way we define the strategy sets X and 
Y for the garne _GG which provides the lower value u__(F). 

We first have: 

Proposition 6.1. The game G has a value v(G) and both players have 
e-optimal strategies. 

m 

Theorem 6.2. (i) ~(F)  exists and equals v(G). 
(ii) Player I1 has an e-optimal strategy which is a f inte mixture of  i.i.d. 

sequences, each of which is associated with a finite number of  exceptional 
moves, uniformly distributed before some stage N o. 

(iii) Dual results hold for v_(F). 
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It follows that the game under consideration has a value iff v ( G )  = v ( G ) ,  

which is generally not the case [examples of garnes where v ( G )  v a v ( G ) ,  were 
exhibited by Mertens and Zamir (1976a))]. In view of this, one is led to study 
lim v n and lim v A [Sorin (1989)]. Sorin's approach is similar to that adopted in 
the study of F~; that is, using more manageable auxiliary "approximating 
garnes" as follows. For each L in N we construct a game G L. The heuristic 
interpretation of G L is F~ played in L large blocks, during each of which both 
players use stationary strategies, except for some singular moves. The strategy 
sets in G L are X/~ and Y/~, where 

2 = U a ( S ' )  x N s's' , 
S ' C S  

I7" = U A(T')  X N r\r' 
T ' C T  

Again, the payoff to a pair of strategies is defined as the corresponding 
asymptotic average payoff (as the block size tends to ~). Then we have first: 

Proposition 6.3. G L has a value w L and both players  have • -op t ima l  strategies. 

Theorem 6.4. limos= v~ and limÆ_~~ w L exist and coincide. 

Then, a similar construction gives: 

Theorem 6.5. lim v A exists and limA_~ o v A = limL_~~ W L. 

7. A game with state dependent signaling 

For garnes with incomplete information on two sides, the general results so far 
are mainly those described in Section 4. In that section we considered the 
special case in which the signals provided to the players after each stage do not 
depend on the state k (but only on the player's moves). When the signals 
depend also on the states, we have results only for two special cases: the 
symmetric case (Section 5), and "games with no signals" (Section 6). 

In this section we briefly introduce another game with state dependent 
signals which was studied by Sorin (1985b). This work illustrates an example of 
a game at the forefront of the research in games with incomplete information. 
It is not only strongly related to stochastic garnes (as were the games studied in 
the previous two sections), hut it involves what may be called stochastic games  
with incomple te  in format ion.  

Consider the class of games with lack of information on both sides (and state 
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dependent signaling) given by the following data: K =  {0, 1} 2 :  L x M [we 
write k = (l, m)], and the probability on K is the product p ® q of its marginals. 

At  stage 0, player I is informed about l and player II about m. The payoffs 
are defined by 2 x 2 payoffs matrices G tm, and the signaling matrices are given 
by 

AI~:(~ ~), A10:(c~ e), 
A°l=(c" i)' A°°:(~ J) 

The special features of this information structure to be noted are: 
(a) The signals include the moves. 
(b) As soon as player I plays Top, the " type" of one of the players is 

revealed: l if player II played Left at that stage, m if he played Right. 
Denoting this garne by F ( p ,  q), we note first that as soon as plpOqlqO = 0, it 

is reduced to a game with incomplete information on one side (treated in 
Section 2). In particular it has a value v (p ,  q). 

Sorin has given explicit expressions for the minmax and maxmin of these 
garnes, which will not be given here. We just mention that these also rely on a 
family of auxiliary garnes which are of the form: 

\a21 a22/ , = b21 b22 , P = (pl,  pO) . 

That is, the auxiliary garnes are repeated games of incomplete information 
on one side in which the games G 1 and G ° are stochastic garnes with absorbing 
states (more specifically, "Big match" type games). In fact, when studying the 
game under consideration Sorin found the minmax and the maxmin of this 
family of games and of the dual family in which the absorbing states are in the 
columns, i.e. in the control of the uninformed player: 

G 1 la;1 a12) G 0 { b l l  b12~ 
~-. ~a21 a22/I '  : ~b21 b22] » P = (pl,  pO). 

The analysis of these garnes, which is beyond the scope of this review, is 
rather deep and involves new ideas and tools developed specifically for this 
purpose. 

8. Miscellaneous results 

In this section we mention some interesting results which somehow remained 
isolated and were not followed by further research. 



148 S. Zamir 

8.1. Discounted repeated games with incomplete information 

Mayberry  (1967) studied a game with incomplete information on one side, full 
monitoring, and A-discounted payoff. Specifically, he considered the garne in 
Example 1.1. Denoting this garne by FA(p) and its value by va(p), he first 
derived the following formula: 

va(p) = max{A min(ps ,  p' t ' )  + (1 - A)(Sv~(ps/g) + S'va(ps' /g')} . (5.5) 

Here ,  for x E [0, 1], x '  stands for (1 - x), and (s, t) E X 2 is the pair of mixed 
moves used by player I in one stage [that is, play (s, 1 -  s) in game G 1 and 
(t, 1 - t) in game G;] ,  and $-= ps + p't.  

Using this formula and the concavity of va, it can be proved that the value of 
v a at any rational p = n/m <~ 1/2 is given in terms of v a at some other rational 
numbers q with smaller denominator.  

By differentiating (5.5) we obtain (letting v~ = dvJdp) :  

v'A(p) = (1 - A)(1 - p / p ' ) v ' A ( p / p '  ) - (1 - A)vA(p/p' ) . (5.6) 

From this it follows (using the symmetry of va) that for 2/3 < A< 1, the 
function has a left derivative and a right derivative at p = 1/2, but they are not 
equal. 

By induction on the denominator,  one can then prove that for any rational p,  
the sequence of derivatives obtained by repeated use of equation (5.6) leads to 
an expression for v'~(p) in terms of v~(0), v~(1) and v~(1/2). 

Combining the last two results we conclude, for 2/3 < A < 1, that although v A 
is concave, it has discontinuous derivatives at every rational point. 

8.2. Sequential games 

Sequential games with incomplete information were first studied by Ponssard in 
a series of papers [Ponssard (1975a, 1975b, 1976)] and also by Ponssard and 
Zamir  (1973), Ponssard and Sorin (1980a, 1980b) and Sorin (1979). The basic 
model  is the following. The players' type sets are K = {1 . . . .  , L} for player I 
and R = { 1 , . . . ,  M} for player Il. For each pair of types (k, r) the correspond- 
ing payoff matrix is G ~~ = (Gk~~ For each p E P = A(K) and q @ Q = \ s t  ] s E S , t Œ T "  

A(R),  the n-stage sequential garne Fù(p, q) is played as follows: 
• At  stage 0, a chance move chooses independently k according to p and r 

according to q. Player I is informed of (his type) k and player II is informed 
of r. 
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• At  stage m (m = 1 , . . . ,  n), knowing h m = (sl, t 1 . . . .  , Sm_i, tm_l) , the his- 
tory of the moves up to that stage, player I chooses s m in S. This is told to 
player II who then, knowing h "  = (sl, ta, . . . , Sm_i, tm_ 1, Sm), chooses t m. 

n kr 
• At  the end of n stages player II pays player I the amount ( l / n )  Zm=a G~mtù, 

Let v~(p,  q) denote the value of Fn(p, q) and v (p ,  q) = limù__,~ vù(p,  q). 
Clearly, by normalizing the strategies of player II at each stage, this is shown to 
be a special case of the simultaneous repeated games discussed in Section 3, in 
which the payoff matrices are of size ISI x ITI Isl (a move of player II is an 
element of T depending on the choice of player I at that stage). However, it 
turns out that stronger results hold for this case because of its special structure. 

The (behavior) strategies o- n and % of Fn(p, q) are defined in the natural way 
as sequences of mappings from the player's type and available history to the set 
of his mixed moves [A(S) and A(T) ,  respectively]. The non-revealing game is 
again the one-shot sequential game with payoff matrix G(p ,  q) = ~k« pkq rGk'r, 
and its value is therefore 

u(p, q) = max min ~2 pkqrGkr. 
k,r 

8.2.1. Incomplete information on one side 

For incomplete information on the side of player II (the minimizer and the 
second to move), it was proved by Ponssard and Zamir (1973) that: 

Proposition 8.1. For all p ~ P ,  va(p) = Cavp u( p).  

Using the monotonicity of vn(p)  (Proposition 3.19), one has: 

Corollary 8.2. % ( p )  = Cavp u(p) ,  for all n and all p E P. Consequently 
limn~~ vl(P) = Cavp u(p) .  

8.2.2. Incomplete information on two sides 

In this case one can prove a recursive formula for vn(p, q) which is much 
simpler than the corresponding formula for the general simultaneous move 
game: 

1 m i n / ~  k r.,~kr } Vn+l(P' q ) -  n + 1 Cavp max Vexq P q ~st + nvn(p ,  q) . 
t I.k, r 

Using this, it was proved by Sorin (1979) that for all p and all q the sequence 
vn(p,  q) is increasing (and therefore it converges), the speed of convergence is 
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bounded by 

C 
0 «- v(p, q ) - v n ( p ,  q)<~- 

n 

for some positive constant C, and that this is the best bound. 

8.3. A game with incomplete information played by "non-Bayesian players" 

Megiddo (1980) considered a game with incomplete information on one side in 
which there is no given prior on the states of nature. More specifically, the 
uninformed player II knows only the set of his moves (columns) and is told his 
payoff at each stage. Megiddo provided an algorithm to construct an optimal 
strategy for the uninformed "non-Bayesian" player. Basically the algorithm 
considered a dense grid of games with a given number of columns, and tested 
statistically the performance of each strategy which is optimal in orte of these 
games. 

Looking carefully at the problem, it turns out that this result can be derived 
as a consequence of the general results in Section 2 along the following lines 
[Mertens (1987)]. 

(a) Assume first that the unknown payoff matrix is an element of a finite set 
(Gk)keK of matrices having the same set J of columns and any (finite or 
infinite) number of rows. 

(b) Since player II is told his payoff at each stage, any non-revealing strategy 
o-E NR(p) yields the same distribution of payoffs, and a fortiori the same 
expected payoff, in all garnes G k in the support of p, for all columns j ~ J. It 
follows that u(p)  is constant in the interior of each facet of the simplex A(K). 
Since u is upper-semicontinuous, this implies that Cav u is linear in p on A(K). 

(c) Since Cav u(p) is linear, player II has a strategy (in F=) which guaran- 
tees v(G k) if the true state is k, for all k. In fact, any optimal strategy ~-(p) of 
player II at some interior point p has this property [otherwise player I could 
obtain against ~-(p) strictly more than v(G k°) at some state k 0 and, by playing 
optimally at each other state, he could ger strictly more than 2 k p%(G ~) = 
Cav u(p), contradicting the optimality of ~-(p)]. 

(d) These results are valid not only for a finite state set K but also for a 
countable K. In particular, if we consider the countable set ~ of all finite 
matrices with J columns and rational entries, it foUows that if the true garne is 
in ~, then player II has a strategy ~.r which guarantees its value. To extend this 
to any real entries, we perform the following approximation procedure. 

(e) For any • > 0 let ~-~ be the strategy of player II which consists of playing 
~-r while "rationalizing" the histories as follows: if the announced payoff (at 
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some stage) is a,  replace it by a rational number r («)  t> a such that r (a )  - a < 
• . Clearly, for any play of the game induced by r~ there is a G" E ~ with 
IIG'- GII < • such that if it was the true garne instead of G, it would have 
induced the same play when player II is using r ~, and hence the expected 
payoff  would be at most v ( G ' ) ,  which is at most v ( G )  + e. 

We conclude that for any • > 0 player II has a strategy r~ which guarantees 
v ( G )  + e. 

(f) Finally, choose a sequence {•n}~=l decreasing to 0 and play successively 
r r  in large blocks with appropriately increasing sizes so that the resulting 
strategy guarantees v ( G )  + e n for all n and hence it guarantees v ( G ) .  [] 

The main idea of this argument is that the announcement of the payoffs 
induces the linearity of Cav u, which in turn implies the existence of a strategy 
for the uninformed player which is uniformly optimal for all prior distributions 
on K. This is the sense in which the player is non-Bayesian, since he does not 
need any prior in order to play his optimal strategy. 

8.4. A stochastic game with signals 

Ferguson, Shapley and Weber (1970) considered the following garne which was 
the first t reated example of a stochastic garne with incomplete information. 

We are given two states of nature with the following payoff matrices.: 

100), G2=(~ Ò). G I = ( 1  

The transition probability from state 1 to state 2 is a constant (1 - vr) E (0, 1), 
independent  of the moves. The reverse transition, from state 2 to state 1, takes 
place if and only if player I plays Bottom. Player I knows everything while 
player II is told only the times of the transition from 2 to 1. 

Let  us consider FA, the discounted game starting from k = 1, and write v A for 
its value. It can be shown that 

[1 - (1 - a)~][1 - vr(1 - a)] - a{[1 - 2[vr(1 - A)] k} 

va = [1 - (1 - a)k+l][1 - 7r(1 - a)] + 2(1 - a)k+lvrea 

Lett ing 

r(1 - vr) - ( 1 -  27r r) 
v° = [i+mo va = (r + 1)(1 - vr) + 2 7 r  r 

where r is the positive integer satisfying v r r - l >  1/2, and vrr<~l/2,  orte can 
then find optimal strategies o-* and r* for the two players such that for each •, 



152 S. Zamir 

e a c h  p l a y e r  (with  his o p t i m a l  s t r a t egy) ,  can  « - g u a r a n t e e  v 0 in  all  F A wi th  
suf f ic ien t ly  smal l  A [for de ta i l s  see M S Z  (1993)] .  

Bibliography 

Aumann, R.J. (1964) 'Mixed and behavior strategies in infinite extensive garnes', in: M. Dresher 
et al., eds., Advances in garne theory, Annals of Mathematical Studies, Vol. 52: Princeton: 
Princeton University Press, pp. 627-650. 

Aumann, R.J. (1985) 'Repeated games', in: G.R. Feiwel, ed., Issues in contemporary micro- 
economics and welfare. New York: Macmillan, pp. 109-242. 

Aumann, R.J. and M. Maschler (1966) Game-theoretic aspeets ofgradual disarmament, Reports to 
the U.S. Arms Control and Disarmament Agency, ST-80, Chapter V, pp. 1-55. 

Aumann, R.J. and M. Maschler (1967) Repeated games with incomplete information: A survey of 
recent results, Reports to the U.S. Arms Control and Disarmament Agency, ST-116, Chapter 
III, pp. 287-403. 

Aumann, R.J. and M. Maschler (1968) Repeated garnes of ineomplete information: The zero-sum 
extensive case, Reports to the U.S. Arms Control and Disarmament Agency ST-143, Chapter II, 
pp. 37-116. 

Aumann, R.J., M. Maschler and R. Stearns (1968) Repeated games ofincomplete information: An 
approach to the nonzero sum case, Reports to the U.S. Arms Control and Disarmament Agency, 
ST-143, Chapter IV, pp. 117-216. 

Bewley, T. and E. Kohlberg (1976a) 'The asymptotic theory of stoehastic games', Mathematics of 
Operations Researeh, 1: 197-208. 

Bewley, T. and E. Kohlberg (1976b) 'The asymptotic solution of a recursion equation occurring in 
stochastic garnes', Mathematics of Operations Research, 1: 321-336. 

Bewley, T. and E. Kohlberg (1978) 'On stochastic garnes with stationary optimal strategies', 
Mathematics of Operations Research, 3: 104-125. 

Blackwell, D. (1956) 'An analog of the minmax theorem for vector payoffs', Pacific Journal of 
Mathematics, 65: 1-8. 

Blaekwell, D. and T.S. Ferguson (1968) 'The big match', Annals of Mathematical Statistics, 39: 
159-163. 

Dalkey, N. (1953) 'Equivalence of information patterns and essentially determinate garnes', in: 
H.W. Kuhn and A.W. Tucker, eds., Contributions to the theory of games, Vol. II, Annals of 
Mathematics Study, 28: Princeton: Princeton University Press, pp. 217-243. 

Ferguson, T.S., L.S. Shapley and R. Weber (1970) 'A stochastic garne with incomplete informa- 
tion'. Mimeograph. 

Forges, F. (1982) 'Infinitely repeated garnes of incomplete information: symmetric case with 
random signals', International Journal of Garne Theory, 11: 203-213. 

Harsanyi, J.C. (1967-68) 'Garnes of incomplete information played by Bayesian players. Parts I, 
II, III', Management Science, 14: 159-182, 320-334, 486-502. 

Kohlberg, E. (1974) 'Repeated garnes with absorbing states', Annals of Statistics, 2: 724-738. 
Kohlberg, E. (1975a) 'Optimal strategies in repeated games with incomplete information', 

International Journal of Garne Theory, 4: 7-24. 
Kohlberg, E. (1975b) 'The information revealed in infinitely-repeated games of incomplete 

information', International Journal of Game Theory, 4: 57-59. 
Kohlberg, E. and S. Zamir (1974) 'Repeated garnes of incomplete information: the symmetric 

case', Annals of Statistics, 2: 1040-1041. 
Lehrer, E. (1987) 'A note on the monotonicity of vA', Economic Letters, 23: 341-342. 
Mayberry, J.-P. (1967) 'Discounted repeated garnes with incomplete information', Mathematica, 

ST-116, Ch. V, pp. 435-461. 
Megiddo, N. (1980) 'On repeated garnes with incomplete information played by non-Bayesian 

players', International Journal of Game Theory, 9: 157-167. 



Ch. 5: Repeated Games of Incomplete Information: Zero-sum 153 

Mertens, J.-F. (1972) 'The value of two-person zero-sum repeated games: The extensive case', 
International Journal of Game Theory, 1: 217-225. 

Mertens, J.-F. (1973) 'A note on "the value of two-person zero-sum repeated games: The 
extensive case"' ,  International Journal of Game Theory, 9: 189-190. 

Mertens, J.-F. (1982) 'Repeated garnes: An overview of the zero-sum case', in: W. Hildenbrand, 
ed., Advances in economic theory, Cambridge: Cambridge University Press. 

Mertens, J.-F. (1986) 'The minmax theorem for u.s.c.-l.s.c, payoff functions', International Journal 
of Garne Theory, 10(2): 53-56. 

Mertens, J.-F. (1987) 'Repeated garnes', Proceedings of the International Congress of Mathemati- 
cians (Berkeley), 1986, American Mathematical Society. pp. 1528-1577. 

Mertens, J.-F. and A. Neyman (1981) 'Stochastic garnes', International JournaI of Garne Theory, 
10(2): 53-56. 

Mertens, J.-F. and A. Neyman (1982) 'Stochastic games have a value', Proceedings of the National 
Academy of Sciences of the U.S.A., 79: 2145-2146. 

Mertens, J.-F. and S. Zamir (1971-72) 'The value of two-person zero-sum repeated games with 
lack of information on both sides', International Journal of Garne Theory, 1: 39-64. 

Mertens, J.-F. and S. Zamir (1976a) 'On a repeated game without a recursive structure', 
International Journal of Game Theory, 5: 173-182. 

Mertens, J.-F. and S. Zamir (1976b) 'The normal distribution and repeated games', International 
Journal of Game Theory, 5: 187-197. 

Mertens, J.-F. and S. Zamir (1977a) 'The maximal variation of a bounded martingale', lsrael 
Journal of Mathematics, 27: 252-276. 

Mertens, J.-F. and S. Zamir (1977b) 'A duality theorem on a pair of simultaneous functional 
equations', Journal of Mathematical Analysis and Application, 60: 550-558. 

Mertens, J.-F. and S. Zamir (1980) 'Minmax and Maxmin of repeated games with incomplete 
information', International Journal of Garne Theory, 9: 201-215. 

Mertens, J.-F. and S. Zamir (1981) 'Incomplete information games with transcendental values', 
Mathematics of Operations Research, 6: 313-318. 

Mertens, J.-F. and S. Zamir (1985) 'Formulation of Bayesian analysis for garnes with incomplete 
information', International JournaI of Garne Theory, 14: 1-29. 

Mertens, J.-F. and S. Zamir (1990) 'Incomplete information games and the normal distribution', 
mimeograph. 

Mertens, J.-F., S. Sorin and S. Zamir (1993) Repeated garnes, forthcoming. 
De Meyer, B. (1989) 'Repeated garnes and multidimensional normal distribution', CORE Discus- 

sion Paper 89, Université Catholique de Louvain, Louvain-la-Neuve, Belgium. 
Ponssard, J.-P. (1975a) 'Zero-sum games with "almost" perfect information', Management Science, 

21: 794-805. 
Ponssard, J.-P. (1975b) 'A note on the L-P formulation of zero-sum sequential games with 

incomplete information', International Journal of Garne Theory, 4 : 1 - 5  
Ponssard, J.-P. (1976) 'On the subject of nonoptimal play in zero-sum extensive garnes: The trap 

phenomenon' ,  International Journal of Game Theory, 5: 107-115. 
Ponssard, J.-P. and S. Sorin (1980a) 'The LP formulation of finite zero-sum games with incomplete 

information', International Journal of Garne Theory, 9: 99-105. 
Ponssard, J.-P. and S. Sorin (1980b) 'Some results on zero-sum games with incomplete informa- 

tion: The dependent case', International Journal of Garne Theory, 9: 233-245. 
Ponssard, J.-P. and S. Sorin (1982) 'Optimal behavioral strategies in zero-sum-games with almost 

perfect information', Mathematics of Operations Research, 7: 14-31. 
Ponssard, J.-P. and S. Zamir (1973) 'Zero-sum sequential games with incomplete information', 

International Journal of Game Theory, 2: 99-107. 
Sorin, S. (1979) 'A note on the value of zero-sum sequential repeated garnes with incomplete 

information', International Journal of Garne Theory, 8: 217-223. 
Sorin, S. (1980) 'An introduction to two-person zero-sum repeated garnes with incomplete 

information', IMSS-Economics, Stanford University, TR 312. French version in Cahiers du 
Groupe de Mathématiques Economiques, 1: Paris (1979). 

Sorin, S. (1984a) '"Big match" with lack of information on one side (part I)', InternationalJournal 
of  Garne Theory, 13: 201-255. 



154 ~ S. Zamir 

Sorin, S. (1984b) 'On a pair of simultaneous functional equations', Journal of Mathematical 
Analysis and Applications, 98(1): 296-303. 

Sorin, S. (1985a) '"Big match" with lack of information on one side (part II)', International 
Journal of Garne Theory, 14: 173-204. 

Sorin, S. (1985b) 'On a repeated garne with state dependent signaling matrices', International 
Journal of Game Theory, 14: 249-272. 

Sorin, S. (1986) 'On repeated games with complete information', Mathematics of Operations 
Research, 11: 147-160. 

Sorin, S. (1989) 'On repeated garnes without a recursive structure: Existence of lim vn', Interna- 
tional Journal of Garne Theory, 18: 45-55. 

Sorin, S. and S. Zamir (1985) 'A 2-person garne with lack of information on 1 ½ sides', Mathematics 
of Operations Research, 10: 17-23. 

Sorin, S. and S. Zamir (1991) '"Big match" with lack of information on one side (III)', in: T.E.S. 
Raghavan, T.S. Ferguson, T. Parthasarthy and O.J. Vrieze, eds., Stochastic games and related 
topics in honor of Professor L.S. Shapley. Kluwer Academic Publishers, pp. 101-112. 

Stearns, R.E. (1967) 'A formal information concept for games with incomplete information', 
Mathematica, ST-116, Ch. IV, pp. 405-433. 

Waternaux, C. (1983a) 'Solution for a class of garnes without recursive structure', International 
Journal of Garne Theory, 12: 129-160. 

Waternaux, C. (1983b) 'Minmax and maxmin of repeated garnes without a recursive structure', 
Core Discussion Paper 8313, Université Catholique de Louvain, Louvain-la-Neuve, Belgium, to 
appear in International Journal of Garne Theory. 

Zamir, S. (1971-72) 'On the relation between finitely and infinitely repeated garnes with 
incomplete information', International Journal of Game Theory, 1: 179-198. 

Zamir, S. (1973a) 'On repeated games with general information function', International Journal of 
Game Theory, 2: 215-229. 

Zamir, S. (1973b) 'On the notion of value for garnes with infinitely many stages', Annals of 
Statistics, 1: 791-796. 



Chapter 6 

REPEATED GAMES 
NON-ZERO-SUM 

OF INCOMPLETE 

FRAN~OISE FORGES 

C. O.R.E., Université Catholique de Louvain 

INFORMATION: 

Contents 

1. Introduction 
2. Basic definitions 
3. Nash equilibria 

3.1. The "standard one-sided information case" 

3.2. Garnes with known own payoffs 

3.3. Existence 

4. Communication equilibria 
References 

156 
157 
160 
160 
165 
168 
169 
176 

Handbook of Garne Theory, Volume i, Edited by R.J. Aumann and S. Hart 
© Elsevier Science Publishers B.V., 1992. All rights reserved 



156 F. Forges 

1. Introduction 

Non-zero-sum infinitely repeated garnes with incomplete information are an 
appropriate model to analyze durable relationships among individuals whose 
information is not symmetric. Two particular cases have been the subject of the 
two previous chapters. The study of infinitely repeated games of complete 
information (Chapter 4) shows that cooperation may result from the threat of 
punishment in the future. Repetition appears as an enforcement mechanism. In 
zero-sum infinitely repeated games of incomplete information (Chapter 5), the 
problems of strategic information transmission can be investigated on their 
own, independently of any cooperation effect. Repetition appears as a sig- 
nalling mechanism. The results in the zero-sum case will be used explicitly in 
the non-zero-sum case. Indeed, in the tradition of the Folk theorem, the 
characterization of equilibria will make use of individual rationality conditions. 

In this chapter the repetition of the garne will have the effects of an 
enforcement mechanism and of a signalling mechanism at the same time. As in 
the zero-sum case, the pioneering work has been done in the Mathematica 
papers [Aumann, Maschler and Stearns (1968)]. Most results available at the 
moment concern a particular model: there are two players, exactly one of 
whom is completely informed of the situation (this is called "lack of informa- 
tion on one side"), with each player observing the actions of the other after 
every stage ("full monitoring"). Nash equilibria have been studied, as have 
extensions of this solution concept, like the correlated equilibria introduced by 
Aumann (1974) (see a forthcoming volume). 

The model and its basic properties are presented in Section 2. The main 
result of Section 3 (presented in Subsection 3.1) is a characterization of Nash 
equilibria in infinitely repeated garnes with lack of information on one side 
[Hart (1985), Aumann and Hart (1986)]; the results of the zero-sum case are 
used to evaluate the individually rational levels of each player. Subsection 3.2 
deals with a special class of garnes, referred to as garnes "with known own 
payoffs". In these, equilibria are characterized in a very transparent way. The 
model provides insights for the study of repeated games of complete informa- 
tion [Shalev (1988), Koren (1988), Israeli (1989)]. The main open question in 
the present context is the existence of equilibrium. It is treated in Subsection 
3.3. The only "general" statement applies to repeated games with lack of 
information on one side and two states of nature [Sorin (1983)]. 

In Section 4, communication equilibria (which include correlated equilibria 
as a particular case) are studied. The main theme there is that an infinitely 
repeated garne contains enough communication possibilities to obtain the 
equivalence of different solution concepts. At best, one could hope that the 
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observation of private correlated signals before the beginning of the repeated 
garne (as in Aumann's  correlated equilibrium), together with the structure of 
the repeated garne itself, would be sufficient to obtain the effect of any 
coordinating device, acting at every stage of the garne (preserving the non- 
cooperative character). Results in this direction have been obtained in Forges 
(1985, 1988). In relating this chapter to the previous one, it is worth mention- 
ing that to obtain the appropriate individual rationality conditions in the 
context of correlated equilibria of infinitely repeated games with lack of 
information on one side, one is led to use the theory of infinitely repeated 
zero-sum garnes with lack of information on both sides. This shows again that a 
deep knowledge of the zero-sum case may be necessary before starting the 
study of the non-zero-sum case. 

2. Basic definitions 

Let us introduce the following terminology: 

K = finite set of states of nature (or of types of player 1): 
p = probability distribution on K; p E A K, the unit simplex of ~/~; it is 

assumed that pk > 0, Vk Œ K; 
I, J = finite sets of actions of player 1 and player 2, respectively (containing 

at least two elements, i.e. l/I, IJI/>2); 
A k, B k=  payoff matrices (of dimensions II I × IJ]) for player 1 and player 2, 

respectively, in state k ~ K. 

The two-person infinitely repeated garne F ( p )  is described as follows. Once 
k is chosen according to p,  it is told to player 1 only and kept fixed throughout 
the garne; then at every stage t (t = 1, 2 , . . . ) ,  player 1 and player 2 simulta- 
neously make a move i t in I and Jt in J, respectively. The pair of moves ( i ,  j,) 
[but not the stage payoffs Ak(it, Jt), Bk(it, Jt)] is announced to both players. 

Strategies are defined in the natural way [as in the zero-sum case, see 
Chapter 5; see also Aumann (1964)]. In the present context, it is convenient to 
define a workable payoff function, for instance using the limit of means 
criterion and a Banach limit L (in that respect, the approach is similar in 
repeated games of complete information, see Chapter 4). Given a sequence of 
moves (it, Jt)t~>l, the average payoffs for the n first stages are 

k 1 ~  k 
a n = - -  Ak(i,, Jt) , aù = (aù)~~K , 

F/ t =  1 

b~ 1 ~ Bk(it, it) bn k 
= _ , = ( b ù ) k ~ l C .  

F/ t = l  
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The prior probability distribution p on K and a pair of strategies (o-, ~-) in F (p )  
induce a probability distribution on these average payoffs, with expectation 
denoted E p  . . . .  . Using a transparent notation, write o-= (o.k)keK. The payoff 
associated with (o., ~-) is (a(o., ~-), il(o., ~-)), where a(o., ~-) is player 1 's limit 
expected vector payoff and/3(o-, ~-) is player 2's limit expected payoff: 

a(o-, T) = (a*(o., T))keK, ak(o., T) = L[Ep .... (a~lk)l, 

fi(o5 ~')= L[Ep (b:)] = Z k E k p L [ ,  .... (bolk)], 
k ~ K  

where K stands for the state of nature as a random variable. Observe that the 
conditional expectation given k corresponds to the probability distribution 
induced by o -k and r. It is necessary to refer to the conditional expected payoff 
of player 1, given type k, to express individual rationality or incentive 
compatibility conditions. 

Let y be a constant bounding the payoffs (3' = 
maxe,i,j{IAk( i, ])1, IB~( i, ])l}) and let E r = [-3', 3']. Throughout the chapter, 
~~ " 13) is used for a payoff in N r × N r , state variables of the form (p ,  a, fi) E 

K × E r × E r have also to be considered, with (a, /3)  as the payoff in F(p) .  
K Let F C N~ × E r be the set of feasible vector payoffs in the one-shot game, 

using a correlated strategy (i.e. a joint distribution over I × J):  

F = co{((Ak(i, ]))keK, (Bh( i, J))eeK): (i, ]) E I × J } ,  

where co denotes the convex huU. Let 7r ~ A I × J .  A typical element of F is 
defined by 

A~(~) = ~ ~ ~r~]A (l, j ) ,  B~'(~r) = ~ù ~~]Bk(i, j ) .  (1) 
ù 

i ,] z, l  

Let a(p) [resp. b(p)] be the value for player 1 (resp. player 2) of the 
one-shot garne with payoff matrix p • A = E k pkAk (resp. p"  B). 

k K A vector payoff x = (x)keK E E r is individually rational for player 1 in F(p) 
if 

q.x>~a(q) ,  V q ~  A K. (2) 

This defnit ion is justified by Blackwell's approachability theorem [Blackwell 
(1956)]. Consider an infinitely repeated zero-sum game with vector payoffs, 
described by matrices C k, k E K. A set S C ~K is said to be "approachable" by 
the minimizing player if he can force the other player's payoff to belong to S. 
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By Blackwell's characterization, a closed convex set S is approachable if and 
only if 

max(q.s)>lc(q) ,  Vq@ A x ,  

where c(q) is the value of the expected one-shot game with payoff matrix 
q • C = S~ qkC~. (2) is thus a necessary and sufficient condition for player 2 to 
have a strategy ~- in F (p )  such that for every k E K, the payoff of player 1 of 
type k does not exceed x ~, whatever his strategy (see also Chapter 5, Section 
2.) 

K Let X be the set of all vector payoffs x ~ Rv such that (2) is satisfied. X can 
be interpreted as a set of punishments of player 2 against player 1. 

In an analogous way, a payoff/3 E R~ is individually rational for player 2 in 
F( p) if 

/3 >~vex b(p) (3) 

where vex b is the greatest convex function on A/~ below b. 
Like (2), this is justified by the results of Aumann and Maschler (1966) (see 

Chapter 5); the value of the zero-sum infinitely repeated garne with payoff 
matrices - B  h to player 1 (the informed player) is c a v ( - b ( p ) ) = - v e x  b(p). 
Hence (3) is a necessary and sufficient condition for player 1 to have a strategy 
o- in F (p )  such that player 2's expected payoff does not exceed/3, no matter 
what his strategy is. 

The strategy o- uses player l 's  information and depends on p. In the 
development of the chapter, it will be useful to know punishments that player 1 
can apply against player 2, whatever the probability distribution of the latter 
over K. An analog of the set X above can be introduced. 

Let  4) be the set of all mappings ~p: Ak--~ N r which are convex, Lipschitz of 
constant 3' and such that q~/> b. 

From Blackwell's theorem mentioned earlier q~ E @ is a necessary and 
sufficient condition for the set 

K {yCR~:q.y<~q~(q)  VqŒA K} 

of vector payoffs of player 2 to be approachable by player 1 in the garne with 
vector payoff matrix (B~)~~K. If ~p E üb, player I has a non-revealing strategy 
in F(p) such that for every q E zl K, the expected payoff of player 2 does not 
exceed q~(q), no matter what he does. 4) can thus be interpreted as a set of 
non-revealing punishments by player 1 against player 2. Obviously, player 1 
can use his information by choosing ~p as a function of the state of nature. The 
important property is that punishments in @ do not require that player 1 knows 
player 2's beliefs over K. 
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3. Nash equilibria 

3.1. The "standard one-sided information case" 

Combining the ideas of the Folk theorem for repeated games of complete 
information (see Chapter 4) with the definitions of individual rationality 
derived in the previous section, a description of the non-revealing Nash 
equilibrium payoffs of F(p) is easily obtained. In these, as long as player 2 
does not deviate, player l 's  strategy is independent of the state of nature. This 
set will play a crucial role for the characterization of all Nash equilibrium 
payoffs. 

K Let G be the set of all triples (p,  a, fi) E A g x N r x N r such that 
• (a, 13) is feasible: 3(c, d) ~ F such that a t> c and p .  a = p .  c; /3 = p -  d. 
• a (resp./3) is individually rational for player 1 (resp. player 2) in F(p) [in the 

sense of (2) and (3)]. 
This definition of feasibility is adopted (instead of the more natural a = c) for 

later use in the characterization of all Nash equilibrium payoffs. Towards this 
aim, all values of p are considered because later, p will vary with the revelation 
of information. 

Payoffs (a, /3)  satisfying the above two properties will be referred to as 
"non-revealing Nash equilibrium payoffs" of F(p) .  

Let us consider a few examples of garnes with two states of nature; p E [0, 1] 
denotes the probability of state 1. Some strategies have been duplicated so that 
III > 2  and I/I >2 .  In particular, the last examples are games of  information 
transmission, where the informed player has no direct influence on the payoffs 
[these garnes are akin to the sender-receiver garnes (see the chapter on 
'correlated and communication equilibria' in a forthcoming volume); here, the 
moves at each stage are used as signals]. 

Example 1. 

[10 1~] [00 007 
[AI' Bi] = 0, 0 0, ' [A2' B21 = 1, 0 1, 0J"  

This game has no non-revealing equilibrium for 0 < p < 1. Indeed, player 2's 
moves cannot affect the payoff of player 1 and the latter's (strictly) best move 
is i c = k at every stage t, which immediately reveals his type k. 

Example 2. 

,AIù,,=[1, 0~] r0,0 11] 
1,1 0, ' [ A 2 ' B 2 ] = L 0 , 0  1, " 
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For every p,  F ( p )  has a non-revealing equilibrium payoff (described by 
player l 's vector payoff and player 2's payoff): ((1,0),  p) for p <  I,  
((0, 1), 1 - p) for p > I and all (a, 1) with a on the segment [(1, 0), (0, 1)] for 
P = I- F (p )  also has a completely revealing equilibrium for every p: player 1 
chooses i 1 = k at the first stage and player 2 chooses Jt = il at every subsequent 
stage; this yields the payoff ((1, 1), 1). Player 1 has no reason to lie about the 
state of nature. This is no longer true in 

Example 3. 

[,, o~] [le o,] 
[A~'BX]= 1,1 0, ' [A2' B2]= 1,0 0,1 ' 

Here ,  independently of the true state, player 1 would pretend that the first 
state of nature obtained, in order to make player 2 choose j = 1. 

The next example shows a partially revealing equilibrium, where player 1 
uses a type-dependent lottery over his moves (as in the "splitting procedure" 
described in Chapter 5). 

Example 4. 

[1, - 3  
[AI' B1] = 1, - 3  

0,0 01 1~] 
0,0 0,1 1, ' 

[ 0 , 2 1 , 1 0 , 0 1 ,  33] 
[A2, B21 = 0,2 1,1 0,0 1 , -  " 

This game has no completely revealing equilibrium. However, (¼, (1, i ) ,  3) 
and (3, ( I ,  1), 3) belong to G (according to the definition introduced at the 
beginning of Subsection 3.1, (1, 1) denotes the vector payoff of player 1 and 
the payoff of player 2). Take p = I- If player 1 plays i 1 = 1 with probability ¼ 
(resp. 3) i f k  = 1 (resp. k = 2) at stage 1, player 2's posterior probability that 
k = 1 is ¼ when i I = 1, 3 when i I = 2. If no more information is sent to hirn, 
player 2 can, at all subsequent stages, choose Jt = 1, Jt = 2 (resp. Jt = 3, Jt = 4) 
with equal probability I if i~ = 1 (resp. i 1 = 2). This describes an equilibrium 
because player l 's expected payoff is (½, ½), independently of the signal il that 
he sends. 

In Examples 2 and 4 we described equilibria with one single phase of 
signaUing, followed by payoff accumulation. Such scenarios were introduced by 
Aumann,  Maschler, and Stearns (1968) under the name jointplan.  Formally, a 
joint plan consists of a set of signals S (a subset of I t for some t), a signalling 
strategy (conditional probability distributions q(. ]k) on S given k, for every 
k ~ K),  and a correlated strategy ~-(s)E AIxJ for each s E S; 7rij(s ) is inter- 
preted as the frequency of the pair of moves (i, j )  to be achieved after signal s 
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has been sent. Recalling (1), let a(s) [resp. b(s)] be the vector payoff with 
components ak(s) = Ak(Tr(s)) [resp. bh(s) = B~(Tr(s))]; (a(s), b(s)) E F. Set also 

/3(«) = ~ pkbk(«). 
k~K 

To be in equilibrium, a joint plan must be incentive compatible for player 1. 
This means that any signal s with q ( s l k  ) > 0 taust give the same expected 
payoff ak(s) to player 1 of type k [otherwise, player 1 would send the signal s 
yielding the highest payoff in state k with probability one instead of q(s I k)]. 
We may therefore set a~(s) = a ~ for every s such that q(s i k) > 0. Obviously, 
signals of zero probability must only yield an inferior payoff: ak(s ') <~ a ~ for 
every s' such that q(s' I k) = 0. Let p(s) be the posterior probability distribution 
over K given s [we implicitly assumed that each signal s has a positive (total) 
probability]. We have p(s) .  a(s) = p(s) .  a and p(s) .  b(s) =/3(s) for every s E S. 

In order that the players do not deviate ffom the joint plan after the 
signalling phase, we must still require that the payoffs (a,/3(s)), to be reached 
if s has been sent, are individually rational [in the sense of (2) and (3), with 
p(s)]. Indeed, when communication is over, one can proceed as for garnes with 
complete information (traditional Folk theorem): the deviations of one player 
are detected by the other, who can punish him at his individually rational level. 
Of course, player 1 may use his information (and thus reveal it further) in 
punishing player 2 and the latter must take account of the different possible 
types of his opponent. 

The above reasoning shows that (a, /3)  is a joint plan equilibrium payoff of 
F(p )  if (p ,  a , /3)  is a convex combination of elements (p(s),  a,/3(s)), s ~ S, of 
G, all with the same payoff, a, for player 1. New equilibrium payoffs can thus 
be obtained from G by convexifying it in (p , /3 )  for every fixed a. 

Observe that G is convex in (a, /3) for every fixed p. More generally, the set 
of all equilibrium payoffs of F (p )  is convex. To establish this property, 
Aumann,  Maschler and Stearns (1968) observed that signalling was not the 
only form of communication available to the players of a repeated game with 
incomplete information. 

In a jointly controlled lottery, no information is revealed by player 1 but the 
players decide together how to continue the play in such a way that unilateral 
deviations are not profitable. Suppose the players want to select one of M 
possible values for the subsequent expected payoff, according to a probability 
distribution p = ( P l , . . . ,  P . . . . .  , pM)E A M. This can be decided in finitely 
many stages. At each stage each player chooses one of his two first actions at 
random with the same probability ½ (recall that I and J contain at least two 
elements); identical (resp. different) choices of the players are interpreted as a 
i (resp. 0), so that the sequence of moves can be seen as the binary expansion 
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m ~ m + l  of a uniform random variable u on [0, 1]. Set Po = 0; if u ~ [Er= 0 Pf, ~r=0 Pf), 
m = 0 . . . .  , M -  1, the players then decide on the (m + 1)st outcome, which 
happens after a finite number of stages. A unilateral deviation of one of the 
players cannot modify the probability distribution of u. Observe that jointly 
controlled lotteries enable us to convexify the set of Nash equilibrium payoffs, 
at any fixed p. Observe also that the roles of the two players are symmetric and 
that this procedure was not needed in the zero-sum case (see Chapter 5). 

At  this point we can easily conceive equilibrium payoffs achieved as convex 
combinations of non-revealing equilibrium payoffs and/of  joint plan equilib- 
rium payoffs. They all involve at most a single stage of signalling. 

Aumann,  Maschler and Stearns (1968) showed in an example that more 
equilibrium payoffs become available if an additional stage of signalling is 
permitted [simpler examples illustrating this can also be found in Forges 
(1984)]. 

The characterization of the whole set of Nash equilibrium payoffs makes use 
of sequences of communications where signalling phases alternate with jointly 
controlled lotteries. To state the result precisely, we need the following 

K concept: a process ( g t ) t > ~ l  = (Pt,  at,/3t)t>~l of (A x X N r X Rr)-valued random 
variables (on some probability space) is called a bi-martingale if it is a 
martingale [i.e. E(g,+l ] H t )=  gt a.s., t =  1, 2 . . . .  , for a sequence (Ht),~ 1 of 
finite sub o--fields] such that for each t = 1, 2 , . . . ,  either P,+~ = Pt or at+ a = a t 

K a.s. Let G* be the set of all g =  (p,  a , /3)  @ A K x N r x Rr for which there 
exists a bi-martingale ge = ( P ,  at,/3t)t~l as above, starting at g (i.e. gl -- g a.s.) 
and converging a.s. to g= E G. 

K Theorem 1 [Hart (1985)]. Let ( a, fl ) E ~r  × ~v; ( a, /3 ) is a Nash equilibrium 
p a y o f f  o f  r ( p )  i f  and only i f  (p,  a , /3)  E G*. 

The theorem first states that a bi-martingale converging a.s. to an element of 
G can be associated with any equilibrium payoff in F(p) .  Let (o-, ~-) be an 
equilibrium achieving the payoff (a, /3)  in F(p ) .  Define p~(ht) , a,(h,) , and 
/3t(ht), respectively, as the conditional probability distribution over K, the 
expected vector payoff of player 1, and the expected payoff of player 2, before 
stage t, given the past history (i.e. the sequence of moves) h t up to stage t 
[expectations are with respect to the probability distribution induced by (o-, ~')]. 
Stage t can be split into two half-stages, with the interpretation thät player 1 
(resp. player 2) makes his move i t (resp. J,) at the first (resp. second) 
half-stage; we thus have ht+ I = ( h ,  it, Jt); let p t ( h ,  it) , at(h" it) , and/3t(ht, it) 
be defined in the same way as above. The process indexed by the half-stages 
forms a martingale. The bi property follows from the incentive compatibility 
conditions for player 1. Assume that at stage t the posterior probability 
distribution moves from pt(ht)  to pt(ht,  it). This means that player 1 chooses 
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his move i t at stage t according to a probability distribution depending on his 
type k (though it may also depend on the past history). As observed above, the 
equilibrium condition implies a~(ht, it) = ak(ht) for every move i t of positive 
probability (given state k). No change in Pc can occur when player 2 makes a 
move [hence, pc+l(hc+l)=pc(ht, ic)]; in this case, a c can vary. As a bounded 
martingale, (Pc, G,/3t) converges a.s. as t---~ ~, say to (p=, az,/3~). To see that 
this must belong to G, observe first that at every stage t, a c (resp. Pc) must 
satisfy the individual rationality condition since otherwise player 1 (resp. player 
2) would deviate from his equilibrium strategy to obtain his minmax level. This 
property goes to the limit. Finally, the limit payoff must be feasible in 
non-revealing strategies. Imagine that the martingale reaches its limit after a 
finite number of stages, T: (p~, a~,/3~) = (P f ,  aT, /3r); then the game played 
from stage T on is F(PT) and (a t , /3 r )  must be a non-revealing payoff in this 
game. In general, the convergence of Pt shows that less and less information is 
revealed. 

The converse part of the theorem states that the players can achieve any 
Nash equilibrium payoff (a, /3) by applying strategies of a simple form, which 
generalizes the joint plans. To see this, let us first construct an equilibrium 
yielding a payoff (a, /3)  associated with a bi-martingale converging in a finite 
number of stages, T, i.e. (p~, a~,/3~) = (Pf ,  a t , / 3 r )  E G. The first T -  1 
stages are used for communication; from stage T on, the players play for payoff 
accumulation, i.e. they play a non-revealing equilibrium of F ( p r ) ,  with payoff 

( a t , /3 r ) .  
To decide on which non-revealing equilibrium to settle, the players use the 

two procedures of communication described above: signalling and jointly 
controlled lotteries. At the stages t where Pt+l CPc, player 1 sends signals 
according to the appropriate type-dependent lottery, so as to reach the 
probability distribution P,+I; the incentive compatibility conditions are satisfied 
since at these stages ac+ 1 = a r At  the other stages t, Pt+l =Pt; the players 
perform a jointly controlled lottery in order that the conditional expected 
payoffs correspond to the bi-martingale. More precisely, 

(G(ht), flt(ht)) = E((a,+~,/3t+x) [ ht) 

and the jointly controlled lottery is described by the probability distribution 
appearing on the right-hand side. 

To construct a Nash equilibrium given an arbitrary bi-martingale, one uses 
the same ideas as above but phases of communication must alternate with 
phases of payoff accumulation in order to achieve the suitable expected payoff. 

Theorem 1 is one step in the characterization of Nash equilibrium payoffs; it 
is completed by a geometric characterization in terms of separation properties. 
For this, a few definitions are needed. 
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K Let B be a subset of A K x R r x Es; an element of B is denoted as (p ,  a , /3) .  
For any fixed p @ Zl K, the section Bp of B is defined as the set of all points 

K (a , /3)  of E r x E r such that ( p , a , / 3 ) E  B. The sections B a are defined 
similarly for every a @ R K. B is bi-convex if for every p and a, the sets Bp, and 
B a are convex. A real function f on such a bi-convex set B is bi-convex if for 
every p and a, the function f ( p , . ,  .) is convex on Bp and f(-, a, .) is convex on 
B a. Let  B be a bi-convex set containing G; let nsc(B) be the set of all z E B 
that cannot be separated from G by any bounded bi-convex function f on B 
which is continuous at each point of G [namely f (z)<~supf(G) = 
sup{ f (g )]g  E G} for every z E B and f with the properties just listed]. 

Theorem 2 [Aumann and Hart (1986)]. G* is the largest set B such that 
nsc(B) = B. 

Aumann and Hart (1986) also showed that without the condition of continui- 
ty on the separating bi-convex functions, one obtains the subset G e of G* of 
all triples (p ,  a , /3)  at the starting point of a bi-martingale reaching G in finite 
(random) time. If one adds the requirement that this reaching time be 
bounded, one obtains an even smaller subset of G*: bi-co(G), the smallest 
bi-convex set containing G. This corresponds to all Nash equilibrium payoffs 
for which the number of steps of the communication phase can be determined 
in advance. Even in games of information transmission (see Examples 2, 3, and 
4) with two states of nature, bi-co(G) may be strictly included in G e [see 
Forges (1984, 1990)]; there exist Nash equilibrium payoffs which require an 
unbounded (though a.s. finite) number of signalling stages. In principle, one 
may have G e C G*, but the available examples [Aumann and Hart (1986)] are 

B 
not in the game-theoretxc context. 

3.2. Garnes with known own payoffs 

In the previous model, player 2 generally does not observe his stage payoffs, 
which depend on player l 's  type. Although this is not unrealistic [see, for 
example, Mertens (1986, p. 1531)] the particular case where player 2's payoffs 
are independent of the state of nature (B k = B for every k E K) deserves a 
special attention. In such a garne F(p) with known own payoffs, the characteri- 
zation of Nash equilibrium payoffs is dramatically simplified: all can be 
achieved through a completely revealing joint plan. Denote by val 2 B the value 
for player 2 of the one-shot garne with payoff matrix B. Observe that in the 
present model, (3) reduces to/3 ~> val 2 B. Recall also defnit ion (1). 
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Proposition 1 [Shalev (1988)]. Let F( p) be such that B h = B for every k E K; 
K let (a, /3)E ~~ x Er" Then (a, /3) is a Nash equilibrium payoff of F(p) if and 

only if there exist 7rh E A I×«, k @ K, such that 
(i) Ah(Tr h) = a k , V k E  K and Z h pkBh(Trh) = [3; 

(ii) a is individually rational for player 1 [i.e. (2)] and Ôk= B h ( h )  is 
individually rational for player 2, Vk E K (i.e. /3h 1> val2 B, Vk E K); and 

(iii) Ah(Tr h)/> Ah(~-h'), Vk, k' ~ K. 

This statement is obtaine d by particularizing the conditions for a joint plan 
to be in equilibrium in the case of complete revelation of the state of nature. 
~.h contains the frequencies of moves to be achieved if state k is revealed; 
equalities (i) express that (a,/3) is the expected payoff; (ii) contains the 
individual rationality conditions; and the incentive compatibility conditions 
for player 1 take the simple form (iii) because of the particular signalling stra- 
tegy. 

Proposition 1 extends to repeated games F(p ,  q) with lack of information on 
both sides and known own payoffs. Notice that without such a specific 
assumption, Nash equilibria are not yet characterized in this model. Assume 
therefore that besides K, another set L of states of nature is given; let p E zl K, 
q ~ A L, and let A h, k E K, and B ~, l E L, be the payoff matrices (of dimensions 
]Il x [J[, as above) for player 1 and player 2, respectively. Let F(p,  q) be the 
infinitely repeated game with lack of information on both sides where k and l 
are chosen independently (according to p and q, respectively), k is only told to 
player 1, and l to player 2. Assume further that [1[/> [Kl and l J]/> [L]. Then 
we have 

Proposition 2 [Koren (1988)]. Every Nash equilibrium of F(p,  q) is payoff- 
equivalent to a completely revealing equilibrium. 

This result may be strengthened by deriving the explicit equilibrium condi- 
tions as in Proposition 1, in terms of ~rhZE A *×«, (k, l ) E  K x L [see Koren 
(1988)]. 

Infinitely repeated garnes with known own payoffs may be a useful tool to 
study infinitely repeated garnes with complete information. The approach is 
similar to the models of "reputation" (see Chapter 10). 

Let F 0 consist of the infinite repetition of the garne with payoff matrices A 
for player 1 and B for player 2. Let F 0 be the set of feasible payoffs; by the 
Folk theorem, the equilibrium payoffs of F 0 are described by 

(«, /3) E F0: a ~>val 1 A,/3 ~>val 2 B . 

For instance, in the "battle of the sexes", 
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E~,I °°1 [ A , B ] =  0 ,0  1, ' 

valt A = val 2 B = 2 3, so that the projection of the set of equilibrium payoffs of 
F 0 on player l 's  payoffs is [2,2]. 

The example is due to Aumann (1981). Suppose that player 2 is unsure of 
player l 's  preferences and that player 1 realizes it. A garne F(p) with 
observable payoffs, with A 1 = A and 

A~-[~ ~,] 
may represent the situation (player 2's payoff is described by B in either case). 
By Proposition 1, all the equilibria of this game are payoff-equivalent to 
completely revealing ones. It is easy to see that for any interior p, the payoff a 1 
of player 1 of type 1 is greater than -~. Indeed, if k = 2  is revealed, the 
individual rationality conditions imply that the correlated strategy "17 "2 satisfies 

2 ~ 2 .  Hence, if a 1 < 4, player 1 of type 1 would gain by pretending to be of 3Tll  

type 2. Thus, the introduction of even the slightest uncertainty reduces 
considerably the set of equilibrium payoffs. 

To state a general result, let us call "a repeated game with lack of 
information on one side and known own payoffs derived from F0" any such 
garne F(p) with [K I states of nature, ph > 0, Vk ~ K, and payoff matrices A k, 
k G  K, A 1= A, for player 1, and B for player 2. The set G*(p) of all 
equilibrium payoffs (a, /3)  of F(p) is characterized by Proposition 1. Let us 
denote by G*(P)]k_I its projection on the (a 1,/3)-coordinates. 

Proposition 3 [Shalev (1988), Israeli (1989)]. For every repeated game with 
lack of information on one side and known own payoffs F(p)  derived from Fo, 
there exists a number v (depending only on the payoff matrices A k and B but not 
on p) such that 

G*(p)]k= 1 = {(a', fi) E F0: a I/> v,/3 ~>val 2 B}.  

The maximal value v* of v is achieved for ]K I = 2 and A 2= - B; then 

v * = m a x  min ( ~ x i y j A ( i , j ) ) .  
x ~ A  ! y ~ A J ( x )  , 

where 

t , ]  
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One can check that in the battle of the sexes, v* = -~. Proposition 3 suggests 
that player 1 should sow the doubt that he is not maximizing his original payoff 
(described by A) but is actually trying to minimize player 2's payoff, as if his 
own payoffs were described by - B .  This increases the individually rational 
level of player 1 optimally, to v*. 

3.3. Existence 

The existence of a Nash equilibrium in repeated garnes with incomplete 
information is still a central issue. In the zero-sum case, under the information 
structure mainly treated in this chapter ("standard one-sided information") a 
value does exist (see Chapter 5); this is no longer true in the case of lack of 
information on both sides (see Chapter 5). For the general model F(p)  of 
Section 2, a partial answer is given by the next theorem. 

Theorem 3 [Sorin (1983)]. I f the  number ofstates ofnature is two ([K I =2) ,  
then F(p)  has a Nash equilibrium for every p. 

Observe that the existence of a Nash equilibrium in F(p)  for every p 
amounts to the non-emptiness of the sections G*(p)  of G* for every p. The 
proof of Theorem 3 does not, however, use the characterization of Theorem 1. 
It is constructive and exhibits equilibria of the form introduced by Aumann, 
Maschler and Stearns (1968). Since [K I = 2, let p E [0, 1] be the probability of 
state 1. If F (p)  has no non-revealing equilibrium, then p belongs to an interval 
(p(1) ,  p(2)) such that F(p(s)) ,  s = 1, 2, has a non-revealing equilibrium [at 
ù worst", p(1) = 0 and p(2) = 1; recall Example 1]. A joint plan equilibrium is 
proved to exist, reaching the posterior probabilities p(1) and p(2). It has the 
further property that after the signalling phase, the players play mixed 
strategies in A 1 and A J, respectively, independently of each other. The proof 
uses the fact that connected and convex subsets of A K = [0, 1] coincide (with 
subintervals), which obviously does not hold in higher dimensions. 

For an arbitrary number of states of nature, no general result is available. It 
is observed in Sorin (1983) that if the value of player l's one-shot garne (a, 
defined in Section 2) is concave, then F(p)  has a non-revealing equilibrium at 
every p. This arises in particular in garnes of information transmission (see 
Examples 2, 3, and 4). Orte also has the following result for the model of 
Subsection 3.2. 

Proposition 4 [Shalev (1988)]. Let F(p)  be a garne with lack of  information on 
one side and known own payoffs. Then F(p)  has a Nash equilibriurn for every 
p. 
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A counterexample of Koren (1988) shows that similar games F(p, q) with 
lack of information on both sides (as in Proposition 2) may fail to have an 
equilibrium for some (p, q) E A K x A L. 

Remark. Throughout Section 3, the limit of means criterion for the payoffs 
made it possible to use infinitely many stages for communication, without 
having to worry about the payoffs at these moments. Such an approach is no 
longer possible when payoffs are discounted. This criterion is used in Bergin 
(1989) to evaluate the payoffs corresponding to sequential equilibria [see Kreps 
and Wilson (1982)] in two-person, non-zero-sum garnes with lack of informa- 
tion on both sides (with independent states but without any restriction on the 
payoff matrices). With any sequential equilibrium, one can associate a Markov 
chain satisfying certain incentive compatibility conditions. The state variables 
consist of the distribution over players' types and the vector of payoffs. 
Conversely, any Markov chain on that state space which satisfies the incentive 
compatibility conditions defines a sequential equilibrium. Thus, without loss of 
generality (as far as payoffs are concerned), we can restrict ourselves to 
sequential equilibrium strategies where each player chooses his move at stage t 
according to a probability distribution depending on his type and the current 
state. 

4. Communication equilibria 

The underlying model in this section is the game described in Section 2. Here, 
we can write F for F(p). 

Definition [Aumann (1974, 1987); see also the chapter on 'correlated and 
communication equilibria' in a forthcoming volume]. A (strategic form) 
correlated equilibrium for F is a Nash equilibrium of an extension of F of the 
following form: before the beginning of F (in particular, before the choice of 
the state of nature), the players can observe correlated private signals (which 
can be thought of as outputs selected by a correlation device). 

Let C be the set of correlated equilibrium payoffs of F. Observe that if orte 
applies the original definition of Aumann (1974) to F, conceived as a garne in 
strategic form, one readily obtains the definition above. In particular, player 1 
receives an extraneous signal from the correlation device before observing the 
state of nature and he does not make any report to the device. The extended 
garne is played as F, except that each player can choose his moves (i tor je) as a 
function of his extraneous signal. Now, F is a game with incomplete informa- 
tion and it is tempting to extend the Nash equilibrium concept by allowing 
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player 1 to report information to the device, as in Myerson (1982). F being a 
repeated garne, even more general devices can be used. 

Definition. A communication equilibrium for F is a Nash equilibrium of an 
extension of F where, at every stage, the players send inputs to a communica- 
tion device which selects a vector of outputs, one for each player, according to 
a probability distribution depending on all past inputs and outputs. An r-device 
(r = 0, 1 , . . )  is a communication device which cannot receive inputs after 
stage r; the r-communication equilibrium can be associated with the r-device. 

With r = ~, one obviously obtains the notion of a communication equilib- 
rium. 0-devices only send outputs to the players at every stage and hence can be 
called autonomous; observe that they are more general than correlation 
devices, which act only at stage 0. Recalling the concept of a (strategic form) 
correlated equilibrium, it is appropriate to refer to the 0-communication 
equilibrium as an extensive form correlated equilibrium. Let D r (r--  
O, 1 , . . . ,  ~) be the set of all payoffs to r-communication equilibria in F. The 
sets are ordered by inclusion as follows: 

C C D o C " "  C D, C D ~ + I C ' " D = .  

These equilibrium concepts can be defined in any multistage game [Forges 
(1986b)]. In general, the sequence is strictly increasing: every extension of the 
Nash equilibrium requires a wider interpretation of the rules of the game. 
However, infinitely repeated garnes will appear to involve enough communica- 
tion possibilities to obtain the (payoff) equivalence of several equilibrium 
concepts. 

Remark.  Appropriate versions of the "revelation principle" [see e.g. Myer- 
son (1982)] apply here: the sets C and D, (r = 0 . . . .  , m) have a "canonical 
representation" [see Forges (1986b, 1988)]. 

We begin with a characterization of D~, stating in particular that any 
communication equilibrium payoff can be achieved by means of a communica- 
tion device of a simple form. Player 1 is asked to reveal his type, as a first input 
to the device; if he announces k (which need not be his "true type"),  the 
device selects (c, d) E F and x E X (recall the definitions of Section 2) accord- 
ing to a probability distribution ph. The pair (c, d) is transmitted to both 
players immediately, as a first output. The device is also equipped with an 
input "alarm",  which can be sent by any player at any stage (to obtain a 
characterization of Dm, it is natural to exploit its specific properties: the device 
that we are describing is not an r-device for any finite r). If the alarm is given, 
the output x is sent to both players (formally, two inputs are available to the 
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players at every stage, one is interpreted as "everything is all right" and the 
other as an alert). 

Let D" be the set of payoffs associated with equilibria "adapted" to the 
special devices above, consisting of specific strategies described as foUows: first, 
player 1 truthfully reveals his type; then, the players play a sequence of moves 
yielding the suggested (c, d) [in a similar way as in the Folk theorem or in 
Section 3, an infinite sequence of moves yielding the payoff (c, d) can be 
associated with every (c, d) E F]. If one of the players deviates, the other gives 
the alarm; player 2 can punish player 1 by approaching x using a Blackwell 
strategy (see Section 2); player 1 can punish player 2 at his minimax level in 
F(p(.  ic, d, x)), namely vex b(p(. Ic, d, x)), where p(.  Ic, d, x) denotes the 
posterior probability distribution over K given (c, d, x). Indeed, at every stage 
the garne remains an infinitely repeated game with incomplete information on 
one side; it simply moves from F(p) to F(p(.  Ic, d)) and possibly to F(p(.  
]c, d, x)) if the alarm is given. Although this constant structure should not be 
surprising, we will see below that communication devices may very well modify 
the basic information pattern. 

Observe that by definition D" is a subset of D=. D" is easily characterized: 
(a,/3) E D" <=> there exist probability distributions ph, k E K, on F x X such 
that 

Ek(c k ) = a  k, V k E K ,  (4) 

E(p( . Ic ,  a) .a)  = ~ ,  (5) 

Ek(max{c ' ,Ek(x'l  c,d)})~<a', V(k,I) E K x K ,  (6) 

p ( . ] c , d ) . d / > E ( v e x b ( p ( . I c ,  d,x)) Ic,c)  a.s., (7) 

where E k is the expectation with respect to ph, k E K; E is the expectation with 
respect to the probability distribution P induced on K x F x X by p and the 
Ph's; and p( - Ic ,  d) [resp. p(.  Ic, d, x)] is the conditional probability dis- 
tribution (under P) on K given (c, d) [resp. (c, d, x)]. 

Expressions (4)-(7) follow from the specific device and equilibrium 
strategies introduced to define D;.  (4) and (5) express that (a,/3) is the 
corresponding equilibrium payoff. (6) is the equilibrium condition for player 1; 
if bis type is 1 E K and his input is k E K (which may or may not coincide with 
l), (c, d, x) is selected according to ph by the device and (c, d) is the output to 
player 1. He can either follow, which yields c ~, or deviate, which 
is detected by player 2 who gives the alarm and approaches x; hence an ex- 
pected payoff of E~(xllc, d) to player 1. Observe that by (4) we have for 
k=l :  
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E~(x~ I c, d) ~ c ~, ph _ a.s. 

Having told the truth, player 1 cannot gain by deviating from (c, d). However 
to take account of all possible deviations of player 1, combining lying and 
non-obedience, a condition like (6) must hold. (7) is, similarly, the equilibrium 
condition for player 2; following (c, d), he obtains the left-hand side. If he 
deviates, player 1 gives the alarm which moves the posterior 
to p( . I c ,  d,x); player 1 punishes player 2 at his minimax level 
vex b(p( .  I c, d, x)), which gives the right-hand side of (7) as expected payoff 
given (c, d) (i.e. at the time player 2 considers the possibility of deviating). 

As in the case of Nash equilibria, the main idea is to settle on a payoff in F 
satisfying appropriate individual rationality conditions, so that punishments can 
be applied in the case of deviation. The information of player 1 is used to 
choose the non-revealing equilibrium to be played. When a communication 
device is used, the incentive compatibility conditions of player 1 take a simpler 
form, essentially because his choices are limited to [Kl possible inputs (instead 
of all probability distributions over the signals, in the case of Nash equilibria). 
With a communication device, jointly controlled lotteries can be dispensed 
with. The device considered here is quite powerful. It combines different 
functions of information transmission, coordination of strategies, and threats, 
so that in particular the punishment against player 1 is chosen as a function of 
the type that he reports as an input. Although the garne remains a game with 
lack of information on orte side at every stage, the conditions (4)-(7) do not 
imply that the vector payoff  c satisfies the individual rationality condition (2); x 
does. Without the threat of being punished at level x, player 1 could want to 
deviate from (c, d). The use of communication devices deeply modifies the 
structure of the garne; not only the incentive compatibility conditions but also 
the individual rationality levels differ from those obtained in Section 3. 

The next theorem states that all communication equilibrium payoffs (a,/3) 
of F can be obtained in the specific way described above. Some properties of 
D= can be deduced. Let Df~ be the subset of DL where the probability 
distributions pk can be chosen to have finite support. 

Theorem 4 [Forges (1988)]. 

D ~ = D ' =  Dfb, 

D~ is compact and convex. 

Caratheodory's theorem is used to prove that D~' _C Df=; in particular, the 
finite support depends on the underlying equilibrium payoff [this contrasts with 
games of information transmission (see below)]. 

The difficult part of the proof is D~ C_ D ' ;  we will only indicate the sott of 
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arguments that are used. Let (a,/3) ~ D~; without loss of generality, by an 
extended "revelation principle", one can assume that (a,/3) corresponds to a 
canonical communication equilibrium where player 1 first reveals his type to 
the device and then, at every stage, inputs consist of reported past moves and 
outputs consist of suggested moves. Appropriate processes (ct, dt), x t a r e  
constructed in the same spirit as the bi-martingale of Section 3, the limits of 
which satisfy (4)-(7) (observe that hefe only the limits, not the specific form of 
the trajectory, intervene in the characterization). One of the problems is that 
xm must satisfy (6) and (7) at the same time, i.e. be a threat for player 1, which 
player 2 can learn by playing an appropriate strategy (in the scenario of an 
arbitrary communication equilibrium, there is no alarm system; one has to 
exhibit one). 

x I is defined as the best expected payoff player 1 can guarantee from stage t 
on, in state l E K, without taking his first input (reported type k E K) into 
account. Having forgotten his input k, player 1 can use a strategy o-' exhausting 
a maximum of information about k (on which the outputs of the device, and 
thus also player 2's moves, depend). Such strategies were introduced in Stearns 
(1967) and are used in Mertens and Zamir (1980). To become aware of x~, 
player 2 can mimic o-' when he reports the moves of player 1 to the 
communication device (which cannot distinguish between deviation in the play 
by one player and deviation in the report by the other). 

One of the underlying features in the previous characterization is that player 
1 can always stay as informed as player 2. This property is a by-product of the 
equality between D~ and D" and depends on the oo-devices used to define D ' .  
To see that the information pattern may change, consider a correlation device 
selecting a pair of correlated signals, #1 and #e, that it sends to player 1 and 
player 2, respectively, before the beginning of the garne. "Signalling" from 
player 1 to player 2 has the following form: player 1 selects his moves 
according to a probability distribution depending on #1 and his type k and 
player 2 computes his posterior probability distribution on K, given player l 's 
moves and #2. Since it depends on #2, this distribution may in particular be 
unknown to player 1. The addition of the correlation device has transformed 
the game F, with lack of information on orte side, into a game with lack of 
information on 11 sides [using the terminology of Sorin and Zamir (1985)], 
where player 1 knows the state of nature but is ignorant of the beliefs of player 
2 on it. As illustrated by Sorin and Zamir (1985), these games really belong to 
the class of infinitely repeated games with lack of information on both sides, 
especially studied (in the zero-sum case) by Mertens and Zamir (1971-72, 
1980). In particular, they may fail to have a value (recall Subsection 3.3). This 
will not be cumbersome hefe: we only need an expression for the minimax 
levels. However, (2) and (3) will have to be modified using the results of 
Mertens and Zamir (1980). 

The next result is a characterization of the sets D r (r = 1, 2 , . . . ) ,  all of which 
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coincide with a set D'  1 of particular 1-communication equilibrium payoffs. The 
corresponding 1-devices lead to garnes with incomplete information on both 
sides. As above, for D ' ,  the set of inputs of player 1 at the first stage is K. I f k  
is sent, a probability distribution pk is used by the device to select 
((c, d), p, x) E F x q) x X (see Section 2); the output to player 1 (resp. player 
2) at the first stage is ((c, d), q~) [resp. ((c, d),  x)]. Payoffs in D'~ are achieved 
by adapted strategies. Player 1 truthfully reveals his type; both players follow 
(c, d) unless a deviation occurs (this is similar to D ' ) ;  then, a Blackwell 
strategy corresponding to q~ or x is applied as a punishment against the deviator 
(see again Section 2). Unlike the device constructed for D ' ,  this one sends all 
outputs at once, at the beginning of the garne; however, this one transmits 
private  outputs to the players so that both of them have incomplete infor- 
mation. 

In the same way as for DL (and with similar notations), we have: (a, 13) E 
D'  1 ¢* there exist probability distributions pk, k E K, on F x q~ x X, such that 

Ek(c  k) = a k ,  V k  ~ K , (8) 

E(p(" Ic, d,x)" d) = f i ,  (9) 

Ek(max{c t, Ek(xI[c, d, ~)}) ~ a t , V(k, l) ~ K x K ,  (10) 

p ( .  ] c, d, x)" d/>E(q~(p(" c, d, ~, x)) I c, d, x) .  (11) 

These conditions can be justified in the same way as (4)-(7) .  Player 1 now 
evaluates his expected punishment, given his information (c, d, q0- If player 2 
deviates from (c, d), player 1 punishes hirn using q~, which can reveal further 
information to player 2 and changes his posterior probability distribution into 
p ( .  Ic, d, ~o, x). Thus, if q~ is selected, player 2 cannot obtain more than 
q~(P(" I c, d, q~, x)), which yields the expected level on the right-hand side of 
(11). 

Theorem 5 [Forges (1988)]. 

D~ = D '  1 (r = 1 , 2 , . . ) ,  

Dr is compact  and convex  (r = 1, 2 , . . . ) .  

Let Dl1 denote, like De ,  the subset of D' 1 where the Pk's have finite support. 
One cannot proceed as above to obtain D r = Dl1. This holds nevertheless in 
particular cases (see below). 

Let us briefly illustrate how the results of zero-sum infinitely repeated garnes 
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with incomplete information on both sides intervene in the proof of Theorem 
5. Since an r-device does not receive any input after stage r, it can select at 
once all future outputs at stage r + 1. To construct a random variable x 
satisfying (8)-(11),  one is concerned with the best player 1 can guarantee from 
stage t on. For t ~> r + 1, the garne starting at stage t can be related with an 
auxiliary game F t with lack of information on 1½ sides where player 1 has the 
same information as in the original garne, but player 2 has already received the 
whole sequence of all bis outputs. Player 1 can certainly do as well in F from 
stage t than in F t and adequate expressions of punishment levels in F t can be 
determined using Mertens and Zamir's (1980) results. 

For instance, let L and M be finite sets and q E At×M; let G ( q )  be the 
zero-sum infinitely repeated garne, where player l 's  type belongs to L, player 
2's type belongs to M, and the payoff matrix for player 1 in state (l, m) is C im. 
By definition, y E N~ (y is the maximum payoff) is approachable by player 2 in 
G(q)  if player 2 has a strategy guaranteeing that, for every type l, the expected 
payoff of player 1 will not exceed y~, whatever his strategy. Mertens and 
Zamir 's  (1980) results imply that y is approachable by player 2 in G ( q )  if and 
only if it is approachable using a "standard" strategy ~-, consisting of a 
type-dependent lottery followed by the usual non-revealing, Blackwell (1956) 
strategy. More precisely, let S be a finite set (Isl ~ ILI [MI), let 7r(. [ m) be a 

L probability distribution on S for every m E M, and let x, E Nr,  s E S, be 
approachable [in the sense of Blackwell (1956)] in the garne with payoff 
matrices CZs = ~m ( q  * 7r)(m[l ,  s )C  tm, where q * zr denotes the probability dis- 
tribution on L x M x S generated by q and ~. Let • = (zm)m~M, where ,/.m 
consists of choosing s ~ S according to 7r(. Im) and of applying a Blackwell 
strategy to approach x, if s is realized, r guarantees that player l 's  expected 
payoff in state l cannot exceed 

yl = E ( q * ~ ) ( s  I I)x~s . 
sŒS 

In the case of lack of information on 1½ sides ( C  im = A z, V(/, m) E L x M), 
standard strategies take an even simpler form: player 2 first reveals his true 
type m E M and then approaches a vector x m E E L in the game with payoff 
matrices A t, l E L;  in other words a vector x m ~ X. The same kind of approach 
is used to describe the vectors of Em that are approachable by player 1, and 
enabb~s us to exhibit punishments in ob. To apply this in auxiliary garnes like F~ 
above, one has to extend the results to garnes where the "approaching player" 
has infinitely many types. 

Theorem 5 shows the equivalence of all r-devices (r = 1 , 2 , . . )  in the 
repeated garne F. Can we go one step further and show that the subsets D 0 and 
C also coincide with Dl? A partial answer is provided by the next statement. 
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Theorem 6 [Forges (1988)]. 
(I)  Le t  (a, Ô) @ Dl1 be such that a is strictly individually rational fo r  player 1 

(i .e.  q .  a > a (q ) ,  Vq  E A~:). Then (a, [3) E D o. 
( I I )  Suppose  that b is convex or concave (vex b linear). Then D 1 = Dl1 = C. 

In a slightly different context, an example indicates that a condition of strict 
individual rationality as in (I)  may be necessary to obtain the result [see Forges 
(1986a)]. 

In ( I I ) ,  observe that all sets but D= are equal. The assumptions on b 
guarantee  that player 1 can punish player 2 at the same level, knowing or not 
player 2's actual beliefs on K. If b is convex, then b is the best punishment in 
• , and player 1 can hold player 2 at b ( q )  for every q E A K by playing a 
non-revealing strategy. If vex b is linear, player 1 can punish player 2 by 
revealing his type k E K and p laying a minmax strategy in the corresponding 
garne k, with payoff  matrix B . 

This happens in particular in garnes with known own payoffs (see Subsection 
3.2) and garnes of information transmission (see Section 2). In these cases, all 
sets, f rom C to D~, coincide. More precisely, Propositions 1 and 2 apply to 
communicat ion equilibria [Koren (1988)], while in garnes of information 
transmission, C = Do~ coincides with the set of equilibrium payoffs associated 
with simple 1-devices, represented by conditional probabilities on J given 
k E K [Forges (1985)]. Two propert ies can be deduced: C (=D=)  is a convex 
polyhedron and every payoff  in C can be achieved by a correlated equilibrium 
requiring one single phase of signalling f rom player 1 to player 2 (notice that 
this is not true for Nash equilibria). 
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1. Introduction 

John Nash's (1950) path-breaking paper introduces the bargaining problem as 
follows: 

A two-person bargaining situation involves two individuals who have the 
opportunity to collaborate for mutual benefit in more than one way (p. 155). 

Under such a definition, nearly all human interaction can be seen as bargaining 
of one form or another. To say anything meaningful on the subject, it is 
necessary to narrow the scope of the inquiry. We follow Nash in assuming that 

the two individuals are highly ra t ional , . . ,  each can accurately compare his 
desires for various th ings , . . ,  they are equal in bargaining skill . . . .  

In addition we assume that the procedure by means of which agreement is 
reached is both clear-cut and unambiguous. This allows the bargaining problem 
to be modeled and analyzed as a noncooperative game. 

The target of such a noncooperative theory of bargaining is to find theoreti- 
cal predictions of what agreement, if any, will be reached by the bargainers. 
One hopes thereby to explain the manner in which the bargaining outcome 
depends on the parameters of the bargaining problem and to shed light on the 
meaning of some of the verbal concepts that are used when bargaining is 
discussed in ordinary language. However, the theory has only peripheral 
relevance to such questions as: What is a just agreement? How would a 
reasonable arbiter settle a dispute? What is the socially optimal deal? Nor is 
the theory likely to be of more than background interest to those who write 
manuals on practical bargaining techniques. Such questions as "How can I 
improve my bargaining skills'? and "How do bargainers determine what is 
jointly feasible?" are psychological issues that the narrowing of the scope of 
the inquiry is designed to exclude. 

Cooperative bargaining theory (see the chapter on 'cooperative models of 
bargaining' in a forthcoming volume of this Handbook) differs mainly in that 
the bargaining procedure is left unmodeled. Cooperative theory therefore has 
to operate from a poorer informational base and hence its fundamental 
assumptions are necessarily abstract in character. As a consequence, coopera- 
tive solution concepts are orten difficult to evaluate. Sometimes they may have 
more than one viable interpretation, and this can lead to confusion if distinct 
interpretations are not clearly separated. In this chapter we follow Nash in 
adopting an interpretation of cooperative solution concepts that attributes the 
same basic aims to cooperative as to noncooperative theory. That is to say, we 
focus on interpretations in which, to quote Nash (1953), "the two approaches 
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to the [bargaining] p rob lem. . ,  are complementary; each helps to justify and 
clarify the other" (p. 129). This means in particular that what we have to say 
on cooperative solution concepts is not relevant to interpretations that seek to 
address questions like those given above which are specifically excluded from 
out study. 

Notice that we do not see cooperative and noncooperative theory as rivals. It 
is true that there is a sense in which cooperative theory is "too general"; but 
equally there is a sense in which noncooperative theory is "too special". Only 
rarely will the very concrete procedures studied in noncooperative theory be 
observed in practice. As Nash (1953) observes, 

Of course, orte cannot represent all possible bargaining devices as moves in 
the non-cooperative game. The negotiation process must be formalized and 
restricted, but in such a way that each participant is still able to utilize all the 
essential strengths of his position (p. 129). 

Even if one makes good judgments in modeling the essentials of the bargaining 
process, the result may be too cumbersome to serve as a tool in äpplications, 
where what is required is a reasonably simple mapping from the parameters of 
the problem to a solution outcome. This is whät cooperative theory supplies. 
But which of the many cooperative solution concepts is appropriate in a given 
context, and how should it be applied? For answers to such questions, one may 
look to noncooperative theory for guidance. It is in this sense that we see 
cooperative and noncooperative theory as complementary. 

2. A sequential bargaining model 

The archetypal bargaining problem is that of "dividing the dollar" between two 
players. However, the discussion can be easily interpreted broadly to fit a large 
class of bargaining situations. The set of feasible agreements is identified with 
A = [0, 1]. The two bargainers, players 1 and 2, have opposing preferences 
over A. When a > b, 1 prefers a to b and 2 prefers b to a. Who gets how 
rauch? 

The idea that the information so far specified is not sufficient to determine 
the bargaining outcome is very old. For years, economists tended to agree that 
further specification of a bargaining solution would need to depend on the 
vague notion of "bargaining ability". Even von Neumann and Morgenstern 
(1944) suggested that the bargaining outcome would necessarily be determined 
by unmodeled psychological properties of the players. 

Nash (1950, 1953) broke away from this tradition. His agents are fully 
rational. Once their preferences are given, other psychological issues are 
irrelevant. The bargaining outcome in Nash's model is determined by the 
players' attitudes towards r i sk- i .e ,  their preferences over lotteries in which 
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the prizes are taken from the set of possible agreements together with a 
predetermined "disagreement point". 

A sequential bargaining theory attempts to resolve the indeterminacy by 
explicitly modeling the bargaining procedure as a sequence of offers and 
counteroffers. In the context of such models, Cross (1965, p. 72) remarks, "Il  
it did not matter when people agreed, it would not marter whether or not they 
agreed at all." This suggests that the players' time preferences may be highly 
relevant to the outcome. In what follows, who gets what depends exclusively 
on how patient each player is. 

The following procedure is familiar from street markets and bazaars all over 
the world. The bargaining consists simply of a repeated exchange of offers. 
Formally, we study a model in which all events take place at one of the times t 
in a prespecified set T=  (0, t a, t 2 , . . ) ,  where (th) is strictly increasing. The 
players alternate in making offers, starting with player 1. An offer x, made at 
time th, may be accepted or rejected by the other player. If it is accepted, the 
garne ends with the agreed deal being implemented at time th. This outcome is 
denoted by (x, th). If the offer is rejected, the rejecting player makes a 
counteroffer at time t~+ 1. And so on. Nothing binds the players to offers they 
have made in the past, and no predetermined limit is placed on the time that 
may be expended in bargaining. In principle, a possible outcome of the garne is 
therefore perpetual disagreement or irnpasse. We denoted this outcome by D. 

Suppose that, in this model, player 1 could make a commitment to hold out 
for a or more. Player 2 could then do no better than to make a commitment to 
hold out for 1 - a or better. The result would be a Nash equilibrium sustaining 
an agreement on a. The indeterminacy problem would therefore remain. 
However, we follow Schelling (1960) in being skeptical about the extent to 
which such commitments can genuinely be made. A player may make threats 
about his last offer being final, but the opponent can dismiss such threats as 
mere bombast unless it would actually be in the interests of the threatening 
player to carry out his threat if his implicit ultimatum were disregarded. In such 
situations, where threats need to be credible to be effective, we replace Nash 
equilibrium by Selten's notion of subgame-perfect equilibrium (see the chapters 
on 'strategic equilibrium' and 'conceptual foundations of strategic equilibrium' 
in a forthcoming volume of this Handbook). 

The first to investigate the alternating offer procedure was Stähl (1967, 1972, 
1988). He studied the subgame-perfect equilibria of such time-structured 
models by using backwards induction in finite horizon models. Where the 
horizons in his models are infinite, he postulates nonstationary time prefer- 
ences that lead to the existence of a "critical period" at which one player 
prefers to yield rather than to continue, independently of what might happen 
next. This creates a "last interesting period" from which one can start the 
backwards induction. [For further comment, see Stähl (1988).] In the infinite 
horizon models studied below, which were first investigated by Rubinstein 
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(1982), different techniques are required to establish the existence of a unique 
subgame-perfect equilibrium. 

Much has been written on procedures in which all the offers are made by 
only one of the two bargainers. These models assign all the bargaining power 
to the party who makes the offers. Such an asymmetric set-up does not fit very 
comfortably within the bargaining paradigm as usually understood and so we 
do not consider models of this type here. 

2.1.  I m p a t i e n c e  

Players are assumed to be impatient with the unproductive passage of time. 
The times in the set T at which offers are made are restricted to t n = ~Tz 
(n = 0, 1, 2 , . . . ) ,  where z > 0 is the length of one period of negotiation. Except 
where specifically noted, we take 7 = 1 to simplify algebraic expressions. 
Rubinstein (1982) imposes the following conditions on the players' (complete, 
transitive) time preferences. For a and b in A, s and t in T, and i = 1, 2: 

(TP1) a > b implies (a, t) >1 (b, t) and (b, t) >2 (a, t). 
(TP2) 0 < a < 1 and s < t imply that (a, s) >i (a, t) >i D. 
(TP3) (a, s) ~>~ (b, s + 7) if and only if (a, t) ~>i (b, t + 7). 
(TP4) the graphs of the relations ~i  are closed. 

These conditions are sufficient to imply that for any 0 < 61 < 1 and any 
0 < 62 < 1 the preferences can be represented by utility functions q~l and ~2 for 
which q)l(D) = ~2(D) = 0 ,  q~l(a, t) = ~,bl(a)6tl, and ~2(a, t) = q~2(1 - -  a)62, 
where the functions ~bi: [0, 1]---> [0, 1] are strictly increasing and continuous [see 
Fishburn and Rubinstein (1982)]. Sometimes we may take as primitives the 
"discount factors" 6~. However, note that if we start, as above, with the 
preferences as primitives, then the numbers 6 i may be chosen arbitrarily in the 
range (0, 1). The associated discount rates pi are given by 6~ = e -°'. 

To these conditions, we add the requirement: 

(TP0) for each a E A there exists b ~ A such that (b, 0) -~ (a, 7). 

By (TP0) we have Ói(0) = 0; without loss of generality, we take 4~~(1) = 1. 
The function f :  [0, 1]---~ [0, 1] defined by f (u l )  = q52(1 - ¢~<(ut) ) is useful. A 

deal reached at time 0 that assigns utility u 1 to player 1 assigns u 2 = f ( u l )  to 
player 2. More generally, the set U t of utility pairs available at time t is 

U t=  {(ul~tl, f(b/1)~2): O</~1 ~ 1}. (1) 

Note that a feature of this model is that all subgames in which a given player 
makes the first offer have the s a m e  strategic structure. 

Our goal is to characterize the subgame-perfect equilibria of this game. We 
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begin by examining a pair of stationary strategies, in which both players always 
plan to do the same in strategically equivalent subgames, regardless of the 
history of events that must have taken place for the subgame to have been 
reached. Consider two possible agreements a* and b*, and let u* and v* be the 
utility pairs that result from the implementation of these agreements at time 0. 
Let s 1 be the strategy of player 1 that requires hirn always to offer a* and to 
accept an offer of b if and only if b t> b*. Similarly, let s 2 be the strategy of 
player 2 that requires him always to offer b* and to accept an offer of a if and 
only if a <~ a*. The pair (sl, s2) is a subgame-perfect equilibrium if and only if 

*=61u  ~ and u 2 u 1 : 82v 2 • (2) 

In checking that (Sx, $2)  is a subgame-perfect equilibrium, observe that each 
player is always offered precisely the utility that he will get if he refuses the 
offer and s I and s 2 continue to be used in the subgame that ensues. 

Notice that (2) admits a solution if and only if the equation 

Bx)  = ~2 f(x~~) (3) 

has a solution. This is assured under our assumptions because f is continuous, 
f(0) = 1 and f(1) = 0. 

Each solution to (2) generates a different subgame-perfect equilibrium. 
Thus, the uniqueness of a solution to (2) is a necessary condition for the 
uniqueness of a subgame-perfect equilibrium in the garne. 

In the following we will assume that 

(TP5) (2) has a unique solution. 

A condition that ensures this is 

(TP5*) (a + a, ~-) --i (a, 0), (b +/3, ~-) - i  (b, 0), and a < b imply that a </3. 

ThiLs has the interpretation that the more you get, the more your have to be 
compensated for delay in getting it. A weak sufficient condition for the 
uniqueness of the solution for (2) is that ~b 1 and ~2 be concave. (This condition 
is far from necessary. It is enough, for example, that log 4'1 and log ~b 2 be 
concave.) 

Result 1 [Rubinstein (1982)]. Under assumptions (TP0)-(TP5) the bargain- 
ing game has a unique subgame-perfect equilibrium. In this equilibrium, 
agreement is reached immediately, and the players' utilities satisfy (2). 

Alternative versions of Rubinstein's proof appear in Binmore (1987b) and 
Shaked and Sutton (1984). The following proof of Shaked and Sutton is 
especially useful for extensions and modifications of the theorem. 
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Proof. Without loss of generality, we take r = 1. Let  the supremum of all 
subgame-perfect equilibrium payoffs to player 1 be M 1 and the infimum be m s. 
Let  the corresponding quantities for player 2 in the companion game, in which 
the roles of 1 and 2 are reversed, be M 2 and m 2. We will show that m 1 = u~ 
and M 2 = v ~ ,  where u 1. and v*2 are uniquely defined by (2). An analogous 

= * and m s * It follows that the equilibrium argument shows that M 1 u 1 = v 2. 
payoffs are uniquely determined. To see that this implies that the equilibrium 
strategies are unique, notice that, after every history, the proposer 's offer must 
be accepted in equilibrium. If, for example, player l 's  demand of u~ were 

$ rejected, he would get at most 61v ~ < u~. 
As explained earlier, u* is a subgame-perfect equilibrium pair of payoffs. 

Thus m s <  u~ and M2~> v~. We now show that (i) 32M2>~f(ml) and (ii) 
Ms <~ f(61ml). 

(i) Observe that if player 2 rejects the opening offer, then the companion 
garne is played from time 1. If equilibrium strategies are played in this game, 
player 2 gets no more than 62M 2. Therefore  in any equilibrium player 2 must 
accept at time t = 0 any offer that assigns hirn a payoff strictly greater than 
62M 2. Thus player 1 can guarantee himself any payoff less than f-1(62M2). 
Hence  m a I> f - l (62M2).  

(ii) In the companion garne, player 1 can guarantee himself any payoff less 

f-J(8 2 U2):u 

~ ~  
v~ 

I 
O o *  

i 

f (8, u,) = u 2 

Figure 1. 
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than ~1ml by rejecting player 2's opening offer (provided equilibrium strategies 
are used thereafter). Thus M 2 <~f(61m~). 

The uniqueness of (u~, v~) satisfying (2) is expressed in Figure 1 by the fact 
that the curves f(61u ~) = u 2 and f-a(62u2) = u I intersect only at (u ~, v ~). From 
(i) and m I ~< u~, (tal,  M2) lies in region (i). From (ii) and M 2/> v~, (m 1, M2) 
lies in region (ii). Hence (ml, M2)=(u~,v~). Similarly (Ml, m 2 ) =  
(u~, oS). [] 

2.2ù Shrinking cakes 

Binmore 's  (1987b) geometric characterization (see Figure 2) applies to prefer- 
ences that do not necessarily satisfy the stationarity assumption (TP3). The 
"cake"  available at time t is identified with a set U t of utility pairs that is 
assumed to be closed, bounded above, and to have a connected Pareto 
frontier. It is also assumed to shrink over time. This means that if s ~< t, then, 
for each y ~ U t, there exists x E U s satisfying x/> y. The construction begins by 
truncating the garne to a finite number n of stages. Figure 2 shows how a set E,n 

U 2 

m 

• Etn 

I I I I I I 

° ° »  • Xo 

~ , i  ! ×" 
o ° ° ° , o o o o ° o o ° ° ° o o °  

0 u~ 
Figure 2. 
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of payoff vectors is constructed from the truncated garne in the case when n is 
odd. The construction when n is even is similar. The set of all subgame-perfect 
equilibrium payoff vectors is shown to be the intersection of all such Etn. Since 
the sets Etù are nested, their intersection is also their limit as n -+  ~. The 
methodology reveals that, when there is a unique equilibrium outcome, this 
must be the limit of the equilibrium outcomes in the finite horizon models 
obtained by calling a halt to the bargaining process at some predetermined 
time t n. In fact, the finite horizon equilibrium outcome in Figure 2 is the point 
m °  

2.3. D&coun~ng  

A very special case of the time preferences covered by Result 1 occurs when 
(,b,(a) = 4~2(a) = a (0 ~< a ~< 1). Reverting to the oase of an arbitrary r > 0, we 

* = ( l - 6 2 ) / ( 1 - 6 1 6 ä ) - - - - ~ p 2 / ( p 1 + P 2  ) as r - + 0 + .  When 6 , = 6 2 ,  it have u,  
follows that the players share the available surplus of 1 equally in the limiting 
case when the interval between successive proposals is negligible. If 6, de- 
creases, so does player l 's  share. This is a general result in the model: it always 
pays to be more patient. More precisely, define the preference relation ~>a to 
be at least as patient as ~>'1 if (y ,  0) ~>, (x, 1) implies that (y ,  0) ~>~ (x, 1). Then 
player 1 always gets at least as rauch in equilibrium when his preference 
relation is ~1 as when it is ~>~ [Rubinstein (1987)]. 

2.4. Fixed  costs 

Rubinstein (1982) characterizes the subgame-perfect equilibrium outcomes in 
the alternating offers model under the hypotheses (TP1) - (TP4)  and a version 
of (TP5*) in which the last inequality is weak. These conditions cover the 
interesting case in which each player i incurs a fixed cost c i > 0 for each unit of 
time that elapses without an agreement being reached. Suppose, in particular, 
that their respective utilities for the outcome (a, t) a r e a  - Clt and 1 - a - c2t. 
It follows from Rubinstein (1982) that, if c 1 < c 2, the only subgame-perfect 
equilibrium assigns the whole surplus to player 1. If c a > c 2, then 1 obtains only 
c a in equilibrium. If c a = c 2 = c < 1, then m a n y  subgame-perfect equilibria 
exist. If c is small ( c < 1 / 3 ) ,  some of these equilibria involve delay in 
agreement  being reached. That  is, equilibria exist in which one or more offers 
get rejected. It should be noted that, even when the interval r between 
successive proposals becomes negligible ( r - + 0 + ) ,  the equilibrium delays do 
not necessarily become negligible. 
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2.5. Stationarity, efficiency, and uniqueness 

We have seen that, when (2) has a unique solution, the game has a unique 
subgame-peffect equilibrium which is stationary and that its use results in the 
garne ending immediately. 

The efficiency of the equilibrium is not a consequence of the requirement of 
perfection by itself. As we have just seen, when multiple equilibria exist [that 
is, when (2) has more than one solution], some of these may call for some 
offers to be rejected before agreement is reached, so that the final outcome 
need not be Pareto efficient. It is sometimes suggested that rational players 
with complete information must necessarily reaeh a Pareto-efficient outcome 
when bargaining costs are negligible. This example shows that the suggestion is 
questionable. 

Some authors consider it adequate to restrict attention to stationary equilib- 
ria on the grounds of simplicity. We do not make any such restriction, since we 
believe that, for the current model, such a restriction is hard to justify. A 
strategy in a sequential game is more than a plan of how to play the garne. A 
strategy of player i includes a description of player i's beliefs about what the 
other players think player i would do were he to deviate from bis plan of 
action. (We are not talking here about beliefs as formalized in the notion of 
sequential equilibrium, but of the beliefs built into the definition of a strategy 
in an extensive form game.) Therefore, a stationarity assumption does more 
than attribute simplicity of behavior to the players: it also makes players' 
beliefs insensitive to past events. For example, stationarity requires that, if 
player 1 is supposed to offer a 50:50 split in equilibrium, but has al- 
ways demanded an out-of-equilibrium 60:40 split in the past, then player 
2 still continues to hold the belief that player 1 will offer the 50:50 split in 
the future. For a more detailed discussion of this point, see Rubinstein 
(1991). 

Finally, it should be noted that the uniqueness condition of Result 1 can fail 
if the set A from which players choose their offers is sufficiently restricted. 
Suppose, for example, that the dollar to be divided can be split only into whole 
numbers of cents, so that A = {0, 0 . 0 1 , . . .  , 0.99, 1}. If q ~ l ( a )  = ~b2(a ) = a and 
6 t = 62 = 6 > 0.99, then any division of the dollar can be supported as the 
outcome of a subgame-perfect equilibrium [see, for example, Muthoo (1991) 
and van Damme,  Selten and Winter (1990)]. Does this conclusion obviate the 
usefulness of Result 1? This depends on the circumstances in which it is 
proposed to apply the result. If the grid on which the players locate values of 6 
is finer than that on which they locate values of a, then the bargaining problem 
remains indeterminate. Our judgment, however, is that the reverse is usually 
the case. 
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2.6. Outside options 

When bargaining takes place it is usually open to either player to abandon the 
negotiation table if things are not going well, to take up the best option 
available elsewhere. This feature can easily be incorporated into the model 
analyzed in Result 1 by allowing each player to opt out whenever he has just 
rejected an offer. If a player opts out at time t, then the players obtain the 
payoffs 6tlel and 6'2e2, respectively. The important point is that, under the 
conditions of Result 1, the introduction of such exit opportunities is irrelevant 
to the equilibrium bargaining outcome when e 1 < 61u ~ and e 2 < 62t3 ~. In this 
case the players always prefer to continue bargaining rather than to opt out. 
The next result exemplifies this point. 

ResuR 2 [Binmore, Shaked and Sutton (1988)]. Take ~ßl(a)  = q~2(a) = a (0 ~< 
a ~< 1) and 61 "~-- Õ2 = 6. If e i > 0 for i = 1, 2 and e~ + e 2 < 1, then there exists a 
unique subgame-perfect equilibrium outcome, in which neither player exercises 
his outside option. The equilibrium payoffs are 

( 1 3 ) 6 
1 + 6 '  1 + 6  i f e  i~< 1 + ~  for i = 1 , 2 ,  

6 
(1  - 6 ( 1  - e l )  , 6 ( 1  - e l )  ) if e I > 1 + ~  

(1 - e2, e2) otherwise. 

and e 2 < 6(1 - el) , 

As modeled above, a player cannot leave the table without first listening to 
an offer from his opponent, who therefore always has a last chance to save the 
situation. This seems to capture the essence of traditional face-to-face bargain- 
ing. Shaked (1987) finds multiple equilibria if a player's opportunity for exit 
occurs not after a rejection by himself, but after a rejection by bis opponent. 
He has in mind "high tech" markets in which binding deals are made quickly 
over the telephone, lntuitively, a player then has the opportunity to accom- 
pany the offer with a threat that the offer is final. Shaked shows that equilibria 
exist in which the threat is treated as credible and others in which it is not. 
When outside options are mentioned later, it is the face-to-face model that is 
intended. But it is important to bear in mind how sensitive the model can be to 
apparently minor changes in the structure of the garne. For further discussion 
of the "outside option" issue in the alternating-offers model, see Sutton (1986) 
and Bester (1988). 

Harsanyi and Selten (1988, ch. 6) study a model of simultaneous demands in 
which one player has an outside option. Player 1 either claims a fraction of the 
pie or opts out, and simultaneously player 2 claims a fraction of the pie. If 
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player 1 opts out, then he receives a fraction a of the pie and player 2 receives 
nothing. If the sum of the players' claims is one, then each receives his claim. 
Otherwise each receives nothing. The game has a multitude of Nash equilibria. 
That  selected by the Harsanyi and Selten theory results in the division 
(1/2,  1/2) if a < 1/4 and the division (X/a, 1 - X/c) if a 1> 1/4. Thus the model 
leads to a conclusion about the effect of outside options on the outcome of 
bargaining that is strikingly different from that of the alternating-offers model. 
Clearly further research on the many possible bargaining models that can be 
constructed in this context is much needed. 

2.7. Risk 

Binmore,  Rubinstein and Wolinsky (1986) consider a variation on the alter- 
nating-offers model in which the players are indifferent to the passage of time 
but face a probability p that any rejected offer will be the last that can be 
made. The fear of getting trapped in a bargaining impasse is then replaced by 
the possibility that intransigence will lead to a breakdown of the negotiating 
process owing to the intervention of some external factor. The extensive form 
in the new situation is somewhat different from the one described above: at the 
end of each period the garne ends with the breakdown outcome with probabili- 
ty p. Moreover ,  the functions ~b 1 and ~b 2 need to be reinterpreted as von 
Neumann and Morgenstern utility functions. That  is to say, they are derived 
from the players'  attitudes to risk rather than from their attitudes to time. The 
conclusion is essentially the same as in the time-based model. We denote the 
breakdown payoff vector by b and replace the discount factors by 1 - p .  The 
fact that b may be nonzero means that (2) must be replaced by 

v~=pb  l + ( 1 - p ) u ~  and u~=pb 2 + ( 1 - p ) v ~ ,  (4) 

whe, re, as before,  u* is the agreement payoff vector when player 1 makes the 
first offer and v* is its analog for the case in which it is 2 who makes the first 
offer. 

2.8. More than two players 

Result 1 does not extend to the case when there are more than two players, as 
the following three-player example of Shaked demonstrates. 

Three  players rotate in making proposals a = (al,  a2, a3)  o n  h o w  t o  split a 
cake of size one. We require that a z + a 2 + a 3 = 1 and a i i> 0 for i = 1, 2, 3. A 
proposal  a accepted at time t is evaluated as worth ai6 t by player i. A proposal 
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a made by player j' at time t is first considered by player j + 1 (mod 3), who may 
accept or reject it. If he accepts it, then player j + 2 (mod 3) may accept or 
reject it. If both accept it then the game ends and the proposal a is im- 
plemented. Otherwise player j + 1 (mod 3) makes the next proposal at time 
t + l .  

Let 1/2 ~< ~ < 1. Then, for every proposal a, there exists a subgame-perfect 
equilibrium in which a is accepted immediately. We describe the ecluilibriu m in 
terms of the four commonly held "states (of mind)" a, e 1, e ~, and e', where e ' is 
the / th  unit vector. In state y, each player i makes the proposal y and accepts 
the proposal z if and only if z i >i 6yi. The initial state is a. Transitions occur 
only after a proposal has been made, before the response. If, in state y, player i 
proposes z with z~ > Yi, then the state becomes e j, where j v a i is the player with 
the lowest index for whom zj < 1/2. Such a player j exists, and the requirement 
that 6/> 1/2 guarantees that it is optimal for hirn to reject player i's proposal. 

Efforts have been made to reduce the indeterminacy in the n-player case by 
changing the game or the solution concept. One obvious result is that, if 
attention is confined to stationary (one-state) strategies, then the unique 
subgame-perfect equilibrium assigns the cake in the proportions 
1:6 : . . .  :6 n-1. The same result follows from restricting the players to have 
continuous expectations about the future [Binmore (1987d)]. 

2.9. Related work  

Perry and Reny (1992) study a model in which time runs continuously and 
players choose when to make offers. Muthoo (1990) studies a model in which 
each player can withdraw from an offer if his opponent accepts it; he shows 
that all partitions can be supported by subgame perfect equilibria in this case. 
Haller (1991), Fernandez and Gtazer (1991) and Haller and Holden (1990) 
[see also Jones and McKenna (1990)] study a model of wage bargaining in 
which after any offer is rejected the union has to decide whether or not to 
strike or continue working at the current wage. [See also the general model of 
Okada (1991a, 1991b).] The model of Admati and Perry (1991) can be 
interpreted as a variant of the alternating offers model in which neither player 
can retreat from concessions he made in the past. 

Models in which offers are made simultaneously are discussed, and com- 
pared with the model of alternating offers, by Stahl (1990), and Chatterjee and 
Samuelson (1990). Chikte and Deshmukh (1987), Wolinsky (1987) and 
Muthoo (1989b) study models in which players may search for outside options 
while bargaining. 
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3. The Nash program 

The ultimate aim of what is now called the "Nash program" [see Nash (1953)] 
is to classify the various institutional frameworks within which negotiation 
takes place and to provide a suitable "bargaining solution" for each class. As a 
test of the suitability of a particular solution concept for a given type of 
institutional framework, Nash proposed that attempts be made to reduce the 
available negotiation ploys within that framework to moves within a formal 
bargaining game. If the rules of the bargaining garne adequately capture the 
salient features of the relevant bargaining institutions, then a "bargaining 
solution" proposed for use in the presence of these institutions should appear 
as an equilibrium outcome of the bargaining game. 

The leading solution concept for bargaining situations in the Nash bargaining 
solution [see Nash (1950)]. The idea belongs in cooperative garne theory. A 
"bargaining problem" is a pair (U, q) in which U is a set of pairs of von 
Neumann and Morgenstern utilities representing the possible deals available to 
the bargainers, and q is a point in U interpreted by Nash as the status quo. The 
Nash bargaining solution of (U, q) is a point at which the Nash product 

(ul - ql)(u2 - q2) (5) 

is maximized subject to the constraints u E U and u ~> q. Usually it is assumed 
that u is convex, closed, and bounded above to ensure that the Nash bargaining 
solution is uniquely defined, but convexity is not strictly essential in what 
foUows. 

When is such a Nash bargaining solution appropriate for a two-player 
bargaining environment involving alternating offers? Consider the model we 
studied in Section 2.7, in which there is a probability p of breakdown after any 
rejection. We have the following result. [See also Moulin (1982), Binmore, 
Rubinstein and Wolinsky (1986) and McLennan (1988).] 

Result 3 [Binmore (1987a)]. When a unique subgame-perfect equilibrium 
exists for each p sufficiently close to one, the bargaining problem (U, q), in 
which U is the set of available utility pairs at time 0 and q = b is the breakdown 
utility pair, has a unique Nash bargaining solution. This is the limiting value of 
the subgame-perfect equilibrium payoff pair as p ~ 0+. 

Proof. To prove the concluding sentence, it is necessary only to observe from 
(4) that u* E U and v* E U lie on the same contour of (u 1 - bl)(u 2 - b2) and 
that u* - v*--*(0, 0) as p--*0+. [] 
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We can obtain a similar result in the time-based alternating-offers model 
when the length r of a bargaining period approaches 0. One is led to this case 
by considering two objections to the alternating-offers model. The first is based 

* > * and on the fact that the equilibrium outcome favors player 1 in that u 1 v 1 
u~ < v~. This reflects players l 's  first-mover advantage. The objection evapo- 
rates when r is small, so that "bargaining frictions" are negligible. It then 
becomes irrelevant who goes first. The second objection concerns also the 
reasons why players abide by the rules. Why should a player who has just 
rejected an offer patiently wait for a period of length r > 0 before making a 
counteroffer? If he were able to abbreviate the waiting time, he would respond 
immediately. Considering the limit as r - + 0 +  removes some of the bite of the 
second objection in that the players need no longer be envisaged as being 
constrained by a rigid, exogenously determined timetable. 

Figure 3 illustrates the solution u* and v* of equations (2) in the case when 
B1 and 6 2 a r e  replaced by 61 and 62 and Pi = - l o g  •i" It is clear from the figure 
that,  when r approaches zero, both u* and v* approach the point in U at which 
ul/»*u~ Ip2 is maximized. Although we are not dealing with von Neumann and 
Morgenstern utilities, it is convenient to describe this point as being located at 
an asymmetric Nash bargaining solution of U relative to a status quo q located 

u 2 

(Sf u,,8 z \ u z 

Figure 3. 
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at the impasse payoff pair (0, 0). [See the chapter on 'cooperative models of 
bargaining' in a forthcoming volume of this Handbook and Roth (1977).] 

Such an interpretation should not be pushed beyond its limitations. In 
particulär, with out assumptions on time preferences, it has already been 
pointed out that, for any 6 in (0, 1), there exist functions w 1 and w 2 such that 
wl(a)•' and w2(1 - a)~ tare utility representations of the players' time prefer- 
ences. Thus if the utility representation is tailored to the bargaining problem, 
then the equilibrium outcome in the limiting case as r--~ 0+ is the symmetrie 
Nash bargaining solution for the utility functions w I and w 2. 

This discussion of how the Nash bargaining solution may be implemented by 
considering limiting cases of sequential noncooperative bargaining models 
makes it natural to ask whether other bargaining solutions ffom cooperative 
garne theory can be implemented using parallel techniques. We mention only 
Moulin's (1984) work on implementing the Kaläi-Smorodinsky solution. [See 
the chapter on 'cooperative models of bargaining' in a forthcoming volume of 
this Händbook and Kalai and Smorodinsky (1975).] Moulin's model begins 
with an auction to determine who makes the first proposal. The players 
simultaneously announce probabilities Pl and P2. If Pl >~P2, then player 1 
begins by proposing an outcome a. If player 2 rejects a, that he makes a 
counterproposal, b. If player 1 rejects b, then the status quo q results. If player 
1 accepts b, then the outcome is a lottery that yields b with probability pa and q 
with probability 1 - p ~ .  (If P2 >P l  then it is player 2 who proposes an 
outcome, and player 1 who responds.) The natural criticism is that it is not 
clear to what extent such an "auctioning of fractions of a dictatorship" qualifies 
as bargaining in the sense that this is normally understood. 

3.1. Economic modeling 

The preceding section provides some support for the use of the Nash bargain- 
ing solution in economic modeling. One advantage of a noncooperative 
approach is that it offers some insight into how the various economic parame- 
ters that may be relevant should be assimilated into the bargaining model when 
the environment within which bargaining takes place is complicated [Binmore, 
Rubinstein and Wolinsky (1986)]. In what follows we draw together some of 
the relevant considerations. 

Assume that the players have von Neumann and Morgenstern utilities of the 
form 61ui(a ). (Note that this is a very restrictive assumption.) Consider the 
plaeing of the status quo. In cooperative bargaining theory this is interpreted as 
the utility pair that results from a failure to agree. But such a failure to agree 
may arise in more than orte way. We shall, in fact, distinguish three possible 
ways: 
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(a) A player may choose to abandon the negotiations at time t. Both players 
are then assumed to seek out their best outside opportunities, thereby deriving 
utilities e~6 I. Notice that it is commonplace in modeling wage negotiations to 
ignore timing considerations and to use the Nash bargaining solution with the 
status quo placed at the "exit point" e. 

(b) The negotiations may be interrupted by the intervention of an exogen- 
ous random event that occurs in each period of length ~" with probability AT. If 
the negotiations get broken oft in this way at time t, each player i obtains utility 

(c) The negotiations may continue for ever without interruption or agree- 
ment ,  which is the outcome denoted by D in Section 2. As in Section 2, utilities 
are normalized so that each player then gets d i =  0. 

Assume that the three utility pairs e, b, and d satisfy 0 = d < b < e. 
When contemplating the use of an asymmetric Nash bargaining solution in 

the context of an alternating offers model for the "frictionless" limiting case 
when ~----~ 0+ ,  the principle is that the status quo is placed at the utility pair q 
that results from the use of impasse strategies. Thus, if we ignore the exit point 
e then the relevant disagreement point is q with 

qi = l i ö +  b~6~ A~-(1 - A~-) j = Ab~/(A + p,) for i = 1, 2 ,  

where Pe = - l o g  6e. The (symmetric) Nash bargaining solution of the problem 
«i  a2 in which q is the status quo point is the maximizer of u 1 u 2 , where a i 

1/(A + pi) (i.e. it is the asymmetric Nash bargaining solution in which the 
"bargaining power"  of player i is ai). This reflects the fact that both time and 
risk are instrumental in forcing an agreement. 

It is instructive to look at two extreme cases. The first occurs when A is small 
compared with the discount rates Pl and P2 so that it is the time costs of 
disagreement that dominate. The status quo goes to d (=0)  and the bargaining 
powers become 1/p~. The second case occurs when pl and P2 are both small 
compared with A so that risk costs dominate. This leads to a situation closer to 
that originally envisaged by Nash (1950). The status quo goes to the break- 
down point b and the bargaining powers approach equality so that the Nash 
bargaining solution becomes symmetric. 

As for the exit point, the principle is that its value is irrelevant unless at least 
one player's outside option e~ exceeds the appropriate Nash bargaining payoff. 
There  will be no agreement if this is true for both players. When it is true for 
just one of the players, he gets his outside option and the other gets what 
remains of the surplus. (See Result 2 in the case that 6--~ 1.) 

Note finally that the above considerations concerning bargaining over stocks 
translate immediately to the case of bargaining over flows. In bargaining over 
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the wage rate during a strike, for example, the status quo payoffs should be the 
impasse flows to the two parties during the strike (when the parties' primary 
motivation to reach agreement is their impatience with delay). 

4. Commitment  and concession 

A commitment is understood to be an action available to an agent that 
constraints his choice set at future times in a manner beyond his power to 
revise. Schelling (1960) has emphasized, with many convincing examples, how 
difficult it is to make genuine commitments in the real world to take-it-or- 
leave-it bargaining positions. It is for such reasons that subgame-perfect 
equilibrium and other refinements now supplement Nash equilibrium as the 
basic tool in noncooperat ive game theory. However,  when it is realistic to 
consider take-it-or-leave-it offers or threats, these will clearly be overwhelm- 
ingly important.  Nash's (1953) demand garne epitomizes the essence of what is 
involved when both sides can make commitments. 

In this model,  the set U of feasible utility pairs is assumed to be convex, 
closed, and bounded above, and to have a nonempty interior. A point q E U is 
designated as the status quo. The two players simultaneously make take-it-or- 
leave-it demands u I and u 2. If u ~ U, each receives bis demand. Otherwise 
each gets his status quo payoff. 

Any point of V = {u >/q: u is Pareto efficient in U} is a Nash equilibrium. 
Other  equilibria result in disagreement. Nash (1953) dealt with this indeter- 
minacy by introducing a precursor of modern refinement ideas. He assumed 
some shared uncertainty about the location of the frontier of U embodied in a 
quasi-concave, differentiable function p: R2---~ [0, 1] such that p(u) > 0 if u is in 
the interior of U and p(u) = 0 if uf~U. One interprets p(u) as the probability 
that the players commonly assign to the event u E U. The modified model is 
called the smoothed Nash demand garne. Interest centers on the case in which 
the amount  of uncertainty in the smoothed garne is small. For all small enough 
• > 0, choose a function p = pC such that p~(u) = 1 for all u E U whose distance 
from V exceeds e. The existence of a Nash equilibrium that leads to agreement 
with positive probability for the smoothed Nash demand garne for p = p f  
follows from the observation that the maximizer of UlU2p~(ul, u2) is such a 
Nash equilibrium. 

Resuit 4 [Nash (1953)]. Let  u ~ be a Nash equilibrium of the smoothed Nash 
demand garne associated with the function p~ that leads to agreement with 
positive probability. When E--~ 0, u ~ converges to the Nash bargaining solution 
for the problem (U, q). 
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Proof. The following sketch follows Binmore (1987c). Player i seeks to 
maximize uiP'(U) + qg(1 - pC(u)). The first-order conditions for u" > q to be a 
Nash equilibrium are therefore 

E E (u i -q~)p~(u)+p~(u~)=0 for i = 1 , 2 ,  (6) 

where p7 is the partial derivative of pf  with respect to u i. Suppose that 
p(u ~) = c > 0 .  From condition (6) it follows that the vector u ~ must be a 
maximizer of H(u~, u 2 ) = ( u  1 - q l ) ( U 2 -  q2) subject to the constraint that 
p(u) = c. Let w ~ be the maximizer of H(u 1, u2) subject to the constraint that 
p(u) = 1. Then H(u ~) >1 H(w~). By the choice o f p  ~ the sequence w ~ converges 
to the Nash bargaining solution and therefore the sequence u ~ converges to the 
Nash bargaining solution as weil. [] 

There  has been much recent interest in the Nash demand garne with 
incomplete information, in which context it is referred to as a "sealed-bid 
double-auction" [see, for example, Leininger, Linhart and Radner  (1989), 
Matthews and Postlewaite (1989), Williams (1987) and Wilson (1987a)]. It is 
therefore  worth noting that the smoothing technique carries over to the case of 
incomplete information and provides a noncooperative defense of the Harsanyi 
and Selten (1972) axiomatic characterization of the (M + N)-player  asymmet- 
ric Nash bargaining solution in which the bargaining powers fli (i = 1 ,  . .  , M) 
are the (commonly known) probabilities that player 2 attributes to player l 's  
being of type i and/3j ( j  = M + 1 . . . . .  M + N) are the probabilities attributed 
by player 1 to player 2's being of type j. If attention is confined to pooling 
equilibria in the smoothed demand game, the predicted deal a E A is the 
maximizer of / / /=1 ..... M(~Oi(a))~i[7[j=M+l . . . . .  M+N((]~j(a)) ~], where 4)i: A--~R is the 
von Neumann and Morgenstern utility function of the player of type i 
[Binmore (1987c)]. 

4.1. Nash's threat garne 

In the Nash demand garne, the status quo q is given. Nash (1953) extended his 
model in an attempt to endogenize the choice of q. In this later model,  the 
underlying reality is seen as a finite two-person garne, G. The bargaining 
activity begins with each player making a binding threat as to the (possibly 
mixed) strategy for G that he will use if agreement is not reached in the 
negotiations that follow. The ensuing negotiations consist simply of the Nash 
demand garne being played. If the latter is appropriately smoothed, the choice 
of threats tl and t 2 at the first stage serves to determine a status quo q(t 1 , t2) for 
the use of the Nash bargaining solution at the second stage. The players can 
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write contracts specifying the use of lotteries, and hence we identify the set U 
of feasible deals with the convex hull of the set of payoff pairs available in G 
when this is played noncooperatively. This analysis generates a reduced game 
in which the payoff pair n(t) that results from the choice of the strategy pair t is 
the Nash bargaining solution for U relative to the status quo q(t). 

Resuit 5 [Nash (1953)]. The Nash threat garne has an equilibrium, and all 
equilibria yield the same agreement payoffs in U. 

The threat game is strictly competitive in that the players' preferences over 
the possible outcomes are diametrically opposed. The result is therefore 
related to von Neumann's maximin theorem for two-person, zero-sum games. 
In particular, the equilibrium strategies are the players' security strategies and 
the equilibrium outcome gives each player his security level. For a further 
discussion of the Nash threat game, see Owen (1982). 

The model described above, together with Nash's (1953) axiomatic defense 
of the same result, is offen called his variable threats theory. The earlier model, 
in which q is given, is then called thefixed threat theory and q itself is called the 
threat point. It needs to be remembered, in appealing to either theory, that the 
threats need to have the character of conditional commitments for the conclu- 
sions to be meaningful. 

4.2. The Harsanyi-Zeuthen model 

In what Harsanyi (1977) calls the "compressed Zeuthen model", the first stage 
consists of Nash's simple demand garne (with no smoothing). If the opening 
demands are incompatible, a second stage is introduced in which the players 
simultaneously decide whether to concede or to hold out. If both concede, they 
each get only what their opponent offered them. If both hold out, they get 
their status quo payoffs, which we normalize to be zero. 

The concession subgame has three Nash equilibria. Harsanyi (1977) ingeni- 
ously marshals a collection of "semi-cooperative" rationality principles in 
defense of the use of Zeuthen's (1930) principle in making a selection from 
these three equilibria. Denoting by r i the ratio between i's utility gain if j 
concedes and i's utility loss if there is disagreement, Zeuthen's principle is that, 
if r />  rj, then player i concedes. When translated into familiar terms, this calls 
for the selection of the equilibrium at which the Nash product of the payoffs is 
biggest. When this selection is made in the concession subgames, the equilib- 
rium pair of opening demands is then simply the Nash bargaining solution. 

The full Harsanyi-Zeuthen model envisages not one sudden-death encoun- 
ter but a sequence of concessions over small amounts. However, the strategic 
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situation is very similar and the final conclusion concerning the implementation 
of the Nash bargaining solution is identical. 

4.3. Making commitments stick 

Crawford (1982) offers what can be seen as an elaboration of the compressed 
Harsany i -Zeu then  model with a more complicated second stage in which 
making a concession (backing down from the "commitment")  is costly to an 
extent that is uncertain at the time the original demands are made. He finds 
not only that impasse can occur with positive probability, but that this 
probability need not decrease as commitment is made more costly. 

More  recent work has concentrated on incomplete information about prefer- 
ences as an explanation of disagreement between rational bargainers (see 
Section 8). In consequence, Schelling's (1960) view of bargaining as a "struggle 
to establish commitments to favorable bargaining positions" remains largely 
unexplored as regards formal modeling. 

5. Pairwise bargaining with few agents 

In many economic environments the parameters of one bargaining problem are 
determined by the forecast outcomes of other bargaining problems. In such 
situations the result of the bargaining is highly sensitive to the detailed 
structure of the institutional framework that governs how and when agents can 
communicate with each other. The literature on this topic remains exploratory 
at this stage, concentrating on a few examples with a view to isolating the 
crucial institutional features. We examine subgame-perfect equilibria of some 
elaborations of the model of Section 2. 

5.1. One seller and two buyers 

An indivisible good is owned by a seller S whose reservation value is v s = 0. It 
may be sold to one and only one of two buyers, H and L, with reservation 
values v = v H/> v L = 1. In the language of cooperative garne theory, we have a 
three-player garne with value function V satisfying V({S, H } ) =  
V((S,  H, L})  = v, V((S,  L})  = 1, and V(C) = 0 otherwise. The game has a 
nonempty core in which the object is sold to H for a price p ~> 1 when v > 1. 
(When v = 1, it may be sold to either of the buyers at the price p = 1.) The 
Shapley value is (1/6 + v/2, v / 2 -  1/3, 1/6) (where the payoffs are given in 
the order  S, H,  L) .  
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How instructive are such conclusions from cooperative theory? The follow- 
ing noncooperative models are intended to provide some insight. In these 
models, if the object changes hands at price p at time t, then the seller gets p6 t 
and the successful buyer gets (vB-p)6  t, where v B is his valuation and 
O< 6 < 1. An agent who does not participate in a transaction gets zero. 
Information is always perfect. 

5.1.1. Auctioning [Wilson (1984), Binmore (1985)] 

The seller begins at time 0 by announcing a price, which both buyers hear. 
Buyer H either accepts the offer, in which case he trades with the seller and the 
game ends, or rejects it. In the latter case, buyer L then either accepts or 
rejects the seller's offer. If both buyers reject the offer, then there is a delay of 
length ~-, after which both buyers simultaneously announce counteroffers; the 
seller may either accept one of these offers or reject both. If both are rejected, 
then there is a delay of length ~-, after which the seller makes a new offer; and 
SO o n .  

5.1.2. Telephoning [Wilson (1984, Section 4), Binmore (1985)] 

The seller begins by choosing a buyer to call. During their conversation, the 
seller and buyer alternate in making offers, a delay of length r elapsing after 
each rejection. Whenever it is the seller's turn to make an offer, he can hang 
up, call the other buyer and make an offer to him instead. An excluded buyer 
is not allowed to interrupt the seller's conversation with the other buyer. 

5.1.3. Random matching [Rubinstein and Wolinsky (1990)] 

At the beginning of each period, the seUer is randomly matched with one of 
the two buyers with equal probability. Each member of a matched pair then 
has an equal chance of getting to make a proposal which the other can then 
accept or reject. If the proposal is rejected, the whole process is repeated after 
a period of length "r has elapsed. 

5.1.4. Acquiring property rights [Gul (1989)] 

The players may acquire property rights originally vested with other players. 
An individual who has acquired the property rights of all members of the 
coalition C enjoys an income of V(C) while he remains in possession. Property 
rights may change hands as a consequence of pairwise bargaining. In each 
period, any pair of agents retaining property rights has an equal chance of 
being chosen to bargain. Each member of the matched pair then has an equal 
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chance of getting to make a proposal to the other about the rate at which he is 
willing to rent the property rights of the other. If the responder agrees, he 
leaves the game and the remaining player enjoys the income derived from 
coalescing the property rights of both. If the responder refuses, both are 
returned to the pool of available bargainers. In this model a strategy is to be 
understood as stationary if the behavior for which it calls depends only on the 
current distribution of property rights and not explicitly on time or other 
variables. 

Result 6 
(a) [Binmore (1985)]. If, in the auctioning model, 6~v/(1 + 6 ~) < 1, then 

there is a subgame-perfect equilibrium, and in all such equilibria the good 
is sold immediately (to H if v > l )  at the price 6 ~ + ( 1 - 6 ~ ) v .  If 
6~v/(1 + 6 " ) >  1, then the only subgame-perfect equilibrium outcome is that 
the good is sold to H at the bilateral bargaining price (of approximately v/2 if ~- 
is sufficiently small) that would obtain if L were absent altogether. 

(b) [Binmore (1985)]. In any subgame-perfect equilibrium of the telephon- 
ing model immediate agreement is reached on the bilateral bargaining price 
(approximately v/2 when ~- is small) that would obtain if L were absent 
altogether. If v > 1 then the good is sold to H. 

(c) [Rubinstein and Wolinsky (1990)]. Il, in the random matching model, 
v = 1, then there is a unique subgame-perfect equilibrium in which the good is 
sold to the first matched buyer at a price of approximately 1 when r is small. 

(d) [Gul (1989)]. For the acquiring property rights model, among the class of 
stationary subgame-perfect equilibria there is a unique equilibrium in which all 
matched pairs reach immediate agreement. When ~- is small, this equilibrium 
assigns each player an expected income approximately equal to his Shapley 
value allocation. 

5.2. Related work 

Shaked and Sutton (1984) and Bester (1989a) study variations of the "tele- 
phoning" model, in which the delay before the seller can make an offer to a 
new buyer may differ from the delay between any two successive periods of 
bargaining. [See also Bester (1988) and Muthoo (1989a).] The case v > 1 in the 
"random matching" model is analyzed by Hendon and Trana~s (1991). An 
implementation of the Shapley value that is distinct bnt related to that in the 
"acquiring property rights" model is given by Dow (1989). Gale (1988) and 
Peters (1988, 1989, 1991, 1992) study the relation between the equilibria of 
models in which sellers announce prices ("auctioning", or "ex ante pricing"), 
and the equilibria of models in which prices are determined by bargaining after 
a match is made ("ex post pricing"). Horn and Wolinsky (1988a, 1988b) 
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analyze a three-player cooperative game in which V ( 1 , 2 , 3 ) > V ( 1 , 2 ) =  
V(1, 3) > 0 and for V(C) = 0 all other coalitions C. [See also Davidson (1988), 
Jun (1989), and Fernandez and Glazer (1990).] In this case, the garne does not 
end as soon as one agreement is reached and the question of whether the first 
agreement is implemented immediately becomes an important factor. [Related 
papers are Jun (1987) and Chae and Yang (1988).] 

6. Noncooperative bargaining models for coalitional games 

In Section 8.2 we showed that Result 1 does not directly extend to situations in 
which more than two players have to split a pie. The difficulties are com- 
pounded if we wish to provide a noncooperative model for an arbitrary 
coalitional game. 

Selten (1981) studies a model that generalizes the alternating-offers model. 
He restricts attention to coalitional games (N, v) with the "one-stage 
property":  v(C) > 0 implies v(N\C)  = 0. In such a garne, let d be an n-vector, 
and let F/(d) be the set of coalitions that contain i and satisfy Zec c d i = v(C). 
Then d is a "stabie demand vector" if Zi~c de >~ v(C) for all coalitions C, and 
no Fi(d ) is a proper subset of F~(d) for any j. 

Selten's game is the following. Before play begins, one of the players, say i, 
is assigned the initiative. In any period, the initiator can either pass the 
initiative to some other player, or make a proposal of the form (C, d, j) ,  
where C ~ i is a coalition, d is a division of v(C) among the members of C, and 
j ~ C is the member of C designated to be the responder. Player j either 
accepts the proposal and selects one of the remaining members of C to become 
the next responder, or rejects the proposal. In the latter case, play passes to 
the next period, with j holding the initiative. If all the members of C accept the 
proposal, then it is executed, and the game ends. The players are indifferent to 
the passage of time. 

The garne has many stationary subgame-perfect equilibria. However, Selten 
restricts attention to equilibria in which (i) players do not needlessly delay 
agreement, (ii) the initiator assigns positive probability to all optimal choices 
that lead to agreement with probability 1, and (iii) whenever some player i has 
a deviation x = (C, d, j)  with the properties that d i exceeds player i's equilib- 
rium payoff, dj is less than player j 's  equilibrium payoff, and player i is 
included in all the coalitions that may eventually form and obtains his 
equilibrium payoff, then player j has a deviation (C', d', i) that satisfies the 
same conditions with the roles of i and j reversed. Selten shows that such 
equilibria generate stable demand vectors, in the sense that a stable demand 
vector d is obtained by taking d e to be player i's expected payoff in such an 
equilibrium conditional on his having the initiative. 

Chatterjee, Dutta, Ray and Sengupta (1992) study a variant of Selten's garne 
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in which the players are impatient, and the underlying coalitional game does 
not necessarily satisfy the one-stage property. They show that for convex 
games, stationary subgame-perfect equilibria in which agreement is reached 
immediately on an allocation for the grand coalition converge, as the degree of 
impatience diminishes, to the egalitarian allocation [in the sense of Dutta and 
Ray (1989)]. 

Harsanyi (1981) studies two noncooperative models of bargaining that 
implement the Shapley value in certain games. We briefly discuss one of these. 
In every period each player proposes a vector of "dividends" for each coalition 
of which he is a member. If all members of a coalition propose the same 
dividend vector, then they receive these dividends if this is feasible. At the end 
of each period there is a small probability that the negotiations break down. If 
it is not ended by chance, then the game ends when the players unanimously 
agree on their dividend proposals. Harsanyi shows that in decomposable 
garnes- garnes that are the sums of unanimity garnes- the outcome of the 
bargaining garne selected by the Harsanyi and Selten (1988) equilibrium 
selection procedure is precisely the Shapley value. [For a related, "semi- 
cooperative" interpretation of the Shapley value, see Harsanyi (1977).] 

Various implementations of the solution sets of von Neumann and Morgen- 
stern are also known, notably that of Harsanyi (1974). In each period t some 
feasible payoff vector x t is "on the floor". A referee chooses some coalition S 
to make a counterproposal. The members of S simultaneously propose alterna- 
tive payoff vectors. If they all propose the same vector y, and y dominates x t 
through S, then y is on the floor in period t + 1; otherwise the game ends, and 
x t is the payoff vector the players receive. The solution concept Harsanyi 
applies is a variant of the set of stationary subgame perfect equilibrium. 

As things stand, these models demonstrate only that various cooperative 
solution concepts can emerge as equilibrium outcomes from suitably designed 
noncooperative or semi-cooperative bargaining models. However, these 
pioneering papers provide little guidance as to which of the available coopera- 
tive solution concepts, if any, it is appropriate to employ in an applied model. 
For this purpose, bargaining models need to be studied that are not hand- 
picked to generate the solution concept they implement. But it is difficult to 
see how to proceed while the simple alternating-offers model with three players 
remains open. Presumably, as in the case of incomplete information considered 
in Section 8, progress must await progress in noncooperative equilibrium 
theory. 

7. Bargaining in markets 

Bargaining theory provides a natural framework within which to study price 
formation in markets where transactions are made in a decentralized manner 
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via interaction between pairs of agents rather than being organized centrally 
through the use of a formal trading institution like an auctioneer. One might 
describe the aim of investigations in this area as that of providing "mini-micro" 
foundations for the microeconomic analysis of markets and, in particular, of 
determining the range of validity of the Walrasian paradigm. Such a program 
represents something of a challenge for garne theorists in that its success will 
presumably generate new solution concepts for market situations intermediate 
between those developed for bilateral bargaining and the notion of a Walrasian 
equilibrium. 

Early studies of matching and bargaining models are Diamond and Maskin 
(1979), Diamond (1981) and Mortensen (1982a, 1982b) in which bargaining is 
modeled using cooperative game theory. This approach is to be contrasted with 
the noncooperative approach of the models that follow. A pioneering paper in 
this direction is Butters (1977). 

The models that exist differ in their treatment of several key issues. First, 
there is the information structure. What does a player know about the events 
in other bargaining sessions? Second, there is the question of the detailed 
structure of the pairwise bargaining garnes. In particular, when can a player opt 
out? Third, there is the modeling of the search technology through which the 
bargainers get matched. Finally, there is the nature of the data given about 
agents in the market. Sometimes, for example, it relates to stocks of agents in 
the market, and sometimes to flows of entrants or potential entrants. 

7.1. Markets in steady state [Rubinstein and Wolinsky (1985)] 

Most of the literature has concentrated on a market for an individual good in 
which agents are divided into two groups, sellers and buyers. All the sellers 
have reservation value 0 for the good and all the buyers have reservation value 
1. A matched seller and buyer can agree on any price p, with 0 ~< p ~< 1. If 
agreement is reached at time t, then the seller leaves the market with a von 
Neumann and Morgenstern utility of p6 t and the buyer leaves with (1 - p ) 6  t. 

The first event in each period is a matching session in which all agents in the 
market participate, including those who may be matched already. Any seller 
has a probability ~r of being matched with a buyer and any buyer has a 
probability/3 of being matched with a seller. The numbers o- and/3 are assumed 
to be constant so that the economic environment remains in a steady state. 

Bargaining can take place only between individuals in a matched pair. After 
the matching session, each member of a matched pair is equally likely to be 
chosen to make the first offer. This may be accepted or rejected by the 
proposer's partner. If it is accepted, both leave the market. In either case, the 
next period commences after time ~- has elapsed. 

Pairs who are matched at time t but do not reach agreement remain matched 
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at time t + ~-, unless one or both partners gets matched elsewhere. An agent 
taust abandon his old partner when matched with a new one. Thus, for 
example, a seller with a partner at time t who does not reach agreement at time 
t has probability (1 - o-)/3 of being without a partner at time t + ~-. (A story can 
be told about the circumstances under which it would always be optimal to 
abandon the current partner if this decision were the subject of strategic 
choice, but this issue is neglected here.) 

The model is not a garne in the strict sense. For example, the set of players is 
not specified. Nevertheless, a game-theoretic analysis makes sense using a 
solution concept that is referred to as a "market  equilibrium". This is a pair of 
strategies, one for buyers and one for sellers, that satisfies: 

(1) Semi-stationarity. The strategies prescribe the same bargaining tactics for 
all buyers (or sellers) independently of their personal histories. 

(2) Sequential rationality. The strategies are optimal after all possible his- 
tories. 

Result 7 [Rubinstein and Wolinsky (1985)]. There is a unique market equilib- 
rium. As T--~0+, the price at which the good changes hands converges to 
er/(er +/3). 

The probabilities er and /3 depend on the matching technology, which 
depends in turn on how search is modeled. Let S and B be the steady-state 
measures of sellers and buyers, respectively, and consider the most nai've of 
search models in which er = c'rB/(B + S) and /3 = c'rS/(B + S), where the 
constant c represents a "search friction". In the limit as ~'-+ 0+,  the market 
equilibrium price approaches B/(B + S). Thus, for example, if there are few 
sellers and many buyers, the price is high. 

Notice that the short side of the market does not appropriate the entire 
surplus even in the case when several frictions become negligible. Gale (1987) 
points out that, if this conclusion seems paradoxical, it is as a consequence of 
thinking of supply and demand in terms of the stocks S and B of agents in the 
market at any time. To keep the market in a steady state, the flows of buyers 
and sellers into the market at any time have to be equal. If supply and demand 
are measured in terms of these flows, then any selling price is Walrasian. For 
further discussion, see Rubinstein (1987, 1989). 

7.2. Unsteady states [Binmore and Herrero (1988a, 1988b)] 

Binmore and Herrero (1988a, 1988b) generalize the preceding model in two 
directions. The informational difficulties finessed by Rubinstein and Wolinsky's 
"semi-stationarity" condition are tackled by observing that subgame-perfect 
equilibria in alternating-offers models can be replaced by "security equilibria" 
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without losing the uniqueness conclusion. A security equilibrium is related to 
the notion of "rationalizability" introduced by Bernheim (1984) and Pearce 
(1984). Their requirement about its being common knowledge that strictly 
dominated strategies are never played is replaced by a similar requirement 
concerning security levels. It is assumed to be common knowledge that no 
player takes an äction under any contingency thät yields less than he calculates 
~is security level to be, given the occurrence of the contingency. Any equilib- 
rium notion normally considered is also a security equilibrium. A proof of 
uniqueness for security equilibria therefore entails uniqueness for more con- 
ventional equilibria also. However, in markets with a continuum of traders, 
security equilibria are insensitive to the players' personal histories. The imme- 
diate point is that stationarity restrictions on the equilibrium concept used in 
the Rubinstein and Wolinsky model and its relatives are not crucial in 
obtaining a uniqueness result (provided 6 < 1). 

The second generalization of the Rubinstein and Wolinsky model results 
from applying the technique to markets that are not necessarily in a steady 
state in that the equilibrium measures of traders may vary with time as a 
consequence of satisfied traders leaving the market without there being an 
exactly counterbalancing inflow of new traders. Closed-form conclusions are 
obtained for the continuous time case obtained by considering the limit as 
~---~0+. In particular, the equilibrium deal can be expressed as an integral 
involving the equilibrium probabilities that a buyer or a seller is matched at all 
future times. 

Aside from the steady-state model, the simplest special case occurs when no 
new traders enter the market after time 0. There is then no replacement of 
those traders present at time 0 when they finally conclude a successful deal and 
leave the market. With the naive search technology considered in the Rubin- 
stein and Wolinsky model, the following Walrasian conclusion is obtained: 

Result 8 [Binmore and Herrero (1988a, 1988b)]. There is a unique security 
equilibrium. As search frictions become negligible, the equilibrium deal ap- 
proximates that in which the entire surplus is assigned to agents on the short 
side of the market. 

Among many other results, Gale (1987) has extended versions of both 
Results 7 and 8 to the case in which there is a spectrum of reservation prices on 
both sides of the market. 

7.3~ Divisible goods with multiple trading [Gale (1986c)] 

Gale (1986a, 1986b, 1986c) studies traditional barter markets in which many 
divisible goods are traded and agents can transact many times before leaving 



208 K. Binmore et al. 

the market. We now describe one of the models ffom Gale (1986c) [which is a 
simplification of the earlier paper Gale (1986a)]. [The existence of market 
equilibrium is established in Gale (1986b), and the relation between Gale's 
work and general equilibrium theory is explored in McLennan and Son- 
nenschein (1991).] 

All agents, of which there are K types, enter the market at time zero. 
Initially, there is a measure n k of agents of each type k = 1, 2 , . . . ,  K. An 
agent of type k is characterized by his initial commodity bundle w k and his 

m utility function u~: R"~ U {D}--+R tO { - ~ } ,  where R+ is the space of commodi- 
ty bundles with which he might leave the market and D is the event of his 
remaining in the market for ever. Agents are not impatient (6 = 1) and bundles 
may be stored costlessly. 

Each period begins with a matching session which operates independently of 
past events. In particular, no matches survive from previous periods, The 
probability of a given agent getting matched with an agent with specified 
characteristics is proportional to the current measure of such agents in the 
population. Once a match is established, each of the paired agents learns the 
type of his partner and his partner's commodity bundle. Bargaining then 
begins. Each member of a matched pair is equally likely to be chosen to make 
a proposal. This must consist of a vector representing a feasible transfer of 
goods from himself to his bargaining partner. This proposal may be accepted or 
rejected. If it is rejected, the responding agent then decides whether or not to 
leave the market. An important assumption is that agents do not leave the 
market except after such a rejection. 

As trade occurs, the bundle held by each agent changes. Given the restric- 
tions on strategies imposed below, the number of different bundles held is 
always finite. Thus, in any period the state of  the market can be characterized 
by a finite list (ci, kz, vi)i= 1 ..... i, where c z is a feasible holding and v~ is the 
measure of agents of type k z holding c i. 

A market equilibrium is defined to be a K-tuple o-* of strategies, one for 
each type, that satisfies the following conditions: 

(1) Semi-stationarity. The bargaining tactics prescribed by the strategy de- 
pend only on time, the agënt's current bundle and the opponent's type and 
current bundle. 

(2) Sequential rationality. Whenever an agent makes a decision, his strategy 
calls for an optimal decision, given the strategies of the other types and given 
that the agent believes that the state of the market is that which occurs when 
all agents use o-*. 

K A K-tuple of bundles ( x l , . . .  ,xK) is an allocation if •k=l n~x~ = 
K E~= 1 n~w k. If there exists a price vector p such that, for all k, the bundle x~ 

maximizes u k subject to the budget constraint px  <~ pw~, then the allocation is 
Walrasian. Gale's concern is with the circumstances under which the equilib- 
rium outcome is Walrasian. 
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For technical reasons, Gale restricts the utility functions to be considered. 
Here [as in the presentation in Osborne and Rubinstein (1990)] we require the 
existence of an increasing and continuous function 6~: R+---~ R that is zero on 
the boundary of R+ and strictly concave in its interior. For a given 4~ > 0, it is 
then required that 

~4,k(x) if 4,g(x)>~~ß, 
Uk(X) = otherwise. 

In addition, a regularity condition has to be imposed on the indifference 
curves: their curvature has to be uniformly bounded. 

Result 9 [Gale 1986a, 1986b]. For every market equilibrium, there is a 
Walrasian allocation ( x l , . . .  , xK) such that each agent of type k leaves the 
market holding bundle xg with probability one. 

The constraint that the strategies be semi-stationary may reflect an assump- 
tion about the information available to the agents. The role of the information- 
al structure in such models is explored in Rubinstein and Wolinsky (1990). In 
particular, it is shown that, in a model with 6 = 1 and a finite number of 
traders, any price can be supported as a sequential equilibrium, provided that 
agents are permitted perfect knowledge of the events in the market, or even if 
the agents are able to recall only their personal histories. 

7.4. Related work 

Wolinsky (1987) studies a model in which each agent chooses the intensity with 
which to search for an alternative partner. Wolinsky (1988) analyzes the case in 
which transactions are made by auction, rather than by matching and bargain- 
ing. A model in which some agents are middlemen who buy from sellers and 
resell to buyers (and do not themselves consume the good) is studied by 
Rubinstein and Wolinsky (1987). 

Wolinsky (1990) initiates an investigation of the extension of the models to 
include asymmetric information. In Wolinsky's model the equilibrium outcome 
of a decentralized trading process may not approximate the rational expecta- 
tions equilibrium of the corresponding trading process, even when the market 
is "approximately frictionless". For related models see Rosenthal and Landau 
(1981), Green (1991) and Samuelson (1992). 

Models of decentralized trade that explicitly specify the trading procedure 
provide a vehicle by which to analyze the role and value of money in a market. 
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Gale (1986d) and Kiyotaki and Wright (1989) initiate an investigation of the 
issues that arise. 

8. Bargaining with incomplete information 

This section presents some attempts to build theories of bargaining when the 
information available to the bargainers about their opponents is incomplete. 
The proposals and responses in an alternating-offers model then do more than 
register a player's wiUingness to settle on a particular deal: they also serve as 
signals by means of which the players may communicate information to each 
other about their private characteristics. Such signals need not be "truthful". A 
player in a weak bargaining position may find it worthwhile to imitate the 
bargaining behavior that he would use if he were strong with a view to getting 
the same deal as a strong player would get. A strong player must therefore 
consider whether or not to choose a bargaining strategy that it would be too 
costly for a weak player to imitate lest the opponent fail to recognize that he is 
strong. Such issues are studied in the literature on signaling games (see the 
chapter on 'signalling' in a forthcoming volume of this Handbook) which is 
therefore central to what follows. 

A central goal in studying bargaining with incomplete information is to 
explain the delays in reaching agreement that we observe in real-life bargain- 
ing. (Recall that the alternating-offers model of Result 1, in which information 
is complete, predicts no delay at all.) Much has been learned in pursuing this 
goal, but its attainment remains elusive. In this section we propose to do no 
more than indicate the scope of the difficulties as currently seen. 

The literature uses the Kreps and Wilson (1982) notion of a sequential 
equilibrium after reducing the bargaining situation with incomplete information 
to a game with imperfect information in accordance with Harsanyi's (1967/68) 
theory, within which each player is seen as being chosen by a chance move 
from a set of "types" of player that he might have been. Although subgame- 
perfection is a satisfactory concept for some complete information bargaining 
games, the set of sequential equilibria for bargaining games with incomplete 
information is typically enormously large. It is therefore necessary, if informa- 
tive results are to emerge, to refine the notion of sequential equilibrium. 
Progress in the study of bargaining games of incomplete information, as with 
signaling games in general, is therefore closely tied to developments in the 
literature on refinements of sequential equilibrium. It should be noted, how- 
ever, that advances in refinement theory have only a tentative character. 
Although one idea or another may seem intuitivety plausible in a particular 
context, the theory lacks any firmly grounded guiding principles. Until these 
problems in the foundations of garne theory are better understood, it therefore 
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seems premature  to advocate any of the proposed resolutions of the problem of 
bargaining under incomplete information for general use in economic theory. 

8.1.  A n  al ternat ing-of fers  m o d e l  wi th  i n c o m p l e t e  i n f o r m a t i o n  [Rubinstein 
(1985a, 1985b)] 

We return to the problem of "dividing the dollar" in which the set of feasible 
agreements is identified with A = [0, 1]. For simplicity, we confine attention to 
the case of fixed costs per unit time of delay. Recall that the players' 
preferences over the possible deals (a, t), in which 1 gets a and 2 gets 1 - a at 
t ime t, may tben be represented by a - C l t  and l - a - c : t ,  where c i > 0  
(i = 1, 2). Player l 's  cost c~ = c per unit time of delay is taken to be common 
knowledge, but 2's cost c 2 is known for certain only by 2. It is common 
knowledge only that player 1 initially believes that c 2 must take one of the two 
values c w or c s and that the probability of the former is ~w. It is assumed that 
c s < c < c w and the costs are small enough that c + c w + c s < 1. The interval 
between successive proposals is fixed at r = 1 except where otherwise noted. 

Having a high cost rate is a source of weakness in one's bargaining position. 
For  example,  if 7r w = 1, so that it is certain that 2 has a higher cost rate than 1, 
then we have seen that 1 gets the entire surplus in equilibrium. On the other  
hand, if 7r w = 0, so that it is certain that 2 has a lower cost rate than 1, then 1 
gets only c s. For this reason, a high cost type of 2 is said to be w e a k  and a low 
cost type to be s trong.  

In the context of this model, a sequential equilibrium is a strategy triple, one 
for player 1 and one each for the two possible types of player 2, combined with 
a belief function that assigns, to every possible history after which player 1 has 
to move, the probability that player 1 attaches to the event that player 2 is 
weak. The beliefs have to be updated using Bayes' Rule whenever this is 
possible, and the initial belief has to be r w. The strategy of each player must be 
optimal after every  history (sequential rationality). We impose two auxiliary 
requirements.  First, if the probability that player 1 attaches to the event that 
player 2 is weak is zero (one) for some history, it remains zero (one) 
subsequently. Thus, once player 1 is convinced of the identity of his opponent ,  
he is never dissuaded of this view. Second, when he makes an offer, player l 's  
belief is the same as it was when he rejected the previous offer of player 2. 

As is shown in Rubinstein (1985a, 1985b), many sequential equilibria may 
exist: 

(1) If ~w > 2 c / ( c  + Cw), then in all sequential equilibria player l 's  expected 
payoff  is at least 7r w + (1 - ~-w)(1 - c w - c).  

(2) If ~ w  <~2c/ (c  + Cw) , then, for any a* between c and 1 - c  + Cs, there 
exists a ("pool ing")  sequential equilibrium in which player l 's  opening demand 
is a*, which both a weak and a strong player 2 accept. 
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(3) If ( c  + C s ) / ( c  + Cw)  ~ ~ w  <~ 2 c / ( c  + Cw)  , then for any a*  >t Cw there 
exists a ("separat ing")  sequential equilibrium in which player l 's  opening 
demand is a*. A weak player 2 accepts this demand, while a strong player 2 
rejects it and makes the counteroffer a*  - Cw,  which player 1 accepts. 

The multiplicity of equilibriä arises because of the freedom permitted by the 
concept of sequential equilibrium in attributing beliefs to pläyers after they 
have observed a deviation from equilibrium. Such deviations are zero prob- 
ability events and so cannot be dealt with by Bayesian updating. 

We illustrate the ideas underlying these results by considering case (2). Let  
c <~ a*  <~ 1 - c + c s .  We construct a sequential equilibrium in terms of three 
commonly held states-of-mind labeled I (for initial), O (for optimistic), and S 
(for strong). In state I it is common knowledge that 1 believes that 2 is weak 
with probability ~w. In state W it is common knowledge that 1 believes that 2 is 
weak for sure, while in state S it is common knowledge that 1 believes that 2 is 
strong for sure. In state W player 1 and the weak type of player 2 behave 
precisely as in the complete information case when it is certain that 2 has the 
high cost rate Cw;  the strong type of player 2 uses a best response against 
player l 's  strategy. In state S player 1 and the strong type of player 2 behave 
precisely as in the complete information case when it is certain that 2 has the 
low cost rate Cs; the weak type of player 2 uses a best response against player 
l ' s  strategy. In state I: 

(1) Player 1 demands a* and accepts an offer of a if and only if a ~> a* - c. 
(2) A strong player 2 offers a* - c and accepts only a demand of a ~< a*. 
(3) A weak player 2 offers a * - c  and accepts only a demand of a ~< 

a*  - c + c w .  

The players continue in state I until either (i) player 2 rejects a demand a 
with a*  < a < a*  + c w - c and counteroffers a* - c, in which case there is a 
transition to state S, or (ii) player 2 takes an action inconsistent with the 
strategies of both the weak and the strong player 2, in which case they switch 
to state W. The second transition occurs immediately after the inconsistent 
action. Once in state W or state S they remain there no matter  what. (The 
conjectures that lead the players to move to state W after a deviation are called 
"optimistic". They are useful in rendering deviations unattractive and hence in 
constructing multiple equilibria.) 

Some comments on why the parameters need to be restricted in order  to 
sustain the equilibrium may be helpful. Notice that if 1 demands more than a* 
and less than a*  - c + c w at time 0, then a weak 2 accepts this demand, while a 
strong 2 rejects it and proposes a* - c, the state changes to S, and 1 accepts 
this counteroffer.  Thus by deviating in this way 1 obtains at most 7 r w ( a *  - c + 

Cw)  + (1 - 7 r w ) ( a *  - 2c). The condition that this quantity not exceed a* is that 
rr w < ~ 2 c / ( c  + Cw) .  The requirement that a * ~  > c is simply to ensure that the 
offer a* - c be feasible. Finally, observe that if a strong 2 rejects an opening 
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demand of a*, then the state changes to W, in which a strong 2 obtains c - c s.  

The condition a* «- 1 - c + c s ensures that this payoff is no more than 1 - a*. 

8.2 .  P r o l o n g e d  d i s a g r e e m e n t  

We now use case (2) from the preceding subsection to construct a sequential 
equilibrium in which the bargaining may be prolonged for many periods before 
agreement  is achieved. 

Choose three numbers, x*, y*, and z*, that sätisfy c < ~ x * < y * < z * < ~  

1 - c + c s.  The time that elapses in equilibrium before agreement is reached is 
denoted  by N, where N is chosen to be the largest even integer smaller than 

min{(y* - x * ) / c ,  ( z *  - y *  + c w -  c ) / c w ,  ( z * -  y *  + e s -  c ) / C s }  . 

Until period N, player 1 and both types of player 2 hold out for the entire 
surplus, and player 1 retains his initial belief that player 2 is weak with 
probability 7rw, so long as no deviation occurs. If period N is reached without a 
deviation then the players switch to a sequential equilibrium with a * =  y*. If 
there is a deviation in period t ~< N - 1  then i m m e d i a t e l y  after the deviation 
(i.e. before a response if the deviation is in the offer made) the players switch 
to a sequential equilibrium as described in case 2 of the previous subsection as 
follows: a* = x* if player 1 deviates and a* = z* if player 2 deviates. 

The bound on N ensures that 1 does not deviate at time 0. The prescribed 
play yields hirn a payoff of y *  - N c  as opposed to his best alternative, which is 
to demand x*. The bound also ensures that neither type of player 2 deviates in 
the second period: the prescribed play yields type I a payoff of 1 - y *  - N c  1 as 
opposed to his best alternative, which is to offer z * - c ,  whose acceptance 
y i e l d s a p a y o f f o f  1 -  z *  + c -  c 1, I -= W ,  S.  

When the length of a period is z, the parameters c, Cs, and c w in the above 
taust be multiplied by z and the delay time to agreement becomes r N ( z ) .  The 
limit of the latter as ~----~ 0+ is positive. Thus, there may be significant delay in 
reaching agreement,  even when ~- is small, although no information is revealed 
along the equilibrium path after a deviation occurs. Any deviation is inter- 
preted as signaling weakness and leads to an equilibrium that favors the 
nondeviant.  

Gul and Sonnenschein (1988) do not accept that such nonstationary equilib- 
ria are reasonable. In this context, stationarity refers to the assumption that 
players do not change their behavior so long as 1 does not change his belief 
about  2's type. A version of their result for the fixed costs model that we have 
been using as an example is that any sequential equilibrium in which 2's 
strategies are stationary taust lead to an agreement no later than the second 
period. 
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In their paper, Gul and Sonnenschein analyze a more complex bargaining 
model between a seller and a buyer in which the seller's reservation value is 0 
and the buyer's reservation value has a continuous distribution F with support 
Il, h]. They impose two properties in addition to stationarity on sequential 
equilibrium. The monotonicity property requires that, for histories after which 
the seller's posterior distribution for the buyer's reservation value is the 
conditional distribution of F given Il, x], the seller's offer must be increasing in 
x. The no free screening property requires that the buyer's offer can influence 
the seller's beliefs only after histories in which at least one of the buyer's 
equilibrium offers is supposed to be accepted by the seller. 

Result 10 [Gul and Sonnenschein (1988)]. For all e > 0 there is z*> 0 such 
that for all positive ~-<~-*, in every sequential equilibrium that satisfies 
stationarity, monotonicity and no free screening, the probability that bargain- 
ing continues after time e is at most e. 

Gul and Sonnenschein conclude from Result 10 that bargaining with one- 
sided uncertainty leads to vanishingly small delays when the interval between 
successive proposals becomes sufficiently small. We are not convinced that such 
a sweeping conclusion is legitimate, although we do not deny that actual delays 
in real-tife bargaining must offen be caused by factors that are more complex 
than the uncertainties about the tastes or beliefs of a player as we have 
modeled them. Uncertainties about how rational or irrational an opponent is 
are probably at least as important. The reason for our skepticism lies in the fact 
that, as is shown by Ausubel and Deneckere (1989) and others, the result relies 
heavily on the stationarity assumption. As explained in Section 2, stationarity 
assumptions do more than attribute simplicity of behavior to the ptayers: they 
also make players' beliefs insensitive to past events. 

Note that Result 10 and that of Gul, Sonnenschein and Wilson (1986) have 
an importance beyond bargaining theory because of their significance for the 
"Coase conjecture". Note also that Vincent (1989) demonstrates that, if the 
seller and the buyer have correlated valuations for the traded item, then delay 
is possible when the time between offers goes to zero even under stationarity 
assumptions. 

8.3. Refinements of sequential equilibrium in bargaining models [Rubinstein 
(1985a, 1985b)] 

Our study of the fixed costs model shows that the concept of sequential 
equilibrium needs to be refined if unique equilibrium outcomes are to be 
obtained. To motivate the refinement that we propose, consider the following 
situation. Player 1 makes a demand of a, which is rejected by 2 who makes a 
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counteroffer of b, where a - c w < b < a - c s .  If the rejection and the coun- 
teroffer are out of equilibrium, then the sequential equilibrium concept does 
not preclude 1 from assigning probability one to the event that 2 is weak. Is 
this reasonable? Observe that 2 rejects the demand a in favor of an offer of b 
which, if accepted, leads to a payoff of 1 - b - c s > 1 - a for the strong 2, but 
only 1 -  b -  c w < 1 - a  for the weak 2. One can therefore "rationalize" the 
offer of b on the part of the strong player but not on the part of the weak 
player. Should not this offer therefore convince 1 that his opponent is strong? 

The next result, which is a version of that of Rubinstein (1985a, 1985b), 
explores the hypothesis that players' beliefs incorporate such "rationalizations" 
about their opponents. The precise requirements for r a t i o n a l i z i n g  c o n j e c t u r e s  

are that, in any history after which player 1 is not certain that he faces the 
weak type of player 2: 

(1) If 2 rejects the offer a and makes a counteroffer b satisfying a - c w < 

b < a -  Cs ,  then 1 assigns probability one to the event that his opponent is 
strong. 

(2) If 2 rejects the offer a and makes a counteroffer b satisfying a - c w > b ,  

then 1 does not increase the probability he attaches to 2's being strong. 

Result 11 [Rubinstein (1985a, 1985b)]. For any sequential equilibrium with 
rationalizing conjectures: 

(1) If 2 c / ( c  + c w )  < 7r w < 1, then if 2 is weak there is an immediate agree- 
ment in which 1 gets the entire surplus, while if 2 is strong the agreement is 
delayed by one period, at which time 1 gets 1 - c w.  

(2) If ( c  + C s ) / ( c  + C w ) <  1r w < 2 c / ( c  + Cw)  , then if 2 is weak there is an 
immediate agreement in which 1 gets c w ,  while if 2 is strong the agreement is 
delayed by one period, at which time 1 gets nothing at all. 

(3) If 0 < 7r w < ( c  + C s ) / ( c  + c w )  , then there is an immediate agreement in 
which 1 gets c s whatever 2's type. 

Rubinstein (1985a) provides a more general result applied to the family of 
time preferences explored in Section 2. Various refinements of a similar nature 
have been proposed by numerous authors. In particular, Grossman and Perry 
(1986) propose a refinement they call "perfect sequential equilibrium", which 
seems to lead to plausible outcomes in bargaining models for which it exists. 

8 . 4 .  S t r a t e g i c  d e l a y  [Admati and Perry (1987)] 

One may modify the previous model by allowing a responding player to c h o o s e  

how much time may pass before he makes his counteroffer. He may either 
immediately accept the proposal with which he is currently faced or he may 
reject the demand and choose a pair (a, A), where a E A is his counterproposal 
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and A/> ~- is the length of the delay during which no player may make a new 
offer. (Without incomplete information, this modification has no bite. In 
equilibrium, each player minimizes the delay and chooses A = ~-.) 

The refinement of sequential equilibrium described here [which is somewhat 
stronger than that offered by Admati and Perry (1987)] is similar to that of the 
preceding section: 

(1) After any history that does not convince 1 that 2 is weak for sure, 
suppose that 1 demands a and that this demand is rejected by 2 who then 
counters with an offer of b after a delay of zl/> ~-. If 1 -  b - c w A  < 1 -  a <~ 

1 - b - c s A ,  then 1 concludes that 2 is strong for sure. 
(2) Suppose that 1 is planning to accept an offer a if this is delayed by zl but 

that 2 delays a further d > 0 before making an offer b satisfying 1 - b - c w d  < 

1 - a «- 1 - b - c s d .  Then, whatever the previous history, 1 concludes that 2 is 
strong for sure. 

For 2 c / ( c  + C w ) <  ~ w  Admati and Perry (1987) show that any sequential 
equilibrium satisfying these additional assumptions has player 1 demanding the 
entire surplus at time 0. A weak player 2 accepts, but a strong player 2 rejects 
and makes a counteroffer of 0 after a delay of 1 / c w ,  which player 1 accepts. 

The result is to be compared with case (1) of Result 11 in which agreement is 
delayed by a vanishingly small amount when ~----~0+. Here, the delay in 
reaching agreement when 2 is strong does not depend on ~-, and hence the 
delay persists in the limiting case as ~--~0+. [The constraint on ~r w is 
necessary. See Admati and Perry (1987) for details.] 

8 . 5 .  R e l a t e d  w o r k  

Strategic sequential bargaining models with incomplete information are sur- 
veyed by Wilson (1987b) and by several contributors to Roth (1985). We have 
dealt only with one-sided uncertainty. Cramton (1992) constructs a sequential 
equilibrium for the alternating offers model with two-sided uncertainty; see 
also Ausubel and Deneckere (1992), Chatterjee and Samuelson (1988), and 
Cho (1989). 

Bikhchandani (1992) points out that the sensitivity of the results on pro- 
longed disagreement to certain changes in the bargaining procedure and in the 
solution concept employed. Grossman and Perry (1986) propose a refinement 
of sequential equilibrium in the case that there are many types (not just two) of 
player 2. Perry (1986) seeks to endogenize the choice of the initial proposer. 

The complexity of the analysis is reduced substantially if only two possible 
agreements are available; sharp results can then be obtained. See Chatterjee 
and Samuelson (1987). Notice that this case is strongly related to games of 
attrition as studied in other game-theoretic contexts. 
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Many of the issues in bargaining with incomplete information that we have 
studied arise also in models in which only the uninformed party is allowed to 
make offers. Fudenberg and Tirole (1983) and Sobel and Takahashi (1983) 
study such models; see also, for example, Fudenberg, Levine and Tirole 
(1985). 

9. Bargaining and mechanism design 

The mechanism design literature regards a theory of bargaining as providing a 
mapping from the space of problem parameters to a solution to the bargaining 
problem. Attention is focused on the mappings or mechanisms that satisfy 
certain interesting properties, the aim being to study simultaneously the Nash 
equilibria for a large class of bargaining garnes of incomplete information 
without the need to specify each of the bargaining garnes in detail. 

The rest of the section follows ideas appearing in the path-breaking paper by 
Myerson and Satterthwaite (1983). The idea is explained in the context of a 
particularly simple case analyzed by Matsuo (1989). 

A seller and a buyer of a single indivisible good have to negotiate a price. 
Both buyer and seller may be strong or weak, it being common knowledge that 
the prior probability of each possible pairing of types is the same. A player's 
strength or weakness depends on his reservation value, which may be sl, s2, bi, 
o r  b2 ,  where 0 = s 1 < bi < s 2 < b 2. We let s 2 = b~ + ~ and assume that b I = 

S l + a ,  a n d b  2 = s  2+0~. 
A mechanism M in this context is a mapping that assigns an outcome to each 

realization of (s, b). An outcome is a pair consisting of a price and a 
probability. Thus a mechanism is a pair of functions (p, It). The interpretation 
is that when the realization is (s, b), then with probability ~-(s, b) agreement is 
reached on the price p(s, b), and with probability 1 - 7r(s, b) there is disagree- 
ment. The expected utility gain to a seller with reservation value s from the use 
of the mechanism M is U(s) = E» 7r(s, b)(p(s ,  b) - s). The expected utility gain 
to a buyer with reservation utility b is V(b)= E, Tr(s, b)(b - p ( s ,  b)). 

Suppose that the buyer and the seller negotiate by choosing strategies in a 
noncooperative bargaining garne. A mechanism M can then be constructed by 
making a selection from the Nash equilibria of this garne. It should be noted 
that the restriction of the set of outcomes to consist of a price and a probability 
significantly limits the scope of bargaining garnes to which the current investi- 
gation is applicable. 

If the bargaining garne has the properties that each player's security level is 
at least as large as his reservation value and that the action spaces are 
independent of the type of a buyer or a seller, then the mechanism must satisfy 
the following constraints: 
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Ind iv idua l  rat ional i ty .  For  all s and b we have  U(s)>I 0 and V(b)>! O. 

Incent ive  compat ibi l i ty .  For  all s, s ' ,  b, and b '  we have  U(s)>~ 
Eb7r(s ' ,  b)(p(s', b ) -  s) and V(b) >~ Es ~r(s, b')(b - p(s, b')). 

I f  the m e c h a n i s m  represen ts  the ou t come  of a game ,  the second condi t ion 
asserts  tha t  no p layer  prefers  to use the s t ra tegy emp loyed  by ano the r  player .  
[Note  tha t  we are not  necessari ly discussing a direct mechan i sm and so the 
s t ra tegies  need  not  consist  s imply of  an a n n o u n c e m e n t  of  a p layer ' s  type.  
howeve r ,  one  could,  of  course ,  apply  the " reve la t ion  pr inc ip le"  (see the  
chap te r  on ' co r re la ted  and communica t ion  equi l ibr ia '  in a fo r thcoming  vo lume  
of  this H a n d b o o k )  and the reby  s tudy only direct mechan i sms  wi thout  loss of  
general i ty . ]  

A n  efficient mechanism is a mechan i sm that  induces an a g r e e m e n t  wheneve r  
a surplus  exists (i.e. b > s). In ou t  example ,  a surplus exists except  when  a low 
rese rva t ion  value buye r  conffonts  a high reserva t ion  value seller (i.e. s = s 2 and  
b=bl ) .  

We now explain why an efficient mechan i sm satisfying individual  ra t ional i ty  
and incent ive  compat ib i l i ty  exists if and only if 2«  ~> 7/. 

A s s u m e  first tha t  2 a  < 7/. Le t  o-(s) deno te  the probabi l i ty  with which a seller 
with rese rva t ion  value s reaches  agreement .  Le t  ]3(b) be  similarly def ined for  
buyers .  The  incent ive compat ib i l i ty  constraints  can then  be rewri t ten  as 
(s 2 - sl)o-(s2) ~< U(si) - U(s2) ~ (s 2 - Sl)O-(St) and (b 2 - bl)]3(b1) ~< V(b2) - 
V ( b l )  ~ (b 2 - b i ) i l ( b 2 ) .  

I f  an efficient m e c h a n i s m  exists, then  o - ( s 2 ) = / 3 ( b l )  = 1/2.  I t  follows tha t  
U(sl) >~ U(Sl) - U(s2) t> (s 2 - s,)/2 and V(b2)/> V(b2) - V(b,) >i (b 2 - b l ) / 2 .  

T h e  sum of  the  expec ted  gains to a s t rong buyer  and a s t rong seller is then  
U(sl)/2 + V ( b 2 ) / 2 / >  (s 2 - s 1 + b 2 - b i ) / 4  = (a  + r / ) /2 ,  but  the total  expec ted  
surplus is only [(b 2 - Sl) + (b 2 - s2) + (b I - s~) + 0] /4  = a + ~7/4 < ( a  + ~/)/2. 
N o  efficient mechan i sm can the re fo re  exist. 

Nex t ,  a s sume  that  ~/~< 2a .  We now construct  a garne in which there  is a Nash  
equi l ib r ium that  induces an efficient mechan i sm.  In  the game ,  the seller 
announces  e i ther  s I or  s 2 and the buyer  announces  e i ther  bi or  b 2. Tab le  1 
indicates  the  pr ices  (not payoffs)  tha t  are then  enforced  (D means  dis- 
a g r e e m e n t ) .  

This  game  has a Nash  equi l ibr ium in which all types  tell the t ruth  and in 
which an efficient o u t c o m e  is achieved.  Not ice  in par t icular  that  if a weak  seller 

Table 1 

b~ b 2 

sa bi (S1 + b2)/2 
S 2 D s z 
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is honest and reports sl, he obtains a price of (S 1 q- b 2 + 2bl)/4, while if he 
is dishonest and reports s2, he gets (s~ +s2)/2.  But (s~ + b 2 + 2 b ~ ) / 4 -  
(s a + s2)/2 = (2a - r/)/4~> 0. 

The above example illustrates some of the ideas of Myerson and Satter- 
thwaite (1983). They offer some elegant characterization results for incentive- 
compatible mechanisms from which they are able to deduce a number of 
interesting conclusions. In particular: 

Result 12 [Myerson and Satterthwaite (1983)]. Let k-~<b<g~<b. If s is 
distributed with positive density over the interval [£, ~] and b is independently 
distributed with positive density over the interval [b, 6], then no incentive- 
compatible, individually rational mechanism is efficient. 

Given this result, it is natural to ask what can be said about the mechanisms 
that maximize expected total gains from trade. The conclusion of Myerson and 
Satterthwaite in the case when both s and bare  uniformly distributed on [0, 1] 
is a neat one: the expected gains from trade are maximized by a mechanism 
that transfers the object if and only if b i> s + 1/4. Chatterjee and Samuelson 
(1983) had previously shown that the sealed-bid double auction, in which the 
object is sold to the buyer at the average of the two bid prices whenever the 
buyer's bid exceeds the seller's, admits an equilibrium in which this maximal 
gain from trade is achieved. (The seller proposes the price 2s/3 + 1/4 and the 
buyer proposes 2b/3 + 1/12.) 

The mechanism design approach is more general than that of noncooperative 
bargaining theory with which this chapter has been mostly concerned. How- 
ever, the above mechanism design results, although wide in the scope of the 
situations to which they apply, do no more than to classify scenarios in which 
efficient outcomes are or are not achievable in equilibrium. Even when an 
efficient outcome is achievable, it need not be the realized outcome in the class 
of noncooperative garnes that is actually relevant in a particular applied 
context. This trade-off between generality and immediate applicability is one 
that we noted before in comparing cooperative and noncooperative game 
theory. As in that case, the two approaches should be seen as complementary, 
each providing insights where the other is silent. 

I0.  Final comments  

In the past decade Nash's (1950, 1953) pioneering work on noncooperative 
bargaining theory has been taken up again and developed by numerous 
authors. We see three directions in which progress has been particularly 
fruitful: 
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(1) sequential models have been introduced in studying specific bargaining 
procedures; 

(2) refinements of Nash equilibrium have been applied; and 
(3) bargaining models have been embedded in market situations to provide 

insights into markets with decentralized trading. 
In spite of this progress, important challenges are still ahead. The most 

pressing is that of establishing a properly founded theory of bargaining under 
incomplete information. A resolution of this difficulty must presumably await a 
major breakthrough in the general theory of garnes of incomplete information. 
From the perspective of economic theory in general, the main challenge 
remains the modeling of trading institutions (with the nature of "money" the 
most obvious target). 

Because many of the results of noncooperative bargaining theory are rela- 
tively recent, there are few sources of a general nature that can be recom- 
mended for further reading. Harsanyi (1977) provides an interesting early 
analysis of some of the topics covered in the chapter. Roth (1985) and Binmore 
and Dasgupta (1987) are collections of papers the scope of which coincides 
with that of this chapter. Sutton (1986), Rubinstein (1987), and Bester (1989b) 
are survey papers. Osborne and Rubinstein (1990) contains a more detailed 
presentation of much of the material in this chapter. 
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1. Introduction 

In many markets, transaction prices are determined in auctions. In the most 
common form, prospective buyers compete by submitting bids to a seller. Each 
bid is an offer to buy that states a quantity and a maximum price. The seller 
then allocates the available supply among those offering the highest prices 
exceeding the seller's asking price. The actual price paid by a successful bidder 
depends on a pricing rule, usually selected by the seller: two common pricing 
rules are that each successful bidder pays the price bid; or they all pay the same 
price, usually the highest rejected bid or the lowest accepted bid. 

Auctions have been used for millennia, and remain the simplest and most 
familiar means of price determination for multilateral trading without inter- 
mediary "market makers" such as brokers and specialists. Their trading 
procedures, which simply process bids and offers, are direct extensions of the 
usual forms of bilateral bargaining. Auctions also implement directly the 
demand submission procedures used in Walrasian models of markets. They 
therefore have prominent roles in the theory of exchange and in studies of the 
effects of economic institutions on the volume and terms of trade. Their 
allocative efficiency in many contexts ensures their continued prominence in 
economic theory. They are also favored in experimental designs investigating 
the predictive power of economic theories. 

Auctions are apt subjects for applications of game theory because they 
present explicit trading rules that largely fix the "rules of the garne". More- 
over, they present substantive problems of strategic behavior of practical 
importance. They are particularly valuable as illustrations of games of incom- 
plete information because bidders' private information is the main factor 
affecting strategic behavior. The simpler forms of auctions induce normal-form 
games that are essentially "solved" by applying directly the basic equilibrium 
concepts of noncooperative game theory, such as the Nash equilibrium, 
without recourse to criteria for selecting among multiple equilibria. The 
common-knowledge assumption on which game theory relies is orten tenable 
or innocuous applied to an auction. 

In this chapter we describe several forms of auctions, present the formula- 
tions used in the main models, review some of the general results and empirical 
findings, and indicate a few applications. The aim is to acquaint readers with 
the contributions to a subject in which garne theory has had notable success in 
addressing significant practical problems-  and many challenging problems 
remain. Several other surveys of auction theory are also available, including 
Engelbrecht-Wiggans (1980), Milgrom (1985, 1987, 1989), Wilson (1985b, 
1987a, 1987b), McAfee and McMillan (1987a), Smith (1987), Rothkopf (1990) 
and Kagel (1991), as well as the collection of articles in Engelbrecht-Wiggans, 
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Shubik and Stark (1983), and the bibliography by Stark and Rothkopf (1979); 
in addition, Cassady (1967) surveys the history and practice of auctions. The 
origin o.f the subject is the seminal work by Vickrey (1961, 1962), and later the 
important contributions by Griesmer, Levitan and Shubik (1967) and Ortega- 
Reichert (1968), who initiated formulations in terms of garnes with incomplete 
information. There is also a literature on garnes with complete information 
emphasizing multi-market and general equilibrium formulations that is not 
reviewed here; cf. Shapley and Shubik (1977), Wilson (1978), Schmeidler 
(1980), Dubey (1982), and Milgrom (1987). 

2. Varieties of  auctions 

The diverse trading rules used in auctions share a common feature. Each 
player's feasible actions specify offered net trades. The trades accepted are 
selected by an explicit procedure, and the transaction prices are calculated 
from the offered trades by an explicit formula. In effect, each trader reports a 
demand or supply function and then prices are chosen to clear the market. Two 
main categories of auctions differ according to whether the process is static or 
dynamic. In static versions, traders submit sealed bids: each acts in ignorance 
of others' bids. In dynamic versions, traders observe others' bids and they can 
revise their bids sequentially. Repeated auctions can be further complicated by 
linkages such as reputational effects. 

Static versions allow a useful distinction between discriminating pricing in 
which trades are accepted at differing prices, usually the prices offered for the 
trades accepted, and nondiscriminating pricing, in which for identical items a 
single price applies to all transactions, such as the highest rejected bid. 

An important example of a static auction proceeds as follows. Each seller 
announces a supply function; for example, if a single seller offers q identical 
indivisible items at an ask price a, then the supply function is s(p)  = ql(p~a }. 
Then each buyer i = 1 , . . .  , n submits a demand function dz(p): this might be 
piecewise constant, indicating the maximum number of items desired at each 
price; or in the inverse form bi(x ) it indicates the maximum price offered for 
the xth item. The pricing rule then selects one price pO flora among the interval 
of "clearing prices" that equate aggregate demand and supply; for example, 
the maximum (the "first price" rule), the minimum (the "second price" or 
"highest rejected bid" rule), or the midpoint. Nondiscriminating pricing assigns 
this price to all transactions, namely if di (p  °) = xi, then i obtains x i items at the 
uniform price pO for each item, whereas purely discriminating pricing imposes 
the price bi(x ) for the xth item, for each x ~< xi. The process is similar if a 
buyer solicits offers from sellers. If there are multiple sellers and multiple 
buyers, then nondiscriminating pricing is the usual rule in static auctions, 
although there are important exceptions. A variant, proposed by Vickrey 
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(1961), assigns to each bidder a clearing price that would have resulted if he 
had not participated. 

In the simplest case, a single seller offers a single item and each buyer 
submits a single bid. The item is sold to the bidder submitting the highest bid at 
either the price he bid (discriminating) or the greater of the ask price and the 
second-highest bid (nondiscriminating). Many variations occur in practice; cf. 
Cassady (1967). The seller may impose an entry fee and need not announce the 
ask price in advance, the number and characteristics of the participating 
bidders may be uncertain, etc. If nonidentical items are offered, the seller may 
solicit bids for each item as weil as bids for lots. The process might have a 
trivial dynamic element, as in the case of a "Dutch" auction in which the seller 
lowers the price until some buyer accepts. This is evidently a version of 
discriminating pricing if players are not impatient and the seller's minimal ask 
price is fixed in advance, because the induced garne is strategically equivalent 
to a static discriminating auction. Auctions in which bidders have continual 
opportunities to raise their bids have significant dynamic elements because the 
bids signal information. In an "English" auction,'a seller offers a single item 
and she accepts the highest bid offered above her ask price as in a static 
auction: the dynamic feature is that buyers can repeatedly raise their bids. The 
Dutch variant has the seller raising her ask price until a single buyer remains 
willing to buy. Possibly remaining bidders do not observe the prices at which 
others drop o u t -  and indeed tracking bids can be difficult if anonymity is 
feasible. If such observations are precluded, then an English auction resembles 
a sealed-bid second-price auction, and indeed is strategically equivalent if the 
players are not impatient. An especially important example of a dynamic 
auction is a bid-ask market in which traders continually make public offers of 
bids (to buy) and asks (to seil) that can be accepted or withdrawn at any time. 

Auctions are used mostly to exchange one or several identical items for 
money, but in principle auctions could be used to obtain core allocations or 
Walrasian equilibria of barter economies involving many goods. The familiar 
auctions employ invariant trading rules that are unrelated to the participants' 
information and preferences, and even the numbers of buyers and sellers, but 
we shall see later that the theory of efficient auctions finds it advantageous to 
adapt the trading rule to the characteristics of the participants. Conversely, 
implementations of demand-revelation mechanisms designed to achieve effi- 
cient allocations orten resemble auctions. 

3. Auct ions  as garnes 

To formulate an auction as an extensive game, in principle one first takes the 
trading rule as specifying an extensive form that applies to the special case that 
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the numbers of sellers and buyers are common knowledge, as weil as their 
characteristics (preferences, endowments, etc.) and any choices by nature. 
That is, the procedural steps described by the trading rule generate a list of the 
possible complete histories of the process, and this list matches the possible 
plays generated by a tree in which the order of players' moves and their 
feasible actions at each move are specified. The procedure also specifies the 
information sets of each player, consisting of minimal sets of moves that cannot 
be distinguished and for which the feasible actions are the same, perfect recall 
is assumed. In practice, lacunae in the trading rule leave gaps that are filled 
with specifications chosen to meer the requirements of behavioral accuracy or 
modeling tractability. 

For example, a static auction might be modeled by a tree representing 
simultaneous moves by all participants: each seller selects a supply function 
from a feasible set, and each buyer selects a demand function. Or, if sellers 
first announce their supplies and ask prices before the buyers move, then two 
stages are required. An English auction, on the other hand, requires specifica- 
tion of the mechanism (such as rotation or random selection) that determines 
the order in which buyers obtain opportunities to raise the previous high bid, 
and their opportunities to observe others' bids. For tractability a reduced form 
of the tree may be used, as in the approximation that has the seller raising her 
asking price. 

If all information is common knowledge, this extensive form becomes an 
extensive game by adding specifications of the probabilities of nature's moves 
and the players' payoffs for each play. The players' payoffs are determined by 
applying their preferences to the allocation determined by the trading rule; that 
is, the trading rule, including its pricing rule, assigns to each play an allocation 
that indicates for each player the (possibly random) transfers of goods and 
money obtained. For example, in a single-item discriminating auction, a buyer 
who assigns a value v to the item may obtain the net payoff v - p if he receives 
the item after bidding p, and zero otherwise. 

In practice, however, participants' preferences are rarely common knowl- 
edge, and indeed a major motivation for using auctions is to elicit revelation of 
preferences so that maximal gains from trade can be realized. Thus, the actual 
extensive game to be studied derives from a larger extensive form in which 
initially nature chooses an assignment of "types" (e.g., preferences or other 
private information) for the players and possibly also the set of participating 
players. In this larger form, each players' information sets are the unions of the 
corresponding information sets in the various versions of the smaller extensive 
form that he cannot distinguish based on his private information about nature's 
initial choice. This larger extensive form becomes an extensive garne by 
specifying a probability distribution of nature's choices of assignments. Thus, 
the induced extensive garne has incomplete information. 
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For example, for a static single-item auction a bidder might learn those 
features that are common knowledge, such as the number of bidders, as well as 
private information represented by the valuation v he assigns to the item. In 
this case, his possible pure strategies are functions b(v) that assign a bid to 
each contingency v. If the pricing is discriminating (and ignoring ties) then his 
expected payoff (abseht risk aversion) from such a strategy is ~ { [ v -  
b(v)] l{b(v)>B} }, where B is the maximum of the others' bids and the ask price. 
Note that B is a random variable even if the other bidders' stategies are 
specified, since their valuations are not known. The second-price rule, on the 
other hand, yields the payoff ~ {[v - B]I(»(o)>BI} because the winning bidder 
pays the highest rejected price, which is B. Note that the pricing rule affects 
the extensive garne and its normal form only via the expected payoffs assigned 
to strategy combinations of the players. 

Static auctions with simultaneous moves conform exactly to their normal- 
form representation so the usual equilibrium concept is the Nash equilibrium. 
It is desirable, however, to enforce perfection to obtain the constraint b(v) <~ v 
on bids with no chance of succeeding, and one focuses naturally on equilibria 
that preserve symmetries among the players. Dynamic elements require se- 
quential equilibria. For example, if the seller sets an ask price first, then a Nash 
equilibrium might allow the seller to be deterred from setting a high ask price 
by expectations of lower bids or fewer bidders; or in a Dutch auction a Nash 
equilibrium aUows bidders to expect the seller to withdraw the item before the 
price drops to her valuation. The role of equilibrium selection criteria in truly 
dynamic auctions, such as bid-ask markets, has not been studied. 

4. Static single-item symmetric auctions 

In this section we review a portion of the basic theory of static auctions in 
which a seller offers a single item and the bidders are symmetric. Our aim is to 
indicate the formulation and methods used, because they are indicative of the 
approach taken in more elaborate problems. We present Milgrom and Weber's 
(1982a) characterization of the symmetric Nash equilibrium. The number n of 
bidders, the seller's ask price a, and the probability distribution of bidders' 
private information are assumed to be common knowledge. All parties are 
assumed to be risk-neutral. 

The model supposes that nature assigns each bidder i a pair (x i, v/) of 
numbers. These have the following roles: bidder i observes the real-valued 
"signal" x i before submitting bis bid and if he wins the item at price p, then his 
payoff is vi - p. In practice, x~ is interpreted as bidder i's sample observation, 
from which he constructs an initial estimate ~g{v~lxi} of his subsequent 
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valuation v i of the item, which may be observed only after the auction. Let 
z = (x i, v;)~= 1 ...... indicate nature's choice and use F(z) to denote its joint 
distribution function, which we assume has an associated density f ( z )  on a 
support that is a rectangular cell Z = {z ] z l  ~< z ~< ~1 }. L e t z  v z '  and z/x z '  
be the elements of Z that are the component-wise maximum and minimum of z 
and z'. And, let x ~, . . . ,  x" be the components of x arranged in nonincreasing 
order. The conditional distribution function of x 2 given x ~ = s is denoted by 
F ( - I s ) ,  and its density by)ê(. Is). 

By symmetry of the bidders we mean that F is invariant under permutations 
of the bidders. In particulär, the conditional distribution of vi given x ~ , . . . ,  xù 
is invariänt under permutations of those bidders j # i. A further technical 
assumption is called affiliation: 

(Vz, z"@ Z)  f ( z  v z ' ) f ( z  A z ' )>~ f ( z ) f ( z ' ) .  (1) 

This assumption states essentially that on every subcell of Z the components of 
z are non-negatively correlated random variables. Its useful consequence is 
that the conditional expectation of a nondecreasing function of z given that z 
lies in a subcell, is a nondecreasing function of the boundaries of that subcell. 
Affiliation implies also that (x ~, x 2) has an affiliated density and that P has the 
monotone likelihood ratio property (MLRP);  furthermore, ~(tls)/P(tls)is a 
nondecreasing function of s. 

Symmetry implies that the function 

V(S,  t )  = ~ { V  i [X i = X 1 = S & X 2 = t}  (2) 

is weil defined (i.e., it does not depend on i nor on the ] # i for which xj = x2). 
M0reover, affiliation implies that it is a nondecreasing function. Let v ~ ,  _x) = 
_v, where _z = (_x, _v). The central role of this function in the analysis is easily 
anticipated. If the symmetric equilibrium strategy makes each bidder's bid an 
increasing function of his signal, then the one, say i, observing the highest 
signal x 1 = s will win and obtain the conditional expected payoff 

Vn(S  ) ~ ~ (U i I Xi = X I = S ~ X 2 < S}  = ~ {U(S,  X2)]X 2 < S }  , (3) 

given that he wins after observing the signal s, gross of the price he pays. Thus, 
Vn(xi) as weil as v(x i, xi) are upper bounds on the profitable bids that bidder i 
can submit after observing the signal xi. 

Theorem 1 (Milgrom and Weber). Assume symmetry and affiliation, and 
suppose that a <~ v. Then the symmetric equilibrium strategy o" in a discriminat- 
ing ( first-price) auction prescribes the bid 
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X 

x_ 

= v(x, x) - f O(t) dr(t, t)/O(x),  
x_ 

if the bidder's observed signal is x, where 

x O(x)=exp{f f(t[t)dt} 
_ ~ " 

(4) 

(5) 

In a nondiscriminating (second-price) auction, o-(x) = v(x, x). 

Sketch of proof. In a first-price auction, if the strategy o- is increasing and 
differentiable with an inverse function X, then the optimal bid b must 
maximize the expected profit 

X ( b )  

f 
x_ 

[v(x, t) - bi dP(t[x). (6) 

It taust therefore satisfy the necessary condition 

0 = - P ( X ( b ) [ x )  + [v(x, X(b)) - b] f (X(b)  l x ) X ' ( b ) ,  

SO 

/-(x I~) 
0 = { -o" (x )F(x  I x)/]~(x [x) + [v(x, x) - o-(x)]} ~r'(x-----~ ' (7) 

where the second equality uses the equilibrium condition that the optimal bid 
must be b = o-(x), and X'(b)  = 1/~r'(x). It is also necessary that o-(x) does not 
exceed v(x, x) (otherwise winning is unprofitable), and that er(y) >~ v (otherwise 
a larger bid would be profitable when x = x), and therefore this differential 
equation is subject to the boundary condition that o-(x) = _v. The formula in the 
theorem simply states the solution of the differential equation subject to the 
boundary condition. Verification that this solution is indeed increasing is 
obtained by recalling that v(t, t) is an increasing function of t and noting that as 
x increases the weighting function O(t)/O(x) puts greater weight on higher 
values of t. The second version of the necessary condition implies that the 
expression in curly brackets is zero at the bid b = o-(x), and since )ê(~[x)/ 
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B(21 x) is nondecreasing in x as noted earlier, for a bid /; = o-(2) it would be 
non-negative if 2 < x and nonpositive if 2 > x; thus the expected profit is a 
unimodal function of the bid and it follows that the necessary condition is also 
sufficient. The assumed differentiability of the strategy is innocuous if it is 
continuous since affiliation is preserved under monotone transformations of the 
bidders' observations x~. Consequently, the remainder of the proof consists of 
showing that in general the strategy must be continuous on each of several 
disjoint intervals, in each of which it is common knowledge among the bidders 
that all observations lie in that interval. This last step also invokes affiliation to 
show that the domains of continuity are intervals. 1 The argument is analogous 
for a second-price auction except that the preferred bid is the maximum 
profitable one, o-(x) = v(x, x), since his bid does not affect the price a bidder 
pays. 

The assumption that the distribution F has a density is crucial to the proof 
because it assures that the probability of tied bids is zero. 2 If the distribution F 
is not symmetric, then generally one obtains a system of interrelated differen- 
tial equations that characterize the bidders' strategies. 

The theorem allows various extensions. For example, if the seller's ask price 
is a > _v and x(a) solves a = v(x(a), x(a)), then 

+ x 
minfv(x,[ x), aO(x(a)) f2(a~ v(t, t) d0(t) 

o(x) } (8) O.(X) 

In this form the theorem allows a random number of active bidders submitting 
bids exceeding the ask price. That is, the effect of an ask price (or bid 
preparation costs) is to attract a number of bidders that is affiliated with the 
bidders' signals; thus high participation is associated with high valuations for 
participants. 

4.1. The independent private-values model 

If each bidder observes directly his valuation, namely the support of F is 
restricted to the domain where (Vi) x i--- vi, then v(s, t)= s. One possible 
source of correlation among the bidders' valuations is that, even though the 

1Milgrom and Weber (1982a, frl. 21) mention an example with two domains; at their common 
boundary the strategy is discontinuous. 

~Milgrom (1979a, p. 56) and Milgrom and Weber (1985a, fn. 9) mention asymmetric examples 
of auctions with no equilibria. In one, each bidder knows which of two possible valuations he has 
and these are independently but not identically distributed. An equilibrium must entail a positive 
probability of tied bids, and yet if ties are resolved by a coin flip, then each bidder's best response 
must avoid ties. 
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bidders '  valuat ions are independent ly  and identically distr ibuted,  the bidders 
are unsure  about  the parameters  of  the distribution. If  their valuations are 
actually independent ,  say F ( z ) =  Il i G(x i ) ,  then the bidders are said to have 
independent  private values. For  this model ,  O(x) = F(x)  = G(x)  n-1 is just the 
distr ibution of  the m a x i m u m  of the o thers '  valuations;  hence  

o-(x) : min{x,  ~ {max[a,  x 2] Ix 1 = x}} (9) 

in a first-price auction.  In a second-price auct ion,  ~r(x) = x, which is actually a 
dominan t  strategy. The  seUer's expected revenue  is therefore  the expecta t ion 
of  max{a ,  x2}l(xl~ai for ei ther  pricing r u l e -  a result or ten called the revenue 
equivalence theorem.  This result applies also if the n u m b e r  of  bidders is 
independen t ly  distr ibuted;  for  example,  if each part icipating bidder  assigns the 
Poisson distr ibution qm = e-~Am/m! to the number  m = n -  1 of  o ther  par-  
t icipating bidders,  then O(x) = eAV(x). 3 It  also illustrates the general  feature that  
the seller 's ask price a can be regarded  as another  bid; for  example,  if the seller 
has an independen t  private valuat ion v 0 ~> 0, then this plays the role of  an extra 
bid, a l though presumably  it has a different distribution. If  the seller can 
commi t  be fo rehand  to an announced  ask price, however ,  then she prefers  to 
set a > v 0. For  example,  if the bidders '  valuations are uni formly distr ibuted on 
the unit  interval,  namely  G ( x ) =  x, then their symmetr ic  s trategy and the 
seller 's expected  revenue  are 

and 

{ n - 1  1 } 
- -  x -t- - an/x n-1 o'(x) = m i n  x, n n 

R n ( a ) _ n - l _ _ _  [ _ _ _ 2 n ]  
n + l  + a n  1 n + l  a , (10) 

f rom which it follows that  for  every n the seller's opt imal  ask price is 
a = ½ [ l + v 0 ] .  

3More generally, ifk identical items are offered and each bidder demands at most one, then the 
unique symmetric equilibrium strategy (ignoring the ask price a) for discriminating pricing is 
~r(x) = ~ß {xk+l I x k+l < x}, and the seller's expected revenue is k~ {x ~+1} for either pricing rule. 
Milgrom and Weber (1982a) and Weber (1983) demonstrate revenue equivalence whenever the k 
bidders with the highest valuations receive the items and the bidder with the |owest valuation gets a 
payoff of zero. This is true even if the items are auctioned sequentially, in which case the 
successive sale prices have the Martingale property with the unconditional mean ~{xk+l}. 
Harstad, Kagel and Levin (1990) demonstrate revenue equivalence among five auctions: The two 
pricing rules combined with known or unknown numbers (with a symmetric distribution of 
numbers) of bidders, plus the English auction. For example, a bidder's strategy in the symmetric 
equilibrium of a first-price auction is the expectation of what he would bid knowing there are n 
bidders, conditional on winning; that is, each bid crn(x ) with n bidders is weighted by wn(x), which 
is the posterior probability of n given that x is the largest among the bidders' valuations. 



Ch. 8: Strategic Analysis of Auctions 237 

4.2. The common-va lue  mode l  

In a situation of practical importance the bidders' valuations are identical but 
not  observed directly before the auction. In the associated common-va lue  
model,  (Vi) v i = v, and conditional on this common value v their samples x i 
are independently and identically distributed. In this case, an optimal bid taust 
be less than the conditional expectation of the value given that the bidder's 
sample is the maximum of all the bidders' samples, since this is the circum- 
stance in which the bid is anticipated to win. 

For example, suppose that the marginal distribution of the common value 
has the Pareto distribution F(v)  = 1 - v -~ for v ~> 1 and oe > 2 ,  so that g{v}  = 
ee/[a - 1]. If the conditional distribution of each sample is G ( x i ] v  ) = [xi/v] ~ 
for O~<xi ~< v, then the conditional distribution of the value given that an 
observed sample x is the maximum of n samples is 

a + n/3 max{1, x} (11) 
V n (x) - c~ 7- n B -  1 

The symmetric equilibrium strategy in this case, assuming that the seller's ask 
price is not binding and using B = [n - 1]/3, is 

B + [max{1, x}] -8-1 
o'(x) = B + 1 Vn(x)" (12) 

Ex ante, each bidder's and the seller's expected profit are 

and 

¢ ~{v} 
[a  + B][oe + B + / 3  - 11 

[ B + f i  i g { v } .  (13) 
1 -  [oe + B][a + B + f i - 1 ]  

To take another  example of the common-value model, suppose that the 
marginal distribution of the value is a gamma distribution with mean m / k  and 
variance m / k  z, and the conditional distribution of a sample is the Weibull 
distribution G(xi] v) = e vy(x0, where y(x i )  = - x S .  Then the symmetric equilib- 
rium bidding strategy is 

m + 2  m + l  
o-(x) = n Vn(x ) ,  where Vn(x ) -  k -  ny(x)  " (14) 

m + l +  - -  
n - 1  
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In practice, bidding strategies are offen constructed on the assumption that 
the marginal distribution of the common value has a large variance. For 
example,  suppose that each estimate x~ has a normal conditional distribution 
with mean v and variation s 2, and that the marginal distribution of v has a 
normal distribution with variance s 2. If a -- - %  then the limit of the symmetric 
equilibrium bidding strategy as So-+ oo is o-(x)= x -  ans1, where 

% = f~= « dN(«)n  , (15) 

using the standard normal distribution function N with mean 0 and variance 1; 
that is, a n is the ratio of the second to the first moment  of the distribution of 
the maximum of n standard normal variables. 4 

For  the lognormal distribution, suppose the conditional distribution of ln(xi) 
has a normal distribution with mean ln(v) and variance s 2 and the marginal 
distribution of ln(v) has a normal distribution with variance s~. If a ~< 0, then 
the limit of the bidding strategy as So--~~ is o-(x) = ~n(Sl)X, where 

J'~= Is + ~:1 e - 'e dN(sC) n 
Bn (s) = f_~~ [s + ~] dN( ~)n (16) 

In this case, ~ ( v  [xi} = xiB(s~) ,  where B(s)  = e °»«2, so it is useful to correct for 
bias by taking the estimate to be x'~ = x i ß ( s x )  and the strategy to be 
cr(x') = [[3n(sl) /B(sl)]x ' .  Table 1 tabulates a few values of a n and ~n(s ) /B(s ) .  
Notice that as n increases, a n first decreases due to increasing competition, and 
then increases due to the decline in the expected value of the item conditional 
on winning. That  is, the supposition that x is the maximum of n unbiased 

Table 1 
Normal and lognormal bid factors 

n: 2 3 4 6 8 10 15 20 
%: 1.772 1.507 1.507 1.595 1.686 1.763 1.909 2.014 

s ~°(s)/B(s) 
0.01 0.983 0.985 0.985 0.984 0.983 0.983 0.981 0.980 
0.10 0.847 0.863 0.861 0.852 0.844 0.837 0.824 0.815 
0.25 0.682 0.698 0.689 0.667 0.650 0.636 0.611 0.594 
0.50 0.498 0.495 0.474 0.437 0.411 0.392 0.360 0.339 
1.00 0.281 0.244 0.212 0.173 0.150 0.134 0.111 0.098 

4An erroneous statement of this result in Thiel (1988) is corrected by Levin and Smith (1991), 
who show also that if s o --- ~, then additional equilibria exist with strategies having an additional 
nonlinear term. 
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estimates of v implies that x is biased by an amount that increases with n. A 
similar effect can be seen in the behavior of/3ù(s)/B(s).  

A model with wide applicability assumes that a bidder's valuation of the item 
has the form piv ,  where pi is a private factor specific to bidder i and v is a 
common factor. Before bidding, each bidder i observes (Pi,  xi), where x i is 
interpreted as an estimate of the common value v. Conditional on unobserved 
parameters  (p ,  v), the bidders' observations are independent,  and the private 
and common factor components are independent.  Wilson (1981) studies such a 
model  adapted to bidding for oil leases. Assume that ln(pi)  and ln(x~) have 
conditional distributions that are normal with means ln(p)  and ln(v), and 
variances t 2 and s 2, respectively. If the marginal variances of the unobserved 
parameters  are infinite, then the symmetric equilibrium strategy is linear of the 
form o ( p i ,  x i ) = 7 n p i g { v l x i } .  In this case the variance of the natural 
logarithm of the bids is t 2 + s 2, which for auctions of leases on the U.S. Outer  
Continental  Shelf is usually about 1.0. This model aUows the further interpreta- 
tion that there is variance also in the bid factors used by the bidders (included 
in t 2) due perhaps to differences in the models and methods used by the 
bidders to prepare their bids. Table 2 displays the bid factor % and the 
percentage expected profit of the winning bidder for several cases. These 
conform roughly to the one-third and one-quarter maxims used in the oil 
industry [Levinson (1987)]: bid a third, profits average a quarter. These two 
fractions add to less than one because winning indicates that the estimate is 
biased too high. 

A key feature of the equilibrium strategies identified by Theorem 1 is that 
each bidder takes account of the information that would be revealed by the 
event that his bid wins. That  is, in the symmetric case, winning reveals that the 
bidder 's  sample is the maximum among those observed by all bidders. Even if 
each sample is an unbiased estimate of the item's value, it is a biased estimate 
conditional on the event that the bid wirts. This feature is inconsequential if 
bidders directly observe their valuations, but it crucially affects the expected 
profitability of winning in a common-value model. Failure to take account of 
estimating blas conditional on winning has been called the "winner 's curse"; cf. 
Thaler  (1988). In Section 9 we report  some of the experimental evidence on its 
prevalence. 

Table 2 
Private and common factors model: bid factor -/, and winner's expected profit percent 

Bid factor Profit percentage 
t 2 S 2 n:2 4 8 16 2 4 8 16 

0.75 0.25 0,307 0.314 0,271 0.228 37 17 9 6 
0.50 0.50 0.312 0.366 0.355 0.329 47 27 17 12 
0.25 0.75 0,307 0.410 0.444 0.45l 59 40 30 23 
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The following subsections provide a sampling of further results regarding 
static single-item auctions. The first examines the effect of increasing competi- 
tion in a symmetric common-value auction. 

4.3. Auctions with many bidders 

The main results are due to Wilson (1977), Milgrom (1979a, 1979b), and Wang 
(1990), who study the case of an unobserved common value v and signals that 
are conditionally independent and identically distributed given v. Wang as- 
sumes a discrete distribution for the signals, whereas the others assume the 
signals' conditional distribution has a positive density f ( .  I v). Consider a 
sequence of symmetric auctions with discriminating pricing, all with the same 
common value, in which the nth auction has bidders i = 1 , . . ,  n who observe 
the signals x l , . . . ,  xn. Say that the sequence of signals is an extremal- 
consistent estimator of v if there exists a sequence of functions gn such that 
gù(maxi~ n xi) converges in probability to v as n---~~. Milgrom shows that the 
signal sequence is an extremal-consistent estimator of the common value if and 
only if v < v' implies infx{f(x I v)/f(x I v')} = 0. 

Theorem 2 (Milgrom). For a sequence of  discriminating (first-price) symmet- 
ric auctions with increasing numbers of  bidders, the winning bid converges in 
probability to the common value if and only if the signal sequence is an 
extremal-consistent estimator of  the common value. 

Thus, whenever a consistent estimator of the common value can be based on 
the maximum signal, the winning bid is one such estimator, using gn-= o-,  
where o- n is the symmetric equilibrium strategy when there are n bidders. 

Allowing risk aversion as well, Milgrom (1981) demonstrates comparable 
results for auctions with nondiscriminating pricing. The dependence on equilib- 
rium strategies is relaxed by Levin and Harstad (1990) using the more 
restrictive model in Wilson (1977); e.g., the support of the bidders' signals 
moves monotonely as the value changes. They show that convergence obtains 
if bidders' strategies are restricted only by single-iteration elimination of 
dominated strategies: each bidder uses a stategy that is undominated if other 
bidders use undominated strategies. 

An extremal-consistent estimator exists for most of the familiar distributions, 
such as the normal or lognormal. But there are important exceptions, such as 
the exponential distribution with mean v, for which the conditional distribution 
of the maximum bid is nondegenerate in the limit, although the limit dis- 
tribution does have v as its mean. There seem to be no general results on the 
rate of convergence, but convergence is of order 1/n in examples -  although 
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these all have the property that this is the rate of convergence of extremal- 
consistent estimators. 

Matthews (1984a) studies the special case of the common-value model in 
which the conditional distribution of a bidder's signal is F~(xilv ) = [Xi/V]mi; 
that is, the signal xi is the maximum of mi samples uniformly distributed on the 
interval [0, v]. However ,  the formulation is enriched to allow that each bidder 
chooses both the number  m~ E 9]+ of samples, at a cost c(m~), and bis bid 
depending on the signal x i observed. In a symmetric pure-strategy equilibrium, 
of course, all bidders choose the same number m of samples. Assume that c is 
convex and increasing, with c(0) = 0. Matthews establishes that as the number  
n of bidders increases, rn ~ 0 but the total number  nm of samples purchased is 
bounded and bounded away from zero. Moreover ,  ex ante the expectation of 
the difference between the common value and the sum of the maximum bid 
and the sampling costs nc(m) of all the bidders converges to zero. 5 Thus, 
pure-strategy equilibria necessarily entail limits on aggregate expenditures for 
information, and the seller expects to reimburse these expenditures. Indeed,  if 
c(m) = dm, then the maximum bid converges in probability to the common 
value only if ~ = 0. 

4.4. Superior information 

The familiar auction rules treat the bidders symmetrically. Consequently,  the 
principal asymmetries among bidders are due to differences in payoffs and 
differences in information. Here  we describe briefly some of the features that 
occur when some bidders have superior information. 

The basic result about the effect of superior information is due to Milgrom 
(1979a) and Milgrom and Weber (1982b). Consider a static auction of a single 
item with risk-neutral bidders and, as in Theorem 1, let x i and v i be the signal 
and valuation of bidder i. 

Theorem 3 (Milgrom). In an equilibrium of  a first-price (discriminating) 
auction, a bidder i's expected payof f  is zero if there is another bidder j whose 
information is superior (xj reveals xi) and whose valuation is never less (vj >t vi). 
In a second-price (nondiscriminating) auction, a bidder i's equilibrium expected 
payof f  is zero if there is another bidder j such that i' s signal is a garbling o f  j' s, 
j 's  valuation is never less, and j 's  bids have positive probabilities o f  winning in 
equilibrium. 

5Harstad (1990) shows that with equilibrium strategies this expectation is exactly zero. 
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Sketch of proof. In a first-price auction, given x] and therefore xi, if i's 
strategy allows a positive expected payoff for a bid b, then j profits by bidding 
slightly more than b whenever he would have bid the same or less. In a 
second-price auction, j 's  (serious) bid is a conditional expectation of vj that is 
independent of i's strategy (because i's bid reveals no additional information) 
and that implies a nonpositive expected payoff for ], and hence also i because i 
must pay at least ]"s bid to win. 

To examine the implications of this result, consider a common-value model 
in which pricing is discriminating, the seller's ask price is a, and there are 
m + n bidders. Suppose that rn bidders know the common value v and n know 
only its probability distribution F, which has a positive density on an interval 
support. If m > 1 and v > a, then in any equilibrium all of the informed players 
bid v; consequently, an uninformed player expects to win the item only by 
paying more than v and incurring a loss. An equilibrium therefore requires that 
the uninformed players have no chance to win and obtain zero payoffs. If 
m = 1, then the informed player's unique equilibrium strategy is to bid 

o-(x) = max[a, g{v  [v ~<x}] (17) 

when he observes v = x > a. The uninformed players use mixed strategies such 
that the maximum b of their n bids has the distribution function 

H(b ) = max{ F(v(a)), F(o--l(b))} (18) 

if b>~a, where a = g{v]v<~v(a)} defines v(a). That is, the uninformed 
players' mixed strategies replicate the distribution of the informed player's bids 
on the support where (r(x) > a; in addition, there may be a probability F(v(a)) 
of submitting bids sure to lose (or not bidding). 6 If the equilibrium is 
symmetric, then each uninformed player uses the distribution function H(b) 1/'. 
The informed player's strategy ensures that each uninformed player's expected 
payoff is zero; the expected payoff of the informed player is 

f [v - o-(v)]H(«(v)) dF(v) 
a 

=([l-F(v(a))][v(a)-a]+ f F(v) dv)F(v(a)) 
- - 2  

+ f [ 1 -  F(v)]F(v) dv. (19) 
v(a) 

6This feature can be proved directly using the methods of distributional strategies in Section 5; 
cf. Englebrecht-Wiggans, Milgrom and Weber (1983) and Milgrom and Weber (1985). 
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Examples. (1) If F(v) = v, then o-(x) = max[a, x/2] if x > a, v(a) = 2a, and 
H(b) = max[2a, 2b]; if a = 0 then the informed player's expected payoff is 1/6. 
(2) If a = - o 0  and v has the normal distribution F(v)= N ( [ v -  m]/s), then 
o ' ( x ) = m - s N ' ( ~ ) / N ( ~ ) ,  where ~ = [ x - m ] / s .  (3) If a : 0  and F ( v ) :  
N([ln(v) - m]/s), then o-(x) = txN(~ - s)/N(~), where /~ = exp(m + 0.5s 2) 
and ~ = [ln(x) - m]/s .  

These results extend to the case that the uninformed bidders value the item 
less. Suppose they all assign value u(v)<~ v, and for simplicity assume that 
a ~< _v = u(_v), where F(_v) = 0. Then 

x 

o-(x)= fu (v )dF(v) /F(x)  and H(cr (x ) )=exp( - f  [ u ( v ) -  ~ ( v ) ]  düv} 
I_ v - o - ( v )  " 

_v x 

(2o) 

Milgrom and Weber (1982b) show that these results imply several conclu- 
sions about the participants' incentives to acquire or reveal information. 
Assume that the informed bidder's valuation is actually the conditional expec- 
tation v = ~ {VJX}  of the ultimate common value V, given an observation X. 
Assume also that a = - ~  and that the value is the same for all bidders. 
• The bidder with superior information gains by acquiring additional informa- 

tion, and more so if this is done overtly; i.e., the uninformed bidders know 
he acquires this information. 

• An uninformed bidder gains by acquiring some of the informed bidder's 
information, provided this is done covertly. 

• The seller gains (in expectation) by publicizing any part of the informed 
bidder 's  information, or any information that is jointly affiliated with both the 
informed bidder's observation X and the common value V, 7 

Alternatively, suppose one bidder, the "insider",  knows precisely the com- 
mon value v and the n other  bidders obtain informative signals x / a b o u t  this 
common value. In this case, if the insider's strategy is p, then the appropriate 
extension of Theorem 1 to characterize the symmetric equilibrium strategies of 
those bidders other  than the insider uses the revised function 

v ( s ,  t )  = ~ { v l x i  = x I = s & x 2 = t & p ( v )  < «(s)} .  (21) 

We illustrate with an example in Wilson (1975). Suppose the common value 
has a uniform distribution on the unit interval and the estimates x/ are 
uniformly distributed between zero and 2v. The symmetric equilibrium in this 

7Milgrom and Weber note that joint affiliation of the triplet is necessary; otherwise the seller's 
information can be "complementary" to the informed bidder's information and increase his 
expected profit. 
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Table 3 
Bidding strategies -one perfectly informed bidder 

] 2 

a 0.5000 0.6667 
B 0.6796 0.5349 
Expected profit (informed) 0.0920 0.0647 
Expected profit (estimator) 0.0244 0.0178 
Expected revenue (seller) 0.3836 0.3998 

case has p(v) = co and o-(x) = min{a,  fix). Table 3 tabulates a and /3 when 
tiaere are n = 1 or 2 imperfectly informed bidders. Generally, a = n/[n + 1]. 

Observe that if n = 0 [or 1] then an additional uninformed bidder, who 
would otherwise submit a bid of zero, is willing to pay at most 0.0244 [or 
0.0178] to acquire a signal (thus making n = 1 [or 2]) and submit a positive bid. 

If there are additional bidders with no private information, then their best 
strategy is to bid zero, or not to bid, since otherwise their expected profit is 
negative. If there were two perfectly informed bidders then they would each 
bid the value v (i.e., a = 1) and then all imperfectly informed bidders prefer 
not to bid any positive amount. 

4.5. Asymmetric payoffs 

Strongly asymmetric outcomes can also occur if the bidders have identical 
information, but one values the item less. Milgrom (1979a) gives an example in 
which two bidders assign valuations v 1 > v 2 > a that are common knowledge: 
all equilibria have the form that 1 uses a pure strategy b I E [v2, vl] and 2 uses a 
mixed strategy H such that bi is optimal against H and 1 surely wins. 
Bikhchandani (1988) provides an example of repeated nondiscriminating 
common-value auctions in which there is a chance that one of the two bidders, 
say 1, consistently values the items more. Because this feature accentuates the 
adverse selection encountered by the winning bidder, in the equilibrium bidder 
1 surely wins every auction. 

Maskin and Riley (1983) provide an example indicating that the seller's 
choice of the auction rules can be affected by asymmetries. They consider an 
auction with two bidders having independent private valuations that are 
uniformly distributed on two different intervals. Represent these intervals as 
the interval from zero to 1/(1 - a)  for bidder 1 and ffom zero to 1/(1 + a) for 
bidder 2. The equilibrium strategies for a first-price auction in this case are 

2b 2b 
X ~ ( b ) -  1 -  a (2b )  2 and X2(b ) -  1+  a (2b)  2 (22) 
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Table 4 
Seller's expected revenue 
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0.00 0.25 0.33 0.50 0.90 1.00 

First-price auction 0.3333 0.3392 0.3443 0.3590 0.4411 0.5000 
Second-price auction 0.3333 0.3290 0.3125 0.2962 0.2585 0.2500 

for b ~< 0.5, indicating the valuations at which the bidders would submit the 
same bid b. Note that bidder 1, whose valuation is perceived by bidder 2 to be 
drawn from a more favorable distribution, requires a higher valuation than 
does bidder 2 to bid the same. For a second-price auction it suffices that each 
bidder submits his valuation. The seller's expected revenue in these two cases 
is shown in Table 4 for various values of the parameter a. Observe that the 
seller can realize an advantage from a first-price auction if there is substantial 
asymmetry. 

4.6. Attrition garnes 

Closely related to auctions are contests to acquire an item in which the winner 
is the player expending the greatest resources. Riley (1988a) describes several 
examples, including the "war of attrition" that is an important model of 
competition in biological [Riley (1980), Nalebuff and Riley (1985)] and 
political [Wilson (1989)] as well as economic [Holt and Sherman (1982)] 
contexts. In attrition garnes, a player's expenditures accumulate over time as 
long as he is engaged in the contest; when all other players have dropped out, 
the remaining player wins the prize. Unlike an ordinary auction in which only 
the winner pays, a player incurs costs whether he wins or not; moreover, there 
need not be a seller to benefit from the expenditure. Some models of 
bargaining and arms races have this form, and price wars between firms 
competing for survival in a natural monopoly are similar. 

Huang and Li (1990) establish a general theorem regarding the existence of 
equilibria for such games. We follow Milgrom and Weber (1985) to illustrate 
the construction of equilibria. In the simplest symmetric model, the n players' 
privately known valuations of the prize, measured in terms of the maximum 
stopping time that makes the contest worth the prize, are independent and 
identically distributed, each according to the distribution function F. A player 
with the valuation v obtains the payoff v - t if the last of the other players 
drops out at time t and he does not, and otherwise it is - t  if he drops out at 
time t. Adopting a formulation in terms of distributional strategies (see Section 
5), let V(x) = F- l (x )  --- sup{v ] F(v) < x} and interpret x = F(v) as the type of a 
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player with the valuation v. Thus, a strategy o-~ that assigns a stopping time to 
each type implies a distribution pù = cr21 of his stopping times. If each other 
player has this distribution of stopping times, then a player with the type x 
prefers to stop at time t if his cost per unit time equals the corresponding 
conditional expectation of winning the prize. When k players remain, this 
yields the condition: 

[k 1] k-2 , 
- pk(t) ok(t) 

1 = V(x)  1 - pk(t) k-I  ' (23) 

since p~ 1 is the distribution of the maximum of the other players' stopping 
times. The relevant case, however, is when only two players remain, which we 
now assume. Adding the equilibrium condition that x = p2(t) to the above 
condition yields a differential equation for the distribution P2 that is subject to 
the boundary condition 02(0) = 0. The solution in terms of the strategy is 

B V(z)  d z .  
°'2(x) = 1 - z 

0 

(24) 

Milgrom and Weber note further the properties that the hazard rate of the 
duration of the garne is a decreasing function of time; the distribution of 
stopping times increases stochastically with the distribution of valuations; and 
the equilibrium is in pure strategies if and only if the distribution of valuations 
is atomless, in which case the stopping time as a function of the player's 
valuation is 

f t dF(t) .  
Ô(v) = 1 - F(t)  

(25) 

Extensions to asymmetric equilibria and to formulations with benefits or 
costs that vary nonlinearly with time are developed by Fudenberg and Tirole 
(1986) and Ghemawat and Nalebuff (1985). 

5. Uniqueness and existence of equilibria 

In this section we mention a few results regarding uniqueness of the symmetric 
equilibrium in the symmetric case, and regarding existence of equilibrium in 
general formulations. Affiliation is assumed unless mentioned. 
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5.1. Uniqueness 

Addressing a significantly more general formulation (e.g., allowing risk aver- 
sion), but still requiring symmetry, Maskin and Riley (1986) derive a charac- 
terization similar to Theorem 1 of the symmetric equilibrium, and for the case 
of two bidders they establish that the symmetric equilibrium is the unique 
equilibrium. Thus, for symmetric first-price auctions there is some presumption 
that the symmetric equilibrium is the unique equilibrium. For symmetric 
second-price auctions, Matthews (1987) finds a symmetric equilibrium that with 
risk aversion generalizes Theorem 1 and for the common-value model this is 
shown to be unique by Levin and Harstad (1986). Milgrom (1981) shows, 
however, that symmetric second-price auctions can have many asymmetric 
equilibria, and Riley (1980) provides an example of a symmetric attrition game 
with a continuum of asymmetric equilibria. Bikhchandani and Riley (1991) 
provide sufficient conditions for uniqueness of the equilibrium in a second- 
price auction for the common-value model of preferences. For an "irrevocable 
exit" version (an English auction with publicly observed irreversible exits of 
losing bidders) they establish that, within the class of equilibria with non- 
decreasing strategies, the unique symmetric equilibrium is accompanied (when 
there are more than two bidders) by a continuum of asymmetric equilibria with 
increasing and continuous strategies. 

For auctions with asymmetrically distributed valuations, Plum (1989) proves 
existence as well as uniqueness within the entire class of measurable strategies 
for the case that there are two bidders, their valuations are independent and 
uniformly distributed (the support of bidder i's valuation is an interval [0,/3i] ), 
and the sale price is a convex combination of the higher and lower bids. 
Smoothness of the equilibrium strategies is established for general independent 
distributions, and then for the case of uniform distributions and positive weight 
assigned to the higher bid, the equilibrium strategies are characterized by 
differential equations having a unique solution. The first-price auction max- 
imizes the seller's expected revenue, which depends on the pricing rule if 
/31 #/32. 

There appear to be no lower semi-continuity results indicating that, say, the 
symmetric equilibrium is the limit of equilibria of nearby asymmetric garnes. In 
particular, Bikhchandani (1988) studies a slightly asymmetric second-price 
auction in which there is a small chance that one bidder values the item more, 
but otherwise the auction is symmetric with common values; and for this game 
he finds that the equilibrium is strongly asymmetric. In a related vein, 
Bikhchandani and Riley (1991) provide sufficient conditions for the seller's 
revenue to be higher at the symmetric equilibrium of a second-price common- 
value auction than at any other. 
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5.2. Ex&tence of  equilibria in d&tributional strategies 

As usually formulated, games representing auctions pose special technical 
problems in establishing existence of equilibria. Primary among these is that 
such garnes are not finite, in that each bidder has an infinity of pure strategies. 
The source of this difficulty can be that infinitely many bids are feasible, or that 
an infinite variety of private information can condition the selection of a bid. It 
suffices in practice to suppose that only finitely many pure strategies are 
feasible, but this approach typically yields equilibria with mixed strategies, 
whereas orten the corresponding game with a continuum of strategies has an 
equilibrium in pure strategies. A further characteristic feature of auctions is 
that payoffs are discontinuous in strategies. In Section 4, fn. 2, we mentioned 
an example of an auction with discriminating pricing that has no equilibrium, 
due essentially to the discontinuity of payoffs at tied bids. In simple formula- 
tions these features do not present difficulties, and as seen in Section 4, 
equilibria in pure strategies are characterized by differential equations. 

Here we describe an alternative formulation that avoids some of these 
difficulties by generalizing the characterization in terms of differential equa- 
tions for both auctions and attrition garnes. We follow Milgrom and Weber 
(1985) who introduced the formulation in terms of distributional strategies, but 
refer also to Balder (1988) who uses the standard formulation in terms of 
behavioral strategies. 8 

Standard formulations introduce pure strategies specifying actions at each 
information set, mixtures of pure strategies, and in extensive games, behavioral 
strategies that specify mixtures of actions at each information set. Static 
auctions have the special feature that for each play of the garne each bidder 
takes an action (selection of a bid) at a single information set that represents 
his private information. Thus a pure strategy consists of a specification of a bid 
conditional on the observed private information. Alternatively, in terms of 
Harsanyi's (1967-68) description of games with incomplete information, given 
his type as represented by his private information, each bidder selects a bid (or 
a stopping time). Given a distribution of his private information and a strategy 
(pure, mixed, or behavioral), therefore, each bidder's behavior is summarized 
by a joint distribution on the pair consisting of his information and his bid. 
Indeed, from the viewpoint of other bidders, this is the relevant summary. In 
general, we shall say that a distributional strategy is such a joint distribution for 
which the marginal distribution on the bidder's type is the one specified by the 
information structure of the game. 

8An alternative approach, applied especially to attrition garnes, focuses on a detailed analysis of 
the role of discontinuous payoffs and establishes sufficient conditions for the limit of equilibria of a 
sequence of finite approximating garnes to be an equilibrium of the limit garne; cf. DasGupta and 
Maskin (1986) and Simon (1987). 
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The formulation is specified precisely as follows. The garne has a finite set N 
of players indexed by i =  1 , . . ,  n, each of whom observes a type in a 
complete and separable metric space T i and then takes an action in a compact 
metric space Ai of feasible actions. 9 Allowing another complete and separable 
metric space T o for unobservable states, define T =  T o x . . .  x T n and A = 
A 1 x - . -  x A n. The garne then specifies each player's payoff function Ui as a 
real-valued bounded measurable function on T x A, and the information 
structure as a probability measure ~/ on the (Borel)  subsets of T having a 
specified marginal distribution ~/i on each T i (including To). A distributional 
strategy for player i is then a probability measure, say /~i, on the (Borel)  
subsets of T~ x A i having the marginal distribution ~/i and T i. Each dis- 
tributional strategy induces a behavioral strategy that is just a regular condi- 
tional distribution of actions given the player's type. Specified distributional 
strategies for all players imply an expected payoff for each player; conse- 
quently, a Nash equilibrium in distributional strategies is defined as usual. 
Milgrom and Weber  impose the following regularity conditions. 

R1 Equicont inuous  payof fs .  For each player i and each E > 0 there exists a 
subset E C T such that 7/(E) > 1 - e and the family of functions {Ui(t  , • ) 
It E E} is equicontinuous. 

R2 Absolute ly  cont inuous information.  The measure T/is absolutely continu- 
ous with respect to the measure ~ --- ~/0 x • • • x ~/n- 

R1 implies that each player's payoffs are continuous in his actions, and 
therefore  excludes known examples of auctions with finite type spaces that 
have no Nash equilibria in mixed strategies [cf. Milgrom (1979a) and Milgrom 
and Weber  (1985)]. However ,  it is sufficient for R1 that the action spaces are 
finite or that the payoff functions are uniformly continuous. R2 implies that ~/ 
has a density with respect to ¢/. It is sufficient for R2 that the type spaces are 
finite or countable, or the players' types are independent,  or that ~/ is 
absolutely continuous with respect to some product measure on T. 

Milgrom and Weber establish that with these assumptions there exists an 
equilibrium in distributional strategies, obtained as a fixed point of the best 
response mapping. 1° Moreover ,  with appropriate specifications of closeness for 

9Milgrom and Weber (1985, section 6) define two natural metrics on the type spaces. Balder 
(1988) uses a formulation in terms of behavioral strategies and is able to dispense with topological 
restrictions on the type spaces. 

l°Balder (1988) extends this result by considering behavioral strategies. Without imposing 
topologies on the type spaces, and replacing R1 with the requirement that each player's payoff 
function conditional on each t E T is continuous on the space A of joint actions, Balder proves the 
existence of an equilibrium in behavioral strategies, and obtains an extension for a class of 
noncompact action spaces. 



250 R. Wilson 

strategies, information structures, and payoffs, the graph of the equilibrium 
correspondence is closed (upper hemicontinuity). 

The relevance of these results for existence of equilibria in pure strategies is 
established in further results for the case that the marginal measure ~/i of each 
player's private information is atomless. 1I First, if the action spaces are 
compact, then for every e > 0 there exists an e-equilibrium in pure strategies. 
For the second, we follow Radner and Rosenthal (1982) in saying that a pure 
strategy ~ purifies the distributional strategy ~i if (a) for almost all of i's types 
the action selected by 4) i lies in the support of the behavioral strategy induced 
by /x i (thus, the action is an optimal response); and (b) player i's expected 
payoffs are unchanged if i uses o-i rather than/zi 's behavioral strategy. Part (b) 
is interpreted strictly: it must hold for every combination of the other players' 
distributional strategies. 

Theorem 4 (Milgrom and Weber). I f  R1 is satisfied and (i) the players' types 
are conditionally independent given each state t o ~ To, and T o is finite, and (ii) 
each player's payoff  function is independent of the other players' types, then 
each distributionaI strategy of  each player has a purification. Moreover, the 
game has an equilibrium in pure strategies. 

Except for the requirement that T o is finite, an application of this theorem is to 
the model discussed in Section 4, where the symmetric equilibrium in pure 
strategies was characterized exactly. Note that condition (ii) admits both the 
independent private-values model and the common-value model. 

The intuitive motivation for Theorem 4 is simple. If a player's actions can 
depend on private information that is sufficiently fine (i.e., r/i is atomless), then 
from the viewpoint of other players his pure strategies are capable of generat- 
ing all of the "unpredictability" that mixed or distributional strategies might 
entail. Harsanyi (1973) follows a similar program in interpreting mixed 
strategies in complete information games as equivalent to pure-strategy equilib- 
ria in the corresponding incomplete-information game with privately known 
payoff perturbations. 

6. Share auctions 

The theory of static auctions of several identical items provides direct generali- 
zations of Theorem 1 that are reviewed by Milgrom (1981) and Weber (1983), 
some of which are summarized in Section 4, fn. 3, for the case that each bidder 

~lWithout invoking R1 or R2, this case already implies that each player's set of pure strategies is 
dense in his set of distributional strategies; cf. Milgrom and Weber (1985, theorem 3). 
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values only a single i tem.  On the other hand, versions in which bidders' 
demands are variable pose rather different problems. Maskin and Riley (1987) 
show that for the seller an optimal procedure employs discriminating pricing of 
the form used in nonlinear pricing schemes. Here we address an alternative 
formulation studied by Wilson (1979) that preserves the auction format using 
nondiscriminating pricing. 

If the supply offered by the seller is divisible, then the rules of the auction 
can allow that each bidder submits a schedule indicating the quantity de- 
manded at each price. For instance, if the seller's supply is 1 unit and each 
bidder i submits a (nonincreasing) demand schedule D~(p), then the clearing 
price pO is the (maximum) solution to the equation D(p °) = 1, where D(p) = 
E i Di(p) .  12 Each bidder i receives the share Di(p °) and pays p°Di(p°) if the 

• p0 . 
pricing IS nondiscriminating. [He pays an additional amount f= p dDr(p)  If 
the pricing is discriminating, or in a Vickrey auctions he receives a rebate 

0 pO 
P - - P i -  J'pi [D(p)  - Di(p)] dp, where D(p~) - D~(pi) = 1.] 

To illustrate, consider a symmetric common-value model in which each 
bidder i observes privately an estimate x; and then submits a schedule 
D~(P;Xi). Allowing risk aversion described by a concave utility function u, his 
payoff is u([v -p°]Di(p°; xi) ) if the realized value is v. Assuming the bidders' 
estimates are conditionally independent and identically distributed given v, he 
can predict that if each other bidder uses a strategy D that is a decreasing 
function of the price, then the conditional distribution of the clearing price 
given the value v and his share y is 

H(p; v, y ) =  Pr{p ° ~<plv,  y} = Pr{~] D(p;x~)<~ 1-  y I v}. 
" j # i  

(26) 

Consequently, a symmetric equilibrium requires that for each of his estimates 
xi the choice of the function y(p) that maximizes his expected payoff 

~g( f u([v- p]Y(P))dH(p; v, y(P))Ixi} 
-co  

(27) 

is y(p) = D(p;xi). The Euler condition for this maximization is 

f { u ' .  [(v - p ) H p  + yHy]lXi} = O, (28) 

omitting the arguments of functions. Often, however, this condition allows a 

a2This assumes no ask price a is imposed by the seller. Other allocation rules are possible; for 
example, the seller can choose the clearing price to maximize [p - a]D(p) if pricing is nondis- 
criminating. 
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continuum of equilibrium strategies if the seller does not impose a minimum 
ask price. 

An example is provided by omitting risk aversion (u' = 1) and assuming that 
(1) the marginal distribution of the common value v is Gamma with mean m / k  
and variance m / k  2, and (2) each observation x i has the conditional distribution 
function e vxl on ( - %  0). Then one equilibrium is 

1 [ k--_nx _] 
D(p;  x) - n - l :  1 - 2 P n ( n + m )  j ,  

o_  1 m + n  _ ½ g { V [ X l , . . . , x ù } .  (29) 
P 2 k - £ i x  i 

The clearing price is positive, as is each bidder's resulting share. Note that in 
this example the clearing price is half the conditional expectation of the 
common value, regardless of the number of bidders. Anomalies appear in 
many examples of share auctions; presumably better modeling of the seller's 
behavior is necessary to eliminate these peculiarities. 

One motive for studying share auctions is to develop realistic formulations of 
"rational expectations" features in markets affected by agents' private informa- 
tion. The Walrasian assumption of price-taking behavior can be paradoxical in 
such markets: if demands reflect private information, then prices can be fully 
informative, but if agents take account of the information in prices, then their 
demands at each price are uninformative. By taking account of agents' effects 
on the clearing price, models of share auctions avoid this conundrum. Jackson 
(1988) develops this argument and shows further the incentives that agents 
have to obtain costly information. 

A share auction in the case of a finite number of identical items offered for 
sale is just a multi-item auction with nondiscriminating pricing: bidders whose 
offers are accepted pay the amount of the highest rejected bid. This formula- 
tion is developed by Milgrom (1981), who uses a symmetric model and the 
symmetric equilibrium identified in Theorem 1 to establish the information- 
revealing properties of the transaction price. He shows that bidders neverthe- 
less utilize their private information in selecting a bid, and have incentives 
initially to acquire information. Thus, this formulation provides a sensible 
alternative to the price-taking behavior assumed in Walrasian models of 
rational-expectations equilibria. 

7. Double auctions 

In a static double auction, both the sellers and the buyers submit supply and 
demand schcdulcs. A clearing price is then selected that equatcs supply and 
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demand at that price. If the pricing is nondiscriminating, then all trades are 
consummated at the selected clearing price. This procedure is sometimes called 
a demand-submission game. 

Working with a complete information model of Walrasian general equilib- 
rium, Roberts and Postlewaite (1976) anticipate the subsequent game-theoretic 
analyses of double auctions. They consider a sequence of finite exchange 
economies (each described by a simple measure /x n on the set of agents' 
characteristics) converging to an infinite economy (required to be a measure) at 
which the Walrasian price correspondence is continuous. They establish the 
following property for each agent persisting in the sequence whose inverse 
utility function is continuous in a neighborhood of the Walrasian prices for the 
limit economy: for each • > 0 there exists N such that if n > N, then the agent 
cannot gain more than e from submitting demands other than his Walrasian 
demands. The gist of this result is that in a large economy an agent's incentive 
to distort his demand to affect the clearing prices is small. Subsequent work has 
examined whether a comparable result might hold for Nash equilibria, espe- 
cially if agents' characteristics are privately known; however, comparable 
generality in the formulation has not been attempted. 

More detailed characterizations of static double auctions have been obtained 
only for the case that a single commodity is traded for money, each seller offers 
one indivisible unit and each buyer demands one unit, their valuations are 
independent and (among sellers and buyers separately) identically distributed 
on the same interval, the traders are risk neutral, and the numbers of sellers 
and buyers are common knowledge. If the clearing price is p, then a trader's 
payoff is p - v o r  v - p for a seller or buyer with the valuation v who trades, 
and zero otherwise. If the asks and bids submitted allow k units to be traded, 
then the maximum feasible clearing price is the minimum of the kth highest bid 
and the k + 1th lowest ask, and symmetrically for the minimal clearing price. A 
symmetric equilibrium comprises a strategy o- for each seller and a strategy p 
for each buyer, where each strategy specifies an offered ask or bid price 
depending on the trader's privately known valuation. Following Myerson 
(1981), to avoid mixed strategies it is useful to assume the "regular" case that 
the distribution, say F, of a trader's valuation has a positive density f and that 
v + F ( v ) / f ( v )  is increasing for a seller or v - [1 - F(v)]/f(v) is increasing for a 
buyer. The symmetric equilibrium pure strategies are characterized by differen- 
tial equations in Wilson (1985a), Williams (1987), and Satterthwaite and 
Williams (1989a, 1989b, 1989c). The most general characterization and proof 
of existence, in terms of vector fields for generic data and symmetric equilibria, 
is by Williams (1988). 

The basic characterization of the effect of many traders is due to Williams 
(1988) and Satterthwaite and Williams (1989a, 1989b, 1989c), who address the 
case that the clearing price used is the maximal (or symmetrically, the minimal) 
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one. In this case the sellers' dominant strategy is the identify o-(v) = v, because 
a seller's ask cannot affect the price at which she trades. Their main result 
demonstrates for each buyer's valuation v that v - p(v) = O(1/M),  where M is 
the minimum of the number of sellers and buyers. Thus, in double auctions of 
this kind with many traders of both types, each trader asks or bids nearly his 
valuation; and, the resulting allocation is nearly efficient, since missed gains 
from trade are both small and unlikely. 13 For example, if all valuations are 
uniformly distributed on the unit interval and there are m buyers and n sellers, 
then the unique smooth symmetric equilibrium is linear, p(v) = [ m / ( m  + 1)]v, 
independently of the number of sellers. 

Williams (1988) shows further that if there is a single buyer, then his strategy 
is independent of the number of sellers, whereas if there is a single seller and a 
regularity condition is imposed then the buyers' strategy again implies bids that 
differ from their valuations by O(1/m). These results indicate that asymmetry 
in the auction rule leads to competition among the buyers, which is the main 
explanation for the tendency towards ex post efficiency as the number of 
buyers increases. 

Chatterjee and Samuelson (1983) construct a symmetric equilibrium for the 
case of one seller and one buyer with uniformly distributed valuations, taking 
the transaction price to be the midpoint of the interval of clearing prices: 
o-(v) = ~ + 2v and p ( v ) =  ~ + 2v. However, Leininger, Linhart and Radner 
(1989) show that this linear equilibrium is one among many nonlinear ones; 
indeed, the characterization by Satterthwaite and Williams (1989a, 1989b, 
198%) shows that this feature is entirely general. Myerson and Satterthwaite 
(1983) establish, nevertheless, that with this linear equilibrium the double 
auction is ex ante efficient; that is, no other (individually ra t ional-each 
trader's conditional expected payoff given his valuation is non-negative) trading 
mechanism has an equilibrium yielding a greater sum of the two traders' 
expected payoffs. This conclusion does not extend to greater numbers of sellers 
and buyers, however; cf. Gresik (1991a). 

Wilson (1985a, 1985b) examines the weaker criterion of interim efficiency 
defined by Holmström and Myerson (1983); namely there is no other trading 
mechanism having an equilibrium for which, conditional on each trader's 
valuation, it is common knowledge that every trader's expected payoff is 
greater. Using the model of Satterthwaite and Williams, except that the 
supports need not agree and the clearing price can be an arbitrary convex 
combination of the endpoints, and assuming that the derivatives of the 
strategies are uniformly bounded, he demonstrates that a double auction is 
interirn efficient if M is sufficiently large. 

13This shows also that this property taust hold for any optimal trading mechanism, which 
strengthens a result in Gresik and Satterthwaite (1989). 



Ch. 8: Strategic Analysis of Auctions 255 

Significantly stronger results are obtained by McAfee (1989) for double 
auction rules that allow a surplus of money to accumulate. In the simplest of 
the three versions he examines, the rules are as follows. Suppose the bids and 
offers submitted allow at most a quantity q to be traded; i.e., q is the maximum 
k such that the kth highest bid b k exceeds the kth lowest offer s k. Then q - 1 
units are traded with the q - 1 highest bidders buying items at the price bq, a n d  

the q -  1 lowest offerers selling items at the price Sq. Note that a monetary 
surplus of (q - ] ) ( b q  - Sq) remains. If these rules are used, then the traders 
have dominant strategies, namely bid or offer one's valuation. Only the least 
valuable efficient trade is lost. In fact, for a slightly more complicated scheine, 
with n traders the realized prices differ from an efficient price by O(1/n) and 
the loss in expected potential surplus is approximately O(1/n 2) - i n  the sense 
that it is O(1/n  ~) for all a <2.  

7.1. Bid-ask  markets 

Dynamic double auctions in which buyers and sellers have repeated oppor- 
tunities to submit or accept bids and offers are commonly used in commodity 
markets and some financial markets. They have been intensively studied 
experimentally as we describe in Section 9, but few theoretical analyses have 
been published. Their remarkable efficiency in realizing gains from trade even 
when subjects have little information has motivated two studies arguing that 
simple heuristic behaviors [Easley and Ledyard (1982)] or arbitrage processes 
[Friedman (1984)] could explain the data. 

Friedman's (1984) analysis supposes that the traders' strategies imply "no 
congestion" at the conclusion of trading; that is, if an extra static double 
auction were appended to the end of the bid-ask market, and for this auction 
each trader were to assign positive probability that the final maximum bid and 
minimal ask would be acceptable to some other traders, then no trader would 
actually want to accept one of these offered trades not would any trader want 
to alter his bid to a sk -  thus, no trade would occur in the appended auction. 
Using this auxiliary assumption instead of the usual requirement of Nash 
equilibrium, he shows that if the commodity traded is divisible (and prefer- 
ences are regular) then the final bid and ask taust agree and be a market 
clearing price; in particular, the attained allocation is efficient. If the items 
traded are indivisible, then this conclusion is slightly weakened: the allocation 
is within a Single trade of being efficient. Although it is not explained precisely 
how traders' strategies achieve the no-congestion property, Friedman's results 
demonstrate that fairly weak properties of traders' strategies suffice to explain 
the remarkable efticiency observed experimentally, and that perhaps it is not 
necessary to appeal to complete analyses of Nash equilibria. 
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McAfee (1989) offers a different view based on a dynamic auction design 
derived from his modified double auction rules described previously [a similar 
design, but without monetary surpluses, is studied by McCabe et al. (1989, 
1990a)]. Because this auction is plausibly similar to a bid-ask market, and its 
unrealized gains from trade are approximately of order 0(1 /n2) ,  the ex- 
perimental efficiency of bid-ask markets is perhaps unsurprising. 

Wilson (1986) proposes a conjectured equilibrium and verifies that it satisfies 
various necessary conditions (as weil as the no-congestion property). His 
"equilibrium" is a multilateral generalization of the equilibrium for bilateral 
bargaining constructed by Cramton (1984, 1990) in which at each time the 
buyer with the highest valuation and the seller with the lowest valuation are 
endogenously matched into a bargaining process that is affected by subsequent 
opportunities to trade and by the prospect that immediately profitable trades 
might be usurped by competing traders. In particular, the risk of usurpation 
plays the role of the interest rate commonly used in studies of bargaining to 
reflect impatience to trade early. During the bargaining process, each party 
delays making a serious bid or offer (i.e., one with positive chances of 
acceptance) sufficiently to signal credibly his valuation, and after a serious offer 
the other party also delays sufficiently to signal credibly before accepting or 
making an offer that is surely accepted. However, this model fares poorly in 
explaining the data that subjects often do not trade in order of their valuations, 
and offen trades are completed by extra-marginal traders (e.g., buyers with 
valuations less than the clearing price). A variety of other bargaining mode l s  
and associated equilibria are available [Kennan and Wilson (1989)], neverthe- 
less, and perhaps one of these could fit the data better. 

Markets conducted by intermediaries such as specialists have also been 
studied. One strand of research focuses on how a specialist can cope with 
traders having superior ("inside") information. Glosten and Milgrom (1985) 
characterize the specialist's bid and ask prices that account for the effects of 
adverse selection. For a double auction in which the specialist trades for his 
own account to set the clearing price, Kyle (1985) derives the equilibrium 
between the specialist's pricing strategy and the insider's strategy of modulating 
his trades to avoid revealing too rauch information too early. The finance 
literature includes many subsequent studies. 

8. Applications 

Auctions in which a single seller offers one or several items for sale are 
common; Cassady (1967) describes many examples. He also notes that differ- 
ent types of auctions tend to be associated with particular kinds of com- 
modities. For example, oral auctions, either English (ascending bids) or Dutch 
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(descending offers), are favored for animal stock and perishable commodities, 
perhaps to ensure rapid consideration of many lots with variable quality 
attributes. Most auctions of art and antiques use the oral format, as do sales of 
property, used machinery, and other producers' durables. On the other hand, 
in the United States new issues of corporate bonds and stock are usually sold to 
investment bankers via sealed bids, as are rights for timber and minerals, 
including coal and oll. Land and buildings are often sold via sealed bids also. In 
many countries, large firms and government agencies use sealed-bid auctions to 
select vendors and to procure services, especially construction. Rozek (1989) 
describes the increasing use of auctions to select providers of electric power 
supplies. In practice most auctions use discriminating pricing rules, but excep- 
tions include the Exxon Corporation's auctions of its bonds [Levinson (1987)] 
and the auctions of privately placed preferred stock conducted by Goldman 
Sachs & Company (1987) and others. Holt (1979, 1980), Brown (1984, 1986, 
1987, 1989), McAfee and McMillan (1985, 1987c), Engelbrecht-Wiggans 
(1987b), Laffont and Tirole (1987), Nti (1987), and Lang and Rosenthal 
(1990), as weil as the seven contributed chapters in Part V of Engelbrecht- 
Wiggans, Shubik and Stark (1983), are indicative of studies of procurement 
contracting that take account of incentive effects in contract design as weil as 
strategic behavior in the auction process. Kahn et al. (1990) report on a 
simulation study of auctions for procurement of power supplies in the electrici- 
ty industry. The design of optimal auction rules for efficient procurement 
contracting is characterized by Riordan and Sappington (1987). 

The sealed-bid auctions studied most thoroughly are those conducted 
periodically since 1954 in the United States to seil exploration and develop- 
ment leases for tracts on public lands and offshore on the outer continental 
shelf (OCS). These leases are unusual for their value (often sold for tens, and 
occasionally hundreds, of millions of dollars) and the auctions are notable for 
the evident intensity of strategic behavior; indeed, the larger oil companies 
maintain large permanent staffs for the preparation of bids. The leäses häve an 
evident common-välue component because the amount and value of oil and gas 
is essentially the same for all bidders [Capen, Clapp and Campbell (1971)]; 
consequently, firms have increasingly realized that bidding strategies must be 
carefully designed to avoid the effects of adverse selection. That is, each bidder 
must take account of the so-called "winner's curse": the one who most 
overestimates the value of a lease is the one most likely to win. Experimental 
and empirical evidence on the incidence of overbidding in common-value 
auctions is summarized in Section 9. Strategic models of bidding have long 
been used by the Department of Interior to examine public policies regarding 
leasing [Reece (1978, 1979), Wilson (1981), DeBrock and Smith (1983)] and 
by the Department of Defense regarding procurement [Engelbrecht-Wiggans, 
Shubik and Stark (1983, Part V)]. Accounts of the oil companies' use of 
strategic analysis are unusuäl because of the extreme secrecy they maintain. 
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Share auctions are rare in practice. In most countries, public issues of firms' 
stocks are sold as single blocks (often via auctions) to investment banking firms 
who then resell the stock to investors, perhaps because marketing is an 
important ingredient. This has also been the practice for bonds [Christenson 
(1961)], which for public utilities are invariably sold via sealed-bid, first-price 
auctions. A recurring share auction is conducted by the Paris Bourse for stocks 
of firms newly listed on the exchange; however, it rations shares to bidders and 
rejects very high bids, which apparently is necessary because the transactions 
price is chosen to be less than the clearing price to attract bidders [Jacquillat 
and McDonald (1974)]. In the 1970s the International Monetary Fund sold its 
excess gold supplies via share auctions; and in this period there were recurrent 
proposals to seU shares of large "unitized" offshore oil leases. In the 1980s, 
shares of several privatized national corporations were sold via procedures 
resembling share auctions. 

The U.S. Treasury conducts weekly sales of bonds via a multi-unit auction 
that closely resembles a share auction. Cammack (1991) describes the institu- 
tional aspects of this market and the secondary resale market; she also provides 
evidence that the market is affected by dispersed private information among 
the bidders. Except for a few trials, the Treasury Bill auction has used 
discriminating pricing. Plott (]982) reports experimental evidence that dis- 
criminating and nondiscriminating pricing in share auctions yield about the 
same revenue to the seller. Bikhchandani and Huang (1989) provide a novel 
analysis of the Treasury auction, for both the discriminating and nondis- 
criminating pricing rules. Two important institutional features are that (1) the 
Treasury accepts "noncompetitive bids" filed at the average price of the 
accepted competitive bids, and (2) the competitive bidders (who are dealers 
purchasing in order to resell in a secondary market) have incentives to signal 
their private information in order to influence the subsequent price in the 
secondary market. Whereas the first feature adds a noise component to the 
primary auction and the secondary market, the second feature increases the 
symmetric bidding strategy by an extra term for which Bikhchandani and 
Huang obtain a closed-form experession. For discriminating pricing, a stronger 
property than affiliation, interpreted as complementarity of information, is 
required to establish existence. Moreover, revelation of information by the 
seller need not increase expected revenues. They also establish sufficient 
conditions for the symmetric equilibrium of the nondiscriminating auction to be 
preferred by the seller. 

Static double auctions, relying on sealed bids and offers, are employed 
frequently in security markets. They are used to determine the opening price in 
stock exchanges and markets for precious metals. They are also used in 
periodic markets for trading privately placed preferred stock [Goldman Sachs 
& Co. (1987)]. Proposals to automate trading on the major exchanges for 
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financial instruments have focused on using periodic (e.g., hourly) double 
auctions to accomplish market clearing. The Stockholm Exchange's automated 
procedures resemble an English auction, however. 

In terms of trading volume, however, dynamic versions of double auctions 
are more widely used. In most organized exchanges, markets for storable 
commodities, industrial metals, and crude oil are conducted via open outcry of 
bids and asks from floor traders and brokers acting for clients. Summaries of 
experimental results on the extraordinary efficiency of these markets are 
reported by Plott (1982) and Smith (1982). Financial markets mostly rely on 
intermediaries such as specialists who maintain inventories and order books of 
bids and offers in order to sustain continual trading opportunities and price 
stability, but some markets for options and futures contracts use oral bid-ask 
auctions; cf. Brady (1988) and Miller (1988) for details of the organization of 
security markets in the United States. 

Labor markets involve interesting variants of double auctions to match 
workers with positions in firms, students with openings at schools, etc. Called 
the "marriage problem", this version differs in that each buyer or seller offers 
an item with unique quality attributes valued differently by each party on the 
other side of the market. Much of the literature focuses on a procedure that 
provides one side of the market a dominant strategy. Orte dynamic procedure 
has buyers apply to sellers, who reject or tentatively accept each application, 
and this continues until each buyer is accepted or would prefer not to trade 
with any remaining seller. Excluding strategic behavior by the sellers (i.e., they 
accept their preferred applicants), this procedure provides a dominant strategy 
for the buyers, and yields for them their best allocation in the core of the 
associated cooperative garne. Roth (1984a, 1984b, 1984c) and Roth and 
Sotomayor (1990) describe the history of the market in the United States that 
matches medical interns (sellers) with positions in hospitals (buyers), which has 
developed a similar procedure to cope with hospitals' incentives to act strategi- 
cally. For a version in which prices as well as the matching are determined by 
the process, see Demange and Gale (1985). Game-theoretical analyses of Nash 
equilibria have not been fully developed. 

9. Experimental and empirical evidence 

Game-theoretic models of auctions make strong assumptions about the infor- 
mation and behavior of participants. Correspondingly, the predictions obtained 
from the models imply severe restrictions on the outcomes of auctions in 
practice and in experimental settings. Students of economic behavior relying on 
empirical data or experimental observations have therefore found auctions to 
be rich sources of evidence. In this section we review briefly several principal 
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studies. The discussion divides between experimental studies in which the 
objective is to examine behavior conditional on controlled environments, and 
empirical studies in which much of the relevant data about the environment are 
inaccessible. 

9.1. Experimental studies 

The objective of experimental studies is to examine subjects' bidding behavior 
in settings in which the experimentor has complete information about the 
economic data (but not subjective aspects of subjects' preferences, such as risk 
aversion), and the procedural rules and informational conditions are con- 
trolled. Results from experiments allow comparisons of procedural rules and 
other features, and most importantly, they allow tests of the hypothesis that all 
participants simultaneously use equilibrium strategies. A large portion of the 
experimental evidence is summarized in three surveys by Smith (1982, 1987) 
and Plott (1982) that we distill even further. Roth's (1988) survey is an incisive 
methodological critique. 

Smith's (1987) summary of over 1500 single-item auction experiments in 
which subjects have independent private valuations concludes that English 
(oral discriminating ascending) and second-price (static nondiscriminating) 
auctions achieve high efficiency and have about the same mean observed 
prices, whereas first-price (static discriminating) and Dutch (oral discriminating 
descending) auctions have appreciably lower efficiency and appreciably higher 
prices (first-price auctions have higher efficiency measures and higher prices 
than Dutch auctions). These differences are attributed to risk aversion, and 
with this proviso, judged to be consistent with Nash equilibrium; further 
qualified support is found in experiments with multi-item discriminating auc- 
tions (but not for nondiscriminating versions). 14 Smith's (1982) summary 
emphasizes further that heterogeneity of risk aversion among subjects is 
necessary to explain the data, which exhibit considerable dispersion; a critique 
and alternative view is suggested by Harrison (1989). Plott (1982, p. 1505) 
describes experiments with multi-unit static discriminating auctions and con- 
cludes that the results "provide support for Nash equilibrium bidding models 
when there are several (three or four) bidders", and that "after convergence 
[of subjects' behaviors] take place, [discriminating and nondiscriminating auc- 
tions] generate about the same revenue" as implied by theoretical results. 

The extensive literature on double auctions, especially bid-ask markets (oral 
discriminating multi-item), is partially reviewed by Smith (1982, section 3B) 
and Plott (1982, section II); for more recent results see Friedman and Ostroy 

14Kagel and Levin (1988) study the role of risk aversion in experiments using a different 
experimental design based on a "third-price" auc~ion that provides a stronger test. 



Ch. 8: Strategic Analysis of Auctions 261 

(1989). Although portions of this work involve a variety of particular institu- 
tional features, the main finding emphasized in all studies is that transaction 
prices usually converge rapidly (say, four repetitions), even with few partici- 
pants (eight), to Walrasian clearing prices. 15 In addition, the efficiency of 
trading is very high. 16 This striking finding is quite robust, but its conformity to 
the predictions of garne theory is moot owing to the dearth of theoretical 
results. 

Single-item static discriminating auctions with common values have been 
studied experimentally by Kagel and Levin (1986). Their main conclusions are 
that "in auctions involving a limited number of bidders (3-4 bidders), average 
profits are consistently positive and closer to the Nash equilibrium bidding 
outcome than to the winner's curse hypothesis"; in particular, profits average 
about two-thirds of the amount predicted by the equilibrium strategies for 
risk-neutral bidders, t towever,  "bids are found to be an increasing function of 
the number of rivals faced, in clear violation of risk-neutral Nash equilibrium 
bidding theory",  contributing to a "reemergence of the winner's curse, with 
bankruptcies and negative profits, in auctions with large numbers (6-7) of 
bidders". 17 They further observe that providing public information about the 
common value increased the seller's revenue in the former case (few bidders) 
as predicted, but decreased it in the latter. All of these conclusions refer to 
auctions with experienced bidders, and in particular they emphasize that 
learning is evident and partially successful in repeated auctions with few 
bidders, but not in auctions with many bidders; moreover, the learning is 
specific, in that it is not entirely carried over to new situations. They conclude, 
therefore, that the probable explanation of the results is persistent errors in 
judgment,  manifested in an inability to fully comprehend the adverse selection 
that afflicts bidders in common value auctions. 

9.2. Empirical studies 

Empirical studies must contend with less complete data and few controls on the 
auction environment are possible. On the other hand, they have the advantage 
that the data pertain to practical situations in which the stakes are often large 

15This is also true when rational expectations aspects are involved, provided a sufficiently rich set 
of securities are traded, as shown by Plott and Sunder (1988). 

16Asymmetric versions, say with a single seller, often do not achieve monopoly outcomes as 
might be predicted, but rather approximate the more nearly Walrasian outcome predicted by the 
Coase property; cf. Gul, Sonnenschein and Wilson (1986). 

17These results are replicated for subjects who were professional managers of construction firms 
in Dyer, Kagel and Levin (1989a), and for second-price auctions, by Kagel, Levin and Harstad 
(1988). 
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and the participants are skilled and experienced. In the case of auctions of 
offshore oil leases, millions of dollars are at stake and the firms bidding for 
leases have large staffs, data bases, and computer facilities devoted to the task 
of preparing bids. The procedural rules are simple, since the lease is awarded 
to the high bidder at the price offered by sealed tender, but the information 
structure is not, and in important cases is very asymmetric. In view of the 
extensive review of empirical studies in McAfee and McMillan (1987a) we 
review only studies omitted from their survey. 

We mentioned above the experimental finding that even experienced bidders 
tend to overbid in common-value auctions with six or more bidders. Hendricks, 
Porter and Boudreau (1987) examine a similar situation in auctions of leases 
for wildcat tracts (i.e., in unexplored areas) for the years 1954-69. One of their 
main conclusions is that winning bidders' average realized net profits were 
negative for auctions with more than six bidders. The authors point out that 
the data can be explained by nonoptimal bidding strategies that account 
inadequately for adverse selection in valuation estimation, or equally, by 
adverse selection in estimating the number of bidders. That is, most tracts 
receive fewer than six bids (the average was 3.5 in the sample) and supposing 
that firms expect this, profits will be less on those tracts receiving more bids. 
Overall, winning bidders captured about a quarter of the value of the tracts, 
which is consistent with a supposition that active bidders expected three or four 
bids to be submitted. Overall, the authors conclude that "the data are 
consistent with both the assumptions and predictions of the [common value] 
model", allowin~ for bidders' uncertainty about the number of active bidders 
in each auction. 1 

These data are from the period before the publication of Capen, Clapp and 
Campbell's (1971) influential article suggesting that adverse selection (the 
winner's curse) might account for the low returns realized by winning bidders 
in such auctions. Helfat (1987), using ex ante data on expected returns and 
allowing risk aversion in a portfolio model of firm's decisions, finds that returns 
remained low until the OPEC oil embargo of 1974, but rose substantially 
thereafter due to lower average bids. Whether this effect is associated with 
better bidding strategies or is an incidental consequence of the altered structure 
of the oll market is unclear. 

Auctions of "drainage" tracts adjacent to explored tracts typically involve 
substantial asymmetries of information, since firms who have explored neigh- 
boring tracts have superior information. Hendricks and Porter (1988) derive 
seven implications of the equilibrium bidding strategies for the case that one 
bidder has superior information, as in the common-value model presented in 
Section 4. They test these predictions using data on 114 drainage tracts leased 

18This conclusion is stronger than in previous studies, where mixed results were offen reported; 
for example, see Gilley, Karels and Leone (1986) and the references therein. 
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in the period 1959-69. Their conclusion, subject to one proviso, is that 
essentially all seven of these predictions are confirmed by the data. The proviso 
is that multiple neighbors act as a single cartel to submit a single serious bid; 
indeed, at the time cartels were not prohibited and firms routinely cooperated 
in other activities, and Hendricks and Porter provide substantial evidence of 
coordinated bidding by neighboring firms. The sharpest test is the prediction 
that non-neighbor firms' profits should be zero on average, compounded from 
positive profits when a neighbor bid and lost and negative profits when 
neighbors chose not to bid: this prediction is confirmed, and in particular 
average profits differed from zero by only one-quarter standard deviation of 
the sample mean. Overall, the authors "find that the data strongly support the 
hypotheses t h a t . . ,  firms bid strategically in accordance with the Bayesian- 
Nash equilibrium model". Hendricks, Porter and Spady (1988) obtain similar 
results for data from the period 1970-79, using however a somewhat richer 
model that assumes (realistically) that the government uses a random reserva- 
tion price. The conclusion is again that "the hypothesis that neighbor and 
non-neighbor firms bid strategically in accordance with the theory of auctions 
with asymmetric information is strongly supported by the data". This analysis 
is extended further by Hendricks, Porter and Wilson (1992) to take account of 
the informational content of the government's reservation price: assuming 
affiliation, they show that the distribution of the informed (neighbor) bidder's 
bid stochastically dominates the distribution of the highest bid among those 
submitted by uninformed bidders, but conditional on the bid being high 
enough these two distributions are identical. The data from drainage tracts 
favor rejection of a null hypothesis that the two marginal bid distributions are 
identical, and acceptance of the null hypothesis that the two conditional 
distributions are identical. These positive conclusions are reversed for less risky 
"development" tracts, providing further support for the supposition that 
informational differences account for the results. 

Thiel (1988) uses data from 130 auctions of highway construction contracts 
by 28 state governments in the United States to test the common-value model 
with symmetric information, assuming normal probability distributions. He 
supposes that the state engineer's estimate of the cost of fulfilling the contract, 
revealed after the auction, is an unbiased estimator of the true (but un- 
observed) cost. However, his main conclusion that "the model fits the data 
reasonably well" is moot since the equilibrium bidding strategies are mis- 
specified, as shown by Levin and Smith (1991). 

10. Comparisons of auction rules 

Several studies have compared the distributional effects of various types of 
auctions. Here we provide a sample of results that indicate major themes. 
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In Section 4 we mentioned single-item auctions in which bidders are risk- 
neutral and have independently and identically distributed private valuations, 
and that the seller and the bidders are indifferent among the standard 
procedural rules, such as first-price or second-price and oral or sealed bids. 
Matthews (1987) shows that this feature persists for bidders in the case that all 
bidders have identical exponential utility functions, so that each has the same 
constant Arrow-Pratt measure of risk aversion, even if the number of bidders 
is uncertain - although the expected price is higher in a first-price auction if the 
number is not revealed, as shown by McAfee and McMillan (1987b) and 
studied experimentally by Dyer, Kagel and Levin (1989b). However, if the 
risk-aversion measure is decreasing, then the bidders prefer a second-price 
(SP) auction to a first-price auction with the number of bidders revealed (FPR) 
to a first price auction with the number not revealed (FPU), in that order; 
moreover, the seller's preference is the reverse ordering if the seller is 
risk-neutral. 19 However, if their valuations are affiliated, then the bidders' 
preferences are biased away from the second-price auction; e.g., if utilities are 
exponential then they prefer FPR to FPU to SP, whereas the seller prefers 
FPU to FPR to SP. 

Milgrom and Weber (1982a), assuming that the number of bidders is known 
and that bidders are symmetric and their valuations are affiliated, establish that 
an English oral ascending auction has a higher expected price than a second- 
price auction, and in turn if bidders are risk-neutral, the latter is higher than 
the expected price in a first-price auction. In all three auctions, moreover, a 
risk-neutral seller prefers to (acquire and) disclose any private information it 
can if doing so is costless. 2° The comparisons are applications of the "linkage 
principle": since bidders' profits are returns to their private information, 
procedures that reveal more of their private information during the auction 
(such as an English auction), or that dilute their information (such as revelation 
of information known to the seller), tend to increase the expected price 

19These results assume that the number of active bidders is uninformative about their valuations 
and the seller's ask price is not binding. Holt (1980), Harris and Raviv (1981b), Maskin and Riley 
(1984a), and Riley (1989) show that the seller prefers a first-price sealed-bid auction to an English 
auction if bidders are risk averse, a preference that is strengthened if the seller is also risk averse. 
Maskin and Riley also investigate a plethora of other schemes the seller can use to exploit the 
bidders '  aversion to risk. 

2°These results are valid also for an ask price that is the same in all three auctions, and the 
seller's preference for an English auction over a second-price auction carries over to the case that 
bidders have exponential utilities. Riley (1989) shows further for the comparison between first- and 
second-price auctions, that of two rules using a price that is a weighted combination of the first 
and second bids the one giving greater weight to the second has the higher expected price; and 
indeed, the seller prefers rules that weight all bids as versus only the high bid. However,  Maskin 
and Riley (1984b) show for the case of independent  private valuations that wealth effects can make 
an English auction an inferior choice for the seller. Riley (1989) uses elementary methods to 
examine some of these features. 
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obtained. Milgrom and Weber also show for each of these auctions that 
between two such auctions that differ only in the ask price and an entry fee but 
attract the same set of bidders, the one with the lower ask price and higher 
entry fee obtains the higher expected price for the seller. 

Assuming two bidders, Hausch (1987) shows that these results extend to 
common-value auctions in which the bidders' sampling distributions differ but 
their conditional distributions (of one bidder's sample given the other's obser- 
vation) agree; moreover, an equilibrium with symmetric strategies exist. How- 
ever, if the conditional distributions disagree, then the strategies may be 
asymmetric and the first-price auction can have a higher expected sale price. 

For common-value auctions, Harstad (1990) extends Milgrom and Weber's 
results to contexts in which the number of bidders is determined endogenously 
by the bidders' participation cost (e.g., the cost of acquiring sample informa- 
tion) and the seller's selection of the auction type (including the information 
revealed, the entry fee, and the ask price), provided the induced probability of 
selling the item is sufficiently large. Again with this proviso, an auction format 
for which participation costs are recovered with fewer participants is preferable 
for the seller. Similarly, a reduction in participation cost is preferable if the 
number of participants responds inelastically. Both of these observations follow 
from the general principle that with endogenous participation, and conditional 
on a sale, the seller's expected revenue is the expected common value less the 
aggregate of participation costs. Thus, in the context the role of the linkage 
principle is played by the induced reduction in participation. 

Applications to bidding for oil leases have also noted that royalties payable 
on the actual amount extracted can alleviate bidders' risk aversion and 
therefore increase the seller's expected revenue. Riley (1985) shows further, 
subject to regularity conditions, that even without risk aversion, if bidders' 
valuations are affiliated, then contingent payment schemes conditioned on ex 
post observations are optimal for the seller. Nevertheless, high royalties can 
diminish the winning bidder's incentive to pursue an efficient plan of oll 
recovery, and therefore the net effects are mixed. 

The seller's ask price is affected by the power to commit in advance. To 
illustrate, consider only the case that the bidders have independent private 
valuations. In a static auction with a fixed number of bidders, the seller usually 
prefers to commit to an ask price above cost. But in the Dutch auction dynamic 
version, having failed to receive a bid the seller prefers to continue lowering 
the price so long as it remains above cost, which increases the efficiency of 
trade. Engelbrecht-Wiggans (1988) studies an example modeled after an 
historical incident: assume that the number of bidders increases until the 
expected gain ex ante from attending an auction is reduced to the expense 
incurred. In this case, the seller prefers ex ante to commit to an ask price that 
is lower than the expectation of the ask prices conditional on the number of 
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attendees, chosen to take account of the option of reoffering the item in a fresh 
auction with a new sample of bidders. The reason is essentially that a low ask 
price ex ante attracts more bidders and raises the average sale price. En- 
gelbrecht-Wiggans cites an incident in which taxation imposed on goods offered 
for sale, räther than those actually sold, allegedly increased tax revenues as 
weil as benefited sel lers-the reason being that taxation of offered goods 
provides a disincentive to reoffer an item, and therefore lowers conditional ask 
prices to levels closer to the ex ante optimum. 

Auctions in which the seller has superior information about an item of 
common value to the bidders have novel features. Vincent (1990) studies a 
repeated auction in which only the seller knows the benefit each of two 
identical uniformed bidders would obtain from acquiring the item, and the 
seller's valuation is a fixed amount less than the bidders' valuation; also, all 
parties discount delayed payoffs. The sequential equilibrium in this case 
involves "screening" by the bidders: they offer an increasing sequence of bids 
until the seller accepts. The bidders' expected profits are zero of course, and 
the seller captures the difference, but the outcome is inefficient because of 
the delay. In Vincent's example, the seller prefers to exclude repetition of the 
auction, or to deal with only one bidder rather than two; in both cases the 
seller's motive is to reduce screening and the resulting delay. 

11. Optimal auctions 

In parallel with the analyses of specific auction forms, a large literature has 
addressed the design of auction rules that are efficient or optimal for the seller. 
In this section we provide a brief synopsis of the main results. If not 
mentioned, the default assumption is that bidders have independently and 
identically distributed valuations, according to a distribution function having an 
increasing hazard rate. 

The basic results are due to Myerson (1981) and Myerson and Satterthwaite 
(1983), although here we follow the exposition in Wilson (1985a, 1985b). 21 An 
alternative approach by Bulow and Roberts (1989) shows that the methodology 

21Otlr exposition excludes the most general case in Myerson by assuming, in effect, a monotone 
hazard rate. Other authors developing this methodology are Harris and Raviv (1981a), who derive 
an optimal priority pricing scheme similar to a Dutch auction; Harris and Raviv (1981b), who 
obtain specializations of Myerson's results; Harris and Townsend (1981), who study the general 
properties of revelation mechanisms; and Moore (1984). Extensions to the case that a seller offers 
a quantity of a (divisible) good and each buyer can select any amount to purehase are developed by 
Maskin and Riley (1986); in this case the seller's optimal mechanism entails a nonlinear price 
schedule. Applications to the design of auctions of procurement or franchise contracts are 
developed by Riordan and Sappington (1987). 
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is isomorphic to the theory of a monopolist offering prices that discriminate 
among multiple markets. 

As in the method of distributional strategies in Section 5, assume that each 
participant i's valuation (for trade of a single indivisible item) depends on his 
privately known type t~ via a decreasing function ui(t~) if i is a buyer and an 
increasing function vz(tz) if i is a seller, where the types are independently and 
uniformly distributed on the unit interval. Assume further that üz(t)= tu~(t) 
and ffi(t) = typ(t) are concave and convex functions, respectively, as implied by 
the increasing hazard rate property. Party i's expected payoff from an equilib- 
rium of a particular mechanism is denoted V~(ti), and we consider a welfare 
measure 

~= ~{~ o~,(t,)v~(ti)}, (30) 

depending on non-negative welfare weights «~(t~) that may depend on the 
party's type, as in the case of interim incentive efficiency [Holmström and 
Myerson (1983)]. The "revelation principle" takes advantage of the property 
of an equilibrium that each party taust prefer to act according to his true type 
to conclude, say for a buyer, that 

1 

B(ti)  = V~(1) + f P~(~) d[ui(O) - ui(Z)], 
t i 

(31) 

where P~(f) is the probability that i trades if the type is [. Using this property,  
along with the feasibility condition that net trades of money and goods among 
the parties must sum to zero, enables one to rewrite the welfare measure as 

(32) 

where 

(33) 

eß~(t) = uz(t ) + [1 - ä~(t)]tu~(t) and ¢~(t) = v,(t) + [1 - ~;(t)]tv;(t) .  
(34) 

The functions ~b i and ¢i for the buyers and sellers are called "virtual 
valuations" by Myerson. In the expression for the welfare measure, it is 
important to note that the expectation is taken with respect to both the traders' 
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types and the sets B and S of buyers and sellers who trade conditional on the 
entire vector (ti) of types (feasibility requires that these two sets have equal 
cardinality). This representation shows that the design problem is summarized 
by choosing welfare weights, and for specified weights, choosing the rules of 
the mechanism to maximize the welfare measure via the induced sets B and S 
of successful traders. The requirement of "individual rationality", in the form 
that each Vg(t)~>0, is satisfied by setting each V~(1)=0. Furthermore, the 
mechanism maximizes the welfare measure if there exists an increasing func- 
tion f such that the equilibrium induces trading sets B and S that maximize 

2 f(q~i(ti)) - 2 f(t)i(ti)) (35) 
i ~ B  i ~ S  

subject to Iß] = ISI for each realization (ti). Gresik and Satterthwaite (1989) 
show that rules for monetary payments exist that actually realize the equilib- 
rium with these rules for trades of goods. 

To take a special case, suppose there is a single seller with a commonly 
known valuation for a single item. The seller's optimal mechanism is obtained 
by setting the buyers' welfare weights to zero; consequently, it should sell the 
item to the buyer with the largest among the virtual valuations 

4)i( t i )  = u i ( t i )  + tiU'i(t i)  = ü ~ ( t i )  , (36) 

provided it exceeds the seller's valuation. In the symmetric case u i ---u, for 
example, this rule merely specifies that the buyer with the highest valuation 
should obtain the item if it is sold (since the actual and virtual valuations have 
the same ordering), and that the seller should use an optimal ask price. Thus, 
this mechanism conforms exactly to the usual auction formats. Bulow and 
Roberts (1989) observe that generally the virtual valuations are marginal 
revenues in the seller's calculations. 

If the welfare weights are independent of the types, then the auction design 
is ex ante efficient, and further, if they are all the same, then the design 
maximizes the expected total surplus. An elaborate example of relevance to 
regulatory policy is worked out in detail by Riordan and Sappington (1987). 

For the case of risk-averse buyers, Matthews (1983, 1984b) and Maskin and 
Riley (1984b) characterize the seller's design problem as an optimal control 
problem. They find that it is optimal for the seller to charge entry fees that 
decline with the magnitude of the bid submitted (negative for large bids), and 
to reject the high bid with positive probability (though small if the bid is large). 
The essential idea is to impose risk on the buyers to motivate higher bids, but a 
buyer with a very high valuation is nearly perfectly insured (marginal utility 
differs little between winning and losing). With extremely risk-averse buyers, 
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the seller can attain nearly perfect price discrimination. Analogous results 
obtain in the case of risk-neutral bidders who have correlated private informa- 
tion, for example about an item of common value. Cremér and McLean 
(1985), and McAffee, McMillan and Reny (1989), McAfee and Reny (1992) 
provide conditions under which the seller can in principle extract nearly all of 
the potential profit. In all cases, however, full exploitation of these features 
requires that the rules of the auction depend crucially on the probability 
distribution of buyers' information. 

Border (1991) studies the "reduced form" of an auction, interpreted as a 
function that assigns a probability of winning to each possible type of each 
bidder. He characterizes the set of all such functions that are implementable a s  
auctions, and shows that this set can be represented as a convex polyhedron 
with extreme points that are associated with assignments that simply order the 
types. That is, the bidder whose type is ranked highest wins. This geometric 
characterization enables the implementation as an auction to be constructed 
from the solution to a linear programming problem. 

Myerson and Satterthwaite (1983) examine the case of a single seller and a 
single buyer in which the welfare weights are identical constants, corresponding 
to ex ante incentive efficiency of the mechanism, as in Holmström and 
Myerson (1983). They note in the special case of valuations distributed 
uniformly on the same interval that an efficient mechanism is the static double 
auction in which the price is the average of the bid and offer submitted, 
assuming that the parties follow the linear equilibrium strategies identified by 
Chatterjee and Samuelson (1983) - although there are many nonlinear equilib- 
ria, only the linear one is efficient. Gresik and Satterthwaite (1989) construct 
ex ante efficient mechanisms for the general case of several sellers and several 
buyers with differing independent probability distributions of their valuations; 
cf. Gresik (1991c) for the case with correlated distributions. Their main result 
is that for ex ante efficient trading mechanisms the ex post inefficiency, as 
measured by the maximal difference between the valuations of a buyer and a 
seller who do not trade, is of order V~-n(M)/M in terms of the minimum M of 
the numbers of buyers and sellers [as noted in Section 7 on double auctions, 
this bound is improved to 1/M by Satterthwaite and Williams (1989a, 1989b, 
198%)]. Generally, however, the rules of these efficient mechanisms depend on 
the distributions and therefore they do not conform to the usual forms o f  
auctions; e.g., the payment rules they use (although they are not the only 
possible ones) orten mandate payments by buyers who do not trade. Indeed, 
even for two sellers and two buyers with uniform distributions, the ordinary 
double auction that uses the price at the midpoint of the interval of clearing 
prices is inefficient. This difficulty motivates much of the work reported in 
Section 7 on double auctions, particularly those that demonstrate the efficiency 
of double auctions with many participants. 
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An alternative construction by Gresik (1991b) obtains stronger positive 
results. He strengthens the interim individual rationality constraint V~(ti)i> 0 
used above, to the ex post individual rationality constraint that each trader 
must obtain a non-negative net profit in every contingency. In particular, 
participants who do not trade do not make or receive payments, and those who 
do trade make or receive payments bounded by their valuations. His main 
result establishes that there exists an open set of trading problems (in the space 
of probability distributions) for which the ex ante efficient mechanism can be 
implemented with payment rules that satisfy these stronger individual rationali- 
ty constraints. This set is characterized by problems for which certain functions 
have unique roots, which he interprets as a "single crossing property" of the 
sort assumed in many studies of incentive problems. The net result is the 
demonstration that mechanisms that enforce ex post rationality, and therefore 
conform more closely to standard auctions, but allow contingent selections of 
trading prices from the interval of clearing prices, are ex ante efficient in a 
nontrivial class of problems. 

Similar methods can be applied to other contexts akin to auctions. We 
mention one among several examples in Kennan and Wilson (1992). Suppose 
that in a legal dispute a trial will cost each party c and yield a judgment 
v = p  - d paid to the plaintiff by the defendant, where initially the plaintiff 
knows p and the defendant knows d and they both know these have in- 
dependent distribution functions F and G with densities f and g. Thus the gain 
from a pretrial settlement is 2c. The incentive-compatible mechanism that 
maximizes the sum of the parties' ex ante expected payoffs can be derived 
using the methods above. One finds that they settle if 

[ F(p) G(d) ] 
2c >~ a [ f - ~  + g(d) ] '  (37) 

provided the right-hand side is increasing, where a is a number chosen to 
ensure feasibility. In the case of uniform distributions, for example, if c ~< ½ 
then a = 2 and they settle if p + d ~< 3c. Analogous to Myerson and Satter- 
thwaite's example above, this optimal mechanism is implemented by a proce- 
dure in which the plaintiff asks P, the defendent offers D, and if P < D then 
they settle on a payment ½ [P + D], and otherwise go to trial. For this garne the 

4 linear equilibrium has strategies P = - 2 c  + 4p and D = 2c + ~d. This proce- 
dure can also be used in a common-value model, although its optimality 
properties are unknown. Suppose (v, p, d) has a normal distribution such that, 
conditional on v, p and d are independent and identically distributed with 
mean v and variance ½s 2, and consider the limiting case as the variance of the 
marginal distribution of v increases; at the limit, the linear equilibrium 
strategies are P = ½A + p  and D = -½A + d, where [2c/s]h(A/s)= 1 and h =f /  
[ 1  - F] is the hazard function for the standard normal distribution function. As 



Ch. 8: Strategic Analysis of Auctions 271 

in Section 4, similar results are obtained with a lognormal distribution and trial 
costs that are proportional to the judgment. 

12. Research frontiers 

Strategic analyses of auctions have developed rapidly, but significant gaps 
remain. The theory relies mainly on static formulations that invoke strong 
assumptions, such as symmetries among bidders, common knowledge of 
probability distributions, absence of risk aversion, etc. The fundamental 
assumption that an equilibrium predicts behaviors has rarely been relaxed. 
These assumptions facilitate theoretical work but they hamper empirical and 
experimental studies, since they are never precisely true in practice and little 
has been done to establish the robustness of the predictions. Moreover, they 
thwart applications of the theory to practical affairs. Indeed, the paucity of 
reported applications and the occasional rejections of the theory [e.g., Levin- 
son (1987)] by skilled practitioners indicate that more can be done to make it a 
useful tool. 

Dynamic procedures, such as bid-ask markets, have received little attention 
although they have paramount importance in practice. The theory of efficient 
mechanisms remains a weak explanation for the prevalence of auction rules 
that are invariant to the characteristics of participants. Scant progress has been 
made in building theories with generality comparable to the Walrasian model 
of general equilibrium, even though the enigma of price formation in the 
Walrasian model is a prime motivation for studies of auctions. 

Nevertheless, the methods of garne theory have contributed substantially to 
the strategic analysis of auctions, and the main empirical studies [e.g., Hen- 
dricks and Porter (1988)] provide some support. This accomplishment stems 
partly from precise formulations and exact criteria for a solution, but most 
importantly it derives from explicit recognition of the effects of private 
information on strategic behavior. The emphasis on private information has 
brought garne theory closer to practical affairs, and the resulting development 
of new techniques has enriched the methodology. One can hope that the 
emerging power of garne theory to characterize market behavior will enable a 
general reformulation of economic models to include strategic behavior affect- 
ed by private information. 
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1. Introduction 

Space, by its very nature, is a source of market power. Indeed, most markets 
operate over intricate networks of scattered buyers and sellers. Because the 
market activities are performed at dispersed points in space, each firm finds 
only a few rivals in its immediate neighborhood; further away there might be 
more competitors, but their influence is weakened by the existence of trans- 
portation costs. Similarly, not all consumers are alike to the firm; those who 
are rar away will not buy from the firm because they have to pay too high a 
transportation cost. Accordingly, competition in space occurs "among the 
few", thus leading to an analysis of the problem as a garne of strategy. 

The model designed to describe that situation has come to be known as the 
model of spatial cornpetition. In this model, a population of consumers is 
spread out over a geographical area, while firms selling a homogeneous 
product are (to be) located in the same space. Consumers have specific 
preferences regarding the commodity made available by the sellers either at the 
firms' or consumers' place (depending on who controls the transport). Since 
the product is homogeneous, a basic feature of consumers' behavior is that 
they buy from the firm charging the lowest full price, i.e. the price gross of the 
transportation costs. As a result, the number of customers patronizing a 
particular firm depends on its location and price policy, as weil as on locations 
and price policies of competing firms established in the relevant area. This 
situation typically involves the basic ingredients of a noncooperative garne in 
which the players are firms, strategies prices and/or locations, and the payoffs 
are profit functions. 

The economic relevance of location garnes does not exclusively stem from 
their initial geographical set-up. Indeed, location problems are fundamentally 
related to many aspects of business competition in modern economies. Firstly, 
the spatially dispersed nature of markets has a direct analog in industrial 
economies under the form of an industry with differentiated products. In that 
set-up, product substitutes are dispersed in a space of characteristics ä la 
Lancaster, and the selter of a particular variant enjoys a quasi-monopolistic 
position relative to the consumers who most prefer it. Moreover, the counter- 
part of the transportation costs is the utility loss incurred by a consumer who 
does not find his "ideal product" on the market. (In the geographical setting, 
this means that transport is under the control of the consumer.) Thus, the 
interest in modelting spatial competition extends immediately to the process of 
competition amongst firms producing differentiated commodities. In this do- 
main, it was found useful to distinguish between market competition under 
horizontal versus vertical product differentiation. Two variants of a product are 
said to be horizontally differentiated whenever, sold at the same price, some 
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consumers choose one variant while the others buy the alternative variant. Two 
vaöants are vertically differentiated whenever, sold at the same price, all 
consumers purchase the same variant (like in the case of a "standard" and a 
ù luxury" product). Along several dimensions, the nature of competition turns 
out to be different under the two types of differentiation. Interestingly enough, 
these two forms of competition have precise counterparts in spatial competi- 
tion. To horizontal product differentiation corresponds a process of spatial 
competition with firms locating within the sub-space where the consumers 
themselves are located. The typical case is provided by shops installed inside 
the residential area: the "Main Street" model of Hotelling (1929). In what 
follows, we call such games inside location garnes. The analog of vertical 
product differentiation in spatial competition corresponds to a situation where 
the sellers locate outside the residential area, like shopping centers set up along 
a road at the outskirts of a city. At the same price, all consumers prefer to buy 
from the shopping center which is the closest to the city. These garnes are 
called outside location games. 

Secondly, another important issue in industrial economics is related to the 
practice of price discrimination. Since some sort of market segmentation is 
inherent to price discrimination, the spatial competition model offers a natural 
framework for the study of oligopolistic markets with price discriminating 
firms. Of course, price discrimination is possible only when firms can discern 
among customers. To this effect, we suppose that transport is under the firm's 
control, thus enabling discrimination with respect to location. If the difference 
between delivered prices at two different locations is not larger than the 
transportation costs between these points, arbitrage is never profitable and 
firms may exercise price discrimination. When two or more firms price 
discriminate in a spatial economy, the resulting garne typically involves, as 
strategic variables, price schedules specifying the delivered prices at which each 
firm is willing to supply the customers located at each point. This gives rise to a 
new class of location garnes in which firms' decision variables are price 
functions instead of price scalars, i.e. discriminatory versus mill pricing. 

Finally, the location model is also well suited for analyzing nonprice competi- 
tion. In other words, firms are assumed to compete on other variables than 
prices; in particular products specification appears as a basic decision variable 
in such a competitive environment. Marketers view the product sold by a firm 
as a mix of goods in conjunction with an array of services. The spatial analog of 
a firm choosing the attributes of a product defined as such, given some 
competitive brands, is the choice by a shop-keeper of a location for his store, 
given some competing facilities. It is worth noting that this model may also be 
useful for dealing with collective decision-making processes, like voting or 
competition between political parties. 

The remainder of this chapter is organized as follows. In Section 2 we study 
inside and outside location garnes assuming mill price competition; we first 
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assume that firm's locations are given and subsequently allow for variable 
locations. Section 3 deals with the inside location game under discriminatory 
pricing. Location under non-price competition is taken up in Section 4. In each 
section we concentrate on the basic models and results, mentioning in foot- 
notes several recent extensions and reinterpretations. Regarding historical 
details, we refer the reader to Ponsard (1983). Finally, we draw some 
conclusions in Section 5. 

2. Location under miil price competition 

2.1. Variable prices and parametric locations 

2.1.1. The inside location garne 

The prototype model of spatial competition for the inside location garne has 
been introduced by Hotelling (1929). On a line whose length is normalized to 
one by an adequate choice of the unit of length, two sellers A and B of a 
homogeneous product with zero production cost are installed at respective 
distances a and b from the endpoints of the line (a + b ~< 1; a >/0, b i> 0). 
Customers are distributed along the unit interval according to a positive and 
continuously differentiable density f, and each customer consumes exactly one 
unit of the commodity. Since the product is homogeneous, a consumer will buy 
from the seller who quotes the lower full price, namely the mill price plus 
transportation cost. It is supposed that the transport is under the customer's 
control. We denote by c(x) the transportation cost function, i.e. the cost in 
terms of a given numéraire of shipping one unit of the product over a distance 
of length x. The transportation cost function is assumed continuous, increasing 
and convex in x, with c(0)= 0. Let Pl and P2 denote, respectively, the mill 
price of A and B and denote by m(pa, P2) the "marginal consumer" y E [0, 1] 
satisfying 

p~ + c(ly - al) =P2 + c([1 - b - y ] ) ;  

whenever it exists, it is unique, a If ra(p1, P 2 )  does not exist, then either, 

pl + « ( l y -  al)< p2 + « ( l l -  b - yl) , f o r a l l y E [ 0 , 1 ] ,  

o r ,  

P i + c ( l y - a l ) » p 2 + c ( l l - b - y l ) ,  for a l l y E [ 0 , 1 ] .  

1When c is linear, price ties may  occur over  a positive measure  subset  of [0, 1]. We assume that  
they are b roken  in favor  of the nearer  firm so that ra(p1, P2) equals  a or  1 - b. 
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In the first case, the market is segmented at m(pl ,  P2): customers located in 
[0, ra(p1, P2)] buy from seller A, those in ]m(pl ,  Pz), 1] from seller B. In the 
second case, the whole market is served by seller A at prices (Pl,  P2) while the 
converse holds in the third case. 

The situation described above gives rise to a two-person game with players A 
and B, strategies Pl E [0, ~[ and P2 Œ [0, ~[; the payoff function of seller A is 
given by 

%(P l ,  P2; a, b) = P l  

= P l  , 

ra(P1 ,P2) 

0 

= 0 ,  

f(z) d z ,  if m(Pl,  P2) exists, 

if, for all y C [0, 1], 

Pl + c ( [ y -  a[) 
< p2 + c(ll  - b - yl) , 

if, for all y E [0, 11, 

pl + c ( [ y -  al) 
> p2 + c(ll  - b - yl) . 

The payoff function of seller B is defined similarly and is, therefore, omitted 
throughout the chäpter. 

Now we consider the problem of existence of a noncooperative price 
equilibrium in pure strätegies for the class of inside location games described 
above, i.e. a pair of prices ( p ~ , p ~ )  such that ~ ( p * , p ~ . ; a , b ) >  
%(Pi ,  P~; a, b), Vpi/>0, i = 1, 2 and i # j .  The difficulties raised by this 
problem are best illustrated by the specific model initiälly considered by 
Hotelling. This author assumes a uniform customer density and linear trans- 
portation costs: 

c(x)=tx, 

where the scalar t > 0 denotes the transportation rate. 2 In this case, m(pa, P2) 
exists when a <~ m ( p  a, P2) ~ 1 -- b so that m ( p l ,  P2) must be the solution of 
the equation 

2In measure- theoret ic  terms,  the Hotelling model  can be interpreted as follows: the distribution 
of consumers  over space is cont inuous,  whereas  the distribution of t ransportat ion rates is atomic 
( there is a single a tom since t is the same across consumers) .  Garella and Martinez-Giralt  (1989) 
s tudy what we may  consider as the  "dua l"  model: the distribution of consumers  is atomic ( there 
are two a toms called cities) and the t ransportat ion rates are distributed continuously over a 
compact  interval. D e m a n d s  are always cont inuous,  but  profits are not  quasiconcave. A pure 
strategy price equil ibrium exists when cities differ enough  in size and when transportat ion rates 
range over a sufficiently wide interval. 
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p, + t( y - a) = P 2  + t ( 1 -  b - y ) ,  

tha t  is, 

m ( P l ,  P2) - P2 - P ~  + 1 - b + a 
2t 2 

I t  is easily seen  that  m(pl ,  P2) E [a, 1 - b] if and only if ]pl  --P21 ~< t(1 - a - 
b) .  F u r t h e r m o r e ,  since p~ < P 2  - t(1 - a - b)  implies  Pl + t] y - a ] < p 2  + 
t] 1 - b - y I for  all y E [0, 1], and P2 < Pl - t(1 - a - b)  implies P2 + t] 1 - b - 
Y ] < P l  + t l y - a ]  for  all y ,  in the l inear  case seller A ' s  payof f  funct ion 
b e c o m e s  

"/tl(P1, P2; a, b)  

_ ( 1 - b + a  

2 

= P l  , 

= 0 ~  

) 1 
P, + ~ ( P , P 2 - P ~ ) ,  ifl P, - P 2  ] ~< t(1- a -  b), 

i f p l  < P 2  - t(1 - a - b ) ,  

i f P l  > P 2  + t(1 -- a -- b ) .  

Thus ,  in the first case the m a r k e t  is split b e tween  the two firms; in the 
second ,  firm 1 cap tures  firm 2's h in ter land and serves the whole  ma rke t ,  finally, 
in the  third case,  firm 1 loses its h in ter land and has no demand .  T h e  profi t  
funct ion has,  the re fore ,  two discontinuit ies  at the prices where  the g roup  of  
buyers  loca ted  in e i ther  h in ter land is indifferent  be tween  the two sellers (see 

I/1 ( PI'  P2 ) 

I 

PI 
P2+f(1-Q-b) P2-f 1 - ~ - b )  

Figure 1. Firm l's profit function. 
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Figure 1 for an illustration). 3 Notice also that this function is never quasicon- 
cave (except when the two firms are located at the endpoints of the interval). 

The following proposition, proven in d'Aspremont et al. (1979), provides the 
necessary and sufficient conditions on the location parameters a and b guaran- 
teeing the existence of a price equilibrium (p~, PF) in pure strategies for the 
above garne. 

Proposition 1. For a + b = 1, the unique price equilibrium is given by p~ = 
p~ = O. For a + b < 1, there is a price equilibrium if and only if  

( a - b ]  2 
1+ 3 / ~ > ~ ( a + 2 b ) ,  

b - a)  2 
( 1 +  3 / ~> 4(b +2a)"  

Whenever it exists, the price equilibrium is unique. 

In words, there exists a price equilibrium when firms are located sufficiently 
far apart (in the symmetric case, a = b, the above two inequalities impose that 
the two firms are established outside the first and third quartiles). This is so 
because otherwise at least one firm has an incentive to undercut its rival's price 
in order to capture its hinterland: in Figure 1, the supremum of the linear piece 
of the profit function lies above the maximum of the quadratic piece. Hence 
the Hotelling example reveals that insufficient product differentiation may lead 
to price instability. 4 

The above discussion may suggest that the discontinuities in the payoff 
functions, observed under linear transportation costs, are responsible for the 
absence of equilibrium. A reasonable conjecture, then, would be that the 
assumption of strictly convex transportation cost functions- which guarantees 
the continuity of the payoff functions - would restore the existence property in 
the whole domain of (a, b) locations. This point of view is reinforced when the 
quadratic transportation cost case is examined, i.e. when c(x) is defined by 

3These discontinuities vanish when the characteristics space is n-dimensional, with n/> 2, and 
when a /p-metric is used, with p E ]1, ~[ [see Economides (1986)]. However,  even in the simple 
case of the Euclidean metric ( p  = 2), there is still a lack of quasiconcavity in the payoff functions. 
Economides  (1986) has shown that a price equilibrium exists in the special case of two firms 
located symmetrically on an axis passing through the center of a disk over which consumers are 
evenly distributed. 

4Economides (1984) shows that the introduction of a reservation price, i.e. the maximum full 
price that a customer is willing to pay to obtain the product, reduces the (a, b) segment of 
nonexistence but does not suppress it (except in the limit case of two separated monopolies). 
Shilony (1981) reaches similar conclusions by considering symmetric, single-peaked distributions of 
customers. 
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«(x) «x 2 = , s > O .  

It is readily verified that the payoff functions are then not only continuous but 
also quasiconcave. Accordingly, under quadratic transportation costs, there 
exists a price equilibrium in pure strategies wherever the locations a and bare.  
Furthermore, the pair of prices (p~, p~), defined by 

p~ = s ( 1 -  a -  b)( l  + a~3 b ) , 
)( b - a )  

p ~ = s ( 1 - a - b  1 + - ~ - -  , (1) 

is the unique equilibrium for fixed a and b. 
Unfortunately, as shown by the following example, even if strictly convex 

transportation cost functions imply the continuity of the payoff functions, they 
are not sufficient to imply the existence of an equilibrium for every location 
pair (a, b). Assume, indeed, that the transportation cost function is of the 
"linear-quadratic" type, i.e. 

C(X) = SX 2 "~- [X , S > 0 a n d  t > 0 .  

Anderson (1988) has shown that, wherever seller A's location, there is always a 
location for seller B such that no price equilibrium in pure strategies exists for 
the corresponding location pair. 

These few examples suffice to show that no general theorem for existence in 
pure strategies can be obtained for the location model. To date, the most 
general sufficient conditions to be imposed on customer density and transporta- 
tion cost functions have been derived by Champsaur and Rochet (1988). Let F 
be the cumulative distribution of customers over the unit interval and define 

z~[0.] L f(z) ~(z) ' 

13--= min [fr(z)  +2  l f ( z )  ] 
z<o, 11t f (z)  ~ 

Proposition 2. I f  c is three times continuously differentiable in an open interval 
of ~ including [0, 1] and if 

c"'(x) < [3 for all x ~ [0, 1] (2) 
« < «"(x--5 ' 

then there exists a price equilibrium in pure strategies. 

Clearly, condition (2) imposes severe restrictions on the transportation cost 
function c(x). 
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The standard game-theoretic solution to the nonexistence of a noncoopera- 
tive equilibrium in pure strategies is to resort to mixed strategies. When 
transportation costs are strictly convex, the payoff functions are continuous 
and, by the theorem of Glicksberg (1952), a price equilibrium in mixed 
strategies exists. When transportation costs are linear, the payoff functions are 
discontinuous, but the theorem of Dasgupta and Maskin (1986) applies and an 
equilibrium also exists. In this special case, Osborne and Pitchik (1987) show 
that for a subset of location pairs at which a pure strategy price equilibrium 
fails to exist, there is an equilibrium in which the firms randomize over two 
disjoint intervals; they show also that for any location pair any equilibrium in 
which the highest and lowest prices in the support of each firm's strategy are 
not too rar apart must take this form. Specifically, each firm chooses its price 
either from an interval just below a relatively high price, or from an interval 
just below the price that undercuts its rival's highest price. In view of the 
complexity of Osborne and Pitchik's analysis, characterizing the equilibrium in 
mixed strategies for more general models of spatial price competition seems to 
be a formidable task. 5'6 

2.1.2. The outside location game 

In the outside location game, firms are no longer established in the residential 
area, still represented by the interval [0, 1], but on the right-hand side of this 
interval at locations a and b E [1, +~[  with a ~< b. 

Let us denote again by m ( p l ,  P2) the customer y E [0, 1] satisfying 

Pl + c ( a -  y) = p2 + « ( Y -  b) , 

whenever firm A (resp. B) quotes price Pa (resp. P2). 
First, we consider the Hotelling case of a linear transportation cost function 

c(x) = tx. If Pl <P2,  the whole market is served by seller A. Clearly, such a 
situation generates a series of price cuts that result in a price tie with seller B 
quoting a zero price. We assume that price ties are broken in favor of the 
nearer firm. This is so because this firm can always price e-below the price 

5Another approach, which has considerable intuitive appeal, is to assume that the products sold 
by the firms are not homogeneous. As a result, consumers also take variables other than full price 
into account. Because of the (frequent) nonobservabitity of these variables, firms can at best 
determine the shopping behavior of a particular consumer up to a probability function. Describing 
the purchasing probabilities by the togit model [see, for example, McFadden (1984)], de Palma et 
al. (1986) show that a price equilibrium in pure strategies exists when products are sufficiently 
heterogeneous. 

6Gabszewicz and Garella (1986) give up the assumption that consumers are perfectly informed 
about firms' prices. Instead, they suppose that consumers have subjective probabilistic beliefs 
about these prices. Gabszewicz and Garella then show that a price equilibrium exists provided that 
the two firms lie sufficiently far apart. This is reminiscent of Proposition 1. 
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quoted by its rival. Then, it is straightforward that the unique price equilibrium 
in pure strategies obtains at the pair of prices (p~, PF) = ( t (b  - a) ,  0): any 
higher price Pl of seller A could be advantageously undercut by seller B, who 
would then attract all the customers. 

We now study the problem of existence of a price equilibrium in pure 
strategies for the linear-quadratic transportation cost case. The market bound- 
ary m ( p l ,  P2) easily obtains as the solution to the equation 

Pl  + s (a  - x) 2 + t(a - x )  = P2 + s (b  - x) 2 + t (b  - x )  , 

i.e. 

m ( p l  P 2 ) = P 2 - P l  + s ( b 2 -  az)  + t ( b - a )  
' 2 s (b  - a) 

It is readily verified that, given linear-quadratic costs, there exists a unique 
price equilibrium in pure strategies given by 

P * i = ( b - a )  S ( a + b + 2 ) + t  - - b ) - t  3 P ~ =  ( ó - a )  s(4 a 
' 3 , ( 3 )  

when t / s  < 4 - a - b,  and by 

p ~ = ( b - a ) [ s ( a + b - 2 ) + t ] ,  P F = 0 ,  (4) 

when t / s  > 4 - a - b [see Gabszewicz and Thisse (1986) for more details]. 
In contrast with the inside location garne, we see that for both linear and 

linear-quadratic cost functions, a price equilibrium exists for all location pairs 
(a, b) when firms are located outside the segment in which consumers are 
located. Consequently, it seems that more stability in noncooperative price 
behavior is to be expected when one of the two players is endowed with a strict 
exogenous advantage over the other one, as in the outside location game. The 
fact that, in this game, seller A's location is viewed as strictly better by all 
consumers than seller B's location, prevents the latter from using price 
strategies that would attract the whole market to him. This privilege is reserved 
for firm A. This asymmetry between sellers no longer exists when firms are 
located inside the consumers' area. In that case, both firms may use "undercut- 
ting" price strategies, leading possibly to price instability. In the product 
differentiation context, all of this suggests that m o r e  stabi l i ty  in pr ice  compe t i -  
t ion m a y  be e x p e c t e d  wi th  vert ical ly  than wi th  hor i zon ta l l y  d i f f e ren t ia ted  
p r o d u c t s .  

The foregoing analysis about the existence of a noncooperative price equilib- 
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rium is rather disappointing. Our inquiry has shown that, even in the simplest 
case of two firms and a uniform density of consumers located along the line, a 
price equilibrium in pure strategies may fail to exist for some reasonable 
transportation cost functions in the inside location garne. Furthermore, solving 
the price game by using mixed strategies proves to be very difficult from a 
technical standpoint. On the other hand, no counterexample has been found 
for the outside location garne (on the contrary, existence has been proved for 
the linear and linear-quadratic cost functions). Nevertheless, it is our feeling 
that no general results can be expected to hold in spatial price competition under 
mill pricing. 

2.2. Variable prices and locations 

2.2.1. The simultaneous game 

In the foregoing subsection, firms (players) were assumed to control their price 
strategy. Now we consider the more general case where firms are allowed to 
choose simultaneously both price and location. While in the above two garnes 
locations a and b were viewed as parameters in the payoff functions 7r 1 and ~'2, 
they are now considered, as well as prices p~ and P2, as strategic variables 
available to the players. Specifically, a strategy is a pair (Pl,  a) [resp. (P2, b)] 
for seller A (resp. seller B) with p~ E [0, ~[ and a E $1 = [0, 1] in the inside 
location garne or a E S~ = [1, ~[ in the outside location game (resp. P2 E [0, ~[ 
and b E S 2 ~ S~). The payoff function 771 in the simultaneous game is given by 
~-l((p~, a), (P2, b)) = ~'~(Pl, P2; a, b) with ~-~ as defined in Subsection 2.1; 
and similarly for 772. 

Il: is well known that, regardless of the transportation cost function c(x), no 
simultaneous price-location equilibrium in pure strategies can exist in the inside 
location game. To see this, assume that such an equilibrium 
[(PF, a*), (PF, b*)] exists. Clearly, at this equilibrium both firms must have 
strictly positive payoffs (profits), which implies that PF > 0 and PF > 0. Two 
cases may then arise. In the frs t  one, we have a* # 1 - b*. Without loss of 
generality, we may assume that seller B's payoffs exceed or equal seller A's 
payoffs. Then, firm A can increase its profits by locating at ä = 1 - b* and by 
charging a price t71 -P2- * - e, with E > 0 arbitrarily small. Indeed 

~'1((/71, ä) ,  (PF, b*)) > ~'I((PF, a*), (PF, b*)) ,  

since firm A now captures the whole market at price PF - e- Since we have 
assumed ~2((PF, a*), (PF, b*)) ~> ~'a((PF, a*), (PF, b*)), we get the desired 
contradiction. In the second case, a * =  1 -  b*. But then each player has an 
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incentive to undercut its competitor and, as in Bertrand, to capture the whole 
market,  again a contradiction. 7'8 

By contrast, in the outside location garne there always exists a simultaneous 
price-location equilibrium in pure strategies. Indeed, it is readily verified that 
a* = b* = 1 and PF - P2 = 0 is the unique equilibrium of the garne. Further- 
more, this solution is socially optimal. 

2.2.2. The sequential game 

We now turn to the alternative formulation in terms of a sequential garne 
introduced by Hotelling himself. There, price and location strategies are 
assumed to be played one at a time in a two-stage process: The choice about 
location is viewed as prior to the decision on price, so that locations are chosen 
in the first stage of the sequential garne while prices are decided in the second 
stage. Assuming that prices Pl and P2 are chosen at a noncooperative price 
equilibrium (in pure strategies) in the subgame consisting of the second stage, 
the corresponding equilibrium payoffs are well defined whenever this price 
equilibrium exists and is unique. Furthermore, they depend only upon the 
location choice made in the first stage. Accordingly these payoffs can be used 
as payoff functions in the first-stage garne in which strategies are locations a 
and b. 

We now proceed to a formal definition of a subgame-perfect equilibrium for 
this sequential game setting. A subgame-perfect price-location equilibrium is a 
pair of locations (a*, b * ) E S  l x  S 2 and a pair of price functions 
[p*l(a, b), p~(a, b)] such that 

(i) for any (a, b) @ S 1 x $2, ~ri[p*(a , b), p~(a, b); a, b]/> ~ [ p »  p*j(a, b); 
a, b], Vpi/> 0, i = 1, 2 and i ~ j, and 

-*ra* b*); a*, b*l/> ~r~[p~(a, b*), -*Ca* b*); a, b ' l ,  (ii) %[p~(a*,  b*), P2t , P 2 t  , 

Va E $1; and similarly for %. 
The concept of a subgame-perfect equilibrium captures the idea that, when 

firms choose their locations, they both anticipate the consequences of their 
choice on price competition. In particular, they are aware that this competition 
will be more severe if they locate close to each other, rather than far apart. 

7To cope with the non-existence of a simultaneous price-location equilibrium, Lerner and 
Singer (1937) have proposed modifying the concept of noncooperative equilibrium. It is assumed 
that firms, anticipating their competitors' reaction, do not consider strategies that would eliminate 
these competitors from the market. This amounts to restricting the strategy sets to prices and 
locations yielding positive payoffs for all players. In the case of linear transportation costs, such a 
"modified" simultaneous equilibrium does indeed exist under reasonable assumptions [see Eaton 
(1972), Novshek (1980), Kohlberg and Novshek (1982)]. However, a sufflcient departure from the 
linear case may invalidate equilibrium [see MacLeod (1985), Gabszewicz and Thisse (1986)]. 

SNote that a simultaneous price-location equilibrium can be shown to exist if the product is 
heterogeneous enough [see de Palma et al. (1985)]. 
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Unfortunately, this concept is operational only il, for any location choices by 
firms, there exists one, and only one, corresponding price equilibrium; other- 
wise, either payoffs would be undefined or multivalued. From Subsection 2.1 
we know how demanding these existence and, a fortiori, uniqueness conditions 
a re .  9,10 

To illustrate, let us first consider the inside location garne with c ( x ) =  sx 2. 
* a Then, we know that [p*l(a, b) ,  P2( , b)] exists and is unique for all pairs 

(a, b) E [0, 1] 2. Substituting pF(a,  b) and pF(a,  b) ,  given by (1), in 7r 1 and ~r» 
routine calculations show that regardless of the location of the other player, the 
payoffs of firm A decrease when a increases, whereas the payoffs of firm Bare  
a decreasing function of b. Consequently, each firm gains by moving away as 
rar as possible from its competitor. Hence, the equilibrium of the first stage is 
given by (0,0) and the resulting prices are p ~ ( 0 , 0 ) = p ~ ( 0 , 0 ) = s .  Clearly, 
these locations differ from the socially optimal locations that minimize total 
transportation costs, i.e. a = b = ¼.11 

It is also interesting to characterize the subgame-perfect price-location 
equilibrium in the case of an outside location garne with c ( x ) =  sx2+ tx 
(linear-quadratic transportation costs). For this case the existence of a unique 
price equilibrium has been established above, for any location pair (a, b). 

* a Furthermore, the corresponding equilibrium pair of prices [pF(a,  b) ,  P2( , b)] 
is given by (3) whenever t /s < 4 - a - b, and by (4) if t/s >1 4 - a - b. Clearly, 

* a b] of player B a r e  necessarily if 2s < t, the payoffs ~2[P~(a, b), P2( , b); a, 
* a b] of player A equal to zero, while the payoffs 7rl[p~(a, b) ,  P 2 ( ,  b ) ; a ,  

9An alternative approach is taken up by Anderson (1987). Within the original Hotelling model, 
he assumes that firms A and B enter sequentially and choose their prices following the rules of a 
Stackelberg garne. The outcome is such that the first firm to enter the market locates at the market 
center and the second close to orte of the market endpoints. The second firm to enter will prefer to 
be the price leader and the first one the price follower. It is worth noting that the introduction of 
space into a price duopoly allows one to endogenize the price leadership. However, it does not 
follow that this solution will be reached in a noncooperative setting. These profits must also be 
compared to the simultaneous move payoffs. 

1°Bester (1989) tackles the spatial competition problem in a completely different way. He 
assumes that prices are no longer set by firms hut determined by a noncooperative bargaining game 
between sellers and buyers. More precisely, the bargaining procedure is taken to be a modified 
version of Rubinstein's (1982) model in which an outside option (purchasing from a competitor) is 
introduced. Bester shows that there exists a unique perfect equilibrium which, in turn, leads to a 
unique price system (given firms' locations). Introducing these prices into the payoff functions, he 
then proves the existence of a noncooperative Nash equilibrium in location. At this solution, firms 
locate symmetrically but not coincidentally. 

11In the case of linear transportation costs, Osborne and Pitchick's (1987) calculations suggest 
strongly that there is a subgame-perfect equilibrium in which the firms locate symmetrically inside 
the first and third quartiles, i.e. in the region when they randomize their pricing decision. On the 
other hand, when the space is given by a circle, Kats (1989) proves that firms choose to set up in 
the subregion for which a price equilibrium in pure strategies exists. This suggests that results 
about the randomization of pricing are very sensitive to the particular specification of the location 
space. 
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decreases when a increases, whatever b E [1, ~[. In consequence, for any b in 
this interval, seller A locates at a* = 1. By contrast, when 2s > t, seller B can 
always choose a location b in [1, ~[ so as to verify the condition t/s < 4 - a - b, 
guaranteeing himself strictly positive payoffs. Furthermore,  seller A's payoffs 
still decrease with a for any b in [1, ~[, so that seller A still locates at a* = 1. 
The corresponding value of b which maximizes seller B's payoffs then obtains 
from the first-order condition 

d 
* 1  db ~r2[P~(l' b), P2(  , b); 1, bl =0, 

i.e. b* = (5s - t ) /3s  > 1 since 2s > t. Hence,  if 2s > t, the equilibrium locations 
are unique and such that a* = 1 and b* = (5s - t ) /3s .  

The equilibrium analysis of games with both prices and locations as strategic 
variables is almost as disappointing as the approach with variable prices but 
parametric locations. For inside location games (horizontal product differentia- 
tion), simultaneous equilibrium never exists; on t h e  other hand, for outside 
location garnes (vertical product differentiation), such an equilibrium always 
exists. The existence of a subgame-perfect equilibrium relies heavily on the 
existence and uniqueness of a price equilibrium in second-stage subgames; 
these conditions are hardly met for inside location garnes. Hence it appears that 
outside games have more stability than inside garnes. Furthermore,  the sequen- 
tial game approach sheds some light on an important issue in the economics of 
imperfect competition: Do firms selling substitute products prefer to "copy"  
each other  when selecting their products or, on the contrary, do they differen- 
tiate them in some optimal manner? It was Hotelling's belief that "buyers are 
confronted everywhere with an excessive sameness" [Hotelling (1929, p. 547)], 
a conjecture which has come to be known in the literature as the "Principle of 
Minimum Differentiation".  However,  we must conclude from out analysis that 
both in the inside and outside location games firrns tend to relax price 
competition at the subgame perfect price-location equilibrium by locating apart 
f r o m  each other. 12 

3. Location under discriminatory price competition 

3.1. Variable prices and pararnetric locations 

From now on we limit ourselves to the inside location garne. 
Let  us consider a model similar to the one described in Subsection 2.1.1, but 

12See d'Aspremont et al. (1983) for a general argument. However, firms may want to 
agglomerate when the product is sufficiently heterogeneous [see de Palma et al. (1985)]. 
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in which firms are no longer constrained to seil at the same mill prices. Instead, 
we suppose that firms deliver the product to the customers and can, therefore, 
exercise price discrimination. Since firms observe the customer's locations, they 
can charge location-specific prices. In general, the difference between delivered 
prices quoted by the same firm at two distinct locations does not equal the 
transportation cost between these points. Thus, firms price discriminate, setting 
different mill prices at the firms' doof. As in Hotelling, we also assume that 
transportation costs are linear in distance. 

Given sellers A and B located respectively at distances a and b from the 
extremities of the segment [0, 1], a strategy for seller A is a price schedule p~(.) 
t ha t  specifies for each location y E [0, 1] the delivered price at which A is willing 
to seil its product to the customers at y. Formally, we suppose that Pl(') 
belongs to the class ~~ of measurable functions defined over [0, 1] which satisfy 
a.e. the inequality Pl(Y) ~> tl a - y 1. If this latter condition were not verified, 
then seller A could do at least as weil, for any given price of B at y, by pricing 
at cost tl Y - a 1. Similarly, a strategy for seller B is a measurable function P2(') 
defined on [0, 1] for which p2(y ) t> tl 1 - b - y ] holds a.e. We denote by~õ2 the 
strategy set of seller B. 13 

Since the product is homogeneous, customers buy from the seller quoting the 
lower delivered price. In the event of a price tie, we suppose that customers 
choose to buy from the nearer firm. This can be justified by the fact that this 
firm can always price E-below its rival. When customers are equidistant from 
both firms, any allocation of the local demand is acceptable. Indeed, as will be 
seen, in equilibrium no seller makes positive profit at such a point. Hence, the 
payoff function of seller A is 

"n'l[Pl('), P2('); a, b] = f [Pl(Y) - t ] y  - all dy 
M1 

where M~ = {yE[O,  11; P,(Y)<P2(Y) or (pl (y)=p2(y)  and l y - a l < l l -  
b - Yl)}- 

A noncooperative price schedule equilibrium in pure strategies of the above 
game is a pair [PF(') ,  P~(')] of price schedules such that 

~ [ p * ( ' ) ,  pT('); a, bl ~> ~r~[p~(-), p~(.); a, b] ,  Vp,(.) E ~~, i = 1,2 

and i ¢ j .  

a3This assumption is far from being innocuous. Indeed, allowing the firms to use dominated 
strategies, i.e. firms can charge delivered prices below unit cost over a non-negligible set of 
locations, yields additional price equilibria; see, for example, Thisse and Vives (1992). 
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Since transportation costs to a point are unaffected by transport to other 
points and since marginal production costs are constant (zero), there is a 
separate Bertrand game at every point y. (Of course, arbitrage could link 
"local" markets through possible resales among consumers located at different 
points. However, we will see that arbitrage is not binding in equilibrium.) A 
standard Bertrand-like argument then runs as follows. Assume that for custom- 
ers at y, A is the nearer firm. Despite the assumption of zero marginal 
production costs, seller A has a (transport) cost advantage which allows him to 
undercut any price set by seller B. The price undercutting process will stop 
when B can no longer reduce its price, i.e. when price is equal to t 11 - b - y 1, 
the transportation cost incurred by the second-nearer firm. Returning to the 
allocation rule introduced above, customers at y buy from the nearer firm, i.e. 
seller A. The set of customers equidistant from sellers A and B has a zero 
measure provided only that the two firms are not coincidentally located 
(a ~ 1 - b). Thus, we have: 

Proposition 3. There exists a unique price schedule equilibrium; it is given by 

PF(Y) = P~(Y) = max{t I y - a [, t I 1 - b - y I} 

for almost all y E [0, 1]. 

It is readily verified that the market is segmented at the point where 
customers are equidistant from both sellers: m - - 1 ( 1 -  b + a). Furthermore, 
arbitrage is never profitable since the difference between two delivered prices 
is smaller than or equal to the corresponding transportation cost. This equilib- 
rium was first identified by Hoover (1937) and formally investigated by Lederer 
and Hurter  (1986). 

Two remarks are in order. First, Proposition 3 guarantees the existence of an 
equilibrium for any location pair (a, b). This is to be contrasted with the mill 
pricing case where an equilibrium exists only when sellers A and B are 
sufficiently rar apart (see Proposition 1). 14 Second, the existence property is 
general and extends to the cases of: (i) multi-dimensional space; (ii) non- 
uniform or atomic distributions of customers; (iii) continuous, decreasing and 
location-specific demand functions; and (iv) increasing and firm-specific trans- 
portation cost functions in distance [see Thisse and Vives (1988)]. Essentially, 
the argument is similar to that used in the above example. But p* (y) may now 

I4Kats (1987) considers price discrimination with rn tiers in which each firm charges the same 
mill price per tier. When in the first stage a firm chooses m mill prices and, in the second stage, m 
scalars describing the size of each tier, he shows that m/> 2 is already sufficient to restore existence. 
Furthermore, when m--*~, the m tier equilibrium converges to the equilibrium identified in 
Proposition 3. See also Kats (1990) for further developrnents. 
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differ from (6), thus reflecting the properties of the local demand and the 
sellers' costs. The key assumptions are the constant marginal production costs 
and constant returns w.r.t, the volume hauled. 

3.2. Variable prices and locations 

We concentrate on the sequential equilibria only. Because of the lack of space, 
we will limit ourselves to the inside location game. 

Consider the model described in Subsection 3.1. A diagrammatic argument 
will be sufficient to prove the existence of a location equilibrium. Assume first 
that seller B, located at distance b from the right endpoint of the unit interval, 
is the only firm on the market. He then supplies all the customers and the 
corresponding total transport costs are given by the area of the triangles BCO 
and BD1 in Figure 2. Now let seller A be located at distance a from the left 
endpoint. Given the resulting equilibrium price schedules (see Proposition 3), 
seller A supplies the customers located in [0, rfi] and receives a payoff equal to 
the area of the quadrilateral shaded horizontally. Then, it is readily verified 
that this area is precisely the difference between the total transportation costs 
borne by seller B when he is alone on the market and the total transportation 
costs borne by sellers A and B when they are both on the market. Hence, in 
order to maximize his profits, A must choose to locate at a point generating the 
largest decrease in total transportation costs. Consequently, if both firms locate 

i I 

i I 
J I 

c L  P; 
J\~~,, Y S, 0 
i I 

I I 

I 
0 «=A ~ 1-b=B 1 

Figure 2. Diagrammatic determination of the best reply location. 
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at the transportation cost-minimizing points, i.e. a = b = ¼, no firm can 
increase its profits by unilaterally changing its location. Moreover, it is easily 
checked that any other pair of locations is not an equilibrium. Thus, we have: 

Proposition 4. The socially optimal location pair & the equilibrium of  the 
first-stage garne. 

The above argument, developed formally by Lederer and Hurter (1986), can 
be generalized to the case of: (i) multidimensional space; (ii) nonuniform or 
atomic distributions of customers; and (iii) increasing and firm-specific trans- 
portation cost functions. 15 The critical assumptions for the proof turn out to be 
the constant marginal production and transportation costs and the (perfectly) 
inelastic demand. For example, Gupta (1991) shows that increasing marginal 
production cost induces firms to choose locations outside the first and third 
quartiles, while Hamilton et al. (1989) demonstrate that using price-sensitive 
local demands leads firms to locate inside the quartiles. 

The conclusions of the analysis of competition under discriminatory pricing 
are more encouraging than those derived under mill pricing. There exists a 
price schedule equilibrium for a wide elass of problems. The fact that each firm 
has more flexibility in its response to its rivals helps in restoring existence. 16 To 
gain the customers at one point, a firm has only to change its local price. By 
contrast, under mill pricing a price cut affects the whole set of the firm's 
customers, thus generating more potential instability in the competitive pro- 
cess. Furthermore, the existence of a subgame-perfect price schedule-location 
equilibrium has been established for a significant class of problems. In particu- 
lar, provided that firms have access to the same transportation technology, they 
never locate coincidentally in equilibrium. The reason is identical to that found 
in the mill pricing case: firms want to avoid the damage of price competition by 
separating from each other in space. 

4. Location under nonprice competition 

In some industries firms do not exert any control over their price because of 
either cartel agreements or price regulation by public authorities. Hence, 
competition among firms must take alternative forms. In particular, firms may 

~SThe case of a heterogeneous product is dealt with by Anderson and de Palma (1988). 
16In some sense, price discrimination operates with respect to mill pricing as mixed strategies 

operate with respect to pure strategies by enlarging the space of strategies. 
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compete by choosing location in such a way that they obtain the largest 
possible sales (which amounts here to proft  maximization since prices are 
parametric and marginal production costs are zero). 17 The locational proces~ 
may imply that either all firms locate simultaneously (Subsection 4.1) or 
sequentially (Subsection 4.2). 

4.1. Simultaneous Iocations 

As in the previous sections, let us assume that customers are distributed 
uniformly over the segment [0, 1] and that each consumer buys exactly one unit 
of the product. Since the product is homogeneous, we know that each 
consumer wants to purchase from the firm with the lowest full price. In this 
section the assumption is made that the mill price is given and equal for all 
firms. Consequently, consumers will choose to patronize the nearest firm. 
(When several firms are equidistant from a customer, we assume that each has 
an equal probability to sell.) Finally, it is assumed that transport is under the 
customers' control and that the cost of carrying one unit of the product is a 
continuous and increasing function of the distance. 

In the present class of games, firms' strategies are given by locations only. 
Furthermore, it is readily verified that a firm's payoff is given by the measure 
of the set of consumers for whom this firm is the nearest one. (If several firms 
are located at the same point, they equally share the corresponding market 
segment.) To start with, let us consider the case of two firms. If firms A and B 
are located, respectively, at distances a and b from the extremities of [0, 1], 
their payoffs are given by 

l + a - b  1 - a + b  
Sl(a, b) - 2 and S2(a, b ) -  2 ' 

i f a ß b  and a < l - b ,  

Sl(a, b) : S2(a, b ) =  ½ , i f a : b .  

Clearly, the payoff functions exhibit a discontinuity when the two firms cross 
each other outside the market center. 

Interestingly, in spite of the discontinuity of the payoffs, a single equilibrium 
can be shown to exist. Indeed, let firm 1, say, be located outside the center. In 
this case there is no location where firm 2 can maximize its sales since firm 2's 

17Hotelling has suggested reinterpreting that model to explain the choice of political platforms in 
party competition, when parties aim at maximizing their constituency. This idea has been 
elaborated by Downs (1957) and developed further by many others. A recent survey of this 
literature is provided by Enelow and Hinich (1984). 
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sales exhibit a downward discontinuity at firm l ' s  location where the former  
approaches  the latter on the larger side of the market .  This prevents any pair 
of noncentral  locations to be an equilibrium. Assume now that both firms are 
placed at the center. Then,  each of them gets half of the market  and any 
unilateral move of a firm away from the center leads to a decrease in its sales. 
In other  words, the clustering o f  the two firms at the market center is the only 
location equilibrium in pure strategies. 

The case of n firms, with n I>3, has been studied by Lerner  and Singer 
(1937) and, more  recently, by Eaton and Lipsey (1975) and Denzau et al. 
(1985). 

For  n = 3, no location equilibrium exists. The argument  runs as follows. 
Assume that an equilibrium exists where the three firms are separated.  Then 
the two peripheral  firms have an incentive to sandwich the interior firm which 
finds itself with an infinitesimal volume of sales. As a result, this firm wants to 
leapfrog one of its rivals in order  to obtain a positive marke t  share, thus 
generating instability. Suppose, now, that two firms are clustered and the third 
isolated. Then the latter can increase its sales by selecting a location hext to the 
clustering. Finally, if the three firms are agglomerated,  each one gets one-third 
of the market .  By choosing a location close to the clustering, any firm can gain 
a larger volume of sales. 

Somewhat  surprisingly, existence is restored for n/> 4. Let  us briefly describe 
the main results [see Ea ton  and Lipsey (1975) and Denzau  et al. (1985) for 
more  details]. When n = 4, there exists a unique equilibrium for which two 
firms are located at the first quartile and the two others at the third one. For  
n = 5, the equilibrium is unique and such that two firms are located at the first 
sextile, two others at the fifth one, and one firm is isolated at the marke t  
center. If  n i> 6, there exists continuum of equilibrium configurations, charac- 
terized as follows: 

(i) no more  that two firms are at the same location; 
(ii) peripheral  firms are paired with their neighbors; 

(iii) paired firms have equal sales; and 
(iv) isolated firms have sales which are at least as large as those of  paired 

firms but not more  than twice as great. 18 
At  first glance it seems that  we have obtained for the inside location game 

more  positive results than those derived in Section 2. However ,  as noticed by 
Ea ton  and Lipsey (1975), they are not very robust to the specification of the 
model .  In particular, they turn out to be very sensitive to the assumption of a 

tSOne conclusion of the foregoing analysis is that Hotelling's Principle of Minimum Differentia- 
tion is valid only for n = 2. Nevertheless, de Palma et al. (1985) show that the Principle holds for n 
firms when the products are heterogeneous enough. 
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uniform customer distribution. To show this, let us assume that consumers are 
continuously distributed over [0, 1] according to the cumulative function F(x). 
Then, in the two-firm case, we have: 

Proposition 5. If  n = 2, there exists a unique location equilibrium in pure 
strategies for which the two firms are located at the median of the cumulative 
function F. 

In contrast, there are no equilibria in pure strategies when n ~> 3 and when 
the customer density is strictly convex or strictly concave, however close it is to 
the uniform one. This has led Osborne and Pitchik (1986) to investigate the 
existence problem for arbitrary distributions by resorting to mixed strategies. 
Here also, the Dasgupta-Maskin theorem applies and a location equilibrium in 
mixed strategies does exist. Osborne and Pitchik then show that, for n i> 3, the 
game has a symmetric equilibrium ( M , . . . ,  M),  where M is the equilibrium 
mixed strategy. As observed by the authors themselves, an explicit characteri- 
zation of M appears to be impossible. Yet, when n becomes large, M 
approaches the customer distribution F. In this case, one can say that firm's 
location choices mirror the customer distribution. 

Finally, returning to the three-firm case with a uniform distribution, Shaked 
(1982) has shown that firms randomize uniformly over [¼, 3], which suggests 
some tendency towards agglomeration. Osborne and Pitchik have identified an 
asymmetric equilibrium for the same problem in which two firms randomize, 
putting most weight near the first and third quartiles, while the third firm 
locates at the market center with probability one. 19'2° 

19palfrey (1984) has studied an interesting garne in which two established firms compete  in 
location to maximize sales but,  at the same time, strive to reduce the market  share of an entrant .  
More  specifically, the incumbents  are engaged in a noncooperat ive Nash game with each other,  
whereas  both  are Stackelberg leaders with respect to the entrant  who behaves  like the follower. 
The  result is that  the incumbents  choose sharply differentiated, but  no (ex t r eme ,  locations (in the 
special case of a uniform distribution, they set up at the first and third quartiles). The  third firm 
always gets less than the two others.  

2°In contrast  to the s tandard assumption of a fixed, given distribution of consumers ,  Fujita and 
Thisse (1986) introduce the possibility of consumers '  relocation in response to firms' location 
decisions. Thus ,  the  spatial distribution of consumers  is treated as endogenous, and a land market is 
introduced on which consumers  compete  for land use. The garne can be described as follows. 
Given a configuration of firms, consumers  choose their location at the corresponding residential 
equil ibrium, which is of  the competitive type. With respect to firms, consumers  are the followers of  
a Stackelberg garne in which firms are the leaders. Finally, firms choose their location at the Nash 
equil ibrium of a noncooperat ive garne the players of  which are the firms. The results obtained 
within this more  general  f ramework prove to be very different from the s tandard ones.  For 
example ,  in the two- and three-firm case, the optimal configuration can be sustained as a location 
equil ibrium if the transport  costs are high enough or if the amount  of vacant  land is large enough.  
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4.2. Sequential locations 

In practice, it is probably quite realistic to think of firms entering the market 
sequentially according to some dynamic process. If firms are perfectly mobile, 
then the problem associated with the entry of a new firm is equivalent to the 
one treated in Subsection 4.1 since the incumbents can freely make new 
location decisions. However, one orten observes that location decisions are not 
easily modified. At  the limit, they can be considered as irrevocable. 

When entry is sequential and when location decisions are made once and for 
all, it seems reasonable to expect that an entrant also anticipates subsequent 
entry by future competitors. Accordingly, at each stage of the entry process the 
entrant taust consider as given the locations of firms entered at earlier stages, 
but can treat the locations of firms entering at later stages as conditional upon 
his own choice. In other words, the entrant is a follower with respect to the 
incumbents, and a leader with respect to future competitors. The location 
chosen by each firm is then obtained by backward induction from the optimal 
solution of the location problem faced by the ultimate entrant, to the firm 
itself. This is the essence of the solution concept proposed by Prescott and 
Visscher (1977). 

To illustrate, assume a uniform distribution of consumers along [0, 1]. For 
n = 2, the two firms locate at the market center as in the above. When n = 3, 
we have seen that no pure strategy equilibrium exists in the case of simulta- 
neous choice of locations but an equilibrium with foresighted sequential entry 
does. Indeed, it can be shown that the first firm locates at 1 (or at 3), the 
second at 3 (or at 1 ) and the third anywhere between them)  1 For larger values 
of n, characterizing the equilibrium becomes very cumbersome (see, however, 
Prescott and Visscher for such a characterization when the number of potential 
entrants is infinite). 22 

5. Concluding remarks 

Spatial competition is an expanding field lying at the interface of game theory, 
economics, and regional science. It is still in its infancy but attracts more and 
more scholars' interest because the competitive location problem emerges as a 
prototype of many economic situations involving interacting decision-makers. 

21See Dewatripont (1987) for a possible selection where the third firm uses its indifference 
optimality in order to influence the other two firrns' location choice. 

22Although the sequential location models discussed here have been developed in the case of 
parametric prices, the approach can be extended to deal with price competition too [see, for 
example, Neven (1987)]. 
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In this chapter we have restricted ourselves to the most game-theoretic 
elements of location theory. In so doing, we hope to have conveyed the 
message that space can be used as a "label" to deal with various problems 
encountered in industrial organization. The situations considered in this chap- 
ter do not exhaust the list of possible applications in that domain. Such a list 
would include intertemporal price discrimination and the supply of storage, 
competition between multiproduct firms, the incentive to innovate for im- 
perfectly informed firms, the techniques of vertical restraints, the role of 
advertising, and incomplete markets due to spatial trading frictions. Most 
probably, Hotelling was not aware that garne theory would so successfully 
promote the ingenious idea he had in 1929. 
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1. Introduction 

In the 1980s the literature of economics and law concerning industry structure 
bloomed with articles on strategic aspects of entry deterrence and competition 
for market shares. These articles criticized and amended theories that incom- 
pletely or inconsistently accounted for strategic behavior. The aftermath is that 
game-theoretic models and methods are standard tools of the subjec t -  al- 
though not always to the satisfaction of those concerned with empirical and 
policy issues; cf. Fisher (1989) for a critique and Shapiro (1989) for a rebuttal. 

This chapter reviews briefly the popular formulations of the era and some 
interesting results, but without substantive discussion of economic and legal 
issues. The standard examination of the issues is Scherer (1980) and game- 
theoretic texts are Tirole (1988) and Fudenberg and Tirole (1991); see also 
Salop (1981). Issue-oriented expositions are the chapters by Gilbert (1989ä) 
and Ordover and Saloner (1989) in The Handbook of lndustrial Organization. 
Others emphasizing game-theoretic aspects are Wilson (1985, 1989a, 1989b), 
Fudenberg and Tirole (1986c), Milgrom (1987), Milgrom and Roberts 
(1987, 1990), Roberts (1987), Gilbert (1989b) and Fudenberg (1990). The 
combined length of these surveys matches the original articles, so this chapter 
collects many models into a few categories and focuses on the insights offered 
by game-theoretic approaches. 

The motives for these studies are the presumptions, first, that for an 
incumbent (unregulated) firm one path to profits is to acquire or maintain 
monopoly power, which requires exclusion of entrants and expulsion, absorp- 
tion, intimidation, or cartelization of competitors; and second, that monopoly 
power has adverse effects on efficiency and distribution, possibly justifying 
government intervention via antitrust and other legal measures. We examine 
here only the possibilities to exclude or expel entrants. 

A single issue motivates most game-theoretic studies: when could an incum- 
bent profitably deter entry or survival in a market via a strategy that is 
credible-  in the sense that it is part of an equilibrium satisfying selection 
criteria that exclude incredible threats of dire consequences? This issue arises 
because non-equilibrium theories offen presume implicitty that deterrence is 
easy or impossible. To address the matter of credibility, all studies assume 
some form of perfection as the equilibrium selection criterion: subgame 
perfection, sequential equilibrium, etc. in increasing selectivity. The models 
fall into three categories. 
• Preemption. These models explain how a firm claims and preserves ä monop- 

oly position. The incumbent obtains a dominant position by arriving first in a 
natural monopoly; or more generally, by early investments in research and 
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product design, or durable equipment and other cost reduction. The hallmark 
is commitment, in the form of (usually costly) actions that irreversibly 
strengthen the incumbent's options to exclude competitors. 

• S ignal ing .  These models explain how an incumbent firm reliably conveys 
information that discourages unprofitable entry or survival of competitors. 
They indicate that an incumbent's behavior can be affected by private 
information about costs or demand either prior to entry (limit pricing) or 
afterwards (attrition). The hallmark is credible communication, in the form of 
others' inferences from observations of costly actions. 

• Predat ion .  These models explain how an incumbent firm profits from battling 
a current entrant to derer subsequent potential entrants. In these models, a 
"predatory" price war advertises that later entrants might also meet aggres- 
sive responses; its cost is an investment whose payoff is intimidation of 
subsequent entrants. The hallmark is reputation: the incumbent battles to 
maintain other's perception of its readiness to fight entry. 

Most models of preemption do not involve private information; they focus 
exclusively on means of commitment. Signaling and predation models usually 
require private information, but the effects are opposite. Signaling models 
typically produce "separating" equilibria in which observations of the incum- 
bent's actions allow immediate inferences by entrants; in contrast, predation 
models produce "pooling" equilibria (or separating equilibria that unravel 
slowly) in which inferences by entrants are prevented or delayed. 1 

These three categories are described in the following sections. We avoid 
mathematical exposition of the preemption models but specify some signaling 
and predation models. As mentioned, all models assume some form of 
perfection. 

2. Preemption 

A standard example of preemption studied by Eaton and Lipsey (1977), 
Schmalansee (1978) and Bonanno (1987), is an incumbent's strategy of offer- 
ing a large product line positioned to leave no profitable niche for an entrant. 
A critique by Judd (1985) observes, however, that if the incumbent can 
withdraw products cheaply, then an entrant is motivated to introduce a product 
by anticipating the incumbent's incentive to withdraw close substitutes in order 
to avoid depressed prices for its other products. 

~The distinction between signaling models and those predation models based on reputational 
effects is admittedly tenuous, as for example in the cases that a signaling model has a pooling 
equilibrium or an attrition model unravels slowly. 
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A second example invokes switching costs incurred by customers, which if 
large might derer entry. Klemperer (1987a, 1987b) uses a two-period model, 
and in Klemperer (1989) a four-period model, to study price wars to capture 
customers: monopoly power over customers provides later profits that can be 
substantially dissipated in the initial competition to acquire t h e m -  possibly 
with the motive of excluding opportunities for a later entrant. Farrell and 
Shapiro (1988) consider an infinite-horizon example with overlapping genera- 
tions of myopic customers who live two periods; two firms alternate roles in 
naming prices sequentially. The net result is that the firms rotate: each captures 
periodically all the customers and then profits from them in the interim until 
they expire and it re-enters the market to capture another cohort. However, 
these conclusions are altered substantially by Beggs and Klemperer (1992) in 
an infinite-horizon model with continual arrival of new (non-myopic) customers 
having diverse tastes, continual attrition of old customers, and two firms with 
differentiated products. For a class of Markovian strategies, price wars occur 
initially when both firms have few captive customers, but when the population 
is stationary (as in an established market) the competitive process converges 
monotonically over time to a stationary configuration of prices and market 
shares. In particular, an incumbent's monopoly can be invaded by an entrant 
who eventually achieves a large share. This model casts doubt on interpreting 
switching costs as barriers to entry in stable markets: switching costs induce an 
incumbent to price high to exploit its captive market, enabling an entrant to 
capture new arrivals at lower but still profitable prices. 

This is an instance of the general effect that [in the colorful terminology of 
Fudenberg and Tirole (1986c)] a "fat cat" incumbent with a large stock of 
"goodwill" with customers (due to switching costs or perhaps advertising) 
prefers to exploit its existing stock rather than countering an entrant. The 
incumbent may choose its prior investment in goodwill to take this effect into 
account, either investing in goodwill and conceding entry, or not investing and 
deterring entry. 

Farrell and Saloner (1986) illustrate that switching costs can have appreci- 
able effects in situations with growing demand affected by network exter- 
nalities; that is, each customer's valuation of a product grows with the number 
of others adopting the product. In this case an incumbent can profit from 
aggressive pricing to prevent entry, because the losses are recouped later as 
profits from more numerous captive customers, especially if the prevention of 
entry encourages standardization on the incumbent's product and thereby 
lessens subsequent risks of entry. 

On the supply side, Bernheim (1984) studies a model in which incumbents 
expend resources (e.g., advertising) to raise an entrant's sunk costs of entry; cf. 
Salop and Scheffman (1983, 1987) and Krattenmaker and Salop (1986, 1987) 
for an elaboration of the basic concept of "raising rivals' costs" as a competi- 
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strategy in other contexts than entry deterrence. 2 From each initial configura- 
tion, entry proceeds to the next larger equilibrium number of firms. He notes 
that official measures designed to facilitate entry can have ambiguous effects 
because intermediate entrants may be deterred by prospects of numerous 
arrivals later. Waldman (1987) re-analyzes this model allowing for uncertainty 
about the magnitude of the sunk cost incurred by entrants; in this case, entry 
deterrence is muted by each incumbent's incentive to "free ride" on others' 
entry-deterring actions. This result is not general: he shows also that an 
analogous variant of a model in Gilbert and Vives (1986) retains the opposite 
property that there is no free-rider effect. 

Another example, studied by Ordover, Saloner and Salop (1990), refers to 
"vertical foreclosure". In the simplest case, one of two competing firms 
integrates vertically with one of two suppliers of inputs, enabling the remaining 
supplier to raise prices to the integrated firm's downstream competitor, thereby 
imposing a disadvantage in the market for final products. The authors examine 
a four-stage game, including an initial stage at which the two downstream firms 
bid to acquire one upstream supplier, and a later opportunity for the losing 
bidder to acquire the other supplier. Particular assumptions are used but the 
main conclusion is that foreclosure occurs if the residual supplier's gain exceeds 
the loss suffered by the unintegrated downstream firm. This circumstance 
precludes a successful offer from the latter to merge and thereby counter its 
competitor's vertical integration. Strategic complements [Bulow, Geanakoplos 
and Klemperer (1985a)], in the form of Bertrand price competition at both 
levels, implies this condition and therefore also implies that foreclosure occurs; 
but it is false in the case of strategic substitutes. As usually modeled, Cournot 
quantity competition implies strategic substitutes, but foreclosure can still 
occur in a duopoly. The particular forms of pricing and contracting (including 
commitment to exclusive dealing by the integrated firm) assumed in this model 
are relaxed in the more elaborate analysis by Hart and Tirole (1990) allowing 
arbitrary contractual arrangements. 

Vertical integration is a particular instance of long-term contracting between 
a seller and a buyer, which has been studied by Aghion and Bolton (1987) and 
Rasmusen, Ramseyer and Wiley (1991) in the context of entry deterrence. 
They observe that an incumbent seller and buyer can use an exclusive-dealing 
contract to exercise their joint monopoly power over an entrant: penalties 
payable by the buyer to the seller if the buyer deals with the entrant are in 
effect an entry fee that extracts the profit the entrant might otherwise obtain. 

2Entry costs are sunk if they cannot be recovered by exit; e.g.,  investments in equipment are not 
sunk if there is a resale market, but they are sunk to the degree the equipment 's  usefulness is 
specific to the firm or the product. Coate and Kleit (1990) argue from an analysis of two cases that 
the requirements of the theory of "raising rivals' costs" are rarely met in practice. See also Kleit 
and Coate (1991). 
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In particular, contractually created entry fees can prevent or delay (until 
expiration of the contract) entry by firms more efficient than the incumbent 
seller. 

In a natural monopoly the first firm to install ample (durable) capacity 
obtains incumbency and deters entrants on a similar scale, provided all 
economies of scale are captured. Several critiques and extensions of this view 
have been developed. Learning effects (i.e., production costs decline as 
cumulative output increases) can engender a race among initial rivals. An 
incumbent can benefit from raising its own opportunity cost of exit: the 
standard example is a railroad whose immovable durable tracks ensure that it 
would remain a formidable competitor against truck, barge, or air carriers 
whose capacity can be moved to other routes. Eaton and Lipsey (1980) note 
that if capacity has a finite lifetime, then the incumbent taust renew it 
prematurely to avoid preemptive investment by an entrant that would elimi- 
nate the incumbent's incentive to continue. 

Gelman and Salop (1983) observe that entry on a small scale can still be 
profitable: there exists a scale and price small enough that the incumbent 
prefers to sell the residual demand at the monopoly price rather than match the 
entrant's price. They observe further that the entrant can extort the incum- 
bent's profit by selling discount coupons that the incumbent has an incentive to 
honor if the discounted price exceeds its marginal cost. In the United States, 
the airlines' coupon war of the early 1980s is an evident example. 

Even in an oligopoly, incumbent firms have incentives to install more 
capacity (of alter the positioning of their product designs) when entry is 
possible; cf. Spence (1977, 1979), Dixit (1979, 1980), Eaton and Lipsey (1981), 
Ware (1984) and, for models with sequential entry, Prescott and Visscher 
(1977) 3, and Eaton and Ware (1987). Profitable entry is prevented by capacities 
(and product designs) that prevent an additional firm from recovering its sunk 
costs of entry and fixed costs of operation. Conceivably, extra unused capacity 
might be held in reserve for price wars against entrants, and indeed Bulow, 
Geanakoplos and Klemperer (1985b) provide an example in the case of 
strategic complements. However, in the case of strategic substitutes (the usual 
case when considering capacities as strategic variables) capacity is fully used for 
production, as demonstrated in the model of Eaton and Ware (1987). The 
Stackleberg model of Basu and Singh (1990), however, allows a role for an 
incumbent to use inventories strategically. 

The thrust of these models is to develop the proposition [e.g., Spence (1979) 
and Dixit (1980)] that incumbency provides an inherent advantage to move 
first to commit to irreversible investments in durable capacity that restrict the 

3An additional feature is added by Spence (1984): investments in capacity are fully appropriable 
by the firm but other cost-reducing investments in process and product design are not fully 
appropriable; moreover, if these spillover effects strengthen competitors, then each firm's incentive 
to make such investments is inhibited. 
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opportunities available to entrants. Ware (1984), and Arvan (1986) for models 
with incomplete information, show that this advantage is preserved even when 
the entrant has a subsequent opportunity to make a comparable commitment. 
Bagwell and Ramey (1990) examine this proposition in more detail in a model 
in which the incumbent has the option to avoid its fixed cost by shutting down 
when sharing the market is unprofitable; also see Maskin and Tirole (1988). 
They observe that the entrant can install capacity large enough to induce exit 
by the incumbent; indeed, to avoid this the incumbent restricts its capacity to 
curtail its fixed cost and thereby to sustain its profitability in a shared market. 
This argument invokes the logic of forward induction: in a subgame-perfect 
equilibrium that survives elimination of weakly dominated strategies, the 
incumbent either restricts its capacity to maintain viability after large-scale 
entry, or if fixed costs are too high, cedes the market to the entrant. This 
strategy is akin to the one in Gelman and Salop (1983), but applied to the 
incumbent rather than the entrant. 

When capacity can be incremented smoothly and firms have competing 
opportunities, an incumbent's profits might be dissipated in too-early preemp- 
tive investments to deter entrants. Gilbert and Harris (1984) study a garne of 
competition over the timing of increments, and identify a subgame-perfect 
equilibrium in which all profits are eliminated. 4 Similar conclusions are derived 
by Fudenberg and Tirole (1985) for the case of timing of adoptions of a 
cost-reducing innovation in a symmetric duopoly, 5 and this is extended to the 
asymmetric case of an incumbent and an entrant by Fudenberg and Tirole 
(1986c): if Bertrand competition prevails in the product market, then the 
incumbent adopts just before the entrant would, and thereby maintains its 
advantage at the cost of some dissipation of potential profit. This result is 
similar to the role of preemptive patenting in maintaining a monopolist's 
advantage, as analyzed by Gilbert and Newbery (1982). 

Examining an issue raised by Spence (1979), Fudenberg and Tirole (1983) 
suppose that firms build capacity smoothly at bounded rates over time, which 
allows multiple equilibria. In one equilibrium the firms accumulate capacity to 
reach the Cournot equilibrium (of perhaps a Stackleberg equilibrium if one has 
a head start) but in other equilibria they stop with smaller final capacities: each 
firm expands farther only if another does. Indeed, they can stop at the 
monopoly total capacity and split the profits. In this view, an incumbent may 
be interested less in exploiting its head start by racing to build capacity, than in 
an accommodation with an entrant to ensure that both refrain from large 
capacities. Continual arrival of new entrants may therefore be necessary to 
ensure socially efficient capacities. 

4Mills (1988) notes, however, that sufficiently lumpy capacity increments allow an incumbent 
with a first-mover advantage a substantial portion of the monopoly profit. 

5Three or more firrns yields different results. 
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Another example is a market without durable capacity but with high fixed 
costs; e.g., capacity is rented. Each period each active firm incurs a fixed cost 
so high that the market is a natural monopoly. Maskin and Tirole (1988) 
assume that an active firm is committed to its output level for two periods and 
two firms have alternating opportunities to choose whether to be active or not. 
In the symmetric equilibrium with Markovian strategies, the first firm (if the 
other is not active) chooses an output level large enough to deter entry by the 
other next period, and this continues indefinitely. In particular, suppose the 
profit of firm 1 in a period with outputs (ql,  q2) is ~-(ql, q2) and symmetrically 
for firm 2; also, the maximum monopoly profit (q2 = 0) covers the fixed cost c 
of one firm but not two. Then the optimal entry-deterring output is the 
minimum value of q for which 

6 
re(q, q) - c + ~ [~ - (q ,0 ) -  c]~<0, 

if the discount factor 3 is not too small. That is, if q is the optimal output and 
next period the other firm were to incur the fixed cost c enabling it to choose a 
positive output, then it too would choose q, therefore, this output must be 
sufficiently large to ensure that the present value of successful expulsion of the 
incumbent is not positive, if the period length is short (6 ~ 1), however, then 
such a market is easily "contestable" since the commitment period is neglig- 
ible; in particular, the entry-deterring output grows and the incumbent's profit 
shrinks as the period length is shortened. 

There can also be asymmetric Markovian equilibria if the fixed cost and the 
discount factor are large enough; e.g., the first firm merely uses its two-period 
reaction function and then the second never enters. And via the Folk 
Theorem, there are many symmetric subgame-perfect equilibria that are not 
Markovian and that yield higher profits. 

In general, ease of entry need not ensure low prices, due to the Folk 
Theorem. For instance, using a model of a market for a durable good, Ausubel 
and Deneckere (1987) observe that an incumbent monopolist can persist in 
charging nearly the monopoly price without incurring entry. The entrant is 
deterred from entering by the prospect of marginal-cost pricing thereafter, and 
the incumbent is deterred ffom offering lower prices by the prospect of entry 
and even lower prices thereafter that are still high enough to justify entry. The 
feature enabling this result is the Coase property of durable good pricing: 6 if 
the period length is short and marginal cost is constant, then in any subgame- 
perfect equilibrium with stationary strategies for the customers, the price of a 

6The Coase pr0perty is stated hefe for the case of a continuous demand function intersecting the 
seller's supply function; cf. Gül, Sonnenschein and Wilson (1986) for other technical assumptions. 
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monopolist (not threatened with entry) is close to marginal cost. As shown also 
by Gül (1987) in greater generality, this relatively unprofitable prospect can be 
used as a punishment to construct subgame-perfect equilibria of duopolies that 
sustain the incumbent's punishments required above. 

The overall theme of preemption models is that costly irreversible invest- 
ments that enhance incumbents' competitive strength (of burden entrants) 
provide genuine commitment that can deter entry. The models in the next 
sections, in contrast, suppose that incumbents cannot make commitments. 

3. Signaling 

Signaling models examine costly credible "communication" that selects the 
firms to enter or survive in a market. Typically some aspect of each firm's 
profitability is private information, such as its marginal or fixed cost. More- 
over, the only credible signal of a firm's competitive strength is the demonstra- 
tion itself, via endurance of lower profits longer than it would tolerate if its cost 
were higher. We mention two prominant examples. Among firms currently 
active in a market,  the battle for survival is modeled as a war of attrition. In 
the case of incumbents threatened with entry, their current prices signal costs 
or demand and thereby affect the potential entrant's decision about proceeding 
with entry. 

3.1.  A t t r i t ion  

Attrition models study markets with excess numbers and examine the process 
that selects survivors. The formulation of Fudenberg and Tirole (1986a, 1986c) 
is representative. Consider a symmetric market in which at each time t >~ 0 each 
of N firms i = 1 , . . . ,  N initially active in the market obtains net profit at the 
rate % ( t ) -  c; if it is one of n firms remaining active, and zero if it has 
irrevocably exited earlier. For instance, if i is the solve survivor when its last 
remaining competitor exits at time t, then its present value of continuation is, 
using n = 1, 

c e  

V n ( t  , Ci)  = 7"i'n(S ) -- eil C ds  

t 

when the interest rate is r. Suppose the profit functions % are monotone and 
continuous as functions of time, and uniformly decreasing in the number of 
active firms. Furthermore, the firms' fixed operating costs c i are privately 
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known, each drawn independently according to the differentiable distribution 
function F having an interval support including both extreme possibilities: the 
cost might be so high that the firm is unprofitable as a monopolist, or so low 
that it could forever profit as one of N firms. 7 

In the end-game between two firms (n =2),  firm i prefers at time t to 
continue in the duopoly if 

~'2(t) - «i + h(t)Vl(t, ci) ~ O, 

where h(t) is the hazard rate at which the other firm exits, leaving i with a 
perpetual monopoly. Representing each firm's strategy in a symmetric equilib- 
rium as the lowest cost C(t) inducing it to exit at time t if the other has not 
exited previously, this hazard rate is 

h(t) = [1 - F(C(t))]'/F(C(t)) , 

based on the inference that the other's cost is less than C(t) if it has not exited 
previously. An equilibrium requires, therefore, that the inequality above is 
actually an equality at c i = C(t). This condition yields a differential equation 
characterizing the equilibrium strategy; moreover, its boundary condition is 
given by the initial condition VI(0, C(0))= 0 indicating that a firm unable to 
profit as a monopolist exits immediately. If profits increase with time, then C(t) 
and %(0  may intersect at some time after which a duopoly is viable; hence, 
the actual strategy is to continue as long as one's cost is less than the greater of 
C(t) and ~r2(t ). If each firm is initiaUy viable as a monopolist, then the net 
result is that the higher-cost firm eventually exits; or if both have sufficiently 
low costs, then a duopoly persists foreover. 

The basic theory of attrition games is developed by Nalebuff and Riley 
(1985) and Riley (1980). Milgrom and Weber (1985) study the symmetric 
equilibria of symmetric attrition games in which, as above, each party has a 
privately known cost of delay that increases linearly with time. They provide an 
analysis in terms of distributional strategies; the hazard rate of exit is shown to 
decline with time; and mixed strategy equilibria are characterized, s Additional 
applications to markets with declining demand are discussed by Ghemawat and 
Nalebuff (1985, 1990) using models with complete information, and by Fish- 
man (1990) who includes an initial entry phase. One model supposes identical 
cost structures but firms differ in their capacities, which impose fixed costs in 

7As described by Fudenberg and Tirole (1986a), this support assumption ensures a unique 
equilibrium in the example below. 

*Section 4 describes an alternative version of attrition, called "chicken", derived from models of 
reputational effects, in which the hazard rate increases. See Ordover and Rubinstein (1986) for a 
related model in a different eontext. 
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proportion to capacity: the subgame-perfect equilibrium has larger firms exiting 
earlier. The second allows firms to shrink their capacities: again, larger firms 
contract earlier. 

3.2. Limit pricing 

Studies of limit pricing examine the incentives of incumbent firms to signal 
their private information about costs or demands to deter misguided entry. The 
motive is clearest in the case of an incumbent monopolist with a privately 
known marginal cost who anticipates that a potential entrant will enter if it 
perceives that its profits would exceed its privately known sunk cost of 
entering. Suppose that profits are lower for the entrant (and higher for the 
incumbent) if the incumbent's cost is lower, and lower for the incumbent after 
entry. Moreover, prior to entry the entrant can observe the price chosen by the 
incumbent but not its marginal cost. Suppose first that the incumbent antici- 
pates naive inferences by the entrant; for instance, the entrant infers that the 
marginal cost is the one for which the price is the myopically optimal monopoly 
price. Then the incumbent prefers to cut its price somewhat to reduce the 
entrant's assessment of its cost, and therefore to reduce the chance of entry. In 
reverse, suppose the incumbent anticipates sophisticated inferences by the 
entrant; then the incumbent cannot charge the higher myopically optimal 
monopoly price without inducing false hopes in the entrant and thereby 
encouraging entry. Thus, one anticipates an equilibrium in which the incum- 
bent shaves its price before entry: this provides an accurate signal to the 
entrant, who then enters only if the (correctly) anticipated profit exceeds its 
sunk cost. 

This logic is formalized in a model developed by Milgrom and Roberts 
(1982a). Knowing its marginal cost c, the incumbent chooses its pre-entry price 
p to maximize the expected present value of its pre-entry profit ~-(p, c) and 
post-entry profit %(c) with n = 1 or 2 firms: 

~'I(P, c )+  6 {'n-l(c ) -h(p) [7r l (c  ) - 7r2(c)1} , 

where h(p)  is the probability of entry. If P(c) is this optimal price, and 
supposing P is invertible (i.e., the equilibrium is separating, so the signal is 
"accurate"), then entry occurs if the entrant's sunk cost is less than its 
anticipated profit 7r2(~ ) based on the inferred cost ~ = p - l ( p ) .  Thus, if the 
entrant's sunk cost is drawn independently according to the distribution 
function F, then from the incumbent's perspective: 

h(p)  = F(~r2(P-l(p))) .  
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Combining this equilibrium condition with the previous one yields a differential 
equation that determines the incumbent's strategy. If there is an upper bound 
on the incumbent's cost, then the boundary condition is simply the requirement 
that for this highest cost the price is the myopically optimal price: this reflects 
the usual property of separating signaling equilibria that (in this model) the 
highest cost incumbent has no fear of being mistaken as having a higher cost. 

Milgrom and Roberts actually assume that the entrant's private information 
consists of its own marginal cost, which is distributed independently of the 
incumbent's marginal cost, but the analysis is similar. Regularity conditions 
that ensure the existence of a separating equilibrium are provided by Milgrom 
and Roberts. In some cases a unique separating equilibria is obtained by 
eliminating weakly dominated strategies, but usually partial pooling and full 
pooling equilibria exist too. Mailath (1987) establishes general results about 
signaling games that, in the context of the Milgrom-Roberts model, imply 
(subject to a parameter restriction) existence and uniqueness of a separating 
equilibrium. Ramey (1987) demonstrates that a pooling equilibrium is neces- 
sary if the gain from entry deterrence is sufficiently large. In particular, if costs 
are independent, then the incumbent's gain from reducing the likelihood of 
entry can be so great that no amount of price reduction can credibly signal low 
costs; in such cases there are no separating equilibria. More generaUy, Cho 
(1990a, 1990b) establishes that for a large (and relevant) domain of parameters 
the stable equilibria must be partially pooling; thus, the incumbent's action 
leaves the entrant with some residual uncertainty. 

Matthews and Mirman (1983) extend the model to the case that the entrant's 
observation of the price is affected by noise, which in some cases assures a 
unique equilibrium. Saloner (1982) studies a multiperiod model in which an 
entrant has repeated opportunities to enter; in this case, one effect of noisy 
signaling is that there can be more (i.e., mistaken) entry than with complete 
information. Bagwell and Ramey (1988) adapt the model to the case that the 
incumbent uses both its price and another expenditure (such as advertising) to 
signal. 9 Elimination of weakly dominated strategies yields a unique separating 
equilibrium in which the incumbent acts as it would if the entrant were 
informed and its cost were lower than it is; analogous results are obtained for 
cases with pooling equilibria if an additional "intuitive" equilibrium selection 
criterion due to Cho and Kreps (1987) is used. Presumably the effects of these 
selection criteria apply also to the Milgrom-Roberts model. 

A variety of other specifications of the incumbent's private information have 
been suggested. Roberts (1985) supposes that in an initial phase after entry the 
incumbent has superior information about demand (and its ouput is not 

9Matthews and Fertig (1990) analyze an alternative motive for advertising by the incumbent, 
based on counteracting false advertising by the entrant. 
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observable by the entrant). Thus, as in the predation models reviewed in 
Section 4, the incumbent drives the price down to influence the entrant's 
decision to exit. As in other signaling models, however, the entrant makes the 
correct inferences (in equilibrium) so the exit decision is not actually biased, 
but entry is discouraged by the entrant's anticipation that this behavior by the 
incumbent reduces expected profits in the initial phase. As in limit pricing, 
moreover, the incumbent is forced to lower prices in the initial phase lest he 
encourage the entrant to stay when it is unprofitable. Fudenberg and Tirole 
(1986b) note that the incumbent's superior demand information is unnecessary 
for this result: if both firms are uncertain about demand conditions, then the 
incumbent prefers to encourage exit by lowering the price observed by the 
ent rant -  again, provided the entrant cannot observe the incumbent's action. 

A variant of limit pricing is studied by Saloner (1987) in the context that two 
incumbents negotiate a merger. If the firms have private information about 
their costs, then the bargaining process encourages each to expand output or 
cut prices to signal to the other that it will be a formidable competitor if the 
merger fails. This motive is strengthened if there is also a threat of entry, 
especially if deterring entry is vital to the success of the merger. Thus, limit 
pricing could deter new entry and simultaneously facilitate the incumbent's 
merger. 

As described above, the threat of entry lowers prices. Harrington (1986) 
notes that the effect is reversed if the entrant's marginal cost is highly 
correlated with the incumbent's. The reason is that entry is deterred different- 
ly: in the case of independent costs, by a low cost for the incumbent; but in the 
case of similar costs, by a high cost for the incumbent, because that indicates 
low profits for the entrant too. With highly correlated costs, therefore, the 
incumbent's limit price generally exceeds the myopically optimal monopoly 
price. The case that the entrant's information is strictly inferior to the 
incumbent's produces a "pooling" equilibrium: for all costs of the incumbent in 
a middle range the incumbent charges the same price, which is below or above 
the monopoly price as the correlation between their costs is low or high. This 
price is the same as the myopically optimal price for the least cost of the 
incumbent that, if known to the entrant, would make entry unprofitable (in 
expectation). Harrington (1987) extends this analysis to the case of multiple 
incumbents having the same cost of producing products that are perfect 
substitutes. He retains the key assumption that the entrant has inferior 
information and observes only a single signal, say the price on the presumption 
that the incumbents' separate outputs are unobservable. In this case the 
equilibrium is again pooling except for costs so low that deterrence cannot be 
avoided and costs so high that the entrant is deterred surely: in the middle 
fange the price is constant at the price for the least cost in the high range of 
entry-deterring costs. Neither of these models is developed for the case that the 
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entrant's information is not inferior (e.g., the entrant's sunk cost is privately 
known), which might alter or eliminate the pooling equilibrium, as in Milgrom 
and Robert 's model where the probability h(p) of entry varies smoothly. 

Bagwell and Ramey (1991) find a dramatically different equilibrium when 
the incumbents' products are differentiated and the entrant observes their 
individual pre-entry prices. In this case there are equilibria in which the 
incumbents charge their myopic pre-entry prices; i.e., the equilibrium prices 
for the associated Bertrand garne without threat of entry. Each incumbent 
anticipates that entry is unaffected by its own price because the entrant can still 
infer the cost parameter from others' prices. Moreover, equilibrium refine- 
ments derived from stability arguments suffice to eliminate all other equilibria. 

In sum, signaling models interpret battles for survival among incumbent 
firms, as weil as incumbents' limit pricing to deter new entrants, as communica- 
tion motivated by implicit bargaining over who shall retain or acquire market 
shares. The language is restricted to choices of prices, outputs, and other 
significant decisions that, because they are costly, credibly convey information 
by averting speculative inferences that survival or entry might be more 
profitable than it aetually is. In some limit-pricing models the net effect is to 
induce entry when and only when it is profitable for the entrant. Cho's 
application of stability criteria, and Harrington's analysis of oligopolistic 
incumbents with a common cost and a single price signal, are sufficient 
however to indicate that communication can be imperfect (even in the absence 
of noise) due to pooling equilibria that prevent exact inferences by an entrant. 
Attrition and limit prices below the myopically optimal prices confer benefits 
on customers, but in the case of common costs, higher limit prices injure 
customers until entry occurs. 

The next section examines a complementary hypothesis about the effects of 
an incumbent's private information. 

4. Predation 

Predation models alm to explain why an incumbent might willingly incur losses 
battling an entrant, as in a price war. The hypothesized motive is that the cost 
of the battle is an investment that pays oft later, either by expelling the entrant 
or by deterring later entrants. To introduce this hypothesis, we mention two 
examples indicating that private information might be an important ingredient; 
however, we do not repeat here the analyses of basic issues in the references 
cited in the introduction. 

A prominent view of predation is that it is irrational; e.g., the incumbent 
could obtain the same result at less cost by buying the entrant; cf. McGee 
(1958). This poses a bargaining problem and, as described in Section 3, Saloner 
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(1987) assumes the incumbent has private information: it prices aggressively in 
the product market to signal its competitive strength were the entrant to refuse 
the terms offered for purchase. Bums (1986) provides some empirical data. 

An opposing rationalist view sees predation as the punishment phase of a 
subgame-perfect equilibrium of a repeated garne between the incumbent and 
the entrant; cf. Milgrom and Roberts (1982b, appendix A). Like other Folk 
Theorem arguments, this one is usually deemed inadequate because it pre- 
sumes an equilibrium selection in favor of the incumbent. An alternative view 
examines asymmetries favoring the incumbent, such as capital-market im- 
perfections and related features that prevent competition on equal terms; cf. 
Telser (1966) and Poitevin (1989). Benoit (1984) shows that moderate asym- 
metries can produce severely asymmetric outcomes. Suppose the entrant has 
limited financial resources, in the sense that the entrant can survive at most n 
periods battling the incumbent before it is forced to exit. Assume also that for 
the incumbent, battling to expel the entrant is profitable if n ~< m, where m i> 1. 
Then an induction argument implies that the incumbent is willing to battle for 
any value of n: when n ~< m + 1, battling for o n e  period reduces the entrant's 
remaining resources, allowing continuation for at most m periods, whereupon 
the entrant knows that it will lose the ensuing battle and therefore prefers to 
exit immediately with its remaining resources intact. Anticipating this, the 
incumbent is willing to battle for the one period required to reach this 
situation; and anticipating this, the entrant prefers to forgo entry or to exit 
immediately when n ~< m + 1. 

However, this view of predation encounters an argument examined by Selten 
(1978) and Rosenthal (1981). Suppose the market terminates after a finite 
number of periods and the entrant can enter (without sunk costs) in any 
period; actually, Selten assumes a series of different entrants, but this is 
immaterial. Then a costly battle in the past period is useless, and by backwards 
induction the incumbent is unwilling to battle in any period. Thus, if the 
duration of the market is finite, then in effect one must suppose that m = 0 in 
Benoit's construction, and therefore his induction argument falls. 1° 

Several models rely on private information to resurrect predatory battles to 
expel entrants. Benoit's analysis considers a version in which the entrant's 
financial resources are privately known. To explain inequalities in the parties' 
resources, Poiteven (1989) examines a model in which the two firms' financial 
obligations differ because the entrant must obtain capital via debt that credibly 
signals to lenders its private information about profitability. Sharfstein and 
Bolton (1990) study the optimal design of a contract between the entrant and 
its financiers, noting that a contract that naively terminates funding if profits 

1°The tone of Selten's and Rosenthal's expositions is actually to argue against the plausibility of 
results that depend on long chains of backward induction from a known fixed finite terminus. 



320 R. Wilson 

are low encourages the incumbent to meet entry with aggressive pricing. Judd 
and Peterson (1986) apply analogous ideas to limit-pricing contexts. 

Milgrom and Roberts (1982b, appendix B) suggest an elegant version in 
which absence of common knowledge about the incumbent's information 
eliminates Selten's backward induction. Consider a finite sequence of different 
entrants, all of whom know that battling any entrant is unprofitable for the 
incumbent; however, the incumbent is unsure whether they know this, ascrib- 
ing positive probability to the event that some (at least those late in the 
sequence) are unsure whether a battle is costly or profitable - and sufficiently 
unsure to be unwilling to take the risk. In this case the incumbent battles early 
entrants (who would therefore be reckless to enter) in the mistaken belief that 
this might deter later entrants by preserving their uncertainty. The incumbent 
thinks that failure to battle any entrant might reveal that battles are unprofit- 
able and induce a flood of subsequent entrants. Even if the early entrants are 
well informed, they are deterred by the incumbent's readiness to battle and so 
the incumbent's mistaken beliefs are not challenged until later. 

Kreps and Wilson (1982) and Milgrom and Roberts (1982b) study other 
versions of this "demonstration effect" derived from the entrant's uncertainty 
about the incumbent's payoffs or feasible actions. The former studies an 
N-period market with an incumbent facing a single entrant (or a sequence of 
entrants). In each period the entrant enters or not, and if it enters the 
incumbent concedes or fights. The incumbent knows privately that it is 
permanently weak or strong, determined initially with probabilities 1 - p  and 
p; and similarly the entrant is weak or strong with probabilities 1 - q and q. 
Normalized per-period payoffs are shown in Table 1: assume a > 0  and 
0 < b < 1 < B so that fighting is unprofitable for weak types but not for strong 
types. Assume that each party's payoff is the sum of its per-period payoffs, 
although similar results are valid for any discount factor close to 1. 

If both parties are surely weak, then Selten's (subgame-perfect) equilibrium 
applies: the entrant always enters and the incumbent always concedes. A 
similar sequential equilibrium applies if only the incumbent is surely weak. 
Now suppose the entrant is surely weak but the incumbent might be strong: 

Table 1 
Per-period payoffs 

Act ions Payoffs 

Ent ran t  Incumbent  ' Ent rant  Incumbent  

Weak Strong Weak Strong 

No entry Õ 0 a a 
Entry  Concedes b B 0 - 1 

Fights b - 1 B - 1 - 1  0 
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q = 0 but p > 0. In this case there is a sequential equilibrium described as 
follows. With n periods remaining and a current belief that the incumbent is 
strong with probability/~, the entrant enters if/~ < b n, enters with probability 
1/a if/3 = b n, and stays out otherwise. Following entry, the strong incumbent 
surely fights, and the weak incumbent fights if/3 i> b n-1 and otherwise fights 
with a probability such that the entrant's belief next period is b n- 1 using Bayes' 
Rule. If the incumbent ever concedes, then the entrant believes thereafter that 
it is surely weak. 

The analogous model adopted by Milgrom and Roberts (1982b) amends the 
formulation as follows. First, each period's entrant has a privately known type 
affecting its payoff from forgoing entry; similarly, the incumbent has a private- 
ly known type (fixed for the entire garne) affecting its per-period payoff from 
fighting entry. These type parameters have independent non-atomic dis- 
tributions. Second, the incumbent has private information about whether it is 
forced always to concede or always to fight, or it can choose each period. The 
second ensures that the sequential equilibrium is unique, and the first allows 
pure strategies. H Easley, Masson and Reynolds (1985) use an alternative 
specification in which the incumbent's private information is knowledge of 
demand in multiple markets: demand is high in all markets or so low that entry 
is unprofitable. In the analogous equilibrium, the incumbent responds to early 
entrants with secret price cutting that mimics the effect of low demand. 

In all these formulations the equilibrium produces the intended result. In the 
model above, if the duration N of the market is so long that p > b u, then even 
the weak incumbent initially fights entry, and anticipating this behavior the 
entrant stays out. The entrant's belief remains fixed at p until the last few 
periods (independent of N) when it first ventures to enter. This equilibrium 
illustrates the weak incumbent's incentive to maintain a reputation for possibly 
being strong: maintenance of the reputation (preserving /3 = p  early in the 
garne) is expensive when the entrant recklessly challenges the incumbent too 
early, but the incumbent perceives benefits from deferral of further entry. The 
notion that reputational effects could motivate predatory responses to entry 
was proposed by Yamey (1972). 

This equilibrium extends to the case that each party has private information 
about whether it is weak or strong. To illustrate the close connection with 
attrition models, consider the version obtained in the limit as the period length 
shrinks, although preserving the assumption that the market has a finite 
duration T. Of course a strong entrant enters and a strong incumbent fights at 
every time, so failure to enter reveals a weak entrant and failure to fight 
reveals a weak incumbent. Using the limit of the above equilibrium, a 

hin  the Kreps-Wilson model, other sequential equilibria can be ruled out by stability argu- 
ments; cf. Cho and Kreps (1987). 
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revealed-weak entrant stays out thereafter (if the incumbent might be strong), 
and a revealed-weak incumbent encounters entry and concedes thereafter. 
Thus, after revelation of the weakness of the entrant the incumbent accrues 
profits at the rate a, or after revelation of the weakness of the incumbent the 
entrant accrues profits at the rate b if weak or B if strong. If neither is 
revealed, then their beliefs when a duration t remains are represented by a pair 
(Pt, qt), where (Pf ,  qr)= (P, q)" In the state space of these beliefs, the 
equilibrium assigns a special role to a locus along which the two weak parties 
have expected values of continuation that are each zero. Along this locus each 
weak party selects a stopping time at which it first reveals its weakness by not 
entering or by conceding. As long as neither reveals weakness their beliefs 
evolve along the locus, reaching (1, 1) at a time (before expiration at t = O) 
when each concludes the other is strong. In particular, letting a = b/[1 - b], 
this locus satisfies p~/« = q~/«, or in a time parameterization, Pt = kl t-1/~ and 
qt = kz t-l/a, where the constants k i depend on initial conditions. The behavior- 
al strategies that in combination with Bayes' Rule generate this locus can be 
represented in terms of the weak parties' hazard rates of revealing actions: the 
weak incumbent's hazard rate of conceding is [ a t ( i - p f ) ] - 1  and the weak 
entrant's hazard rate of not continuing entry is [a t ( l -q«)] - l .  At the first 
instant t = T, however, the beliefs are not on this locus, so depending on which 
side of the locus the beliefs lie, one or the other randomizes as to whether to 
adopt the revealing action, with probabilities such that application of Bayes' 
Rule yields a posterior on the locus if the revealing action is not taken. 
Consequently, k~ and k z a r e  determined by the two requirements that 
(p, ,  q , ) = ( 1 ,  t) for some remaining duration r > 0 ,  and p r = p  or q r = q  
depending on which initial belief is unchanged after the initial randomization. 

Two-sided reputational equilibria of this sott are akin to attrition: each weak 
party continues the costly battle in the hope that the other will concede defeat 
first if it is also weak. Fudenberg and Kreps (1987) address cases in which the 
incumbent faces several entrants simultaneously or in succession, and depend- 
ing on whether entrants who have exited can re-enter if the incumbent is 
revealed weak. Reputational effects persist but depend on the ability of 
entrants to re-enter. If they can re-enter, then the behavior with many entrants 
faced sequentially is similar to the behavior with many entrants faced simulta- 
neously. That is, the reputation of the incumbent predominates. Fudenberg 
and Kreps also develop a point made in the Milgrom-Roberts model, namely, 
the incumbent, even if his reputation predominates, may prefer that each 
contest is played behind a veil, isolated from others. This happens when the 
incumbent has a very high prior probability of being strong, and also the 
entrants each have a high probability of being strong. The incumbent's 
reputation causes all weak entrants to concede immediately, but to defend 
those gains the incumbent must fight many strong entrants. If the contests were 
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isolated, the incumbent would do nearly as weil against his weak opponents 
and better against the strong. 

The structure of such garnes is a variation on the infinitely repeated garnes 
addressed by the Folk Theorem, but where only one of the parties in the stage 
game plays repeatedly. In such cases, results analogous to the Folk Theorem 
obtain although orten they are interpreted in terms of reputation effects. 
Fudenberg and Levine (1989a, 1989c) present general analyses for the case that 
the long-lived player has private information about his type, including formula- 
tions in which his actions are imperfectly observed by others. 12 The key result, 
stated for simultaneous-move stage garnes, is that in any Nash equilibrium the 
long-run player's payoff is no less in the limit as the interest rate shrinks than 
what he would achieve from the pure strategy to which he would most like to 
commit himself-provided the prior probability is positive of being of a type 
that would optimally play this "Stackleberg" strategy were his type known. 
The lower bound derives from the fact that the short-run players adopt best 
responses to the Stackleberg strategy whenever they attach high probability to 
the long-run player using this strategy; consequently, if the long-run player 
uses the Stackleberg strategy consistently, then the short-run players eventually 
infer that this strategy is likely and respond optimally. 13 

This result establishes the essential principle that explains reputational 
effects. Moreover, the thrust of models based on reputational effects is, in 
effect, to select among the equilibria allowed by Folk Theorems: such argu- 
ments would not be compelling if the resulting equilibrium (in which the 
incumbent deters entry) were sensitive to the prior distribution of its possible 
types, but in fact Fudenberg and Levine's results include a robustness 
property - entry deterrence occurs for a wide class of prior distributions in both 
finite and infinite-horizon models. 

5. Concluding remarks 

Previous theories of entry deterrence and market structure sorely needed 
amendment to account for strategic features. The formulations and analytical 
methods of game theory helped clarify the issues and suggest revisions of 

12This work is reviewed by Fudenberg (1990) and portions are included in Fudenberg and Tirole 
(1991). See also Fudenberg, Kreps and Maskin (1990) and Fudenberg and Levine (1989b) for 
related results in settings without private information, as well as Fudenberg and Maskin (1986) for 
the case that both players are long-lived. 

13That is, for each E > 0 there exists a number K such that with probability 1 - e the short-run 
players play best responses to the Stackleberg strategy in all but K periods; moreover, there exists 
an upper bound on K that is independent of the interest rate and the equilibrium under 
consideration. See the appendix of Fudenberg and Levine (1989c) for a general statement of this 
lemma. 
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long-standing theoretical constructs. A principal contribution of the game- 
theoretic approach is the precise modeling it enables of timing and informa- 
tional conditions. In addition, it provides a systematic means of excluding 
incredible threats by imposing perfection criteria; e.g., subgame-perfect, se- 
quential, or stable equilibria. Applications of these tools provide "toy" models 
that illustrate features discussed in informal accounts of entry deterrence. The 
requirements of precise modeling can also be a limitation of garne theory when 
general conclusions are sought. In particular, the difficulties of analyzing 
complex models render this approach more a means of criticism than a 
foundation for construction of general theories of market structure. 

The plethora of predictions obtainable from various formulations indicate 
that empirical and experimental studies are needed to select among hypoth- 
eses. Many models present econometric difficulties that impede empirical 
work, but this is realistic: the models reveal that strategic behavior can depend 
crucially on private information inaccessible to outside observers. Estimation 
of structural models is likely to be difficult, therefore, but it may be possible to 
predict correlations in the data. Experimental studies may be more effective; 
cf. Isaac and Smith (1985), Camerer and Weigelt (1988), Jung et al. (1989), 
and Neral and Ochs (1989). 
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I. Introduction 

Patents were first granted by the Republic of Venice in 1474. A patent is meant 
to serve as an incentive for invention by providing a patentee a certain period 
of time, usually between 16 and 20 years, during which he also can attempt to 
profit from it. In return for the granting of a patent, society receives disclosure 
of information that might be kept secret otherwise, as well as technological 
advances. 

One source of profit for the inventor is through licensing of patent. The 
other, of course, is through his own working of the patent. The common modes 
of patent licensing are a royalty, possibly nonuniform, per unit of output 
produced with the patented technology, a fixed fee that is independent of the 
quantity produced with the patented technology, or a combination of a fixed 
fee plus a royalty. The patentee can choose which of these modes of licensing 
to employ and how to implement them. That is, he can decide on whether to 
set a royalty rate and/or a fixed fee for which any firm can purchase a license 
or auction a fixed number of licenses. He may also devise other licensing 
mechanisms. Obviously he will choose, short of any legal or institutional 
constraints, the licensing mechanism that maximizes his profits. According to 
Rostoker (1984), royalty plus fixed fee licensing was used 46 percent of the 
time, royalty alone 39 percent, and fixed fee alone 13 percent of the time, 
among the firms surveyed. Actual patent licensing practices are also described 
by Taylor and Silberston (1973), and Caves, Crookell and Killing (1983). The 
requirements for obtaining a patent and its duration in leading industrialized 
countries is summarized in Kitti and Trozzo (1976). 

Formal analysis of the profits a patentee can realize from licensing can be 
traced back to Arrow (1962) for inventions that reduce production costs: to 
Usher (1964) for new product innovations; and McGee (1966) who considered 
both. Arrow was concerned with the question of whether a purely competitive 
or monopolistic industry had a greater incentive to innovate. In a certain sense 
this was an attempt, on a formal level, to test Schumpeter's (1942) argument 
that monopolistic industries, those in which individual firms have a measure of 
control over their products price, provide a more hospitable atmosphere for 
innovation than purely competitive ones. Arrow addressed this question by 
comparing the profits a patentee could realize from licensing his invention by 
means of a uniform royalty per unit of output to a purely competitive industry 
with the profitability of the identical invention to a monopolist. He showed that 
the inventor's licensing profits to a perfectly competitive industry exceeds the 
profitability of the same invention to a monopolist, regardless of whether or 
not it is drastic. (A "drastic" invention is one for which the post-invention 
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monopoly price is below the pre-invention competitive price.) The intuitive 
reason for this conclusion is that the standard of comparison of the profitability 
of an invention for a monopolist is against the positive pre-invention monopoly 
profit, while for a perfectly competitive industry it is against the zero pre- 
invention profits. Arrow acknowledged that this conclusion regarding the 
comparative profitability of the identical invention to a monopolist and a 
perfectly competitive industry could be reversed if the appropriability of profits 
from an invention were greater for a monopolist than for a perfectly competi- 
tive industry. It was Schumpeter's contention that this was precisely the case. 
There were a series of challenges and modifications of Arrow's conclusions by 
Demsetz (1969) and others, a discussion of which can be found in Kamien and 
Schwartz (1982). 

McGee independently addressed the question of patent licensing, but did not 
attempt to draw any inferences regarding the relative attractiveness of an 
invention to a monopolist and a perfectly competitive industry. However, he 
introduced the concept of a derived demand for a license, a concept that has 
been emphasized since, and suggested that licenses might be auctioned. 

Beginning in the late 1960s, papers by Scherer (1967), Barzel (1968), and 
Kamien and Schwartz (1972, 1976), set the stage for papers by Loury (1979), 
Dasgupta and Stiglitz (1980a, 1980b), Lee and Wilde (1980), and Reinganum 
(1981, 1982), which have come to define the theory of patent races. A 
comprehensive review of this literature is provided by Reinganum (1989) and 
Baldwin and Scott (1987). The analysis of optimal patent licensing may be 
regarded as eomplementary to the work on patent races, as in the latter work 
the reward for being the first to obtain a patent is supposed to be given. 

Meanwhile, theoretical work on patent licensing languished. Kamien and 
Schwartz (1982) attempted to extend Arrow's work to licensing of a patent by 
means of a royalty to a Cournot oligopoly. They found the optimal fixed fee 
plus unit royalty the patentee should employ under the supposition that the 
licensee's profits remain the same as before the invention. Thus, their analysis 
did not allow for the patentee's ability to exploit the licensee's competition for 
a license. The employment of a game-theoretic framework for the analysis of 
the patentee's licensing strategies was introduced independently by Kamien 
and Tauman (1984, 1986) and Katz and Shapiro (1985, 1986). It is this work 
and work flowing from it that will be the primary focus of this survey. 

The interaction between a patentee and licensees is described in terms of a 
three-stage noncooperative game. The patentee plays the role of the Stackel- 
berg leader to the licensees, who are the followers. The patentee exercises the 
role of a leader in the sense that he maximizes his licensing profit against the 
followers' demand function (reaction or best response function) for licenses. 
The licensees are assumed to be members of an n-firm oligopoly, producing an 
identical product. Entry into the industry is assumed to be unprofitable, i.e., 
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the cost of entry exceeds the profits an entrant could realize. The firms in the 
oligopoly can compete either through quantities or prices. The industry's 
aggregate output and product price is determined by the Cournot equilibrium 
in the former case and the Bertränd equilibrium in the latter. In the simplest 
version of the game, the oligopoly faces a linear demand function for its 
product. The patented invention reduces the cost of production, i.e., it is a 
process innovation. Licensing of a product innovation can also be analyzed in 
this game-theoretic framework. 

In the game's first stage the patentee announces either the price of a license 
at which any firm can purchase one or the number of licenses he will auction. 
In its second stage, the firms decide independently and simultaneously whether 
or not to purchase a license, or how much to bid for a license. In the game's 
third stage each firm, licensed and unlicensed, decides independently and 
simultaneously either how much to produce or charge for its product. The 
subgame-perfect Nash equilibrium (SPNE) in pure strategies is the solution 
concept employed. Thus, the analysis of the game is conducted backward from 
its last stage to its first. That is, each firm calculates its operating profit in the 
game's third stage equilibrium if it were or were not a licensee given the 
number of other licensees. This calculation defines the value of a license to a 
firm, the most it would pay for a license in the game's second stage, for each 
number of other licensed firms. These values, as a function of the number of 
other licensees, in turn, define a firm's demand function for a license. In the 
game's first stage the patentee decides what price to seil licenses at or the 
number of licenses to auction so as to maximize the profit, taking into account 
the aggregate demand function for licenses. The game is only played once, 
there is no uncertainty, and all relevant information is common knowledge to 
all the players. Resale of licenses is ruled out. 

Roughly speaking, the following results emerge from the analysis of the 
different modes of licensing under the assumption that the firms are Cournot 
competitors in its third stage. In general, auctioning licenses, that is, offering a 
fixed number of licenses to the highest bidders, yields the patentee a higher 
profit then offering licenses at a fixed fee or royalty rate to any firm wishing to 
purchase one. For modest cost-reducing inventions, licensing by means of the 
"chutzpah" mechanism, to be described below, provides the patentee higher 
profits than a license auction. 

The essential reason that licensing by means of an auction enables the 
patentee to realize higher profits than by fixed fee licensing is that a nonlicen- 
see's profits are lower in the former case than in the latter. This is because, in 
the case of an auction, if a firm does not get a license, it competes with licensed 
firms equal in number to the number of licenses auctioned, while in the case of 
a license fee, if it does not purchase a licence, it competes with one fewer 
licensee. That is, the firm can reduce the number of licensees by one by not 
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purchasing a license in the case of a licensee fee, but cannot reduce the number 
of licenses by bidding zero in the auction case. As the most a firm will pay for a 
license equals the difference between its profits as a licensee versus a nonlicen- 
see, it will pay more if licenses are auctioned than if they are sold for a fixed 
fee° Therefore  the patentee in his role as the Stackelberg leader is able to 
extract higher total licensing profits by auctioning licenses than by selling them 
for a fixed fee. This difference in the patentee 's  licensing profits declines as the 
number  of potential licensees increases and vanishes altogether in the limit as 
their number  approaches infinity. Under  either method of licensing, licensed 
and unlicensed firms' profits are in general below what they were before the 
invention's introduction. The exceptions occur if firms only realized perfectly 
competit ive (zero) profits originally or if the invention is drastic and licensed 
for a fixed fee. In the last instance the single licensee is no worse off than he 
was originally. The patentee never licenses more firms than the number for 
whicla the Cournot  equilibrium price equals the perfectly competitive price with 
the original inferior technology. If the invention is nondrastic the number of 
licensees is at least equal to one-half the number of potential licensees. Only a 
drastic invention is licensed exclusively to one firm. Consumers are always 
bet ter  oft  under either of these modes of licensing as total industry output 
increases with the introduction of the superior technology, and the product 's  
price declines. 

Licensing a nondrastic invention by means of a unit royalty is less profitable 
for the patentee than licensing by means of an auction or a fixed fee. The 
reason is that for any royalty rate below the magnitude of the unit cost 
reduction afforded by the invention, each firm will purchase a license. But if all 
firms purchase licenses, it is most profitable for the licensee to raise the royalty 
rate to exactly the magnitude of the unit cost reduction. He cannot raise it 
higher as then no firm would purchase a license because it would be more 
profitable for it to use the old technology. This in turn means that the most the 
patentee can extract from a licensee is the difference between his profits as a 
licensee and his original profits, which exceed a nonlicensee's profits with 
auction or fixed fee licensing. In other words, a nonlicensee can guarantee 
himself a higher profit if licenses are sold by means of royalty than either for a 
fixed fee or auctioned. The patentee 's  total royalty licensing profits approach 
those under auction or fixed fee licensing as the number of potential licensees 
approaches infinity regardless of the type of invention. If the invention is 
nondrastic, then under royalty licensing the licensees are no worse oft than 
they were originally, while consumers are no better oft, as there is no 
expansion in total output accompanying the introduction of the new technolo- 
gy. For  a drastic invention, royalty licensing causes the single licensee and the 
nonlicensees to be worse oft  than originaUy, unless their profits were already 
zero, while consumers enjoy a lower product price and expanded output. 
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The above discussion provides the flavor of the game-theoretic approach to 
patent licensing and the types of results obtainable. 

Section 2 deals with licensing by means of an auction. This is followed in 
Section 3 by an analysis of fixed fee licensing of a cost-reducing innovation and 
then of a new product (Section 4). Licensing by means of a royalty is taken up 
in Section 5 and is followed by fixed fee plus royalty licensing (Section 6). An 
optimal licensing mechanism, the "chutzpah" mechanism, is described in 
Section 7. All of the above analyses assume that the firms that are the potential 
licensees engage in Cournot competition. In Section 8, patent licensing in the 
presence of Bertrand competition is analyzed. This is followed by a brief 
summary. 

It should be noted that, throughout the analyses of the different licensing 
modes, licensees' and nonlicensees' profit functions, as well as the patentee's, 
are denoted by the same symbols but different arguments in the different 
sections. However, the appropriate arguments of these functions should be 
clear from the context. 

2. The license auction game 

This is essentially the game introduced by Katz and Shapiro except that in their 
original version there is no specification of the structure of the industry, the 
firms of which are the potential licensees. We posit an industry consisting of 
n i> 2 identical firms producing the same good with a linear cost function 
f ( q )  = cq, where q is the quantity produced by a firm, and c > 0 is the constant 
marginal cost of production. The inverse demand function for this good is 
given by P = a - Q, where a > c and Q is the aggregate quantity demanded 
and produced. In addition to the n firms there is an inventor with a patent for a 
technology that reduces the marginal cost of production from c to c - e, e > 0. 
He seeks to maximize his profit by licensing his invention rather than using it 
himself to compete with the existing firms directly. The firms seek to maximize 
their production profits less licensing costs. 

The game is noncooperative and consists of three stages. In its first stage the 
patentee decides how many licenses, k, to auction. All the firms decide 
independently and simultaneously how rauch to bid for a license in its second 
stage. Finally, in the game's third stage each firm, licensed and unlicensed, 
determines its profit-maximizing level of output. Thus, the patentee's strategies 
consist of choosing an integral number, k E {0, 1 , . . ,  n), of licenses to 
auction. The /th firm's strategy consists of choosing how much to bid for a 
license, bi (k ) ,  which is a function of the number k of licenses auctioned in the 
game's second stage. Licenses are sold to the highest bidders at their bid price 
and in the event of a tie, licensees are chosen arbitrarily. 
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At the end of the game's second stage the original n firms divide into two 
groups, a subset S of k licensees and its complement N / S ,  the subset of n - k 
nonlicensees. The members of S can produce with the superior cost function 
f ( q )  = (c - e)q and those in N / S  with the inferior cost function f (q)  = cq. The 
ith firm's strategy in the game's third stage consists of choosing it profit- 
maximizing level of output, qi(k,  S ) ,  which depends on k and on whether or 
not it is among the licensees, S. Let ~rs=Tr i (k , (b l (k  ), q l ( k , S ) ) , . . . ,  
( b , ( k ) ,  q , ( k ,  S) ) )  be the ith firm's profit under the (n + 1)-tuple of strategies 
(k, (bl(k),  q~(k, S ) ) , . . . ,  ( b , ( k ) ,  q , ( k ,  S))) .  Then the ith firm's payoff is 

~ ( k ,  (ba(k) ,  q~(k, S) ) ,  . . . , (b~(k),  q~(k, S) ) ,  . . . , ( b , ( k ) ,  q , ( k ,  S) ) )  

( p - c + e ) q i - b i ,  i ~ S ,  
: ( p  c)qi ,  i ~ S ,  (1) 

where P = a - Z 1 qj. The patentee's profit is 

Or(k, (bl(k),  q l (k ,  S ) ) ,  . . . , ( b , ( k ) ,  q , ( k ,  S)))  = ~ b j (k )  . (2) 

The payoffs (1) and (2), together with the patentee's and firms' strategy sets 
described above, define a strategic form game. 

For this game the SPNE in pure strategies is the solution concept employed. 
The (n + 1)-tuple (k*, (b~, q l ) , . - . ,  (b*, q*)) with the corresponding set S* 
of licensees, is a SPNE in pure strategies if 

(i) k* is the patentee's best reply strategy to the n firms' strategies 
( b ~ ( k ) ,  q~(k ,  S) ) ,  . . . , ( b * ( k ) ,  q;*(k, S)); 

(ii) for each k, b * ( k )  is the ith firm's best reply, given b~(k ) ,  for i # j ;  
* k * (iii) for each k and S, qi ( , S) is the ith firm's best reply, given qj (k ,  S ) ,  

i C j .  
Note that the difference between the requirement for a SPNE and a Nash 

equilibrium in this game is that (ii) hold for any k, not just for k = k*, and (iii) 
hold for any k and S, not just for k = k* and S = S*. 

As is customary for the development of the SPNE in pure strategies of a 
staged game, we work backwards from its last stage to its first. It can be shown 
[Kamien and Tauman (1984)] that the third stage Cournot equilibrium outputs 
qi of the licensed and unlicensed firms, respectively, are 

. { ( a - c - k e ) / ( n + l ) + e ,  i E S ,  
qi = (a c k e ) / ( n + l )  i ~ S ,  (3a) 

provided the number of licensees, k ~< (a - c)/e, and 
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. { ( a - c + e ) / ( k + l ) ,  i E S ,  
qi = O, i ~ S ,  (3b) 

if the number of licensees k/> (a - c)/e. 
The zero output level of unlicensed firms if k i> (a - c)/e follows from the 

requirement that a firm's output be non-negative. Note that in the first case, 
(3a), both licensed and unlicensed firms produce positive quantities in equilib- 
rium, a licensed firm producing exactly e more than an unlicensed one. Since in 
equilibrium all the licensed firms produce the identical quantity, let q* = cj, 
i E S, and similarly for unlicensed firms, let q* = q, i ~ S .  The firms' third 
stage Cournot equilibrium profits are, for k ~< (a - c)/e, 

, { q 2 - b i ,  i ~ S ,  
~r i = q2, i ~ S ,  (4a) 

and, for k/> (a - c)/e, 

{4 2_ , b i ,  i ~ S ,  
wi = O, i ~ S .  (4b) 

The ratio ( a -  c)/e = K is the number of identical firms producing with 
marginal cost c -  e, such that the Cournot equilibrium price equals c. 

This can be seen by observing that if k ~< ( a -  c)/e, then from (3a) the 
Cournot equilibrium price is 

P = a -  k (q  + e ) -  ( n -  k)q = a -  k e -  nq = (a + n c -  ke) / (n  + 1). (5) 

Setting P = c in (5) yields 

K =  ( a -  c ) / e .  (6) 

Similarly, for k >~ ( a -  c)/e, the equilibrium price 

P =  a -  k ( a -  c + e ) / ( k +  1) = [a + k ( c -  e)] / (k+ 1),  (7) 

and substituting P = c into (7) gives 

K =  ( a -  c ) / e .  (8) 

From this we can state: 

Definition 1. An invention is drastic if K<~ 1. In other words, a drastic 
invention is one for which a monopolist operating with the superior technology 
would set a price at or below the marginal cost of the inferior technology. 
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Knowing the licensed and unlicensed firms' third stage Cournot equilibrium 
profits, (4a) and (4b), we can turn to the analysis of its second stage. In this 
stage the firms independently and simultaneously decide on how much to bid 
for a license. Each firm takes all the other firms' bids as given in deciding its 
own. The difference between a licensee's and nonlicensee's profit defines the 
most a firm will pay for a license. Thus, letting f refer to a licensee's profit and 
E to a nonlicensee's, and substituting K for (a - c)/e in (4a), yields 

fr(k) = [e(1 + ( K -  k ) / (n  + 1))12- b i ,  (9a) 

~_(k) = [ e ( K -  k ) / (n  + 1)12  . (9b) 

Thus, the most a firm will bid for a license is 

b i = f ( k ) - E ( k ) = e 2 [ l + 2 ( K - k ) / ( n + l ) ] ,  k ~ < K .  (10) 

Since the right-hand side is identical for every firm, their bids are identical, 
b i - b .  Obviously, no unlicensed firm will bid more than b to become a 
licensee because its net profit would decline. Similarly, a licensee would bid 
neither more than b for a license, nor less and become a nonlicensee. Thus, b 
is each firm's Nash equilibrium bid. Expression (10) represents the demand 
function for licenses in the region k ~< K. 

In the region k/> K, the demand function for licenses can be determined in a 
similar way by using the profits of a licensee and a nonlicensee as defined in 
(4b). Specifically, the demand function for licenses is 

b = [ e ( K + l ) / ( k + l ) ]  2, k>~K.  (11) 

The patentee's objective in the game's first stage is to choose k, the number 
of licenses to auction, so as to maximize bis licensing profits. Namely, to 

max bk 
l«.k~n 

s.t. b =  
e2[1 + 2(K - k ) / (n  + 1)1, 

[e(K + 1)/(k + 1)12 , 

l < ~ k « . K ,  

k>~K>~l.  
(12) 

Now, assuming that k is continuous, then for 1 <~ k ~< K, 

and 

d(bk ) /dk  = e2[(n q- 1 + 2 K - 4 k ) / ( n  + 1)1 (13) 

d2(bk)/d2k = -4e2/(n + 1) < O. (14) 
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Thus, the global maximum of the patentee 's  profit occurs at 

k * = ( n + l + 2 K ) / 4 ,  f o r l < ~ k < ~ K ,  (15) 

provided k* ~< min(K, n), because the number of licenses cannot exceed n or 
K. That  is, (15) gives the k* that is the interior maximum number of licenses, 
provided it can be achieved. Thus, corner solutions have to be checked for as 
weil. 

Now, the right-hand side of (15) equals or exceeds K if n + 1 + 2K>~4K. 
Thus, k* = K if and only if n + 1/> 2K as n > K in this case, unless n = K = 1. 
Similarly, the right-hand side of (15) equals or exceeds n i f  n + 1 + 2K/> 4n. 
Thus, k* = n if and only if 2K i> 3n - 1, as K > n in this case, unless n = K = 1. 

Turning next to the case of k i> K >/1, the demand function for licenses is 
given by (11) and the patentee seeks to 

max k b .  (16) 
k ~ K  

Now, from (11), d b / d k  = - 2 b / ( k  + 1), and the elasticity of the license de- 
mand function, - ( b / k )  d k / d b  = (k + 1) /2k  ~< 1, as k 1> 1. Thus, as the demand 
function for licenses is inelastic in the region k i> K >/1, it follows that the 
patentee 's  profit increases as the number of licenses offered declines, and so he 
sets k* = K, its lower bound. Finally, if the invention is drastic, 1 t> K/> 0, the 
patentee auctions a single license, since k < 1 is meaningless. All the above can 
be summarized as: 

Proposition 1. The license auction game has a unique S P N E  in pure strategies 
in which the patentee never auctions more than K licenses, and if  the invention is 
drastic, only a single license. Specifically, if  the invention is not drastic and 
l «- k «- K, then 

{ n ,  2 K > ~ 3 n -  1,  
k * =  ( n + l + 2 K ) / 4 ,  3 n - l > ~ 2 K > ~ n + l ,  

K ,  n + l ~ > 2 K ,  
(17a) 

and if  k >~ K, 

k , = {  K , K ~ > I ,  
1,  K ~ < I .  

(17b) 

The intuition of Proposition 1 is that if the invention affords only a modest 
reduction in unit production costs, i.e., 2(a - c ) / (3n  - 1)/> e, then it is optimal 
for the patentee to license all the firms in the industry. However,  in doing so, 
he taust, along with his announcement  that n licenses will be auctioned, state a 
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reservation price slightly below the magnitude b(n), the benefit to a firm if all 
are licensed, below which he will not seil a license. The necessity for the license 
reservation price is to prevent a firm from offering nothing for a license, 
because it knows it will get one anyway. Thus, for a modest  cost-reducing 
invention the industry's structure, in terms of the number of operating firms, 
remains unchanged, but all of them operate with the new technology. On the 
other hand, if the magnitude of the unit cost reduction permitted by the 
innovation is somewhat greater, i.e., e ~> 2 ( a -  c ) / ( 3 n -  1), then not all the 
firms obtain licenses, but all of them, licensed and unlicensed, continue to 
operate.  The industry now becomes one with a mixed technology, some firms 
operating with the superior technology and others with the inferior one. 
Finally, if the cost reduction afforded by the invention is sufficiently large, i.e., 
e >/2(a - c ) / ( n  + 1), then the number of firms in the industry is reduced to the 
number  of licensees, K; the remaining firms cease operating. With a nondrastic 
invention at least one-half of the industry's firms are licensed. In the special 
case of a drastic innovation, i.e., e/> a -  c, the number of operating firms in 
the industry is reduced to one. 

The patentee 's  equilibrium licensing profits, er, can be calculated by substitu- 
tion for k* from (17a) and (17b) into (10) and (11) to determine the 
equilibrium bids b*, and then multiplying by k*, i.e., 

{ e 2 n ( 2 K +  1 -  n ) / ( n  + 1) ,  

e2(2K + 1 + ///)2/8(?'/ -1- 1) ,  

82K , 

e2(K + 1)2/4, 

2 K  >~ 3n - 1 ,  

3 n -  l > ~ 2 K > ~ n +  l ,  

n + l ~ > 2 K ,  

K < I  , 

l~<k * = n ~ K ,  

1 ~< k* ~< min(K, n ) ,  

l~<k* = K <~n , 

l = k *  . 

(18) 

The firms' equilibrium profits can be calculated by recalling that in equilbrium 
licensees' net profits must equal nonlicensees' (if this were not so an incentive 
to revise bids for licenses would exist), fr(k) = E(k),  and substituting for k* 
from (17a) and (17b) into (9b) to obtain: 

f 
,E.2(K - F / ) 2 / ( / - / +  1 )  2 , 

e2[(K - n) + (3n - 1 - 2K)/412/(n + 1) 2 , 

0 ,  

'0 

2 K  >~ 3n - 1 ,  

3 n -  1>~2K>~ n + 1 ,  

n + l > 2 K ,  

0 K ~ < I ,  

(19) 
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The licensees' profits all decline relative to their original profits, which equal 
[ e K / ( n  + 1)] 2. Were they able to credibly collude, the industry's firms would 
resist the introduction of the superior technology, or at least the patentee's 
means of licensing it. Without the means for credible collusion, the patentee is 
able to exploit their noncooperative behavior to his advantage. These calcula- 
tions also reveal that the aggregate quantity produced in the third-stage 
equilibrium exceeds the aggregate quantity produced before the introduction of 
the cost-reducing technology and therefore that the market price of good 
declines, to the consumer's benefit. 

The above conclusions regarding the auction game as summarized in Propo- 
sition 1 have been extended by Kamien, Oren and Tauman (1988) to the class 
of product demand functions that are downward sloping, differentiable, and for 
which the total revenue function is strictly concave in the quantity sold. In this 
generalization, the price elasticity of demand, along with the magnitude of the 
cost reduction from the invention, determine the equilibrium number of 
licensees, k*. 

3. The fixed fee licensing game 

In the model, introduced by Kamien and Tauman (1984, 1986), the patentee 
sets a price at which any firm wishing to can buy a license. The license price is 
independent of the number of units produced with the superior technology and 
therefore is a fixed cost to the firm just as in the license auction case. Fixed fee 
licensing may be a more practical alternative than licensing by means of an 
auction if the cost of organizing the auction is taken into account. 

The fixed fee licensing game is similar to the license auction garne in that it, 
too, is a three-stage game. It is in the derivation of the demand function for 
licenses that the major difference between the two garnes arises. In determin- 
ing how much to bid for a license in the auction garne a potential buyer looks 
at the difference in his profits if he is or is not a licensee, with the knowledge 
that the number of licensees will be the same regardless of whether of not he 
purchases one (unless, of course, the number of licenses auctioned equals the 
total number of firms). However, in the fixed fee game a potential buyer, while 
also comparing his profits as a licensee versus a nonlicensee, knows that if he 
does not purchase a license that there will be one fewer licensee. That is, in the 
fixed fee game a potential licensee regards "lri(n , k) - 7rj(n, k - 1), i E S, j f~ S, 
as the value of a license, where ~ri(n, k) is the profit he will realize at the 
Cournot equilibrium of a n-firm oligopoly in which k firms have licenses and 
1rj(n, k - 1) his profit if he does not purchase a license and there are only k - 1 
licensees. In the license auction garne the similar comparison is between 
7ri(n, k) ,  i ~ S, and ~rj(n, k) ,  j ~ S, because the potential licensee knows that 
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even if he does not purchase a license, someone else will, because k licenses 
are being auctioned. Thus, the opportunity cost of not being a licensee is 
higher in the license auction garne than in the fixed fee game. Therefore the 
patentee can in general profit more by auctioning licenses than by selling them 
at a fixed fee. 

However, if the patentee does employ a fixed fee as a licensing device, then 
in the game's first stage he deduces that the most a firm will pay for a license, 
call it cz, equals 7ri(n, k) - 7rj(n, k - 1), i ~ S, j % S .  From this he can, as in the 
license auction game, derive a demand function for licenses. This can be done 
by first noting that the counterparts to the equilibrium quantities of a licensee 
and nonlicensee in (3a) are, for k ~< K, 

, { e ( K - k ) / ( n + l ) + e ,  i E S ,  
qi = [ e ( K - k ) + e ] / ( n + l ) ,  i % S .  (20) 

Thus, under license auctioning, licensees' and nonlicensees' equilibrium out- 
puts differ by e, while here they differ by ne/ (n  + 1). Obviously this difference 
disappears in the limit as n---~ % i.e., the industry becomes perfectly competi- 
tive. For k i> K, the equilibrium outputs of licensees and nonlicensees are the 
same as in (3b). The respective profits of a licensee and a nonlicensee, the 
counterpart to (4a) are, for k ~< K, 

, - o ~ ,  i ~ S ,  
"Tl" i = 2 , i % S ,  (21) 

where 4 refers to a licensee's third-stage equilibrium output and q to a 
nonlicensee's. The resulting second-stage demand function for licenses is 

O~ = E2[n -q- 2 + 2 ( K  - k ) ] / ( n  + 1) 2 k ~< K (22) 

For k>~ K, the demand function for licenses is the same as (11), with b 
replaced by c~. The patentee chooses the fixed fee o~ so as to maximize his 
licensing profits, given the demand function for licenses. This leads to the 
counterpart to Proposition 1, namely: 

Proposition 2. The fixed fee licensing game has a SPNE in pure strategies in 
which never more than K licenses are sold, and only one license is sold if the 
invention is drastic. Specifically, i f  the invention is not drastic and k <~ K, then 

k*= ( n + 2 + 2 K ) / 4 ,  
LK, 

2 K ~ > 3 n - 2 ,  
3 n -  2>~2K>~n + 2 ,  
n + 2 ~ > 2 K ,  

(23a) 
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and, i f k  >~ K, then 

k*=  f{K' K > I ,  (23b) 
1, K < I .  t 

The patentee's licensing profits are, in general, lower under fixed fee 
licensing than under license auctioning. The difference is illustrated most 
dramatically when the invention is drastic. If a single license is auctioned, the 
patentee realizes the entire monopoly profit of the single licensee as a 
consequence of the bidding among the firms because an unlicensed firm's profit 
is zero. On the other hand, the price he can set to seil only one license cannot 
exceed the difference between the monopoly profit of a single licensee and the 
Cournot equilibrium profit of a firm in the original n-firm oligopoly operating 
with the inferior technology, i.e., [sK/(n + 1)] 2. This difference in the paten- 
tee's profit declines as the number of firms in the original oligopoly increases 
and vanishes completely in the limit as n goes to infinity. This is true in general 
regarding the patentee's profit under the two licensing schemes and not just for 
the case of a drastic invention. It also follows from (17a) and (23a) that a 
license auction leads to at least (n + 1)/2 firms being licensed, while for fixed 
fee licensing at least (n + 2)/2 are. Thus, fixed fee licensing is slightly better 
for consumers because the market price declines with the number of licensees. 

As the license auction game, the fixed fee licensing game has been extended 
to more general product demand functions by Kamien, Ofen and Tauman 
(1988). 

4. Fixed fee licensing of a product innovation 

Another application of the fixed fee licensing game has been to licensing 
production of a new product [Kamien, Tauman and Zang (1988)]. In this 
model the existence of two goods, a "superior" good, the demand for which is 
denoted by Y, and an "inferior" good, the demand for which is denoted by X, 
is posited. The two goods are substitutes, their degree of substitutability is 
denoted by 6, and one good is superior to the other in the sense that if its price 
is less than or equal to the others, then only the superior good is purchased. 
The respective inverse demand functions for the inferior and superior goods 
are  

and 

X =  P2 - P 1 ,  P2 ~ P1 (24) 

{ a  -- P2 + (~P1 , P2 ~> P1 , (25) 
Y= a _ ( l _ 6 ) P 2  ' P2~P1, 
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with P1 and P2 denoting their respective prices and, 0 ~< 6 < 1. From (24) and 
(25) it follows that the inverse demand function for the inferior good, if the 
superior good is not produced at all, Y = 0, is 

X =  a - (1 - (~)P1 - (26) 

The unit cost of producing the inferior good is assumed to be constant and is 
denoted by c 1. It is supposed that the invention reduces the constant unit cost 
of producing the superior good from 6z, a cost at which its production is 
unprofitable, to c 2, at which it becomes profitable. The interaction among the 
firms, who are the potential licensees, and the patentee is again described 
as a three-stage game. Also, there exists a number, K =  [ a - ( 1 - 6 ) c l ] /  
( 1 -  6)(c 1 - c 2 )  , of producers of the superior product such that its Cournot 
equilibrium price equals the inferior good's unit cost of production. A "drasti- 
cally superior" product is one for which K ~< 1. Finally, as in the case of a 
simple cost-reducing invention, it is possible to derive a demand function for 
licenses in the game's second stage, which the patentee employs in the first 
stage to set his profit-maximizing license fee. 

Among the results obtained in this game are that if the new product is 
drastically superior, then only it is sold. Both the inferior product and the 
superior one are sold (in the limit as n--> ~) if their unit production costs are 
sufficiently close, and only the superior product if not. For sufficiently large n, 
the inferior product's price declines as a result of the superior product's 
introduction. The distinctive feature of the patentee's new product licensing 
behavior is that his license fee must balance the effect of increasing the number 
of licensees, which depresses the demand for the inferior good and increases 
the demand for the superior one, against the increase in competition among 
the superior good's producers. Finally, it is also possible to use this framework 
to characterize when an inventor would be bettet oft attempting to provide a 
higher quality product versus reducing the unit cost of an existing one, 
supposing that the costs of the two possibilities are the same. In particular, a 
product-quality-improving invention will be more profitable than a cost-reduc- 
ing invention if the demand for the superior product is sufficiently high. On the 
other hand, an inventor can always realize a higher profit from ä drastic 
cost-reducing invention than from a quality-improving one. 

5. Royalty licensing 

Licensing by means of royalty is the form most commonly employed in the real 
world. The reason is that the demand for the product that will be produced 
with the new cost-reducing technology is typically uncertain, especially future 
demand, for a variety of reasons. For example, new substitute products may 
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come on to the market  or there may be a general downturn in the economy, or 
new uses may be discovered for this product. The licensee may be reluctant to 
pay a fixed fee for a license out of fear that the demand for the product will 
decline, while the patentee may be reluctant to sell a license for a fixed fee out 
of expectation that the demand for the product will rise. The same concerns 
apply to the licensing of the manufacture of a new product. A royalty alleviates 
a licensee's fear of overpaying for a license and the patentee 's  of undercharg- 
ing. The reward to the patentee and the payments of the licensee are directly 
related to the demand for the product through time. Indeed, in the case of 
licensing the sale of a new product, the patentee orten offers a lower royalty 
rate if sales exceed a certain prespecified level. This is done to provide an 
incentive for the seller of the licensed product to push its sales above the sale 
of other products that he may also be selling. 

In the game-theoretic analysis of patent licensing by means of a royalty these 
factors have not yet been considered. Instead, as in the analysis of licensing by 
means of an auction or a fixed fee, it is assumed that the values of all the 
relevant variables are known with certainty. Thus, again, the analysis takes the 
form of a three-stage garne involving the n-licensee and the patentee,  who is 
the Stackelberg leader. Since the patentee 's  licensing profit increases linearly 
with the total quantity produced with his lower cost technology it is in bis 
interest to license as many of the firms as possible. In fact, if the invention is 
nondrastic, he can license all of the industry's n firms by setting the royalty 
rate, r, equal to the magnitude, e, of the reduction in unit cost permitted by 
the new technology. At  this royalty rate each firm is indifferent between being 
a licensee and a nonlicensee. Thus, no firm has an incentive to deviate and 
become a nonlicensee. The patentee has no incentive to raise the royalty rate, 
as this will cause no licenses to be purchased, for the firms can do better  by 
operating with the original technology, and no incentive to lower it, as all the 
firms will still be licensees but his profit will decline. Because at a royalty rate 
r = e the licensees are indifferent between being and not being a licensee, it 
might appear that the situation in which no firm purchases a license could be an 
equilibrium of the garne as well. But this is not so, because the patentee 's  offer 
of licenses at any royalty rate below e will cause all the firms to purchase them. 
Thus, a royalty rate of r - -  e, and all the firms purchasing licenses, constitute a 
unique SPNE equilibrium of this game. 

If the invention is not drastic, then in equilibrium the patentee 's  profit equals 
the per unit royalty times the number of units produced. But since the royalty 
rate r = e, the equilibrium level of output after licensing is exactly the same as 
before licensing, namely the Cournot output of an n-firm oligopoly, 
Q = n (a  - c ) / ( n  + 1). Thus, the patentee 's  licensing profit is rn(a  - c ) / ( n  + 1). 
On the other  hand, if he were to auction licenses, say, of an invention that 
reduces units costs sufficiently so that k * =  K, then his profit would be 
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e(a - c), which clearly exceeds his licensing profits by means of a royalty, as 
r = e. These results obtain for all nondrastic inventions, not just for one where 
k * =  K. The exception occurs in the limit as n---~~, the industry becomes 
perfectly competitive, and the patentee's profits are the same under either 
mode of licensing. 

If the invention is drastic, the patentee sets the royalty rate r = (a - c + ~)/ 
2, the monopoly price that the firm employing the superior technology would 
charge. His licensing profit equals the corresponding monopoly profit. 

Formally, the patentee seeks a royalty rate r to maximize his licensing 
profits, i.e., 

max nr(a - c + e - r ) / (n  + 1),  (27) 
O ~ r ~ e  

as all firms will be licensed, and the third-stage Cournot equilibrium output of 
a license is qi = ( a  - -  c + e - -  r) / (n  + 1), i = 1 , . . .  , n. The first-order condition 
for one interior maximum yields 

r* = ( a -  c +  e ) / 2 =  e ( K +  1) /2 .  (28) 

It is obvious that (28) can hold only if K ~< 1, the invention is drastic, because r 
cannot exceed e. Thus, if K/> 1, r* = e. The patentee's licensing profits, er, are 

Ine2K/ (n  + 1),  K ~  > 1, (29) 
"fr = ( e2(K + 1)2/4, K <~ 1. 

It is evident from a comparison of (28) with (18) that the patentee's licensing 
profits are higher if he auctions licenses than if he employs a royalty, except if 
the invention is drastic or the industry is perfectly competitive (n--~ o~). All of 
this can be summarized as: 

Proposition 3. The royalty licensing game has a SPNE in pure strategies in 
which all the firms are licensed at a royalty rate equal to the rnagnitude o f  the 
reduction in the unit production costs, i f  the invention is nondrastic, and only 
one f irm is licensed at a royalty rate equal to the monopoly price set by the f irm 
operating with the superior technology, if the invention is drastic. All  the 
licensees' profits remain the same as they were originally if the invention is 
nondrastic, and the single licensee's profit falls to zero, if it is drastic. The 
product 's  market price declines only if the invention is drastic. The patentee's 
licensing profits are less than in the auction or fixed fee licensing games unless 
the invention is drastic or the industry is perfectly competitive. 
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6. Fixed fee plus royalty licensing 

Licensing by means of a fixed fee plus royalty is the form most commonly 
employed. Analysis of this form of licensing was conducted by Kamien and 
Tauman (1984). As in the previous analyses, the game between the patentee 
and the n potential licensees, who engage in Cournot competition amongst 
themselves, involves three stages. The patentee maximizes his licensing profits 
in this case by choosing both a fixed fee and a royalty rate, given the potential 
licensees' demand function for licenses. The analysis of this garne is technically 
more complicated than those involving the patentee choosing only one strategic 
variable. The main conceptual difference is that the patentee faces a conflict 
between choosing a fixed fee that limits the number of licensees and a royalty 
that expands their number. However, as in the auction license garne or fixed 
fee game, no more than K firms are licensed if 1 ~< K ~< n and only one if 
K ~  1. Also, as in the fixed fee garne, no fewer than (n + 2)/2 firms are 
licensed. 

7. An optimal licensing mechanism: The "chutzpah" mechanism 

In general, among the three licensing modes considered thus rar, a license 
auction provides the patentee the highest profit. However, is it the best the 
patentee can do or is there a superior mechanism? Kamien, Oren and Tauman 
have proposed a licensing mechanism, the "chutzpah" mechanism, based on 
the work of Kamien, Tauman and Zamir (1990), dealing with the value of 
information that in general yields the patentee a higher profit than a license 
auction. In particular, this mechanism is more profitable for the patentee than 
a license auction for modest cost-reducing inventions. 

To understand the "chutzpah" mechanism, recall that in a license auction 
the most a firm will bid for a license is the difference between its Cournot 
equilibrium profits as a licensee and as a nonlicensee, for a given number, k, of 
licenses auctioned. However, the firm's Cournot equilibrium profit, if it is a 
nonlicensee and there are k licensees, is at least as high as its profit, if there are 
n - 1 licensees. That is, a firm's lowest equilibrium profit occurs if it alone is 
unlicensed. In the "chutzpah" mechanism the patentee exploits this fact by 
setting a fixed fee that extracts essentially the entire difference between the 
profits of a licensee and the profits of a single nonlicensee. Moreover, the 
patentee also extracts from each nonlicensee essentially the difference between 
his equilibrium profit in the presence of k licensees and his profit as the only 
nonlicensee. Thus, both licensees and nonlicensees are compelled to yield 
almost all their profit to the pa t en t ee -  as in the game to be described, it is 
their dominant strategy to do so after dominated strategies are eliminated. In 
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this mechanism, licensees pay for a license and nonlicensees pay to prevent 
additional licensing. 

Formally, licensing by means of the "chutzpah" mechanism is a three-stage 
garne. In the first stage the patentee determines the configuration of licensees 
and nonlicensees that maximizes total industry profit and how much to 
"charge" licensees and nonlicensees. In its second stage the firms simulta- 
neously and independently decide on whether or not to accept his offer. In the 
third stage, each firm determines its Cournot equilibrium output. This last 
stage is identical to the third stage of the previously described licensing games. 
Thus, (4a) and (4b), excluding the bid b e, can be employed to indicate 
licensees' and nonlicensees' profits for every number k of licensees. 

The patentee's first objective in the "chutzpah" mechanism is to determine 
the number of licenses that maximizes total industry profit, H, i.e., to 

max I l ( k )  = max k¢r(k) + (n - k ) ~ ( k )  
l ~ k ~ n  i ~ k ~ n  (30) 

where ff(=ff  + b) and zr(k)refer  to licensees' and nonlicensees' operating 
profits, respectively. Now let k be the maximizer of (30) a n d / I  = H(/~) be the 
corresponding maximum total industry profit. Let _Tr(n- 1) refer to a single 
nonlicensee's Cournot equilibrium profit, i.e., if all but this firm are licensed. 
Now the greatest licensing profit, G, the patentee can realize is 

c = O -  n ~ ( n  - 1) (31) 

because / I  is the maximum total industry profit under licensing and vr(n - 1) is 
what each firm can guarantee itself. 

Definition 2. A licensing mechanism is optimal if it achieves G. 

From (31) and Definition 2 it follows that 

Proposition 4. A license auction is an optimal licensing mechanism for a 
sufficiently large, e >1 2(a - c ) / (n  + 1), unit cost-reducing invention and a linear 
product demand function. 

Proof. Consider first 1 ~< k ~< K. Then, from (30), and suppressing the argu- 
ment k of H, ~r and _vr, 

/ I  = k~r + ( n  - k)_~ = k u r  - y )  + n y  

= k [ ( e ( K -  k ) / ( n  + 1) + e) 2 -  ( e ( K -  k ) / ( n  + 1)) 2 ] 

+ n ( e ( K -  k ) / ( n  + 1)) 2 

= k [ 2 e 2 ( K  - k ) / ( n  + 1) + e 2] + n[e(K - k ) / ( n  + 1)12 
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upon substitution for ¢r, licensees' operating profits, and £r, nonlicensees' 
operating profits from (9a) and (9b), and the collection of terms. Now, after 
some algebra, 

OII /Ok  = [2(K - k) + (n + 1)(n + 1 - 2 k ) ] [ e / ( n  + 1)12 . 

However ,  e i> 2(a - c ) / ( n  + 1) is equivalent to n + 1/> 2K, and since k ~< K, it 
follows that n + 1 - 2k/> 0. Thus, O H / O k  >t 0 for all k ~< K, and /7 = K for a 
maximum of H. But when K firms are licensed, the remaining unlicensed firms 
cease operating and E ( n -  1 ) =  0. 

Now for k ~  > K > ~ I  it follows from (3b) and (4b) that H =  k [ e ( K +  1)/  
(k  + 1)] 2, as 7r = 0, and it is easy to show that O H / O k  «- O. Thus, again/7 = K 
and _rr(n - 1) = 0. Finally, for K ~< 1 only one license is auctioned and £r(n - 
1) = 0. Therefore ,  a license auction is an optimal licensing mechanism because 
it yields the patentee G = ,O. [] 

The "chutzpah" mechanism is, therefore,  relevant if the unit cost-reducing 
invention is more modest,  i .e.,  e ~< 2(a - c ) / ( n  + 1). After  having determined 
the total industry profit-maximizing number of licenses, k, the patentee asks 
each firm for a fee 

B(/7)-(g(n-1)+p/n), iES ,  
/30 = Lri(/7 ) _ (£r(n - 1) + p / n ) ,  i~~(S ,  

(32) 

where S refers to the subset of licensees, and p > 0 is an arbitrarily small 
number.  If each firm agrees to pay its fee, then/7 are licensed and all n engage 
in the third-stage garne. However ,  if a nonempty subset R, ]R] = r, of them 
refuse to pay their fees, then those who agreed to pay are offered licenses at 
the price 

/31 = ¢r~(n - r) - ~ri(O ) - p / n  , i ~ R ,  (33) 

where ¢ri(n - r) refers to the third-stage Cournot equilibrium operating profits 
of a licensee if n - r firms are licensed, and 7ri(0) each firm's profit if none is 
licensed, i.e., its original preinvention equilibrium profit. From (32) it is clear 
that if every firm agrees to pay the fee, /30, proposed by the patentee,  then 
each licensee and nonlicensee will ultimately realize a profit slightly above what 
it can unilaterally guarantee itself. On the other hand, if there are r > 0 of 
them who refuse to pay, then they will each earn £ r ( n -  r), the profits of a 
nonlicensee in the presence of n - r  licensees, which is below their original 
profit, ~-(0). The remaining n - r firms who did agree to pay/30 will only have 
to pay /31 for a license, and will ultimately each realize a profit slightly above 
their original profit, ~r(0). From this, we can then state: 
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Proposition 5. By eliminating dominated strategies, it & a dominant strategy for 
each of  the n firms to accept the initial offer in the "chutzpah" mechanism. 

Proof. Let r be the number of firms who rejected the initial offer (the 
"refuseniks") and firm i be one of n - r firms who accepted it. Now i has the 
option of buying a license at the price/31. If he purchases a license his net profit 
will be er(t) - / 3 ,  when t is the total number of firms, including firm i, out of 
the n - r who had the option to buy a license at price/31, that chose to exercise 
it. On the other hand, if he chooses not to purchase a license, then his profit 
will be g ( t -  1), the profit of a nonlicensee in the presence of t -  1 licensees. 
But by (3a), (4a), and (33), it follows that 

~T(t)  -- /31 ~ "IT(O) -~- p / n  > ~_(t - 1), (34) 

since t ~< n - r. Thus, if r > 0, and i has accepted the patentee's initial offer, 
then regardless of what the other firms do he should purchase a license at the 
price/31 . 

What  remains to be shown is that i should always accept the initial offer. 
Suppose i rejects the initial offer. Then his profit will be ~(t) ,  the profit of a 
nonlicensee in the presence of some t ~< n - r licensees. But again by (3a) and 
(4a), ~(t)~< 7r(0)+ p/n. Thus, if some firms have rejected the initial offer, 
then regardless of the actions of other firms it is best for i to accept the initial 
offer and then purchase a license. So firm i, by accepting the initial offer and 
purchasing a license, will be better oft than it was originally, i.e., when it 
earned ~r(0). But this was due to some other firms refusing to agree to the 
patentee's initial offer. Suppose now that all the other firms except i agree to 
the patentee's initial offer. Then, based on the above argument, it is a 
dominant strategy for each of them to purchase a license. Firm i's prof t  will 
then be ~(n - 1), the profit of a nonlicensee in the presence of n - 1 licensees. 
This is clearly below ~-(0), his original profit and, even worse, below 
~(n - 1) + p/n, which is his net profit if he accepts the initial offer. Finally, 
then, it is in i's best interest to accept the initial offer. [] 

Thus, 

Proposition 6. The "chutzpah" mechanism is almost optimal in that it enables 
the patentee to realize licensing profits of  FI - n~_ (n - 1) - p. 

The patentee would prefer to employ the "chutzpah" mechanism to an 
auction for licensing modest unit cost-reducing inventions, e<~2(a -c ) /  
(n + 1). For less modest inventions he could do as well by auctioning licenses. 
The counterparts of Propositions 5 and 6 have been established for more 
general product demand functions in Kamien, Oren and Tauman (1988). 
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Note that the "chutzpah" mechanism relies on both a carrot and a stick. The 
stick part arises from the threat of putting the firm in its least profitable 
position by licensing all the other firms. The carrot part comes from providing 
the firm with a small reward, p, for paying the fee. Both the carrot and stick 
are necessary for the mechanism to work. If the reward is eliminated, p = 0, 
then each firm is indifferent between paying and not paying the fee because it 
will realize its lowest possible profit in either case. On the other hand, if the 
stick is relaxed, then the patentee cannot extract as much from licensing his 
invention. Also, the "chutzpah" mechanism relies on the possibility of having 
two opportunities for a firm to purchase a license for its implementation. Were 
there only one opportunity to purchase a license, this mechanism would appear 
not to be implementable. How the mechanism would have to be modified to 
accommodate more opportunities to purchase a license or in the limit as p --+ 0, 
remain open questions. From a real world standpoint it is difficult to cite an 
example of a counterpart to the "chutzpah" mechanism. The fact that it applies 
for modest cost-reducing innovations suggests that when its implementation 
costs are taken into account, a patentee might well resort to one of the more 
traditional licensing modes. Thus, at present the "chutzpah" mechanism should 
be regarded as a theoretical standard towards which any practical licensing 
mode might aspire. 

8. Licensing Bertrand competitors 

Thus far the analysis of alternative means of licensing has been conducted 
under the supposition that the potential licensees compete through selection of 
quantities. However, if they engage in price competition, Bertrand competi- 
tion, and each firm's original unit production cost is constant, c, then the 
analysis of licensing schemes is far simpler. As is weil known, price competition 
among firms with constant unit cost drives their profits to zero. Thus, the firm 
with the lower cost, c - e, will drive the others out of business and realize a 
profit of eQ(c), where Q(c) refers to the total quantity demanded at price c. 
The single firm with the superior technology could then become operative and 
it certainly will not charge a lower price if the intention is nondrastic. On the 
other hand, if the invention is drastic, the single firm with the superior 
technology will set a monopoly price Pm ~< C and realize a profit of eQ(Pm), 
where Q(Pm) is the quantity demand at the price Pro" In either event, there will 
be only one licensee and nonlicensees' profits, ff = 0. It follows, therefore, that 
the patentee can extract the licensee's entire profit by auctioning a single 
license, setting a fixed license fee equal to the licensee's profit, or setting a 
royalty equal to e, for a nondrastic invention, or the monopoly price Pm, for a 
drästic invention. The patentee's licensing profits are the same under any of 
these alternatives. 
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9. Concluding remarks 

Game- theore t ic  methods have made  it possible to address questions with 
regard to patent  licensing that could not be analyzed seriously otherwise. 
Obviously much remains to be done in bringing the models of patent  licensing 
closer to reality. For example,  introducing uncertainty regarding the magnitude 
of the cost reduction provided by an invention or the commercial  success of a 
new product  into the analysis of patent  licensing. Jensen (1989) has begun 
analysis in this direction. Another  obvious topic is the licensing of competing 
inventions, i.e., those that achieve the same end by different means.  Still 
another  is the question of licensing inventions in the absence of complete  
patent  protection.  Muto (1987, 1990), and Nakayama  and Quintas (1991) have 
begun analysis of licensing when the original licensee cannot prevent  his 
immediate  licensees f rom relicensing to others. They introduce a solution 
concept  called "resale-proofness"  and employ it to analyze the scope of 
relicensing. The basic idea is that relicensing may be limited to a subset of the 
firms in an industry, because the relicensing profit realizable by a licensee is 
below the decline in profits he will suffer as a result of having one more  firm 
with the superior technology to compete  with. An extreme case of this negative 
externali ty effect occurs when a firm that is a member  of the industry invents a 
superior  technology and only employs it alone. 

It is offen the case that a survey of a line of research is a signal of it having 
peaked.  This is certainly not true for game-theoret ic  analysis of patent  
licensing. 
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O. Introduction 

Of all solution concepts of cooperative garnes, the core is probably the easiest 
to understand. It is the set of all feasible outcomes (payoffs) that no player 
(participant) or group of participants (coalition) can improve upon by acting 
for themselves. Put differently, once an agreement in the core has been 
reached, no individual and no group could gain by regrouping. It stands to 
reason that in a free market outcomes should be in the core; economic 
activities should be advantageous to all parties involved. Indeed, the concept 
(though not the term) appeared already in the writings of Edgeworth (1881) 
(who used the term "contract curve"), and in the deliberations concerning 
allocation of the costs involved in the Tennessee Valley Project [Straffin and 
Heaney (1981)]. 

Unfortunately, for many garnes, feasible outcomes which cannot be im- 
proved upon may not exist-  the cake may not be big enough. In such cases 
one possibility is to ask that no group could gain much by recontracting. It is as 
if communications and coalition formations are costly. The minimum size of 
the set of feasible outcomes required for non-emptiness of the core is given by 
the so-called balancedness condition. The sets containing outcomes upon which 
nobody could improve by rauch are called e-cores. 

This chapter is organized as follows. In part I we survey the theory of cores 
in the case of transferable utility games-  i.e., games in which the worth of a 
coalition S [the characteristic function v(S)] is a single number, and a feasible 
outcome is an assigment of numbers (payoffs) to the individual players such 
that the total payoff to the grand coalition N is no larger then v(N) .  In Section 
1 we discuss the case of a game with finitely many players. In particular we 
prove the criterion [due to Bondareva (1963) and Shapley (1967)] for non- 
emptiness of the core [how big should v(N)  be for that?]. The important 
concepts of balanced collections of coalitions (a suitable generalization of the 
concept of a partition $ 1 , . . ,  S k of N) and of balanced inequalities [an 
appropriate generalization of the super-additivity condition v( N)  >1 v( S 1) + . . .  
+ v(S~) - a  condition which is obviously necessary for non-emptiness of the 
core] are introduced. In Sections 2 and 3 we consider games with infinitely 
many players-  in Section 2 we discuss the case where the set of players is 
countable, and in Section 3 the case of an uncountable set is considered. 
Already in the countable case there is a difficulty in the definition of a 
payoff -  should we restrict ourselves to countably additive measures or should 
finitely additive ones be allowed as weil? In the uncountable case one 
encounters additional problems with the proper definition of a coalition, and 
measure-theoretic and point-set-topologic considerations enter. The contribu- 
tions of Schmeidler (1967) and Kannai (1969) are surveyed. Results on convex 
games and on other special classes of games, due mostly to Shapley (1971), 
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Schmeidler (1972a) and Delbaen (1974), are discussed in Section 4, as weil as 
the determination of the extreme rays of certain cones of games [Rosenmüller 
(1977)]. 

In Part II we survey the theory of cores of garnes with non-transferable 
utility. For such garnes one has to specify, for every coalition S, a set V(S) of 
feasible payoff vectors x (meaning that the / th  component x i is the utility level 
for the /th player, i ~ S). In Section 5 we consider garnes with a finite set of 
players, and we prove the fundamental theorem, due to Scarf (1967), on the 
non-emptiness of the core of a balanced garne, by a variant of the proof given 
by Shapley (1973). We also survey a certain generalization of the concept of a 
balanced collection of coalitions due to Billera (1970), and quote a characteri- 
zation, also due to Billera (1970), of games with non-empty cores, valid if all 
sets V(S) are convex. In Section 6 we quote results on non-transferable utility 
games with an infinite set of players. There are substantial topological difficul- 
ties here, and many problems are still open. We survey a non-emptiness 
theorem for the countable case due to Kannai (1969), and quote an example by 
Weber (1981) showing that this theorem cannot be improved easily. An 
existence theorem due to Weber (1981) for a somewhat weaker core is 
formulated. 

In Part III we survey some economic applications of the theory. In Section 7 
we present a simple model of an exchange economy with a finite set of players 
(traders). We follow Scaff (1967) in constructing a balanced garne with 
non-transferable utility from this economy. We survey the theory, due to 
Shapley and Shubik (1969), of market games with transferable utility and 
identify these garnes with totally balanced garnes. We also quote the Billera 
and Bixby (1974) results on non-transferable utility garnes derived from 
economies with concave utility functions. We conclude Section 7 by explaining 
how one might obtain a proof of the existence of a competitive equilibrium 
from the existence of the core, and by mentioning other economic setups 
leading to garnes with non-empty cores. We do not deal with assignment garnes 
and their various extensions owing to lack of space. Section 8 is devoted to a 
(very brief) survey of the subject of e-cores for large (but finite) market garnes. 
The classical definitions and results of Shapley and Shubik (1966) for replicas 
of market games with transferable utility are stated. The far-reaching theory, 
initiated by Wooders (1979) and extended further in many directions, is 
indicated. We mention various notions of e-cores of economies and of non- 
transferable utility garnes. We conclude by a remark on the continuity prop- 
erties of e-cores. The initiated reader will note the omission of market garnes 
with an infinite set of players. The reasons for this omission - besides the usual 
one of lack of space-a re  that peffectly (and imperfectly) competitive 
economies are treated fully elsewhere in this Handbook (Chapters 14 and 15 
and the chapter on 'values of perfectly competitive economies' in a forthcom- 



358 Y. Kannai 

ing volume of this Handbook),  and that this theory has very little to do with 
the theory of balanced garnes, as treated in Sections 2, 3 and 6 of the present 
chapter. (We also did not include a detailed discussion of non-exchange 
economies, externalities, etc.) 

I. G A M E S  W I T H  T R A N S F E R A B L E  U T I L I T Y  

1. Finite set of players 

Let N =  {1, 2 , . . ,  n} be the set of all players. A subset of N is called a 
coalition. The characteristic func t ion  (or the worth function) is a real-valued 
function v defined on the coalitions, such that 

v(~) = 0 .  (1.1) 

An outcome of the game (a p a y o f f  vector) is simply an n-dimensional vector 
x = (x 1 . . . . .  xn); the intuitive meaning is that the /th player "receives" x i. 
Usually one requires that the payoff vector satisfies (at least) the following 
conditions: 

x i = v ( N )  (1.2) 
i = i  

( feasibil i ty and Pareto-optimali ty) ,  and 

x i~>v({i}),  i = 1  . . . .  , n  (1.3) 

( individual  rationality). Condition (1.2) incorporates both the requirement that 
the members of the grand coalition N can actually achieve the outcome x 
(ET= 1 x i <~ v ( N )  - feasibility) and cannot achieve more (r.i~=l x i >~ v ( N )  - 
Pareto optimality). Condition (1.3) means that no individual can achieve more 
than the amount allocated to hirn as a payoff. Note that individual rationality 
and feasibility are not necessarily compatible; clearly 

v({i}) ~< v ( N )  (1.4) 
i = 1  

is needed. We will assume that the set of payoff vectors satisfying (1.2) and 
(1.3) is non-empty. If equality holds in (1.4) we are left with the trivial case 
xi -= v({i}). Hence we will assume that in (1.4) the inequality is strict, so that 
we deal with an (n - 1) dimensional simplex of individually-rational, Pareto- 
optimal outcomes. 
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If ZiE s xz < v(S) for a coalition S, then the members of S can improve their 
payoffs by their own efforts. The core is the set of all feasible payoffs upon 
which no individual and no group can improve, i.e., for all S C N, 

x i >~ v(S) .  (1.5) 
i~S 

[Note that individual rationality and Pareto optimality are special cases of 
(1.5) - when we take S to be the singletons or N, respectively- while feasibility 
requires an inequality in the other direction. Thus v(N) plays a dual role in the 
theory.] 

It is clear that additional super-additivity conditions, besides (1.4), are 
necessary for the existence of elements in the core. Let S 1 . . . . .  Sk be a 
partition of N (i.e., S~ f3 Sj = 0 if i ¢ j, S i C N for 1 ~< i ~< k and N = U~=l S~). It 
follows from (1.2) and (1.5) that 

k 

v(Si) «- v(N) (1.6) 
i = 1  

has to be satisfied for the core to be non-empty. Condition (1.6) is, unfortu- 
nately, rar from being sufficient, as the following example shows. 

Example 1.1. n = 3, v(S)= 1 for all coalitions with two or three members, 
v({i}) = 0 for i = 1, 2, 3. Then (1.6) is satisfied. However, writing conditions 
(1.5) explicitly for all two-person eoalitions and summing them up, we obtain 
the inequality 

3 

2 ~ x i ~ > 3  
i = 1  

o r  

3 

x/~>l .5 .  
i = 1  

Hence x is not feasible when v (N)= 1, and becomes feasible (and the core 
becomes non-empty) only if v(N) >1 1.5. 

The proper generalization of the concept of a partition is that of a balanced 
collection of coalitions, defined as follows. The collection { S I , . . . ,  S~} of 
coalitions of N is called balanced if there exist positive numbers 1 1 , . . ,  i k 
such that for every i E N, Zj;sj~i Aj = 1. The numbers 1 1 , . . ,  A k are called 
balancing weights. 
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Every partition is a balanced collection, with weights equal to 1. For every 
positive integer j, set Sj = N\{j}.  Then {Sj} is a balanced collection with Aj -~ 1 / 
(n - 1). Note that it is possible to write the balancedness condition as 

k 

2 Ajlsj(i) =- IN(i), (1.7) 
] = 1  

where Is(i ) is the indicator function of S [Is(i ) = 1 if i E S, Is(i ) = 0 otherwise]. 
Garnes with non-empty cores are characterized by 

Theorem 1.1 [Bondareva (1963) and Shapley (1967)]. The core of the garne v 
is non-empty iff for every balanced collection { $ 1 , . .  , Sk} with balancing 
weights A 1 , . .  , Ak, the inequality 

k 

~'~ Ajv(S~) <~ v(N) (1.8) 
]=1  

holds. 

Note that (1.8) is a generalization of (1.6). Note also that in Example 1.1 the 
inequality (1.8) implies in particular that v (N)~  1.5 if one considers the 
balaneed collection {{2, 3}, {1, 3}, {1, 2}} (with weights 1/2). A garne satisfy- 
ing the inequalities (1.8) for all balanced collections is ealled balanced. 

Proof. (i) Necessity. Let {Sj}~= a be a balanced colleetion with balancing 
weights A 1 , . . ,  A k. If the core is non-empty and x is a payoff vector in the 
eore, then by (1.5) 

x i>lv(Sj), j = a , . . . , k .  (1.9) 
i ~ S  i 

Multiplying both sides of (1.9) by •j and summing from 1 to k, we obtain: 

k k 

Aj E x,/> Z aj~(sj). (1.1o) 
j = l  i~Sj  j = l  

By balancedness, the left-hand side of (1.10) is equal to Zi"__ ~ x/. Hence by 
(1.2) the left-hand side of (1.10) is equal to v(N) and (1.8) follows. 

(ii) Sufficiency. The statement, "the validity of (1.8) for all balanced 
collections implies that the system (1.5) of linear inequalities is compatible with 
(1.2) (i.e., that the core is non-empty)", is a statement in the duality theory of 
linear inequalities. In fact, the validity of (1.8) for all balanced collections is 
equivalent to the statement that the value vp of the linear program 
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maximize ~ v(S)y  s (l .11) 
S e N  

subject to 

~, Is ( i )y  s = 1,  i =  1 . . . .  , n ,  (1.12) 
S C N  

ys>~O, S C N ,  (1.13) 

satisfies Vp = v(N).  [Clearly vp ~> v(N).] But then the value v a of the dual 
program 

minimize ~ x i (1.14) 
i = 1  

subject to 

Is ( i )x  i > t v ( S ) ,  S C N ,  (1.15) 
i = 1  

satisfies vd = v(N)  as well, i.e., there exists a vector (xl , .  • . ,  xn) satisfying the 
inequalities (1.15) [the same as the inequalities (1,5)] such that £i~1 xi = 
v(N) .  [] 

Note that a different formulation of duality theory is needed for garnes with 
infinitely many players (see Theorem 2.1 and the proof of Theorem 2.2). 

For certain applications of Theorem 1.1 the set of all balanced collections of 
subsets of N is much too large. It turns out that a substantially smaller subset 
suffices. 

We say that the balanced collection { $ 1 , . . ,  S~) is a minimal balanced 
collection if no proper subcoUection is balanced. It is easy to see that if a 
balanced collection is minimal, then k ~< n, the balancing weights are unique, 
strictly positive, and rational, and that any balanced collection is the union of 
the minimal balanced collections that it contains. Moreover, the balancing 
weights for a balanced collection C are convex combinations of the balancing 
weights of the minimal balanced collection contained in C [Shapley (1967), 
Owen (1982)]. From these facts it is not difficult to derive the following 
theorem, also due to Bondareva (1963) and Shapley (1967). 

Theorem 1.2. The core o f  the garne is non-empty iff  for every minimal 
balanced collection { $ 1 , . .  ,Sk} with balancing weights A 1 . . . .  , Ak, the 
inequality (1.8) holds. 
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Table 1 
Balanced sets for n = 4 

Weights 
{12},{34} 1,1 
{123},{4} 1,1 
{12},{3},{4} 1,1,1 
{123},{124},{34} 1/2,1/2,1/2 
{1},{2},{3},{4} 1,1,1, I 
{12},{13},{23},{4} 1/2,1/2,1/2,1 
{123},{14},{24},{3} 1/2,1/2,1/2,1/2 
{123},{14},{24},{34} 2/3,1/3,1/3,1/3 
{123},{124},{134},{234} 1/3,1/3,1/3,1/3 

Y. Kannai 

The determinat ion of all minimal balanced collections in N is not easy for 
large n. An algorithm is given in Peleg (1965). Table 1 of all minimal balanced 
collections (up to symmetries) for n = 4, is taken f rom Shapley (1967). 

In general,  the core is a compact  convex polyhedron,  and determinat ion of 
the payoffs in the core involves solving the linear system (1.2), (1.5). For the 
special class of convex garnes, introduced by Shapley (1971) and described in 
Section 4, one can write down explicitly the extreme points of the core. 

We close this section with an example of a balanced garne with a single point 
in the core; some feel uneasy about  the intuitive meaning of this payoff. 

Example 1.2. n = 3, v(S) = 0 unless S = N, S = {1, 2} or S = {1, 3}; for those 
S, v(S) = 1. The only payoff  in the core is x 1 = 1, x 2 = x 3 = 0. The coalition 
{2, 3} cannot improve upon x 2 + x 3 - -0;  yet this coalition could block the 
payoff  by disagreeing to cooperate  with 1. 

This example  underlines the meaning of (1.5) as requiring that no coalition S 
could improve upon Zie s x i, rather  than that no coalition S could "ob jec t "  or 
"block the payoff"  [Shapley (1972)]. 

2. Countable set of players 

In this section we assume that  the characteristic function v is defined on the 
subsets of a countable set N of players [and (1.1) is satisfied]. Without  loss of 
generali ty N is the set of positive integers. We may look for outcomes of the 
form x = (x 1, x 2, . . .  , x n, . . . ) ,  where x i is the amount  "paid"  to player i, i E 
N, and restrict ourselves to vectors x such that (1.3) is satisfied for all i and 
(1.2) is replaced by 



Ch. 12: The Core and Balancedness 363 

2 xi = v (N) .  (2.1) 
i=1 

For technical reasons it will be convenient to assume here and in the next 
section that v ( S ) ~  0 for all coalitions S. In particular v({i})~> 0 for all i E N 
[as a matter  of fact, one usually makes the stronger assumption that v({i}) = 0 
for all i EN].  It then follows from (2.1) and (1.3) that the series ~~=1 Xi 
converges (absolutely), or that x E l 1. We can now define the core as the set of 
l 1 vectors satisfying (2.1) and (1.5) for all (finite or infinite) subsets S of N. The 
concept of a balanced collection of subsets of N carries over verbatim from the 
finite c a se - con d i t i o n  (1.7) makes perfectly good sense, and it is proved 
exactly as in the finite case that balancedness of the garne is necessary for 
non-emptiness of the core. 

Unfortunately,  the analog of the sufficiency part of Theorem 1.1 does not 
carry over, as the following example shows. 

Example 2.1. [Kannai (1969)]. Let v(S) vanish for all S C N except when S 
contains an infinite segment, i.e. 3 k  E N such that S D {i E N: i/> k}, and for 
those S, v(S)= 1. Then the inequalities (1.8) clearly hold for all balanced 
collections, but if (1.5) is valid, then E~=~ x i = 1 for all k, so that x ~ l  1. 

Clearly, a version of the duality theorem, valid for infinite systems, is 
required. We quote the relevant theorem in a form due to Ky Fan, which, 
while perhaps not the simplest to apply in the finite case, is the most 
transparent in the infinite case. 

The following is Theorem 13 in Fan (1956): 

Theorem 2.1. Let {Xv} u~l be a family of  elements, not all O, in a real normed 
linear space B, and let {%}ùc~ be a corresponding family of  real numbers. Let 

o" = sup ~ Aj%, (2.2) 

when k = 1, 2, 3 , . . . ,  ~ E I and A i vary under the conditions 

)t j>O(l<~j<~k); I ~ ' ~ A j x ~ j l = l .  (2.3) 

T h e n  

(i) The system 

f(x~)>~% ( u E I )  (2.4) 

of linear inequalities has a solution f E B* if and only if o" is finite. 
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(ii) I f  the system (2.4) has solutions f E B*, and if the zero functional is not a 
solution o f  (2.4), then o- is equal to the minimum of  the norms of  all solutions of  
(2.4). 

(Here  B* denotes the conjugate space of the normed linear space B.) 
Inspecting Theorem 2.1, one realizes that in order  to obtain a payoff vector 

in l 1, l a has to be regarded as the conjugate space B* of a Banach space B. 
(Note that this condition is essential for the validity of the compactness 
argument needed for passing from finite to infinite set of inequalities.) But then 
B = c o - the subspace of l ~ consisting of all sequences (Yl, • • -,  Yn, • • .) such 
that y,, tends to zero. Interpreting the inequalities (1.5) as inequalities of the 
type (2.4) implies that the indicator functions I s for the relevant coalitions S 
have to be elements of c 0. But I s E c o iff S is finite. We are thus led to the 
following theorem. 

Theorem 2.2. Let v satisfy 

v(S) = O, if  S is infinite and S ¢ N ,  (2.5) 

and let v be balanced. Then there exists a vector x E l I such that x is in the core 
of  v. 

Proof. To apply Theorem 2.1, consider B = c o with the 1 = (maximum) norm 
(then B* = l l ) ,  I is the set consisting of all finite subsets of N, x~ stands for Is, 
the indicator function of the coalition S, and % = v(S). Then the system (2.4) 
is just the system (1.5), and the condition (2.3) reads 

k 

- 1  <~ ~ A]Isj(i ) ~< 1 (2.6) 
]=a  

(in fact the sum is always non-negative). 
There  exists a collection {Tt}, 1 <~ l ~  < m, and positive numbers /x t such 

that the collection {S 1 . . . .  , S k } U { T a , . . . ,  Tm} is balanced, with weights 
3 , 1 , . . ,  )t h , / X l , . . . ,  tx m . By (1.8) 

k 

E Aiv(S i) + ~ I~,v(T«) «- v ( N ) .  (2.7) 
j = l  l=1 

k A]V(S]) <~ v(N) that o- H e r e  El= 1 SO [defined by (2.2)] is finite. [] 

The indicator functions of infinite sets belong to l ~. The conjugate space of l ~ 
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is ba [Dunford and Schwartz (1958)]-  the space of finitely additive measures 
on N. Accordingly, we may define the concept of a payoff to mean a (not 
necessarily countably additive) measure/x defined on the subsets of N. 

We replace (2.1) (feasibility and Pareto optimality) by 

tx(N) = v (N)  , (2.8) 

and individual rationality (1.3) by 

/x({ i}) />v({i}) ,  i E N .  (2.9) 

The core is defined as the set of measures tx satisfying, besides (2.8) and (2.9), 
the "group rationality" conditions [replacing (1.5)]: 

tx(S) >1 v ( S ) ,  for all S C N .  (2.10) 

Exactly as in the proof of Theorem 2.2, we can prove the following theorem 
[a special case of a theorem due to Schmeidler (1967)]: 

Theerem 2.3. The core o f  v is non-empty if  and only i f  v is balanced. 

A measure/x can be decomposed into a sum of a countably-additive measure 
ix I (an element of l 1) and a purely finitely additive measure /x 2. If tx is 
non-negative, then /x  is purely finitely additive iff/~({i}) = 0 for all i E N [or 
/x(S) = 0  for all finite sets S]. In Example 2.l  all elements in the core are 
purely finitely additive. For every ultra-filter F [Dunford and Schwartz (1958)] 
which refines the fiilter of all sets with finite complements there is a purely 
finitely additive measure tXF such that tXF(S ) = 1 iff S E F. Each such tXF is in 
the core of the game given in Example 2.1, and the core is the set of all infinite 
convex combinations of measures/x F. Orte might regard F as an ideal player, 
since for every player i ~ N there corresponds the ultra-filter F(i) consisting of 
all S C N such that i C S. The ideal players stand for "crowds" or "multi tudes" 
which are stronger than the combined strengths of the individuals they contain. 

Natural questions that arise are (assuming, of course, that the garne is 
balanced): 

(i) When does there exist a countably-additive/~ in the core? 
(ii) When are all elements in the core countably-additive? Rephrasing, we 

ask: (i) when do the ordinary players have some power and the ideal players 
do not have all the power (in the core), and (ii) when do the ideal players have 
no power? The following examples show that the condition (2.5) is rar from 
being necessary for a positive answer to question (i), or even for question (ii). 
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Example 2.2.  v(S) = 1 if 1 E S and S is infinite, otherwise v(S)= 0. In the 
only element in the core player 1 gets 1, all other individuals and all sets not 
containing 1 get zero. 

A more complicated situation is exhibited in the next example. 

Example 2.3. Set (k, w) = {i E N: k < i} and define the game v by v({1} U 
(k, ~ ) ) =  1 for all k >/2, v({2} U (k, w))=  1 for all k t> 2, v ( S ) =  0 for all other 
S C N, S # N. This game will be balanced if v(N)  >/1, but an l ~ vector x in the 
core must satisfy Xa, x 2 t> 1. Hence the minimal value which has to be set for 
v (N)  so that there exist l ~ elements in the core is 2. 

Theorem 2.1 and the examples lead one to look for "relatives" of the given 
game v, in the class of garnes that satisfy (2.5). Thus, one feels that the garne 
described in Example 2.3 is related to the garne defined by v({1}) = v({2}) = 
v (N)  = 1, v(S) = 0 otherwise. Similarly, the garne of Example 2.2 is related to 
the garne v({1}) = v(N)  = 1, v(S) = 0 otherwise, whereas the garne of Example 
2.1 is not related to any such game. A precise concept of "relatedness" of 
garnes will now be formulated. 

Definition 2.1. Let  v I and u 2 be balanced games defined on the subsets of N. 
The garne v 2 is called an extension of v I if v2(S ) > vl(S ) for all S C N and 
v2(N ) = v~(N). 

Definition 2.2. The garne v is said to be generated by the finite subsets of N if 
v(S)  = 0 if S is infinite and S # N, v is balanced, and 

k 

v (N)  = sup ~] Aiv(Si), (2.11) 
i= l  

where the supremum is extended over all finite sequences A i and S~, A i > 0 and 
S i C N, S i ¢: N and E/k=l Ailsl <~ I u. 

Following Kannai (1969) we can now state a solution to question (i). 

Theorem 2.4. A balanced garne v defined on the subsets of  N has a countably 
additive measure in its core iff there exists a common extension of  both v and a 
garne that is generated by the finite subsets of  N. 

For the (not difficult) proof  we refer to Kannai (1969). 
We know of no simple general answer to question (ii) (see also Section 4). 
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Example 2.2 seems to indicate that there exists no such simple answer. We 
note the following simple remark. 

Remark 2.1. If v is balanced and v({1 . . . .  , n})---~ v (N) ,  then every element 
of the core is countably additive. 

3. Uncountable set of players 

In the general case the notion of an individual player is not always very 
meaningful. Instead, a garne is just a set function v defined on a field X of 
subsets of a set X, such that (1.i)  is satisfied. We assume in this section that v 
is non-negative. A feasible payoff is a (finitely additive) non-negative measure 
IZ, defined on X, such that 

ù ( x )  = v ( x )  (3.1) 

[compare (2.1)]. The subsets S E X are called coalitions. A coalition S cannot 
improve upon the payoff /x  if 

tx(S) >1 v (S )  . (3.2) 

The payoff /x  is in the core of v if (3.2) is satisfied for all S in X. 
Schmeidler (1967) called a garne v balanced if 

k 

sup E A,v(S~) ~ v ( X ) ,  
i = l  

(3.3) 

where the sup is taken over all finite sequences A i and Si, the A i a r e  

non-negative numbers, the Si are elements of X, and 

k 

Ails,(X ) <~ Ix (x )  , (3.4) 
i = l  

for all x E X. [Here, as in Sections 1 and 2, I s (x  ) is the indicator function of S.] 
The foUowing theorem (of which Theorem 2.3 is a special case) is proved in 
Schmeidler (1967). 

Theorem 3.1. The game v has a non-empty  core i f f  v is balanced. 

It is proved, exactly as in Section 1, that if the core is non-empty, then v is 
balanced. For the converse, consider the Banach space B = B ( X ,  X ) -  the 
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space of all uniform limits of finite linear combinations of indicator functions of 
sets in ~. It is weil known [Dunford and Schwartz (1958)] that the conjugate 
space B* is (isometrically isomorphic to) the space of all bounded additive set 
functions defined on ~, normed by the total variation. Hence one can deduce 
Theorem 3.1 from Fan's theorem (Theorem 2.1). [] 

The set of all countably additive set functions on X is in general a proper  
subset of B(X,  X)*,  which is not closed in the w*-topology on B(X,  X)*. 
Hence one cannot apply Ky Fan's method directly to find out whether there 
exists a countably additive measure in the core of /x  [problem (i) in Section 2]. 
One can nevertheless proceed indirectly and prove 

Theorem 3.2. A garne v has a countably additive measure in its core iff there 
exists a non-negative set function w(S) defined on 22 such that w(O) = 0 and such 
that for each decreasing sequence {Se} o f  elements o f  22 with empty intersection 
we have w(Si)-+ O, and 

sup A,v(Si) - txjw( Tj) <~ v(X)  , 
- ] = 1  

(3.5) 

m where the supremum is taken over all finite sequences {Ai}/~~, {/xj}j= 1 of  
positive numbers, and {Si}i" l, { Tj} jml o f  elements o f  22, such that 

l ~ i l s i ( X )  - -  /zjlrj(x ) ~< 1,  
j = l  

(3.6) 

for all x E X.  

For a proof,  see Kannai (1969). 
In Section 2 we made use of the facts that l 1 = (Co)* and that the indicator 

functions of finite sets are in Co, to prove the existence of countably additive 
measures in eores of certain classes of games. A Banach space whose dual 
consists of countably additive measures is the space C(K) of continuous 
functions on a compact Hausdorff  space K. In analogy to Section 2 we make 
the following definitions. 

Definition 3.1. Let  v a and v 2 be balanced games defined on a field X of subsets 
of X. The garne v 2 is called an extension of v, if v2(S ) >t vl(S ) for all S E X, 
and v2(X ) = v l ( X  ). 

Definition 3.2. Let  ~ be a subfamily of X. The game v is said to be generated 
by ~ if 
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v ( S ) = O ,  i f S ~ o ~ a n d S # X ,  (3.7) 

and 

k 

u(X) : sup ~ l~iu(Si) , (3.8) 
i = 1  

where the supremum is extended over all finite sequences of Ag and Sg, Ag > 0 
and Sg E Z, Sg ~ X, and 

k 

E AiIsi (x) ~ ]x(X),  
i = 1  

for all x ~ X .  

Unlike the countable case we also need a stronger concept of extension. For 
this we set for any garne v and for any subset S C X, 

k 

bv(S)  = sup ~ .~iu(Si), (3.9) 
i = 1  

where the supremum is extended over all finite sequences ]~i and Sg, A z > 0 and 
k Affsi(X ) ~ Is(x ) for all x E X. [Thus, a garne is bal- S i ~ X, S i 7 A X ,  and ~ ' i = l  

anced iff v ( X )  >1 bv(X). ] 

Definition 3.3. The extension w of v is said to be restricted if w(S)  <~ bv(S ) for 
all S E X. 

We can now state a theorem on countably additive measures in cores of 
garnes defined on the Borel  subsets of a compact Hausdorff  space. 

Theorem 3.3. Let X be a compact Hausdorf f  space and let Z be the Borel field 
o f  X.  The balanced garne v (defined on X )  has in its core a regular countably 
additive measure iff  there exists a garne which is both an extension o f  v and a 
restricted extension of a garne generated by the closed subsets of X. 

(We recall that the Borel  field of a topological space is the cr-field generated 
by the closed subsets of X.) 

Outline of proof. (i) Assume that the regular countably additive measure k~ is 
in the core of the garne v. Define a garne u by u(S)  =/.~(S) if S is closed and 
u(S)  = 0 otherwise. Then u is clearly generated by the closed subsets of X, and 
by regularity u is a restricted extension of u (obviously,/x is an extension of u). 
(ii) Let  u be a garne generated by the closed subsets of X. We cannot apply 
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Theorem 2.1 as in the previous sections, since the indicator function I s, of a 
closed subset S of X is not, in general, a continuous function. In order to 
translate the inequalities (3.2) into inequalities of the form (2.4) with xù ~ B = 
C(X)  (and f E B*),  we consider the system of linear inequalities 

L(g)>~u(S) ,  if «>~ I s ,  (3.10) 

for all Borel subsets S C X and g E C(X) (such that g >1 Is). It follows from 
Theorem 2.1 that there exists a functional L ~ B* satisfying all inequalities 
(3.10) and IIL[I = u(X)= v (x ) .  By the Riesz representation theorem, there 
exists a regular countably additive measure /x  defined on Z such that 

L(g)  = fx  g d /x ,  for all g C C ( X ) .  (3.11) 

By Urysohn's  lemma [Dunford and Schwartz (1958)] and regularity, (3.10) and 
(3.11) imply that (3.2) is satisfied (for the garne u) for all closed subsets S of X. 
Let  w be a restricted extension of u and an extension of u. Then /x  is in the core 
of w, and thus also in the core of v. Further details can be found in Kannai 
(1969). [] 

It is possible to combine Theorems 2.4 and 3.3. This can be done by noting 
that N is a dense subset of a compact Hausdorff  space /3N - the S tone-Cech  
compactification of N. (In fact, the elements of jgN\N are the ultrafilters that 
support  the purely finitely additive measures on N.) The following theorem is 
proved in Kannai (1969): 

Theorem 3.4. Let X be a completely regular Hausdorff space and let X be the 
Borel field of  X. The balanced garne v (defined on Z )  has in its core a regular 
countably additive measure concentrated on a countable union of compact sets 
iff there exists a garne which is both an extension of  v and a restricted extension 
of  a garne generated by the compact subsets of  X. 

Recall that a measure /x is said to be concentrated on a set Y if S N Y = ~J 
implies /x (S)=  0. Note that the compact subsets of N with the discrete 
topology are precisely the finite sets. Thus Theorem 2.4 is contained in 
Theorem 3.4. 

4. Special classes of games 

In this section we consider garnes v defined on a field Z of subsets of a set X 
such that (1.1) is satisfied. (This includes all cases discussed in the previous 
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sections.) We assume also that v is non-negative. An interesting class of garnes 
is the following: 

Definition 4.1. A game v is called convex if for all coalitions S, T, 

o(s) + ~(~) <- o(s u T) + o(s n r ) .  (4.1) 

Consider first the case of a finite set of players N. Let  vr be a permutation of N, 
i .e. ,  vr: N--* N is one-to-one,  and set 

T(vr, k ) = { i ~ N :  v r ( i ) < k } ,  k = 0 , 1 , . . , n ,  (4.2) 

and 

X i ( v r ) : v ( T ( w ,  ~ - ( i ) ) ) -v (T(vr ,  ~ ( i ) -  l ) ) ,  i : l , . . . , n .  (4.3) 

Theorem 4.1 (Shapley). The vertices o f  the core o f  a convex game are the 
payoffs (xl(w),  . . . , xn(vr)) for all permutations vr of  N. 

Shapley (1971) also noted that the average of all n! payoff vectors (4.3) is 
the value (see the chapter on ' the Shapley value' in a forthcoming volume of 
this Handbook) .  Ichiishi (1981) observed that the converse of Theorem 4.1 is 
also true, i.e.,  if all n! payoff vectors (xl(vr), . . .  , xn(vr)) are contained in the 
core of a garne, then the game is convex. 

Another  class of games is the following: 

Definition 4.2. A game v is called exact if for every S E Z there exists a /x  in 
the core of v such tha t /x (S )  = v(S).  

It was proved by Shapley (1971) in the finite case and by Schmeidler (1972a) 
in general that convex games are exact. Moreover,  Schmeidler (1972a) proved 
also that for exact games one can solve completely question (ii) of Section 2. 

Theorem 4.2. Let v be an exact game. Every element in the core of  v & 
countably additive i f f  for any monotone increasing sequence S n in ~ with 
U 7 = ,  sn = x ,  v(sù)-~ ~(x). 

If v is not exact but bv (X  ) is finite, one can define a new game fr, called the 
exact cover of v, by 

« ( s )  = sup a , v ( s i )  - a b o ( X )  , (4.4) 
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where the supremum is taken over all finite sequences A~, S c and numbers A 
k Acls, - A <~ I s. Schmeidler (1972a) such that ,~c>0, A > 0 ,  S ; E X ,  and  Ec=~ 

proved that 

«(S) = inf{A(S): A in the core of v} . (4.5) 

It follows that every element in the core of the balanced game v is countably 
additive iff for any monotone increasing sequence S n in 2 with U =n=l Sù = X, 
~(Sn)--~ v ( X ) .  We call this condition "continuity at X "  for v. 

Schmeidler conjectured that if v is exact, continuous at X, and I; is not a 
o--field, then there exists an exact garne w defined on the o--field generated by 
Y, such that w Iz = v and w is continuous at X. Delbaen (1974) disproved this 
conjecture.  Delbaen also determined the exposed points of the core of some 
convex garnes, and studied various continuity properties of the core and 
elements in it. 

Another  conjecture of Schmeidler is still open: an exact game v such that, 
for any monotone  decreasing sequence S n in X such that (-'1~:1 S~ =~ ,  
v(Sù)-->O, has a countably additive measure in its core. 

Shapley (1971) noted that the set of all convex games defined on the same 
field ~ of subsets of X is a convex cone, and raised the question of determining 
its extreme rays. Rosenmüller (1977, and references quoted there) has an- 
swered this question, as weil as that of characterizing the extreme rays of the 
cone of super-additive garnes. An essential step is a representation of convex 
games as envelopes of affine garnes (analogously to the representation of 
ordinary convex functions as envelopes of affine functions). Rosenmüller also 
relates the structure of extreme convex garnes to the structure of extreme 
elements in the core. 

Rabie (1981) has exhibited an exact garne for which the value is not an 
element of the core. 

It is well known that the core is contained in every Von N e u m a n n -  
Morgenstern stable set (Chapter 17 of this Handbook).  For convex garnes, the 
core is the unique stable set [Shapley (1971)]. 

II .  G A M E S  W I T H  N O N - T R A N S F E R A B L E  U T I L I T Y  

5. Finite set of players 

As in Section 1, the set of players is the set N = { i , . . . ,  n}, and a coalition is a 
subset of N. Since utility cannot be transferred between different players (even 
if they are members of the same coalition), we always have to specify all 
components  of a vector x = (x~ . . . . .  xn) E RN( = Rn).  Here  x c is the amount 
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paid to t h e / t h  player. We denote by R s the subspace of R N defined by x~ = 0 
• • S R S for i ~ S .  A coalition S controls the projectlon x of x on given by the 

restriction of x to the coordinates indexed by the elements of S. 
Formally, it is convenient to define a non-transferable utility n-person game 

(sometimes called an n-person game without side payments) as a set-valued 
function V (a correspondence) defined on the coalitions, such that: 

v ( 0 )  = ~, 

for all S ~ O, V ( S )  is a non-empty closed subset of R N , 

(5.1) 

(5.2) 

if x ~ V ( S )  and y~ ~< x~ for all i E S, then y E V ( S ) .  (5.3) 

The meaning of (5.3) is that V ( S )  is a "cylinder",  that is, the Cartesian product  
of a subset of R s with R N\s (this is done only for technical convenience), and 
that a coalition S can achieve, along with every vector, all vectors paying less to 
every member  of S (this is a more substantive assumption). A transferable 
utility garne v can be translated into a non-transferable utility game V by 
setting 

V(S)=[x~RNi E xi~u(S)} (5.4) 
i~s 

for all non-empty coalitions S. This example suggests the following condition, 
which we will always assume. 

There  exists a closed set F C R N such that 

V ( N )  = {x  E RN: 3 y  ~ F with x~ ~< y~ for all i ~ N } .  (5.5) 

Thus, a payoff x is feasible if there exists y E F with x i ~ yi  for all i E N. It is 
individually rational if for no i E N there exists y E V({i}) such that x i < y~. To 
simplify matters, we will assume that 

V({i}) = { x E  RN: x i<~O} . (5.6) 

Feasible, individually rational payoff vectors exist only if F contains at least 
some vectors with non-negative components.  We will assume that 

F N {x  E RN: X i ~ 0 for all i ~ N} is a non-empty compact set .  (5.7) 

The coalition S can improve upon the vector x if there exists y ~ V ( S )  with 
xi < Yi for all i ~ S. By (5.3) S can improve upon x iff x E int V ( S ) .  Hence the 
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core of the garne V, defined as the set of all feasible payoff vectors that cannot 
be improved upon by any coalition, coincides with V ( N ) \ U s c u  int V(S).  

It is clear that V ( N )  has to be sufficiently large for the core to be non-empty. 
In analogy to the terminology used in the case of transferable utility, Scarf 
(1967) defined a balanced garne to be a game V in which the relation 

k 

f'-) V(Si) C V (N)  (5.8) 
i = l  

holds for every balanced collection S 1 . . . .  , S~ of subsets of N [compare (1.7) 
and the definition following the statement of Theorem 1.1]. [Note that if V is 
obtained from the transferable utility game v by (5.4) and v is balanced in the 
sense that all inequalities (1.8) hold, then (5.8) holds for V.] Scaff proved the 
following 

Theorem 5.1. Every balanced game has a non-empty core. 

Our proof of Theorem 5.1 follows mostly Shapley (1973), and incorporates 
some ideas due to Kannai (1970a). 

The first step of the proof consists of the establishment of topological 
lemmas which generalize Sperner's lemma and the Knaster, Kuratowski and 
Mazurkiewicz theorem [Burger (1963)]. We need some more notation. Let 
e 1 . . . .  , e" be the unit vectors in R u. For every non-empty coalition S, let A s be 
the convex hull of {ei: i E S } ,  and let m s denote the barycenter of A s 
(m s = 2ic s ei/JsI). Let X be a simplicial subdivision of A N. Let V(~) denote 
the set of vertices of ~; (i.e., the set of vertices of simplices in X ). A labelling of 
V(,Y) is a function f from the vertices of ~ into the non-empty subsets of 
N ( f ( q )  C N, f (q)  # 0). (Recall that conventionally - but not here - a labelling 
is a map f :  V ( X ) - + N . )  

Theorem 5.2 (Generalized Sperner's lemma). 
such that for  every S C N, S ~ O, 

Let f be a labelling o f  V ( 2 )  

f ( q ) C _ S ,  if q E V ( X ) N A  s .  (5.9) 

Then there exists a (not necessarily fully dimensional) simplex ~r in 2 such that 
the collection {f(q):  q ~ o-} is balanced. 

Proof. Let B denote the relative boundary of A N (i.e., B = Us~N AS) • Set 
s = IS[. There exists a map g: B---~ B such that 

if S ¢ N and x ~ A s, then g ( x ) ~ A  s . (5.10) 
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One possible choice of g is the antipodal map (with m N as the origin). Let h 
denote the usual radial deformation of the punctured simplex AN\{mN} onto  

B. Define a map f :  V ( E ) ~  A N by 

B(q)=(iE~r(q)ei)/If(q)l (5.11) 

and extend f linearly on every simplex of E, obtaining a piecewise linear map 
f : A N - - ~ A  N. We claim that mNEf (AN) .  Otherwise, the map q~-- 
goho f :  AN--->A N is weil defined and continuous (since the range of f is 
contained in the punctured simplex) and q~(A N) C B. By the Brouwer fixed 
point theorem there exists a point x C A N such that p(x) = x. Hence x E B, and 
there exists a coalition S ¢  N such that x E A s. Set s = IS]. There exists a 
simplex o- = {ql, • • •, q,} C Z such that qi E A s for all 1 ~< i ~ s and x is in the 
convex hull of q l , . . . ,  q,. By (5=9) f (qi)  C S for all i, and by (5.11) f(qi)  ~ AS 
for all i. B y construction f(x) is contained in the convex hull of 
{ f ( q a ) , . - ,  f (q , )} .  Hence f(x) E A  s . But the restriction of h to B is the 
identity map. Hence p ( x ) =  g(f(x)). By (5.10) q~(x)~A s, contradicting x = 
q~(x). Let now x ~  A N be such that f (x)= m N, and let o -EX be a ( k - 1 )  
dimensional simplex containing x in its interior, er= { q l , - " ,  %}, (k<~n) • 

k Then there exist positive numbers a a , . . . ,  a~ such that E j=l aj = 1 and x = 
Z ~=a ajqj. Set f (q i )  = Sj, 1 ~< j ~ k. By (5.11) and the construction of 1~ 

mN=~-~aY(i~sj (5.12) 

T h e / t h  component 

1 Z ~J 
: {j:i~S]} ]Sjl 

of the vector equation (5.12) reads 

(5.13) 

Setting A i = naj/ISj[, we see from (5.13) that the collection { S l » . , .  , Sk) is 
balanced, with the balancing weights A 1 , . . ,  A~. [] 

For an elementary proof (independent of Sperner's lemma) of the Brouwer 
fixed point theorem, see, for example, Kannai (1981). 

As in Shapley (1973) we deduce from Theorem 5.2 a generalized Knaster-  
Kuratowski-Mazurkiewicz th¢orem. 

Theorem 5.3 ( K - K - M - S  theorem). Let { Cs} be a family of  closed subsets of  
A N indexed by the non-empty coalitions such that for every T C N, 



376 Y. Kanna i  

U C s D A  r • (5 14) 
SC T  

Then there exists a balanced collection { S t , . . .  , S~} such that 

k 

(-'1 Cs i¢O.  (5.15) 
i = l  

Proof. Let  ~ (m) be a sequence of simplicial partitions of A N such that the 
maximal diameter  of the simplices in E (m) tends to zero as rn----> ~. For each 
q E V(X, (m)) let T(q)  be the set of indices ( C N )  such that q is contained in the 
relative interior of the simplex spanned by {ei}iE:r(q); thus q E A T(q). By (5.14) 

there exists S C T(q) such that q E C s. Let f(m)(q) be such a set S. Then the 
labelling f(m)(q) satisfies (5.9), and by Theorem 5.2 there exists a simplex 
o -(m) E y(m) such that the collection {f(~')(q): q E o -(m)} is balanced, for every 
m. But the number of balanced collections (of subsets of N) is finite and A N is 
compact. Hence we can choose ä subsequence {rnl}l~ t such that o'(mP---> q0 ~ 
A N and the collections { f(mp(q): q ~ o.(mp} are all identical to a fixed balanced 
collection S t , . . . ,  S k. For each j, 1 ~< j ~< k, q0 is the limit of a sequence of 
vertices q j-(ml) with f (ml)( q j(mP) = Sj. Thus q j-(ml) E Csj.. But the sets Csj are closed. 

Hence  q 0 E O ~ = t  Cs/ [] 

Proof  of Theorem 5.1. Assume f rs t  that there exists a constant M such that 
for each S C N and x Œ V(S) the estimate 

x i<~M,  for a l l i ~ S ,  (5.16) 

holds. Set ë i = - n M e  i for i E N, and define the simplex Ä s to be the convex 
hull of {ëi}iE s. (Clearly, Theorem 5.3 continues to hold for suitable closed 
coverings of ÄN.) Set 

t(x) = sup{t: x + t(1, . . . , 1) E U V(S)} . 
S e N  

(5.17) 

By (5.2) and (5.16) the supremum in (5.17) is finite and is actually a 
maximum, and defines a continuous function of x E R N. Set now 

C s = {x C ÄN: x + t ( x ) ( 1 , . . . ,  1) E V(S)}.  (5.18) 

The sets C s are closed by continuity of t and (5.2). We want to show that (5.14) 
is satisfied (for Ä r).  Let  x @ Cs D Ä r. We will show that S C T. [For all 
x E Ä r  there exists at least one S c N such that x E C s. Hence (5.14) follows.] 
If T = N there is nothing to prove; we may assume therefore that T ¢ N. Since 
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x E Ä r we have xj <~ - nM/I T[ < - M for at least one j ~ T. Taking S = { j} in 
(5.17) we obtain: 

t ( x ) > M .  (5.19) 

Combining (5.19) with (5.16) we find that x~<0  for all i E S. On the other 
hand, x E Ä r implies x~ = 0 for i SE" T. Hence S C T. 

It follows from Theorem 5.3 that there exists a balanced collection 
{$1,  . . . ,  Sk} and a point x E Ä N  such that x E A  k~=l Cs,. The point y = 

x + t ( x ) ( 1 , . . . ,  1) therefore belongs to Aik=l V(S~), but not to USCN int V(S) .  
By (5.8) y E V(N) .  Hence y is in the core, and the core is not empty if (5.16) is 
satisfied. 

For the general case, note that by (5.7) the set of non-negative elements of 
V ( N )  is bounded from above. For all large positive M, consider the garne v M 
defined by 

VM(S ) = V(S)  N {x E RN; x~ «- M for i E S}.  (5.20) 

Then 3y  (v) ~ V v ( N  ) C V (N)  such that no coalition S can improve upon y(V) in 
the garne V v.  By (5.6) y}V) >/0 for all i ~ N. Hence there exists a converging 
subsequence y(V~) --> 37 E V(N) .  If 37 is not in the core of V, then there exists a 
coalition S and a point z ~ V(S)  such that z i > 37i for all i E N. But z ~ VvI(S ) 
for all large l and zi > y}V«y for all i E N and l large, a contradiction. [] 

Remark 5.1. While the proof given here for the non-emptiness of the core 
appears to be non-constructive, it is possible to modify the argument to obtain 
a computational procedure (such was, in fact, the original proof). For details, 
see for example, Scarf (1967), Släapley (1973), and Scarf (1973). 

Unfortunately, unlike the transferable utility case, balancedness of the garne 
is not necessary for non-emptiness of the core. The following simple example is 
due to Billera (1970). 

Example 5.1. Define a three-person garne by 

V(123) = {(xa, x 2, x3); x~ ~<0.5, X 2 ~ 0 . 5 ,  X 3 ~ 0 }  , (5.21) 

V(12) = {(x l ,x2 ,  x3 ) ;x  1 + x 2 ~  1} (5.22) 

and 

V(S)  = {(xl, x•, x»); x i ~< 0 for all i E S}, for all other S C N .  (5.23) 
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This garne has a non-empty core consisting of the point (0.5, 0.5, 0), but is not 
balanced [the vector y = (1 ,0 ,0)  is not contained in V(N), even though 
y ~ V({1, 2}) f)V({3}) (and the collection {{1, 2}, {3}} is balanced)]. 

Billera (1970) introduced certain extensions of the concepts of balanced 
collections and balanced games. Here we follow the slightly less general 
approach due to Shapley (1973). 

Let there be given an array of non-negative numbers rr = {%,i: S C N, i 
N, % , i = 0  for i f g S ,  £ie s 7rs,i>0 for S ¢ ~ } .  The collection { $ 1 , . . ,  Sk} of 
subsets of N is called rc-balanced if there exist positive numbers A1, . . ,  A~ 
such that 

k 

ajTrsj,i = 1, a l l / ~  N .  (5.24) 
j = l  

An n-person garne v is said to be 7r-balanced if the relation (5.8) holds 
whenever $ 1 ,  . . ,  S k is a 7r-balanced collection. 

Billera (1970) proved 

Theorem 5.4. A 7r-balanced garne has a non-empty core. 

The proof in Billera (1970) follows Scarf's (1967) original proof. Shapley 
(1973) proved Theorem 5.4 in the case that the numbers 7rs. i are strictly 
positive (for i E S) by noting that Theorerns 5.2 and 5.3 continue to hold (with 
the same proof) if balanced is replaced by 7r-balanced. 

Billera (1970) did obtain a necessary and sufficient condition for the 
non-emptiness of the core if the sets V(S)  are all convex. [This generalizes the 
case of games derived from garnes with transferable utility, since in that case 
the sets V(S)  are half-spaces, by (5.4).] Recall that the supportfunction h c of a 
convex set C C R N is defined by 

hc(x  ) = sup x . y .  (5.25) 
yEC 

Theorem 5.5. (Billera). Let V be a game in which V(S)  is convex for all S C N 
and ler h s be the support function of  V(S).  Then V has a non-empty core if f  for 
every S C N, S ~ N, there exists a non-zero vector 1r (s) ~ R N with rù-(s)i >~ 0 for  
all i E N, ~r i-(s) = 0 for all i ß S  and hs(Tr (s)) < %  such that for each x E E N, 

hN(X ) = max{ XAshs( rr(s)) } , (5.26) 

where the maximum is extended over all non-negative A s such that 2~A s 7r (s) = x. 
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6. Infinite set of players 

If the set of players is infinite, much less is known about the non-emptiness of 
the core than in the finite case, difficulties appearing already in the countable 
case. In analogy to the discussions in Sections 3 and 4, we wish to define a 
game on the elements of a field 2; of subsets of a certain set X. Indeed, no 
further  structure is required if X = N is the set of all positive integers and 2; is 

t h e  set of all subsets of N. For  the uncountable case we need also a o--finite 
measure /z defined on Z [i.e., X =  U ~=1 Ei, where E i E 2; and i~(Ei)<~ for 
all i = 1, 2 . . . .  ]. (If  X = N t a k e / ,  to be the counting measure.) X is interpreted 
as the set of players, and Z is the set of permissible coalitions. Two coalitions 
are identified if their symmetric difference has/z measure zero. In what follows 
we will not distinguish between identified coalitions. An outcome of the garne 
(a "payoff  vector")  is a function u ~ L~ = L=(X, 2;, t*), interpreted as giving 
(t* a.e.) player p E X t h e  utility level u(p). We associate with every S ~ 2 a set 
V(S) C L= (interpreted as the set of possible utility levels obtainable by S). We 
assume that (5.1) is satisfied. A natural replacement of (5.3) is the assumption 
that for each S, 

if u E V(S) and v ~< u a.e. in S, then v E V(S). (6.1) 

For  technical convenience we assume, without loss of generality, that each 
V(S) contains the origin of L=. Then it suffices to consider the intersection of 
V(S) with the non-negative orthant of La. We shall use the notation V(S) to 
denote  this intersection. 

Attempting to find a replacement for (5.2), we are confronted with a 
substantial difficulty, since it is not at all clear which topology to use on the set 
of outcomes. On the one hand, the improving upon (or blocking) relation is 
not continuous in the La (norm) topology (and of course not in coarser 
topologies); the set (v E L~: v(p) > u(p) a.e.} is not open in the L~ topology. 
On the other  hand, compactness of V(X) is required for the validity of several 
arguments,  and the finer the topology, the less compact sets one obtains. We 
are thus led to consider three different topologies on L=: 

(i) the usual norm topology; 
(ii) a topology P defined by requiring that for all pairs u~, u 2 ~ L~ with 

u 1 > Uz, the sets {u ~ L=: ul > u > u2} are open; and 
(iii) the w* topology on La. 
A coalition S can improve upon an outcome u if u(S)> 0 and there exists 

v E V(S) such that v > u (a.e.) in S. The core is the set of all outcomes in V(N) 
which cannot be improved upon by any coalition. 

Consider first the countable case X = N, and assume that 
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for all S E X, V(S) is closed in the P topology,  (6.2) 

and that,  in addition, 

the set V(N) is compact in the w* topology.  (6.3) 

(Note thätthe w* topology coincides with the Tychonoff  product topology on 
bounded subsets of la.) We define the balanced cover of V with respect to S, 
Bv(S) ,  to be the closure (in P)  of the set of all vectors u E l =  such that 
u E V(Si) , 1 <~ i <~ k, for all collections $ I , . . . ,  S k of subsets of S (with S i # N) 
for which there exist positive constants A 1 . . . .  , A k such that E~= 1 )tiIsi = I s 
[compare (3.9)]. We say that the garne V is balanced if 

Bv(N ) C V ( N ) .  (6.4) 

Analogously to Definition 3.1, we say that a balanced game W is an extension 
of the balanced garne V if for all S C N, V ( S ) C  W(S), and V ( N ) =  W(N).  
Similarly to Definition 3.2, we say that V is generated by the finite subsets of N 
if for all infinite subsets S of N other than N, u = 0 in S for all u E V(S),  and 
V(N) is the w* closure of Bv(N ). As in Definition 3.3, a garne W is called a 
restricted extension of V if W is an extension of V and W(S) C Bv(S ) for all 
S C N ,  S C N .  

Kannai (1969) proved the following theorem. 

Theorem 6.1. A sufficient condition for the non-emptiness of  the core of  a 
balanced game V defined on N and satisfying (5.1), (6.1), (6.2) and (6.3), is 
that there exists a restricted extension W' of a garne W generated by the finite 
subsets of  N, such that W'  is also an extension of  V. 

We know of no analog of this theorem for the uncountable case. Moreover ,  
an assumption about the relation between V and a garne generated by the finite 
subsets is apparently needed in the countable case, since garnes with empty 
cores exist [even if one strengthens (6.2), (6.3) and the concept of balanced- 
ness, as we will do in the sequel]. 

In fact, consider now for the general case, the following strengthening of 
(6.2): 

for all S E X, V(S) is closed in the norm topology,  (6.5) 

and the stronger version of (6.3); 

there exists a norm-compact set F C L~ such that 

V(X)  = {u E L~: u >t 0 and there exists v E F with v ~> u} .  (6.6) 
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We say that the game V is B-balanced [see Billera and Bixby (1973)] if for 
every collection $ 1 , . . . ,  S~ of coalitions, and non-negative numbers A I . . . .  , A k 

k 
such that Ei= 1 l~iIsi ~ Ix, it is true that 

k 

E t~i.V(Si) C V(X). ( 6 . 7 )  
i=1 

The assumption of B-balancedness is, unfortunately, insufficient for the 
non-emptiness of the core, as follows from the following theorem by Weber 
(1981): 

Theorem 6.2. There exists a B-balanced game V defined on the subsets o f  N 
and satisfying (5.1), (6.1), (6.5) and (6.6), such that the core o f  V is empty. 

A positive result was obtained by Weber (1981) for the so-called weak core. 
We say that an outcome u can be strongly improved upon by a coalition S if 
/x(S) > 0 and there exists a positive number c and an outcome v ~ V(S)  such 
that v - u / >  c a.e. in S. An outcome u E V ( X )  is in the weak core if no 
coalition S can strongly improve upon u. Note that the concept of a weak core 
coincides with the concept of a core in the case of finitely many players. Note 
also that the weak core is related to the concept of an e-core due to Shapley 
and Shubik (1966) in the finite case and defined for markets with a continuum 
of traders by Kannai (1970b). (See also Section 8 of the present chapter.) 

Theorem 6.3. Let  V be a B-balanced game satisfying (5.1), (6.1), (6.5) and 
(6.6). Then the weak-core o f  the garne V is non-empty. 

For a proof,  see Weber (1981). 
A different approach to the question of non-emptiness of the core, based on 

applying Fan's theorem on linear inequalities (Theorem 2.1 here) and general- 
ized versions of this theorem to the non-transferable utility case is due to 
Ichiishi and Weber  (1978). Unfortunately,  their conditions are rather involved. 

I I I .  E C O N O M I C  A P P L I C A T I O N S  

7. Market games with a finite set of players 

Intuition suggests that free economic activity should be advantageous to all 
parties involved. Technically this means that for a cooperative garne to serve 
reasonably well as a model of a ffee market,  the core of this game should not 
be empty. 
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Consider an exchange economy. Here  the set of players (traders) is N = 
{1, 2 . . . .  , n}, and every trader i C N is characterized by means of an initial 
endowment  vector a (n and a preference ordering ~~. We assume (for simplici- 
ty) that for all i ~ N, a (n @ g2, where S2 is the non-negative orthant of R m (the 
commodity space) and ~i  is a complete,  continuous and convex preference 
ordering defined on ~.  Let  ui be a continuous utility function representing the 
order  ~i .  A non-transferable utility garne (see Section 5) V may now be 
defined, following Scarf (1967), as follows. For every non-empty coalition S, 
set 

V(S) = (x  ~ RU: 3y (0, i E S, such that ~ y(O = ~ a(O 
iES  i ~ S  

and x~ <~ ui(y (0) for i E S } ,  (7.1) 

while for S = ~ set (5.1). Then (5.2) and (5.3) are satisfied, and adding suitable 
constants to the functions u~ we can assume that (5.6) holds. Then (5.7) 
follows. The game V thus defined is called a market game. The convexity of the 
preferences >~i implies that the balancedness condition (5.8) is satisfied. 
Hence:  

Theorem 7.1. The core of a market garne is non-empty. 

For details of the proof,  see Scarf (1967). 

Remark 7.1. It is possible to define the core of an exchange economy directly, 
without passing through the market  garne. We say that the coalition S can 
improve upon the allocation x (I) . . . .  , x (n) (an allocation is an n-tuple of vectors 
x ( l ) , . . ,  x (n), x(i) E g2 for all i ~ N, such that E~= 1 x (i)= ~;=1 a(i)) if there 
exists an allocation y ( 1 ) , . . . ,  y(n) with Eics y(O = EiEs a(O and such that y(O is 
strictly preferred by trader i to x (0 (i.e., y(i) ~i X(i) but not x (i))i  y(O) for all 
i E S. The core of the economy is the set of all allocations upon which no 
coalition can improve. Clearly, x (~), . . . ,  x (') is in the core of the economy iff 
the vector (u~(x(1)), . . ,  u,(x(~))) is in the core of the market  game V. 

Given a garne V and a non-empty subset T C N, we define the subgame of V 
on T to be the restriction of V to the set of subsets of T. For an arbitrary garne 
V, the subgame of V on T may or may not be balanced. Il, however,  all 
subgames of V are balanced, we say that the garne V is totally balanced. Any 
subgame of a market  garne is obviously a market  garne. Hence we have. 

Theorem 7.2. Every market game is totally balanced. 
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The problem of characterizing all market games is still open. Theorems 7.4 
and 7.6 in the sequel lead one to conjecture that the converse of Theorem 7.2 
is true, i.e., that for every totally balanced garne V defined on the coalitions of 
N there exists an exchange economy such that V is given by (7.1). 

The first case that was completely settled was that of market games with 
transferable utility, analyzed by Shapley and Shubik (1969). For any non- 
empty coalition S we define the worth v(S)  (the characteristic function) by 

v(S)  = sup ~] x i ,  (7.2) 
xEV(S) i~S 

where V(S)  is given by (7.1). It is easy to see that the supremum in (7.2) is 
actually a maximum, and can also be defined by 

v(S) = max ~ ui(y(i)), (7.3) 
iES 

where the maximum is extended over all a l l o c a t i o n s  y ( 1 ) ,  . . . , y(n) such that 
Eies y(i)= Ei~s a(O. Similarly to Theorem 7.2, we have (with the obvious 
modifications in the definitions of a subgame and of a totally balanced garne): 

Theorem 7.3. Every market game with transferable utility is totally balanced. 

Shapley and Shubik (1969) proved that the converse of Theorem 7.3 is also 
true. 

Theorem 7.4. Every totally balanced garne with transferable utility is a market 
garne, i.e., the garne can be written in the form (7.3) for  a certain collection o f  
a (i), Ui, i E N. 

Shapley and Shubik take J2 to be the non-negative orthant in R N, a (0 = e i 
( the / th  unit vector i n  R N) for all i E N, and 

ui(x ) = u(x) : max ~ C~sV(S ) , (7.4) 
SCN 

where the maximum is extended over all sets of non-negative numbers ces 
satisfying 

~'~ a s = X i ,  for a l l i E N .  (7.5) 
S; S~i  

for details and an intuitive interpretation of this economy, see Shapley and 
Shubik (1969). 
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Billera and Bixby, in a series of papers, have considered games with 
non-transferable utility where all sets V(S) are convex, replaced the concept of 
balancedness by that of B-balancedness [see (6.7)], and modified the concept 
of an exchange e c o n o m y - s e e  Billera and Bixby (1973, 1974) and Billera 
(1974) - and succeeded in characterizing, in this framework, all market  garnes. 
Thus, assume that for every i E N the preference relation ~>i is defined on a 
convex set ~2i and is representable in J2i by a concave, upper-semicontinuous 
utility function ue such that u i is bounded below on O~. Define V(S) by (7.1) 
(where y(i) is restricted to be in O; for all i ~ S). Then the sets V(S) are convex 
and the B-balancedness condition (6.7) is satisfied. Such a game V is called a 
modified market garne. (Note that the set of modified market  games does not 
contain, and is not contained in, the set of market  games, even though the 
intersection is non-empty.)  The same argument as the one leading to Theorem 
7.2 now yields: 

Theorem 7.5. Every modified market garne is totally B-balanced. 

The converse was also proved by Billera and Bixby. 

Theorem 7.6. I f  the sets V(S) are convex for all S C N and V is totally 
B-balanced, then V is a modified market game. 

Billera and Bixby (1974) proved that if, for every coalition S, the Pareto 
surface Ps of V(S) [i.e., the set of maximal elements in V(S) with respect to 
the normal partial order  ~< on R N] is closed, then the functions u i can be taken 
to be continuous. They also construct representations of the games by means of 
economies with production and by means of economies for which the com- 
modity spaces are infinite dimensional. 

Remark 7.2. The difference between market  games and modified market  
garnes should not be underestimated. While it is true that every convex 
preference ordering ~>i can be approximated arbitrarily closely by preference 
orderings induced by concave utility functions, in a market game the sets V(S) 
may be far from convex and cannot, in general, be transformed into convex 
sets by means of suitable choices of utility functions. An example may be found 
in Kannai and Mantel (1978). 

Closely related to the concept of the core of a market  game is the concept of 
equilibrium allocations (of an exchange economy).  An allocation x (1), . . . ,  x (n) 
is called an equilibriurn allocation if there exists a non-zero vector p E R m 
(called a price vector) such that 

x («) is maximal with respect to ~i in the set {x: p .x<~p  • a(i)},  

for all i ~ N .  (7.6) 
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It is not difficult to show (see Chapter 14) that an equilibrium allocation is in 
the core of the economy (defined in Remark 7.1). Hence the well-known 
existence theorems for equilibrium allocations [e.g., Debreu (1959)] imply 
Theorem 7.1 (without using balancedness). It is not true that every allocation 
in the core is an equilibrium allocation. A large body of literature, reviewed in 
Chapters 14 and 15 of this Handbook, is devoted to the study of the relations 
between the core and the set of competitive equilibria for large (and infinite) 
sets of traders. We note here that if the preference ordering ~>i is strictly 
convex for all i E N, then if i and j have identical characteristics (~>i = ~>j and 
a (/) = a(n),  then x (i) = x (j) for all core allocations x (1), . . . ,  x (n) ("equal treat- 
ment in the core"). It follows that a core allocation for a replica economy 
(where we have n k  traders, k traders of each " type" i, i ~ N) induces a core 
allocation for the original economy. Debreu and Scarf (1963) proved that the 
intersection of all these cores is an equilibrium. Hence Theorem 7.1 and the 
compactness of the core imply the existence of a competitive equilibrium. 

For the transferable utility market game, defined by (7.2) or (7.3), a 
c o m p e t i t i v e  p a y o f f  is a v e c t o r  ( Œ 1 ,  - " " ' a n )  defined by 

Œi : l ~ i ( x ( i ) )  - -  P "  ( x  (i) - a(O) , i E N ,  (7.7) 

where p is a vector in R m and x (I), . . . ,  x (n) an allocation for which 

u~(x («)) - p .  ( x  (0 - a (i)) >1 u ~ ( y )  - p .  ( y  - a ( ° )  , for all y E O, i ~ N 
(7.8) 

[see Shapley and Shubik (1976) for explanations]. Shapley and Shubik (1976) 
prove that every payoff in the core of the totally balanced garne with 
transferable utility v is a competitive payoff for the economy described after 
the statement of Theorem 7.4. 

As stated in the Introduction of this chapter, concepts such as the core arose 
in the deliberations about the allocations of costs of cooperative projects such 
as those carried out by the Tennessee Valley Authority. Sorenson, Tschirhart 
and Whinston (1978) proved that a transferable utility game modelling a 
producer and a set of potential consumers (under decreasing costs) yields a 
convex garne [(4.1)]. By Theorem 4.1 the core of this garne is non-empty. 
Similarly, it was proved by Dinar, Yaron and Kannai (1986) that the garne 
describing a water purification plant, where the city and the farms are the 
players, is a convex game. 

8. Approximate cores for games and markets with a large set of  players 

Convexity of preference orderings was assumed in all the existence theorems 
stated in the previous section. Without this assumption the core might very 
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well be empty. Shapley and Shubik (1966) showed that certain sets of payoff 
vectors, defined by "slightly" modifying the definition of the core, will be 
non-empty in many instances without convexity. These results initiated a 
substantial body of research on approximate cores. 

Consider first a garne v with transferable utility (and a finite set of players). 
Let  a positive e be given. The strong e-core is the set of outcomes x satisfying 
(1.2) and 

x i > ~ v ( S ) - e ,  for a l l S C N ,  (8.1) 
iES  

and the weak e-core is the set of outcomes satisfying (1.2) and 

~, x, >! v(S) - ISle, for all S C N .  (8.2) 
i ~ S  

Note  that an element of an e-core is not necessarily individually rational. We 
will thus deal also with the individually rational e-core, which is the intersection 
of the e-core with the set of individually rational outcomes. It is easy to see 
that 

weak e-core D strong e-core D weak - - 
E 

c o r e D c o r e .  (8.3) 
n 

These e-cores (and others, to be defined in what follows) are not merely 
technical devices. They provide a way of taking into account the costs of 
forming a coalition (such as communication costs). Alternatively, we might 
view e or ISle as a threshold, below which a coalition might not consider the 
improvement  upon x worth the trouble. 

Shapley and Shubik (1966) considered replicas of a market  garne with 
transferable utility such that all traders have the same utility function. In 
general, replicas are obtained by considering an economy composed of n types 
of traders with k traders of each type. For two consumers to be of the same 
type, we require them to have precisely the same preference ~ and the same 
endowment  a, and in the case of transferable utility they should have the same 
utility function u. The economy therefore consists of nk traders, whom we 
index by the pair (i, j ) ,  with i = 1 , . . . ,  n and j = 1 , . . .  , k; we denote the set 
of traders by N(k). The corresponding replica garne with transferable utility 
v(k~(S) is defined by (7.3), where S is a subset of N(k). For the existence of 
weak e-cores, Shapley and Shubik (1966) proved the following theorem: 

Theorem 8.1. Let ~i =--~, ui =--U for all i @ N, and let there exist a linear 
function Lo(x ) and a continuous function K0(x), defined on g2, such that 
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Ko(x ) <~ U(x) <~ Lo(x) ,  for all x E / 2 .  (8.4) 

Then for every e > 0 there exists a constant k o such that the market garnes v (~~ 
with k »- ko possess non-empty individually rational weak e-cores. 

For the existence of strong e-cores the following was proved by Shapley and 
Shubik (1966). 

Theorem 8.2. Let >i =-- >,  ui =-- U for all i E N. Let U be differentiable along 
all rays in /2  emanating from the origin. Let there exist a concave function C(x) 
defined o n / 2  such that 

C(x) > U(x) ,  for all x @/2,  (8.5) 

and such that for each x E / 2  there are (m + 1) points yh E g2 (not necessarily all 
distinct) and non-negative numbers A h such that 

m + l  m + l  m + l  

~'- A a = a ,  Z AhYh=X and Z ahU(yh) = C ( x ) .  (8.6) 
h = l  h = l  h = l  

Then for every e > 0 there exists a constant k o such that the market garnes v (k) 
with k >i k o possess non-empty individually rational strong e-cores. 

Remark 8.1. Non-emptiness of the weak e-core can be easily characterized by 
means of "e-balancedness". We say that v is e-balanced if the inequalities 

k 

Aiv(Si) <~ v(N)  + en (8.7) 
i = 1  

hold for all balanced collections { $ 1 , . .  ,S~} with balancing weights 
A 1 , . .  , A k. Wooders (1979) noted that v has a non-empty e-core iff v is 
e-balanced. 

A general framework for the study of market garnes (and others kinds of 
games) was introduced by Wooders (1979). As above, the replica case is 
considered, with nk players, k of each type. The characteristics (of players) 
determining a type (such as preferenee, endowment, etc.) are not specified 
explicitly. Nor is the economic activity (exchange, production, etc.) spelled out 
in detail. Rather, the basic datum of the problem is a real-valued function 
v ( s l , . . . , s n ) ,  defined on the set of n-dimensional vectors ( s ~ , . . , s n )  for 
which the components s i are non-negative integers, and expressing for each 
coalition S containing s~ players of type 1 , . . . ,  s n players of type n, the total 
payoff achievable by (economic) action of all members of S. For any such 
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coalition S and any positive integer k, denote by S(k) a coalition consisting of 
ks i players of type i, for each i = 1 , . . . ,  n. Thus we may denote the set of 
players of the kth replica game by N(k) .  The characteristic function v (~) of the 
kth replica game is defined [for S C N(k)] by 

~~~~(s) = o ( s ~ , . . ,  sn), (8.8) 

where s i is the number of players of type i contained in S, i = 1 , . . . ,  n (clearly 
s i <~ k). The function v is called a pre-game or a technology. 

We say that v is superadditive if for all vectors s, s', such that si, s~ are 
non-negative integers for i = 1 , . . . ,  n, we have 

v(s  + s ' )  > v ( s )  + v ( s ' )  . (8.9) 

We say that the per-capita payoff is bounded if there exists a constant K such 
that 

v(~)(N(k)) v ( k , .  . . , k)  

k k 
< K (8.10) 

for all positive integers k. 
Obviously, the technology v is superadditive if and only if all replica games 

v ~~~ are superadditive. Remarkably, superadditivity and bounded per-capita 
payoff suffice for e-balancedness, as the following theorem of Wooders (1979) 
shows. 

Theorem 8.3. I f  the technology v satisfies (8.9) and (8.10), then for every e > 0 
there exists a constant k o such that the garnes v (k) with k >1 k o possess non-empty 
weak e-cores. 

Outline of proof. The superadditivity and per-capita boundedness assump- 
tions imply that v(~)(N(k)) is asymptotically homogeneous in k or, more 
precisely, that the limit 

lim v(k)(N(k)) 
k-->~ k 

exists. [In fact, (8.10) implies that the ratio v(k)(N(k)) /k  is bounded from 
above, (8.9) implies that the ratio is bounded from below, so that the sequence 
v(k~(N(k))/k has limit points. By superadditivity different subsequences cannot 
tend to distinct limits.] Theorem 1.2 and the discussion preceding it imply that 
it suffices, when considering balancedness, t o  assume that the balancing 
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weights are rational. Let { $ 1 , . . ,  Sr} be a balanced collection of subsets of 
N(k) with rational weights A~ = pJp ,  i = 1 . . . .  , r. One may embed the sets 
S i ( P l ) , . . , S , ( p ,  ) in N(kp) in such a manner that the collection 
{ S l ( p ~ ) , . . ,  St(pf)} is a partition of  N(kp). By the superadditivity of v, 

i=1 i=l P i=i P 
v(*P)(N(kp)) (8.11) 

P 

By asymptotic homogeneity, the right-hand side of (8.11) does not differ much 
from v(k)(N(k)) if k is sufficiently large (in fact, the difference is estimable by 
ek). Hence v (k) is e-balanced. [] 

Thus, superadditivity and asymptotic homogeneity are not very far from 
balancedness, because in the replica case a balanced collection can be regarded 
as a partition of a replica, quite unlike the situation in the case of a fixed garne. 
This ffamework was generalized further (so as to cover the non-replica case as 
well) by Wooders and Zame (1984) [see also Wooders and Zame (1987a)]. We 
no longer have a fixed set of types. Instead, an abstract notion generalizing the 
charateristics of a trader (player, agent, etc.), called an attribute, is the primary 
ingredient. The attributes of the players are assumed to be elements of a 
compact metric space Y. As for types, the pair (a, >)  or the pair (a, u) may 
serve as examples of attributes; a metric topology on spaces of preference 
orderings was exhibited in Kannai (1970b). In the replica case, an important 
role is played by n-dimensional vectors ( S l , . . . ,  s,) expressing the number of 
players of various types. For the non-replica case, the corresponding concept is 
that of a profile, defined as a function f from Y to the set of non-negative 
integers for which {~ E Y: f(~)  ~ 0} is finite. We now define the technology (or 
the pre-game) to be a pair (Y, A), where Y is a compact metric space and A is a 
non-negative function defined on the set of profiles on Y, such that the 
following hold: 

(i) A(O) = 0 ; (8.12) 

(ii) A ( f  + g) >~ A ( f )  + A(g) (superadditivity) ; (8.13) 

(iii) there is a constant M such that 

A ( f  + I{,~) ~< A ( f )  + M for each attribute 7/E Y and each profile 
f (M is called an individual marginal bound) ; (8.14) 

(iv) for every e > 0 there is 6 > 0 such that 
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[A( f  + I{n~}) - A ( f  + I{n2})[ < e for all profiles f and nl, n2 E Y 
with dist(nl, tl2) < 6 (continuity). (8.15) 

[Note that the per-capita boundedness assumption (8.10) has to be 
strengthened to (8.14) in the general case.] 

To derive an n-person garne with transferable utility from the technology 
(Y, A), we specify a function a: N---> Y (an attribute function). (This function 
determines the attribute of each player.) We associate with each coalition S a 
profle prof(alS ) given by 

prof(«]S)(7/) = [a- l (~)  7/S I . (8.16) 

The characteristic function v« is then defined by 

va(S ) = A(prof(a]S)).  (8.17) 

The following theorems were proved in Wooders and Zame (1984). (The 
method of proof involves, inter alia, a construction of e-balanced games 
approximating v« .) 

Theorem 8.4. Let ( Y, A) be a technology and let e > 0 be given. There exists 
an integer n(e) such that if n >1 n(e) and a: N---> Y is any attribute function, then 
the garne va, defined by (8.17) [and (8.16)] has a non-empty weak e-core. 

Theorem 8.5. Let (Y, A) be a technology and let e > 0 be given. Then there 
exists an integer n(e) and a positive number 6(e) such that: if N is any finite set 
and a: N---> Y is any attribute function with the property that for each i E N 
there exist n(e) distinct players i l , . . . ,  Jn(~) such that dist(a(i), a(j~)) < 6(e) 
for all k = 1 , . . ,  n(e), then the garne v~, defined by (8.17) [and (8.16)] has a 
non-empty individually rational weak e-core. 

Remark 8.2. It can be shown that Theorem 8.5 includes Theorem 8.1 as a 
special case. As stated earlier, Theorems 8.3, 8.4 and 8.5 include much more 
general exchange economies, as well as other economic models. 

In Wooders and Zame (1987a) it is proved that with a suitable choice of n(e) 
and 6(e), the Shapley value of (N, v«) is an element of the individually rational 
e-core of (N, v~). The intuition underlying this result (as well as Theorems 
8.3-8.5) is that for large garnes, the power of improvement is concentrated in 
small coalitions, i.e., that if an allocation can be improved upon at all, then it 
can be improved upon by a small coalition. Similar observations were made in 
analogous settings by many authors, e.g., Schmeidler (1972b), Mas-Colell 
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(1979) and Hammond,  Kaneko and Wooders (1985) (see also p. 393). Wood- 
ers and Zame (1987a) observe further that small coalitions cannot affect the 
Shapley value very much. 

As in Remark 7.1, it is possible to define a concept of e-core directly for the 
exchange economy (without passing through any garne form). If a, b E R m, 
denote by a G b  the vector whose kth component is m a x ( a ~ -  bh,0) for 
k -- 1 , . . . ,  m and by e the vector ( 1 , . . . ,  1) E R m. We say that the allocation 
x (n, . . . ,  x (n) is in the (strong) e-core of the economy if for all coalitions S C N 
and allocations y ( a~ , . . . ,  y(n~ such that y(O is strictly preferred by the trader i to 
x (n for all i E S, it is not  true that 

y(O <~ ~ a(i)@ee. (8.18) 
i ~ S  i ~ S  

The weak e-core is obtained if (8.18) is replaced by 

y(O<~ ~ a « ~ O i S l e e  ' (8.19) 
i ~ S  i ~ S  

and the rat  e-core upon replacing (8.20) by 

y(«) <~ ~ a(°Qnee. (8.20) 
i ~ S  i ~ S  

Here 

fat e-core D weak e-core D strong e-core D core.  (8.21) 

Non-emptiness of e-cores was demonstrated (in various contexts) by, for 
example, Kannai (1970b), Kannai (1972), Hildenbrand, Schmeidler and Zamir 
(1973) and Grodal (1976). For example, it was shown in Kannai (1972) that 
the weak e-core is non-empty for the replica economy, composed of n k  

traders, k of each type, i f k  is sufficiently large. In Kannai (1972) and 
Hildenbrand, Schmeidler and Zamir (1973) the economies grow in a much 
more general way (but the characteristics or attributes are restricted to stay in 
a compact set). In Grodal (1976) the assumptions are further weakened. The 
question of the approximate validity of (7.6) (approximate equilibrium) is also 
treated in the literature. Grodal, Trockel and Weber (1984) showed that e can 
be taken to be of the order 1/n .  

For a garne V with non-transferable utility, we say that a feasible outcome is 
in the strong e-core if for no non-empty coalition S does there exist a vector 
y E V ( S )  such that 

Yi - e > x i » for all i E S .  (8.22) 
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The weak e-core is obtained if (8.22) is replaced by 

y i - I S ] e > x i ,  for a l l i E S .  (8.23) 

(Note that the nontransferable utility strong e-core corresponds, roughly, to 
the transferable utility weak e-core.) 

Wooders (1983) defined a concept of non-transferable utility replica garnes by 
modifying the concept of technology (introduced earlier for analyzing transfer- 
able utility replica games without any underlying market structure) and proved 
the non-emptiness of e-cores for large non-transferable utility replica games. 

(k) Informally, the characteristic function V of the kth replica game is such that 
the set V(~)(S) depends only on the vector ( s l , . . . ,  sn) (si ~< k is the number of 
players of t h e / t h  type, i = 1 , . . . ,  n) and on k, players of the same type being 
substitutes for each other. Moreover, the set of possible payoff vectors for 
members of S [i.e., the projection of V(k~(S) onto R s] is assumed to be 
non-decreasing in k. The per-capita boundedness assumption [the analog of 
(8.10)] is that the components of equal-treatment payoff vectors in V(k)(N(k))  
(i.e., payoff vectors for which players of the same type get the same amount) 
are bounded independently of k. These assumptions suffice for proving non- 
emptiness of e-cores for large k. As in the transferable utility case, no 
balancedness is required, the assumptions listed above yielding a sort of 
approximate balancedness. 

Wooders and Zame (1987b) have found a condition under which the 
non-transferable utility value is in the e-core, in the general framework of 
non-replica, non-transferable utility technologies. This result, however, does 
not yield a simple theorem about non-emptiness of the e-core. The intuition 
underlying these results is similar to that underlying the corresponding results 
in the transferable utility case; the proofs, however, are much heavier. 

One advantage of e-cores is their continuity properties. Thus, while the core 
of a garne varies with the garne in an upper semi-continuous manner, it is not a 
lower semi-continuous function of the garne. By contrast, the various e-cores 
depend in a lower semi-continuous manner on the data of the problem. It is 
easy to see, for example, that if the outcome x is in the e-core of the garne with 
transferable utility v, (e/> 0), then for every e' > e and every ~ > 0 there exists 
a 6 > 0 such that if Iv(S) - ff(S)l < 6 for all coalitions S, then there exists an 
outcome )? in the e'-core of the game ~ and 

I 
0 if x i = 0 I 1 = , , - - -  < 7 ,  i f x  i > 0 .  (8.24) 

I xi  

Continuity properties of e-cores of economies are established in Kannai 
(1970b, 1972). 

It follows that, in general, the e-core is not necessarily close to the core, 
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even if e is small. It is plausible that the e-core is close to the core, for "almost 
all" large economies. See Anderson (1985), where it is shown that "almost 
always" elements of the fat e-core are close to the demanded set for some 
price p [see (7.6)]. 

Kaneko and Wooders (1986) and Hammond, Kaneko and Wooders 
(1985, 1989) have developed a model in which the set of all p layers - the  
"popula t ion"- i s  represented by a continuum, and coalitions are represented 
by finite subsets of this continuum (sets with a finite numbers of points). This 
models a situation in which almost all gains from coalition formation can be 
achieved by coalitions that are small relative to the population (as is the case, 
for example, in classical exchange economies; see Chapter 14 in this Handbook 
and the discussion on pp. 390-391). It is thus a continuum analogue of the 
"asymptotic" approach to large games discussed above, via "technologies": 
there, too, almost all gains from coalition formation can be achieved by 
coalitions that are small relative to the population (cf. the asymptotic homo- 
geneity condition derived in the proof of Theorem 8.3). 

For the continuum with finite coalitions the definition of core is not 
straightforward, as the worth of the all-player set need not be defined. Instead, 
one defines an object called the f-core (f for finite); see Chapter 14, Section 8, 
in this Handbook. Once the f-core is defined, the continuum yie lds-as  
usua l -  "cleaner" results than the asymptotic approach: Instead of non-empty 
e-cores for sufficiently large k, one gets simply that the f-core is non-empty. 

In the case of exchange economies, the f-core, the ordinary core, and the 
Walrasian allocations are all equivalent. 

Another application of this model is to economies with widespread exter- 
nalities. This means that an agent's utility depends only on his own consump- 
tion and on that of the population as a whole, not on the consumptions of 
other individuals (as with fashions). The model has also been applied to 
assignment garnes [see Gretsky, Ostroy and Zame (1990) for a related 
assignment model]. 

For details of the formulations and proofs in the continuum case, the reader 
is referred to the original articles. 

Quite apart from continuum models, there is a large body of literature 
concerning cores of assignment garnes (see Chapter 16 in this Handbook), as 
well as other special classes of (nontransferable utility) garnes such as convex 
garnes, etc. (Note that transferable utility convex garnes are treated in Section 
4.) Unfortunately, lack of space prevents us from describing this important 
literature. 
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1. Introduction 

The core is, perhaps, the most intuitive solution concept in cooperative garne 
theory. Nevertheless, quite frequently it is pointed out that it has several 
shortcomings, some of which are given below: 

(1) The core of many garnes is empty, e.g. the core of every essential 
constant-sum garne is empty. 

(2) In many cases the core is too big, e.g. the core of a unanimity garne is 
equal to the set of all imputations. 

(3) In some examples the core is small but yields counter-intuitive results. 
For example, the core of a symmetric market garne with rn sellers and n 
buyers, m < n, consists of a unique point where the sellers get all the profit [see 
Shapley (1959)]. 

For further counter-intuitive examples, see, for example, Maschler (1976) 
and Aumann (1985b, 1987). 

In view of the foregoing remarks it may be argued that an intuitively 
acceptable axiom system for the core might reinforce its position as the most 
"natural" solution (provided, of course, that it is not empty). But in out 
opinion an axiomatization of the core may serve two other, more important 
goals: 

(1) By obtaining axioms for the core, we single out those important 
properties of solutions that determine the most stable solution in the theory of 
cooperative garnes. Thus, in Subsections 2.2 and 2.4 we shall see that the core 
of TU garnes is determined by individual rationality (IR), superadditivity 
(SUPA), and the reduced garne property (RGP). Also, the core of NTU garnes 
is characterized by IR and RGP (see Subsection 3.2). Furthermore, the 
converse reduced garne property (CRGP) is essential for the axiomatization of 
the core of (TU) market garnes (see Subsection 2.3). Therefore we may 
conclude that four properties, IR, SUPA, RGP, and CRGP, play an important 
role in the characterization of the core on some important families of games. 

(2) Once we have an axiom system for the core we may compare it with 
systems of other solutions the definitions of which are not simple or "natural". 
Indeed, we may claim that a solution is "acceptable" if its axiomatization is 
similar to that of the core. There are some important examples of this kind: (a) 
The prenucleolus is characterized by RGP together with the two standard 
assumptions of symmetry and covariance [see Sobolev (1975)]. (b) The Shap- 
ley value is characterized by SUPA and three more "weaker" axioms [see 
Shapley (1981)]. (c) The prekernel is determined by RGP, CRGP, and three 
more standard assumptions [see Peleg (1986a)]. 

We now review briefly the contents of this chapter: Section 2 is devoted to 
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T U  games. In Subsection 2.1 we discuss several properties of solutions to 
coalitional garnes. An axiomatization of the core of balanced garnes is given in 
Subsection 2.2. The core of market  garnes is characterized in Subsection 2.3, 
and the results of Subsection 2.2 are generalized to garnes with coalition 
structures in Subsection 2.4. In Section 3 we present the results for NTU 
garnes. First, in Subsection 3.1 we introduce reduced garnes of NTU games. 
Then,  an axiom system for the core of NTU garnes is presented in Subsection 
3.2. Finally, we review Keiding's axiomatization of the core of NTU garnes in 
Subsection 3.3. 

2. Coalitional games with transferable utility 

2.1. Properties o f  solutions o f  coalitional garnes 

Let  U be a (nonempty) set ofplayers. U may be finite or infinite. A coalition is 
a nonempty  and finite subset of U. A coalitional game with transferable utility (a 
T U  garne) is a pair (N, v), where N is a coalition and v is a function that 
associates a real number  v(S)  with each subset S of N. We always assume that 
v(0) = 0. Let  N be a coalition. A payof f  vector for N is a function x : N--~ R 
(here R denotes the real numbers). Thus, R N is the set of all payoff vectors for 
N. If x E R N and S C N, then we denote x(S)  = EiEs x i. (Clearly, x(0) = 0.) 

Let  (N, v) be a garne. We denote 

X * ( N ,  v) = {x [ x E R N and x ( N )  «- v(N)} . 

X * ( N ,  v) is the set of feasible payoff vectors for the game (N, v). 
Now we are ready for the following definition. 

Definition 2.1.1. Let  F be a set of garnes. A solution on F is a function o- 
which associates with each game (N, v) E F a subset cr(N, v) of X*(N ,  v). 

Intuitively, a solution is determined by a system of "reasonable"  restrictions 
on X*(N,  v). We may, for example, impose certain inequalities that guarantee 
the "stability" of the members of o-(N, v) in some sense. Alternatively, o- may 
be characterized by a set of axioms. 

We shall be interested in the following solution. 

Definition 2.1.2. Let  (N, v) be a game. The core of (N, v), C(N, v), is defined 
by 

C(N, v) = {xlx E X*(N, v) and x(S)  >! v(S)  for all S C N} . 
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We remark that x E C(N, v) iff no coalition can improve upon x. Thus, each 
member of the core consists of a highly stable payoff distribution. 

We shall now define some properties of solutions that are satisfied by the 
core (on appropriate domains). This will enable us to axiomatize the core of 
two important families of games in the following two subsections. 

Let F be a set of garnes and let o- be a solution on F. 

Definition 2.1.3. o- is individually rational (IR) if for all (N, v) E F and all 
x @ er(N, v), x i >1 v({i}) for all i E N. 

IR says that every player i gets, at every point of ~r, at least his solo value 
v({i}). Il, indeed, all the singletons {i}, i E  N, may be formed, then IR 
follows from the usual assumption of utility maximization [see Luce and Raiffa 
(1957, section 8.6)]. We remark that the core satisfies IR. 

For our second property we need the following notation. Let (N, v) be a 
game. 

X(N, v) = {x I x C R N and x(N) = v(N)} . 

Definition 2.1.4. The solution o- satisfies Pareto optimality (PO) if o-(N, v) C 
X(N, v) for every (N, v) Œ F. 

PO is equivalent to the following condition: if x, y C X*(N, v) and x i > yi for 
all i E N, then y ~ o-(N, v). This formulation seems quite plausible, and similar 
versions to it are used in social choice [Arrow (1951)] and bargaining theory 
[Nash (1950)]. Nevertheless, it is actually quite a strong condition in the 
context of cooperative garne theory. Indeed, the players may fail to agree on a 
choice of a Pareto-optimal point [i.e. a member of X(N, v)], because different 
players have different preferences over the Pareto-optimal set. 

Clearly, the core satisfies PO. However, PO does not appear explicitly in our 
axiomatization of the core. 

The following notation is needed for the next definition. If N is a coalition 
and A, B C R N, then 

A + B = { a +  b [ a E A  and b G B } .  

Definition 2.1.5. The solution o- is superadditive (SUPA) if 

o-(N, vl) + o-(N, v2) C o'(N, v 1 + v2) 

when (N, vl), (N, v2), and (N, v 1 + v2) are in F. 
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Clearly, SUPA is closely related to additivity. Indeed, for one-point solutions 
it is equivalent to additivity. The additivity condition is usually one of the 
axioms in the theory of the Shapley value [see Shapley (1981)]. Most writers 
accept it as a natural condition. Shapley himself writes: 

Plausibility arguments (for additivity) can be based on games that consist of 
two garnes played separately by the same players (e.g., at different times, or 
simultaneously using agents) or, better, by considering how the value should 
act on probability combinations of garnes [Shapley (1981, p. 59)]. 

Only in Luce and Raiffa (1957, p. 248) did we find some objections to the 
additivity axiom. They disagree with the foregoing arguments proposed by 
Shapley. However, they emphasize that, so far as the Shapley value is 
concerned, additivity must be accepted. 

Intuitively, SUPA is somewhat weaker than additivity (for set-valued func- 
tions). Fortunately, the core satisfies SUPA. 

The last two properties pertain to restrictions of solutions to subcoalitions. 

Definition 2.1.6. Let (N, v) be a game, let S C N, S # 0, and let x E X*(N,  v). 
The reduced garne with respect to S and x is the garne (S, Vx,S), where 

I O , T = O ,  
Vx.s(T ) =  v ( N ) -  x ( N -  T)  , T =  S , 

[max{v(T U Q ) -  x (Q)]  Q c N -  S} , otherwise. 

(Here, N -  T =  ( i E N I i ~ T) . )  

Remark 2.1.7. For x E X ( N ,  v) Definition 2.1.6 coincides with the definition 
of reduced garnes in Davis and Masehler (1965). 

Let M be a coalition and let x E R M. If T is a coalition, T C M, then we 
denote by x r the restriction of x to T. 

Remark 2.1.8. The reduced garne (S, V,,s) describes the following situation. 
Assume that all the members of N agree that the members of N -  S will get 
x N-s. Then, the members of S may get v(N)  - x ( N -  S). Furthermore, sup- 
pose that the members of N - S continue to cooperate with the members of S 
(subject to the foregoing agreement). Then, for every T C S, T # S, O, Vx.s(T) 
is the total payoff that the members of T expect to get. However, we notice 
that the expectations of different coalitions may not be compatible because 
they may require the cooperation of the same subset of N -  S (see Example 
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2.1.9). Thus, (S, v«, s) is not a game in the ordinary sense; it serves only to 
determine the distribution of V~,s(S ) to the members of S. 

1 Example 2.1.9. Let (N, v) be the simple majority three-person game 
[2; 1, 1, 1]. Furthermore, let x = (1/2, 1/2, 0) and S = (1, 2}. The reduced 
garne (S, Vx,s) is given by Vx,s({1}) = Vx,s({2}) = Vx,s({1, 2}) = 1. Notice that 
player i, i = 1, 2, needs the cooperation of player 3 in order to obtain V~,s({i}). 

Let F be a set of garnes. 

Definition 2.1.10. A solution er on F has the reduced garne property (RGP) if 
it satisfies the following condition. If (N, v) E F, S C N, S ~ O, and x E 
er(N, v), then (S, Vx,s) E F and x s E er(S, Vx,s). 

Defni t ion 2.1.10 is due to Sobolev (1975) who used it in his axiomatic 
characterization of the prenucleolus. 

Remark 2.1.11. RGP is a condition of self-consistency. If (N, v) is a game and 
x E er(N, v), that is, x is a solution to (N, v) ,  then for every S C N, S ~ ft, x s is 
consistent with the expectations of the members of S as reflected by the garne 
(S, V«,s). The reader may also find discussions of RGP in Aumann and 
Maschler (1985, Sections 3 and 6) and in Thomson (1985, Section 5). 

We remark that the core satisfies RGP on the class of all garnes [see Peleg 
(1986a)]. The following weaker version of RGP is very useful. First, we 
introduce the following notation. 

Notation 2.1.12. If D is a finite set, then we denote by I DI the number of 
members of D. 

Definition 2.1.13. A solution er on a set F of garnes has the weak reduced 
garne property (WRGP) if it satisfies the following condition: if (N, v) E F, 
S C N, 1 <~ IS I ~<2, and x E er(N, v), then (S, V«,s) E F and x s E o-(S, Vx,S). 

Clearly, RGP implies WRGP. The converse is generally not true. Thus, 
W R G P  may be used in axiomatizations of the core when RGP is not satisfied. 

From a practical (or, at least, computational) point of view the following 
problem may be interesting. Let o- be a solution, let (N, v) be a game, and let 
x E X(N ,  v). Furthermore, le tzr  be a set of nonempty subsets of N. Then we 
ask whether or not er satisfies 

1Thus, v(0) = v({1}) = v((2}) = v({3}) = 0 and v(S) = 1 otherwise. 
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[X s E o'(S, Vx,s) for all S E 7r] ~ x E tr(N, v).  

403 

The foregoing remark motivates the following defnit ion.  If N is a coalition 
then we denote 

7r = ~'(N) = {S C N[IsI = 2) .  

Definition 2.1.14. A solution tr on a set F of garnes has the converse reduced 
garne property (CRGP) if the following condition is satisfied. If (N, v) E F, 
x ~ X (N ,  v), and for every S C ~-(N), (S, Vx,s) E F and x s E o'(S, Vx,S), then 
x C o-(N, v). 

CRGP has the following simple interpretation. Let x be a Pareto-optimal 
payoff vector [i.e. x (N)  = v(N)]. Then x is an "equilibrium" payoff if every 
pair of players is in "equilibrium". 

We remark that CRGP was first used in Harsanyi (1959) as the basis for the 
extension of Nash's solution to multi-person pure bargaining games. Also, it 
has been used in the axiomatization of the prekernel [see Peleg (1986a)]. The 
core satisfies CRGP [Peleg (1986a)]. 

We close this subsection with a simple result and definitions. 

Lemma 2.1.15. Let o- be a solution on a set of  games. I f  o" satisfies IR and 
WRGP, then it also satisfies PO. 

Definition 2.1.16. A solution tr on a set F of games satisfies nonemptiness 
(NE) if o-(N, v) ~ 0 for every (N, v) E F. 

Definition 2.1.17. Let tr be a solution on a set F of games, tr is weakly 
symmetric (WS)  if the following condition is satisfied. If N = (i, j ) ,  (N, v) ~ F, 
v({i}) = v ( { j ) ) ,  and (x i, x j) E o-(N, v), then (x j, x i) ~ tr(N, v). 

Clearly the core satisfies WS. Actually, the core satisfies a much stronger 
version of symmetry, namety anonymity (i.e. it is independent of the names of 
the players). 

2.2. An  axiomatization of  the core 

Let U be a set of players. In this subsection we assume that U contains at least 
three members. We denote F« = {(N, v) IC(N,  v ) ~ 0 } .  F c is the set of all 
balanced garnes [see Owen (1982, Chapter VIII)]. 
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Theorem 2.2.1. There is a unique solution on F c that satisfies NE, IR, SUPA, 
and WRGP, and it is the core. 

Outline of the proof. Clearly, we need only to prove the uniqueness part of 
the theorem. This part follows from the following lernmata and corollary. 

Lemma 2.2.2. L e t  o- be a solution on a set F of  games. I f  ~r satisfies IR and 
WRGP, then o-(N, v) C C(N, u) for every (N, v) ~ F. 

Corollary 2.2.3. Let cr be a solution on F~ that satisfies NE, IR, and WRGP. I f  
the core of  a garne (N, u) consists of a unique point, then o'(N, v) = C(N, v). 

Lemma 2.2.4. Let (N, u) be a game and let x @ C(N, u). I f  IN[ >t 3, then there 
exist coalitional functions w and u on N such that: (i) C(N, w) = {x}; (ii) 
C(N, u) = {0}, and (iii) v = u + w. 

Now let o- be a solution on F c that satisfies NE, IR, SUPA, and WRGP. By 
Lemma 2.2.2, o-(N, v )C  C(N, v) for every (N, v ) E  F c. Also, by Corollary 
2.2.3 and Lemma 2.2.4, if (N, v) E Fc and ]NI/> 3, then C(N, v) C ~r(N, v). To 
complete the proof we use WRGP to show that C(N, v )C  o-(N, v) when 
(N, v) C F~ and JNI ~< 2. 

Remark 2.2.5. The axioms NE, IR, SUPA, and WRGP are independent [see 
Peleg (1986a, Examples 5.8-5.11)]. 

2.3. An axiomatization of  the core of  market garnes 

We start this subsection with a definition of market garnes. Let U be a set of 
players. A market is a quadruple (N, E~,  A, W). Here N is a coalition (the set 
of traders)', E m+ is the non-negative orthant of the m-dimensional Euclidean 
space (the commodity space); A = {a~l i E N} is an indexed collection of points 
in E+ (the initial endowments); and W =  {w~J i C N} is an indexed collection 
of continuous concave real functions on E~ (the utility functions). Let S be a 

S coalition, S C N. A feasible S-allocation is an indexed collection x = {x]  i C 
m • i i S S} such that x i C E+ for all t E S and Ez~ s x = Eies a .  We denote by X the set 

of all feasible S-allocations. 

Definition 2.3.1. A game (N, v) is a market game if there exists a market 
(N, E~,  A, W) such that 
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for every S C N. 

Definition 2.3.1 is due to Shapley and Shubik (1969). 
Let  (N, v) be a game. A subgame of  (N, v) is a game (T, vr ) ,  where T C N 

and v r ( s )  = v(S) for all S C T. 

Definition 2.3.2. A garne (N, v) is totaUy balanced 2 if C(T, v r) ¢ 0 for every 
T C N ,  T ¢ O .  

By Theorem 5 of Shapley and Shubik (1969) a game is a market  game if and 
only if it is totally balanced. We denote by F t the set of all market  garnes. Also, 
we assume that U contains at least four players. 

Theorem 2.3.3. There is a unique solution on F t that satisfies NE, IR, WS, 
SUPA,  WRGP, and CRGP, and it is the core. 

For a proof  of Theorem 2.3.3 see Peleg (1985b). 

Remark 2.3.4. It may be shown that each of the axioms NE, IR, SUPA, 
WRGP,  and C RGP is independent of the other four axioms and WS. We do 
not know whether  or not WS is independent of the rest of the axioms. 
However ,  we can prove that WS is independent of NE, IR, SUPA, and 
WRGP.  3 

Remark 2.3.5. A comparison of Theorems 2.2.1 and 2.3.3 is instructive. The 
eore satisfies NE, IR, SUPA, and W R G P  on F~. Because F, is a proper  subset 
of Fc, there may be additional solutions on F~ that satisfy the foregoing four 
axioms. Indeed,  Example 5.5 of Peleg (1989) gives us a solution o- on F~ with 
the following properties: (a) tr is different from the eore, and (b) o- satisfies 
NE,  IR, SUPA, WS, and WRGP. We conclude flora that example that CRG P  
is essential for the characterization of the core on F,. If we examine the proof  
of Theorem 2.2.1 we find that the analogue of Lemma 2.2.4 on F, is not true. 
The failure of that analogue explains why the two theorems are different. Also, 
the proof  of Theorem 2.3.3 is more difficult than that of Theorem 2.2.1. 

2A game (N, u) is balanced if C(N, u) ~ 0 [see Shapley (1967) for the origin of this terminology]. 
3Theorem 3.15 in Peleg (1989) implies that WS is redundant. However, its proof is incorrect. 

E.J. Balder and A. ran Breukelen have found an error in the proof of Lemma 4.7 of Peleg (1989). 
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2.4. Garnes with coalition structures 

Let U be a set of players with at least three members and let N be a coalition. 
A coalition structure (c.s.) for N is a partition of N. A garne with c.s. is a triple 
(N, v, b), where (N, v) is a game and b is a c.s. for N (see the chapter on 
'coalition structures' in a forthcoming volume of this Handbook for discussion 
of garnes with coalitión structures). In this subsection, Theorem 2.2.1 is 
generalized to garnes with coalition structures. We denote by A the set of all 
games with coalition structures. 

Let  (N, v, b) E A. We use the following notation: 

X*(N,  v, b) = ( x [x  E R N and x(B) «- v(B) for every B ~ b} . 

Let  A o C Z~. 

Definition 2.4.1. A solution on A o is a function o- which associates with each 
game with c.s. (N, v, b) C A 0 a subset er(N, v, b) of X*(N, v, b). 

Definition 2.4.2. Let (N, v, b) E A. The core of (N, v, b), C(N, v, b), is 
defined by 

C(N, v, b) = {x I x E X*(N,  v, b) and x(S) >t v(S) for all S C N } .  

Let  N be a coalition, let b be a c.s. for N, and let S C N, S # O. We use the 
following notation. 

blS={BnS[B~b and B n s # 0 } .  

Clearly, b i S  is a c.s. for S. Now we are ready for the following definitions. 

Definition 2.4.3. Let  (N, v, b) C A, let S C N, S # O, and let x E X*(N,  v, b). 
The reduced garne with respect to S and x is the garne with c.s. (S, Vx,s, b I S) 
where 

I °, v ( B ) -  x ( B -  T) , 
( m a x { v ( T  U Q ) -  x ( Q ) l  Q c N -  S } ,  

T = 0 ,  
T ~ b ] S ,  T C B  and B C b ,  
otherwise.  

Definition 2.4.4. Let  Zi 0 C zi. A solution (r on A 0 has the weak reduced game 
property (WRGP)  if it satisfies the foltowing condition. If (N, v, b ) E  Ao, 
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S C N ,  1~<[S]~<2, and x ~ c r ( N , v , b ) ,  then (S, vx, s , b ] S ) ~ A  o and x S E  
o'(S, ex,s, biS).  

Let /I c = {(N, v, b)[ C(N, v, b) ¢ fJ}. 

Theorem 2.4.5. There is a unique solution on A c that satisfies NE,  IR, SUPA 
and WRGP, and it is the core. 

The proof of Theorem 2.4.5 is similar to that of Theorem 2.2.1. 

3. Coalitional garnes without side payments 

3.1. Reduced games o f  N T U  games 

Let U be a set of players and let N be a coalition. If x, y E R N, then x/> y if 
x g/>yi for all i E N ,  a n d x » y  i f x  i > y i  for a l l i E N .  We denoteR+=N {xE  
R N ] x >~ 0}. Let A C R N. A is comprehensive if x ~ A and x/> y imply that 
y E A. The boundary of A is denoted by OA. Finally, cl A denotes the closure 
of A. 

Definition 3.1.1. A nontransferable utility (NTU)  garne is a pair (N, V), 
where N is a coalition and V is a function that assigns to each coalition S C N a 
subset V(S) of R s, such that 

V(S) is nonempty and comprehensive ; (1) 

V(S) C3 (x s + R s)  is bounded for every x s E R s ; (2) 

V(S) is ctosed ; (3) 

if x s, yS C OV(S) and x s >i yS , then xS = YS. (4) 

Conditions (1) and (3) 
subset of R s. It is a very 
the familiar nonlevelness 

are standard. (2) guarantees that V(S) is a proper 
weak requirement of boundedness. Condition (4) is 
property [see, for example, Aumann (1985a)]. 

Definition 3.1.2. Let (N, V) be an NTU garne, let x ~ V(N),  and let S C N, 
S ~ 0. The reduced game with respect to S and x is the game (S, V«,s), where 

Vx,s(S ) = {yS l (yS, x N-s) e V(N)},  (5) 
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Vx,s(T ) =  (_,) {y~](y~,x Q ) E V ( T t O Q ) }  if T C S ,  T e S .  (6) 
QCN-S  

In the reduced garne the players of S are allowed to choose only payoff 
vectors yS that are compatible with x N-s, the fixed payoff distribution to the 
members of N - S. On the other hand, proper subcoalitions T of S may count 
on the cooperation of subsets Q of N -  S provided that in the resulting payoff 
vectors for T LJ Q each member i of Q gets exactly x i. 

Remark 3.1.3. Reduced games of NTU garnes were first used in Greenberg 
(1985). The present definition is due to Peleg (1986b). However, it is interest- 
ing to notice that the idea of considering reduced games of NTU games may be 
traced back to Harsanyi (1959). Also, Lensberg (1988) and Thomson (1984) 
have recently used reduced games in their axiomatization of various solutions 
of pure bargaining games. 

We close this subsection with the following lemma. 

Lemma 3.1.4. Let (N,V) be an N T U  game, let x E V ( N ) ,  and let S C N ,  
S # 0 .  Then the reduced game (S, Vx,s) is a game [i.e. it satisfies (1)-(4)]. 

3.2. A n  axiomatization o f  the core of  N T U  garnes 

Let U be a set of players with at least three members. 

Definition 3.2.1. Let (N, V) be an NTU garne and let x E V(N) .  A coalition 
S Q N can improve upon x if there exists yS ~ V(S)  such that yS » x s. x is in the 
core of (N, V) ,  C(N, V) ,  if no coalition can improve upon x. 

We denote F = {(N, V) I C(N, V)  # 0). A solution on F is a function ~o- that 
assigns to each NTU garne (N, V)E  F a subset o-(N, V) of V(N) .  We shall 
consider the following properties of solutions. 

Definition 3.2.2. A solution o- on F satisfies nonemptiness (NE) if o-(N, V) ~ 0 
for every (N, V) E F. 

Let (N, V) be an NTU game and ler i ~ N. We denote 

v i = sup{x i ]x  i E V({i))} . 

By (1) and (2) v i is well defined. 
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Definition 3.2.3. A solution tr on F satisfies individual rationality (IR) if for 
every (N, V) @ F and every x ~ o-(N, V) ,  x i >! v i for all i E N. 

Obviously, the core satisfies IR. 

Definition 3.2.4. A solution tr on F has the reduced garne property (RGP) if it 
satisfies the following condition. If (N, V) E F, S C N, S ~ 0, and x E o-(N, V), 
then (S, Vx, s) C F and x s ~ «(S, Vx,s). 

RGP has been used in the axiomatization of the Nash solution [Lensberg 
(1988)] and the egalitarian solution [Thomson (1984)] of pure bargaining 
garnes. The core satisfies RGP. 

Definition 3.2.5. A solution o- on F has the converse reduced garne property 
(CRGP) if it satisfies the following condition. If (N, V)  E F, x E V(N) ,  and for 
every two-player coalition S, S C N, (S, Vx,s) E F and x s ~ o'(S, Vx,s) , then 
x E o-(N, V). 

We remark that the core satisfies CRGP. Now we are ready for the following 
theorems. 

Theorem 3.2.6. Assume that U is infinite. Then there is a unique solution on F 
that satisfies NE,  IR, and RGP, and it is the core. Furthermore, NE,  IR, and 
R G P  are independent. 

Theorem 3.2.7. Assume that U & finite. Then there is a unique solution on F 
that satisfies NE,  IR, RGP, and CRGP, and it is the core. Furthermore, NE,  IR, 
RGP, and CRGP are independent. 

Proofs of Theorems 3.2.6 and 3.2.7 are given in Peleg (1985a). 

3.3. A review of  " A n  axiomatization of the core of  a cooperative game" by 
H. Keiding 

Keiding (1986) considers a larger class of NTU games. More precisely, he uses 
the following definition. 

Definition 3.3.1. An NTU garne is a pair (N, V), where N is a coalition and V 
is a function that assigns to each coalition S C N a subset V(S) of R s such that 
(1) is satisfied for all S, and (4) is satisfied only for S = N. 
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Let F be the set of all games. A solution is a function o- that assigns to each 
(N, V) E F a subset o-(N, V) of V(N). 

Keiding is interested in the following properties of solutions. A garne (N, V) 
is trivial if V(S) = {x s ~ R s ] x s «- 0} for all S # 0, N. Ler o- be a solution. 

Axiom 3.3.2 (triviality). If (N, V) is trivial and V(N)N R+ N = {0}, then 
o-(N, V) : {0}. 

Axiom 3.3.3 (covariance). For all a ŒR N, if ( N , V +  {a}) is defined by 
(V + {a))(S) = V(S) + a s, S C N, then ~r(N, V + (a) )  = ~r(N, V) + a. 

Axiom 3.3.4 (antimonotonicity). If (N, V) and (N, W) are games such that 
V(S) C W(S) for all S C N, and V(N) = W(N), then ~r(N, W) C o'(N, V). 

Keiding writes: "This axiom seems quite reasonable: large sets W(S) mean 
that coalitions are powerful so that fewer of the feasible payoff vectors in 
W(N) = V(N) may qualify as final outcomes." 

Axiom 3.3.5 (continuity). If (N, V) and (N, W) are garnes such that cl V(S) = 
cl W(S) for all S C N and V(N) = W(N), then o-(N, V) = o-(N, W). 

Clearly, Axiom 3.3.5 is a very weak technical assumption. 
For a solution o- and a garne (N, V), we define (D~V)(S), S C N, S # O, N 

inductively as follows. For each S with IS[ = 1 we put (D~V)(S)= cl V(S). 
Suppose that (D~V)(S*) is defined for all S* C S, S* # 0, S; if (D~V)(S*) = 0 
for some S* put (D~V)(S)= 0; otherwise let (D~V)(S) be the closed com- 
prehensive hull of o-(S, V*), where (S, V*) is the garne defined by V*(S*) = 
(D~V)(S*) for S* # S, and V*(S) = V(S). If (D~V)(S) ~ 0 for all S C N, we 
define the o--derived game (N, D~V) of (N, V) by D~V(S) = (D~V)(S) for all 
S C N S # 0, N, and D~V(N) = V(N). 

Axiom 3.3.6 (independence of c-irrelevant aiternatives). If (N, V) is a game 
such that the ~r-derived garne (N,D~V)  is defined, then cr(N,V)= 
o-(N, D~V). 

Keiding interprets the last axiom in the following way: 

To get an understanding of Axiom 3.3.6, it is helpful to think of outcomes as 
results of a bargaining procedure, where coalitions S may object to payoffs x 
by reference to some y in V(S) which they can enforce by themselves. In 
order for such an objection to be credible, it must be "really" enforceable by 
S, that is it must not in its turn be objected against by some subcoalition of 
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S. By  t he  logic of  o u r  a p p r o a c h  cr s h o u l d  be  u sed  r e p e a t e d l y  to dec ide  wh ich  

o f  t he  e l e m e n t s  y of  V ( S )  are  " r e a l l y "  e n f o r c e a b l e  in  t he  a b o v e  sense .  T h e  
c o n s t r u c t i o n  of  the  o - -de r ived  garne  k eeps  exac t ly  such e l e m e n t s  a n d  ex- 
c l u d e s  t he  n o n - e n f o r c e a b l e .  T h u s ,  the  a x iom  says tha t  the  n o n - e n f o r c e a b l e  
o p t i o n s  of  V ( S )  do  n o t  c o u n t  w h e n  o-(N, V)  is d e t e r m i n e d .  

K e i d i n g  p r o v e s  t h e  fo l lowing  t h e o r e m .  

Theorem 3.3 .7 .  Le t  cr be a solution on F with the fo l lowing properties: 
(a) o- satisfies A x i o m s  3 . 3 . 2 - 3 . 3 . 6 ;  

(b)  i f  ,r is a solution satisfying A x i o m s  3 . 3 . 2 - 3 . 3 . 6 ,  then o-(N, V )  C "r(N, V )  
f o r  all (N,  V )  C F.  
Then o-(N, V )  = C(N,  V )  for  every game (N,  V) .  
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1. Introduction 

In this chapter we survey results on the cores of perfectly competitive exchange 
economies, i.e. economies in which the endowment of each agent is negligible 
on the scale of the whole economy. The subject began with the pioneering 
work of Edgeworth (1881). Edgeworth gave a geometrical proof, in the case of 
two commodities and two traders, that as one replicated the economy the core 
collapsed to the set of Walrasian equilibria. Edgeworth claimed in passing that 
his proof generalized to arbitrary numbers of commodities and arbitrary 
numbers of agents in the base economy being replicated. 

The subject lay dormant for nearly a century until Shubik (1959) recognized 
the importance of Edgeworth's contribution. Debreu and Scarf (1963) gave the 
first proof of the theorem that Edgeworth had claimed: that, in replica 
sequences of economies with strongly convex preferences, the intersection of 
the cores of the replications coincides exactly with the set of Walrasian 
equilibria. Their proof is quite different from Edgeworth's. 

Aumann (1964) formulated a model of a large economy with a measure 
space of agents. In this model, he showed that the core coincided with the set 
of Walrasian equilibria. Moreover, Aumann required only minimal assump- 
tions; for example, neither convexity nor monotonicity of the preferences nor 
boundedness of the endowments is required. Aumann's proof makes use of 
some of the key ideas in the Debreu and Scarf proof. 

In the contributions of Edgeworth, Debreu and Scarf, and Aumann, the 
conclusion is clean and neat: the core (in Aumann's case) or the intersection of 
the cores of all replicas (in the other cases) coincides with the set of Walrasian 
equilibria. Moreover, the Debreu and Scarf paper is completely elementary, 
with a proof that is a model of simplicity and elegance. The Aumann paper, of 
course, uses more sophisticated mathematics. However, since Aumann found 
the proper mathematical formulation for the problem, the proof is (modulo the 
mathematical prerequisites) simple, and the conclusion is very strong. 

Following these pioneering contributions, core theory became one of the 
principal focuses of mathematical economics in the 1960s and 1970s. The study 
turned primarily in the direction of limit theorems for sequences of large finite 
economies. Here, the simplicity that had been found in the replica and 
continuum cases disappeared. One of the key elements of the Debreu and 
Scarf argument, the equal treatment property which permitted one to collapse 
the cores of all the different replicas into the same space, does not generalize 
even to sequences with different numbers of traders of the various types. 
Moreover, the strong statement that the core (in Aumann's continuum setting) 
or the intersection of the cores (in the Debreu and Scarf replica setting) 
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coincides with the set of Walrasian equilibria is simply not true in the case of 
general sequences of finite economies. Instead, one must substitute weaker 
forms of convergence. Convexity of preferences, which plays no role whatever 
in Aumann's theorem, is seen to make a crucial difference in the form of 
convergence in large finite economies. 

In short, the quest in this literature was to find the appropriate way to come 
back from the limit case considered by Aumann to characterize the limiting 
behavior of large finite economies more general than those considered by 
Debreu and Scarf. A wide array of mathematical tools was employed, includ- 
ing the theory of weak convergence of probability measures [introduced by 
Hildenbrand (1970)], non-standard analysis [introduced by Brown and Robin- 
son (1975)] and differential topology [introduced by Debreu (1975)]. Critical 
(and under-appreciated) contributions were made by Kannai (1970) and 
Bewley (1973a), the latter making use of an early core result of Vind (1965). 
Much of the work of this period is reported in Hildenbrand's classic book 
[Hildenbrand (1974)], the standard reference for the measure-theoretic and 
weak convergence approach to the study of the core and, indeed, the standard 
reference for much of the mathematics in current use in economic theory. 

In the second half of the 1970s, independent work by E. Dierker (1975), 
Keiding (1974), and Anderson (1978) permitted elementary and shorter proofs 
of the main convergence results. In addition, the statements of the theorems 
could be given without referring to the weak convergence machinery. The 
author's paper came directly out of work using nonstandard analysis. These 
advances make it possible to communicate the main convergence theorems 
(including the subtle interplay between the assumptions and the variations in 
convergence forms that they produce) to a wider audience. 

In the second half of the 1980s there was renewed research on the core. 
There were significant improvements in the results on the rate of core 
convergence. Counterexamples [especially those in Manelli (1991)] highlighted 
the extent to which core convergence results for large finite economies are 
dependent on strong monotonicity and convexity assumptions, even though 
these assumptions play no role in Aumann's continuum formulation; in addi- 
tion, monotonicity plays no role in the Debreu-Scarf replica formulation. The 
introduction of the f-core [Kaneko and Wooders (1986, 1989) and Hammond, 
Kaneko and Wooders (1989)] for the first time permitted the proof of an 
equivalence theorem in the presence of externalities which result in failure of 
the First Welfare Theorem. 

The literature exhibits a great variety of assumptions and conclusions; in 
many cases, assumptions that appear quite different in different papers are 
actually closely related. In order to bring some order to the literature, and to 
explain clearly (we hope) how the form of core convergence depends on the 
assumptions made, we shall first develop a taxonomy of assumptions and 
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conclusions. The survey will then consist of tables listing the various results, 
with their assumptions and conclusions described in terms of the taxonomy. In 
this way it is hoped that the reader can come to appreciate the essential 
differences and similarities of the various results. However, since the assump- 
tions and conclusions of the papers vary somewhat from those given in the 
taxonomy, the reader is cautioned to consult the original sources for exact 
statements of the theorems. 

We should close by noting that there are many topics relating to the core that 
space does not permit us to discuss. In particular, we do not discuss here the 
following topics: 

(1) nonemptiness of the core: see Chapter 12 of this Handbook; 
(2) approximate cores: see Kannai (1970), Hildenbrand, Schmeidler and 

Zamir (1973), Grodal and Hildenbrand (1974), Khan (1974), Grodal (1976), 
Grodal, Trockel and Weber (1984), Wooders and Zame (1984) and Anderson 
(1985), and the references contained there; 

(3) economies with imperfect competition, i.e. a single agent possesses a 
non-negligible fraction of the social endowment: see Chapter 15 of this 
Handbook;  

(4) cores of production economies, because there is no generally accepted 
definition of the core in this case, and because the assumption of perfect 
competition which is reasonable in consumption is not reasonable in the case of 
production: see Hildenbrand (1968, 1974), Champsaur (1974), and Oddou 
(1976); 

(5) cores of garnes other than economies (see Chapters 12 and 13 of this 
Handbook);  

(6) cores with transactions costs [Khan and Rashid (1976)]. 

2. Basics 

In this section we give some basic definitions and blanket assumptions. Not all 
of the assumptions are required for every theorem, but we regard them to be 
more technical in nature than those assumptions we have chosen to highlight in 
the taxonomy created in the next two sections. For this reason, we shall make 
these assumptions throughout, and not try to indicate which theorems can be 
proven without them. 

Suppose x,  y E R k, A C R ~. x i denotes t h e / t h  component of x; x/> y means 
x ' > ~ y  ' for all i; x > y  means x>~y  and x ¢ y ;  x » y  means x i > y  i for all i; 
[Ixll~ = maxl</~k Ixil; IIxlli = X / k = l  = lk]xil; Rk+ = {x ~ Rk: x/> 0}. 

A preference is a binary relation > on Rk+ satisfying the following conditions: 
(i) continuity: ((x, y): x > y} is relatively open in Rk+ × Rk+ ; and (il) irreflexivi- 
ty: x :~ x. L e t @  denote the set of preferences. We write x - - y  if x ~ y and 
y ~ x .  
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An exchange economy is a map X: A---~ 3 õ x R~+, where A is a finite set. For 
a E A, let >ù denote the preference of a [i.e. the projection of x(a) onto 3 õ] 
and e(a) the initiaL endowment of a [i.e. the projection of x(a) onto Rk+]. An 
allocation is a map f :  A---~ Rk+ such that ~aCA f ( a )  = ~aEA e(a). A coalition is a 
non-empty subset of A. A coaLition S can improve on an aLLocation f if there 
exists g: S---~R~+, g(a)>af(a ) for aLL a ES ,  and Zùe s g (a )=  Eù~se(a ). The 
core of X, te(X), is the set of alL aLLocations which cannot be improved on by 
any coalition. 

A price p is an element of R ~ with Ilplll = 1. a denotes the set of prices, 
A+ = ( p  E A: p ~>0}, A++ = {p E A: p >>0}. The demand set for (> ,  e), given 
p E A ,  is D ( p , ( > , e ) ) = { x E R ~ + : p . x « - p . e , y > x ~ p . y > p . e } .  The 
quasidemand set for (> ,  e), given p E A, is Q(p, (> ,  e)) = {x E R~+: p .  x ~< 
p . e , y > x ~ p . y > ~ p . e } .  By abuse of notation, we Let D(p ,a )  = 
D(p,  (>a,  e(a))) and Q(p, a) = Q(p, (>a,  e(a))) if a C A. 

An income transfer is a function t: A--~R. By abuse of notation, we write 
D ( p , a , t ) = { x E R k + : p . x < ~ p . e + t ( a ) ,  y > x ~ p . y > p . e + t ( a ) }  and 
Q(p,  a, t) = {x~Rk+: p .  x<~p.e  + t(a), y > x ~  p .  y>~p • e+ t(a)}. 

A WaLrasian equiLibrium is a pair ( f, p), where f is an aLLocation, p ~ zl, and 
f(a) E D(p,  a) for all a E A. If ( f ,  p) is a Walrasian equilibrium, then f is 
caLLed a WaLrasian aLLocation and p is caLLed a Walrasian equiLibrium price. Ler 
°##(X ) denote the set of WaLrasian equiLibrium prices. A Walrasian 
quasiequiLibrium is a pair ( f ,  p), where f is an aLLocation, p E A, and f(a) 
Q(p,  a) for aLl a E A. If ( f ,  p) is a WaLrasian quasiequiLibrium, t h e n f i s  calLed 
a quasi-WaLrasian alLocation and p is caLled a WaLrasian quasiequiLibrium price. 
Let ~(X) denote the set of WaLrasian quasiequiLibrium prices. 

The folLowing theorem, which asserts that the set of Walrasian aLLocations is 
contained in the core, is an important strengthening of the First WeLfare 
Theorem. It provides a means of demonstrating non-emptiness of the core in 
situations where one can prove the existence of WaLrasian equiLibrium; see 
Debreu (1982). 

Theorem 2.1. Suppose X: A--~ ~ x R~+ is an exchange economy, where A is a 
finite set. I f  f is a Walrasian allocation, then f E C~(X ). 

Proof. Suppose ( f ,  p) is a Walrasian equiLibrium. Suppose a coalition S ~ 0 
can improve o n f b y  means of g, so that g(a) >~ f(a) for a E S and ZaE s g(a) = 
Eùc s e(a). Since f(a) ~ D(p,  a), p .  g(a) > p .  e(a) for a E S. Then 

P" E g(a) = E P" g(a)> E P" e(a) = p .  E e(a), 
aES aCS a~S a@S 

(1) 

which contradicts ~'a~S g(a) = 2aE S e(a). Since f c a n n o t  be improved on by any 
coalition, f E ~(X). [] 
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3. Assumptions on preferences and endowments 

In this section we define the various assumptions on preferences and endow- 
ments that are used in the core theorems that we shall discuss. Within each 
section, the assumptions are numbered from weakest to strongest. For exam- 
ple, Assumption B4 implies Assumption B3, which implies B2, which implies 
B1. Where appropriate, brief discussions of the economic significance will be 
given. In each case, we consider a sequence of exchange economies 
X~: A~--~ ~ x Rk+. 

1. Convexity 
(a) C1 (bounded non-convexity). Assumption C1 is that preferences 

exhibit bounded non-convexity in the sense that 

1 k > x})---> 0 max sup y ( { y E R + : y  
IA~I ~~A~ ~~R~+ 

(2) 

where y(B) is the Hausdorff distance between the set B and its 
eonvex hull, i.e. y(B) = sup«ccoù e infbE8 I b -- C]. 

(b) C2 (Convexity). Assumption C2 is that preferences are convex; in 
other words, {yER~+: y > x }  is a convex set for every x E R  k + ,  

(c) C3 (Strong convexity). Assumption C3 is that preferences are strong- 
ly convex; in other words, if x ¢ y ,  then either (x + y ) / 2 > x  or 
(x + y) /2> y. 

2. Smoothness 
In the following list, Assumption SB neither implies nor is implied by S. 

(a) S (Smoothness). Assumption S is that preferences are smooth, in 
k . C 2  other words, {(x, y) E R~++ x R++. x -  y} is a manifold; see Mas- 

Colell (1985). 
Comment. When we list Assumptions C3 and S together, we will 

assume that preferences are differentiäbly strictly convex; in other 
words, the indifference surfaces have non-vanishing Gaussian curva- 
ture [Debreu (1975)]. This is the condition required to make the 
demand function differentiable, as long as the demand stays in the 
interior of R ~ +. Giving a complete definition of Gaussian curvature 
would take us too far afield, but the idea is simple. The distance 
between the indifference surface and the tangent plane to the surface 
at a point x can be approximated by a Taylor polynomial. The linear 
terms are zero (that is the definition of the tangent plane); non- 
vanishing Gaussian curvature says that the quadratic terms are non- 
degenerate. Geometrically, this is saying that the indifference surface 
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(b) 

is not flatter than a sphere. Since we do not assume that the 
indifference curves do not cut the boundary of R~, the demand 
functions may have kinks where consumption of a commodity falls to 
0. 
SB (Smoothness at the boundary).  Assumption SB is that indiffer- 
ence surfaces with a point in the interior of Rk+ do not intersect the 
boundary of Rk+ [Debreu (1975)]. 

Comment .  This is a strong assumption; it implies that all consum- 
ers consume strictly positive amounts of all commodities at every 
Walrasian equilibrium. S, SB and C3 together imply that the demand 
function is differentiable. SB is inconsistent with M4; when we list M4 
and SB together as assumptions, we will assume that M4 holds only 
on the interior of the consumption set. 

3. Transitivity and completeness 
T (Transitivity and completeness). Assumption T is that preferences are 
transitive and complete; in other words, preferences satisfy (i) transitivity: if 
x > y and y > z, then x > z; and (ii) negative transitivity: if x :~ y and y ~ z, 
then x ~ z. 

Comment .  The rather strange-looking condition (ii) guarantees that the 
indifference relation induced by > is transitive. 

4. Monotonicity 
(a) MI  (Local non-satiation). Assumption M1 is that preferences are 

locally non-satiated; in other words, for every x and every 6 > 0 ,  
there is some y with y > x and l Y - xl < 6. 

(b) M2 (Uniform properness). Assumption M2 is that preferences are 
uniformly proper;  in other words, there is an open cone V C R~+ such 
t h a t i f y E x + V ,  t h e n y > x .  

(c) M3 (Weak monotonicity).  Assumption M3 is that preferences are 
weakly monotone;  in other words, if y » x, then y > x. 

(d) M4 (Monotonicity).  Assumption M4 is that preferences are mono- 
tone; in other words, if x > y, then x > y. 

Comment .  Note that M4 plus continuity will imply that if x i > 0, 
then the individual would be willing to give up a positive amount  of 
t h e / t h  commodity in order to get a unit of the j th commodity. This 
has the flavor of assuming that marginal rates of substitution are 
bounded away from zero and infinity, and is used for the same 
purpose: to show that prices are bounded away from zero. Note,  
however,  that preferences can be monotone and have the tangent to 
the indifference curve be vertical at a point. 
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5. Positivity 
(a) P1 (Positivity of social endowment). Assumption P1 is that the social 

endowment of every commodity is strictly positive; in other words, 
EaEA e(a) » O. 

Comment. This is a fairly innocuous assumption; if the social 
endowment of a commodity is zero, then the commodity can be 
excluded frorn all considerations of exchange. One considers the 
economy with this commodity excluded from the commodity space, 
and with preferences induced from the original commodity space. The 
core of the new economy corresponds exactly with the core of the 
original economy under the obvious identification. Note, however, 
that the set of Walrasian equilibria is changed by this exclusion; with 
zero social endowment of a desirable commodity, there may weil be 
no Walrasian equilibrium. Hence, the core equivalence theorem may 
fail without assuming Pl. 

(b) P2 (Positivity of individual endowments). Assumption P2 is that each 
individual has a strictly positive endowment of each commodity; in 
other words, Va E A e(a) » O. 

Comment. This is a very strong assumption. Casual empiricism 
indicates that most individuals are endowed with their own labor and 
a very limited number of other commodities. We believe this assump- 
tion should be avoided if at all possible. 

6. Boundedness 
We shall assume throughout that the per capita endowment is bounded, i.e. 

1 
snp~ ~ ù~A~e(a) < ~ .  (3) 

(a) B1 (No large individual). Assumption B1 is satisfied if 

f le(~)l } 
max~--:lAùl a E A ù  ---~0 as n--+o~. (4) 

Comment. Assumption B1 does not rule out the possibility that, in 
the limit, a negligible fraction of the agents will possess a significant 
fraction (or eren all) of the social endowment. It does say that no one 
individual can possess a non-negligible fraction of the social en- 
dowment. 

(b) B2. Assumption B2 is satisfied if 

max( le(a)l An}---~ 0 (5) ~ßÄ~~l: a E  as n---> ~ .  
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(c) B3 (Uniform integrability). Assumption B3 is satisfied if the se- 
quence of endowment maps is uniformly integrable. In other words, 
for any sequence of sets of individuals E n C An with len I/JAn I ~ 0, 

I~~~~~ e(a)l 
IA~I -->0 as n - ->~ .  (6) 

Comment. Uniform integrability has a natural economic interpreta- 
tion. It says in the limit that no group composed of a negligible 
fraction of the agents in the economy can possess a non-negligible 
fraction of the social endowment. It is clearly stronger than Assump- 
tion B1. Assumption B3 is needed in approaches to limit theorems 
based on weak convergence methods to guarantee that the continuum 
limit of a sequence of economies reflects the behavior of the se- 
quence. In elementary approaches, one can dispense with it (although 
the conclusion is weakened somewhat by doing so). It is probably 
easier to appreciate the significance of the assumption by considering 
the following example of a sequence of tenant farmer economies in 
which the assumption fails. We consider a sequence X,: A.---~ ( ~  x 
Rk+), where A n = { 1 ,  . .  , n2}. For all a E Aù, the preference of a is 
given by a utility function u(x, y) = 2X/-2x 1/2 + y. The endowment is 
given by 

en(a ) ! ( n + l , 1 ) i f a = l  . . . .  , n ,  
= { ( 1 , 1 )  if a = n + l , . . . , n  2. (7) 

Think of the first commodity as land, while the second commodity is 
food. The holdings of land are heavily concentrated among the agents 
1 , . . . ,  n, a small fraction of the total population. Land is useful as an 
input to the production of food; however, the marginal product of 
land diminishes rapidly as the size of the plot worked by a given 
individual increases. The sequence Xn satisfies B1 since maxlen(a)l 
[An[ < (n + 2) /n2---~ 0. However, if we let E n = {1 . . . .  , n}, then 

[E~I n 
- -  2 - - ~ 0  ~ IA~[ 

(8) 

but 

1 n 2 + n  

IAù] ùTG G(a) > n2 -~0 ,  (9) 

so Xù fails to satisfy B3. 
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(d) B4 (Uniform boundedness). Assumption B4 is satisfied if there exists 
M E R such that max{]e(a)]: a E An} ~< M for all n E N. 

C o m m e n t .  Assumption B4 clearly implies Assumptions B1-B3.  It 
is a strong assumption. If one needs to assume it in a given theorem, 
it indicates that the applicability of the conclusion to a given large 
economy depends in a subtle way on the relationship of the largest 
endowment  to the number of agents. 

7. Distributional assumptions 
Here ,  we are using the word "distribution" in its probabilistic sense; we look at 
the measure on ~ x R~+ induced by the economy. There is a complete 
separable metric on ~ [Hildenbrand (1974)]. When we use the term 
"compac t" ,  we shall mean compact with respect to this metric. The economic 
implication of compactness is to make any monotonicity or convexity condition 
apply in a uniform way. For example, ä compact set K of monotone prefer- 
ences is equimonotone,  i.e. for any compact set X contained in the interior of 
Rk+, there exists 6 > 0  such that x + e j -  6e i > x  for all x C X  and all > E K 
[Grodal (1976)]. Similarly, a compact set of strongly convex preferences is 
equiconvex [see Anderson (1981a) for the definition]. Indeed, although the 
compactness assumptions are needed to use the weak convergence machinery, 
they can be replaced by equimonotonicity or equiconvexity assumptions in 
elementary approaches to core convergence theorems. 

(a) D1 (Tightness). Assumption D1 is satisfied if the sequence of dis- 
tributions induced on ~ x R k + is tight. In other works, given any 
6 > O, there exists a compact set K C ~ x R~+ such that 

I{a E Aù: (>a,  e(a)) @ K}] 

IAnl  
> 1 - s .  (10)  

(b) 

(c) 

D2 (Compactness). Assumption D2 holds if there is a compact set 
K C ~ x R ~ + such that (>a,  e(a)) E K for all a E A n and every n. 
D3 (Type). The sequence of economies is called a type sequence of 
economies if there is a finite set T (the set of types) such that 
(>a ,  e(a)) E T for all a E A n and every n. 

C o m m e n t .  The assumption of a finite number of types is obviously 
restrictive, since it will require a large number of identical individuals 
in the economies. On the other hand, this assumption makes the 
analysis much easier. Theorems for type sequences have offen poin- 
ted the way to more general theorems. However,  the proofs do not 
generalize; new methods are typically needed, and the conclusions in 
the general case are usually weaker. Occasionally (as when dispersion 
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(d) 

is needed), type sequences are less well-behaved than general se- 
quences. Thus it is dangerous to assume that behavior in the type case 
reflects fully the behavior of general economies. Note that Assump- 
tion D3 implies Assumption B4 (uniform boundedness of endow- 
ments). 
D4 (Replica). The sequence of economies is called a replica sequence 
if it is a type sequence, and the economy Xn has exactly n individuals 
of each type. 

Comment. The comment in Assumption D3 applies here, but more 
strongly. Great caution is required in inferring general behavior from 
replica results. 

8. Support assumption 
(a) DI1 (No isolated individuals, usual metric). Assumption DI1 is satis- 

fied if, for every 6 > 0, 

inf min [ { b E A n : d l ( ( > a ' e ( a ) ) ' ( > b ' e ( b ) ) ) < 6 } ]  > 0 ,  (11) 

where d 1 is the usual metric on 3 õ × Rk+ [Hildenbrand (1974)]. 
(b) DI2 (No isolated individuals, Hausdorff metric). Assumption DI2 is 

satisfied if, for every 6 > 0, 

I(b ~ An: d2((~ a, e(a)), (>b, e(b))) < 8}l 
inf min > 0 (12) 

n a~An  I A ù l  ' 

where d 2 is constructed in the following way. If a preference is 
continuous, then { ( x , y ) E R k + x R ~ + : x : ? y }  is closed. Thus, the 
Hausdorff metric on closed sets induces a metric d£ on the space of 
preferences; let d 2 be the product of d£ and the Euclidean metric on 
n~+. 

Comment. DI1 and DI2 say that there are no "isolated" in- 
dividuals whose charäcteristics persist throughout the sequence but 
ù disappear" in the limit. DI2 is implied by D4; however, DI1 and 
DI2 neither imply nor are implied by any of Dl-D3.  d; is much finer 
than the topology on preferences associated with the d~ metric, which 
considers two preferences close if their restrictions to bounded sets 
are close. Because the space of preferences with the d 2 metric is not 
separable, DI2 is considerably stronger than DI1. 

9. Purely competitive sequences 
Since the space of agents' characteristics is a complete separable metric space, 
there is a metric (called the Prohorov metric) which metrizes the topology of 
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weak convergence on the space of distributions on ~ x R k + [Billingsley (1968), 
Hildenbrand (1974)]. Hildenbrand (1970) introduced weak convergence into 
the study of the core. In Hildenbrand (1974), he defined a purely competitive 
sequence of economies to be one the distributions of which converge in the 
topology of weak convergence, and moreover the average social endowments 
of which converge to the social endowment of the limit. Any purely competi- 
tive sequence satisfies B3 (uniform integrability of endowments) and D1 
(tightness). Conversely, if a sequence satisfies B3 and Dl,  then every sub- 
sequence contains a further subsequence which is purely competitive. Thus, 
limit theorems for purely competitive sequences are essentially equivalent to 
theorems for sequences satisfying B3 and Dl.  

4. Types of convergence 

The type of convergence that holds depends greatly on the assumptions on the 
sequence of economies. The various possibilities can best be thought of as lying 
on four largely (but not completely) independent axes: the type of convergence 
of individual consumptions to demands, the equilibrium nature of the price at 
which the demands are calculated, the degree to which the convergence is 
uniform over individuals, and the rate at which convergence occurs. 

1. Individual convergence conclusions 
In what follows we shall suppose that f is a core allocation in an economy 
X: A--> ~ x R k and that a C A. We describe two sets of conclusions: those + ~  

beginning with ID relate the core allocation to the demand, while those 
beginning with IQ relate it to the quasidemand. Since a demand vector is 
always a quasidemand vector, conclusion IDi is stronger than conclusion IQi 
for each i. Let us say that one conclusion is "informally stronger" than another 
if it more elosely conforms to the motivation for studying core convergence as 
described at the beginning of Section 5. Then ID5 is informally stronger than 
ID4T or ID4N, which are informally stronger than ID3U or ID3N, which are 
informally stronger than ID2, which is informally stronger than IQ1. Indeed, 
under certain standard (but not innocuous) assumptions, one can show that 
ID5 ~ {ID4T, ID4N} ~ {ID3U, ID3N} ~ ID2 ~ IQ1. However, Manelli 
(1990b) has constructed an example with a sequence of core allocations 
satisfying ID4N (and E3, which is described below), where IQ1 nonetheless 
fails; in the example, preferences are not monotone. 

(a) IQ1 (Demand-like). Conclusion IQ1 is that the consumption of the 
individual a is quasidemand-like, but not necessarily close to a's 
quasidemand set. Specifically, we define 
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Pol(f ,  a, p) = IP" ( f (a)  - e(a))[ 
+ i n f ( 6 ~ > 0 : y > ~ f ( a ) ~ p ' y > p ' e ( a ) - 6 } .  (13) 

(b) 

Conclusion IQ1 is that there exists p E A such that Pol(f ,  a, p) is 
small. 

Comment. This is a 6-satisficing notion: the consumption is as 
good as anything that costs 6 less than the endowment. Note that if 
Pol(f,  a, p) = 0, then f(a) E Q(p ,  a). 
IQ2, ID2 (Near demand in utility). Conclusion IQ2 (ID2) is that 
there is a price vector p such that the utility of the consumption of 
individual a is close to the utility of consuming a's quasidemand 
(demand). Specifically, we assume that the specification of the 
economy includes a specification of particular utility functions repre- 
senting the preferences of the individuals. We then define 

P~2(f, a, p ) =  inf lua(f(a))- Ua(X)], 
xCQ(p,a) 

PD2(f~ a, p ) =  inf [ua(f(a))-- uù(x)l. 
xGD(p,a) 

(14) 

Conclusion IQ2 (ID2) is that there exists p E A such that PQ2(f, a, p) 
(PD2(f, a, p)) is small. 

(c) Conclusion IQ3U neither implies nor is implied by conclusion IQ3N; 
conclusion ID3U neither implies nor is implied by conclusion ID3N. 
(i) IQ3U, ID3U (Indifferent to demand with income transfer). Con- 

clusion IQ3U (ID3U) is that there is a price vector p and an 
income transfer t such that individual a is indifferent between 
consuming his/her assigned bundle and consuming Q(p,  a, t) 
(D(p,  a, t)). Specifically, we define 

Po3v(f, a, p ) =  inf{]«(a)l: 3x f (a) - -  x, x ~ Q(p ,  a, t)} , 

PD3U(f, a, p ) =  inf{]t(a)]: 3x f ( a ) -  x, x ~ D(p ,  a, t)} . 
(15) 

Conclusion IQ3U (ID3U) is that there exists p E d such that 
Po3(f, a, p) (PD3(L a, p)) is small. 

(ii) IQ3N, ID3N (Near demand with an income transfer). Conclusion 
IQ3N (ID3N) is that there is a price vector p and an income 
transfer t such that individual a's consumption bundle is near 
Q(p,  a, t) (D(p,  a, t)). Specifically, we define 
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POBN(f, a, p) = inf{]f(a) 

PD3N(f, a, p) = inf{]f(a) 

- x l : x E Q ( p , a , « ) } ,  

- xl: x ~ D ( p ,  a, t)}. 
(16) 

Conclusion IQ3N (ID3N) is that there exists p E A such that 
Po3N(f, a, p) (PD3Y(f, a, p)) is small. 

(d) Conclusion IQ4T neither implies nor is implied by conclusion IQ4N; 
conclusion ID4T neither implies not is implied by conclusion ID4N. 
(i) IQ4T, ID4T (Demand with an income transfer). Conclusion 

IQ4T (ID4T) is that there is a price vector p and an income 
transfer t such that individual a's consumption bundle is an 
element of Q(p,  a, t) (D(p ,  a, t)). Specifically, we define 

BQ4T(Jg~ a» p) = inf{]t(a)]: f(a) Œ Q(p ,  a, t)}, 

BD4T(f~ a, p) = inf(It(a)l: f(a) E D(p ,  a, t)}. 
(17) 

(ii) 

Conclusion IQ4T (ID4T) is that there exists p E A such that 
Po«( f ,  a, p) (PD«(f,  a, p)) is small. 

Comment. If p is a supporting price (see conclusion E2S, 
below), then f(a) E Q(p ,  a, t) (D(p ,  a, t)) with t(a) = p . f(a) - 
p .  e(a). 
IQ4N, ID4N (Near demand). Conclusion IQ4N (ID4N) is that 
there is a price vector p such that the consumption of individual a 
is near a's demand set. Specifically, we define 

BQ4N(f~ a, p ) =  inf(]x - f (a ) l :  x E Q(p ,  a)}, 

BD4N(f~ a, p) ~--inf{[x - f (a) ] :  x ~ D(p ,  a)}. 
(18) 

Conclusion IQ4N (ID4N) is that there exists p E A such that 
Po4N(f, a, p) (PD4N(f, a, p)) is small. 

(e) IQS, ID5 (In demand set). Conclusion IQ5 (ID5) is that there is a 
price vector p such that f(a) E Q(p ,  a) (D(p ,  a)). 

2. Equilibrium conclusions on price 
These conclusions concern a price vector p. If the individual convergence 
conclusion is of the form IQi, the equilibrium conclusion on price refers to 
Walrasian quasiequilibrium; if the individual convergence conclusion is of the 
form IDi, the equilibrium conclusion on price refers to Walrasian equilibrium. 

(a) El  (Any price). Conclusion E1 is that the price p is an arbitrary 
member of A. 

(b) Conclusion E2A neither implies, nor is implied by, conclusion E2S. 
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(i) E2A (Approximate equilibrium price). Conclusion E2A is that 
the price p is an approximate equilibrium price. Specifically, 
define 

Ba(X) = { p : 3 g ( a )  E Q ( p , a ) ,  ~~Ag(a)--e(a) <~a}, 

~V~(X) = { p: Bg(a) E D(p,  a), ù~A g(a) - e(a ) <~ 6 } . 

(19) 

Ra(X) (7/Va()¢)) is the set of 6-Walrasian quasiequilibrium (6- 
Walrasian equilibrium) prices. 

(ii) E2S (Supporting price). Conclusion E2S is that the price p is a 
supporting price. In other words, if y > f(a), then 

p" y >ip" f(a) (20) 

if the individual convergence conclusion is of the form IQi and 

p .  y > p .  f(a) (21) 

if the individual convergence conclusion is of the form IDi. Let 
5°~(f) denote the set of supporting prices for f in the sense of 
equation (20) and 5¢@(f) denote the set of supporting prices for f 
in the sense of equation (21). 

Comment. The use of a supporting price plays a critical role in 
rate of convergence results [Debreu (1975), Grodal (1975), 
Cheng (1981, 1982, 1983a), Anderson (1987), Geiler (1987) and 
Kim (1988)] and other applications of differentiable methods [see 
Mas-Colell (1985)]. 

(c) E3 (Equilibrium price). If the individual convergence conclusion is of 
the form IQi, conclusion E3 is that the price p is a Walrasian 
quasiequilibrium price, i.e. p E Q(X). If the individual convergence 
conclusion is of the form IDi, conclusion E3 is that the price p is a 
Walrasian equilibrium price, i.e. p E °kV(X). 

3. Uniformity conclusions 
The uniformity conclusions operate jointly with the individual convergence 
conclusions and the equilibrium conclusions on price. The conclusion triple 
(Il, Ej, Um) holds if the following is true: given any e > 0 and any/~ > 0, there 
exists n o E N such that for n > n o and f E ~(Xn), there exists 
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f 
zl 

&(x) 
%(x) 

p E O°~(f) 
O°~(f) 
~(x) 
~(x) 

if j = l ,  
if j = 2 A  and i = Q . . . ,  
if j =  2A and i =  D . . . ,  
if j = 2 S  and i = Q  . . . .  
if j = 2 S  a n d i = D  . . . .  
if j = 3  and i = Q . . . ,  
if j = 3 a n d i = D . . .  

such that 
(a) U1 (Convergence in measure). 

I{a E A.: Ps(f, a, p) > e}l 
IAnl 

(22) 

< «. (23) 

Comment. Convergence in measure says that, at a core allocation in 
a large economy, most agents have consumption vectors that are close 
(in the sense specified by the individual convergence conclusion) to 
demand. 

(b) U2 (Convergence in mean). 

EaEAù Ps(f' a, p) 
< e .  (24) 

(c) 

IAnl 

Comments. Convergence in mean is stronger than convergence in 
measure. It asserts that the average deviation (in the sense specified 
by the individuat convergence conclusion) is small. The difference 
between convergence in measure and mean is closely connected to 
the difference between conclusion pairs (ID4N, El )  (near demands 
for some price) and (ID4N, E2) (near demands for an approximate 
equilibrium price): U2 and ID4N imply E2, but U1 and ID4N need 
not imply E2. 
U3 (Uniform convergence). 

Pi( f ,a ,P)<E for a l l a E A  z. (25) 

Comment. Uniform convergence is stronger than convergence in 
measure and convergence in mean. It is the only conclusion that 
asserts that all individuals are close (in the sense specified by the 
individual convergence conclusion) to demand. 

4. Rate of convergence conclusions 
An entry of "l/n" in the tables indicates that the rate at which convergence (in 
the sense specified by the individual convergence conclusion and the uniformity 
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conclusion) occurs is O(1/IAnl). Similarly, an entry of " l / n  2'' indicates the 
rate is O(1/IAn [2). An entry "1 /n  2-~ ' '  indicates that, for every E > 0, the rate 
is O(1/IAnI 2 "). 

5. Most economies 
These conclusions describe various formulations of the notion that convergence 
holds for most sequences of economies. The three formulations of this notion 
(probability one in replica sequences, probability one in random economies, 
and topological) are incomparable. 

(a) (Probability one in replica sequences). Consider a finite economy, 
with fixed preferences, but with the endowments allowed to vary. We 
will replicate this economy. 
(i) MR1 (Weak law of large numbers). Fix the social endowment in 

the unreplicated economy, and consider possible reallocations of 
the social endowment among the types. Conclusion MR1 holds if, 
for all ~ > 0, the measure of the set of endowment reallocations 
for which the uniformity conclusion fails in the n-fold replica 
tends to zero as n - + ~ .  For example, the conclusion triple 
(ID4N, E3, U3) holds in conjunction with MR1 if, for all ~ > 0, 
the measure of the set of endowment reallocations such that for 
some f in the core of the n-fold replica, for every p E ~V(X), 
PD4N(f, a, p) > e for some a E An, tends to 0 as n--~ ~. 

(ii) MR2 (Strong law of large numbers). Conclusion MR2 holds if, 
except for a set of endowments of Lebesgue measure zero, the 
resulting replica sequence converges in the sense specified by the 
other convergence conclusions. 

(b) MP (Probability one in random economies). Conclusion MP holds if 
the conclusion is true with probability one with respect to a certain 
distribution over sequences of economies. Specifically, we consider an 
arbitrary measure ~ on the space of agents' characteristics ~ x R~+ 
such that 0 ~  ~ e d/x ~ ~ .  We then form a (random) sequence of 
economies by sampling with replacement from this measure. Let % 
be the nth sample. Now ler A n = { 1 , . . . ,  n} and Xn: An---~ ~ x R~+ 
be defined by x n ( i )  = w i. Conclusion MP holds if convergence (in the 
sense specified by the other conclusions) holds with probability one in 
the space of sample sequences. 

C o m m e n t .  The formulation of this assumption implies that as- 
sumptions B3 (uniform integrability) and D1 (tightness) hold with 
probability one. 

(c) MT1 (Residual). Conclusion MT1 holds if the form of convergence 
specified by the other conclusions holds for all sequences of 
economies converging to limit economies in a residual set (i.e. the 
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(d) 

complement of a countable union of nowhere dense sets; see Royden 
(1968). 
MT2 (Open dense). The space of distributions of characteristics can 
be given a metric topology, as discussed in the subsection on Dis- 
tributional Assumptions above. Conclusion MT2 holds if the form of 
convergence specified by the other conclusions holds for all sequences 
of economies converging to limit economies in an open dense set. 

Comment. The topological and probabilistic notions of "most"  
economies are not comparable. The topological notion makes sense 
on spaces (including the space of preferences ~õ) on which there are 
no natural candidates for a canonical measure. The justification for 
this as an appropriate notion of "most"  economies comes from the 
Baire Category Theorem [Royden (1968)] and from an argument 
about stability under perturbations. Note, however, that open dense 
sets in R n may have arbitrarily small (though positive) Lebesgue 
measure. The notion of a residual set is weaker than that of an open 
dense set; its justification as a notion of "most"  economies also comes 
from the Baire Category Theorem. 

5. Survey of convergence results 

In assessing convergence results for cores of large finite economies, we should 
keep in mind three motivations for the study of the core. The first two relate to 
what the core convergence results teil us about Walrasian equilibrium, and are 
normative in character. The fact that Walrasian allocations lie in the core is an 
important  strengthening of the first theorem of welfare economics, which 
asserts that Walrasian allocations are Pareto optimal. This is a strong stability 
property of Walrasian equilibrium: no group of individuals would choose to 
upset the equilibrium by rëcontracting among themsëlves. It has a f u r t h e r  
normative significance. If we are satisfied that the distribution of initial 
endowments has been done in an equitable manner,  no group can object that it 
is t reated unfairly at a core allocation. Since Walrasian allocations lie in the 
core, they possess this desirable group fairness property. Remarkably,  this 
strengthening of the first welfare theorem requires no assumptions on the 
economy: it follows directly from the definition of Walrasian equilibrium. 

The second motivation concerns the relationship of the core convergence 
theorems to the second welfare theorem. The second welfare theorem asserts, 
under  appropriate hypotheses, the any Pareto-optimal allocation is a Walrasian 
equilibrium for some redistribution of endowments. The core convergence 
theorems assert that core allocations of large economies are nearly Walrasian 
(in the senses discussed in the previous section), without any necessity for 
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redistribution of endowments. This is a strong "unbiasedness" property of 
Walrasian equilibrium: if a social planner were to insist that only Walrasian 
outcomes were to be permitted, that insistence by itself would not substantially 
narrow the range of possible outcomes beyond the narrowing that occurs in the 
core. The insistence would have no hidden implications for the welfare of 
different groups beyond whatever equity issues arise in the initial endowment 
distribution. Indeed, assuming that the distribution of endowments is equit- 
able, any allocation that is far from being Walrasian will not be in the core, and 
hence will treat some group unfairly. 

The extent to which this unbiasedness property is compelling depends largely 
on which of the individual convergence conclusions IQ]-ID5 and equilibrium 
conclusions on price E l -E3  hold. The unbiasedness property as stated above 
in words corresponds to conclusions ID2 or ID4N (individual allocations are 
near to demands, either in utility or in consumption), and E3 (the demands are 
taken with respect to a Walrasian equilibrium price). We shall see that the 
combination of E3 with ID2 or ID4N occurs only under rather strong assump- 
tions. Conclusion E2 (the price is one in which excess demand almost  equals 0) 
is must easier to obtain, and appears to the author to be nearly as strong. It is 
quite plausible that markets never exactly clear; rather, at any given time, 
excess demand (viewed as a flow) is close to 0. The excess demand flow is 
accommodated by inventory adjustments for a time, until such adjustments can 
no longer be made. At that point, the market will switch to a new approximate 
equilibrium price. To the extent that this story captures what really happens in 
a market economy, conclusion E2 is sufficient (in combination with ID2 or 
ID4N) to justify the unbiasedness claim for Walrasian equilibrium. However, 
in situations in which only E1 is provable, the unbiasedness claim cannot be 
justified by the formal result. 

One should be cautious about interpreting the support for Walrasian equilib- 
rium provided by the two arguments as supporting the desirability of allowing 
the "free market" to operate. Implicit in the definition of Walrasian equilib- 
rium is the notion that economic agents act as price-takers. If this assumption 
were false, then the theoretical advantages of Walrasian allocations would shed 
little light on the policy issue of whether market or planned economies produce 
more desirable outcomes. The fact that prices are used to equate supply and 
demand does not guarantee that the result is Walrasian: an agent possess- 
ing market power may choose to supply quantities different from the com- 
petitive supply for the prevailing price, thereby altering that price and lead- 
ing to an outcome that is not Pareto optimal. This positive issue, whether we 
expect the allocations produced by the market mechanism to exhibit price- 
taking behavior, provides the third motivation for the core convergence 
results. 

Edgeworth (1881), criticizing Walras (1874), took the view that the core, 
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rather than the set of Walrasian equilibria, was the best description of the 
possible allocations that the market mechanism could produce. In particular, 
the definition of the core does not impose the assumption of price-taking 
behavior made by Walras. Furthermore, if any allocation not in the core arose, 
some group would find it in its interests to recontract. Edgeworth thus argues 
that the core is the significant positive equilibrium concept. 

Taking Edgeworth's point of view, a core convergence theorem with either 
of the individual convergence conclusions ID2 and ID4N can be viewed as a 
justification of the price-taking assumption. Any allocation produced by the 
market mechanism will lie in the core. Consequently, the utility level (with 
ID2) or the consumption (with ID4N) will be close to that afforded by the 
competitive demands at the market-clearing price. In short, the exploitation of 
market power gives rise to little change in the outcome. Furthermore, the 
incentive to depart from price-taking behavior is sufficiently small that it may 
well be overwhelmed by transactions costs or costs of acquiring information; 
this question, though, is best studied in the context of non-cooperative garne 
theory. 

The core convergence theorem thus provides a positive argument in favor of 
the price-taking assumption. Note, however, that the boundedness assumptions 
B1-B4 enter into this is an important way. Whether the core convergence 
theorems can be viewed as providing support for the price-taking assumption in 
a given real economy depends in a subtle way on the relationship of the 
distribution of endowments to the number of agents; furthermore, this conclu- 
sion becomes more delicate as the boundedness assumption is strengthened. 
Edgeworth's view was that the presence of firms, unions, and other large 
economic units makes the core substantially large than the set of Walrasian 
equilibria, a view the author shares. 

We now present in tabular form the principal results on core convergence. In 
the tables, we describe the assumptions required and the conclusions of the 
theorems by indicating which assumptions and conclusions in the taxonomy 
developed in the previous two sections most closely approximate the statement 
of the theorem. For a full statement of any given theorem, the reader should 
refer to the reference given. 

Simplicity would require giving only the best results, eliminating those that 
represented important stages in the line of discovery, but have now been 
superseded. Fairness to the many contributors would require listing all the 
intermediate results which led to the later discoveries. We have chosen a 
middle route, which lists some of the intermediate results that were most 
important in the evolution. Each table lists a group of theorems of similar type; 
within each table, earlier results are listed first. We also provide a table of 
known counterexamples. 
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5.1. Non-convex  preferences: Demand- l i ke  theorems 

H i s t o r i c a l l y ,  t h e  s t u d y  o f  c o n v e r g e n c e  p r o p e r t i e s  o f  t h e  c o r e  in  s e q u e n c e s  o f  

f i n i t e  e c o n o m i e s  b e g a n  w i t h  t h e  s t u d y  o f  s e q u e n c e s  s a t i s f y i n g  v e r y  s p e c i a l  

Table 1 
Demand-like theorems with non-convex preferences 

Assumptions 

Preference 
endowment 

C1 T 

M4 P2 

M4TP1 

M3 

M4 T P1 

Sequence 

D2 B4 

D2 B4 

Di  B3 

B1 

D2 DI1 
B4 

Conclusions 

Individual 

IQ1 
E1 

Uniform 

U1 

U2 

U1 

U2 

U3 

Methodology and references 

Vind (1965) (elementary). Vind's Lemma 
does not fit weil in out taxonomy. The 
individual convergence conclusion is 
weaker than IQ1, and only applies to 
individuals with bounded endowments. 

Arrow and Hahn (1971); this theorem 
does not fit weil in our taxonomy. A 
particularly strong version of bounded 
non-convexity is required. See also 
Nishino (1970). 

Brown and Robinson (1974), under the 
endogenous assumption that core 
allocations are uniformly bounded; 
Brown and Khan (1980) removed this 
endogenous assumption. 

Khan (1974) (non-standard analysis); 
Khan also gives convergence theorems 
for approximate cores. 

Grodal and Hildenbrand (1973); for a 
published version, see Hildenbrand 
(1974, Theorem 3, p. 202) (weak 
convergence). 

E. Dierker (1975) and Anderson (1978) 
(elementary); see also Keiding (1974). 
Anderson's proof arose from a 
nonstandard proof, after Khan and 
Rashid solved a key technical problem. 
In hindsight, Anderson's proof is 
connected to the proof of Arrow and 
Hahn (1971). Manelli (1991) has shown 
that M3 cannot be weakened to M2. 

Cheng (1983b) (elementary); the non- 
isolated condition is stronger than DI1 
and the conclusion is weaker than IQ1. 

Note: See also Table 3. 
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properties, and proceeded to consider increasingly general sequences. In the 
light of developments of the late 1970s, it is more efficient to proceed in the 
opposite direction. Theorems that hold for very general economies are pre- 
sented in Table 1. The conclusions of these theorems are quite weak; however, 
these theorems can be used to give efficient derivations of the stronger 
convergence conclusions that follow from stronger assumptions. 

We begin with the statement of a result due to E. Dierker (1975) and 
Anderson (1978). 

Theorem 5.1. Suppose X: A---~ ~ x Rk+ is an exchange economy satisfying M3 
and P1, and such that, for each a, >a satisfies the following free disposal 
condition" 

x ~ > y , y > z ~ x > z .  (26) 

I f  f E c~(X), then there exists p E Zl such that 

Pol(f, a, p) <~ 4k max{He(a)ll: a E A} . 
a E A  

(27) 

The proof involves the following main steps [see Anderson (1978) for details]: 
(1) Suppose f E ~ ( X ) .  Define 7 ( a ) = { x - e ( a ) : x > a f ( a ) } U { 0 } ,  F =  

EaEAY(a), - ~ Q = { x E R k : x ~ O } .  It is easy to check that f E c £ ( X ) ~ F N  
(-S~) = 0. 

(2) Let z=(max[[e(a)H=,..,maxHe(a)[l=). Use the Shapley-Folkman 
Theorem to show that 

(con  F )  n ( - z  - s?) = O. (28) 

(3) Use Minkowski's Theorem to find a price p ~ 0 separating F from 
- z - ~ .  

(4) Verify that p 1> 0 and p satisfies the conclusion of the theorem. 

5.2. Strongly convex preferences 

Theorem 5.1 can be used as a first step is proving stronger conclusions for 
sequences of economies satisfying stronger hypotheses, notably strong convexi- 
ty. The results in Table 2 can be proved using the following argument [see 
Anderson (1981a) for details]: 
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Table 2 
General sequences with strongly convex preferences 

435 

Assumptions Conclusions 

Preference 
endowment Sequence Individual 

D2 B3 

C3 M4 T 
P1 

C3 M4 P1 

D2 DI1 
B4 

D1 B3 

D1B1 

Uniform 

U2 

ID4N 
E2A U3 

ID4N U1 
E1 

ID4N U2 
E2A 

ID4N U1 
E1 

Methodology and references 

Bewley (1973a), building on Kannai 
(1970) and Vind (1965) (measure 
theory). 

Bewley (1973a) (measure theory). 

Grodal and Hildenbrand (1973); for a 
published version, see Hildenbrand 
(1974, Theorem t, p. 179) (weak 
convergence). 

Anderson (1977) (non-standard analysis); 
a key technical problem has been 
resolved by Khan and Rashid (1976). 

Anderson (1981a) (elementary). 

Anderson (1981a) (elementary); results 
without assuming B1 were obtained by 
Khan (1976) and Trockel (1976); these 
involve a rescaling of preferences that is 
hard to place in our taxonomy. 

Note: See also Table 3. 

(1) Cons ider  a sequence  of  economies  Xù: A n - - ~ ~  X Rk+ satisfying the 
hypotheses  in Table  2. Suppose  f,, E ~(Xn).  Verify that  the preferences  exhibit 
equ imonoton ic i ty  and equiconvexi ty  condit ions,  as discussed under  Distr ibu- 
t ional  Assumpt ions  ( i tem 7 of  Section 3) above.  

(2) Le t  Pn be the price associated with fù by T h e o r e m  5.1. 
(3) Use  the equ imonoton ic i ty  condi t ion to show that  {p~} is conta ined in a 

compac t  subset of  zl °, i.e. prices o f  all goods  are uniformly b o u n d e d  away f rom 
0. 

(4) Use  the boundedness  of  the prices and the fact that  Pol(fù, a, pù) is 
small for  mos t  agents to show that  there  is a compac t  set which contains fù(a) 
for  mos t  agents a. 

(5) Use  the equiconvexi ty  of  preferences ,  the boundedness  o f fn (a )  for  mos t  
a, and the fact that  Po~(fn, a, p~) is small for most  agents a to show that  fn(a ) 
is near  D(pn,  a) for  mos t  agents a. 
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5.3. Rate of convergence 

In assessing the significance of core convergence results for particular economic 
situations, it is important to know the rate at which convergence occurs, in 
other words, how many agents are needed to ensure that core allocations äre a 
given distance (in an appropriate metric) from being competitive. Results on 
the rate of convergence are presented in Table 3. 

Debreu (1975) measured the convergence rate in terms of the ID4N-E3 
metric, i.e. he measured the distance in the commodity space to the nearest 
Walrasian equilibrium. Debreu proved a convergence rate of 1/n for generic 
replica sequences; Grodal (1975) extended this result to generic non-replica 
sequences. It is easy to see from Debreu's proof that this rate is best possible 
for generic replica sequences with two goods and two types of agents; indeed, 
if an equal treatment allocation can be improved on by any coalition, it can be 
improved on by the coalition Debreu considers. Debreu's proof consists of the 
following main steps: 

(1) Consider a sequence of allocations fù, where fn is in the core of the 
n-fold replica of an economy. Let Pn denote the supporting price at fù. Using 
the smoothness of the preferences, show that Pn "(fn(a) --e(a))= O(1/n), and 
so PQl(fn, a, Ph) = O(1/n). 

(2) Since pn is a supporting price, f~(a)= D(pn, a, th), where th(a)= 
p,, "(fù(a)- e(a)). The non-vanishing Gaussian curvature condition implies 
that demand is C a, so I L ( a ) -  D(pn, a)J = O(rtùJ) = o(1/n). Since f~ is an 
allocation, market excess demand at pù (in the unreplicated economy) is 
O(1/n). 

(3) For a set of probability one in the space of endowments, the unrepli- 
cated economy is regular, i.e. the Jacobian of market demand has full rank at 
each Walrasian equilibrium. For such endowments, we can find a Walrasian 
equilibrium price q~ and Walrasian allocation gn(a)=D(qù, a) such that 
]P~ - qn] is of the order of magnitude of the market excess demand at p~, so 
[Ph- %1 = O(1/n). Using once more the fact that demand is C a, we have 
IL(a)  - gù(a)] = O(1/n). 

There has been considerable progress on the rate of convergence. Debreu's 
proof shows that the rate of convergence, measured by PO1 at the supporting 
price, is O(1/n). However, Anderson (1987) showed there exist prices for 
which the rate of convergence (measured by Poa) is 1/n 2 The main ideas of the 
proof are as follows: 

(1) Consider a sequence of core allocations fù E ~(Xn), where 
X~: An--> ~ x R~+ is a sequence of exchange economies, and ]An] = n; let yn 
and F, be derived from fn is the same way that ~/and F are derived from f in the 
proof of Theorem 5.1. Let pù be the price vector which minimizes ]inf Pn " Fù[; 
this is called the gap-minimizing price. Let gn(a)= argmin(pù, y~(a)). Notice 
that p~ is a supporting price at y~(a), not at f~. 
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(2) Use the Shapley-Folkman Theorem to verify that one may find a 
coalition S n such that ISnl/IAnI and [Z«csn p,, gn(a)l/]inf p,,-Fn[ a r e  bounded 
away from 0 and £a~Sn gn(a) is bounded. 

(3) Use the fact that sums of smooth sets become flatter as the number of 
sets grows, and the fact that I Sn] grows linearly with n, to show that 
!2a~sù Ph" gù(a)l = O(1/n), and hence linf p~-rùl  = o (1 /n ) ,  then proceed as 
m the proof of Theorem 5.1. 

Geller (1987) provided the first result in which the rate of convergence 
measured in the sense of Debreu (1975) (the ID4N-E3 metric) is faster than 
O(1/n) .  His theorem is of the weak law of large numbers (MR1) form, with a 
rate O(1/n2-E), provided there are two goods and at least three types of 
agents. The argument is quite delicate, but the following gives a hint of the 
main steps. 

(1) In a replica sequence with two types of agents, the net trade of one type 
is the negative of the net trade of the other type. Thus, a candidate improving 
coalition can be characterized by subtracting the number of agents of the 
second type from the number of the first type. There are thus 2n + 1 essentially 
distinct candidate-improving coalitions in the n-fold replica. The net trades of 
these coalitions are equally spaced along a line segment of length O(n); in 
particular, they do not become more closely crowded as n--~ o~. As we noted 
above, with two types of agents, Debreu's O(1/n) rate is the best possible. 

(2) Now suppose there are three types of agents and two commodities. The 
number of essentially distinct candidate-improving coalitions is of order n 2, and 
these are arranged near a line segment of length O(n). Thus, the average 
distance between the net trades of adjacent candidate-improving coalitions is 
O(n -1). Using number-theoretic results on lattices with two generators in the 
real line, one can show that the maximum distance between the net trades of 
adjacent candidate improving coalitions is O((log n)/n) with high probability in 
the space of endowments. 

(3) (a) Using Debreu's result, one can show that with high probability, 
every core allocation is O(1/n) from a Walrasian allocation. Using 
the lattice results, one can show that with high probability, every 
allocation within O(1/n) of some Walrasian allocation has the 
maximum distance between net trades of adjacent candidate improv- 
ing coalitions of order O((log n)/nl/2). 

(b) Use the flattening property of the sums of smooth sets, as in item 3 
in the outline of the proof of Anderson (1987), to show that 
I inf Ph" FùI = O((log n))2/n2). Now, proceed as in Theorem 5.1 and 
use the equal treatment property to show that 

max poi ( f ,  a , p)=o((l°gn)2) ,  
a E A  n 

(29) 
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with high probability. Since the distance in the commodity space to 
the Walrasian equilibrium in generically the square root of the gap 
measured by Pol, the rate of convergence in Debreu's sense is 
O(log n/n3/2) .  

(4) Now iterate items (3a) and (3b), as follows. We know that, with high 
probability, every core allocation is O((log n)/rt 3/2) f r o m  a Walrasian equilib- 
rium. Use the lattice argument to show that, with high probability, every 
allocation within O((log n)/rt 3/2) o f  a Walrasian allocation has the maximum 
distance between net trades of adjacent candidate improving coalitions of order 
O((log n)2/n3/4). By the argument in item (3b), we find that with high 
probability, every core allocation is within O((log n)2/n 7/4) of a Walrasian 
allocation, completing the second iteration. On the mth iteration, we find that 
with high probability, every core allocation is within O((log n)m/n 2-2-m). Thus, 
given e > 0, we find the rate is O(1/n 2-~) with in  a finite number of iterations. 

5.4. Decentralization by an equilibrium price 

An example due to Bewley (1973a) shows that core allocations need not be 
close to Walrasian equilibria for all sequences of economies, even under strong 
assumptions on the preferences and endowments. Given smoothness assump- 
tions, however, core allocations are close to Walrasian equilibria generically: 
for a set of endowment of probability 1 (MR2) in replica sequences [Debreu 
(1975)] and for an open and dense set of characteristics (MT2) in general 
sequences [Grodal (1975)]. H. Dierker (1975) showed this conclusion holds 
even without smooth preferences, at the cost of weakening the notion of 
genericity to MT1. These results are presented in Table 4. 

Table 4 
Decentralization by an equilibrium ~rice 

Assumptions Conclusions 

Preference 
endowment Sequence Individual 

D4 B4 

C3SSB 
M4 T P2 

C3 SB M4 
T P2 

D2B4 

D2 DI1 
B4 

D2 B4 

ID4N 
E3 

Note: See also Table 7. 

Uniform Most 

MR2 

MT2 

U3 

MT1 

U1 

Methodology and references 

Debreu (1975) (differential 
topology) 

Grodal (1975) (differential 
topology, measure theory) 

H. Dierker (1975) (weak 
convergence, differential 
topology) 
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5.5. Non-convex preferences: Stronger conclusions 

While arguments about diminishing marginal utility suffice to indicate that the 
preference over two goods (the consumption of other goods held constant) 
should usually be convex, there are nonetheless compelling examples in which 
convexity fails. For example, having two small apartments (one at location A, 
the second at location B) may not be as useful as one large apartment at either 
A or B. In light of the motivation for the study of core convergence given at 
the beginning of this section it is highly desirable to prove results with 
individual convergence conclusions stronger than IQ1 and E1 for finite 
economies with non-convex preferences. These are presented in Tables 5, 6 
and 7. 

Table 5 presents results about the utility levels achieved by agents at core 
allocations. The first two entries in the table (which depend on convexity) are 
included to provide a comparison to the last two entries, which have no 
convexity requirement. The essential idea is to show that the conclusion of 
Theorem 5.1, which measures budget deviations in monetary terms, implies 
convergence of utilities as long as the utility representations are chosen in a 
reasonable way. Thus, the results in Table 5 give conditions in which it is 
possible to convert an e expressed in terms of income in the IQ1 convergence 
conclusion into an e expressed in terms of utility. 

Table 6 explores the extent to which it is possible to duplicate the utility 
levels of a core allocation by those of a Walrasian equilibrium or quasiequilib- 
rium if one first makes small income transfers. Thus, these results place the e 
solely in the incomes of the agents. These results provide the clearest relation- 
ship between core convergence and the Second Welfare Theorem. The Second 
Welfare Theorem asserts that Pareto optima are Walrasian equilibria or 
quasiequilibria after income transfers; the results in Table 6 show that, in the 
case of core allocations, these transfers can be made small. The proofs are 
elementary, and depend on studying the gap-minimizing price as described in 
item 1 in the outline of the proof of Anderson (1987) in Subsection 5.3. 

Table 5 
Utility 

Assumptions 

Preference 
endowment 

C2 M4 T 
P1 

M4 T P1 

Sequence 

D3 B4 

D3 Dl1 
B4 

D1 B1 

D2 B4 

Conclusions 

Individual 

ID2E1 

Uniform 

U1 

U3 

U1 

U2 

Methodology and references 

Follows from Hildenbrand 
and Kirman (1973) 
(elementary). 

Anderson (1990a) 
(elementary). 
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Table 6 
Income transfers 

Assumptions Conclusions 

Preference Methodology and 
endowment Sequence Individual Uniform Rate references 

M3 T IQ3U E3 U1 

M4TP1 

S SB M4 
T P2 

B2 

D1B3 

D1 B4 

IQ3U E1 U2 

ID3U E3 U1 

ID3U E1 

ID3U E3 

U2 

Anderson (1986) 
(elementary). 

Table 7 
Near demand with non-convex preferences 

Assumptions Conclusions 

Preference 
endowment Sequence Individual Uniform 

U1 C3 M4 T 
P1 

M4TP1 
D1B3 

ID4N 
E1 

ID4N 
E2A 

U2 

Most 

MP 

MT1 

Methodology and references 

Hildenbrand (1974, Theorem 
1, p. 179; Example 3, p. 
138) (weak convergence); 
see also Bewley (1973a). 

Anderson (1985) (non- 
standard analysis and simple 
measure theory). 

Hoover (1989) (simple 
measure theory). 

Combine Hildenbrand (1974, 
Proposition 4, p. 200 and 
condition (*), p. 201) and 
Mas-Colell and Neuefeind 
(1977) (weak eonvergence 
and differential topology); 
for a statement and non- 
standard proof, see 
Anderson (1981b, 1985). 

Tab l e  7 provides  results showing that ,  for most  economies  with non-convex  

preferences ,  agents '  consumpt ions  are close to their  d e m a n d  sets. Thus ,  these 
results  place the E in the commodi ty  space distance to the d e m a n d  set (a finer 
met r ic  t han  uti l i ty or income)  and in the space of economies .  The  first en t ry  
(which does requi re  convexi ty)  is inc luded for compar i son  purposes .  
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5.6. Non-monotonic preferences 

While it has long been recognized that convexity assumptions fundamentally 
alter the form of core convergence, relatively little attention has been paid to 
monotonicity. The results of Debreu and Scarf (1963) for replica sequences 
and Aumann (1964) for non-atomic economies require only local non-satiation 
(M1) of preferences. While essentially all the known convergence results for 
non-replica sequences assumed weak monotonicity (M3) or monotonicity 
(M4), most researchers appear to have thought that the assumption was 
inessential, and could be removed by a modification of the proofs. Manelli 
(1991) gave two examples which showed that this is not the case (see Table 
10). 

In Manelli's first example, we consider a sequence of finite exchange 
economies Xn: An---> 3 õ x R2+ with A n = { 1 , . . . ,  n + 2}. The endowment map 
is e ( 1 ) = e ( 2 ) = 0 ,  e ( a ) = ( 1 , 1 )  ( a = 3 , . . , n + 2 ) .  Let V denote the cone 

2 {0} U {x E R++ : 0.5 < xt/x  2 < 2}. Consider the allocation 

f(1) = (n, 0) ,  f(2) = 0, , 

The preferences have the property that 

B~) = (o, ½) (a = 3 , . . ,  n) .  
(30) 

X >a f (a)  ¢:> x - f (a)  E V .  (31) 

It is not hard to see that there are complete, transitive (T) uniformly proper 
(M2) preferences that satisfy equation (31). It is not hard to verify that 
f E ~(X)- Given p E A+, 

1 ~ IP" ( f ( a ) -  e(a)) l 
n + 2 aEA 

= n[pll  + (n/2)tp21 + n lp  1 + (p2/2) I n 
n + 2 ~> 2(n + 2~ --~ 0.  (32) 

Manelli's second example shows that even a uniformly bounded sequence of 
core allocations may fail to converge in the I QI - E1  sense unless preferences 
are convex. 

Manelli's examples have forced a reassessment of the core convergence 
literature. Unless reasonable sufficient conditions to guarantee core conver- 
gence in the absence of monotonicity can be found, the economic interpreta- 
tions discussed in the beginning of this section are open to question. Manelli 
has provided a number of sufficient conditions, two of which are presented in 
Table 8. 
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Table 8 
Theorems with non-monotonic preferences 

Assumptions 

Preference 
endowment 

Conclusions 

Sequence Individual Uniform Methodology and references 

C3 M1 T D4 B4 ID4N U3 Debreu and Scarf (1963) 
elementary. 

C1 M2 T B1 DI2 IQ1 E1 U2 

B1 D2 DI2 C3 M2 T ID4N E1 U1 
Manelli (1990a) 
elementary. 

Table 9 
Type (including replica) sequences 

Assumptions 

Preference 
endowment Sequence 

Conclusions 

C3 M1 T 
P2 

C3 M4 T 
P1 

M4 P1 

'M4 P2 

M4 T P1 

M4 P1 

D4 B4 

D3 DI1 
B4 

D4 B4 

D3 B4 

Individual 

ID4N 
E3 

ID4N 
E1 

ID4N 
E3 

1D4N 
E1 

ID4N 
E2A 

Uniform 

U3 

U1 

U2 

Methodology and references 

Debreu and Scarf (1963) 
(elementary); see also 
Debreu and Scarf (1972), 
Johansen (1978) and 
Schweizer (1982). 

Hildenbrand and Kirman 
(1976, Theorem 5.1) 
(elementary). 

Hildenbrand and Kirman 
(1973, 1976, Theorem 5.2) 
(elementary). 

Brown and Robinson 
(1974) (non-standard 
analysis) and Hildenbrand 
(1974, Corollary 1, p. 201) 
(weak convergence). Note: 
The theorem only applies 
to core allocations with the 
equal treatment property. 

Follows easily from Brown 
and Robinson (1974, 
Theorem 2) (non-standard 
analysis). 

Hildenbrand (1974, 
Proposition 4, p. 200) 
(weak convergence). 

Anderson (1981b) 
(elementary). 

Note: See also Table 3. 
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Table 10 
Counterexamples 

R.M. Anderson 

Assumptions Conclusions 

Preference 
endowment Sequence Individual Uniform 

C3 M4 T D2 DI1 IQ4N 
P1 B4 E3 U1 

M4 T D2 DI1 IQ3N 
P2 E1 

C3 S SB 
M4 T P2 

C3 S M4 
P1 

C3 SB 
M4 T P1 

C3 S SB 
M4 T P2 

C2 M2 T 
P1 

M2T 
P1 

D4 B4 

D2B4 

D3 B4 

D2B4 

IQ4N 
E3 

IQ1 

E1 

Most 

All 

U3 MR2 

Rate 

1 
l /2+E 

n 

U1 Any 
rate 

U2 

U1 

All 

Methodology and 
references 

Bewley (1973a). 

Anderson and Mass- 
Colell (1988). 

Debreu (1975) if 
there are two goods 
and two types of 
agents. 

Cheng (1983a). 

Shapley (1975); 
preferences are C ~. 

Aumann (1979); 
demands are C t. 

Manelli (1991); core 
allocations not 
uniformly integrable. 

Manelli (1990b), 

Manelli (1991); core 
allocations uniformly 
bounded. 

Manelli (1990b). 

5. 7. Replica and type sequences 

We now tu rn  to results for type sequences  of economies ,  inc luding replica 
sequences .  These  are the oldest  results on  core convergence ,  and  the easiest to 
prove  directly. However ,  the assurnpt ion of a finite n u m b e r  of types is 
ex t remely  strong. Nei ther  the very s t rong conclusions  nor  the original  proofs 

general ize  to non - type  sequences .  Note  in par t icular  that ,  in D e b r e u  and  Scarf 
(1963), only  local non-sa t i a t ion  (M1) ,  not  weak mono ton ic i ty  (M3) ,  is re- 
quired.  However ,  Manel l i  (1991) has shown that  even the weakest  forms of 
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core convergence may fail in general sequences of finite economies in the 
absence of M3. a Similarly, the equilibrium conclusion E3 (decentralization by 
an equilibrium price of the given economy) in Debreu and Scarf (1963) does 
not readily generalize; the only known theorems giving the conclusion E3 
outside the replica context are given in Table 14.2. The results are presented in 
Table 14.9; results with strongly convex preferences are presented in the top 
half of the table, while results without convexity assumptions are presented in 
the bot tom half. 

5.8. Counterexamples  

There  are in the literature a large number of counterexamples indicating that 
results in the preceding tables cannot be further strengthened. These are 
summarized in Table 10. Each line presents a false statement, as demonstrated 
by a counterexample.  The counterexamples of Shapley (1975) and Aumann 
(1979) show that the rate of convergence can be arbitrarily slow. The demand 
functions are differentiable in Aumann's  example but not in Shapley's. 

6. Economies with a continuum of agents 

Economies  with a continuum of agents were introduced by Aumann (1964) as 
an idealization of the notion of an economy with a "large" number of agents, 
much as continuum models are used in physics to describe the properties of 
large systems of interacting molecules or particles. Instead of a finite set, we 
take the set of traders A to be an atomless probability space, such as the unit 
interval [0, 1] endowed with the Lebesgue measure structure. The required 
techniques from measure theory are described in Hildenbrand (1974), Kirman 
(1982), and Mas-Colell (1985). 

Definition 6.1. (1) A non-atomic  exchange economy  is a function X: 
A---> P x R~+ where 

(a) (A, ~ , / x )  is an atomless probability space; 
(b) X is measurable, where ~õ is given the metric associated with the 

topology of closed convergence [Hildenbrand (1974) or Mas-Colell 
(1985)]; 

(c) O ~  IA e(a) dl* ~ ( % .  . . , ~ ) .  

lIndeed, Manelli (1990b) has even constructed a repIica sequence of economies (with non- 
convex, non-monotone preferences) where convergence in the weak IQI-E1 sense falls. In this 
example, however, the core allocations do converge in the commodity space to the Walrasian 
equilibrium allocations (i.e. convergence is in the ID4N-E3 sense). 
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(2) An allocation is an integrable function f :  A--~Rk+ such that 
fA f(a) dtz = fA e(a) dlx. 

(3) A coalition is a set S E .ff with /x(S) > 0. 
(4) A coalition S can improve on an allocation f if there exists an integrable 

function g: S---~R~+ such that g(a) >a f(a) for almost all a E S and fs g(a) dtz = 
Is e(a) d~; 

(5) The core of X, denoted ~(X), is the set of all allocations which cannot be 
improved on by any coalition; 

(6) A Walrasian equilibrium is a pair ( f ,  p) where f is an allocation, p E A, 
and f(a) E D(p,  a) for almost all a E A; 7/U(X ) denotes the set of Walrasian 
equilibrium prices; 

(7) A Walrasian quasiequilibrium is a pair ( f ,  p) where f is an allocation, 
p EZi, and f ( a ) E  Q(p, a) for almost all a E A ;  ~(X) denotes the set of 
Walrasian quasiequilibrium prices. 

It is easy to show that if ( f ,  p) is a Walrasian equilibrium of a non-atomic 
exchange economy, then f E ~(X). The proof is essentially the same as that of 
Theorem 2.1. 

The key mathematical result underlying core theory in the continuum model 
is Lyapunov's theorem [Hildenbrand (1974) or Mas-Colell (1985)], which 
asserts that the range of any measure defined on an atomless measure space 
and taking values in R ~ is convex. As a consequence of Lyapunov's Theorem, 
one can show under very mild assumptions that the core of a continuum 
economy coincides with the set of Walrasian equilibria. 

Theorem 6.2. Suppose X: A--> ~ x R ~ is an exchange economy, where > + a 

satisfies locaI non-satiation (M1) for almost all a E A. 
(1) I f  f E Y(X),  then there exists p # 0  such that ( f ,  p) is a Walrasian 

quasiequilibrium. 
(2) I f  in addition >a satisfies monotonicity (M3) for almost all a E A, then 

p » 0 and (f ,  p) is a Walrasian equilibrium. 

One can prove item (2) following essentially the same steps as those for 
Theorem 5.1, substituting Lyapunov's Theorem for the Shapley-Folkman 
Theorem and making use of some advanced measure-theoretic results such as 
Von Neumann's Measurable Selection Theorem. Item (1) follows ffom Au- 
mann's original proof, which is more like the proof of the Debreu-Scarf  
Theorem [Debreu and Scarf (1963)] than that of Theorem 5.1. 

In order to compare the results in the continuum with those in large finite 
economies, Table 11 places Aumann's  Theorem within our taxonomy of 
results. 
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Table 11 
Economies with a continuum of agents 

447 

Assumptions 

Preference 
endowment 

M1 

M3 

Sequence 

B3 

Conclusions 

Individual 

1Q5E3 

ID5 E3 

Uniform 

U2 

Methodology and references 

Aumann (1964) (measure 
theory) 

The reader will be struck by the contrast between the simplicity of the table 
for the continuum case and the complexity of the tables in the asymptotic finite 
case. It is particularly worthwhile comparing the continuum table with the table 
of counterexamples for the asymptotic case; the complex relationship between 
the assumptions and the conclusions found in the large finite context is entirely 
lost in the continuum. 

To understand the divergence in behavior between large finite economies 
and measure space economies, it is useful to examine how the purely technical 
assumptions implicit in the measure space formulation may in fact correspond 
to assumptions with economic content in sequences of finite economies. 

(1) Integrability of endowment. The assumption that the endowment map in 
the measure space economy is integrable corresponds to the assumption that 
the endowment maps in a sequence of economies are uniformly integrable 
(B2). In particular, sequences like the tenant farmer economies described 
following the definition of condition (B2) are ruled out. While Khan (1976) 
and Trockel (1976) (using non-standard analysis and measure theory, respec- 
tively) weakened the uniform integrability assumption by altering the underly- 
ing measure on the set of agents, neither result encompasses the tenant farmer 
sequence. However, the tenant farmer sequence does satisfy the hypotheses of 
E. Dierker (1975) and Anderson (1978). 

(2) Measurability ofpreference map. At first sight, measurability of the map 
which assigns preferences to agents is a purely technical assumption. However, 
it carries the implication that the sequence of preference maps is tight, i.e. 
given • > 0, there is a compact set K of preferences so that tx({a E A: >~ E 
K} > 1 -  e. Of course, the set of continuous preferences is compact in the 
topology of closed convergence. However, the subset consisting of monotone 
preferences (M3) is not compact, so the assumption that the preference map is 
measurable combined with the assumption that almost every agent has a 
monotone preference has economic content; it corresponds to an 
"equimonotonicity" condition on sequences of finite economies, as discussed 
under Distributional Assumptions in Section 3 above. Note further that the 
topology of closed convergence heavily discounts the behavior of preferences 
with respect to large consumptions. If large consumptions are important 
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because of large endowments or a failure of monotonicity, the topology is too 
coarse to permit the analysis of the core; this is a key reason for the 
discrepancy between conclusion (1) in theorem 6.2 (which requires only locally 
non-satiated preferences) and the non-convergence examples of Manelli 
(1991). However, strengthening the topology to avoid this discounting of large 
consumptions would make the topology highly non-compact, and would thus 
make measurability of the preference map a strong assumption. 

(3) Integrability of allocations. If preferences are not "equimonotone" (see 
Distributional Assumptions in Section 3, above), then core allocations in 
sequences of finite economies may fail to be uniformly integrable. Such 
allocations do not correspond to an integrable allocation in the measure space 
limit economy. Thus, restricting attention to integrable allocations amounts, 
from the perspective of sequences of finite economies, to a strong endogenous 
assumption. This is the second key factor explaining the discrepancy between 
(1) in Theorem 6.2 and the examples of Manelli (1991). 

(4) Integrability of coalitional improvements. Just as the integrability re- 
quirement on allocations can make the core of the measure space economy 
smaller than the cores of sequences of finite economies, the requirement that 
an improving allocation for a coalition be integrable imposes a restriction on 
coalitions that is not present in sequences of finite economies, potentially 
making the core of the measure space economy bigger than the cores of 
sequences of finite economies. Example 4.5.7 in Anderson (1991) provides just 
such an example. A sequence of finite economies Xn is constructed, with the 
endowment e~ uniformly bounded, e n is not Pareto optimal; however, any 
Pareto-improving allocation gn is necessarily not uniformly integrable. In the 
limit non-atomic economy, the endowment map is a Walrasian equilibrium, 
and so in particular is in the core; no coalition can improve on it because doing 
so would require a non-integrable reallocation of consumption. 

(5) Failure of lower hemicontinuity of demand. There is a sharp discrepancy 
between the major role played by convexity in the large finite context and its 
total irrelevance in non-atomic exchange economies, as can be seen by 
comparing Tables 1, 2, 6, 7, 8 and 9 with Table 11. If Pol(f, a, p) = 0 [see 
condition (Il) in Section 4 above], then f (a)~  Q(p, a). In a non-atomic 
exchange economy, Lyapunov's Theorem asserts the exact convexity of a 
certain set, which then guarantees that if f is a core allocation, then 
Po~(f, a, p ) = 0  almost surely, and hence core allocations are Walrasian 
quasiequilibria. In the large finite context, the Shapley-Folkman theorem 
asserts that the analogous set is approximately convex, leading to the conclu- 
sion that Pol(f, a, p) is small for most agents. However, since neither the 
quasidemand correspondence nor the demand correspondence are lower 
hemicontinuous, knowing that Pol(f, a, p) is small does not guarantee that 
f(a) is near the demand or quasidemand of agent a. Anderson and Mas-Colell 
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(1988) provide an example of a sequence of economies and core allocations in 
which all agents' consumptions are uniformly bounded away from the agents' 
demand correspondences,  even if one allows income transfers. 

7. Non-standard exchange economies 

Non-standard analysis provides an alternative formulation to Aumann's  con- 
t inuum model for the notion of a large economy. A hyperfinite exchange 
e c o n o m y  is an exchange economy in which the set of agents is hyperfinite, i.e. 
it is uncountable,  but possesses all the formal properties of a finite set of 
agents. Thus, the core of such an economy can be defined exactly as in the case 
of a finite exchange economy. 

A construction known as the Loeb measure [Loeb (1975)] permits one to 
convert  the hyperfinite set of agents into an atomless measure space, in a way 
which converts summations into integrations. It is a consequence of Aumann's  
Theorem on economies with a continuum of agents that every core allocation 
of a suitable hyperfinite exchange economy is close to a Walrasian allocation of 
the associated Loeb measure economy. 

A powerful result known as the Transfer Principle asserts that every 
proper ty  formalizable in a certain language which holds for hyperfinite ex- 
change economies holds for sufficiently large finite economies. Thus, the 
derivation of limit results for finite exchange economies from results for 
continuum economies comes almost for free. Where the properties of con- 
t inuum economies diverge from those of large finite economies (as discussed at 
the end of Second 6), the hyperfinite exchange economy will always reßect the 
behavior of large finite economies. Indeed, given a sequence of finite 
economies Xn, let X be the corresponding hyperfinite economy. By examining 
the relationship of X to the corresp0nding Loeb measure economy, one can see 
the exact reason why the measure space limit economy fails to capture the 
behavior  of the large finite economies Xù. For a detailed treatment of hyperfi- 
nite exchange economies, including their use to derive limit theorems for large 
finite economies and a comparison with economies with a measure space of 
economic agents, see Anderson (1991). 

8. Coalition size and the f-core 

There  is an extensive literature on the core where the size of coalitions is 
restricted. Schmeidler (1972), Grodal (1972), and Vind (1972) showed that the 
core of a non-atomic exchange economy does not change if one restricts 
coalitions in any of the following ways: 
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(1) considering only coalitions S with /~(S) < E, where E E (0, 1]; 
(2) considering only coalitions S with/x(S) < e, where the characteristics of 

the agents in Sare taken from at most k + 1 balls of radius less than c, where k 
is the number of commodities; 

(3) considering only coalitions S with/x(S) = a, where « E (0, 1]. 
The proof make use of Lyapunov's Theorem. 

Mas-Colell (1979) gave an asymptotic formulation of these results for 
sequences of large finite economies. He showed that, given E > 0, there exists 
m E N such that for sufficiently large economies, any allocation which cannot 
be improved on by a coalition with m or fewer members must be E-competitive 
in the IQ1-E1 sense. Chae (1984) studied the core in overlapping generations 
economies where only finite coalitions are allowed. 

The f-core of a non-atomic exchange economy was developed by Kaneko 
and Wooders (1986, 1989) and Hammond, Kaneko and Wooders (1989). It is 
intended to model situations in which trades are carried out only within finite 
groups of agents. The definition involves a delicate mixing of notions from 
finite and non-atomic economies, but the essential idea is as follows. 

(1) An f-allocation is, roughly speaking, an allocation which can be achieved 
by partitioning the economy into coalitions each of which consists of only a 
finite number of agents and allowing trade only within the coalitions. 

(2) A coalition S can f-improve on an f-allocation f if there exists an 
improving allocation g: S - > R  e + which is an f-allocation for the subeconomy 
consisting of the agents in S. 

(3) The f-core consists of all those f-allocations which cannot be f-improved 
o n .  

In the presence of externalities, there is no natural definition for the core in 
the spirit of Aumann's definition for a nonatomic economy. Moreover, the 
First Welfare Theorem may fail: Walrasian allocations are typically not Pareto 
optimal. 

The f-core provides a suitable alternative to the core for modelling situations 
with widespread externalities. A widespread externality occurs if the utility of 
each agent depends on the agent's consumption and the distribution of 
consumption in the economy as a whole, but not on the consumption of any 
other individual agent. Since the consumption of a finite coalition does not 
affect the distribution of consumption in the non-atomic economy, it is 
impossible for a finite coalition to internalize a widespread externality. Hence, 
allocations in the f-core are typically not Pareto optimal. Hammond, Kaneko 
and Wooders (1989) proved the equivalence of the f-core and the set of 
Walrasian allocations in the presence of widespread externalities; Kaneko and 
Wooders (1989) used this to derive an asymptotic convergence theorem for 
large finite economies. 
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9. Number of improving coalitions 

Consider a finite exchange economy X: A--~ ~õ x Rk+ and a Pareto-optimal 
allocation f. Note that it is not possible for both a coalition S and its 
complement A \ S  to improve on f, for then A = S U ( A \ S )  could improve on f ,  
so f would not be Pareto optimal. Thus, at most half the coalitions can improve 
on a given Pareto-optimal allocation. 

Mas-Colell (1978) proved under smoothness assumptions that if fn is a 
sequence of allocations for Xn--~ ~ x R~ and fù is bounded away from being 
competitive in the ID4T-E2S sense, then the proportion of coalitions in A n 
which can improve on fn tends to ½. 

10. Infinite-dimensional commodity spaces 

Infinite-dimensional commodity spaces arise naturally in many economic 
problems. 

(1) The space d//([0, 1])+ of countably additive finite non-negative Borel 
measures on [0, 1], endowed with the topology of weak convergence, is the 
natural space for the study of commodity differentiation [Mas-Colell (1975), 
Jones (1984)]. 

(2) The spaces LP([0, 1])+(1 ~< p ~< ~) consisting of non-negative measurable 
functions 2 X: [0, 1]--~ R satisfying 

f[ X(t)  p d/x < m (1 ~< p < ~) 
0 , 1 ]  

3 M ~  N/x({t :  X(t)  > M}) = 0 ( p = ~ ) ,  (33) 

where /x is Lebesgue measure; L=([0, 1])+ and L2([0, 1])+ are natural com- 
modity spaces for situations involving uncertainty [Gabscewicz (1968), Zame 
(1986), Ostroy and Zame (1988), Mertens (1990)], with L2([0, 1])+ being 
particularly natural for applications in finance which use Brownian motion or 
normally distributed random variables. 

(3) The spaces lP+ (1 ~<p ~< oo) of non-negative real sequences satisfying 

zc 

(xi) ~ < ~ (1 ~<p < ~ ) ,  
i = i  

i = ~) (34) 
supx  < ~  (p  , 

2 More preclsely, we take equivalence classes of such functions, where functions are equivalent if 
they are equal almost surely. 
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are natural spaces for studying consumption over an infinite time horizon 
[Bewley (1973b)1. 

(4) The space C(X)+ of bounded continuous real-valued, non-negative 
functions on a compact Hausdorff space X (in particular X = [0, 1]) is useful 
because many infinite-dimensional spaces can be represented as C(X) spaces 
for an appropriate choice of X [Gabszewicz (1968)]. 

The problem of existence of Walrasian equilibrium in economies with 
infinite-dimensional commodity spaces and a first number of agents has been 
extensively studied [Aliprantis, Brown and Burkinshaw (1989), Mas-Colell and 
Zame (1991)]. In an economy with a continuum of agents and an infinite- 
dimensional commodity space, the equivalence of the core and the set of 
competitive equilibria may fail, as shown in the following example: 

Example 10.1. (1) Let A//([0, 1]) denote the space of (signed) Borel measures 
on the interval [0, 1] endowed with the norm topology generated by 

H » Il = sup{lù(B)l + I •(10, I]\B)I: B ~ ~ } ,  (35) 

where N denotes the o--algebra of Borel subsets of [0, 1]. We let ~([0 ,  1])+ 
denote the cone of non-negative measures in ag([0,1]). We consider 
an exchange economy X: [0, 1]--> ~(A/([0, 1])+) x A/([0, 1])+, where 
3õ(~([0, 1])+) denotes the space of continuous preferences on A//([0, 1])+. 

(2) Each agent a E [0, 1] has a preference relation given by a utility function 

Ua([& ) = 2/x({a}) +/x([O, l] \{a}) ; (36) 

in other words, agent a has marginal utility of consumption 2 on his/her 
"birthday" a, and marginal utility 1 at all other dates. Each agent's endowment 
is Lebesgue measure, hereafter denoted A. 

(3) This economy has a unique Walrasian equilibrium. The price is the 
linear functional p: A//([0, 1])+-+R+ defined by p( /x)=/z([0,  1]), while the 
Walrasian allocation is f (a)= aa, where a a denotes the point mass at a [i.e. 
6ù(B) = 1 if a E B ,  a~(B) = 0 if a ~ B ] .  

(4) Consider the following allocation: 

F(a) =fa°~7 + ~; if a ~ [ 0 ,  11, 
(37) t~6a if tE(½,  1], 

where v(B) = A(B A (½,1]). Notice that this produces utility levels ua(F(a)) = 
2½ if a E [ 0 ,  ½] and 13 if aE(½,1 ] .  

(5) We claim that F lies in the core of X. Consider a potential improving 
coalition S c [0, 1]. If G: S--+ A//([0, 1])+ improves on F, feasibility implies that 
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fsUa(G(a)) dA ~< A(S)[2A(S) + 1(1 - A(S))] : A(S)[1 + A(S)I. (38) 

Since we must have ua(G(a)) > 13 almost surely, it follows that 1 + A(S) > 13, 
so ,~(S) > 3. The set of feasible utility payoffs to a coalition depends only on 
the measure of the coalition, not on whether the agents are drawn from [0, 1] 
or (½,1]. The reservation utility needed to entice an agent from [0, 1] to join 
the coalition exceeds the reservation utility needed to entice an agent from 
(1,1]  to join. Therefore we may assume without loss of generality that 
S D ( 1 , 1 ] .  L e t s = , ~ ( S D [ 0 , 1 ) ) > ¼ .  

(6) For each a E S, let c a = Il G(a)ll. We must provide a utility level exceed- 
ing 7 to each of the agents a E (½, 1]. This will require that Jsn(~.11 G dA> 
½(7) = 7 .  Therefore, fsn~0,½1G < (s + ½ ) -  7 = s + ~ .  

(7) It follows from item (6) that G < ( s +  ~6)/s=1+(1/16s)  for every 
a ~ C, where C C S n [0, ½] is a set of positive Lebesgue measure. The total 
endowment of the coalition S at the point a is s + 1 ; hence, the utility of agent 
a E C is less than 2(s + ½) + (1 + ( 1 / 1 6 s ) -  (s + ½)) = ~ + s + (1/16s). Since 
the reservation utility needed to entice each of the agents in C to join the 
coalition is ~z, it follows that 

1 17 3 5 
« + ~ >  8 2 - 8 '  (39) 

d (  1)  _ __1 (40) 
d--s S + ~ s  = 1  16s2, 

which is non-negative for s E [1, ½]. Thus, the maximum value of s + (1/16s) 
on the interval [¼, ½] is attained at s = 2 ~, where it equals 2- Thus, equation 
(39) has no solution for s E [~, 1], which shows that F E ~(Xù). 

While there have been quite a number of papers concerning core equiva- 
lence in continuum economies with an infinite-dimensional commodity space, 
there is still no systematic delineation of what assumptions are crucial for 
obtaining equivalence. There is very little work on core convergence with a 
large finite number of agents and an infinite-dimensional commodity space, 
outside the replica context. Both problems are attractive areas for future 
research. Given the limitations of space, we shall limit ourselves to providing 
the following list of papers on core equivalence and/or  convergence in 
exchange economies with an infinite-dimensional commodity space: Gab- 
szewicz (1968), Bewley (1973b), Mas-Colell (1975), Jones (1984), Gretsky and 
Ostroy (1985), Zame (1986), Aliprantis, Brown and Burkinshaw (1987), 
Cheng (1987), Rustichini and Yannelis (1991), Ostroy and Zame (1988), 
Aliprantis and Burkinshaw (1989), Anderson (1990b), Mertens (1990). 
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1. Introduction 

In a pathbreaking paper, Aumann (1964) proved that in a pure exchange 
economy consisting of an "atomless" set of traders, the core of the market 
must coincide with the set of its competitive allocations. The introduction of 
atomless market models was meant to capture the traditional economic idea of 
"perfect competition". With a continuum of traders, the influence of each 
individual participant is "negligible", per se: the notion of perfect competition 
is "built into the model" [Aumann (1964, p. 40)]. The formal reason for this is 
that "integrating over a continuum, and changing the integrand at a single 
point does not affect the value of the integral, that is, the actions of a single 
individual are negligible" [Aumann (1964, p. 39)]. The equivalence result 
referred to above proves, indeed, that this model adequately captures the 
notion of perfect competition: in atomless economies, competitive equilibria 
are the sole possible outcomes of the group decision mechanism underlying the 
concept of core. 

Nevertheless, the idea of "perfect competition" has traditionally been 
viewed by economists as representing an "ideal state", which essentially serves 
as a reference point for contrasting real market phenomena: real market 
competition is recognized as being far from perfect! First, even if markets often 
embody an "ocean" of small anonymous traders, individual merchants who are 
not anonymous may also be present. This is offen the case because their 
endowment of some commodities is large compared with the endowments of 
the entire market. The most extreme case corresponds to a monopoly, when 
the whole market endowment of a good is concentrated in the hands of a single 
merchant. Intermediate forms arise when, although spread over a few com- 
petitors, initial ownership of resources is still "concentrated" when compared 
with the total endowment in the market; such intermediate forms are known as 
oligopolistic structures. Marxian economists have seen in the concentration of 
capital ownership, accompanied by the dispersion of the labor force, the basis 
for an increase in economic exploitation in capitalistic economies. There is no 
doubt that, for large values of n, the bargaining position of a single capitalist 
owning n units of capital and facing n nonunionized workers is far stronger 
than the position of the same capitalist, if he owns one unit of capital and faces 
a single worker. The concentration of ownership and market power are 
intimately related. 

On the other hand, even if the ownership of goods is not initially concen- 
trated, but spread over a continuum of small economic units, the possibility is 
always open, to some market participants, of "combining" into a restricted 
number of decision centers so as to bias the collective decision outcome. Von 
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Neumann and Morgenstern (1944) had already perceived how such a collusive 
process could alter the competitive outcome: 

The classical definitions of free competition all involve further postulates 
besides the greatness of the number (of participants). E.g. it is clear that, if a 
certain great group of participants act together, then the great number of 
participants may not become effective; the decisive exchanges may take 
place directly between large "coalitions" (such as trade unions, cooperatives, 
• .), and not between individuals, many in number, acting independently. 

When oligopolistic structures with initially concentrated ownership are pres- 
ent in the market,  or when collusive cartels or unions are becoming effective, 
the operating market conditions violate those of the "ideal state" of perfect 
competition. Accordingly, the continuous atomless m o d e l -  designed to repre- 
sent this ideal state - is no longer appropriate as such; it should be amended to 
handle the impeffectly competitive market ingredients described above. To the 
extent that the economy under consideration embodies, in particular, a very 
large number of participants with negligible influence, the continuous model is 
still the most natural orte to represent this "oceanic sector" of the economy. As 
for the non-negligible market part icipants-  monopolists, oligopolists, cartels, 
syndicates or other institutional forms of collusive agreements -  their formal 
counterpart in the model cannot be simply points with null measure in the 
continuum; such a formal representation would entail per se that the actions of 
these participants are mathematically negligible when clearly they are not. We 
submit that the most appropriate formal model consists in representing them as 
atoms,  i.e. subsets with strictly positive mass containing no proper subset of 
strictly positive mass. In this alternative model, changing the integrand to an 
atom does affect the value of the integral, so that the actions of the economic 
unit represented by the atom are not mathematically negligible. 

Let us illustrate this for the case of collusive agreements organized between 
traders in an atomless exchange economy. To this end, assume that (T, 3-, p~) 
is an atomless measure space, where the set T is to be interpreted as the set of 
traders, and 3- as the set of possible coalitions of traders in the same economy. 
Imagine that, for any reason whatsoever, all traders in some non-null  subset A 
in T decide to act only "in unison", for instance by delegating to a single 
decision unit the task of representing their economic interests in the trade. 
Whenever effective, such a binding agreement definitely prevents the forma- 
tion of any coalition of traders including a proper  subset of A: while such 
coalitions were allowed before the collusive agreement, they are henceforth 
forbidden. Formally, the «-field J -no  longer represents the class of acceptable 
coalitions; this class is now reduced to the cr-field J-A = {S E ~-Ieither S N 
A = ~, or S N A = A}, i.e. the subset A now constitutes an atom in 3- A. The 
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actions of the "syndicate" of traders in A are no longer mathematically 
negligible. 

When the "atomic" representation of "noncompetitive" traders-is adopted, 
we end up with a mbced model, in which some of the traders-  the "small" 
o n e s - a r e  represented by the atomless sector, while the o thers - the  "large" 
o n e s - a r e  represented by atoms. It turns out that a considerable amount of 
research work was devoted in and around the 1970s to theorizing about the 
core of such a mixed general equilibrium exchange model, embodying both 
atoms and a continuum of traders. The object of this chapter is to give an 
account of this research work. 

In exchange situations involving both non-negligible and negligible agents, 
one should not generally expect the equivalence between the core and the set 
of competitive allocations to hold. For instance, when a collusive agreement is 
signed between the traders in a non-null subset of an ätomless economy, it 
eliminates all coalitions, including a proper subset of this set. As a con- 
sequence, the core may be enlarged to those exchange allocations which could 
have been improved upon otherwise via some of these excluded coalitions, 
thereby destroying the equivalence of the core and the set of competitive 
allocations. A first question of interest for the theory is thus: To what extent 
can the existence of atoms destroy the equivalence principle? As we shall see 
(Section 4), it is sometimes possible to extend Aumann's equivalence theorem 
to markets in which some of the traders are "large". This is true, in particular, 
when these traders are similar to each other, or when to each such large trader 
there corresponds a set of small traders which are similar to him. Such 
conditions suggest that when large traders find competitors similar to them in 
the economy, it may weil imply the dilution of their market power; this is 
reminiscent of Bertrand price competition in a noncooperative context. 

By the equivalence theorem, all core allocations can be decentralized 
through the competitive price mechanism when the economy is atomless; when 
there are atoms, this is no longer guaranteed. Does this mean that core 
allocations can no longer be characterized via some price mechanism? It is one 
of the most important results of this theory that core allocations can still be 
sustained by a price system which, although not carrying all the properties of a 
competitive price system, shares with it some interesting features (Sections 3 
and 5). Moreover, at this price system, no small trader (in the atomless part) 
can, with the value of his initial endowment, buy a commodity bundle that he 
prefers to his part of that core allocation. But  this restriction does not  apply to 
atoms. Accordingly, "small" traders are "budgetarily exploited" at those prices 
that sustain a core allocation. "Budgetary" exploitation does not imply, 
however, "utility" exploitation, and analyzing when the former implies the 
latter (Section 6) is also an important topic. 

Finally, we have already evoked the interesting interpretation of an atom as 
a "syndicate" of traders in an atomless economy. Accordingly the mixed model 
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of a market  is well suited to investigate the effectiveness and the stability of 
binding agreements among traders in the context of a pure exchange economy. 
This is done in Section 7. In our conclusion, we examine the question of the 
adequacy of the core concept for capturing the idea of imperfect competition; 
alternative approaches, founded on the Shapley value, the bargaining set or the 
von Neumann-Morgens te rn  solution are briefly discussed. There we examine 
also the problem of approximating mixed markets by finite exchange 
economies. 

The  mathematical model is presented in Section 2. 

2. The mathematicai model 

We are interested in an exchange economy with n commodities. Following 
standard practice, for x and y in R n we write x » y to mean x i > yi for all i; we 
use x >/y to mean xi>~ yi for all i; and we use x > y to mean x/> y but not 
x = y .  

Let  (T, fr, tz) be a measure space of economic agents, i.e. T denotes a set 
(the traders), ~ denotes a o--field of subsets of T (the family of coalitions), and 
/z denotes a totally finite complete positive o--additive measure on ~,  which 
represents the respective "weights" of agents or groups of agents in the 
economy.  An atom of the measure space (T, f r , /x)  is a coalition S with 
B(S)  > 0  such that for each coalition R C_ S we have either / z ( R ) =  0 or 
Ix(S\R) = 0. The set T can be divided into a countable union of atoms T1 and 
an atomless sector T 0. 

A commodity bundle x is a point in the non-negative orthant J2 of R n. An 
assignment (of commodity bundles to traders) is an integrable function x from 
T to J2. In an integral we will omit the symbol dtz(t) and the indication of the 
dependence  of the integrand on t (which stands for trader). 

There  is a fixed initial (density) assignment w. We assume that J'~ w » 0. This 
asserts that no commodity is totally absent from the market.  For  each trader t a 
relation >t  is defined on J2, which is called the preference relation of trader t 
and satisfies the standard assumptions such as strong desirability, continuity 
and measurability. We also assume 

(H.1) Convexity assumption on the large traders. For each atom t E  T~, >t is 
convex, i.e. y E g2 implies (x  E J2: x >t  y} is a convex set. 

Note  specifically that >,  is not assumed to be complete, nor even transitive. In 
some parts of the chapter we shall assume 

(H.2) Quasi-order assumption on the large traders. For each atom t @ Tl, >t 
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is derived from a preference-or-indifference relation ~ t  on S2, which is 
assumed to be a quasi-order, i.e. a reflexive, transitive and complete binary 
relation. 

Note that >t  and ~>t can be derived from a measurable, continuous quasi- 
concave utility function ut(x), for all t E T~. 

An allocation (or "final assignment" or " t rade")  is an assignment x for which 
f T X = f T W. An assignment y dominates an allocation x via a coalition S (S is 
then said to improve upon or to block x) if y ( t ) > t x ( t )  for almost each t E  S, 
B(S)  > 0 ,  and S is effective for y, i.e fs Y = fs w. The core is the set of all 
allocations that cannot be improved upon by any (non-null) coalition. 

A price vector p is a vector p E J2, p ~ 0. A competitive equilibrium is a pair 
(p ,  x) consisting of a price vector p and an allocation x such that for almost all 
traders t, x(t) is maximal with respect to >« in t's budget set Bp( t )= 
{x E g~: p .  x <~p. w(t) }. A competitive allocation x is an allocation for which 
there exists a price vector p such that (p ,  x) is a competitive equilibrium. 
Similarly, an efficiency equilibrium (e.e.) is a pair (p ,  x) consisting of a price 
vector p and an allocation x such that for almost all traders t, x(t) is maximal 
with respect to >t  in t's efficiency budget set ED(t ) = (x @ ~:  p .  x <~p. x(t)} .  
Note  that every competitive equilibrium is an e.e. ,  but not every e.e. is 
necessarily a competitive equilibrium. Furthermore,  under (H.1) ,  an allocation 
that is Pareto optimal is an e.e. with a suitable price system p. 

Two traders s and t are said to be of the same type or similar if w(s) = w(t) 
and, for all x, y E g~, x >« y if and only if x >t  Y- Note that when s E T 1 is of 
the same type as t (not necessarily in T~), then both s and t have the same 
utility function Us(X ) = ut(x ) [under (H.2)].  Finally, two large traders are said 
to be of the same kind if they are of the same type and have the same measure. 

3. Budgetary exploitation: A general price property of core allocations in mixed 
markets 

We start out  investigation of core allocations in mixed markets by stating a 
general price property of such allocations (Theorem 3.1). Aumann's  equiva- 
lence theorem appears as an immediate corollary of this property when the 
market  has no atoms. In most situations, however,  the equivalence of the core 
and the set of competitive allocations should not be expected to hold in mixed 
markets. An example with no equivalence is provided in Subsection 3.2. From 
this example and Theorem 3.1, we shall see that small traders are necessarily 
"budgetari ly exploited" at a core allocation; at efficiency prices, the value of 
their part in that core allocation cannot exceed the value of their initial 
endowment.  
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3.1. The "budgetary exploitation" theorem 

Let x be a core allocation. Then in particular x is Pareto optimal and we may 
consequently associate with it a price vector p such that (p ,  x) is an efficiency 
equilibrium. Theorem 3.1 below states that the efficiency prices p can be 
chosen in such a way that, whenever an agent t is a small trader, the "value" 
p .  x(t)  of the bundle x(t) assigned by x to hirn does not exceed the value 
p • w(t) of his initial bundle. In terms of value, therefore, the small traders lose, 
or at best they come out even, i.e. they are "budgetarily exploited". As for the 
large traders, considered as a group their budgetary gain is exactly equal to the 
sum of the losses of the small traders. About an individual large trader, 
however, we can say nothing - he may either gain or lose. Formally we state: 

Theorem 3.1 [Shitovitz (1973)]. Assume (H.1) and Iet x be in the core. Then 
there exists a price vector p such that (i) (p ,  x) is an efficiency equilibrium and 
(ii) p .  x(t) <~ p .  w(t) for almost all t E T o. 

The formal proof of Theorem 3.1, which is omitted, is based on the notion of 
the integral of a set valued function (correspondence). Defining G( t )=  
{x E g~: x >tx(t)} and f r  G --- {fr  g:  g is integrable and g(t) E G(t) a.e.} we 
note that p are efficiency prices for x if and only if the hyperplane {x : p • x = 
P" f r  x} supports the convex set f r  G at f r  X[fr G is convex by (H.1)]. Set 

F(t)=[G(t)U{w(t)} t e  To, 
L o(t) t e t l .  

Then, because x is a core allocation, J'v w (which equals fT X) is not an interior 
point of f r  F,  by strong desirability. Thus the convex set fT F can be supported 
by the hyperplane {x E Rn: p -x = p  • f r x }  at f r x .  Immediate calculations 
imply the theorem. Note that Aumann's  Equivalence Theorem (1964) is a 
special case of Theorem 3.1. If there are no large traders, then the total loss of 
the small traders is 0, and since no small trader can gain, each one loses 
nothing, so we have a competitive equilibrium. 

3.2. An  example o f  a monopolistic market with no equivalence 

Let us consider the following exchange economy with T = [0, 1] U {2}, where 
T o = [0, 1] is taken with Lebesgue measure, T 1 = {2} is an atom with/x(T1) = 
1, and the number of commodities is 2. 

The initial assignment is defined by 

{ ( 4 , 0 ) ,  t E  T 0, 
w(t )= ( 0 , 4 ) ,  t E T 1 ,  
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while the utility of the traders t is Ut(X1, X2)~---V~I -[- @-~2, a homogeneous 
utility, the same for all traders. 

There is a unique competitive allocation, namely the allocation that assigns 
(2, 2) to all traders. On the other hand, the core consists of all allocations x of 
the form x( t )  = (a ( t ) ,  «(t))  for almost all t, where 1 ~< a( t )  ~< 2 for almost all 
t E To, and 2 ~< «(2)  ~< 3 are such that f r  « = 4. In particular, 

{(1, 1) ,  t E r o ,  
x0(t)= (3,3), t~T~, 

is in the core and is obviously different from the competitive allocation. At  x0, 
the small traders are "budgetarily exploited", i.e. we have 

P .  Xo(t ) = p . ( 1 ,  1) < p .  (4,0) = p .  w(t) , 

where the unique efficiency prices for all points in the core are p = (1, 1). 
Moreover, the utility of every small trader at x 0 is exactly the same as that of 
his initial bundle. Note that the allocation xl,  where 

I(3,3), t~ro, x,(t)=[(l,l), tET,, 

is not in the core; the large trader must receive at least (2, 2) in the core, i.e. at 
least as much as at the competitive allocation (see Figure 1, in which the heavy 

(2, 2)- 

(x, i ) '  

v 

(4, o) 
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Figure 1 
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line indicates the set of possible bundles assigned to the large trader by core 
allocations). 

In this example we notice that, at any core allocation, the small traders are 
not only "budgetarily exploited", but also exploited in utility: their utility level 
at a core allocation, compared with their utility level at the competitive 
allocation, is always smaller. As we shall see in Section 6, this property is not 
always satisfied; budgetary exploitation does not necessarily imply utility 
exploitation. 

4. Competit ive allocations and the core of mixed markets 

We continue our investigation of cores in mixed markets by identifying some 
situations in which the equivalence theorem holds. Interestingly enough, these 
situations reveal that, in spite of their "size", large traders can be engaged in 
an intense competition because other traders are similar to them in the 
economy. These can either be other large traders or small traders in sufficiently 
large number. In Subsection 4.1 the case of similar large traders is considered, 
while in Subsection 4.2 we consider the core when to large traders correspond 
similar small traders. 

4.1. The core when large traders are similar 

A significant result in Shitovitz (1973) is his "Theorem B", which extends the 
Equivalence Theorem in Aumann (1964) to oligopolistic mixed markets. It 
states that in a market in which there are at least two large traders, and all the 
large traders are similar (i.e. are of the same "type"), all core allocations are 
competitive. Thus such a market is essentially indistinguishable from a perfect- 
ly competitive market; if all the large traders were to split into a continuum of 
small traders of the same "type" as the original large traders, there would be 
no change in the core. In this case, therefore, the presence of several large 
traders engenders such intense competition among them that the effect of the 
larger traders' size is nullified. 

Theorem 4.1 [Shitovitz (1973)]. Assume  that there are at least two large 
traders, and that all large traders are similar. Then, under (H.1) and (H.2), the 
core coincides with the set o f  competitive allocations. 

A straightforward proof of this equivalence theorem can be found in 
Shitovitz (1973). Another proof was also given in Greenberg and Shitovitz 
(1986), using Vind (1972) and Aumann (1964). 
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The formal proof of Theorem 4.1 is omitted. Here ,  we give a heuristic 
argument.  For  simplicity in this description, let us assume that there are just 
two large traders W 1 and W 2, and they are of the same type with equal 
measure,  and let x be an allocation in the core. Obviously, both large traders 
are indifferent between x(W1) and x(W2); this phenomenon is well known. In 
fact, we may go further; assume that both traders actually get the same bundle, 
i.e. that x(W~)= x(W2). Therefore ,  by Lyapunov's theorem there exist two 
disjoint coalitions S~ and S 2 of small traders trading with Wa and W2, respec- 
tively, i.e. fR x = f w for R = Sa U W I and R = S 2 U W 2. Intuitively, also, it is 
not unreasonable to assume that two identical large traders will split the 
market  evenly between them. This means that the market  is actually composed 
of two monopolistic submarkets whose traders are S 1 U W1 and S 2 U W2, 
respectively. Let  p(t) = p .  x(t) - p .  w(t) be the budgetary profit of trader t at 
the "market  prices" p. By Theorem 3.1 we have that each small trader t has a 
nonpositive profit. Suppose now that one of the large traders, say W~, has a 
positive profit. Then,  since the total profit of each submarket is zero, there are 
small traders in $1 who have been budgetarily exploited. Therefore ,  by adding 
a sufficiently small part of these traders to the other submarket,  and by 
distributing the excess w ( t ) - x ( t )  of the part (whose value at the "market  
prices" is positive) among themselves and the traders of the other  submarket,  
we obtain a new submarket whose traders t receive a new bundle in the 
neighborhood of x(t) whose value at the "market  prices" is more than the 
value of x(t).  Therefore ,  the traders of this new submarket can improve upon 
x, in contradiction to the assumption that x is in the core. 

In very simple terms, what is happening is that if some of the "customers" of 
Wa are "losing money" ,  then it is worthwhile for W 2 to "steal" at least a small 
number  of these customers from W 1 (while keeping his own customers). 
Therefore ,  none of W~'s customers can lose money, and so, by the symmetry of 
the situation, nobody does. 

4.2. The core when to large traders correspond similar small traders 

Theorem 4.1 asserts that when all large traders are competitors of the same 
type, the core is equivalent to the set of competitive allocations. Our next 
theorem (Theorem 4.2 below) asserts that the same must hold whenever to 
each large trader there corresponds a set of small traders of the same type and 
a constraint on the size of the atoms is satisfied. Let  A 1, A2, • • - ,  A~ . . . .  , . . .  
denote  the set of atoms and, for each atom A k consider the class 

def 
T~ = ( t ~ T I w(t) = w(A~); V(x, y) E g2 x J2: x >~~ y <=:>x >~ A~Y} ; 
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the class T k is the set of all traders who are of the same type as the atom A k. 
Denote  by ~ h the common preferences of traders in T k and by Ahk the hth 
atom of type k, h E N*. We then obtain a partition of the set of agents into at 
most countably many classes T h, and an atomless part T\l._Jhcu, T k. 

Theorem 4.2 [Gabszewicz and Mertens (1971)]. 

B ( ~ h  /X(Ahk)) < 1 
/z(Th) 

If 

(,)  

then, under (H.1)  and (H.2) ,  the core coincides with the set o f  competitive 
allocations. 

The inequality (* )  says that the sum over all types of the atomic proportions 
of the types should be less than one. This result implies in particular that if 
there is only a single atom in the economy, any non-null set of "small" traders 
similar to the atom "nullifies" the effect of the large trader's size. The proof  of 
Theorem 4.2 is too long to be reported in full in the present survey. Let  us 
however  give an idea of the proof, which the reader can find in Gabszewicz and 
Mertens (1971, p. 714). This proof essentially tests on a lemma which states 
that,  under  condition (* ) ,  all traders in T k -  the "large" and the "small" 
o n e s -  must get in the core a consumption bundle which is in the same 
indifference class relative to their common preferences ~ k. Indeed, the 
equivalence theorem is an immediate corollary of this lemma when combined 
with Theorem 3.1. As for the lemma, the idea of the proof is as follows. Let  x 
be in the core. Suppose that traders in each type are represented on the unit 
interval, with Lebesgue measure A, atoms of that type being subintervals. 
Figure 2 provides a representation of the economy where, for all pairs of 
traders in a given type, one trader is "below" another if, and only il, under x 
he prefers the other 's  consumption to his own. The set D represents the 
atomless part T \ U k  Th. 

If, contrary to the lemma, all traders in some type are not in the same 
indifference class, then the condition of Theorem 4.2 implies that there exists a 
number  «, a ~ ]0, 1[, such that if a horizontal straight line is drawn in Figure 2 
at level a through the types, no atom is "split" by this line. Then the agents 
below this l i nea re  worse oft  in all types, and they will, supplemented by some 
subcoalition P in D, form a blocking coalition. The idea is to choose, by 
Lyapunov's  theorem, a subset P of D such that the agents below a together 
with the subset form an a-reduct ion of the initial economy. Of course, the 
agents of a given type are not originally defined as supposed in the above 
reasoning, and the main difficulty of the proof of the lemma consists in 
"rearranging" traders in such a way that the above reasoning can be applied. 
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5. Restricted competitive allocations and the core of  mixed markets  

The "budgetary exploitation theorem" asserts that core allocations in mixed 
markets are sustained by "efficiency prices" such that, for any trader, a 
consumption preferred to what he gets under that allocation would also be 
more expensive; furthermore the values, at these prices, of the consumption 
received in that allocation by any small  trader cannot exceed the value of his 
initial endowment. As the example in Subsection 3.2 shows, one should 
generally expect the latter to be strictly larger than the former, implying strict 
budgetary exploitation [ i . e .p .  x( t )  < p .  w(t) ,  t ~ To]. Nonetheless, under the 
additional assumptions introduced in Section 4, the equivalence property is 
restored: efficiency prices are also competitive prices. 

Without requiring as much as the equivalence property for core allocations 
in mixed markets, orte could be interested in a weaker property of price 
decentralization for such allocations, namely, that all small traders to be, at 
that allocation, in competitive equilibrium with respect to the efficiency price 
system p. More precisely, define a restricted allocation x [r0 to be competi t ive if 
there exists a price system p such that, for almost all t E To, p .  x ( t )  = p • w(t)  
and y > , x ( t ) ~ p . y > p . w ( t ) .  That is, a competitive restricted allocation 
carries the property that all small traders are as in a competitive allocation 
w.r.t, a price vector p: x( t )  is a maximal element for ~>t of the budget set 
{yl p -  y ~ p .  w(t)}. But it does not follow that x I~0 is the restriction to T o of a 
competitive allocation, for the large traders need not be in competitive 
equilibrium with respect to p; and it does not follow that x It0 is an allocation 
for the subeconomy consisting of the atomless sector T o alone, since the 
equality of supply and demand (over To) may be violated (it is not  required 
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that J'~0 x = J'~0 w). However ,  if at a particular core allocation x no strict 
budgetary exploitation against the small traders is observed at efficiency prices 
p ,  i.e. if p . x ( t ) = p . w ( t )  for t E  To, the restriction x]~. ° would then be 
competitive. Moreover ,  notice that small traders of the same type must get, at 
a restricted competitive allocation, equivalent bundles. 

In this section we study sufficient conditions under which an allocation in the 
core of a mixed market  has a competitive restriction on the atomless sector. To 
this end it is useful to introduce the notion of a split market.  The market  is said 
to be split with respect to (w.r.t.) a core allocation x if there exists a coalition S 
(called the splitting coalition) such that J's x = ~s w and 0 < ~(S)  < / x ( T ) .  For 
the following theorem we assume that core allocations are in the interior of the 
commodity space and that indifference curves generated by ~>t are C a. 

Theorem 5.1 [Shitovitz (1982a)]. I f  the market is split with respect to a core 
allocation x, x lro is a restricted competitive allocation. 

In the literature on mixed markets,  several conditions have been identified 
under  which the market  can be split w.r.t, to each core allocation, implying, 
with Theorem 5.1, that such core allocations are restricted competitive alloca- 
tions. The first condition stated below involves only the set of atoms and has 
been introduced by Shitovitz (1973). Define two large traders (atoms) to be of 
the same kind if they are of the same type and have the same measure. Thus 
every market  may be represented by (To; Aa, A 2 , . . ) ,  where T o is the 
atomless sector and A1, A z ,  . . . is a partition of the set of all atoms such that 
two atoms belong to the same Ak, iff they are of the same kind. Denote  the 
number  of atoms in Ak by ]Ak[. 

Theorem 5.2 [Shitovitz (1973)]. Given a market (To; Aa, A 2 , . . ) ,  let m 
denote the g. c.d. ( greatest common divisor) of  lA ~1, k = 1, 2 , . . .  ; if  m >~ 2, all 
core allocations are restricted competitive allocations. 

An alternative condition, implying an identical result, has been introduced in 
Drèze,  Gabszewicz, Schmeidler and Vind (1972); this condition involves only 
the atomless sector. It states that, for each commodity,  there exists a non-null 
subset of the atomless sector, the initial endowment of which is made only of 
that commodity.  Assuming also that indifference surfaces generated by ~> t are 
Ca, one can prove 

Theorem 5.3 [Drèze, Gabszewicz, Schmeidler and Vind (1972)]. If, for each 
cornmodity j, j = 1 . . . . .  n, there exists a non-null coalition Sj, Sj C T O for which 
~sj wi = 0 and .~sj wj > O, then the market can be split and all core allocations are 
restricted competitive allocations. 
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Finally, the following condition concerns both the set of atoms and the 
atomless part  of the economy. Assume tha t  there is a finite number  of atoms 
A h, h = 1 , . . . ,  m, and that for all h, w ( A  h) = w. Further,  assume that, for all 
h, ~ Ah is derived f rom a homogeneous  utility function and that there exists Sb, 
S h C To, /~(Sh) > 0, with for all t C S h, >~t = >~ A h and w(t) = w. 

Theorem 5.4 [Gabszewicz (1975)]. Under the preceding assumptions,  any 
allocation x in the core is a restricted competi t ive allocation. 

Not  only can a restricted competit ive allocation which is in the core be fully 
decentralized by efficiency prices on the atomless sector, but such a core 
allocation can also be t ransformed in a competit ive allocation for the same 
prices under an appropriate  redistribution of the initial resources of the atoms 

a m o n g  themselves  ( p .  fr0 x = p .  fr0 w ~ p . fr~ x = p . fT~ W). Accordingly any 
discrimination among traders introduced by an allocation in the core which is 
restricted c o m p e t i t i v e -  as compared with a competit ive a l loca t ion-  is a phe- 
nomenon  affecting the atoms only; within the atomless sector, no discrimina- 
tion takes place. 1 Finally, it is worthwhile to point out two additional propert ies 
of core allocations when they are also restricted competitive. Define an 
allocation x to be coalitionally fa ir  (c-fair) relative to disjoint coalitions S 1 and 
Sa, if there exists no y and no i, i = 1, 2, such that for all t E Si, y( t )  > t x( t )  and 
f s  ( Y -  w ) =  f s  ( x -  w). In other words, an allocation is c-fair relative to S 1 

i . . i . . 

and S 2 If nelther of these coahtlons could benefit f rom achieving the net trade 
of the other.  The following theorem establishes a link between c-fair and 
restricted competi t ive allocations, e 

Theorem 5.5 [Gabszewicz (1975)]. I f  x is a restricted competi t ive allocation in 
the core, x is c-fair relative to all S 1 and $2, S 1 C_ To, T 1 C S 2. 

Secondly, knowing that core allocations are also restricted competi t ive 
somet imes allows us to strengthen existing results in the literature of mixed 
markets .  In particular, when the core of the economy defined in Subsection 4.2 
consists only of restricted competit ive allocations, these restricted competit ive 
allocations are also competit ive,  implying therefore the equivalence theorem. 
A sufficient condition to that effect is t z ( A h ) / t z ( T h ) +  t Z ( A k ) / t Z ( T k ) <  1, for 
all h, k h, k =  1 . . . . .  m [see Gabszewicz and Drèze (1971, Proposition 5, 
p. 413)], which is a considerable strengthening of Theorem 4.2. 

1It may still be true, however, that the efficiency prices discriminate against the whole atomless 
sector when compared with the price system corresponding to a fully competitive allocation for the 
same economy; on this subject, see Gabszewicz and Drèze (1971). 

2For further results on c-fair allocations, see Shitovitz (1987b). 
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6. Budgetary exploitation versus utility exploitation 

As promised at the end of Section 3, we now treat the idea of "exploitation" of 
the small traders, which is fundamental in our analysis of oligopoly in mixed 
markets. We have expressed this idea in terms of a "value" criterion, using 
Pareto prices. Actually, however, each trader is concerned with his preferences 
rather than with any budgetary criterion. There exist classes of markets in 
which budgetary profit expresses the relative situations of some traders in 
terms of their preferences (see Subsection 6.2). But in general this is not the 
case, and there exist markets (even monopolistic markets) in which, although 
budgetarily exploited in the sense of Theorem 3.1, all small traders are actually 
better oft than at any competitive equilibrium. We now examine this question 
in the narrow sense of a monopoly, from the viewpoint of the atom. 

6.1. "Advantageous" and "disadvantageous" monopol ies  

In his "Disadvantageous monopolies", Aumann (1973) presents a series of 
examples (Examples A, B and C) showing that budgetary exploitation does not 
necessarily imply utility exploitation. In these examples there is a single atom 
{a} and a nonatomic part (the "ocean"). All examples are two-commodity 
markets, with all of one commodity initially concentrated in the hands of the 
atom and all of the other commodity initially held by the ocean. Thus a is a 
"monopolist" both in the sense of being an atom and in the sense that he 
initially holds a "corner" on one of the two commodities. We omit the other 
details of the examples. 

In Example A, the core is quite large, there is a unique competitive 
allocation, and flora the monopolist's viewpoint, the competitive allocation is 
approximately in the "middle" of the core [see Figure 3(a)]. 

Example B is a variant of Example A. Here, the core is again quite large, 
there is a unique competitive allocation, and from the monopolist's viewpoint, 
the competitive allocation is the best in the core [see Figure 3(b)]. Thus the 
monopoly is "disadvantageous" and the monopolist would do well to "go 
competitive", i.e. split itself into many competing small traders. 

Perhaps the most disturbing aspect of these examples is their utter lack of 
pathology. One is almost forced to the conclusion that monopolies which are 
not particularly advantageous are probably the rule rather than the exception. 
The conclusion is rather counterintuitive since orte would conjecture that the 
monopoly outcome should be advantageous for the monopolist when compared 
with its competitive outcome. Although Aumann's examples disprove this 
conjecture, Greenberg and Shitovitz (1977) and Postlewaite (unpublished) 
have been able to show 



474 J.J. Gabszewicz and B. Shitovitz 

(a) 

Atom's origin 

(b)  (b) 
j Competitive allocation ~Co~~ 

Atom's ongin 

Figure 3 

Theorem 6.1 [Greenberg and Shitovitz (1977)]. In an exchange economy with 
one atom, and one type o f  small traders, for each core allocation x there is a 
competitive allocation y whose utility to the atom is smaller than that of  x, 
whenever either x is an equal treatment allocation, or all small traders have the 
same homogeneous preferences. 

Examples have been constructed to show that the conditions of Theorem 6.1 
are indispensable for the result to hold [see Greenberg and Shitovitz (1977)]. 

6.2. When budgetary exploitation implies utility exploitation 

That budgetary exploitation implies utility exploitation for the small traders has 
been established for two particular classes of markets, namely "homogeneous" 
and "monetary"  markets. A homogeneous market is a market in which all 
traders t have the same homogeneous preference relation, namely a relation 
derived from a concave utility function u(x) that is homogeneous of degree 1 
and has continuous derivatives in the neighborhood of f r  w. It is easy to see 
that a Pareto-optimal allocation x can be written as x ( t )=  o~(t), f r  W, with 
f r  «( t )  = 1. Hence, the efficiency prices p are the same for all Pareto-optimal 
allocations. There is also a unique competitive allocation x*. Let p( t )=  
p • x(t) - p • w(t) be the "budgetary profit" of trader t. Then we have p(t) <~ 0 if 
and only if u(x(t)) <~ u(x*(t)). For x in the core, therefore, it follows that small 
traders are at most as "satisfied" (in the sense of preferences) as they are at the 
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competitive equilibrium, and in split markets the small traders receive in the 
core the same bundle that they receive at the competitive equilibrium. 

In a monetary market, the consumption set of each trader is R x J2, i.e. a 
commodity bundle (~, x) consists of an amount £ of "money"  and a vector 
x E J2 of commodities. The utility function U,(~, x) of trader t is assumed to be 
linear in money, i.e. 

v,(~:, x) = « + V,(x). 

Furthermore,  the initial amount of money of each trader in T 1 is supposed to 
be zero, while trader t holds commodities w(t) » O. Note that a price vector for 
a monetary economy which constitutes an efficiency equilibrium with some 
allocation x is of the form (1, p) where, for each t, V ~ ( x ( t ) - p . x ( t ) ) =  
m a x x ~ ~ ( V ~ ( x ) - p . x  ). Using a generalization of Theorem 3.1, 3 it can be 
proved that for each core allocation x, there exists p » 0 in R n which consti- 
tutes an efficiency equilibrium with (1, p) and ~(t) + p . x(t) <~ p . w(t) Vt  E T o. 
But, defining ~:*(t) in such a way that, for almost all t E T 

« * ( t )  + p .  x ( t )  = p .  w( t )  , 

we obtain that (1, p),  («*, x) is a competitive equilibrium. Hence it follows 
that, for almost all t E  To, ~(t)~< ~*(t) and therefore we obtain U,(£(t),  x(t))<~ 
Ut (£*( t ) , x ( t ) ) .  Thus, budgetary exploitation implies utility exploitation 
(Samet and Shitovitz, unpublished). Note that these monetary markets can be 
viewed as a transferable utility side-payment game T*, where the characteristic 
function v is defined as [see Aumann and Shapley (1974)] 

~(s) = m a x ( f  u t (x ( t ) )d j t~ ( , ) :  f x ( t ) d ,  = f ~~3~(t)} . 
s s s 

Using the equivalence principle and the standard definition of the core in 
side-payments games, we obtain: 

Theorem 6.2 (Samet and Shitovitz, unpublished). For each core allocation õt 
o f  the garne (T, ~ ,  IL), there is an allocation a* in the core o f  the garne T* such 
that a(t)<~ot*(t) for a.e. t E  T o . 

Note that «*,  like all other core allocations of T*, is a transferable utility 
competitive equilibrium. 

3See Shitovitz (1982a) and Champsaur and Laroque (1974). 
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6.3. Disadvantageous monopolies and disadvantageous endowments 

In his Example B, Aumann (1973) used the term "disadvantageous monopoly"  
for an exchange economy with a single atom and a nonatomic sector, whenever 
the core of the economy consists of a single competitive allocation y and a set 
of noncompetit ive allocations, all of which are less favorable for the atom than 
y. An analogous definition can be used to characterize disadvantageous trans- 
fers among traders. In an exchange economy, a non-negative transfer of initial 
resources (a "gif t")  from traders in some subset T to traders in another subset 
ic, say, generates a disadvantageous endowment whenever,  after the gift, there 
exists a competitive allocation assigning to traders in 2e a consumption less 
preferred than every consumption assigned to the same traders that was 
competitive before the gift. 

Using Theorem 3.1, it can be shown: 

Theorem 6.3 [Drèze, Gabszewicz and Postlewaite (1977)]. Whenever the 
measure space of  agents consists of  a single atom {a} and a nonatomic part, and 
the atom a is a disadvantageous monopoly, there exists a gift from the nonatomic 
part to the atom generating a disadvantageous endowment for a. 

Thus this proposition asserts that disadvantageous endowments are no more 
unusual than disadvantageous monopolies! 

7. Syndicates 

In our Introduction we considered the possibility of interpreting an atom as a 
"syndicate" of traders formed in an initially atomless economy. In this section 
we elaborate on this interpretation by investigating the effectiveness and the 
stability of binding agreements among traders in the context of a pure 
exchange economy. TO this end, it is convenient to work with a simplified 
version of our general exchange model. Consider an atomless exchange 
economy with a continuum T of traders falling into r " types" ,  Tk, k = 1 , . . . ,  r, 

i.e. all traders t in T h have the same preferences (~~.td--e---f~.~k;tETk, k = 
def 

1 , . . .  , r) and the same initial assignment (w(t) = wk; t E  Tk; k = 1 , . . ,  r). 
For simplicity let T k be the right open interval [ k - 1 ,  k] and T r the closed 
interval [r - 1, r] so that T = [0, r]. Also let 3- denote the class of Lebesgue 
measurable subsets of T and/x the Lebesgue measure defined on ~-. Syndicates 
of traders are defined informally as follows: Let  Ah~, h = 1 , . . ,  Jk, be a 
measurable subset of T k and imagine that all traders in Ah~ agree that (i) no 
proper subset of them will form a coalition with traders outside Ahk  , SO that  
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only the group as a whole will enter  into broader  coalitions; (ii) only those 
allocations which assign an identical consumption vector to all t C Ah~ will be 
accepted by the group. 4 Denote  by A the set /._J~= 1 [(j~k=l Ah~] ; the set A 
contains all agents in A who are members  of a syndicate; the set A will also be 
referred to as a syndicate structure. The formal consequences of this definition 
of the syndicates A hk are the following: 

(1) the set of potential  coalitions is now reduced to a subclass of the original 
o--field 3-, namely the subclass JA defined by 

3- A = { S E  3-1Vk = 1 , . . ,  r, Vh = 1 , . . ,  Jk, 

S n Ahk = 0 or S N Ahk = Ahk } ; 

(2) the set of admissible allocations in the economy is now restricted to 
those allocations which are constant-valued on Ahk, k = 1 , . . ,  r ; h  = 
1 , . . ,  Jk, i.e. which are 8-A-measurable; 

(3) the core must be  redefined in terms of the new class of coalitions and the 
new set of admissible allocations; the ~ A - - c o r e  cg(9-A) is the set of all 
3-A-measurable allocations that are not dominated,  via any non-null coalition 
in ~-A, by some 3-A-measurable allocation; 

(4) on the other  hand, it is readily verified that the set ~ of competi t ive 
allocations is invariant with respect to the process of syndicate formation.  

The  formal  analogy between a syndicate in an atomless measure  space and 
an a tom in an atomic measure  space is thus complete.  Accordingly, general 
results established for an exchange economy with atoms are directly applicable 
to our special case. This is true in particular for Theorems 4.1, 4.2 and 5.2, 
which now become,  respectively: 

Proposition 7.1. Assume  that for  all k '  # k, there is no syndicate included in 
Tk,, while there are at least two non-null syndicates included in T h. Then 

~ ( ~ A )  = 8. 

Proposition 7.2. /x(A) < 1 ~ ~(3-A) ---- ~. 

Proposition 7.3. Assume  that the set o f  syndicates can be divided into at least 
two disjoint subsets S 1 and S 2 such that, to each syndicate in S 1 included in T h, 
there corresponds a syndicate in S 2, o f  the same measure, also included in T h. 
Then all core allocations are restricted competitive allocations. 

4This rule of uniform imputation is justified by the fact that all traders in Ahk a r e  identical. This 
justification would no longer be valid should syndicates include traders of different types. We shall 
consider this alternative assumption below. 
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Proposition 7.1 states that if all existing syndicates are "of the same type", 
the equivalence theorem must hold. Proposition 7.2 shows that the process of 
syndicate formation must involve a sufficiently "broad" class of traders before 
it can become effective at enlarging the core of the economy. 

In the absence of syndicates, the core of our (atomless) exchange economy 
coincides with ~; this set consists of 3-A-measurable allocations only, and thus 
belongs to the 3-A-core. If syndicates are to be effective, they must bring about 
an allocation that is not competitive; assuming that only allocations in the 
J-A-core can emerge, we are led to investigate allocations in ~(J-A)\~, i.e. 
noncompetitive core allocations. Any such allocation could be blocked by some 
coalition involving a proper subset of at least one syndicate; that is, it could be 
blocked if some syndicate members could be persuaded to break the agreement 
which binds them to the syndicate. Under a noncompetitive allocation one 
taust accordingly reckon with a permänent temptation for some traders either 
to leave their syndicate or to break its rules (by secretly recontracting with 
outsiders). How can the syndicates achieve stability in the face of such 
temptations? To simplify the discussion, we shall assume that there is only one 
syndicate in each type k, and denote it by A~. One cän think of two types of 
economic considerations that may preserve the stability of syndicates, namely: 

(i) comparison of the consumption of syndicate members (t in A~) with that 
of "unorganized" traders of the same type (t in Tk\A~), and 

(ii) comparison of the consumption of syndicate members with what they 
would receive under competitive allocations. A natural requirement for the 
stability of a syndicate A~ under the first type of comparison, given an 
allocation y, would be the existence of a non-null set of unorganized traders of 
the same type who are not better oft than the members of syndicate A k. This 
teads to the following concept of marginal stability. 

Definition 7.1. Given a syndicate structure A = (A 1 . . . .  , At) with /x(Ak) < 
1, Vk, an allocation y C q~(~n) is marginally stable iff, for all k with tx(Ak) > 0, 
there exists Sk, Sg C_ Tk\Ak, tx(Sk) > 0 and y(t) ~ ~ y(.r), .r E Ak,  t E  S k. 

Clearly any competitive allocation satisfies marginal stability, but no other 
allocations in Cg(3-A) do, as indicated in the following 

Proposition 7.4 [Gabszewicz and Drèze (1971)]. Let A be a syndicate structure 
with iX(Ak)< 1, k = 1 , . . ,  r; then no allocation in ~(~A) \~  is marginally 
stable. 

Having reached this negative conclusion, we turn to the other type of 
comparison, in which an allocation y E cg(3-A)\~ is compared with allocations 
in ~. A natural requirement for the stability of a syndicate A k under this type 
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of comparison, given an allocation y, y E c~(ffA)\~, would be that the members 
of A~ are better oft under y than they would be under every competitive 
allocation. 

Definition 7.2. Given a syndicate structure A, an allocation y E c¢(J-A)\~ 
carries the property of total stability whenever, for all t ~ A and all x ~ ~, 

y(t) ~ tx(t) . 

Proposition 7.5 [Gabszewicz and Drèze (1971)]. There exist exchange 
economies for which the class of  syndicate structures A ,  with i x ( A k ) <  1, 
k = 1 , . . .  , r, such that c~(J-A)\~g contains allocations that satisfy total stability, 
is nonempty. 

Propositions 7.3 and 7.4 raise several interesting questions insofar as the 
stability of syndicates is concerned. Clearly syndicates are relevant only to the 
extent that they may enforce noncompetitive core allocations, i.e. allocations 
in c~(3-a)\~. Such allocations appear at first sight unstable because they never 
satisfy marginal stability (Proposition 7.3). We must infer from this that the 
relevant stability concept is one of total stability. Proposition 7.4 teils us that 
total stability may weil hold for all syndicates simultaneously. Combining the 
two propositions, we are led to recognize the possibility that a syndicate 
structure may be both relevant and stable. 

We have so far considered that all traders belonging to a particular syndicate 
are of the same type; this assumption allowed us to restrict our attention to 
allocations which were uniform on each syndicate (~a-measurable allocations). 
In many circumstances, however, more complex forms of syndicates should be 
envisaged; thus, a large corporation may be regarded as a syndicate of 
employees and stockholders; then all members are not of the same type and no 
rule of uniform imputation would be justified. The question then arises 
whether the above results on syndicate structures would still hold when 
syndicates may include traders of different types. Unfortunately, Champsaur 
and Laroque (1976) have shown that the analogs of Propositions 7.1 and 7.3 
are no longer valid with such syndicate structures. Clearly much remains to be 
done on this topic, in which further research would be welcome. 

8. Conclusions 

The work we have reported above is only part of the full panoply of research 
devoted to the study of mixed markets. Other paths have been followed by 
researchers, and most of our concluding remarks aim at briefly describing the 
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results they have discovered. These include in particular the study of alterna- 
tive cooperative game-theoretic solution concepts in the framework of mixed 
markets and the problem of "approximating" mixed markets by finite exchange 
economies. We start, however, with a brief comment about some surprising 
features of the core's behavior in such markets. To this end let us return to the 
example presented in Section 3.2. In this example we have assumed that there 
is a singte atom with measure equal to 1. Now consider the same exchange 
economy, but in which the atom has been replaced by two  atoms of measure/3 
and 1 - / 3 ,  respectively,/3 E ]0, 1[. While the core with a single atom consisted 
of all allocations x of the form (a(t) ,  a(t)), where 1 ~< a ( t )  ~< 2, for almost all 
t E  T O and 2 ~  < a(2)~<3 for the atom, the core now consists of the sole 
competitive allocation, irrespective of the value of /3 in ]0, 1[; this follows 
immediately from Theorem 4.1. We conclude from this example that, in the 
abstract setup of a measure space of traders with atoms and an atomless part, 
the core correspondence is not lower hemicontinuous. Consider indeed the 
sequence of economies E r obtained by replacing the single atom of measure 1 
by two atoms of measures 1 / r  and ( r - 1 ) / r ,  respectively. This sequence of 
economies converges to the economy E~ containing a single atom of measure 
1. According to Theorem 4.1, the core of E r consists, for all r, of the sole 
competitive allocation. However, for r = ~, the core suddenly enlarges so as to 
contain a whole "segment" of allocations which are no longer competitive. 
Starting from these difficulties, some have questioned the abstract representa- 
tion of oligopolistic markets via mixed markets. Perhaps the abstract repre- 
sentation itself would be responsible for those disturbing results. The question 
was whether the representation of a mixture of small and large traders via 
finite, possibly large economies, would dispose of this pathology. It turns out, 
however, that this is not the case: the same disturbing phenomena may well 
occur even if orte considers f in i t e  exchange economies. Building a sequence of 
f i n i t e  duopolistic markets ~r converging to an economy containing a single 
monopoly, ~~, Gabszewicz (1977) has shown that while the cores of the 
duopolistic markets ~r converge to the set of competitive allocations, the core 
of the limit monopolistic market ~~ is rauch larger and includes many 
noncompetitive allocations; also, in this asymptotic version the core does not 
behave lower hemicontinuously. Most probably it is the concept of the core 
itself which is responsible for the discontinuity. Some small coalitions, includ- 
ing the "small" large trader, are endowed with the possibility of depriving the 
"big" large trader of all its power, while the intuition would suggest that such 
coalitions will not act to do so. This seems to indicate that the concept of the 
core must be used with care: core analysis gives qualitative insights rather than 
exact predictions of market behavior. 

The model of mixed markets has also been used to examine the behavior of 
other cooperative concepts, like the von Neumann and Morgenstern (v-N.M.) 
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solutions, the bargaining set, and the transferable Shapley value. Since this 
survey is mainly concerned with the concept of core we shall limit ourselves to 
a succinct presentation of these approaches. The v-N.M, solutions in large 
markets were analyzed by Hart (1974). He considered a nonatomic market 
consisting of a finite number of different types of traders, initially owning 
disjoint sets of goods. It is proved there that if all traders of each type form a 
cartel and behave like a single (atomic) trader (their "representative"), then 
one gets solutions (i.e. v-N.M, stable sets of allocations) of the original 
nonatomic market from those of the finite market made of the "representa- 
tives"; furthermore, all symmetric solutions are obtained in this manner. 
Another solution concept is the bargaining set, i.e. the set of all allocations 
with no "justified objection". Recently, Mas-Colell (1986) gave a uniform 
modified definition of the bargaining set for atomless economies, and proved 
its equivalence with the set of competitive allocations. Applying this concept to 
mixed markets, Shitovitz (1987a) has exhibited an example involving a 
duopolistic market (with two atoms) where the equivalence theorem between 
the core and the bargaining set fails to hold (compare with our Theorem 4.1 
about the core). This suggests that, in some contexts, the bargaining set would 
lead to drastically different outcomes than the core, reflecting more adequately 
the relationship of market power to the size of the agents. Nevertheless, it can 
be shown that, when each atom has a corner on some commodities and hence 
is a veto player, the core and the bargaining set do coincide [Shitovitz (1987)]. 
As we have seen in Subsection 6.1, syndicates can be advantageous as well as 
disadvantageous. The existence of disadvantageous syndicates led Aumann 
(1973) to the conclusion that "the game theoretic notion of core is not the 
proper vehicle for the explanation...  (of the monopolistic advantage)". He 
conjectured that perhaps the ideas underlying the concept of the Shapley value 
could better capture the bargaining power engendered by the harm the 
monopolist can cause by refusing to trade. Starting from this conjecture and 
using the asymptotic approach, Guesnerie (1977) has examined the stability of 
a monopoly from the viewpoint of Shapley's NTU value. He exhibits examples 
with no pathological features where the monopoly is unstable from this 
viewpoint as weil, thus disproving Aumann's conjecture. Hence the Shapley 
value does not seem at first sight a more appropriate concept than the core for 
capturing the bargaining power of syndicates or monopolies. Finally, a recent 
paper by Legros (1987) examined the stability of syndicates with respect to the 
nucleolus concept. In particular, he found an example where the monopoly is 
unstable from the viewpoint of the nucleolus. The example seems, however, 
highly pathological since the author uses a utility function which is not 
differentiable. On the other hand, if we consider any homogeneous differenti- 
able market (where the transferable utility competitive equilibrium is unique), 
we obtain stability of the nucleolus since the core contains the nucleolus. 
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Finally, we come to the problem of approximating mixed markets via large, 
but finite, economies, in the tradition introduced by Debreu and Scarf (1963) 
and Hildenbrand (1974) for the approximation of atomless economies. The 
first finite version of a mixed market was proposed by Drèze, Gepts and 
Gabszewicz (1969) and provides an asymptotic analog of Gabszewicz and 
Mertens (1971). It bears a relation to the latter paper that is similar to the 
relation of the Debreu and Scarf (1963) paper to the work by Aumann (1964). 
Similarly, Gabszewicz (1977) provides an asymptotic analog of Shitovitz's 
Theorem B (1973). Using the methods of non-standard analysis - a branch of 
model theory - Khan (1976) has shown that Shitovitz's results hold as well for 
large but finite economies in which traders, except those belonging to a finite 
set, are "negligible". His work also sheds some light on the interpretation and 
modeling of large traders via mixed markets. The next interesting contribution 
in this area of research is due to Trockel (1976), who uses Hildenbrand's 
(1974) framework, and proves the upper hemicontinuity in distribution of the 
core correspondence in mixed markets. Finally, using "approximate" efficiency 
prices, Greenberg and Shitovitz (1981) have given explicit bounds on the size 
of the budgetary exploitation of the small traders in a finite version of a mixed 
market. To this end, they make use of the novel proof of the equivalence 
theorem provided by Anderson (1978). 

It is now common knowledge that core theory applied to atomless market 
models has proved to be fruitful for analyzing perfect competition. It is our 
personal feeling that this theory fits as weil for analyzing imperfect competition 
as when the mixed market model is utilized for representing the asymmetric 
size of the economic agents. At this point we hope that the reader has come to 
share at least part of out conviction. 
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1. Introduction 

The garnes we consider in this chapter are "two-sided matching markets". The 
phrase "two-sided" refers to the fact that agents in such markets belong, from 
the outset, to one of two disjoint se t s -e .g ,  firms or workers. The term 
"matching" refers to the bilateral nature of exchange in these markets - e.g. if 
I work for some firm, then that firm employs me. In recent years the 
game-theoretic analysis of these markets has proved useful in various empiri- 
cally oriented studies. To emphasize the close connection between empirical 
and theoretical work in this area, this chapter begins by describing some of the 
phenomena the theory should be able to explain. Much of the available theory 
will be summarized in the body of the chapter, and the chapter will conclude 
by returning to consider how the theory addresses the empirical questions 
raised at the beginning. 

We will be concerned both with the core of the game, and with the dominant 
and equilibrium strategies under various rules about how the game might be 
played. Thus this material will serve to emphasize that the distinction between 
"cooperative" and "noncooperative" game theory is often somewhat artificial, 
since the tools of both kinds of theory can be used to study the same 
phenomena. 

This chapter is adapted from out monograph, Roth and Sotomayor (1990a), 
in which a much more complete treatment can be found. 

2. Some empirical motivation 

2.1. The case of American physicians 

Hospitals began offering newly-graduated medical students internship positions 
around the turn of the century. Not until 1945 were the relevant medical 
associations able to institute a single market with uniform dates at which such 
positions would be offered. 1 0 n c e  this was accomplished, however, both 
students and hospitals were dismayed by the chaotic conditions that developed 
between the time offers of internships were first made, and the time by which 
students were required to accept or reject them. The situation is described as 
follows in Roth (1984a). 

1See Roth (1984a) for a description of the difficulties encountered in setting uniform appoint- 
ment dates prior to 1945, which will not be discussed here. 



Ch. 16: Two-sided Matching 487 

Basically, the problem was that a student who was offered an internship at, 
say, his third choice hospital, and who was informed he was an alternate (i.e. 
on a waiting list) at bis second choice, would be inclined to wait as long as 
possible before accepting the position he had been offered, in the hope of 
evantually being offered a preferable position. Students who were pressured 
into accepting offers before their alternate status was resolved were unhappy 
if they were ultimately offered a preferable position, and hospitals whose 
candidates waited until the last minute to reject them were unhappy if their 
preferred alternate candidates had in the meantime already accepted posi- 
tions. Hospitals were unhappier still when a candidate who had indicated 
acceptance subsequently failed to fulfil his commitment after receiving a 
preferable offer. In response to pressure originating chiefly from the hospi- 
tals, a series of small procedural adjustments were made in the years 
1945-51. The nature of these adjustments, described next, makes clear how 
these problems were perceived by the parties involved. 

For 1945, it was resolved that hospitals should allow students ten days 
after an offer had been made to consider whether to accept or reject it. For 
1946, it was resolved that there should be a uniform appointment date (July 
1) on which offers should be tendered . . . .  and that acceptance or rejection 
should not be required before July 8. By 1949, [the Association of American 
Medical Colleges] proposed that appointments should be made by telegram 
at 12 : 01 AM (on November 15), with applicants not being required to accept 
or reject them until 12:00 Noon the same day. Even this twelve-hour waiting 
period was rejected by the American Hospital Association as too long: the 
joint resolution finally agreed upon contained the phrase "no specified 
waiting period after 12:01 AM is obligatory," and specifically noted that 
telegrams could be filed in advance for delivery precisely at 12:01AM. In 
1950, the resolution again included a twelve-hour period for consideration, 
with the specific injunction that "Hospitals and/or students shall not follow 
telegrams of offers of appointment with telephone calls' until after the 
twelve-hour grace period." [ . . .  the injunction against telephone calls was 
two-way, in order to stem a flood of calls both from hospitals seeking to 
pressure students into an immediate decision, and from students seeking to 
convert their alternate status into a firm offer]. 

It was eventually recognized that these problems could not be solved by 
compressing still further the time allowed for the last stage of the matching 
process, and it was agreed to try instead a centralized matching algorithm, on a 
voluntary basis. Students and hospitals would continue to exchange informa- 
tion via applications and interviews as before, but then both students and 



488 A.E.  Roth and M. Sotomayor 

hospitals would submit rank-orderings of their potential assignments, 2 and the 
algorithm would be used to suggest a matching of students to hospitals, who 
would then, it was hoped, sign employment contracts with their suggested 
assignments. 

The first algorithm proposed was abandoned after a year because it was 
observed to give students the incentive to submit a rank-ordering different 
from their true preferences. The algorithm proposed in its place was used for 
the first time in 1951, and remains in use to this day. (This algorithm will be 
called the NIMP algorithm, for National Intern Matching Program, the name 
under which the algorithm was initially administered.) 

This system of arranging matches was voluntary- students and hospitals 
were free to try to arrange their own matches outside the system, and there 
was no way to enforce compliance on those who did participate. 3 This makes it 
all the more remarkable that, in the first years of operation, over 95 percent of 
eligible students and hospitals participated in the system, and these high rates 
of participation continued until the early 1970s. 

Since then, although the overall rate of participation remains high, increas- 
ing numbers of students, particularly those among the growing number of 
medical students who are married to other medical students, have begun to 
seek to arrange their own matches, without going through the centralized 
clearinghouse. Another aspect of this market which has caused some concern 
in medical circles has been the resulting distribution of physicians among 
hospitals, with rural hospitals getting fewer interns than they wish, and a much 
higher percentage of interns who are graduates of foreign medical schools. 

The chief phenomena we would like a theory to explain in this case are: 
• What accounted for the disorderly operation of the market between 1945 and 

1951? 
• Why was the centralized procedure instituted in the 1951-52 market able to 

achieve such high rates of voluntary participation? 
• Why did these high rates start to diminish by the 1970s, particularly among 

the growing number of medical students who were married to other medical 
students? 
We will also want to investigate "strategic" questions of the kind that led to 

the scrapping of the first algorithm. 
• Does the NIMP algorithm, as claimed by the sponsoring medical associations, 

2Regarding the problem of formulating a rank-ordering, note that the complete job description 
offered by a hospital program in a given year was customarily specified in advance. Thus the 
responsibilities, salary, etc. associated with a given internship, while they might be adjusted from 
year to year in response to a hospital's experience in the previous year's market, were not a subject 
of negotiation with individual job candidates. 

3The experience prior to 1950 amply demonstrated that no amount of moral suasion was 
effective at preventing participants from acting in what they perceived as their own best interests. 
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give students and hospitals the incentive to submit rank-orderings corre- 
sponding to their true preferences? 
Finally, we would like to be able to get some idea of which aspects of the 

market could be influenced by modifying its organization, while preserving 
those features that have led to high rates of voluntary participation. In this 
regard, we will want to know: 
• Can the defection of married couples be halted? 
• Can the distribution of interns to rural hospitals be changed? 

A preview of the proposed explanation 

When we see that, in the late 1940s, there is a lot of two-way telephone traffic 
between hospitals and students, who sometimes renege on previous verbal 
agreements, we can hypothesize that there is some systematic incentive to the 
parties involved to behave in this way. These incentives must be mutual: if 
students who called hospitals that had not extended them offers were uniformly 
told that no places were available, the practice would be unlikely to persist in 
the virulent form that was observed. Situations in which there are some 
students and hospitals who are not matched with each other, but who both 
prefer to be matched one to the other, will therefore be called "unstable". By 
the same token, if the matching suggested by the NIMP algorithm was unstable 
in this way - i . e ,  if there were students and hospitals that would prefer to be 
matched to one another rather than to accept the suggested ma tch - then  we 
would expect that these students and hospitals would continue to try to locate 
each other, and subsequently decline to accept the assignment suggested by the 
matching procedure. The very high rates of voluntary participation in the years 
foUowing the introduction of the NIMP procedure suggest this was not the 
case, and that the set of suggested assignments produced by the NIMP 
procedure taust be "stable", i.e. taust have the property that, if some student 
would prefer another hospital to his suggested assignment, then that hospital 
does not return the favor, but prefers the students assigned to it to the student 
in question. In Section 6 we will see that the NIMP assignments do indeed have 
this property. So our explanation of why the chaotic market conditions prior to 
1951 vanished following the introduction of the NIMP procedure will be that it 
introduced this kind of stability to the market. 

In a similar rein, we will observe that, as married couples became more 
common in this market, the procedures used to deal with them introduced 
instabilities once again, so that married couples could find hospitals that they 
preferred to their assigned matches and that were willing to offer them jobs. 
This will be the basis of our explanation of the defection of married couples 
from the system, which became so noticeable in the mid-1970s. We will also 
argue that the answers to our questions about how much freedom there is to 
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alter the organization of the market while maintaining high rates of voluntary 
participation also hinge on whether any given organization of the market leads 
to stable market outcomes. 

A complementary set of ideas, having to do with the strategies of individual 
agents in the market, will be used to explore the question of whether, as 
claimed, it is always in the interest of all parties to state their true preferences. 
We will see it is not, and that it cannot be for any procedure that produces 
stable outcomes. However, it is possible to arrange things so that it is always in 
the best interest of some of the parties to state their true preferences. The 
development of these ideas will involve us in a number of subtle issues, not the 
least of which is that we will be forced to reconsider and re-evaluate out 
conclusions about stability. If the students and hospitals may not be stating 
their true preferences when they submit rank-order lists for the NIMP al- 
gorithm, is there still reason to believe that the outcome is a stable set of 
assignments? When we look at equilibrium behavior we will see that there is. 

2.2. Bidder rings in auctions 

Strategic considerations of a somewhat different sort arise in the study of 
auction markets. The opportunities to profitably deviate from straightforward 
behavior are different for buyers and sellers. The sellers (and their agent the 
auctioneer) would like prices to be high, and the buyers would like prices to be 
low. The most commonly reported "strategic" behavior on the part of auc- 
tioneers or sellers is to introduce imaginary bids into the proceedings, which 
when practiced by auctioneers is called by a variety of colorful names, such as 
"pulling bids oft the chandelier". And the most commonly reported strategic 
behavior on the part of buyers is to form rings that agree to coordinate their 
bidding in an effort to keep down the price. Cassady (1967) reports that in 
antique and art auctions, the subsequent auction among members of the ring, 
called a "knockout" auction, serves both to determine which of the ring 
members will receive what the ring has bought, and what payments shall be 
made by ring members among themselves. (The Oxford English Dictionary 
cites nineteenth-century sources for this meaning of the word "knockout", 
suggesting that the organization of bidder rings in this way is not only a 
widespread phenomenon, but also not a new one.) Cassady remarks that buyer 
rings are common in many kinds of auctions all over the world, although in 
auctions of divisible commodities (such as fish in England, timber in the United 
States, and wool in Australia), rings commonly divide the purchases among 
themselves, rather than conducting a knockout auction. An unusually detailed 
description of the strategic behavior of rings and auctioneers in New Jersey 
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machine tool auctions is given by Graham and Marshall (1984). The analysis 
that follows will shed some light on the strategic opportunities facing the 
auctioneer and individual bidders, and the opportunities for bidders to organ- 
ize themselves into rings. 

3. Several simple models: Stability, and the polarization of interests in the core 

Most theoretical work on this topic traces its history to the papers of Gale and 
Shapley (1962), and Shapley and Shubik (1972). Gale and Shapley formulated 
a model of two-sided matching without sidepayments which they called the 
marriage problem, and Shapley and Shubik formulated a sidepayment game 
which they caUed the assignment garne. Each paper studied the core of the 
garne, and showed it is nonempty for any preferences of the agents. Curiously, 
although Gale and Shapley were unaware of the 1951 NIMP algorithm, they 
showed the core was nonempty by formulating what can be regarded as an 
equivalent algorithm [Roth (1984a)]. Both for the marriage problem and the 
assignment garne, these early papers demonstrated that, within the core, there 
is a surprising coincidence of interest among players on  the same side of the 
market, and a polarization of interest between the two sides of the market. 
These two models are introduced in Subsections 3.1 and 3.4. 

Both models involve one-to-one matching, i.e. each agent on one side of the 
market can be matched to at most one agent on the other side. Gale and 
Shapley also discussed the case of many-to-one matching, which they called the 
college admissions problem, but they treated this as essentially equivalent to 
the marriage problem. Although they considered that agents on one side of the 
market (e.g. colleges) could be matched to more than one agent on the other 
side (e.g. students), colleges' preferences were only considered to be defined 
over individual students, not over groups. For a number of years thereafter, 
the case of many-to-one matching was regarded as equivalent to one-to-one 
matching. 

That this is not the case was observed in Roth (1985a), where some 
erroneous conclusions that had been reached about many-to-one matching 
were considered, and where a model of many-to-one matching was reformu- 
lated as a well-defined garne. That model, presented in Subsection 3.2, is a 
straightforward generalization of the marriage model, in that colleges continue 
to have preferences over individual students, and their preferences over groups 
of students are constrained by their preferences over individuals in a simple 
way. The model of Subsection 3.3, in contrast, is a further generalization in 
which firms' preferences over groups of workers need not reflect an underlying 
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preference over  individuals. 4 We will see that while these generalizations and 
alternative formulations differ in important  ways from the simple m a r r i a g e  
problem,  all of these models also share a number  of their most  striking 
properties.  

As in any game-theoret ic  analysis, it will be important  to keep clearly in 
mind the "rules of the game"  by which agents may become matched to one 
another ,  as these will influence every aspect of the analysis. We will suppose 
the general rules are that any pair of agents on opposite sides of the marke t  
may  be matched to one another  if they both agree, and any agent is free to 
remain unmatched.  We will consider more  detailed descriptions of possible 
rules (concerning, for example,  how proposals are made,  or whether  a 
marr iage broker  plays a role) at various points in the discussion. 

3.1. The marriage model  

The two finite and disjoint sets of agents in the marriage model are the set 
M - -  {tal ,  m • , . . ,  mn} of men,  and W =  {wl, w 2 , . .  , Wm} of women.  Each 
man has preferences over  the women,  and each woman has preferences over  
the men. These preferences are transitive and complete,  and may be such that 
a man m, say, would prefer  to remain single rather than marry some woman w 
he does not care for. 

The preferences of each man m will be represented by an ordered list, P(m) ,  
on the set W U {m}. That  is, a man m ' s  preferences might be of the form 
P(m)  = Wl, w2, m,  w 3 , . . ,  Wm, indicating that his first choice is to be married 
to woman w~, his second choice is to be married to woman w2, and his third 
choice is to remain single. Similarly, each woman w in W has an ordered list of 
preferences,  P(w) ,  on the set M t3 {w}. (An agent may also be indifferent 
be tween several possible mates.)  We will usually describe an agent 's  prefer- 
ences by writing only the ordered set of people that the agent prefers to being 
single. Thus the preferences P(m)  described above will be abbreviated by 
P(m)  = w 1, w z. 

Denote  by P the set of preference lists P = { P ( m ~ ) , . . , P ( m n ) ,  
P ( w l ) , . . ,  P(Wm)}, one for each man and woman.  A specific marriage 
marke t  is denoted by the triple (M, W; P).  We write w >m W' to mean m 
prefers w to w', and w ~>m W' to mean m likes w at least as well as w'. Similarly 

4The model presented here is a special case of one formulated in Roth (1984c), which in turn 
builds upon the work of Kelso and Crawford (1982). (In each of these models we may refer to the 
agents as firms and workers, but in the marriage model we will also refer to them as men and 
women, in the reformulated college admissions model as colleges and students, and in the 
assignment model as buyers and sellers, in order to keep in mind the particular assumptions of 
those models.) 
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we write m > w m '  and m t> w m' .  Woman w is called acceptable to man m i f  he 
likes her at least as weil as remaining single, i.e. if w ~>m m. Analogously,  m is 
acceptable to w if m ~>w w. If  an individual is not indifferent between any two 
acceptable alternatives, he or she has strict preferences. 

An outcome of the marr iage marke t  is a set of marriages. In general,  not 
everyone  may be marr ied - some people  may remain single. (We will adopt  the 
convention that  a person who is not marr ied to someone  is self-matched.) 
Formally we have 

Definition 1. A matching i~ is a one-to-one correspondence f rom the set 
M U W onto itself of order two [that is,/~2(x) = x] such that i f /x(m)  ¢ m, then 
/x(m) is in W and i f /x(w) ¢ w, then ~(w)  is in M. We refer to /x(x)  as the mate 
of x. 

Note  that  /x2(x)= x means that if man m is matched to woman w [i.e. if 
B(rn)= w], then woman w is matched to man m [i.e. k~(w)= m]. The  
definition also requires that individuals who are not single be matched with 
agents of the opposite set - i.e. men are matched with women.  A matching will 
somet imes  be represented as a set of matched pairs, e.g. 

w4 wl w2 w3 (ms) 
m 1 m 2 m 3 m 4 m5 

has m I marr ied to 142 4 and m» remaining single, i.e. /x(ml) = w 4 and t x ( m s ) =  
m s, etc. 

We will assume that each agent 's  preferences over  alternative matchings 
correspond exactly to his (her) preferences over  bis own mates  at the two 
matchings. Thus man m, say, prefers matching/x to matching v if and only if he 
p r e f e r s /x (m)  to v(m). 

A match ing /x  is individually irrational if it contains a matched pair (m, w) 
who are not mutually acceptable,  and we say such a matching can be improved 
upon by an individual, since the rules allow any agent to remain single if he or 
she chooses. Similarly, a matching /x can be improved upon by some pair 
consisting of a man m and woman w if m and w are not matched to one 
another  at tx, but prefer  each other to their assignments at /x,  i.e. if w >m /x(m) 
and m >m/x(w) .  The motivat ion of this terminology should be clear. Suppose 
such a matching/x  should be under  consideration - e.g. suppose no agreements  
have yet been  reached,  but courtships are under way that if successfully 
concluded will result in the matching/x.  This state of affairs would be unstable 
in the sense that man m and woman w would have good reason to disrupt it in 
order  to marry  each other,  and the rules of  the game allow them to do so. This 
leads to the following definition. 
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Definition 2. A matching /x is stable if it cannot be improved upon by any 
individual or any pair of agents. 

Note that unstable matchings are those dominated via coalitions consisting of 
individuals or pairs, and so unstable matchings are not in the core of the garne. 
But the core is the set of matchings undominated by coalitions of any size, and 
so the set of stable matchings might strictly contain the core. But for this model 
of one-to-one matching, that is not the case. 

Theorem 1. The core of the marriage market equals the set of stable matchings. 

Proof. I f /x  is not in the core, then/x  is dominated by some matching/x '  via a 
coalition A. I f /x  is not individually irrational, this implies/x '(w) E M for all w 
in A, since every woman w in A prefers /x ' (w)  to /x(w) ,  and A is effective for 
/x'. Let  w be in A and m --/x '(w).  Then m prefers w to /x(m) and the pair 
(m, w) can improve upon tx, so /x is unstable. [] 

We will continue to speak of stable (rather than core) matchings since in the 
more general models of many-to-one matching that follow, the set of stable 
matchings will be a subset of the core. For the marriage model,  Gale and 
Shapley proved the following. 

Theorem 2 [Gale and Shapley (1962)]. The set of stable matchings is always 
nonempty. And when all men and women have strict preferences it contains an 
M-optimal stable matching, which all the men like at least as well as every other 
stable matching, and, similarly, a W-optimal stable matching. 

We will derer discussion of the proof  until the more general model of 
Subsection 3.3. 5 We turn next to a many-to-one generalization of the marriage 
model in which it continues to be meaningful to speak of firms as having 
preferences over individual workers. 

3.2. The reformulated college admissions model 

There  are two finite and disjoint sets, ~ = { C ~ , . . .  , Cn} and S = { s l , . . .  , sm}, 
of colleges and students, respectively. Each student has preferences over the 

5Roth and Vande Vate (1990) construct another kind of existence proof, based on the 
observation that a sequence of matchings generated by allowing randomly chosen blocking pairs to 
form must converge with probability one to a stable matching. (The difficulty lies in the fact that 
cycles of unstable matching may arise.) 
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colleges, and each college has preferences over individual students, exactly as 
in the marriage model. 

The first difference from the marriage model is that, associated with each 
college C is a positive integer qc called its quota, which indicates the maximum 
number of positions it may fill. (That all qc positions are identical is reflected in 
the fact that students' preferences are over colleges-  they do not distinguish 
between positions.) 

An outcome is a matching of students to colleges, such that each student is 
matched to at most one college, and each college is matched to at most its 
quota of students. A student who is not matched to any college will be 
"matched to himself" as in the marriage model, and a college that has some 
number of unfilled positions will be matched to itself in each of those positions. 
A matching is bilateral, in the sense that a student is enrolled at a given college 
if and only if the college enrolls that student. To give a formal definition, first 
define, for any set X, an unorderedfamily of  elements of X to be a colleetion of 
elements, not necessarily distinct. So a given element of X may appear more 
than once in an unordered family of elements of X. 

Definition 3. A matching tz is a function from the set ~ U S into the set of 
unordered families of elements of ~ t_J S such that: 

(1) [/x(s)] = 1 for every student s and/x(s)  = s i f / x ( s ) ~ ~ ;  
(2) I~(c)l = qc for every college C, and if the number of students in/~(C),  

say r, is less than qc, t hen /x (C)  contains qc - r copies of C; 
(3) ~(s) = C if and only if s is in /z (C) .  

So/x(s l )  = C denotes that student s 1 is enrolled at college C at the matching 
B, and /z (C)  = {Sl, s3, C, C} denotes that college C, with quota qc = 4, enroUs 
students s~ and s 3 and has two positions unfilled. 

At this point in our description of the marriage model we had only to say 
that each agent's preferences over alternative matchings correspond exactly to 
his preferences over his own assignments at those matchings. We can now say 
this about students, since at each matching a student is either unmatched or 
matched to a college, and we have already described student's preferences over 
colleges. But, while we have described colleges' preferences over students, 
each college with a quota greater than 1 taust be able to compare groups of 
students in order to compare alternative matchings, and we have yet to 
describe the preferences of colleges over groups. (Until we have described 
colleges' preferences over matchings, the model will not be a well-defined 
garne.) 

The assumption we will make connecting colleges' preferences over groups 
of students to their preferences over individual students is one insuring that, 
for example, i f /x(C) assigns college C its third and fourth choice students, and 
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/x'(C) assigns it its second and fourth choice students, then college C prefers 
B'(C) to ,ix(C). Specifically, let P#(C) denote the preference relation of 
college C over all assignments /z(C) it could receive at some matching/z. A 
college C's preferences P#(C) will be called responsive to its preferences P(C) 
over individual students if, for any two assignments that differ in only one 
student, it prefers the assignment containing the more preferred student. That 
is, we assume colleges' preferences are responsive, as follows. 

Definition 4. The preference relation P#(C) over sets of students is responsive 
[to the preferences P(C) over individual students] if, whenever /x ' (C)= 
/x(C) U {sk}\{o- } for o- in/x(C) and s~ not in/x(C),  then C prefers/x'(C) to 
~(C)  [under P#(C)] if and only if C prefers s~ to o- [under P(C)]. 

We will write /x ' (C)>c /x(C)  to indicate that college C prefers /x'(C) to 
/z(C) aecording to its preferences P#(C), and/x ' (C) ~>c/x(C) to indicate that 
C likes tz'(C) at least as well as tx(C), where the fact that/~'(C) and ~(C) are 
not singletons will make clear that we are dealing with the preferences P~(C), 
as distinct from statements about C's preferences over individual students. 
Note that C may be indifferent between distinct assignments/x(C) and/x ' (C) 
even if C has strict preferences over individual students. 

Note also that different responsive preference orderings P#(C) exist for any 
preference P(C), since, for example, responsiveness does not specify whether a 
college prefers to be assigned its first and fourth choice students instead of its 
second and third choice students. However, the preference ordering P(C) over 
individual students can be derived from P#(C) by considering a college C's 
preferences over assignments /x(C) containing no more than a single student 
(and qc-  1 copies of C). The assumption that colleges have responsive 
preferences is essentially no more than the assumption that their preferences 
for sets of students are related to their ranking of individual students in a 
natural way. (Of course the assumption that colleges have preferences over 
individual students is nontrivial, and it is this assumption which is relaxed in 
Subseetion 3.3.) 

Some of the results that follow will depend on the assumption that agents 
have strict preferences. Surprisingly, we will only need to assume that colleges 
have strict preferences over individuals: it will not be necessary to assume they 
have strict preferences over groups of students. The reasons for this will not 
become completely clear until Corollary 17, which says that when colleges have 
strict preferences over individuals, they will not be indifferent between any 
groups of students assigned to them at stable matchings, even though they may 
be indifferent between other groups of students. 

A matehing tz is individually irrational if ~ ( s )=  C for some student s and 
college C such that either the student is unacceptable to the college or the 



Ch. 16: Two-sided Matching 497 

college is unacceptable to the student. We will say the unhappy agent can 
i m p r o v e  u p o n  such a matching. Similarly, a college C and student s can 
improve upon a matching ~ if they are not matched to one another at/x, but 
would both prefer to be matched to one another than to (one of) their present 
assignments. That is, the pair (C, s) can improve upon /~ if/x(s) # C and if 
C >« ~(s) and s >c  ~r for some o- in ~(C). [Note that o- may equal either some 
student s' in tx(C), or, if one or more of college C's positions is unfilled at 
/z(C), o- may equal C.] It should be clear that matchings blocked in this way by 
an individual or by a pair of agents are unstable in the sense discussed for the 
marriage model, since there are agents with both the incentive and the power 
to disrupt such matchings. So, as in the marriage model, we now define stable 
matchings - although we will immediately have to ask whether the set of stable 
matchings defined this way can serve the same roie as in the marriage model. 

Definition 5. A matching /x is stable if it cannot be improved upon by any 
individual agent or any college-student pair. 

It is not obvious that this definition will still be adequate, since we now might 
need to consider coalitions consisting of colleges and several students (all of 
whom might be able to enroll simultaneously at the college), or even coalitions 
consisting of multiple colleges and students. However, when preferences are 
responsive, nothing is lost by concentrating on simple college-students pairs. 
The set of stable matchings is equal to the core defined by w e a k  domination 
[Roth (1985b)]. 6 So it is a subset of the core. To see why an outcome which is 
not strictly dominated might nevertheless be unstable, suppose college C with 
quota 2 is the first choice of students sl, s2, and s3, and has preferences 
P ( C )  = s 1, s 2, s 3. Then a matching with ~(C) = {sl, s3} can be improved upon 
by (C, sz), but the resulting match, ~ ' ( C ) =  {s a, s2},  involves a coalition of 
three agents, {C, s t, s2}, and sl is indifferent between tx and ~' ,  since he is 
matched to C at both matchings. 

We will derer until the next section the proof that the set of stable matchings 
is always nonempty, and contains optimal stable matchings for each side of the 
market. But note that if the preferences of the colleges for groups of students 
are not responsive (to some set of preferences over individual students), the 
core may be empty. 

6A matching /z dominates  another  matching /x' if there  is a coalition A of agents which is 
effective fo r /x  - i.e. whose members  can achieve their parts of  tx by matching among  themselves,  
wi thout  the  participation of agents not  in A - and such that all members  of A prefer  their matches  
unde r /x  to those under /~  '. In contrast ,  a match ing/x  weakly dominates  another  match ing /~ '  if only 
some  of the  members  of  the effective coalition A prefer /x  to IX', so long as no other  members  of  A 
have  the  reverse preference.  The  core is the set of matchings that are not  dominated ,  and the  core 
defined by weak dominat ion is the set of  matchings that are not  (even) weakly dominated.  
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3.3. Complex preferences over groups 

Let  the two sets of agents be n firms o~= { F 1 , . .  ,Fn},  and m workers 
W =  { w l , . . .  , Wm}. For simplicity assume all firms have the same quota, equal 
to m, so each firm could in principle hire all the workers. This will allow us to 
describe matchings a little more simply, since it will not be necessary to keep 
track of each firm's quota by saying, for example, that a firm that does not 
employ any workers is matched to m copies of itself. 

Definition 6. A matching ix is a function from the set F U W into the set of all 
subsets of ~- U W such that: 

(1) ]/~(w)l = 1 for every worker w and/x(w)  = w if /x(w)~/o~;  
(2) I~(F)I ~ m for every firm F [ / x ( F ) =  0 if F is not matched to any 

workers]; 
(3) /x(w) = F if and only if w is i n /x (F ) .  

Workers have preferences over individual firms, just as in the college 
admissions problem, and firms have preferences over subsets of W. For  
simplicity assume all preferences are strict. So a worker w's preferences can be 
represented by a list of acceptable firms, e.g. P(w) = Fe, Fj, Fk, w; and a firm's 
preferences by a list of acceptable subsets of workers, e.g. P # ( F ) =  
S I , $ 2 , . . . ,  S~,0; where each S i is a subset of W. Each agent compares 
different matchings by comparing his (its) own assignment at those matchings. 
The preferences of all the agents will be denoted by P = (P#(F1) , . . . ,  P#(Fn) , 
P ( w l ) , . . ,  P(wm) ). Keep in mind that firms' preferences are over sets of 
employees. 

Faced with a set S of workers, each firm F can determine which subset of S it 
would most prefer to hire. Call this F's choice from S, and denote it by 
ChF(S ). That  is, for any subset S of W, F's choice set is Che(S ) = S' such that 
S' is contained in S and S' >F S" for all S" contained in S. Since preferences are 
strict, there is always a single set S' that F most prefers to hire, out of any set S 
of available workers. (Of  course S' could  equal S, or it could be empty.) 

We will assume that firms regard workers as substitutes rather than comple- 
ments, as follows. 7 

Definition 7. A firm F's  preferences over sets of workers has the property of 
substitutability if, for any set S that contains workers w and w', if w is in 
Che(S) ,  then w is in C h F ( S -  w').  

That  is, if F has "substitutable" preferences, then if its preferred set of 

7This kind of condition on preferences was proposed by Kelso and Crawford (1982). 
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employees from S includes w, so will its preferred set of employees ffom any 
subset of S that still includes w. [By repeated application, if w ~ ChF(S), then 
for any S' contained in S with w C S', w E ChF(S'). ] This is the sense in which 
the firm regards worker w and the other workers in ChF(S ) more as substitutes 
than cornplernents: it continues to want to ernploy w even if sorne of the other 
workers become unavailable. 

So substitutability rules out the possibility that firms regard workers as 
cornplements, as might be the case of an American football team, for exarnple, 
that wanted to employ a player who could throw long passes and one who 
could catch them, but if only one of them were available would prefer to hire a 
different player entirely. Note that responsive preferences have the sub- 
stitutability property: in the college admissions model, the choice set ffom any 
set of students of a college with quota q is either the q most preferred 
aceeptable students in the set, or all the acceptable students in the set, 
whichever is the smaller number. 

A matching /~ can be improved upon by an individual worker w if 
w >w/z(w), and by an individual firm F i f  ~(F)  ~ ChF(/X(F)). Note that/x may 
be improved upon by an individual firm F without being individually irrational, 
since it might still be that /~(F)>F 0. This definition reflects the assumption 
that workers' preferences are over firms (and not over coworkers), so that F 
may fire some workers in/~(F) if it chooses, without affecting other members 
of/x(F).  Sirnilarly, ~ can be improved upon by a worker-firm pair (w, F) if w 
and F are not matched at/x but would both prefer if F hired w: i.e. if/~(w) ~ F 
and if F >  w ~(w) and w Œ ChF(/Z(F ) U w). If the firms have responsive 
preferences this is equivalent to the definition we used for the college admis- 
sions model. We define stable matchings the sarne way also. 

Definition 8. A matching/z is stable if it cannot be improved by any individual 
agent or any worker-firrn pair. 

Since "improvement" is now defined in terms of firm's preferences over sets 
of workers, this definition of stability has a slightly different meaning than the 
same definition for the college admissions model. Nevertheless, it is still a 
definition of pairwise stability, since the largest coalitions it considers are 
worker-firm pairs. So we still have to consider whether something is missed by 
not considering larger coalitions. It turns out that pairwise stability is still 
sufficient: as when preferences äre responsive, we can show that, for any 
preferences P, the set S(P) of stable matchings equals the core defined by weak 
domination, Cw(P), and is always nonempty. 

Theorem 3. When firms have substitutable preferences (and all preferences are 
stri«t) S(P)=- Cw(P ). 
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Theorem 4. When firms have substitutable preferences, the set of stable 
matchings is always nonempty. 

The proof of Theorem 4 will be by means of the following algorithm: 

In Step 1, each firm proposes to its most preferred set of workers, and each 
worker rejects all but the most preferred acceptable firm that proposes to it. In 
each subsequent step, each firm which received one or more rejections at the 
previous step proposes to its most preferred set of workers that includes all of 
those workers who it previously proposed to and have not yet rejected it, but 
does not include any workers who have previously rejected it. Each worker 
rejects all but the most preferred acceptable firm that has proposed so far. The 
algorithm stops after any step in which there are no rejections, at which point 
each firm is matched to the set of workers to which it has issued proposals that 
have not been rejected. 

Proof  of  Theorem 4. The matching /x produced by the above algorithm is 
stable. The key observation is that, because firms have substitutable prefer- 
ences, no firm ever regrets that it must continue to offer employment at 
subsequent steps of the algorithm to workers who have not rejected its earlier 
offers. That is, at every step in the algorithm each firm is proposing to its most 
preferred set of workers that does not contain any workers who have previous- 
ly rejected it. So consider a firm F and a worker w not matched to F at/z such 
that w C ChF(/z(F ) U w). At some step of the algorithm, F proposed to w and 
was subsequently rejected, so w prefers p~(w) to F, and/z is not improvable by 
the pair (w, F). Since w and F were arbitrary, and since/x is not improvable by 
any individual, /~ is stable. [] 

We call this algorithm a "deferred acceptance" procedure, to emphasize that 
workers are able to hold the best offer they have received, without accepting it 
outright. For the moment we present this algorithm only to show that stable 
matchings always exist. That is, although the algorithm is presented as if at 
each step the firms and workers take certain actions, we will not consider until 
Section 5 whether they would be weil advised to take those actions, and 
consequently whether it is reasonable for us to expect that they would act as 
described, if the rules for making and accepting proposals were as in the 
algorithm. 

This result also establishes the nonemptiness of the set of stable matchings 
for the marriage and college admissions models, which are special cases of the 
present model. The algorithm and proof presented here are simple generaliza- 
tions of those presented by Gale and Shapley (1962). And, as in the marriage 
and college admissions models, we can further note the surprising fact that the 
set of stable matchings contains elements of the following sort. 
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Definition 9. A stable matching is firm optimal if every firm likes it at least as 
well as any other stable matching. A stable matching is worker optimal if every 
worker likes it at least as well as any other stable matching. 

Theorem 5 [Kelso and Crawford (1982)]. When firms have substitutable 
preferences, and preferences are strict, the deferred acceptance algorithm with 
firms proposing produces a firm-optimal stable matching. 

Theorem 5 can be proved by showing that in the deferred acceptance algorithm 
with firms proposing, no firm is ever rejected by an achievable worker, where a 
worker w is said to be achievable for a firm F if there is some stable matching p~ 
at which/x(w) = F. 

Since, unlike the marriage model and like the college admissions model, this 
model is not symmetric between firms and workers, it is not immediately 
apparent that a deferred acceptance algorithm with workers proposing will 
have an analogous result, but it does. In the algorithm with workers proposing, 
workers propose to firms in order of preference, and a firm rejects at any step 
all those workers who are not in the firm's choice set from those proposals it 
has not yet rejected. We can state the following result. 

Theorem 6 [Roth (1984c)]. When firms have substitutable preferences, and 
preferences are strict, the deferred acceptance algorithm with workers proposing 
produces a worker-optimal stable matching. 

The key observation for the proof is that, because firms have substitutable 
preferences, no firm ever regrets that it rejected a worker at an earlier step, 
when it sees who proposed at the current step. One can then show that no 
worker is ever rejected by an achievable firm. 

These results cannot be generalized in a strightforward way to the symmetric 
case of many-to-many matching in which workers may take multiple jobs, even 
when both sides have substitutable, or even responsive, preferences. 8 The 
reason is not that the analogously defined pairwise stable matchings do not 
have similar properties in such a model, but that pairwise stable matchings are 
no longer always in the core. 

Before moving on, an example will help clarify things. 

Example 7. An example in which firms have substitutable (but nonrespon- 
sive) preferences. There are two firms and three workers, with preferences as 
follows. 

8See Blair (1988) and Roth (1991). 
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Pe(F1) = {w~, W2} , {W1, W3} , {W2, W3} , {W3} , {W2} , {W1} , 

P#(F2) = {w3} , 

e (w , )  = F~, F2, 

P(w2) = F1, F~, 

P(w3) : F1, F2 . 

Note that 

F, F2 
= { w , , w 2 )  {w3} 

is the unique stable matching. 
If we look just at single workers, we see that F 1 prefers w3 to w 2 to w 1. But 

P#(FI)  is not responsive to these preferences over single workers, since 
{Wl, w2} >F1 {W~, W3} even though w3 alone is preferred to w 2 alone. But the 
preferences are substitutable. Recall the earlier discussion of why the college 
admissions model needed to be reformulated to include colleges' preferences 
over groups, and observe once again that the class of many-to-orte matching 
problems, of which this is an example, would not be well-defined games if we 
specified only the preferences of firms over individuals. Indeed, if we defined 
stability only in terms of preferences over individuals, the matching/z would be 
unstable with respect to the pair (F~, w3) since w 3 prefers F 1 to F 2 and F~ 
prefers w 3 (by himself) to w2 (by himself). But /x is not unstable in this 
example because F 1 does not prefer {wl, w3} to {w1, w2}. [] 

3.4. The assignment model 

In this model money plays an explicit role. There are two finite disjoint sets of 
players P and Q, containing m and n players, respectively. Members of P will 
sometimes be called P-agents and members of Q called Q-agents, and the 
letters i and j will be reserved for P and Q agents, respectively. Associated with 
each possible partnership (i, j) E P × Q is a non-negative real number aij. A 
garne in coalitional function form with sidepayments is determined by 
(P, Q, a), with the numbers aij being equal to the worth of the coalitions {i, j} 
consisting of one P agent and one Q agent. The worth of larger coalitions is 
determined entirely by the worth of the pairwise combinations that the 
coalition members can form. That is, the coalitional function v is given by 

D(S)  = Œi] if S = {i, j} for i E P  and j E  Q; 
v(S)  = 0 if S contains only P agents or only Q agents; and 
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v(S) = max(v( i l ,  Jl) + v(i2, J2) + " "  + v(ik, Jk)) for arbitrary coalitions S, 
with the max imum to be taken over  all arrangements  of 2k distinct players 
ia, i 2 , . . . ,  i k belonging to S e and Ja, J2, •. - ,  Jk belonging to S o, where Se and 
SQ denote  the sets of P and Q agents in S (i.e. the intersection of the coalition 
S with P and with Q) ,  respectively. 

So the rules of the game are that any pair of agents (i, j )  C P x Q can 
together  obtain aij, and any larger coalition is valuable only insofar as it can 
organize itself into such pairs. The members  of any coalition may divide among 
themselves their collective worth in any way they like. An imputat ion of this 
game is thus a non-negative vector (u, v) in R m x  R n such that Ei~ P u i + 
2j~Q vj = v(P U Q). The easiest way to interpret  this is to take the quantities 
% to be amounts  of money,  and to assume that agents '  preferences are 
concerned only with their monetary  payoffs. 

We might think of P as a set of potential  buyers of some objects offered for 
sale by the set Q of potential  sellers, and each seller owns and each buyer  
wants exactly one indivisible object.  If  each seller j has a reservation price cj, 
and each buyer  i has a reservation price r~j for object  j, we may take «ij to be 
the potential  gains f rom trade between i and j; that is, % = max{0, ri~ - cj}. If  
buyer  i buys object  j f rom seller j at a price p ,  and if no other monetary  
transfers are made,  the utilities are u~ = r i j - p  and v r = p -  cj. So, when no 
other  mone ta ry  transfers are made,  u~ + vj = a~j when i buys f rom j. But note 
that  transfers be tween agents are not restricted to those between buyers and 
sellers; e.g. buyers may make  transfers among themselves as in the bidder rings 
of Subsection 2.2. 9 

We can also think of the P and Q agents as being firms and workers,  etc. As 
in the marr iage model ,  we look here at the simple case of one-to-one matching, 
with firms constrained to hire at most  one worker.  1° In such a case, the o~~~'s 
represent  some measure  of the joint productivity of the firm and worker ,  while 
transfers between a matched firm and worker  represent  salary. Transfers can 
also take place between workers (as when workers form a labor union in which 
the dues of employed members  help pay unemployment  benefits to un- 
employed members) ,  or between firms. 

The  maximization problem to determine v(S) for a given matrix c~ is called 
an assignment problem, so garnes of this form are called assignment garnes. We 
will be particularly interested in the coalition P U Q, since v(P u Q) is the 

9A model in which it is assumed that transfers cannot be made between agents on the same side 
of the market is considered by Demange and Gale (1985), who show that many of the results 
presented here for other models can be obtained in a model of this kind allowing rather general 
utility functions. 

1°The case of many-to-one matching has some important differences, analogous to those found 
between the marriage and coUege admissions models: see Sotomayor (1988). 
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maximum total payoff available to the players, and hence determines the 
Pareto set and the set of imputations. 

Consider the following linear programming (LP) problem PI" 

maximize Z aq " Xij 
t , ]  

subject to (a) ~ xij <~ 1, 
i 

(b) ~ Xij ~ 1, 
Y 

(c) xij t> O. 

We may interpret xij as, for example, the probability that a partnership (i, j)  
will form. Then the linear inequalities of type (a), one for each j in Q, say that 
the probability that j will be matched to some i cannot exceed 1. The 
inequalities of form (b), one for each i in P, say the same about the probability 
that i will be matched. 

It can be shown [see Dantzig (1963, p. 318)] that there exists a solution of 
this LP problem which involves only values of zero and one. [The extreme 
points of systems of linear inequalities of the form (a), (b), and (c) have integer 
values of xi» i.e. each x« equals 0 or 1.] Thus the fractions artificially 
introduced in the LP formulation disappear in the solution and the (continu- 
ous) LP problem is equivalent to the (discrete) assignment problem for the 
coalition of all players, that is, the determination of v(P U Q). Then v(P U 
Q) = E «~j. xij, where x is an optimal solution of the LP problem. 

Definition 10. A feasible assignment for (P, Q, a) is a matrix x = (xij) (of 
zeros and ones) that satisfies (a), (b) and (c) above. An optimal assignment is a 

! 
feasible assignment x such that Ei, j aq • xq/> Eg4 aij • xij, for all feasible assign- 
ments x'. 

So if x is a feasible assignment, xq = 1 if i and j form a partnership and xq = 0 
otherwise. If Ej xq = 0, then i is unassigned, and if Z i xij = O, then j is likewise 
unassigned. A feasible assignment x corresponds exactly to a matching/x as in 
Definition 1, with /x(i) = j if and only if xi~ = 1. 

Definition 11. The pair of vectors (u, v), u E R m and v E R" is called a 
feasible payo f f  for (P, Q, a) if there is a feasible assignment x such that 

E l~ i ~- E Uj : E Œij'Xi] • 
i~P i@Q i~P,]~Q 
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In this case we say (u, v) and x are compatible with each other, and we call 
((u, v); x) a feasible outcome. Note again that a feasible payoff vector may 
involve monetary transfers between agents who are not assigned to one 
another. 

As in the earlier models, the key notion is that of stability. 

Definition 12. A feasible outcome ((u, v); x) is stable [or the payoff (u, v) 
with an assignment x is stable] if 

(i) ui>-O, vj>~O, 
(ii) u i + vj >~ o~~j for all (i, j )  E P x Q. 

Condition (i) (individual rationality) reflects that a player always has the 
option of remaining unmatched (recall that v ( i ) =  v ( j ) =  0 for all individual 
agents i and j) .  Condition (ii) requires that the outcome cannot be improved 
by any pair: if (ii) is not satisfied for some agents i and j, then it would pay 
them to break up their present partnership(s) (either with one another or with 
other agents) and form a new partnership together, because this could give 
them each a higher payoff. 

From the definition of feasibility and stability it follows that 

Lemma 8. Let ((u, v), x) be a stable outcome for  (P, Q, a). Then 
(i) U i q- Uj = Œij for  all pairs (i, j )  such that xq = 1; 

(ii) u i = 0 for  all unassigned i, and v] = 0 for all unassigned ] at x. 

The lemma implies that at a stable outcome, the only monetary transfers that 
occur are between P and Q agents who are matched to each other. (Note that 
this is an implication of stability, not an assumption of the model.) 

Now consider the LP problem PF that is the dual of P1, i.e. the LP problem 
of finding a pair of vectors (u, v), u E R m, v E R n, that minimizes the sum 

Z Ui q- 2 Oj 
iEP iEQ 

subject,  for all i E P and j ~ Q, to 
(a*) ui~>0, v j > 0 ,  
(b*) u i + v] >! Œi]" 
Because we know that P1 has a solution, we know also that PF must have an 

optimal solution. A fundamental duality theorem [see Dantzig (1963, p. 129)] 
asserts that the objective functions of these dual LPs must attain the same 
value. That is, if x is an optimal assignment and (u, v) is a solution of PF, we 
have that 

2 "i "~ Z U] = 20 l i j  "Xi] = u(P U Q) .  (1) 
iEP iEQ PxQ 
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This means that ((u, v), x) is a feasible outcome. Moreover,  ((u, v), x) is a 
stable outcome for (P, Q, c~), since (a*) ensures individual rationality and 
ui + vj ~> o~ij for all (i, j )  E P x Q by (b*). It follows, by the definition of v(S), 
that for any coalition S = Sp U SQ, where S e is contained in P and S o in Q, 

ui + Y~ vj i> v ( s ) .  (2) 
i~Sp i~SQ 

But (1) and (2) are exactly how the core of the game is determined: (1) 
ensures the feasibility of (u, v) and (2) ensures its nonimprovability by any 
coalition. Conversely, any payoff vector in the core, i.e. satisfying (1) and (2), 
satisfies the conditions for a solution to PF. Hence we have shown 

Theorem 9 [Shapley and Shubik (1972)]. Let (P, Q, a) be an assignment 
garne. Then 

(a) the set of  stable outcomes and the core of  (P, Q, a) are the same; 
(b) the core of(P,  Q, a) is the (nonempty) set of  solutions of the dual LP of  

the corresponding assignment problem. 

The following two corollaries make clear why, in contrast to the discrete 
models considered earlier, we can concentrate here on the payoffs to the 
agents rather than on the underlying assignment (matching). u 

Corollary 10. I f  x is an optimal assignment, then it is compatible with any 
stable payoff  (u, v). 

Coroilary 11. I f  ((u,v), x) is a stable outcome, then x is an optimal assignment. 

In this model also there are optimal stable outcomes for each side of the 
market.  Note  that in view of Corollary 10, the difference between different 
stable outcomes in this model has to do only with the payments to each player, 
not to whom players are matched. 

Theorem 12 [Shapley and Shubik (1972)]. There is a P-optimal stable payoff  
(ü, v__), with the property that for any stable payoff  (u, v), ü >1 u and v__ <~ v; there 
is a Q-optimal stable payoff  (u, E) with symmetrical properties. 

11Becker (1981), who uses the assignment model to study marriage and household economics, 
makes use of the fact that stable outcomes all correspond to optimal assignments, and that the 
optimal assignment is typically unique, to study which men are matched to which women (e.g. if 
high wage earners marry good cooks), for different assumptions about how the assignment matrix 
is derived. 
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4. The structure of the set of stable matchings 

In each of the models  we have described, the set of stable matchings is 
nonempty .  12 In fact, for each side of the market ,  there exists an optimal stable 
matching that all agents on that side of the market  like at least as well as any 
other  stable matching. 13 That  such side-optimal stable matchings always exist is 
more  than a little surprising in modeis in which firms compete  with one another  
for good workers ,  and workers compete  with one another  for desirable jobs. It  
turns out to be only the tip of the iceberg, in terms of the welfare comparisons 
which can be made between different stable matchings. In this section we 
describe some of these. 

One  question is whether  the optimal stable matching for agents on one side 
of  the marke t  is Pareto optimal for them as weil. This turns out to be one of 
the respects in which many-to-one matching is not equivalent to the special 
case of  one- to-one matching. In the marriage model the optimal stable 
matching for each side of the marke t  is weakly Pareto optimal for that side. 
(Since the marke t  is symmetric between men and women,  we consider here 
only the man-opt imal  stable matching txM. ) 

Theorem 13 [Roth (1982a)]. Weak Pareto optimality for the men. In the 
marriage model there is no individually rational matching /X (stable or not) such 
that Ix >~m tXM for all m in M. 

However ,  the following example shows that this result cannot be 
strengthened to strong Pareto optimality. 

Example  14 [Roth (1982a)]. Let  M = {ml,  m2, m3} and W = {WI» W2, W3} 
with preferences over  the acceptable people  given by: 

P(ma)  = wŒ, Wl, W3; 

P(m2) = wl, w2, w3; 

P(m3) = Wl, w2, w3 ; 

Then 

W 1 W 2 W 3 

BM = m 1 m3 m2 

P(wt)  = ma, m2, m3 ; 

P(w2) = m3, ma, m2 ; 

P(w3) = ml ,  rn2, m 3 . 

12This nonemptiness is related to the two-sidedness of the models: one-sided and three-sided 
models may have empty cores. 

13For the discrete markets this is only the case when preferences are strict: when they are not, it 
is easy to see that although the set of stable matchings remains nonempty, it may not contain any 
such side-optimal matchings. 
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is the man-optimal stable matching. Nevertheless, 

W 1 W 2 W 3 
/ x=  

m3 e l  m2 

leaves m 2 no worse than under/~M, but benefits m a and m 3. So there may in 
general be matchings that all men like at least as weil as the M-optimal stable 
matching, and that some men prefer. We shall return to this fact in our 
discussion of the strategic options available to coalitions of men. 

Theorem 13 cannot be generalized to both sides of the college admissions 
model. We can state the following result instead. 

Theorem 15 [Roth (1985a)]. When the preferences over individuals are strict, 
the student-optimal stable matching is weakly Pareto optimal for the students, 
but the college-optimal stable matching need not be eren weakly Pareto optimal 
for the colleges. 

However, as we have already seen through the existence of optimal stable 
matchings for each side of the market,  there are some important properties 
concerning welfare comparisons within the set of stable matchings that hold 
both for one-to-one and many-to-one matching. There are also welfare com- 
parisons that can be made in the case of many-to-one matching that have no 
counterpart in the special case of one-to-one matching. 

We first consider some comparisons of this latter sort, for the college 
admissions model, concerning how well a given college might do at different 
stable matchings. Theorem 16 says that for every pair of stable matchings, each 
college will prefer every student who is assigned to it at one of the two 
matchings to every student who is assigned to it in the second matching but not 
the frst.  An immediate corollary is that in a college admissions problem in 
which all preferences over individuals are strict (and responsive), no college 
will be indifferent between any two (different) groups of students that it enrolls 
at stable matchings. The manner in which these results are mathematically 
unusual can be understood by noting that this corollary, for example, can be 
rephrased to say that if a given matching is stable (and hence in the core), and 
if some college is indifferent between the entering class it is assigned at that 
matching and a different entering class that it is assigned at a different 
matching, then the second matching is not in the core. We thus have a way of 
concluding that an outcome is not in the core, based on the direct examination 
of the preferences of only one agent (the college). Since the definition of the 
core involves preferences of coalitions of agents, this is rather unusual. 
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Theorem 16 [Roth and Sotomayor (1989)]. Let preferences over individuals 
be strict, and let tx and tz' be stable matchings for a college admissions problem 
(S, ~, P)). I f  ~(C) > c ~ '(C) for some college C, then s > c s' for all s E tz(C) 
and s' @/x'(C) - / x (C) .  That is, C prefers every student in its entering class at Ix 
to every student who is in its entering class a t /z '  but not at I~. 

Given that colleges have responsive preferences, the following corollary is 
immediate. 

Corollary 17 [Roth and Sotomayor (1989)]. Ifcolleges and students have strict 
preferences over individuals, then colleges have strict preferences over those 
groups of  students that they may be assigned at stable matchings. That is, if tx 
and Ix' are stable matchings, then a college C is indifferent between ix(C) and 
tx'(C) only if Ix(C) = ~'(C). 

And since the set of stable matchings depends only on the preferences over 
individuals, and not on the preferences over groups (so long as these are 
responsive to the preferences over individuals) the following result is also 
immediate. 

Corollary 18 [Roth and Sotomayor (1989)]. Consider a college C with prefer- 
ences P( C) over individual students, and let P#(C) and P*(C) be preferences 
over groups of  students that are responsive to P( C) (but are otherwise arbitrary). 
Then for every pair of  stable matchings tz and tz', Iz(C) is preferred to tx'(C) 
under the preferences P~(C) if and only if Ix(C) is preferred to tx'(C) under 
P*(C). 

An example will illustrate Theorem 16 and Corollaries 17 and 18. 

Let the preferences over individuals be given by 

P(«), = C~, C 1 ; P(C)I 

P(s)2 = C2, C», C~ ; P(C)2 

P(«)3 = C3, Ca ; P(C)3 

P(S)4 =- 64, C 1 ; P(C)4 

P(s)» = C~, C2; P(C)» 

P(s)6 = C1, C3 ; 

P(s)7 = C1, C3, C4, 

~- SI~ $2~ $3~ $4~ $5~ $6~ S 7 

= S 5, $2 ; 

$6~ $7~ S 3 

-= $7~ S 4 ; 

$2~ S 1 ; 
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and let the quotas be q q  = 3, qcj = 1 for j" = 2 , . . . ,  5. Then the set of stable 
outcomes is {/xl,/xz,/~3,/z4} where 

C 1 C 2 C 3 C 4 C 5 

]'~1 ~ s1s3s4  $5 $6 $7 $2 

~.L 2 ~ $3s4s  5 s 2 s 6 s 7 s 1 

~-¢3 ~- $3s5s6 $2 $7 $4 s1 

i,,~ 4 ~- $5s6s7 s 2 s 3 s 4 s 1 

Note that these are the only stable matchings, and 

~1(cl) >« ~2(q) >«~ ra(q) >«1 ~~(q), 
for any responsive preferences. 

We turn next to consider welfare comparisons involving more than orte 
agent, on the set of stable matchings. Again, we concentrate primarily on the 
college admissions model. (The proofs all involve some version of Theorem 
16.) However ,  these results [which are proved in Roth and Sotomayor (1990a)] 
all have parallels in the case of one-to-one matching, where they were first 
diseovered. 

We begin with a result which says that if an agent prefers one stable 
matching to another,  then any agents on the other side of the market  who are 
matched to that agent at either matching have the opposite preferencesJ 4 

Theorem 19. I f  tz and I ~' are two stable matchings fo r  (S, c£, p )  and C = tx(s) 
or C = tz ' (s) ,  with C E ~ and s E S, then i f  t z (C)  >~c t z ' (C)  then tz '(s)  ~s  I~(s) 
[and i f /x ' ( s )  >«/x(s) then Iz(C)  >~ c Iz '(C)].  

The equivalent result for the assignment model, which is easy to prove, says 
that if i prefers a stable payoff (u, v) to another stable payoff (u', v ' ) ,  his 
mate(s) will prefer (u', v ' ) .  

Theorem 20. Let  ((u, v),  x) and ((u', v ' ) ,  x ' )  be stable out«omes for  (P, Q, a) .  
t Then i f  x'ij = 1, u I > u i implies vj < vj. 

Proof. Suppose '>~ - ' v] ~ v]. Then Œi] --  Ui ~- Uj > U i -~ U] ~ Œi], which is a con- 
tradiction. 

14The case of the marriage model was shown by Knuth (1976), and an extended version of this 
result was given by Gale and Sotomayor (1985a), who show its usefulness as a lemma in a number 
of other proofs. 
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The next result concerns the common preferences of agents on the same side 
of the market. Stated hefe for the college admissions model, it also holds for 
the assignment model. We write pc >~ pc' to mean that every college likes pc at 
least as well as pc', and some college strictly prefers pc, i.e. PC(C)~>c PC'(C) for 
all C ~ ~ and PC(C) >c  PC'(C) for some C E c~. So the relation >~ represents 
the common preferences of the colleges, and we define the relation >s 
analogously, to represent the common preferences of the students. The 
relations >~ and >s are only partial orders on the set of stable matchings, 
which is to say that there may be stable matchings pc and pc' such that neither 
PC >s PC' nor pc' >s PC. An additional definition will help us summarize the state 
of affairs. 

Definition 13. A lattice is a partially ordered set L any two of whose elements 
x and y have a "sup", denoted by x v y and an "inf", denoted by x/x y. A 
lattice L is complete when each of its subsets X has a "sup" and an "inf" in L. 

Hence, any nonempty complete lattice P has a least element and a greatest 
element. The next result therefore accounts for the existence of optimal stable 
matchings for each side of the market. 

Theorem 21. When all preferences over individuals are strict, the set o f  stable 
matchings in the college admissions model is a lattice under the partial orders > 
and > s. Furthermore, these two partial orders are duals: if pc and pc' are stable 
matchings for  (S, c~, p ) ,  then pc >~ pc' if and only if tx' >s PC. 

This theorem provides a more complete description of those structural 
properties of the set of stable matchings that account for the existence of 
optimal stable matchings for each side of the market. And the theorem shows 
that the optimal stable matching for one side of the market is the worst stable 
matching for the other side. Knuth (1976) attributes the lattice result for the 
marriage model to J.H. Conway. Shapley and Shubik (1972) established the 
same result for the assignment model. 

4.1. Size o f  the core 

Knuth (1976) examined the computational efficiency of the deferred accept- 
ance procedure for the marriage model, and observed that the task of 
computing a single stable matching is not computationally onerous (it can be 
completed in polynomial time). However, even in the marriage model, the task 
of computing all the stable matchings can quickly become intractable as the 
size of the problem grows, for the simple reason that the number of stable 
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matchings can grow exponentially. The next result, which follows a construc- 
tion found in Knuth (1976), describes the case of a marriage problem in which 
there are n men and n women, which we will speak of as a problem of size n. 

Theorem 22 [Irving and Leather  (1986)]. For each i>~O there ex&ts a stable 
marriage problem (M, W, P) of size n = 2 i with at least 2 n-1 stable matchings. 

However ,  because of the special structure of the core in these games, we can 
answer some questions about the core without computing all its elements. For 
example,  suppose we simply wish to know which pairs of agents may be 
matched to one another at some stable matching, i.e. which pairs of agents are 
achievable for one another. The following result says that these can be found 
by following any path through the lattice from the man-optimal stable matching 
tz M to the woman optimal stable matching tz w. 

Theorem 23 [Gusfield (1985)]. L e t  I&M = ~Z 0 > M  ['Z1 > M  ["L2 > M  " ' "  > M  I&t ~--" ]'LW 

be a sequence of stable matchings encountered on any path through the lattice of 
stable matchings of a marriage problem. Then every achievable pair appears in 
at least one of the matchings in the sequence. 

For the assignment model,  since the core is a convex polyhedron we cannot 
ask how many elements it contains, but we can ask how many extreme points it 
might have. We can state the following result. 

Theorem 24 [Balinski and Gale (1990)]. In the assignment game, the core has 
2m at most (m)  extreme points, where m = min{IPI, [Q[}. 

4.2. The linear structure of the set of stable matchings in the marriage model 

That  the marriage and assignment models share so many properties has been a 
long-standing puzzle, since many of these results (e.g. the existence of optimal 
stable outcomes for each side of the market,  and the lattice structure through- 
out the set of stable outcomes) require the assumption of strict preferences in 
the marriage model,  while in the assignment model all admissible preferences 
must allow agents to be indifferent between different matches if prices are 
adjusted accordingly. 15 However ,  a structural similarity between the two 
models is seen in the rather remarkable result of Vande Vate (1989) that 

15Roth and Sotomayor (1990b) show, however, that the two sets of results can be derived under 
common assumptions if one requires merely that the core defined by weak domination coincides 
with the core. 
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finding the stable matchings in the marriage model can also be represented as a 
linear programming problem. 16 The argument proceeds by first showing that 
the problem can be phrased as an integer program, and then observing that 
when the integer constraints are relaxed, the problem nevertheless has integer 
solutions. 

For  simplicity consider the special case in which IMI = IWI and every pair 
(m,  w) is mutually acceptable, and all preferences are strict. Thus, every man is 
matched to some woman and vice versa, under any stable matching. Let  the 
configuration of a matching/z be a matrix x of zeros and ones such that Xm, , = 1 
if /x(m) = w and Xm" , = 0 otherwise. 

We will also consider matrices x of dimension IMI x IwI the elements of 
which may not be integers, i.e. matrices which may not be the configuration of 
any matching. Let  Z i Xiw denote the sum over all i in M, Zj xm~ denote the sum 
over all j in W, Ejm>" . Xmj denote the sum over all those j in W that man m 
prefers to woman w, and Z~w>m xi" . denote the sum over all those i in M that 
woman w prefers to man m. 

We can characterize the set of stable matchings by their configurations: 

Theorem 25 (Vande Vate). A matching is stable i f  and only i f  its configuration 
x is an integer matrix o f  dimension IMI x [W[ satisfying the following set o f  
constraints : 

(1) Ej xùv = 1 for  all m in M,  
(2) Z i xi" . = 1 for  all w in W, 
(3) 2im>" . Xmj + 2iw>m Xi" . + Xm" . ~ 1 for  all m in M and w in W, 

and 
(4) xm" . >10 for  all m in M and w in W. 

Constraints (1), (2) and (4) require that if x is integer it is the configuration 
of a matching, i.e. its elements are 0's and l 's  and every agent on one side is 
matched to some agent on the opposite side. It is easy to check that constraint 
(3) is equivalent to the nonexistence of blocking pairs. [To see this, note that if 
x is a matching, i.e. a matrix of 0's and l 's  satisfying (1), (2), and (4), then (3) 
is not satisfied for some m and w only if Ejm>wXmj = Ziw>m Xiw = Xmw = 0, in 
which case m and w form a blocking pair.] 

Thus, an integer IMI x IWI matrix x is the configuration of a stable matching 
if and only if x satisfies (1)- (4) .  Of course there will in general be an infinite 
set of noninteger solutions of (1 ) - (4)  also, and these are not matchings. 
However ,  we may think of them as corresponding to "ffactional matchings", in 
which Xm" . denotes something like the fraction of the time man m and woman w 
are matched, or the probability that they will be matched. 

16Subsequent, simpler proofs are found in Rothblum (1992) and Roth, Rothblum and Vande 
Vate (1992). 
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The surprising result is that the integer solutions of (1) - (4) ,  i.e. the stable 
matchings, are precisely the extreme points of the convex polyhedron defined 
by the linear constraints (1)- (4) .  That  is, we have the following result. 

Theorem 26 (Vande Vate). Let C be the convex polyhedron of  solutions to the 
linear constaints (1) - (4) .  Then the integer points of  C are precisely its extreme 
points. That is, the extreme points of  the linear constraints (1 ) - (4 )  correspond 
precisely to the stable matchings. 

4.3. Comparative statics: New entrants 

The results of this subsection concern the effect of adding a new agent to the 
market.  Following Kelso and Crawford (1982), who established the following 
result for a class of models including the assignment model, a number of 
authors have examined the effect on the optimal stable matchings for each side 
of the market  of adding an agent on one side of the market.  Briefly, the results 
are that, measured in this way, agents on opposite sides of the market  are 
complements,  and agents on the same side of the market  are substitutes. 17 This 
result seems to be robust, with a recent paper by Crawford (1988) establishing 
the result for a general class of models with substitutable preferences intro- 
duced in Roth (1984c). As it applies to the simple model with substitutable 
preferences described in Subsection 3.3, bis result is the following. 

Theorem 27 [Crawford (1991)]. Suppose ~ is contained in ~*  and tx W and I&F 
are the W-optimal and F-optimal stable matchings, respectively, for a market 
with substitutable preferences (W, ~, P) and let ix~¢ and tZ*F be the W- and 
F-optimal stable matchings for (W, ~*,  P*), where P* agrees with P on ~. Then 

Bw~w* >- IXw and ix F* ~W ~F under P*; and ix W PF I'L~'V' and tx F >~F tZF* " 

Symmetrical results are obtained if S is contained in S*. 

The next result, which we state for the assignment model, shows that when a 
new agent enters the market  there will be some P and Q agents for whom we 
can unambiguously compare all stable outcomes of the two marketsJ 8 Suppose 
some P agent i* enters the market M - - ( P ,  Q, a) .  The new market  is then 

• ! 

M'* = (P  U {i*}, Q, o~'), where «ij = % for all i E P and j E Q. 

17Cf. Shapley (1962) for a related linear programming result. 
18A similar result for the marriage market is given in Roth and Sotomayor (1990a). 
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Theorem 28. Strong dominance [Mo (1988)]. I f  i* is matched under some 
optimal assignment for  M i*, then there is a nonempty set A o f  agents in P U Q 
such that every Q agent in A is better of f  and every P agent in A is worse of f  at 
any stable outcome o f  the new market than at any stable outcome of  the old 
market. That is, for  all (u', v ' )  and (u, v) stable for M i* and M, respectively, we 
have 

(ä) i f  a P agent i is in A ,  then u i>I u~; 
(b) if  a Q agent j is in A ,  then vj <~ v~. 

The final result of this subsection can be thought of as describing how much 
the entry of an agent i* in the assignment model can move the core of the 
game. There will be some agents whose worst core payoff in one of the two 
garnes (with and without i*) is exactly equal to their best core payoff in the 
other. 

Corollary 29 [Mo (1988)]. Let ( ü ', _v') be the P-optimal stable payof f  for  M i *. 

Ler (_U_U, 6) be the Q-optimal stable payof f  for M. I f  i* is matched under some 
optimal assignment for  M i*, there exists a nonempty set A o f  agents in P U Q 
such that 

(a) i f  a P agent i is in A ,  then ü'  i = u_i; 
(b) if  a Q agent j is in A ,  then v_~ = 6j. 

5. Strategic results 

We now turn to a different class of questions, motivated by the claim made in 
the literature distributed to participants in the hospital-intern market that the 
NIMP algorithm makes it unprofitable for either students or hospitals to state 
anything other than their true preferences. While we will defer consideration of 
the NIMP algorithm itself until Section 6, we consider hefe the extent to which 
it is possible to minimize the strategic complexity of matching, and what can be 
said about the strategic properties of procedures which lead to stable 
matchings. 

To set the stage, consider the procedure by which graduating students at the 
United States Naval Academy obtain their first posts as Naval officers. The 
following description is taken from the New York Times (30 January 1986, p. 
8). 

Midshipmen who will graduate from the Naval Academy in June decided 
this week whether they wanted to be aviators or nuclear submariners, 
destroyermen or engineers, marines or oceanographers . . . .  From late 
Thursday afternoon through the wee hours of Friday morning, the frst 
classmen, or seniors, lined up according to their standing in the class, walked 
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up to a long table lined with officers from each specialty, and made their 
choices on a first-come, first-served basis . . . .  

It is easy to see that each agent in this procedure has a dominant strategy, 
since a student can do no better than to select his first choice of those 
specialties remaining when his turn comes, and since the various Naval 
specialties have no choices of any sott to make. And if the preferences of each 
specialty over the students correspond exactly to students' class standings, then 
the matching which results from this procedure is stable. Of course if any of the 
specialties have different preferences, the matching may not be stable, but the 
rules by which the Navy is run do not permit specialties to refuse positions to 
some students and offer positions to students they prefer but who have lower 
class standings. I9 

However, in markets that allow the agents on the two sides of the market to 
freely negotiate with orte another, the empirical evidence suggests that the 
stability or instability of the final matching is important. So we will want to 
consider whether any procedures exist which yield stable matchings for all 
preferences, and which give each agent a dominant strategy. It will be sufficient 
for this purpose to confine our attention to the special class of "revelation 
mechanisms" which are functions from the stated preferences of the agents to 
the set of matchings. We will call a revelation mechanism which always chooses 
a matching that is stable with respect to the stated preferences a stable 
matching mechanism. 2° If any procedures with the desired properties exist, then 
there will exist a revelation mechanism which is a stable mechanism and which 
makes it a dominant strategy for each agent to state his true preferences. 21 

The next theorem states that no such mechanism exists for the marriage 
model. Since the marriage model is a special case of the college admissions and 
substitutable preferences models, the theorem implies that no such mechanism 
exists for those models either. 22 

Theorem 30. Impossibility Theorem [Roth (1982a)]. No stable matching 
mechanism for the marriage model exists for which stating the true preferences is 
a dominant strategy for every agent. 

19That is, in the Navy's garne, the outcome of this procedure is in the core, even if it can be 
improved upon by some student-specialty pair, since the rules do not permit the specialties to be 
active players. 

2°Note that the Naval Academy procedure just described can be thought of as a revelation 
mechanism, albeit one in which the preferences of the specialties are ignored. However, it is not a 
stable matching mechanism, since although it produces a stable matching for some preferences, 
there are (many) preferences for which the matching it produces is unstable. 

21Various formalizations of this observation go under the name of the revelation principle, and 
are widely used in game-theoretic proofs. 

a2Notice that impossibility theorems are strongest when stated on the narrowest domain, since if 
no mechanism exists which works for all examples of the narrow domain, then certainly no 
mechanism exists which works for all examples of wider domains. 
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Proof*. Since a matching mechanism is a function that produces a matching 
for any stated preferences, to prove the theorem it is sufficient to demonstrate 
some particular marriage märket  such that, for any stable mätching mecha- 
nism, truthtelling will not be a dominant strätegy for all agents. So consider a 
market  with two men and two women, with preferences P given by P(m a) = 
1421, W2; P(mz)  = wz, wz; P(wl )  = m2, tal;  P(w2) = ml,  m 2. Then there are two 
stable matchings, /x and v, given by p~(mi) = w i for i ~ {1, 2}, and v(mi) = w s 
for i, j Œ {1, 2}, j ~ i. So any stable mechanism must choose one of tx or v 
when preferences P a r e  stated: suppose the mechanism chooses /x. Observe 
that if w 2, say, changes her stated preference from P(w2) to Q(w2) = m t while 
everyone else states their true preferences, then u is the only stable matching 
with respect to the stated preferences P '  = (P(ml ) ,  P(m2), P(wa), Q(w2) ), and 
so any stable mechanism must select v when the stated preferences are P'. So it 
is not a dominant strategy for all agents to state their true preferences, since w 2 
does bet ter  to state Q(w2). Similarly, if the mechanism chooses v when the 
preferences P are stated, then m 2 can profitably mis-state his preferences. [] 

The same result can be stated for the assignment model. 
Since we have defined a matching mechanism as a procedure which can be 

applied to any marriage market  (i.e. as a function defined for all marriage 
markets),  the Impossibility Theorem says we cannot find a stable mechanism 
that will not sometimes give some agent an incentive to mis-state his or her 
preferences.  But we might hope to find a stable matching mechanism that only 
seldom gave agents such incentives, in which case the problem of incentives 
might not be very important.  The following result, which can be thought of as a 
corollary of the proof  of the Impossibility Theorem,  and which strengthens it, 
states that no such mechanism can be found. Instead, that at least one agent 
will have incentive to behave strategically seems to be the usual case. 

Corollary 31 [Roth and Sotomayor (1990a)]. When any stable mechanism is 
applied to a marriage market in which preferences are strict and there is more 
than one stable matching, then at least one agent can profitably misrepresent his 
or her preferences, assuming the others teil the truth. ( This agent can misrepres- 
ent in such a way as to be matched to his or her most preferred achievable mate 
under the true preferences at every stable matching under the mis-stated prefer- 
ences.) 

*Alcade and Barbera (1991) have strengthened the impossibility theorem by observing that 
there exists no efficient and individually rational matching mechanism for the marriage model, for 
which stating the true preferences is a dominant strategy for every agent. 
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The proof  of Corollary 31 depends on demonstrating the following. Suppose 
a stable mechanism selects a point different from the W-optimal stable 
matching ~w, say. Then a woman w who prefers/~w can profitably misrepres- 
ent her preferences by removing from her stated preference list of acceptable 
men all men who rank below i~w(W ) (as in the proof of the Impossibility 
Theorem).  Similarly, if the mechanism selects a point different from the 
M-optimal stable matching, some man can profitably misrepresent his prefer- 
ences. 

The Impossibility Theorem and the parallel result for the assignment model 
teil us that in each of the models considered here there will be no way to 
organize the market  so as to achieve a stable matching without sometimes 
presenting at least some of the agents with nontrivial strategic decisions. And 
Corollary 31 shows that only in rare cases will it be  an equilibrium for all 
agents to state their true preferences. So we turn next to investigating which 
agents may have incentives to misrepresent their preferences, and what 
equilibrium behavior looks like, as a function of how the market  is organized. 

It was observed in Roth (1985a) that the answers to these questions differ in 
important  ways depending on whether we äre considering one-to-one or 
many-to-one matching, and so we shall deal with these two cases separately. 
We begin with our models of one-to-one matching, namely the marriage and 
assignment models. 

5.1. Strategic behavior in models of  one-to-one matching 

The first result for the marriage model states that the incentive to state other 
than true preferences can be confined to the agents on one or the other side of 
the market.  

Theorem 32 [Dubins and Freedman (1981), Roth (1982a)]. In the marriage 
model, the mechanism that yields the M-optimal stable matching (in terms of  the 
stated preferences) makes it a dominant strategy for each man to state his true 
preferences. ( Similürly, the mechanism that yields the W-optimal stable matching 
makes it a dominant strategy for every woman to state her true preferences.) 

To place in context the parallel result for the assignment model,  it will be 
helpful to first consider the case in which there is only a single agent on one 
side of the market.  This can be thought of as a market  consisting of a single 
seller, who owns one unit of an indivisible object, and n buyers, each of whom 
is interested in purchasing it. Each buyer b places a monetary value $r b on the 
object,  which is the maximum amount he is willing to pay, and the seller 
similarly places a value $r s on the object,  which is the price below which he will 
not seil. We will call these monetary values the reservation prices of the agents. 
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An example of this market is given by the vector of reservation prices 
r = ( r l , . . . ,  rn, rn+l). In order to characterize the core and the set of stable 
payoff vectors, it will be convenient to define a reordering of the players, 
1", 2 " , . . . ,  n + 1" so that ra. ~> r2. >~ • • • i> r~+l.. That is, under this alternative 
ordering, player 1" is that player in N who has the highest reservation price (of 
one of the highest, if there is a tie), and n + 1" is the player with the lowest 
reservation price. 

It is straightforward to verify that the core of this garne (which by Theorem 9 
equals the set of stable outcomes) corresponds to those transactions in which 
the object is sold to the agent with the highest reservation price, at a price 
between the highest and second highest reservation prices. 23 So at the seller- 
optimal stable outcome the price equals ra. and at the buyer-optimal stable 
outcome it equals r2 .  It is easy to see why the Impossibility Theorem applies 
to this model (and therefore to the general assignment model as weil), since if 
the seller does not have the highest reservation price, he can raise his payoff by 
stating a reservation price equal to the highest stated reservation price when- 
ever the seller optimal outcome is not chosen, and similarly, if the buyer 
optimal outcome is not chosen, the buyer with the highest reservation price can 
profit by lowering his stated price to just above the second highest stated price. 

As in the marriage model, however, it is possible to make it a dominant 
strategy for either side of the market to stare true reservation prices, by using 
the mechanism that always selects the optimal core outcome for that side. We 
concentrate here on the mechanism that, for any stated reservation prices, 
chooses the buyer optimal core outcome. This is a well-known mechanism, 
variants of which are used in the auction of some U.S. govemment securities, 
for example. It is called the sealed-bid, second-price auction mechanism, and 
can be thought of as follows: each buyer writes down a number (his bid, or 
stated reservation price) in an envelope, without knowing what number will be 
written down by any other buyer. The seller also writes down a number. All 
the envelopes are opened, and placed in order r 1. m . . .  m rù +a, with the seller 
being player 1" only if his number is strictly greater than all the others, in 
which case there is no sale. Otherwise, buyer 1" receives the object, and pays 
the seller the price p = r2.. This mechanism is sometimes also called a Vickrey 
auction, after the economist who first observed the following result in a 
celebrated paper. 

Theorem 33 [Vickrey (1961)]. In a second-price, sealed bid auction (which 
always yields the buyer optimal core outcome in terms of the stated reservation 
prices), it is a dominant strategy for every buyer to state his true reservation 
price. 

23Unless the seller has the  highest  reservation price, in which case there is no sale. By L e m m a  8 
no mone ta ry  transfers other  than  the  transfer of  the selling price can take place in the core. 
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Proof. Consider a buyer b who states his true reservation price r», resulting in 
a vector r of stated reservation prices. Given the stated reservation prices of 
the others, b could not have helped himself, and could have hurt himself, if he 
had instead stated some reservation price different from the true one. If b = 1" 
with respect to these stated prices, i.e. if his true reservation price is the 
highest stated price, then he gets the object at price p = r 2 .  which gives him a 
positive profit whenever re. is strictly less than r b = rl . .  If he had stated a 
different reservation price, the outcome would not change at all so long as his 
stated price remains above r2.. But if he states a reservation price r~< r2. 
(where by 2* we still mean the player with the second highest of the original 
reservation prices), buyer b will forgo his profit, and receive a payoff of 0. 
(What happens when r b = ra. depends on what tie-breaking rule is used, but 
does not change the argument.) Now suppose that b ~ 1". Then b receives a 
payoff of 0, and would continue to do so for any stated preference r/~ ~< rl . .  The 
only way b can change his payoff is by stating a reservation price r»' > r l . ,  but 
in this case he buys the object at a price greater than his true reservation price, 
which gives hirn a negative profit. So it is a dominant strategy for each buyer to 
state his true reservation price. 24 [] 

This brings us back to the case Of the general  assignment model. The 
following lemma shows a critical way in which the Vickrey second price auction 
is generalized by the mechanism which gives P agents their optimal stable 
outcome (ü, _v). Just as the second price auction gives the winning buyer his 
marginal contribution t l . -  r2. (and gives each other buyer his marginal 
contribution, which is 0), the P-optimal stable mechanism gives each P agent 
his marginal contribution. 

L e m m a  34 [Demange (1982), Leonard (1983)]. For all i in P, ü i = v(  P, Q )  - 
v ( P -  {i}, Q). 

This permits the following parallel to Theorem 32. 

Theorem 35 [Demange (1982), Leonard (1983)]. The mechanism that yields 
the P-opt imal  stable outcome (ü, __v) makes  truthtelling a dominant  strategy for  
each P agent. 

24Note that an important feature of this mechanism is that the price stated by a bidder 
determines if he is the winner, but does not determine the price he pays (as it would in a 
conventional first-price sealed bid auction in which the high bidder 1" pays rl. ). Of course, this is 
not the whole argument: a useful exercise for the reader to check that he has understood is to 
consider why a third-price sealed bid auction, i.e. one at which buyer 1" receives the object but 
pays price r3. , does not make it a dominant strategy for each buyer to state his true reservation 
price. 
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Returning to the marriage model,  we state the following two theorems which 
strengthen and amplify Theorem 32. 

Theorem 36 [Dubins and Freedman (1981)]. Let P be the true preferences of  
the agents, and let P differ from P in that some coalition 1(4 of the men reis-stare 
their preferences. Then there is no matching /x, stable for fi, which is preferred to 
/xM by all members of  l~l. 

The original proofs of Theorems 32 and 36 in Roth (1982a) and Dubins and 
Freedman (1981) were rather lengthy. A short proof  of the following result, 
gives a much shorter proof  of those two theorems. 

Theorem 37. Limits on successful manipulation [Demange, Gale and 
Sotomayor  (1987)]. Let P be the true preferences (not necessarily strict) of  the 
agents, and let P differ from P in that some coalition C of men and women 
mis-state their preferences. Then there is no matching /x, stable for 16, which is 
preferred to every stable matching under the true preferences P by all members 
of  C. 

To see that Theorem 37 will provide a proof of Theorems 32 and 36, 
consider the special case where all the coalition members are men. Then 
Theorem 37 implies that no matter  which stable matching with respect to fi is 
chosen, at least one of the liars is no better  oft  than he would be at the 
M-optimal matching under p.25 

Note also that Theorem 36 implies Theorem 32. Initially Theorem 36 was 
sometimes further interpreted as stating that no coalition of men could 
profitably misrepresent their preferences in one-to-one matching situations of 
the kind modelled by the marriage model,  when an M-optimal stable mecha- 
nism was employed. That  this is not a robust interpretation can be seen by 
re-examining Example 14, and observing that if man m 2 in that example were 
to misrepresent his preferences by listing w 3 as his first choice, then the 
M-optimal stable matching with respect to the stated preferences P '  in which 
all agents but m 2 state their true preferences is equal to /x. That  is, if m 2 
misrepresents his preferences in this way under an M-optimal stable matching 
mechanism, then the resulting matching is /x~ = /x  instead of /x  M. So m 2 is able 
to help the other men at no cost to himself. Note,  however,  that if there were 
any way at all in which the other  men could pay m 2 for his services, then it 

25When preferences are not strict, there may of course not be an M-optimal stable matching, and 
so we have to rephrase Theorem 32 to avoid speaking of the M-optimal stable mechanism. Instead, 
we can consider the deferred acceptance procedure with men proposing, and with a tie-breaking 
procedure. 
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would be possible for a coalition of men to form and collectively profit from 
this misrepresentation. Since m 2 receives the same mate at both matchings, 
presumably even a very small payment would make it worth his while to 
become part of a coalition to change the final outome from/x M to/x, and since 
the gains to the other men in this coalition might be substantial, there would be 
ample motivation for such a coalition to form. Thus the negative implications 
of Theorem 36 (and also of Theorem 37) for strategic behavior by coalitions 
depend on the fact that, in the model of the marriage market that we are 
working with, we have assumed that no possibility whatsoever exists for such 
"sidepayments" between agents. 26 If this assumption is relaxed even a little, we 
see that coalitions of men can profitably manipulate even the M-optimal stable 
mechanism. We turn next to consider this in detail for the case of one seller 
and many buyers considered in connection with Theorem 33. 

It is clear in that model that a coalition of bidders may be able, by 
suppressing some bids, to lower the price at which the object is sold in a 
second-price, sealed bid auction, or an ascending bid auction 27 (or for that 
matter in virtually any kind of auction). We will concentrate here on the 
second-price, sealed bid auction. Consider a vector r of reservation prices for 
which the seller's reservation price is strictly less than the second highest, so 
that the sale price, p = r2. is greater than the seller's (auctioneer's) reservation 
price. Suppose the seller has the (k + 1)st highest reservation price, i.e. the 
seller is player (k + 1)*. Then the coalition consisting of bidders 1" through k* 
can, by suppressing k -  1 bids (or submitting only one bid greater than the 
seller's reservation price), obtain the object at price p '  = rk+l. < r2. 

Of course, if this was the end of the matter, the buyer who took possession 
of the object would benefit, but his co-conspirators would not. However, there 
is money in this model, so the k members of the coalition can share the wealth, 
for example by having a subsequent auction among themselves, with the 
proceeds distributed among the coalition members. Thus it is possible for a 

26We have also assumed that each agent is concerned only with his own mate  at any matching,  
and not  with the mates  of  any other agents ,  and that the garne is played only once, so that  there is 
no possibility of a coalition forming to trade favors over time. In Subsection 5.3 we will also see 
how this result breaks down if we relax the assumption of complete information.  

27One reason the seeond-price, sealed bid auction is of great interest is because of the 
relationship it has to the  more  commonly  observed ascending bid (also called "Engl ish")  auctions, 
in which the auctioneer keeps raising the price so long as two or more  bidders indicate that they 
are still interested,  and stops as soon as the next-to-last bidder drops out of the bidding. A t  that  
point  the sale is made  to the  remaining bidder at the price at which the next  to last bidder dropped 
out.  (If the price at which the next  to last bidder drops out  is lower than  the auct ioneer 's  
reservat ion price, the  auctioneer acts as if there were a bidder who continued bidding until the  
auct ioneer ' s  reservation price is reached.)  Suppose for simplicity that the bidders cannot  see which 
o ther  bidders are still bidding: then the problem facing a bidder b in this auction is simply to decide 
at what  price to drop out  o f  the auction. So in this case these two auctions are strategically 
equivalent, and the incentives facing the players are the same. 
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coalition of bidders acting together (a "bidder  ring") to profit from understat- 
ing their bids and sharing the benefits among themselves, even though it is not 
possible for a single bidder acting alone to do better  than to state his true 
reservation price. 

Note how this compares with the results for the marriage model. In both 
models it is a dominant strategy for an individual agent to stare his true 
preferences when his choice consists of what preferences to state to the stable 
mechanism that chooses the optimal stable outcome for his side. In both 
models, no coalition of these agents may, by mis-stating their preferences, 
arrange so that they all do bet te t  under such a mechanism than when they all 
state their true preferences,  unless they are able to make sidepayments within 
the coalition. That  is, the conclusion of Theorem 36 is true in this model as 
weil: if some coalition of bidders mis-states its reservation prices so that the 
vector of reservation prices is i instead of r, then there is no outcome in the 
core with respect to ~ that all members of the ring prefer to the result of truthful 
revelation. This is because no money other than the purchase price is trans- 
ferred at core outcomes. But,  as we have just seen, a coalition can profit by 
understating its preferences and then making sidepayments among its 
members.  

Having gotten some idea of what can be said about dominant strategies and 
the limits on how much an individual agent can  manipulate a stable mecha- 
nism, and what possibilities are open to coalitions, we now turn to the 
questions associated with equilibrium behavior. 

5.1.1. Equilibrium behavior 

The first result suggests that we may see matchings that are stable with respect 
to the true preferences even when agents do not state their true preferences. 

Theorem 38 [Roth (1984b)]. Suppose each man chooses his dominant strategy 
and states his true preferences, and the women choose any set of  strategies 
(preference lists) P'(w) that form an equilibrium for the matching game induced 
by the M-optimal stable mechanism. Then the corresponding M-optimal stable 
matching for (M, W, P') is one of  the stable matchings of  (M, W, P).  

Theorem 38 states that any equilibrium in which the men state their true 
preferences produces a matching that is stable with respect to the true 
preferences.  Note that the conclusion would not hold if we did not restrict our 
attention to equilibria in which the men play undominated strategies. For 
example,  when every agent states that no other agent is acceptable, the result 
is an equilibrium at which all agents remain single. 

When preferences are strict, the next result presents a sott  of converse to 
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Theorem 38, since it says that any matching/x which is stable under the true 
preferences can be obtained by an equilibrium set of strategies. 

Theorem 39 [Gale and Sotomayor (1985b)]. When allpreferences are strict, let 
tx be any stable matching for (M, W, P). Suppose each wornan w in tx(M) 
chooses the strategy of  listing only ix(w) on her stated preference list of  
acceptable men (and each man stares his true preferences). This is an equilib- 
rium in the garne induced by the M-optirnal matching mechanisrn (and tx is the 
matching that results). 

The next theorem describes an equilibrium even for the case when prefer- 
ences need not be strict. Furthermore, this equilibrium is a "strong equilibrium 
for the women", in that no coalition of women can achieve a better outcome 
for all of its members by having its members change their strategies. 

Theorem 40 [Gale and Sotomayor (1985b)]. Let P' be a set of  preferences in 
which each man stares his true preferences, and each wornan stares a preference 
list which ranks the men in the sarne order as her true preferences, but ranks as 
unacceptable all men who ranked below tXw(W). These preferences P' a rea  
strong equilibrium for the women in the game induced by an M-optimal stable 
matching mechanism (and iXw is the matching that results). 

Note that these last two theorems describes strategies which pur a great 
burden on the amount of information the women must have in order to 
implement them. In Subsection 5.3 we will relax the assumption that agents 
know one another's preferences. In the meantime, it should be clear that 
advising a woman to play the strategy of Theorem 40, for example, will be 
singularly unhelpful in most of the practical situations to which we might want 
to apply a theory of matching, since the strategy requires each woman w to 
know tZw(W ). This leads us to consider what advice we can give in environ- 
ments in which information about other players' preferences may not be 
readily available to the players. 

5.1.2. Good and bad strategies 

The problems of coordination and information that may arise in implementing 
equilibria do not arise in the same way for players who have a dominant 
strategy. In particular, Theorem 32 implies that when an M-optimal stable 
matching procedure is used, a man may confidently state his true preferences, 
without regard to what the preferences of the other men and women may be. 
So this is a good strategy for the men, and other strategies are, in comparison, 
bad. Although we have seen that stating the true preferences is not a good 
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strategy in the same way for the women, we turn now to considering what 
classes of strategies might be bad, in the sense of being dominated by other 
available strategies. 

The first result states that, although it may not be wise for a woman to state 
her true preferences when the M-optimal stable matching mechanism is used, it 
can never help her to state preferences in which her first choice mate according 
to her stated preferences is different from her true first choice. 

Theorem 41 [Roth (1982a)]. Any strategy P'(w) in which w does not list her 
true first choice at the head of  her list is strictly dominated, in the garne induced 
by the M-optimal stable mechanism. 

Theorem 42 states that Theorem 41 describes essentially all the dominated 
strategies. 

Theorem 42 [Gale and Sotomayor (1985b)]. Let P'(w) be any strategy for w in 
which w' s true first choice is listed first, and the acceptable men in P'(w) are also 
acceptable men in w' s true preference list P(w). Then P'(w) is not a dominated 
strategy when the M-optimal stable mechanism is used. 

5.2. Many-to-one matching: The college admissions model 

We return now to the case of many-to-one matching, and the kind of strategic 
question that caused the initial 1950 algorithm in the hospital-intern labor 
market to be abandoned in favor of the NIMP algorithm: Is it always in agents' 
best interest to state their true preferences? From the Impossibility Theorem 
for the special case of the marriage market (Theorem 30) we know that no 
stable matching mechanism can have this property for all agents. But in the 
marriage market we observed that a mechanism that produced the optimal 
stable matching for one side of the market made it a dominant strategy for 
agents on that side to state their true preferences (Theorem 32). We might 
therefore hope that the parallel result holds for the college admissions model. 
However, this is not the case: as the next theorem shows, Theorem 32 is one of 
those results that does not generalize from the case of one-to-one matching to 
the case of many-to-orte matching. 

Theorem 43 [Roth (1985a)]. No stable matching mechanism exists which 
makes it a dominant strategy for all colleges to state their true preferences. 

An immediate corollary of the proof of Theorem 43 is that Theorem 37 is 
another of the results which does not generalize from the special case of the 
marriage model. That is, we have 
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Corollary 44 [Roth and Sotomayor (1990a)]. In the college admissions model, 
the conclusions of  Theorem 37 for the marriage model do not hold. A coalition 
of  agents (in fact even a single agent) may be able to misrepresent its preferences 
so that it does better than at any stable matching. 

Although Theorem 43 shows that no stable matching mechanism gives 
colleges a dominant strategy, the situation of students is as in the marriage 
problem. That is, we have the following result. 

Theorem 45 [Roth (1985a)]. A stable matching mechanism for the college 
admissions model which yields the student-optimal stable matching makes it a 
dominant strategy for all students to state their true preferences. 

As in the case of the marriage model, these results do little to help us 
identify "good" strategies for either the students or the colleges when the 
college-optimal stable mechanism is used. No agents have dominant strategies 
under that mechanism, so they all face potentially complex decision problems. 
And we cannot even say as rauch about equilibria as we could for the marriage 
market, since there are lots of Nash equilibria, and no easy way to distinguish 
among them, since the lack of dominant strategies prevents us from eliminating 
unreasonable equilibria as in Theorem 38. However, since Theorem 45 estab- 
lishes that the student-optimal stable mechanism makes it a dominant strategy 
for students to state their true preferences, we might hope to have at least a 
one-sided generalization of Theorem 38, which would say that every equilib- 
rium of the student-optimal stable mechanism at which students state their true 
preferences is stable with respect to the true preferences. But this is another 
result which fails to generalize, even in this partial way, from the special case 
of the marriage model. Again, the result is a corollary of the proof of Theorem 
43. 

Coroilary 46 [Roth and Sotomayor (1990a)]. In the college admissions model, 
the conclusions of  Theorem 38 for the marriage model do not hold, even for the 
student-optimal stable mechanism. When all students state their true preferences, 
there may be equilibria of  the student-optimal stable mechanism which are not 
stable with respect to the true preferences. 

In general, although there are equilibrium misrepresentations that yield 
stable matchings with respect to the true preferences, there are also equilib- 
rium misrepresentations that yield any individually rational matching, stable or 
not. 



Ch. 16: Two-sided Matching 527 

Theorem 47 [Roth (1985a)]. There exist Nash equilibrium misrepresentations 
under any stable matching mechanism that produce any individually rational 
matching with respect to the true preferences. 

But the equilibria referred to in this theorem may require a great deal of 
both information and coordination, since, for example, an individually rational 
matching tz may be achieved at equilibrium if each agent x states that /z(x)  is 
his or her only acceptable mate. 

5.3. Incomplete information 

As we have seen, the (implicit) assumption of complete information makes its 
presence felt in a burdensome way in some of the equilibrium strategies which 
arise (cf. Theorems 39, 40, and 47). In this subsection we consider which of the 
results we have discussed so far are robust to a relaxation of the complete 
information assumption, and which are not. 

A one-to-one marriage game with incomplete information about others' 
preferences will be given by a collection 

F = (N = M U W, {Di}~~ N, g, U = XiENUi, F ) .  

The set N of players consists of the men and women to be matched. The sets 
D i describe the decisions facing each player in the course of any play of the 
game (i.e. an element di of Dg specifies the action of player i at each point in 
the game at which he has decisions to make). The function g describes how the 
actions taken by all the agents correspond to matchings and lotteries over 
matchings, i.e. g: XieNDi ----~ L [ ~ ] ,  where ~ is the set of all matchings between 
the sets M and W, and L I d ]  is the set of all probability distributions (lotteries) 
over ~ .  The set U i is the set of all expected utility functions defined over the 
possibile mates for player i and the possibility of remaining single, and F is a 
probability distribution over n-tuples of utility functions u = {ui}ic N, for u~ in 
Ui. The interpretation is that a player's " type" is given by his utility function, 
and at the time players must choose their strategies each player knows his own 
type, and the probability distribution F o v e r  vectors u is common knowledge. 
The special case of a game of complete information occurs when the dis- 
tribution F gives a probability of one to some vector u of utilities. We will 
typically be concerned with games in which only a countable subset of U has 
positive probability. In any event, since each player i knows his own utility 
function ug, he can compute a conditional probability P i ( U i [ U i )  for each 
vector of other players' utilities u i in U i =-Xj~~U~, by applying Bayes' rule 
to F. 
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This is not the most general kind of incomplete information model we might 
consider. The only unknown information is the other players' utilities. In 
particular, players know their own utilities for being matched with one another 
even though they do not know what " type" the other is. Each player's utility 
payoff depends on his own type, and on the actions of all the players (through 
the matching that results), but not on the types of the other players, i.e. 
players' types do not effect their desirability, only their desires. This seems like 
a natural assumption for elite professional markets for entry level positions. 
For example, in the hospital-intern market, after the usual interviewing has 
been completed, top students are able to rank prestigious programs, and vice 
versa. But agents do not know how their top choices tank them. (Note the 
difference between this kind of model and one in which the interviewing 
process itself is modelled, in which agents would in effect be uncertain about 
their own preferences.) 

A strategy for player i is a function ~ from his type (which in this case is his 
utility function) to bis decisions, i.e. o'i: Us---~D i. If cr= {o'i}s~ N denotes the 
strategy chosen by each player, then for each vector u of players' utility 
functions, o-(u)= {di E Di}iE N describes the decisions made by the players, 
which result in the matching (or lottery over matchings) g(o-(u)). Conse- 
quently, a set of strategy choices o- results in a lottery over matchings, the 
probabilities of which are determined by the probability distribution F over 
vectors u, and by the function g. The expected utility to player i who is of type 
u i is given by 

us(c)= ~ p,(U_slUs)us[g(Œ(u_» us))]. 
u-i~U i 

A Bayesian equilibrium 28 is a 0-* such that, for all players i in N and all 
utility functions u s in U» us(o-* )/> us(o-* » er/) for all other strategies o- i for 
player i. That is, when player i's utility is u / the  strategy er* determines player 
i's decision d* = «*(us), and the equilibrium condition requires that for all 
players i and all types u i which occur with positive probability, player i cannot 
profitably substitute another decision d i = cri(us). 

Recall that a general matching garne with incomplete information about 
others' preferences is given by F = ( N =  M U W, {Di} i cN ,  g, U = 
Xi~NUi, F). We may call [{Dl) lEN,  g] the mechanism, and [U, F] the state of 
information of the game. Then a garne F is specified by a set of players, a 
mechanism, and a state of information. Note that we are here considering 
much more general kinds of mechanisms than the simple "revelation mecha- 
nisms" of the kind observed in the NIMP algorithm, for example, in which 

28See Chapter 5 in this Handbook on incomplete information. 
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agents are just asked to state their preferences. Since we will be stating an 
impossibility theorem, we want to consider very general mechanisms. 

The first result is an impossibility theorem that provides a strong negation to 
the conclusions of Theorem 38 about equilibria in the complete information 
case when the M-optimal stable mechanism is employed. It says that, in the 
incomplete information case, no equilibrium of any mechanism can have the 
stability properties that every equilibrium 29 of the M-optimal stable mechanism 
has in the complete information case. (The strategy of the proof is to observe 
that, by the revelation principle, if any such mechanism existed then there 
would be a stable revelation mechanism with truthtelling as an equilibrium, 
and then to show that no such revelation mechanism exists.) 

Theorem 48 [Roth (1989)]. I f  there are at least two agents on each side of  the 
market, then for any general matching mechanism [{ D i} i~N, g] there exist stares 
of  information [ U, F] for which every equilibrium o" of  the resulting game 17" has 
the property that g(o-(u)) ~ L[ S(u)] for some u E U. (And the set of  such u with 
g(o-(u))~L[S(u)]  has positive probability under F.) That is, there exists no 
mechanism with the property that at least one of  its equilibria is always stable 
with respect to the true preferences at every realization of  a game. 

The next theorem states that the conclusion of Theorem 36 also does not 
generalize to the case of incomplete information. It is possible for coalitions of 
men, by mis-stating their preferences, to obtain a preferable matching (even) 
from the M-optimal stable mechanism. This is so even though, as we will 
briefly discuss, it remains a dominant strategy for each man to state his true 
preferences. 

Theorem 49 [Roth (1989)]. In games of incomplete information about pref- 
erences, the M-optimal stable mechanism may be group manipulable by the 
men. 

As discussed earlier, the fact that, even in the case of complete information 
it is possible for a coalition of men to mis-state their preferences in a way that 
does not hurt any of them and helps some of them, means that the conclusion 
from Theorem 36 that coalitions of men cannot collectively manipulate the 
M-optimal mechanism to their advantage cannot be expected to be very 
robust. Once there is any possibility that the men can make any sort of 
sidepayments among themselves, this conclusion is no longer justified. The 
proof of Theorem 49 depends on observing that uncertainty about the prefer- 
ences of other agents allows some transfers in an expected utility sense, with 

ZgIn undominated strategies. 
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men able to trade a gain in one realization for a gain in another. Building on 
Example 14, it is not hard to show that this can occur even when there is 
arbitrarily little uncertainty about the preferences. 

In contrast to the results for equilibria, the results concerning dominant 
strategies in the complete information case do generalize to the case of 
incomplete information. This can be seen by a pointwise argument on realiza- 
tions of the types of the players. In this way Roth (1989) observed that the 
conclusions of Theorem 32 and Theorem 41 generalize to the present case: 
when an M-optimal stable mechanism is used, it is a dominant strategy for each 
man to state bis true preferences, and any strategy for a woman is dominated if 
her stated first choice is not her true first choice for each of her possible types. 

6. Empirical overview 

We return now to see what the theory described here can teil us about the 
principal example which we used to motivate our consideration of stability in 
two-sided matching markets, namely the hospital-intern labor market. We 
begin with the formal statement of the result promised in the preview given in 
Subsection 2.1.1. 

Theorem 50 [Roth (1984a)]. The NIMP algorithm & a stable matching mecha- 
n&m, i.e. it produces a stable matching with respect to any stated preferences. 
(In fact, it produces the hospital-optimal stable matching.) 

This result lends support to the conjecture offered in the first part of 
Subsection 2.1.1 that the difference between the chaotic markets of the late 
1940s and the orderly operation of the market with such high rates of voluntary 
participation starting in the early 1950s can be attributed to the stability of the 
matchings produced by the centralized procedure. 3° 

However in Subsection 2.1 we also referred to the fact that, at least as early 
as 1973, significant numbers of married couples declined to take part in the 
NIMP procedure, or to accept the jobs assigned to them by that procedure. If 
it is the stability of the matching which contributes to voluntary participation in 
a centralized matching procedure, this should make us suspect that something 
about the presence of couples introduced instabilities into the market. In fact, 
the NIMP program included a specific procedure for handling couples that will 

3°The theorem also explains the way in which the NIMP algorithm is equivalent to the deferred 
acceptance procedure with hospitals proposing, since it also produces the hospital-optimal stable 
matching. However the internal working of the two algorithms differ in ways that are important for 
their implementat ion-  see Roth (1984a) and Roth and Sotomayor (1990a). 
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make it fairly clear how these instabilities arose (and why they were so 
prevalent), at least until 1983, when the procedure for married couples was 
modified. 

Briefly, the situation prior to 1983 was this. Couples graduating from medical 
school at the same time, and wishing to obtain two positions in the same 
community, had two options. One option was to stay outside of the NIMP 
program and negotiate directly with hospital programs. Alternatively, they 
could (after being certified by the Dean of their medical school as a legitimate 
couple) enter the NIMP program together to be matched by a special "couples 
algorithm". 

This couples algorithm can be described roughly as follows. The couple was 
required to specify one of its members as the "leading member", and to submit 
a rank ordering of positions for each member of the couple, i.e. a couple 
submitted two preference lists, one for each member. The leading member of 
the couple was then matched to a position in the usual way, the preference list 
of the other member of the couple was edited to remove distant positions, and 
the second member was then matched if possible to a position in the same 
vicinity as the leading member. 

It is easy to see why instabilities orten result. Consider a couple {sl, s2} 
whose first choice is to have two particular jobs in Boston, and whose second 
choice is to have two particular jobs in New York. Under the couples 
algorithm, the designated "leading member" might be matched to his or her 
first choice job in Boston, while the other member might be matched to some 
relatively undesirable job in Boston. If s~ and s 2 were ranked by their preferred 
New York jobs higher than students matched to those jobs, an instability 
would now exist, since the couple would prefer to take the two New York jobs, 
and the New York hospitals would prefer to have s~ and s 2. 

Notice that, to describe this kind of instability, we are implicitly proposing a 
modification of the basic model of agents in the market. A couple consists of a 
pair of students who have a single preference ordering over pairs of positions. 
Part of the problem with the couples algorithm just described is that it did not 
permit couples to state their preferences over pairs of positions. Starting with 
the 1983 match, modifications were made so that couples could for the first 
time express such preferences within the framework of the centralized match- 
ing scheme. However, the following theorem shows that the problem goes 
deeper than that. 

Theorem 51 [Roth (1984a)]. 31 In the hospital-intern problem with couples, the 
set of  stable matchings may be empty. 

31This result was independently proved by Sotomayor in an unpublished note. 
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In view of the evidence in favor of the proposition that high voluntary rates 
of participation are associated with the stability of the matching mechanism, 
this suggests that the problem with married couples may be a persistent one. In 
a similar way, the next theorem suggests that the distribution of interns to rural 
hospitals discussed in Subsection 2.1 also is not likely to respond to any 
changes in procedures which achieve high degrees of voluntary compliance. 

Theorem 52 [Roth (1986)]. When allpreferences over individuals are strict, the 
set o f  interns employed and positions filled is the same at every stable matching. 
Furthermore, any hospital that does not fill its full  quota at some stable matching 
is matched with exactly the same set o f  interns at every stable matching. 

6.1. Some further remarks on empirical matters 

There are several reasons why we have devoted some attention, in a survey 
largely concerned with mathematical theory, to the way that American physi- 
cians get their first jobs. One reason is to suggest why we think that the body of 
theory developed here has empirical content. Another reason is simply to give 
readers an idea of what empirical work connected with theory of this kind 
might look like. And a third reason is because it seems likely that the lessons 
learned from the rather special market for American medical interns may 
generalize to a rauch wider variety of entry level labor markets and other 
matching processes. 

Regarding the empirical content of the theory, we have laid great weight in 
our explanation of the history of the medical market on the fact that the 
centralized market mechanism introduced in 1951 is a stable matching mecha- 
nism, and on the fact that the growing numbers of married couples in the 
market introduce instabilities. It might be objected that these are coincidental 
features of the market, and that the true explanations of, for example, the 
rates of participation lie elsewhere. For example, it might be postulated that 
any centralized market organization would have solved the problems ex- 
perienced prior to 1951, and that the difficulties with having married couples in 
the market have less to do with instabilities of the kind dealt with here than 
with the difficulties that young couples have in making decisions. 

Ideally, we would like to be able to conduct carefully controlled experiments 
designed to distinguish between any such alternative hypotheses. 32 But for 
theories involving the histories of complex natural organizations, we offen have 
to settle for finding "natural experiments" which let us distinguish as well as we 

32And laboratory experimentation is indeed becoming more common: see the chapter by Shubik 
on that subject in a forthcoming volume of this Handbook, or see Handbook of experimental 
economics [Kagel and Roth (1992)]. 
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can between competing hypotheses. A very nice natural experiment involving 
these matters can be found when we look across the Atlantic ocean and 
examine how new physicians in the United Kingdom obtain their first jobs. The 
following very brief description is taken from Roth (1991). 

Around the middle of the 1960s, the entry level market for physicians in 
England, Scotland, and Wales began to suffer from some of the same acute 
problems that had arisen in the American market in the 1940s and 1950s. Chief 
among these was that the date of appointment for "preregistration" positions 
(comparable to American internships, and required of new medical school 
graduates) had crept back in many cases to years before the date a student 
would graduate from medical school. The market for these positions is regional 
rather than national, and this problem occurred more or less in the same way 
in many of the regional markets. (These regional markets have roughly 200 
positions each, so they are two full orders of magnitude smaller than the 
American market.) 

The British medical authorities were aware of the experience of the 
American market, and in many of the regional markets it was decided to 
introduce a centralized market mechanism using a computerized algorithm to 
process preference lists obtained from students and hospitals, modelled loosely 
after the American system, but adapted to local conditions. Most of these 
algorithms were not stable matching mechanisms, and it appears that a 
substantial majority of those that were not failed to solve the problems they 
were designed to address, and were eventually abandoned. [Before being 
abandoned at least some experienced serious incentive problems, the evidence 
being a lack of volunatary participation, or a variety of unstraightforward 
strategic behavior. Some of the ways in which mechanisms failed, and the kind 
of strategic behavior they elicited, are extremely instructive; see Roth (1991) 
or Roth and Sotomayor (1990a) for details.] As rar as can so rar be de- 
termined, only two stable matching mechanisms were introduced. Both were 
largely successful and remain in use to this day. The similarity of the British 
experience in markets with unstable mechanisms to the American situation 
prior to 1951, and the similarity of the British experience in the markets with 
stable mechanisms to the American experience after 1951, support the argu- 
ment that stability plays at least something like the role we have attributed to 
it. 

The nature of this kind of empirical investigation is of course very different 
from the purely mathematical investigation of abstract cases. Particular models 
adapted to the institutional details of the markets in question must be 
considered (just as considering instabilities involving married couples required 
us to extend the basic hospital intern model). To give a bit of the flavor of this, 
one example comes to mind. 

One of the stable matching procedures was introduced in a region of 
Scotland where, in keeping with previous custom, certain kinds of hospital 
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programs were permitted to specify that they did not wish to employ more than 
one female physician at any time. A program taking advantage of this option 
might submit a preference list on which several women graduates were highly 
ranked, but nevertheless stipulate that no more than one of these should be 
assigned to it. In analyzing such a model, it is of course necessary to consider 
whether the introduction of such "discriminatory quotas" influences the exist- 
ence of stable matchings. We leave as an exercise for the reader to show that 
the model of many-to-one matching with substitutable preferences can be used 
to address this question, and to prove the following proposition. 

Proposition 53 [Roth (1991)]. In the hospital-intern model with discriminatory 
quotas, the set of stable matchings is always nonempty. 

Regarding directions for future empirical work, we remark that the two 
studies discussed here [Roth (1984a, 1991)] are both part of a line of work that 
seeks to identify markets in which it is possible to establish a particularly close 
connection between the observed market outcome and the set of stable 
outcomes. This connection can be made so closely because the markets in 
question used computerized matching procedures which can be examined to 
determine the precise relationship between the submitted preferences and the 
market outcome. But the kind of theory developed here is by no means limited 
to such markets, and as more becomes known about the behavior of other 
entry level labor markets, for example, we should be better able to associate 
certain phenomena with markets that achieve stable outcomes, and other 
phenomena with markets that achieve unstable outcomes. In this way it should 
be possible to extend the empirical investigation of the predictions of this kind 
of theory to two-sided matching markets which are operated in a completely 
decentralized manner. 

An interesting intermediate case, which has been described in MongeU 
(1987) and Mongell and Roth (1991), concerns the procedures by which the 
social organizations known as sororities, which operate on many American 
college campuses, are matched each year with new members. A centralized 
procedure is employed which in general would not lead to a stable matching, 
but because the agents in that market respond to the incentives which the 
procedure gives them not to state their full true preferences, much of the actual 
matching in that market is done in a decentralized after-market. In the data 
examined by Mongell and Roth, the strategic behavior of the agents led to 
stable matches. (This study reaffirms the importance of examining systems of 
rules from the point of view of how they will behave when participants respond 
strategically to the incentives which the rules create.) 

Finally, what more general conclusions can be draw from the empirical 
observations we have so far been able to make of two-sided matching markets? 
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While some of these have been widely interpreted as evidence that "game 
theory works", our own view is that a somewhat more cautious interpretation 
is called for. First, while there is a wide variety of game-theoretic work 
concerning a diversity of environments, there has so rar been very much less 
empirical work that provides tests of game-theoretic predictions. This is no 
doubt due to the difficulty of gathering the kind of detailed information about 
institutions and agents that game-theoretic theories employ, and for this reason 
much of the most interesting empirical work has involved controlled experi- 
ments under laboratory conditions. 33 What has made the empirical work on 
two-sided matching markets different is that it has proved possible to identify 
naturally occurring markets for which the necessary information can be found. 
Which brings us to the question: How does the theory rare when tested on the 
markets observed to date? 

Even hefe, the answer is a little complex. We certainly cannot claim that the 
evidence supports the simple hypothesis that the outcome of two-sided match- 
ing markets will always be stable, since we have observed markets that employ 
unstable procedures and produce unstable matchings at least some of the time. 
And even those markets that eventually developed procedures to produce 
stable matchings operated for many years without such procedures before the 
problems they encountered in doing so led them to develop the rules they 
successfully use today. 

However the evidence is much clearer when we turn from simple predictions 
to conditional predictions. The available evidence strongly supports the hy- 
pothesis that if matching markets are organized in ways that produce unstable 
matchings, then they are prone to a variety of related problems and market 
failures that can largely be avoided if the markets are organized in ways that 
produce stable matchings. So the kinds of empirical work described here go a 
long way towards supporting the contention that (at least parts of) garne theory 
may reasonably be thought of as a source of useful theories about complex 
natural phenomena, and not merely of idealized or metaphorical descriptions 
of the behavior of perfectly rational agents. 
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1, Introduction 

Most approaches to multiperson garne theory divide into either the non- 
cooperative methods involving equilibrium points or else the various coopera- 
tive models. In the cooperative case one assumes that the participants can 
communicate,  form coalitions, and make binding agreements. These garnes are 
primarily concerned with which coalitions will form and how the resulting gains 
(of losses) will be allocated among the participants. The cooperative models 
are usually described in terms of a characteristic function which assigns a real 
number  (or else a set of realizable outcomes) to each potential subset (coali- 
tion) of the set of players. The possible outcomes are represented as payoff 
vectors corresponding to the distribution of utility to the players. Some of these 
outcomes will be preferred by the players over others, and certain final 
distributions are more likely to occur. Many different models have been 
proposed over the past fifty years to analyze these cooperative interactions, 
and alternate notions of a solution have been proposed. The first such general 
model was presented by von Neumann and Morgenstern (1944) in Theory of 
Games and Economic Behavior. The solution concept that they proposed is 
now referred to as a "stable set" or a "(von Neumann-Morgenstern)  
solution." 

In this chapter we will describe their original model for the coalitional 
garnes, provide some illustrations, analyze the three-person case in detail, and 
discuss some of the mathematical properties of stable sets. Special classes of 
games such as the simple or symmetric cases, as well as particular types of 
solutions such as the finite, discriminatory, and symmetric ortes are of particu- 
lar interest from mathematical as weil as empirical behavior viewpoints. 

2. Abstract games and stable sets 

In general a multiperson cooperative game involves a set of realizable out- 
comes and some preference relation between these outcomes. Some outcomes 
will be more desired, more likely to occur, or more fair than others. We thus 
define an abstract garne (U, d) to consist of a set U of elements called 
irnputations and a binary irreflexive relation d on U referred to as domination. 
Irreflexive means that no element in U can dominate itself. If the set U is a 
subset of n-space R n, then (U, d) is called an n-person abstract garne and we 
refer to N = {1, 2 . . . .  , n} as the set of n players 1, 2 , . . .  , n. Figures 1 and 2 
describe two three-person abstract games where U consists of the five vector 
outcomes in R 3, corresponding to the five partitions of N = {1, 2, 3}, and the 
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(3,2,0) . ~_ . .  ~ . , o 3  2, 

(2,o,3) 

(0 ,3 ,2)  

X 2 

o ( I , l , I )  

(3,2,o) 

XI 

Figure 1. A three-person spatial garne. 

dominance  relation d is indicated by the arrows. Any such directed graph can 
be so interpreted as an abstract garne. 

The  c o r e  C of an abstract garne consists of the set of elements in U which are 
maximal  with respect to the dominance relation d. No element  in U can 
dominate  any e lement  in the core. The vector yW = (3, 2.2, 0) in Figure 2 is the 
only e lement  in the core for this garne. 
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yW = (3, 2 .2 ,0 )  

yH . ~  4~ ~ ;  / \ ,re. ~4; " ' L e  y~--(O,2,1) 

( O , O , I ) = y  • • y :~ , ,0 )  

yG/" 

XH 

y0 
; /  

yW 

X G 

Figure 2. The satellite garne. 

No element is undominated in Figure 1, and thus the core for the corre- 
sponding game is the empty set 0. Even when the core C of a garne (U, d) is a 
nonempty set, it might be " too small" to serve as a reasonable solution concept 
for the game, as will be illustrated in Example 3. It is not always the case that 
every element in U - C is dominated by an element in C as occurred in Figure 
2. These considerations lead naturally to the consideration of other solution 
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notions, and von Neumann and Morgenstern (1944) introduced the concept of 
stable set for cooperative garnes. (Originally stable sets were called 
"solut ions",  but it is more common today to use the term "solution" or 
"solution concept"  for any one of the many solution ideas which have been 
proposed for the cooperative games.) 

A subset V of U is called a stable set (or a von Neumann-Morgens te rn  
solution) for an abstract game (U, d) whenever 

V A D ( V ) = ~  

and 

V U D(V) = U ,  

where the dominion function D is defined for any subset X of U by 

D(X) = {y E U: y is dominated by some x ~ X } .  

These two conditions are called internal stability and external stability, respec- 
tively. They state that no element in a stable set V can dominate another 
element  in V, and any element in U - V is dominated by at least one element 
in V. In other  words, the set V is "domination f ree" ,  and "setwise dominates" 
all elements not in V. This definition for a stable set V can be expressed by the 
one equation, 

V= U -  D ( V ) ,  

which describes V as a fixed subset under the mapping f ( X ) =  U - D ( X ) ,  
where X C U. The single outcome yW = (3, 2.2, 0) is the unique stable set V for 
the game in Figure 2, since yW dominates the other four outcomes. The garne 
in Figure 1 has no stable set, due essentially to the odd cycle of domination 
between (3, 2, 0), (2, 0, 3), and (0, 3, 2). 

The core C of any game (U, d) can be expressed by the equation 

C = U -  D(U) .  

The core of a given garne is a unique set, although in many cases it is the empty 
set ~J. A stable set V is never empty (unless U = 0). However ,  there are games 
for which no stable set exists, as in Figure 1. A garne typically does not have 
only one stable set. It follows from out definitions that 

C C V  and V A D ( C ) = f t  
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for any stable set V. C will be the unique stable set whenever D ( C )  = U -  C. 
When C is not a stable set by itself, then one attempts to enlarge C by adding 
elements from U - (C U D(C))  to reach a stable set 11. That is, elements are 
added to C in such a manner as to maintain internal stability at each step in 
hope of eventually obtaining external stability as well. 

Because of some theoretical and practical difficulties with stable sets, several 
variations, extensions, and generalizations of this notion have been proposed. 
The stationary sets of Weber (1974), the subsolutions and supercore of Roth 
(1976), and the absorbing sets of Chang (1985), a rea  few examples of these. A 
traditional view of abstract garnes and its relation to graph theory notions is 
indicated in Berge (1957) and Richardson (1955). A recent abstract approach 
to stable set theory and its connections to other solution concepts in garne 
theory is given in Greenberg (1989, 1990). 

Example 1. Three players denoted by 1, 2, and 3 can partition themselves into 
a coalition structure in five ways: 

{{1}, {2}, {3}}, {{1,2}, {3}}, {{1,3}, {2}}, {{1}, {2, 3}} and 

((1,2,3)}. 

Assume that the five corresponding outcomes in three-space R 3 are 

( 0 , 0 , 0 ) , ( 3 , 2 , 0 ) , ( 2 , 0 , 3 ) , ( 0 , 3 , 2 )  and (1 ,1 ,1 ) ,  

where a vector (xl, x2, X3) assigns a payoff of x 1 to player 1, x 2 to 2, and x 3 to 
3, respectively. These five points are pictured both as a graph and as they are 
located in R 3 in Figure 1. The best outcome for players 1 and 2 as ä group, as 
well as 1 individually, is (3, 2, 0) which is achieved when 1 and 2 form the 
coalition {1,2} which excludes player 3. Players 1 and 3 together, and 3 
individually, prefer the outcome (2, 0, 3) realized by the coalition {1, 3}. 
Similarly, {2, 3} and 2 in particular would rather have the outcome (0, 3, 2). 
The coalitional preferences between these five outcomes are indicated by the 
arrows in Figure 1. Which outcome would occur in a play of this garne, 
assuming that only one coalition structure and final payoff vector is allowed? 

The outcome (0, 0, 0), which results from coalition structure {{1}, {2}, {3}} 
of all singletons, is clearly inferior to each of the other four possibilities. The 
outcome (1, 1, 1) realized by the grand coalition N = {1, 2, 3} is less desirable 
to the pair of players in each of the three two-person coalitions. It appears as 
though one of these two-person coalitions may ultimately form with individual 
payoffs of 3 and 2 units to its players. If "side payments" are allowed then, for 
example, player 1 may offer a side payment of ½ unit to player 2 to realize the 
outcome (~, 2,0)  in the coalition {1, 2}. 
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Coalition structures Outcomes (x~, x H, Xw) Normalized outcomes 

pO = ({G}, (H),  (W}) x ° = (1,2,3) y0 = (0,0,0) 
pC = {{G}, {H,W}} x ~ = (1,4,4) yG = (0,2, 1) 
P ;  = {{H}, {G, W}} x H = (1.5, 2, 5) y ;  (0.5, 0, 2) 
P = {{W}, {H, G}} x w=(4,4 .2 ,3)  Yu (3, 2.2,0) 
PN= {{G,H,W}} xN= (1,2,4) y (0,0, 1) 

Example 2. In chapter 11 of the book The Game ofBusiness, John McDonald 
(1975) described a ten-person communication satellite garne played out in the 
United States in the early 1970s. In particular, he focused on a three-person 
subgame played by the three corporations: General Telephone and Electronics 
Corporations (G), Hughes Aircraft Company (H), and Western Union Tele- 
graph Company (W). The estimated benefits to the companies depended upon 
which coalitions were to form. There were substantial gains for those forming a 
two-person coalition, but only orte player gained in the full three-person 
coalition. The expected outcomes for G, H, and W can be expressed as a 
three-tuple (x~, Xn, Xw) as indicated in Table 1. The normalized outcomes 
(YG, Yn, Yw) subtract oft x ° = (1, 2, 3) from the initial outcomes in the previ- 
ous column, and measure only the additional gains obtained when nonsingleton 
coalitions form. These latter points are shown both as a graph and as located in 
R 3 in Figure 2. 

The coalition {G, H} would clearly prefer the outcome yW = (3, 2.2, 0) over 
any of the other four normalized outcomes, and they have it in their power to 
effect this result. Furthermore, {H, W} would prefer yG= (0, 2, 1) to y0= 
(0, 0, 0), and {G, W} would prefer yn = (0.5, 0, 2) to yY = (0, 0, 1) and to y0. 
These preferences are indicated by the directed graph in Figure 2. The 
outcome vector yW= (3,2.2,0) seems to be the natural resolution to this 
three-person cooperative garne. One would expect G and H to enter into a 
joint undertaking and for W to go it alone. This is in fact what happened at the 
time. (We will return to Example 2 in Section 4 where the possibility of side 
payments is considered.) 

3. The classical model 

The first general approach for the multiperson coalitional games was proposed 
in the monumental book by von Neumann and Morgenstern (1944). Their 
model consists of four basic concepts: a characteristic function v, a set of 
imputations A, a dominance relation dom, and a solution notion V called 
stable set. An n-person garne in characteristic function form (with side pay- 
ments) is a pair (N, v), where N = {1, 2 , . . . ,  n} is a set ofplayers and where v 
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is a real valued characteristic function o n  2 N, the set of all subsets of N. The 
function v assigns a real number v(S)  to each subset S of N and v(0) = 0 for the 
empty set 0. Intuitively, the value v(S)  indicates the wealth, worth, or power 
which the coalition S can achieve when its members act together. In practice 
the number  v(S)  may be derived from a garne in normal (strategic) form, but in 
many applications this value arises in a more direct or natural way ffom the 
situation being modeled. One offen writes (n, v) or just v for the garne (N, v). 

It is offen assumed that v is superadditive, i.e., 

v(S U T)  >1 v(S)  + v ( T )  

whenever  S A T = 0. Much of their theory holds without this condition. 
However ,  we will assume that the subsequent games in this chapter are 
superadditive unless stated otherwise. 

A vector x = (Xa, x 2 , . . . ,  xn) with real components is an imputation for the 
garne (N, v) if 

x i>Iv ( { i } )  V i e N  

and 

x 1 + x 2 + • " + x~ = v ( N ) .  

Let  A = A ( v )  be the set of all imputations. These two constraints are referred 
to as individual rationality and Pareto optimality or efficiency, respectively. An 
imputation x represents a realizable way for the n players to distribute the total 
amount  v(N),  with x i going to player i who is unlikely to accept anything less 
than his own value v({i}).  

If x and y are imputations and S is a nonempty subset of N, then x dominates 
y via S, denoted x dom s y, if 

x i > y  ~ V i E S  (1) 

and 

x i <~ v ( S ) .  (2) 
i~S 

One also says that x dominates y,  denoted x dom y, if there exists some 
(nonempty) S such that x dom s y. In other words, the coalition S prefers the 
distribution x over y if each member  of S obtains more,  and if S has it within its 
power to achieve this allocation. This latter condition (2) is referred to as 
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effectiveness, i.e., either as S is effective at x or as x is effective for S. It  is 
convenient  to set 

x(s) = Z x,. 
i~S 

We also introduce the following notation for x C A and B C A: 

D o m s x  = {y @ A: x d o m  s y} , 

D o m  x =  U D o m s x ,  
SCN 

D o m s B =  U D o m s x ,  
x@B 

D o m  B = U D o m s B .  
SCN 

as weil as the inverse domination regions 

D o m  - 1 B =  U { y E A : y d o m x } .  
x ~ ß  

Note  that the binary relation " d o m s "  is irreflexive, asymmetric,  and transi- 
tive for a given coalition S. On the other hand, the relation " d o m "  may not in 
general  have these latter two properties,  and this is the source of many  of the 
mathemat ica l  difficulties that arise in the von Neumann-Morgens t e rn  theory of 
solutions. 

A subset V o r  V(v) of A is a von Neumann-Morgens t e rn  solution or stable 
set if no x in V dominates  any y in V, and if every z not in V is dominated by 
some x ¢ V. These two conditions can be expressed as 

V O D o m  V =  ~ (3) 

and 

V U D o m  V =  A ,  (4) 

or by one expression 

A - D o m  V = V .  

We also say that V'  is a solution for B C A whenever  
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V' fqDom V' = ~ 

and 

V'  U Dom V ' D  B .  

An n-person game (N, v) in characteristic function form is an abstract game 
(U, d) where U = A and d = dom. Orte is also interested in the idea of a core 
C= C(v) for a game v in characteristic function form. C is the set of 
imputations x in A that are maximal with respect to the dom relation. When v 
is superadditive, this is equivalent to 

C = { x ~ A : x ( S ) > l v ( S )  V S C N } .  

However ,  von Neumann and Morgenstern did not dwell on the notion of the 
core, because the first class of games they studied were the "constant-sum 
essential" garnes (defined below) which always have empty cores. The core of a 
game, on the other  hand, is the primary topic of the five previous chapters in 
this Händbook.  

A game (N, v) is said to be constant-sum if 

v(S) + v ( N -  S)= v(N) VS C N . 

Such garnes are called zero-sum when v(N) = 0. This case arises if one were to 
derive the characteristic function values v(S) from a constant-sum normal form 
garne by solving a (two-person, zero-sum) matrix game played between each 
coalition S and its complement N - S. It turns out that the distinction between 
zero-sum and nonconstant-sum garnes is not a major  one for most multiperson 
cooperative models, in contrast to the theory of two-person games. 

A garne (N, v) is essential if 

~', v({i}) < v(N) 
i C N  

and inessential when 

~] v({i}) i> v(N).  
i ~ N  

A superadditive inessential garne has an additive v. In this case A, C, and the 
unique V consists of the single imputation (v(1), v ( 2 ) , . .  , v(n)), where we 
write v(i) for v({i}).  So there is no need to study coalition formation or 
solution concepts in this latter case, and one typically restricts the analysis to 
only the class of essential games. 
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We can now show that the core C for any essential constant-sum game (N, v) 
is empty. Since any x E C C A must satisfy 

x ] > i v ( N - i ) = v ( N ) - v ( i )  V i E N ,  
]EN i 

where we write N -  i for N -  {i}. Summing these n relations for each i E N 
gives 

(n- 1) E xj >i n v ( N ) -  E v(i) 
jEN i~N 

o r  

( n -  1)v(N)>~(n- 1)v (N)+  [ v ( N ) -  ~ v ( i ) ] ,  
i~N 

which contradicts the definition of essential. 
There is no loss in generality regarding most n-person game solution 

concepts if we assume 

v(i)=O V i E N .  

Orte can translate any game (N, u) to this O-normalized form by letting 

v(S)= u ( S ) -  ~ u(i) VS C N .  
i~S 

It is also common to assume that v(N) = 1. A garne (N, v) with v(i) = 0 for all 
i E N and v(N) = 1 is said to be in (0, 1)-normalized (or normal) form. Any 
essential game (N, w) can be mapped into this form by 

w(S) - EiE s w(i) 
v(S) = w(N) - Ei~ Nw(i) VS C N .  

This linear transformation on the 2n-dimensional game spaces preserves the 
domination relation in A defined by (1) and (2) and hence stable sets and 
cores, as well as most other solution concepts for the cooperative garnes with 
side payments. 

There have been many generalizations and variations made in the original 
model of von Neumann and Morgenstern. Alternate definitions have been 
given for the charaeteristic function v, the imputation set A, and the domina- 
tion relation dom. Some of the important extensions are the games without 
side payments in generalized characteristic function form [see Aumann (1967)], 
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the games in partition function form [see Thrall and Lucas (1963)], and the 
garnes in discrete partition function form [see Lucas and Maceli (1978)]. 

4. Stable sets for three-person games 

The structure of all stable sets and the core for all three-person garnes in 
characteristic function fo rm can be seen from the following four examples. 
More details and complete proofs for the general case appear in von Neumann 
and Morgenstern (1944). 

Example 3. The three-person  v e t o - p o w e r  game (N, v) has N =  {1,2,3},  
v ( N )  = 1 = v(12) = v(23), and v(13) = 0 = v(1) = v(2) = v(3). [Expressions 
such as v({1, 3}) and Dom{1.2 } are written as v(13) and DOml2 , respectively.] 
The set of imputations is 

A = { x  = ( x i ,  x z, x3): X 1 -'}'- X 2 + X 3 ~--- ] and Xl, x2, x» i> 0} . 

It is easy to show that the core C for this example consists of the one 
imputation (0, 1, 0) in which the veto-power player 2 obtains the full payoff of 
1. However, this is a game in which an outcome in the core may not be realized 
in practice, because player 2 is not a dictator. He needs the cooperation of at 
least one other player who will likely demand some positive payoff. One can 
also view player 2 as a seller of some item and players 1 and 3 as potential 
buyers in this three-person "market  garne". 

Figure 3 shows the set A as equilateral triangles. The top triangle illustrates 
the imputations which are dominated by, or which will dominate, a typical 
imputation x in A. One can easily show that for any garne 

Dom s A = 0 whenever S = N or {i} for i E N .  

Note that the regions Dom s x and Dorns1 x are relatively open sets, whereas 
the core and any stable set are closed sets. 

One can prove that the only stable set for this game that is "symmetric" in 
the players 1 and 3 is 

V s = { x E  A :  x 1 = x3} . 

This is illustrated in the lower left triangle in Figure 3 by the heavy vertical line 
between the core point (0, 1, 0) and the midpoint (½,0, ½) of the opposite side 
of A. This set V s reflects the fact that the coalition (1, 3} also has veto power 
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Figure 3. The three-person veto-power game. 

when it acts in unison, and that this game is then a pure bargaining game 
between the coalitions {2} and {1, 3}. If the union between 1 and 3 does not 
hold firm, then player 2 can play them oft against each other and move ever 
closer to the core point (0, 1, 0). Any possible stable set V for this garne must 
be a continuous curve from the point (0, 1, 0) to the opposite side (x a = 0) of A 
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which satisfies the following Lipschitz condition: Y2 < X2 implies that Yl ~> xl 
and Y3 ~> x3 for every x and y in V. This is illustrated in the lower right corner 
of Figure 3. These rather arbitrary curves V are called "bargaining curves" in 
von Neumann and Morgenstern (1944) where it is argued that they correspond 
to possible social norms or standards of behavior in a society. 

In particular the two stable sets 

V ° = {x ~ A: x 1 + x 2 = 1} and V ° = ( X  ~ A :  x 2 ~- x 3 = 1} 

correspond to the minimal winning coalitions {1, 2} and {2, 3}, respectively, 
where either such coalitions can form and then divide the total gain among 
themselves in any manner.  

Example 4. The three-person constant-sum garne, or s imple  majori ty  game, 
has N = {1, 2, 3}, v ( N )  --- 1 = v(12) = v(13) = 0(23) and v(1) = v(2) = v(3) = 0. 
The set A is the same as in the previous example, and the core C is the empty 
set. The Dom s x and Dorns 1 x patterns for this case are illustrated in Figure 4. 
The only symmetric stable set, as well as the only finite stable set, for this garne 
is 

v '  = ((1, ½,0), (~, 0, ½), (0, 1, ~)).  

This is pictured in the lower left of Figure 4. That is, a minimal winning (or 
minimal veto-power) coalition of two players splits evenly and excludes the 
third player. 

There  is another class of stable sets V/a for this garne, where i E N and 
0 <~ d < 1, given by 

VS : {x  E A:  X i = d} : {x  C A:  x ( N  - i) = 1 - d}  . 

These are called discriminatory stable sets: player i (the "agent")  receives the 
amount  d and the other  two players bargain over how to divide the remaining 
amount  1 - d. It can be proved that any stable set to this garne is either V s or 
of the form V S. The set Vê is pictured in the lower right of Figure 4. 

Example 5. Consider the three-person game with N = {1, 2, 3} and v ( N )  = 5, 
v(12) = 4 ,  o ( 1 3 ) = 3 ,  v (23 )=  1 and v ( 1 ) =  v ( 2 ) =  v ( 3 ) = 0 .  A superadditive 
three-person game with v( i )  = 0 for i = 1, 2, and 3 will have a nonempty core if 
and only if v(12) + v(13) + v(23) ~< 2v(123); and thus C ~ 0 for this example. 
The  core of this garne is the inverted triangle in Figure 5 with vertices 
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Figure 4. The three-person constant-sum garne. 

(2, 2, 1), (4, 0, 1) and (4, 2, - 1 )  intersected with the imputation set A. Note 
that the three (relatively open) "corner"  regions in Figure 5 are in Dom C and 
thus cannot intersect any stable set for this garne. To find a stable set V one 
begins with the core C and adds imputations from the triangular region 
A 1 = A - (C U Dom C). However ,  the domination relation within A 1 is similar 
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Figure 5. A garne with nonempty core C. 

to that for the veto-power  game in Example  3, but now with player 1 as the 
veto-player.  One can show that any stable set V for the garne consists of C and 
a bargaining curve V 1 (like those in Figure 3) which extends f rom the left 
vertex of C to the corresponding side x 1 = 0 in A1. This is illustrated in Figure 
5. For  an arbitrary three-person garne with nonempty  core there can be up to 
three such bargaining curves emanating f rom the vertices of C which are 
interior to A. 

Example 6. Consider the same game as in Example  5 except that the one 
value u(23) = 1 is changed to v(23) = 4. Now the core is empty.  The three lines 
x i + x / =  v ( i j )  for {i, j )  C (1, 2, 3} divide the irnputation set A into seven patts 
as indicated in Figure 6. Only one two-person coalition {i, j} is effective in 
each of the three "corner"  regions A k near  the vertices x k = 5, where i, j and k 
are the distinct members  of N; and the interiors of these three regions cannot 
contain any solution points. The small triangle A 0 in the middle part  of A has 
the same domination pat tern as the constant-sum game in Example  4. The 
remaining three areas in A have domination patterns analogous to the veto- 
power  game in Example  3. It  is possible to prove that any stable set V for the 
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Figure 6. A garne with empty core. 

present game when restricted to A 0 is a set V 0 similar to the stable sets for 
Example 4, as indicated in Figure 4. To enlarge V 0 to V orte has to add three 
bargaining curves V~ within the three regions A -  Dom V 0 which are each 
similar to the stable sets given in Example 3. The nature of the two resulting 
types of stable sets are indicated in the lower part of Figure 6. 
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Examples 5 and 6 illustrate the general nature of all possible stable sets for 
all three-person (essential) games. Bondareva, Kulakovskaya and Naumova 
(1979) proved that every four-person garne (and thus eVery five-person con- 
stant-sum game) has a stable set, but not all such solutions have been 
characterized. Also see Michaelis (1982) for the case n = 4. It is still not known 
whether stable sets always exist for n-person garnes for n = 5 to n = 9. 

Example 7. GttW with side payments. Let us return to the satellite game 
between G, H, and W introduced in Section 2, but now we will allow for the 
possibility of side payments. Assume that any company can give some of its 
gain to another, whether they are in the same coalition or not, and that the 
amount transferred preserves its value. From the five normalized outcome 
vectors, 

y0 = (0, 0, 0) ,  y~ = (0, 2, 1),  yH = (0.5, 0, 2) ,  

W y = ( 3 , 2 . 2 , 0 )  and yN ( 0 , 0 , 1 ) ,  

one can naturally arrive at the characteristic function 

v ( G ) = v ( H ) = v ( W ) = 0 ,  v ( H W ) = 3 ,  v ( G W ) = 2 . 5 ,  

v(GH) = 5.2 = v (GHW).  

[One might argue that we should set v(GHW) = v(N) = 1 f r o m  yN = (0, 0, 1),  
and arrive at a nonsuperadditive garne. However, {G, H} could "pay" W some 
of their 5.2 to remain out of the grand coalition N = {G, H, W}, which in fact 
happened in the "real-world" game.] The resulting garne has the set of 
imputations 

A={(XG, XH, Xw)=X:X 6 + x  n + x  w = 5 . 2 , x  GI>0,x H>/0, and x wl>0}.  

The core C is empty since 

v(HW) + v(GW) + v(GH) = 10.7 > 10.4 = 2v(N).  

However, C is "just barely" empty, since a decrease of only 0.3 in the left hand 
side of this relation, or a similar increase in v(N), would cause C to be 
nonempty (see Figure 7). 

This game is analogous to the one in Example 6. Intuitively, one would 
expect the final outcome to occur in or near the small triangular region A 0 C A 
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A 

C=~ 

x(GH) : 5 .2  

(2.2,2.7,0.3) 

(GW) : 2.5 

x(HW)=5 

( 2 . 2 , 3 , 0 )  

(2.5,2.7,0) 

X w X6 

Figure 7. The satellite game with side payments. 

with vertices 

(x~, x H, Xw) = (2.5, 2.7, 0), (2.2, 3, 0) ,  and (2.2, 2.7, 0.3). 

In particular, one may expect G and H to form the coalition {G, H} which 
realizes 5.2, to exclude W, and to settle on some point on the line segment 
joining (2.5, 2,7, 0) and (2.2, 3, 0). 

In the real-world game the coalition {G, H} did form and W was leff to " go 
it alone". However, the U.S. Federal Communications Commission (FCC) 
disapproved of this proposal, mainly because it fe r  that W's proposal was risky 
due to a perceived technological weakness if W did not have assistance from H. 
In response, H agreed to make a ffee technological transfer to W to overcome 
FCC's objection, and the coalitions {G, H} and {W} each began their own 
projects. One might conclude that the final result was indeed in A 0, and 
perhaps on the line segment joining (2.2, 3, 0) and (2.2, 2.7, 0.3). For more 
details about this example, see chapter 11 in McDonald (1975). 
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5. Properties of stable sets 

One major question regarding any solution concept concerns uniqueness. Does 
each game have at most one solution? We have seen for the three-person 
garnes in the previous section that stable sets are typically not unique. The only 
time a three-person garne has a unique stable set V is when V is equal to the 
"rather large" core C. For the (0, 1)-normalized case this occurs when the 
three conditions v(ij)  + v(ih)  ~< 1 hold, where {i, j, h) = {1, 2, 3}. For the 
three-person constant-sum garne in Example 4 we see that there is an uncount- 
able number of stable sets V, that the union of all such V is A, and that the 
intersection of all V is the empty set I~. It is quite common for an n-person 
garne to have a plethora of stable sets and some of these may be quite 
"pathological" in nature. Shapley (1959) showed that for any closed bounded 
set B of n-dimensions there is an (n + 3)-person game with B as a disconnected 
component of one of the game's stable sets V. The other part of V will, of 
course, depend upon B. So there is a five-person game with anyone's signature 
(presumably a compact set) as a disconnected part of some stable set for this 
garne. Von Neumann and Morgenstern (1944) were not particularly disturbed 
by the multiplicity of stable sets. They argued instead in terms of the richness 
of "bargaining conventions" and "standards of behavior" that could exist 
within a society. Although it may be a very interesting theoretical problem to 
characterize all stable sets for classes of games, the number is clearly excessive 
from the point of view of practical applications. 

It is clear now that the two simple conditions (3) and (4) of internal and 
external stability are not in themselves sufficient to cut down the number of 
allowable imputation sets to serve as a suitable solution for all n-person 
cooperative garnes. This is particularly true as the number of players n 
increases. One must add other restrictions to narrow the number of solutions, 
or modify these two constraints, despite their individual desirability. 

We can also observe that each stable set for any essential three-person garne, 
except for the symmetric V s in Example 4, has an uncountable number of 
imputations. Stable sets a r e a  "global" solution concept in the sense that they 
provide a set of outcomes, and do not specify a unique result for a game. A 
particular stable set may correspond to a specific "standard of behavior". 
Various imputations within a stable set are reasonable according to this rule or 
standard. A change between different imputations within one stable set may be 
easily made, whereas a change to a different standard is more like changing the 
basic operating rules of this society, or the role of the individuals involved. A 
stable set does not indicate a specific imputation for a game, but may delineate 
a range of values over which the players may bargain, or suggest a smaller 
"game between coalitions". 

Early research led to a variety of conjectures regarding the mathematical 
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nature of stable sets. The following six statements, now known to be false, are 
illustrations of a few of the important ones. 

(i) The intersection of all stable sets for a game (N, v) is its core C. 
(il) For  every garne (N, v) and any partition P = {S1, $ 2 , . . ,  Sm} of the 

player set N, there exists a stable set V contained in the region of A defined by 

x(Sj) = 2 Xi ~ TJ(Sj) f o r  a l l  j = 1, 2 , . . ,  m .  
i~sj 

(iii) Every garne has a stable set which preserves the "symmetry"  of the 
characteristic function. 

(iv) Every garne has a stable set which is a finite union of "polyhedral"  sets 
(i .e. ,  polytopes). 

(v) The union of all stable sets for a game is a connected set. 
(vi) Every game has at least one stable set. 
We saw in Section 4 that these six conjectures are all valid when n = 3. The 

following example shows that (i) and (ii) fail for n = 5. [Note that the game 
given in Example 8, as weil as some that follow, are not superadditive. They 
can, however,  be made into superadditive garnes using a technique of Gillies 
(1959, pp. 68-69) without altering the n, A, C or V's of the initial game. These 
nonsuperadditive forms greatly reduce the number of nonzero values v(S).] 

Example 8. Consider the garne (N, v) with N = {1, 2, 3, 4, 5} and 

v ( N )  = 2 ,  v (12 )=  v (34 )=  v(135)=  v(245) = 1,  

v ( S ) = O  for a l l o the r  S C N .  

It is easy to see that the core C for this example is the closed line segment 
joining (1, 0, 0, 1, 0) and (0, 1, 1, 0, 0). The unique stable set V for this game is 
the square 

B = {x @ A: x~ + x 2 = x 3 -}- X 4 : 1} 

which has the four vertices (1, 0, 0, 1, 0), (0, 1, 1, 0, 0), (1, 0, 1, 0, 0), and 
(0, 1, 0, 1, 0). We can see that Dom C D A - V because x E A - V implies 
x l + x  2 + x  3 + x  4 + x 5 = 2  and either x l + x  2 < 1  or x 3 + x  4 < 1 ,  or both. If 
x 1 + x 2 < 1, for example, one can pick a y E C so that y dom12 x, and similarly 
if x 3 + x 4 < 1. So V = B is externally stable. On the other hand, no y E V can 
dominate an x E V since this would require either that 

Yl + Y2 > 1 = v(12) or Y3 + Y4 > 1 = v(34) ,  
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or else y» > 0, which contradicts the assumption (2) that y is effective for {1, 2} 
or {3, 4} or else that y E V, respectively. V is thus internally stable. Therefore, 
V is a stable set; and it is unique since no element in Dom C can be in any 
stable set. 

Lucas (1968b, 1969a) showed that there are games with n 1> 5 which have 
unique stable sets which are nonconvex sets. Lucas (1968b) also provided a 
counterexample to (iii) with n = 8. This sequence of findings showed, contrary 
to the multiplicity of stable sets discussed above, that the set of all stable sets 
for a garne could indeed be quite restricted. These results paved the way to 
disproving the major conjecture (vi). In the meantime, several generalizations 
of the classical model presented in Section 3 were proposed and analyzed, and 
the nonexistence of stable sets was demonstrated for some of these models. 
Stearns (1964) showed that stable sets need not exist for the n-person 
cooperative games without side payments (in generalized characteristic func- 
tion form) for n/> 7. For example, see Aumann (1967) or Lueas (1971, pp. 
507-509). Lucas (1968a) proved the nonexistence of stable sets for n i> 11 for 
the garnes in partition function form which had been studied by Thrall and 
Lucas (1963). These latter two discoveries also suggested the possibility of (vi) 
being false. 

The primary theoretical question for any game solution concept is whether 
or not it always exists: Does every garne have at least one solution? Although 
von Neumann and Morgenstern (1944) were not terribly concerned about the 
lack of uniqueness for stable sets, they did consider a positive response to the 
existence question to be crucial. On page 42 of their third edition (1953) they 
discuss existence and uniqueness, and state: 

There can be, of course, no concession as regards existence. If it should turn 
out that our requirements concerning a [stable set V] are, in any special 
case, unfulfillable - this would certainly necessitate a fundamental change in 
the theory. 

Many special classes of games were known to always have stable sets, and 
orten a great variety of different ones. It had also been known since 1953 [see 
Gillies (1959)] that a "positive ffaction" of all n-person games had a unique 
stable set consisting of a large core. This will occur when all the coalition 
values v(S) are small relative to v(N), i.e., when each v(S)<~ v(N) / (n-  1) 
whenever S # N. On the other hand, some 25 years after von Neumann first 
conjectured (vi), Lucas (1968c) provided a negative answer to the existence 
question. The ten-person game which follows has no stable set. [Although this 
characteristic function is not superadditive, it is equivalent to a superadditive 
one using Gillies (1959, pp. 68-69). The superadditive form would have 
hundreds of nonzero values v(S).] 
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Example 9. Consider the ten-person game: 

v ( N )  = 5 ,  v (13579)=4 ,  v(3579) = v(1579) = v(1379) = 3 ,  

v(12) = v(34) = v(56) = v(78) = v(9,10) = 1, 

v(357) : v(157) = v(137) = v(359) = v(159) = v(139) = 2 ,  

v(1479) = v(3679) = v(5279) = 2 ,  

and 

v ( S ) = O  for a l l o t h e r S C N .  
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B : {x @ A: x(12) = x(34) : x(56) : x(78) : x(9, 10) : 1}. 

The core C of this game is the five-dimensional simplex consisting of the 
"corner"  of B, with x(13579)~>4. C has the six vertices ( 1 , 0 , 1 , 0 ,  1, 
0 , 1 , 0 , 1 , 0 )  and 

( 0 , 1 , 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 ) ,  

( 1 , 0 , 0 , 1 , 1 , 0 , 1 , 0 , 1 , 0 ) ,  

( 1 , 0 , 1 , 0 , 0 , 1 , 1 , 0 , 1 , 0 ) ,  

( 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 1 , 0 ) ,  

( 1 , 0 , 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 ) .  

Dom C via only the two-person coalitions (i, i + 1} is A - B, similar to the 
five-person game in Example 8. So any stable set for this game must be 
contained in B - Dom C, which one can show partitions into three sets C, F, 
and E. C U F taust be in any such stable set, and E N Dom(C U F) = ~. So any 
stable set for this garne is made up of C U F U V', where V' is a stable set for 
the region E. E consists of three three-dimensional triangular wedges which 
meet on C. There is a cyclical domination relation among these wedges via the 
coalitions {1, 4, 7, 9}, {3, 6, 7, 9} and {5, 2, 7, 9}. An argument similar to that 
used in the nonexistence proofs by Stearns (1964) and Lucas (1968a) then 
shows no stable set V' exists for E. Therefore, the ten-person game in 

The imputation set A for this game is a regular nine-dimensional simplex. 
Consider the five-dimensional hypercube 
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Example 9 has no stable set. The details of this proof are provided in Lucas 
(1969b). 

It should be observed that all of the examples introduced so far in this 
section are not just mathematical curiosities or mere pathologies of no interest 
in practical applications. Shapley and Shubik (1969) have shown that these 
garnes, which all have nonempty cores, do arise in the study of markets in 
economics. 

It should also be noted again that von Neumann and Morgenstern (1944) 
were initially concerned with essential constant-sum garnes which always have 
empty cores, whereas the above examples have nonempty cores. However, 
Lucas and Rabie (1982) have provided a 14-person superadditive garne with an 
empty core for which no stable set exists. On the other hand, no one has yet 
settled the general existence question for their original class of constant-sum 
garnes. 

In light of the nonexistence of stable sets, statements (iv) and (v) should be 
limited to those games for which stable sets do exist. Conjecture (v) has been 
shown to be false by Lucas (1976) when n = 12. This result could also have 
been a stepping stone to the proof of the nonexistence of stable sets if it had 
been arrived at before Example 9. In the spring of 1967, Shapley (1968) 
discovered a 20-person garne with infinitely many possible stable sets, but each 

one is highly pathological in nature. This provided a counter-example to (iv). It 
also ruled out the idea of a "constructive" algorithm for always determining a 
stable set as well as any reasonable economic interpretation for at least orte 
stable set for every garne. 

6. Special classes of garnes 

We have seen in Section 5 that stable sets fail to have many desirable 
properties when considering the class of all possible games in characteristic 
function form. These rather negative aspects for the general case, however, are 
offset by many good mathematical properties and interesting interpretations of 
stable sets when viewed in more restricted settings. To indicate some of the 
more positive results we will proceed to limit ourselves to looking at a couple 
of special classes of garnes as well as some special and fundamental types of 
stable sets. In Section 3 we already introduced the classes of superadditive, 
constant-sum, and essential garnes. These restrictions cut down the totality of 
games significantly, but do not avoid most of the problems arising in stable set 
theory, and we do not  wish to restrict ourselves to just constant-sum garnes. In 
this section we will introduce two very important special classes of garnes: 
simple and symmetric. There are also several other particular classes of games 
for which an extensive literature exists that will not be covered in this chapter.- 
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Names of some other classes of n-person games and some basic references are: 
extreme garnes [see Griesmer (1959) and Rosenmüller (1977)], homogeneous 
garnes [see Ostmann (1987)], quota and k-quota garnes [see Shapley (1953b) 
and Muto (1979b)], and convex garnes [see Shapley (1971)]. 

6.1. Simple games 

An n-person game (N, v) is said to be a simple game if 

v(S)=O or v(S)=l  V S C N .  

A coalition S is called winning if v(S)= 1 and losing whenever v(S)= O. 
Coalition M is minimal winning if M is winning and no proper subset T of M is 
winning. A coalition T has veto-power if T N S ~ ~ for every winning coalition 
S. Simple games are also referred to as voting games. They provide an 
elementary model of voting systems in which some coalitions can pass a bill, 
whereas other groups of players cannot pass it. We will assume that simple 
garnes are monotone in the sense that 

v(S) >1 v(T) whenever S D T .  

We will also assume that v(N) = 1 as weil as v(O) = 0. 
Monotone simple games arise in many other mathematical contexts besides 

garne theory and there is a large literature on the subject. An excellent 
introduction is given in Shapley (1962). A survey showing the connections of 
n-person simple games with other mathematical subjects and a bibliography is 
given in Hilliard (1983). The most popular solution concepts for simple games 
are the values proposed by Shapley (1953a) and by Banzhaf (1968) and 
Coleman (1971), as weil as several variations and extensions of these notions. 
The Shapley value is a major solution concept for general n-person garnes as 
weil as for this case of simple games. It will be discussed in a subsequent 
volume of this Handbook. Several alternate value concepts have also ap- 
peared. Additional chapters will be devoted to limiting properties of values for 
garnes with a large number of players as weil as value notions for games with a 
continuum of players. Extensions of the Shapley value to garnes without side 
payments exist. The Shapley value from garnes theory has also been employed 
in a large number of theoretical and practical applications. This is illustrated in 
chapters on the use of values to study perfectly competitive economies, other 
economic applications, fair cost allocation, as well as for measuring political 
power in voting structures (simple garnes). 

It is easy to characterize the core for monotone simple games. Any player 
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i E N who is in every minimal winning coalition forms a veto-power coalition 
{i}. The corresponding imputation e g which has a 1 in t he / th  component and 0 
elsewhere is clearly in the core C for such a game. It is easy to see in this case 
that the core of the garne is the convex hull of the points e g where i has veto 
power. The core is thus empty if there are no veto-power players, as in 
Example 4. In Example 3, player 2 has veto power and the core of the garne 
has the one imputation (0, 1, 0). 

At  least one stable set exists for every simple n-person game (with finite n). 
If M is a minimal winning coalition in a simple game, then the set 

V M = {x  e A:  x ( M )  = v ( N )  = 1} 

is a stable set. Any imputation y E A - V M must have y ( M )  < y ( N )  = 1 and can 
be dominated by an x E V M. Clearly V M is also internally stable. The two stable 
sets 1112 = V~ and V23 = V°l in Example 3 and the three stable sets V,). = V ° for 
{i, j, k} = {1, 2, 3} in Example 4 illustrate this result. If there is only one 
minimal winning coalition M, then the stable set V M is unique. Otherwise, 
there a r e a  great number of stable sets for simple games as seen in Examples 3 
and 4. The garnes of Shapley (1959) which have some pathological stable sets 
are simple garnes. One initial step towards characterizing all stable sets for just 
the four-person simple garne with one veto-power player is given in Rabie 
(1980). 

Owen (1968b, pp. 177-178) has shown that if one extends the definition of 
n-person simple garne to the case where N =  {1, 2, 3 , . . }  has a countable 
infinity of players, then stable sets may not exist since minimal winning 
coalitions need not exist. For example, the winning coalitions S could be those 
subsets of {1, 2, 3 , . . . }  whose complements N -  S are finite. So any winning 
coalition has a proper subset that is also winning. 

Von Neumann and Morgenstern (1944) have shown that there is a family of 
n-person, constant-sum simple garnes which has a finite stable set which they 
called the main  s imple  solut ion.  Assume that for such a garne there is a vector 
x = ( x l ,  x 2 , . . ,  xn)  with each x g ~ 0  such that x ( M ) =  1 whenever M is a 
minimal winning coalition. For each such M let xff = xg if i E M and xM = 0 
when i ~ M .  Then the set of imputations x M forms a stable set V Mss. 

Example 10. Consider the six-person, constant-sum, monotone simple game 
which has v(S) = 1 for all coalitions S which have four or more players and 
v ( M )  = 1 for the following ten minimal winning, three-person coalitions 
M: {4, 5, 6} and {i, j, h}, where {i, j} C {1, 2, 3} and h E {4, 5, 6}. All other 
coalitions with three or fewer players are losing. The vector x = 
(31, I ,  I ,  I ,  1, I )  provides a solution for the condition above. The following 
ten imputations thus form a stable set for this garne: 
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(o, o, o, I, I, ~), 

(I, 1,o, ~,o, o), (I,o, I, ~, o, o), (o, 1, I, ~,o,o),  

(I, 1,o,o, 1,o), (½,o, ~,o, ~, o), (o, I, 1,o, ~,o), 

(I, 1,0,0,0, I), (~,0, ~,0,0, ~), (0, ~, ~,0,0, ~). 

A n o t h e r  p rope r  subclass of  n -person  simple games is the weighted majority 
games [q:  wi,  w 2 , . .  , wn]. Each  player  i has a positive weight w» and a 
coal i t ion S of  players wins if and only if 

Z Wi>~q. 
i~s 

The  n u m b e r  q is called the quota and is usually assumed to be in the range 
w >~ q > w/2, where  w = w 1 + w e + • • • + w n. Since these are simple games,  the 
theo ry  of  the core and stable sets is as above.  Example  10 is a cons tant -sum,  
m o n o t o n e  simple game  which cannot  be expressed as a weighted major i ty  
game.  The  system of  ten inequalities Ei~ M w i/> q for the minimal  winning 
coali t ions M has no feasible solution for  any q > w/2. Appl ica t ions  of  value 
theor ies  to the weighted voting games are given in Lucas  (1983) and Straffin 
(1983). 

6.2. Symmetric games 

A n  n-pe r son  garne (N, v) is said to be symmetric if v(S)= v(T) whenever  
ISI = ITI. A n y  two coalit ions of  the same size s = ISI have the same value. In  
this case the characterist ic  funct ion v is de te rmined  by the n -  1 numbers  
v(s) = v(ISI)  = v(S), where  s = 2, 3 . . . .  , n, assuming v(1) = 0 = v(0).  

It  is easy to character ize when  the core o f  a symmetr ic  game is nonempty .  
One  first observes  that  the core C is n o n e m p t y  if and only if it contains the 
cent roid  c of  A:  

C # 0 ~ « = ( v ( n ) / n ,  v ( n ) / n , . . . ,  v(n)/n)C C. 

N o t e  that  if x E C then,  using symmetry ,  the n ! permuta t ions  7rx of  x are also 
in C. Since C is a convex set, the average  of  these n! imputat ions  7rx, which is 
c, is also in C. The  core condit ions x(S)>~ v(S) applied to c state that  
c(S) = sv(n)/n >t v(s) for  all s ~< n. It  follows that  

C #O¢:>v(s)<~sv(n)/n Vs<~n. 
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For example,  the three-person symmetric garne has C # 0 whenever  v(2)~< 
2v(3) /3 .  The four-person symmetric  garne v(1) = 0, v(2) = 0.5, v(3) = 0.8, and 
v(4) = 1 has C = 0 since v(3) = 0.8 > 3v(4)/4.  

One  can also characterize when the core C of a symmetric game is "large 
enough"  to be the unique stable set V for the garne. This makes  use of the 
notion of the cover O of a game v. In the case of a symmetric game v the cover 
is defined to be 

õ(s) = max sv(t)/t. 
O<t~s 

For  the four-person garne v(1) = 0, v(2) = 0.5, v(3) = 0.8, and v(4) = 1, which 
has an empty  core, we get that 0(4) = 4(0.8) /3 -- 3.2/3 > 1 = v(4) for t = 3. For 
any symmetric  game with a nonempty  core we see that 6(n)= v(n). For the 
four-person symmetrie  garne v(1) = 0, v(2) = 0.5, v(3) = 0.6, and v(4) = 1 one 
gets ö(s)= v(s) for s = 1, 2, and 4, but 0 ( 3 ) = 3 ( 0 . 5 ) / 2 =  3. A symmetrie 
n-person garne v with a nonempty  core C will have the unique stable set V = C 
if and only if 

v ( , O  - a ( t )  v ( s )  - õ ( t )  

n - t  s - t  

for all t and s which satisfy 0 <~ t < s < n. A proof  of this appears  in Shapley 
(1976) and Menshikova (1977). Additional results on symmetric stable sets and 
their uniqueness for symmetrie garnes with " large"  cores are presented in Muto 
(1983). In particular, he gives "symmetr ic"  stable sets for all five-person 
symmetr ie  games with nonempty  cores, as weil as a sufficient condition for 
uniqueness for n-person symmetric garnes with nonempty  cores. 

6.3. Simple and symmetrie garnes 

If  a monotone  simple garne (N, v) is also symmetr ic  (and essential) then it is 
determined by one integer k with 1 < k ~< n. In this case 

v ( S ) = l  V S C N w i t h s > ~ k ,  

v ( S ) = 0  V S C N w i t h s < k .  

These garnes were referred to earlier as the (n, k) garnes, or the (n, k) majority 
garnes when k > n/2. These games taust have k > n/2 in order to be superaddi- 
tive (proper) ,  and then they provide a model for voting systems in which any 
coälition of k or more  players can pass a bill. For the case k = n we get that the 
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core C = A -- V is the unique stable set. For this unanimity or pure bargaining 
game unanimous support is needed to pass an issue, and any one player can 
veto a proposed bill. It is easy to check that C = 0 when k < n. 

The (3, 2) game was analyzed in Example 4. The unique finite or symmetric 
stable set V s = {(½, ½,0), (~, 0, ½), (0, ½, ½)} can be interpreted as one of the 
minimal winning coalitions forming and splitting the gain evenly. It can also be 
interpreted as those in a minimal sized veto-power coalition (which is also 
winning in this garne) getting the same amount while excluding the other 
player. We will see in the next section that it is this veto-power interpretation 
that is the one that generalizes to (n, k) garnes in general. The (3, 2) game 
also has three "totally discriminatory" solutions V~ = V ° = {x ~ A: x i = 0} = 
{x E A: xj + x l = 1} for {i, j, l} = {1, 2, 3}. These eorrespond to a minimal 
winning coalition { j, l} forming and bargaining over how to split the one unit. 

The (4, 3) game has a unique "symmetric" stable set V s composed of the 
three line segments: 

[(½, ½, o, o), (o, o, ½, ~)l, 

[(½,0, 1,0), (0, ½,0, ½)], 

[(½,0, 0, ½), (0, ½, 1,0)1. 

This can be interpreted as any two complementary two-person coalitions 
pairing oft against each other and playing the pure bargaining game between 
each other. The two players in the same minimal veto-power coalition must get 
the same amount. This garne also has four totally discriminatory stable sets 
V ° = { x E A : x  i : O } : { x E A : x ( { j , l , h } ) : l }  for { i , j , l , h } = { 1 , 2 , 3 , 4 } .  
These correspond to a minimal winning coalition of three players playing the 
resulting three-person unanimity game. The (4, 3) garne also has discriminatory 
stable sets with d > 0 as well as a great number of nondiscriminatory and 
nonsymmetric stable sets. 

The four-person (n, k) garne (4, 2) is nonsuperadditive (improper) since, for 
example, v(12) + v(34) = 1 + 1 > 1 = v(1234) = v(N). This game does, how- 
ever, have four finite, "nonsymmetric" stable sets of the form 

V i = { X ~ A : x  i=x j=Oandx  h=x t=~} ,  

where {j, h, l} = N - i .  The set V~ is symmetric with respect to the three 
players j, h, and l. Player i is excluded first by {j, h, l} who have veto-power. 
They then play the three-person, constant-sum game in Example 4. This results 
in a minimal winning coalition (h, l} excluding a player j and splitting the one 
unit. However, the two excluded players also could form a minimal winning 
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coalition {i, j} in this improper garne, so that this simple economic interpreta- 
tion is questionable for such nonsuperadditive garnes and nonsymmetric stable 
sets. The stable sets V~ are examples of what are called "semi-simple" stable 
sets. This garne (4, 2) also has a unique finite "symmetric" stable set of the 
form 

= 1  f o r s o m e i ~ N }  V s = {x  E A:  x i : 0 and xj = x h = x t ~ 

The (n, k) games with odd n and k = (n + 1) /2  are called the (n, k)  simple 

majori ty  garnes. There are unique finite and symmetric stable sets V s for these 
garnes which are composed of the n ! / m ! ( n  - m)! distinct imputations that are 
permutations of the components of 

( 1 / m ,  1 / m , . . . , 1 / m , O , . . . , O ) ,  
« L  s v 

m n - m  

where m = (n + 1) /2  is the size of a minimal winning or minimal veto-power 
coalition M. The m players in some M each get the same amount 1/m while the 
other  n - m players are "completely defeated" and get 0. This game also has 
"completely discriminatory" stable sets of the form VON-M = {X E A: x i = 0 
Vi ~ N - M} as well as many other stable sets. 

7. Symmetric stable sets 

Many n-person games have a great number of different stable sets and many of 
these are of a rather bewildering nature. On the other hand, when one restricts 
the classes of games or the types of stable sets allowed, then a rauch more 
pleasing theory emerges, at least for the smaller values of n. In the previous 
section we introduced the class of symmetric garnes and provided a few 
examples of stable sets for some garnes in this class. We also referred to some 
of the stable sets described above as being "symmetric",  although we have not 
yet given a formal definition of this latter use of the term. Symmetric stable 
sets very orten provide useful interpretations and valuable insights into the 
likely dynamics of coalition formation and bargaining mechanisms in various 
political or economic situations. Symmetric stable sets also provide beautiful 
geometric structures, which extend to higher dimensions as weil. In this section 
we provide a brief introduction to the symmetric theory of stable sets and 
provide a few references which lead into what is now a very extensive literature 
on this topic. 

We defined an n-person game (N, v) to be symmetric if coalitions of the 
same size have the same value, i.e., v (S )  = v ( T )  whenever s = Isl = I r l  = t. 
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We will now define what is meant by a "symmetric stable set". Let 7r be a 
permutation of the integers (players) 1,2, : . . ,  n, and define 7rx= (x=(1) , 
x ~ ( 2 ) , . . . ,  xT(ù) ) to be the corresponding reordering of the components of the 
imputation x = (xl, x 2 , . . . ,  xù). For x @ A and B C A we also define 

(x)  = {y E A: y = 7rx for any permutation 7r} 

and 

( B )  = { y E A :  y =  ~rx for any 7r and any x C B } .  

The subset B is said to be symmetric if (B)  = B. In particular, a stable set V is 
symmetric if ( V ) =  V. For example, the six permutations of (1 ,2 ,3 )  are 
(1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), and (3, 2, 1). The finite stable 
set in Example 4 

v ~ = {(½, ½,o), (1 ,o ,  ~), (o, ½, ½)} = ( ( I ,  1 ,o) )  

is symmetric in this technical sense, because these six permutations merely map 
each of these three imputations into the set V s. For example, if ~r = (3, 1, 2), 
then ~" maps 1 into 3, 2 into 1, and 3 into 2; and 1r applied to ( I ,  1 ,0)  is 
( I ,  0, I ). Thus ( V s) = V s. 

The word "symmetric" is also used on occasion in a weaker sense. We say 
that the simple garne in Example 3 is symmetric with respect to the two players 
1 and 3, although this three-person garne is not a symmetric game. An 
interchange of players 1 and 3 in the characteristic function of this game leaves 
it unchanged. We also refer to the one stable set V s =  {xE  A: x 1 = x3} as 
being symmetric in the players 1 and 3, whereas this is not a symmetric stable 
set. The simple garne in Example 10 and the main simple stable set presented 
there also has several symmetries in this weaker sense. The improper simple 
and symmetric (n, k) garne (4, 2) had four stable sets V~ described above. Each 
V~ is symmetric in the other three players j, h, and l; but it is not a symmetric 
stable set. 

One of the early major results on symmetric stable sets for general ( n , k )  
games was given by Bott (1953). He proved that there is a unique symmetric 
stable set V s for every (n, k) garne with k > n/2.  Recall that these games are 
defined by v ( S ) =  1 for s/> k and v ( S ) =  0 for s < k. V s for the case where 
k = (n + 1)/2 and n is odd (i.e., the constant-sum case) was presented in the 
previous section, and is the only case where V s is a finite set of imputations. 
Coalitions of size k are minimal winning ones, whereas coalitions of cardinality 
p = n - k + 1 are the minimal sized ones with veto power. To describe Bott's 
solution, let n = q p  + r, where q and r a r e  integers with 0 ~  < r < p .  Then 
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consider the set B of all the imputations a E A of the form 

lg : ( a l , . . .  » a l ,  a 2 , . . ,  a 2 , . . ,  aq . . . .  , a q , O  . . . .  , 0 )  . 

P p p r 

Bott 's unique stable set V s consists of the set (B)  of all permutations of all 
imputations of the form a. V s for the (3, 2), (4, 3), and (n, (n + 1)/2) games 
presented before are of this form. The (5, 4) game has 

V s = ({(a 1, a2, a3, a4,  0)  ~ A: a 1 = a 2 and a 3 = a4} ) . 

Bott 's stable set has an interesting interpretation. The n players in N 
partition themselves into q disjoint coalitions M1, M a . . . ,  Mq of size p, each 
of which has veto power, plus a set R of r "left over" players. The coalitions Mj 
act as players in a q-person unanimity (n, k) garne with n = k = q which can 
have any payoff (bl ,  b 2 , . . . ,  bq) in its core C(q)  = A ( q ) .  Each player i in a 
particular blocking coalition Mj will then receive the same amount a i = b / p .  
Meanwhile, any of the excluded players i in R will receive x i = 0. This theme of 
garnes played between blocking coalitions Mj and then an equal split within 
each Mj persists for more complicated symmetric stable sets for symmetric 
games, as demonstrated by Heijmans (1987). 

The result of Bott presented above can be extended to nonsuperadditive 
(improper) (n, k) garnes where k ~< (n + 1)/2. In this case too there is a unique 
symmetric stable set V s given by 

V s = ( ( 1 / ( n -  k +  1 ) , . . ,  1 / ( n -  k +  1 ) , 0 , . .  , 0 ) ) .  

n-k;i-~ ~-;=r 
For a proof of this, as well as extensions of the above work to "semi- 
symmetric" stable sets and to nonsimple symmetric garnes, consult Muto 
(1978, 1980). 

The nature of all stable sets for all three-person games was exhibited in 
Section 4. An examination of these for the symmetric three-person games 
shows that there is precisely one symmetric stable set for each such game. 
Nering (1959) showed that symmetric stable sets exist for every four-person 
symmetric game and that they are not always unique. Heijmans (1987) has 
described all symmetric stable sets for all symmetric four-person games. His 
reduction techniques allow one to reduce the problem to one in fewer 
dimensions. He thus analyzes a handful of cases in a planar triangle, reminis- 
cent of von Neumann and Morgenstern's analysis of all three-person games, to 
arrive at his results. Muto (1983) also described symmetric stable sets for all 
symmetric five-person garnes with nonempty cores, and provided sufficient 
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conditions for the uniqueness of symmetric stable sets for symmetric n-person 
garnes with nonempty cores. 

Symmetric stable sets have been found for many other special classes of 
n-person garnes for arbitrary n as well as small n. Lucas (1966) generalized the 
results for n = 3 to n-person garnes with 1 = v(N) >1 v ( N -  i) >i 0 and v(S) = 0 
for all S with s < n - 1. Hart (1973, 1974) has described symmetric stable sets 
for some production eeonomies. Many of the above results on (n, k) garnes can 
be extended to nonsimple games in which the minimal winning coalitions are 
replaced by maximal "vital" coalitions M which can have v(M) < 1. (Maximal 
vital coalitions are roughly speaking "per capita best" and they ought to be 
"blocked in a minimal way".) Surveys of work on symmetric stable sets can be 
found in the references by Heijmans (1986, 1987) and Muto (1978, 1979a, 
1980, 1982a, 1982b, 1982c). Furthermore, many of the symmetric stable sets 
can be extended with little modification to games which are not symmetric. For 
example, the "symmetric type" stable sets in Lucas (1966) provide a stable set 
for all n-person garnes with v(S) = 0 for s < n - 1. 

Although much is known about symmetric stable sets, there still remains 
many unanswered questions. It is not yet known whether every symmetric 
garne has a symmetric stable set. A partial negative answer is given by Rabie 
(198»). 

The uniqueness of many such symmetric stable sets illustrated above does 
not persist for many nonsimple garnes nor for general n-person symmetric 
games as n increases. The great multiplicity of stable sets for nonsymmetric 
games seems to recur in the symmetric case as well, but at slightly higher 
values of n. Nevertheless, the symmetric games alone provide a rich theory 
from both a purely mathematical and an applied point of view. 

8. Discriminatory stable sets 

We have seen how minimal veto-power coalitions play an important role in the 
interpretation of symmetric stable sets. A set of such disjoint "blocking" 
coalitions combine to just form a winning coalition. They in turn play a (lower 
dimensional) unanimity game among the coalitions themselves acting as 
players. Players within a particular blocking coalition receive the same amount 
while any player in no such coalition obtains nothing. Note that the coalitions 
forming a winning coalition in this manner need not constitute a minimal 
winning coalition. For example, in the (n, k) garne (10, 7), we have n = 
qp + r -- 2 × 4 + 2. Two blocking coalitions require eight players, whereas only 
seven are needed to win. Nevertheless, the notion of "minimal winning" is a 
crucial concept in its own right. A group of players in a garne may weil proceed 
immediately to form a minimal winning coalition M, and then undertake the 
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m-person pure bargaining game among themselves and assign zero to those in 
N -  M. We know, for example, that any n-person simple game has a stable set 
of the form 

V M = {x  E A :  x ( M )  = v ( N ) )  

for any minimal winning coalition M. The stable sets V ° in Example 4, as well 
as V ° and V3 ° in the nonsymmetric game in Example 3, are of this form. 

In those cases where the players i in N - M obtain v ( i )  = 0 we say that they 
are "totally defeated"  or they are "completely discriminated" against. This 
gives rise to the question of whether or not the players in N -  M could obtain 
positive amounts without losing the possibility of having stable sets. This leads 
to the consideration of what äre called "discriminatory" stable sets. 

Consider an n-person game (N, v) and a given imputation a E A. Let  
D = {il, i z , . . .  , id) be any proper  subset of N and let a D -- (ai~, a ! 2 , . . .  , aid ) 
be the restriction of a to the coalition D. A set of the form 

V ~ = { x E A : x  i = a  i V i E D }  

is called a discriminatory set (or a pure ly  discriminatory set by some authors). 
The members of D are the discriminated players and those in the com- 
plementary set B = N -  D a r e  the bargaining players. When the players in D 
receive the payoff a D, then the amount v ( N ) -  a ( D )  is available to be 
distributed to the players in B. For  some coalitions D, and certain values in a D, 
the sets V~ will be stable sets for the game, and these are called discriminatory 

stable sets. 
The three stable sets V~ = { x E  A: x i = d} = {x  E A :  x ( N -  i) = 1 -  d} for 

i ~ {1, 2, 3) in Example 4 are discriminatory stable sets when a z = d is in the 
range 0 ~< d < 1/2. More generally, one can show that the (n, k) game with 
k = n - 1 has a discriminatory stable set 

V d : (X ~ A:  x i : d )  : {x  E A:  x ( N  - i)  : 1 - d )  

whenever  0 ~< d < 1/(n - 1). If we let d/> 1/(n - 1) in V~ then the imputation 
(0, 1 / (n  - 1 ) , . . ,  1 / ( n  - 1)), which is the "most  difficult one to dominate",  
would not be in Dom V~; and thus external stability fails to hold for Vf. 

Discriminatory stable sets also can exist for games which are neither 
symmetric not  simple. The three-person garne with v(123) = v(12) = v(13) -- 1, 
½ < v(23) < 1, and v ( S )  = 0 for all other  S C {1, 2, 3}, has discriminatory stable 
sets of the form 

Va = {x @ A: x I = d)  
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whenever 1 -  v(23)~< d < ~-. In this example the idea of "minimal winning 
coalition" is replaced by the concept of a "minimal 'vital' eoalition" B = {2, 3}. 
A coalition S is v i t a l  if there exists any x and y E A such that x dom s y, hut 
x dom T y is impossible for any proper subset T C S. 

The game in Example 6, which has an empty core, has no discriminatory 
stable sets. A discriminatory s e t  of the form 

Vl a = {x E A: xl = d} 

taust have v ( N )  - v(23) = 1 ~< d, or v(23) = 4/> 5 - d, in order for the coalition 
{2, 3} to be effective and to have the imputation (5, 0, 0) in Dom V~. But no 
element in V1 a can then dominate the imputation (0, 3, 2). If x E V~ a and 
x dom12(0, 3, 2), then x 2 > 3 and x I = d t> 1 implies x(12) > 4 = v(12). Like- 
wise, if x dom13(0, 3, 2), then x 3 > 2 and x 1/> 1 implies x(13) > 3 = v(13). 
These contradict the effectiveness condition (2) in the definition of domination. 
By symmetry, (2, 3, 0) cannot be in Dom V~ with d/> 1. Similarly, (2.5, 0, 2.5) 
cannot be in Dom V2 a for any discriminatory set of the form V2 a with d i> 2. 
n-person games with nonempty cores do not have discriminatory stable sets 
unless the core C has dimensions less than n - 1, the dimension of A. For 
example, the garne in Example 5 has no discriminatory stable set. However, 
the three-person garne v(123) = v(12) = 1, v(13) = v(23) = ½, and v ( i )  = 0 for 

0 _ { x E A : x  3 = 0 } w h i c h  i E {1, 2, 3} has a unique discriminatory stable set V 3 - 
contains a nonempty core, i.e., C is the line segment joining (2, ½,0) to 
(½, ~,0). 

The four-person, monotone simple garne with minimal winning coalitions 
{2, 3, 4} and {1, i} for i = 2, 3, or 4, has two types of discriminatory stable sets: 

V1 d = {x E A: x I = d} 

f o r O ~ < d < 2 ,  and 

V ° = { x  E A :  x i = x j  = O} 

for i and j ~ {2, 3, 4}. The latter three sets totally discriminate against the two 
players i and j. If we tried to let xj = a i > 0 in this case, then the imputation 
(1, 0, 0, 0) is not in Dom V ° /y. 

There is a good deal known about discriminatory stable sets. Owen (1965, 
1970) has studied the four-person garnes and has characterized them for all 
proper n-person simple games. Owen (1966, 1968a), Shapley (1967), Weber 
(1973a, 1973b, 1973c, 1982), and Sokolina (1986) have described discrimina- 
tory stable sets for special classes of garnes with arbitrary n. Heijmans (1986) 
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has characterized them for certain symmetric garnes and provided a systematic 
approach for checking when discriminatory sets are stable sets for any game. 
Additional references on this topic can be obtained by consulting these papers 
and the most recent survey by Heijmans (1991), which gives a complete 
characterization of discriminatory stable sets. 

9. Finite stable sets 

Another special class of stable sets of major interest are the finite sable sets, 
i.e., stable sets made up of only a finite number of imputations. These have 
provided new insights in various problems in the social sciences and also invite 
additional interpretation and uses in the physical sciences. These finite stable 
sets give rise to very interesting geometrical structures and basic combinatorial 
patterns which are of significant interest from a purely mathematical point of 
view. Although no finite stable sets at all exist for most games, there are many 
special types of games for which they do exist and provide beautiful discrete 
structures. In previous sections we have already encountered several finite 
stable sets which were also (totally) symmetric or at least (partially) symmetric 
in some subset of the player set N. In this section we will look at finite stable 
sets for constant-sum games. In particular, we will consider the four-person 
games in some detail. We will also illustrate one additional infinite class of 
finite stable sets and give references to some other infinite families of finite 
stable sets. We will assume in this section that our games are in (0, 1) 
normalized form. 

The only three-person garne to have a finite stable set is the constant-sum 
game in Example 4. It is given by 

v s =  ((½, -~, 0)) 

and illustrated in Figure 4. This is a special case of the unique symmetric stable 
set that is finite for the (n, k) games when n is odd and k =  (n + 1)/2. The 
general case was given in Section 6 and the stable set is of the form 

' m " " ' m '  " ' "  

where m = k = (n + 1)/2 and V s consists of n ! / m ! ( n  - m ) !  imputations. The 
unique symmetric stable sets V s of Bott presented in Section 7 for the 
superadditive (n, k) garnes are not finite when k > (n + 1)/2. However, the 
unique symmetric stable set V s for the nonsuperadditive (n, k) games given by 
Muto (see Section 7) is finite, as are his "semi-symmetric" stable sets for such 
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(n, k) games when k < (n + 1)/2. We also saw in Example 10 that the main 
simple stable set of von Neumann and Morgenstern for the six-person game 
presented there was finite but not (totally) symmetric. 

Many of the finite stable sets will be symmetric with respect to some subset T 
of the set of players N. We thus introduce the notation (x)  T = { Y ~ A: y is 
obtained from x by permuting the coordinates x i where i ~ T} and for B C A 

(~)~= U (~)~-. 
x Œ B  

Note that (X)N and ( B ) N  are the same as (x} and {B}, respectively, which 
were defined in Section 7. 

Finite stable sets are known to exist for many four-person garnes. We will 
examine, in particular, the four-person, constant sum garnes (in (0, 1) normal- 
ized form). In this case the characteristic function v is determined by only the 
three values, 

b I = v(14),  b2= v(24),  b 3 = v(34),  

because v(1234) = v(N - i) = 1 and v(i) = 0 for all i ~ N, and v(]h) = 1 - v(i4) 
for {i, j, h} = {1, 2, 3}. Each such garne corresponds to a point b = (b~, b2, b3) 
in the unit cube U. It is sufficient, using symmetry, to consider only the games 
(N, v) corresponding to the points b in the cube which are in the four-sided 
polyhedron 

P = { b E  U: bl ~b2<~b3 and b 2 + b 3 ~ < l } .  

P has vertices (0, 0, 0), (0, ½, ½), (½, ½, 1) and (0, 0, 1). Von Neumann and 
Morgenstern (1944) and Mills (1954, 1959) determined finite stable sets for the 
four vertices of P, three of the six edges of P, and in a three-dimensional 
neighborhood in P near the center (½, ½, ½) of the cube U. Two edges and one 
face of P are known to possess no finite stable sets. 

The three vertices b ° = (0, 0, 0), b 1 = (0, 0, 1) and b 2 = (0, ½, ½) of P give 
rise to the following finite stable sets V(bi), i = 0, 1, 2, consisting of three, four, 
and seven imputations, respectively: 

V(b°) = ((0, ½, 1,0)}{1,2,3 } , 

V(b') = {(~, ~, 0, 1)} U ( (~ ,0 ,  2,0)}{~,2,6~ ' 

V(b 2) = {(0, 1 , ~, ½ 0)} U ((0,  1, 1, 1)){1,2,4 } U {(0, 1, 1, 1)}{1,3,4 } 

The stable set V(b °) is merely the stable set V s for the three-person constant- 
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sum game, since player 4 is a "dummy" in the game corresponding to b °. The 
vertex b 3 = (½, ½, ½) in P corresponds to the only four-person, constant-sum, 
symmetric garne, and it is known to have at least the following three types of 
finite stable sets of 10, 13, and 13 points, respectively: 

Vl(b 3)__ <(1, ½, 1,0)> U<(1, ½, 1, ~_)>, 

V2(b3(c)) = {(¼, ~, ¼, ¼)} U <(3 _ c, ~ - c, 2c, ¼)>, where 0 ~ < c ~  < ~4 , 

V3(b3; 1)= {(¼, ¼, ¼, ~)} U <(0, ¼, 3, 3)>{2,3,4 } 

U <(¼,0, 3, 3)>{2,3,4 } U <(1, i ,  1, 3)>{2,3,4} , 

The last one V3(b3; 1) isolates upon player 1, and is not symmetric. Three 
similar stable sets V3(b3; i) exist which likewise focus on players i = 2, 3, and 4, 
respectively. The stable sets V ( b l ) ,  V(b2), Vi(b 3) and V3(b 3, 1) are illustrated 
in Figure 8. 

X 3 
X 3 

(I/3, 

• (0,W2,1/2,0) 
,X 

XI X2 ~ X2 

/ 
V(b') x4 V(b2 ) 

Vj(b 3) 
X I 

V(b3;l) 

Figure 8. Some four-person finite stable sets. 



Ch. 17: Von Neumann-Morgenstern Stable Sets 581 

Some finite stable sets are known for four of the six edges of P. 
(i) The "main space" diagonal b = (z, z, z), 0 ~ z ~< ½, which connects the 

vertices b ° = (0, 0, 0) and b 3 = (½, ½, ½) of P has the finite stable sets 

Vz[bO 463] = ( ( 1  z 1 z z ) )  
4 ' 2  4 ' 2  ' 0  {1,2,3} 

U 4 '  2 4' 0, {1,2,3} 

( (1  z l z z 2)) 
U 2 '  2 2 '  2 '  {1,2,3} 

w h e n 0 < z ~ < 2 ; a n d  

V r 4 b  3 ((1 , t3  , b31 = V2[G,  ~b31 U 2 
4 '  2 2 '  4 '  {1.2.3} 

when ~ ~< z <~ ½. These stable sets have 9 and 15 imputations, respectively. 
(ii) The "main face" diagonal b = (0, z, z), 0 ~< z ~< ½, which connects the 

vertices b ° and b z = (0, ½, ½) of P has the seven-point finite stable set 

~ ( ~ 1  )} ( ( l z l  z)) 
Vz[b °,b 2]= 0 , ~ , ~ , 0  U 2 2 '  2 ' 0 ' ~  {2.3} 

((1 z l ~  I) ((~ l z 2)/ 
U 2 '  2 '  2 ,0  U - z ,  2 '  2 '  ' {2,3} {2,3} 

which converges to V(b °) a n d  V(b 2) as z approaches 0 and ½, respectively. 
Mills (1959) showed that this is the unique finite stable set for the interior of 
this edge. 

(iii) Consider the other "space" diagonal (½ - z, ½ - z, ½ + z), 0 ~< z ~< ½, 
which joins the vertices b 3 and b I = (0, 0, 1) of P. For 0 ~< z < ~ ,  there is the 
stable set V(R(e)) given below. Von Neumann and Morgenstern (1944) stated 
that finite stable sets exist for the intervals ~ < z ~< ~ and ~ ~< z <~ ½, but they 
did not explicitly display them. It is not known whether finite ones exist or not 
when z = ~ .  

(iv) The "interior" edge b = (z, ½, ½), 0 ~< z ~< ½, which joins the vertices b 2 
and b 3 of P has the finite stable set V(R(e)) given below when 2 < z ~< 21-. No 
finite one is known for 0 < z ~< 2. 

(v) and (vi) Mills (1954, 1959) proved that no finite stable set can exist for 
garnes corresponding to the interiors of the other two edges of P, i.e., 
b = ( 0 , 0 , 2 z )  o r ( 0 , ½ - z ,  ½ + z )  f o r 0 < z < ½ .  

Mills (1959) proved that there exist no finite stable sets on the face of P with 
b 1 = 0 ,  except for the edge b = ( 0 ,  z , z )  where 0 ~  < z ~  <½ and the vertex 
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b I = (0, 0, 1), which were covered above. There are no published results about 
finite stable sets for the interiors of the other three faces of P, except where 
these faces meet the solid region discussed in the next paragraph. 

Von Neumann and Morgenstern (1944, 3rd edn., pp. 321-329) showed the 
existence of finite stable sets in a three-dimensional region R in P located near 
the center point b 3 = (1, 21_, ½) of the unit cube U. For any b ~ P let 

u~(b) = ( - 1  + b~ + b 2 + b») /2 ,  

u2(b ) = (1 - bi + b 2 - -  b3) /2 ,  

u3(b ) = (1 + b 1 - b 2 - b • ) / 2 ,  

u4(b ) = ( 1 - b  1 - b  2 + b 3 ) / 2  , 

and then for i E N = {1, 2, 3, 4} define 

_u(b) = minui(b ) and ü(b) = maxi t t i (b )  

Whenever b ~ P and 2 ü < 2e ~< u then there is the finite stable set 

{ u i + e  if y i i l }  } 
V(R(e)) = x C A: x i = ui if Yi - 1 , where y E V2(b3(0)) , 

u i - 2 e  if y~ 

which has 13 points and is somewhat similar to V2(b3(c)) presented above when 
c = 0. One can prove that the required bounds on the parameter e are satisfied 
when b is nea r  b 3, e.g., one can pick the region to be 

R = {b E P: 5b I + Sb 2 q- b 3 > 5} . 

There are four constant-sum, weighted majority garnes [q: Wl, w2, w3, 
Wg, w5] with five persons that have finite stable sets. Their main simple stable 
sets are as follows. 

(i) [3: 1, 1, 1, 1, 1]. This is the five-person simple-majority game (5, 3) that 
has the unique symmetric finite stable set 

va= ((~, 1, 1,o,o)) 

consisting of 10 imputations. 
(ii) [4: 1, 1, 1, 2, 21 has the seven-point stable set 

V = { ( 0 , 0 , 0 ,  1 1)} U ~ ( 1  1 0  , 1,0)){1,2,3 } U ( ( 1  ¼ ,0 ,0 ,  1)){1,2.3 ) . 
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(iii) [5: 1, 1,2,  2, 3] has the five-point stable set 

V= { ( i  1, O, O, 3)) to ((0, O, 2 O, 3)){3,~ } to ( ( 1  O, 2 2 0)){1,2) " 

(iv) [4: 1, 1, 1, 1, 3] has the five-point stable set 

V= { (1  1 1, 1»0)} U ( (1 ,0 ,0 ,0 ,  3)){1,2,3,4 } . 

There is rather little known about the existence and nature of finite stable 
sets for n-person garnes with n > 4. A few families of finite stable sets for 
infinitely many values of n have been discovered in addition to those previously 
mentioned. Only one additional and more recent result in this direction will be 
presented here. 

McKelvey and Ordeshook (1977) described new finite nonsymmetric stable 
sets VS(a, 3") given below for the simple majority game (5, 3) or [3: 1, 1, 1, 1, 1] 
which consist of ten imputations of the form 

(a,a,b,O,O) (O,a,O,b,a) (a,O,O,a,b) (b,O,a,O,a) (a,b,O,O,a) 

(O,O,b,a,a) (a,O,a,b,O) (O,a,a,O,b) (b,a,O,a,O) (O,b,a,a,O), 

where 2 a + b = l  and 1 < b < ½ .  [When a = l  (or b = ½ ) ,  then the set 
V5(1 ,3 ' ) to  ( (1 ,  I ,  1, 1 ,0 ) )  is a stable set.] Each set VS(a, 3")is a proper 
subset of the symmetric set ((a, a, b, 0, 0 ) ) =  W 5 of 30 points. There are 
several such stable sets VS(a, 3") for each value a depending upon the 
particular selection 3' of ten such imputations from the set W s. 

For the nine-person simple majority game (9, 5) or [5: 1, 1, 1, 1, 1, 1, 1, 1, 1] 
Michaelis (1981) found analogous types of stable s e t s  V9(a, 3") of 126 imputa- 
tions each of which is a subset of the symmetric set ((a, a, a, a, b, 0, 0, 0, 0)) 
= W 9 of 630 points and where 4a + b = 1 and 1 < b < ½. [When a = 1 (or 
b = 3), then V9(1,3")tO ( (~ ,  1, ~, 1, ~_, ~ , 0 , 0 , 0 ) )  is a stable set.] He  also 
proved that there are no such stable sets contained in W 7 = 
((a, a, a, b, 0, 0, 0)) for the seven-person simple majority garne. 

It has also been shown that when n is odd and not of the form 2 p - 1, then 
the simple majority garne [ ( n + 1 ) / 2 :  1 , 1 , . .  ,1] has various stable sets 
V'(a, y) of ((n+nl)/2) imputations each. 

These are proper subsets of the symmetric set ( ( a , . . . ,  a, b, 0 , . . . ,  0))  = 
W" of ((n+1)/2)((n+~)/2) points and have (n-1)a/2+b=l  and 2/ 
(n + 3) < b < 4 / ( n  + 3)(or 2/(n + 3) < a < 2 ( n  + 1)/(n + 3 ) ( n -  1)). No stable 
set of this form can exist when n is of the form 2 p - -  1 ,  because ((n +~)/2 ) is then 
odd and the following characterization is impossible to achieve. 

One can characterize these stable sets Vn(a, y) as the subsets of 
((a . . . .  , a, b, 0 . . . . .  0)) = W n which are complete in the sense that for each 
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S C N  with IS[ = (n - 1)/2 there is a unique imputation x with x i =0 for all 
i ~ S, and c o m p l e m e n t a r y  in the sense that if x E V n ( a ,  T), then x' is also in 
this stable set where x' i = a when x; = 0 and x~ = 0 when x i = a. The detailed 
proof of this characterization and of the existence of such sets appears in 
Lucas, Michaelis, Muto and Rabie (1981, 1982). 

Many of the particular games mentioned so far belong to a special class of 
garnes known as "extreme" garnes. This class of garnes contains most of the 
garnes for which finite stable sets have been determined, and it provides a 
useful scheme for studying garnes with finite stable sets. A brief introduction to 
extreme garnes is presented in Lucas and Michaelis (1982). A more detailed 
exposition is given in the monograph on this topic by Rosenmüller (1977). 
Simple garnes and finite stable sets have many other connections with other 
discrete structures in traditional mathematics such as finite projective geomet- 
ries [for example, see Richardson (1956) and Hoffman and Richardson 
(1961)]. 

It is true that an arbitrary n-person cooperative garne rarely has any finite 
stable sets. There is, nonetheless, an extensive and very rich theory about this 
topic which is of great interest in its own right from both a theoretical and 
applied point of view. Von Neumann and Morgenstern (1944) created stable 
set theory as an applied subject for use in the social and behavioral sciences. 
Finite stable set theory often does correspond to obvious social outcomes and it 
has also provided new insights into nonobvious group behavior. Experimental 
work on multiperson group interactions often conforms to these theoretical 
outcomes. Furthermore, it appears as though the theory of finite stable sets 
should be of major interest as pure geometry and combinatorics, as weil as 
having potential applications in other directions such as the physical sciences. 

Much of traditional geometry deals with points, lines, and subspaces, and 
their interrelations. Many contemporary fields such as discrete optimization, 
however, are also concerned with nonlinear spatial notions of ä more "direc- 
tional" or "angular" nature, e.g., cones and polytopes. These higher-dimen- 
sional objects may display new types of geometrical or combinatorial relation- 
ships. So finite stable sets should be considered as a new subject somewhat like 
the existing areas of finite projective geometry, or various discrete systems of 
designs or schemes. Recall that the domination cones of any imputation is a 
finite set of open "generalized orthants". A finite stable set V gives rise to a 
finite number of such overlapping orthants which c o v e r s  precisely the set 
A -  V. This provides a new type of geometry of points and "space" filling 
cones emanating from these points. 

As combinatorial objects, finite stable sets have a variety of possible 
applications to areas such as statistical designs and scheduling theory as 
suggested in Lucas, Michaelis, Muto and Rabie (1982). Different parts of a 
stable set can be considered as "multidimensional keys" and "locks", or codes. 
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There are also many physical systems, such as crystals, molecules, atoms, and 
nuclei, where "bodies are held in position in space". The forces between the 
particles would appear to be less than uniform in all directions. Finite stable 
sets, which often display partial symmetry as well as full symmetry in some 
cases, may give insights into what physical configurations can arise when 
noncentral force fields are involved. 

I0. Some conclusions 

Work by Emile Borel and John von Neumann on matrix games in the 1920s 
eventually led to the theory of n-person noncooperative garnes as weil as 
various results about equilibrium outcomes. Although individual illustrations of 
cooperative garnes appeared for some time before the famous book by von 
Neumann and Morgenstern (1944), they presented the first general model and 
solution concept for the multiperson cooperative theory. There are now several 
variations and extensions of their model, plus some two to three score of 
alternate solution concepts. One now views stable set theory as only one of 
several approaches for analyzing coalitional games. Although there may be 
some shortcomings with stable set theory from an applied point of view, it is 
nevertheless one of the most interesting and richest of these theories mathe- 
matically. 

Stable sets are defined in terms of two simple conditions: internal and 
external stability; along with a rather simple preference relation called domina- 
tion. These stability concepts, (3) and (4), are rather basic and fundamental 
mathematical notions, and presume very little about the nature or structure of 
social institutions and interactions. Similarly, the definition of dominance is 
quite simple and straightforward and arises in other contexts. It does use the 
relation "greater than" in (1) and it sums numbers in the effectivity condition 
x(S)<~v(S) given in (2). [The models for garnes without side payments 
generalize condition (2) from closed half spaces to other regions in space 
subject to certain natural restrictions.] So the assumptions built into the 
dominance relation are also very minimal. In light of the very general nature of 
the classical model of stable sets, it is truly amazing how many insights into 
social economic, and political behavior it does provide. 

Stable sets often predict likely social structures and how groups will organize 
themselves. They show the important role of minimal winning coalitions and 
minimal sized veto (or blocking) coalitions. They often show how a garne will 
decompose into subgames between critical coalitions. They exhibit a variety of 
standards of behavior and delineate bargaining ranges. They predict the 
formation of cartels and illustrate the stability of discrimination and its limits. 
It is quite remarkable how so few assumptions can lead to so many insights into 
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coalition formation, competition, and distributions of wealth. There are also 
many situations where stable set theory matches weil with experimental results. 

On the other hand, we saw in Section 5 that stable set theory has some 
highly undesirable properties. Although some lack of uniqueness for coopera- 
tive garne solution concepts seems reasonable, there are clearly too many 
stable sets for most games. At the same time there are some games, presum- 
ably rare, for which no stable sets at all exist. A particular stable set may also 
contain many imputations. This latter multiplicity is not so bothersome, 
however, when one views stable set theory as delineating the possible coali- 
tions and resulting "subgames" that might be pursued in group bargaining, 
rather than predicting a precise outcome. One can also add additional axioms 
to conditions (3) and (4) in our definition of stable set and thus cut down on 
the multiplicity of such solutions. For example, we saw that many games had 
unique symmetric stable sets. Moreover, one can make changes in the defini- 
tion of dominance which can restrict the number of stable sets. Lucas (1965a) 
showed that "almost all" four-person games in "partition function form" have 
a unique stable set, even though this theory includes the von Neumann- 
Morgenstern model as a "highly degenerate" special case, For some other 
possible changes in the dominance relation see Lucas and Maceli (1978). 

When economic problems are formulated as n-person cooperative garnes 
they usually have nonempty cores, and the core typically serves as a satisfac- 
tory solution concept. Many of the other known solution concepts also give 
results "akin" to the core for such games. In fact, there are several major 
theorems about various solution concepts, both cooperative and noncoopera- 
tive, converging to the same outcomes (orten a unique "price" vector) as the 
number of players in the garne approaches infinity. Stable set theory appears as 
a noticeable outlier to these important results. On the other hand, there are 
many garnes which have empty cores. These arise most often in modeling 
politics and voting systems. In these situations stable set theory is often more 
informative than "core-like" solution concepts. Even in economics, stable sets 
may provide significant insights if one forgoes the common assumption of 
"perfect competition". The theories on bargaining sets, kernels, and nucleoli 
discussed by Maschler in Chapter 18 of this Handbook also give interesting 
results for garnes with empty cores. Note that a game has a nucleolus point for 
each coalition structure (partition) of the player set N; and not just the one 
nucleolus outcome v(N) for this grand coalition N which is always in the core 
when the latter is nonempty. So stable sets and bargaining set theory are still 
among the most insightful models if one is concerned about games with empty 
cores or if one has some doubt whether perfect competition is involved. It is 
interesting to note that the notion of the core of an n-person game arose three 
times in the volume by von Neumann and Morgenstern (1944), but they chose 
to stress the stable set instead. They were working initially with essential 
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constant-sum garnes which have empty  tores.  Moreover ,  it was known that 
Morgenstern  was a strong critic of many assumptions and approaches taken in 
economic theory,  including the idea of perfect competit ion. It  is of further  
interest to note  that two of the most popular  solution concepts applicable to 
games with empty  cores, stable sets and bargaining set theory, are known to 
have some close connections in some cases. The "symmetr ic  type"  stable sets 
can be built up f rom the nucleoli in a natural way for some special classes of  
garnes, as discussed in Lucas (1990). 

Princeton University Press, a major  publisher of important  mathematics  and 
science books,  recently entered the text by von Neumann  and Morgenstern 
(1944) into a publishers '  competi t ion as the most influential book  published by 
them. In addition to its major  impact on game theory and social science, it 
initiated or made significant contributions to several other subjects. This 
includes extensive form and normal  (strategic) form garnes, monotone  simple 
garnes, the "first value theory"  (the main simple stable sets), finite stable set 
theory,  and the most  popular  approach to utility theory (in the appendix of 
their second edition in 1947). Although there are some serious flaws in their 
theory of stable sets, it is nevertheless a very rich and insightful contribution 
and is still a leading contender  for explaining much of what occurs in 
mult iperson competi t ions,  especially in the case of  games with empty  cores. 

The  book  by Shubik (1982) has an extensive bibliography on garne theory,  
and his Appendix  B provides a most  helpful descriptive list of over  100 
references on stable set theory through 1973. 
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1. Introduction 

In this survey I shall try to lead the reader along the same path I have followed 
since beginning to work in the area of solution concepts in cooperative garne 
theory. For me it has been a fascinating experience, to watch how a few, 
almost naive ideas, in the creation of which I was participating, developed into 
deep mathematical theorems, growing to an important chapter in game theory 
and proving useful in several fields of the social sciences. This could not have 
been achieved without the combined effort of many scholars, from practically 
all over the world. I wish to express here my deep appreciation and gratitude 
to those scholars, many of whom are personal friends and colleagues. Research 
in this field is still growing. Indeed it has recently gained new impetus, so that 
it is time to pause and review what has been accomplished. This is the aim of 
the survey. 

While preparing this survey I had several ambitions. I wanted it to serve as 
an introduction to the interested reader who does not know the theory. At the 
same time, I wanted to bring the reader to the frontiers of today's research. I 
also wanted to add critical comments on the significance, scope, and limitations 
of the bargaining set and the solution concepts derived from it. Such comments 
in the literature are scarce, mainly because these were not known at the time of 
the creation of the solution concepts. I needed time and experience to get a 
clearer understanding of these issues. 

While preparing this survey I had to decide whether to report also on 
unpublished results, or to stay only with the published ones. Certainly, 
research memoranda orten undergo thorough changes before they get pub- 
lished. They fiave not been refereed and some of them will never be printed. 
Nevertheless, I decided to report on certain unpublished results because I felt 
that I could not otherwise do justice to the subject. 

The bibliography includes an extensive literature on the subjects of this 
survey-  as complete as I could make it. I covered the Mathematical Review 
citations throughout 1991. Some citations were obtained only by searching 
cross references, when I could not get the reprints, or was unable to read them 
due to language barriers. Some references contain important recent contribu- 
tions that could not be surveyed because they are so recent. 

The references are grouped into subjects to enable their users to find 
material relevant to a particular topic. 1 

I intend to keep in my computer an updated file of the references and to 
make it available upon request. Therefore, I shall be grateful if authors 

1References which do not end with bold face letters are references cited in this survey, but are 
not related to the bargaining set-kernel-nucleolus theory. 
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continue sending me their current papers related to the bargaining set, kernel, 
and nucleolus, both as working papers and as reprints. 

After a short section on terminology and notations (Section 2), the bargain- 
ing set, kernel, and nucleolus are introduced, together with their presolutions. 
Their main properties are described and ways to compute them are discussed 
(Sections 3, 4 and 5). 

Section 6 is devoted to the axiomatic foundation of the prekernel and the 
prenucleolus. These axiomatizations provide a theoretical justification of these 
solutions concepts, which is important in view of the fact that the rationale 
embodied in the original defnition is quite obscure. The case of the prenu- 
cleolus is particularly interesting because it enables a deep understanding of the 
difference between this solution and the Shapley value. 

In Section 7 we provide dynamic processes which lead the participants in a 
cooperative game to reach the bargaining set, or the kernel, or the nucleolus, 
or many other bargaining sets via a sequence of steps that make good intuitive 
sense. The existence of such processes is a unique feature of the bargaining set 
theory. Similar processes for other solution concepts are hardly known at 
present. The development of these ideas not only introduced dynamics into 
game theory, it also enriched the theory of dynamic systems by introducing 
vector-valued Lyapunov functions to treat set-valued dynamical systems. 

The ideas embodied in the bargaining set, kernel, and nucleolus spawned 
many other related solution concepts. Only the most related ones are reported 
in Section 8 as the scope of this chapter did not allow me to do full justice to 
the topic. Nevertheless, I have tried to indicate what directions the various 
modifications have taken. 

Sections 9 and 10 are devoted to applications. Section 9 describes some 
classes of games of which the solutions, or at least their properties, are known. 
Section 10 discusses certain subjects in economics for which the solutions 
discussed in this survey were recommended. Section 11 treats some psychologi- 
cal aspects, namely to what extent people behave, or are willing to behave, in 
accordance with the recommendations of the bargaining set. It turns out that 
although some laboratory experiments are quite supportive, others exhibit 
issues that are rauch deeper and require further research to arrive at better 
normative theories. The section concludes with the analysis of actual elections 
in some European countries and in Israel. 

In Section 12 we report on the status of the bargaining set theory for games 
without side payments, and in Section 13 on results concerning games with an 
infinite number of players, countable number as well as a continuum. The 
research for these classes of games has only begun, and we are far from having 
a rich theory with justifications from many directions as we have in the 
side-payment, finite-number-of-players case. However, important results have 
already been achieved in these cases as well, which makes me hope that a solid 
theory is only a matter of time. 
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2. Basic definitions and notations for games with side payments 

W e  shall  be  c o n c e r n e d  with  c o o p e r a t i v e  garnes wi th  s ide p a y m e n t s  (N;  v),  
w h e r e  N = {1, 2 , . . . ,  n} is the  set  ofplayers and  v: 2 N--> ~ is the  characteristic 
function. 2 F o r  m a t h e m a t i c a l  conven ience  we shall  r equ i r e  tha t  

v(~)  = 0 .  (2.1)  

N o t e  tha t  we do  no t  r equ i r e  the  game  to be  supe radd i t i ve ;  howeve r ,  we shall  
s o m e t i m e s  r equ i r e  tha t  it is zero-monotonic; 3 na me ly ,  tha t  if (N;  w) is ze ro-  
n o r m a l i z e d  and  s t ra teg ica l ly  equ iva l en t  to (N;  v) then  

S, T C N ,  T D S ~ w ( T ) > ~ w ( S ) .  (2.2)  

This  class con ta ins  the  class of  supe radd i t i ve  games .  
F o r  resul ts  conce rn ing  the  ba rga in ing  set  we m a y  in t e rp re t  the  worth v(S) of 

a coa l i t ion  4 S to be  an a m o u n t  in monetary units tha t  the  coa l i t ion  S can m a k e  
( in  a ce r ta in  t ime  p e r i o d )  if it  is formed. 5 F o r  resul ts  conce rn ing  the  ke rne l  and  
the  nuc leo lus  we mus t  r equ i r e  tha t  ut i l i t ies  a re  t r ans fe rab l e ,  be c a use  these  
so lu t ion  concep t s  a re  no t  cova r i an t  wi th  respec t  to ut i l i ty  t r a n s fo rma t ions  
which  m e r e l y  p r e s e r v e  m o n o t o n i c i t y  and r isk avers ion .  6 To be  on  the  safe s ide,  
we a s sume  tha t  when  a coa l i t ion  is f o r m e d ,  it is well  k n o w n  wha t  the  p r o c e e d s  
will  be  and  these  a re  independent of  actions taken by members outside 7 S. 

P r e s u m a b l y ,  when  p l aye r s  face such a game  they  will end  up fo rming  dis]oint 
coalitions 8 which fo rm a pa r t i t i on  of  N,  n a m e l y  a set of  n o n e m p t y  and  d i s jo in t  

ZAlso called the coalition function. 
3Also called weakly superadditive. 
4Subsets of N will be called coalitions. 
STo this we add the (obvious) assumption that each player prefers more money to less and the 

(restrictive) assumption that each player is risk averse in his preferences for money. This is much 
less than requiring that utility for money be transferable. Indeed, if n/> 3 and the players do have 
transferable utility for money, then there exists an infinitely divisible and desirable commodity- 
which can be called "money" - towards which the players' utilities are linear. We only require that 
they be concave. [See Aumann (1960, 1967) for a discussion of this issue.] 

6However, interpreting v(S) as money makes sense even for these solution concepts if the rules 
of the garne preclude lotteries on outcomes and money has an absolute meaning (e.g., when a 
judge is called to prescribe outcomes in monetary units and he does not care about the players' 
utilities towards money). 

7Of course, there are other interpretations of v(S) which do not require this heavy restriction on 
the games- for example, the highest security level that can be achieved by joint action of members 
of S. Even though we also employ such interpretations from time to time, one taust remember that 
they are open to criticism and each application which uses them should be approached cautiously. 

sIt is customary to justify the requirement of forming disjoint coalitions by saying that if, in 
reality, two overlapping coalitions form we would express this by saying that their union actually 
formed. 
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subsets of N the union of which is N. Such a partition will be called a coalition 
structure (c.s.). 9 

An imputation for a coalition structure ~3 is a payo f f  vector x =  
(xl ,  x2, . . . , xn) satisfying 1° 

x ( B )  = v ( B ) ,  all B in N (group rationality),  (2.3) 

x i i> v({i}) ,  all i in N (individual rationality). (2.4) 

A preimputation for N is a group rational payoff vector; i.e., (2.4) is not 
required. We shall denote by X ( N )  and X°(N)  the spaces of all imputations 
and preimputations for the c.s. N, respectively. We shall sometimes write 
X [ X  °] instead of X ( { N } ) [ X ° ( { N } ) ]  and call this the imputation [preimputa- 
tion] space o f  the game. 

3. The bargaining set 

Consider a group of players N who face a game (N; v). A basic question would 
be: What  coalitions will form and how will their members share the proceeds? 
In my opinion, no satisfactory answer has so far been given to this important 
questionJ 1 The theory of the bargaining set answers a more modest question: 
How would or should the players share the proceeds, given that a certain c.s. 

has formed? From a normative point of view, the reason for asking such a 
question sterns from the need to let the players know what to expect from each 
coalition structure so that they can then make up their mind about the 
coalitions they want to join, and in what configuration. From a descriptive 
point of view, one can reason as follows. During the course of negotiations 
there comes a moment when a certain coalition structure is "crystallized". The 
players will no longer listen to "outsiders",  yet each coalition has still to adjust 
the final share of its proceeds. (This decision may depend on options outside 

9See Aumann and Drèze (1974) for a discussion concerning the interpretations of this concept 
and for the study of various solution concepts for coalition structures. 

l°By x(S) we mean Ei~ s xi, if S ~ ~J, and 0 if S = 0. 
11True, if v(N) > Z {v(B): B Œ ~ }, for every partition ~ of N, considerations involving Pareto 

optimality yield some ground to the claim that N should form. These arguments are not too 
compelling, however,  because it is possible that Pareto optimal imputations will be contested by 
some players who can achieve more if they defect and form their own coalition. Think of the 
three-person zero-normalized game, where v({i, j}) = 1 whenever i ~ j  and v({1, 2, 3}) = 1.2. By 
the symmetry of the situation, if N forms, t h e  players should end up with equal share; but then, 
every two-person coalition would prefer to defect with a (1/2, 1/2) split. The players may find it 
too risky to share later the extra 0.2 in a three-person coalition formation. Thus, it is perhaps safer 
to predict that in such garnes a two-person coalition will form, even though the outcome will not be 
Pareto optimal. 
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the coalition, even though the chances of defection are slim.) With these ideas 
in mind, let us introduce the bargaining set. 

Definition 3.1. Let x be an imputation in a game (N; v) for a coalition 
structure ~3. Let k and l be two distinct players in a coalition B of ~3. An 
objection of k against l at x is a pair (C; y), satisfying: 

(i) C C N ,  k E C ,  t ,~C; 

(ii) y ~ N C ,  y(C)=v(C);12 

(iii) Yi > xi, all i E C .a3 

It is important to understand that the purpose of claiming an objection is not 
actually to defect from N. After all, we have said that N has been crystallized. 
The purpose is to indicate to l that k can get more by taking his business 
someplace else, and since this can be done without the consent of player l 
(l ~ /C) ,  perhaps l is getting too much and should transfer some of his share in 
v(B) to k. Should he? Not necessarily! Player l should not yield if he can 
protect his share x~; namely, if he has a counter-objection in the following 
sense: 

Definition 3.2. Let (C; y) be an objection of k against l at x, x E X ( ~ ) ,  
k, l E B E ~3. A counter-objection to this objection is a pair (D; z), satisfying: 

(i) D C N ,  I C D ,  k ~ D ;  

(ii) z E g ]  D, z (D)=v(D);  

(iii) z/i> y / ,  all i in D f3 C ; 

(iv) z i>txi, all i in D\C.  

In the counter-objection, player l claims that he can protect his share by 
forming D. He does not need the consent of k (k ~ ' D ) ,  he can give each 
member of D his original payment,  and if some members of D were offered 
some benefits from k, he can match the offer. TM Note that k can object against l 
only if they belong to the same coalition of the coalition structure. 

We say that an objection is justified if it has no counter-objection; otherwise, 

12~2 c is the set of real t CI-tuples (I CI being the cardinality of C) whose coordinates are indexed 
by the members  of C. Thus, ~ (i,/) is the set of pairs (yl,  yj) with real components .  

13We could have replaced the strong inequality hefe by a weak one for all i's, except one, and 
get the same bargaining set. 

14We could even insist on a strong inequality in (iii) and still get the same bargaining set. 
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we say that the objection is unjustified. With these definitions we arrive at the 
bargaining set. 

Definition 3.3.15 Let (N; v) be a cooperat ive game with side payments .  The 
bargaining set 16 ff//il(~3 ) for  a coalition structure ~ is 

~ i 1 ( ~  ) := {x E X(Y3): every objection at x can be countered} 

= {x E X ( ~ ) :  there exists no justified objection at x } .  (3.1) 

If  X(93) is replaced by X ° ( ~ ) ,  the set is called the prebargaining set and 
denoted  5~~ il. 

It is customary to shorten and write ~ i  1 instead of ~ i l ( { N } )  and call it the 

bargaining set o f  the garne. (I t  is also customary to talk about  ~~1 and mean  the 
union of the various ~ i 1 (93)'s. The reader  should be able to deduce the correct 
meaning f rom the context.) Similar conventions are for the prebargaining set. 

One  rationale for the bargaining set is this: there has been a bargaining 
process which has stabilized on a certain coalition structure 93 and a certain 
imputat ion x. Stability then implies that,  for this g3, the conditions of the 
bargaining set are met.  

The  bargaining might take the following course. During the negotiation 
stage, all kinds of offers and counteroffers are made for the purpose of trying 
to convince potential  partners  to form coalitions. Then there comes a stage at 
which a coalition structure crystallizes. Nobody,  at that stage, really wants to 
leave the coalition in which he is a partner ,  but the players still argue about  the 
p roper  way to share the proceeds.  At  this stage, when a player expresses a 
justified objection,  it should be interpreted as if he is saying to the other  
player: " I  like you, and want to be with you in the coalition, but you are 
getting too much. In fact, not that I really want to leave you, but I can take my 
business elsewhere and earn more.  If  you try to find other partners you will 
find yourself  losing. So why shouldn' t  you give me some of your share and we 
will both  be happy?"  Expressing an unjustified objection is not convincing. By 
expressing a counter-objection,  the other player is in fact saying: " I  like you 
too in our coalition, but I do not feel that I should compensate  you. Even if 
you move  away, I can still protect  my share without you. Sometimes,  I shall 
even destroy your ambit ion - which happens if our new potential  partners  have 

15The concepts of an objection and a counter-objection, as weil as another version of a 
bargaining set, were originally discovered by Aumann and Maschler (1964). The present bargain- 
ing set, among other variants, was implicitly hinted there but not developed. In view of Theorem 
3.5, the present bargaining set turned out to be more fundamental. It was introduced in Davis and 
Maschler (1963, 1967). 

16The various indices attached to ~ area result of "historical" idiosyncrasies. They came I~o 
distinguish this bargaining set from others. 
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a nonempty intersection; but even if this is not the case, and we can both gain 
by departure, as long as we are in the same coalition (and the same coalition 
structure), there is no reason for  me to yield any part o f  my  share to you. If we 
move to another coalition structure, that is another story. We shall then have 
to look for bargaining set outcomes in that coalition structure. It may weil be 
that we all will like that coalition structure more than the present one."  

I elaborated on the above rationale in order to answer two frequently asked 
questions: Why stop at counter-objections and not talk about counter-counter- 
objections, etc.? What kind of an objection is it if both players can move 
somewhere else and both make profit? (This happens if the partners in the 
objection and in the counter-objection form disjoint sets.) The answer is that it 
is not the purpose of an objection to carry it out. Rather, it is to convince your 
partner to give you part of his share, and stay in the coalition without carrying 
out any threat. Nowhere is it said that one coalition structure is preferred to 
others. Of course, the above arguments will be greatly enhanced if we can back 
them up by a dynamic process that leads the players to some outcomes in the 
bargaining set. This aspect will be discussed in Section 7. 

It should be clear ffom the definitions that nowhere do we claim that all 
points in ~ i  1 have equal merit. They do not! It is claimed only that the points 
not in ~ e  1 are unstable. The bargaining set, like the core, eliminates imputa- 
tions, narrowing the predictions (or recommendations) to a smaller set of 
imputations. 

Example 3.4. Let 17 N = 123, v(i)  = 0 Vi Œ N,  v(12) = 20, v(13) = 30, v(23) = 
40, v(123)= 42. The bargaining set for each coalition structure is 

~ ] ( { 1 , 2 , 3 }  

JA]({12,3}) 

~~({13 ,2})  

~ ] ( { 2 3 , 1 } )  

~]({123})  = 

) =  {(0 ,0 ,0)} ,  

= {(», 1 » , 0 ) } ,  

= {(» ,0 ,2»)} ,  

= {(0, 15,25)) ,  

{(4,14,24)}.  

In this particular example we see that the bargaining set for each c.s. consists 
of a one-element set. The bargaining set for the c.s. {1, 2, 3} is obvious. When 
a two-person coalition forms, each member receives his quota 18 in the game. 
For the grand coalition, the players reduce their quotas equally. 

17In order  to simplify notation, we shall orten ignore some braces and commas when describing 
coalitions and coalition structures. For example, we shall write 12 instead of {1, 2) and {12, 3, 45) 
instead of {{1,2}, {3}, {4, 5}}. 

1*The quota vector o~ = (wl, o9» co3) is defined by the system of equations: wi + % = v(i, j), all 
i, j E N ,  i ~ j .  Here,  w = (5, 15,25). 
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The figures in this example show that the bargaining set does not predict that 
("rational") players will end up at one of the above outcomes. Rather, it seems 
that the players will look at these outcomes as a starting point for further 
bargaining, leading to outcomes that deviate from the above outcomes by a 
"second order of magnitude" - hence the title "bargaining set". For example, 
the players may reason that a two-person coalition is bound to arise, because 
the difference of 1 is significant enough to cause two players to join and reject 
the third. Then, each player will be willing to sacrifice a small amount from his 
quota in order to guarantee his participation in a two-person coalition. Under 
another variant, player 3, who has more to lose if left alone, may be willing to 
pay, say 1, to players 2 and 3, in order to "convince" them to form a 
three-person coalition. This is certainly better for him than to remain alone. 
For experimental purposes, two conjectures are plausible: 

(i) The derivations will be small, and the average over many garnes, ending 
with formation of the same c.s., will be the bargaining set outcome (up to a 
"least noticeable difference"). The underlying assumption here is that willing- 
ness to shave one's quota will be the same for all parties concerned. 

(ii) The tendency to sacrifice will be larger for players having higher quotas, 
because these players have more to lose if left alone. Thus, the above averages 
will tend to be more egalitarian than the payments in ~ i  1. 

We shall discuss the results of some experiments in Section 11. It will be seen 
that reality exhibits facets deeper than these oversimplified conjectures. 

Clearly, the bargaining set ~il  contains the core for each c.s., ~9 because at 
core imputations there are no objections, and a fortiori no justified objections. 
In general, the bargaining set may contain imputations outside the core. 

The core, however, is empty in many cases, so that one advantage of the 
bargaining set over the core is the following important result: 

Theorem 3.5. For every garne (N; v), if X ( ~ ) # O ,  then ~ i 1 ( ~ ) # 0 .  

The original proof of this theorem was given by Davis and Maschler (1963, 
1967) for ~ = {N} and by Peleg (1963a, 1963d, 1967) for an arbitrary c.s. A 
key result needed in both proofs is the fact that the relation "a player has a 
justified objection against another player" is acyclic (though not necessarily 
transitive). The proof of the theorem uses the K.K.M. Lemma. 2° The extension 
of this lemma to a Cartesian product of simplices, needed for the case of a 
general c.s., uses the Brouwer fixed point theorem. 

Maschler and Peleg (1966) gave an algebraic proof of Theorem 3.5. That 
proof was subsequently simplified by Schmeidler (1969a, 1969b), who invented 

19The core cB(~) for a c.s. ~ is {x E X(~ ) :  x(S)>~ v(S), all S, S C N} [Aumann and Drèze 
(1974)]. 

The Lemma of Knaster, Kuratowski and Mazurkiewicz (1929). See also Kuratowski (1961). 
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the nuc l eo lu s  2a in order to exhibit a unique point in the kerne l .  22 The kernel 
was known to be a subset of the bargaining set. 

Each of the two types of proof has its own merits. The algebraic proofs 
immediately introduce several related solution concepts and exhibit inclusion 
relations among them. The analytic proof yields ideas that help in establishing 
some analogous proofs for the case of garnes without side payments (see 
Section 12). It is also shorter if one wants only to prove the nonemptiness of 

~i1(~). 
Another type of proof of this theorem involves dynamic systems. This will be 

discussed in Section 7. 
Undoubtedly, the core is a very important solution concept since it yields 

itself easily and convincingly to many applications. Nevertheless, it would be a 
mistake to say that the bargaining set should be considered only if the core is 
empty. We refer the reader to Maschler (1976), where an economic example of 
games with a nonempty core is given, yet points in the bargaining set outside 
the core make more sense intuitively. 

It is quite straightforward to show that the bargaining set is covariant with 
respect to strategic equivalence93 Thus it passes one requirement needed in 
order to earn the title of "a game theoretical solution concept". What can we 
say about its structure? Maschler (1966) has translated the definition of ~ ]  
into a system of weak linear inequalities involving v, connected by the 
connectives "and" and "of".  This shows that ~ ] ( ~ )  consists of  a finite union 
of  compact convex polyhedra (i.e., polytopes). 

The fact that the inequalities are weak also shows that the bargaining set is an 
upper-semi-continuous function of  v. It need not be lower-semi-continuous, as 
has been shown by Stearns (1968) by means of an example; so the question 
that now comes to mind is whether the bargaining set admits, at least, a 
continuous ske l e ton .  24 An affirmative answer was given by Schmeidler (1969a, 
1969b) and Kohlberg (1971), who proved by different methods that the 
nucleolus for ~ is a continuous skeleton. 

Another consequence of the nature of the system of inequalities of Maschler 
(1966) is that if the characteristic function takes values from an ordered field, 25 
then all the vertices of the polyhedra that constitute the bargaining set must 
have coordinates taken from that ordered field. 

21See Section 5. 
ZZSee Section 4. 
23I.e., if (N; v) and (N; w) are two garnes defined on the same set of players, and if there exists a 

positive number a and a vector/3 in 9] u such that w(S) = av (S )  +/3(S)  for all S, then,  for all ~ ,  
J/U,(N; w; ~ ) =  a3/Ul(N; o; ~ ) + /3. 

24I.e., whether  a point can be chosen in each ~ia(N; v; ~ ) ,  for the class of garnes over a fixed 
set of players, and a fixed coalition structure, that varies continuously with v. 

25Say, the field of rational numbers. 
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Something these inequalities do not provide is an easy way to compute the 
bargaining set for arbitrary "generic" games. One reason is that these 
inequalities involve knowing all the minimal balanced collections 26 over n - 1 
players, needed for merely listing all the inequalities for 27 ~ ia({N}). Another, 
more fundamental reason is that the amount of computations is enormous. For 
example, to compute by these inequalities the bargaining set M ia({N}), where 
N =  1234, one has to inspect 150 ~2 systems, each consisting of 41 linear 
inequalities connected by the connective "and". True - many of these systems 
have no solution and others yield only imputations already given by others, 28 
but at present there is no known way to teil a computer what systems could 
safely be ignored99 

It is interesting to note that it takes microseconds if one wants merely to 
i know whether a certain imputation belongs to ~ a({N}), N = 1234. There are 

only 197 easy inequalities to check! Thus, for any particular game with v taking 
rational values, one can try to determine the maximal denominator that a 
vertex coordinate can take and then capture the vertices of the bargaining set 
by a grid search. 3° Of course, one then has to determine which of the vertices 
(and other points captured by the grid) belongs to what polytope, and this may 
require additional analysis, and even brute force, if the bargaining set happens 
to have many polytopes. 

I have occasionally heard the argument that the bargaining set is useless 
because it is hard to compute for a generic game. Admittedly I am biased, but 
nevertheless let me offer some counter-arguments. 

(1) If the players really want that kind of stability which is reflected in the 
bargaining set, namely to be immune against objections, what is the sense in 
offering them other solutions? It is as if you want to buy a car and the salesman 
offers you Encyclopedia Britannica because he is unable to deliver the car. 

(2) Should we discard the concept of "equilibrium" for noncooperative 
games simply because equilibrium points cannot be computed for any medium 
size generic game? With such arguments we can do away with almost any 
solution concept in garne theory. 31 

(3) For important classes of games it is actually possible to compute the 
bargaining set, or at least parts of it, without referring to the inequalities 
described above. This is because the characteristic functions of these games 

26See Shapley (1967). 
Z7One needs  less for other  coalition structures.  
28If N = 123 there are 36 such systems,  yet ~ i l ( N  ) consists of one polytope. 
zgwhen  comput ing  the bargaining set manually,  one often sees many short  cuts. The  present  

au thor  has  computed  the bargaining set of  several four- and five-person garnes in a reasonable 
amoun t  of  t ime,  but  he does not  know how to instruct a computer  to "perceive" such short  cuts. 

3°See A u m a n n ,  Peleg and Rabinowitz (1965), where such a procedure was employed in the case 
of the  kernel.  

31It takes 2" - 1 storing steps just  to store a generic n-person garne on a computer .  
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have special properties. Examples of this kind will be discussed in Sections 9 
and 10. 

(4) It would be nice, of course, if one could compute the bargaining set for 
any garne. But how often does the need really arise to do so for a generic 
game? Was the core, for example, orten computed for such garnes? 

(5) Properties of the bargaining set frequently shed interesting insight in 
applications, even if the bargaining set is not computed in full, or in part. 

(6) I have not lost hope that methods will eventually be found which will 
enable one to know exactly what polytopes of the bargaining set should be 
computed. This may reduced the computation time considerably. We did have 
such luck in connection with the kernel (Section 4). 

So the players have the bargaining set at their disposal- computed and 
represented to them. Can we say something about the coalition structures that 
may form? How do coalition structures come about anyway? There may be 
several views on this subject. Sometimes coalition structures come about for 
"personal reasons" which are consciously independent of the characteristic 
function (yet, payoff division is still based on options outside these coalition 
structures). Sometimes they come about simply because players find them 
beneficial. We refer the reader to Aumann and Drèze (1974) for an excellent 
discussion of some of the issues involved. It seems to me, however, that from a 
normative point of view the issue of coalition formation is far from trivial. For 
example, here is a suggestion of Shenoy (1979). 32 A c.s. ~~ should not survive 
if there is another c.s. ~2, and a B in ~2, such that for every y in Mi~(~l) there 
is an x in ~i1(~2), satisfying x i > yi for each i in B. Under such circumstances 
we say that G a dominates ~1. Shenoy then proves that for every three-person 
game in which X ( ~ ) ¢ 0  for every Yg, there are undominated coalition 
structures. Whether this is true for larger garnes remains open. Shenoy's 
suggestion yields plausible surviving coalition structures for three-person 
games. For larger garnes it can be criticized, for example, on the ground that B 
is perhaps counting too heavily on the members of N \ B  to agree to form ~2 
and share specified proceeds in the bargaining set. 

To be able to handle coalition formation normatively, one has to take into 
account that coalitions need not form simultaneously. Sometimes players 
should rush to form coalitions. In other cases it is beneficial to wait until others 
form coalitions. In Section 11 we shall encounter cases where real players 
consciously considered such possibilities. Come to think, perhaps it is beneficial 
for players to pay some money to other players in order to encourage them to 
form certain coalitions at certain stages of the process of coalition formation. 
These aspects of coalition formation certainly deserve careful study. 

3ZShenoy puts this and other suggestions in a framework of a general theory on coalition 
formation. 
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4. The kernel 

The kernel was introduced as an auxiliary solution concept, the main task of 
which was to illuminate properties of the bargaining set and to compute at least 
part  of this set. No intuitive meaning was attached to it. 33 Nevertheless, it was 
soon discovered that the kernel had many interesting mathematical properties 
that reflected in various ways the structure of the game. Gradually it became 
an important  solution concept in its own right. Its intuitive meaning became 
clearer only at a later stage. The present section will follow this historical path. 

Definition 4.1. Let  x be an imputation [a preimputation] in a game (N; v) for 
an arbitrary c.s. The excess e(S, x) o f  a coalition S at x is v(S) - x(S) if S # 0, 
and 0 if S =0 .  

Thus, e(S, x) represents the total gain (loss, if negative) that members of S 
will have if they depart  from x and form their own coalition. Note that if 
x C X ° ( ~ ) ,  then e(B, x) = 0 whenever  B E ~ .  

Definition 4.2. Let  x be an imputation [a preimputation] in a garne (N; v). Let  
k and l be two distinct players in N. The surplus o f  k against l at x is 

sk,,(x) : = max e(S, x ) .  (4.1) 
S~k 
S ;~t 

Thus, sk,t(x ) represents the most player k can hope to gain (the least to lose, if 
negative) if he departs from x and forms a coalition that does not need the 
consent of l, assuming that the other  members of this coalition are happy with 
their payments in x. 

Definition 4.3. Let (N; v) be a game and let Y3 be a coalition structure. The 
kerne134 ff{( ~3 ) for  ~3 is 

Y~(g~ ) := {x @ X ( ~  ): sk,z(x ) > sl,~(x ) ~ x, = v(l), 

all k, l E B E ~ ,  k # l } .  (4.2) 

The prekerne135 ~Y~(~3) for Y3 is 

~ Y { ( ~ ) ' = { x E X O ( ~ ) : S k d ( X ) = S t , k ( X ) ,  all k, l E ß ~ ~ ,  k # l ) .  (4.3) 

33Except if one was wilting to embark on the obscure notion of interpersonal comparison of 
utilities. 

34Davis and Maschler (1965). 
35Maschler, Peleg and Shapley (1972, 1979). 
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We shall often write Y{ instead of Y{({ N}) and call it the kernel o f  the garne. 
A similar shortcut will be adopted for the prekernel. (Sometimes we shall use 
Y{ to mean the union of the X ( ~ ) ' s ,  similarly for ~Y(.) 

Note that 

Y'Yt'(,.~ ) N X ( ~ )  C_ Yt'(~), (4.4) 

and indeed it may weil happen that ~Y~ contains payoffs which are not 
individually rational. 

Suppose that sk, t > sl, x at x, then player k might request player l to transfer 
some amount to him on the ~round that, in case of departure, he hopes to gain 
more than [lose less than] l. 6 From the point of view of the prekernel [kernel] 
player l should yield [unless he is already driven to bis "minimum" v(l)] so that 
such an x is not "balanced".  This argument of "fair share" is reasonable only if 
one can assume (and make sense of it) that the utilities of all players to the 
same amounts of money are interpersonally the same. 37 Another  way to make 
sense out of this reasoning is to assume that it is imposed on the players by 
some "big brother" who cares only about money and pays no attention to the 
utilities of the players towards this money. 38 Both these interpretations, as well 
as the decision to base every thing on "best hopes",  are not too attractive. 

Theorem 4 .4 .  39 For every game (N; v), ~Y{(~) # 0. If x ( ~ )  # 0, then also 
Y{( ~ ) # O. The last set is a subset i o f  d~ 1 ( ~ ) .  

The various nonemptiness proofs use techniques similar to the proofs of 
Theorem 3.5. Note that the relation k > l at x, which means sk,i(x)> st,k(x) 
and x~ > v(l), is transitive - not merely acyclic. The proof that the kernel is a 
subset of the bargaining set follows from the fact that if l ~> k then k has no 
justified objection against l. 

It easily follows from the definition that the kernel [prekernel] is covariant 
with respect to strategic equivalence. It also follows that both are finite unions 
of polytopes. On the face of it, it is almost as difficult to compute the kernel as 
to compute the bargaining set; nevertheless Aumann,  Peleg and Rabinowitz 
(1965) and Aumann,  Rabinowitz and Schmeidler (1966) succeeded in comput- 

36These departures are virtual: it may weil happen that to gain the surplus, both players need 
intersecting coalitions. 

37This is hecause sk. t is measured in k's utility and st.k is measured in l's utility. 
38Perhaps this is not too rar fetched: If you and I find a $100 bill and go to an arbitrator to deeide 

how to split it, I am quite sure that most arbitrators will not care about our utilities for money and 
will suggest that we share the dollars equally. 

39Davis and Maschler (1965), Maschler and Peleg (1966), Maschler, Peleg and Shapley (1979), 
Schmeidler (1969a, 1969b). 
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ing the kernel for many simple games. 4° Observing the results of these 
computations enabled Maschler and Peleg (1966, 1967) to analyze the structure 
of the polytopes which compose the kernel and to reduce considerably the 
number  of systems of inequalities that need be considered in order to compute 
the kernel. 41 The amount of computation can further be reduced if the 
characteristic function possesses certain "order  relations". We refer the reader 
to these rather technical papers, where he will also find several examples of 
kernels which were computed manually. From these examples we wish to 
report  here the following interesting garne: 

Example 4.5. The seven-person projective game. 42 This game is given by: 
v(124) = v(235) = v(346) = v(457) = v(561) = v(672) = v(713) = 1, v(S)  = 1 
whenever S is a superset of the above seven coalitions and v(S) = 0, otherwise. 
The kernel of this garne, for the grand coalition, consists of seven straight-line 
segments, all emanating from the payoff: (1/7, 1/7 . . . . .  1/7) and ending at a 
point, where a minimal winning coalition shares its value equally among its 
members.  Thus, in this game, the kernel reflects a confrontation between two 
"forces" that may exist: one, in which the players say "we are all in a similar 
situation so let us share the proceeds equally". The other, when members of a 
minimal winning coalition say "the hell with the others, let us take the 1 and 
share it equally among ourselves". 

We see from this example that the kernel may contain more than one 
polytope. 43 How big can the dimension of these polytopes be? The answer is 
given by the following: 

Theorem 4 .6 .  44 Let ~ = { B~ , B 2 ,  . . . , B i n }  be a coalition structure over a set 
o f  players U. Denote II N It :=  maxl~j~m IBjl, where I Bjl is the cardinality o f  Bi. 
The maximal dimension o f  a polytope in Y{( N ), taken over the class o f  all games 
on N,  is equal to 45 

4°Garnes for which the characteristic function takes onty the values 0 and 1 are called simple 
garnes. 

41Based on the above papers, Kope|owitz computed the kernel of all six- and seven-person 
zero-sum weighted majority garnes and all six-person superadditive weighted majority games 
[taken from Isbell's (1959) list.] The average computation time was 1 second for the six-person 
games and 6-7 seconds for the seven-person games. However, some seven-person garnes took 
40-60 seconds. Based on the above papers, Beharav (1983) has constructed a computer program 
for finding the kernels of up to five-person garnes. 

42Introduced in Von Neumann and Morgenstern (1953). 
43It need not eren be connected [see Kopelowitz (1967) and Stearns (1968)]. 
44Maschler and Peleg (1966). 
45The term 1/2 is needed in order to get a formula that works also when I1~ II = 1. [ . .  ] means: 

the integer part of "• • •" 
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n -[log2(11 ~ II- ½)]- m - 1. (4.5) 

The above formula is sharp; namely, for every n there are games for which a 
polytope in their kernel attains this dimension. 

This strange formula is derived by analyzing the inequalities which determine 
the polytopes of which the kernel is constituted. 

Example 4.5 indicates that the kernel is sensitive to various symmetries that 
may exist in the game. The following results substantiate this claim. 

D e f i n i t i o n  4.7. A player k is said to be at least as desirable as a player l in a 
0-normalized garne (N; v), if 

v(S U {k})/>v(SU {l}), whenever k, l f ~ S .  (4.6) 

They are called symmetric if each one is more desirable than the other. 

Theorem 4.8,  46 Let (N; v) be a zero-normalized game. Let x ~ Y l ( ~ )  and 
k, l E B ~ ~ .  I f  k is more desirable than l, then x~ >i x z. In particular, i f k  and l 
are symmetric players, then x k = x 1. 

An immediate consequence of this theorem is that each payof f  vector in the 
kernel o f  a weighted majority game 47 (weakly) preserves the order o f  the 
weights. 

Theorem 4.9. 48 The kernel [prekernel] for the grand coalition is reasonable in 
the sense o f  Milnor; 49 i.e., i f  x E ~{, or x E ~~{, then 

X i ~ max [ v ( S )  - v (S \ { i } ) ]  all i E N .  
S: S 3 i  

In particular, a dummy s° i o receives V(io) at each payof f  o f  Y{. 

(4.7) 

A somewhat similar concept is that of a pairwise reasonable preimputation x, 
which means that for every pair of players i and j in N, i's payoff should not 
exceed j's payoff by more than the greatest amount that i's contribution to any 

46Maschler and Peleg (1966). 
47A weighted majority game [q; wl, w 2 , . .  , wù] is defined by v ( S ) =  1 if w(S)>~q and 

otherwise v(S)= 0. In most applications one requires that ½ w ( N ) <  q < w(N) .  
48Wesley (1971). See also Maschler, Peleg and Shapley (1979). 
49Milnor (1952). See also Luce and Raiffa (1957). 
s°I.e., a player i 0 for which v(S)  - v (S \ ( i o )  ) = v(io), all S, S ~ i o. 
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coalition exceeds j 's  contribution to that same coalition, namely 51 

x i - x j < ~  max [ v ( S U { i } ) - v ( S U ( j } ) ] .  (4.8) 
SC N\{i,j} 

Theorem 4.10. The kernel is contained in the set of  pairwise reasonable 
imputations.52 

Recently, there has been some interesting research whose aim was to find 
what parts of the kernel are contained in the set 53 

5E'={xEX(N):xi>~mi[v] "= mins~i [v(S)-v(S\{i})], all i~N}. (4.9) 
S,~{i} 

This research started with Kikuta (1976) and culminated with the following 
result of Funaki (1986): 

Theorem 4.11. I f  (N; v) is a zero-normalized monotonic garne, then 

ä'{ C 5e U ~ 0 ,  (4.10) 

where ~o is the interior of  the core. In particular, if  5¢ = 0, i.e., r, iE N mi[v ] > 
v (N) ,  then Y{ C ~o, and if the core is empty, or has no interior points, then 
Y { C S L  

A most useful property of the kernel (for the grand coalition) is the fact that 
for "ordinary" games it can be defined by means of equations instead of 
inequalities. This follows from 

Theorem 4.12. 54 For zero-monotonic games, 

Y{({N}) = ~Y{'({N}). (4.11) 

Inside the core there is no need to require zero-monotonicity: 

51This definition, as well as the result that follows, is due to Shapley (private written 
communicat ion at the beginning of 1980). 

SZThe Shapley value is pairwise reasonable too. 
53The requirement  S # (i} is needed to allow for some imputations to be outside of ~q. It also 

makes  sense intuitively. 
54Maschler and Peleg (1967). Actually the theorem is proved there for a somewhat  larger class 

of garnes. The class is further  extended in Maschler, Peleg and Shapley (1979). The theorem 
remains correct also for the kernel  for a coalition structure if the game is also decomposable for this 
c.s. [i.e., for all S, v(S) = Es~ ~ v(S N B)] [see Chang (1991)]. So far, no other  conditions were 
found which guarantee that Y{(~ ) = ~ ä ~ ( ~  ). Zero-monotonici ty is not sufficient. 
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Theorem 4.13. 55 For every garne, 

x(.~) n ~'(~)= y'yc(~)N ~(~). (4.12) 

These results have an interesting geometric interpretation. First take the 
core ~ ( N )  and suppose that it is not empty. It is a polytope in ~t n. Through 
each point x in this polytope pass line segments of the form 

Rk,t(x ) ' =  {y  = x + a"  e h -  « .  e 1" y E ~ ( ~ ) } ,  (4.13) 

where e t denotes the unit vector in the t direction. Pass all lines R~,«(x), where 
k, l E B ~ N. It turns out that max{a:  y E ~ (N)}  = -s l ,x(x  ) and min{a:  y 
~ ( N  )}--s~,t(x ). This brings us to the following charaeterization: 

Theorem 4.14. The payof f  vector x belongs to Y{( ~ ) N ~ (  ~ ) iff  all the above 
straight-line segments are bisected at x. 

The above result holds if one replaces "core" by "(strong) e - c o r e  ' ' 5 6  in the 
following cases: 

(i) The garne is zero-monotonic and ~3 = {N}. 
(ii) The game is zero-monotonie and decomposable for ~3. 

(iii) "Kernel"  is replaced by "prekernel".  
If the game is not of the above type, there still exists a geometric characteriza- 
tion of the kernel intersected with a nonempty e-core, but it is somewhat more 
complicatedJ 7 We refer the reader to Maschler, Peleg and Shaply (1979) and 
to Chang (1991), where the above results are elaborated. 

We can now provide a better intuitive interpretation for the kernel [pre- 
kernel]. The line segment Rk,~(x ) can be regarded as a bargaining range 
between k and l, at x: If player k presses player l for an amount greater than 
max{«:  y E ~(03)}, then l will be able to find a coalition which can block k's 
demand. Similarly, for the other end of R~,~(x). The middle point of R~,z(x) 
represents a situation in which both players are symmetric with respect to the 
bargaining range. Thus, Y((~3 ) N ~(~3 ) is the set o f  payof f  vectors for  which 
every pair o f  players in the same coalition o f  the c.s. is situated symmetrically 
with respect to its bargaining range. This can be regarded as an intuitive 
interpretation of Y( N ~, an interpretation which does not directly employ 
interpersonal comparison of utilities and does not base its arguments on "best 

5SSee Maschler, Peleg and Shapley (1979) for the grand coalition, and Chang (1991) for a 
general c.s. 

56I.e., {x Œ X(~  ): e(S,  x)  <~ ~, all S, S ~ ' ~ ,  S # 0} [see Shapley and Shubik (1963, 1966)]. 
57I.e., for an x on the boundary of X(~) ,  x~ = v ( k ) ,  x I > v( l ) ,  the part of R~. l outside X(~3) is 

allowed to be longer than the part inside. 
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hopes in case of virtual defections".  Points in the intersection of  the kernel and 
the core satisfy a kind of  fair division scheme: 58 

A similar interpretat ion can be provided for the intersection with the 
(strong) e-core,  for the cases stated in items ( i )-( i i i )  above. If  e is large 
enough,  the intersection will contain both the kernel and the prekernel .  Note,  
however ,  that  the bargaining range with respect to the e-core is less convincing 
than with respect to the core, because the é-core  is a less intuitive solution 
concept: it requires the (unrealistic) assumption that there is a cost of de- 
par ture  f rom x which is the same for all coalitions. Thus,  although we have 
here an intuitive interpretat ion for the intersection of the kernel [prekernel] 
with the e-core  as a fair division scheme, we must realize that it is quite 
convincing i f e  = 0, but becomes less so as e becomes larger. 

T h e o r e m  4.14 can be phrased in another  way. For  a fixed pair (k, l) and all 
core points x in ~ ( N ) ,  take the middle points of Rk,t(x ). These constitute a 
hypersurface in ~ ( N ) .  The  intersection of these hypersurfaces for all p a i r s  
k, l E B E ~ ,  k ~ l, is precisely Y{(~3 ) f-I c~(N ). This shows that the intersection 
of  the kernel [prekernel] with the core is a locus of the core for every coalition 
structure. A similar result holds for each e-core. 59 This implies that i f  two 
garnes have the same imputation [preimputation] space and the same e-core for 
a given e and a given c.s., then the part of  the kernel [prekernel] in the e-core is 
identical in both games. I f  • is big enough, then both garnes have the same kernel 
[prekernel]. This can be of help in finding the kernel of one game from the 

60 kernel  of another  garne. 
Any solution c o n c e p t -  and in particular a solution concept like the kernel,  

the definition of which is not intuitively obvious - must be tested if it generates 
reasonable  outcomes for actual games. In all games for which I know Y~(N), it 
yields reasonable outcomes,  or at least outcomes which are not intuitively 
inferior to outcomes of other solution concepts. This is not the case for Y{(N ), 
for c.s. other  than {N}. The following is such an example: 

Example  4.15. N = 12345, v(12) = v(13) = v(14) = v(15) = v(2345) = 100, 
v(S)  = 0, otherwise. 

This game was introduced in Davis and Maschler (1965) under  the title Me 
and My Aunt,  accompanied by an appropriate  scenario. Its superadditive cover 

58Of course, any requirement based on symmetry is enhanced if utilities are, in some sense, 
interpersonally compared. Sirnilarly, any argument based on syrnmetry can be attacked on the 
ground that it does not take into account the possibility that the utility units might be interperson- 
ally unequal. 

SgThis locus, for the kernel, is sornewhat more complicated when 9/¢ ~Y~. 
6°See Maschler, Peleg and Shapley (1979), where this approach was used in order to extend the 

scope of Theorem 4.12. 
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is the weighted majority game [3, 1, 1, 1, 1]. The reader will find in that paper a 
lively correspondence with several distinguished game theorists concerning the 
question: What should the outcome be if the c.s. is {12, 3, 4, 5}? This, and 
more general garnes, called a p e x  garnes ,  61 were tested experimentally in various 
laboratories. 62 The kernel for the c.s. {12345} is (3/7, 1/7, 1/7, 1/7, 1/7), 
which is quite reasonable. The bargaining set for the c.s. {12, 3, 4, 5} is 
{(x, 100 - x, 0, 0, 0, 0): 50 <~ x ~< 75} and this is also reasonable. The kernel for 
this c.s., however,  seems to be the wrong end of the bargaining set, namely 
{(50, 50, 0, 0, 0)}. Undoubtedly,  this is not an outcome one would expect if 1 
and 2 form a coalition. Why do we feel that player 1 is stronger? Of course it is 
easier for 1 to get into a coalition, because he has to convince only one out of 
four players, whereas the others have to get together to form their own 
coalition. But this is not the "faul t"  of the kernel because, if " t ime is money" ,  
communication barriers should perhaps enter the construction of the charac- 
teristic function. It seems to me, however, that player 1 has another source of 
strength which is not captured by the kernel. Even if coalition 2345 forms, he 
can control who should get more among them. If he offers, say, 40 to player 2, 
then the others must come out with, say, (0, 43, 19, 19, 19) in order to beat this 
offer. In fact, precisely this behavior has orten been observed in the experi- 
ments. It seems to me that this power of player 1 should be translated into 
profits when, say, players 1 and 2 decide to form a coalition. 

5. The nucleolus 

The definition of the nucleolus of a cooperative game, though mathematically 
attractive, is quite complicated. It is amazing, therefore,  that it has already 
been applied successfully to several unrelated topics in the social sciences. This 
seetion will provide the definition and some of the basic properties. Applica- 
tions will be discussed in other sections. 

We consider again a game (N; v) with side payments and a closed set X of 
vectors in 9] u. For each x in X, we define a vector O(x) to be 

O(X) := (e(S1, x ) ,  e (S2 ,  x ) ,  . . , e(S2n , x ) )  , (5.1) 

61Namely, games that satisfy v(li) = ql + qi for i = 2, 3 , . . . ,  n, v(2, 3 . . . . .  n) = ql + qz + "" " + 
qù, and v (S )=  0, otherwise [Horowitz (1973)]. 

62Selten and Schuster (1968), Horowitz and Rapoport (1974), Albers (1978), Rapoport, Kahan 
and Wallsten (1978), Rapoport, Stein and Burkheimer (1979), Kahan and Rapoport (1979), Funk, 
Rapoport and Kahan (1980). A survey of these experiments can be found in Kahan and Rapoport 
(1984). Let us say at once that the bargaining set fares quite well in most of these experiments, but 
the kernel comes out poorly. 
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where the various excesses of all coalitions are arranged in decreasing order. 
Note that the order of the coalitions which appear in (5.1) depends on x and, 
in general, it is not uniquely determined. However, the components of O(x) are 
well defined and vary continuously with x. 

We say that O(x) is lexicographically smaller than O(y), and denote this by 
O(x) < O(y) if there exists a positive integer q such that Oi(x ) = Oi(Y ) whenever 
i < q and 0q (x) < Oq (y). 

Definition 5 . 1 .  63 Let X be an arbitrary nonempty closed set in 91 N. The 
nucleolus of X -  denoted Æ(X), or ~f(N; v; X ) -  is the set of vectors in X 
whose 0's are lexicographically least; i.e., 

~ f (X) :=  (x E X: O(x) ~ O(y), all y E X ) .  (5.2) 

If X =  X({N}),  the nucleolus is called the nucleolus of the game. If X =  X(~3) 
it is called the nucleolus of the game for the c.s. ~.  If X = X°({N})[X°(~3 )] it 
is called the prenucleolus of the game [for the c.s. ~3]. We denote the last four 
cases by N, ? ( ( ~ ) ,  ~ ß ,  and ~ ? f ( ~  ), respectively. 

Mathematicians will certainly admire the above definition, but can it be 
given a convincing intuitive meaning? Here is an attempt [Maschler, Peleg and 
Shapley (1979)]. Consider an arbitrator, whom the players ask to decide how 
to share v(N). The arbitrator may regard the excess of a coalition as a measure 
of dissatisfaction and he may be eager to decrease the excesses of the various 
coalitions as much as possible. This will also increase "stability" 64 He will then 
look for payoffs in which the highest excess is as low as possible. If there is 
more than one such payoff, he will tell the highest-excess coalitions: "I  have 
helped you as much as I could, but I can still help other coalitions." He will 
then proceed to choose outcomes for which the second highest excess is 
minimal, and so on. Obviously, such "justification" raises more questions than 
it answers. What is more "stable",  a situation in which a few coalitions of 
highest excess have it as low as possible, or one where such coalitions have a 
slightly higher excess, but the excesses of many other coalitions are substantial- 
ly lowered? It is the lexicographic order that is hard to motivate. And then, 
there may be other objections to the goals of the above arbitrator: Why should 
he take into consideration only excesses and not, say, sizes of coalitions? 
Fortunately, the prenucleolus can be justified by much more intuitive axioms 
(Section 6); moreover, it is also justified by some attractive properties. 

63Schrneidler (1969a, 1969b). 
64A coalition with a high positive excess will gain a lot by departure and, even if the excess is 

negative, defection is still less liable if the excess is smaller. 
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Theorem 5.2. 65 I f  X is compact, or eren if it is merely closed, but x (N)  <~ 
constant for  all x E X,  then the nucleolus )¢'(X) is not empty. Il, in addition, X is 
convex, it consists o f  a unique point  (called the nucleolus point).  For garnes on a 
fixed set o f  players and a fixed c.s., it varies continuously with the characteristic 
function v. The nucleolus point  for  ~3 belongs to the ~{(~3 ). 

Nonemptiness follows from considerations of compactness. 66 Assuming that 
x is not in the kernel,  orte can lower O(x) lexicographically by transferring some 
money from one player to another,  getting a contradiction thereby. Proving 
continuity is harder. Schmeidler proves it by giving an alternative definition for 
the nucleolus from which continuity follows easily and then showing that the 
two definitions are indeed equivalent. In addition to Schmeidler's, there is 
another  proof  by Kohlberg (1971), based on the following very interesting and 
important  characterization of the nucleolus: 

Theorem 5.3. Let ~ 1 '  ~ 2 ,  " " " be the sets o f  coalitions o f  highest excess at x, 
second highest, third highest, etc. Let ~o be the set o f  single-person coalitions i, 
satisfying x i = v(i) .  Ler ~t = ~1 U ~2 kl . . .  U ~ r  A necessary and sufficient 
condition for x to be the prenucleolus point  for {N) is that each ~t is a balanced 
collection. A necessary and sufficient condition for x to be the nucleolus point 
for  N is that each ~o U ~t is weakly balanced, 67 having positive balancing 
coefficients on elements o f  ~~. 

Owen (1977a) has generalized this result for a general c.s. Unfortunately,  his 
characterization is hard to verify. He also provided necessary, but not suffi- 
cient, conditions as well as sufficient, but not necessary, conditions. These 
conditions have the merit of lending themselves more easily to verification. The 
proofs of Kohlberg's and Owen's results follow from extensions of Farkas' 
Lemma (1902). 

Being a point in the kernel, the nucleolus point has all the nice properties of 
the kernel points. Since, obviously, it is a solution concept that does not 
depend on the names of the players, 68 it preserves all the symmetries of the 
garne. The following is a neat formulation of this fact, due to Peleg. 69 It is 
useful in many cases for the computation of the nucleolus: 

Definition 5.4. A symmetry of  a game (N; v) for  a c.s. ~3 is a permutation 
~r: N--> N which keeps the members of ~ and leaves the garne invariant; i.e., 
satisfies 

65Schmeidler (1969a, 1969b). 
66If X is not bounded, one has to prove first that its nucleolus is located inside a compact subset 

of X. 
67I.e., some balancing coefficients are allowed to vanish. 
68This property is called anonymity. 
69Oral communication. 
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7 r ( B ) = B ,  for a l l B C N ,  

v(¢r(S)) = v ( S ) ,  for all S Œ N .  

(5.3) 

(5.4) 

Corollary 5.5. I f  ¢r is a symmetry of  a game (N; v), for a given ~ ,  and if 
X ( N  ) ~ ft, then the nucleolus point u for ~ satisfies u~,(i ) = ~, all i E N. 

Many scholars who applied the nucleolus did so because they wanted an 
outcome which always belongs to the core when the core is not empty. In fact, 
it follows easily from its definition that the nucleolus point [for each c.s.] 
belongs to the strong e core [for that c.s.], whenever this set is not empty 
[Schmeidler (1969a, 1969b)]. In this respect, the nucleolus has an "advantage" 
over the Shapley value. Since the nucleolus is not empty even if the core is 
empty, it can be stated picturesquely that the nucleolus is the location of  the 
"latent position" of  the core [Shubik (1983, p. 340)]. But where in the core 
does the nucleolus lie when the core is not empty? The answer is that, unlike 
the intersection of the kernel with the core, the location cannot be determined 
solely by the core. Maschler, Peleg and Shapley (1979) provide an example of 
two zero-monotonic games having the same imputation space and the same 
core, and yet they have different nucleolus points. Thus, the nucleolus is not a 
locus of the core. The following is an open problem. Can one characterize the 
set of all nucleolus points of all games in the class of games having a given 
imputation space and a given core? As a first clue to this problem, the reader is 
referred to the above [Maschler, Peleg and Shapley (1979)], where a sequence 
of geometric constructions is given which leads one to the nucleolus point. The 
process is too long to describe here; let us say only that its steps involve moving 
certain hyperplanes x ( S ) =  v ( S ) +  constant at equal ll-speeds. During these 
moves, certain hyperplanes, originally outside the core, may enter inside an 
E-core which resulted from the movements of the hyperplanes that bounded 
the core. This explains why the location of the nucleolus is not a locus of the 
core. 

We have stated above a property according to which the nucleolus has an 
advantage over the Shapley value. Here is another property, according to 
which the Shapley value has the advantage. This is monotonicity: 

Definition 5.6. A one-point solution concept is called monotonic if, whenever 
one increases the worth of v(N) ,  without changing the worth of any other 
coalition, the solution specifies that no player gets less in the modified garne. 7° 

Megiddo (1974c) provided the following example of a nine-person game: 

7°A set-valued solution concept is called monotonic if, for every x in the solution of the original 
garne, there is a y in the solution of the modified game, satisfying y ~> x. 
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Example. Let N = { 1 , 2 , . . , 9 )  and let x = ( 1 ,  1, 1, 2, 2, 2, 1, 1, 1). Let 
v(S) = 6 for S E {123, 14, 24, 34, 15, 25, 35, 789}, v(S)= 9 for S E {12367, 
12368, 12369, 456}, v(N) = 12, and v(S) = E/c s x~ - 1, otherwise. Let w(N) = 
v(N) + 1 but w(S) = v(S), otherwise. The nucleolus point of (N; v) is x and the 
nucleolus point of (N; w) is (1-~, 11 , 11, 2~, 2 2, 1~, 1~, 1~, 1~). Thus, in 
spite of the fact that all coalitions but N stay put, and there is more to share in 
(N; w), player 6 gets l e s s .  7~ This is certainly an undesirable feature, and it 
bothered some people. One has the feeling that in any "fair" outcome all 
players should benefit if v(N) increases and other coalitions stay put. For that 
reason, there was a suggestion [Young, Okada and Hashimoto (1982)] to use 
the per-capita nucleolus, which yields a monotonic one-point outcome in the 
core for garnes with a nonempty c o r e .  72 This is not going to be of much help, 
because even the per-capita nucleolus does not satisfy a slightly stronger, but 
not less intuitive, coalitional monotonicity property. 

Definition 5 ,7 .  73 A one-point solution ~b is called coalitionally monotonic if for 
every pair of games (N; v) and (N; w), satisfying 

v(T) > w(T) ,  for some subset T of N ,  

v ( S ) = w ( S ) ,  for aliS, S e T ,  (5.5) 

it follows that 

~bi[v ]/> ¢i[w], for all i in T .  (5.6) 

Surprisingly, Young (1985a) proves that for the class of  games with nonempty 
core there does not exist a one-point coalitionally monotonic solution concept 
which always lies in the core. He proves it by exhibiting two games with a 
one-point core, one of which results from the other by an increase in the worth 
of coalitions containing a player, yet the core payment to that player decreases. 
There is no escape from this fact: if you want a unique outcome in the core you 
must face some undesirable nonmonotonicity consequences. On the other 
hand, if you feel that monotonicity is essential, say, because it "provides 
incentives" if imposed on a society [Young (1985a)], then you should some- 
times discard the core, and the nucleolus is not a solution concept that you 
should recommend. Note that the Shapley value is a coalitionally monotonic 
solution concept. 

Recently, Zhou (1991) proved that the nucleolus is monotonic in a weaker 

71Moreover, for every payoff y in ~~I(N; w), and therefore also in Y{(N; w), one of the players 
taust get less than in x. 

72The per-capita nucleolus is defined in the same way as the nucleolus, except that the per-capita 
excesses [v(S) - x ( S ) ] / I S [  are taken instead of excesses for S ~ 0. (See Section 8.) 

73young (1985a). He calls ~, in this case, "monotonic".  
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sense: if one increases the worth of exactly one coalition, the total p a y o f f  to its 
members  does not decrease. 

We shall conclude this section with a brief discussion on the possibility of 
computing the nucleolus. If one considers a "generic" game, the first difficulty 
involves simply listing the characteristic function. It must be prescribed by the 
2 n - 1 numbers v(S) .  This limitation already restricts one to small n's. Having 
listed the game, one now faces the problem of computing the nucleolus. One 
method,  suggested by Peleg [see Kopelowitz (1967)], "translates" the defini- 
tion of the nucleolus into a sequence of linear programs, defined inductively as 
follows: 

Problem k, k = 1, 2 , . . .  : 

m i n i m i z e  t 

s.t. x~X(N), 
S ~ s 4 , ~ e ( S , x ) = t i ,  i E { 1 , 2  . . . .  , k - l } ,  

S E 2N\ {~/0 CJ ~ l  U ' ' "  U ~k-1 } ~ e(S, x)  <~ t .  

Here ,  t i is the optimal value of the objective function in Problem i and ~/k is 
defined by ~0 = 0, and for k/> 1, ~/k is the set of coalitions attaining the excess 
t k at each optimal solution (t k, x) of Problem k. It can be shown that ~/k ~ 0 as 
long as the previous ones do not exhaust the set of all coalitions 2 N. The 
process terminates when the optimal solution is a unique point, and this occurs 
usually long before the set of all coalitions is exhausted. 

Using this process, Kopelowitz (1967) computed the nucleolus for many six- 
and seven-person zero-sum weighted majority games. TM The average computa- 
tion time was 10 seconds for a six-person game and 40 seconds for a 
seven-person game. 

Kohlberg (1972) provided a single linear program the solution of which 
yields the nucleolus. Its disadvantage was that it involved 2 n [ constraints - too 
big to compute the nucleolus of even a four-person game. Owen (1974) 
succeeded in reducing it to 4 n constraints at the expense of more variables and 
a more  complicated objective function. 

There  have been other suggestions, based on Kohlberg's Theorem 5.3, of 
how to compute the nucleolus. The reader is referred to Brune (1976), 
Bruyneel  (1979), Dragan (1981), and Wallmeier (1983, 1984). 75 I do not know 
of any study that compares the merits of the various proposals. 

The situation may be more pleasant if one is allowed to use the special 
properties which a game may possess. For example, Huberman (1980), using a 

74Taken from a list of IsbeU (1959). 
75Wallmeier provided a Basic program that also computes other related nucleoli (see Section 8). 
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slightly modified version of Peleg's algorithm, has shown that if it is known that 
the game has a nonempty core, then one need consider in the algorithm only 
essential coalitions, namely coalitions S, which are either singletons or for 
which v(S) > 27.E« v(T), for every partition 5 e of S. 

The linear programs in Peleg's algorithm are huge. Even if n is moderately 
large, the computation of the nucleolus appears infeasible. Therefore it came 
as a happy surprise that Littlechild (1974a), using Peleg's procedure, found the 
nucleolus of the "Birmingham Airport Game" (see Section 10) involving 
13 572 players o f  11 different types. 76 He showed that if the players can be 
ordered in such a way that the worth of each coalition is equal to the worth of 
the least ordered player in that coalition, Peleg's programs can be solved 
easily. 

The observation of Littlechild was further advanced by Megiddo (1978a), 
who gave an algorithm to find the nucleolus for cost allocation games defined 
over a tree (see Section 10) which requires O(n 3) operations. Galil (1980) 
accelerated this number to O(n log n). It should be noted that their computa- 
tions did not require the computation of the characteristic function in full. 
Thus, as has been stated explicitly by Megiddo, one can sometimes compute 
the nucleolus for large garnes without computing first the worths of all 
coalitions if one knows certain facts about the structure of the game. This idea 
was further advanced by Hallefjord, Helming and JOrnsten (1990). They 
presented an algorithm, based on Dragan's (1981) algorithm, for computing 
the nucleolus of the linear production game [see, for example, Owen (1975b)]. 
This is a garne whose characteristic function is defined as a set of solutions of 
2 n -  1 linear programs. The authors showed that in order to compute the 
nucleolus, orte need not solve all the linear programs. Often the number of 
programs that need be solved is very small indeed. 

6. The reduced garne property and consistency 

In the previous sections some attempts were made to convince the reader that 
both the [pre-]kernel and the [pre-]nucleolus make little sense intuitively. In 
this, and in other sections, I shall do my best to convince the reader that the 
converse is actually true. The real question, in my opinion, is not whether a 
particular solution is good or bad, but rather: In what circumstances should it 
be recommended and what insight would it then yield? An attempt to justify a 
solution in this sense can be made in several ways: 

(1) By examining the definition and showing that it reflects goals that some 

76Thus only 11 components of the nucleolus may be different. 
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people, in some cases, may have. This, I believe, was done successfully for the 
bargaining set, but with less success for the kernel and the nucleolus. 

(2) By showing that a solution concept has appealing properties that should 
be preserved during a "fair" bargaining, or in the verdict of an unbiased 
arbitrator. This has been done for the kernel and is valid a fortiori for the 
nucleolus. 

(3) By providing a dynamic intuitive process that leads the players to the 
proposed solution. We shall exhibit such a process for various bargaining sets, 
including the kernel, in Section 7. 

(4) By showing that for concrete situations the proposed solution yields 
results that one would otherwise expect, or want, or at least regard as 
plausible. We shall consider several such applications in subsequent sections. 

(5) By providing an axiomatic foundation to the proposed solution and 
convincing the reader that people would like to obey these axioms. This is the 
subject of the present section. 

Our first task is to study the concept of a reduced garne and present some of 
its applications. 

Definition 6 . 1 .  77 Let (N; v) be any garne and let x be any vector in {R u. Let S 
be a nonempty subset of N. The reduced game on S, at x, denoted (S; V ,s) is 
defined by 78 

I 0, T = 0 ,  
v,«(T)= x(T) ,  T= S,  (6.1) 

I m a x [ v ( T U Q ) - x ( Q ) ]  0¢  TCS ,  T # S ,  SC:=N\S 
( Q c S  ~ " 

The idea is this: the players in N contemplate an outcome x. Then, for reasons 
that will be explained subsequently, each nonempty subset S examines "its own 
garne". The members of S consider (S; V,s ) to be their own garne on the 
following ground: x(S) is what they got, so this should be V,s(S). Now, each 
other nonempty coalition T figures that it can take partners Q frorn S c. 
Together they can rnake v(T U Q), but the partners have to be paid x(Q), so 
only the difference can be considered feasible for T. The max operation 

x T indicates that the best partner should be considered when computing V.s ( ) .  

x Remark. It should be stressed that the worth V.s(T ) is virtual: it may well 

7VDavis and Maschler  (1965). Actually,  it was defined there for S = N \ { i } ,  so that to get the 
present  definition one should apply that definition repeatedly. 

7SIn a similar fashion one defines [Peleg (1986)] a reduced garne on S, w.r. t ,  a c.s. ~ at x by 
requiring the second line of (6.1) to hold for all T ' s  of  the form B M S for some B in N. It 
represents  how members  of S could perceive their own garne, given that Ca was formed and x is 
being considered.  
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happen that to achieve the above maxima, two disjoint coalitions may need 
overlapping Q's .  79 

Now, consider a game (N; v) and suppose that we live in a society whose 
members believe in a set-valued (or point-valued) solution concept ~. Suppose 
that an imputation x, for the grand coalition, belongs to ~[v] ,  and let S be any 
nonempty subset of N; then the players in S may consider their own game 
(S; vX.s) and ask themselves whether x s is in the solution of this garne. If not, 
then certainly there is some instability in ~, because the players in S would 
want to redistribute x ( S ) ,  thus moving away from x. These ideas lead to a 
desire to adopt solution concepts that are stable, or consistent, in the following 
sense: 

Definition 6.2. A solution concept o%, defined over a class of games F, is called 
consistent,  8° or possess ing the reduced game  proper ty ,  81 if 

(i) F is rich enough in the sense that with every game (N; v) in F, and every 
imputation x in o~[N; v] for the grand coalition, and every nonempty subset S 
of N, the reduced game (S; vX, s) belongs to F. 

(il) For every such x in o~[N; v], every S, S C N, S ¢ 0, 

x s ~ ~[S;  V,s  ] . (6.2) 

The first application of the reduced garne was the observation that the 
pseudo-kerne182 is a consistent solution [Davis and Maschler (1965)] and so is 

79On this ground one can object to the credibility of the reduced garne, claiming that it 
represents a lot of wishful thinking; namely, each subset of S hopes that the partners Q it needs 
will agree to cooperate. Certainly this is a valid argument and I would welcome any better way of 
defining how members of S should perceive their "own game". Let me point out, however, that an 
analogous, though not quite the same, virtual worth already exists in the concept of the 
characteristic function: v(S) can be realized only if overlapping coalitions do not form. Here, 
V,s(T ) can be realized only if other coalitions and their partners do not overlap T and its partners. 
Fortunately, the reduced garne often has other, quite reasonable, interpretations when one 
considers applications. For example, if the characteristic function of a bankruptcy situation (see 
Section 10) is defined as in Aumann and Maschler (1985), then, as proved in that paper, for x in 
the core, the reduced game on a subset of the participants S is that the bankruptcy situation that 
results from the original garne if we restrict ourselves to S, allowing its members to have the same 
claims, and letting the estate be x(S). To sum up this discussion, I feel that in considering the 
application of the reduced game, one should check if it makes sense in the context of the 
application. If it does, fine. Otherwise, the interpretation of the reduced garne as a way a subset of 
the players interprets its own garne should be questioned. 

8°A term due to Hart and Mas-Colell (1989a, 1989b). It captures the spirit of our argument. 
8lA term which explains the idea more specifically. 
82pseudo-solutions are defined in the same way as the solutions, except that the payoff vectors 

are required to be non-negative instead of individually rational. The need to pass to the 
pseudo-kernel is due to the fact that x s need not be individually rational in the reduced garne. Note 
that pseudo-solutions are not covariant with strategic equivalence. Of course, if the game is 
zero-normalized, its pseudo-solutions coincide with the solutions. It can be shown that in another 
"normalization" the pseudo-kernel is equal to the prekernel [Maschler, Peleg and Shapley (1972)]. 
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the prekernel [Maschler, Peleg and Shapley (1972)]. This is true because the 
si,j(x)'s,  for i, j E S, remain the same when passing f rom the original garne to 
the reduced garne. The above consistency propert ies  were used in these papers  
and others to determine the kernel  for garnes in which only n and ( n -  1)- 
person coalitions are not trivial [Davis and Maschler (1965)], to analyze the 
structure of the kernel [Maschler and Peleg (1967)] and to show that it consists 
of a unique point for the grand coalition of convex games [Maschler, Peleg and 
Shapley (1972)]. 83 The reduced garne proper ty  in these papers  turned out to be 
an indispensable tool to get deep results o n  the kernel,  because it made  it 
possible to construct induction-wise proofs and compute  kernels of large games 
f rom kernels of  small ones. 

The  reduced game played a decisive role in A u m a n n  and Drèze (1974). They 
defined and investigated several solution concepts for coalition structures, 
discovering s4 that for  cg(~) ,  . /~ i1(~)  ' fiLe(G) and Æ(g~), if  x is in one o f  these 
solutions, then x B is in the corresponding pseudo-solution o f  the reduced game 85 
(B; v~.8), for each B in ~ .  Thus,  for a c.s., the components  of these solutions 
depend on the payoffs received by the other players,  and the nature of this tie 
is expressed by the requirement  to be in the solution of the reduced game. The 
proofs in A u m a n n  and Drèze are easily modified to show that the core, the 
prebargaining set, the prekernel, and the prenucleolus are consistent solution 
concepts. 

The rich results concerning the reduced games, as weil as their intuitive 
appeal ,  raised the question whether  consistency could be used to define some 
of the above solution concepts. The one who did this was Sobolev (1975) who 
gave an ingenious proof  of  the following: 

Theorem 6.3. The prenucleolus is the unique solution, defined over the class o f  
all side payment  garnes, which satisfies the following axioms: 86 

(1) The solution fb consists o f  a unique point for  each game. 
(2) It is Pareto optimal: Eic N gbi[N; v] = v(N) .  
(3) It is covariant with strategic equivalence. 
(4) The solution fh satisfies anonymity, i.e., it does not depend on the 

"names"  o f  the players. 87 
(5) The solution is consistent. 

•3The "profile" in Maschler and Peleg (1966) can be regarded as a "visual manifestation" of the 
reduced garne property. 

84The case of the nucleolus is credited there to M. Justman and the case of the kernel is credited 
to Maschler and Peleg (1967). 

85Note that pseudo-core is equal to the core. 
86Sobolev defined V,s(S ) to be v(N) - x(S C) instead of the x(S) of (6.1). With this definition, 

Pareto optimality could be deduced from the other axioms. I prefer (6.1) because it enables me to 
give a somewhat better interpretation of the reduced game. 

87More precisely, it is covariant with any one-to-one and onto mapping of the set of players onto 
another set of players. 
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It is remarkable that these same axioms also characterize the Shapley value. 
The only difference is that the reduced garne differs from that given by 
Definition 6.1. It is defined by 

V,s(T )=v(TUS c)= ~ 4)i[vlTUSCl, TC_S, (6.3) 
i ~ S  c 

where ~b is the (one-point) solution concept under discussion, applied to the 
restriction of v to the players T U S c. This is the result of Hart and Mas-Colell 
[1989a, 1989b]. 

Interpretation. Note that for x = ~b[v] in (6.1), V,s (T  ) coincide in (6.1) and 
(6.3) for T E {0, S}. For other subsets T of S, the coalitions evaluate their 
worth in (6.3) by asking themselves what will happen if the members of S\  T 
suddenly disappear. In that case there remains a set of players, T U S c, who 
will have to play together. Since they belong to a society of people who believe 
in qS, the members of S c will ask for ¢[v[ T U SC](SC). The rest should be the 
worth of T in the reduced game. There are two basic differences between (6.1) 
and (6.3). In (6.1) T is allowed to choose partners Q from S c. In (6.3) T is 
stuck with S c. In (6.3) each player in S c asks for his payment in the solution of 
the new garne (T U SC; v[ T U SC), whereas in (6.1) each player asks for his 
payment xi, which is supposed to be the solution of the original garne (N; v). 

We see that in a deep sense the difference between the Shapley value and 
the prenucleolus lies in the way the subsets of N want to evaluate "their own 
garnes". Pur it in a different way: if one has to choose, in any specific case, 
between the Shapley value and the prenucleolus, it is a good idea to examine 
the two types of reduced games. If one of them makes more sense for the 
particular case, the corresponding solution should be preferred. For example, 
in Aumann and Maschler (1985), bankruptcy situations originating in the 
Talmud are modeled as cooperative games. It turns out that for x being the 
prenueleolus, 88 the reduced game in the sense of (6.1) is precisely the bank- 
ruptcy garne for the players in S alone, given that their estate is x(S). The 
reduced garne (6.3), when applied to the Shapley value, does not make sense 
in that case. Thus, if indeed the characteristic function of the paper models the 
situation correctly, the prenucleolus should be recommended. Hart and Mas- 
Colell (1989a, 1989b) provide an exam~le of a cost allocation problem for 
which (6.3) makes good intuitive sense. 8 

88Which is equal to the nucleolus because the games are zero-monotonic. 
~gThere are other ways to define "reduced garnes". Hart and Mas-Colell (1989a, 1989b) studied 

some of them. Sometimes they led to different solutions [see also Moulin (1985)] and sometimes 
they cause the axiorns of Theorem 6.3 to be self-contradicting. 
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Note that we have axiomatized the prenucleolus - not the nucleolus itself. It 
would be wrong to say that these axioms characterize the nucleolus if we 
restrict ourselves to the class of zero-monotonic garnes. The reason is that even 
if the garne is zero-monotonic, the reduced garne need not be. However, 
Snijders (1991) showed that the same axioms axiomatize the nucleolus if, for 
one-person coalitions we replace V,s(i ) in (6.1) by min{xi, V,s(i)} .  

The prekernel was axiomatized in Peleg (1986). In order to report it, we 
need an axiom which says that a preimputation is in the solution if its 
projection to every two-person coalition belongs to the solution of the reduced 
garne for that coalition: 

Definition 6.4. A solution concept ~, defined for a rich class of games F, is 
said to have the converse reduced garne property, if for every garne (N; v) in the 

X class and every preimputation x, if x s E ~[V.s ] for every two-person coalition 
S, then x E ~[v]. 

Theorem 6o5. 90 The prekernel is the unique solution concept defined over the 
class o f  all side payment garnes, which satisfies the following axioms: 

(1) It is never an empty set. 
(2) Each solution point is Pareto optimal. 
(3) Symmetric players receive equal payments in each solution point. 
(4) The solution is covariant with strategic equivalence. 
(5) The solution possesses the reduced garne property. 
(6) The solution possesses the converse reduction game property. 

These axioms are independent. 

It is interesting to note 91 that the last axiom can be replaced by the 
following: 

The solution is a largest-under-inclusion set-valued solution satisfying the first 
five axioms. 

We refer the reader to Peleg's papers for the axiomatization of the prekernel 
for a given coalition structure. It is interesting to note that Peleg (1985), and 
Chapter 13 by Peleg in this Handbook, show how the reduced.game property 
also plays an important role in the axiomatization of the core for garnes with 
and without side payments. We also remark that the reduced game (6.1) was 
extended in Maschler et al. (1992) to "garnes with permissible coalitions and 
permissible imputations". 

9°Peleg (1986, 1987). 
91Private communication frorn Bezalel Peleg. 
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7. The dynamic theory 

In Section 3 we justified the bargaining set by presenting a dialogue between 
two players, k and l, facing a justified objection of k against l in which player k 
tries to convince player l to pass hirn some of his proceeds so that they can stay 
in their coalition of the c.s. The claim was that l was going to lose anyhow, so 
why not lose this way and stay in the coalition. It is not difficult to show that if 
k has a justified objection against l, then there is a minimal amount a, such 
that after its transfer k no longer has a justified objection against l. 92 Thus, 
every justified objection represents a demand of a definite size, and the 
bargaining set is the set of payoffs at which all demands are zero. This line of 
argument - static in nature - is not really convincing if we cannot show that the 
willingness to settle demands brings the players to the bargaining set. 

Suppose that a transfer is made at some x to nullify a justified objection; 
then, after it is made, another player may have a justified objection against 
somebody, and so on, and we may end up with an infinite sequence of 
transfers. How does such a sequence behave? To make out argument solid, 
one has to find out if such processes always converge, and, if so, under what 
conditions, to the bargaining set. In other words, a dynamic backing is highly 
desirable. 

Such a backing was supplied by Stearns (1968), who generalized his results 
to an even wider class of bargaining sets. That development and others will be 
described in this section. To simplify our presentation we shall limit ourselves 
to the case of the formation of the grand coalition. 

We consider a game (N; v). A system of functions D --- {di4: i ~ N, j E N} is 
called a system of  demand functions if 

(1) di,t: X(N)--~ ~ are lower-semicontinuous; 
(2) 0 ~ di,t(x ) <~ x t - v ( j )  for all x E X(N); 
(3) di,t(x ) <~ ki,t(x) := min(½[si,t(x ) - st,i(x)]+, x t - v( j)) ,  for all x in X(N) ,  

whenever i ¢ j ;  hefe, la]+ = a, if a > 0  and 0, otherwise; 
(4) di,i(x ) = 0 for all x E X(N) .  

The idea is that at x, for each couple i, j, player i informs player j that he owes 
him di4(x ). (1) is a weak continuity assumption on these depts. We are not told 
much about the nature of the debts, but it is assumed in (2) that after a debt is 
satisfied, the resulting payoff is still individually rational. It is implied by (3) 
that j owes nothing to i at x ,  i f  93 Si.t(X ) ~ St,i(X); and if the converse inequality 
holds, then, after d~4 is passed from j to i, and the resulting payment is y, the 
inequality s~,t(y )/> st,i(y ) still holds. (See Section 4 for the meaning of s~,t. ) In 

92At most ,  player l would pass hirn x t - v ( l ) .  Then  he will be able to defend himself  alone. 
93This is a mild restriction: if the  inequality holds, then whatever  coalition i wants to use to 

threa ten  j,  j can find a coalition not  containing i having a higher excess. Should this be the case, 
then  indeed i is too weak to ask anything from j. 
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o the r  words ,  the si4 's  de te rmine  a reasonable  upper  bounds  on the d e m a n d  
funct ions ,  but  o therwise  the d e m a n d  functions may  be chosen quite arbitrarily. 

Definition 7.1. The  bargaining set ~ »  (for  the grand  coalit ion) is the set 

~ »  : = { x  ~ X :  di,j(x) = O, for all i, j ~ N} . (7.1) 

We have here  m a n y  bargaining s e t s - o n e  for every choice of  {d~ , j} -  u p o n  
which only weak  assumptions  are made .  Stearns (1968) proves  that  they all 
conta in  the kernel ,  and that  the kernel  itself is one  of  them. It  is ob ta ined  by 
choos ing  di, j = kg4 for  all i, j. This follows f rom the definition of  k~4. Stearns 
also shows that  if we define d~4(x ) to  be the minimal amoun t  j has to pass to i 
in o rder  to nullify a justified object ion of  i against j,  if there  is one  at x, and 
zero  if there  is not ,  then this d~4 has all the propert ies  of  ( 1 ) - ( 4 )  above,  so that  

~1 is one  o f  Stearns '  bargaining sets. 
Facing a positive d e m a n d  d~,j(x), does not  mean  that  j has to pay it 

immedia te ly ,  or  to pay all of  it. I t  only means  that,  when  at x, he will no t  pay  
m o r e  than this amount .  Accordingly ,  we say that  y results f r o m  x by a 
D - b o u n d e d  transfer, if i, j and a exist, such that  

y = x + ote i -  ae  j , 0 «- a «- di y,. (7.2) 

He re ,  e t is the unit  vec tor  in the t-direction. 

Definition 7.2. A sequence x 1, X 2, . . .  is called a D-bounded  transfer sequence, 
start ing at x, x ~ X,  if x I = x, and every other  x t results f rom the previous one 
by a D - b o u n d e d  transfer.  94 It  is called a maximal  transfer sequence if, infinitely 
of ten ,  "max imal  t ransfers"  are passed; i .e. ,  if there  exists y, 0 <  y <~ 1, such 
that ,  at infinite instances v, the transfers « at x v are at least y maxi,j~ N di,j(x~). 

Theorem 7.3. 95 Every D-bounded  transfer sequence converges. Every maxi- 
mal  96 transfer sequence converges to a poin t  in ~ ». 

Billera (1972a) ex tended  Stearns '  results in two ways: by asking that  at each 
stage a fixed p ropor t i on  of  all demands  be t ransferred at once,  and by 

94We allow transfers of size zero, so there is no loss of generality in assuming that all the transfer 
sequences are infinite. 

9SStearns (1968). 
96The request for a maximal transfer sequence arises from the need to prohibit smaller and 

smaller transfers say, among players 1, 2, 3, and meanwhile, say, player 5 owes a lot to player 6 hut 
has no chance to reimburse hirn. In fact, Stearns states other similar criteria which guarantee that 
such circumstances will not occur. It follows from these considerations that if the players agree that 
nothing less than a penny should be passed, then the theorem says that every transfer sequence 
should reach a distance of up to a penny from the bargaining set J/D in a finite number of transfers. 
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considering also a continuous process that is defined by the differential 
equation 

dxi - ~ ( d i , j ( x ) -  Œ,i(x)) , i E N .  (7.3) 
dt jeN 

He showed that if  the demand functions are continuous, the trajectories always 
converge to a point in d/gD .97 

These results provide perhaps the strongest case for the bargaining set and 
its related concepts. Note,  however, that they also show that not all outcomes 
in a bargaining set are equally plausible: Stearns already studied an example, 
due to Kopelowitz (1967), in which a bargaining set (that happened to be the 
kernel)  consisted of two points. He found that one could start from a point x, 
arbitrarily close to the non-nucleolus point, yet the transfers would carry one to 
the other point. Thus, in the dynamic system that was determined by the 
transfer sequences, not all points o f  the bargaining set were stable in the sense o f  
Lyapunov.  

The characterization of all stable points of Stearns' dynamic process and, 
more generally, of all stable sets with respect to this process, is still an open 
problem. Only scattered results can be reported. Kalai, Maschler and Owen 
(1975) proved that for every bargaining set Mp,  the nucleolus is always a 
stable point of the process. 

Since all the bargaining sets in this section contain the kernel, Stearns' 
transfer sequences do not necessarily converge to the nucleolus. For example, 
if the starting point is a kernel point other than the nucleolus, the sequence will 
stay put at this point and will not converge to the nucleolus. Justman (1977) 
has generalized Stearns' transfers by removing the restriction that transfers are 
made only from one player to another.  He was then able to obtain a dynamic 
system that converges to the nucleolus. Justman did much more than this: he 
generalized Stearns' ideas to an arbitrary discrete set-valued dynamic system 
defined over a complete metric space, thereby extending the range of applica- 
tions to many a r e a s -  not necessarily related to game theory. 98 

Based on Justman's paper,  and on Kalai et al. (1975) mentioned above, 
Maschler and Peleg (1976) developed a theory which characterizes closed stable 
sets with respect to a discrete set-valued dynamic system over a compact metric 
space; the characterization being in terms of a generalized nucleolus with 
respect to a vector o f  Lyapunov functions. One byproduct of the theory is the 

97The results are somewhat more general because Billera refers to an arbitrary polytope in ~N 
inside of X(N), and even to ~N itself, in which case the pre-bargaining set obtains. Specializing in 
the prekernel, Wang (1974), Wang and Billera (1974) and Billera and Wu (1977) investigated the 
trajectories of the differential equation and showed that they can be classified into equivalence 
classes that depend on the "excess structure" at the limit point. 

98justman himself applied the theory to rnodel an abstract iterätive process of negotiations. 
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fact that every nonempty E-core is a stable set, in the sense of  Lyapunov for 
Stearns' transfer sequences. These results were extended by Yarom (1985) to 
the continuous case of differential inclusions. [See also Yarom (1982, 1983).] 

8. Related solutions 

The ideas behind the solution concepts, as presented in the previous sections, 
generated numerous other related solutions, both in the area of cooperative 
game theory and in its applications. In this section we shall report only the 
most immediate solutions. For a more comprehensive list we refer the reader 
to the items indexed R (and RR) in the Bibliography. 

Already in Aumann and Maschler (1964), a bargaining set was introduced in 
which sets of  players objected against sets of  players instead of individuals 
against individuals. Other possibilities were also hinted at in that paper. A 
detailed list of various bargaining sets is given in Maschler (1963a). Dissatisfac- 
tion with the kernel of Apex games (see Section 4), and too many outcomes in 
J/t; 1 for these garnes, led Horowitz (1973, 1974) to create his competitive 
bargaining set in which a player announces a multi-objection, namely several 
simultaneous objections, regarded as offers to whomever is first to accept one 
of them. A counter-objection is valid only if it matches all of them. The idea of 
employing multi-objections was pursued in different ways by Dragan (1985, 
1986, 1987a, 1987b, 1988a, 1988b). Additional variants of the bargaining set, 
motivated by analyses of European Governments, were created by Schofield 
(1976, 1978, 1980a, 1980b, 1981, 1982). 

Although many of those bargaining sets are empty for some garnes, I do not 
consider that a major drawback. They represent desires for greater stability 99 
which, however, cannot always be met. But in those cases where they can be 
met, I see no reason not to recommend their outcomes. In this connection, I 
would like to draw attention to Naumova (1973). The author generalized the 
original Aumann and Maschler (1964) paper by restricting both the objecting 
sets K and the sets L, against whom the objections are made, to be taken only 
from an a priori specified set of coalitions 1°° ~. The resulting ~-bargaining set 
is denoted ~~.101 In this spirit she also defined a ~-kernel, Y{~, which is 
contained in the ~-bargaining set. Interestingly, Naumova was able to provide 
conditions on ~ which guarantee that each garne would have a nonempty 
~-kernel for every coalition structure, as long as X ( N ) ¢  ~. One such condi- 
tion is that each coalition of R should contain a fanatic, namely a player who 

99This does not mean  that  there is an automatic  inclusion relation between some of them and 
~i I. 

1°°In another  variant,  the sets allowed to be used for objections and for counter-objections are 
also restricted. 

l°lIf ~ is the set of all singletons, J//~ = Mi a . 
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does not belong to the other coalitions in ~. The proofs show that the relation 
"having a justified objection" in her sense is still acyclic, which enables the use 
of Peleg's (1963b, 1963d, 1967) generalization of the K.K.M. Lemma. 1°2 

So we have a lot of bargaining sets, each interesting in itself. I am 
concerned, however, by the lack of known general properties of these bargain- 
ing sets and by a missing backup of a convincing dynamic theory. Further 
research is certainly needed in this direction. 

An interesting bargaining set has recently been developed by Mas-Colell 
(1989). According to this definition, an objection to a payoff x in X ° is a pair 
(C, y), y feasible for C, such that Yl ~> xi for all i in C, and at least one of these 
inequalities is strict. A counter-objection is a pair (D, z), z feasible for D, such 
that zi ~> yi for all i in C N D and z~ ~> x~ for all i in D\C.  And again, at least 
one of the inequalities on zi's must be strict. This definition has the advantage 
that it makes good sense also for garnes without side payments and garnes with 
a continuum of players. In fact, it was defined for such games in Mas-Colell 
(1989). He proved there that under mild assumptions on the economy, his 
bargaining set for such market games consists of the set of payoffs to Walrasian 
equilibria. 

Note that the objection in this definition is not against somebody. In fact, the 
counter-objecting coalition can even contain the objecting one. Thus, a 
different scenario of claims and counter-claims must be shown to provide us 
with a good understanding of the significance of this bargaining set, hopefully 
enabling us to develop a dynamic theory analogous to Stearns' transfer 
schemes (Seetion 7). 

For side payment games Mas-Colell proved that this bargaining set contains 
the prekernel, and so it is not empty in the space of preimputations. Recently, 
Vohra (1991a) proved that essentially the same bargaining set contains imputa- 
tions. Thus this bargaining set is not empty for side payment games with 
nonempty sets of imputation. [See also Vohra (1991a, 1991b), Dutta, Ray, 
Sengupta and Vohra (1989) 1°3 and Grodal (1986).] 

Some modifications of the kernel and the nucleolus result from modifying 
the excess function. They result from the feeling that the excess, as defined in 
Section 3, unjustifiably does not take into account the size of the coalitions. 
One of the most detailed studies in this direction is Wallmeier's (1980) thesis. 
Wallmeier defines the excess to be 

{e(S,x) / f ([SI) ,  if S # O ,  
ef(S,x):= O, i f S = O ,  (8.1) 

l°ZSee also Naumova (1978), where more general results are obtained. 
l°3Dutta et al. consider a variant in which a sequence of counter-objections is considered, each 

against the previous one, that, when taken together, enable one to decide if the original imputation 
is stable or not. 
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where f :  { 1 , . . ,  n}---~~t+ is a monotonically nondecreasing function. For 
example, f ( [SI)=  ISI is a case that was discussed frequently in the literature. 
The nucleolus based on this excess is sometimes called the per-capita nucleolus 
or the equal division nucleolus. [See, for example, Young, Okada and 
Hashimoto (1982). In this connection see also Lichtenfeld (1976) and Albers 
(1979b).] Wallmeier shows that concepts such as f-kernel and f-nucleolus can 
be defined easily in complete analogy with those based on e(S, x). He also 
shows that many of the "classical" theorems can be generalized to these 
solutions. 

Another interesting solution concept, called the lexicographic kernel, was 
suggested by G. Kalai 1°4 and studied in Yarom (1981). Its definition is similar 
to the nucleolus, except that the lexicographic comparisons are performed on 
the vectors ~0(x) the coordinates of which are the si/(x ) arranged in decreasing 
order [see (4.1)]. Like the nucleolus, it is contained in every nonempty E-core. 
It is even a locus of these sets. Unlike the nucleolus, it may consist of more 
than one point. Each of its points is Lyapunov-stable in Stearns' dynamic 
systems [Maschler and Peleg (1976)]. 

The nucleolus essentially results from a sequence of minimization problems; 
each one, after the first, has as its domain the optimal set of the previous one. 
This idea should have been employed in other areas. In fact, Potters and Tijs 
(1992) point out fhat the idea was already reported by Dresher (1961) for 
zero-sum matrix games. 1°5 It is suggested that a player should choose from 
among his optimal strategies one which maximizes his worst expected payoff, 
given that the opponent is allowed to mix only from pure strategies which are 
not active in any optimal strategy of the opponent. From this subset of his set 
of optimal strategies the player should choose one that maximizes his worst 
payoff, given that the opponent is restricted to mix only from pure strategies 
which were not active in any of the optimal strategies for the previous cases, 
etc. The process terminates when no further strategies are available to the 
opponent, in which case the last set of optimal strategies available to the player 
is the recommended set. This subset of optimal strategies is entitled by Potters 
and Tijs (1992) the nucleolus of the zero-sum garne, for that player. It is aimed 
at exploiting the opponent's mistakes without sacrificing one's own security 
levels. Potters and Tijs (1992) continue to investigate this nucleolus and show 
that it possesses properties analogous to those of the "classical" [pre- 
]nucleolus. In particular, they prove an analogue of Kohlberg's criteria 
(Theorem 5.3). Furthermore, for each cooperative garne (N; v), normalized by 
satisfying v(N)= 1, they produce a matrix game the nucleolus of which is 
essentially the [pre-]nucleolus of (N; v). Maschler et al. (1992) axiomatized 
this nucleolus as welt as more general nucleoli defined over metric spaces. 

l°4Oral communicat ion.  
1°5L. Shapley told us that this idea was circulated earlier among  R A N D  game theorists  and was 

already reported as a Research  M e m o r a n d u m  in Brown (1950). 
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An interesting topic is the study of games in which the values of a 
characteristic function are not deterministic; i.e., when each v(S) is a random 
variable having a known distribution functions. In a series of papers, Charnes 
and Granot (1973, 1974, 1976, 1977) address the problem of defining a 
nucleolus 1°0 for such garnes. They suggest a two-step process, in which a "prior 
payoff vector" is "promised", one having a good chance of eventually becom- 
ing realizable. Later, if it turns out that it does not, a second stage play 
determines the final payoff. Granot (1977) extends these results and extends 
also the concepts of a "prior kernel" and a "prior bargaining set". Nonempti- 
ness and the various inclusion relations are valid, although the nucleolus may 
consist of  more than one payoff. 

9. Classes of games 

The bargaining set, kernel, and nucleolus and their variants were studied for 
several classes of garnes. The purpose in studying these classes was sometimes 
purely mathematical, motivated by the desire to bettet "feel" the nature of the 
solutions and check whether the recommendations of the theory make sense. 
In other cases, the motivation to study some classes of games resulted from 
their application, mainly to the social sciences. In the hext section we shall 
discuss some of these applications. This section we devote to the more 
theoretical results. 

Orte of the nicest results, in my opinion, is concerned with the nucleolus of 
constant-sum weighted majority garnes. 1°7 Consider, for example, the garnes 
[8, 1, 8] and [2, 2, 2]. They are, in fact, two representations of the same game, 
because their characteristic functions coincide. There are infinitely many other 
representations. The second representation, however, is more natural, because 
in this representation each minimal winning coalition carries the same weight. 
Such a representation is called a homogeneous representation and if it exists, 
the game is called homogeneous. I°8 Von Neumann and Morgenstern (1953) 
already realized that not every weighted majority game has homogeneous 
weights, and some years later, Isbell (1959) expressed the desire to find for 
each constant-sum weighted majority game a unique (normalized) representa- 
tion which will make sense intuitively and reduce to the homogeneous repre- 
sentation if the game is homogeneous. The question remained open for nine 
years until Peleg (1968) proved that the nucleolus is always a system of  weights, 
and these are homogeneous weights if the game is homogeneous. Thus, if one 

t°6Also defining a core and a Shapley value. 
~°VNamely, weighted majority games in which a coalition wins iff its complement loses. In this 

case it is not necessary to specify the quota. It can be taken as half the sum of the weights. 
~°sIt is unique up to specification of the weights to the dummy players, and up to a multiplication 

of the weights by a positive constant. 
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agrees that the nucleolus makes sense intuitively, one finds that Isbell's 
desideratum has been accomplished. 

Another interesting set of results deals with properties of the solutions for 
the composition of games in terms of the solutions of the components. The 
results are too long to reproduce here and we refer the reader to Peleg (1965a), 
Megiddo (1971, 1972a, 1972b, 1972c, 1973, 1974a, 1974b) and Simelis (1973a, 
1973b, 1973c, 1975a, 1975b, 1976a, 1984). 

Clearly, the bargaining set, the kernel and the nucleolus are known for 
three-person garnes [Davis and Maschler (1965), Grotte (1970), Brune (1983), 
Ostman (1984), and Ostman and Schmauch (1984)]. Their study is readily 
generalized to garnes with only 1-, (n - 1)- and n-person permissible coalitions. 
In these games, the bargaining set consists of the core if the core is not empty 
and it is a unique point if the core is empty. The kernel and the nucleolus 
coincide for these garnes, and the formulae that express them are simple linear 
formulae, each of which is valid in a region determined by the values of the 
characteristic function. [See Maschler (1963a), Davis and Maschler (1965), 
Owen (1968, 1977b), and Kikuta (1982a, 1982b, 1983).] 

The "1, (n - 1), n" games are particular cases of quota garnes and m-quota 
games. 1°9 Solutions for these games were obtained in Maschler (1964), Peleg 
(1964, 1965b) and in Bondareva (1965). 

Considerable effort was invested to compute the kernel and the nucleolus of 
four-person garnes [see Peleg (1966b), Brune (1976), and Bitter (1982)]. These 
computations were intimately connected with development of general al- 
gorithms to find out regions of linearity of the nucleolus, namely regions in the 
game space in which the nucleolus is a linear function of the values of the 
characteristic function. H° 

An interesting and important class of games is the class of convex games. 
These garnes, introduced by Shapley (1971), are garnes the characteristic 
function of which satisfies for every pair of coalitions S and T: 

o(S) + v(T) < o(S u T) + v(S n T).  (9.1) 

This class is interesting because all important solution concepts agree on its 
games: They have a unique Von Neumann-Morgenstern solution [Von 
Neumann and Morgenstern (1953)] coinciding with the core, and the Shapley 
value [Shapley (1953b)] is essentially the center of gravity of the tore. They 
also have interesting economic applications [see Shapley (1971)]. For convex 
games, the bargaining set coincides with the core and the kernel coincides with 

l°9m-quota games  are defined by an n-tuple (w 1, oJ2,.. , wù) such that  v(S) = w(S) whenever  
[SI = m,  and is either equal  to zero otherwise or made  superadditive in the obvious way. 

11°The research in this area can be found in Kohlberg (1971, 1972), Kor tanek  (1973), and Brune  
(1983). 
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the nucleolus; therefore, the kernel is contained in the core, although it differs 
in general from the Shapley value [Maschler, Peleg and Shapley (1972)]. 

The above results motivated Driessen (1985a, 1985b, 1986b) to study a larger 
class of k-convex games. We shall omit the precise definition of this class, but 
would like to cite two important results. For these games there is exactly one 
kernel point in the core, although the kernel may contain payoffs not in the 
core. nl Consequently, the bargaining set may contain points not in the core, 
but in any case the core is a component of  the bargaining set; namely, it is 
disconnected from other parts of  the bargaining set. A detailed description of 
these results can be found in Driessen (1985a, 1988). 

The Dutch school of garne theory, started by Tijs, conducted a systematic 
study aimed at finding several solutions to some classes of games-  orten classes 
of garnes with real-life applications. These studies yield insight into the actions 
of the various forces during the playing of the treated games. Thus, they may 
help people facing real conflicts to decide with better understanding which 
solution to adopt should they face such garnes. In their studies, Tijs, his 
colleagues and students show that quite offen the nucleolus coincides with the 
r-value - a solution concept introduced in Tijs (1981). The importance of this 
finding is both theoretical and practical. The fact that two solutions, based on 
completely different ideas, happen to coincide for some garnes, strengthens the 
reasons to adopt such solutions for those games. The practical importance lies 
in the fact that it is rauch easier to compute the r-value. We refer the reader to 
Driessen and Tijs (1983, 1985), Muto, Nakayama, Potters and Tijs (1988), 
Potters and Tijs (1990), and Muto, Potters and Tijs (1989) for the analyses 
described above. 112 As an example, we shall report here the results of Potters, 
Poos, Tijs and Muto (1989) concerning clan garnes. These are games for which 
there exists a nonempty coalition C, called "the clan", such that 

(i) v(S) >~0, all S ,  

(ii) Mv(i ) : = v ( N ) - v ( N \ ( i } ) > ~ O ,  all i, i E N ,  

(iii) v(S) = 0 ,  if S ~ C ,  

(iv) v ( N ) -  v(S)>~ ~ Mo(i) , if S_DC. 
i E N \ S  

Thus, in order to be worthy of any positive amount, a coalition S must contain 
the clan; however, the complement of such a coalition also has some power: it 
contributes towards the grand coalition at least as much as the sum of the 

l l lThe  core for these games is never empty. 
min one class, called the class of semiconvex garnes, the kernel coincides also with the Shapley 

value. 
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contributions of all its members towards the grand coalition. Clan garnes occur 
frequently in real situations: the clan may consist of a group of people who are 
in possession of a technology, or it may consist of people who have copyright 
privileges, etc. 

For  such garnes, the authors prove that the bargaining set (for the grand 
coalition) coincides with the core. Moreover, it is given by 

{x ~ X(N):  x i <~ Mv(i ) for all i E N \ C } .  

The authors also show that the kernel of a clan garne coincides with the 
nucleolus, and they provide a very short algorithm to compute it. 

10. Applications 

Some applications of the solution concepts presented in this chapter were 
already discussed in previous sections, especially Section 9. Indeed,  the classes 
of games for which solutions were computed are quite often useful for 
applications and have been investigated frequently in order to solve problems 
of an applied nature. Other applications can be found in the Bibliography, 
where they are denoted by either A or H, or even F. 

Rather  than surveying all of these papers, we shall at tempt to concentrate on 
a few which bear on the basic question: In what situations may one of the 
solutions of this chapter be preferred to others? By doing so, I do not want to 
give the impression that either the bargaining set, or the kernel, or the 
nucleolus is superior to any other solution in any particular case. I would try 
rather  to indicate under what situations some of our solutions should be 
candidates for recommendation. I myself take the position that for any "real  
situation" that is modelled as a garne one should examine all solutions, even if 
one is eventually going to adopt only one of them. The reason is that each 
solution sheds light on one corner of the real world, so the more solutions one 
knows the better  one really understands the issues involved. 

The core is a useful solution concept which is applied in many cases. It 
represents a strong and often desirable stability property. But often the core is 
large, and then one faces the need to single out a unique outcome in the core. 
In such cases the nucleolus is a good candidate. Of course there are other  
"distinguished points",  such as the center of gravity of the core. Still, the nice 
properties of the nucleolus (or variants of the nucleolus) render  its choice quite 
attractive. 

An interesting class, where the above desideratum holds, is that of issues 
concerning cost allocations. These issues can be cast in the following setup. A 
group of "players"  (people, companies, states, or other organizations) is 
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involved in a project  that would provide desirable services to the members. 
One wants to know how to share the costs o f  the project among the participants. 
The project  itself may be small, say building a road to serve several com- 
munities, or big, such as building a dam to serve several countries. It may 
involve few participants or many, such as the building of an airport, where 
various aircraft movements get serviced. 113 

Denote  by N the set of players. Consider a coalition S. The services desired 
by the members of S constitute, in general, only a subset of the services desired 
by all the participants. Thus, one may define c(S) to be the cost S would incur 
if its members construct a smaller project  to supply only their own needs. The 
problem of cost allocation is to provide a definite rule for allocating c(N)  
among the members of N, based on the above data. One principle which comes 
to mind is that no subset S should be charged more than c(S),  for that would 
mean that some groups are subsidizing others. 

Looking at costs as "losses" and denoting 114 v ( S ) = - c ( S )  and x - - - a ,  
where a is the suggested allocation of costs, it is easy to see that a nonsubsidiz- 
ing recommendation o f  an allocation a = (al, a2, . . , an) means that x belongs 
to the core o f  the game (N; v). The reader is invited to read the survey of 
Straffin and Heaney (1981) on the various recommendations provided by the 
Tennessee Valley Authority for allocating the costs of watet  development 
projects in the Tennessee River Basin. It turns out that the nonsubsidy 
requirement  was already formulated in 1942 by Josef Ransmeier, who worked 
for the Authori ty [see also Driessen (1988)]. Several solutions were consid- 
ered, in each of which the individual was first charged with his separable costs 
SC i := c(N)  - c ( N \  { i} ). The remaining nonseparable costs were to be divided 
by various methodsJ  15 One m e t h o d - i n  which it was recommended to share 
them e q u a l l y -  is interesting for our purpose, because in many cases it yields the 
nucleolus o f  the garne. [See Suzuki and Nakayama (1976), Legros (1983, 1986), 
and Driessen and Funaki (1991) for conditions that guarantee this result.] 

With all due respect to the people who worked for the Authority,  it seems to 
me that these methods are not sophisticated enough, because by separating the 
separable costs one introduces an undesirable asymmetry. Why should one 
consider separately the contribution of a player to the grand coalition and not, 
for example, the contribution of two players to the grand coalition? Thus, it 
seems to me that the ideas which motivated the above recommendations 
require a more sophisticated analysis. 

The first recommendat ion of the nucleolus for some cost allocation garnes 

la3In this case each movement can be considered a player. 
U4Or, v(S)= 2~~ s c ( { i } ) -  c(S), if orte wants a zero-normalized version, in which case x = 

c((i}) - ~,. 

11SSome of which are employed also today. 
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was suggested by Littlechild (1974a) and Littlechild and Thompson (1977). 116 
The authors consider a cost allocation game resulting from the building of an 
airport runway designed to serve all types of aircraft. Of course, the cost of the 
runway will be higher if it is going to serve larger aircraft, needing a longer 
runway. However, a longer runway can also serve small aircraft. Thus c(S) is 
equal to c({i}), where i is the largest aircraft in S. It turns out that this feature 
of the characteristic function makes it relatively easy to calculate the nucleolus. 
In fact, Littlechild (1974a) succeeded in giving a recursive formula for the 
nucleolus of such garnes. 117 

These results motivated Megiddo (1978a) to construct a "good algorithm ''Hs 
for computing the nucleolus of cost allocation problems defined over a tree as 
follows: the players are the nodes of a directed tree, other than its root. v(S) is 
the total length of arcs that belong to some path from the root to a node 
i, i E S. Bird (1976b) and Granot and Huberman (1981, 1984) [see also Granot 
and Huberman (1982)] treated the minimal cost spanning tree cost allocation 
problems. The setup in these problems is a complete graph with nodes 
{0, 1 ,  . .  , n}, where 0 is a common supplier and the rest of the nodes are 
users. Let ci, j be the cost of establishing an edge between i and j. For each 
coalition S, we define by c(S) the lowest cost to connect all nodes in {0} U S. 
(Think of constructing a cable television network.) Granot and Huberman 
studied the core and the nucleolus of such games. In particular, they provided 
ways to compute the nucleolus. For these garnes, the nucleolus is the unique 
payoff  in the intersection of  the kernel and the (nonempty) core. Other variants 
of cost allocation problems on a graph were analyzed by Galil (1980), and by 
D. Granot  and F. Granot (1992). 

Young, Okada and Hashimoto (1982) recommended the per-capita nucleolus 
(see Section 8) as a solution for a cost allocation problem involved in a water 
resources development for the Scandinavian countries, employing actual data 
in their analysis. 

For a detailed analysis of the cost allocation problem, the reader is referred 
to Young (1985b), D. Granot and F. Granot (1988a), and to Driessen (1988). 

Another  interesting topic for which the nucleolus was sometimes recom- 
mended is revenue allocation. Hefe one is asked to distribute an amount of 
money in a "fair way",  given the "legitimate" claims of individuals, or groups 
of individuals. One of the simplest examples is bankruptcy, where an estate not 
covering the debts has to be distributed "fairly". In other examples one wants 

U6These papers  consider also the Shapley value and a comparison is made with the actual fees 
charged in the particular case of Birmingham Airport. 

~~7Littlechild and Owen (1976) generalized the model by introducing into the characteristic 
function also the benefits which the aircraft obtain by using the airport. They prove that in some 
cases the nucleolus schedule for covering the costs does not depend on this revenue. 

~~8Polynomial in n. 
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to allocate revenue resulting from a joint enterprise, where the claims result 
from contributions of the partners. 

A related topic is taxation. Here, instead of claims, one considers the 
"taxable income" and the estate is replaced by the "budget" which has to be 
covered by taxes. Again, the problem is: How should one determine a tax 
schedule? 

The literature is full of various solutions to revenue allocation problems. 
One way of approaching them is to determine the desired properties and see if 
such properties can be used as axioms in order to determine the said solutions. 
This approach has the advantage that it shows which (usually simple) desirable 
principles can bring about a preference for one solution. The reader is referred 
to Young (1985c, 1987), where this approach is beautifully executed. Another 
approach might be to convert the revenue allocation problem into a garne and 
find out what outcomes are provided by the various game-theoretical solution 
concepts. 

Unlike the case of cost allocation, in which a cost function is the natural 
thing to consider and transform into a garne, 119 in a revenue allocation case one 
can think of various ways to convert it into a garne. 12° For example, take a 
two-person case, where the estate is 100 and the claims are 30 and 120. Clearly, 
v(1 2) = 100, but what should the values v(1) and v(2) be? 

One possibility could be v(1) = 0 and v(2) = 70, where v(i) is the remainder 
after the claim of the other person is satisfied "as much as possible". This 
representation seems reasonable in the case of a bankruptcy. Another repre- 
sentation might be v(1) = -20, v(2)= 70, which is what is left after the claim 
to the other partner is fully paid. This representation is better, for example, in 
a divorce case, where wife and husband each take home what they brought to 
the marriage, but are still jointly responsible for the debts acquired by the 
family. 

The most prominent game-theoretical solutions to revenue allocation prob- 
lems are the Shapley value [Shapley (1953b)] and the nucleolus. Neither of 
them recommends to distribute the estate in the above example in proportion 
to the claims, which is the practical solution in many real-life cases. 

It is interesting to note that the nucleolus appeared as a suggestion for 
solving a bankruptcy problem 2000 yeas ago: A Mishna in the Talmud, written 
by Rabbi Nathan, describes a case of three widows of the same man, who have 
claims of 100, 200 and 300 units, respectively, on the estate of the late 

119Even in this case, the characteristic function is not  obvious if one also wants to include 
benefits that  result from services, and take into consideration the possibility that  a coalition S may 
decide not  to put  up a small project on its own, but  would still agree to participate in the bigger 
project  of  N. 

12°The author  is indebted to Mas-Colell,  who pointed out  this aspect in a lecture given in 1987 at 
a game  theory conference held at Ohio Stare University. 
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husband. The Mishna treats three cases, where the estates are 100,200 and 300 
units. In the first case Rabbi Nathan prescribes an equal share: (33~, 331, 
331). The specifications for the other cases are (50, 75, 75), (50, 100, 150). It 
turns out that if one defines 

v(S) -- max{estate - sum of the claims of the members of N\S ,  0}, 
(10.1) 

then the above tuples are precisely the nucleoli of  the resulting garnes (N, v). 
Of course, Rabbi Nathan did not have any knowledge of the nucleolus. How 

then did he arrive at his recommendations? It is proved in Aumann and 
Maschler (1985) that he could have arrived at the above numbers by looking for 
a solution which is consistent for every two-person coalition. 121 The (1985) 
paper also provides a simple algorithm that yields the nucleolus for a general 
bankruptcy garne. For these games, the nucleolus coincides with the kernel. 

D. Granot and F. Granot (1992c) consider revenue allocation problems 
resulting from a network flow. The setup is a network connecting ä source and 
a sink. Each arc is owned by a player and different arcs are owned by different 
players. The problem is to allocate the revenue resulting from transferring a 
maximal flow from the source to the sink. They study the core, the kernel, and 
the nucleolus of these garnes in which v(S) is the revenue that S can obtain by 
transporting maximal flow from the source to the sink. This paper is rich in 
results that assist in the task of computing the kernel and the nucleolus of the 
games considered. It also yields insight on the nature of these solution 
concepts. [See also D. Granot and F. Granot (1992a).] 

Let me mention in passing that the nucleolus has been computed by Chetty, 
Dasgupta and Raghavan (1970) for a production economy involving one 
landowner and many landless peasants [as modeled by Shapley and Shubik 
(1967)], and by Legros (1987a, 1987b) for some bilateral market garnes with 
symmetric agents, where the effect of "disadvantageousness of syndication" is 
studied. 122 (See also the discussion at the end of this section concerning the 
bargaining set for some of these garnes.) Muto, Nakayama, Potters and Tijs 
(1988) considered the solutions for a wider class of garnes, entitled Big Boss 
Games, that contains the previous games of this paragraph. Galil (1974) 
studied the nucleolus of some weighted majority games with "major" players 
and many symmetric "minor" players. ~23 He proved that under some condi- 
tions the payoffs to the major players do no change if each minor player splits 

lZ~See Section 6. There are many examples in the Talmud concerning the resolution of 
two-person conflicts by means of the nucleolus. 

122In Aumann's (1973) opinion this shows that the core, which coincides with the nucleolus is not 
the right solution for the analysis of these garnes. 

123Namely, carrying small and equal weights. 
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into k "mini-minor" symmetric players. The nucleolus of a subclass of these 
garnes in computed. 

An interesting application of the kernel is provided in the analysis of 
Rochford (1983a, 1983b, 1984) on the Shapley and Shubik (1972c) assignment 
garne. She recommends for these garnes the intersection of the kernel and the 
core and variants of it as a good solution, precisely because it involves 
transactions in pairs, for which, according to her, the equations sq = sji make 
good sense. 

Normalized assignment garnes are garnes in which the players are composed 
of two equal-sized groups: "consumers" and "producers". If a consumer i and 
a producer j form a partnership, that partnership will realize a non-negative 
profit ai,j. The worth of a coalition is the maximum amount that can be 
realized when the members form disjoint partnerships among themselves. A 
collection of partnerships under which v(N) is realized is called an optimal 
assignment. It is still an open problem whether the kernel of an assignment 
garne is always contained in the core. D. Granot and F. Granot (1992c) 
provided some partial results on this question. They then proceeded to study 
the properties Yl A ~. This set need not even be convex. Nevertheless, they 
were able to show that this set coincides with the core if and only if every 
consumer or producer, whose payoff in the core is not constant, appears with 
at least two different partners in the various optimal assignments. 

D. Granot and F. Granot (1992c) also studied the nucleolus of certain 
assignment garnes and were able to provide conditions under which the 
computation of the nucleolus amounts to finding a core-imputation, which is 
lexicographically maximum. One such game is the famous Bohm-Bawerk 
(1923) 18-person garne, the nucleolus of which is computed quite easily. 

Another recent result on assignment garnes is due to Owen (1992), who 
observed that the reduced game (Section 6) of an assignment garne with 
reservation prices, with respect to a core imputation, is itself such an assign- 
ment game, easily derived from the original game. 

Among the various solutions discussed in this chapter, the bargaining set is 
the most intuitive one. Why is it that only a few papers study it for classes 
resulting from an applied field? Orte may imagine that the reason is the 
difficulty in computing the bargaining set, compared with the computation of 
the kernel and the nucleolus. In my opinion the reason is different: economic 
theory has many beautiful results connected with the core of an economy. 
Thus, it became natural to impose conditions on the economy which guarantee 
that the core is not empty. Sometimes such conditions are artificial, such as the 
requirement that utilities be quasi-concave. If you are dealing with a garne with 
a nonempty core, why should you bother to search for the bargaining set, 
which is usually a larger set? Why should you look for outcomes having no 
justified objection if you can point to outcomes without objections whatsoever? 
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Surely one would be interested in studying the nucleolus and the intersection of 
the kernel with the core if one wants a solution which is smaller than the core, 
and this may be one reason why so much research effort has been dedicated to 
the computation of these solutions. But why care about the bargaining set? 

These considerations are wrong, as I hope to convince the reader. Fortunate- 
ly, applications of the bargaining set and variants of it are beginning to appear 
and they are in line with the following comments: 

(1) It should be interesting to find the bargaining set in applied cases in 
which the core is empty. In many economic situations this will be the case, as 
indicated above. Certainly this is the case in most political conflicts. 

(2) For several classes of garnes one can prove that the bargaining set 
coincides with the core. This, for example, is the case for convex garnes 
[Maschler, Peleg and Shapley (1972)] and for big boss garnes [Potters, Muto 
and Tijs (1990)]. In those cases the recommendation for the tore is enhanced: 
not only points outside the core are subject to objections - they are even subject 
to justified objection and therefore "should not even be considered" reasonable 
outcomes. 

(3) Maschler (1976) discussed an example of a five-person bilateral market 
garne with a nonempty one-point core, due to Postlewaite and Rosenthal 
(1974). It is claimed that the core does not make sense, because in the core 
syndication is disadvantageous [see also Aumann (1973)].124 The bargaining set, 
on the other hand, is more acceptable in that example, because it does not 
exhibit this phenomenon. 

11. Experiments and empirical data 

11.1. Laboratory experiments 

There may be two basic reasons to conduct experiments designed to test 
game-theoretical solutions. One of them is descriptive: to find out il, and under 
what settings, people adopt the principles underlying the various solutions. The 
second is normative: to find out what goals people have, in order to construct 
for them solution concepts that will help them achieve their goals. It has been 
my experience that laymen are sometimes smarter than game theorists, coming 
up with ideas not previously considered by the experts. Knowledge of such 
ideas may enable a game theorist to improve bis own solution concepts. 

124The core, when it is small, is orten not  convincing. One  disadvantage of the core is that,  
a l though it is a very stable set of outcomes ,  it is not  always clear how the players arrive at such 
outcomes  during a negotiat ion process. For example,  if a player gets a low payment  in the  
ou tcomes  of the  core, he will do his best not  to cooperate with the other  players in bringing about  a 
core outcome.  
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The first experiment designed to test the bargaining set was conducted by the 
present author in 1961 [and published in Maschler (1978a)]. It was conducted 
in a highly uncontrolled manner but had the advantage that the subjects (high 
school children) had no time limit and could continue their neg0tiations over 
several sessions. They also supplied short accounts on their "strategies" and 
reasoning while playing each game. These turned out to be highly illuminating. 
Other, better controUed experiments, were conducted by Selten and Schuster 
(1968), Riker (1967, 1971, 1972), Albers (1975, 1978, 1981, 1986) and Albers 
et al. (1982, 1985), and others (see references designated by E). The most 
extensive series of experiments in this direction were carried out by Kahan and 
Rapoport (1974, 1977, 1979, 1980) and Rapoport and Kahan (1976, 1979, 
1982, 1983). Their experiments were innovative in that they were highly 
controlled by a computer program. The subjects could negotiate only by using 
a fixed set of statements, electronically transmitted to their partners. The 
reader is referred to the comprehensive book of Kahan and Rapoport (1984) 
where their experiments, and experiments by others, are surveyed and 
evaluated. The book is quite supportive of the bargaining set and its modi- 
fications (see subsequent discussion) so, to balance it, I refer the reader also to 
Selten (1987). In that paper Selten puts forward the idea that a descriptive 
theory should not rely on normative solution concepts, because "ordinary 
people" do not reason using normative principles. To construct a descriptive 
theory, Selten argues, one has to look at real data and find out how people 
really behave. If the attempt is successful, the resulting theory may perhaps be 
less elegant, having to take into account many cases, each with a different 
formula for the possible outcomes, but it will have the advantage of yielding 
better predictions. Selten puts forward such a theory for the case of three- 
person games and cläims that it indeed explains real life better. 

The rest of this section will be devoted to some personal evaluations of a 
general nature concerning the outcomes of the various experiments, mainly 
from a normative point of view. It will be argued that "real life", even in a 
laboratory, orten presents aspects deeper than the ideas encompassed by the 
bargaining set. This suggests that further research should be carried out if one 
wants to construct a normative theory which can be recommended to people 
facing a cooperative game. 

One cannot expect people to reach the bargaining set on their own, even if 
they play a generic game with five or six players. How could they, if the best 
computers of today cannot calculate the bärgaining set? People simply cannot 
realize the various objections and counter-objections that may be present, and 
will not reach the bargaining set even if they wish to achieve a solution in 
which for every objection there is a counter-objection. 

Do people behave according to the predictions of the bargaining set if 
presented with a game involving few players, or a garne with a simple 
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characteristic function? If so, would it indicate that people w&h to settle at 
outcomes for which every objection can be countered? If that were the case, 
we could suggest to them to consult an expert,  when the need arises, and ask 
him to compute the bargaining set for them, if he can. 

In many experiments the bargaining set comes out quite nicely. 125 See, for 
example,  the experiments of Riker, Selten and Schuster, Kahan and Rapoport ,  
and Rapopor t  and Kahan, cited above. In my opinion, this does not prove that 
people  actually consciously wish to settle where justified objections are impos- 
sible. It could be that the outcomes of the bargaining set (for the games that 
were tried, and under the conditions that prevailed in the experiments) have 
other  "stability propert ies" - not related to the concept of immunity against a 
justified objection, and these attract people. Thus, although I feel that stability 
as reflected by the bargaining set has an intuitive appeal, I cannot say that 
experiments have proven that this kind of stability is what motivates people 
while reaching their compromises. 126 

But suppose people do seek this kind of stability. Does it mean that they will 
reach an outcome in the bargaining set, given that the garne is simple enough? 
I shall present here two examples in which the outcomes of experiments 
(already observed in my experiment) were different, in which I taust admit that 
"rightly so". 

Example 11.1. The subjects played many three-person zero-normalized games 
where v(12) = v(13) = v(123) = 90, v(23) = 0. At first they ended up with an 
outcome close to (90, 0, 0), which is the unique outcome in the bargaining set 
for all nontrivial coalition structures. Soon, the weak players realized their 
weaknesses and decided to flip a coin so that the loser would drop from the 
negotiations leaving the other weak player to bargain with player 1 and settle 
close to an even split. Thus, for a while the players ended up (in expectation) 
with (45, 22.5, 22.5). This did not last long. The strong player realized the 
threat  and offered one of the weak players somewhat more than 22.5 "for  
sure" ,  which was enough to detract hirn from tossing the coin with the other 
weak player. Thus the final garnes ended up close to (67.5 ,22.5 ,0)  or 
(67.5, 0, 22.5). I must admit that I too will accept such a compromise. We see 
that the bargaining set does not take into account threats to leave the garne, split 
into negotiation groups, etc. To take such aspects into account, I argued 
[Maschler (1963b)] that although the players were presented with a characteris- 
tic function, in view of some "standards of fairness ''127 they perceived the garne 

125At least in accordance with the discussion following Example 3.4. 
la~It is true that one often observes that people agree to compromise when someone presents 

them with a justified objection, but to the best of my knowledge such observations were never 
tested and documented rigorously. 

127Such as feeling that if two players remain alone, they would split evenly. 
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as w(1)=  45, w(2)= w(3)= 0, w(12)= w(13)= w(123)= 90, w(23)= 45. The 
function w is called the power function of the garne. The payoff (67.5, 22.5, 0) 
is the unique outcome in the bargaining set of (123, w) for the coalition 
structure {12, 3}. 

We refer the reader to Kahan and Rapoport (1984), in which one sees that 
the power concepts "explained" outcomes in many other garnes. 128 

Example 11.2. The garne was a quota game of four players, the quota being 
m = [10, 20,  30, 40] 129. We expected that for every nontrivial c.s., the players 
will end up near (10, 20, 30, 40), which is the nucleolus of the garne and a 
reasonable outcome anyhow. Only half of the garnes ended up this way. All 
the others ended up with orte pair of players splitting according to the quota 
and the other splitting differently. 13° It is easy to explain this result: as long as 
four players are playing, there is a pressure to share according to the quota. 
The moment two players remain there is also a pressure to share equally. 
Indeed, in all the cases of the experiment, the players who shared rar from the 
quota were the last coalition t o  f o r m !  131 In two garnes player 1 was smart: he 
realized that although he is weak, his condition would improve if he waited until 
another pair forrns a coalition. He therefore purposely placed extravagant 
demands to discourage others from proposing a coalition with hirn. Once 
another pair formed, he would approach the orte left alone about an equal 
split. Thus, in this garne, it is clear that player 1 should wait and the other 
players should hurry to form a coalition, so as not to remain stuck with player 
1. We thus see that the bargaining set for coalition structures "assumes" that 
all coalitions form simultaneously, whereas in effect this is not the case in real 
life and there is, moreover, a strategic element concerning the questions when 
to form a coalition and with whom, and when to wait. This aspect is not taken 
care of in the theory so far. 132 

To conclude, the bargaining set, though an intuitively appealing solution 

lZSThe reader is referred to Rapoport and Kahan (1982) for more results concerning the 
interplay between the value and the power of a coalition. 

129Namely, v(i]) = co i + wj, all i , /  in 1234. 
13°It is remarkable to realize that such pattern of splits constitutes a von Neumann-Morgenstern 

solution of (essentially) this game, as discovered in Shapley (1953a). 
13~And all the share for such coalitions were between the equal share and the quota share. The 

players whose quota was higher than the equal share demanded and received some compensation 
for the past high aspiration. I believe that this phenomenon deserves to be analyzed and explained 
by psyehologists, being one simple case where normative theories (at present) differ from 
descriptive ones. 

a32Even in the four-person quota garne discussed above it is clear that player 1 would rather have 
players 2 and 3 form a coalition than, say 3 and 4, beeause he would rather remain with player 4 
and 50 to share that with player 2 and only 30 to share. How much will he be willing to pay players 
2 and 3 in order to encourage them to form a coalition first? Bezalel Peleg and I believe that we 
have some good answers to this question, but this researeh is still in progress. 
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concept,  should be regarded only as a starting point for more elaborate 
theories which should be constructed in order  to be able to arrive at meaning- 
ful recommendations in real cases. From the normative point of view, labora- 
tory experiments yield important  guidelines on how to proceed because they 
enable us to see not only what people really want, but how some smart people 
may grasp situations that mathematical models still oversimplify. 

11.2. Evidence from empirical data 

Real-life data cannot be used to check rigorously whether people really behave 
in accordance with any of the above solution concepts. Real-life conflicts are 
complicated situations, encumbered with a lot of noise, and modelling them, 
even as games without side payments, is usually only a crude approximation of 
reality, both because the factors which determine the characteristic function 
are not fully known and because a characteristic function itself cannot capture 
the fuU intricacies of a real situation. Obviously, representing a real situation 
such as a political election as a constant-sum weighted majority garne with side 
payments,  where a coalition is winning iff it has a majority, means over- 
simplifying reality: we are abstracting away ideologies, personal affinities, 
considerations about present behavior in a way that should enhance the 
chances of a party to get more votes in the hext elections, and many other 
relevant issues. But even if we are going to commit ourselves to such 
oversimplifications as we do in this subsection, how are we going to check if a 
certain portfolio distribution belongs to any solution concept, if we do not 
know how to translate these portfolios into payments? How can we know how 
much each portfolio is worth to every party? 133 Any determination of such 
payoffs seems to rely on ad hoc principles. Clearly, any good correlation with 
any solution concept, based on real data, is quite unbelievable. Nevertheless, 
Schofield (1976, 1978, 1982) dared to examine various European govern- 
ments T M  and found some interesting fits with modified bargaining sets, and 
even with the kernel in some cases. 

Peleg (1981) under took a less ambitious task by asking himself if the 
nucleolus (and other solution concepts, as well as other criteria) can be used to 
predict which coalition actually forms. We shall present here some of his 
findings: 

In many weighted majority games there is a player (= party) and a winning 
coalition containing him, such that in this coalition he holds a strict majority. 

133Not to mention other,  usually secret promises to support political issues and to aUocate more 
budget  to items which interest members of the winning coalition. 

134He proposed to estimate the payoff x i to party i by xi = p(i) Ip(M), where p(M) is the total 
number  of portfolios and p(i) is the number of portfolios received by party i. 
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There  can be at most  one such player, who is called a dominant player. We 
shall restrict our  attention to real-life weighted majori ty games that contain 
such a player.  Fur thermore ,  we shall restrict ourselves to real-life cases where 
the coalitions that actually formed orten contai,ned the dominant player. This 
was the case in parl iaments in Denmark ,  Israel, Italy, The Netherlands,  and 
Sweden,  in various periods of this century. 135 This was also the case in many  
city councils in Israel. 

Peleg (1981) examined these cases and tested them against several conjec- 
tures based on the reasonable assumption that the dominant  player is given the 
mandate  to form the coalition. Of  the various conjectures, two proved 
successful. 

(1) The dominant  player will, in fact choose, a winning coalition in which he 
holds a strict majority.  This was the case in 56 out of the 67 parl iaments 
examined (84 percent)  and in 33 out of 41 city councils (80.5 percent) .  

(2) The dominant  player will choose that winning coalition in which h/s 
nucleolus payoff  for the resulting c.s. is highest. This occurred in 45 parl iaments 
(67 percent)  and, even more  impressively, in 35 city councils (85.4 percent) .  

That  the first conjecture turned out successful is not surprising: common 
sense dictates it. That  the second conjecture had relative success is more  
impressive: obviously, the parties did not compute  any nucleolus. Can this 
behavior  be explained on intuitive grounds? 

We refer the reader  to Grofman  (1982) and Straffin and Gro fman  (1984) 
who introduce ideologies into the model  and come up with a nontransferable 
utility game (see Section 13). They introduce a bargaining set appropriate  to 
that  model ,  which may be empty  for some c.s. 's. A reasonable conjecture is 
that a winning c.s. will not form if the bargaining set for that c.s. is empty.  
They come up with the finding that their bargaining set is inferior to another  
solution which they propose for the situation. 

12. Games without side payments 

The generalization of the concepts "objec t ion"  and "counter-object ion"  to 
games without side payments  ~36 (N; V) is straightforward. Therefore  it is clear 
what the bargaining set MZx is. Unfortunately,  as noted already by Peleg 

135Exceptions in other European countries, such as France, Finland, and Norway, were usually 
due to the fact that the dominant player held an extreme ideological position and was therefore 
excluded from the cabinet. 

136As usual, we assume (for a zero-normalized game) that V(i)= 0-9l+, and that for every 
S, S c N, V(S) is a comprehensive subset of 31s, whose intersection with 31s is not empty and 
compact. Here, 31N is the utility space of the set of players N. It is customary to denote the 
characteristic function of a game without side payments by a capital letter, to remind that its values 
are sets and not numbers. 
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(1963c), it may be empty even for three-person games. The reason is that the 
relation "a  player has a ]ustified objection against another player" need not be 
acyclic. The task then is to find another definition for a bargaining set that 
satisfies the following desiderata: 

(1) It should be nonempty for every coalition structure. 
(2) It should coincide with eg i 1 if the game happens to be a side payment 

137 garne. 
(3) It should be accepted intuitively. 
Of course, the resolution of the task depends on the determination of "what 

is intuitively acceptable". One possibility, suggested in Billera (1968, 1970), is 
to decide that if there is a cycle of players il, i2, . . .  , it, i 1 (belonging to the 
same coalition of the c.s.) such that at an imputation x (for the c.s.) each player 
in the cycle has a justified objection against the next one, we would still say 
that no player in this cycle has any claim against the next orte. The idea is that 
there will be a liquidation of demands along the cycle, in which a player would 
teil his predecessor: "relinquish your claim against me and I in return will 
waive my claim against the next on the cycle on condition that he will waive his 
claim against the next one, etc. Eventually, your predecessor will relinquish the 
claim against you."  The resulting bargaining set is the set of imputations x 
having the property that if a player k has a justified objection against a player l 
at x, then a chain of justified objections exists at x, going from l back to k. This 
bargaining set is called the ordinal bargaining set, and is denoted by eg 0. It was 
introduced in Asscher (1975b, 1976a, 1976b), where he proved, using a lemma 
of Billera (1968, 1970), that it is never empty for every c.s. and coincides with 
eg i 1 if  the garne happens to be a side payment garne. This bargaining set need 
not be a closed set, as was shown in Yarom (1982). In this work Yarom also 
proposed a nonempty subset of eg 0, called eg c which is a closed set and varies 
upper semicontinuously with the characteristic function. It also coincides with 
eg'l for games with side payments. 

Is it intuitively acceptable? 
Yes, if we regard the bargaining set as a vehicle whose purpose is to rule out 

outcomes. At  imputations outside eg 0 there are justified objections that cannot 
be liquidated. One advantage of this bargaining set is that its definition is 
simple and therefore its computation might not be too difficult. 

No, if we want the payoffs in eg 0 to have a reasonable kind of stability. The 
point is that one cannot talk about liquidation without referring to the size of 
the debts being waived. A person would not agree to discard a large debt in 
return for a small debt against him being waived. The situation has an added 
complication in our case when side payments are impossible: in such games, if 
a player l passes some utility to player k while staying on the Pareto surface 

137I.e., if V(S) = {x E Ns: x(S) <~ Cs} , for every coalition S, where the Cs'S are constants.  
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(for the c.s.), and if thereby player k's utility increases by an amount a, player 
l's utility decreases by an amount /3 which is usually different from a. We 
therefore have to talk about transfers at x, x E X(N) ,  represented by pairs 
(%,l,/3k,l), to mean passing to (x a . . . .  , X k + % , C , ' ' ' , X l - - / 3 « , l , - ' ' , X n )  
which is on the same X(N) .  

Let us now make the assumption 138 that for each S, V(S)  is convex and 
satisfies nonlevelness, namely that its Pareto hyper-surface contains no segment 
parallel to an axis. Under these restrictions, %,z is a strictly monotone function 
of/3k,r 

It is straightforward to show that if  a player k has a justified objection against 
l at x in X ( ~ ) ,  then there exists a unique transfer (%.1, fl~,l) with %,l being 
minimal under the requirement that after the transfer, k has no longer a justified 
objection against l. These minimal transfers should be considered the claims 
resulting from justified objections. 

Now, let (il, i 2 . . . .  , it, iI) be a cycle of players, each having a justified 
objection against the next one at x in X(Y3). These justified objections 
determine claims (all,j2,/3il,i2), • • • , (ai~.i~, ~3it,il)" We shall say that the players 
on the cycle will agree to waive their claims if  for  each one o f  them ai~,i~+ ~ <~ 
/3ik-l,~k" Here, t + 1 means 1. This is justified because, if each player owes more 
than he claims, each will be glad of a liquidation proposal. With this terminolo- 
gy and these definitions, Asscher (1975b, 1977) defines the cardinal bargaining 
set ~ c  to be the set of outcomes x (for each c.s.), such that at x the graph of 
justified objections can be decomposed into cycles, and the claims can be split 
along these cycles 139 in such a way that all the players will agree to waive their 
claims. Asscher then proves that for  every coalition structure the cardinal 
bargaining set is a nonempty subset o f  the ordinal bargaining set. Obviously, if 
the game has side payments, it coincides with ~ i .  

Thus, we have a more convincing bargaining set, but the price one pays is 
that its defni t ion is quite complicated. Asscher (1975a, 1975b, 1976a, 1976b, 
1977) studies both bargaining sets for three-person garnes. One of bis examples 
is quite striking: it is an example of a game with a lot of symmetry. Its ordinal 
bargaining set, as well as the cardinal, consists of four points, three of which 
are core points, none of which reflects the symmetry, whereas the fourth is an 
equal share point on the Pareto surface of V(123). A slight modification of the 
characteristic function annihilates the core, but the symmetric payoff remains. 
In this example, at least, the bargaining sets seem superior to the core. 

We refer the reader to the works of Mas-Colell, Vohra, Dutta et al., and 
Grodal,  reported in Section 8, for other bargaining sets defined over the class 
of cooperative garnes without side payments (nontransferable utility coopera- 
tive games). 

138In addition to the previous assumptions. 
139A split is necessary if an edge belongs to more than one cycle. 
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Research concerning the extension of the kernel and the nucleolus to garnes 
without side payments is still scarce, and I shall not report on it. Let me just 
say that the main issue is to decide what the analogue of the excess functions 
should be. There have been several suggestions, starting with Kalai (1972, 
1973, 1975) and continuing with Vilkov (1974, 1979), Nakayama (1983), and 
McLean and Postlewaite (1989). So rar these attempts are not yet crystallized 
to a general theory similar to the one we have in the side payment case. The 
reader can find the relevant literature in the Bibliography marked N. 

13. Games with an infinite number of  players 

13.1. Garnes with a countable number o f  players 

Wesley (1971) already observed that if a game has a countable number of 
players, its kernel may be empty. He then used the theory of nonstandard 
analysis to give conditions that guarantee that a superadditive garne with a 
countable number of  players will have a nonempty kernel for every coalition 
structure. Essentially he demands that the "tails" of infinite coalitions contrib- 
ute little to their worths and the ~J=l ~(j)<00 where g2(j)=SUps[v(S ) - 
v ( S \ { j } ) ] .  It is known that every theorem on real numbers, which can be 
proved by the methods of nonstandard analysis, can also be proved by standard 
topological methods. Nevertheless, the novelty of using nonstandard analysis 
lies in the fact that it helps to f ind the theorems. Theorems on garnes with a 
finite number of players can almost automatically be translated into theorems 
concerning games with a countable number of players, using nonstandard 
analysis. [In this connection see also Geanakoplos (1978) and Lewis (1983, 
1985a, 1985b, 1985c).] 

A different approach to games with a countable number of players can be 
found in Naumova (1973). She looks for limitations on the coalition structures 
which guarantee that the kernel, and therefore the bargaining set, will not be 
empty for these structures. 14° She proves that the kernel for a c.s. ~ will not be 
empty if  each coalition in ~ is finite and EB~ ~ v(B)<oo.  

13.2. Limit  behavior 

In this subsection we report an interesting result obtained by Shapley and 
Shubik (1972a) [see also Shubik (1985)]. The authors eonsider (nk)-person 
games, where n is the number of a finite fixed set N of types, and k is a positive 
integer considered a variable that eventually will tend to infinity. Each type in 
such a garne has k members. The worth of a coalition S is assumed to depend 

14°Her results extend also to her modification of the bargaining set (see Section 8). 
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only on its profile o-(S) = o- = ( o - 1 , . . . ,  on) , where ~ = ~ri(S ) is the number  of 
players of type i in S. More  specifically, it is assumed that v(S) = qb(o-(S))/k, 
where ~b is a real function defined in 9t N, concave, positively homogeneous  of 
degree 1, and continuously differentiable in 9tN\{0}. Note  that v ( k N ) =  
~b(1, 1 ,  . . ,  1) is independent  of k. 

Such games result f rom economic models as follows. One regards ~b as a 
product ion function, each player-type providing a different input and all 
players having linear utility for the output.  Denoting the above garne by kF, 
Shapley and Shubik prove that for every positive e, the bargaining set ~ i 1 of  kF  
is contained in the strong e-core of  this garne, provided that k is large enough. ~4~ 

Note  that these conditions imply that the (nonempty)  core itself converges to 
a single point,  ~42 namely the payoff  generated by the competit ive prices of the 
underlying economy [Debreu and Scarf (1963)]. The same conditions ensure 
the convergence of the Shapley value to this competit ive payoff  [Shapley 
(1964b)]. 

13.3. Games with a continuum of  players 

At present,  there does not exist a generalization of the bargaining set ~ i  1 and 
the kernel to games with a continuum of players. The reason is that single 
players play only a small role in most  models of such garnes, so it is not clear 
what  should replace an objection of a single player against a single player if we 
have a continuum of players. One is faced with two choices. 

One  choice is to find definitions which will make  sense also for the 
continuous case and generate the original solutions in the discrete case. This 
approach was taken by Bird (1976a) for the case of  the nucleolus. Of course, 
the lexicographic minimization of O(x) makes no s e n s e -  there are just too 
many  coalitions - but Bird noticed that Schmeidler (1969a) used an alternative 
definition to prove the continuity of the nucleolus, and that definition made 
perfect  sense for games with a continuum of players. Also, Kohlberg (1971) 
had a characterization which made sense in the continuous case. Bird examined 
the two possibilities and fortunately found that they yielded the same set of  
imputations, so it appears  that we are having a perfect generalization for the 
concept  of a nucleolus for garnes with a continuum of players. 

But  there was a price to pay. For some games the nucleolus was an empty set 
and for others it consisted of  more than one point. 143 Thus, even if the nucleolus 

14XActually they prove that even another bargaining set, which contains ~~i, is a subset of the 
strong e-core. 

142players of the same type get the same payoff in the core of kF, k/> 2, so that convergence may 
be taken in the sense of replacing each core point of kF by a point in 91 N, in which one payment is 
taken for each type. 

143In many important cases the nucleolus coincided essentially with the least core. 
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of  a game  is no t  empty ,  one  still would  like to single out  a unique point  which 
makes  sense intuitively. As  an example  of  Bird 's  work  we would  like to sight 
the fol lowing result. 

The  garne is represen ted  as a triple F :=  (v, N, X) ,  where  v is a real  funct ion 
defined for  all coalitions S, S E ~,  where  N consti tutes a Borel  field on a subset 
X of  9t. We assume that  v(0) = 0 <~ v(S) <~ v(X) = 1 for  all sets S. The  set of  
imputa t ions  I is considered to be the set of  all countab ly  additive non-negat ive  
measures ,  ~,  satisfying ~ ( X )  = 1. 

For  two imputa t ions  pq a n d / , 2 ,  we say t h a t / x  1 ~<*/x 2, if 

sup (v(S) - / x l ( S ) )  < sup (v(S) - /x2(S)) .  
(S: /~2(S)>/Xl(S)} {S: /*I(S)>/x2(S)} 

The nucleolus of F is the set of  imputat ions  that  are minimal under  the relat ion 
4 " .  

A game F is called an orthogonal vector rneasure garne if v(S)= 
f ( i X l ( S ) , . . . , / x , ( S ) ) ,  w h e r e / x l , . . . , / x ù  are imputat ions ,  whose  supports  are n 
disjoint  sets whose  union  is X. We normal ize  f by requiring that  f ( 0 ) =  0 and 
f (1 )  = 1. 

Theorem 13.1. Every nonatomic 144 orthogonal vector measure garne has a 
nonempty nucleolus. 

A n o t h e r  choice in trying to extend the concepts  to games with a con t inuum 
of  players  is to look  for  o ther ,  say, bargaining sets, which do no t  e m p l o y  
object ions  of  single players against single players.  This approach  was taken  by 
Mas-Colel l ,  Vohra ,  Du t t a  et al. and Groda l ,  whose  works  were  r epor ted  in 
Sect ion 8. 
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I. SOCIAL UTILITY 

1. Ethics as a branch of the general theory of rational behavior 

The concept of rational behavior is essentially an idealization of the common- 
sense notion of goal-directed behavior: it refers to behavior that is not only 
goal-directed but is also perfectly consistent in pursuing its goals, with consis- 
tent priorities or preferences among its different goals. Accordingly, rational 
behavior is not a descriptive concept but rather is a normative concept. It does 
not try to teil us what human behavior/s in fact like, but rather teils us what it 
would have to be like in order to satisfy the consistency and other regularity 
requirements of perfect rationality. 

We all have an intuitive idea of what rationality means. But we cannot 
provide a precise formal definition for it without careful study. It is the task of 
the various normative d&ciplines, such as utility theory, decision theory, and 
game theory, to supply precise formal definitions for normative rationality 
under different conditions. Indeed, most philosophers also regard moral 
behavior as a special form of rational behavior. If we accept this view (as I 
think we should) then the theory of morality, i.e., moral philosophy or ethics, 
becomes another normative discipline dealing with rational behavior. 

To be sure, ethics is commonly regarded as a philosophical discipline, 
whereas utility theory, decision theory, and garne theory are scientific and, 
more particularly, mathematical disciplines. But in actual fact, all these 
disciplines use a combination of mathematical and philosophical methods. In 
each of them, finding the right axioms and the right definitions for their basic 
concepts is a philosophical problem, whereas finding rigorous proofs for the 
theorems implied by these axioms and by these definitions is a logical and 
mathematical problem. True, in the past, students of ethics made little use of 
mathematics in discussing ethical problems. But in my opinion this was a 
serious mistäke because mathematical models of moral behavior can substan- 
tially clarify many problems of ethics. 

To elucidate how the various normative disciplines are related to each other, 
it is convenient to regard them as branches of the same general theory o f  
rational behavior. This general theory can be divided into a theory of individual 
rational behavior and the theory of rational behavior in a social setting. The 
former includes the theory of rational behavior under certainty, under risk, and 
under uncertainty. We speak of certainty when the decision-maker can uniquely 
predict the outcome of any action he may take. We speak of r&k when he 
knows at least the objective probabilities associated with alternative possible 
outcomes. We speak of uncertainty when even some or all of these objective 
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probabilities are unknown to him (or are even undefined as numerical prob- 
abilities). The normative theory dealing with certainty I shall call utility theory, 
while those dealing with risk and uncertainty I shall combine under the heading 
of decision theory. (Sometimes utility theory is more broadly defined so as to 
include also what I am calling decision theory.) 

On the other hand, the theory of rational behavior in a social setting can be 
divided into garne theory and ethics. Garne theory deals with two or more 
individuals orten having very different interests who try to maximize their own 
(selfish or unselfish) interests in a rational manner against all the other 
individuals who likewise try to maximize their own (selfish or unselfish) 
interests in a rational manner. In contrast, ethics deals with two or more 
individuals offen having very different personal interests yet trying to promote 
the common interests of  their society in a rational manner. 

2. The axioms of Bayesian decision theory 

This chapter is about ethics, and not about decision theory. Yet, in discussing 
ethical problems, I shall have to refer several times to the axioms of decision 
theory. Therefore, in this section I shall briefly state these axioms in a way 
convenient for my subsequent discussion. 

I shall sharply distinguish between axioms that merely refer to some facts 
established by general logic and mathematics and axioms proper to decision 
theory as such. The former I shall call background assumptions. The latter I 
shall call rationality postulates. Otherwise I shall follow the Anscombe-  
Aumann (1963) approach. 

I shall use the following notations. Strictpreference, nonstrict preference, and 
indifference (or equivalence) will be denoted by the symbols > ,  ~>, and - ,  
respectively. Unless otherwise indicated, these symbols will always refer to the 
preferences and indifferences entertained by one particular individual. I shall 
use the notation 

L = (A a I e l ; . . .  ;Am lern) (2.1) 

to denote a lottery yielding the prizes or the outcomes A 1 , . . ,  A m if the 
events e l , . . . ,  e m occur, respectively. These events are assumed to be mutually 
exclusive and jointly exhaustive of all possibilities. They will be called con- 
ditioning events. Thus, this notation is logically equivalent to m conditional 
statements, such as "I f  e a then Aa",  etc. 

In the special case of a risky lottery, where the decision-maker knows the 
objective probabilities P a , - . . ,  Pm associated with the conditioning events 
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e l , . . . ,  e m and, therefore, also with the outcomes A 1 , . . ,  Am, I shall some- 
times write 

L = ( A 1 ,  P l ; . .  • ; A m ,  P m )  " (2.2) 

I shall make the following two background assumptions: 

Assumption 1. The conditional statements defining a lottery [as discussed in 
connection with (2.1)] follow the laws of the propositional calculus. 

Assumption 2. The objective probabilities defining a risky lottery [as in (2.2)] 
follow the laws of the probability calculus. 

I need Assumption 1 because I want to use Anscombe and Aumann's 
"Reversal of order" postulate without making it into a separate axiom. Their 
postulate can be restated so as to assume that the "roulette lottery" and the 
"horse lottery" they refer to will be conducted s i m u l t a n e o u s l y  rather than one 
after the other (as they assume). Once this is done, their postulate becomes a 
corollary to a well-known theorem of the propositional calculus. If we write 
p--~ q for the statement "If p then q", and write = for logical equivalence, then 
the relevant theorem can be written as 

p---~ (q--* r) = q---~ (p--~ r). (2.3) 

I need Assumption 2 because, in computing the final probability of any given 
outcome in a two-stage lottery, I want to use the addition and multiplication 
laws of the probability calculus without introducing them as separate axioms. 

I need the following rationality postulates: 

Postulate 1 (Complete preordering). The relation ~ (nonstrict preference) is 
a complete preordering over the set of all lotteries. (That is to say, ~ is both 
transitive and complete.) 

Postulate 2 (Continuity). Suppose that A > B > C. Then there exists some 
probability mixture 

L(p)  = (A, p; C, l - p )  (2.4) 

of A and C with 0 ~< p ~< 1 such that B - L(p).  
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Postulate 3 (Monotonicity in prizes). Suppose 
1 . . . .  , m. Then also 

(A~ [ e a ; . . .  ;A*I  e m ) ~ ( A  1 ] e i ; , . .  ; A  m ],em). 

(This postulate is a version of the sure-thing principle.) 

J. C. Harsanyi 

that A~,~> A k for k =  

(2.5) 

Postulate 4 (Probabilistic equivalence). Let Prob denote objective probabili- 
ty. Define the lotteries L and L '  as 

L : ( A l l « l ; . . . ; A m l e m )  and L ' : ( A l l f l ; . . . ; A m [ f m  ) .  (2.6) 

Suppose the decision-maker knows that 

P r o b ( e k ) = P r o b ( L  ) f o r k = l , . . . , m .  (2.7) 

Then, for this decision-maker 

L - L ' .  (2.8) 

In other words, a rational decision-maker must be indifferent between two 
lotteries yielding the same prizes with the same objective probabilities. (In 
particular, he taust be indifferent between a one-stage and a two-stage lottery 
yielding the same prizes with the same final probabilities.) 

We can now state: 

Theorem 1. Given Assumptions 1 and 2, an individual whose preferences 
satisfy Postulates 1-4 will have a utility function U that equates the utility U( L ) 
of  any lottery L to this lottery's expected utility so that 

U ( L ) =  ~ p~U(A~) ,  (2.9) 
k = l  

where Pl, • • . , Pm are either the objective probabilities of the conditioning events 
e 1, . . . , % known to him or are his own subjectiveprobabilitiesfor these events. 

Any utility function equating the utility of every lottery to its expected utility 
is said to possess the expected-utility property and is called a von Neumann-  
Morgenstern (vNM) utility function. 

As Anscombe and Aumann have shown, using the above axioms one can 
first prove the theorem for risky lotteries. Then, one can extend the proof to all 



Ch. 19: Garne and Decision Theoretic Models in Ethics 675 

lotteries, using the theorem,  restricted to risky lotteries, as one of one 's  
axioms. 

In view of the theorem,  we can now extend the notation described under  
(2.2) also to uncertain lotteries if we interpret  Px . . . .  , Pm as the relevant 
decis ion-maker 's  subjective probabilities. 

3. An equi-probability model for moral value judgments 

Utilitarian theory makes  two basic claims. One is that all morality is based on 
maximizing social utility (also called the social welfare funtion). The other  is 
that  social utility is a linear function of all individual utilities, assigning the 
same positive weight to each individual's utility. 1 

In this section and the next I shall try to show that these two claims follow 
from the rationality postulates of Bayesian decision theory and f rom some 
other,  ra ther  natural,  assumptions. In this section I shall propose an equi- 
probabil i ty model  for moral value judgments, whereas in the next section I shall 
p ropose  some axioms characterizing rational choices among alternative social 
policies. 

First of all I propose  to distinguish between an individual's personal prefer- 
erences and bis or her moral preferences) The former  are his preferences 
governing his everyday behavior.  Most individuals' personal preferences will be 
by no means completely selfish. But they will be particularistic in the sense of 
giving greater weight to this individual's, his family members ' ,  and his friends' 
interests than giving to other people 's  interests. In contrast, his moral pref- 
erences will be his preferences governing bis moral  value judgments.  Unlike his 
personal  preferences,  his moral  preferences will be universalistic, in the sense 
of  giving the same positive weight to everybody's  interests, including his own 
because,  by definition, moral  value judgments are judgments based on im- 
personal  and impartial  considerations. 

For  example,  suppose somebody tells me that he strongly prefers our 
capitalist system over  any socialist system. When I ask hirn why he feels this 
way, he explains that in our capitalist system he is a millionaire and has a very 
interesting and rewarding life. But in a socialist system in all probabil i ty he 
would be a badly paid government  official with a very uninteresting bureau- 
cratic job. Obviously,  if he is right about  his prospects in a socialist system then 

1Some utilitarians define social utility as the sum of all individual utilities whereas others define it 
as their arithmetic mean. But as long as the number n of individuals in the society is constant, these 
two approaches are mathematically equivalent because maximizing either of these two quantities 
will also maximize the other. Only in discussing population policies will this equivalence break 
down because n can no longer be treated as a constant in this context. 

2In what follows, in similar phrases I shall omit the female pronoun. 
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he has very good reasons to prefer his present position in our capitalist system. 
Yet, his preference for the latter will be simply a personal preference based on 
self-interest, and will obviously not qualify as a moral preference based on 
impartial moral considerations. 

The situation would be very different if he expressed a preference for the 
capitalist system without knowing what his personal position would be under 
either system, and in particular if he expected to have the same chance of 
occupying any possible social position under either system. 

More formally, suppose that our society consists of n individuals, to be called 
individuals 1 , . . , i , . . . ,  n. Suppose that one particular individual, to be 
called individual j, wants to compare various possible social situations s from 
an impartial moral point of view. Let Ug(s) denote the utility level of individual 
i (i = 1 , . . ,  n) in situation s. I shall assume that each utility function U i is a 
vNM utility function, and that individual j can make interpersonal utility 
comparison between the utility levels U~(s) that various individuals i would 
enjoy in different social situations s (see Section 5). 

Finally, to ensure j 's  impartiality in assessing different social situations s, I 
shall assume that j taust assume that he has the same probability 1/n of ending 
up in the social position of any individual i with i's utility function Ui as his own 
utility function. (This last assumption is needed to ensure that he will make a 
realistic assessment of i's interests in the relevant social position and in the 
relevant social situation. Thus, if i were a fish merchant in a given social 
situation, then j taust assess this faet  in terms of the utility that i would derive 
from this occupation, and not in terms of his own (j 's) tolerance or intolerance 
for fishy smells.) 

Under these assumptions, j would have to assign to any possible social 
situation s the expected utility 

B(s) = ! ~ G(s) (3.1) 
n i = l  

and, by Theorem 1, this would be the quantity in terms of which he would 
evaluate any social situation s from an impartial moral point of view. In other 
words, Wj(s) would be the social utility function that j would use as a basis for 
his moral preferences among alternative social situations s, i.e., as a basis for 
his moral value judgments. 

Note that if two different individuals j = j '  and j = j" assess each utility 
function U i in the same w a y -  which, of course, would be the case if both of 
them could make correct estimates of these utility fun t ions-  then they will 
arrive at the same social utility function Wj. We can now summarize our 
conclusions by stating the following theorem. 
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Theorem 2. Under the equi-probability model for moral value judgments, a 
rational individual j will always base his moral assessment of  alternative social 
situations on a social utility function Wj defined as the arithmetic mean of  all 
individual utility functions U i (as estimated by hirn). Moreover, if different 
individuals j all form correct estimates of  these utility functions then they will 
arrive at the same social utility function Wj. 

Note that this model for moral value judgments is simply an updated version 
of Adam Smith's (1976) theory of morality, which equated the moral point of 
view to that of an impartial but sympathetic observer (or "spectator" as he 
actually described hirn). 

4. Axioms for rational choice among alternative social policies 

In this section, for convenience I shall describe social situations as pure 
alternatives, and lotteries whose outcomes are social situations as mixed 
alternatives, I shall assume four axioms, later to be supplemented by a 
nondegeneracy (linear independence) assumption. 

Axiom 1 (Rationality of individual preferences). The personal preferences of 
each individual i(i = 1 , . . ,  n) satisfy the rationality postulates of Bayesian 
decision theory (as stated in Section 2). Therefore his personal preferences can 
be represented by a vNM utility function U i. 

Axiom 2 (Rationality of the social-policy-maker's moral preferences). The 
moral preferences of individual j, the soeial-policy-maker, that guide him in 
choosing among alternative social policies likewise satisfy the rationality pos- 
tulates of Bayesian decision theory. Therefore, j 's moral preferences can be 
represented by a social utility function Wj that has the nature of a vNM utility 
function. 

Axiom 3 (Use of the policy-maker's own subjective probabilities). Let 7r be a 
policy whose possible results are the pure alternatives s l , . . .  , s  m. Then 
individual j will assess the desirability of this policy both from a moral point of 
view and from each individual's personal point of view in terms of the 
subjective probabilities P l , . . . ,  Pm that he himself assigns to these possible 
outcomes s l , . . . ,  s m. Thus, j will define the social utility of policy ~r as 

B(Tr) = ~ pkWj(sk), (4.1) 
k = i  
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and will define the utility of this policy to a particular individual i as 

U,(~) = ~ PkU,(Sk) , 
k = I  

(4.2) 

even though i himself will define the utility of this policy to him as 

Ui(~r ) = ~ qikUi(G), (4.3) 
k = l  

where qi l , . . .  , qm are the probabilities that i himself assigns to the outcomes 
s l , . . . ,  sm, respectively. 

That is to say, a rational policy-maker will choose his subjective probabilities 
on the basis of the best information available to hirn. Therefore, once he has 
chosen these subjective probabilities, he will always select his policies, and will 
always form his expectations about the likely effects of these policies on all 
individuals i, on the basis of these probabilities rather than on the basis of the 
subjective probabilities that these individuals i may themselves entertain. 

Axiom 4 (Positive relationship between the various individuals' interests as 
seen by the policy-maker and his moral preferences between alternative 
policies). Suppose that, in the judgment of individual j, a given policy 7r 
would serve the interests of every individual i at least as well as another policy 
7r' would. Then, individual j will have at least a nonstrict moral preference for 
7r over 7r'. If, in addition, he thinks that ~- would serve the interests of at least 
one individual i definitely better than 7r' would, then he will have a strict moral 
preference for ~r over 7r'. (This implies that the social utility function Wj 
representing j's moral preferences will be a single-valued strictly increasing 
function of the individual utilities U 1 , . .  , Un.) 

In addition to these four axioms, I shall assume: 

Linear independenee. The n utility functions U 1 , . . ,  U n are linearly in- 
dependent. 
(This seems to be a natural assumption to make because any linear dependence 
could arise only by a very likely coincidence.) One can show that our four 
axioms and this linear-independence assumption imply the following theorem. 

Theorem 3. A rational policy-maker j will evaluate all social policies 7r in 
terms of  a social utility function Wj having the mathematical form 

B(~')  = 2 a,U~(vr), (4.4) 
i = I  
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with 

a 1 . . . .  , a ù > 0 ,  (4.5) 

where the (expected) utilities Ui(1r ) are defined in accordance with (4.2). 

Of course, Theorem 3 as it stands is weaker than Theorem 2 because it does 
not tell us that the coefficients a l , . . . ,  a n taust be equal to one another.  But 
we can strengthen Theorem 3 so that it will include this requirement  by adding 
a symmetry axiom to our four preceding axioms. Yet we can do this only if we 
assume interpersonal comparability of the various individuals' utilities (see 
Section 5). If we are willing to make this assumption, then we can introduce: 

Axiom 5 (Symmetry).  If the various individuals' utilities are expressed in the 
same utility unit, then Wj will be a symmetric function of the individual utilities 

U I , . . .  , U n , 

The axiom requires interpersonal comparability (at least for utility differ- 
ences) because otherwise the requirement of an identical utility unit becomes 
meaningless. 

Yet, given Axiom 5, we can infer that 

a 1 . . . . .  a n = a .  (4.6) 

We are free to choose any positive constant as our a. If we choose a = 1/n,  
then equation (4.4) becomes the same as equation (3.1). Another  natural 
choice is a = 1, which would make Wj the sum, rather than the arithmetic 
mean, of individual utilities. 

5. Interpersonal utility comparisons 

As is weil known, in order  to obtain a well-defined vNM utility function U i for 
a given individual i, we have to choose a zero-utility level and a utility unit for 
hirn. Accordingly, full interpersonal comparability between two or more vNM 
utility functions Ui, U k , . . .  will obtain only if both the zero-utility points and 
the utility units of all these utility functions are comparable. Actually, 
utilitarian theory needs only utility-unit comparability. But since the same 
arguments can be used to establish full comparability as to establish mere 
ufility-unit comparability, I shall argue in favor of full comparability. 

In ordinary economic analysis the arguments of vNM utility functions are 
commodity vectors and probability mixtures (lotteries) of such vectors. But for 
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ethical purposes we need more broadly defined arguments, with benefit vectors 
taking the place of commodity vectors. By the benefit vector of a given 
individual I shall mean a vector listing all economic and noneconomic benefits 
(of advantages) available to hirn, including bis commodity endowments, and 
listing also all economic and noneconomic discommodities (or disadvantages) 
he has to face. 

The vNM utility function U i of an individual i is usually interpreted as a 
mathematical representation of his preferences. For our purposes we shall add 
a second interpretation. We shall say that i's vNM utility function U~ is also an 
indicator of the amounts of satisfaction that i derives (or would derive) from 
alternative benefit vectors (and from their probability mixtures). Indeed, any 
preference by i for one thing over another can be itself interpreted as an 
indication that i expects to derive more satisfaction from the former than from 
the latter. 

It is a well-known fact that the vNM utility functions of different individuals 
tend to be very different in tbat they have very different preferences between 
different benefit vectors, and in that they tend to derive very different amounts 
of satisfaction from the same benefit vectors. Given out still very rudimentary 
understanding of human psychology, we cannot really explain these differences 
in any specific detail. But common sense does suggest that these differences 
between people's preferences and between their levels of satisfaction under 
comparable condi t ions-  i.e., the differences between their vNM utility func- 
t i o n s -  are due to such factors as differences in their innate psychological and 
physiological characteristics, in their upbringing and education, in their health, 
in their life experiences, and other similar variables. 

The variables explaining the differences between different people's vNM 
utility functions I shall call causal variables. Let r» r~ . . . .  be the vectors of 
these causal variables explaining why the individuals i, k , . . .  have the vNM 
utility functions Ui, U ~ , . . . ,  and why these utility functions tend to differ from 
individual to individual. I shall call these vectors ri, G, • • -, the causal-variable 
vectors of individuals i, k , . . . .  

Suppose that i's and k's benefit vectors are x and y, respectively, so that 
their vNM utility levels-  and therefore also their levels of satisfaction- are 
Ue(x ) and Uk(Y ). On the other hand, if their present benefit vectors were 
interchanged, then their vNM utility levels - and therefore also their levels of 
sa t is fact ion-would be Ui(y ) and U~(x). 

Under out assumptions, each individual's vNM utility level will depend both 
on his benefit vector and on his causal-variable vector. Therefore, there exists 
some mathematical function V such that 

G ( x )  = V(x, r,), 

G ( y )  = V(y, r,), 

G(x) =V(x, r~), 

Uk(y)=V(y, G). 
(5.1)  
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Moreover ,  this function V will be the same mathematical function in all four 
equations (and in all similar equations). This is so because the differences 
between the utility functions U i and U k can be fully explained by the differ- 
ences between the two individuals' causal-variable vectors r i and G,  whereas 
the function V itself is determined by the basic psychological laws governing 
human preferences and human satisfactions, equally applying to all human 
beings. This function V I shall call the inter-individual utility function. 3 

To be sure, we do not know the mathematical form of this function V. Nor 
do we know the nature of the causal-variable vectors r i, G , .  • • belonging to 
the various individuals. But my point is that if  we did know the basic 
psychological laws governing human preferences and human satisfaetions then 
we could work out the mathematical form of V and could find out the nature of 
these causal-variable vectors ri, G , .  • • • This means that even if we do not 
know the function V, and do not know the vectors ri, G , . . . ,  these are 
well-defined mathematical entities, so that interpersonal utility comparisons 
based on these mathematical entities are a meaningful operation. 

Moreover ,  in many specific cases we do have enough insight into human 
psychology in general, and into the personalities of the relevant individuals in 
particular, to make some interpersonal utility comparisons. For instance, 
suppose that both i and k are people with considerable musical talent. But i has 
in fact chosen a musical career and is now a badly paid but very highly 
respected member  of a famous orchestra. In contrast, k has opted for a more 
lucrative profession. He has obtained an accounting degree and is now the 
highly paid and very popular chief accountant of a large company. Both 
individuals seem to be quite happy in their chosen professions. But I would 
have to know them really well before I could venture an opinion as to which 
one actually derives more satisfaction from his own way of life. 

Yet, suppose I do know these two people very weil. Then I may be willing to 
make the tentative judgment that i's level o f  satisfaction, as measured by the 
quantity Ui(x)= V(x, ri), is in fact higher or lower than is k's level o f  
satisfaction, as measured by the quantity Uk(y) = V( y, r k). Obviously, even if I 
made such a judgment,  I should know that such judgments are very hard to 
make,  and must be subject to wide margins of error. But such possibilities of 
error  do not make them into meaningless judgments. 

I have suggested that, in discussing interpersonal comparisons of utilities, 
these utilities should be primarily interpreted as amounts ofsatisfaction, rather 
than as indicators of preference as such. My reason has been this. 

Suppose we want to compare the vNM utility U~(x) = V(x, q )  that i assigns 
to the benefit vector x, and the vNM utility Uk(Y) = V(y ,  G)  that k assigns to 
the benefit vector y. If we adopted the preference interpretation, then we 
would have to ask whether i's situation characterized by the vector pair (x, r,.) 

3In earlier publications I called V an extended utility function. 
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or k's situation characterized by the vector pair (y, rk) was preferred (or 
whether these two situations were equally preferred). But this would be an 
incomplete question to ask. For before this question could be answered we 
would have to decide whether "preferred" meant "preferred by individual i" 
or meant "preferred by individual k" - because, for all we know, one of these 
two individuals might prefer i's situation, whereas the other might prefer k's 
situation. Yet, if this were the case then we would have no way of telling 
whether i's or k's situation were intrinsically preferable. 

In contrast, if we adopt the amount-of-satisfaction interpretation, then no 
similar problem will arise. For in this case Uz(x ) = V(x, rz) would become 
simply the amount  o f  satisfaction that i derives from his present situation, 
whereas Uk(y ) = V(y ,  r~) would become the amount o f  satisfaction that k 
derives from his present situation. To be sure, we have no way of directly 
measuring these two amounts of satisfaction, but can only estimate them on the 
basis of o u r -  very fallible- intuitive understanding of human psychology and 
of i's and k's personalities. Yet, assuming that there are definite psychological 
laws governing human satisfactions and human preferences (eren if our 
knowledge of these laws is very imperfect as yet), V will be a well-defined 
mathematical function, and the quantities V(x, ri) and V(y ,  rk) will be well- 
defined, real-valued mathematical quantities, in principle always comparable to 
each other. 

6. Use of  von Neumann-Morgens tern  utilities in ethics 

6.1. Outcome utilities and process utilities 

Both Theorems 2 and 3 make essential use of vNM utility functions. Yet, the 
latter's use in ethics met with strong objections by Arrow (1951, p. 10) and by 
Rawls (1971, pp. 172 and 323) on the ground that vNM utility functions merely 
express people's attitudes toward gambling, and these attitudes have no moral 
significance. 

Yet this view, it seems to me, is based on a failure to distinguish between the 
process utilities and the outcome utilities people derive from gambling and, 
more generally, from risk-taking. By process utilities I mean the (positive and 
negative) utilities a person derives from the act o f  gambling itself. These are 
basically utilities he derives from the various psychological experiences associ- 
ated with gambling, such as the nervous tension felt by him, the joy of winning, 
the pain of losing, the regret for having made the wrong choice, etc. In 
contrast, by outcome utilities I mean the (positive and negative) utilities he 
assigns to various possible physical outcomes. 

With respect to people's process utilities I agree with Arrow and Rawls: these 
utilities do merely express people's attitudes toward gambling and, therefore, 
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have no moral significance. But I shall try to show that people's vNM utility 
functions express solely people's outcome utilities and completely disregard 
their process utilities. Indeed,  what people's vNM utility functions measure are 
their cardinal utilities for various possible outcomes. Being cardinal utilities, 
they indicate not only people's preferences between alternative outcomes, as 
their ordinal utilities do, but also the relative importance they assign to various 
outcomes. Yet, this is morally very valuable information. 

6.2. Gambl ing-or iented  vs. outcome-oriented attitudes 

I shall now define two concepts that I need in my subsequent discussion. When 
people gamble for entertainment,  they are usually just as much interested in 
the process utilities they derive from their subjective experiences in gambling 
as they are in the outcome utilities they expect to derive from the final 
outcomes. In fact, they may gamble primarily for the sake of these subjective 
experiences. This attitude, characterized by a strong interest in these process 
utilities, I shall call a gambling-oriented attitude. 

The situation is different when people engage in risky activities primarily for 
the sake of the expected outcomes.  In such cases, in particular if the stakes are 
very high or if these people are business executives or political leaders 
gambling with other  people's money and sometimes even with other people's 
lives, then they will be certainly weil advised, both for moral reasons and for 
reasons of self-interest, to focus their attention on the outcome utilities and the 
probabil i t ies of the various possible outcomes in order to achieve the best 
possible outcomes for their constituents and for themse lves -  without being 
diverted from this objective by their own positive or negative psychological 
experiences and by the process utilities derived from these experiences. This 
attitude of being guided by one's expected outcome utilities rather than by 
one's  proeess utilities in risky situations I shall call an outcome-or iented  
attitude.4 

6.3. Von N e u m a n n - M o r g e n s t e r n  utility funct ions  and ou tcome utilities 

Now I propose to argue that vNM utility functions are based solely on people's 
outcome utilities, and make no use of their process utilities. Firstly, this can be 

4Needless to say, everybody, whether he takes a gambling-oriented or a strictly outcome- 
oriented attitude, does have process utilities in risky situations. My point is only that some people 
intentionally take an outcome-oriented attitude and disregard these process utilities in order not to 
be diverted from their main objective of maximizing their expected outcome utility. (In philosophi- 
cal terminology, ourfirst-order preferences for enjoyable subjective experiences give rise to process 
utilities. On the other hand, an outcome-oriented attitude is a second-order preference for 
overriding those of our first-order preferences that give rise to such process utilities.) 
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verified by mere inspection of equation (2.9) defining the vNM utility of a 
lottery. This utility depends only on the outcome utilities U(Ak) and on the 
probabilities Pk of the various possible outcomes Ak (k = 1 . . . .  , m), but does 
not in any way depend on the process utilities connected with gambling. 

Secondly, we shall reach the same conclusion by studying von Neumann and 
Morgenstern's (1953) axioms defining these vNM utility functions, or by 
studying the rationality postulates listed in Section 2, which are simplified 
versions of their axioms. 

For instance, consider Postulate 4 (p. 674). This postulate implies that a 
rational person will be indifferent between a one-stage and a two-stage lottery 
if both yield the same prizes with the same final probabilities. This is obviously 
a very compelling rationality requirement for a strictly outcome-oriented per- 
son, interested only in the utilities and the probabilities of the various possible 
outcomes. Yet, it is not a valid rationality requirement for a gambIing-oriented 
person, taking a strong interest also in the process utilities he will obtain by 
participating in one of these two lotteries. For participation in a one-stage 
lottery will give rise to one period of nervous tension, whereas participation in 
a two-stage lottery may give rise to two such periods. Therefore, the two 
lotteries will tend to produce quite different process utilities so that we cannot 
expect a gambling-oriented person to be indifferent between them. 

It is easy to verify that the same is true for Postulate 3: it is a very compelling 
rationality postulate for strictly outcome-oriented people but is not one for 
gambling-oriented people. [For further discussion, see Harsanyi (1987).] 

Thus, only a strictly outcome-oriented person can be expected to conform to 
all four rationality postulates of Section 2. Yet, this means that only the 
behavior of such a person can be represented by a vNM utility function. But all 
that such a person's vNM utility function can express are his outcome utilities 
rather than his process utilities because his behavior is guided solely by the 
former. 

Note that von Neumann and Morgenstern (1953, p. 28) themselves were 
fully aware of the fact that their axioms excluded what they called the utility of  
gambling, and what I am calling process utilities. It is rather surprising that this 
important insight of theirs later came to be completely overlooked in the 
discussions about the appropriateness of using vNM utility functions in ethics. 

6.4. Von Neumann-Morgenstern utilities as cardinal utilities 

Let me now come back to my other contention that vNM utility functions are 
very useful in ethics because they express the cardinal utilities people assign to 
various possible outcomes, indicating the relative importance they attach to 
these outcomes. 



Ch. 19: Garne and Decision Theoretic Models in Ethics 685 

Suppose that individual i pays $10 for a lottery ticket giving him 1/1000 
chance of winning $1000. This fact implies that 

1 
1000 Ui($1000)~ Ui($10)" (6.1) 

In other words, even though $1000 is only a 100 times larger amount of money 
than $10 is, i assigns an at least 1000 times higher utility to the former than he 
assigns to the latter. Thus, his vNM utility function not only indicates that he 
prefers $1000 to $10 (which is all that an ordinal utility function could do), but 
also indicates that he attaches unusually high importance to winning $1000 as 
compared with the importance he attaches to not losing $10 (as he would do if 
he did not wirt anything with his lottery ticket - which would be, of course, the 
far more likely outcome). 

To be sure, i's vNM utility function does not tell us why he assigns such a 
high importance to winning $1000. We would have to know his personal 
circumstances to understand this. (For instance, if we asked hirn we might find 
out that winning $1000 was so important for hirn because he hoped to use the 
money as cash deposit on a very badly needed second-hand car, or we might 
obtain some other similar explanation.) 

Thus, in ethics, vNM utility functions are important because they provide 
information, not only about people's preferences, but also about the relative 
importance they attach to their various preferences. This must be very valuable 
information for any humanitarian ethics that tries to encourage us to satisfy 
other people's wants and, other things being equal, to give priority to those 
wants they themselves regard as being most important. Admittedly, a vNM 
utility function measures the relative importance a person assigns to his various 
wants by the risks he is willing to take to satisfy these wants. But, as we have 
seen, this fact must not be confused with the untenable claim that a person's 
vNM utility function expresses merely his like or his dislike for gambling as 
such. 

II. RULE UTILITARIANISM, ACT UTILITARIANISM, 
RAWLS' AND BROCK'S NONUTILITARIAN THEORIES 

OF JUSTICE 

7. The two versions of utilitarian theory 

Act utilitarianism is the view that a morally right action is simply one that 
would maximize expected social utility in the existing situation. In contrast, 
rule utilitarianism is the view that a morally right action taust be defined in two 
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steps. First, we taust define the right moral rule as the moral rule whose 
acceptance would maximize expected social utility in similar situations. Then, 
we taust define a morally right action as one in compliance with this moral rule. 

Actually, reflection will show that in general we cannot judge the social 
utility of any proposed moral rule without knowing the other moral rules 
accepted by the relevant society. Thus, we cannot decide what the moral 
obligations of a father should be toward his children without knowing how the 
moral obligations of other relatives are defined toward these children. (We 
taust ensure that somebody should be clearly responsible for the well-being of 
every child. On the other hand, we taust not give conflicting responsibilities to 
different people with respect to the same child.) 

Accordingly, it seems to be preferable to make society's moral code, i.e., the 
set of all moral rules accepted by the society, rather than individual moral 
rules, the basic concept of rule utilitarian theory. Thus, we may define the 
optimal moral code as the moral code whose acceptance would maximize 
expected social utility, 5 and may define a morally right action as one in 
compliance with this moral code. 

How should we interpret the term "social acceptance" used in these defini- 
tions? Realistically, we cannot interpret it as full compliance by all members of 
the society with the accepted moral code (or moral rule). All we can expect is 
partial compliance, with a lesser degree of compliance in the case of a very 
demanding moral code. (Moreover, we may expect much more compliance in 
the moral judgments people make about each other's behavior than in their 
own actual behavior.) 

How will a rational utilitarian choose between the two versions of utilitarian 
theory? It seems to me that he taust make his choice in terms of the basic 
utilitarian choice criterion itself: he must ask whether a rule utilitarian or an act 
utilitarian society would enjoy a higher level of  social utility. 

Actually, the problem of choosing between the rule utilitarian and the act 
utilitarian approaches can be formally regarded as a special case of the rule 
utilitarian problem of choosing among alternative moral codes according to 
their expected social utility. For, when a rule utilitarian society chooses among 
alternative moral codes, the act utilitarian moral code (asking each individual 
to choose the social-utility maximizing action in every situation) is one of the 
moral codes available for choice. 

Note that this fact already shows that the social-utility level of a rule 
utilitarian society, one using the optimal rule utilitarian moral code, must be at 
least as high as that of an act utilitarian society, using the act utilitarian moral 
code. 

»For the sake of simplicity, I am assuming that the social-utility maximizing moral code is 
unique. 
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8. The effects of a socially accepted moral code 

When a society accepts a given moral code, the most obvious effects of this will 
be the benefits people will obtain by other people's (and by their own) 
compliance with this moral code. These effects I shall call positive implementa- 
tion effects. 

Yet, compliance with any moral c o d e -  together with the fact that this 
compliance will always be somewhat incomplete-  will give rise also to some 
social costs. These include the efforts needed to comply with specific injunc- 
tions of the moral code, and in particular to do so in some difficult situations; 
the guilt feelings and the social stigma that may follow noncompliance; loss of 
respect for the moral code if people see widespread noncompliance; and the 
efforts needed to inculcate habits consistent with the moral code in the next 
generation [cf. Brandt (1979, pp. 287-289)]. These effects I shall call negative 
implementation effects. They will be particularly burdensome in the case of very 
demanding moral codes and may make adoption of such a moral code 
unattractive even if it would have very attractive positive implementation 
effects. 

Another important group of social effects that a moral code will produce are 
its expectation effects. They result from the fact that people will not only 
themselves comply with the accepted moral code to some degree but will 
expect other people likewise to comply with it. This expectation may give them 
incentives to socially beneficial activities, and may give them some assurance 
that their interests will be protected. Accordingly, I shall divide the expectation 
effects of a moral code into incentive effects and assurance effects. As we shall 
see, these two classes of expectation effects are extremely important in 
determining the social utility of any moral code. It is all the more surprising 
that so far they have received hardly any attention in the literature of ethics. 

9. The negative implementation effects of act utilitarian morality 

In Section 3 I argued that people's personal preferences are particularistic in 
that they tend to give rauch greater weight to their own, their family members', 
and their closest friends' interests than they tend to give to other people's 
interests; but that they orten make moral value judgments based on universalis- 
tic criteria, giving the same weight to everybody's interests. As a result, the 
utility function U i of any individual i will be quite different from his social 
utility function Wi since the forme/will be particularistic while the latter will be 
universalistic. A world like ours where people's personal preferences and their 
utility functions are particularistic I shall call a particularistic world. 

In contrast, imagine a world where even people's personal preferences and 
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their utility functions would be universalistic. In such a world, each individual's 
utility function U i would be identical to his social utility function W i. Indeed, 
assuming that different individuals would define their society's interests in the 
same way, different individuals' social utility functions would be likewise 
identical. Such an imaginary world I shall call a universalistic world. 

In a universalistic world, people would have no difficulty in following the act 
utilitarian moral code. To be sure, the latter would require them in every 
situation to choose the action maximizing social utility. But since for them 
maximizing social utility would be the same thing as maximizing their own 
individual utility, they could easily comply with this requirement without going 
against their own natural inclinations. 

Yet, things are very different in our own particularistic world. Even those of 
us who try to comply with some moral code will tend in each situation to 
choose, among the actions permitted by our moral code, the one maximizing 
our individual utility. But act utilitarian morality would require a radical shift 
in our basic attitudes and in our everyday behavior. It would require complete 
replacement of maximizing our individual utility by maximizing social utility as 
our choice criterion for all our decisions. 

Clearly, this would amount to suppressing our particularistic personal prefer- 
ences, our personal interests, and our personal commitments to our family and 
our friends, for the rigidly universalistic principles of act utilitarian morality. 
Such a complete suppression of out  natural inclinations could be done, if it 
could be done at all, only by extreme efforts and at extremely high psychologi- 
cal costs. In other words, act utilitarian morality would have intolerably 
burdensome negative implementation effects. 

In contrast, compliance with a rule utilitarian moral code would not pose any 
such problems. The latter would be basically a greatly improved and rauch 
more rational version of conventional morality, and compliance with it would 
require much the same effort as compliance with conventional morality does. 
No doubt it would require us in many cases to give precedence to other 
people's interests and to society's common interests over our personal prefer- 
ences, concerns, and interests. But within these limits it would let us follow our 
own preferences, concerns, and interests. 

10. The value of free individual choice 

One aspect of the negative implementation effects of act utilitarian morality 
would be its social-utility maximization requirement in every situation, i.e., its 
insistence on the highest possible moral performance at every instant of our life. 
We would not be permitted to relax, or to do what we would like to do, even 
for one moment. If I were tempted to read a book or to go for a leisurely walk 
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after a tiring day, I would always have to ask myself whether I could not do 
something more useful to society, such as doing some voluntary work for 
charity (or perhaps trying to convert some of my friends to utilitarian theory) 
instead. This of course means that, except in those rare cases where two or 
more  actions would equally produce the highest possible social utility, I would 
never be permit ted a free choice between alternative actions. 

This also means that act utilitarian theory could not accommodate the 
traditional, and intuitively very appealing, distinction between merely doing 
one's  duty and performing a supererogatory action going beyond the call of 
duty. For  we would do only our duty by choosing an action maximizing social 
utility, and by doing anything else we would clearly fall to do our duty. 

In contrast, a rule utilitarian moral code could easily recognize the intrinsic 
value of free individual choice. Thus, suppose I have a choice between action 
A, yielding the social utility a,  and action B, yielding the social utility/3, with 
a >/3.  In this case, act utilitarian theory would make it my duty to choose 
action A. But a rule utilitarian moral code could assign a procedural utility y to 
free moral choice. This would make me morally free to choose between A and 
B as long as /3 + T/> a. Nevertheless, because « >/3,  A would remain the 
morally preferable choice. Thus, I would do my duty both by choosing A and 
by choosing B. Yet, by choosing the morally preferable action A, I would go 
beyond merely doing my duty and would perform a supererogatory action. 

11. Morally protected rights and obligations, and their expectation effects 

The moral codes of civilized societies recognize some individual rights and 
some special obligations 6 that cannot be overriden merely because by overrid- 
ing them one could here and now increase social u t i l i ty -  except possibly in 
some very special cases where fundamentally important interests of society are 
at stake. I shall describe these as morally protected rights and obligations. 

As an example of individual rights, consider a person's property rights over a 
boat  he owns. According to our accepted moral code (and also according to 
our  legal rules), nobody else can use this boat  without the owner's permission 
in other  than some exceptional cases (say, to save a human life). The mere fact 
that use of the boat  by an,other person may increase social utility (because he 
would derive a greater utility by using the boat than the owner would) is not a 
morally acceptable reason for him to use the boat without the owner's consent. 

Even though, as we have seen, the direct effects of such property rights will 

6By special obligations I mean moral obligations based on one's social role (e.g., one's 
obligations as a parent, or as a teacher, or as a doctor, etc.) or on some past event (e.g., on having 
made a promise, or on having incurred an obligation of gratitude to a benefactor, and so on). 
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offen be to prevent some actions that might increase social utility, their indirect 
effects, namely their expectation effects, make them into a socially very useful 
institution. They provide socially desirable incentives to hard work, saving, 
investment, and entrepreneurial activities. They also give property owners 
assurance of some financial security and of some independence of other 
people's good will. (Indeed, as a kind of assurance effect benefiting society as a 
whole, widespread property ownership contributes to social stability, and is an 
important guarantee of personal and political freedom.) 

As an example of special obligations, consider a borrower's obligation to 
repay the borrowed money to the lender, except if this would cause him 
extreme hardship. In some cases, in particular when the borrower is very poor 
whereas the lender is very rich, by repaying the money the borrower will 
substantially decrease social utility because his own utility loss will greatly 
exceed the lender's utility gain (since the marginal utility of money to very poor 
people tends to be much higher than the marginal utility of money to very rich 
people). Nevertheless, it is a socially very beneficial moral (and legal) rule that 
normally loans must be repaid (even in the case of very poor borrowers and 
very rich lenders) because otherwise people would have a strong incentive not 
to lend money. Poor people would particularly suffer by being unable to 
borrow money if it were known that they would not have to repay it. The rule 
that loans must be repaid will also give lenders some assurance that society's 
moral code will protect their interests if they lend money. 

Since a rule utilitarian society would choose its moral code by the criterion of 
social utility, it would no doubt choose a moral code recognizing many morally 
protected rights and obligations, in view of their very beneficial expectation 
effects. But an act utilitarian society could not do th&. This is so because act 
utilitarian morality is based not on choosing between alternative moral codes, 
but rather on choosing between alternative individual actions in each situation. 
Therefore, the only expectation effects it could pay attention to would be those 
of individual actions and not those of entire moral codes. Yet, normally an 
individual action will have negligibly small expectation effects. If people know 
that their society's moral code does protect, or does not protect, property 
rights, this will have a substantial effect on the extent to which they will expect 
property rights to be actually respected. But if all they know is that one 
individual on one particular occasion did or did not respect another individual's 
property rights, this will hardly have any noticeable effect on the extent to 
which they will expect property rights to be respected in the future. Hence, an 
act utilitarian society would have no reason to recognize morally protected 
rights and obligations. 

Yet, in fairness to act utilitarian theory, a consistent act utilitarian would not 
really regret the absence of morally protected rights and obligations from his 
society. For he would not really mind if what we would consider to be his 



Ch. 19: Garne and Decision Theoretic Models in Ethics 691 

individual rights were violated, or if what we would consider to be special 
obligations owed to hirn were infringed, if this were done to maximize social 
u t i l i ty -  because maximization of social utility would be the only thing he 
would care about. 

12, The advantages of the rule utilitarian approach 

To conclude, most of us would very much prefer to live in a rule utilitarian 
society rather than in an act utilitarian society. For one thing, we would very 
much prefer  to live in a society whose moral code permitted us within 
reasonable limits to make our own choices, and to follow our own personal 
preferences and interests as weil as our personal commitments to the people we 
most cared about. In other  words, we would prefer to live under a moral code 
with much less burdensome negative implementation effects than the act 
utilitarian moral code would have. 

For  another  thing, we would rauch prefer to live in a society whose moral 
code recognized individual rights and special obligations that taust not be 
overridden for social-expediency considerations, except possibly in some rare 
and special cases. We would feel that in such a society our interests would be 
much bet te t  protected,  and that society as a whole would benefit from the 
desirable expectation effects of such a moral code. 

The fact that most of us would definitely prefer to live in a rule utilitarian 
society is a clear indication that most of us would expect to enjoy a rauch 
higher level of individual utility under a rule utilitarian moral code than under 
an act utilitarian moral code. Yet, social utility can be defined as the arithmetic 
mean (or as the sum) of individual utilities. Therefore ,  we have very good 
reasons to expect that the level of social utility would be likewise much higher 
in a rule utilitarian society than it would be in an act utilitarian society. 

Both  act utilitarianism and rule utilitarianism are consequentialist theories 
because both of them define morally right behavior ultimately in terms of its 
consequences with respect to social utility. This gives both versions of 
utilitarianism an important  advantage over nonconsequentialist theories be- 
cause it gives t h e m a  clear and readily understandable rational criterion for the 
solution of moral p r o b l e m s -  something that nonconsequentialist theories of 
morality altogether lack, and that they have to replace by vague references to 
our "moral  intuitions" or to our "sense of justice" [e.g., Rawls (1971, pp. 
48-51)1. 

As I have tried to show, even though both versions of utilitarianism are 
based on the same consequentialist choice criterion, the rule utilitarian ap- 
proach has important  advantages over the act utilitarian approach. At  a 
fundamental  level, all these advantages result from the much greater flexibility 



6 9 2  J. C. Harsanyi 

of the rule utilitarian approach. As we have seen, whereas the rule utilitarian 
approach is free to choose its moral code from a very large set of possible moral 
codes, the act utilitarian approach is restricted to one particular moral code 
within this set. 

Yet, this means that act utilitarianism is committed to evaluate each in- 
dividual action directly in terms of the consequentialist utilitarian criterion of 
social-utility maximization. In contrast, rule utilitarianism is free to choose a 
moral code that judges the moral value of individual actions partly in terms of 
nonconsequentialist criteria if use of such criteria increases social utility. Thus, 
it may choose a moral code that judges the moral value of a person's action not 
only by its direct social-utility yield but also by the social relationship between 
this person and the people directly benefiting or directly damaged by his 
action, by this person's prior promises or other commitments,  by procedural 
criteria, and so on. Even if consequentialist criteria are used, they may be 
based not only on the social consequences of individual actions but also on the 
consequences of a morally approved social practice of similar behavior in all 
similar cases. This greater flexibility in defining the moral value of individual 
actions will permit adoption of moral codes with significantly higher social 
utility. 

13. A game-theoretic model for  a rule utilitarian society 

I shall use the following notations. A strategy of player i, whether pure or 
mixed, will be denoted as s i. We can assume without loss of generality that 
every player has the same strategy set S = S 1 . . . . .  S n. A strategy combina- 
tion will be written as Y= ( s ~ , . . ,  s , ) .  The strategy ( n -  1)-tuple obtained 
when t h e / t h  component  si of Yis omitted will be written as Y-i = (si . . . .  ,5'i_1, 

S i + 1 ~  • . . ~ Sn). 
I propose to model a rule utilitarian society as a two-stage game. At first I 

shall assume that all n players are consistent rule utilitarians fully complying 
with the rule utilitarian moral code. (Later  this assumption will be relaxed.) On 
this assumption, stage 1 of the game will be a cooperative garne in which the n 
players together choose a moral code M so as to maximize the social utility 
function W, subject to the requirement that 

M E Z  , (13.1) 

where :g is the set of all possible moral codes. On the other hand, stage 2 of 
the garne will be a noncooperative garne in which each player i will choose a 
strategy s z for himself so as to maximize his own individual utility Ui, subject to 
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the requirement that 

s~ E P (M) ,  (13.2) 

where P(M) is the set of all strategies permitted by the moral code M chosen at 
stage 1. I shall call P(M) the permissible set for moral code M, and shall 
assume that, for all M E ~ ,  P(M) is a nonempty compact subset of the 
strategy set S. 

The noncooperative garne played at stage 2, where the players' strategy 
choices are restricted to P(M), will be called F(M). At stage 1, in order to 
choose a moral code M maximizing social utility, the players must try to predict 
the equilibrium point g=  ( s l , . . . ,  sn) that will be the actual outcome of this 
garne F(M). I shall assume that they will do this by choosing a predictor 
function 1r selecting, for every possible garne F(M), an equilibrium point 

= Ir(F(M)) as the likely outcome F(M). [For instance, they may choose this 
predictor function on the basis of our solution concept for noncooperative 
garnes. See Harsanyi and Selten (1988).] For convenience, I shall orten use the 
shorter notation ~-*(M) -- ~r(F(M)). 

Finally, I shall assume that each player's individual utility will have the 
mathematical form 

U~=U~(~,M). (13.3) 

I am including the chosen moral code M as an argument of U i because the 
players may derive some direct utility by living in a society whose moral code 
permits a considerable amount of free individual choice (see Section 10). 

Since the social utility function W is defined in terms of the individual 
utilities U I , . . .  , Un, it must depend on the same arguments as the latter do. 
Hence it has to be written as 

W= W(5, M) = W(~r*(M), M) . (13.4) 

How does this model represent the implementation effects and expectation 
effects of a given moral code M? Clearly, its implementation effects, both the 
positive and the negative ones, will be represented by the fact that the players' 
strategies will be restricted to the permissible set P(M) defined by this moral 
code M. This fact will produce both utilities and disutilities for the players and, 
therefore, will give rise both to positive and negative implementation effects. 

On the other hand, the expectation effects of M will be represented by the 
fact that some players will choose different strategies than they would choose if 
their society had a different moral code - not because M directly requires them 
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to do so but rather because these strategies are their best replies to the other 
players' expected strategies, on the assumption that these other players will use 
only strategies permitted by the moral code M. 

This model illustrates the fact, weil known to garne theorists, that an ability 
to make binding commitments is orten an important advantage for the players 
in many garnes. In the rule utilitarian garne we are discussing, it is an important 
advantage for the players that at stage 1 they can commit themselves to comply 
with a jointly adopted moral code. Yet, in most other games, this advantage 
lies in the fact that such commitments will prevent the players from disrupting 
some agreed joint strategy in order to increase their own payoffs. In contrast, 
in this game, part of the advantage lies in the fact that the players' commitment 
to the jointly adopted moral code will prevent them from violating the other 
players' rights or their own obligations in order to increase social utility. 

Out model can be made more realistic by dropping the assumption that all 
players are fully consistent rule utilitarians. Those who are I shall call the 
committed players. Those who are not I shall call the uncommitted players. The 
main difference will be that requirement (13.2) will now be observed only by 
the committed players. For the uncommitted players, it will have to be 
replaced by the trivial requirement s i E S. On the other hand, some of the 
uncommitted players i might still choose a strategy s i at least in partial 
compliance with their society's moral code M, presumably because they might 
derive some utility by at least partial compliance. [This assumption, however, 
requires no formal change in our model because (13.3) has already made M an 
argument of the utility functions Ui. ] 

The realism of our model can be further increased by making the utilitarian 
game into one with incomplete information [see Harsanyi (1967-68)]. 

14. Rawls' theory of justice 

Undoubtedly, the most important contemporary nonutilitarian moral theory is 
John Rawls' theory of justice [Rawls (1971)]. Following the contractarian 
tradition of Locke, Rousseau, and Kant, Rawls postulates that the principles of 
justice go back to a fictitious social contract agreed upon by the "heads of 
families" at the beginning of history, both on their own and on all their future 
descendants' behalf. To ensure that they will agree on fair principles not biased 
in their own favor, Rawls assumes that they have to agree on this social 
contract under what he calls the veil of  ignorance, that is, without knowing 
what their personal interests are and, indeed, without knowing their personal 
identities. He calls this hypothetical situation characterized by the veil of 
ignorance the original position. 

As is easy to see, the intuitive idea underlying Rawls' original position is 
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very similar to that underlying my own equi-probability model for moral value 
judgments, discussed in Section 3. 7 

Nevertheless, there are important differences between Rawls' model and 
mine. In my model, a person making a moral value judgment would choose 
between alternative social situations in a rational manner, more particularly in 
a way required by the rationality postulates of Bayesian decision theory. Thus, 
he would always choose the social situation with the highest expected utility to 
hirn. Moreover, in order to ensure that he will base his choice on impartial 
universalistic considerations, he must make his choice on the assumption that, 
whichever social situation he chose, he would always have the same probability 
of ending up in any one of the n available social positions. 

In contrast, Rawls' assumption is that each participant in the original 
position will choose among alternative conceptions of justice on the basis of the 
highly irrational maximin principle, which requires everybody to act in such a 
way as if he were absolutely sure that, whatever he did, the worst possible 
outcome of his action would obtain. This is a very surprising assumption 
because Rawls is supposedly looking for that conception of justice that rational 
individuals would choose in the original position. 

It is easy to verify that the maximin principle is a highly irrational choice 
criterion. The basic reason is that it makes the value of any possible action 
wholly dependent on its worst possible outcome, regardless o f  how small its 
probability. If we tried to follow this principle, then we could not cross even 
the quietest country road because there was always some very small probability 
that we would be overrun by a car. We could never eat any food because there 
is always some very small probability that it contains some harmful bacteria. 
Needless to say, we could never get married because a marriage may certainly 
come to a bad end. Anybody who tried to live this way would soon find himself 
in a mental institution. 

Yet, the maximin principle would be not only a very poor guide in our 
everyday life, it would be an equally poor guide in our moral decisions. As 
Rawls rightly argues, if the participants of the original position followed the 
maximin principle, then they would end up with what he  calls the difference 
principle as their basic principle of justice. The latter would ask us always to 
give absolute priority to the interests of the most disadvantaged and the poorest 
social group over the interests of all other people no marter what - even if this 
group consisted of a mere handful of people whose interests were only 
minimally affected, whereas the rest of society consisted of many millions with 

7Rawls first proposed his concept of the original position in 1957 [Rawls (1957)]. I proposed my 
own model in 1953 and 1955 [Harsanyi (1953, 1955)]. But both of us were anticipated by Vickrey, 
who suggested a similar approach already in 1945 ]Vickrey (1945)]. Yet all three of us arrived quite 
independently at our own models. 
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very important interests at stake. This principle is so extreme and so implaus- 
ible that I find it hard to take seriously the suggestion to make it our basic 
principle of justice. 

In other areas, too, Rawls seems to be surprisingly fond of such rigid and 
unconditional principles of absolute priority. Common sense teils us that social 
life is full of situations where we have to weigh different social values against 
each other and taust find morally and politically acceptable trade-offs between 
them: we must decide how much individual freedom or how rauch economic 
efficiency to give up for some possible increase in economic equality; how to 
balance society's interest in deterring crime against protecting the legitimate 
interests of defendants in criminal cases; how to balance the interests of gifted 
children against the interests of slow learners in schools; etc. 

Utilitarian theory suggests a natural criterion for resolving such trade-off 
problems by asking the question of what particular compromise between such 
conflicting social values would maximize social utility. (Even if we offen cannot 
really calculate the social-utility yields of alternative social policies with any 
reasonable degree of confidence, if we at least know what question to ask, this 
will focus our attention in the right direction.) 

In contrast, Rawls seems to think that such problems can be resolved by the 
simple-minded expedient of establishing rigid absolute priorities between differ- 
ent sociat values, for instance by declaring that liberty (of, more exactly, the 
greatest possible basic liberty for everybody as far as this is compatible with 
equal liberty for everybody else) shall have absolute priority over solving the 
problems of social and economic inequality [Rawls (1971, p. 60)]. In my own 
view, the hope that such rigid principles of absolute priority can work is a 
dangerous illusion. Surely, there will be cases where common sense will tell us 
to accept a very small reduction in our liberties if this is a price for a substantial 
reduction in social and economic inequalities. 

15. Brock's  theory of social justice based on the Nash solution and on 
the Shapley value 

15.1. Nature of the theory 

Another interesting theory of social justice has been proposed by Brock 
(1978). It is based on two game-theoretic solution concepts: one is the 
n-person Nash solution [see Nash (1950) for the two-person case; and see Luce 
and Raiffa (1957, pp. 349-350) for the n-person case); the other is the NTU 
(nontransferable utility) Shapley value [see Harsanyi (1963) and Shapley 
(1969)]. The Nash solution is used by Brock to represent "need justice", 
characterized by the principle "To Each According to His Relative Need"; 
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whereas the Shapley value is used to represent "merit  justice", characterized 
by the principle "To Each According to His Relative Contribution". 

For convenience, I shall first discuss a simplified version of Brock's theory, 
based solely on the n-person Nash solution. Then I shall consider Brock's 
actual theory, which makes use of the NTU Shapley value as weil. 

His simplified theory would give rise to an n-person pure bargaining game. 
The disagreement payoffs d* would be the utility payoffs the n players (i.e., 
the n individual members of society) would obtain in a Hobbesian "state of 
nature",  where people's behavior would not be subject to any Constitutional or 
other moral or legal constraints. The n-vector listing these payoffs will be 
denoted as d* = (d~ . . . .  , d*). The outcome of this bargaining garne would be 
the utility vector u * =  (u~ . . . .  , u i , . . . . ,  u*) maximizing the n-person Nash 
product 

~r* = f i  ( u i -  d*) ,  (15.1) 
i = 1  

* > * for all i. Here F denotes the subject to the two constraints u* E F and ui di 
convex and compact feasible set. (It is customary to write the second constraint 
as a weak inequality. But Brock writes it as a strong inequality because he 
wants to make it clear that every player will positively benefit by moving from 
d* to u*. In any case, mathematically it makes no difference which way this 
constraint is written.) 

Let me now go over to Brock's ful l  theory. This involves a two-stage garne. 
At  stage 1, the players choose a Constitution C restricting the strategies of each 
player i at stage 2 to some subset S* of his original strategy set S i. As a result, 
this Constitution C will define an NTU game G(C)  in chäräcteristic-function 
form to be played by the N players at stage 2. The outcome of G(C)  will be an 
NTU Shapley-value vector u **= ( u ~ * , . . .  , u**) associated with this garne 
G(C) .  The players can choose only Constitutions C yielding a Shapley-value 
vector u** with u i > d i for every player i. (If a given garne G(C)  has more 
than one Shapley-value vector u** satisfying this requirement, then the players 
can presumably choose any one of the latter as the outcome of the garne.) Let 
F* be the set of all possible Shapley-value vectors u** that the players can 
obtain by adopting any such admissible Constitution C. 

Actually, Brock assumes that the players can choose not only a specific 
Constitution C but can choose also some probability mixture of two or more 
Constitutions C, C', . . . .  If this is what they do, then the outcome will be the 
corresponding weighted average of the Shapley-value vectors u**, ( u * * ) ' , . . .  
generated by these Constitutions. This of course means that the set of possible 
outcomes will not be simply the set F* defined in the previous paragraph, but 
rather will be the convex hull F** of this set F*. 
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Finally, Brock assumes that at stage 1 the players will always choose that 
particular Constitution, or tha tpar t i cu la r  probabili ty mixture of Constitutions, 

• o 0 . ,  un) maxlmlzmg the Nash product that ymlds the payoff  vector u = ( u ~ , .  0 • . • 

7r ° = I e I  (u i - d * ) ,  (15.2) 
i=1 

subject to the two constraints u E F** and u i > d* for all i. 

15.2. Brock' s theory of  "need justice" 

Brock admits that, instead of representing "need  justice" by maximization of 
an n-person Nash product, he could have represented it by maximization of a 
social utility function, defined as the sum (or as the arithmetic mean) of 
individual utilities in accordance with utilitarian theory [Brock (1978, p. 603, 
footnote)].  But he clearly prefers the former  approach.  

He  does so for two reasons. One is that the utility vector maximizing the 
social utility function may have undesirable mathematical properties in some 
cases. His other  reason is that the utilitarian approach makes  essential use of 
interpersonal utility comparisons, whose validity has often been called into 
question. 

I shall illustrate the first difficulty by three examples. Example 1 will be 
about  a society consisting of two individuals. The feasible set of utility vectors 
will be defined by the two inequalities u 1 and u 2 >i 0 and by the third inequality 

u 1 + u 2 ~ 10. (15.3) 

The  social utility function to be maximized will be W =  u I + u 2. In this case, 
maximization of W will yield an indeterminate result in that any utility vector 
u = (Ul, u2) with u 1 and u 2 ~> 0 and with u I + u 2 = 10 will maximize W. 

Example 2 will be similar to Example  1, except that (15.3) will be replaced 
by 

U I q- (1 q- G)U 2 ~ 1 0 ,  (15.4) 

where e is a very small positive number.  Now, in order  to maximize W =  
Ul+U2 ,  we must set u 1 = 1 0 - u  2 - e u  2, which means that W = 1 0 - e u  2. 
Hence ,  maximization of W will require us to choose u 2 = 0 and u 1 = 1. In other  
words, we taust choose the highly inequalitarian utility vector u = (10, 0). 

Finally, Example 3 will be like Example  2, except that (15.4) will be replaced 
by 
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(1 + e)u  I + U 2 ~ 10. (15.5) 

By symmetry,  maximization of W will now require choice of the utility vector 
u = (0, 10), which will be once more a highly inequalitarian outcome. More- 
over,  arbitrarily small changes in the feasible set - such as a shift from (15.4) to 
(15.3) and then to ( 1 5 . 5 ) -  will make the utilitarian outcome discontinuously 
jump from u = (10,0)  first to an indeterminate outcome and then to u = 
(0, 10). 

I agree with Brock that, at least at an abstract mathematical level, these 
mathematical anomalies are a serious objection to utilitarian theory. But I 
should like to argue that they are much less of a problem for utilitarian theory 
as an ethical theory for real-life human beings, because these anomalies will 
hardly ever actually arise in real-life situations. 

This is so because in real life we can never transfer abstract "utili ty" as such 
from orte person to another. All we can do is to transfer assets possessing 
utility, such as money,  commodities, securities, political power,  etc. Yet, most 
people 's  utility functions are such that such assets sooner or later will become 
subject to the Law of Diminishing Marginal Utility. As a result, in real-life 
situations the upper  boundary of the feasible set in the utility space will tend to 
have enough concave curvature to prevent such anomalies from arising to any 
significant extent. 

As already mentioned,  Brock also feels uneasy about use of interpersonal 
utility comparisons in utilitarian theory. No doubt,  such comparisons are 
rejected by many philosophers and social scientists. But in Section 5 I already 
stated my reasons for considering such comparisons to be perfectly legitimate 
intellectual operations. 

Let  me now add that interpersonal utility comparisons not only are possible, 
but are also strictly necessary for making moral decisions in many cases. If I 
take a few children on a hiking trip and we run out of food on our way home, 
then common sense will tell me to give the last bite of food to the child likely 
to derive the greatest utility from it (e.g., because she looks like the hungriest of 
the childrerl). By the same token, if I have a concert ticket to give away, I 
should presumably give it to that friend of mine likely to enjoy the concert 
most, etc. It seems to me that we simply could not make sensible moral choices 
in many cases without making, or at least trying to make, interpersonal utility 
comparisons. 

This is also my basic reason why I feel that our moral decisions should be 
based on the utilitarian criterion of maximizing social utility rather than Brock's 
criterion of maximizing a particular Nash product. 

Suppose I can give some valuable object A either to individual 1 or to 
individual 2. If I give it to 1 then I shall increase his utility level from u~ to 
(u~ + Au~), whereas if I give it to 2 then I shall increase the latter's utility level 
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from u 2 to (u 2 + A u 2 ) .  Let  me assume that in a Hobbesian "state of nature"  
the two individuals' utility levels would be d T and d~, respectively. 

If my purpose is to maximize social utility in accordance with utilitarian 
theory,  then I have to give A to 1 if 

(Ul + 1u l )  + u2 > ul + (u2 + au2) ,  (15.6) 

that is, if 

Bu 1 > l u  2 , (15.7) 

and have to give it to 2 if these two inequalities are reversed. 
In contrast, if my purpose is to maximize the relevant Nash product in 

accordance with Brock's theory, then I have to give A to 1 if 

(U 1 + AU 1 --  d ~ ) ( u  2 - d ~ )  > ( u  1 - d ~ ) ( u  2 -~- A u  2 - d ~ ) ,  (15.8) 

which also can be written as 

AU 1 AU 2 
, > -  . (15.9) 

u 1 - d~ u 2 - d~ 

On the other  hand, I have to give A to 2 if the last two inequalities are 
reversed. For  convenience, the quantities (u i - d*) for i = l ,  2 I shall describe 
as the two individuals' ner utility levels. 

The utilitarian criterion, as stated in (15.7), assesses the moral importance of 
any individual need by the importance that the relevant individual himself 
assigns to it, as measured by the utility increment Aui he would obtain by 
satisfying this need. In contrast, Brock's criterion, as stated in (15.9), would 
assess the moral importance of this need, not by the utility increment Auz as 
such, but rather by the ratio of ~uz to the relevant individual's net utility level 
(u~-  d~). 

Both (15.7) and (15.9) will tend to give priority to poor people's needs over 
rich people's needs. For, owing to the Law of Diminishing Marginal Utility, 
from any given benefit, poor  people will tend to derive a larger utility 
increment Au i than rich people will. Yet, (15.9) will give poor  people's needs 
an e ren  greater priority than (15.7) would give. This is so because in (15.9) the 
two relevant individuals' net utility levels ( u i -  d~) occur as divisors; and of 
course these net utility levels will tend to be smaUer for poor  people than for 
rich people. Obviously, the question is whether it is morally justified to use 
(15.9) as our decision rule when (15.7) would point in the opposite direction. 

We all agree that in most cases we must give priority to poor  people's needs 
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over rich people's because the former's needs tend to be more urgent, and 
because poor people tend to derive rauch greater utility gain from our help. But 
the question is what to do in those - rather exceptional - cases where some rich 
people are in greater need of our help than any poor person is. 

For instance, what should a doctor do when he has to decide whether to give 
a life-saving drug in short supply to a rich patient likely to derive the greatest 
medical benefit from it, or to give it to a poor  patient who would derive a lesser 
(but still substantial) benefit from this drug. According to utilitarian theory, 
the doctor must give the drug to the patient who would obtain the greatest 
benefit from it, regardless of this patient's wealth (or poverty). To do otherwise 
would be morally intolerable discrimination against the rich patient because of 
his wealth. In contrast, under Brock's theory, the greater-benefit criterion, as 
expressed by (15.7), can sometimes be overridden by the higher-ratio criterion, 
as expressed by (15.9). I find this view morally unacceptable. 8 

To conclude: Brock's theory of "need justice" represents a very interesting 
alternative to utilitarian theory. There are arguments in favor of either theory. 
But, as I have already indicated, I regard utilitarian theory as a morally much 
preferable approach. 9 

15.3. Brock 's  theory o f  "merit  justice" 

Brock's aim is to provide proper representation both for "need justice" and for 
"merit justice" within his two-stage game model. Yet, it seems to me that his 
model is so much dominated by "need justice" considerations that it fails to 
provide proper representation for the requirements of "merit justice". 

Take the special case where all n players have the same needs and, 
therefore, have the same utility functions, and also have the same disagreement 
payoffs d*; but where they have very different produetive abilities and skills. I 
now propose to show that in this case Brock's model would give all players the 
very same payoffs  - which would in this case satisfy the requirements of "need 
justice" if considered in isolation, but would mean complete disregard of 
"merit justice". 

To verify this, first consider what I have called Brock's "simplified" theory, 
involving maximization of the Nash product 7r*, defined by (15.1). Since all 
players are assumed to have the same utility functions and the same disagree- 

aAs is easy to verify, condition (15.9) is really one version of Zeuthen's Principle [see Harsanyi 
(1977, pp. 149-166)]. As I argued in my 1977 book and in other publications, this Principle is a 
very good decision rule in bargaining situations. But, for reasons already stated, I do not think that 
it is the right decision rule in making moral decisions. 

9A somewhat similar theory of justice, based like Brock's on the n-person Nash solution, but 
apparently independent of Brock's (1978) paper, has been published by Yaari (1981). 
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ment payoffs d*, maximization of 7r* would give all players equal utility payoffs 
wi thu i  "" un. 

Let us now consider Brock's full theory. Under this latter theory, the 
players' payoffs would be determined by maximization of another Nash 
product 7r °, defined by (15.2). Yet, this would again yield equal utility payoffs 

0 0 with u I . . . . .  un, for the same reasons as in the previous case. 
Why would these payoffs u ° completely fail to reflect the postulated differ- 

ences among the players in productive abilities and skills? The reason is, it 
seems to me, that the requirement of maximizing the Nash product 7r ° would 
force the players to choose a Constitution preventing those with potentially 
greater productivity from making actual use of this greater productivity within 
sectional coalitions. As a result, these players' Shapley values could not give 
them credit for their greater productive abilities and skills. 

To avoid this presumably undesired results, it would have to be stipulated 
that no Constitution adopted by the players could do more than prevent the 
players from engaging in irnmoral and illegal activities such as theft, fraud, 
murder, and so on. But it could not prevent any player from making full use of 
his productive potential in socially desirable economic and cultural activities. 
Of course, in order to do this a clear criterion would have to be provided for 
distinguishing socially desirable activities that cannot be constrained by any 
Constitution, and socially undesirable activities that can and must be so 
constrained. 

III .  REASSESSING INDIVIDUAL UTILITIES 

16. Mistaken preferences vs. informed preferences 

I now propose to argue that a person's observable actual preferences-as 
expressed by his choice behavior and by his verbal statements- do not always 
correspond to his real interests and even to his own real preferences at a 
deeper level, because they may be based on incorrect, or at least very 
incomplete, information. For instance, suppose somebody chooses a glass of 
orange juice over a glass of water without knowing that the former contains 
some deadly poison. From this fact we obviously cannot infer that he really 
prefers to drink the poison, or that drinking the poison is in his real interest. 

When somebody chooses one alternative A over another alternative B then 
he will do this on some factual assumptions. Typically, these will be assump- 
tions suggesting that A has a greater instrumental value or a greater intrinsic 
value (or both) than B has. Thus, he may choose A because he thinks that A is 
a more effective means than B is for achieving a desired goal G; or because he 
thinks that A has some intrinsically desirable characteristic C that B lacks. His 
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preference for A will be an informed preference I° if these factual assumptions 
are true; and will be a mistaken preference if these assumptions are false. 

More generally, I shall define a person's informed preferences as the 
hypothetical preferences he would have if he had all the relevant information 
and had made full use of this information. On the other hand, I shall call any 
preference of his mistaken if it conflicts with these hypothetical informed 
preferences of his. 

Note that, under this definition, a person may entertain mistaken prefer- 
ences not only because he does not know some of the relevant facts but also 
because he chooses to disregard some of the relevant facts well known to hirn. 
For instance, suppose a person is a very heavy drinker even though he knows 
that his drinking habit will ruin his health, his career, and his personal 
relationships. Suppose also that, when he thinks about it, he has a clear 
preference for breaking his drinking habit. Yet, his urge to drink is so strong 
that he is quite unable to do so. (Following Aristotle, philosophers call this 
predicament "weakness of the will".) Under our definitions, this person's 
preference for heavy drinking will be contrary to his "informed preferences" 
and, therefore, will be a mistaken preference. 

Let me now describe the utility function we use to represent a given 
individual's interests in our social utility function as this individual's representa- 
tive utility function. Our discussion in this section suggests that each in- 
dividual's representative utility function should not be based on his possibly 
mistaken actual preferences but rather on his hypothetical informed prefer- 
ences. 

17. Exclusion of malevolent preferences 

I now propose to suggest that a person's representative utility function must be 
further restricted: it must be based only on those preferences of his that can be 
rationally supported by other members of society. For by including any given 
preference of a person in our social utility function we in effect recommend 
that other members of society should assist hirn in satisfying this preference. 
But this would be an unreasonable recommendation if the other members of 
society could not rationally do this. 

More specifically, in this section I shall argue that a person's malevolent 
preferences - those based on sadism, envy, resentment, or malice - should be 
excluded from his representative utility function. [Most contemporary 
utilitarian authors would be opposed to this suggestion; see, for example, 
Smart (1961, pp. 16-18) and Hare (1981, pp. 169-196).] If these preferences 
are not excluded, then we obtain many paradoxical implications. 

l°My term "informed preference" was suggested by Griffin's (1986) term "informed desire". 
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For instance, suppose that a number of sadists derive sadistic enjoyment by 
watching the torture of one victim. Even if the victim's disutility by being 
tortured is much greater than each sadist's utility by watching it, if the number 
of sadists in attendance is large enough, then social utility will be maximized by 
encouraging the sadists to go on with their sadistic enjoyment. Yet, this 
paradoxical conclusion will be avoided if we exclude utilities based on sadistic 
preferences and sadistic pleasures from our social utility function. 

It seems to me that exclusion of malevolent preferences is fully consistent 
with the basic principles of utilitarian theory. The basis of utilitarianism is 
benevolence toward all human beings. If X is a utilitarian, then it will be 
inconsistent with his benevolent attitude to help one person Y to hurt another 
person Z just for the sake of hurting him. If Y does ask X to help hirn in this 
project, then X can always legitimately refuse his help by claiming "conscienti- 
ous objection" to any involvement in such a malevolent activity. 

18. Exclusion of other-oriented preferences 

In actual fact, excluding malevolent preferences is merely a special case of a 
more general principle I am proposing, that of excluding all other-oriented 
preferences form a person's representative utility function. 

Apart from terminology (I find my own terminology more suggestive), my 
distinction between self-oriented and other-oriented preferences is the same as 
Dworkin's (1977, p. 234) well-known distinction between personal and external 
preferences. Following Dworkin, I define a person's self-oriented preferences 
as his preferences "for [his own] enjoyment of goods and opportunities", and 
define his other-oriented preferences as his preferences "for assignment of 
goods and opportunities to others". 

My suggestion is to exclude, from each person's representative utility 
function, not only his malevolent other-oriented preferences, but rather all his 
other-oriented preferences, even benevolent ones. My reason is that inclusion 
of any kind of other-oriented preferences would tend to undermine the basic 
utilitarian principle of assigning the same positive weight to every individual's 
interests in our social utility function. For instance, if we do not exclude 
benevolent other-oriented preferences, then in effect we assign rauch greater 
weight to the interests of individuals with many well-wishers (such as loving 
relatives and friends) than we assign to the interests of individuals without such 
friendly support. 

Again, it seems to me that my suggestion is fully consistent with the basic 
principles of utilitarian theory. Benevolence toward another person does 
require us if possible to treat hirn as he wants to be treated. But it does not 
require us by any means to treat other people as he wants them to be treated. 
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(In fact, benevolence toward these people requires us to treat them as they 
want to be treated, not as he wants them to be treated.) 

Yet, if we want to exclude other-oriented preferences from each individual's 
representative utility function, then we must find a way of defining a self, 
oriented utility function V~ for each individual i, based solely on i's self-oriented 
preferences. There seem to be two possible approaches to this problem. One is 
based on the notion of hypothetical preferences, which we already used in 
defining a person's informed preferences (see Section 16). Under this ap- 
proach, a person's self-oriented utility function V~ must be defined as his utility 
function based on his preferences he would display if he knew that all bis 
other-oriented preferences - his preferences about how other people should be 
t r e a t e d -  would be completely disregarded. 

Another  possible approach is to define a person's self-oriented utility 
function, V~ by means of mathematical operations performed on his complete 
utility function Us, based on both his self-oriented and his other-oriented 
preferences (assuming that U~ itself is already defined in terms of i's informed 
preferences). 

Let x i be a vector of all variables characterizing i's economic conditions, his 
health, bis job, his social position, and all other conditions over which i has 
self-oriented preferences. I shall call x~ i's personal position. Let y~ be the 
composite vector y, = ( x l , . . . ,  xi_ 1, x~+l, • • •,  xn), characterizing the personal 
positions of all ( n -  1) individuals other than i. Then, i's complete utility 
function U~ will have the mathematical form 

U~ = U/(x,, Yi). (18.1) 

I shall assume that U~ is a von Neumann-Morgenstern utility function. 
It can happen that U~ is a separable utility function of the form 

Us(xi, yi) = V~(x~) + Z~(y~) , (18.2) 

consisting of two terms, one depending only on x s the other depending only on 
yi. In this case we can define i's self-oriented utility function as V, = V~(xi). 

Yet, in general, U,. will not be a separable function. In this case we can 
define V~ as 

B(xs) = sup Us(x » Ys). (18.3) 
Yi 

This definition will make V~ always well-defined if U i has a finite upper bound. 
(But even if this is not the case we can make V~ well-defined by restricting the 
sup operator to feasible Ys values.) 
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Equation (18.3) defines i's self-oriented utility Vi(xi) a s  that utility level that 
i would enjoy in a given personal position x i if his other-oriented preferences 
were maximally satisfied. In other words, my definition is based on disregarding 
any disutility that i may suffer because his other-oriented preferences may not 
be maximally satisfied. This is one way of satisfying the requirement that i's 
other-oriented preferences should be disregarded. 

From a purely mathematical point of view, an equally acceptable approach 
would be to replace the sup operator in (18.3) by the inf operator. But from a 
substantive point o f  view, this would be, it seems to me, a very infelicitous 
approach. If we used the inf operator, then we would define Vi essentially as 
the utility level that i would experience in the personal position x i if he knew 
that all his relatives and friends, as well as all other people he might care 
about, would suffer the worst possible conditions. 

Obviously, if this were really the case then i could not derive rauch utility 
from any personal position xl, however desirable a position the latter may be. 
Yet, the purpose of the utility function Vi(xi) is to measure the desirability of 
any personal position from i's own point of view. Clearly, a utility function 
V~(xi) defined by use of the inf operator would be a very poor choice for this 
purpose. 

19. Conclusion 

I have tried to show that, under reasonable assumptions, people satisfying the 
rationality postulates of Bayesian decision theory must define their moral 
standards in terms of utilitarian theory. More specifically, they must define 
their social utility function as the arithmetic mean (or possibly as the sum) of all 
individual utilities. I also defended the use of von Neumann-Morgenstern 
utility functions in ethics. 

I have argued that a society basing its moral standards on the rule utilitarian 
approach will achieve rauch higher levels of social utility than one basing them 
on the act utilitarian approach. I have also stated some of my objections to 
Rawls' and to Brock's nonutilitarian theories of justice. 

Finally, I argued that, in our social utility function, each individual's interests 
should be represented by a utility function based on his informed preferences, 
and excluding his mistaken preferences as weil as his malevolent preferences 
and, more generally, all his other-oriented preferences. 
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