
Preface 

As with the earlier volumes in this series, the main purpose of this volume of 
the Handbook of  Statistics is to serve as a source, reference, and teaching 
supplement in econometrics, the branch of economics concerned with statistical 
methods applied to the empirical study of economic relationships. The papers 
in this volume provide reasonably comprehensive and up-to-date surveys of 
recent developments in various aspects of econometrics. They are written at a 
level intended for use by professional econometricians and statisticians, as well 
as advanced graduate students in econometrics. The present volume comple- 
ments the 3-volume series: Handbook of  Econometrics by Z. Griliches and M. 
D. Intrilligator, eds., also published by North-Holland in the mid 1980s. This 
volume presents surveys of some developments in the last decade on semi- 
parametric and non-parametric estimation, limited dependent variable models, 
time series analysis, alternatives to likelihood methods, and computer-intensive 
methods in econometrics. 

The first part of the volume covers endogenous stratification, semi-paramet- 
ric methods and non-parametric methods. The samples used in econometrics 
are not always drawn randomly from the population of interest. Often stratified 
sampling schemes are adopted, but the stratification is endogenous rather than 
exogenous as in most of the statistical literature. The paper by Cosslett reviews 
the various estimation methods proposed, the types of models and sampling 
schemes for which they are suited, and the large-sample properties of the 
estimators. The paper also discusses some semi-parametric estimators of 
discrete choice models. The paper by Horowitz reviews the different semi- 
parametric and non-parametric estimation methods that have been suggested 
for quantal response models. The paper by Manski deals with the problem 
created by selective observation of random sample data. It outlines the 
different approaches (parametric, semi-parametric and non-parametric) to the 
selection problem analyzed by econometricians and statisticians. The paper by 
Ullah and Vinod presents a survey of non-parametric regression methods and 
outlines several areas of empirical applications in economics. One other paper 
in this volume that deals with the topic of semi-parametric and non-parametric 
estimation is the paper by Newey in Part V. It discusses non-parametric 
estimations of optimal instrumental variables. 

Part II of this volume covers several recent developments in limited depen- 
dent variable models. Blundell and Smith discuss several estimation procedures 
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for simultaneous equation models with censored and qualitative dependent 
variables. The paper by Lee reviews the area of multivariate tobit models. 
These models should be of interest to statisticians working in multivariate 
analysis. The paper by Maddala discusses the estimation of limited dependent 
variable models under rational expectations, an area with important empirical 
applications of practical interest in economic policy. In addition to these 
papers, there are other papers in this volume that deal with some problems 
involving limited dependent and qualitative variables. These are: the papers by 
Cosslett, Horowitz and Manski in Part I, Hajivassiliou in Part V, Mariano and 
Brown in Part V, and Donald and Maddala in Part VI. 

Part III covers some recent developments in time series econometrics. 
During the past decade, this has been an extremely active area of research in 
econometrics. Due to space limitations, and in view of other surveys available, 
two areas, ARCH models and unit roots and cointegration, have been omitted 
from this volume. The other areas covered, non-linear time series models 
reviewed by Brock and Potter, Markov switching regression (MSR) models for 
time series, discussed in the paper by Hamilton, and structural time series 
models discussed in the paper by Harvey and Shepherd, are all active areas of 
research in econometrics. The paper by Harvey and Shepherd also covers 
recent developments in the application of Kalman filtering in econometrics. 
The paper by Pagan in Part IV comments on different brands of ARCH 
models (the ARCHES of econometrics). Another paper that deals with time 
series problems is the paper by Sawyer in Part VI. 

Part IV of the volume covers likelihood methods and Bayesian inference. 
The paper by Florens and Mouchart surveys Bayesian procedures of testing. 
Two main avenues are discussed. The first is the usual procedure of deriving 
posterior probabilities of models or hypotheses. The second one, developed 
recently, is a Bayesian extension of the encompassing principle. Maximum 
likelihood methods are among the most important tools used by statisticians 
and econometricians. But their optimality properties depend on the assumption 
that the true probability distribution is the one assumed in deriving the 
likelihood function. It is important to consider the properties of ML estimators 
when this assumption is not made. In this case, the likelihood function is called 
pseudo (or quasi) likelihood function. The paper by Gourieroux and Monfort 
presents a review of the different variants of pseudo-likelihood methods and 
simulated pseudo-likelihood methods and their use in econometric work. What 
they call pseudo-likelihood methods are quasi-likelihood methods but they give 
reasons why they use the term 'pseudo-likelihood'. Rao's score test is one of 
the most often used tests in econometric work - both for hypothesis testing and 
for specification testing (though it is often called the Lagrangian multiplier test, 
or LM test). The paper by Mukerjee reviews recent work on score tests. This 
review should be useful to statisticians and econometricians alike. 

Part V of the volume covers alternatives to likelihood methods, (such as 
M-estimators and GMM-estimators). The properties of M-estimators in the 
linear model have been studied by several authors for some particular choices 
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of the discrepancy function. The paper by Bai, Liu and Rao considers a very 
general discrepancy function and establishes strong consistency of the M- 
estimators. The unifying results in this paper should be useful to econometri- 
cians working in the area of robust methods. The papers by Hall and Ogaki 
discuss the generalized methods of moments (GMM) estimators. The GMM 
method is a very popular alternative to the ML method among econometri- 
cians. The paper by Newey (also related to GMM) discusses efficient estima- 
tion of models with conditional moment restrictions. These estimators, which 
are typically referred to as instrumental variable (IV) estimators, are based on 
much weaker assumptions than the ML estimates. The paper derives the form 
of the optimal instruments and describes parametric and non-parametric 
estimations of the optimal instruments. The paper by Pagan reviews work done 
on testing for heteroskedasticity. The basic approach taken is that all tests can 
be regarded as 'conditional moment tests'. The paper outlines tests for 
heteroskedasticity in non-linear models-  in particular, discrete choice models, 
censored data models, and count data models. It also presents specification 
tests for different variants of the ARCH models. 

Part VI is on computer-intensive methods. Due to the advances in computer 
technology, many estimation problems that were intractable earlier have been 
within reach of applied statisticians and econometricians. The papers by 
Hajivassiliou and Keane discuss methods of estimation of limited dependent 
variable models from panel data. Problems involving multiple integrals in 
several dimensions can now be tackled using simulation methods. The paper by 
Mariano and Brown presents a review of stochastic simulation methods for 
non-linear errors in variables models (including the probit and tobit models 
with errors in variables). Another area that uses computer-intensive techniques 
is that of bootstrap, which is useful for studying small-sample distributions in 
several econometric problems. The papers by Jeong and Maddala, and Vinod, 
survey several applications of the bootstrap methods in econometrics. 

The final part of the volume contains reviews of miscellaneous problems of 
practical interest. There is an extensive statistical literature on identifying 
outliers and influential observations. The paper by Donald and Maddala 
presents a review of this area with reference to econometric applications and 
suggests some extensions of these methods to non-linear models, in particular 
to logit, probit and tobit models, based on the method of generalized residuals 
and artificial regressions. The paper by Gregory and Smith reviews some 
statistical aspects of the calibration method used very widely during recent 
years in macro-econometrics. The paper by Lahiri reviews the literature on 
efficient estimation and testing strategies in the context of panel data models 
with rational expectation and testing strategies in the context of panel data 
models with rational expectations, discusses efficient estimation of such models 
in a generalized method of moments (GMM) framework, and extends the 
analysis to simultaneous equations. The paper also presents an empirical 
illustration of the methodology. Finally, the paper by Sawyer surveys statistical 
applications of stochastic processes in finance. The one major characteristic of 
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recent research in the area of finance is the increased use of continuous time 
stochastic processes. 

In summary,  the volume covers a wide variety of applications of statistical 
methodology to econometric  problems that should be of interest to economet-  
ricians as well as statisticians. The open problems in the papers might lead to 
further  work on these subjects. 

We are thankful to all the authors for their cooperation and patience during 
the preparat ion of this volume. Stephen Cosslett and Joel Horowitz provided 
valuable comments  on many of the papers. Elizabeth Ann  Crisafulli, In-Moo 
Kim and Hongyi Li provided efficient assistance in the preparat ion of the 
volume.  

G. S. Maddala  
C. R. Rao  

H. D. Vinod 
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Estimation from Endogenously Stratified Samples 

Stephen R. Cosslett 

1. Introduction 

The samples used in econometric estimation are not always drawn randomly 
from the populations of interest. Often a stratified sampling scheme is adopted. 
The population is divided into subpopulations, called strata, based on the value 
of an observed vector x (for example, geographic location). Then a random 
sample of pre-assigned size is .drawn from each stratum, or, in some cases, 
from each of a randomly selected subset of the strata. This might be just for 
operational convenience in collecting the data. On the other hand, there may 
be deliberate oversampling of a small subpopulation that is of particular 
interest in the subsequent analysis (for example, families below the poverty 
level). 

The objective is to estimate the structural econometric model p(y]z ,  0), 
which gives the density of the endogenous variables y, conditional on the 
exogenous variables z in terms of an unknown parameter  vector 0. (In 
semiparametric models, p also depends on the unknown distribution of a 
stochastic 'error '  term.) In random sampling, the likelihood is p(y I z, O) h(z), 
where h is the density of z. Because of this factorization, h plays no role in 
estimation, as long as h does not depend on 0. Exogenous stratification (where 
the stratifying variables x are exogenous in the model) is innocuous: in effect, 
it just replaces one density h by another. The extreme case is a controlled 
experiment,  where the values of z are selected by the experimenter.  Estimators 
for these cases just use the conditional likelihood p(y [ z, 0). 

In endogenous stratification, the strata are defined in terms y (and possibly 
other  variables). Now the distribution of z in each stratum does depend on 0. 
The simplest case is where y is discrete and its values define the strata - this is 
called choice-based sampling. In an exogenously stratified sample, the informa- 
tive part of the likelihood is the density of y conditional on z. In a choice-based 
sample, by contrast, it is the density of z conditional on y. That  density is easily 
found by Bayes' rule: it is a nontrivial function of both 0 and h. 

The first issue, therefore,  is estimation: if the sample is treated as random, 
the wrong likelihood is being used and the estimators are generally inconsis- 
tent. Once the problem of consistent estimation has been recognized and 
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solved, however, endogenous stratification can be a useful tool. It can 
substantially improve the precision of estimates from a sample of given size or 
cost, usually by oversampling rare but informative outcomes. 

The first econometric work on endogenous stratification was in the context of 
discrete choice models. I Data had been collected on individuals' choices of 
transportation mode (automobile or bus), using choice-based sampling. Manski 
and Lerman (1977) recognized the problem, and proposed a consistent 
estimator. Another  classic example, using the normal linear regression model,  
is the estimation of a wage equation from strata consisting of families in 
different income brackets (Hausman and Wise, 1977, 1981). Numerous other 
applications followed, but the focus of this review is methodological: an 
account of various estimators that have been proposed, the types of models 
and sampling schemes for which they are suited, and their large-sample 
statistical properties. Areas not covered here are the epidemiological literature 
on endogenous stratification (where it is called case-control or retrospective 
sampling), and applications of endogenous stratification to longitudinal studies 
and failure-time models. 

After a discussion of sampling schemes, we start with the estimation of 
parametric models, which have attracted the most research. A general 
formulation is given, covering both discrete and continuous dependent  vari- 
ables. Section 4 discusses estimators that are consistent but generally not 
efficient. Section 5 is about a class of estimators that deal with the unknown 
density h(z) by nonparametric maximum likelihood. These estimators achieve 
the semiparametric efficiency bounds (semiparametric because of the presence 
of h). Various special cases follow. Finally, we consider some semiparametric 
models: regression models in Section 8, and semiparametric discrete choice 
models in Section 9. 

2. Notation and definitions 

The spaces of exogenous and endogenous variables z and y are 7/ and Y 
respectively. Since these variables may have discrete and continuous com- 
ponents, we define measures/x and v (on 7/ and Y) which in general may be 
products of Lebesgue measure and counting measure. Then p(y ]z, 0o) ho(z ) is 
the population density of (z, y) with respect to /x x ~. In most cases, the 
conditional density function p is supposed to be a known parametric function 
of 0 E O, so the task is to estimate the unknown finite-dimensional parameter  
vector 00. We shall also consider some cases where the underlying model is 
semiparametric, i.e., p also depends on an unknown distribution function F. In 
all cases, the density function ho(z ) is unknown. 

~ Choice-based sampling was proposed by Warner (1963). Warner's subsequent analysis was 
based on diseriminant analysis for normally distributed explanatory variables, rather than on a 
structural model. 
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Here  are three simple but typical examples of models for the conditional 
density p ( y  l z, 0). 

(i) Logit model of discrete choice. In a discrete choice model, there is no 
loss in identifying y with a discrete index, i = 1 , . . . ,  M. The probabilities can 
be specified as 

exp(z 'i0 ) 
p ( i [ z , O ) -  M , (2.a) 

Z exp(z~0 ) 
j - 1  

where z i is a subvector of z associated with alternative i, and the normalization 
is z M = 0. 

(ii) Normal linear regression model: 

p ( y [ z , o )  l ( y - z ' ~ ]  

where 0'  = (/3', o-). 
(iii) Nonlinear regression with unknown error distribution: 

p ( y  l z, O) = f ( y  - g(z, 0 ) ) .  

Here  g is a known parametric regression function, while f is an unknown 
density function. 

Sample stratum s (s = 1 , . . .  , S) is the subpopulation {(z, y) [z E 77, y E 
J(s)}  defined by a specified subset j ( s )  C Y. This is endogenous stratification, 
because the strata are defined in te rms of the endogenous variable y. More 
generally, endogenous strata could be defined by selection of both z and y;  that 
case will be considered briefly in Section 6.4. 

In order to deal with complicated sample designs that may have overlapping 
strata, we first define a finite collection of substrata (or 'response categories') 
°~ i C Y, i = 1 , . . . ,  M, that are mutually exclusive and cover the whole space 3/. 
If y is a discrete variable with a finite range, one would normally choose the 
response categories to be the values of y, i.e., °~ i = {i}. In general, the 
response categories are defined so that each sample stratum J ( s )  is a union of 
one or more of them. The indicator function 

~lis = I[ °~i C_ j ( s ) ]  (2.2) 

shows which response categories make up stratum s. Here  are two standard 
examples, both involving a discrete choice model with M alternatives: 

(i) A 'simple' choice-based sample, with one stratum corresponding to each 
choice alternative. In this case, the strata and the response categories coincide, 
so we have S = M  a n d J ( i ) = ~ / = { i } , i = l , . . . , M .  

(ii) A random sample that has been 'enriched' or 'augmented'  by combining 
it with a choice-based sample on one alternative (say, i = 1) that is of particular 
interest in the analysis but which is rarely chosen in the population. In this case 
there are two strata (S = 2) with J ( 1 )  = °~ 1 = {1} and J ( 2 )  = Y = {1 . . . .  , M}. 
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Sample observations are denoted (z,,, Yn), n = 1 . . . .  , N, where N is the 
sample size. We say that observation n belongs to response category i (or 
substratum i) if y ,  E ~t r We use the following notation for the response 
categories: 

i(y) is the response category that contains the random variable y; 
i(n) is the response category to which observation n belongs; 

is the subset of observations belonging to response category i; 
N, is the number of observations in W~; 

and for the sample strata: 
s~ is the stratum from which observation n was drawn; 
W(s) is the subset of observations drawn from stratum s; 
N(s) the number of observations in W(s). 

Sample proportions for strata and for response categories are defined by 

H(s) = N ( s ) / N ,  H i = N J N .  (2.3) 

For any subset 0~ E Y, define 

p ( ~  I z, 0) = f d r (y )  I[y E ~lp(ylz, o ) ,  (2.4) 

Q ( ~  10, h) = f d/x(z) h(z )p(~  [z, 0 ) .  (2.5) 

Special cases of the marginal probabilities Q (also called 'aggregate shares' or 
'population shares') are 

Qi = Q(~li [ o, h ) , (2.6) 

M 

Q(s) = Q(#(s) lO, h) = ~ 7?isQ~ . (2.7) 
i = 1  

Sometimes prior information is available about Q. If so, we assume that it 
refers to {Qi}, the marginal probabilities of the response categories 0~i. The 
case where some information is available, but not enough to recover all the Qi, 
is more involved but can be analyzed by the same methods. 

The operator E 0 denotes expectation under the population density 
p ( y l z ,  0o) ho(z ), while E[. [°2/] denotes expectation over a response category 
or stratum defined by ~ E Y; the relevant conditional density functions are 

p (y  l z, Oo)ho(z) 

Q ( ~  ]Oo, ho) 
I[y E ~1 .  (2.8) 

The operator E by itself is used for the expectation of sample statistics under 
whatever sampling scheme is currently in use. 
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3. Sampling schemes and likelihood functions 

Three different endogenous sampling schemes have appeared in the literature, 
as described in the following three subsections. 

Unknown sample design parameters, if present, are treated here simply as 
additional unknown parameters of the likelihood function. Typically, these are 
sampling probabilities that were chosen by the person responsible for data 
collection, but which are not known to the econometrician who is analyzing the 
data. If we knew the decision rule for the sample design (for sample, in terms 
of preliminary estimates of Q) then the likelihood would be more complicated. 

3.1. Standard stratified sampling 

In this scheme, which seems to correspond most closely to the original idea of 
stratified sampling, a separate random sample of size N(s) is drawn from each 
stratum. The subsample sizes N(s) are fixed, as part of the experimental design, 
but it is not difficult to extend the analysis to the case where attrition of the 
sample causes N(s) to be random. This type of sampling would be appropriate 
when members of each stratum are readily identifiable, such as people who use 
a particular type of transportation to get to work, or people who are 
undergoing medical treatment for some specific condition. The results given by 
Cosslett (1981a,b) and by Hsieh, Manski and McFadden (1985) apply to this 
sampling scheme. The name 'standard stratified sample' is used by Jewell 
(1985) and by Imbens and Lancaster (1991); Gourieroux (1991) uses 'plan 
stratifi6'. 

An important consideration is the availability of additional information 
about the marginal probabilities Q. Three cases have been addressed in the 
literature: (i) Q is unknown, (ii) Q is known exactly, and (iii) there is 
additional sample data from which Q can be estimated. For some choice 
probability models and sample designs, 0 is not identified when Q is unknown, 
so one might expect that knowledge of Q can sometimes greatly improve the 
efficiency of estimation. 2 The use of additional sample data to estimate Q is 
discussed separately in Section 6.1. 

(a) If Q is unknown, the log likelihood can be written as 

s p(y~ i zn, O)h(zn ) 
logL(O,h)= ~ ~] log (3.1) 

, = 1  n ~ ( ~ )  Q(•(s) lo, h) 

Two points to note: the stratum s to which observation n belongs is not a 
random variable, because it is fixed by the sample design; and the observations 
are not identically distributed, because the density is different in each stratum. 
The essential problem with likelihood-based estimation from endogenously 

Use of information on aggregate shares for identification from choice-based samples was 
proposed by Warner (1963). 
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stratified samples can be seen in (3.1): the unknown density of the exogenous 
variables h(z) cannot be factorized out of the likelihood. In random samples, 
by contrast, the log likelihood 

N 

log L(O, h) = ~] (log P(Yn [zn, O) + log h(zn) ) (3.2) 
n = l  

is the sum of separate functions of 0 and of h; when the log likelihood is 
maximized with respect to 0, the term in h is a constant and can be ignored. 

(b) If Q is known, the factor Q(s) -1 in the likelihood function is a constant 
and can be ignored in maximum likelihood estimation. On the other hand, we 
have to take into account the constraints Q(~Ji I O, h) = Qi, i -- 1 , . . .  , M (one is 
redundant).  Again, h cannot be dropped, this time because it appears in the 
constraint equation. 

3.2. Variable probability sampling 

This scheme starts with a random sample of observations on y. If y is in 
response category ~i, then that observation is retained in the sample with 
probability ~ri ~> 0. These probabilities are chosen by the experimenter. For 
each retained observation, the rest of the data is then collected, including z. 
The other observations are discarded. The strata in this scheme must be 
mutually exclusive, so there is no distinction between the strata J(s)  and the 
substrata °~i; for convenience they are called ~ here. 

The term 'variable probability sampling' is used by Jewell (1985); it is 
referred to as 'Bernoulli sampling' by Kalbfleisch and Lawless (1988) and 
Imbens and Lancaster (1991), while Gourieroux (1991) uses 'plan ~ prob- 
abilit6s in6gales'. It is the type of sample used by Hausman and Wise (1981), 
where the strata are income brackets. It is appropriate when data on y can be 
collected relatively cheaply compared with the cost of the rest of the informa- 
tion set; this would be true particularly if individuals were being selected for a 
longitudinal study. 

Let N o be the initial sample size (which may or may not be known), and let 
N be the number of retained observations. The numbers of retained and 
rejected observations in stratum i are N~ and N* respectively. The form of the 
likelihood depends on whether the numbers N* are known. 

(a) If there is no information about the discarded observations (in which 
case we condition on N, the size of the retained sample), the log likelihood is 

N L z . ,  O)h(z.)  
log L(O, h) = ~ log ~-(0, h) ' (3.3) 

n = l  

where i(n) is the stratum to which observation n belongs, and ~- is the marginal 
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probability of keeping an initial observation, 

M 

7?(0, h) = ~ ~'iQ(~i 10, h ) .  (3.4) 
i - 1  

In contrast with standard stratified sampling, note that i(n) is a random 
variable, and that all observations are identically distributed. This applies when 
~- is known but Q is unknown; otherwise, see Section 3.4. 

(b) If the number of discarded observations in each category is known, and 
if the initial sample size N O is taken as fixed, then the log likelihood is 

N 

log L(O, h) = ~ log{p(y,  I z, ,  O)h(zn) } 
n = I  

M 

+ Z (N/log 7ri + N* lo8(1 - N) + N* log Q(%lo, h)). 
i = l  

(3.5) 

The terms in ~- have now separated from the terms in 0, and can be dropped; it 
no longer matters whether ~- is known. If Q is known, see Section 3.4. The log 
likelihood (3.5), applied to the normal linear regression model, is given by 
Hausman and Wise (1981). It does not appear to have been investigated 
further, and estimation of 0 from (3.5) will not be discussed in detail (although 
the same general methods can be applied). 

Unlike the other two schemes, variable probability sampling can be extended 
to a continuum of strata. The sampling probability ~r(y) can be defined as a 
function of the continuous random variable y. The probability ~'~(n~ in the log 
likelihood (3.3) becomes 7r(yn), and the marginal probability ~-(0, h) becomes 

#(0, h) = f d/x(z) f d r (y )¢ r (y )p (y [z ,O)h (z ) .  (3.6) 

3.3. Multinomial sampling 

In this scheme, each observation is generated in two steps. First, a stratum is 
selected randomly, with probabilities P(s), s = 1 , . . . ,  S; then an observation is 
drawn randomly from that stratum. The probabilities P are chosen by the 
experimenter. This scheme differs from standard stratified sampling in that the 
numbers of observations in each stratum, N(s), are random variables with a 
multinomial distribution instead of being fixed. Although it does not seem to 
correspond to any sampling method that one would use in practice, it has the 
feature that all observations are identically distributed, which makes it 
somewhat easier to find the asymptotic distributions of estimators and other 
sample statistics. 3 

" This type of samphng ~s used by Manski and Lerman (1977) and Manski and McFadden (1981). 
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The log likelihood for multinomial sampling is 

N PI(n)P(Y, I z,,, O)h(zn) 
log L(O, h) = ~ log (3.7) 

n=a 0(% 10, h) 

This is isomorphic with the log likelihood for variable probability sampling, 
under the substitution 

P~ = QiTri/ fr . (3.8) 

But in practice they are different because the sample design parameters are 
usually assumed to be known: ~- in the case of variable probability sampling, 
and P in the case of multinomial sampling. 

An explained in the next subsection, there is in fact no need to use the 
likelihood (3.7): we can proceed, without loss, as if the stratum sizes N(s) were 
fixed. 

3.4. Conditioning on subsample sizes 

Suppose the likelihood for a vector of random variables x has the form 
L(xlO ) = LI(xIT, 0)Lz(T), where T = T(X) is a statistic and 0 is a parameter  to 
be estimated. Then T is said to be an 'ancillary' statistic with respect to 0: its 
distribution does not depend on 0, and so knowledge of the realized value of ~- 
conveys no information about 0. In that case, the 'principle of conditionality' 
says that inference about 0 should be based on Ll(x IT, 0), the likelihood 
conditional on the ancillary statistic T. Lancaster (1990) has emphasized the 
importance of conditioning on ancillary statistics when dealing with endogen- 
ously stratified samples. Examples of paradoxes that can arise when the 
principle of conditionality is ignored are given by Cox and Hinkley (1974) and 
by Lancaster. 

In an endogenously stratified sample, the stratum sizes N(s) or N/ may be 
ancillary statistics, depending on our knowledge of the population shares Q 
and, when relevant, the sample design parameters ~r or P. By conditioning on 
ancillary statistics, we can drastically reduce the number of different cases that 
have to be investigated. The three main sampling schemes are considered 
separately. 

(a) Standard stratified sample. Suppose Q is known and the strata overlap, 
i.e., for some i and s, % is a proper  subset of j ( s ) .  Let  Nis be the number  of 
observations in stratum s that have y E %. The random variables Nis have a 
multinomial distribution with sample size N(s) and probabilities ~%Qi/Q(s). 
Because this does not depend on 0 or h, the N~s are ancillary statistics, and 
therefore we should use the likelihood conditional on {N~s }. That  conditional 
likelihood is the same as the likelihood for a sample stratified on %, i = 
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1 , . . . ,  M, with fixed subsample sizes Ni: 

M 

log L(O, h) = ~] ~] log P(Yn [ z , ,  O)h(z,) (3.9) 
~=1 n~Xi Q ( ~  10, h) 

In other words, we should proceed as if the sample had been stratified on the 
response categories °8 i rather than on the original strata J (s ) ,  and with 
subsample sizes given by the sample values of N i = E s Nis. 

(b) Variable probability sample. First, suppose there is no information on the 
discarded observations. The subsample sizes N i have a multinomial distribution 
with sample size N and probabilities Pi given by (3.8). If ~r and Q are both 
known, then P is known. If ~ is unknown, (3.8) imposes no restrictions on P, 
apart from E i Pi = 1, and the log likelihood (3.3) can be rewritten in terms of 
the unknown parameters (0, P) instead of (0, It). In either case, P known or P 
unrestricted, the distribution of {N~} does not involve 0 or h. The N i are 
therefore ancillary statistics, and we should condition on {N~}. 

A similar argument holds in the case where we know the number of 
discarded observations in each stratum: if Q is known, we should condition on 

(c) Multinomial sampling. This is the case considered by Lancaster (1990). 
The stratum sizes N(s) are ancillary, because the probabilities P do not involve 
0 or h. A sample of this type can therefore always be treated as if it were a 
standard stratified sample. However, some of the original work on choice- 
based sampling presented estimators and asymptotic variances based on the 
likelihood (3.7), as discussed in Section 4. 

To summarize the results of conditioning on ancillary statistics: in most 
cases, the sample can be treated as a standard stratified sample. If Q is 
unknown, the log likelihood is (3.1), with strata J(s)  and fixed subsample sizes 
N(s); if Q is known, then use (3.9), with strata % and fixed N i. Of the cases 
considered above, the only exceptions are variable probability samples with: (i) 
~- known, Q unknown, and no information on discarded observations; and (ii) 
Q unknown, with information on discarded observations. The log likelihoods 
for these cases are (3.3) and (3.5). 

3.5. Identification 

The model p(y  I z, O) is assumed to allow 0 to be identified from a random 
sample, but further conditions are needed when the sample is endogenously 
stratified. For example, if the data is obtained by simple choice-based sampling 
(i.e., each stratum corresponds to a single value of the discrete variable y) with 
Q unknown, and the model is multinomial logit with alternative-specific 
dummy variables, then the coefficients of those dummy variables are not 
identified (Manski and McFadden, 1981). Some identification criteria are given 
by Cosslett (1981b) (see also Gill, Vardi and Wellner, 1988). 

The problem arises if a discrete choice model includes 'multiplicative 
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intercept' terms (Manski and McFadden, 1981), i.e., if the parameterization is 
such that 

ciP(ilz, 0") 
p( i l z ,  0o) = M (3.10) 

Z Cip(jIZ, 0") 
]=1 

for some 0 " ~  O and some set of constants c l , . . . ,  c~t (not all equal). This 
holds for the multinomial logit model (2.1) if there are constant terms in the 
exponents, i.e., if z'~O = ~i + i ~ .  (The constant a~ can also be viewed as the 
coefficient of a dummy variable for alternative i.) Let 

coh(z) 
h*(z ) -  M , (3.11) 

cjp(jlz, o*) 
j=l  

where the constant c o normalizes h* to a probability density. Then, if c~ is 
constant for all alternatives in a stratum, the likelihoods in (3.1) (standard 
stratified sampling) and (3.7) (multinomial sampling) satisfy L(O,h)= 
L(O*, h*), i.e., 0 and h are not identified. The population shares Q~ are not 
invariant under this transformation, however, so the problem arises only if Q is 
unknown. 

This happens also in variable probability sampling if both the sampling 
probabilities 1r and the population shares Q are unknown: the likelihood in 

* = ciT-r i . (3.3) is invariant under 0 ~ 0 *, h --~ h*, and ~r, ~ ~'i 
There are two ways to go: to restrict the classes of sample designs or of 

models. A key step in the argument above was finding constants c i that were 
equal within each stratum but not equal for all alternatives. One criterion for 
identification, therefore, is to exclude sample designs which let that happen. 
The conditions are: 

(i) All alternatives are included, i.e., U ,  J ( s ) =  ~/. 
(ii) The strata cannot be grouped into two nonoverlapping sets of alter- 

natives, i.e., if 5e is a proper subset of { 1 , . . . ,  S} and .9°' is its complement, 
then 

In particular, this rules out the simple choice-based sample design mentioned 
above. This identification condition obviously can never apply to variable 
probability sampling, where the strata must be mutually exclusive. 

Another approach is to leave the class of sample designs unrestricted, but to 
exclude models that satisfy (3.10). In particular, this rules out the multinomial 
logit model with alternative-specific dummy variables (i.e., with 'intercept' 
terms). This is somewhat unsatisfactory, because then identification depends on 
the particular functional form assumed for p(i [z, 0), which is not really 
fundamental; it is likely that in other, similar discrete choice models, such as 
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multinomial probit, the intercept terms will be poorly determined even though 
they are formally identified. 

In fact, it may be better to take advantage of the transformation (3.10). If 
(3.12) fails, the basic problem is lack of information in the sample about 
relative probabilities, which cannot really be overcome by a clever parame- 
terization. If our model does satisfy (3.10), then at least the lack of identifica- 
tion is confined to the intercept terms, and the remaining parameters can be 
consistently estimated. 

4. Estimators based on maximum likelihood 

This heading covers estimators based on the maximum likelihood (ML) 
method, but where the function to be maximized is not necessarily the 
likelihood function itself. The conditional density p(y[z ,  O) must be a known 
parametric function. There are two main approaches (with some overlap): (i) 
look at the score function for the likelihood under random sampling, and see 
what changes are needed for it to have zero expectation under endogenous 
sampling; and (ii) estimate the unknown density h(z) by nonparametric 
maximum likelihood (NPML), concentrate the likelihood function with respect 
to h, and then maximize the concentrated likelihood by conventional methods. 
The NPML approach is covered in Section 5. 

The likelihood-based estimators all have the same general form: maximize a 
function ~(0) = 2 n ~(Yn, Zn, Sn, 0 ) over 0. Consistency and asymptotic normali- 
ty, under suitable regularity conditions, then follow from general results on 
M-estimators: see, for example, Chapter 4 of Amemiya (1985). 4 Asymptotic 
variances are discussed in Section 4.5. In general, apart from the need to check 
identification (see Section 3.5), conditions that suffice for consistency and 
asymptotic normality of maximum likelihood estimators from random samples 
will suffice here too. If, however, the strata are incomplete, i.e., if (_J, J(s) 
Y, then the conditions are those for maximum likelihood estimation from 
truncated samples. 

4.1. Modified score 

Suppose Q is known. According to Section 3.4, the sample should be treated 
as a standard stratified sample with strata ~ (the most disaggregate strata for 
which marginal probabilities Qi are known). We can call the ~i 'response 
categories' to distinguish them from the sampling strata j (s ) ,  which may be 
different. 

Let gr(O)= 2n tP(Yn, zn, O) be a statistic such that E0[gr(00)] = 0. Then the 
solution of the moment equation gr(0) = 0 is a consistent estimator of 0 from 

4 Proofs for discrete y, with varying degrees of generality, are given by Manski and Lerman 
(1977), Manski and McFadden (1981), and Hsieh, Manski and McFadden (1985). 
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random samples (under conventional regularity and identification conditions). 
In a standard endogenously stratified sample, with log likelihood (3.9), 

M ~ r  ['It i(Y),:  
E[gt(00)] = ,=,~'~ N;E[O(y, z, 00) I -- qJtY, z, 00)] ,  (4.1) 

which is generally not zero. The operator E o denotes expectation under the 
population density. 

In particular, this applies to the score vector for 0 under random sampling: 
let tp(y, z, 0) = O log p(y  I z, O)/O0. Then E0[~(00) ] = 0, but according to (4.1), 
E[~(00) ] is generally nonzero under endogenously stratified sampling (except in 
the special case where H i = Qi). This means that ML estimators are generally 
inconsistent if we fail to take account of endogenous stratification. One 
solution is to find a modified version of ~, say ~* ,  such that E[~*(00) ] is again 
zero. Here are two methods. 

(a) Weight the observations: if 0(Yn, z,, 0) is replaced by 0*(Y~, z,, 0 ) =  
(Qi(,)/Hi(,))qJ(y,, z,,, 0), then the unwanted factors in (4.1) cancel and we get 

= o .  

(b) An additive correction: replace ~(y, z, 0) by ~0*(y, z, 0) = ~0(y, z, 0) - 
t}(z, 0). For any sample statistic of the form T = N  -1 E, ~-(zn), the expected 
value under standard stratified sampling is E[T] = E0[fi(z, 0)~-(z)], where 

fi(z, O) = ~ P(% I z, 0) .  (4.2) 
i= l  

A suitable correction term is therefore 

1 0)Lz ) 0 )  . . (4.3) 

Similar arguments apply to a variable probability sample with known 
sampling weights ~r. The weight factor in (a) is l/N<,), while the correction 
term in (b) is given by substituting ~ for Hi/Qi in (4.2)-(4.3). Note, however, 
that if 7r and Q are both known, then we should condition on N~ (as explained 
in Section 3.4); in that case we should continue to use H~/Q~, not cry. 

4.2. Weighted exogenous sample maximum likelihood 

The first consistent estimator for endogenously stratified sampling was the 
weighted exogenous sample maximum likelihood (WESML) estimator (Manski 
and Lerman, 1977). It was originally proposed for estimation of discrete-choice 
models from choice-based samples, but it extends to continuous dependent 
variables and general endogenously stratified sampling schemes (see McFad- 
den, 1979). Although generally not optimal, it is computationally straight- 
forward and can be run on many existing statistical software packages. 

Apply the multiplicative weighting scheme in Section 4.1 to the score for 0 
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under random sampling. The modified score is (Qi(n)/ni(n)) 0 log P(Yn [Zn, 0)/ 
00, which corresponds to the weighted log likelihood function 

@ Qi(n) , 
log Lw(O ) = .d, ~ log PtYn ]z,, 0). (4.4) 

n = 1 i(n) 

In each response category, the weight factor is the ratio of the population share 
to the sample share. Oversampled categories are given a low weight, and 
vice-versa. If each observation is counted according to its weight, the sample 
shares and population shares are now the same. Maximization of (4.4) over 0 
gives the WESML estimator. It is consistent but not asymptotically efficient. 

The WESML estimator is also applicable to variable probability sampling 
with known sampling probabilities 7r and unknown Q. The weights Qi(n)/Hi(nl 
are replaced by 1/Tr/(n). (If Q and ~" are both known, use the version (4.4) as 
given.) 

The original version of the WESML estimator 5 is slightly different: it was 
introduced in the context of multinomial sampling, and uses the stratum 
sampling probabilities Pi instead of the observed sample shares Hi in the 
weighted likelihood. More generally, one could use E[Hi] instead of H i. 
However, the estimator based on (4.4), using Hi, is asymptotically more 
efficient (except, of course, when the sample shares H i are fixed by the sample 
design, in which case there is no difference). At first sight this seems surprising: 
we lose efficiency when a sample statistic H i is replaced by its 'true' value 
E[Hi]. An explanation in terms of conditioning on N~ is given by Lancaster 
(1990). 

Although the WESML estimator can sometimes be close to optimal, there 
are cases where its efficiency is low in comparison with other available 
estimators. The example given by Cosslett (1981a) involves a binary choice 
model in which one alternative is rarely chosen. Heuristically, the problem is 
this: endogenous stratification is used to oversample the rare alternative, but 
the WESML estimator then dilutes the information by assigning low weights to 
the extra observations. 

4.3. Weighted moment equations 

The WESML estimator for variable probability sampling remains consistent if 
the weights are W*(Zn)/Zri(n) , where w*(z) is any function of z. This idea is 
generalized by Gourieroux (1991), who considers a set of weighted moment 
equations. In the present case, these come from the likelihood equations for 
random sampling: 

N 1 1 0p n 
,~--1= ~i(,) p--~ 0-~-=0, (4.5) 

5 Manski and Lerman (1977) and Manski and McFadden (1981). 
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where W is a (K x K) matrix of weight factors. If W is scalar, then (4.5) 
corresponds to a weighted maximum likelihood estimator, but in general it 
does not. Gourieroux (1991) derives the optimal W for variable probability 
sampling. It depends on 0, so a preliminary consistent estimator 0 is needed. 
An obvious choice for 0 is the WESML estimator. If the model is of 
'single-index' form, i.e., p(ylz,  O) = F(y, g(z, 0)) for some functions F and g, 
then W is scalar. 

Define the (K x K) matrices 

a(z)  = Eo op op b(z) = Eo ~i(y~ 00 00' z , p2 00 00' z . (4.6) 

Since p is a known function, these expressions can be evaluated analytically in 
terms of z and 0. Then the optimal weight matrix is W = a b  +, and the 
asymptotic variance of 0 is 17(0)--Eo[ab+a], where the superscript + denotes 
a generalized inverse. 

If Q is known, o n  the other hand, we should condition on N~ and treat the 
sample as a standard stratified sample. The optimal W can be found for this 
case also, although it is somewhat more complicated. Replace 1/Tr/(y) by 
Qi(y)/Hi(y) in (4.5)-(4.6), and define the (K x M) matrix 

op 
c.j(z)= Eo[l (y~  ~j) l ~  z] . (4.7) 

Then we find that the optimal W is 

W :  {a + Eo[ab +cl(H - Eo[c'b+cl)-lc'}b + (4.8) 

and the asymptotic variance of 0 is 

V( O) = {Eo[ab +a] + Eo[ab +c](H- Eo[c'b +c]) 1Eo[e'b +a]}-l , (4.9) 

where H is an (M x M) diagonal matrix with elements H i, The expected values 
E 0 in (4.8) and (4.9) can be consistently estimated by sample means of 
observations weighted by fi(z,, 0) -1 (see Section 4.5). 

Although better than WESML, this estimator is still not asymptotically 
efficient, and it is no longer clear that the computational cost is less than that of 
alternative estimators (which come next). We shall return to (4.8) when we 
come to the regression model with unknown error distribution, where full-scale 
semiparametric MLE is much more difficult. 

4.4. Conditional maximum likelihood, Q known 

This time, the additive correction scheme of Section 4.1 is applied to the score 
vector for random sampling. The correction term (4.3) is ~} = fi-10fi/O0, where 
fi is defined by (4.2), and the modified score is qJ* = 0 -  ~} = 0 log(p/~)/O0. 
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The new function to be maximized is (with some additional constant factors) 

U (I4i(,o/Qi(n))p(y n I Zn, O) 
lOgLc(O ) = ~] log M (4.10) 

n = l  Z (I-Ij/Qj)P(%Izn, O) 
j = l  

This gives the conditional maximum likelihood (CML) estimator. It was 
introduced by Manski and McFadden (1981) for discrete-choice models under 
choice-based sampling, but can be extended to general endogenous sampling 
problems (McFadden, 1979). The name arises because under variable prob- 
ability sampling or multinomial sampling (4.10) is, in fact, the log likelihood of 
y conditional on z. It can also be interpreted as a conditional likelihood under 
standard stratified sampling (which we are using here) if we first randomize the 
observations from the different strata. The CML estimator is particularly useful 
when p(y I z, O) is given by the multinomial logit model (2.1): it reduces to a 
trivial modification of the MLE for random sampling and becomes asymp- 
totically efficient. The special case of the multinomial logit model is discussed 
in Section 5.6. In general, however, the CML estimator is not asymptotically 
efficient when there is prior information on Q. 

As with the WESML estimator, there is an alternative version of the CML 
estimator that uses the expected values E[Hi] instead of the sample proportions 
H/ in  the conditional likelihood and in (4.2), the definition of ft. It is, however, 
asymptotically less efficient than the estimator based on (4.10). (See the 
discussion of this point in Section 4.2.) 

The case of unknown Q is postponed to Section 5, because in that case the 
CML estimator turns out to be the full-information MLE. 

Amemiya and Vuong (1987) compare the asymptotic variances of the 
WESML and CML estimators, and show that CML is more efficient. One can 
show, by the same method, that the optimal weighted moment estimator given 
by Gourieroux (1991) lies between WESML and CML in efficiency. These 
comparisons are valid for variable probability sampling with unknown Q. 
However, when Q is known (in any of the sampling schemes), they are 
generally valid only if we use the less efficient versions of the estimators, 
substituting E[Hi] for H i. If we use the standard versions of the estimators for 
known Q, the optimal weighted moment estimator is necessarily more efficient 
than WESML, but it is no longer possible to compare their asymptotic 
efficiencies with that of CML. For some sample designs, WESML can in fact be 
more efficient than CML (Cosslett, 1981a). In any event, more efficient 
estimators are available, provided Q is known: see Section 5. 

4.5. Estimation of asymptotic variances 

The asymptotic variance of 0 has the form V ( 0 ) = J - 1 M J ,  where, as usual, 
J = l i m E [ - N  102 log L/dO 00'] and M is the limiting variance of 
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N -1/2 0 log L/oO. Write the objective function of a generic estimator as 

N 

log L(O) = ~ e(yn, Zn, Sn). (4.11) 
n=l  

(The dependence on s n occurs only when the stratum sizes are fixed.) For 
standard stratified sampling, 

J =  - H(s)E ~ ¢(s) , (4.12) 
s=l  

M = ~ H ( s ) E  Oe 0e O~ e 0g 
s=l  - ~  °~ -- s=lE H(s)E J E J , 

(4.13) 

where the expectations over strata use the density (2.8). For variable probabili- 
ty sampling (without conditioning on Ni), the second term on the right of 
(4.13) is dropped. 

Explicit expressions for the asymptotic variances of the WESML, CML, and 
full-information ML estimators have been given by several authors for the case 
where y is discrete. Under standard stratified sampling, asymptotic variances 
for WESML, CML with known and with unknown Q, and full-information ML 
with known Q are given by Cosslett (1981a) (where the CML estimator is 
called the Manski-McFadden estimator). Hsieh, Manski and McFadden (1985) 
present results for WESML, CML and full-information ML when Q is 
estimated from an auxiliary sample (see Section 6.1), again under standard 
stratified sampling; the case of known Q can be recovered in the limit where 
the auxiliary sample becomes infinitely large relative to the main sample. For 
WESML and CML under variable probability sampling with known 7r and 
unknown Q, substitute ~ for Hi/Qi in the asymptotic variance expressions 
given by Manski and McFadden (1981) for multinomial sampling with known 
Q. 

These expressions can be consistently estimated from sample data, after 
substituting 0 for 00. If the model is not too complicated, the expectation over 
y conditional on z can be evaluated analytically. (If y is discrete, it is just a 
sum of terms over responses i.) This leaves expressions of the form E0[~-(z)] to 
be estimated as weighted sample means. Two convenient weighting schemes 
are 

1 ~ Qi(~l P 
(4.14) 

n=l fi(G, 0) ~=l fi(z n, -->E°[r(z)] " (4.15) 
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If unknown, Q is replaced by a consistent estimate. The sum in the de- 
nominator of (4.15) is optional and can be replaced by N, its probability limit. 
Although there is no experimental evidence to favor either one, (4.15) might 
be recommended on the grounds that its weight factor is the NPMLE of the 
density h. 

For variable probability sampling (with unknown Q), 1/rr i is substituted for 
Q J H  i in (4.14) and the sum in the denominator of (4.15) is dropped. This puts 
an additional factor l/g- on the right-hand sides of (4.14)-(4.15). The 
unknown constant # then disappears from the estimated asymptotic variances, 
but if needed it can be estimated from 

N 
1 ~r = ~, fi(z,, O) -1 . (4.16) 

n=l 

This allows Q to be estimated as Qi = Higr/rri. 
If the conditional expected value is not computationally tractable, then an 

expected value of the form E[r(y, z) l ~  ] = E0[I(y E ~)r(y ,  z)/Q(~)] has to 
be estimated from a weighted sample mean of I (y ,E~t ) r (yn ,  zn). The 
NPMLE of the joint density of y and z is difficult to compute (see Jewell, 
1985), so we would fall back on the weights Qio)/H~(n), as in (4.14). 

5. Efficient estimation of parametric models 

The estimators in this section replace the unknown density h(z) by its 
nonparametric maximum likelihood estimator (NPMLE) (Cosslett, 1981a,b). 
Asymptotic efficiency bounds have been derived for most of the cases 
considered here, generally based on the method of Begun et al. (1983): see 
Cosslett (1985), Imbens and Lancaster (1991), and Cosslett (1991). Bickel et 
al. (1993) give characterizations of these bounds, but in most cases without 
presenting explicit expressions. Where bounds are known, estimators based on 
the NPMLE of h are asymptotically efficient. 

5.1. Variable probability sampling, Q unknown 

We start with the simplest case. The sampling weights ~ are known. The 
NPMLE of h from the log likelihood (3.3) is the discrete density with weight 6 

1 lzmo ) 
¢a)n : ~ 7r]p(61jj l Zn, O ) m=l ~ q'i'jp(O~] [ 

j=l  j=l  

--1 

(5.1) 

at each data point z = z n. Substituting this back into (3.3), and dropping 

6 This is given by Jewell (1985) for linear regression under variable probability sampling. 
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constant terms, gives the concentrated log likelihood 

log Lo(O) = ~ log ~(n)P(Y, [zn, O) 
n = l  E q'QP(~ I Zn, O) 

j = l  

(5.2) 

Maximization over 0 then gives 0, the MLE. The concentrated likelihood (5.2) 
is obviously the same as the conditional likelihood of y given z (Section 4.4). 
Consistency and asymptotic normality follow from standard results on maxi- 
mum likelihood estimation. 7 

If the sampling probability varies continuously with y, the term 7r/(n) is 
replaced by ~(Yn) and the sum in the denominator is replaced by the 
corresponding integral over y. 

5.2. Standard stratified sampling, Q unknown 

In this case, the NPMLE of h from the log likelihood (3.1) is the discrete 
density with weight 

1 
,on = s ( 5 . 3 )  

N E [U(s)/Q(s, O)]p(p(s)Izn, O) 
S--1 

at z = zn, where the estimated shares Q(s, 0) are determined by substituting 
(5.3) into the equations 

N 

O(s, O) = Q(¢(s) lO, ~1 = ~ w,P(o~(s) lzn, o) (5.4/ 
n = l  

( s = l , . . . , S - 1 ) , a n d  

N 

E w, = 1. (5.5) 
n = l  

The resulting concentrated likelihood is 

logL0(0) = ~ log [H(Sn)/O-'(sn'O)]p(Y"lzn'O) (5.6) 

~=1 • [H(t)/~(t, O)]p(%[z n, O) 
t = l  

This can be expressed in a more convenient form: after substituting for w,, the 
equations (5.4) are the same as the first-order conditions for maximization of 

7 H a u s m a n  and Wise (19811 apply this est imator to the normal  linear regression model.  
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the log pseudo-likelihood 

log L(0, Q ) =  ~ log ~(sn)/Q(s.)lp(ynlzn, O) 
n = l  E [H(t)/Q(t)lP(%lzn, O) 

t = l  

(5.7) 

over Q. Maximization of (5.7) over both 0 and Q then gives consistent 
estimators 0 and ~). In order to estimate Q, we also need an inhomogeneous 
restriction on ~): it comes from (5.5), substituting (5.3) for ~o. If there is an 
identity of the form Z scs~is = 1 ( i=  1 , . . .  , M )  (which is true for most 
conventional sample designs), then (5.5) simplifies to E k qQ(s) = 1. 

The term pseudo-likelihood is used here in the following sense: a function of 
0 that, when maximized, gives an estimator with the same properties as the 
MLE (Cosslett, 1981a). In general, no 0 and no h make the log pseudo- 
likelihood (5.7) equal to the true log likelihood (3.1); it does not satisfy the 
'information matrix' equality, i.e., var[0 log/2/00] ¢ - E [ 0  2 log L/oO 00']; and 
the estimator is inconsistent if p is misspecified. That is to be distinguished 
from quasi maximum likelihood estimation (Koopmans and Hood, 1953; see 
also McCullagh and Nelder, 1989, for a more general definition): in that case 
the objective function is the log likelihood under a particular distributional 
assumption (normality, in many cases), but gives a consistent estimator 
regardless of the true distribution. 8 

The objective function (5.7) is again the same as  the conditional log 
likelihood proposed by Manski and McFadden (1981) (see Section 4.5). But in 
general the CML estimator is not the same as the full-information MLE,  so we 
prefer to use the term pseudo-likelihood rather than conditional likelihood 
here. Note that L(O, Q) is not the same as the concentrated log likelihood 
Lo(O , Q), which would be obtained by maximizing L(O, h) over h at fixed 0 and 
Q subject  to the restriction Qi = f dlz(z)h(z)p(~Ji]z, 0). Both functions are 
maximized at (0, ~)), but the concentrated likelihood is less useful because 
there is no analytic expression for it. 

Variable probability sampling with both ~r and Q unknown can be treated as 
standard stratified sampling (by conditioning on Ng), and so the present 
estimator can be used also in that case. If the parameterization of p(y[z ,  O) 
allows 0 to be identified from nonoverlapping endogenous strata, then ~" can 
be estimated up to a scale factor by ¢r i = ~'/-/~/~)i. (~" is not identifiable.) This 
equivalence provides another interpretation of the estimator: maximize the 

9 concentrated log likelihood (5.2) over zr. 

Gourieroux, Monfort and Trognon (1984) use the term 'pseudo maximum likelihood estima- 
tion' for what we would call (following Koopmans and Hood, 1953) 'quasi maximum likelihood 
estimation'. 

9 Hausman and Wise (1981) also consider this eStimator in the case of normal linear regressiom 
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The maximum pseudo-likelihood estimator based on (5.7) (i.e., the CML 
estimator for unknown Q) achieves the asymptotic efficiency bound. 1° 

5.3. Standard stratified sampling, Q known 

When Q is known, h is estimated by NPML from the likelihood (3.1) subject 
to the restrictions Q(OJ i]O,h) = Qoi, where Qoi denotes the 'true' value 
Q(~i 100, h0). The resulting pseudo-likelihood function is 

u p(ynlZ,,O ) (5.8) log L(O, A I Q0) = ~] log u 

.=1 Z Ajp(%lz., o) 
j = l  

The new parameters Ai are the Lagrange multipliers for the constrained 
maximization over h. They satisfy the restriction 

M 

E AiOoi = 1 .  ( 5 . 9 )  
i=1 

This time the optimization problem is more complicated. First, minimize 
L(O, A[Q0) over A at fixed 0, subject to (5.9), to get A(0). If there is no 
minimum, set L(O, A ( 0 ) ) = - ~ .  (This would happen if the known aggregate 
shares cannot be reproduced from the sample data by any density h.) Then 
maximize L(0, ,~(0)) over 0 to get O and ,~ = A(0). 

Under standard regularity conditions, both 0 and A are consistent and 
asymptotically normal. The probability limit of A~ is A0i = HJQoi. The asymp- 
totic variance of 0 achieves the efficiency bound for known Q (Imbens and 
Lancaster, 1991; Cosslett, 1991). 

This estimator is somewhat more complicated than usual: there are M 
additional parameters, which have known probability limits and so provide no 
useful information; the solution of the likelihood equations corresponds to a 
saddle point rather than a maximum; and the algorithm has to allow for the 
possibility that the minimum over A might not exist. (If this happens for all 0, 
which is possible in small samples, then the estimator does not exist.) One 
method is just to solve the first-order conditions as a set of nonlinear 
simultaneous equations, using the WESML or CML estimator 0 and the 
known shares Q0 as the starting point. That approach is used by Hsieh, Manski 
and McFadden (1985) to estimate 0 in a slightly more complicated sampling 
scheme, where Q is estimated from an auxiliary sample. Another method is to 
iteratively apply the CML estimator, starting with Q = Q0 and subsequently 
updating Q as 

x0 See Cosslett (1991). The  efficiency bound  was also given by Cosslett (1981b), but  that  paper  
used a different definition of asymptotic efficiency: the bound was derived as the  asymptotic limit 
of the  semiparametr ic  C r a m 6 r - R a o  lower bound on the variance of an unbiased est imator,  instead 
of as a lower bound  on the  asymptotic variance of  a regular consistent estimator. 
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1 N 

Qi = "~Z.=I p(~, I Z~, O)/fi(Z., b) , (5.10) 

where fi(Zn, O) is defined by (4.2) in terms of the previous values of 0 and Q. 
Although the maximum pseudo-likelihood estimator for known Q appears 

computationally tractable, there has been some effort to find alternative 
estimators that are simpler yet still efficient. Two recent results are as follows. 

5.4. Penalized maximum likelihood estimator 

The auxiliary parameters A in the pseudo-likelihood (5.8) converge to known 
limits, and so appear to convey no useful information. But replacing them by 
their probability limits A 0 just gets us back to the conditional likelihood (4.10). 
Again, we have a somewhat counterintuitive result: the 'true' weights A 0 give a 
less efficient estimator of 0 than do the estimated weights ,~. 

One way of eliminating A without loss of efficiency is to apply a first-order 
Taylor series expansion at A = A 0 to the likelihood equations for A (Cosslett, 
1991). This is like the linearized maximum likelihood estimator used by 
Rothenberg and Leenders (1964), but applied only to the auxiliary parameters 
A. The solution for A is 

A*=Ao- (O21°gL(O'A° lQ°) )  -101°gL(O'A°IQ°) (5.11) 
OA OA' OA 

One component of A is eliminated via (5.9). Substituting A* into (5.8), and 
keeping terms up to second order in ( A -  A0), gives the concentrated pseudo- 
likelihood 

log L*(0 I Q0) = log L(O, A 01Q0) 

1 0 log L(O, A 0 [O0) ( 02 log L(O, A 0 [ O0).~ -1 0 log L(O, A 0 ]O0) 
2 OA \ OA 0A' / OA 

(5.12) 

Maximization of log L*(0 I Q0) over 0 gives an estimator asymptotically 
equivalent to the original maximum pseudo-likelihood estimator. 

The first term on the right in (5.12) is just the conditional log likelihood 
(4.10). The second term can be written as 

N ~), 
T (  - Qo)'II'(IICI1')-1II(0- * - Qo) (5.13) 

with 

1 N 

0"~ = ~ S.._1 p(~a,[z., o)/~(z., o),  (5.14) 
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1 N 
G = ~ p(~,lz.,  0)p(~, I z., o)/p(z., 0) 2 , (5.15) 

where f i(z,  O) is defined by (4.2) in terms of Q0, and H is a ( M -  1)× M 
projection matrix that accounts for the constraint (5.9), such as IIq = 6q - (QoJ 
QOM)6jM. The term ( 0 " - Q 0 )  can be viewed as the difference between the 
predicted and actual values of Q at the parameter point 0. The matrix C is 
positive semi-definite, and under suitable regularity and identifiability condi- 
tions it is nonsingular with probability approaching one (Cosslett, 1991). The 
term (5.13) then has an obvious interpretation as the penalty function of a 
penalized maximum likelihood estimator. 

Since the constraint 0 *= Q0 does not have to hold exactly, this estimator 
avoids any potential problem of incompatibility between the sample data and 
the aggregate shares. The maximization problem can be simplified by evaluat- 
ing C at an initial consistent estimator of 0 and then holding it fixed; this does 
not affect the asymptotic properties of 0. 

5.5. Generalized method o f  moments  estimators 

Imbens (1992) proposes a generalized method of moments (GMM) estimator, 
using moments that are closely related to the first-order equations of the 
pseudo-maximum likelihood estimator (see also Imbens and Lancaster, 1991). 
An attractive feature is that the moment equations have the same form when Q 
is known as when Q is unknown. 

The moments have the following form for multinomial sampling (which is the 
primary scheme considered by Imbens): 

gqs(H, O, Q)  = H(s) - U(s) / U , (5.16) 

1 N 

gtz,(H, 0, Q) = Q / -  ~E.=I P(~ilz., o ) / f i . ( z , ,  0 ) ,  (5.17) 

1 ~ (. 1 ~p(y,,[z.,O) 
gt3(H, 0, Q) = ~ . : ,  p(y. [z,, ' O) O0 

1 a/L(z., 0)) 
p.(z., o) oo ' (5.18) 

where 

G(z,0) =~ H(~) s=l-OT~p(¢(~)lz,°) (5.19) 
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and Q(s) is expressed in terms of Q /by  (2.7). The parameters are H, 0, and Q, 
with dimensions S - 1, K, and M - 1. Note that there has been a (temporary) 
change of notation: in this system, H(s) is a parameter rather than the observed 
stratum share, and its true value is the sampling probability P(s). Define the 
combined moment vector, of dimension (K + S + M - 2), as ~ = ( ~ ,  ~ ,  ~ ) ' ,  
and the corresponding parameter vector 3' = (H', 0 ', Q') ' .  At the true parame- 
ter values, E[~]  = 0, so these moments can be used in GMM estimation. 

The GMM estimator is obtained by minimizing qt'g2~, with some suitable 
weight matrix g2. When Q is unknown, there are as many parameters as 
moments,  so GMM is the same as solving ~ = 0. The first equation is then 
trivial; the solution of the other moment equations, from (5.17)-(5.18), is the 
same as the maximum pseudo-likelihood (or CML) estimator from (5.7). (The 
presence of additional parameters Qi does not affect the estimators 0 or Q(s).) 

. . . .  1 ,-1 o~/  The asymptotic vanance of 3' is F AF , where F = E [  07] and A=  
E [ ~ ' ] .  

If the aggregate shares are known, then the parameter Q is fixed at Q0. But 
the corresponding moment equation, (5.17), is retained in the GMM system; it 
is similar to (5.13) in that it attempts to equalize the predicted and actual 
values of Q. This clearly improves on the CML estimator, which drops the 
score equation for Q when Q is known. The optimal S2 is any consistent 
estimator of A - 1  one could use CML for preliminary consistent estimates of 
the parameters. Imbens shows that the asymptotic variance of the remaining 
parameters (H, 0) is then (F~I~) -1, where F l is the submatrix of F corre- 
sponding to (H, 0). 

Imbens and Lancaster (1991) derive an asymptotic efficiency bound which is 
achieved by the GMM estimator. It is therefore asymptotically equivalent to 
the maximum pseudo-likelihood estimator and the penalized maximum likeli- 
hood estimator in Sections 5.3-5.4. 

5.6. The logit model 

In the special case where p(y ]z, O) is given by the multinomial logit model 
(2.1) with a full set of intercept terms (or, more generally, any model of 
'multiplicative intercept' form), we have 

cp(i I z, 0 ) 
M : p ( i [ z ,  0 " ) ,  (5.20) 

E cjp(jlz, o) 
j-1 

where 0* differs from 0 only in the intercept terms, o~* = o~ i + Iog(ci/cM) (with 
the normalization a M = 0), for any set of constants c a, . . . ,  c M. The conditional 
likelihood (4.10) has just this form: it is therefore the same as the likelihood 
for random sampling, except for a shift in the intercept terms (Manski and 
McFadden, 1981). The logit model can therefore be estimated as if the sample 
were random; all parameters are consistently estimated, provided that the 
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estimated intercepts are corrected by 

~i = OL i - - I o g { ( H z / Q ~ ) / ( H M / Q M ) } .  (5.21) 

Applying the transformation (5.20) to the pseudo-likelihood (5.8) leads to a 
drastic simplification: it reduces to the conditional likelihood (4.10). The CML 
estimator with known Q is therefore asymptotically efficient for the logit 
model. 

The same applies to variable probability sampling with known ~r and 
unknown Q: the correction term is -log(erJZrM). If 7r is unknown, the 
intercepts obviously cannot be identified. 

If Q is unknown in a standard stratified sample, then not all intercept terms 
are identified unless the 'overlap' condition (3.12) holds. (The other parame- 
ters are still consistently estimated by the maximum likelihood estimator for 
random sampling.) If identified, the correction terms can easily be computed, 
see Cosslett (1981a). 

6. Other sample designs 

In this section, we discuss some miscellaneous topics related to endogenous 
sampling strategies: additional sample information on the aggregate shares Q; 
additional sample information on the density of the exogenous variables h(z); 
estimating a transition rate from simultaneous observations on stocks and 
flows, which can be considered as a special case of endogenous stratification; 
and stratification on both endogenous and exogenous variables, including a 
brief discussion of the case of 'matched' response-based samples. 

6.1. Sample information on aggregate shares 

Knowledge of the aggregate shares Q can often greatly improve the variance of 
estimators from an endogenously stratified sample; as we have seen, it is 
actually necessary for identification in some cases. If the population shares are 
unknown, they can be estimated from a separate random survey which just 
determines each individual's response category (but not the exogenous vari- 
ables z). This strategy was proposed by Lerman and Manski (1975): if the 
additional data can be collected relatively cheaply, for example, by a telephone 
survey, then it may be more cost-effective than an increase in the size of the 
main sample. Lerman and Manski (1975) use the term 'supplementary survey', 
while Cosslett (1981a) refers to the additional data as an 'auxiliary' sample. Let 
N and N O be the sizes of the main and auxiliary samples; the asymptotic limit is 
taken with H 0 = No/N fixed. 

The simplest approach is to estimate Q from the auxiliary sample fre- 
quencies, and to substitute this estimator Q for Q in either the WESML or the 
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CML estimators of Section 4. Hsieh, Manski and McFadden (1985) present the 
asymptotic variances of 0 in these cases, la 

An efficient estimator can be obtained by concentrating the likelihood with 
respect to h, as in Section 5. The resulting log pseudo-likelihood (Cosslett, 
1981a; see also Hsieh, Manski and McFadden, 1985) can be written in the form 

log L(O, Q[ Q) 

u P(Y, I Z,, O) 
= ~ log 

n = l  1 S H ( S )  Oi 
E p(¢(s) I z., o) - l + H 0  = i=~Z' p(°JJi l Zn, O ) 

S M 

- N  ~ H(s)log O(s) + NHo ~ Qi log Qi (6.1) 
s = l  i = 1  

with Q(s) given by (2.7). The parameters are 0 and ( Q 1 ,  • • • , QM-1). Let Q(0) 
be the solution of the first-order conditions 0 log L(O, Q ] Q)/oQ = 0. (If not 
unique, it may be best to pick the solution closest to the consistent initial 
estimator {~.) In general, the matrix 02 log L(O, O(O)[Q)/OQ oO' has both 
positive and negative eigenvalues, so this step cannot be expressed in terms of 
a maximum or minimum. Then 0 is estimated by maximizing the concentrated 
log likelihood log L(0, 0(0)1 0), which gives consistent estimators 0 and 
0 = Q(0). Asymptotic variances are given by Cosslett (1981a) for 0 and by 
Hsieh, Manski and McFadden (1985) for (0, {~); the estimator is asymp- 
totically efficient (Cosslett, 1991). 

Hsieh, Manski and McFadden call this the 'full information concentrated 
likelihood estimator' (FICLE). Note that the pseudo-likelihood in (6.1) is not, 
in fact, the concentrated likelihood (it does not satisfy the 'information matrix' 
equality). It becomes a concentrated likelihood only after solving for Q(0). 

A simpler (but still efficient) estimator is given by Cosslett (1991), based on 
the method described in section 5.4. The objective function, to be maximized 
over O, is 

log L *(O I Q) = log L(O, O I Q) 

-½N({~*  - O ) ' { F - / ~ ' ( C  - 1  + / ~ ) - l P } ( O *  - -  0), 
(6.2) 

where Q* and C are given by (5.14)-(5.15), and 
S 

- ~qis~jsH(s)/[Q (s)] (6.3) 
S = I  

The first term on the right in (6.2) is just the conditional log likelihood (4.10) 

~1 In Hs ieh ,  M a n s k i  and  M c F a d d e n  (1985),  the  space  7/ is d i sc re te  and  the re  a re  m a n y  

obse rva t i ons  for  each  va lue  of  z. The i r  e s t ima to r s  of  a sympto t i c  va r i ances  c a n n o t  eas i ly  be 
t r ans l a t ed  to  the case w h e r e  some  c o m p o n e n t s  of  z are  con t inuous .  For  a n o t h e r  way  of  e s t ima t ing  
f rom this k i n d  of da ta ,  see Sec t ion  7. 
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evaluated at Q = ~). If H 0 is not too small, so that the auxiliary sample is more 
informative about Q than the main sample (see Cosslett, 1991), then the 
second term is negative definite with probability approaching one, and so (6.2) 
can be interpreted as a penalized maximum likelihood estimator. (This is just a 
question of interpretat ion-  the estimator does not depend on the 'penalty' 
being positive.) The efficient estimator of Q is then 

0 = 0 + [ I -  + - 0 ) ,  (6,4) 

with the right-hand side evaluated at 0. 

6.2. Sample information on the distribution of independent variables 

Since the underlying problem with endogenous stratification is the unknown 
density h(z), additional information on h is clearly useful. While it is unrealistic 
to suppose that h is known (except when z is discrete), a random sample of 
observations on z provides an empirical density /~. Cosslett (1981a) refers to 
this as a 'supplementary sample': an example is the public use sample of the 
U.S. census. It must contain all the independent variables of the model 
p(Ylz ,  O). 

A supplementary sample generally allows estimation from sample designs 
where 0 would not otherwise be identified. This applies even to an incomplete 
endogenously stratified sample: for example, a survey of consumers who 
bought some specified product. Normally, we could not estimate a choice 
model unless we also had data on people who did not buy the product. Instead, 
however, we can use census data on the individual-specific explanatory 
variables of the model: we do not need to know whether an individual in the 
census sample actually bought the product or not. In effect, the estimator 
compares the distribution of z for purchasers with the distribution of z in the 
population. 

The additional data on z can be incorporated directly into the likelihood; 
there is no need for, say, a kernel estimate of the density h. The pseudo- 
likelihood is given by Cosslett (1981a) for the case of unknown Q. It is 
essentially the same as the usual pseudo-likelihood (5.7): the supplementary 
sample is treated as one more stratum (say, s = 0), except that P(Yn I Zn, O) is 
replaced by p(J(O) lz  n, 0)-  1 for observations in the supplementary sample. 
The asymptotic variance matrix generally remains nonsingular even if a 
response category is omitted. 

Obviously many other cases are possible, combining different kinds of prior 
information on Q and h: the general principle of replacing h by its NPMLE is 
probably more useful than a list of pseudo-likelihood functions or penalty 
functions. 

The weighted likelihood approach can be applied also to the case of an 
incomplete stratified sample plus a random sample on z (Cardell and Stein- 
berg, 1991). Consider estimation of a discrete choice model from a simple 
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stratified sample (i.e., J ( i )  = ~i) with stratum 1 missing; let stratum 0 be the 
supplementary sample. The original WESML approach, with weights Q/Hi, 
obviously fails because H~ = 0. Cardell and Steinberg propose weighting the 
nonmissing strata by Q~/H~ (with Q 0 = l ) ,  and artificially assigning the 
likelihood p(llzn, O ) to observations in the supplementary sample. The 
expected value of the score is then E0[Z~2 0 log p(1 I z, 0)/00], which can be 
corrected by assigning an additional factor 1/p(llzn, O) to the likelihood of 
every other observation. The weighted log likelihood is then 

1 

.~9(0 ~ ' ° g  p ( l l  z,,  0)"  
logL(0) = ~] -~oologp(llz,,O)+ ~ Oi, p(ilz,,O) 

nE2((0) i=2 

(6.5) 

Cardell and Steinberg give the asymptotic variance for 0 under multinomial 
sampling. While not efficient, this estimator can easily be implemented as a 
WESML estimator (with an appropriate correction of the asymptotic variance): 
duplicate each of the strata 2 , . . . , M ;  then assign weight -Qi/H~ to the 
second copy and change its response variable from i to 1. 

6.3. Estimating a transition rate from data on stocks and flows 

When estimating a transition rate from one state to another (say, from 
unemployment into employment), we may have to work with a special kind of 
endogenously stratified sample, consisting of 'stock and flow' data. The stock 
data would consist of a sample of currently unemployed people, while the flow 
data would consist of a sample of people who had found work during a 
specified time period. Econometric work on this type of sample, covering both 
estimation and sample design, includes Chesher and Lancaster (1983), Lancas- 
ter and Imbens (1991), and other papers cited by those authors. Rather than 
summarize this literature, we give two simple examples to show how stock and 
flow data can fit into the standard scheme for endogenous stratification. (The 
examples are simplified in that they refer to a single time period.) 

Suppose 7r/(z, 0) is the transition rate per unit time from state i to the other 
state ( i=  1,2), let hi(z ) be the density of z in state i, and let Pi be the 
proportion of the population in state i, so that h(z)= Plhl(Z)+ Pzh2(z). 
Usually 7r I and 7r 2 will contain different parameters. 

In the first example, we do not assume stochastic equilibrium, so there is no 
loss in estimating the rates separately. Let stratum 1 consist of a random 
sample of individuals in state 1, during some period g short enough to suppose 
h I does not change. Each observation is a 'snapshot': the data for that 
individual was gathered in a time short enough to ignore the probability of 
transition. Let stratum 2 consist of a random sample of individuals who 
changed from state 1 to state 2 at some time during period ~-. The underlying 
'population' in this case is the population of state 1. Then the likelihoods for 
observations in the two strata (apart from constants) are h~(zn) and 
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% (z n, 0 )h l(zn) / Q~ (0) respectively, where Q~ (0) = .f d/, (z)h l(z) % (z). This has 
exactly the same form as the likelihood in Section 6.2: a 'supplementary' 
random sample on the exogenous variables, plus an endogenously stratified 
sample on stratum 1. 

Now suppose we also assume stochastic equilibrium between the two states. 
In that case the stock data contains more information, because now the 
composition of each state hi(z ) depends on 0. Let the three strata be: (1) a 
random sample drawn from state 1 in period 3 ,  (2) a similar random sample 
from state 2, and (3) a random sample of people who changed state in period 
J- (it does not matter which way they went, because the two transition rates 
are the same in equilibrium). Then 

1 rrz(Z, 0 ) 
hl (Z  , 0)  = p l (0  ) 7TI(Z, 0 )  q- qr2(z , 0 )  h ( z ) ,  

f "W2(Z , 0 ) PI(O) = d/z(z) %(z, O) + rr2(z, O) h(z), (6.6) 

Q I ( 0 )  = J d/~(z) %(z, O)h~(z) 

and similarly for the corresponding quantities in state 2. It follows that the 
likelihood is the same as that of a discrete-choice model, with 'probabilities' 

 2(z, 0) 
p ( l [ z ,  0 ) - -  ,.B.I(Z, 0 )  + "/T2(Z , 0 )  ' 

 l(z, 0) 
p(2 [ z, 0) - %(z, 0) + rr2(z, 0) ' (6.7) 

o O ) 
p(3lz, O) - ,.Wl(Z ' 0 )  + 3T2(z , 0 )  ' 

exogenous density h, and strata based on the three alternatives. (Note that the 
'probabilities' do not sum to 1, so the WESML estimator cannot be used.) 

6.4. Stratification on both endogenous and exogenous variables 

If a sample is stratified on T exogenous strata, then the stratification can be 
ignored when estimating a structural model. But if each of those strata is then 
split into S endogenous strata, we have to work with a total of T × S  
endogenous strata: the exogenous stratification can no longer be ignored. The 
problem is that each exogenous stratum has its own density ht(z ), and in 
general there is no a priori relationship between them. To deal with the 
endogenous stratification, each ht(z ) has to be estimated, so the exogenous 
strata have to be handled separately. Equivalently, the aggregate shares Q(s) 
are different for each t. 

This is closely related to 'matched' stratified sampling. Suppose y is a binary 
variable. Divide the exogenous variables into two subvectors, z I and z 2. Draw 
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a random sample from the stratum with y = 1; then, for each observation n, 
draw one observation from the stratum with y = 0 and z 2 = z2,. For  example, 
the two endogenous strata could be firms that did or did not go out of business 
last year,  while z 2 is a classification based on size. Or y = 1 could be the 
incidence of some disease, while z 2 classifies individuals by age, gender,  and 
ethnic group. The basic rationale for this approach, assuming that z I is the 
variable of interest, seems to be that the investigator does not trust the model 
p(y l z ,  O) to control adequately for z 2. However ,  it makes the analysis more 
complicated. The estimation techniques described above can still be used, but 
Qi is replaced by Qi(z2). 

If z 2 can be considered as a continuous variable, or if it has a very large 
number  of categories, then existing techniques break down. (For  a continuous 
variable, there would have to be a 'near'  rather than exact match.) In a logit 
model,  for example, the correction to the intercept would be log[Ql(z2)/ 
Qz(Ze)], which is generally an unknown function. In practice, one could 
at tempt to parameterize this function (on the grounds that the parametric 
function in the exponent  of the logit model is an approximation anyway). But 
it should be estimated nonparametrically, for example via the method of kernel 
density estimation. No results are currently available on that approach. 

7. Logistic regression 

For discrete choice models, logistic regression (Berkson, 1955) is an alternative 
to maximum likelihood estimation when there are (numerous) repeated 
observations on each choice setting. This happens if the explanatory variables z 
are discrete, or if the values of z have been selected in a controlled 
experiment.  Gourieroux and Montfort  (1989) have extended Berkson's method 
to (standard) endogenously stratified samples. 

Let  z = zj, j E { 1 , . . .  , J} and, as before,  y = i ~ { 1 , . . .  , M}. Let  p(i] j) 
denote  Pr{y = i I z = zj}. The number of observations with z = zj and y = i is 
nji, and the total number with z = zj is nj. The choice probability model can be 
written as 

p(i] j)  
logp(M]j)  -gji(O), i = 1 , . . . ,  M -  1,  (7.1) 

where the gji(O) are parametric functions of 0. The multinomial logit model is 
the special case gq(O)=(zq-zMj)'O, where zq is a subvector of zj that 
characterizes the choice i. However,  since there is no restriction on the 
specification of g (apart from regularity conditions), there is no loss of 
generality in the logistic representation (7.1). Berkson's method is to estimate 
the nonlinear regression equation 

log nji =gji(O) + eji , i = 1 , . . . ,  M -  1 (7.2) 
njM 
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by generalized least squares, using the following consistent estimator of the 
inverse of the error covariance matrix g2: 

( jl,ik = ~jl nj i~ik n j /  " (7.3) 

In this notation, the inverse is defined by Esr -1 S2mirJ2sl,rk = 6jfiik, i.e., each pair 
of indices behaves like the indices of a matrix. This estimator is consistent and 
asymptotically efficient under random sampling (or any kind of exogenous 
stratification). 

Under endogenous stratification, Berkson's estimator is not consistent, but, 
if the population shares Qi are known, the inconsistency is easily remedied by 
changing the dependent variable to 

t t i Q  . 
log nji - log QiHM . 

njM 
(7.4) 

If Q is unknown, the method does not work unless the regression function g 
has an 'intercept' term, i.e., 

gji(O ) = Ol i "t- g ] i ( ~  ) , (7.5) 

where 0 = (a ' , /3 ') '  (as in the multinomial logit model with alternative-specific 
dummy variables). Then, as with the MLE, /3 is consistent. The intercept &i 
has asymptotic bias log(HiQM/QiHM),  and evidently cannot be estimated 
unless Q is known. 

However, (7.3) is no longer correct. The original version of the Berkson 
estimator is not efficient, and the asymptotic variance of 0 is not consistently 
estimated. Gourieroux and Montfort (1989) derive the error covariance matrix 
under endogenous stratification, and propose GLS estimation with the matrix. 
In fact, an explicit expression can be derived for the inverse of the new 
covariance matrix J2*. A consistent estimator of (g~*)-x is 

(7.6) 

where ~)-1 is given by (7.3), and 

- 1  
n0 , ik  = Hi~ik - H i H k ,  

4 , i ,  = 

(~o  1 has dimensions (1 x 1) × (M × M) and 5~ has dimensions (J × 1) × (M × 
M).) 

The asymptotic variance of 0 is plim(N-l(3g' /OO)(g~ *) 1(0g/30 ' ) ) -1 ,  which 
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turns out to be the same as the asymptotic efficiency bound for the case of 
known Q (see Imbens and Lancaster, 1991, and Cosslett, 1991). Note that the 
only place where Q is used is in (7.4), where it is used to weight the cell counts 
nji to correct the sampling bias. 

This must still work if we specialize to random sampling. If Q is known, the 
asymptotic efficiency of the original Berkson estimator can be improved (to the 
bound for known Q) by using (7.4) as the dependent variable. 

8. Regression models with unknown error distribution 

A semiparametric model for p ( y  I z, O) contains an unknown distribution 
function (typically, the distribution of an 'error' term) as well as the finite- 
dimensional parameter vector 0, and so the endogenous stratification problem 
will now involve two unknown distributions. This section and the next discuss 
two important examples: regression models and semiparametric discrete-choice 
models. While most previous work takes the regression function to be linear, 
there is no essential problem in generalizing to nonlinear regression. 12 

Let g(z, 0) = E(y I z, 0) and u =y  - g(z, 0). Suppose g(z, O) is a parametric 
regression function of known form, but u may have an unknown probability 
density function f. Several authors have investigated the problem of con- 
sistently estimating 0 from endogenously stratified samples. Holt, Smith and 
Winter (1980) and Nathan and Holt (1980) discuss the case of a linear model 
where the sampling probability depends on z, a vector of stratifying variables 
correlated with y. Much of that work is about a maximum likelihood estimator, 
based on work by Anderson (1957) and DeMets and Halperin (1977); it 
requires x, y, and z to be jointly normally distributed, which limits its 
usefulness in econometric applications. However, they also investigate the 
probability weighted least squares estimator, which does not depend on 
normality and is discussed next. Improved weighted least squares estimators 
using an iterative method, are presented by Jewell (1985). Hausman and Wise 
(1981) estimate a linear model from a variable probability sample with strata 
defined by intervals of y. They assume normality for the error term u (only) 
and proceed by maximum likelihood: their estimator is the CML method 
applied to the normal linear model. 

8.1. Weighted least squares 

Suppose each observation (y, z) in a variable probability sample is assigned 

12 For conditions under which nonlinear least squares estimation is consistent, see Burguette, 
Gallant and Souza (1982) or Gallant (1987). 
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weight w(i, z), where y E ~i. Then the conditional expectation of wu is 

where 

M 

E[wu I z] = Z ~iw(i, z) 1 f i=1  ~ duuf (u) I[u+g(z 'O)E~i l '  (8.1) 

M M 
( 8 . 2 )  = 

i=1  i=1  

If the weights have the form 

w(i, z) = w*(z) /qri , (8.3) 

then E[wulz ] = 0, so the weighted least squares estimator of 0 is consistent 
(under conventional regularity conditions). The variance of 0wL s can be 
consistently estimated from the residuals fin in the usual way: 

(Nn~=l OgnOgn)-l~ ^2 20gnOgn(Nn~_l ~gnOgn~ -1 
9 ( 0 ) =  w. oo u.w° w. ,,=, 00 00'  00 ' 

(8.4) 

where w n = w(in, Zn) and gn = g(G, 0 ). Any heteroskedasticity or serial correla- 
tion of the errors u can be taken into account at the same time by standard 
techniques. 

A similar result holds for standard stratified sampling, with known population 
shares Q~, i = 1 , . . . ,  M. Because we condition on the observed sample shares 
H,., the weights have the form w(i, z)= w*(z)Qi/H ~. The middle term on the 
right-hand side of (8.4) becomes the sum of the variations of finw n • Og,/O0 in 
each substratum instead of the sum of squares. 

The WLS method cannot be used for a standard stratified sample with 
unknown population shares Q. 

The basic estimator uses the 'probability weights' 1/Tri or Q~/I-I~, which do 
not depend on z, i.e., w*(z)= 1. Consistency of this form of the WLS 
estimator is shown by Nathan and Holt (1980) under fairly weak conditions. 
These weights have been used extensively in least squares estimation from 
stratified samples, whether endogenously or exogenously stratified. In applica- 
tions where the regression coefficients are viewed as descriptive statistics of the 
population, rather than as parameters of a structural model, this is the best 
thing to do. But if the regression model is correctly specified, the use of these 
weights with exogenously stratified samples is a mistake: unweighted least 
squares is, of course, more efficient. 

8.2. Estimation of the error distribution 

More efficient WLS estimation requires initial consistent estimators of 0 and F. 
The basic probability-weighted regression provides the estimator 0. The 
NPMLE of F is complicated, however, and appears to be computationally 
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intractable for large samples: it involves solving a set of nonlinear equations in 
which the number of equations is of the same order as the sample size (see 
Vardi, 1985). Jewell (1985) suggests another estimator of F, based on the 
NPMLE of the joint density of y and z but without taking into account the 
underlying structure p(y,  z) = f (y  -g ( z ,  O))h(z). Let j~ be the resulting margi- 
nal density of ti, where ~i = y -  g(z, 0). It has the form 

N 

~(bl) = E ~(U -- an)12n, ( 8 . 5 )  
n = l  

where ~i, = Y n - g ( z , ,  0). For random sampling, v n = 1/N. For a variable 
probability sample, 

1 ( ~  N_~/] -1 (8.6) 
Pn= ~ I(Yn E°-lJi) ~i i 

i = l  " \ i = 1  3] ' / / /  

This also holds for a standard stratified sample, but with 1/N replaced by 
Qi/I-li; the sum in the denominator then disappears (because it is unity). 

8.3. Improved WLS 

Jewell (1985) proposes WLS estimation with w*(z) = fi(z, 0), defined by (8.2). 
This is intuitively appealing because then g(z, O) is the regression function of 
the weighted dependent variable wy (although, as we shall see next, this is not 
the optimal choice of w*). Of course fi is unknown, but it can be estimated 
consistently by 

M N 

~(z, O) = ~ 7r i ~ vnI[gt . + g(z, 0) E °~i]. (8.7) 
i=1  n = l  

Jewell (1985) iterates this procedure, at each step using the WLS estimate of 0 
from the previous step. An accompanying Monte Carlo study, using a model 
with normal errors and variable probability sampling, finds that (i) this 
estimator is very nearly as efficient as the maximum likelihood estimator of 
Hausman and Wise (1981), and (ii) using the NPMLE of F to construct the 
weights, instead of the simpler estimator given by (8.5)-(8.6), yielded little or 
no improvement in the WLS estimator. 

Under suitable regularity conditions, ~(z, O) converges in probability to 
fi(z,O) uniformly in z and 0. In that case, as in conventional two-step 
generalized least-squares estimation, the asymptotic distribution of 0 would be 
the same as if fi(z, 00) had been used in the weights. In particular, there would 
be no gain in asymptotic efficiency from iteration, nor from a more efficient 
estimator of F. 
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8.4. Instrumental variables 

The first-order conditions for consistent WLS estimation suggest the following 
moment condition for O: 

N ~ 1  
W(zn, O) --I(yn ¢~Yi)(y, -g(zn, 0 ) ) = 0  (8.8) 

n = l  i = l  77"/ 

where W is a k-dimensional vector of instruments and 0 is a preliminary 
consistent estimator of 0. We can then look for the optimal W. In the case of 
variable probability sampling, it is 

where 

1 Og(z, 0 ) 
W(z, O) - ~2(z ' 0) 00 ' (8.9) 

M 1 ¢ 

(T2(Z, 0) ~-i=IZ 7 J du u2f(u)I[u + g(z, 0) E °21/1 . (8.10) 

The asymptotic variance matrix of 0 is the inverse of Eo[(Og/OO)(ag/O0')~-2]. 
The term ~2 is consistently estimated by substituting 0 = 0 and f = )~, as given 
by (8.5)-(8.6). 

Apart from the fact that Og/30 is evaluated at 0 instead of at 0, which makes 
no difference asymptotically, (8.9) corresponds to a WLS estimator with 
w*(z)=l/6"2(z,O). This is the result of Gourieroux (1991) for weighted 
M-estimation from a variable-probability sample. It also shows that the WLS 
estimator with w*(z)=fi(z, 0), discussed in the previous subsection, is not 
optimal. 

An analogous result can be found for standard stratified sampling: the 
optimal choice of W is 

W(z, 0) :   2(z ' 0) + E0  2(Z ' 0) o0 0) 

.(H_Eo[t*(Z,O)t*'(Z,O) ~.2(Z,O) ] ) - ' /~ (z ,  O)},  (8.12) 

where H is the diagonal matrix with elements Hi and I~(Z, O) is an M- 
dimensional vector with components 

i~,(z, O) = f du uf(u)I[u + g(z, O) e oy,], (8.13) 

which can be consistently estimated by substituting 0 and f (with 1/% again 
replaced by Qi/Hi). The asymptotic variance matrix of 0 is now the inverse of 
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F Og Og -2 ] 

+ E0[ ~-~g0/x'8-Z](H- E0[/x/z '8-z])- 'E0[/z Og ff0v~ -2] . 

In this case, the estimator is not a WLS estimator because 
proportional to Og/O0. 

W is not 

8.5. Bias-corrected regression function 

The preceding estimators are based on the strategy used by WESML: re-weight 
inconsistent moment equations. An alternative strategy is suggested by the 
CML estimator: make the moment equations for random sampling consistent 
by subtracting the conditional means. This corresponds to adding the correc- 
tion term fi-1 •i q'fi~Li to the regression function (or fi-1 Zi (Qi/H~)tx~, in the 
case of standard stratified sampling), where fi and t~ are defined by (8.2) and 
(8.13). As yet, there has been no attempt to apply this method. 

8.6. Asymptotic variance bounds 

Asymptotic variance bounds for the linear regression model with i.i.d, errors 
and unknown error distribution are given by Cosslett (1985) (see also Bickel et 
al., 1993). The extension to nonlinear regression is straightforward. The 
bounds apply to standard endogenous stratification with two strata, and are 
given for Q unknown and for Q known. 

These bounds are different from the corresponding lower bounds that apply 
when the error distribution is known (and which are attained by the likelihood- 
based estimators of Section 5), except for the special case of proportional 
sampling (H i = Qi). This means that adaptive estimation is not possible from 
this kind of stratified sample: unlike the case of random sampling (see Bickel, 
1982, and Manski, 1984), lack of knowledge of the error distribution F 
necessarily leads to a less efficient estimator of 0. 

It is intuitively clear that none of the estimators discussed above can achieve 
the efficiency bound: in the case of proportional sampling they are all 
equivalent to ordinary least squares, which is not asymptotically efficient 
except in the special case of normally distributed errors. The most promising 
approach to efficiency is that developed for adaptive estimation by Bickel 
(1982): first, construct a differentiable estimator of the density f by replacing 
the g-functions in (8.5) with differentiable kernels; substitute this f into the 
appropriate log pseudo-likelihood from Section 5; and then estimate 0 by 
carrying out one Newton-Raphson iteration starting from the initial consistent 
estimator 0. 
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9. Semiparametric models of discrete choice 

Econometric models of discrete response, where y --- i G { 1 , . . . ,  M}, are often 
based on an underlying model of optimization over a set of latent random 
variables (see, for example, McFadden, 1984). Let 

Uj=gj(z,O)+ej,  j = l  . . . .  , M ,  

where g is a specified parametric function, 0 is the parameter vector to be 
estimated, z is a vector of exogenous variables, and the random variables e 
have a joint probability density function f (which may depend on additional 
unknown parameters and on z). According to the model, i is the index of the 
largest of these latent variables, i.e., U i = maxj {Uj}. Then 

p(ilz, O)=Pr{U~>U j for all j=  l , . . . , M ,  j # i } ,  

is a parametric function determined by g and f. 
In a semiparametric discrete-choice model, a functional form is specified for 

g but not for f. The only assumption about f is that it satisfies some set of 
regularity conditions. Estimation from endogenously stratified samples is then 
a semiparametric problem involving two unknown density functions: the 
density f of the underlying random variables e, and the density h of the 
independent variables z. A general strategy is to take one of the techniques in 
Section 4 and 5 for eliminating h, and apply it to an existing semiparametric 
estimation method that works for random samples. 

Most of the research on semiparametric discrete-choice models has been 
focussed on binary choice models (M = 2). In that case, 

p ( l [ z , O , F )  = 1 -  F[-g(z, 0)] ,  (9.1) 

where g =g l -g2  is a known parametric function and F is the unknown 
cumulative distribution function of e 1 - e  2. This is a special case of the 
'single-index' model, where F can be a more general transformation of g. 

A number of semiparametric estimators have been proposed for models of 
this kindJ 3 We discuss three estimators, which were developed specifically for 
binary choice: the maximum score estimator (Manski, 1975, 1985), which was 
extended to response-based sampling in Manski (1986); and two likelihood- 
based methods, one using nonparametric maximum likelihood to estimate F 
(Cosslett, 1983), and the other using a kernel density estimation method (Klein 
and Spady, 1993). The general conclusion, at least for binary choice, is that 
semiparametric estimators are affected very little by endogenous stratification. 

13 Other semiparametric estimators that could be used include the index-model estimators of 
Ichimura (1986) and Powell, Stock and Stoker (1989), and the maximum rank correlation 
estimator of Han (1987). 
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9.1. Maximum score estimator 

This is consistent under very weak conditions: F(0) is fixed at some value 
a E (0, 1), but otherwise F can depend quite generally on z. For example, any 
form of heteroskedasticity is allowed. (See Manski, 1985, for some additional, 
more technical, regularity conditions.) The trade-off is a slower rate of 
convergence, N 1/3 instead of N -~/2. We temporarily adopt the conventional 
notation for the maximum score estimator: y =sgn(y*) ,  where y* is an 
underlying latent variable, so the range of y is now {-1 ,  1} instead of {1, 2}. 
The index function is assumed to be linear, g(z, O)= z'O, with normalization 
][0 [1 = 1. The condition on F(O) can then be restated: the a-quantile of y* is 
z'O. 

Under random sampling, maximization of the score function 

S~(O) = ~ [y, - (1 - 2a)l sgn(z '0) ,  (9.2) 
n = l  

with respect to 0 gives a consistent estimator. The usual case is a = 1, so that 
the median of F is zero. 

Now suppose we have a standard stratified sample, with 091 = {1}, ~2 = 
{-1} ,  and known Q. Manski (1986) investigates two methods: (i) a weighting 
scheme analogous to WESML estimation (Section 4.2), and (ii) a modified 
score function based on the distribution of y conditional on z, which is 
analogous to the CML estimator (Section 4.5). In the first estimator, each 
observation in stratum i is assigned the weight factor Qi/Hi, i.e., the ratio of 
the population share to the sample share for that stratum. This gives the 
weighted score function 

1 N 

W~(O)= ~ ~=I ( I ( y n = I ) - ~ + I ( Y n = - I ) ~ 2  ) 

× [Yn - (1 - 2a)] sgn(z '0) .  (9.3) 

As before, 0 is obtained by maximization over 0; the proof of consistency 
follows along the same lines as for random sampling. 

If the two subsamples are combined, and an observation is randomly drawn 
from the pooled sample, then the distribution of y conditional on z is 

H1 ' ['H1 H2 F(-z'O))-1 
Pr{y = 1[ z} = ~ [1 - F(-z 0)l ~-~- 1 [1 - F(-z'O)] + -~2 

/ 

==- 1 - F*(-z'O). (9.4) 

In effect, this is a new binary choice model with F replaced by F*. From (9.4), 
F*(0) = y, where 

Q I (  Q1 Q2"~ -1 
y = a ~  a -~l + (1-  a ) --~2 ] , (9.5) 
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which does not depend on z. This suggests another estimator: maximize Sr(O) 
over 0. However, as pointed out by Manski (1986), the functions W(O) and 
Sr(O) differ only by a constant factor. Thus the analogues of the WESML and 
CML methods turn out to be the same when applied to Manski's score. 

If Q is unknown, then 0 cannot be estimated without further assumptions. 
Suppose that (i) the distribution F is independent of z, and (ii) the regression 
function contains a constant term, i.e., z '0=/30+ ~'/3. The model is then 
invariant under the following transformation: increase the constant term by c 
and replace F by P where F(e) = F(e + c). The new a is then & = F(c). This 
shows that, under the additional assumptions, the maximum score estimator 
with misspecified a is still consistent for the slope parameters/3 (but not, of 
course, for the constant term/30). The same argument holds when the sample is 
response-based: maximization of Sv(O) with misspecified y is still consistent for 
/3, and therefore we do not need to know Q. The actual choice of 7 to be used 
in estimation is arbitrary; Manski suggests 3' = H i .  

Under the independence assumption, knowledge of Q does not help in 
estimating the slope parameters, but it allows consistent estimation of the 
intercept term. Note, however, that once independence has been assumed, 
only a little strengthening of the regularity conditions on F (including 
differentiability of its density f )  would permit estimators with a better rate of 
convergence. 

9.2. Semiparametric maximum likelihood estimation 

For likelihood-based estimation methods, we must assume that the distribution 
F is independent of z. We also need conditions to ensure that F and g are 
separately identified: the usual convention is to let F be unrestricted, but to 
restrict the parameters 0 so that there is no monotonic transformation that 
leaves the functional form g invariant (see, for example, Cosslett, 1983). If g is 
linear, this means normalizing the constant term and a scale parameter. This is 
different from the parametric case, where the convention is to standardize F. 

The log likelihood for the binary choice model under random sampling is 

N 

log L(O, F) = ~ {I(y, = 1) log[1 - F(-g,)]  + I(y, = 2) log F(-gn) } , 
n = l  

(9.6) 

where gn ~g(zn, O). For fixed 0, let F(vlO ) be a consistent estimator of 
1 - P r { y  = 11 -g(z ,O)=v}.  Maximizing log L(0, F(. 10)) over 0 then gives 
estimators 0 and P = F(. I 0). If P(. 10) converges fast enough (see Severini 
and Wong, 1987), and if suitable regularity conditions hold, then 0 and P are 
consistent semiparametric estimators. (The consistency of P is pointwise.) 

Endogenous stratification just requires duplication of the first step, in 
principle: first h (the density of z) is estimated by a nonparametri c method and 
eliminated from the objective function; then the Same: is done for F. 
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Consider a weighted probability sample with ~ = {i} and sampling weights 
7ri (i = 1, 2). The NPMLE of h is the same for any likelihood-based estimator, 
F known or not, so the concentrated log likelihood is still given by (5.1) as 

N 

log Lo(O, V) = ~] {I(y, = 1) log[1 - F*(-gn) ] 
n=l  

+ I(y, = 2) log F*(-g,)} ,  (9.7) 

where 

F*(v) = ~r2F(v)(~q[1 - F(v)] + ~r2F(v)) -1 . (9.8) 

This implies that F* is a distribution function, provided that the sampling 
weights ¢r are strictly positive, but, as long as F is unknown, imposes no 
further restrictions. Evidently (9.6) and (9.7) are indistinguishable: one 
unknown distribution function (F) has been replaced by another (F*). 
Consequently, under our convention for the normalization of g, a likelihood- 
based semiparametric estimator that works for random sampling can be used 
without modification when the sample is choice-based. 

For standard stratified sampling on strata {1} and {2}, the result (9.7)-(9.8) 
still holds, with ¢ri replaced by Hi/Q i. In this case, however, the NPMLE of h 
has to satisfy Q(s)= J 'd/x(z)h(z)p(j(s)[z,  O) (if Q is unknown) or Oi = 
f d/x(z)h(z)p(~[z,  O) (if Q is known), which imposes a restriction on F*: 

1 ~ [1 - F*(-gn)  ] = H 1 
N " n=l  

(9.9) 

Although a consistent estimator of F* satisfies (9.9) in the probability limit, the 
restriction may not hold exactly, in which case F* has to be adjusted. 

Knowledge of the sampling weights 7r (in variable probability sampling) or 
the population shares Q (in standard stratified sampling) has no effect on 
estimation of 0. If 7r (or Q) is unknown, it cannot be estimated, which is not 
surprising because there is a simple parametric example (the logit model with 
an intercept term) in which ~- (or Q) is not identified. If ~- is known, a 
consistent estimator of F can be recovered by inverting (9.8), 

F ( v )  : 7 r ; l l~*(v) ( , /711[1  - / ~ * ( v ) ]  + T ' ; I I ~ * ( G ) )  -1 . (9.10) 

A similar equation, with ~ replaced by Hi/Qi, holds for standard stratified 
sampling with knownQ.  Although the parameter estimate 0 is unchanged, we 
recall that our normalization converted a location parameter of g (the intercept 
term, if there was one) into a corresponding location statistic of F (for 
example, the median); evidently this can be estimated from (9.10), but only if 
¢r or Q is known. 

One method of estimating the unknown distribution function F from a 
random sample is NPML. A description of the algorithm, together with 
additional references, is given by Cosslett (1983). The resulting estimator 
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F(" I 0) is a step function. The discussion above shows that the estimator is still 
consistent when applied to choice-based samples. Condition (9.9), which 
should hold in standard stratified sampling, is not exact in finite samples when 
F* is estimated by NPML; if the adjustment is small, however, a correction 
term 6 • F*(1 - ,~*) can be added to the unrestricted NPMLE of F*, where 6 is 
a constant that makes the adjusted estimate satisfy (9.9). 

Although the maximum likelihood principle is attractive, the asymptotic 
properties of the semiparametric maximum likelihood estimator are difficult to 
analyze. Because of this, alternative estimators of F have been proposed, 
which are 'smoother'  than the NPMLE. 

9.3. Klein-Spady estimator 

This is also based on the log likelihood (9.6), but uses a different estimator 
F(. [0), based on the kernel method of density estimation. Let p(.,  .) be the 
joint density of y and -g(z,  0). For random sampling, 

p ( 1 , o )  
1-F(v)=Pr(y = 11 - g ( z , O ) = V ) - p ( 1 ,  v ) + p ( 2 ,  v ) . (9.11) 

The density p(i, v) is estimated from the subsample with y = i: 

1 ~ b_~ K(V - vn~ /3( i 'v )=-N,=lI (y"=i)  k bN ,]' (9.12) 

where v n = - g ( z  n, 0). (See Klein and Spady, 1993, for regularity conditions 
and for the rate of convergence of the bandwidth bu. ) The symmetric kernel K 
satisfies J" du K(u) = 1, ~ du uiK(u) = 0, i = 1, 2, 3 and ~ du u4K(u) < ~. A 
nonpositive kernel of this type allows the bias of /3 to converge at the rate 
O(bN4), which is fast enough for asymptotic normality and efficiency of 0, but 
it introduces complications in the need to suppress any negative density 
estimates: a lower bound c u > 0 has to be imposed on (9.11). 

As noted by Klein and Spady (1993), this approach can be extended to 
multiple-choice models. The index function g and the kernel K are then 
( M -  1)-dimensional (see also Lee, 1989). 

What we just found for likelihood-based semiparametric estimation must 
apply here too: the estimator can be applied to binary choice-based samples 
without modification. It may be useful, however, to see how it works in a more 
general setting. For a general discrete-choice model and a variable probability 
sample witfi Ni = {i}, the concentrated likelihood (with respect to h) is (5.2). 
That is the same as the likelihood for y conditional on g(z, 0). We can use 
(9.12) (with the dimension of the kernel increased to M - 1, if necessary) to 
estimate the joint density of y and g(z, O) in the sample: 

Hi 
/3(i, v,,)-->-07 i p ( i  l z ~, O ) h * ( v . )  , (9.13) 
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where h* is the marginal density of -g(z, 0). (Lower bounds on the estimated 
densities are not shown explicitly.) The concentrated likelihood for observation 
n, which is the density of Yn conditional on g(z n, 0), can therefore be estimated 
by 1~(i~, On)/EiP(i, On). Viewed in this way, the Klein-Spady estimator is 
intrinsically choice-based; it works also for random sampling because a random 
sample can be split into choice-based subsamples. 

For standard choice-based sampling, there are also constraints of the form 
(9.9). These can be handled as they were for parametric choice probabilities: 
assign weights ~(s) to the strata, and maximize 

N ~(Sn)p(in' Vn) (9.14) 
L(O, ~) = ~ log s M 

n-~ E ~(s) E rlisP(i, v,) 
s=l  i=l 

over 0 and ~, subject to some normalization of ~ (for example, ~(1) = 1). In 
terms of the parameters Q in (5.7), the new stratum weights are ~(s) = Qo(s)/ 
Q(s). Under conditions sufficient for consistency of the Klein-Spady estimator 
of 0, it follows that plim ~:(s) = 1. This suggests eliminating ~ by the method of 
Section 5.4. 

9.4. Asymptotic variance bounds 

An asymptotic variance bound for the semiparametric binary choice model 
under standard endogenous stratification is given by Cosslett (1985) (see also 
Bickel et al., 1993). If 0 is a regular consistent estimator of 0, then a lower 
bound on its asymptotic variance is the inverse of the matrix 

I* H1H2f [f(v)] 2 l o g  
= Q~Q2 dvh*(v) F(v)F(-~-F(v)]  var - ~  -g(z ,O) = v ] ,  

(9.15) 

where P is defined by 

H~ H 2 
F(u) = ~ [1 - F(u)] + ~ F(u). (9.16) 

The bound is the same whether Q is known or not, so knowledge of Q 
contains no information about 0 (assuming that the bound is attainable). The 
bound also has the same form for variable probability sampling, with Hi/Q i 
replaced by 7r i. At present, the only estimator known to attain the bound is the 
Klein-Spady estimator for random sampling. 
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Semiparametric and Nonparametric Estimation of 
Quantal Response Models 

J o e l  L .  H o r o w i t z *  

1. Introduction 

Many problems in economics and related disciplines involve modeling the 
relation between a set of explanatory variables and a qualitative dependent 
variable. Examples include modeling a commuter's choice of travel mode (e.g., 
automobile, transit, bicycle), a migrant's choice of destination, and an in- 
dividual's employment status (employed or unemployed). The objectives of 
Such 'quantal response' modeling may include: 

(1) Testing whether a particular variable influences the dependent variable. 
For example, does the cost of parking influence mode choice? Does the level of 
an individual's education influence the likelihood of being unemployed? 

(2) Estimating important behavioral parameters, such as the value of time in 
mode choice or the reservation wage in a model of an individual's employment 
status. 

(3) Predicting the effects of changes in the values of one or more explanat- 
ory variables. For example, what is the change in transit ridership that would 
result from a $0.25 increase in the fare? 

In the best-known method for developing an empirical quantal response 
model, the probability of each state of the dependent variable conditional on 
the explanatory variables is specified a priori up to a finite set of parameters. 
This specification is called a 'parametric model'. The numerical values of the 
parameters are estimated by fitting the model to data, usually by using the 
method of maximum likelihood. Often, a parametric model is based on 
principles of economic theory, such as utility maximization, in which case some 
or all of the estimated parameters may have important behavioral interpreta- 
tions that are of interest in their own right. 

An important drawback of parametric modeling is that economic theory 
provides only partial guidance on how a parametric model should be specified. 
Consequently, there can be no assurance that the chosen Specification is 

* Preparation of this paper was supported in part by NSF grant no. SES-8922460. 
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correct, even in the unlikely event that the theory on which it is based is 
beyond question. Misspecification of the model causes maximum likelihood 
estimators of behavioral parameters to be inconsistent, and predictions ob- 
tained from a misspecified model can be highly erroneous. This has motivated 
the development of methods that enable one to estimate the behavioral 
parameters of a quantal response model and the probability distribution of the 
dependent variable conditional on the explanatory variables without having to 
make a full parametric specifcation of the model. Such methods are called 
'semiparametric' or 'nonparametric', depending on the extent to which they 
relax the assumptions of parametric models. 

This paper presents some of the results of recent research on semi- and 
nonparametric estimation of quantal response models. The paper does not 
provide a complete treatment of the subject, which is not possible in the 
available space. It concentrates on methods for binary response models-  that 
is, models in which the dependent variable has only two states, such as 
employed or unemployed. Semi- and nonparametric methods for binary 
response models are more highly developed than are such methods for models 
with multiple responses, and to date binary response is the only setting in 
which semi- or nonparametric methods have been applied. Even within the 
area of binary response, the presentation here is selective, reflecting my own 
judgments and experience regarding the topics and methods that are most 
likely to be useful in applications. 

Section 2 reviews parametric models, identifies the assumptions of these 
models that semi- and nonparametric methods relax, and explains the distinc- 
tion between semiparametric and nonparametric methods. Section 3 discusses 
the consequences of adopting a misspecified parametric model. This is an 
important topic because semi- and nonparametric methods are not needed if 
the errors resulting from use of a misspecified parametric model are small. 
Section 4 discusses the problem of identifying behavioral parameters when 
parametric assumptions are relaxed. Section 5 deals with rates of convergence 
and asymptotic efficiency in semiparametric models. Section 6 presents meth- 
ods for semi- and nonparametric estimation of binary response models. Section 
7 discusses estimation from choice-based samples. The few applications of 
semiparametric estimators for binary response models that have been carried 
out to date are reviewed in Section 8. Models for multinomial responses are 
discussed briefly in Section 9. 

2. Parametric models 

The general binary response model has the form 

j~l if g ( X )  - U >~ O y =  
[0 otherwise, 

(2.1) 
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where Y is the dependent variable, X is a K x 1 vector of explanatory 
variables, U is an unobserved scalar random variable, and g is a real-valued 
function. In most applications it is assumed that g(x) =/3'x, where/3 is a K X 1 
vector of parameters whose values must be estimated from observations of 
(Y, X). This assumption will be made here except as otherwise noted. Thus, 

y = { 1 0  i f / 3 ' X - U > ~ 0 ,  (2.2) 
otherwise. 

Let F(ulx , O) denote the cumulative distribution function of U conditional 
on the event X = x, where 0 is a vector of parameters on which the distribution 
of U depends. It follows from (2.2) that 

P(Y = l lx,/3, 0) = f ( /3 'x lx ,  0) .  (2.3) 

Once the specification of F is given, (2.3) constitutes a parametric binary 
response model. In many applications, it is assumed that F is either the 
cumulative normal or cumulative logistic distribution function. Equation (2.3) 
is the binary probit model if F is the cumulative normal distribution function 
and the binary logit model if F is the cumulative logistic distribution function. 

Let {I1, Xi: i = 1 , . . . ,  n} denote a random sample of size n on (Y, X). T h e  
log-likelihood of the model (2.3) is 

log L(/3, 0) = ~ {Yi log F(/3'X, lXi, O) 
i = 1  

+ (1 - Y~)log[1 - F(/3'X, IX~, 0)]}.  (2.4) 

Let /3, and 0 n denote the maximum likelihood estimators of/3 and 0. Def ine  
÷, = (/3", 0"). Subject to regularity conditions, en converges almost surely to a 
limit ~-* =- (/3", 0"),  and nl/2('~ n - ~-*) is asymptotically normally distributed 
(see, e.g., White, 1982). Moreover, if (2.3) is a correctly specified model, 
1-F(/3* 'x  Ix, 0") is the true conditional probability that Y =  1. Amemiya 
(1985), Maddala (1983), and McFadden (1974) provide detailed discussions of 
maximum likelihood estimation of parametric quantal response models. 

It can be seen from (2.1)-(2.3) that a parametric binary response model 
entails a priori specification of g and the distribution of U conditional on X up 
to finite-dimensional parameters/3 and 0. In general, incorrect specification of 
either g or the distribution of U causes maximum likelihood parameter 
estimators to be inconsistent for any behavioral parameters of the data 
generation process, and it causes predictions to be erroneous. Exceptions can 
occur in special cases (Ruud 1983). Semi- and nonparametric methods avoid 
the need for specifying parametric forms for either or both of g and the 
conditional distribution of U, thereby reducing (though not eliminating) the 
possibility of specification error. Most semiparametric methods use a paramet- 
ric specification for g but not for the conditional distribution of U. Such models 
contain an unknown finite-dimensional parameter/3 that is associated with g 
and an unknown function (or infinite-dimensional parameter), which is the 
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conditional distribution of U. Some semiparametric models specify the-dis- 
tribution of U parametrically but not the function g (Matzkin 1991, 1990). In 
these models, there is an unknown finite-dimensional parameter associated 
with the distribution of U and an unknown function g. Nonparametric methods 
avoid parametric assumptions about either g or the distribution of U. Thus, 
nonparametric models contain only unknown functions. 

3. Effects of misspecifying the distribution of U 

Semiparametric methods that eliminate the need for parametrically specifying 
the distribution of U conditional on X are better developed and more ready for 
use in applications than are other semi- and nonparametric estimation methods 
for binary response models. Their usefulness depends on the severity of the 
errors that result from misspecifying the conditional distribution of U. If the 
errors are small, there is little to be gained from the use of methods that avoid 
the need for specifying the distribution parametrically. This section presents 
the results of a numerical investigation of some of the consequences of 
misspecifying the distribution of U. Related results are given by Arabmazar 
and Schmidt (1982), Domencich and McFadden (1975), Horowitz (1992), and 
Manski and Thompson (1986). 

Suppose that in estimating a binary response model, the distribution of Y 
conditional on X is assumed to be given by a binary logit model: 

P(Y= 1 Ix,/3) = 1/[1 + exp(-/3 'x)] .  (3.1) 

According to this model, which is widely used in applications, g(x) =/3'x,  and 
U is logistically distributed independently of X. Let Q(x) denote the true 
probability that Y = 1 conditional on X = x. Model (3.1) is misspecified if there 
is no /3 such that Q(x) = P(Y = 1 Ix,/3) for all x except, possibly, a set of x 
values whose probability is zero. 

Let /3"  denote the almost sure limit of the maximum likelihood estimator of 
/3 in (3.1). One way to characterize the consequences of estimating a 
misspecified model is to compare /3* with the true value of /3 and P(Y = 
l lx , /3")  with Q(x). The almost sure limit of the maximum likelihood estimator 
of/3 can be obtained by observing that as a consequence of (2.4) 

/3* = arg max Ex{Q(X ) log P(Y = 1 IX,/3) 
/3~B 

+ [1 - Q(X)] log[1 - P(V = 1 IX, /3]},  (3.2) 

where B is the parameter set containing /3 and E x denotes the expectation 
relative to the distribution of X. Therefore, the asymptotic errors in parameter 
estimates and predicted probabilities that Y = 1 can be investigated by solving 
(3.2) for various specifications of Q and using the result to compute P(Y = 
1Ix,/3"). 

I have computed/3" for a variety of specifications of Q with K = 2. The two 
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components of X, X 1 and X2, are independent. X 1 is distributed as N(0, 1), X 2 
is distributed as X 2 with 1 degree of freedom, and (/31,/32) -=/3; = (1, 1). Q is 
obtained from (2.3) with/3 =/30 and each of the following distributions of U: 

(1) Logistic independent of X. 
(2) Standard normal independent of X. 
(3) Student-t with 3 degrees of freedom independent of X. 
(4) Uniform on [ -1 ,  1] independent of X. 
(5) Laplace independent of X. 
(6) A 50-50 mixture of the normal distributions N(3, 1) and N ( - 3 ,  1) 

independent of X. 
(7) U =- h(X)V, where V has the logistic distribution independent of X and 

h(X) = 1 + I/3 1. 
(8) U = h(X)V, where V has the logistic distribution independent of X and 

h(g) = 0.2511 --~ 2 ( / 3 ~ r )  2 -q- (/3~.~r)4]. 
(9) Normal distribution with mean 0 and variance 1 + 0.2(XZ~ + X2). 

The parametric model (3.1) is correctly specified in case (1) and misspecified in 
all of the other cases. In cases (2)-(5),  the distribution of U is unimodal and 
independent of X. In case (6), the distribution of U is bimodal. In cases 
(7)-(9) ,  U is heteroskedastic. In case (8), Q(X) is a nonmonotonic function of 
/3~t'. It has a global minimum a t / 3 ~ ( =  -1/X/-3, a global maximum a t / 3 ~ ( =  
1/V~, and converges to 0.5 as /3~X--->__+~. In case (9), Q is a random- 
coefficients probit model. 

Table 1 shows/3~//3~, ExIP(Y = I IX,/3*) - O(X)l and maxxlP(Y = l lx,/3*) 
- Q(x)l for each of the 9 cases. For a correctly specified model,/32//31 = 1, and 
ExIP(Y = l I x , /3*)  - Q(x)[ = maxxlP(Y = 1Ix,/3*) - Q(x)l = o./3~//3~ is used 
as a measure of the asymptotic bias (or inconsistency) of the parameter 
estimator, rather than/3~ and/3~ individually, because (2.2) continues to hold 
i f / 3 ' X -  U is multiplied by any positive constant. Therefore, /3 is identified 
only up to an arbitrary scale, and only the ratio /3~//3~ has be- 
havioral significance. ExlP(Y = 1 IX,/3*) - o(g)[ and maxx]P(Y = 1 Ix,/3*) 

Table 1 
Asymptotic results of estimating a misspecified binary logit model 

Case I Distr. of U [3"113" ExIQ(X ) max~lQ(x) 
- P(Y= 1IX,/3")1 - P(Y= 1 IX,/3*) I 

(1) Logistic 1.00 0.0 0.0 
(2) Normal 1.00 0.01 0.02 
(3) Student t(3) 0.97 0.01 0.04 
(4) Uniform 1.01 0.03 0.07 
(5) Laplace 0.98 0.01 0.04 
(6) Bimodal 0.87 0.05 0.20 
(7) Hetero. logistic 0.75 0.04 0.14 
(8) Hetero. logistic 0.45 0.11 0.37 
(9) Hetero. normal 0.91 0.02 0.15 

The complete definitions of the cases are given in the text. 
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Fig. 1. Models with various distributions of U. 

- Q(x)l characterize the errors caused by using a misspecified model to predict 
the probability that Y = 1 conditional on X. 

The message of Table 1 is clear. The errors caused by incorrectly assuming 
that  U is logistically distributed independent of X are small when the true 
distribution of U is both unimodal and independent of X. The errors are 
relatively large when U has a bimodal distribution or the distribution of U is 
heteroskedastic. Similar results have been reported by Horowitz (1992) and 
Manski and Thompson (1986). 

To understand these results, consider cases (1)-(8),  where Q(x) depends 
only on/3~x. When the distribution of U is unimodal, a graph of Q(x) against 
/3~x yields an ogival curve whose shape is not much affected by details of the 
distribution of U. In contrast, bimodality of the distribution of U and 
heteroskedasticity cause substantial departures from an ogival shape. These 
statements are illustrated in Figure 1, which shows graphs of Q(x) for cases 
(1)-(6)  and (8). To facilitate comparison of the various models, the unimodal 
distributions of U have been scaled to have variances equal to that of the 
logistic distribution. The functions Q(x) arising from unimodal distributions of 
U are all similar in shape, so these functions all yield similar estimation results. 
Large estimation errors arise only under bimodality and heteroskedasticity, 
which cause large deviations from the ogival shape associated with the binary 
logit model. 

4. Identification 

Weakening the assumptions of parametric modeling has the effect of reducing 
the amount of information that is available for estimating /3 or g and the 
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distribution of U conditional on X. It is possible to weaken the assumptions so 
much that g and the conditional distribution of U are not identified. That is, 
they cannot be recovered, regardless of the size of the data set. Clearly, there 
is no point in trying to estimate/3, g, or the distribution of U if this happens. 
To illustrate, let I(.) = 1 if the event in parentheses occurs and 0 otherwise, and 
let F(. Ix) denote the cumulative distribution of U conditional on the event 
X = x. Consider the following two models: 

Y = 1( /3 'X  - U >i 0 ) ,  (4.1a) 

F ( .  ix) = + I/3'xl)] (4.1b) 

and 

r = I [ / 3 ' x / ( 1  + 113'xl) - v / >  0 l ,  (4.2a) 

F(u Ix) = @(u), (4.2b) 

where q~ denotes the cumulative normal distribution function. It is easy to see 
that although these models have different functions g and different conditional 
distributions of U, they are observationally equivalent; that is, they both yield 
the same expression for P(Y = l [x)  and, therefore, the same data generation 
process. Consequently, it is not possible to identify g and F(.Ix ) or to 
discriminate empirically between models (4.1) and (4.2) without a priori 
information that rules one of the models out. A parametric specification is one 
form of a priori information that can identify g and F(-Ix). For example, if 
(4.1) is assumed to be correct, (4.2) is ruled out except in the trivial case that 
/3 = 0. This section discusses conditions for identification under assumptions 
that are weaker than those made by parametric models. 

Let F x denote the probability distribution of X. Assume that the data 
generation process consists of independent random sampling from the joint 
distribution of ( Y , X ) .  In general, this data generation process identifies 
P(Y = l [x )  for each x in the support of X except, possibly, for a set whose 
probability according to F x is 0. That is, P (Y= l [x)  is identified almost 
everywhere (Fx).  For example, P(Y= 1 Ix) can be estimated consistently 
almost everywhere (Fx)  by nonparametric regression (Stone, 1977). The 
problem of identification, therefore, consists of finding conditions under which 
P(Y = 1 Ix) uniquely determines 13 or g and the conditional distribution of U. 

Before turning to conditions under which identification is possible, it is worth 
asking why identification matters. That is, if P(Y = l Ix) is known, why is it 
important to know 13 or g and F(. [x)? There are several answers to this 
question. First, 13 and/or  g may contain important behavioral information. 
This happens, for example, if Y is determined by utility maximization. Second, 
knowledge of 13 or g and F(. [x) can make it possible to predict Y at x values 
that are not in the support of X. See Manski (1988) for further discussion of 
this point. Finally, the information required for identification, possibly com- 
bined with other information, often can be used to improve estimation 
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efficiency. In particular, the 'curse of dimensionality' associated with non- 
parametric estimation of P(Y = 1 t x) (Stone, 1980) often can be avoided. 

4.1. Identification with g(x)= jS'x and an unknown distribution of U 

Consider, first, the problem of identifying /3 and, possibly, F(. I x) in the 
semiparametric model (2.2). According to this model 

P(Y = 11 x) = F(/3 'x Ix).  (4.3) 

To define identification of/3 and F(. I x) formally, let g tx  denote the set of all 
conditional probability distributions F(u I x) where u is on the real line and x is 
in the domain of X. Let R K denote ~-dimensional Euclidean space, and let 
denote a subset of N* x g tx  that is known to contain (/3, Fvlx), where 
Fvlx = F(. IX = .). The following definition formalizes the idea that /3 and 

F(. Ix) are identified if they are uniquely determined by P(Y = l I x). 

DEFINITION 4.1. (/3, Fvlx) is identified if for each (b, Gvlx)EU,  such that 

(b, Gulx) ~ (/3, Fvlx) , 

Fx{x: G(b'x Ix) ~ P(Y = 1 Ix)} > o ,  (4.4) 

where Fx{. } denotes the probability of the set {-} under F x. 

There are circumstances in which it is useful to consider whether /3 is 
identified independently of the identifiability of F(. ]x). The following defini- 
tion accommodates this case. 

DEFINITION 4.2. Let B denote the parameter set that contains/3./3 is identified 
if (4.4) holds for every G E g tx  and each b E B such that b ¢/3. 

Equation (2.2) continues to hold if/3 is divided by any real c > 0 and U is 
replaced by a random variable that is distributed as U/c. Therefore, /3 can be 
identified only up to scale, and it is necessary to impose a scale normalization 
to proceed further. It will be assumed here that the components of X are 
ordered so that/31 ¢ 0. Scale normalization will be achieved by setting 1/311 = 1. 
An alternative normalization is 11/311 = 1. This normalization may seem more 
general than 1/311 = 1 since it does not assume a priori knowledge of a nonzero 
component of/3. However, as will be seen below, other assumptions needed 
for identification require a priori knowledge of a nonzero component of/3, so it 
is only a matter of convenience which normalization is adopted. 

Mean independence. In the linear regression model Y = / 3 ' X +  U, /3 is 
identified if E(U Ix )=  0 almost surely and the support of X is not a proper 
linear subspace of R ~. However, this condition is not sufficient to identify/3 in 
the binary response model (Manski, 1988). To demonstrate this, suppose that 
P (Y= 1 Ix )=  1/[1 + exp(-/3'x)]. Let b ¢/3 be any other parameter value that 
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satisfies the scale normalization. Given any x in the support of X, it is possible 
to construct a random variable V x with cumulative distribution function Fvl x 
such that E(Vx]x  ) = 0 and 

Fvlx(b'x ) = 1/[1 + exp( - /3 'x ) ] .  (4.5) 

Therefore ,  /3 is not identified according to definition (4.2). To see how the 
construction proceeds, let x be given and consider the random variable W 
whose cumulative distribution function conditional on X = x is 

Fw(w Ix) = 1/(1 + e x p [ -  w + (b - /3 ) 'x ]}  . (4.6) 

Then Fw(b'x Ix) = P(Y = 1 Ix) and E(W Ix) = (b - / 3 ) ' x  - 6 x. If 6 x > 0, form 
Fvl x from the distribution of W by taking part of the probability mass of W 
that is to the left of b 'x and moving it enough further to the left to make the 
resulting distribution have mean zero conditional on X = x. Conversely, if 
~x < 0, form Fvl x by moving probability mass rightward from the part of the 
distribution of W that is to the right of b'x. Since no probability mass crosses 
the point W =  b'x in these movements,  the resulting distribution satisfies (4.5) 
with E ( V I x  ) = 0. Therefore ,  /3 is not identified. 

I now present several sets of conditions under which identification of/3 and, 
in some cases F(-Ix) ,  is possible. 

(a) U and X are independent. Suppose that U and X are independent,  and 
let F(.) denote the cumulative distribution function of U. Cosslett (1983) and 
Manski (1988) have shown that/3 and F(.) are identified under the conditions 
given in Proposition 4.3. 

PROPOSITION 4.3. Let U and X be independent and let F(.) denote the cumulative 
distribution function of  U. /3 and F are identified if: 

(i) X does not include a constant (intercept) term. 
(ii) The support of  the distribution of  X is not contained in any proper linear 

subspace of  RK. 
(iii) For almost every X = (X  z . . . .  , XK)', the distribution of X 1 conditional 

on 3( has everywhere positive density with respect to Lebesgue measure. (Recall 
that [/311 = 1 by scale normalization.) 

Condition (i) is a location normalization. It is needed because there is no 
assumption that centers the distribution of U (e.g., E(U)  = 0). Therefore ,  the 
coefficient of an intercept term is not identified and must be set by normaliza- 
tion. The normalization used here sets the coefficient of the intercept term 

e q u a l  to 0. Condition (ii) rules out multicollinearity, which is a well-known 
source of nonidentification. Condition (iii) is needed because/3 and F(.) may 
not be identified if the support of X is too small. For  example, suppose that F 
and G are two distribution functions such that for some c > 0 F(u) = G(u) if 
lul c but not if lul > c Then F(.) is not identified if the support o f / 3 ' X  is 
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completely contained in I - c ,  c]. An example of nonidentification of /3  when 
the support of X is too small is discussed below in connection with single-index 
models. 

The assumption that U and X are independent is highly restrictive since it 
excludes the possibility of heteroskedasticity of U. The next two sets of 
conditions permit U to be heteroskedastic. 

(b) Single-index models. In a single-index model, P(Y = l [x )  depends on x 
only through an 'index' function h(x,/3) that is known up to a finite-dimension- 
al parameter /3. Thus, P ( Y = l [ x ) = G [ h ( x , / 3 ) ]  for some function G (not 
necessarily a distribution function). In this discussion, it is assumed that 
h(x,/3) =/3'x, so P ( Y =  1 Ix) = G(/3'x). 

Identification of/3 in single-index models has been investigated by Ichimura 
(1987), Klein and Spady (1993) and Manski (1988). Ichimura (1987) provides 
the most general set of identification conditions. Note that in a single index 
model the sign of/3 is not identified because P(Y = 1 Ix) = G(/3'x) for some G 
implies P ( Y = I I x ) = G * ( - / 3 ' x ) ,  where for any real ~, G * ( ~ ) = G ( - ~ ) .  A 
slightly modified form of the identification conditions of Ichimura (1987) is as 
follows. 

PROPOSITION 4.4. Suppose that P(Y = 1 [x) = G(/3'x) for some G. /3 is identified 
up to sign i f  

(i) X does not include a constant (intercept) term. 
(ii) The support of  the distribution of  X is not contained in any proper linear 

subspace of  ~K. 
(iii) For almost every ) (  = ( X 2 , . . .  , X ) ' ,  the distribution of X a conditional 

on X is absolutely continuous with respect to Lebesgue measure. As  before, 
[/311 = 1 by scale normalization. 

(iv) I f  there is a discrete component of  X ,  say X i, for each b E B and each t 
in the support of  b 'X,  there are at least two distinct elements in the support of  X i 
such that b'x = t. 

(v) G is differentiable. 
(vi) Let I~b be the probability distribution of  b'X. For each b E B and all c 1 

and c 2 satisfying clc 2 ~ O, there is a set T contained in the support of  b ' X  such 
that tZb(T ) ~ 0 and for all t E T, G(clt + c2) ~ G(t). 

As when U and X are independent, condition (i) is needed because the 
distribution of U is uncentered, and condition (ii) rules out multicollinearity. 
To understand condition (iii), observe that in a single-index model, P(Y = 1]x) 
is constant whenever /3 'x  is constant. Therefore, /3 is not identified if P ( Y =  
1 [x) is constant along more than one set of parallel hyperplanes in the support 
of X. If X is discrete, it may be possible to find infinitely many sets of parallel 
hyperplanes each containing a single point in the support of X, in which case/3 
is not identified. Condition (v) makes possible the identification up to sign of 
components of/3 associated with continuous components of X. This is because 
if X i is continuous, then under the single-index assumption and condition (iii) 

[0P(Y = l[x)/Oxi]/[OP(Y = l[x)/Oxl] =/3i//31 =-/31 sgn(/31) • (4.7) 
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Condition (vi) insures that the derivatives in (4.7) are not everywhere 0. It is 
also used to identify components of/3 corresponding to discrete components of 
X. 

Unlike models in which U and X are independent, single-index models 
permit U to be heteroskedastic. However, the assumption that P(Y= 1Ix) 
depends only on/3 'x greatly limits the forms of heteroskedasticity that can be 
accommodated by single-index models. For example, models with random 
coefficients have been found to be important in several applications (Fischer 
and Nagin, 1981; Hausman and Wise, 1978; Horowitz, 1991) but are not 
compatible with the single-index specification. The following setup permits 
virtually arbitrary heteroskedasticity of unknown form, although at the cost of 
a centering assumption. 

(c) Quantile independence. In quantile independence, it is assumed that 
there is an a between 0 and 1 such that the a quantile of U is independent of 
X. X is assumed to include a constant (intercept) component, so the a quantile 
of U can be set equal to 0 without loss of generality. Thus, P(U < 0 Ix) = a for 
all x in the support of X. Quantile independence permits arbitrary heteros- 
kedasticity of unknown form provided that the centering assumption P(U < 
0 Ix) = a is satisfied. Random-coefficients models can be accommodated within 
the quantile-independence framework. However, it would be incorrect to 
conclude that the quantile-independence setup is more general than the single- 
index one. Rather, they are nonnested. It is possible to construct models that 
fit within the single-index framework but not the quantile independence one 
and vice versa. 

Identification of/3 in binary response models with quantile independence has 
been investigated by Manski (1985, 1988). Manski's (1985) identification 
conditions are given in the following proposition. 

PROPOSITION 4.5. Let P(U < O Ix ) = a for some a (0 < a < 1) and for all x in the 
support of  X. /3 is identified if: 

(i) The support of  the distribution of  X is not contained in any proper linear 
subspace of  ~ .  

(ii) For almost every X = (X2, . . .  , XK)', the distribution of  X 1 conditional on 
has everywhere positive density with respect to Lebesgue measure. As before, 

1/311 = 1 by scale normalization. 

Manski (1988) provides a slightly weaker version of condition (ii). As 
before, condition (i) prevents multicollinearity, and condition (ii) excludes the 
possibility that the support o f /3 'X  is too small to enable/3 to be identified. 

4.2. Identification with unknown g and distribution of  U 

Suppose that (2.1) holds and that neither g nor the distribution of U is known 
parametrically. Then 

P(Y = 1 IX) = F[g(x) IX].  (4.8) 



56 J. L. Horowitz 

Let F be a known set of functions that contains g. The definition of 
identification in this nonparametric setting is analogous to definition (4.1) for a 
semiparametric model. 

DEFINITION 4.6. (g, Fvlx) is identified if for each (g*, F~lx)  @ (F x ~ x )  such 
that (g , F ~lx) ~ (g, Fvlx), 

Fx{x: fglx[g*(x)lx  ] ¢ P(Y = 1 Ix)} > 0.  (4.9) 

Identification in nonparametric binary response models has been investigated 
by Matzkin (1992), who shows that g and the distribution of U are identified 
under the conditions given in the following proposition. 

PROPOSITION 4.7. In the nonparametric binary response model, g(.) and the 
distribution of  U are identified if: 

(i) U and X are independent. 
(ii) F is a set of  real-valued, continuous functions with domain T that is 

contained in the support of  F x. 
(iii) g(x) is a strictly increasing function of  x 1. 
(iv) There is a subset T* of T such that 
(a) For all g, g* E r and all x C T*, g(x) = g*(x), and 
(b) For all g* E F and all t in the range of  g, there is an x E T* such that 

g * ( x )  = t. 

(v) F(-), the distribution of U, is strictly increasing on the range of  g. 
(vi) For almost every if( = ( X 2 , . . .  , X~)', the distribution of  X 1 conditional 

on if( has a density with respect to Lebesgue measure. 

Conditions (i) and (iv) make it possible to separate F from g. Under these 
conditions, P(Y = 1 ] x) = F(t) for some x @ T*, so F can be recovered over the 
entire range of g from knowledge of P(Y= l lx ) for x E T*. Condition (v) 
makes possible the recovery of g, which would not necessarily be possible if F 
were constant over part of the range of g. 

As has already been discussed, heteroskedasticity of U has been found in 
several applications of binary response models. Condition (i) does not permit 
heteroskedasticity. It is an open question whether identification of g and/or  F 
is possible in nonparametric settings that do not assume independence of U 
and X. 

The following example, which is a modified version of one given by Matzkin 
(1992), illustrates how conditions (iii) and (iv) might be satisfied in applica- 
tions. 

EXAMPLE 4.8. In most applications it is assumed that g(x) =/3'x. A considerab- 
ly more general specification is g(x) = ax 1 + ~(2), where a > 0, ~ is a function 
that satisfies a normalization condition given below but is otherwise un- 
specified, and 2 = (x 2 . . . .  , xK)'. Let 2 0 be any point in the support of fir. By 
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suitably normalizing the location and scale of the distribution of U, it can be 
assumed without loss of generality that a = 1 and g(x0) = 0. Accordingly, let F 
be the set of all functions h of the form 

g(x) = x I q- ~(~),  g()~0) = 0.  (4.10) 

Assume that the support of X 1 conditional on if( = ~ is (-0% oo) for all ~ in the 
support of )~. Set T* = {x: x = (Xa, ~ ) ' ,  -oo <Xl < ~}. Then conditions (iii) 
and (iv) are satisfied. 

5. Rates of convergence and asymptotic efficiency bounds 

In parametric estimation, the inverse of the information matrix (the Cram6r-  
Rao bound) gives a lower bound on the variance of the asymptotic distribution 
(hereinafter called the asymptotic variance) of any estimator that satisfies 
certain mild regularity conditions. The maximum likelihood estimator achieves 
this bound so, subject to the regularity conditions, no estimator for a 
parametric model can have greater asymptotic efficiency than the maximum 
likelihood estimator. Moreover, no regular estimator can converge in prob- 
ability at a rate that is faster than n -1/2, which is the rate of convergence of the 
maximum likelihood estimator. That is, if /3n is a regular estimator of a 
parameter whose true value is/30 and if/3n converges in probability to/30 at the 
fastest possible r a t e ,  r/1/2(/~ n - / 3 0 )  = Op(1) .  

Since semi- and nonparametric estimation use weaker assumptions than does 
parametric estimation, it cannot be expected that semi- and nonparametric 
estimators will be as efficient asymptotically as parametric ones except, 
possibly, in special cases. Rates of convergence of semi- and nonparametric 
estimators and asymptotic efficiency bounds for these estimators often can be 
investigated by reducing the problem of semi- and nonparametric estimation to 
consideration of appropriate parametric families of models. A semi- or 
nonparametric estimator cannot be more efficient than a parametric estimator 
that satisfies: the same regularity conditions. Therefore, a bound on the 
asymptotic efficiency of a semi- or nonparametric estimator can be obtained by 
finding the supremum of the Cramdr-Rao bounds over all parametric models 
that satisfy the regularity conditions. This approach was proposed originally by 
Stein (1956). It has been developed for situations in which nl/Z-consistent 
estimators exist by Koshevnik and Levit (1976), Pfanzagl (1982) and Begun et 
al. (1983). Newey (1989) provides a review. In such situations, an asymptotic 
efficiency bound can be obtained as the supremum of the Cram6r-Rao bounds 
for all parametric models satisfying the regularity conditions of the semi- or 
nonparametric model. 

As will be discussed below, there are situations in which nl/Z-consistent 
estimators do not exist. In these situations, the approach of finding the 
supremum of Cramdr-Rao bounds is not useful since the supremum is infinite. 
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However, it is often possible to obtain results on the fastest achievable rate of 
convergence by using the asymptotic minimax approach developed by Le Cam 
(1953), Hajek (1972), Stone (1980), and Ibragimov and Has'minskii (1981). In 
this approach, one considers sequences of parametric models that satisfy the 
regularity conditions of the semi- or nonparametric estimator and whose 
information matrices converge to 0. The rate of convergence of a semi- or 
nonparametric estimator is the minimum of the rate over all sequences of 
parametric models that satisfy the regularity conditions. 

At present, results on rates of convergence and efficiency bounds for 
semiparametric estimation of binary response models are available for the 
cases of independence of U and X and quantile independence of U. No results 
have yet been developed for nonparametric estimation of binary response 
models. 

5.1. Models with g(x) = [3 'x and U and X independent 

Let H(.) denote the cumulative distribution function of the random variable 
[3~, where [3o is the unknown true value of [3. Let F(-) denote the cumulative 
distribution function of U, which is assumed to be independent of X, and f(-) 
denote the probability density function of U. Let X =  (X1, X')' ,  where X =  
(X2, . . .  , XK)' , and let ~ = (/~2, • • • , ~) ' .  Assume that [[31[ = 1. Let ~n denote 
a semiparametric estimator of D based on a random sample of size n on 
(Y, X). By applying the methods of Begun et al. (1983), Cosslett (1987) has 
shown that subject to regularity conditions, the asymptotic covariance matrix 
o f  n l / 2 ( ~  n - ~)0) is bounded from below by the inverse of the matrix I*, where 

f ~  var(Jf I/3Jr = v) dH(v) (5.1) 
[f(o)] 2 

I* = F(v)[1 - F(v)] 

A similar result has been obtained by Chamberlain (1986). A semiparametric 
estimator that achieves this asymptotic efficiency bound is described in Section 
6. Cosslett (1987) also shows that (i.)-1 exceeds the parametric (Cram6r-Rao) 
asymptotic efficiency bound by a positive semidefinite matrix that is zero only if 

g(J?l [3'oX = v) = C1 + C2v (5.2) 
for some vector-valued constants C 1 and C 2. One case in which (5.2) holds is 
when X is multivariate normally distributed. Cosslett (1987) gives the generali- 
zation of (5.1) to parametric specifications of g that are nonlinear in parame- 
ters. 

5.2. Quantile independence of U and X 

Chamberlain (1986) has shown that under the assumptions of Proposition 4.5 it 
is possible to construct sequences of parametric models whose information 
matrices for /3 converge to 0. Therefore, the supremum over parametric 
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models of the inverse of the information matrix for /3  is infinite, and under 
regularity conditions that rule out the pathology of superefficiency, there is no 
nl/2-consistent estimator of/3. The following example, which is based on one 
given by Chamberlain (1986), illustrates the construction of a sequence of 
parametric models whose information for/3 converges to 0. 

EXAMPLE 5.1. Let (2.2) hold with K =2 ,  so that under scale normalization 
/3 'x = x I +/32x 2. Let/30z denote the unknown true value of/32. Given any e > 0, 
let Q~(x) be a function with bounded support in ~2 such that 

k ~(Xl  + /302X2) x2 -- Q~(X) dFx(x ) < e ,  (5 .3 )  

where ~b and q~, respectively, are the normal density and cumulative normal 
distribution functions. In addition, given 7)> 0 let Cn(u) be a continuously 
differentiable function on O~ such that 0 ~< C.(u)~< 1 for all u, 

C,(u) = 0 if lul <~7/2 or lul > 2 p  (5.4) 

and 

C,(u) = 1 i f~/< lul (5.5) 

where p is sufficiently large that Ix1 +/302x21 < p if x is in the support of Q. Let 
the conditional distribution of U be 

F(u Ix, a) = + 6Q~(x)C,(u)], (5.6) 

where 6 is a parameter on which F depends. Then 

P(Y = 1 Ix, fi2, 6) 

= I~)(X 1 -}- /302X2)[1 + 6Q,(x)C,(x I +/302x2) ] . (5.7) 

This model has two parameters that must be estimated, /32 and 3. 
Suppose the unknown true value of 6 is 0, and let I~a denote the information 

matrix for (/32, 6) under model (5.7). It~ a is a 2 x 2 matrix. Let J~ denote the 
element of I ~  that gives the asymptotic variance of 1/2,;, n ~]J2n --/302), where 
/32, is the maximum likelihood estimator of /32. Then j~a is the (partial) 
information for/32. It is not difficult to show that J ~  can be made arbitrarily 
small by making e and ~/sufficiently small. Therefore, it is possible to construct 
a sequence of models of the form (5.7) whose information for/32 converges to 
0. 

If nl/Z-consistency is not possible under quantile independence, how fast a 
rate of convergence can be achieved? The answer to this question depends on 
how smooth the cumulative distribution function of U conditional on X and the 
cumulative distribution function of/3~X conditional on Jf  = ( X 2 , . . . ,  X,) '  are. 
Horowitz (1993) uses the asymptotic minimax approach to show that the rate 
of convergence of an estimator of/3 under quantile independence depends on 
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the number of derivatives that these functions have. The rate of convergence is 
faster when higher-order derivatives exist than when they do not. Specifically, 
let Pt~(" I i )  denote the probability density o f /3 'x  conditional on X = i .  Let 
z =/3 'x,  and write F(u Ix) in the form Fe(u [z, Y,). For i, j = 0, 1, 2 , . . . ,  define 

F~ij(u I Z, x) = oi+JF[3(u I Z, x ) /  Ou i Oz j 

and 

if the derivatives exist. Horowitz (1993) shows that under quantile independ- 
ence with a = 0.50 and subject to regularity conditions, the fastest possible 
minimax rate of convergence in probability of an estimator of /3 is n -h/(zh+l), 
where h/> 2 is the largest integer such that for all/3 sufficiently close to/3o: 

(1) For almost every ~ and for all (u, z) in a neighborhood of (0, 0), 
F~is(ulz , ~) is uniformly bounded and is a continuous function of (u, z) if 
O<~i+j<~h. 

(2) For almost every ~ and for all z in a neighborhood of 0, pro(z I Y e) is 
uniformly bounded and is a continuous function of z if 0 ~< i ~< h - 1. 

An estimator that achieves the rate of convergence n -h/(~h+l) is described in 
Section 6. It follows that under quantile independence and given sufficient 
smoothness (that is, large enough h), it is possible to estimate/3 with a rate of 
convergence in probability that is arbitrarily close but never quite equal to 

1/2 
n 

6. Estimators 

This section describes methods for estimating /3 or g(x) in semi- and non- 
parametric binary response models. It is assumed that the estimation data set is 
a simple random sample of size n from the joint distribution of (Y, X). Ideally, 
an estimator should require minimal assumptions beyond those needed for 
identification. Therefore, it is natural to classify estimators according to the 
assumptions required for identification of semi- and nonparametric models. 

6.1. Models with g(x) =/3'x and an unknown distribution o f  U 

(a) U and X are independent. This class of models is nested within the classes 
of single-index models and models with quantile independence. Therefore, any 
estimator that applies to single-index models or models with quantile independ- 
ence also applies to models in which U and X are independent. This subsection 
deals only with estimators that require U and X to be independent as a 
condition for consistency. Estimators that apply to single-index and quantile- 
independence models are discussed below. 

Let F denote the cumulative distribution function of U, which is unknown in 
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the setting considered here. Write P(Y = l Ix,/3) in the form 

P(Y = 1 Ix, ~) = f I(u <~ ~'x) dF(u) .  (6.1) 

Equation (6.1) belongs to a class of mixture models in which the cumulative 
distribution function of a random variable Z has the form 

P(z ]y) = f P(z ]u, 7) dF(u) ,  (6.2) 

where y is a parameter, U is a random variable with cumulative distribution 
function F, and P(-lu,  3') is the cumulative distribution function of Z condi- 
tional on the event U = u and the parameter y. Kiefer and Wolfowitz (1956) 
give conditions under which both y and F in (6.2) can be estimated con- 
sistently by maximum likelihood. This entails maximizing the likelihood 
function with respect to the unknown distribution function F as well as the 
unknown parameter y. Cosslett (1983) shows that under regularity conditions 
the result of Kiefer and Wolfowitz (1956) can be applied to (6.1), thereby 
making possible consistent maximum likelihood estimation of/3 (up to scale) 
and F in (6.1). Cosslett (1983) also gives an algorithm for maximizing the 
likelihood function. 

Neither the asymptotic distributions of the semiparametric maximum likeli- 
hood estimators of/3 and F nor their rates of convergence in probability are 
known. In this nonclassical setting, there is no reason to expect that the 
maximum likelihood estimator is nl/a-consistent, asymptotically normal or 
asymptotically efficient. 

Han (1987) observed that Y and/3 'X are positively correlated when U and X 
are independent. Based on this observation he proposed estimating /3 by 
maximizing an indicator of the correlation of Y and /3'X. The resulting 
'maximum rank correlation' estimator selects/3 to maximize 

SRc(/3 ) : ( ~ )  1 2 [/(Y~ > Yj)I(/3'Xi >/3'Xj) 
i,IER 

+ I(Y~ < Yj)I(/3 'X i </3'Xj)] (6.3) 

subject to scale normalization, where R is the set of distinct combinations of 
(i, j )  pairs such that i, j = 1 , . . . ,  n. Han (1987) established the consistency of 
the maximum rank correlation estimator. Its asymptotic distribution and rate 
of convergence in probability are unknown. Deriving the asymptotic dis- 
tribution of the estimator is quite difficult because the objective function it 
maximizes is a discontinuous function of/3. As a result, the usual Taylor series 
methods of asymptotic distribution theory cannot be applied. 1 

(b) Single-index models. In these models, P(Y= 1 Ix,/3) = G(/3'x), where G 
is a function (not necessarily a distribution function) whose range is [0, 1]. If all 

1 In a paper that appeared recently, Sherman (1993) shows that the maximum rank correlation 
estimator converges in probability at the rate n -1/2 and is asymptotically normally distributed. 
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of the components of X are continuous, /3 can be estimated up to sign and 
scale by forming a sample analog of OG(/3'x)/Ox, which is proportional to/3. 
This idea was first exploited by Stoker (1986). However, Stoker's estimator has 
the undesirable property of requiring the analyst to know the distribution of X 
up to a finite-dimensional parameter. 

Powell et al. (1989) developed a modification of Stoker's (1986) estimator 
that avoids this problem. Their idea is to estimate the density-weighted average 
derivative 

D = f [fx(x)]Z[oG(/3'X)/Ox] {ix, (6.4) 

where f x  is the probability density function of X and it is assumed that G is 
differentiable. Under the single-index specification, D is proportional to /3. 
Assuming that f x  = 0 on the boundary of its support, integration by parts in 
(6.4) yields 

D = - 2  f G(/3'X)fx(X)[Ofx(X)/Ox ] d x .  (6.5) 

Therefore, 

D = - 2 E L Y  Ofx(X)/Ox ] . (6.6) 

If f x  were known, D could be estimated consistently by the sample analog 

D* = - 2 n  -1 ~ Y~ Ofx(Xi) /Ox.  (6.7) 
i = 1  

Powell et al. (1989) replace the unknown density f x (X i )  with a kernel 
estimator: 

j=l \ ~ / '  (6.8) 
j j i  

where K is a kernel function on NK, K is the dimension of X, and {sn} is a 
sequence of bandwidths that converges to 0 as n--~ oo. See Prakasa Rao (1983) 
for a discussion of kernel density estimation. 

Let bn be the estimator of D that is obtained by replacing fx(X,.) with 
fxn(Xi)  in (6.7). Powell et al. (1989) show that if K is a kernel of order l, 

2 l  K + 2 ns n --+ 0 and ns n --+ m as n--+ m, and certain regularity conditions are satisfied, 
then nl/2(£) n - D )  is asymptotically normally distributed with mean 0 and a 
covariance matrix that can be estimated consistently. This is equivalent to 
estimating /3 up to sign and scale. The estimator of the covariance matrix is 

I)" D 4n -1 ~ rn(Zi)rn(zi) ~ ~, = ' - 4 D ,  D , ,  (6.9) 
i = i  

where 
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rn(Zi)=--(n--1) -1 ~ sn(k+l)K'(Xi~nXJ)(~ i - Yj), 
j= l  
j f i  

(6.10) 

and K'  is the gradient of K. 
The need for continuously distributed explanatory variables X is removed by 

an estimator developed by Ichimura (1987). Ichimura's estimator is based on 
the observation that if G were known, 13 could be estimated by nonlinear least 
squares. The estimator /3n would minimize the objective function 

SLS(/3 ) = n-1 k [Y/- G(/3'Xi)] 2. (6.11) 
i=1 

Since G is unknown, Ichimura (1987) replaces it with the consistent estimator 
obtained from a kernel nonparametric regression of Y on X. That is, G(/3'Xi) 
is replaced by 

where 

Gn([3 ' X i )  = A n i / B n i  , (6.12) 

An, = YjK • • , (6.13) 
j=l  
yJi 

Bni = K (6.14) 
j=l k, sn ' 
j/i 

K is a kernel function on the real line, and {s,} is the bandwidth sequence. 
Ichimura's estimator minimizes 

SL S = n - 1  k [Yi , 2 • -- Gn(/3  X i )  ] (6 .15)  
i-1 

subject to the scale and sign normalization/31 = 1. Ichimura (1987) shows that 
under regularity conditions, if ns8~--+O and ns7/logn--+~ as n--~% then 
na/2([3n-/)0) is asymptotically normally distributed with mean 0, where /3 = 
( /32, . . . , /3~) '  and/3n is the estimator of / ) .  The covariance matrix is estimated 

consistently by f ' - l l ) l  ~ - i ,  where 

19= n 1 k ff(jf~G'(/3~gi) 2 , (6.16) 
i=1 

n--1 k ~ ~v t ~v 2 ^t 2 = X ,  X e G n ( / 3 " X , )  [Yi - Gn(/3'nSi)] , (6 .17)  
i=1 

G" is the derivative of G n, and /3n = (1,/3")'. 
The same idea has been used by Klein and Spady (1993) to carry out 

quasi-maximum-likelihood estimation of /3. If G were known, /3 could be 
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estimated by maximizing the log-likelihood function 

log L(f l )  = n -1 ~ {Y, log G(fi'X,) 
i = 1  

+ (1 - Y~)log[1 - G( /3 ' / , ) ]} .  (6.18) 

Klein and Spady (1993) replace the unknown G with a nonparametric estimate 
G,  that is given below in equations (6.20)-(6.22). They then estimate B by 
maximizing the quasi-log-likelihood function 

log LKs(/3) = f1-1 ~ T/{Y/log G,(/3'Xg) 
i = 1  

+ (1 - Y~) log[1 - G,(fl'X~)]} (6.19) 

subject to scale and sign normalization, where ~-i is a trimming function that 
downweights observations near the boundary of the support of/3~X, and/3 o is 
the unknown true value of /3. Trimming is important in establishing the 
asymptotic distributional properties of the quasi-maximum-likelihood estimator 
but appears to have little effect on the numerical results obtained in applica- 
tions. 

G, is obtained as follows. Define P~=n ~iN1 Yi" P~ is the sample 
proportion of Y values that equal 1. Then for  any real v 

P~q.(v IV = 1) 
Gn(v) - P .qn(v[Y  = 1) + (1 - P.)qn(v I Y = 0)  ' ( 6 . 2 0 )  

where qn(- [ Y = y) is a kernel estimate of q(- [ Y = y), the conditional density of 
13'x. This estimate is given by 

%(v I Y = 1) = ( n P ,  sn) -1 ~ YiK[(o -/3'xi)/s,] , (6.21) 
i = 1  

and 

& 
q.(v [Y = 0) = In(1 - Pn)s,]-1 Z (1 -- Yi)K[(v -/3'xi)/sn], (6.22) 

i = 1  

where K is a kernel function on the real line, and {s,} is a sequence of 
bandwidths satisfying Ns6-->~ and Ns8n---~O as N--.oc. If K is a higher-order 
kernel, any sequence of bandwidths satisfying these convergence conditions 
can be used. If K is a second order kernel, it is necessary to use a local 
smoothing procedure in which s, varies according to the observation. See Klein 
and Spady (1993) for details. Klein and Spady (1993) show that under 
regularity conditions and with the scale/sign normalization fil = 1, the quasi- 

1 / 2 t  7~ maximum-likelihood estimator of/3 satisfies n tP~ -/30) -- N(0, V), where V 
is estimated consistently by the Hessian and outer-product gradient matrices of 
the quasi-log-likelihood function. V coincides with the asymptotic efficiency 
bound of Cosslett (1987) if U and X are independent. Thus, the quasi- 
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maximum-likelihood estimator is asymptotically efficient if U and X are 
independent. 

(c) Quantile independence. Manski (1975, 1985) shows that under the 
assumptions of Proposition 4.5 with a = 0.5 and with the additional assumption 
that 0 < P(Y = 1 I x ) <  1 almost everywhere (Fx), /3 can be estimated con- 
sistently by maximizing the following 'score' function subject to scale normali- 
zation: 

SM(/3 ) = n - 1  ~ [2I(Y~ = 1) - 1]I(/3'X~ i> 0) .  
i = 1  

(6.23) 

This estimation procedure amounts to predicting that Yi = 1 i f /3 'X i/> 0, Y~ = 0 
, if/3 X i 0, and choosing /3 to maximize the number of correct predictions. 

Cavanagh (1987) and Kim and Pollard (1990) show that the maximum score 
estimator converges in distribution at the r a t e  n - 1 / 3  and that the centered, 
normalized estimator has a complicated nonnormal limiting distribution. The 
slow rate of convergence of the maximum score estimator is not surprising. As 
was discussed in Section 5, nl/2-consistent estimation is not possible under the 
assumptions of quantile-independence, and Manski (1975, 1985) does not 
make the smoothness assumptions necessary to achieve a convergence rate of 
n -h/(2h+l) for h >/2. 

The properties of the asymptotic distribution of the maximum score es- 
timator are largely unknown, and this distribution appears not to be useful for 
making inferences in applications. Manski and Thompson (1986) suggest using 
the bootstrap to make inferences in applications. The suggested bootstrap 
procedure is a Monte Carlo simulation of the distribution of the maximum 
score estimator. The simulation is carried out by sampling n (Y, X) pairs 
randomly and with replacement from the estimation data set. This bootstrap 
sample is used to estimate/3 by maximizing S M. An estimate of the probability 
distribution of /3n is constructed by repeating these sampling and estimation 
steps many times. Manski and Thompson (1986) give Monte Carlo evidence 
indicating that the accuracy of the bootstrap estimate of the distribution of the 
maximum score estimator depends on the details of P(Y= 1 Ix) but is 
satisfactory in many cases of interest. 

Maximizing S M requires the use of a nonstandard optimization procedure 
since S M is a step function. An algorithm due to Manski and Thompson (1986) 
is available in the software package LIMDEP. This algorithm uses the scale 
normalization 11/3 II = 1,  where I1"11 denotes the Euclidean norm. It searches for 
maxima of S M along great circles on the unit sphere in N K. The search is 
efficient computationally because S M has only finitely many values along any 
great circle, and these can be evaluated rapidly. 

The maximum score estimator has a slow rate of convergence and a 
complicated asymptotic distribution because it maximizes a discontinuous 
objective function. Horowitz (1992) proposes smoothing S M to make it 
continuous and differentiable. The resulting smoothed maximum score es- 
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timator maximizes 

SH(/3 ) = n 1 ~ [2i(Yi = 1) - 1]J(/3'Si/Sn) (6.24) 
i = 1  

subject to the scale normalization 1/311 = 1, where s n is a sequence of band- 
widths that converges to 0 as n ~ 0% and J is a twice differentiable function of 
the real line into itself that satisfies 

IJ(v)l < m for some finite m and all v in ( - %  ~ ) ,  

lim J(v)=O and l i m J ( v ) = l .  
o ---~ - ~  o ---> ~ 

J is analogous to the integral of a kernel function for nonparametric density 
estimation. Typically, dJ/dv has the properties of a kernel. Assume that 
smoothness conditions 1 and 2 of Section 5.2 are satisfied, J is the integral of 
an h-th order kernel on N, and s n = An -1/(2h+l) for some h > 0. Then under 
regularity conditions, the estimator of /~ obtained by maximizing (6.24) 
satisfies n h / ( 2 h + l ) ( f ~  n - -  ~ 0 )  ~ N(-A1/2Q-1A, Q-1DQ 1) asymptotically, where 
A, D, and Q are estimated consistently as follows: 

+ 
A n  z - 1  , - h  ~ n (Sn) ~ [2I(Y/ 1) - 1](ff(/s*)J'(~,X,/s*) (6.25) 

i = 1  

where/3, is the estimate of/3 (not of/3),  s* = s] for some 6 satisfying 0 < 6 < 1, 
and J '  is the derivative of J; 

~ t  ! A t D. = (ns.) 1 X~X~J" (/3nXi/Sn)2 ; (6.26) 
i = 1  

and 

Qn = Oz SH(~n) / O/3 Off'. (6.27) 

An asymptotically unbiased estimator of /3 can be obtained by replacing /3n 
with 

bn = f~n q- ( l~/n)h/(2h+l) OnAn " (6.28) 

The rate of convergence in probability of & and f3n, n h / ( 2 h + l ) ,  is the fastest 
possible under smoothness conditions 1 and 2 of Section 5.2. 

Monte Carlo experiments with the smoothed maximum score estimator have 
shown that samples much larger than those typically encountered in applica- 
tions are needed to make the approximations of asymptotic theory accurate 
(Horowitz, 1992). In particular, the finite-sample sizes of t tests of hypotheses 
about/3 tend to be much larger than their nominal sizes based on asymptotic 
theory. This problem can be greatly reduced by using the bootstrap to estimate 
critical values for the t statistic. The bootstrap procedure for testing the 
hypothesis /40: /3i =/30i, where /3i is the i-th component of /3 is: 

(1) Generate a sample of (Y, X)  of size n by sampling the estimation data 
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set randomly with replacement. Use this sample to compute the t statistic for 
testing the hypothesis /~i =/~ni, where /~n; is the bias-corrected smoothed 
maximum score estimator of/3i obtained from the original estimation sample. 

(2) Estimate the critical value of the t statistic from the empirical dis- 
tribution of this statistic that is obtained by repeating step 1 many times. 
Horowitz (1992) reports that in Monte Carlo experiments with n = 250, the 
empirical size of the nominal 0.05-level t test was in the range 0.041-0.066 
when bootstrap-based critical values were used, whereas the empirical size was 
in the range 0.116-0.208 when asymptotic critical values were used. See Beran 
(1988) and Hall (1986) for discussions of the theory underlying the use of the 
bootstrap to obtain critical values for test statistics. 

The objective function SH(" ) can have many local extrema, so it is necessary 
to use a global optimization method to compute /3n" Examples of such methods 
are tunneling (Levy and Montalvo, 1985) and simulated annealing (Bohach- 
evsky et al., 1986; Szu and Hartley, 1987). 

6.2. Estimation with unknown g and distribution of  U 

Matzkin (1992) has proposed estimating g and F under the assumptions of 
Proposition 4.7 by maximizing the following nonparametric log-likelihood 
function over g and F: 

log LNp(g, F) = ~ (Yi log F[g(Xi)] 
i=1 

+ (1 - Y~) log[1  - F[g(Xi)]]}. ( 6 . 2 9 )  

To establish consistency of the resulting nonparametric maximum likelihood 
estimator of (g, F), it is necessary to define metrics on the spaces F and qz that 
contain the functions g and F. Define the metrics pg and Pe on F and ~, 
respectively, by 

Pg(gl, g2) = f [gl(x) -gz(x)l e -/Ixll dFx (6.30) 

and 

PF(F1, F2) = f IFI(u) - Fz(U)I e -lul du (6.31) 

Matzkin (1992) shows that the nonparametric maximum likelihood estimators 
of g and F are consistent relative to these metrics if the assumptions of 
Proposition 4.7 hold, F is a set of monotone increasing functions, and several 
technical regularity conditions are satisfied. Matzkin (1992) also shows that 
maximization of (6.29) can be carried out by solving an equivalent nonlinear 
programming problem and discusses algorithms for solving this problem. The 
rate of convergence and asymptotic distribution of the nonparametric maxi- 
mum likelihood estimator are not known. 
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7. Estimation from choice-based samples 

A choice-based sample is one that is stratified on the dependent  variable Y. 
The fraction of observations with Y = 1 is selected by design, and X is sampled 
conditional on Y. For example, a data set for analyzing travel mode choice 
might be obtained by interviewing randomly selected automobile travelers at 
the roadside and randomly selected transit travelers on their vehicles. The 
numbers of automobile and transit travelers interviewed are selected by design. 

Except in special cases, estimators that work with random samples are 
inconsistent when the sample is choice based. Parametric estimation from 
choice-based samples has been investigated by Cosslett (1981), Hsieh et al. 
(1985), Manski and Lerman (1977), and Manski and McFadden (1981). This 
section treats semiparametric estimation from choice-based samples under the 
assumption that g(x)=/3'x and the distribution of U is unknown. It is also 
assumed that the population values of the aggregate shares, P1 = P(Y ~> 0) and 
P0 = 1 - Pa, are known. It is not unusual in applications for aggregate shares to 
be known quite accurately. For example, in work trip mode choice analysis 
aggregate shares often are available in data from the U.S. Census, although 
Census data typically do not include information on all of the variables needed 
to develop a useful mode choice model. 

Suppose that the assumptions of Proposition 4.5 hold with ~ = 0.5. Manski 
(1986) has shown that under these conditions, /3 can be estimated consistently 
from a choice-based sample by maximizing the modified score function 

S c u ( / 3 )  = (Pilnl) ~ l(/3'Xi>O ) -(Polno) ~ I(/3'X~ >10) 
i=1  i = l  
Yi=l Yi=O 

(6.32) 

subject to scale normalization, where n i (i = 0, 1) is the number of observations 
for which Y~ = i, and n = n o + n 1 . The asymptotic distribution of this estimator 
is not known, although it likely can be found by using the methods of Kim and 
Pollard (1990). 

Like the objective function SM(') for maximum score estimation from a 
random sample, SCB(" ) can be smoothed by replacing the indicator function 
with the integral of a kernel function. The resulting estimator maximizes the 
smoothed modified score function 

SHOB(/3)  = (P~ln~) ~ J(~'Xils.)- (Polno) ~ J(~'Xils.), 
i=1  i = I  
gi=l Yi=0 

(6.33) 

where J and s n are defined as in (6.24). Suppose that conditions 1 and 2 of 
Section 5.2 hold and that s, = An -1/(2h+1). Then using methods similar to those 
in Horowitz (1992), it may be shown that the smoothed choice-based estimator 
of/~ satisfies nh/(2h+l)(/3n -- ¢)0) - - N ( - A I / 2 Q c l A c ,  QclDcQc 1) asymptotically, 
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where A c, D c and Qc are estimated consistently by 

and 

, -h[ E - • , • Acn : (Sn) (e l /n l )  (Xi/Sn)J ([3n i/S.) 
i=1  

I7/=I 

- (eo/no) Yi:oi:l 

, 8 
sn = (sn) , 0 < 6 < 1 ,  

tDcn = (Pa/nls . )  k Si2~J'( f i~Xi/sn)  2 
i=1  
Yi-a 

X i X i J  ([3nXi/Sn) , ,,(Po/noS, ) - -,  , ~, 2 + 
i=1  
Yi=l 

(6.34) 

(6.35) 

Qcn = OZSHcB(fin)/ Ofi 0[3'. (6.37) 

Let W1 = limn_+~(nx/n) and W 0 = 1 - W 1. Then it may also be shown that the 
asymptotic variance of the smoothed choice-based estimator is minimized by 
designing the sample to minimize (Po/Wo + P1/W1). 

The single-index estimator of Klein and Spady (1993) can be applied to a 
choice-based sample by replacing Pn with P1 in (6.20). 

8. Applications 

There have been few applications of semiparametric methods for binary 
response models and no applications of nonparametric methods. As a result, it 
is difficult to judge to what extent these methods yield results in practice that 
are substantially different from those of familiar parametric methods such as 
logit and probit modeling. 

Newey et al. (1990) estimated parametric probit and semiparametric single- 
index models of labor-force participation by married women. They report that 
there is little difference between the parametric and semiparametric parameter 
estimates. Das (1991) estimated a model of the decision whether to idle a 
cement kiln. She used a parametric logit estimator and Manski's (1975, 1985) 
maximum score estimator. An informal examination of the estimation results 
suggested that the logit model may have been misspecified, but no formal tests 
were carried out. 

Horowitz (1991) estimated a model of the choice between automobile and 
transit for the work trip. He used a parametric probit model with fixed 
coefficients, a parametric probit model with random coefficients, a single-index 
model that was estimated by the method of Klein and Spady (1993), and a 
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quantile-independence model that was estimated both by Manski's (1975, 
1985) maximum score estimator and the smoothed maximum score estimator. 
Specification tests resulted in rejection of the fixed-coefficients probit model 
and the semiparametric single-index model but not of the random-coefficients 
probit model or the model based on quantile independence. These results show 
that distributional assumptions can be important in applied binary response 
modeling. In particular specifications that make overly restrictive assumptions 
about heteroskedasticity can be rejected in specification tests. 

9. Models for multinomial choice 

This paper has concentrated on semi- and nonparametric estimation of binary 
response models. There also has been some work on semiparametric estima- 
tion of models for multinomial response. In a multinomial response model with 
M possible responses, latent dependent variables Y* (m = 1 , . . . ,  M) satisfy 

Y~=gm(X) +Um, (7.1) 

where gm is a parametric or nonparametric function to be estimated and Um is a 
random variable. One observes (I11 . . . . .  YM, X), where Y,, = 1 if Ym* > Y~ for 
all l ~ m and Ym = 0 otherwise. 

Manski (1975) considers a model in which gin(x) =/3'X(m), where for each m, 
X(m ) is a subvector of x that is conformable with the parameter /3. He gives 
conditions under which /3 can be estimated consistently by a version of the 
maximum score technique of equation (6.23). Matzkin (1991, 1990) has 
developed consistent estimators for multinomial response models in which the 
gm are nonparametric but the joint distribution of the U m belongs to a known 
parametric family. To date, semiparametric estimators for multinomial re- 
sponse models have not been used in applications. 
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The Selection Problem in Econometrics and 
Statistics 

Charles F. M a n s k i  

1. Introduction 

Some respondents to a household survey decline to report  their incomes. Some 
youth enrolled in high school opt not to take the scholastic aptitude test. Some 
welfare recipients drop out of a vocational training program. These very 
different situations share the common feature that an outcome is censored; 
survey respondents '  incomes, youths' SAT scores, or welfare recipients' 
employment  status after completion of vocational training. 

Because censored data are so common, econometricians and statisticians 
have denoted much effort to their analysis. In particular, the following selection 
problem has drawn substantial attention: Each member  of a population is 
characterized by a triple (y,  z, x), where y lies in a finite dimensional real space 
Y, z = 0 or 1, and x lies in a finite dimensional real space X. A researcher 
draws a random sample, observes all the realizations of (z, x), but observes 
realizations of y only when z = 1. The researcher wants to learn a feature of 
the probability measure of y conditional on x, 

P(y  Ix) = P(y  Ix, z = 1)P(z = 1 Ix) + P(y  Ix, z = 0)P(z = 0 Ix  ) . (1) 

The selection problem is the failure of the censored-sampling process to 
identify P(y  Ix). The sampling process does identify the selection probability 
P(z = 1Ix) ,  the censoring probability P(z = 0Ix) ,  and the measure of y 
conditional on selection, P(y Ix, z = 1). It is uninformative regarding the 
measure of y conditional on censoring, P ( y l x ,  z = 0). Hence the censored- 
sampling process reveals only that 

P(y Ix) E [P(y Ix, z = 1)P(z = 1 Ix) + TP(z = 0Ix) ,  Y E E l ,  (2) 

where F denotes the space of all probability measures on Y. 
Econometric analysis. Although the selection problem arises in very many 

settings, formal analysis in economics is a relatively recent development.  Until 
the early 1970s, empirical researchers either explicitly or implicitly assumed 

73 



74 C.F. Manski 

thinking about 
appears in the 
(1987), directly 
0). Researchers 
which is a type 
Prentice, 1980). 

that, conditional on x, y and z are statistically independent. That is, 

P(y Ix) = P(y Ix, z = 0 )  = P(y Ix, z = 1) .  (3) 

Given that P(y Ix, z = 1) is identified by the sampling process, hypothesis (3) 
identifies P(y Ix). Moreover,  in the absence of prior information, this hypoth- 
esis is not rejectable. The reason is that P(y Ix, z = 1) belongs to the set of 
feasible values for P(y Ix); just let 3' = P(Y Ix, z = 1) in (2). 

The empirical plausibility of (3) was eventually questioned sharply, especial- 
ly when researchers observed that, in many economic settings, the process by 
which observations on y become censored is related to the value of y (see, for 
example, Gronau, 1974). It also became clear that (3) is not necessary to 
identify P(y Ix). An alternative is to specify a latent variable model jointly 
explaining (y, z) conditional on x (see, for example, Heckman,  1976; or 
Maddala, 1983). 

Statistical analysis. Statisticians analyzing censoring data often assume that 
(3) holds. This is sometimes referred to as the assumption of 'ignorable 
nonresponse'.  The term 'nonignorable nonresponse'  is used to cover all 
situations in which y and z are dependent conditional on x (see, for example, 
Rubin, 1987). 

Whereas the latent-variable model framework has dominated econometric 
dependence between y and z, no similarly pervasive idea 
statistics literature. Some statisticians, particularly Rubin 

impose assumptions on the censored distribution P ( y l x ,  z = 
analyzing failure times often use the competing-risks model,  
of latent-variable model (see, for example, Kalbfleisch and 

Organization o f  this chapter. Although the econometrics and statistics 
literatures on the selection problem differ in important respects, they both 
focus primarily on situations in which one has strong prior information on the 
distribution of (y, z) conditional on x. As I see it, the logical starting point for 
an investigation of the selection problem is to characterize the problem in the 
absence of prior information; Section 2 summarizes my recent work on this 
subject. Then Section 3 describes the main ideas of the econometrics and 
statistics literature. Section 4 makes concluding comments. 

2. The selection problem in the absence of prior information 

It is well known that, in the absence of prior information on the distribution of 
(y,  z, x),  the selection problem is fatal for inference on the mean regression of 
y o n x ,  

E (y  Ix) = E(y  [x,z  = 1)P(z = 1Ix) + E(y  I x , z  =0)P(z  = 0 I x ) .  (4) 

The censored-sampling process identifies E (y  I x, z = 1) and P(z Ix) but pro- 
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vides no information on E(y  Ix, z = 0), which can take any value in Y. Hence, 
whenever the censoring probability P(z = 0 Ix) is positive, the sampling process 
imposes no restrictions on E ( y l x  ). 

One must, however, be careful not to extrapolate from the mean to other 
distributional features. Identification of the mean from censored data is a 
particularly difficult problem. In the absence of prior information, censored 
data imply informative, easily interpretable bounds on other important fea- 
tures, including quantiles, distribution functions, and the means of bounded 
functions of y. This section presents some of the findings of Manski (1989, 
1993). 

2.1. Population bounds 

Mean regressions of bounded functions of y. The central finding, from which 
others may be derived, concerns the mean of a bounded function of y. Let g(.) 
be a function mapping Y into a bounded interval [K0u , Klg ] on the real line. 
Observe that 

E[g(y) Ix] = E[g(y) Ix, z = llP(z = 1 Ix) 

+ E[g(y)]x, z = 0]P(z = 0Ix  ) . (5) 

The sampling process identifes E[g(y) Ix ,  z = 1] and P(z [x) but provides no 
information on E[g(y) Ix, z = 0). The last quantity, however, necessarily lies in 
the interval [Kog , Klg ]. This simple fact yields the following powerful result: 

E[g(y) Ix, z = 1]P(z = 1 Ix) + KogP(z = 0Ix  ) 

~< E[g(y) Ix] ~< E[g(y) Ix, z = llP(z = 1 Ix) + KI~P(z = 0Ix ) . (6) 

Thus, a censored-sampling process bounds the mean regression of any 
bounded function of y. The lower bound is the value E[g(y) Ix] takes if, in the 
censored subpopulation, g(y) always equals K0~; the upper bound is the value 
of E[g(y) lx ] if all the censored y equal KI~. The bound is a proper subset of 
[Kog, K~u], hence informative, whenever censoring is less than total. At  each 
x 0 E X, the bound width (K~-K0g)P(z  = 0 Ix =x0) is proportional to the 
censoring probability P(z = 0Ix). It is therefore meaningful to say that the 
degree of underidentification of E[g(y) Ix = x0] is proportional to the censoring 
probability at x 0. 

The conditional probability measure and distribution function. The bound 
(6) has numerous applications. Perhaps the most farreaching is the bound it 
implies on the probability that y lies in any measurable set A C Y. Let gA(') be 
the indicator function gA(Y) =-- l [y E A]. Observe that E[gA(y ) Ix] = P(y @ 
A Ix ). Hence (6) implies that 

P(y E A Ix, z = 1)P(z = 1 Ix) ~ P(y E a Ix) 

P(y E a ] x , z  = 1)P(z = 1 Ix) + P(z = 0 I x  ) . (7) 
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It is often convenient to characterize a probability measure on a real space by 
its distribution function P(y  ~< t Ix), t E Y. It follows from (7) that 

P(y <~tlx, z = 1)P(z = l l x )  ~<P(y <~tlx) 

P(y ~< t lx ,  z = 1)P(z = 1 Ix) + P(z = 0 Ix  ) , Vt E Y.  (8) 

It may seem surprising that one should be able to bound the distribution 
function of a random variable but not its mean. The explanation is a fact that is 
widely appreciated by researchers in the field of robust statistics: the mean of a 
random variable is not a continuous function of its distribution function. Hence 
small perturbations in a distribution function can generate large movements in 
the mean. See Huber  (1981). 

To obtain some intuition for this fact, consider the following thought 
experiment. Let  w be a random variable with 1 - e of its probability mass in 
the interval ( - %  T] and e mass at some point S > T. Suppose w is perturbed 
by moving the mass at S to some S 1 > S. Then P(w ~< "r) remains unchanged for 
r < S and falls by at most e for r ~> S. But E(w) increases by the amount  
e(S 1 - S ) .  Now let S 1 ~ ~. The perturbed distribution function remains within 
an e-bound of the original one but the mean of the perturbed random variable 
converges to infinity. 

Quantile regressions. Let Y = R 1 and a ~ (0, 1). The a-quantile of P(y  Ix) is 
defined by 

q(a, x) ~ min t: P(y ~< t[ x) t> a . (9) 

The bound (8) on P(y ~<-Ix) can be inverted to show that q(a,x)  must lie 
between two quantiles of the identified distribution P(y  Ix, z = 1). Define 

{ [ 1 ~  ( 1 - a ) / P ( z - - 1 1  x)]-quantile of P(y  Ix, z =  1) 

r (a ,x ) -~  if P(z = 1 Ix) > 1 -  a ,  (10) 

otherwise.  

[[a/P(z  = 11 x)]-quantile of P(y  Ix, z = 1) 

s ( a , X )  =-1 if P(z = 1 [ x ) > / a ,  
L ~  otherwise.  

It is proved in Manski (1993) that 

r(a, x) <- q(a, x) <~ s(a, x) . (11) 

Moreover ,  in the absence of prior information, this bound on q(a,  x) cannot be 
improved upon. 

The lower and upper bounds r(a, x) and s(a, x) are increasing functions of a ;  
hence the bound shifts to the right as a increases. The lower bound is 
informative if P(z = 1 Ix) > 1 - a ; the upper bound if P(z = 1 Ix) t> a. So the 
bound (11) restricts q(a,x)  to an interval of finite length if P(z = 1 I x ) >  
max(a,  1 - a)  and is uninformative if P(z = 1 Ix) < min(a, 1 - a) .  
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2.2. Sample inference 

The selection problem is, first and foremost, a failure of identification. It is 
only secondarily a difficulty in sample inference. To keep attention focussed on 
the central identification question, it is simplest to suppose that the conditional 
distributions identified by the sampling process, P(y Ix, z = 1) and P(z Ix), are 
known. But it is also important to recognize that the population bounds 
reported in Section 2.1 are easily estimable. 

Estimation of the bound (6) on the mean of a bounded function of y is a 
conventional problem in nonparametric regression analysis (see, for example, 
Bierens, 1987; or Hardle, 1990). Rewrite (6) in the equivalent form 

E[g(y)z + K0g(1 - z) l x ] <~ E[g(y) l x ] <~ E[g(y)z + Klg(1 - z) l x ] . (6') 

The censored-sampling process enables consistent nonparametric estimation of 
E[g(y)z + K0g(1 - z) Ix] and E[g(y)z + Klg(1 - z) Ix] at almost all values of x. 
Consistent estimation of the bound at a given Xo in the support of x is possible 
if P(x = x0) > 0 or if E[g(y)z + K0g(1 - z) Ix] and E[g(y)z + Klg(1 - z) Ix] are 
continuous at x 0. Given regularity conditions, asymptotically valid sampling 
confidence intervals can be placed around estimates of the bounds. Empirical 
applications are presented in Manski (1989) and in Manski, Sandefur, 
McLanahan and Powers (1992). 

It is proved in Manski (1993) that the bound (11) on a quantile regression 
can be estimated consistently if r(., x) and s(., x) are continuous at a. Given a 
random sample of size N, let PN(Y ~<" Ix, Z : 1) and PN(Z I x) be appropriate 
nonparametric estimates of P(y ~<. Ix, z = 1) and P(z Ix). Let 

{ ~ - (1-- a ) / PN(Z = I , x)]-quantile of PN( Y IX, Z= 1) 

rN(a, X) =- if PN(Z = 1 IX) > 1 -- a ,  (12) 
otherwise.  

f[a/Pu(z  = 1 I x)]-quantile of PN(Y Ix, z = 1) 

SN(a, X)  =-- I if PN(Z = 1 IX) >i a ,  
l ~  otherwise.  

Then, as N--->~, [rN(a,x), SN(a,X)] converges with probability one to 
[r(ol, x), s(a, x)] at almost all values of x. 

3. The selection problem with prior information 

The bounds reported in Section 2 can be improved if suitable prior information 
on P(y,  z Ix) is available. A restriction has identifying power if it implies that 
P(y Ix) belongs to a set of distributions smaller than that given in (2). 
Restrictions on P(y Ix), P(y Ix, z - - 0 ) ,  and P(z Ix, y) may have identifying 
power. Restrictions on P(y Ix, z = 1) and P(z Ix) are superfluous as these 
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quantities are identified by the censored-sampling process. (The fact that the 
latter restrictions have no identifying power does not imply that they are 
useless in practice; they may enable one to improve the precision of sample 
estimates of P(y]x, z = 1) and P(z Ix).) 

Functional-form restrictions. Information directly constraining P(y Ix) is 
often referred to as a functional-form restriction. A functional-form restriction 
may constrain P(y [ -) as a function on X; one might, for example, know that y 
is statistically independent of some component of x or that E(y  Ix) is a linear 
function of x. Or it may constrain the shape of P(y[x =x0) at a specified 
x 0 ~ X ;  one might know that P(y Ix = %) is a symmetric distribution or a 
normal distribution. 

Censored-distribution restrictions. A second type of information is a restric- 
tion on the censored-distribution P(y Ix, z =0) .  A simple example is the 
statistical independence assumption (3). More generally, let P(y[x, z = 0) be 
known to be a member of a class FOx of probability measures. Then (2) can be 
improved to 

P(y[x)E[P(ylx, z=l )P(z=l lx )+yP(z=Olx) ,  yEFox I . (13) 

Selection restrictions. Information constraining P(zlx, y) is sometimes re- 
ferred to as a selection restriction. One example is the conditional independ- 
ence assumption (3), which can be rewritten as 

P(z Ix, y) = P(z Ix).  (3') 

A different conditional independence assumption, studied in Manski (1993), is 

P(z Ix, y) = P(z I y).  (14) 

To see why a selection restriction may have identifying power, observe that, 
for any measurable set A C Y, 

P ( y E A [ x ) = P ( y E A [ x , z =  l)P(z= llx)/P(z= llx,  y E A ) .  (15) 

The quantities P(y E A I x, z = 1) and P(z = 11 x) are identified by the sampling 
process, so a restriction on P(z = l lx, y E A) implies a restriction on P(y E 
A Ix). 

Identification strategies. Ideally, we would like to learn the identifying power 
of all types of prior information, so as to characterize the entire frontier of 
inferential possibilities. Then the empirical researcher would be able to make 
the inferences that are possible given whatever restrictions he or she believes to 
hold. But there does not appear to be any effective way to conduct a complete 
identification analysis. So researchers have investigated the power of specific 
bundles of restrictions thought to have application to empirical problems of 
interest. Section 3.1 describes the dominant strategy of the econometrics 
literature. Section 3.2 describes the practices of statisticians. 
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3.1. Econometric latent variable models 

For twenty years, econometric thinking on the selection problem has been 
expressed through latent-variable models of the form 

y = fl(X) + Ul, (16a) 

z = l[f2(x ) + u 2 > 0].  (16b) 

Here  Y = R  1, [f l( ' ) ,  f2(')] are real functions of x, and (Ul, u2) are random 
variables whose realizations are unobserved by the researcher. The threshold- 
crossing form of the selection function (16b) is well-motivated in empirical 
analyses where the observability of y is determined by the binary choice 
behavior of a rational decision maker. In such cases fz(X) + u 2 is the difference 
between the values of the two alternatives and (16b) states that the more 
highly-valued alternative is chosen. Many examples are given in Maddala 
(1983). 

Equations (16) alone do not restrict the distribution of (y,  z) conditional on 
x. A model takes on content when restrictions are imposed on [f~(.), f2(')] and 
on the distribution of (u~, u2) conditional on x. The overriding concern of the 
literature has been to find plausible restrictions that identify the mean 
regression of y on x, although most of the restrictions studied actually identify 
the conditional measure P(y Ix) fully. In what follows, I describe three types of 
restrictions that have received considerable attention. These restrictions are 
neither nested nor mutually exclusive. A latent variable model may impose any 
combination of them. 

Model with conditionally independent disturbances. The early literature 
assumed that u 1 and u 2 are statistically independent  conditional on x. It follows 
that 

P(y Ix, z = 1) = P[fl(x) + u 1 Ix, f2(x) + u a >i 0] 

= P[f~(x) + u 1 Ix] = P(y  Ix) .  (17) 

Thus, independence of u 1 and u 2 conditional on x implies independence of y 
and z conditional on x, the restriction stated in (3). Given this, P(y  Ix) is 
identified even if no restrictions are imposed on [f l( ' ) ,  f2(')]- In practice, 
researchers have typically imposed restrictions on f l ( ' ) ;  most applications make 
f l ( ' )  linear in x. 

Parametric models. A second type of restriction became prominent  in the 
middle 1970s. Suppose that f l ( ' )  is known up to a finite dimensional parameter  
]31, f2(') up to a finite dimensional parameter  /32, and the distribution of 
(u~, u2) conditional on x up to a finite dimensional parameter  y. Then 

P(y,  z = 1 Ix) = P[fl(x, ]31) + Ul, f2(x, ]32) + u 2 ~> 0 Ix  , T] .  (18) 

The left-hand side of (18) is identified by the censored sampling process. The 
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right-hand side is a function of the parameters (/31,/32, 3')- If there exists only 
one parameter value solving (18), then P(y [x) is identified. 

Parametric latent variable models have usually been studied through analysis 
of the mean of y conditional on (x, z = 1). Following the practice in the 
literature, assume that E(u 1, u 2 [x) = 0. Then 

E(y  Ix) = fl(x,/31), (19a) 

E(y]x,z = 1) =fl(x,/31) +E[ullx, L(x,/32) + u2 ~>0, Y] 

=-fl(X,/31) +g(x,/32, ~). (19b) 

The left-hand side of (19b) is identified by the sampling process. The 
parameter /31 is identified, hence E(y  Ix), if there exists only one value of 
(/31,/32, Y) solving (19b). 

The most widely applied model makes f l( ' )  and f2(') linear functions, (Ul, u2) 
statistically independent of x, and the distribution of (u 1, u2) normal with mean 
zero and unrestricted correlation; the variance of u I is unrestricted but that of 
u 2 is set equal to one as a normalization. In this case, 

E(y  Ix) = x'/31, (20a) 

E(y  Ix, z = 1) =x'/31 + y4~(x'/32)/Cb(x'/32), (20b) 

where 4~(') and q~(-) are the standard normal density and distribution functions 
and where 7 = E(uluz). Identification of/31 hinges on the fact that the linear 
function x'/31 and the nonlinear function y~(x'/32)/eb(x'/32) affect E(ylx, z = 1) 
in different ways. See Heckman (1976) or Maddala (1983). 

There is a common perception that the normal-linear model generalizes the 
model with conditionally independent disturbances. In fact, the two models are 
not nested. The normal-linear model permits u I and u 2 to be dependent but 
assumes linearity of [fl( ') ,  f2(')], normality of (u 1, u2), and independence of 
(ul, u2) from x. The model with conditionally independent disturbances 
assumes u 1 and u 2 to be independent conditional on x but does not restrict the 
distributions of u I and u 2. Nor does it restrict the form of [fl( ') ,  f2(')]. 

Index models. By the early 1980s, parametric models were increasingly 
criticized. Several articles reported that estimates of E ( y l x  ) obtained under 
the normal-linear model are sensitive to misspecification of the distribution of 
(ul, u2) conditional on x. Hurd (1979) showed the consequences of hetero- 
skedasticity; Arabmazar and Schmidt (1982) and Goldberger (1983) described 
the effect of nonnormality. Concern with this led to the development of a third 
type of latent-variable model. 

Let h(x) be a known index; that is, a many-to-one function of x. Assume that 
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f2(x) and the distribution of (ul, U2) vary with x only through h(x).  Then 

E (y  Ix) = f l ( x ) ,  (21a) 

E (y  Ix, z = 1) = fl(X) + E{u I Ix, f2[h(x)] + u 2 >/0} 

=-ft(x) + g[h(x)] . (21b) 

Let (~, p) denote a pair of points in the support of x such that h(~) = h(p) .  For 
each such pair, (21) implies that 

E (y  Ix = ~,z  = 1 ) -  E (y  Ix = p , z  = 1) = E(y  Ix = ~ ) -  E (y  Ix = p ) .  

(22) 

The left-hand side of (22) is identified by the sampling process; hence the 
difference E ( y l x  = ~) - E ( y l x  = p) is identified. 

The usefulness of this result depends on the size of the sets [(~, p): h(~)  = 
h(p)]. The index assumption with the greatest identifying power is that in 
which h(.) is constant on X; then (22) identifies E (y  Ix) up to an additive 
constant. At  the other extreme is the trivial case in which h(.) is one-to-one; 
then h(~)  = h(p)  ~ ~ = p and (22) is uninformative. 

The recent practice has been to impose an index assumption in combination 
with other restrictions. Robinson (1988) combines an index assumption with 
the functional-form assumption that f~ (.) is linear. In Ahn and Powell (1993), 
Powell (1987), Heckman and Honore  (1990), and Cosslett (1991), the index 
h(-) is not a priori known but assumptions are imposed that make h(.) 
nonparametrically estimable from data on (z, x). 

3.2. Statistical practices 

The competing-risks model applied in medical and quality-control research 
supposes that y and s are the random failure times for two components of a 
system and assumes that the system breaks down when the first component  
fails. In latent-variable notation, the model can be written 

y = fy(X) + Uy, (23a) 

s = f,(x) + u , ,  (23b) 

z = l [y  < s ]  = l[fy(X) + , y  <f~(x) + us]. (23c) 

This model has the same structure as the short-side model of markets in 
disequilibrium in econometrics (see Maddala, 1983). 

Whereas competing-risks models and econometric latent-variable models 
embody substantive theories of censoring processes, some statisticians ap- 
proach censored-sampling from a very different perspective: as a mixture 
problem, wherein P(y Ix, z = 1) and P(y Ix, z = 0) characterize two primitive 
populations and P(z lx  ) is the mixing distribution. In particular, Rubin (1987, 
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Section 6.2) supposes that one has prior information restricting the censored 
distribution P(y Ix, z = 0) to a class Fox of probability measures on y; thus (13) 
holds. He also suggests that one place a subjective probability distribution on 
the elements of Fox. This then induces a subjective distribution on the set 

[P(y Ix, z = 1)P(z = 1 Ix) + "/P(z = 0Ix  ), 3' E Fox ] 

of possible values of P(y Ix). 
Such Bayesian 'sensitivity analysis' is feasible only if the set Fox is sufficiently 

small; otherwise a subjective distribution cannot beplaced on FOx- The practice 
has been to make Fox finite or at most a finite dimensional set of distributions. 
The case of no prior information, in which Fox is the set of all distributions on 
y, has not received attention in the statistics literature. 

Two  world  views. Econometric latent-variable models and statistical mixture 
models express different ideas about the nature of the selection problem and 
imply different conclusions about the appropriate way to assert prior informa- 
tion. From the latent-variable-model perspective, the censored distribution is a 
derived quantity, not a primitive concept; hence, a researcher who thinks in 
latent-variable terms finds it difficult to judge the plausibility of restrictions 
imposed on P(y I x, z = 0). From the mixture model perspective, P(y Ix, z = 0) 
is a primitive so it is natural to assert prior information through restrictions on 
this distribution; mixture modellers find it difficult to interpret prior informa- 
tion stated as restrictions on latent variable models. The different world views 
expressed in latent-variable and mixture models have been aired recently in 
Wainer (1986, 1989). 

The conflicting econometric and statistical perspectives on the selection 
problem recalls a closely related conflict regarding the analysis of discrete data. 
Econometricians have typically asserted prior information through latent 
variable models of discrete choice. Many statisticians have imposed restrictions 
through the mixture model, referred to as discriminant analysis in that context. 
See Manski and McFadden (1981, pp. 4-6) for a discussion and references. 

4. Conclusion 

Twenty years ago few economists paid attention to the fact that selective 
observation of random sample data has implications for empirical analysis. 
Then the profession became sensitized to the selection problem. The hereto- 
fore maintained assumption, conditional independence of y and z, became a 
standard object of attack. For a while the normal-linear latent variable model 
became the standard 'solution' to the selection problem. But researchers soon 
became aware that this model does not solve the selection problem; it trades 
one set of assumptions for another. So econometricians sought to widen the 
menu of latent variable models. Recent work weakens the parametric assump- 
tions of the normal-linear model at the cost of imposing an index assumption. 
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During the same period, statisticians were struggling to deal with nonignor- 
able nonresponse. Those with failure-time applications developed competing 
risk models. Other statisticians came to think in mixture-model terms. 

The current diversity of approaches to the selection problem is unsurprising. 
Moreover, it will almost certainly persist. Censoring creates an identification 
problem. Identification depends on the prior knowledge a researcher is willing 
to assert in the application of interest. As researchers are heterogeneous in 
their applications and in their prior beliefs, so must be their perspectives on the 
selection problem. 

Econometricians and statisticians can assist empirical researchers by clarify- 
ing the nature of the selection problem and by widening the set of cases for 
which the inferential possibilities are understood. My own view is that both the 
econometrics and statistics literatures have overemphasized situations in which 
one has strong prior information. Empirical analysis should begin by determin- 
ing what one can learn from the data alone, in the absence of prior 
information. This done, then prior information may be brought to bear, in 
whatever form and strength as one believes appropriate in the application of 
interest. 
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General Nonparametric Regression Estimation and 
Testing in Econometrics 

A .  Ullah a n d  H .  D.  V i n o d  

1. Introduction 

Generalization of the familiar histogram called kernel and 'nearest neighbor' 
density estimation was pioneered by Rosenblatt (1956), and its applications to 
regression by Nadaraya (1964), Watson (1964), Stone (1977) and others. Major 
books on the subject include: Prakasa Rao (1983), Silverman (1986), Eubank 
(1988), Hasti and Tibshirani (1990) and Hardle (1990). Window widths, 
bandwidths or smoothing parameters denoted here by h, are a generalization 
of the widths of bars appearing in a histogram. The basic computer algorithm 
in nonparametric density estimation replaces an estimate of a density f(x) by a 
weighted sum, where weights can be complicated functions w(x, h) defined in 
Section 2 below. We use these weighted sums to unify the vast literature 
dealing with nonparametric estimation and inference. Our focus is beyond 
kernel based regressions and their derivatives, since these are covered in other 
surveys. We include discussions of testing and asymptotic properties in terms of 
a general class of estimators. Our unification keeps the discussion closely tied 
to a practical computation of weighted sums and hopes to attract computation- 
ally talented researchers. Computational pointers are included at the end of 
most sections to focus attention on practical results. 

We shall show that these methods have numerous applications in many areas 
including regressions, as shown by Gasser and Muller (1979a,b, 1984) and 
Ullah (1988a). Description of economic data often requires estimation of 
higher order moments and quantiles, which can be made richer with the help of 
nonparametric methods described in Section 3. We show in Section 4 that 
nonparametric weighted sums can offer truly flexible functional forms. For 
example, Vinod and Ullah (1988) consider what they call an 'amorphous 
regression' of y on x, with errors e. We consider the standard nonparametric 
regression model: 

y = m(x) + e .  (1.1) 

Typical assumptions on rn(x) are that it has an adequate number of derivatives. 
The regression function m(x) is completely amorphous, having no functional 
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form. It is defined simply as the expectation E(y Ix), and may be viewed in 
terms of the ratio of densities f(y,  x)/f(x). Hence, an estimate of rn(x) is 
feasible in terms of a ratio of weighted sums. Thus, nonparametric methods 
involving weighted sums are feasible in the estimation of the regression 
function m(x) and with a bit more work, in the computation of the partial 
derivatives of re(x) with respect to the regressors. 

Econometrics is concerned with computation of marginal productivities, 
elasticities, etc. which are related to partial derivatives of re(x). The initial 
appeal of these nonparametric estimators is that one need not specify the 
functional forms of re(x) to estimate the partials of E(y Ix) with respect to x. 
One can compute analytical expressions of the derivatives of the ratios of 
weighted sums mentioned above, or numerical approximations, Gasser and 
Muller (1979b). When this possibility was presented at the Rutgers productivity 
conference in 1985 by one of us, the questions asked were: How can one 
estimate a relationships without specifying functional forms? Can empirical 
econometrics be really free from a need to specify functional forms and testing 
for specification errors? Independent of our work in Vinod and Ullah (1988), 
Powell, Stock and Stoker (1986), among others, proposed estimating a 
weighted average of derivatives. Recently, an application to household Engel 
curve estimation is reviewed with comments in Bierens and Pott-Buter (1990). 
We will mention many more applications later. When one starts with a known 
arbitrary functional form and a small data sample and compares several kernel 
type estimators, there are no clear winners, and the performance of non- 
parametric derivative estimators can be erratic. By now, we are aware of many 
informal comparisons, including some by our students. We shall indicate the 
current state of knowledge as well as challenging problems in this area, 
including the so-called curse of dimensionality. Our tentative conclusion is that 
empirical econometrics cannot be free from parametric forms, especially for 
small sample sizes with dependent observations and several regressors. A 
fruitful rote for nonparametrics appears to be to piggyback on the parametric 
methods and see whether further progress can be made toward capturing any 
missing features. 

We note that the performance of nonparametric methods in the estimation 
m(x) itself, if not its derivatives, is now well established. To illustrate 
estimation of re(x), let us consider Canadian data on earnings versus age. For 
data sources see Ullah (1985) and Ullah and Vinod (1988). Figure 1 plots the 
natural log of earnings (Yi) against age (xi) for the 205 observations as dotted 
line. We have joined the scatter of points so that they are not missed visually. 
One can see that there is a reduction in earnings associated with an increase in 
age beyond 50, which may be called drooping. The linear regression estimator 
shown by a line interspersed with squares does not capture the drooping of 
earnings at high (or low) values of the age. The line with triangles depicts a 
kernel estimator, which does show some drooping. Toward the end of Section 
2 we mention a compromise estimator from Ullah and Vinod (1991), which 
hopes to combine the advantages of parametric and nonparametric methods, 
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Fig. 1. Canadian cross section, log of earnings (dotted line), OLS forecasts (dotted line with 
squares), nonparametfic and compromise forecasts (solid lines with triangles and bullets, respec- 

tively). 

and includes a quadratica and a cubic. A line with circles which droops even 
further than the kernel estimator illustrates the compromise estimator. More  
work is needed to attempt boundary correction methods from Rice (1984) or 
Hall and Wehrly (1991). 

Nonparametr ic  estimation of variance of residuals from any parametric 
model can help recover what is missed by the parametric model, and possibly 
refine statistical inference. As is well known, the Bo x -Co x  transformation is a 
generalization of the commonly used logarithmic transformation. These have 
been further generalized to achieve normality of the sampling distribution and 
homoscedasticity of errors, at the cost of further computational burden. We 
review these and additive models along with a systematic summary of finite 
sample properties of nonparametric estimators and misspecification tests. 

In summary, we ask: Why study nonparametric smoothing methods? 
Because they offer versatility and flexibility in estimation and forecasting - one 
does not need to specify functional forms. These methods include powerful 
tools for exploratory analysis, improving the parametric fit and for locating the 
outliers and missing observations. Why do they work? Because they use local 
smoothing and because the theory reviewed here demonstrates so. What  does 
not work? They fail when there are too many regressors and /or  too few 
observations. What is the main context of this study? We are concerned with 
econometric applications where the design is random since the data are 
passively observed. 
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2. Nonparametric model and estimators 

Let  us consider q = p + 1 economic variables (Y, X ' )  where Y is the dependent  
variable and X is a p x 1 vector of regressors. These p variables are completely 
determined by their unknown joint density f ( y ,  x l , . . .  , x p ) = f ( y , x )  at the 
points y, x. Then the nonparametric regression model can be expressed as 

Y = m(x) + U ,  (2.1) 

where re(x) = E ( Y I X  = x) provided ElY I < ~ and U represents errors. The 
term nonparametric is used because we are not necessarily writing m(x) as 

P fl0 + E/=I fijx/ with parameters /3/, or some other parametric functional form. 
The function m(x) can be highly nonlinear and is not assumed to be expressible 
in some parametric form. However,  we require re(x) to have p continuous 
derivatives (i.e., it is smooth) compared to the errors U. 

Now suppose that we have data (Yi, x;) (i = 1 , . . .  , n) upon (1 x q) vector 
(Y, X ' ) ,  where x i is a p x 1 vector of variables and Yi is a scalar. Then from 
(2.1) 

Yi = m(xi) + ui , (2.2) 

where the error term u i has the properties E(u i [xi) = 0 and 2 E(ui [ xi) = o-2(x/). 
Throughout  this paper capital letters Y, X etc. will be population random 
variables, lower case letters y~, x~ will be sample (data) random variables, and 
y, x without a subscript will be certain fixed points whose ranges of values are 
the same as those of Y and X, respectively. We also assume throughout,  that 
y~, x~, u i are either iid ( independent and identically distributed) or stationary 
for dependent  data. 

The aim of nonparametric estimation of m(x) in (2.1) is to approximate m(x) 
arbitrarily closely, given a large enough sample. This can be accomplished by a 
simple observation that the estimation of re(x) implies the estimation of the 
population mean of Y when X = x. This is given by a general class of linear 
nonparametric estimators, essentially the weighted mean of Yi, as 

th(x) = £ Wni(X)yl , (2.3) 
i = 1  

where Wni(X ) : Wn(Xi, X) represents the weight assigned to the i-th observation 
yi, and it depends on the distance of x~ from the point x. Usually, the weight is 
high if the distance is small and low if the distance is large. If the weights are 
such that w,,(x)>i 0 and E w,,(x)= 1 then they may be called 'probability 
weights'. The conditions on weights wn~ which ensure consistency and asymp- 
totic normality are given in Section 7.4. 

For fixed x, let re(x) be regarded as a single unknown parameter  m. Now the 
estimator rh(x) in (2.3) can be seen to be the minimizer of the weighted sum of 
squares Ei~ 1 Wni (X ) ( y  i --  m) 2, where E wni(x ) = 1. Hence,  the estimator rh is a 
weighted least squares estimator. 
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2.1. Special cases o f  rh 

A large class of nonparametric estimators are special cases of (2.3). They differ 
mainly with respect to choice of wnl. Some are developed for the case of 
nonstochastic (fixed) design X,  even though econometric applications usually 
have random X's.  For example, for a fixed design x~ = i /n or x~ = (i - 0.5)/n, 
(i = 1 . . . .  , n), x i are evenly distributed over an interval, which may be taken 
to be [0, 1], without loss of generality. It is important for asymptotic results 
that Ix i -X i_ l l  = O(1/n). 

(i) Nadaraya-Watson (NW)  kernel estimator. The kernel is a continuous, 
bounded function which integrates to one, S K(u) du = 1. For Nadaraya (1964) 
and Watson (1964) estimator the choice of wn~ in rh is 

( X / X i _  x n ( ~ )  
Wni(X) = K \ T ] / Z  g , (2 .4)  

~i= 1 

where K(-) is a kernel function with a scale factor h = h n ~ 0 as n ~ ~ is the 
window width. This is one of the most well-known estimators and it was 
developed by estimating m(x) = S Yf(Y Ix) dy by using a nonparametric density 
estimator for f ( y  Ix). Its properties for the fixed design case have been 
explored in Gasser and Muller (1979a), Gasser and Engel (1990) and Chu 
(1989). Usually the kernel is chosen as a density function which integrates to 
one, e.g., normal. Higher order kernels are often useful in providing estimates 
with less bias. Let p denote the number of regressors comprising x. The choice 
of h which minimizes the approximate mean squared error (MSE) of th is 
OCn -1/(p+4) Useful choices of h are obtained by using the leave-one-out or 
cross validation procedure of Wahba (1975, 1981) and iterative plug-in 
methods recently mentioned in Gasser et al. (1991). 

If h = h; in (2.4) is a sequence of positive numbers, then (2.4) leads to 
recursive kernel estimators studied by Devroye and Wagner (1980) and Singh 
and Ullah (1986). Further if K(.) in (2.4) is replaced by hS~qK[(xi- x)lhi] we 
get the recursive estimators due to Ahmand and Lin (1976). For details on the 
properties of NW and recursive estimators, see the review by Ullah (1988b) 
and the books by Eubank (1988) and Hardle (1990). 

(ii) Mack and Muller (MM) estimator. Mack and Muller (1989) noted that 
the denominator of NW weight depends on x. This leads to complicated higher 
order derivatives of rh(x) with respect to x. More importantly, it can lead to 
unstable and poorer estimates. Thus they developed the estimator of m(x)= 
.[ y*f(y*,  x) dy*, where y* = y/ f(x) ,  by using nonparametric density estimator 
of f ( y* ,  x). This gives the weights as 

Wni(X)__ ] 1  (f@X_) nh p f(x~) K , (2.5) 

where the denominator does not have f(x),  evaluated at the fixed point x. In 
Practice, the f(x~) evaluated at the sample value is replaced by its kernel 
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estimate: 

f (x i )  = (1 /nh  p) k K(h- l [x j  - xi l)  . (2.6) 
j - 1  

This is just the NW estimator evaluated at f (x i )  rather than at f ( x )  and would 
have to be estimated for each sample value. Obtaining the derivatives of rh(x) 
with the weight (2.5) would need the explicit derivatives of K ( h - l [ x i - x ] )  
only. This is because f (x i )  or its estimate is evaluated at x i not x. This is an 
advantage compared to (2.4) for the NW estimator, where the denominator is 
evaluated at x. 

(iii) k-nearest neighbor ( N N )  estimator. The general NN estimator of m was 
proposed by Royall (1966), Stone (1977), Mack (1981) for the random design 
case. The wni for this estimator is )/n 

( x i - x K {  Xi - x'~ 
w, .(x)  = K ~ Z (2.7) 

. . ~,-~=, \ kn ) '  

where K(.) is a bounded, nonnegative kernel functions with compact support, 
satisfying K(O)=0 ,  for I1 ,11 > 1. The notation k n is the Euclidian distance 
between x and its k-th nearest neighbor among the xi and k = k n satisfies 
k n ~ ~ as n ~ ~. Here k is the smoothing parameter similar to h in the NW 
estimator. 

Stone (1977) considers the estimator rh in (2.3) where the wn~ are uniform, 
quadratic and triangular. Uniform weights lead to one among the well-known 
NN estimators. For the choice of k and the properties of NN estimator, see 
Mack (1981), Stone (1977) among others. 

(iv) A h m a d - L i n  estimator. The Ahmad and Lin (1984) estimator of m was 
proposed in the context of fixed design x~, and it is given by 

wn,(x) = K h-------7- , (2.8) 

where A ~ , . . .  , A  n are partitions of the space defined by closed intervals 
A = [0, 1] p into n regions such that the volume A(Ai) is of order n -1, K(-) is a 
p-dimensional bounded density, h = h n is a sequence of real numbers converg- 
ing to zero as n-->% and x ~ E A  i. If p = l  and we select A~=(Xi_x,X~)  , 
i = l , . . . , n  where 0 = x  0 < x ~ < - . . < x ~ = l ,  (2.8) reduces to the weight 
proposed earlier by Priestley and Chao (1972). For the properties of this 
estimator, see Ahmad and Lin (1984). 

(v) Gasser-Mul ler  ( G M )  estimator. This estimator was also developed for 
the fixed design case, and is closely related to the Priestley-Chao estimator 
mentioned above. It is applicable to random designs subject to regularity 
conditions. The weights for this estimator are 

w.i(x) = ~ 7  K du , (2.9) 
i 
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where At, K(-) and h = h ,  are as defined in (2.6). For p = 1 we let A t = 
(Si 1, Si), where S t = (x i + xt+l)/2 is the mid point. For properties and details 
about this estimator, see Gasser and Muller (1979a,b, 1984), Ahmad and Lin 
(1984) and Georgiev (1984). For the applications, see Gasser and Muller 
(1984). 

(vi) Weights for other estimators. There is a large class of weights w,i(x ) and 
hence rh(x) available in the literature. For example, Yang (1981) considered 
the symmetrized NN estimator where wni is the same as in NW or NN 
estimator except that x t and x in their definitions are replaced by the empirical 
distributions F,(xt) and F,(x), respectively. Silverman (1984) shows that the 
smoothing spline estimators due to Reinsch (1967) are approximately the rh(x), 
(2.4) with w,i(x)=(nh(xi))-lK(xi-x)/h(xi), where h(xt)a(f(xi)) -1/4. Rice 
(1984) and more recently Ryu (1990) use the variable kernels K(x, xt) 

n M(n) / 

Wni(X)= K(x, x i ) / ~  K(x, xi), where K(x, xi)-- ~ V m ( X ) V m ( X t )  , 
_ m = o  

(2.10) 

where Pro(x) are orthogonal polynomials and the upper limit M(n) depends on 
n. For details on some of these estimators, see Hardle (1990) and Pagan and 
Ullah (1990). 

(vii) Other estimators of m(x) (parametric and semi-parametric). In econo- 
metrics, there is an extensive literature on the approximation of m(x) by a 
suitable parametric form; see Lau (1985) for a detailed survey. In recent years, 
the method of sieves, see German and Hwang (1982), has become an 
important tool for approximating unknown functions like re(x). According to 
this method, which is similar to (2.10), the object of interest lies in a general 
(non necessarily finite) space, and m(x) is approximated by using a sequence of 
parametric models in which the dimensionality of the parameter space grows 
along with the sample size n. To succeed, the approximating parametric models 
must be capable of providing an arbitrarily accurate approximation to the 
elements of general space as the underlying parameter space grows. Among 
useful practical procedures used in this context are Fourier series, see Gallant 
and Nychka (1987). Ryu (1990) provides a maximum entropy interpretation of 
the Fourier series approximation. Another method with universal approxi- 
mation properties is that of multi-layer feed-forward network functions 
considered in White (1990). 

In many econometric models, the problem of nonparametric estimation 
arises in the models of the form 

Yi  = m ( z i )  q- Ui , w h e r e  z i ~. xt i /3 . (2.11) 

Note that z i is known as a single index variable. The models of this type are 
called semi-nonparametric or semi-parametric because z i depends on the 
parameter vector /3. Some initial value of/3 is needed in order to estimate 
these models with the help of nonparametric estimator rh in (2.2). The 
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examples of models which can be of the form (2.11) are macro models with 
expectation variables, discrete choice models and sample selectivity models, 
among others. For details on semiparametric models, see the survey by 
Robinson (1987). 

Other  types of semi-parametric estimators arise in the models where re(x)  = 
x'/3, or yi = x'i/3 + ui, but the form of heteroscedasticity and /or  autocorrelation 
structure of u~ is unknown. The autocorrelation structures have been estimated 
nonparametrically by using the estimators given in Section 3. Usually, an 
estimator of/3 has x/~ convergence in these models. For details regarding the 
heteroscedasticity case see Carroll (1982), and for the autocorrelation case see 
Altman (1990). 

A semi-parametric estimator of re(x)  can be developed on the lines of Olkin 
and Spiegelman (1987) semiparametric density estimation. Essentially, one 
forms the estimator of re(x)  as a convex combination of the parametric 
ordinary least squares estimator x'/~, (where/3 = ( f f f , f f ) - i  ~ ,y ,  where X is the 
matrix of regressors) and the nonparametric estimator rh(x)= E w, , ( x ) y  i of 
(2.4). This gives an estimator detailed in Ullah and Vinod (1991) and 
illustrated in Figure 1. We have 

rh(x, A) = (1 - A)x'/~ + Ath(x) = ~ wn~(x , A)y~, 
i = 1  

(2.12) 

where w, i (x  , A) = (1 - A)ai(x ) + Awni(x),  where ai(x ) is the i-th element of the 
p x 1 vector x(R '2 ) -12  '. Observe that wni(x, A) and hence th(x, A) is a special 
form of the general nonparametric estimators studied here. However ,  we can 
call it semi-parametric because X is an unknown parameter.  The parameter  A 
can be chosen so as to minimize the error sum of squares: 

[y, - th(x, A)] 2 = ~ [y, - (1 - A)x'/3 - Ath(x)l 2 . 
i = 1  i = 1  

(2.13) 

The solution to the minimization is obtained simply by least squares regression: 

(yi - x'~/3) = A(th(xi) - x~/3) + u~ (2.14) 

which is 

- x i / 3 ) ( m ( x i )  - x ' i~)  (2.15) x _  E ( y i  
E - x:B) 2 ' 

where the summation ranges from i = 1 to n, and where we assume that 
rh(xi)  C x ' i~ with probability 1. Indeed substitution of A in (2.12) gives a data 
dependent  m(x) = E win(x, ~.)Yi. Stainswalis and Severini (1991) discuss further 
techniques for detection of global and local lack of fit in the regression content. 
Computer  programming for the section involves simple weighted sums as in 
(2.3) with weights from equations similar to (2.6). One can use a standard 
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regression package to estimate the parameter A of (2.15) after computing the 
variables defined in (2.14). 

3. Estimation of higher order moments and quantiles 

Let g(Y) be a smooth function such that EIg(Y)[ < ~. Let M(x) = E(g(Y)[X= 
x) be the conditional mean of g(Y) given X =  x. Then a general linear 
(nonparametric) estimator of M(x) can be written in the same way as rh(x) in 
(2.3) and it is given by 

JVl(x) = ~ w m(x)g( yi) , (3.1) 
i=1 

where the weights wni(x ) are as discussed above. 
When g(Y)= y2, M(x) in (3.1) gives the nonparametric estimate of the 

second conditional moment around the origin. The estimator of the second 
central moment of Y, I?(YI X),  can then be obtained as V ( Y I X  = x) = 2f/l(x) - 
rhZ(x), where rh(x) is as in (2.3). This estimator is useful in analyzing 
conditional heteroscedasticity. Nonparametric estimators of higher order 
moments and conditional covariances can be similarly obtained. 

Often, in practice, one is interested in estimating the median (50-th 
percentile) of the conditional distribution, instead of its mean re(x). Let the 
a-quantile of the conditional distribution of Y given X =  x be %(x), which is 
the solution of 

F(% (x) Ix) = P(Y ~< q, (x) Ix) f (y  Ix) dy 

The nonparametric estimator of %(x) is 0~(x) which solves 

fY 
P(0~(x) Ix) = a ,  where P = -=)~(Y Ix) dy.  (3.2) 

Note that P is the estimator of F(y Ix) and )~(y Ix) can be obtained by kernel 
or NN density estimators, see Stone (1977). Samanta (1989) suggests the use of 
a kernel estimator and has studied the consistency and asymptotic normality of 
the estimator. Bhattacharya and Gangopadhyay (1990) have obtained the 
estimator using both kernel and NN estimators of the conditional density. They 
have studied the asymptotic properties and the choices of smoothing parame- 
ters. The numerical computation of variances etc. requires expressions con- 
taining weighted sums. For econometric applications and a workable computer 
algorithm for quantiles see Magee et al. (1991). 
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4. Estimation of derivatives 

Let us write the s-th order derivative of m(x) with respect to the j-th x variable 
as 

°Sm(x) 
Ox; ' s = 0 , 1 , 2 , . . . ,  (4.1) 

where 13~°)(x) = m(x) = m ( x : , . . . ,  xp), and for s = 1, /3~:)(x) = Om(x)/Oxj is the 
j-th response coefficient. 

The s-th order average derivative is given by 

3! s) = E(/3~S)(x)) = f [3~S)(x)f(x) dx (4.2) 1 

In practice, the first order partial derivative provides information regarding 
the regression coefficients. Second order partial derivatives provide informa- 
tion regarding curvature properties, cross elasticities, etc. For example, if re(x) 
is the production function with p-inputs, one can study convexity, interdepend- 
ence and cross elasticities of inputs. Finally the average derivatives may be 
useful for estimation of single index models, see Hardle and Stoker (1989). 

The nonparametric estimates of ]3~')(x) can be obtained by simply replacing 
re(x) by rh(x)= E w,(x)y r Thus 

= w,; (x)y;, (4.3) 
i=l 

where w,;" (~/is the s-th order derivative of wni(x ) with respect to xj. (4.3) can be 
written easily for the special cases of wn; given in (2.1). Details for the NW 
weights are given by Ullah (1988a, 1988b). For s = 1 see Vinod and Ullah 
(1988) and an application to s = 2 case is in McMillan et al. (1989). 

The average derivative ,_jB9 ) = E fl~')(x) can be estimated by 

i__~1 A(s)" \ (4.4) 
~(s) i " 
'-J = n =  PJ txi)" 

The asymptotic properties of this are given in Rilstone (1991). Fan (1990a) 
considers the estimator of average derivative based on Mack-Muller  weight in 
(2.5). Her  estimator is 

1 N 
i--~1 " (s) t~(s) = ~ BMM(X/) (4.5) 

t ' F  " =  • 

It has been shown by Fan (1990a) that for s = 1 her average derivative 
estimator is identical with the average derivative estimator of Hardle and 
Stoker (1989), which is 

;,(:), , 1 ~ --f(:)(xi) (4.6) 
t ~ " s t X ) = - n ; = l  f(xi) Yi , 
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where jr(x) is the kernel density estimator. Note that, under the boundary 
assumption, f ( x )  vanishes on its boundary of support. Hardle and Stoker 
(1989) first show that E / 3 ( 1 ) ( x ) f ( x ) d x  = - E ( f ( 1 ) ( x ) y / f ( x ) )  and then estimate it 
by (4.6). In contrast, Fan's (1990a) derivation is straightforward and does not 

. . . ~ (s) ^ (~) 
need the boundary condmon.  A comparison of /3  Nw and/3  MM would be useful 
in the present context. Typical computer programming for this section involves 
equations (4.3) and (4.4). 

5 .  E s t i m a t i o n  o f  e r r o r  v a r i a n c e  

Let  us consider the nonparametric model y~ = m ( x ~ ) +  u~ from (2.2), where 
E u  i = 0 and Eu 2 = o -2. Then the question is: what is an optimal estimate of 0-2? 
For this purpose let us rewrite the model in vector notation as 

y = m  + u ,  (5.1) 

where y, u and m = [ m l ,  . . . , mn]' are each n x 1 vectors. Further,  using 

th(Xi) = ~ Wnj(Xi)Yj 
j = l  

yields 

ft = y - th = y - W y  = ( I -  W ) y  , 

where W is an n x n matrix of smoothing elements % / ( x i ) =  w/(x~), i, j = 
1 , . . . ,  n. An obvious estimator of o -2 is 

2 Ct'ft y ' M y  
6- tr(M) tr(M) ' where M = ( I -  W) 2 . (5.2) 

Note that the M in (5.2) is a stochastic matrix of weights. However ,  if the x i 
are fixed design variables, or if we consider conditioning on random x i then M 
will be nonstochastic. Buckley et al. (1988), under the assumption of normality 
of errors u, provide the optimal M which minimizes the MSE of 6 -2. The 
expressions for the optimal M are, however, quite involved and they depend 
on the moments of u. Ullah and Zinde-Walsh (1992) have extended the 
Buckley et al. results for the non-normal errors u. 

Recently Hall and Marron (1990) considered the estimation 6-2 in (5.2) in a 
special case where the weights wj(xi)  are NW weights as given in (2.4). For  this 
case they derived the approximate bias and variance of 6-2 and showed that the 
optimal window width h which minimizes MSE is proportional t o  n -2/9 instead 
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of usual h ocn -1/5 if m has two derivatives a n d p  = 1. For the kernels with r - 1 
moments zero, the optimal h czn -2/(4r+1). 

Another  point is that the MSE of 6 .2 is of the usual O(n-1).  This is despite 
the fact that the MSE of rhNw is known to have a slow speed of convergence. 
The intuitive reason for 6.2 to be of O(n -a) is that it is an average over n values 
and hence it further smooths out the rhNw. Computer  programming for this 
section would involve equation (5.2). 

6. Nonparametric regression with a generalized Box-Cox transformation 

The Box and Cox (1964) family of power transformation, familiar in economet- 
rics, has been recently generalized by introducing certain computer  intensive 
methods. For further discussion of econometric applications see Maddala 
(1977, pp. 316-317). The purpose of the Box-Cox  transformation in the 
regression context is to achieve a close approximation to normality, linearity 
and homoscedasticity. The Box-Cox  transformation is defined as 

, = ~X~-'[(z,+hz) . 1 -  1] if h i > 0  , (6.1) 
f~ = zt [ g  ln(z t + h2) if h I = 0 ,  

where h 2 is a number added to the data before the transformation (usually 
h 2 = 0), g is the sample geometric mean of (z  t + h2), h 1 governs the strength 
(power) of the transformation such that when h 1 = 1 we simply use the original 
data without any transformation. When hi = 0, this is the usual logarithmic 
transformation. The Box-Cox  transformation is well defined for z t > 0 .  
Econometrics texts usually consider the special case z*  = f z  = ( z ~ -  1 ) /h .  In 
typical applications when y is regressed on xl ,  x 2 , . . . ,  Xp one computes y* and 
x~ for all i with an additive model 

P 

y*  = X * f i  + u = ~'~ f ( x i )~g  + u ,  u ~ N(0, ~r2I) (6.2) 
i - 1  

in an obvious notation where an aim of the transformation f is to achieve 
normality and homoscedasticity. In econometrics it is common to use y * =  
J?/3 + u, where only the dependent variable is transformed. If a common A is 
used in defining all variables bearing the superscript *, only one additional 
parameter  A needs to be estimated by a version of the maximum likelihood 
methods. 

Friedman and Struetzle (1981) introduced a generalization of the linear 
regression model called the projection pursuit (PP) 

p 

E(Y) = ~ fii(xi, a i ) ,  (6.3) 
i - 1  

where we have 13i as the functions f ,  which are not necessarily linear but 
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unspecified, and where the a i are unit vectors representing the so-called 
directions. It is the presence of these directions a i which require us to use a 
notation different from f .  The computer intensive PP algorithm is difficult to 
describe intuitively, except to say that it searches over all possible unit 
directions and chooses the functions /3 and estimated directions ~i that 
minimize the error sum of squares. From the first round residuals the algorithm 
selects the next best direction and functions. It stops when further improve- 
ment in the fit defined in terms of residual sum of squares is negligible. Note 
that OLS is a special case because least squares algorithm finds the best 
direction and the best linear function of that direction. Hence the proponents 
of PP argue that adding another linear term will not improve matters. Hastie 
and Tibshirani (1987) apply bootstrap methods to show that in one example, 
the second direction found by the PP algorithm is quite unstable. 

Instead of using (6.1) one can use arbitrary smooth transformations f//(xi) 
based on the scatterplot of the data. Cleveland (1979) and Cleveland and 
Devlin (1988) devised a powerful scatterplot smoothing algorithm and Cleve- 
land et al. (1988) illustrate it with social science applications. This may be 
interpreted as a kernel estimator, Muller (1987), and provides an attractive 
alternative, because its sampling theory is very close to that of ordinary 
regression. 

Breiman and Friedman (1985) proposed a generalization of Box-Cox model 
called the alternating conditional expectation (ACE) algorithm. Given two 
random variables X and Y the ACE algorithm finds the best transformations fx 
and fy that maximize the ordinary correlation between fx and fy such that 
homoscedasticity is achieved in the sense that the variance fy = 1. An equiva- 
lent formulation of ACE is to minimize E( fy- fx)  2 subject to var(fy)= 1. 
Unlike Box-Cox, ACE is obviously symmetric in X and Y and hence more 
suitable for a correlation rather than regression framework. Recently additivity 
is emphasized and the normality requirement is dropped by Tibshirani's (1988) 
additive variance stabilization (AVAS) algorithm. The AVAS algorithm exploits 
the power of modern computers for numerical implementation of the following 
well-known asymptotic variance stabilization formula from elementary statis- 
tics, Kendall and Stuart (1977, Ex. 16.18). Let the variance of a statistic t 
based on n observations be a function of the unknown parameter 0, var(t) = 
f(O)/n + o(n-1). We seek a transformation g(t) such that var(g(t))= 1/n + 
o(n -1) replacing f(O) by unity. The solution is 

--f g(t) d O / ~ / ~  (6.4) 

The AVAS algorithm starts by standardizing all variables to make mean zero 
and variance unity. When there is only one regressor, AVAS iteratively 
standardizes the Y conditional on X, stabilizes its variance and standardizes 
again until R z does not change very much. When more regressors are present, 
one needs to loop over them by an inner loop similar to the backfitting 



98 A. Ullah and H. D. Vinod 

algorithm used in ACE. Although additivity implies the absence of interaction 
terms, it is shown by Hastie and Tibshirani (1986, p. 315) that simple 
interactions involving cross products xix j or ~(xi)fj(xj)  can be incorporated as 
additional additive terms. 

For potential econometric applications Andrews and Whang (1991) study 
interactive spline models in the literature, Wahba (1986), after renaming them 
as additive interactive regression (AIR) models. Unlike the interactive spline, 
the AIR  models can be computed using standard statistical software. Both 
models appear to resolve the 'curse of dimensionality' which plagues almost all 
nonparametric regression methods. Additive regression models discussed by 
Stone (1985) do not permit interactions. Assuming that the regression function 
is twice differentiable, Stone (1985) shows that the fastest possible rate of 
convergence in L q n o r m  with 0 < q < ~ is n 2/(4+p) where p is the number of 
regressors. The idea behind additive regression and AIR models is to estimate 
several lower dimensional surfaces instead of one large dimensional surface. 
Stone (1985) proved that a convergence rate for p > 1 can be improved to the 
rate for p = 1, if the additive regression model is valid. Chen (1988) proved 
that even after allowing for certain types of interactions among the regressors, 
the convergence rate for p > 1 is no worse than that for p = 1. Chen's proof 
requires that assumption of independent and identically distributed (lid) errors 
and a tensor product design for regressors. The AIR  model is of the form (2.2) 
with 

A B(a) 

m(xi)  = ~ E mab(Xi), (6.5) 
a= l  b=l  

where mab(Xi) is an unknown function of the observable elements x i = 
( x i l , X i e , . . .  ,xip)'. The first subscript a ranges over 1, 2 , . . . ,  A counts the 
number of elements of x i included in the function, with both A and B(a) <~p. 
For example, mlb(Xi3 ) has a = 1, and is a function of xg3 only. Similarly, 
m3b(Xi2 , Xi3 , Xi4 ) is a function of a = 3 components of x~. The range of the 
second subscript b = 1 , . . . ,  B(a) can be different for each a by an appropriate 
choice of B(a).  When all possible combinations are considered, B ( a ) = p  t~ 
[a ! (p - a) !]. Usually B(a) ~ p ! / [a ! (p - a) !]. Andrews (1991) suggests a series 
estimator which approximates mab by a finite series expansion containing kab 
terms in a weighted sum having weights as parameters to be estimated. 

kab 
mab(X?) = Z OabcZabc(X~), ( 6 . 6 )  

c= l  

where x~ represents the same subset of x i containing the same number a of 
elements and where Zab c belongs to a known 'series'. For example, it may be a 
polynomial, trigonometric or Fourier flexible form (FFF) of Gallant (see 
Gallant and Souza, 1991, for references). An AIR model of order 2 with p = 3 
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is illustrated by 

m ( x i l ,  x i2,  m i 3 )  = m l ( X i l  ) -1- m2(x i2  ) --}- m3(x i3  ) 

n t- ml2(Xi lXi2  ) -I- m13(x i l x i3  ) -1- m23(xi2xi3  ) . 

Partially linear regression (PLR) model considered by Chamberlain (1986), 
Wahba (1986), Rice (1986), Speckman (1988) and Robinson (1988), among 
others, can also mitigate the cure of dimensionality. This is a special case of 
(6.5) and it can be written as 

m ( x i )  = X'ai~ + mv(Xbi) , (6.7) 

where mb(Xbi ) is an unknown function of Xbr Chamberlain (1986) and 
Robinson (1988) are concerned with x/B consistent estimation of/3. 

Semiparametric index regression (SIR) models have been suggested by Ruud 
(1986) and Stoker (1986) as in (2.11). Unfortunately a comparative study of 
the various proposals, in conjunction with the various scatterplot smoothers by 
Cleveland (1979), Cleveland and Devlin (1988) and others mentioned before, 
is missing from the literature. This may be because it will involve a massive 
simulation and computer programming effort. Asymptotic and finite sample 
properties provide a useful guidance, pending such a study. Computer 
programs for PP, ACE, AVAS, and scatterplot smoothers are readily available 
in the S computer language from the Bell Laboratories. 

7. Finite sample properties 

We shall consider the finite sample properties of the estimator rh when x is 
nonstochastic and when it is stochastic. These results are useful in determining 
window width and weight functions. It is easy to verify that when x is fixed and 
u i is iid (0, o -2) then the exact bias and variance of rh are 

Bias(rh) = Erh - m = Wni(m i -- m )  + m Wni -- 1 
i=1 

(7.1) 

and 

V(rn) =o'2 k w Z i = o - Z / n ( x ) ,  (7.2) 
i - 1  

where n(x)  = (2i= a 2 -1 n wni) . For a fixed sample, n(x)  can be used to compare the 
precision of various estimators. The bias and variance of the s-th derivative 
estimator /3(s) can be similarly written by replacing wni with " (s) gl/ni . 
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When u i is a stationary time series process with 7i = cov(ui, ug_j), then 

n-1  

V(rh)=o'2/n(x)+ 2 ~ ~ WniWnjTi_ j . (7.3) 
j = l  i = j + l  

This implies that if we use positive w, then V(rh) for dependent observations is 
greater than that for the independent observations case when the 7j- is positive, 
and smaller when the 7j is negative. Further the V(rh) and hence the MSE (rh) 
increases with the increase in the serial correlation of observations. 

In a recent work Ullah (1992), for fixed x, has obtained the exact as well as 
approximate density of 

th(x) - Erh(x) 
zn(x ) - [V(rh(x))]l/2 (7.4) 

under the assumption that u i in (2.2) follows an Edgeworth or Gram-Charl ier  
density. This result also provides correction terms for the well-known asymp- 
totic normality of z n. When X is random the exact density is difficult to obtain. 
However, under the assumption of normal or spherical density of u, Ullah 
(1989) has shown that the exact distribution of z n is N(0, 1) and S(0, 1), 
respectively. Results based on the assumption that u is a mixture of normals 
have also been obtained. Although these results are based on the parametric 
assumptions of u, they would provide benchmarks for any Monte Carlo study 
in this area. 

The exact results above, especially for the bias term, are not of much help in 
determining the optimal w. Approximation of these results are useful and have 
been studied by Jennen-Steinmetz and Gasser (1988), Chu (1989) and Gasser 
and Engel (1990). No result exists for rh in (2.3) with general wn~. Jennen- 
Steinmetz and Gasser (1988) and Chu (1989) have considered rh with w given 
by kernel weights, spline smoothing weights and NN weights. Under the 
assumptions that (i) rn is twice continuously differentiable, (ii) weights are 
symmetric with finite second moment, (iii) weights and m are Holder-continu- 
ous (iv) h = hn---> 0 and nh ~ ~ as n---> ~, they show that for the fixed X and 
p = 1 case 

h 2 ix2(w)m(2)(x) _ O(h a) 
Bias(rh) = 2 (f(x)) 2~ 

V( rh ) -  o- g(w) 0 (7.5) 
n h  ( f ( x ) )  1 o ' 

where ~ ( w )  = f tZw(t) dt, g(w) = f wZ(t) dt, and oz = 0, ¼, 1 for kernel, spline 
smoothing and NN weights. Recently, many authors, e.g., Staniswalis and 
Severini (1991), use an approximation to the integrated mean squared error 
(IMSE) = f [(Bias) 2 + variance] dx instead of considering the bias and variance 
separately. 
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When X is stochastic, an additional assumption nh/(log n)---~ ~ as n---~ ~ is 
needed. In this case there is no unified formula for the bias and variance of 
kernel, NN and spline smoothing as in (7.5). Among kernel weights the results 
for the NW and GM are quite different. These are, from Jennen-Steinmetz and 
Gasser (1988), 

h 2 m~a)(x) 
Bias(rh)~M 2 tz2(w ) ' 

o-2g(w) 
V(rh)c M = C nhf(x-~-) " (7.6) 

where the factor C equals 1 for the fixed and 1.5 for a random design. For 
s i = xi instead of s~ = (x~ + x~+1)/2, the C in the variance formula is 2. For the 
NW estimator, Gasser and Engel (1990) show that 

h 2 
Bias(rh)N w = -~- ~(w)[½m~Z)(x) + m ° ) ( x ) f ° ) ( x ) / f ( x ) ] ,  

V(rh)N w = o-2g(w)/nhf(x), (7.7) 

also see Collomb (1981) and Singh et al. (1987). 
Traditionally, the NN estimator has been studied with weights similar to 

those of the Nadaraya-Watson estimator. This gives bias and variance of the 
estimator similar to those of NW estimation in (7.7); see Mack (1981). Similar 
results can be developed for the s-th derivative estimator/3 ~s~ and the average 
derivative estimator. Some results on them can be found in Pagan and Ullah 
(1990). Computer programming for this section typically involves equations 
(7.6) or (7.7). 

7.1. Bandwidth selection 

An important issue in implementation of the estimator rh in practice is the 
choice of the bandwidth in various weights. Two major approaches are: an 
automatic method (cross-validation) and a 'plug-in' method (minimum inte- 
grated MSE, or IMSE). For a survey of these approaches in the density 
estimation case, see Marron (1988). Staniswalis (1989b) suggests a novel local 
bandwidth selection method and compares it favorably in a simulation with 
global methods. Goldstein and Messer (1990) derive conditions for a plug-in 
estimator to achieve optimal convergence rate. 

According to the plug-in method, the optimal window width is chosen as the 
value which minimizes the IMSE or MSE of rh. Usually the optimal value 
depends on the unknown regression, density and their derivatives. To imple- 
ment this in practice, preliminary estimates of these unknowns are plugged in. 
Certain results in this context for the kernel, NN and spline estimator are given 
by Jenner-Steinmetz and Gasser (1988). For fixed X, based on the results in 
(7.5) they obtain the IMSE and choose h for which this is minimum. The 
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solution is 

= [ 0-2g(w) f f(x)a-ldx ]1/5 °cF/-1/5 (7.8) 
h°pt 1_ n/.~2(w) f m(2)(x)2(f(x))-4'~ dx 

with a - - 0  (kernel estimator), a = ¼ (spline) and a = 1 (NN). The plug-in 
estimator of h is t h e  hop t which is obtained by substituting 0 -2, f and m (2) by 
their sample estimators. Note that if the true m is l i n e a r  hop t is oo. Another 
point to note is that for kernel, NN and spline weights the optimal h is 
(proportional to)~ n 1/5 as indicated in the formula above. 

When X is stochastic, one can obtain the optimal h for kernel and NN 
estimators by minimizing IMSE based on (7.6) and (7.7). The hop t will be 
again ocn -1/5, though the proportionality form will be different compared to 
the fixed X case. Also, the proportionality form of two kernel estimators, NW 
and GM, will be different from each other. In the GM case it will be the same 
as in the fixed X case given in (7.8) with a = 0 and 0 -2 replaced by 0-2C. The 
hop t for NW is also the same as hop t in (7.8) with a = 0 and m (2) replaced by 
[1/2m (2) +m(~)f(1)/f]. Tsybakov (1982) provides hop t in this case where he 
minimizes the MSE instead of the IMSE. These can be obtained from the 
above formulas for the IMSE based on (7.7) by simply dropping the integrals 
appearing in the numerator and the denominator. In the MSE minimizing 
solution, however, hopt(X ) will depend on x. 

When the functions m and f are unknown, Tsybakov (1986) suggests an 
estimated hopt(X), which is asymptotically equal t o  hopt(X ) in the sense that 
[Zopt(x)/hopt(X ) ~ 1 in probability, as n---> ~. He also shows that rh based on hop t 
is asymptotically equivalent to rh based o n  hop t. For these results to go through 
one needs the kernel to be bounded with compact support, f and rn (s), s -- 1, 2, 
to be continuously differentiable, E([y[2+~[x)< ~ for same 6 > 0, 0-2< oo and 
f [k(qx) - k(x)] 2 dx ~< L[q - 11 ~, and [q - 1[ < e 0 for some number L > 0, and 
8 E (1, 2) and e 0 E (0, 1). The hop t of Tsybakov simply replaces the unknowns 
in (7.8) by their consistent estimators. That is, let 0-2= 6.2, 

1 ~ / x ~ - x \  
/~(2)(X) ~-" "~'i=1 y i K 2 ~ T )  - /~(°)(x)?(2)(x) 

(7.9) 

and 

m(1)(X) = ~ y i g l ( T )  ?(1)/~(°)(x) , (7.10) 

where )~(J)(x) = (nhJ+l) -1 ~ Kj(x s - x) /h) ,  j = 0, 1, 2 andKj  is the higher order 
bounded kernel with compact support, whose first f - 1  moments  are zero. 
Such kernels are Ko(u ) = ½; if [u I ~< 1, and  =0 if [u[ > 1; Kl(u ) = 2 sgn uKo(u ) 
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and K2(u ) = - 4 ,  if lul ~<½, =4, if ½ ~< lul ~< 1, and 0, if lul > 1. Alternative, one 

can use rh(l~(x) =/3(°)(x) and rh (2~ =/3(a~(x) as given in (4.3). 
Cross-validation (CV) is regarded as an automatic method of choosing h. 

The basic algorithm involves removing a single value, say x i, from the sample, 
computing rh at the x i from the remaining sample values. 

l~2(xi) = E yiw,j(xi) 

and then choosing h = hey such that Z (y~ - rh(xe)) 2 = 2 u~ is at the minimum. 
This is called least squares cross-validation, LSCV. Hall (1984) and Hardle and 
Marron (1985) have shown, in the kernel context, that hey is asymptotically 
equivalent to  hop t based on minimizing IMSE. However ,  Tsybakov (1986) has 
pointed out that hcv is worse t h a n  hopt(X ) as well as the f/opt(X) proposed by him 
in the sense that 

f mine>0 (MSE(x))f(x) dx ~<minc>0 J ~ MSE(x)f(x) dx ,  (7.11) 

where c(x) is the proportionality constant in hopt(X ) = C(x)n -1/5. Gasser et al. 
(1991) report simulations showing that an iterative plug-in estimator of 
bandwidth (proportional to the ratio: variance/squared bias) is superior to 
cross-validation, and works even for small (15-25)  sample sizes. Typical 
computer  programs first tabulate for a grid of h values: (i) MSE-type criterion 
from (7.6) or a similar expression, or (ii) the residual sum of squares (RSS) of 
the leave-one-out CV model, or (iii) generalized CV (GCV) which penalizes 
RSS for bias, choosing the h minimizing the criterion. 

7.2. Curse o f  dimensionality 

From the results on optimal h ~ n -a/5 along with the expressions for bias and 
variance of rh in (7.5), it is clear that the asymptotic rate of MSE convergence 
of rh to m is O(n-4/5). For the case when X is a vector o f p  variables, the rate 
will be O(n-4/(4+P~). This implies that the higher the p,  the slower is the speed 
of convergence, and one may need a large data set to get nonparametric 
estimates. This is the well-known curse of dimensionality. One way to handle 
this problem is to use a very large data set. An alternative is to use additive 
techniques described in Section 6 which increases the convergence rate of the 
p-dimensional problem to that of a one-dimensional problem. Projection 
pursuit, ACE,  etc. are successfully used for this problem. 

7.3. High order kernels and optimal weight w 

High order kernels are simply densities whose first (r - 1) moments are zero; 
see Singh (1981), Muller (1984), Ullah and Singh (1989) and Vinod (1987) for 
the construction of such kernels. Vinod (1987) proves a recursive relation for 
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any r > 1. For example, the first nine moments of the following are shown to 
be zero. 

g(x) = ~84 (945 - 1260x 2 + 378x 4 - 36x 6 + xS)gl, (7.12) 

where gl is the unit normal density: ga(X)= (1 /V~)exp( -x2 /2 ) .  
Such kernels can take negative values, reduce the bias to O(h r) and lead to 

the rate of convergence of MSE to  O(n-Zr/Zr+P). Thus by choosing r to be 
large, the speed of convergence can be made close to O(n-1/z), the usual 
parametric rate. However, practical difficulties in using large r were en- 
countered in the example used in Vinod (1989) if one permits negative values. 
Important theoretical results in this area are found in Muller (1984, 1987, 1988) 
and Stone (1982). 

In applied as well as theoretical work a natural question of great interest is 
the choice of w in the multitude of nonparametric estimators given in (2.3), see 
Stone (1982), Muller (1984). Unfortunately, the asymptotic properties of rh 
provide no precise guide to the choice of the weight function for a limited data 
set. For example, the asymptotic variance of rh may be the same for iid and 
dependent observations. Thus, these methods fail to discriminate between 
these two types of observational assumptions. Even within the lid context the 
asymptotic theory fails to provide an optimal w, especially for the fixed design 
case, where Silverman (1984) indicated that various w can approximately be 
represented by kernel estimators. 

Some idea about the optimal choice of w can, hewever, be obtained by 
looking into finite sample approximate results on the bias and variance of rh. 
This has been attempted in Jennen-Steinmetz and Gasser (1988) where they 
have considered a wide class of estimators which include kernel estimators, 
smoothing splines and nearest-neighbor estimators as special cases, also see the 
recent work of Chu (1989) and Gasser and Engel (1990). The findings of these 
authors indicate that there is no w which is uniformly best in terms of having 
smallest IMSE. But, they show that the kernel estimator is minimal optimal in 
the sense of having smallest IMSE. 

Within the family of kernel weights two enjoy particular popularity; the 
Nadaraya-Watson type and the convolution type of Gasser and Muller. 
Traditionally, the Nadaraya-Watson method is used for the random X case 
and the convolution method for the fixed X case. The results of Gasser and 
Engel (1990) suggest that between these two weights, the convolution weight 
based estimator of m is minimax for both kinds of X. They also point out, see 
(7.6) and (7.7), that the bias of convolution weights is simple and depends on 
m (2) only whereas the bias on NW weight depends on rn (1) and  m (2), f ,  and 
f(1). Further, while the bias of the convolution weight is zero if the true 
regression is linear, this is not the case with the NW bias. Also the pattern of 
the NW bias will be difficult to understand, and may be severely affected by 
certain methods of bandwidth choice. Further, the variance of both weights is 
the same for the fixed X case, but the variance of NW weight is smaller than 
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that of convolution weights for the random X case. However, the IMSE is 
smaller for convolution weights which makes it a preferred weight compared to 
the NW weight. 

7.4. Asymptotic properties 

The asymptotic properties of rh have been studied for the kernel, NN and 
some other special cases of rh quite extensively in the literature, see Ullah 
(1988b) for a review. For fixed X a systematic study of the properties of rh for 
general weights w has been done by Georgiev (1988) for the independent 
observations case and in Muller (1987) for the iid case. In an excellent study, 
Fan (1990b) generalizes Georgiev (1988) and Muller (1987) results for 
dependent and heterogeneous processes. For the stochastic X case, the results 
for rh with general w are given by Stone (1977) and Owen (1987). Here we 
present the assumptions and indicate the asymptotic results. 

For fixed X we first state the following assumptions on w: 
(A1) (a) u i are independent random variables with Eu i = O. 

(b) suPi Eluil  2+~ < o~, for some 6. 
(c) The function m is bounded on a compact set A C_ •P. 

(A2) The weight functions w,,g(x) satisfy the following assumptions: 
(a) E"i=l Wni(X)--->l as n---~oo. 
(b) Ei'=~ ]w,i(x)[ <~ B for all n for an arbitrary constant B. 

n (c) r~,=~ Iw.~(x)li(llxi_xll>o)~o as n--->~ f o r  all a > 0 .  

(m3) (a) supi~n IWn,(X)I~O as n ~ .  
n 2 (b) ~/=1 Wni(X)"->O as n---~oo. 

(C) supi W2i(X)n log log n ~ 0 as n ~ oo. 
It can be verified that many special cases of Wni in Section 2 satisfy the 

conditions (A2) and (A3). Georgiev has shown that under conditions (Al,a,c) 
and (A2) the estimator rh is asymptotically unbiased. Furthermore, if (A3,a) 
also holds, rh is weakly consistent. The MSE and strong consistency, respec- 
tively, follow if in addition to asymptotic unbiasedness, (Al,b) for 6 = 0 and 
(A3,b) hold and if (Al,b) for 6 > 0 and (A3,c) hold. Regarding asymptotic 
normality we have the following result. Under (Al,a), and (Al,b) for some 
6 > 0, and the further assumption that 

IWni(X)[ 2+~ 
(A4) i=1 --*0 as n--->~ 

(~i=1 wni2 ) 1+~/2 , 

z n = [rh - E r h ] / [ ~ ] - - - >  N(0, 1) as n---> ~. 
For the s-th order derivative of rh, that is for/~(s), given in (4.3) above, one 

can show asymptotic unbiasedness, consistency, and normality under the 
following conditions on w,~ as n ~ ~. 

(A5) g i l  1 l'V(nSi)(X)(Xi--x)J"->O for O<j<~s, and --->s! for j = s .  
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(A6) ElL 1 Iw,i(x)(xi - x)Sl ~<L < %  where X i = X k i  , X = X k "  ~ k = 1 , . . . ,  p.  
The additional conditions are the same as (A3) and (A4) with wni replaced by 
w('~ For details see Muller (1987). n i  " 

Fan (1990c) proved consistency and asymptotic normality results for depen- 
dent observations when u i are near-epoch dependent with respect to certain (a 
and ~)  mixing sequences. The conditions on w,i needed for z ,  = [th - Erh]/ 
~v/-V(rh)]--->N(0, 1) as n--->~ are (Al,c), (a2,b),  (A3,a) and 

(A7) (a) sup, n x suPi~,lWni(X)[ < ~. 
(b) V ~ x )  suPi~,IWn~(X)[ = O(n-~/2) for some 1 > 6 > 2 .  

n 2 2 
(c) Zi= 1 w,i(x)Elei[ =o-2/nx +o(1/nx) where n x is defned  in (7.2) 

above. 
For forming the confidence intervals it is useful to consider a variable defined 

b :~ ~ ~ . . . . . .  y z n = [ m - m ] / [ ~ ] .  Fan (1990c) gwes similar condmons for proving 
that z* --> N(0, 1). 

For stochastic X, Stone's (1977) sufficient conditions for consistency of rh for 
general Wni assume (A2,a,c) and (A3,a) in probability, (A2,b) with probability 
1 and 

(A8) E ~,in=l IWn~(x)IT(x,) <~ GEl(x)  for C ~  > 1 and n i> 1. 
When the weights satisfy w~i(x) >i 0 and E~"__a w,~(x) = 1, the above conditions 
are both necessary and sufficient. For the NW weights (A8) is not satisfied. 
Stone (1977, Theorem 2) suggests construction of w for which rh is consistent 
without any regularity conditions on f (x) .  This includes the uniform, triangular 
or NN estimators. 

The asymptotic normality is neatly proved by Owen (1987). It is shown that 
if (i) nx = [~"i=1 2 1 " W,~(X)] --->~ in probability, (ii) s u p ~ n V ~ ) l w , , ( x ) l - - - ~ O  in 
probability, (iii) V / ~ )  [ 1 -  2i'_a w,~(x)]---~0 in probability. Then, if (A4) also 
holds in probability, 

Z n : [ r h ( X )  - - E x r h ( x ) ] / ~ - - ~ N ( O  , 1) as n-~. 

where Exrh(x ) is the conditional mean of rh defined by E W n i ( X ) t ~ ( X i ) .  Now we 
wish to prove that Zn* = V ~ [ r h -  m]/[V~-(rh)]--->N(0, 1) as n---~ ~. Note that 
z* = V ~ ( r h  - Exrh ) + vrh-~(Exrh - m) and we need to prove that the asymp- 
totic bias V ~ ( E x r h - m ) = v ~ ( E w j h - m ) - - - > O  as n-- -~ .  Owen (1987) 
indicates that this bias disappears when x~ is close to x. This implies that m(x~) 
be close to re(x), that is, m(xi)  be such that IIm(xi)- m(x)ll ~ cx l l x~ -x l l  for a 
constant C x. 

The asymptotic results for the s-th derivative of rh(x), that is /3(~) have not 
been studied in the literature. Similar asymptotic results for the average 
derivative based on general rh(x) are also not reported in the literature. This 
section has few computer programming implications. 

8. Misspecification tests 

As in the case of parametric regression, several misspecification tests or 
diagnostic tests are also useful in the context of nonparametric regression (2.2).  
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Earlier references to the theory of hypothesis testing for the nonparametric 
models may be found in Staniswalis (1989a). The following recent attempts 
open avenues for future research in this area. The tests of interest in 
econometrics are: 

(i) Tests of restrictions on the derivatives/3 (s) evaluated at individual points 
and average derivatives in Section 4. For those evaluated at individual points, 
H0: R•O)(x)= r against //1: R~(1)(x)¢r, where R is a 1 x p  matrix of con- 
stants and r is a constant. Tests of more general types of restrictions can also 
be developed as in Ullah (1988b) where only the NW estimator is considered, 
also see Rilstone (1991). 

(ii) Diagnostic tests for conditional heteroscedasticity, serial correlation and 
normality of errors u in (2.2). Large sample tests for these problems can be 
carried out in the same way as the corresponding diagnostic tests in the 
parametric regression developed in Pagan and Hall (1983) and Pagan (1984). 
This is because, for large samples, the nonparametric residual is ~ = u~ + 
Op(1); and thus it behaves in the same way as the least squares residuals in 
parametric regressions. The basic idea from Pagan (1984) and Pagan and Hall 
(1983) is to augment the model (2.2) as 

Yi = m(xi) + zig + ui (8.1) 

and then test for 6 = 0. This is the partial regression model described in Section 
6. Whang and Andrews (1990) give a more general and systematic treatment of 
the distribution of misspecification tests in semiparametric models; also see 
Robinson (1989) who considers the case of dependent  observations for time 
series data. 

(iii) Test for omitted variables on the number of regressors can be carried 
out by regarding the z~ in (ii) above as a vector of omitted variables and then 
testing for 6 = 0 in (8.1). An alternative method would be to compare the 
residual variance from the null model Yi = m(xi) + ug with the residual variance 
from the alternative model y~ = m(x~, zi) + ug. This can be done by splitting the 
sample into n 1 = n 2 observations and considering the test statistic 

-1/2f~ n2 .2 } 
S--n l  //----~l / ~ - E  u'/ ' j=l 

where ti is the nonparametric residual from the alternative model. The 
sampling distribution of S is not known, but it can be determined by using the 
approach of Whang and Andrews (1990). 

A related issue of interest is the determination of the number of included 
regressor variables p and /or  lag length in cases where x i in m(xi) is a vector of 
lagged values of Yi. Auestad and Tjostheim (1990) have recently looked into 
this problem and extended the Akaike information criterion (AIC) for this 
purpose. The AIC formula turns out to be the residual variance multiplied by a 
factor depending on n, the NW kernel weight and the p number of regressors. 

(iv) The test for linearity or, in general, for any parameter  specification 
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m(x~, O) against a nonparametric alternative m(x~) has received much attention 
in recent years. Ullah (1985) suggested using the test statistic S = n -1 E t~ 2 - 

-1  -2 - 1  n E u~ which compares the parametric residual variance n Z fi~ with the 
nonparametric residual variance. However,  the distribution of this statistic was 
not established. A related pseudo likelihood ratio approach was developed by 
Azzalini et al. (1989). Their  test statistic is 

{log f (yi ,  rh(x~)) - l o g  f(y~, rh(x~, 0) )} ,  
i=1 

(8.2) 

where 0 is a consistent estimator of 0. They also provide estimates of 
significance points by simulating the sampling distribution of the test statistic 
under the null model. 

Yatchew (1992), and Whang and Andrew (1990) consider an Ullah (1985) 
type test statistic 

nl n 2 

i=1 j = l  

by splitting the sample into the parts of equal sizes n 1 = n 2 and show that 

n11/2S/(Zrt) 1/2~N(0,  1) as n ~ o %  

w h e r e  7 / :  n l l Z / ~ -  ( n l l Z / ~ 2 )  2 . 

Newey's (1985) conditional moment  restriction test provides an alternative 
test for the functional form in a nonlinear regression setting with m(xi, 0). 
Bierens (1990) argued that Newey's approach uses only a finite number of 
restrictions and thus the resultant test cannot be consistent under all possible 
alternatives. He uses an infinite set of moment  conditions and provides a test 
statistic which is consistent under all alternatives. However,  the power of the 
test depends crucially on the type of the moment  condition used. For a related 
test statistic, also see Su and Wei (1991). 

An alternative way to develop the test statistic for functional form is to 
consider a combined estimator of m(xi) a s  rh(xi, A)= ( 1 -  A)m(xi, O)+ l~l~(Xi) 
and write 

Yi - m(xi, O) = A(rh(xi) - m(xi, O) + u i (8.3) 

as in (2.14) where m(xi, O)= xi~ is taken as a linear model. The test statistic 
for A = 0 is then t = A/(V(,~)) 1/2 where X is the least squares estimator. It is 
conjectured that, under certain regularity conditions, t will be asymptotically 
standard normal. In a recent paper Eubank and Spiegelman (1990) considered, 
instead, yi = m(xi, O) + m(xi) + ui, where m(xiO ) = xiO is linear in scalar x i and 
suggested a test for m = 0 based on orthogonal polynomials and smooth spline 
functions. T h e y  found out that, under regularity conditions, their test is 
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consistent against all smooth alternatives. A generalization of their procedure 
to the vector x i case, however, appears to be difficult. 

We have presented the alternative approaches to testing functional form. 
Some other fruitful approaches are developed in Hardle and Marron (1990) 
and Abramson and Goldstein (1991). A detailed comparative analysis of these 
approaches would be a useful future study. 

(v) Nonnested hypothesis testing for H0: m(xi,  ;Zi) = m(x i )  against 
HI: m(xi, z i ) =  m(zi)  has been considered extensively in parametric economet- 
rics, see Davidson and Mackinnon (1982). UUah and Singh (1989) suggested 
testing this hypothesis by using a distance measure. Alternatively, one can 
write the combined model Yi -: m(x~, zi) + u i : (1 - A)rn(xi) + Am(zi) + u i and 
testing for h = 0 in the last squares regression of Y i -  f i t (X i ) :  A [ f i t ( z i ) -  

fit(x~)] + u~ as in (2.14). The distribution of this and other statistics have been 
analyzed in Delgado and Stengos (1990). 

Hall and Jeffrey (1990) have considered the problem of testing H0: Yi = 
m(xi)  + u i against Hi: zi = g(xg) + u~ and provide examples where such testing 
problems would be of interest. They propose a bootstrap test statistic for the 
scaled version of rt -1  E /=  1 [ f i t (x i )  ^ 2 n - - g ( x i )  ] , where fit and ~ are nonparametric 
estimators. They show that the test has a high level of accuracy compared to an 
exact test. Further the proposed test can be generalized for testing for 
differences between several regression means. 

(vi) The nonparametric test of independence of x with u, that is 
H0: f (x ,  u) =f (x ) f (u )  against Hx: f (x ,  u) ¢ f ( x ) f ( u )  has been suggested in Ullah 
and Singh (1989) using distance (entropy) measures, e.g., Kulback-Leibler. 
Robinson (1990) also provides entropy based test statistics and systematically 
develops the distribution theory for dependent observations. An alternative 
distance measure is used in Ahmad and Cerrito (1989) who also study the 
asymptotic distribution under iid assumption. Also see Abramson and Golds- 
tein (1991) for a different approach. Computer programming for this section 
involves test statistics similar to (8.2) or parameters similar to A. 

9. Applications 

In the last three decades of the nonparametric estimation of regression and 
other functions, the statistical literature has been dominated by the asymptotic 
theory results on consistency, unbiasedness and normality with some recent 
results on the small sample theory. This is also evident in the nonparametric 
econometrics literature developed so far. However, very little has been done 
on exploring these results in applied settings, though with the advances in 
computer technology etc., it is hoped that applications of data based non- 
parametric approaches to inference will soon become a common phenomenon. 
We merely provide here some of the references which use the nonparametric 
approach in applied statistics and econometrics. For more examples and other 
references, see Hardle (1990), Ullah (1988) and Rilstone (1991). 
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In labor econometrics, the nonparametric analysis of earning/age and 
consumption functions have been analyzed by Ullah (1985), Basu and Ullah 
(1992), Chu and Matron (1991), and Magee et al. (1991). For production 
function estimation, see Vinod and Ullah (1988), and Gallant (1981). For 
demand and consumption functions, see Moschini (1989), Bierens and Pott- 
Buter (1990), McMillan et al. (1989), and Hardle et al. (1991). For income 
distribution studies, see Hildebrand and Hildebrand (1986), Deaton (1989), 
and Hardle and Jerison (1988). Most recent work has, however, developed in 
the area of financial time series econometrics where generally large data sets 
are available. These include Diebold and Nason (1989) for exchange rate 
forecasts, and Tengesdel (1991) and Frank and Stengos (1989) for non- 
parametric forecasts in diamond and gold markets, respectively. Pagan and 
Hong (1991), Gallant and Tauchen (1989), Zhou (1990) and Santana and 
Wadhwani (1989) for stock market returns; Wulwick and Mack (1990) and 
Samiullah (1991) for the macroeconomic Phillips curve estimation; and Racine 
and Smith (1991) in resource economics. Vinod (1988, 1989) report applica- 
tions to estimation of a random walk in consumption and for disequilibrium 
models respectively. Stock (1990) reports an application to estimating the 
benefits of hazardous waste. 

Most of the results in the above mentioned applied papers are encouraging 
for future applications of the nonparametric procedures. In particular, they 
point out important facts of the data which are otherwise not detectable 
through the raw plots or parametric regressions. Also, since many data sets 
tend to behave in a nonlinear way, the nonparametric procedures are found to 
perform better than the ad hoc parametric models. However, efficiency and 
computational problems in higher dimensions, problems of nonstationarity in 
time series, misspecification and finite sample issues still remain the challenges 
for future applied work. Although it is clear form our survey that the major 
computations involve weighted averaging and brute force minimization of 
MSE-type quantities, professionally written general purpose software remains 
unavailable. 
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Simultaneous Microeconometric Models with 
Censored or Qualitative Dependent Variables 

Richard W. Blundell  and Richard J. Smith 

1. Introduction 

Many applications of microeconomic theory to individual data face the joint 
problems of censoring and simultaneity. In particular, the dependent variable 
under investigation may not be continuously observed and some of the 
conditioning variables representing the outcome of other decisions by the 
individual may be simultaneously determined. In this paper we define two 
classes of simultaneous limited dependent variable regression models. The 
distinction between these two classes depends on whether the structural 
economic model is simultaneous in the latent or observed dependent variables. 
This distinction corresponds closely to whether or not the censoring mechanism 
itself acts as a constraint on individual agents' behaviour. 

Type I models, which form the first class, are defined to be simultaneous in 
the underlying latent dependent variables. As a result, there exists an explicit 
and unique reduced form in the latent dependent variables under the usual 
identification conditions. Simultaneous Probit (Amemiya, 1978; Rivers and 
Vuong, 1988; Blundell and Smith, 1989) and Tobit (Amemiya, 1979; Nelson 
and Olsen, 1978; Smith and Blundell, 1986; Blundell and Smith, 1989) models 
among others are special cases of this class. In Type I models, individual 
behaviour is completely described by the latent variable model and the 
censoring process simply acts as a constraint on the information available to the 
econometrician. For example, in a model describing household labour supply 
and consumption behaviour, hours of work may only be available to the 
econometrician in grouped fo rm-  part-time and full-time- even though in- 
dividual agents themselves have complete flexibility in their hours' choices. In 
this case, optimal consumption behaviour is a function of latent rather than 

• observed labour supply behaviour. As a result, the underlying reduced form 
can be derived uniquely in terms of the latent dependent variables. 

Type II models form a general class in which the nonlinearity implicit in the 
censoring or discrete grouping process prevents an explicit solution for the 
reduced form. This occurs in the structural shift models of Heckman (1978), 
the switching models described in Gourieroux, Laffont and Monfort (1980), as 
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well as many applications of joint decision making models on discrete data. In 
Type II models, the observability rule also constrains the agent's choice set. 
For example, if the two discrete hours packages (part-time, full time) are all 
that is available, then household labour supply decisions will reflect this and 
will depend on the actual discrete labour market outcomes. Similar models 
arise where there are corner solutions or points of rationing. For this second 
class of discrete or censored models a further coherency condition is required, 
this condition imposes restrictions that guarantee the existence of a unique but 
implicit reduced form for the observable endogenous variables. 

The coherency condition is naturally related to the conditions for a unique 
solution for the agent's optimal decision rule. As such the coherency condition 
is necessary (but not always sufficient) for the specification to correspond to 
that of an economic optimising model. Moreover, if conditions for economic 
optimisation are imposed on the model, coherency is satisfied. A discussion of 
coherency conditions in switching and disequilibrium econometric models is 
provided by Gourieroux, Laffont and Monfort (1980). For models with 
discrete dependent variables, a comprehensive discussion is found in Heckman 
(1978), who refers to this condition as the principal assumption. An excellent 
review of coherency and its relationship to plausible economic behaviour is 
contained in Maddala (1983). 

The paper is organised as follows. Section 2 outlines the models. Section 3 
focuses on Type I models and derives marginal and conditional maximum 
likelihood estimators analogous to those of Nelson and Olsen (1978), 
Amemiya (1978, 1979), Heckman (1978) and Smith and Blundell (1986). The 
minimum chi-squared approach of Ferguson (1958), Malinvaud (1970) and 
Rothenberg (1973) is used to compare the asymptotic relative efficiency of the 
various estimators considered. A simple efficient two-step algogithm based on 
the conditional maximum likelihood estimator is given. The joint maximum 
likelihood estimator is obtained by iteration of this algorithm until conver- 
gence. Section 4 considers Type II models. The absence of an explicit (linear) 
reduced form has a nontrivial impact on the form of the maximum likelihood 
estimator. Nevertheless, a simple consistent estimator may be obtained 
mirroring the conditional maximum likelihood estimator for Type I models. In 
addition, this estimator reveals directly how both identification and consistent 
estimation of structural form parameters depend critically on the satisfaction of 
appropriate coherency restrictions. The models considered include simulta- 
neous Probit and Tobit models as well as simultaneous extensions of selectivity 
and double-hurdle models. In each case, the appropriate coherency conditions 
and identification are discussed briefly. As Type I and II models form 
nonnested alternatives, a simple method is suggested for discrimination 
between them. Section 5 presents an empirical application to labour supply and 
savings behaviour. The relationship between statistical coherency and the 
logical consistency of the economic model for Type II specifications is 
emphasised. Finally, Section 6 concludes. 
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2. Models 

The latent dependent variable of interest is denoted by Yl* with observed value 
Yti, i -- 1 , . . . ,  N .  The observation rule linking Yl~ to Y1* is given by 

YI~ = g l (Y l i ,  Y3~), (1) 

where g~(., -) is a known function independent of parameters and Y3* is another 
latent variable described below which allows consideration of selectivity or 
double-hurdle observability rules on ya*.; in simple cases such as those of Tobit 
or Probit, Y3* does not enter (1), thus - * Yli = g l ( Y u ) ,  i = 1 , . . .  , N .  The general 
structural model for Yl* is defined by 

• * * t 
Yl i  = a l h ( Y l i ,  Y3i)  -I- l~lY2i q- ")llXli -~ Uli , (2) 

where h(., .) is a known function independent of parameters and Xl~ denotes a 
Kl-vector of exogenous variables, i = 1 , . . . ,  N. 

In (2), Y2i ~ Y2* is a simultaneously determined variable, which is assumed to 
be continuously observed, and also implicitly depends on the latent variables 
Yl*/ and Y3*/1 

Y2~ = °~2h(Y~*, Y3*/) + y~x2~ + u2i ,  (3) 

where x2~ is a K2-vector of exogenous variables, i = 1 , . . . ,  N. 
The function h(y~*, Y3*i) is included to complete the class of models that 

permit coherency and allows us to distinguish the two types of model which are 
the subject of this paper: 

Type I: 
Type II: h(y l* ,  Y3*)- * * = Y l i [=g l (Y l i ,  Y3i)]" 

In the Type I specification, (3) may be replaced by the reduced from (RF) 

Y2i = x'iTr2 q- 02 i ,  (3') 

together with the identification condition o~ 1 = 0 in (2). 
We introduce a further reduced form model to allow for possible selectivity: 

Y 3i : X i'W3 -[- U3i , (4) 
where the K-vector of exogenous variables x i comprises the nonoverlapping 
variables of xli and x2i, i = 1 , . . . ,  N .  The observation rule linking the observed 
value Y3i to the latent variable Y3* is denoted by 

l If Y2*/ is not  continuously observed, that  is, * g2(') is a Y2i=-g2(Y2i), where known function 
independent  of parameters ,  then recourse must be made to the joint estimation of (2 ) - (4 )  subject 
to (1) and (5). 
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Y3, ~g3(Y3*), (5) 

where g3(') is a known function independent of parameters. 
Finally, we assume the disturbance terms (Uli , u2~ , v3i ) ]x i - N I ( 0 ,  ~) ,  where 

X = [(~k)] is positive definite, and the observations Y~i, J = 1, 2, 3 and x~, i = 
1 , . . . ,  N, constitute a random sample. 

For the later discussion, model Type I consists of (1), (2) (with a I -- 0), (3') 
[with h(yx*, Y3*-)~-Yl* in (2) and (3)], (4) and (5) whereas model Type II 
consists of (1)-(5) [with h(yl*, Y3*)=-Yu in (2) and (3)]. As will be detailed 
below, these two specifications are nonnested. 

To illustrate particular instances of the application of the framework 
described above, we present the following examples for the observability rules 
(1) and (5). Define the indicator function 1 (z > 0) =- 1 if z > 0 and 0 otherwise. 

EXAMPLE 1 (Simultaneous Tobit model, Amemiya, 1979; Nelson and Olsen, 
1978; Smith and Blundell, 1986). The observability rule (1) is 

* ~  * Y~i l (yu O)Yu. (01)  

EXAMPLE 2 (Simultaneous Probit model, Amemiya, 1978; Rivers and Vuong, 
1988). The observability rule (1) is 

Yl i  =-- I(Yl* > 0). (02) 

EXAMPLE 3 (Simultaneous Selectivity model, Heckman, 1979; Cogan, 1981). 
The observability rule (1) is 

Yl i  =~ l(y3*" > 0)Yl*, (03) 

where the dependent variable Y3* is only observed up to sign, that is Y3i 
l(y3*. > 0) for (5). 

EXAMPLE 4 (Simultaneous Double-hurdle, Cragg, 1971; Blundell, Ham and 
Meghir, 1987). The observability rule (1) is 

Y~i -~ I(Yl* > 0, Y3*/> 0)Yl*/, (04) 

with a similar rule (5) to that of Example 3 for Y3i. 

Other examples of microeconometric models subsumed by the observability 
rule (1) include grouped (Stewart, 1983) and grouped and censored (Chesher, 
1985b) models. 



Simultaneous microeconometric modeh" 121 

3. The type I simultaneous equation model and some consistent estimation 
procedures 

From (2) (with % = 0), (3 ')  and (4), consider the following RF model: 

* ~" X'iqr 1 -t- (6a) Yli  Oli  ' 

Yzi -= x'f'rl'2 + V2i , (6b) 

* : X'i'i'l" 3 + (6c) Y3i 03i , 

where v i I x i -  NID(0, O) ,  v i =- ( v i i ,  Vzi , v3i) '  , i = 1 , . . .  , N ,  ~ =- [(tojk)] and %,  
7r 2 and % are conformable vectors of parameters.  

Write vii conditional on Vzi, 

Oli  ~ O2iT 1 "~- E l i  , 

where r I ------ 012 / (1 )22 ,  , i = 1, . . . , N. Therefore ,  eli  I x i  ~ NI(0, w11.2), where 
_ 2 is independent  of Vzi conditional on x i ,  i = 0.)11.2 = (a)11 - -  0)12/0 . )22  , and El i  

1 , . . . ,  N. Thus, the conditional model for Yl*~ given Y2i is 

Y l i  : X ~ I  at- V2i71 + e l i  " (7) 

2 Similarly, defining r 3 -= %2/%3 and o)33.2 =- o)33 - t 032 /0 . )22 ,  the conditional model 
for Y3*/ given Yzi is 

Y3i = x : r 3  + Vzir3 + e31, (8) 

where e 3 i [ x i - N I ( 0 ,  o)33.2 ) is independent of v2~ conditional on x~, i =  

1 , . . . , N .  
From (2) (with % = 0), the parameter  vectors 7r 1 and % in (6a), (6b) are 

subject to the (over-)identifying restrictions: 

q'/'l = ~T2]~1 "~ J1"~I , ( 9 )  

where J1 -= (IK,, 0(~ 1K-xl))' is a (K, K1) selection matrix, which after substitu- 
tion in (6a) yields the (limited information) simultaneous equation model  (2) 
(with al = 0), 

* (10) Yl~ = Yz i [~ l  -}- I l l ' Y 1  -t- U l i  , 

where Uli = v~i - v z i f i l ,  or conditional on Yzi ,  

* (11) Yli  : Y2i[~l + X l i~ l l  q- DIU2i  ~- E l i  , 

where Pl ~- rl - 131, i = 1 . . . .  , N. 
Several consistent estimation procedures for (6b), (6c) or (8) and (10) or 

(11) subject to the censoring schemes (1) and (5) may be developed given the 
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availability of a maximum likelihood (ML) estimation procedure for (6a) or (7) 
and (6c) or (8) subject to (1) and (5). 

3.I. Consistent estimation procedures 

We briefly review some simple estimation procedures that have been suggested 
in the literature. 

3.1.1. The Nelson-Olsen procedure 
For the Tobit model, Nelson and Olsen (1978) suggested replacing Y2i, 
i = 1 . . . . .  N, in (10) by its OLS predictor from (6b) and estimating the revised 
(10) subject to (O1) by Tobit ML. 

3.1.2. The Amemiya GLS procedure 
Following Amemiya (1978, 1979), consider restrictions (9) directly after 
substitution of the ML estimator for ~'1 from (6a) under observation rules (O1) 
or (02) and the OLS estimator for 7r 2 from (6b). By applying either an OLS or 
GLS procedure to the revised (9), consistent estimators for/31 and 3'1 may be 
obtained. 

3.1.3. The Heckman procedure 
Heckman (1978) rewrites the restrictions (9) as 

7"/" 2 = ( , / r  1 - -  J i , y 1 ) / ] 3 1  , 

which after substitution into (6b) gives 

Y2i = Xtl3Ti/[~l - -  Xtti'Yl /[31 -~- U2i , (12) 

i = 1 , . . . ,  N. Replacing 7r 1 in (12) by the marginal ML estimator for ~'1 from 
(6a) subject to (O1), OLS estimation of the revised (12) yields consistent 
estimators for 1//31 and -Yl/~1 and thus (131, 3'1). 2 

3.1.4. The Smith-Blundell procedure 
This method estimates the conditional model (11) by ML subject to observa- 
tion rules of the type Yli = g(Yl*), for example (O1) (Smith and Blundell, 1986) 
and (02) (Rivers and Vuong, 1988), by substitution of the OLS residuals for 
v2i obtained from (6b), i =  1 , . . . , N ;  see Blundell and Smith (1989). An 
advantage of this procedure is that the t-statistic associated with Pl in (11) 
provides an asymptotically optimal test of the simultaneity of Y21, i = 
1 , . . . , N .  3 

z The Nelson-Olsen,  Amemiya OLS and the Heckman procedures are robust to nonnormality in 
v2i requiring only that (vii, v3i ) Ix i is independently normally distributed, i = 1 . . . . .  N. 

3 The Smith-Blundell  estimator requires that (oil, v3~ ) [ v2i, xi ~ NI(v2~T,/~ 2), where ~- --= (~1, ~'3)' 
and ~2 z -=[(~k. z)]; in this sense, this estimator is robust to nonnormality in v~, i = 1 , . . . ,  N. 
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3.2. Efficiency comparisons of alternative estimators 

To examine the relative efficiency of the estimators described in Section 3.1, 
we exploit the relationship between restricted ML estimation and the minimum 
chi-squared (MC) estimation procedure (Ferguson, 1958). 

3.2.1. The minimum chi-squared procedure (Ferguson, 1958; Malinvaud, 
1970; Rothenberg,  1973) 

Let  the likelihood function be known up to the parameter vector 6 -= (0', ~ ' ) '  
which is t o  be estimated subject to the freedom equation restrictions 0 = 0(95) 
where dim(0)>dim(95) and the function 0(-) is first-order continuously 
differentiable with the derivative matrix O = 00/095' of full column rank at 
least in a neighbourhood of the true parameter value. The restricted ML 
estimator is asymptotically equivalent to the MC estimator obtained from 

mini6 -8(95, ~)]'5~ [6 -6(95, q,)], (13) 

where 6(95, ~)- [0(95) ' ,  ~ ' ] '  (Ferguson, 1958, p. 1048; Rothenberg,  1973, p. 
34), ~ denotes the unrestricted ML estimator for 6 and 5~ the asymptotic 
information matrix, that is, avar [N1/2(6-  6)] = 5~-1.4 Thus, importantly for 
the results below, the restricted ML method implicitly places the metric • in 
the equivalent MC procedure. 

Concentrating out the nuisance parameters ~b from (13) gives the equivalent 
MC criterion in 0, 

[0 - 0(95)1'[~°°1-110 - 0(95)1, (14) 

where avar [N1/2(0-  0)] = 5 ~°° is that block of 5 ~-1 corresponding to 0. The 
resultant MC estimator for 95, ~, has asymptotic variance matrix avar[N1/2(~ - 
95)] = {O'[5~°°]-10}-1 which is also that of the restricted ML estimator for 95. 
Moreover,  N times the minimised value of (14) provides a test statistic for the 
restrictions 0=0(95)  which has a limiting chi-squared distribution with 
d i m ( 0 ) -  dim(95) degrees of freedom when the restrictions hold. 

Restrictions (9) may be expressed in the above freedom equation form by 
defining 0 ~ (7r'1, ~r~)' and 95 =- (/31, y~, 1r~)'. Partitioning 0 and 95 as 01 -~ %,  
0 2 - 7r 2 and 951 -= (/31, Y~)' and 952 ~ ~2 respectively, (9) may be re-expressed as 
01 = 01(95 ) and 0 2 = 952. Note that ~r 2 appears both in 0 and 95. However ,  all the 
estimation methods discussed in Section 3.1 neglect this fact and substitute a 
CAN estimator for 7r 2 (0 2 and 952) into the criterion (14). Although this 
estimator for % may be efficient relative to the ML estimator in the 
unrestricted model, it is no longer efficient in the restricted model. Therefore,  
in general, the resultant estimator for ~b I obtained from (14) will also be 
inefficient relative to the restricted ML estimator for ~b 1. If, however,  the 

4 Estimation of 5 ~ and the metrics used later is ignored as only a consistent estimator of ~ is 
required. 
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substituted estimator for 7r 2 in (14) is efficient relative to the restricted ML 
estimator for %, then, of course, the resultant estimator for 4)1 will also be 
efficient. 

A further contribution to the inefficiency of the derived estimator for 4)1 
from (14) is the use of an inappropriate positive-definite metric S, either 
implicitly or explicitly imposed by the estimation procedure of Section 3.1. The 
corresponding inefficient MC criterion function is given by 

[01 - 01(4)1, 4)2)]'S[01 - 01(4)1, 4)2)], (15) 

where a CAN estimator for 4)2 (%) is substituted. The ML procedures of 
Nelson-Olsen and Smith-Blundell (and similarly Heckman) both implicitly 
assume that 4)2 (%) does not enter the restrictions 01 = 01(4) ) and impose a 
metric S appropriate to the ML procedure adopted which is inefficient relative 
to the criterion (15). These two factors destroy t h e  optimality of these 
procedures whereas it is the inefficiency of the 4)2 (%) estimator which 
prevents Amemiya's (1978, 1979) GLS estimators achieving optimality relative 
to the restricted ML estimator for 4)1. Moreover, the methods of Amemiya, 
Nelson-Olsen and Heckman also use an inefficient estimator for 01 0rl). 

Defining V ~  avar[N1/2(O 1 -01(4 ) ) ) ] ,  after substitution of the CAN estimator 
for 4)2, the resultant estimator for 4)1 has asymptotic variance, 

[ O ; S O l ] -  l ~)~SVS{~l[ ~)iS~)l] -1  , (16) 

where 01 ~ 001/04)'. This expression is minimized by choosing S = V -1 render- 
ing (16) as [0~S01] -1 (Ferguson, 1958, Theorem 2, p. 1056; Malinvaud, 1970, 
p. 336). 

We partition the likelihood for (l) ,  (5) and (6) into the cond i t i ona l  
likelihood for (Yl i ,  Y3i) given Y2i and the marg ina l  likelihood for Yzi, i = 
1 . . . .  , N. This corresponds to a partition of the parameters into (%, %, r~, r3, 
0)11.2 , 0)33.2 , 0)13.2), where 0 ) 1 3 . 2 ~ 0 ) t 3 -  0)120)32/0)22, and (%, 0)22). Throughout 
the remainder of this section, we shall denote the asymptotic information 
matrix corresponding to the conditional likelihood as N given by (A4) of 
Appendix A. Similarly 5~3 and 5~ 2 respectively represent the asymptotic 
information matrices of the marginal likelihoods for (Yl~, Y3i) with parameters 
('n', "/'/'3' Wll' 0)33' 0)13) and Y2i, i = 1, . . . , N ,  from (6a), (6c) subject to (1), (5) 
and (6b) respectively and are presented in (A2) and (A5) of Appendix A. 

3.2 .2 .  The  N e l s o n - O l s e n  p r o c e d u r e  
The generalisation of the Nelson-Olsen procedure described in Section 3.1.1 
for observability rules (1), (5) is equivalent to estimating (6a), (6c) subject to 
(1), (5) by ML after substitution of the restrictions (9) replacing 7r 2 with the 
OLS estimator obtained from (6b); (this is identical to replacing Yzi, i = 
1 , . . . ,  N, in (10) by its OLS predictor from (6b) and estimating the revised 
(6c), (10) subject to (1), (5) by ML). 
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In terms of (15), this estimator implicitly minimises 

[7~'1- ~'2/31- Jl")ll]tS[Trl- 7]'2/31- J1")/1] , (17) 

where ~1 and ~2 are the respective marginal ML estimators for ,q from (6a), 
(6c) subject to (1), (5) and ~r 2 from (6b). The implicit metric S in (17) is that 
derived from the marginal likelihood for (6a), (6c) subject to (1), (5); thus, 
S=[51113] -1, where the superscript indicates the appropriate block of the 
inverse of 513 corresponding to lr 1. However, because avar[N1/2(~q - ~-2/31 - 
JlYl)] ~51113, the resultant Nelson-Olsen estimator is not optimal. Setting 
V 0 _ avar[N 1/2(~.1 - ~2/31 -JlYl)] ,  the Nelson-Olsen estimator for (/31, 71) has 
asymptotic variance matrix given by (16) with S -1=  51113, V =  V °  and O1 = 

(~r2,J1). In computing this matrix product, V ° may be easily calculated as 
(IK,-/311K)[avar[N1/2(~5-~rl, ~-2-1r2)]](IK,-/311K)' and may be deduced 
from (A6) of Appendix A. 

3.2.3. The Amemiya GLS procedure 
Substitute the marginal ML estimator for .w I from (6a), (6c) subject to (1), (5) 
and the OLS estimator for ~2 from (6b) into the restrictions (9) (cf. Amemiya, 
1978, 1979). For an arbitrary choice of S, the asymptotic variance matrix for 
the resultant estimator of (/31, 3'1) is given by (16) with V = V  ° and 01 = 
(~2, Jx). Setting S = IK yields the analogy of Amemiya's marginal LS (MLS) 
estimator, whereas choosing S 1 = V 0 gives that of Amemiya's marginal GLS 
(MGLS) estimator. The advantage of the MGLS procedure is that the 
asymptotic variance matrix of the (/31, Yl) estimator derived from criterion (15) 
is minimised. 

3.2.4. The Heckman procedure 
The marginal ML estimator for ~r 1 from (6a), (6c) subject to (1), (5) is 
substituted into (12); the revised (12) is then estimated by OLS. This estimator 
implicitly minimises; 

[~ '2-  ~zfl//31 ~-J1~/ll/31]tS[~T2- @1/~1 Av JI"Yl/~I] 

with respect to (~1, ]/1) with S 1= 5222 which is derived from the marginal 
likelihood for (6b) where the superscripts refer to that block of 521 corre- 
sponding to ~h- Because these restrictions are a nonsingular transformation of 
(9), the resultant estimator has asymptotic variance matrix (16) with V--V ° 
and 01=(~-2,J1); see also Amemiya (1979, equation (4.28), p. 179), but, 
contrary to Amemiya's assertion, the efficient MGLS estimator is identical to 
that discussed in Section 3.2.3 with S - I =  V °. 

3.2.5. The Smith-Blundell procedure 
All of the methods discussed above are marginal ML procedures being based 
on the marginal likelihoods for (Yxi, Y3i) and Y2i, i = 1 , . . . ,  N. The procedure 
due to Smith and Blundell (1986) and Blundell and Smith (1989) uses the 



126 R. W. Blundell and R. J. Smith 

conditional RF (7), (8) rather than the marginal RF (6a), (6c). This method 
estimates (7), (8) subject to (1), (5) after substitution of the restrictions (9), 
the OLS estimator obtained from (6b) replacing ~'2 in (9) and in v2/= Y z i -  
x'i~-2, i = 1 , . . . ,  N, which is identical to estimating (8), (11) subject to (1), (5) 
by ML after replacing vzi by the corresponding least squares residual from 
(6b), i = 1 , . . . ,  N. Hence, This approach is a conditional ML procedure. 

The Smith-Blundell estimator implicitly minimises from (15), 

-  2/31 - Jx ,l]'s[ l - - J1 1], (18) 

where (¢ri, ¢r2), (¢r 2 =- ~'2), are the joint unrestricted ML estimators for (~'1, Ir2) 
obtained from (7), (8) subject to (1), (5) and (6b) (Chesher, 1985a) and the 
metric S -1= ~ 2 2 ,  w h e r e  the superscripts indicate that block of ~3-1 corre- 
sponding to ~i. Denoting the asymptotic variance matrix of [¢q - ¢r2fi 1 -J171] 
by V*, the asymptotic variance of the Smith-Blundell estimator is given by 
[0;S01] 10;SV*S01[0~S01]-1; V* = (IK, -/3JK)[avar[N1/2[( ¢ h -  ~), (~'2-- 
~'2)]](IK, --fillK)' and may be deduced from (A7) of Appendix A. 

An alternative conditional approach is based on the Heckman (1978) 
approach given in Section 3.2.3 employing ¢r I in place of ~'1. The corre- 
sponding MC criterion is thus given by 

[ ¢r2 - ¢rl ~ill + JlYI//31 ]iS [ '~'2 -- 7]'1//31 + J1~1//31 ],  (19) 

where, as in Section 3.2.4, S -1 = ~ 2 .  The resultant estimator for (/31, Ya) has 
asymptotic variance matrix [0~S01]-10~SV*S01[0~SOI] -1. 

3.2.6. The conditional GLS procedure 
The optimal conditional GLS (CGLS) estimator for (/31, Yl) in the sense of 
having minimal asymptotic variance matrix with respect to criterion (18), is 
obtained by setting S - I = V *  and has asymptotic variance matrix 
[O~V* 101] 1; cf. Amemiya's (1978, 1979) MGLS procedure in Section 3.2.3. 
An identical CGLS estimator is given by applying the Heckman (1978) 
criterion (19) with S -1= V*. See also Newey (1987). 

3.2.7. Some relative efficiency comparisons 
Because (~r 1, ~'2) is the joint unrestricted ML estimator for (~'1, ~'2) we have 
V ° - V *  >/0 and thus the CGLS of Section 3.2.6 is relatively more efficient 
than the MGLS of Section 3.2.3 as [O;V°-lOa] -1 - [0~V*-101]-1 i> 0. More- 
over, therefore, CGLS is relatively more efficient than Nelson-Olsen, Smith- 
Blundell and both marginal and conditional Heckman estimators of Sections 
3.2.4 and 3.2.5. Using a similar argument, the conditional Heckman estimator 
is relatively more efficient than the marginal Heckman estimator as the implicit 
metric in both procedures is the same. 

Although V ° - V * ~ O ,  as #11~- ~11>~0 and thus (~311) - 1 -  (#1113)-1 i>0, in 
general we are unable to rank the marginal Nelson-Olsen and conditional 
Smith-Blundell estimators. Similar comments apply to other pairwise corn- 
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parisons of marginal and conditional estimators which use different metrics. 
However, for methods which use the same metric, by an equivalent argument 
to that above for the Heckman procedure, the conditional estimator will 
dominate the corresponding marginal estimator. For example, when S = I K, the 
conditional LS estimator is relatively more efficient than Amemiya's marginal 
LS estimator of Section 3.2.3. 

If the restrictions (9) are just-identifying, that is 0 and 05 are one-to-one, and 
therefore 6) 1 is nonsingular, the Nelson-Olsen and MGLS estimators are 
asymptotically equivalent. Moreover, the Smith-Blundell and CGLS es- 
timators are both asymptotically equivalent to the restricted ML estimator and 
therefore Smith-Blundell dominates Nelson-Olsen and MGLS unequivocally. 

If, however, r = 0 then (~'> ~'2) are joint unrestricted ML estimators for 
(%, %) and thus, as the conditional procedures do not incorporate this 
restriction, the CGLS and MGLS ranking is reversed with a similar result for 
the conditional and marginal Heckman and LS estimators. In particular, if the 
restrictions (9) are just identifying, the Nelson-Olsen estimator will be 
asymptotically equivalent to the restricted ML estimator. 

3.2.8. The limited information MC procedure 
From Section 3.2.1, the efficient MC procedure minimises 

[(7]'1 - -  "7]'2/~1 - -  JI"Y1) ¢, (7]'2 - " w 2 ) ' ] S [ ( ~ ' l  - 'w2~1 - J 1 ~ 1 ) ' ,  (7]2 - w 2 ) ' ] '  

with respect to  (/~1, "~1, "/72) where S -1 = avar[N1/2[(~- 1 - 7rl), (~'2 - ~'2)]]. This 
produces estimation equations of the form 

qS, = [ O ~ S n  f 9 1 ] - 1 0 ; [ $ 1 1 ~ ' 1  + S12(~ '2  - % ) ] ,  

772 = 3f, g2 -~- [S22 -[- ~31812]-1[S21 --[-/~1Sll](qT1 -- ,,/]-1) ' 

~1 = 01051 ,  

where S is partitioned conformably with % and % and 051 = (~1, ~ ) t  These 
equations may then be iterated in a step-wise fashion until convergence. The 
use of initial consistent estimators for 051 and zr 2 such as the Smith-Blundell  
estimator and the OLS estimator ~z should assist convergence and also avoid 
the need to recalculate the inverse of $22 +/3tS12 at each iteration. 

3.3. Efficient estimation 

By exploiting the partitioning of the joint likelihood into the conditional and 
marginal likelihoods of (Yai, Y3i) and Yzi respectively, a striking feature is that 
the score vector evaluated at the Smith-Blundell estimator for 
(]31, T1, Pl, Wll.2), 7]'2 and (¢r 3, P3, O)33.2) has null elements except for 0 l n ~ /  
0~r 2. Denoting evaluation at these estimators by ^, a simple linearised ML 
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(LML) estimator based on the method of scoring is from (B3) of Appendix B, 

# 2 = # 2 -  x i [ 1 / ~ 2 2  + ÷ ' ~ ) - 1  ^ (1) ~ - 1 ~  , 
_ .2 var [e13 , l~ .2  rlxi 

x ; [ ÷ , b i ~  ^ (1~ . . . . .  - cov[~ ,~ ,  ~.~illwi #i va r [~aAw;  
i=1  "= 

(1) ^ - 1 ^  , ~ ,  ~ - 1 . ( 1 )  
X E I ~ i [ C O V [ ~ . 2 i ,  E13i] ~'~.2 T]Xi Xi[T ~'~.2, E13i1 " 

i=1  i=1 

The suggested LML estimator for [/81, 3'1, rl, ~r~, v(O.2)] is: (i) calculate ¢r 2 
from above, and (ii) substitute ~'2 into (8), (11) via 02,=Y2i-x ' ;¢r2,  i =  
1 , . . . ,  N, and estimate the revised (8), (11) subject to (1), (5) by ML. 

The above algorithm may be iterated in a step-wise fashion to compute the 
exact ML estimator. However, for step (i) above, the last term should be 
revised to 

N 

E Xi[~'~ ~21 e } 1 3 1 -  0 2 i / ( ~ 2 2 ]  , 
i=1  

where ^ now indicates evaluation at the previous iterate from steps (i) and (ii); 
step (ii) remains unaltered. It is also necessary to check that at each stage steps 
(i) and (ii) increase the value of the joint log-likelihood In ~ to ensure global 
convergence of the algorithm. 

4. Type II simultaneous equation models and some consistent estimation 
procedures 

This general class of model nests the specifications considered in Heckman 
(1978) and Gourieroux, Laffont and Monfort (1980). Unlike the Type I 
models, no explicit reduced form (3') exists for the Type II specification. This 
class of models puts h(yl*, Y3*) = Yli, i = 1 . . . . .  N ,  in (2), (3). 

For a well specified econometric model a unique (implicit) reduced form 
must exist. Indeed, this is a necessary requirement of any model based on 
economic optimisation (see Ransom, 1987 and Van Soest et al., 1990). As a 
result knowledge of the parameter space under which coherency and therefore 
the logical consistency of the economic model is satisfied, becomes crucial. As 
Madalla (1983) points out, if the parameter space can be restricted to areas in 
which economic models 'make sense' then the coherency condition is often 
automatically satisfied. 

4.1. The coherency problem and identification 

To aid our discussion, substitute (1) and (3) into (2), 
ge ! ¢ 

yl ,  = (~, + ~2 /8 , )g1(y ; ,  y3D + x2i3"d3, + X l m  + vii, (19)  
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where Oli ~-- Uli -[- /31U2D i = 1 , . . . ,  N. As above the binary indicator function is 
denoted by 1(-). 

EXAMPLE 1 (Tobit  model) .  The observability rule is as in (O1). Consider (19) 
when yl* > 0, 

(1 - -  Og I - -  a2/3a)y~* ' + ' (20) = Xli 'Y1 X 2 i ' ) / 2 / 3 1  71- Uli  , 

from which we see that the coherency condition (1 - a I - a2/31 ) > 0 is sufficient 
to guarantee a unique reduced form; see Maddala (1983) and Gourieroux, 
Laffont and Monfort (1980). Rewriting (20) using (3) as 

* * "  ' * * ( 2 1 )  Yl i  = / 3 1 Y 2 i  -}- Xli~/1 nt- Uli , 

* > - * * * ~ _  y l / ( 1  - w h e n  Yu 0, where ~92i- Y2i a2yli and/31 - = / 3 1 / ( 1  - og I - o~2/31),  ~1 
*=--uli/(1--ai--a2/3a ). Given a2, although /31 and y~ are Ol I - -  O.'2/31), U l i  

identified, it is easily seen that neither % n o r / 3 1  are. A suitable normalisation 
is thus required; for example, a~ = 0 or a I + a2/31 = 0. 

EXAMPLE 2 (Probit model) .  The observability rule (1) is as in (02) .  Again 
examining (19), it can be seen that the coherency condition aa + a2/31 = 0 is 
required for the existence of a unique reduced form: see Heckman (1978). 
Moreover, following the discussion of Example 1, this condition is sufficient to 
identify o~ 1 and/31, given a 2. 

EXAMPLE 3 (Selectivity model,  Heckman, 1979; Cogan, 1981). The observability 
rules (1), (5) are as in (03) .  When Y3* > 0, (2) reduces to (20) as in the Tobit 
model. Thus, both coherency and identification conditions for Example 1 hold 
here also. 

EXAMPLE 4 (Double-Hurdle, Cragg, 1971; Blundell, Ham and Meghir, 1987). 
The observability rules (1), (5) are as in (04) .  Again, coherency and 
identification conditions are as in Example 1, because (20) holds when Yli 0, 
Y3i > O. 

4.2. Consistent estimation and inference in type H models 

Following the conditional maximum likelihood approach of Smith and Blundell 
(1986), we rewrite (2) conditionally on Uzi as 

t 
Y1* = alYl~ +/3~Y2i + XliYl + P~U2~ + eli ,  (22) 

where P l -  °21/°22 and, due to the joint normality of uai and u2i, elg =-Ul i -  
plUzi is independent of Uzg, i = 1 , . . . ,  N. However, in contrast to the standard 
simultaneous model, it is the constructed variable 29z~ =- Yzi - -  a2Y~ not Yzi which 
is independent of el~ in this problem. Thus, we rewrite (20) as 

! 
Yl* = (cq + a2/31)yli +/31¢2~ + xa~71 + PlU2i + el~ , (23) 
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which forms the basis of the suggested estimation procedure for the structural 
parameters of (2). 

To implement (23), it is necessary to obtain suitable estimators of Y2~ and u2~ 
(or a 2 and 3'2). Consider instrumental variable (IV) estimation of (3). Given 
sufficient exclusion restrictions on x~ to form x2i ( K  > K 2 ) ,  a z and 3'2 will be 
identified by the standard conditions. Although Yli  = ga(Yl~,  Y3g) is a nonlinear 
function of the latent variables, it is easily shown that a 2 and Y2 are consistently 
estimated by IV using x~ as instruments. Denote these estimators by &2 and 4/2 
respectively and the corresponding estimated constructed variable and IV 
residual by Y2~ and u2~ respectively. Thus, the relevant estimating equation 
becomes from (23) 

* = ' " ( 2 4 )  Y l i  (0:1 -t- a2 f l l )Yl i  q- J[~l;2i q- Xli]ll -{- plbl2i -}- E l i ,  

where 

+ t l(Y2, + + pl(U , + a i) , 

i = 1 . . . .  , N. The appropriate standard ML methods of estimation may now be 
applied to (24) to provide consistent estimators of the structural parameters, if 
necessary in conjunction with 

* = x'1% + (25) Y3i q- P3U2i E3i ' 

subject to (1), (5), where P3 - tr32/trEZ and e i - (eli ,  eai ) I x  i ~ NI(0, Xz), ~.2 = 
[(~g.2)], °~k.2---°)~-°)2%J°'22, j , k =  1, 3, and e i is independent of Uzi 
conditional on x~, i = 1 , . . . ,  N; see Blundell and Smith (1990). 

Note that the Type I models discussed in Section 3 are n o t  generally 
equivalent to setting 0:2 = 0 in equation (3). Although both classes of models 
are formulated conditionally on the same set of exogenous variables x;, in Type 
II models it is necessary to provide some exclusion restrictions on x~ to identify 
the parameters a 2 and Y2- That is, Type I and II simultaneous models are 
n o n n e s t e d .  The following simple method discriminating between them is 
available. 

Under the null hypothesis that the Type I simultaneous model is correct, one 
can test the Type I specification by estimating 

Y2i = x'irr2 + fili61 q- ~li, (26) 

by least squares and testing 61 = 0, where 33~ is the estimated prediction for y~ 
from the Type II specification (19). 5 Alternatively, under the Type II null, the 

s For example, the Tobit specification (7) gives yl~=xii71* ' * + x2iy2fl 1 '  * +v i i  ,* where vl~=* - u*li + 
• * = • . . . . . . .  x2,z,2/~l ) + to ,~[(x,,vl + /3~u2~, for yl~>0.  Thus, E[yl~lx~] [(xuy ~ +x2~YEfll)/to ](x~y I + . . . . .  

r , , , 2  * x2iY2~l)/to ], where to ~-var(vl~), ~(-) and @(.) denote the standard normal density and 
distribution functions respectively. 
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Type II specification may be tested by estimating 

t 

Y2i = YliOt2 "+ X2i'~2 -]- Y2i62 "q- ~2i , (27) 

by instrumental variables using x i as instruments and testing 62 = 0, where Y2i is 
the estimated prediction of Y2i under the Type I explicit linear reduced form for 
Y2i in (3'). See Davidson and MacKinnon (1981) and Godfrey (1983). 

We now turn to implement the above estimation procedure for the various 
examples discussed in Section 4.1. 

EXAMPLE 1 (continued).  Consider (24) for Yl* > 0. After re-arrangement, we 
obtain 

(1 - % - o~2/31)Yli = / 3 1 ~ 2 i  -[- XrlfY1 "~ Pla2i  -}- E l i '  

o r  

Y u  = / 3 1 Y 2 i  + XliT1 + / 9 1 U z i  + el i ,  (28) 

==- - - ~ *  - g:li/ where /3~, 7~ are defined below (21), p* pl/(1 a I a2/31 ) and e u =  1 
(1  - -  a 1 --  a2/31 ) .  Standard Tobit ML on (28) provides consistent estimators i l l ,  

* and /5* Z/1 1" 

EXAMPLE 2 (continued).  Imposing the coherency condition a 1 + a2/31 = 0 on 
(28) gives 

* ~ + ' + ^  
Yu =/31 2i Xli]ll "}- plbt2i Eli ' (29) 

which may be estimated by standard Probit ML to yield the consistent 
A 

estimators /31, 3'1 and t31 of the structural parameters. 

EXAMPLE 3 (continued).  When Y3* > 0 ,  (28) is reproduced. It is necessary in this 
case also to consider the conditional reduced form equation (25). Proceeding 
as for the Tobit case of Example 1 above by replacing u2i by the IV residual t~2i 
gives 

, A (30) Y3i = Xli"lT3 "~- p31"12i -~- e3i , 

where k3i ~- e3i + p2(u2i - t~2i), i = 1 , . . . ,  N. Hence, a ML estimation proce- 
dure for selectivity models applied to (28) and (30) is appropriate to obtain 
consistent estimators /31, and /~1 "~1 for / 3 1 ,  71 and Pl .  Alternatively, the 
Heckman (1979) procedure applied to (28) would also yield consistent 

* and p~. estimators for/31, 3' 1 

EXAMPLE 4 (continued).  The approach discussed in Example 3 above applies 
except that a ML estimation procedure appropriate for the double-hurdle 
model is used. 
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Define 0* A, ~ ,  ~ , : )  a s  "Y 1 , P3, the ML estimator for the parame- 
ters of (28) and (30), where X.~ (-var(el* , e3i)) = S . X 2 S , ,  S .  - diag[1/(1 - 
% - %/30, 1]. Letting In ~2  denote the log-likelihood of the conditional model 
for (Yl~,Y3~) given U2g, i = 1 , . . .  ,N,  4~=(a2,7~) ' and defining 5~-= 
N-1E[02 In 5f2/~0" O0*'], Y{--- l - l { - N - 1 E [ 0 2  In ~.2/00" 0~b']}, which are pre- 
sented in Appendix C (E[.] denotes expectation taken conditional on x i and 
u2~, i = 1 , . . .  , N) ,  we have 

where 

, L ^ 
N 1 / 2 ( 0  * - 0 )---~N[0, V(0*)] ,  

v(O*) • -1 + 

with ~ = (&2, ~/~)', the IV estimator for ~b; thus 

V(6)  ( - ava r [N ' /2 (~  ~b)]) = - 1  - 1  - O - 2 z ( M z . x M x x M x z . )  , 

where . -1 N , X2i)  , i = 1, . , N .  M z , x = - l l m r _ , o N  E i = l z , i x  i etc. and z , i  (Y l i ,  ' ' . .  

See Blundell and Smith (1990). Note that the above limiting distribution result 
is all that is required to undertake inference for exclusion restrictions on 
01 --- (/31, ~/~, Pl)' in Examples 1-4, given the just identifying assumption % = 0 
or, trivially, a 1 + a 2 ] ~  1 = 0. 

In Examples 1, 3 and 4, having obtained 0", it is still necessary to derive a 
suitable estimator for 01. Given conditions that just identify 01 from 07 --- 
(t3T, *' 71,  P~)' such as discussed in those Examples, this matter is relatively 
straightforward. Consider the following set of constraints linking 0", 0 and ¢b: 

q(O*, O, ~b) = O ,  

where the number of restrictions equals the number of elements comprising 
both  0* and 0; furthermore, as above, assume that 0 is just identified from 0* 
for given 4) through these constraints. Hence, the required estimator 0 for 0 is 
determined uniquely by 

q(O*, 0, ( ~ ) :  0.  

As both Qo (=-Oq/00 ' )  and Qo* (=--Oq/00")  are nonsingular, we have, following 
Szroeter (1983), 

N l j : ( O  _ L 0)--->N(0, Q V Q  ) ,  

where Q =- Q o  l [Qo . ,  Q~],  Q4 ~ Oq/O¢)' and 

V=(Idio(O) /diem (ff/b) ) (~'(~O 1 g(O))(ldim(O) 0 ) 
\ -Y[' Idim(0)/' 

where 5 ~ and Y{ are defined above; this latter expression for V 
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(~avar[N1/2(O*-O*), N1/Z(~-q~)]) is obtained from noting that 
N-1/20 ln~.2/00* and N1/2(~- qb) are uncorrelated, cf. Smith and Blundell 
(1986, Appendix). 

For Examples 1, 3, 4, the above analysis produces particularly convenient 
results. Firstly under the assumption that a, = 0, 

/31 =/3~/(1 + &2/3~), 

'y, = ~ / ( 1  - &2/~), 

tS, = 15~/(1 + 52/}7), 

and, secondly, 

L 
N 1 / 2 ( 0 1  - 0 l ) - - + N ( 0  ' Q I V Q ; ) ,  

where Ol ~-- [(1 11 ~101 with -- 012131)Q00, , 0(KI+2,K+4 ), , 0(Kl+2,K2)] 

o, !) 
QIOIO~--~- -OI2"Yl  l k  1 

\ -- a2p I 0 '  

5. An empirical application 

In this application we consider the case of a joint decision making model for 
married women's hours of work and other household income (including 
savings). This serves as a useful application since other household income is 
continuously observed whereas female hours of work may sensibly be subject 
to any of the four observability rules (O1)-(O4)  described earlier. For 
example, the standard classical model of hours of work and participation is 
described by the Tobit observability rule (O1). This is often extended to the 
selectivity model (03)  if either wages are not observed for nonworkers 
(Heckman, 1979) or fixed costs of work break the relation between hours of 
work and participation (Cogan, 1981). If hours of work are not observed then 
a simple participation Probit (02)  may be adopted. Finally, if some nonwor- 
kers would like to work but cannot obtain employment, the double-hurdle 
model (04)  results (Blundell, Ham and Meghir, 1987). 

The other income variable will contain the labour supply decisions of other 
household members as well as any household savings decisions. If these 
decisions are jointly determined with female hours of work then they will 
depend on the actual hours of work not the underlying latent desired hours 
variable. Thus, the model will fit into the Type II simultaneous framework 
rather than the standard Type I model. In this situation no explicit reduced 
form for other household income will be derivable and a coherency condition 
will be required for the logical consistency of the economic model in this joint 
decision-making framework: 
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Therefore ,  nota t ional ly ,  Yli in (2) relates to hours  of work while Y2i refers to 
the o ther  income variable.  6 The  data,  brief  details of which are provided in the 
Da ta  appendix ,  are drawn f rom the U K  family expend i tu re  survey for 1981. 
The  hours  of work variable  refers to the no rma l  hours  of work for a sample  of 
mar r i ed  w o m e n  of working  age for whom the sample  par t ic ipa t ion  rate  is 56%.  
The  exogenous  factors xli that  de te rmine  hours  of work relate to the age and  
household  compos i t ion  variables (ae, Da) and  the mar r ied  w o m e n ' s  educa t ion  
level (el). The  exogenous  variables in the other  income equa t ion  in x2i include 
demographic  variables (a f ,  n i )  plus t enure  dummies  (Tz), husba nd ' s  skill 
characteristics (MOz) and the local u n e m p l o y m e n t  rate. The  exclusion restric- 

t ions on  the educat ion ,  skill variables etc. provide  the ident if icat ion condi t ions  
on  the model .  

Table 1 
The other income model 

Variable Parameter Standard Variable 
estimate error mean 

Ya -0.4659 0.1803 15.161 
af 4.9003 1.3108 -0.401 
n 1 3.8115 3.7197 0.391 
n z 6.9561 1.8189 0.467 
T 1 -7.2911 1.9492 0.285 
T z -5.2239 3.8164 0.046 
MO 1 -12.2799 3.0812 0.080 
M O  2 -10.8431 1.9086 0.392 
MO 3 -14.5201 2.4212 0.175 
UN -0.5017 0.2722 13.482 
Const 77.7339 7.2661 1.00 

Exact definitions of variables in Data appendix. All calculations 
were performed using GAUSS-386. 

Table 2 
The hours of work equation 

Variable Parameter Standard Variable 
estimate error mean 

Y2 0.0929 0.0222 50.525 
a t -2.0437 0.3257 -0.401 
af 0.5391 0.2506 1.282 
ef 0.6762 0.1182 2.928 
e~ 0.0164 0.0114 14.825 
D 1 24.0999 1.5226 0.295 
fi2 0.2104 0.0509 0.00 
Const 25.1666 2.1531 1.00 

Exact definitions of variables in Data appendix. All calculations 
were performed using GAUSS-386. 

6 This we define in the life-cycle consistent manner (Blundell and Walker, 1986). 
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Table 1 presents the Type II instrumental variable estimates of the other  
income equation corresponding to (3). Notice that a 2 is negative and signifi- 
cant. Following the procedure for Type II model estimation outlined in Section 
4, we estimate the structural parameters of the censored hours equation 
conditional on c~ 2 and u2i using the standard Tobit  estimator in (28). These 
results are represented in Table 2 where we have recovered the underlying 
structural parameters/31, 71 and Pl from the 131, 3' 1 and p ~ estimates, using the 
identification condition % = 0. The coherency condition then simply reduces to 
%/31 < 1 which, given our estimate for/31 in Table 2, is seen to be satisfied. 

Although the argument for including actual hours Yli rather than Yl* as an 
explanatory factor for other income Y2/ is convincing when Yl~ and YEi are 
jointly determined,  it is quite possible that other income Y2i is not the result of 
such a joint decision making model. This does not mean that YEi is statistically 
exogenous for the parameters in the structural model for Ya~ but it does result 
in an explicit reduced form for Y2/- In particular, the model is Type I and has a 
recursive structure. The conditional model simply involves the inclusion of the 
reduced form residual, /)2i = Y z i -  Xtl~'2,  in the structural equation for Yli. From 
our earlier discussion, the two classes of models are strictly nonnested and may 
be compared using the statistics from (26) and (27); these are given after 
presenting a comparison of the estimation results for each model. 

To provide a reference point in the comparison, the first column in Table 3 
contains the standard Tobit  estimates for the model of Table 2. A comparison 
with the estimates in Table 2 indicates the degree of bias involved in assuming 
Y2i to be exogenous in the determination of Yli. The second column in Table 3 

Table 3 
Alternative models for hours or work 

Variable Tobit Type I 

Y2 -0.1211 -0.0477 
(0.0109) (0.0291) 

af -3.8571 -5.4313 
(0.4407) (0.6379) 

a~ -0.9234 0.8332 
(0.4166) (0.4252) 

ef 0.7082 0.6545 
(0.1769) (0.1834) 

e~ -0.0089 -0.0258 
(0.0171) (0.0179) 

D 1 -24.7218 -28.7210 
(1.2545) (2.2119) 

v2 - -0.1251 
(0.0491) 

Const 29.0583 25.2148 
(1.1996) (1.8434) 

Standard errors in parentheses. 
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presents the estimation results from the conditional model assuming Y u  enters 
the determination of Y2i, 02i is then the reduced form error term where all x i 

are used as instruments. 
A comparison of Table 2 with Table 3 suggests that incorrectly assuming the 

standard simultaneous model could lead to an overadjustment for simultaneous 
equation bias. However, that conclusion rests on the assumption that the Type 
II structure is the correct specification. To assess this we consider the tests 
developed in equations (26) and (27) above, the t-value for 61 = 0 is 4.031 
whereas that for 62 = 0 has the value 1.712. This provides reasonably strong 
evidence in favour of the Type II model. 

6. Summary and conclusions 

A number of estimators are proposed for two nonnested classes (Types I and 
II) of simultaneous microeconometric models in which censoring or grouping 
of the dependent variable is present. In Type I models, the simultaneity is in 
terms of the l a t en t  dependent variables and an explicit reduced form solution 
exists. In the second class (Type II), simultaneity is in the o b s e r v e d  dependent 
variables. Thus, in this later class the censoring or grouping mechanism implies 
the lack of an explicit reduced form and a coherency condition is consequently 
required to ensure a unique (implicit) reduced form solution. Our main focus is 
on conditional maximum likelihood estimation. We show that such estimation 
procedures may be applied across a wide variety of popular models and 
provide a useful basis for comparison and inference in such models. 

This methodology is applied to a model for the joint determination of hours 
of work and other household income for a sample of married couples in the 
UK family expenditure survey. This illustration serves to highlight the potential 
for simultaneity bias in microeconometric models and also documents the 
importance of our distinction between Type I and Type II models, suggesting 
quite different results may occur depending on the specification adopted. 

Appendix A 

To obtain 5~1, consider the system (6a), (6c). 

* ' y *  = x ' i %  + (A1) Yl i  = Xi"lrl -1- Oli ~ 3i D3i 

subject to (1), (5), i = 1 . . . .  , N. Define ¢r -= (~-~, It;), g~3 =- [(wjk)], J, k = 1, 3, 
and denote the corresponding marginal log-likelihood by In 5¢13. Then the score 
vector for system (A1) is given by 

N 

0 In =ac~13/O['/T, D(ff~13)] = Z w13i~13 i ,  
i-1 
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w h e r e  ~13 -= [v~p' ,  ( v .  ®~13)~2)']  ', u .  - (v l ,  v3)', 

f a d ® x  o ) 
W13 ~ S 1 3 ~  0 l ( a  ;31 @ ~'~ 731 ) ' 

S13 ~-~ diag(Ir, I1¢, D); D obeys D'U(J~13 ) = vec(J'~13 ) with v(') selecting out the 
distinct elements of a symmetric matrix (Magnus and Neudecker,  1980). The 
term ~13 above is defined by the generalised error products  discussed in 
Gourieroux et al. (1987) and Smith (1987); thus 

~(1) ~ E[/313 lY13] 13 

(r13 @ r13) (2) ~ E[(013 @ I)13) ] Y13] - vec(ff~13) , 

where E[-[Y131 denotes conditional expectation given the observability rules 
(1), (5) and Y13 ~ (Yl, Y3)'- By the familiar information matrix equality and the 
assumption of the independence of observations i = 1 , . . . ,  N, we have that 
conditional on x, 

N 
o,6~13 = N -1 ~ ,  W13 i var[¢a3ilw~3 i . (A2) 

i=1 

In a similar fashion, to derive ~ ,  consider the system (7), (8), 

X i"IF 1 q- V2i'Fl q- Eli 

* ' (A3) Y3i ----Xi7"1"3 ~- O2iT3 "~ l~3i , 

' * ~- ( G  ~1)', * - subject to (1), (5), i = 1 , . . . ,  N. Define or* -= (~r~ , ~r 3') ' ,  ,7/" 1 ,'/r 3 
(~'~, %)', ~2  - [(t°jk.2)], 1, k = 1, 3, and denote the corresponding conditional 
log-likelihood by In ~2- Then the score vector for system (A3) is given by 

N 
0 ln~2/O[~r*,  v(02)]  = ~ W.2,~.2i, 

i=1 

[~13 ~ \ 13 132 I ~ El3 where , - .2_  = _o), ¢s ® e  ~(2),1, =__~(t~l, e3), ' 

W'2 ~ S 9 0 .2 @ ~'~.2 ) - ½(0-1 -~ , 

S.a-= diag(l~+l, IK+~, D)  and x * ~  (x', v2)'; the term ff.z above is defined by 

e~13 ) ~ E[e13 1 Y13] , 

(~. ® ¢,3) ~)  ~- E [ G ~  ® ~ . )  ] y . ]  - v e c ( ~ 2 ) .  
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Thus, conditional on x*, we have 

N 

= N-1 Z w.2i var[~.2i]wi2i 
i=1 

(A4) 

Finally, 

f N I ~ XiXri/0)22 
off2=~ i=lo, 

o). 
1/2o)22 

(A5) 

To derive the matrices V ° and V*, note that 

N 
N1/2(2[13 - )t13 ) = off ?31N -1 /2  £ w13i~13 i -]- O p ( 1 )  , 

i=1 
N 

__ = q; 22 ~ r -  1/2 
N'/2(~'2 %) ~2 "" 2 XiV2i/0)22 "JC O p ( l ) ,  

i=1 

where /~13 ~ [~'T', D(~'~13)' ] ' and " denotes the marginal ML estimator. Thus, 

avar[N1/2('~13 -/~13), N1/2('h'2 - ~'2)1 

0 

i~=l W13i var[~13ilw~3i 
x N - 1  N 

~i~= XiCOV[O2i,~13i]W~3i/O)22 

0 

N ) 
w.,  cov[;.,, v2,]x:/0)22 

i=1 

E xixi/0)= / 
i=1 

(A6) 

The variances and covariances required for (A6) are obtained by noting that 
2 t , '~ - I  "~1 

U2i = 1Dr13i~?¢T0)22 "t- E2i , where e2;--NI[0, (o)22 - 0)22 r aL13 r)l independent of 
v13 i, i=  1 , . . . , N .  Thus, 

{ varf<131~ 
COV[~13i, V2i] = ~kCOV[(Vl3 i @D13i) (2) ,  "U13i]/(1)1) 0?¢ ' / ' 0 )22"  

Similarly, noting ¢r 2 = 4r2, as 

1(  w2i,2i ) N (/~.2-- /~.2) ~ N -1/2 .~ .T1/2, . = - < 2 i v  t lr  2 - % )  +op(1)  
i=1 
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vrg2 Vl, ~ denotes the conditional ML estimator and where A.2-= [rr*', t .2J , ,  

#2 - N - I ~  {" var[e~131] t -1 , 
= " ~'~.2 ~'Xi  

• i=1 W'itlcovrle13i@E13i'x(2),\[L) g13i1/-(1)1 " 

Hence 

avar[N1-2(~.2 - A.2), N1/2(7]-2 - ,n-2) ] 
( -1 =~ - 1 ~  q ;22~  r21 ~ -1 ~1~-1  _]_ ~ ~ . 2 ~ 2  ~ .  - - ~  '562 '~  2 

22 12~1~ - 1 / 

cf. Smith and Blundell (1986) and Blundell and Smith (1989). 

(A7) 

Appendix B 

To derive the information matrix for the full system (6) subject to the 
restrictions (9) and the observability rules (1), (5), define z =- ( Y 2 ,  x * ' ) '  and the 
selection matrices S 1 and S 3 which select out those elements of z appropriate 
for (11) and (8) respectively. Thus, the score vector corresponding to the 
conditional model [(8), (11) subject to (1), (5)] parameters is given by 

N 
l , r  

0 In  S~/O[/3,, Y l ,  P l ,  '/]'3 , v(~'~2)] = £ wi~.2i, ( B 1 )  
i = 1  

where 

0 
and ~.2 is defined in Appendix A. The score vector for the marginal model 
[(6b)] parameters is 

N 

0 In ~.~107"t" 2 = Z xi[(V2i/o)22) -- T tt"haL .2-1E13il(1)' . ( B 2 )  
i = 1  

Hence,  the information matrix is given by _( N 
wi var[~.2,]w; 

# = N  I i=~ N 

i--~l ¢ --1 (1) p Xi[T ~(~ .2 C 0 V [ 8 1 3 i ,  ~.2i]]Wi 

N 
i~=i (I) i , 

N - w i [ c o v [ G , ,  ~13,]0.2  ~]x, . 

~_ t --1 (1) --1 t Z xi[1/o,= ,a.2 var[<Aa: dx,] 
i=1  / 

(B3) 
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Appendix C 

Consider the system 

Following Smith (1987, Appendix B, pp. 120-121) and noting that 0"~- 

( 8 1 ,  * '  * ' Yl , P l ,  ~'3, P3, v(2.'2))', the score vector for system (C1), (C2), assum- 
ing that Yzi and u2i are observed, i = 1 , . . . ,  N, is given by 

z ~ (Y2, 3g', b/2)' and S ~- diag(S1, S3, D); S 1 and S 3 select out the appropriate 
elements of z included in (C1) and (C2) respectively whereas D obeys 
D ' v ( X )  = vec(X) with v(.) selecting out the distinct elements of a symmetric 
matrix (Magnus and Neudecker, 1980). The term ~ above is defined by the 
generalized error products discussed in Gourieroux et al. (1987) and Smith 
(1987); thus 

where El. [y] denotes conditional expectation given the observability rule 
linking y* = (Yl, Y3)' to y = (Yl, Y3)' and z. By the familiar information matrix 
equality and the assumption of the independence of observations i = 1 , . . . ,  N, 
we have that conditional on z, 
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~ S  * - 1  - -  t r where W 2 2 (  ~ .2 ~ Z 2 ) '  Z2 = (Yl, X2) and 

S2__~ ( ( j [ ~ l ; p l )  Ot P 3 0 '  ) 
pllK2 0 p31~:2 " 

Thus,  again by independence and the information matrix equality 

N 

-N-1E[OZln ~.2/O0*O~b'] = - N  - I  ~ w i cov[¢i, _,(1)1. , . ei ]W2i , 
i= l  

cf. Smith and Blundell (1986). 

141 

Data appendix 

The data are a sample of 2539 marr ied women from the 1981 family 
expenditure survey for the UK.  All women are of working age and are not self 
employed.  

Variables Mean Standard 
deviation 

Female hours yl 15.1611 15.7452 
Other  Income Y2 50.5254 41.7982 
(Age - 4 0 )  / 10 a f -0 .4008 1.0593 

(Age - 40) 2 ] 100 a~ 1.2823 1.1580 
(Educat ion - 8 ) ef 2.9283 2.5005 

(Educat ion - 8 )  z e 2 14.8251 25.3807 
Youngest  kid age ( - ,  5] D 1 0.2954 0.4563 
Youngest  kid age [5, 10] D 2 0.2209 0.4149 
Youngest  kid age [ 1 1 , - ]  D 3 0.1394 0.3463 
Number  of kids [ - ,  5] N 1 0.3911 0.6680 
Number  of kids [5, 10] N 2 0.4667 0.7400 
Number  of kids [11, - ]  N 3 0.4124 0.7499 
Owner  occupier T 1 0.2847 0.4514 
Local authority T 2 0.0456 0.2088 
Husband : skilled MO1 0.0803 0.2718 
Husband : semisk i l l ed  MO 2 0.3919 0.4882 
Husband : unskilled MO 3 0.1748 0.3798 
Local unemployment  UN 13.4821 2.9086 

Notes: Yl - normal  weekly hours of work for married women;  Y2 - normal  
weekly earnings minus expenditures. 
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Multivariate Tobit Models in Econometrics 

L u n g - F e i  L e e  

1. Introduction 

The use of household or firm microeconomic data offers important advantages 
for the empirical analysis of consumer demand and labor supply of consumers, 
and production and input demand of producers. Demographic variables and 
heterogeneity of individuals can be easily incorporated in the estimable 
equations, but these effects are not easily measured with aggregated data. 
Microeconomic data, however, contain certain attributes which complicate the 
econometric modelling and estimation. For example, household budget data, 
which contain detailed information on the consumption of certain disaggre- 
gated commodities, often contain a significant proportion of observations with 
zero expenditures. The consumer demand functions contain limited dependent 
variables. Pioneering works on limited dependent variables in microeconomet- 
ric models (for example, Tobin, 1958; Amemiya, 1973; and Heckman, 1974) 
have emphasized an univariate limited dependent variable. A survey on the 
econometric developments of model specification and estimation of limited 
dependent variables by Amemiya (1984) (see also, Maddala, 1983) has focused 
mainly on univariate limited dependent variable models. Much developments 
on multivariate limited dependent variables models have taken place recently. 
In this article, we provide a brief survey on multivariate tobit models. The term 
'tobit models' in this survey refers solely to models with either censored or 
truncated dependent variables. Qualitative variables or sample selection 
models are not covered in this survey. This survey will emphasize models 
formulated with neoclassical microeconomic theories. Consumer demand 
models are important members. 

This survey is organized as follows. Section 2 provides some familiar 
multivariate and simultaneous equation models with multivariate tobit vari- 
ables, which are generalizations of the classical multivariate regression model 
and the classical linear simultaneous equation model. Section 3 discusses the 
formulation of consumer demand systems and production systems, which are 
compatible with microeconomic theories and incorporate features of mi- 
croeconomic data with zero expenditures or kink points. The derived equation 
systems are essentially nonlinear simultaneous equations with complicated 
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cross-equation constraints. Some of the simultaneous equation tobit models are 
nonlinear in variables. Such models may not be well-defined stochastic models 
without appropriate restrictions on some of the structural parameters. This is 
an issue on model coherency. Section 4 surveys such an issue. For consumer 
demand or production systems, the model coherent conditions are essentially 
the familiar concavity conditions. Structural models with sound theoretical 
foundations are coherent. The estimation of multivariate tobit models by the 
classical maximum likelihood method is known to be computationally ineffici- 
ent, since the computation of multivariate normal probabilities of high 
dimensions is difficult. Section 5 surveys some recent developments on 
estimation methods that are computationally tractable, and model specification 
strategies that provide computationally tractable and reasonably flexible 
structures. Instrumental variable estimation methods and simulated methods of 
moments are two of such methods. Lagrange multiplier tests are computation- 
ally simple diagnostic tests for such models. Section 6 points out some of such 
tests. 

2. Some multivariate tobit models 

Multivariate tobit models in this article are models which generalize univariate 
tobit models to systems of equations. In the econometric literature, there are 
several popular generalizations. Each of them designed to capture certain 
special features of empirical issues is unique on its own. The following several 
models are the familiar ones in the literature. Some other models will be 
introduced in the subsequent sections. 

2.1. Amemiya ' s  multivariate regression and simultaneous equation models 

Amemiya (1974) extends Tobin's model (Tobin, 1958) to some multivariate 
regression and simultaneous equation models. He considered the models with 
all the dependent variables being censored or truncated. The simultaneous 
equations system is specified as follows: 

Byt>~ Fxt + ut ' yt>~O , (2.1.1) 

and 

(By,)i = (Fxt + ut)i , whenever Yi, > O, 

where i stands for the ith component of the relevant vector, x, is a vector of 
exogeneous variables, and ut -N(0,~2) .  The sample observations for the 
dependent variable y take only nonnegative values. If all the components of y 
are positive, y is an interior solution of the system. Observations of y with 
some components zero are corner solutions. Depending on the pattern of 
solutions, different reduced form equations may appear in different regimes. 
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For example, conditional on an interior solution, the reduced form equations 
for the interior regime form a truncated multivariate regression model, 

Yt = Hxt  + vt , (2.1.2) 

where H =  B - 1 F  and v = B - l u .  These reduced form structures, which are 
switching across different regimes, raise model coherency issues. The model 
coherency issue is a problem for structural models to be well-defined probabili- 
ty models. For the classical linear simultaneous equation model, there is no 
model coherency issue (when B is nonsingular). The presence of switching 
regimes for the simultaneous tobit models creates changes in the stochastic 
structures, from which the model coherency problem has arisen. This issue will 
be picked up in a subsequent discussion. An empirical application of this model 
to the study of time allocation of youths can be found in Waldman (1981). 

2.2. Multivariate regression and simultaneous equation models  with s o m e  
dependent  variables truncated 

Sickles and Schmidt (1978) and Lee (1977) extended the Amemiya model to 
the cases where only some of the dependent variables are censored or 
truncated. Applications of such a model are in Sickles, Sehmidt and Witte 
(1979), and Amemiya, Saito and Shimono (1987). Let Yt = (y}l)', y12),), and 
u t = (ul 0' ,  u12)') '. The simultaneous equation system is 

BllY} I) -t- B12y}2) = Fix ~ + u} 1) , 

B21Y} 1) + B 2 2 y } 2 ) ~ F 2 x t - F u }  2) , y}2) ~ 0 ,  (2.2.1) 

and 

(B21yl 1) + B22y}2))i (F2x t + u}2/)i whenever" (21 > 0 ~ Y i t  " 

An observation y with all its components of y(2) being positive corresponds to 
an interior solution of the system. Conditional on the interior solutions, the 
reduced form equation system of the interior regime is a multivariate regres- 
sion model with truncated distributions. 

2.3. The Nelson  and Olsen s imultaneous equation mode l  

Nelson and Olsen (1978) introduced a simultaneous equation model with latent 
endogenous variables: 

By* + Fx  = u ,  (2.3.1) 

where y* is a vector of latent variables. The sample observation y is related to 
y* as y = max{y*,0}. This model has much simpler structures than the 
Amemiya simultaneous equation model. There is a unique reduced form 
equation system of latent variables. Each equation in the reduced form, 
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equation system is a univariate censored regression equation. In terms of the 
latent variables, this model has all of the familiar structure of a classical linear 
simultaneous equation model. The model is coherent when B is nonsingular. 
The structural parameters are identified under the classical rank identification 
condition. This equation system can obviously be generalized to cases where 
only some of the endogenous variables are latent variables and the remaining 
variables are observables. Other  simultaneous equation models with more 
complicated structures, which contain both qualitative and limited dependent  
variables, have been formulated in Heckman (1978). 

2.4.  S o m e  d i sequ i l ibr ium m a r k e t  mode l s  

It is interesting to point out that some of the disequilibrium market  models in 
the econometric literature can be regarded as special cases of the above 
simultaneous equation tobit models. The relations among these models are not 
apparent  in their original formulations. But with some proper  transformations 
of variables, the relations can be revealed. Studies on econometric disequilib- 
rium models can be found in Quandt  (1988). 

The disequilibrium model of the watermelon market  in Suits (1955) and 
Goldfeld and Quandt  (1975) is a simultaneous equation model with some 
censored dependent  variables. The basic equations of the model are 

qt = fllx~t + J~2 q- U l t  , 

Zt = J~3Pt at- f l4qt q- flsX2t q- J~6 -1- Uzt , 

Yt = min(G, G ) ,  

Pt = j~7XBt q- flsY~ + fi9 + UBt ' 

(2.4.1) 

where xjt, j = 1, 2, 3 are vectors of predetermined variables, and u#, qt, Pt and 
Yt are observables but z t is not. The first equation describes the determination 
of the size of the crop qt at the period t. The second equation is a harvest 
equation, which states that the intended amount of harvest is a function of 
current price Pt, the size of the crop itself, and other factors. The third 
equation says that the harvest is the minimum quantity of intended harvest and 
the size of the crop. Under  certain circumstances, it may not be worthwhile to 
harvest the entire crop. On  the other hand, it may be possible that the 
intended harvest exceeds the crop, and in this case the actual harvest will equal 
the crop. The last equation is a standard demand equation. Define Ylt = qt, 

Y2, =P, ,  and Y3t = m a x { q t -  zt ,  0}. The model can be rewritten as 

Ylt = flaXat + f12 + Ult ' 

Y2t = j~7X3t - -  13sY3t + [38Ylt + 139 + u3t , 

Y3t ~ --f13Y2, + (1 --/~4)Ylt -- flsX2t -- f16 -- U2t , 

Y3t ~ 0 , 
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and 

Y3t = -~3Y2 t  + (1 - ~ 4 ) Y l t  - ~5x2t - ~ 6  - u 2 t ,  w h e n  Y3t > O. 

This is a three equations model with only one censored endogenous variable. 
The following disequilibrium marked model with fixed supply is a Nelson 

and Olsen simultaneous equation model: 

d t = a l p  t + XtO~ 2 + U l t  , 

st = st,  (2.4.2) 
Pt -P t -1  = 71(dt - st) + xt7~ + Uzt, 

qt = min(d, st),  

where the first equation is a demand equation, the second equation is a (fixed) 
supply equation with Yt predetermined, and the third equation is a price 
adjustment equation. The demand d is a latent variable, and the transacted 
quantity is determined by the short side condition. Define Yl* = s t -  dr, Yzt : 

P, - P t  1, and Yat = max{gt - q,, 0}. The equations (2.4.2) can then be rewritten 
a s  

Yat = st - % P ,  - xt°12 - -  U l t  ' 
ca 

Y2t = --'~lYlt + X2tT2 + U2t • 

Ya, is the observed censored variable of Yl*~- Indeed, one can check that 
Ylt = max{y1*, 0}. 

3. Some convex programming models 

The development of the econometric literature of limited dependent variables 
was motivated by a consumer demand problem in a two commodities model in 
Tobin (1958). It is natural for later developments to extend the approach to 
models with any finite number of commodities. The following paragraphs point 
out several generalizations, which are compatible with the neoclassical mi- 
croeconomic theory. 

3.1 .  E c o n o m e t r i c  m o d e l s  o f  c o n s u m e r  d e m a n d  o n  c o n v e x  b u d g e t  se ts  

Convex budget sets result naturally from labor supply problems (see, e.g., 
Heckman, 1974; Burtless and Hausman, 1978; Moffitt, 1982; and Hausman and 
Ruud, 1984). It arises also from consumer demand problems with binding 
nonnegativity constraints, quantity rationing, and increasing block pricing (see, 
e.g., Hausman, 1985; Wales and Woodland, 1983; and Lee and Pitt, 1987). 
Consumer demand systems derived from utility maximization over convex 
budget sets with kink points are, in general, nonlinear simultaneous equation 
systems with multivariate limited dependent variables. The demand quantities 
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are limited dependent variables because there are positive probabilities for the 
demand quantities to occur at the kink or boundary points. Those points of the 
demand equations are atoms in the corresponding probability spaces. 

Consider a general multi-commodity model, every commodity in the model 
may be subject to increasing block pricing. For commodity j, assume that there 
are I t different block prices Ptk, k =  1 , . . .  , /t ,  with p j l<p t z< . . .<p j6 ,  
corresponding to the kink points y j ( 1 ) , . . . ,  y j ( / j -  1), where yt(i)<yj(i + 1) 
for i = 1 . . . .  , / j -  2. The case /t = 1 is the standard single price situation. If 
y j ( / j -  1) is the upper limit for commodity j in rationing, PJ6 = ~  As 

a convention, yt(0) = 0, and yj(Ij) = ~. Let U(y~ . . . .  , y*) be a utility function 
which is continuously differentiable, increasing, and strictly quasi-concave. The 
utility maximization problem is 

max U(y*l,. .. , y*m) 
Y] .. . . .  y *  

subject to 

2 2 P, iY[ ~ M ,  
j=l icKj 

O~yj~<-yj( i ) -y i ( i -1)=-~j( i ) ,  i E K j ,  j = l , . . . , m ,  (3.1.1) 

Y~= Z Y[i, 
iEK i 

where Kj = { 1 , . . . , / j }  is the set of integers describing the pink points for 
product j, and Y7 is defined as the purchase of product j in block i. The optimal 
solution y is characterized by Kuhn-Tucker  conditions: 

OL OU(y) OL 
Oyji Oyj IxPji - -  l~ji ~ 0 ~ yji , OYji yj~ = 0, 

OL OL 
OIX = M - ~  ~, ptiyji>~O<-ix, OIX Ix = 0  t i 
OL OL 
oAti - Y t ( i )  - Yt, >~ o <- At , ,  o,~t, '~ti = o ,  

(3.1.2) 

where L is the Lagrange function, and IX and A are Lagrange multipliers. 
Because of the block pricing structure, purchases will always be made in lower 
price blocks before higher price blocks• Hence, if Yji > O, Yjt = yj(l) for all l < i, 
and if Yji = 0, yj~ = 0 for all l > i. Thus the demand for good j is yj = E~= 1 Yjt, 
where ij is the highest integer for which Yji > 0. The optimal quantities can also 

• • • J . . . 

be characterized by virtual prices. For an illustration, consider the demand 
vector y: 

y j = O ,  j E J I ,  

yj=yj(ij) ,  j E J 2 ,  (3.1.3) 

y j ( i j -1 )<y j<y j ( i j ) ,  j E J 3 ,  
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for some it, j E J2 U J3, where J1, J2 and J3 are some partition of the set 
{ 1 , 2 , . . . , m } .  The virtual price vector at y is ~ ( y ) = ( ~ ( y ) , . . . ,  ~m(Y)) ' ,  
where ~ j (y )=  (1//~) OU(y ) /Oy j .  The virtual prices are strictly positive because 
/x > 0 follows from the assumed strictly increasing property of the utility 
function. The Kuhn-Tucker  conditions for y can be rewritten as 

stj(Y)~<Pjl, J ~ J 1 ,  

P j i j  ~ ~:j(Y) < ~ P j i j + l  , 

~j(Y) =Pj,) ,  J ~ J 3 .  

j E J2, (3.1.4) 

The kink point y~(ij) is the quantity demanded for good j, j E J2. Because the 
block price pjij for good j, j E J2, is less than the virtual price ~j(y*), the 
consumer buys as much of the good as permitted under pjzj, but the second 
block price Pjij+l is sufficiently high so that the consumer does not wish to 
purchase any more. If y j ( i j )  is purely an upper limited rationed amount, 
optimality at the rationed limit will be characterized by pj% ~ ~j(y). The goods 
y j, j E J3, are purchased at the quantities yj such that their virtual prices equal 
market prices. With the specification of a stochastic parametric utility function 
U, a likelihood function can be derived through either the Kuhn-Tucker  
conditions or the virtual price characterization. 

Instead of the specification of a direct stochastic utility function, Lee and Pitt 
(1986a) have pointed out that the dual approach, which specifies an indirect 
utility function or a system of demand equations, is also feasible with the 
virtual price characterization. Suppose that D~(p ,  M ;  e) ,  i = 1 , . . .  , m ,  are the 
specified stochastic demand functions, which are solutions to the utility 
maximization problem max{U(y*) [ p ' y *  = M}. Consider the demand vector y 
in (3.1.3), where J1 = {1, 2 , . . . ,  la - 1}, J2 = {l~ . . . .  , l 2 - 1}, and J3 = {/2, 12 + 
1 . . . .  , m}. The virtual prices ~ and the virtual income c, which support y, are 
characterized by the inequalities (3.1.4) and the demand relations, 

0 = Dj (~ I  , . . .  , ~12-1, Pt2i12, • . • , Pmi,,,, C; e ) ,  j = 1 , . . .  , l a -- 1 ,  

y j ( i j )  = D j ( ~ I , . . . ,  ~:12-1, P,2i~2 . . . .  , Pmim , C; ~) , j = l l , . . . ,  l 2 -- 1 ,  

y j = D j ( ~ 1 , . . . , ~ , 2 _ l , p 1 2 G , . . . , p m i , , c ; e  ) ,  j = 1 2 , . . . , m ,  (3.1.5) 

where 

m ij-- 1 l 2 1 

c = M + ~ ~ (Pjl+l - p j , ) y j ( l )  + ~ (~j --Pjij)yj(ij). 
j = l  1 l=1 j = l  1 

These equations imply an implicit function from the disturbance e to 
(~1, • • • , ~12-1, Yt2 . . . . .  Ym)- The likelihood function of y can be derived from 
these equations. Since the demand vector y lies on a budget plane, the 
equation Ym is functionally dependent on the other equations and is redundant. 
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Given a joint density function for e, these equations imply a joint density 
function for (~1 . . . . .  ~12-1, Yt2, " " ,  Ym-1)" Let g(~l, . . . ,  ~2-1, Yt2, . . . ,  
Ym-1) be the implied joint density function. The likelihood function for this 
observation is 

j=l 1 JPjij ,] \ /=1  

X g ( ~ l ,  • • " , ~ 1 2 - 1 ,  Yl2' • " " ' Ym-1) d~l"" "d~12-1 , 

where (II f )  denotes multiple integrals. Given that the utility function is strictly 
concave, the demand vector is uniquely determined. As long as the utility 
function does not exclude any zero consumption for the zero expenditure case 
or the domain of the utility function covers the sampling space of demand 
quantities, the model is a well-specified stochastic model. However, for models 
with utility functions which do not satisfy the global concavity property, model 
coherency problem may occur. This issue will be considered in a subsequent 
section. 

3.2. Production analysis 

Kink points in the production analysis may occur because of binding non- 
negativity constraints on inputs or outputs. Production quotas or quantity 
rationing of inputs will also create kink points. Increasing block pricing in 
inputs or decreasing block pricing of outputs are similar to quantity rationing. 
Consider a profit maximization problem subject to quantity constraints 

max p'q* - r'y* 
y*,q* 

subject to 

F ( q * , y * ) = O ,  c~>q*~>0, 37~>y*~>0, 

where y* and q* are k × 1 and m × 1 vectors of inputs and outputs, respective- 
ly, and 37 and ~ are the quantity quotas. The production function F is an 
increasing function of q* and a decreasing function of y*. The optimal 
solutions for this problem can also be characterized by virtual price 
inequalities. To illustrate the construction of virtual prices, consider, for 
example, y = (0, Y2, • • •,  Y~)' and q = (ql,  q2, • • •, qm)', where the first input 
is not utilized and the first output is produced at the quota level. The virtual 
pr ice  ~dX for input 1 and the virtual price ~sl for output 1 at y are  ~dl = -  
A OF(q, y)/Oy~ and ~s~ = h OF(q, y)/Oq~. The optimality of y is then character- 
ized by 

r l > ~ d l ,  0<Yi<37 i,  i = 2 , . . . , k ,  

pl>~sl, 0 < q j < q j ,  j = 2  . . . . .  m .  
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Input 1 is not used because the market price for this input is too high, and 
output 1 is produced up to the quota limit because the market price for this 
output is high enough. The case of increasing block prices in inputs and/or 
decreasing block prices in outputs can also be formulated in this framework 
(Lee and Pitt, 1987). 

The formulation and analysis of the above models rely on the concavity of 
the objective function and the convexity of the constraints. The Kuhn-Tucker 
conditions characterize the optimal solution because of the convexity prop- 
erties. Some optimization models, such as a consumer demand model with 
decreasing block pricing, may not possess all the convexity structures. For such 
models, the occurrence of regimes will be determined by maximized utility 
comparisons, and the stochastic models are, in general, endogenous switching 
regression models. Kinked points in such models will, in general, occur with 
probability zero (see, e.g., Hausman, 1985). Such models are not multivariate 
tobit models. For consumer demand data with zero expenditures, some authors 
argue that zero expenditures occur solely due to the possibility that the survey 
period was too short to have many commodities purchased. The zero expendi- 
ture problem was then regarded as a measurement issue but was not due to 
price responses of consumers. Such models (see, e.g:, Pudney, 1987) are not 
multivariate tobit models. 

4. Model coherency in simultaneous equation models 

4.1. Coherency conditions in linear simultaneous equation models 

For the classical linear simultaneous equation system By t = I x ,  + ut, given the 
predetermined variable vector xt, the disturbance vector u t, and the nonsingu- 
larity of B, Yt will be uniquely determined by the system. However, the 
simultaneous equation tobit system (2.1.1) does not necessarily define the 
random vector y~ when B is nonsingular. For given values of u~ and x ,  there 
might be no values of y~ that would satisfy (2.1.1), or there might be more than 
one value of Yt that would satisfy (2.1.1). These contradict the classical linear 
simultaneous equation model, because the present model is a system of 
nonlinear equations- nonlinear in variables. Further properties or restrictions 
on B are required for the model to be a well-defined stochastic model. 

The equations in (2.1.1) have the general form 

B y ~ w  , y>~O, 

y ' (By  - w) = 0. (4.1.1) 

The problem of the existence of a unique solution of (4.1.1) is known as the 
complementarity problem in the mathematical programming literature (e.g., 
see Samelson, Thrall and Wesler, 1958). The system has a unique solution if 
and only if every principal minor of B is positive. Thus for the model to be a 



154 L.-F. Lee 

well-defined statistical model, Amemiya (1974) assumes that every principal 
minor of B is positive. Amemiya has pointed out that a sufficient condition is 
that B + B'  is positive definite. Also if B has positive dominant diagonals, it 
has the required properties (Gale and Nikaido, 1965). Waldman (1981.) 
provided an interpretation of the coherency condition in a time allocation 
model. 

For the model with only some dependent variables truncated (2.2.1), the 
coherency condition can be easily derived with an extension of the above 
coherency condition. Since B n is nonsingular, it follows from the first set of 
equations in (2.2.1) that 

---~ - - 1 R  . (2) R - 1  (1) y~l) -B~I -,2yt + B,~I( x, +-11",  , 

which in turn implies that 

( B 2 2  - I (2) - _ B z l B l l  B l z ) y  t >1 _Bz~B~llF1xt + 1,2x t + U~2) _ 1:~ 1 ~ - 1  (1) - - 2 1 ~  11 tat • 

A necessary and sufficient condition for model coherency is that every principal 
minor of B22- B21B111B12 is positive. An equivalent condition on B has been 
derived in Sickles and Schmidt (1978) and Schmidt (1981). The coherency 
condition is equivalent to the condition that all principal minors of B that 
involve at least the rows and columns containing Bll have the same sign. In 
many other simultaneous linear equation models with limited or qualitative 
endogenous variables, model coherency problems exist. A general analysis on 
coherency conditions, which cover many simultaneous equation qualitative 
variable models, simultaneous equation limited dependent variables models, 
and simultaneous disequilibrium market models, can be found in Gourieroux, 
Laffont and Monfort (1980). Even though the coherency conditions in 
Gourieroux et al. cover many important simultaneous equation models, their 
analysis has been limited to models with certain linear structures. Their results 
do not cover models with complicated nonlinear structures as in some of the 
consumer demand models. 

4.2. Coherency conditions in consumer  demand  or product ion  sys tems 

The consumer demand or production systems with kink points (3.1.5) are 
essentially simultaneous nonlinear equation models with multivariate limited 
dependent variables. The model coherency problem is more complicated than 
the ones in the previous section. The practice of simply appending additive 
error terms to demand equations, derived from deterministic direct or indirect 
utility functions, may result in stochastic models which are not compatible with 
the utility maximization hypothesis. Stochastic demand systems consistent with 
the utility maximization hypothesis are likely to result if random terms are 
introduced into the underlying direct or indirect utility functions (see, e.g., 
McFadden, 1973, Burtless and Hausman, 1978, and Wales and Woodland, 
1983, among others). The model is coherent if for every possible value of the 
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disturbance vector e, a unique vector of endogenous variables y is generated; 
and for every vector of endogenous variables in the sample space, there exists 
an e vector that can generate the sample observation from the structural 
equations. For the consumer demand problem, the monotonicity and strict 
quasi-concavity properties of the utility function U(y ;  e) of y guarantees the 
existence of a unique demand vector for each e vector. Satisfaction of the 
second coherency condition will depend on the functional form of the 
structural equations and the way that the stochastic elements are introduced in 
the utility maximization problem. 

Models derived from flexible indirect utility functions might not satisfy the 
model coherency conditions without restrictions on parameter  spaces of 
interest, because some of the flexible indirect utility functions did not satisfy 
globally concavity conditions. An example is the translog indirect utility 
function 

 nv, + 
j - 1  1=1 j = l  

m where v, = p / M ,  j = 1 , . . . ,  m ,  are income normalized prices, E:= 1 aj = - 1 ,  
and flit =/3q for symmetry. The Roy identity yields the notational budget share 
equations: 

* = -o~j - ~'~ /3j, In v, j = 1, . m .  (4.2.2) S j  , . .  , 
l ~ 1  

Consider a fixed vector v. Denote  z~(v)  = - c  9 - E'~= 1 ~jl In v t and D*(v )  = 1 - 
m m 

E:= 1 El= 1/3jz In v l. Let  s = ( s l , . . . ,  sin) be a vector of observable shares. With 
the specification that, for each j, aj includes a random component  e i with an 
unrestricted support, the share equations (4.2.2) will have additive errors. It is 
easy to see that, for each given vector (s, v) ,  there exists a vector e which will 
generate s given v as the optimal solution of the demand system. For  the 
model with binding nonnegativity constraints, Soest and Kooreman (1990) 
derived sufficient conditions for this model to satisfy the remaining coherency 
cond i t i on -  the uniqueness of solution condition. In terms of virtual price 
inequalities, the optimality of s is characterized by the following relations: 

m 

z j* + ,=1~:/3j,(ln v I - In v~') 

s : -  , j = l , . . . , m ,  (4.2.3) 

V * ( v )  + ~ ~ fl,k(In v, -- In v:~) 
l = 1  k = l  

and 

s>~O, v* < v  , s ' ( v - v * ) = O ,  (4.2.4) 

where v* = (v~ . . . .  , v*) is a vector of virtual prices at s. With yj = In v: - In v~, 
j = 1 . . . .  , m; y = (Yl, • • • , Ym)'; and e = ( 1 , . . .  , 1)'. Soest and Kooreman 
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recognized that the coherency issue for (4.2.3) and (4.2.4) is the uniqueness of 
solution y satisfying the problem 

y~>0, 

(z* + By)/(D*(v)  + y'Be) >! O, (4.2.5) 

y'(z* + By) = O. 

Since the indirect utility function H must be an increasing function of M, a 
necessary condition for the monotonicity property is that D*(v )>  0 for each 
sample v. Under the additional restrictions that Be >~ O, (4.2.5) simplifies to 

z* + By >~O , y >~O , 

y'(z* + By) = 0. (4.2.6) 

The problem (4.2.6) is the complementarity problem. Hence the sufficient 
conditions for model coherency for this model are that B is a positive definite 
matrix, Be >i O, and D * ( v ) > 0  for all v. Soest and Kooreman pointed out that 
these sufficient conditions imply also concavity of the (implicit) direct utility 
function on the feasible region S = {s: s 1> 0 and s'e ~< 1}. The concave direct 
utility function attains a unique maximum on S, and hence the model is 
coherent. 

One can see from the above analysis that the model coherency conditions are 
specific for each functional specification of the utility function. For utility 
functions that do not possess the globally concavity property, one has to 
restrict the relevant parameter space so that the concavity property can be 
satisfied on the restricted parameter space. For the model with a quadratic 
utility function, model coherency conditions have been derived in Ransom 
(1987). The quadratic utility function is not monotonically increasing every- 
where on the commodity space, but it is globally concave. By restricting the 
demand quantities to satisfy budget constraints, the Kuhn-Tuckner conditions 
are necessary but not sufficient to characterize the maximum solution. How- 
ever, the likelihood function derived from the Kuhn-Tuckner conditions is a 
well-defined function, because there is a well-defined mapping from the 
stochastic element in the utility function to the solution vector of quantities. 
The model is a coherent stochastic model. The only unsatisfactory problem 
with this utility function is the possibility that, for some sample observations, 
the property of nonsatiated preference would not be satisfied, and the utility 
maximization hypothesis might be violated at those points. The quadratic 
utility function model has been used in empirical studies in Wales and 
Woodland (1983) on the consumption of foods for Australian households, and 
in Amemiya, Saito and Shimono (1987) for household investment patterns in 
Japan. 

5. Estimation methods 

With parametric distributional assumptions on stochastic elements in a model, 
an asymptotically efficient estimation method is the classical maximum likeli- 
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hood method. For the univariate tobit model with normal disturbances, 
Amemiya (1973) has proved under mild regularity conditions that the tobit 
maximum likelihood estimator is consistent and asymptotically normal. Since 
there are no irregularities for the multivariate generalizations, Amemiya's 
analysis can be generalized to establish the consistency and asymptotic 
normality properties of the maximum likelihood estimators for the various 
multivariate tobit models. The difficulty of the maximum likelihood approach 
is the computational complexity of the multivariate normal probability func- 
tions. Gaussian quadrature formulas (see Stroud and Secrest, 1966) become 
computationally inefficient for multivariate normal probability functions with 
dimensions larger than three or four. This difficulty is well-known in both the 
econometrics and statistics literatures. In this section, we will survey some 
other estimation methods that are computationally tractable, even though they 
may be less efficient. 

5.1. Truncated moments  and recursive formulas  

The truncated moments of the dependent variables can be used for estimation 
and specification testing of the models. Consider an m-dimensional multi- 
variate regression model with a normal disturbance, 

y* = a x  + e* , (5.1.1) 

where x is a k x 1 exogenous variable vector; y* is an m x 1 vector of 
unobservable dependent variables; a is an m x k matrix of unknown co- 
efficients; and e* is N(0, X ) where ~ is a positive definite matrix. The sample y 
is observed with y =y* if and only if y~ >0 ,  j =  1 , . . . , m .  The first two 
moments and the moment generating function of the truncated multivariate 
normal distribution have been derived in Tallis (1961). Amemiya (1974) has 
found an interesting relationship between these two moments and has sug- 
gested an instrumental variable estimation method without computing multi- 
variate normal probabilities. Specifically, conditional on y* > 0, 

o ' r E ( y i y ) = l + o - i ' a x E ( y i ) ,  i =  l , . . . , m .  (5.1.2) 

This relation forms the moment equations for Amemiya's instrumental variable 
estimation of the model. Similar relations are also available for some of the 
more complicated multivariate tobit models. For the models with only some of 
the dependent variables truncated, relations between the first two moments of 
the truncated multivariate normal distribution have been derived in Sickles and 
Schmidt (1978) and Lee (1979). Further generalization to multivariate models 
with doubly truncated normal distributions is in Lee (1983). The derivations of 
the relations between the first two moments in Amemiya (1974) and the 
subsequent generalizations in Sickles and Schmidt (1978) and Lee (1979) are 
rather complicated and tedious. Explicit expressions for the first two truncated 
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moments are first derived, and the relationship between these two moments 
are then discovered. A much simpler and systematic approach is based on a 
differential equation characterization of the multivariate normal distribution in 
Lee (1983). This approach is motivated by the pioneer work of Cohen (1951) 
for the univariate Pearson family of truncated distributions. 

Consider the generalization of the multivariate regression model in (5.1.1) to 
the case that the sample y can be observed if and only if it satisfies the 
following conditions (i) and (ii): 

(i) 0~<,,* ~<k . . ,  ~ c + j ~  ~+j,  j = l ,  . J ,  

(ii) O<~y~+j+l<<-oo, l = l , . . . , m - G - J ,  

w h e r e y * = ( y ~ ,  * * * * * ' Y m ) ,  0 <~ G <- and " " " , Y G + I , "  • • m ,  Y G ,  , • • • , Y G + J ,  Y G + J + I ,  

0 ~< G + J ~< m. Depending on the values of G, J, and ka+j, this model contains 
many special cases. For this general model, many relations among the 
moments in addition to the first two can be derived from the differential 
equation approach: 

(1) For  the equations i E {1 . . . . .  G}, 

o-CE(y) = o-i 'ax, l = 0 ,  (5.1.3) 

and 

o J 'E (y~ )  = o-%~xE(yl) + / E ( y l - 1 ) ,  l = 1, 2 , . . . .  (5.1.4) 

(2) i E {G + J + 1 ,  . . . , m}. For these equations, 

o ' i ' g ( y l y )  = o'~'axE(yl) +/E(yl-~) ,  l = 1, 2 , . . . .  (5.1.5) 

(3) i ~ { G + I , . . . , G + J } .  In this case, 

~i'E(ylY) = ki~i'E(Yl-lY) + ~r"'c~x[E(Yl) - kiE(Yl -~)1 

+ / E ( y l  -~) - kg(l - 1)E(y l -2 ) ,  l = 2, 3 . . . . .  (5.1.6) 

These recursive formulas are ready to be generalized to models with 
distributions which can be characterized by differential equations in the form 
01n f(u)/Ou = Ql(u)/Qz(u), where Ql(u) and Q2(u) are finite order  polyno- 
mials. Apparently,  this will include the family of multivariate distributions of 
Van Uven (see, e.g., Elderton and Johnson, 1969) which generalizes the 
univariate Pearson family of distributions to the multivariate case. The 
multivariate normal distribution is an important member of the Van Uven 
family. Many popular multivariate distributions belong to this family. 
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5.2. Truncated moments on a simplex 

In  the  prev ious  sect ions,  the m o m e n t s  are der ived  for  t runca ted  dis t r ibut ions 
def ined on rectangles .  For  consumer  d e m a n d  mode l s  with share  equa t ions ,  the  
t runca ted  dis t r ibut ion of all posi t ive shares  will be  def ined on a s implex.  
Recurs ive  re la t ions  for  the t runca ted  m o m e n t s  on a s implex can be  der ived.  
Cons ider  a mul t ivar ia te  no rma l  var iable  y* of  d imens ion  m with m e a n / x  and 

m covar iance  m a t r i x / 2 ,  such tha t  Z j= 1 y~ = 1, and the t runca ted  dis tr ibut ion of  y,  
whe re  y = y* with y~ > 0, j = 1 . . . .  , m. Since the sum of  the c o m p o n e n t s  of  y* 
is unity,  Y*m is a l inear  funct ion of y ~ , . . . ,  Ym-p Le t  fi = ( / X l , . . . , / X m _ l ) ,  and  
let Y, be  the  covar iance  mat r ix  of  ( y ~ , . . . ,  Y'm-l), Which is the  submat r ix  o f / 2  
with the  last row and co lumn dele ted.  The  t runca ted  densi ty  of  37, whe re  

37 = (Yl ,"  • • , Y.,-1),  is 

g(37) (5.2.1) f(37) - p , 

whe re  

g(37) = (2W)-(m-1)/21~]-l/2 exp(--  1 37 ~( -- a ) ' ~ - 1 ( 3 7 - -  5 ) } ,  

and 

f01( 1-yl ( 1-Em-12 yl 
p . . . .  g(37) dYm- l ""dy l .  

dO dO 

T h e  densi ty  funct ion in (5.2.1) satisfies the  differential  equa t ion  

af(37) Oy,n 1----o-(m 1)'(37--t-~)f(37), 

where  o -(m ~1 is the (m - 1)- th co lumn of  Y,. I t  follows that  

m-I ), 0f(37) 
Y~Y~m 1 1 -  E Yi Oym_ 1 i=1 

= _ t r ( m - 1 ; 0 7 _  g)yrjy~ 1 --  Y i  f(37)' 
i=1 

for  r ~> O, s ~> 1, l i> 1, and j v a m - 1. By the in tegra t ion  by par ts ,  

fa_~?~2y,  ( m-1 "~, Of(y) d 
Y~m-1 1 - - E  Yi] O--~m_l Ym-1 dO i=1 

( a Em--~2yl s--X ( ~ 1  )/f(37) 
= - - S  Y m - 1  1 - -  Y i  dym-t dO i=I ( m ),l (1--Em--12yi S 1 

+l j0 Ym-1 -- E Yi f(37) dym-1 i=1 
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Therefore, 

l , - . ,  r s 1 - 1 x  r l  r s - 1  l \ 
t z ~ , Y j Y m - l Y m  ) -- s ~ t Y y m _ l Y m )  

r s 1 ( m - - l ) ' -  ~" r s l - i x  ( m - l )  
= E ( y i y , , , _ l Y m ) o r  IX - E k y y m _ l y m y  )or , (5.2.2) 

where Ym = 1 -  Ejm~ ' yj and the expectations are taken with respect to the 
truncated density f(~7) in (5.2.1). As every variable can be treated as the 
(m - 1)-th variable, (5.2.2) can be generalized to 

l r .  r s / - - l x  v ~ r  r s - - 1  1 \ 
r ~ t Y j Y i Y m  ) - s r ~ t y j Y i  Ym)  

r s l  i t -  r s l - ¢  i 
E ( y j y i y m ) ( O "  ) I x (5.2.3) = _ E ( Y y i y m y  )or , 

f o r j # i  for i ,  j = l , . . . , m - l , r > ~ 0 ,  s>~l, andl~>l .  

5 . 3 .  I n s t r u m e n t a l  v a r i a b l e  e s t i m a t i o n  

The recursive relations among the moments of the multivariate normal 
distribution and the Van Uven family of multivariate distributions can be used 
for the estimation of the regression coefficients of the multivariable tobit 
models. An instrumental variable estimation (IV) procedure has been intro- 
duced in Amemiya (1974) for the estimation of a multivariate regression model 
with all its dependent variables being truncated normal. The Amemiya IV 
procedure has utilized only the relation between the first two moments of the 
truncated multivariate normal distribution. With the recursive formulas in the 
previous sections, his procedure can be generalized to the estimation of more 
complicated models and the consumer demand models with nonnegativity 
constraints. The efficiency of IV estimators may also be improved by using 
more moments equations. For an example, (5.1.8) implies 

i '  l i '  l l - I  
O- YitYt O" a x y i t  + lYit -- (l) = ±r/i t , l = 1 , 2 , . . . ,  i = I , . . . , G ,  (5.3.1) 

where 1,, (l) mr r/i, Ix)= 0. (5.3.1) can be rearranged into 

1+1 1 l-1 1 i' t 1 ~ q t ~ }:) 
Yit  = -'" lYit + -----Y, Or a x Y i t  -- ~ Or YitYjt  + rl , 

Or Or Or j ~ i Or 

for 1= 1 , 2 , . . . ,  and i =  1 , . . . ,  G. These moment equations provide the 
structural equations for estimation by the instrumental variable method. 
Instrumental variables can be constructed as functions of x in the model. These 
equations can also be estimated by the generalized method of moments 
(GMM) in Hansen (1982). Some of the moment equations can be used for 
estimation, and some of the remaining equations can be used for model 
specification tests (Newey, 1985). The instrumental variable method is compu- 
tationally simple in that the computation of truncated multivariate probabilities 
can be completely avoided. However, with samples of moderate or small sizes, 
this procedure may be rather inefficient as evidences provided by a Monte 
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Carlo study in Warner (1976) show for the univariate tobit model. An 
empirical application of the instrumental variable method to a household labor 
supplies and commodity demands model is in Blundell and Walker (1982). 

Without 
methods 
equation 

5.4. Amemiya ' s  least squares estimation o f  linear simultaneous equation 
models 

Amemiya (1978, 1979) introduced a general method for the estimation of 
structural parameters from reduced form parameters in linear simultaneous 
equation systems. The method is a two-stage method. The reduced form 
parameters of the model are estimated by some consistent methods. The 
structural parameters are then estimated by the least squares or generalized 
least squares methods. The Amemiya method is applicable to the estimation of 
the tobit simultaneous equation models in (2.1.1) and (2.3.1). 

As an illustration, consider the model (2.3.1), 

y* = y*B + x F  + e ,  (5.4.1) 

where y* is a 1 × m row vector of (latent) endogenous variables and x is a 
1 x K vector of exogenous variables. The reduced form equations are 

y* = x/7 + u ,  (5.4.2) 

where H = F(I  - B)  1 and x = e(I - B) -1. For this model, each equation in the 
reduced form system can be estimated by some conventional methods, such as 
the tobit likelihood method, depending on the distribution of the disturbances. 

any parametric distributional assumption, various semiparametric 
are also available (e.g., Powell, 1984). Consider the first structural 

* (5.4.3) Ya = Y~l)]31 +X1T + el , 

where Y[1) is an ml-dimensional subvector consisting of endogenous variables 
other than y~ in y*, and xl is a ka-dimensional subvector ofx .  Let J1 and J2 be 
selection matrices such that Y[1) = Y*J~ and xa = xJ  2. It follows that 

Y*I =Y*Jt~ l  + xJ2yl + el 

= x ( I I J  1 + J2,)/1) q- U l ,  (5.4.4) 

where u~ = uJ1]~  1 + 61. Let % denote the first column of H. Comparing (5.4.2) 
with (5.4.4), 

7/'1 ~-//J1/31 + J2~l"  (5 .4 .5 )  

L e t / )  be the first stage estimate of/7.  Amemiya's method is to apply either a 
least squares procedure or a generalized least squares (AGLS) procedure to 
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estimate the following equation: 

"~'1 = 7]"J1/31 q'- J2'Yl q- ~:1, ( 5 . 4 . 6 )  

where 

= - - ( / / -  n ) J 1 / 3 ,  • 

D 
Suppose that V~t--~N(0,121). L e t  ~1 be a consistent estimate of 121. The 
AGLS estimator 0 of 0 = (/3~, y~)' is derived from 

m i n  ( ~ ' 1  - / / J 1 / 3 1  - J 2 ' ~ l ) t ~ ; t ( ' W 1  - -  / / J l ~ l  - -  J 2 ~ / 1 )  " (5.4.7) 

The Amemiya least squares estimation is 

min (¢q -//J1/31 - J2'Yl)'('I]'I - -  / / J 1 / 3 1  - J 2 ~ l )  , 
~l,Yl 

(5.4.8) 

without weighting. Under some general regularity conditions, Amemiya (1979) 
has shown that the estimators are consistent and asymptotically normal. The 
generalized least squares estimator is more efficient relative to the least squares 
estimator. The asymptotic distributions will depend on the asymptotic dis- 
tributions of the reduced form estimates. 

The generalized least squares estimators are asymptotically efficient relative 
to many conventional two-stage estimators. For the estimation of the model 
(5.4.1), a two-stage estimator 01 of 01 = (/31, 71) has been proposed by Nelson 
and Olsen (1978). Let / /  be a tobit estimator of H in (5.4.2), i.e., each 
reduced form equation is estimated by a tobit maximum likelihood method. 
Let/ /1 -- f/JP With an independent sample of size n, the two-stage estimator 01 
is derived by maximizing the function In L 1, where 

In L 1 -- ~ - ½/~ ln(2~r~ 2) - ~ Ii[y u - (xi/-"/1)/31 - Xli'~l] 2 
i=1 

+ (1 - I i ) In[1  - q~({(xj/1)/31 + xl~yl}/or)]}, 

where I is a dichotomous indicator with I = 1 if y* > 0, and q) is the standard 
normal distribution. The asymptotic distribution of 01 has been derived in 
Nelson and Olsen (1978). Amemiya (1979) showed that the AGLS estimator is 
asymptotically efficient relative to the Nelson and Olsen two-stage estimator. 
For many simultaneous equation models with qualitative and limited depen- 
dent variables, the AGLS method provides relatively more efficient estimators 
than several two-stage estimators (Amemiya, 1978, 1983; Lee, 1981; and 
Newey, 1987). In addition to efficient estimation of structural parameters, the 
AGLS method is also valuable for providing a goodness-of-fit test statistic. Lee 
(1992) has shown that the AGLS method is a minimum chi-square estimation 
method. The multiplication of the minimized objective function by the sample 
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size n, i.e., 

n(¢ 1 - f U # I  -1 - I2 1) 0 1  - n J ,  - J2 ,) 

is asymptotically chi-square distributed with k -  m 1 - k  1 degrees of freedom. 
This statistic provides a test statistic for the test of overidentification, k - m I - 
k 1 is the degree of overidentification of the structural equation (5.4.3). 
Amemiya's method described above is a limited information estimation 
method. For the estimation of the classical linear simultaneous equation 
model, the AGLS estimator is exactly the familiar Theil two-stage least squares 
estimator (Amemiya, 1978). Amemiya's method can be easily generalized to 
estimate the full system of structural equations. An empirical application of the 
Amemiya procedure to estimate a simultaneous equation model on health and 
wage is in Lee (1982). 

5.5. Estimation o f  consumer demand models 

Consumer demand model with kink points are nonlinear simultaneous equa- 
tion models. Estimation of such models becomes more complicated. Multi- 
variate normal probabilities do not have closed form expressions and are 
known to be too complicated to be evaluated effectivelY by numerical 
integration methods unless the dimension is small (see, e.g., Dutt, 1976). Wales 
and Woodland (1983) and Lee and Pitt (1987) have estimated only three goods 
models, because with more than three goods their models involve multiple 
numerical integrals. To overcome such difficulty, a possible approach is to 
consider stochastic specifications which are relatively restrictive but capture 
reasonable correlations due to individual specific error components. When the 
errors are either independent or their dependence has the one- or two-factor 
analytic structure, the probabilities can be effectively evaluated by some 
numerical approximation or numerical integration methods. For the one-factor 
analytic structure, the multivariate probabilities can be written as a univariate 
integral of a product of univariate normal probabilities, which can be evaluated 
effectively by Gaussian quadrature methods (see, e.g., Butler and Moffit, 
1982). In the microeconometric literature, such strategy is used quite often for 
model specifications. The conditional logit model in McFadden (1973) is 
specified by assuming that the disturbances in the discrete choice models are iid 
with a Gumbel type distribution. Such a strategy will also be useful for the 
specification and estimation of consumer demand or production models with 
kink points. Examples are in Lee and Pitt (1986b). 

Consider the problem of consumer demand with binding nonnegativity 
constraints. Let V(y)  be a deterministic utility function which satisfies the 
classical monotonicity and strict concavity properties. A possible way of 
introducing stochastic components into the model is to introduce additive 
random components in the utility function, similarly, to the approach in Wales 
and Woodland (1983). A random utility specification consistent with mono- 
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tonicity and strict concavi ty  is U(y* ;  e) = V ( y * )  + Eim__l e~iWi(y*), where  
W,.(y*), i = 1 . . . .  , m,  are also strictly increasing and strictly concave  functions.  
Computa t iona l  tractabili ty can be achieved by assuming that  ei ther  ei, i = 
1 , . . . ,  m, are mutual ly  independen t  or  condit ional  on era, % i = 1 , . . . ,  m - 1, 
are condit ionally independent .  The  latter case covers the popular  er ror  
c o m p o n e n t  specification in panel  data  models .  Consider  the general  d e m a n d  
pa t te rn  with d e m a n d  vector  y = ( 0 , . . . , 0 ,  Y ~ + I , . . - ,  Ym), where  the first l 
goods  are zero and the remaining goods  are positive. The  virtual prices at y are 

[ OV(y) OWj(y) ] 
Um - -  + eeJ 

L ,gy i Oyj J 
~J = OW(y____~) + e em OWm(y ) ' j = 1 , . . . ,  m - 1 .  

Oy,,, Oy m 

The  virtual price condit ions that characterize the optimali ty of  y are 

{ vj [ OW(y)  OWn(y)] OW(y) 1 
7 m [ Oy m + e~m Oy m I Oyj j t. 

eeJ <~ OWj(y) ' j = 1 , . . . ,  l ,  

Oyj 

and 

v k [ OV(y) + e~ m OWm(y ) ] 
e~k = ~m 1_ OYm OYm 

OWk(y) 
OYk 

k = / + l , . . .  , m - 1 .  

Since it is necessary that  

ov(y) 
Oyk J 

(5.5.1) 

(5.5.2) 

vj [ or(y) OWm(y) ] Or(y) > 0 f o r  al l  j = 1,  m - 1 v~ L aym + e~m Oym J aY----7 " '  ' 

feasible values o f  ern are de termined  by e m > R(y), where  

{ I  UmOV(y) OV(Y)'~q] -~y 

R(y)=ln  max O, =1max 1 ( Oyj Oy m ] ]  / / '  
Oym JJ 

and In 0 = - ~  as a convent ional  rule. As  Ym = (1 - Ol+lYl+ 1 . . . . .  Vm lYre-l)~ 
V m, given a condit ional  distribution of  e t + l , . . . ,  era_l, condit ional  on  % ,  
(5.5.2) implies a condit ional  distribution for  Y~+I, • • - , Ym 1. Let  fj and Fj be,  
respectively,  the density funct ion and the distribution funct ion of  ej condit ional  



Multivariate tobit models 165 

on e m .  Denote 

ei(Y'e'~)=ln{V--J-~im [OV(Y)L OYm 

j = l , . . .  , m - - 1 .  

OWm(Y) ] OV(y)'~ __ In OWi(Y) 
+ e~'~ Oym J Oyj J Oy---jj ' 

Conditional on em, the joint density function of Y1+1,... ,Ym-1 is 
m - 1  Ilj=t+ 1 fj(ej(y, em))lJ(y, era) [, where J(y ,  e,,,) is the Jacobian of the transforma- 

tion from e t + l , . . . ,  em/_ 1 to Yl+I, • • • , Ym-l" Conditional on era, the probability 
that (5.5.1) holds is Ilj=~ Fi(ej(y, era) ). Hence the likelihood function for y is 

l m--1 

L ( y )  = Y) j=I j= l+ l  
fj(ej(y, em))lJ(y, 8rn)[fm(Em) de,,,. 

With an independent sample of size n, the log likelihood function for the whole 
sample is L ( y  1, . . . ,  y,,) = [17= 1 L(y i ) .  The likelihood function is computation- 
ally tractable as it involves effectively a single integral for each sample 
observation. The integral can be evaluated effectively by a Gaussian quadra- 
ture formula (Stroud and Secrest, 1966). 

The above approach is applicable to models with the specification of a direct 
utility function, but cannot be easily extended to the dual approach, which 
specifies an indirect utility or a cost function. A specification, which may be 
useful for both direct or indirect approaches, is based on a scaling method. The 
scaling method is a familiar method for introducing consumer's characteristics 
into demand systems, and it is also used to introduce a consumer's subjective 
evaluation of quality of goods into the utility function. The scaling procedure 
appends multiplicatively random terms to the consumption vector y in the 
utility function. Let W be a strictly increasing and concave function. A random 
utility function can be specified as U ( y ; e ) = W ( e ~ l y l , . . .  , eemym) ,  where, 
conditional on em, e j ,  j = 1 , . . . ,  m - - 1 ,  are mutually independent. Corre- 
sponding to this utility function, the indirect utility function V(v; e) has the 
form V(v; e) = H(v le  ~ 1 , . . . ,  Vme-~r,),where H ( p )  = m a x { W ( y * ) l p ' y *  = 1}. 
The notional demand system corresponding to V(v ;e )  is y j =  
Dj(Vle-~l, . . . , vine "m)e "J, j = 1 , . . . ,  m. Consider y = ( 0 , . . .  , 0, 
Yl+I . . . .  , Ym)" The virtual prices ~i, J = 1 , . . .  , l, for the first l goods at y are 
characterized by the relations 

0 = O j ( ~ l e - s l , . . . ,  ~le -~', v ,+ le -~ '+ l , . . . ,  vine ~")e -~j , 

j = l , . . .  , l ,  

Yk = Dk( ~ le -~ ,  • • . , ~1 e-~ ,  Vl+le-'~+~, • • • , vme-~m) e-`k , 

k = l + l l . . .  , m .  

(5.5.3) 

Suppose that the factors ~:je -~j, ] = 1 , . . . ,  l, can be solved from the first set of 
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equations in (5.5.3) as functions of (01+1 e-~t+l . . . .  , V m e - e m ) ,  

~i e-~j = h i ( v l+ le - '~+~, . . .  , O m e - ~ ' ) ,  j = 1 . . . .  , l .  (5.5.4) 

Substituting (5.5.4) into the second set of equations in (5.5.3), 

Yl = D i(hl  , " " , hi, Vt+l e- ' '+l ,  - • • , V me-~")  e-~j , 

j =  l + 1 , . . . , m -  1,  (5.5.5) 

which involves only the random variables el+ 1 . . . .  , e m. The virtual price 
inequalities ~1 <~vl, j = l , . . : , l ,  become e j~<ln v i - I n  hj(v~+ae -~t+x, 
. . . ,  Ume-e"), ] = 1 , . . . ,  I. Suppose that ez+~, . . .  , era_ 1 can be solved from 
(5.5.5) as functions of y~ . . . .  , Y m - 1  and era, denote these functions as 
e j (y ,  era), j = l + 1 , . . .  , m - 1. Denote  also ei(Y, 6m) = In v I - 
In hj(vl+~e -~+~, . . . ,  Vm e-~m) for j = 1 , . . . ,  l. Let  S ( y )  be the range of possible 
values of e m for the given y. The likelihood function for y is 

Ss;  L ( y )  = (r) Fi(el(Y'  era)) [ I  f j (e i (Y ,  em)) lJ (y ,  em)lfm(em) dem . 
1=l+1 

The likelihood function involves a single integral and is computationally 
tractable. The limitation of this approach relies on the tractability of solving 
the functions h I in (5.5.4) and ~1, J = I + 1 , . . .  , m - 1, from (5.5.5). For  some 
functional specifications, these might not be an easy task. Several other  
stochastic specifications, which provide computationally tractable likelihood 
functions, can be found in Lee and Pitt (1986b). Some of these methods have 
been used in an empirical study of a seven-goods model in Lee  and Pitt 
(1986b). 

5.6. Es t imat ion  with s imula t ion  

In a recent development in McFadden (1989), methods of simulated moments 
(MSM) are introduced. With methods of simulated moments,  the need for 
numerical integration can be avoided. 

To illustrate the method of simulated moments for the estimation of 
multivariate tobit models, consider the latent regression model 

y * = x i f i  + u i ,  i = l , . . . , n ,  (5.6.1) 

where u is an m-multivariate N(0, $2) variable and is independent of x. The 
observed dependent  variables are Yi, i = 1 . . . . .  n, where yi = ( Y l i , . . . ,  Ymi) 
with Yli = max(0, 11~ )" Let  f ( u ;  $2) denote the multivariate normal density of u. 
Define Ii = {Jl Yy~ = O, j = 1 , . . . ,  m} and J~ = {]l Yj~ > O, j = 1 , . . . ,  m}. With 
conformably conditional distributions and partitioned matrices, 

f ( y *  - x~ ;  $2) =f(y*~ - ~lbi; A l l  ) " f ( y ~  -- Xl[~; $2jj) , (5.6.2) 
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- 1  , where ~ = xi/3 + O/fl2jj ( y j  - xj/3) and 1)1l = g2 n - ~j~'~;l~l. The first com- 
ponent  on the right-hand side of (5.6.2) is the conditional normal density of the 
subvector y ~ of y* conditional on the subvector y j*, and the second component 
is the marginal normal density of y~. Let ~(K, I) be a dichotomous indicator 
such that 6(K,I)--1 if and only if K=I.  For any subset K C I, define 
A(K, I) = {YI [ Y*K <- O, YLK >~ 0}, and let IA(K,I) be the indicator function of 
A(K, I). The score of an observation is 

0 In l(0; Yi) 
00 

0 In f(Ygl -xj f l ;  aid ) 
O0 

0 In f(YJi - xjfi; J2gdi) 
O0 

+ Eo[ O ln f(Yo~o l~; ~On) l A(Ii, Ii)] 

+ Z [8(K, Ill - Eo(IA(x,ii)) ] 
K C I  i 

The MSM estimation of Hajivassiliou and McFadden (1988) and McFadden 
(1989) replaces hard-to-compute terms in the above expressions with unbiased 
simulators. For the above score, as pointed out in Hajivassiliou and McFadden 
(1988), there are at least two ways to estimate the model. The first approach is 
to construct unbiased simulators of the conditional expectation 

Eo[Olnf(Y*l-P";gJn) I ] 30 A(Ii' Ii) for each i .  

The second method is to generate an unbiased simulator of EO(IA(K,X) ) and use 
any independent, not necessarily unbiased, simulator for 

E° [ O ln f(Y*l - tZl; ~O") l 

Several simulation procedures, which include the simple frequency method, the 
acceptance-rejection method, and importance sampling methods (see McFad- 
den, 1989; and Hajivassiliou and McFadden, 1988), can be used to construct 
unbiased simulators. In general, the second method has the disadvantage of 
requiring evaluation at all K for which the simulator for EO(IA(K, 1)) is nonzero, 
but unbiased simulation of EO(1A(K,I) ) is much easier computationally than 
unbiased simulation of the conditional expectation of the first method. 

The methods of simulated moments, which replace the hard-to-estimate 
components by some unbiased simulators, create additional errors in the score 
equations. The estimators of 0 are in general inefficient relative to the classical 
maximum likelihood estimator. Asymptotically efficient simulators can be 
attained only a t  the expense of a large number of simulations such that the 
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moment simulators become consistent estimators of the corresponding mo- 
ments. The asymptotic distributions of the estimators have been derived in 
McFadden (1989) and McFadden and Hajivassiliou (1988). The asymptotic 
distributions of the estimators depend on constructed simulators. The details 
can be found in Hajivassiliou and McFadden (1988). An empirical application 
of these methods to the study of an external debt problems is in Hajivassiliou 
and McFadden (1988). The McFadden methods of simulated moments provide 
a new direction, which may render the estimation of complicated multivariate 
tobit models tractable. 

6. Specification error tests 

The classical maximum likelihood test, the Wald test, and the Lagrange 
multiplier test (LM or the efficient score test) are well-known testing proce- 
dures, which are useful for testing various model specification errors, such as 
heteroskedasticity, serial correlation, omitted variables, and exogeneity. Since 
the limited dependent variable models have rather complicated structures, the 
Lagrange multiplier test procedure has received the most attention as it 
requires only estimation of a model under the null hypothesis, which is, in 
many cases, simpler than the model under the alternative hypothesis. In the 
univariate limited dependent variable model, score tests for omitted variables, 
heteroskedasticity, and serially correlation have been derived in Lee and 
Maddala (1985), Robinson, Beta and Jarque (1985), Gourieroux, Monfort, 
Renault and Trognon (1987a), and Chesher and Irish (1987); and score tests 
for normality can be found in Bera, Jarque and Lee (1984). Some of the tests 
statistics have been generalized to the testing of multivariate models. In a 
bivariate context, Lee (1984) derives a test for normality, and Smith (1985) 
derives score tests for heteroskedasticity, nonnormality, and exogeneity. An 
exogeneity test has also been derived in Smith and Blundell (1986). Sub- 
sequently, Smith (1987) provides a generalization of the normality test to the 
general multivariate model. Since the principle and the derivation of Lagrange 
multiplier test statistics are rather simple and straightforward, most of these 
test statistics can be generalized as long as the null hypothesis can be nested in 
a model, which contains both the null and alternative hypotheses. The 
Lagrange multiplier test statistics are, in general, computationally simpler than 
the maximum likelihood test or the Wald test for such complicated models. The 
Lagrange multiplier test statistics can have simple interpretations for some 
cases. 

As an illustration of the methodology, consider the testing of normality in an 
m-multivariate truncated regression model 

y*j = xjSj  - % e j  , j = l , . . . , m ,  

where ej, j = 1 , . . . ,  m ,  are normal with zero means, unit variances, and a 
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correlation coefficient matrix R. The sample y = (Yl, • • •,  Ym) is observed and 
equal to y * = ( y ~ , . . . , y * m )  if and only if y~ .>0  for all j = l , . . . , m .  A 
normality test can be derived by expressing the multivariate normal dis- 
tribution as a special case in a multivariate Edgeworth series expansion (Lee,  
1984 and Smith, 1987). Let  f ( e l , . . . , S m)  be the density function of 
( e l , . . .  , era) , and let b ( e l , . . . ,  Sm) be the standardized multivariate normal 
distribution. The Edgeworth series expansion of f is 

f(el ,  • • •,  em) = b(el, • • •,  Sm) 
1 

+ ~ Aq...r~ Hq rm 
r l+. . .+rm~ 3 rl! •. .  rm! ..... 

X ( 8 1 , . . .  , E r n ) b ( 8 1 , . . .  , Era), ( 6 . 1 )  

where Hrl ...... r e ( s1 , . . . ,  era) are Hermite polynomials. The corresponding 

distribution F has the expansion 

F(al, . . am) = B(al, am) -}- E Aq"'rm rl' 1 
• ~ • . . ~ r l + . . . + r m ~  3 • .  • • rm[ 

xfa: ' ' 'JalHrl ...... r e ( E l '  " "  , ~ m )  

× b@l , . • . , era) ds l . . ,  dgm, 

where B is the standard multivariate normal distribution function. The 
coefficients Arl ...... ,, are functions of the cumulants of e l , . . . ,  e m. For  practical 
purposes, the series expansion will be truncated to include only a finite number  
of terms. In Lee (1984) and Smith (1987), terms of order higher than four are 
truncated. When Aq  ...... m are all zero, the distribution corresponds to the 
normal distribution. The log likelihood function for a random sample of size n 
for this truncated regression model is 

l n L = ~ { - ½ ~ l n 0 " ~ + l n f (  Yl -X f l l  Ym--Xl3m'] 
i = 1  j = l  0"1 ~ " " " ~ 0"m , ]  

- l n F ( ; ~  1 X~m)} (6.2) 
, ' ' ' 7  0"m 

The scores 0 In L/OAq...rm with Aq...rm can be easily derived from (6.2). At  the 
null hypothesis H 0 that the distribution is normally distributed, it is simplified 
to 

OlnL [ 
OArl...r,, H o 

_ 1 Hr 1 . . . . . .  m 0"  1 0"m / /  rl!'" "rrn! i = i  ~ "  " " ~ 



170 L.-F. Lee 

-- f Xiflm ]~rm . . . f  xfll/°'I Mr 1 ...... m(/~l ,  " .-,em)b(ea,..., Em) d~l " " "dsm} 
B ( X i ~ l  I o ' 1 , .  • • , X f l m  IO'm) " 

(6.3) 

The LM test (or C(a) test) is based on the testing of the difference between the 
(estimated) sample Hermit polynomials and the theoretically expected Hermit 
polynomials evaluated under the null. 

The same approaches can be generalized to the censored tobit models. The 
article by Gourieroux et al. (1987a) provides a general discussion on the 
interpretation of LM test statistics in terms of estimated residuals. For 
graphical presentations of the residuals for diagnostics, see Chesher and Irish 
(1987) and Gourieroux et al. (1987b). 
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Estimation of Limited Dependent Variable Models 
under Rational Expectations 

G. S. Maddala 

1. Introduction 

There is an enormous literature on the estimation of rational expectations 
models. In these models the underlying variables are all observed. There is, 
however, a large class of models where the variables under consideration are 
censored or truncated either because of governmental intervention or because 
of institutional constraints. The issue of how rational economic agents form 
their expectations in the presence of interventions in prices and quantities 
(price supports, quotas, target zones for exchange rates, and so on) is an 
important one for policy purposes. The present paper reviews the methodology 
of estimation for limited dependent variable models under rational expecta- 
tions. The paper discusses rational expectations in the context of the different 
models outlined in Maddala (1983a): the tobit model, the friction model, the 
disequilibrium model, and the self-selection model. 

2. The tobit model 

The tobit model is the simplest limited dependent variable model. Its basic 
version is given by 

= t 'x, + u, ,  u , -  IN(0, 2 ) ,  

I'Yt* if y* > 0 ,  
(2.1) 

Y' = 1.0 otherwise. 

In this model the expected value of Yt is given by 

E(y, IX t) = q~,/3 'X t + o-~b,, (2.2) 

where ~ and q5 t are the distribution function and density function of the 
standard normal evaluated at (el'X/o-). See Maddala (1983a, p. 159). 

Expression (2.2) gives the rational expectation of y, in this simple model. 
There are essentially two types of situations where the tobit model can occur. 

175 
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The first is where Yt is a censored variable as depicted in equation (2.1) and--the 
expectation of y, occurs as an explanatory variable in some other equation. For 
instance, suppose y, denotes dividends and we have another equation depicting 
stock valuation V, which can be written as 

V~ = f (expected dividends and other variables). 

In this case expected dividends are generated by equation (2.2), and estimation 
of the rational expectation model with a censored variable involves the use of 
nonlinear estimation methods. Studies incorporating such valuation equations 
have traditionally used aggregate data so that the problem of censoring 
dividends does not occur. See, for instance, Litzenberger and Ramaswamy 
(1982) and Morgan (1982). Other studies that have used the valuation 
equations based on individual firm data have used only firms that pay dividends 
on a continuous basis so that again the censoring problem does not occur. 
Thus, the censoring problem has been largely ignored in the literature. 

There is also an additional problem. If, as Marsh and Merton (1987) argue, 
dividends depend on permanent earnings changes (rather than changes in 
accounting earnings) and we use changes in stock prices to measure permanent 
earnings changes, then we have a simultaneity problem, and the reduced form 
for dividends would not be as simple as (2.1). In fact, it will be similar to the 
one we shall discuss in Section 4 later for the disequilibrium model. 

The other set of tobit models where we have to consider rational expecta- 
tions is those where the tobit model is considered in its reduced form, either as 
a prelude to the estimation of the structural system, or as an end by itself. In 
this case the tobit model would have a more complicated structure and would 
be given by the following equation: 

* e + ~ , x ,  + 
Yt = YYt  ut , 

['y* if y~* > 0 ,  
(2.3) 

Yt = 10 otherwise, 

where y~ is the rational expectation of y,. The reduced form for the Marsh and 
Merton model if simultaneity is taken into consideration would be of this form. 
Since this is also the reduced form for the disequilibrium model considered 
later in Section 4, we shall discuss the estimation problems there. 

In summary, in the case of rational expectations in tobit models, we are 
usually faced with models of the form (2.1) where the expected value of y, 
occurs as an explanatory variable in another equation in which case the rational 
expectation is given by (2.2) and we have a standard nonlinear estimation 
problem, or we are faced with the estimation of the tobit model given by (2.3), 
which is obtained as a reduced form from a more elaborate simultaneous 
equations system, in which case we have to derive an expression for the 
rational expectation y~ before we can discuss any estimation procedures. 

The two-limit tobit model. The extension of the previous methods to the case 
of the two-limit tobit model is straightforward. The two-limit tobit model 
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(Maddala, 1983a, p. 161) is given by 1 

:g 

y, = + u, ,  u , - I N ( 0 ,  2 ) ,  

y, = J--~y, if Lit % y* < g2t , (2.4) 

t L2t if y* >l L2t. 

Here Lit and L2t are, respectively, the lower and upper limits for Yc In this 
case the rational expectation for y, is given by 

E(y,) = ~ltL1t + (qb2,- (/)1,)~ tSt -'}- (1 - cl)2,)Lzt + o-(1~1 t - -  (]12t) , (2.5) 

where @1~ and ~bl~ are the distribution function and the density function for the 
standard normal evaluated at  ( L i t - [ 3 ' g t ) / o -  and @2, and q52~ are the corre- 
sponding functions evaluated a t  ( Z 2 t -  [3'gt)/cr. Equation (2.5) corresponds to 
equation (2.2). 

Again, if we consider simultaneity we end up with a model similar to that 
given by (2.3), that is, the first equation in (2.4) has to be changed to the first 
equation in (2.3). The estimation problems fer such models are discussed in 
Section 6. 

3. The friction model 

The friction model (Maddala, 1983a, p. 162) arises in situations where the 
observed change in the response variable to changes in the exogenous variables 
is zero unless the potential change in the response variable is above or below 
certain limits. Examples of this are changes in dividends (in response to 
changes in earnings) and changes in asset holdings (in response to changes in 
yield). In the case of asset holdings, because of transactions costs, small 
changes in yield will have no effect on the changes in asset holdings. 

Let y~ be the desired change in asset holdings, Yt the observed change, and 
X, the set of variables determining y*. Then the model we have is 

= + u, ,  u , -  eq(0, 2 ) ,  

y, = if % ~<Yt* <~ 0 1 2 ,  (3.1) 

LY* a2 if Y*>0/2, 

where 0/1 < 0 and 0/2 > 0. Actual holdings do not change for small negative or 
positive changes in desired holdings. In this case the rational expectation of Yt 

1 In equation (6.38) of Maddala (1983a) y; <~ Lli should read y* ~ LI~ and y* ~ Lzi should read 
y* >1 L2;. 
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is given by 

E(y,) = q~1,(/3 'X, - o~1) -~- (~  - ( I ) 2 t ) ( ~ ' S  t - o~2) q- o-(~b2t - ~ l t ) ,  ( 3 . 2 )  

where q~ and ~b refer as before to the distribution function and density function 
of the standard normal, and the subscript it refers to these functions evaluated 
at (a l -~ 'Xt) /~r ,  and the subscript 2t refers to these functions evaluated at 

In the case of dividends, it is well known that dividends are sticky. But there 
is a question of whether the friction model given by (3.1) is directly applicable 
in the case of dividends because the transaction costs in this case are negligible. 
Though the transaction costs are negligible, one can argue that the signalling 
costs (costs of sending the wrong signals to the market) are not. As Cragg 
(1986) argues, dividend changes are made only if they are not likely to be 
changed by subsequent events. It can be shown that Cragg's model is 
essentially the friction model given by (3.1). 

If one is interested in studying the relationship of the effect on stock prices 
of dividend changes (see Wooldridge, 1983), then one can get the rational 
expectation of dividend change using equation (3.2). In the case of dividends, 
there are two problems: the censoring problem discussed in Section 2 (studied 
by Anderson, 1986, and Kim and Maddala, 1992) and the stickiness problem 
(studied by Cragg, 1986). Ideally, we need to combine both these aspects. In 
addition, there may be the simultaneity problem that was mentioned in Section 
2 when we consider the relationship between dividends, expected earnings, and 
stock prices. These problems need further investigation. 

4. The disequilibrium model 

The estimation of disequilibrium models has been an active area of research 
during the last two decades. See Quandt (1988). The methods of estimation 
depend on the source of the disequilibrium- whether it is due to imperfect 
adjustment of prioes or because of controlled prices (or controlled quantities as 
in quota systems). In Maddala (1983b) methods have been suggested for the 
estimation of disequilibrium models when there are limits on the movement of 
prices. 

These models, however, do not take account of the mechanism of the 
formation of price expectations in the presence of controls on the movement of 
prices. This analysis was first developed in Chanda and Maddala (1983) and 
applied to the price support program in the case of the U.S. corn market by 
Shonkwiter and Maddala (1985). Since then other papers have refined this 
analysis. 

The disequilibrium model that is considered here is one that is described in 
Maddala (1983a, pp. 326-334) where, because of some controls in prices, the 
market is sometimes in disequilibrium (if the controls are operative) and 
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sometimes in equilibrium (if the controls are not operative). When the market 
is in equilibrium, or when it is in disequilibrium, is determined endogenously 
because of the control on price, which is an endogenous variable. This accounts 
for the endogenous switching simultaneous system. Initially, we shall discuss 
the model with price supports. We shall then present the extension to both 
lower and upper limits. The model with rational expectations discussed in 
Chanda and Maddala (1983), Shonkwiler and Maddala (1985), and Holt and 
Johnson (1989) is the following. 

t 

S t = a l P  * + a 2 W t + e l t ,  a l > O ,  (4.1) 

D t = b l P , + b 2 X t + e 2 t  , b l < O  , (4.2) 

D , = S  t if P,~> Pt ,  (4.3) 

D , < S ~  i f P t <  L ,  (4.4) 

where S t is quantity supplied, D t is quantity demanded, Pt is the market- 
clearing price, -Pt is the exogenously set lower limit on price, P* is the rational 
expectation of price formed at the time production decisions are made, IV, and 
X, are, respectively, the supply and demand shifters, and elt and e2t are errors 
tha t  are jointly normal with mean zero and covariance matrix Z. 

T h e  e q u i l i b r i u m  case .  Consider first the case of an equilibrium model. 
Equating D t to S t we get the reduced form for P, as 

P,  = A P *  + Z t  + et , (4.5) 

where 

t t 

A = a l / b  1 , e t =- (e l t  -- e 2 t ) / b  1 and Z t = (a2W t - b 2 S t ) / b  1 . 

If the supply and demand shifters W t and X t are not known at time t and 
their rational expectations are W* and X*,  respectively, we can write 

vet = W ~  + u l ,  , 

X t = X *  t -.}- u2t  

and we get 

Z t = Z *  + o t , 

where 

o t = ( a z U l t - b ; u 2 t ) / b  I • 

Equation (4.5) now becomes 

Pt = APt*+ Z* + ut ,  (4 .6)  
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where u t = e t + v,. Under rational expectations 

P* = E(Pt/Information at t -  1),  

and, hence, we get 

1 
P* - 1 -  A Z * .  (4.7) 

For estimation purposes we have to specify the prediction equations for rW t and 
X t. Usually these equations are specified as autoregressive equations so that 

w;" i /w, 
x . / I  : D xt_I) . (4.8) 

For the estimation of the model in this equilibrium case, we substitute P* from 
(4.7) into equations (4.1) and (4.2) and estimate these equations along with 
equations (4.8) by FIML. See Wallis (1980). 

The  case o f  p r i ce  suppor t s .  Under the price support program, we have the 
observed price P~ ~> _P, Whether the model is an equilibrium model or a 
disequilibrium model depends on whether the market equilibrating price given 
by (4.6) is ~>~ or <_P, 

Let ~ = Prob(P~ i>-Pt). Then, using (4.6) we get 

~'t = 1 - @(Ct), (4.9) 

where C, = f f - l ( _ P  t - AP* - Z*)  and o -2 =Var(u,). We will use 6( ' )  and @(.) to 
denote the density function and the distribution function of the standard 
normal. 

The rational expectation of p, is given by 

P* = 1r~P~ + (1 - ~ , )P ,  (4.10) 

where PI* is the rational expectation of Pt if Pt ~> -Pt We shall consider the 
derivation of the rational expectations solution under two assumptions. The 
first is the 'perfect foresight' assumption under which the economic agents are 
assumed to know what regime they will be in, in the next period. It is not 
necessary that they know this. What is needed is that economic agents t h i n k  

they have this information, and form their expectations accordingly. In this 
case the sample separation is assumed to be known ex  ante.  Note that the 
sample separation is always known ex  pos t .  This implies that if Pt i> _P,, then in 
forming their expectations, agents assume ~ = 1, and equation (4.10) gives 
P* = P~t. Hence, taking expectations of both sides of (4.6) conditional on 
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Pt ~> -P, we get 

¢(c,) 
P I , =  AP1, + Z* + a 1 -  @(C,) or 

PI* = (1 - -  /~)-i Z ;  -~- o" 1 Z~(Ct )  " (4.11) 

One can perhaps argue that this is not the appropriate expression for rational 
expectations since the sample separation is not known at the time expectations 
are formed. If we drop this assumption, then to obtain the expression for PI* 
we take expectations of both sides of (4.6) conditional on p , ~  P,. Since 
E(P* ]information at time t - 1) = P* t ,  we get 

PI* = hP*  + Z *  + ~ 1 - cP(Ct) " (4.12) 

Equations (4.9)-(4.11) together determine the P* in the case of perfect 
foresight (sample separation known ex ante) and equations (4.9), (4.10), and 
(4.12) determine the P~* when sample separation is unknown ex ante, which is 
the correct expression for rational expectations in this model. It is the one 
derived in Shonkwiler and Maddala (1985) and Holt and Johnson (1989). The 
expression (4.11) was introduced in Maddala (1990) without stating the perfect 
foresight assumption. In both cases, of course, the sample separation is known 
ex post. Thus, the estimation methods are essentially the same except for the 
expression for P* that one uses. In the next section, it is demonstrated that the 
uniqueness of the value for P* holds for both these cases. 

The case o f  upper and lower limits. The extension of these results to the case 
of upper and lower limits on prices is pretty straightforward. For the case with 
no rational expectation, they are given in Maddala (1983a). 

Let _P, be the lower limit and P~ the upper limit on prices. Analogous to 
equation (4.9), we define 

"rT" t = Prob(Pt i>/st) and _'Lr, = Prob(P t ~</3). 

Define 

1 1 
Ct---(Pt-AP*-Z*)- o- and C , = - - ( P _ , - A P * - Z  * ) _  or (4.13) 

Then 

=I-@(C,) and ~,=@(_Ct). 

Hence, 

Prob[_P, < P, </5_,] : q)(C,) - @ ( ~ ) .  
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Corresponding to equation (4.10), we have 

P,* -- gt-P., + ~,fit + (1 - gt - %)Pit ,  (4.14) 

where 

PI* = E(P,I P-t <~ Pt <~ Pt, I t - l ) "  

Pa*, is, as before, obtained by taking expectation of (4.6) conditional on 
_P,~<Pt ~</5~ and I~_ a. 

Using the well-known expectation of a doubly truncated normal variable, see 
Maddala (1983a, pp. 329-332), we get the expression analogous to (4.11) 
(under perfect foresight) 

P ; - = ( 1 - A )  -1 z *  + (4.15) 

The rational expectation solution corresponding to (4.12) is 

- 

PI*_, = + z *  + @ ( c t )  - @(_c,)  ( 4 . 1 6 )  

Pesaran and Samei (1992) use (unknowingly) the perfect foresight assump- 
tion. The expression for P1, they use is the one given by equation (4.15) which 
is a straightforward extension of (4.11) which was given in Maddala (1990). 
Thus, their formulation does not use the rational expectation version in 
equations (4.12) and (4.16). 

It is important to keep in mind the distinction between the three expressions 
for rational expectations: 

(i) Equation (4.7), which depends on the assumption that economic agents 
ignore the price limits while forming their expectations, that is, the price limits 
are not credible, 

(ii) P* given by equations (4.13) to (4.15) where economic agents take into 
account the price limits but behave as if they know what regime they will be in, 
in the next period, and 

(iii) P* given by equations (4.13), (4.14), and (4.16) where economic 
agents take into account the price limits and are uncertain about what regime 
they will be in, in the next period. 

The last case is the appropriate one for the analysis of rational expectations 
under disequilibrium though one can make an argument for the other two cases 
as well as a mixture of the three (some traders not believing that the price 
limits will be effective and use case (i) and some traders thinking that they are 
smarter than others and, hence, forming their expectations as in case (ii)). 
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Before we discuss the appropriate estimation procedures, we shall consider the 
issue of uniqueness of the rational expectations solution. 2 

5. Uniqueness of the rational expectations solution 

The uniqueness of the rational expectations solution for the 'perfect foresight' 
case given by equations (4.13) to (4.15) has been discussed in Pesaran and 
Samei (1992). Since _C t and C, are both functions of P*,  we can write equation 
(4.13) as 

P~ = F ( P * ) .  

Pesaran and Samei show that as long as A < 1, this equation has a unique 
solution, thus, establishing the uniqueness of the rational expectation in the 
'perfect foresight' case. As discussed earlier, this is not the rational expecta- 
tions solution. 

It is shown in Donald and Maddala (1992) that there is a unique solution in 
the case of rational expectations, given by equations (4.13), (4.14), and (4.16). 
Observe that these equations give after simplification 

1 
P*  - 1 - A [Z*  + o-~(  C_t). C_ + or(1 - qg( C t ) ) C  ~ - cr(4,( ff, t) - qS(_Ct))] 

= F ( P *  ) .  

The proof of the existence of a unique solution to this equation follows from 
the following factors about the function F(.): 

(i) 0 ~< F ' ( P )  < 1 when A ~< 0 and F ' ( P )  < 0 for 0 < A < 1, 
(ii) F(P~) ~> -Pt and F ( ~ )  ~< 15 

The first condition (i) implies that the function F crosses the 45 degree line 
(where the fixed point must occur) at exactly one place establishing the 
existence of a unique solution. Result (ii), which is based on the inequality for 
the normal distribution: 

¢(x) 
/> x for all x 

1 - a (x) 

guarantees that the solution (or fixed point) is in the interval (_Pt,/5,). Details 
of the proof of these propositions can be found in Donald and Maddala (1992). 

The interesting result is that there is a unique solution for P* in all the three 
cases of expectation formation mentioned earlier. However, the actual value of 
P~* differs under the different assumptions. 

Z Holt and Johnston (1989) claim that they checked the uniqueness of P* by numerical 
experiments. Pesaran and Samei claim to have proved this, but they proved it for a different 
model. The proof for the Holt-Johnson numerical results is in Donald and Maddala (1992). 
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6. Estimation methods 

The estimation methods for the models discussed in the previous section can be 
discussed under the following categories: 

(i) Structural vs. reduced form methods. 
(ii) Maximum likelihood (ML) vs. two-step methods. 
The ML procedure follows by noting that the model is like a switching 

simultaneous regression model with endogenous switching and sample separa- 
tion known. We first partition the data into three sets. 

~I :Dt=St ,  ~ 2 : D t < S t ,  and qt3:Dt>S t. 

In ~1 we have an equilibrium model with Pt and Qt as endogenous variables. In 
~2 and ~3 we have disequilibrium models with D t and S t as the endogenous 
variables and -Pt and P, substituted in equation (4.2), respectively. As for P* 
we substitute the same expression in all the three regimes. 

The models differ in the expression for P* that is used. 
Case (i). Price limits not credible, we use P* given by (4.7). 
Case (ii). Price limits credible but traders think they are smart and know 

what regime they will be in. P* is given by (4.13) to (4.15). 
Case (iii). Price limits credible and expectations are formed rationally: P* is 

given by (4.13), (4.14), and (4.16). 
In addition we treat W, and X t as endogenous variables if they are not part of 

the information set /t-1. See Wallis (1980). If fl(Qt, It, VVt, X,), 
f2(D,, St, W~, Xt) and f3(D~, St, Wt, X~) are the joint densities of the endogenous 
variables in the three regimes, then the ML estimates are obtained by 
maximizing 

L =  H Jfl H f2 H f3 , (6.1) 

where J is the jacobian [bl]. The jacobians of the transformations in the three 
regimes are Ibl[, 1, 1, respectively. The probabilities of the three regimes do 
not appear in the likelihood function because it is an endogenous switching 
model. See Maddala and Nelson (1974). 

In Case (i) obtaining the ML estimates is easy. In Cases (ii) and (iii) P* has 
to be obtained iteratively. That the ML estimation is feasible is demonstrated 
by Holt and Johnson (1989) for Case (iii) and Maddala, Shonkwiler and Jeong 
(1991) where both the Cases (ii) and (iii) have been considered. The 
appropriate methods to use in such models are discussed in Fair and Taylor 
(1983, 1990). 

Since the procedures in Cases (ii) and (iii) are similar, we shall discuss only 
Case (iii). One can think of solving equation (4.17) by the method suggested 
by Pesaran in his comment on Maddala (1990) starting with some initial values 
of the parameters. But obtaining P* is not our sole objective. What we are 
interested in is estimation of the parameters in the structural system (4.1) and 
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(4.2). Thus, iterating on both the parameters in the structural system and P* is 
much faster. The iteration procedure would be as follows: 

(1) Start with some initial values of P~*, say P~* is the actual value of Pt in 
regime 1, -Pt in regime 2 and /5 t in regime 3. Call this starting value P*(0). 

(2) Using these values maximize the likelihood function (6.1). Using these 
parameter values and P[(0) ,  compute C~ and _C t in equation (4.13). 

(3) Use equation (4.16) to compute PI*, and equation (4.13) to compute the 
probabilities of the three regimes. 

(4) Now use (4.14) to get a new value of P*. Call this P*(1). 
(5) Continue with steps (1) through (4) and iterate until convergence. This 

method has been found to converge and involve as much computational effort 
as a single solution for Pt* by the method of successive substitution applied to 
equation (4.17), as suggested by Pesaran. Since our objective is to find the ML 
estimates and not just P*~, the iteration method suggested above is to be 
preferred. This iteration method was found to work well. See Maddala, 
Shonkwiler and Jeong (1991). 

The ML estimation method described here considers the estimation of the 
structural parameters and the parameters determining the variables Xt and W~ 
simultaneously. One can think of a two-step procedure where the equations for 
W~ and X~ are estimated separately and then the fitted values Wt and X, are 
substituted in the likelihood function (6.1). In the case with no limits on prices, 
this eliminates the cross-equation constraints arising from the joint estimation 
of the structural equations and the equations for W~ and X~ and, thus, simplifies 
the estimation. However, in the case of limits on prices, since P* is a nonlinear 
function and we need to use iterative methods anyway, there is not much 
saving in computational effort by using the two-step procedures. 

Estimation of the reduced form. In cases where data on quantities are not 
available, the structural estimation method is not feasible, and we can estimate 
only the reduced form. In the case of upper and lower limits on prices, the 
reduced form equation (4.6) can be written as a two-limit tobit model, 

f A P * + Z * + e  t if _Pt < Pt </5, , 
Pt= {P, if P,<~ P-, , (6.2) 

t i f  P , / > / 3  t . 

The iterative estimation discussed earlier in the case of the ML estimation can 
also be used with this reduced form estimation, and this results in significant 
saving in computational effort compared to the procedure of first obtaining P* 
for each set of parameter values and then estimating again equation (6.2) 
iteratively. 

Pesaran and Samei conduct some Monte Carlo studies to compare the ML 
estimation with two-step procedures where the equations for X~ and W~ are 
estimated separately. However, the Monte Carlo study is not very informative 
because of the way it was designed. The Monte Carlo study referred to the 
model with a lower price limit (price support). But more importantly, the main 
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defect of their Monte Carlo study is that in each experiment,  rr t is a fixed 
constant. If ~r~ is a fixed constant, by equation (4.9) C t is a fixed constant. This 
implies that _P, - APt* - Z* is a constant for all observations. That  is, there is a 
linear relationship between P* and P,. This is contrary to the structure of the 
disequilibrium model with rational expectations where all the complications in 
estimation arise from the highly nonlinear relationships between -Pt, P* ,  and 
Z* .  Thus, the Monte Carlo study throws no light on the problems of 
estimation for the model under consideration. The only conclusion that 
emerges from it is that ignoring the limits produces misleading results which is 
not at all surprising for any tobit type model. 

There  are many interesting issues that one can study by a properly designed 
Monte Carlo study; some of which are: 

(i) The loss of information due to the estimation of the reduced form 
equation rather than the structural model. 

(ii) The effect of misspecification of the exogenous variables X t and Z t on 
the estimates of the structural parameters and so on. 

But to analyze all these problems the Monte Carlo study needs to be 
designed in such a way that the data generated capture the essentials of the 
model under consideration. 

7. Extensions of the disequilibrium model 

In many practical applications, the model presented in Section 4 needs to be 
extended in several directions. Here  we shall consider the issues of endogenous 
price supports and quotas or quantity constraints. Expectations of future 
endogenous variables, which are very important in macroeconomic 
appl icat ions-  such as the demand for money and models of exchange rates 
(target zones), are discussed in the next section. 

Endogenous  price supports.  In the case of the price support program 
discussed in Section 4, we assumed that the price support -Pt was exogenously 
determined. It would be reasonable to assume that the price support would be 
changed depending on the previous period's surplus. Thus, we can write, 

P-t = P - t - 1  -[- ( ~ ( S t - 1  - Dr-l) + e3t" (7.1) 

This would imply that equation (4.9) be changed to 

~r t = Prob(P t/> _p,) 

= Prob(AP* + Z *  + u t>~ P-t a +6(S t  1 -  D, ~) + e3t ) 

= 1 - 4~(Ct) , 

where 

C, = o--~[P,_, + 6(S,_, - D,_I) - AP* - Z*]  
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and 

o .2 =Var(u t - e3t ) . 

Everything else is the same as discussed in Sections 4-6, except that we now 
have an additional equation to the model: equation (7.1). 

Disequi l ibr ium mode l  with risk. Holt (1989) considers an extension of the 
model for price supports discussed in Section 4. Here we shall present a 
simplified exposition of this model. Holt considers third moments as well, but 
we shall omit these. The supply equation (4.1) is changed to 

r 
S~= a lP*  + a2W t + a3V* + e~t, (7.2) 

where V* is expected variance of price. The expected signs for the coefficients 
of P* a n d V *  a r e a  l > 0 , a  3<0 .  

Equation (4.6) now becomes 

Pt -- AlP; + A2V; ÷ Z*t + u t ,  (7.3) 

where 

A 1 = a l / b  1 and A 2 = a3/b 1 . 

The other changes are 
(i) In equation (4.9) in the definition of C t we replace AP* by )hP* + 

(ii) To equation (4.10) we add 

V[ = ~'Wlt + (1 - ~ ) - 0  = 1ryl* 

since the expected variance is zero if price supports are effective. Also, 

V1. o.211 ___rl*t ( ~ o .  _ Ct)] 
(see Maddala, 1983a, p. 365). With these changes, the estimation proceeds as 
discussed in the previous section. We start our iterations with starting values for 
both P* and V*, and we compute A~ and A 2 instead of just one A. 

Quotas .  The problem of price expectations under quantity constraints 
(quotas) is an interesting one. Oczkowski (1988, 1991) considers disequilibrium 
and bargaining theories in the determination of quotas and discusses economet- 
ric methods for markets with quotas. The model does not incorporate price 
expectations. Here we shall assume that there is an exogenously determined 
quota ~)t (which the government maintains by imposing a tax). Consider the 
demand and supply model given by equations (4.1) and (4.2). The imposition 
of the quota implies that S t ~< Qt. If the quota is not binding we have an 
equilibrium model. Let ~r t be the probability that the quota is not binding. 
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Then from equation (4.1) we have 

! 

~, = P r o b [ a l P 7  + a2W, + elt ~ Ot] 
= ~ ( c , ) ,  

where 

C t : o ' - 1 [ 0 , -  a~P* - a'2Wt] and o .2 =Var(el, ) . 

As before, if we assume that W t is not known at time t, we redefine C, as 

- o . - q O  - a l P 7  - a'2WT] (7.4) C t -  1 t t 

t * 
where o-12 =Var(ell + azul t  ) and W t = W t  + Ult. Let PI* be the rational expecta- 
tion of Pt, conditional on the quota being not binding and P2*, the corre- 
sponding expectation when the quota is binding. Then, we have 

P* = ~PI* + (1 - ~)P2* • (7.5) 

We have to determine PI*_, and P2*. In the case of the equilibrium model, as 
before, we consider the reduced form equation (4.6) and take expectations 
conditional on the quota being nonbinding. We then get 

¢ t * 
Pl* = AP* + Z* + E(u, l el, + a2ul,  < Ot  - a l P *  - a 2 W ,  ) 

¢~( c~) 
= AP* + Z* - 0.  q~(C,-----) (7.6) 

(see p. 367 of Maddala, 1983a) where 

( e l t W - a ' 2 b t l t ' )  
0 : C O V  Ut, 0"1 /l 

and C t and o- 1 are as defined in (7.4). 
As for P2*, note that when the quota is effective, we have a disequilibrium 

model, and hence, the reduced form equation (4.6) does not apply. What we 
are concerned with is the price suppliers expect to get. This is clearly given by 

, 1 
P2t = aT [ 0 ,  - a'2W*] . 

We now substitute the expressions for PI* and P2* in equation (7.5) to get P*. 
As discussed earlier in the case of price supports in Section 4, we again have a 
nonlinear expression for P*. 

As for estimation, we again partition the data into two groups: 
~1: Observations for which the quota is not effective. 
~2: Observations for which the quota is effective. 
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The likelihood function to be maximized is again 

Z = 1-[ Ibllfl(P,, Qt)" [ I  f2(S,, Dr), 
q'l 4'2 

where we substitute S t = D t = Ot for the observation in ~2- The iterative 
method of estimation described in Section 5 can also be applied here, and 
hence, it will not be discussed in detail. 

The issue o f  credibility. In the previous sections we derived the rational 
expectation P* of Pt under the assumption that the limits on prices (or 
quantities) imposed by the governments are credible. In practice this need not 
be the case. In fact, in the case of target zone models, there is a considerable 
discussion on the credibility issue. For instance, Flood, Rose and Mathieson 
(1990) argue that expected future exchange rates often fall outside the EMS 
bands. There is, however, the question of how to generate expected exchange 
rates when the data are generated by target zones. 

In the case of the disequilibrium model we discussed in Section 4, if the 
limits are not credible, the expression for P* is the one given by the 
equilibrium model, that is (4.7). If we assume that there is a probability 0 that 
the economic agents assume the limits not to be credible, then the expected 
price P* would be given by 

P* = OP* (e) + (1 - O )P* (de), (7.7) 

where P~(e) is the value of P,* under the equilibrium model and P~(de) is the 
value of P* under the disequilibrium model. Since we established the 
uniqueness of the rational expectation in both cases it follows that P* given by 
(7.7) would be unique. 

The implicit assumption in the case of target zones is that the central bank 
intervenes whenever the exchange rate is at the end of one of the currency 
bands, so as to prevent it from crossing the band. Empirically, this was not the 
case. In the case of the European Monetary System (EMS) it was observed 
that the central banks intervened intra-marginally to keep the exchange rate 
well within the target zone, and not at the edges of the zone to keep rates from 
crossing them. In 1987 they changed this strategy to one of intervention at the 
edges of the zone. Dominguez and Kenen (1991) argue that the effect of this 
change in policy shows up in the behavior of some exchanges rates (in the 
EMS) before and after 1987. It appears from this that exchange rate expecta- 
tions might be affected not merely by the presence of the target zone but also 
by the nature of intervention- intra-marginal or at the edges of the zone. 

8. Applications to exchange rates 

There have been several attempts to apply the disequilibrium model under 
rational expectations discussed in Section 4, to models of exchange rates. 
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However, there are many deficiencies in these papers, the major one being that 
the exchange rate model (as well as the Cagan hyperinflation model) depend 
on expectations of a future endogenous variable, as opposed to the supply 
equation in agricultural markets, given by equation (4.1), that depends on 
expectation of a current endogenous variable. The reduced form from the 
monetary model of the exchange rate can be written as 

; * + f ( x , ) + u ,  e t oLet+ 1 

where e t is the logarithm of the exchange rate, e't+1 is the expected value of et+ 1 
formed at time t, and x t is the set of variables describing the fundamentals 
(money supplies and incomes, both domestic and foreign). 

The reduced form equation in (4.6) from which we derived the rational 
expectation P* is no longer applicable in these models. The reduced forms for 
rational expectations models involving future expectations have been discussed 
in Hoffman and Schlagenhauf (1983), Woo (1985) and Broze, Gourieroux and 
Szafarz (1990). However, the expressions for the rational expectations in 
models with future expectations cannot be simply derived by using these 
reduced forms, as done in Section 4. 

Pesaran and Samei (1991) apply the disequilibrium model discussed in 
Section 4 to the case of Deutsche Mark/French Franc exchange rate (within a 
target zone model). Their analysis suffers from many deficiencies. First, the 
model estimated explains Pt, the log of current exchange rate, with P*, the log 
of the expected exchange rate for the current period. This is not  a valid model 
of exchange rate because the crucial equation in exchange rate models is the 
dependence of Pt on (P*÷I - Pt). It is not clear what the expectation formation 
used by Pesaran and Samei really means. Second, the expectation for P* used 
by them is not the rational expectation (4.16), but the perfect foresight 
expectation (4.15). It is not clear how appropriate this assumption is. In view 
of these limitations, it is hard to give any reasonable interpretation to the 
empirical results. The major conclusion that emerges from this study is that 
taking account of the limits makes a difference to the empirical results (even 
though the model is not correct). 

Another study of target zones using limited dependent variable models is the 
paper by Edin and Vredin (1991). The paper does not, however, analyze the 
problem of the effect of target zones on exchange rate expectations. What it 
does is to formulate a policy rule for central bank authorities which treats the 
central parity as as censored variable, which is changed only if the shadow 
floating rate deviates too much from the prevailing central parity. The shadow 
floating rate is determined from a monetary model of the exchange rate. This 
model gives, as its reduced form, the current exchange rate as a function of 
expected future exchange rate and some fundamental factors. Edin and Vredin 
use the 'bubble-free' solution to this reduced form. 

A study that considers rational expectations in switching regression models is 
that by Hsieh (1992). He considers the usual monetary model of exchange 
rates and considers an intervention rule where the central bank intervenes only 
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if the rate of depreciation of the exchange rate would exceed a constant A if no 
intervention takes place. In the target zone model and in typical two-sided 
intervention rules of 'managed float', intervention takes place whenever the 
rate of depreciation or appreciation is large. Hsieh obtains a rational expecta- 
tion solution under some restrictive assumptions. There is no explicit solution 
in the general case. 

9. Prediction problems and policy issues 

In the preceding section we described the methods of estimation in limited 
dependent variable models with rational expectations. The models estimated 
could be used to study the effects of different policies of eliminating or 
changing the limits imposed. For instance, in the case of the price support 
program in agriculture, one might be interested in the effect of the elimination 
or reduction of the price support on production, prices received by farmers and 
on price variability (which affects production risk). It is not appropriate to 
obtain these predictions from an equilibrium model consisting of just equations 
(4.1) and (4.2) ignoring the constraints on prices which underlie the data 
generated. Once the model has been estimated as a disequilibrium model, the 
estimated parameters can be used to simulate the effects of different policies 
regarding price supports. 

In the case of the target zone models, the issues are different. Some of the 
empirical issues are the following. 

(i) Did the adoption of target zones reduce the overall volatility of exchange 
rates? To answer this question, one needs an estimate of what the variance of 
the exchange rate would have been if the target zone did not exist. This 
estimate can be obtained (as in the case of the farm price support program) by 
stimulating the behavior of the exchange rate (using the estimated parameter 
values from the disequilibrium model) under the equilibrium assumptions. 
However, since we do not have the correct disequilibrium model yet, it is hard 
to answer this question. Some others have argued that the volatility of 
exchange rates is down after the institution of the target zones, but that it is 
due to better control over exchange rate 'fundamentals' (see Bodnar and 
Leahy, 1990). Another study that tries to estimate the effect of governmental 
interventions on exchange-rate volatility is the paper by Mundaca (1990). She 
studies the effect of government intervention on estimates of conditional 
variances within the GARCH framework. 

(ii) Are there nonlinear relationships between exchange rates and measures 
of fundamentals that are attributable to target zones? The answer to this is 
unclear. The nonlinearities exist, but they are present in floating exchange rate 
regimes as well. Further, Flood, Rose, and Mathieson (1990) argue that these 
nonlinearities do not improve out of sample predictions. 

(iii) How does one reconcile the within-zone behavior of exchange rates, 
which tend to spend more time in the center of the zone and exhibit higher 
volatility at the edge of the target zone, with any of the existing target zone 
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models? This is an important econometric issue in the analysis of target zone 
models. As mentioned earlier, Dominguez and Kenen (1991), argue that 
before 1987, the European central banks often intervened in the middle of the 
target zone rather than the ends, which is what the models we have discussed, 
as well as other target zone models, suggest. 

(iv) Are re-alignment probabilities and reserve levels important in the 
empirical analysis of target zone models? Some have investigated re-alignment 
probabilities with mixed results. (Flood, et al., 1990, and Bodnar and Leahy, 
1990). There is no investigation of reserve levels. 

The above mentioned issues suggest that the disequilibrium model with 
expectations of current endogenous variables discussed in Section 4 needs 
several modifications before it can be fruitfully used to analyze data on 
exchange rate. First, there is the issue of expectations of future endogenous 
variables. Second, there is the issue of credibility of the currency bands and 
expectations about future alignments. 

10. Concluding remarks 

We have presented a review of the methods of estimation for limited 
dependent variable models with rational expectations. We considered tobit 
models and disequilibrium models at length and outlined some applications in 
finance as well. Models with self-selection have not been discussed because 
they do not seem to have been used empirically as yet. Their structure is 
similar to that of disequilibrium models discussed here (both are switching 
regression models with endogenous switching). 

There is a fair amount of work on models with expectations of current 
endogenous variables. These models are applicable to farm markets, where 
there are empirical illustrations (Shonkwiler and Maddala, 1985 and Holt and 
Johnson, 1989) and to financial markets where applications have yet to come. 
They have also been (mis)applied to exchange rate models, which fall in the 
category of models with future expectations. Models with expectations of 
future endogenous variables is an area that needs to be worked out. 
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Nonlinear Time Series and Macroeconometrics 

Wil l iam A .  B r o c k  and  S i m o n  M .  Pot ter  

1. Introduction 

If you hit a wooden rocking horse with a club, the movement of 
the horse will be very different to the movement of the club. 

Frisch (1933, p. 198) quoting Wicksell. 

This quote from Frisch's seminal Cassel paper captures succinctly the 
standard way economists view time series: There are impulses (club move- 
ments) and a propagation mechanism (rocking horse) which together produce 
the fluctuations or cycles of economic time series around their upward 
movements. Frisch's article culminated a line of criticism started in the classic 
articles of Yule (1927) and Slutzky (1927) of earlier econometric work which 
had modeled business cycles by assuming that the economy was driven by a 
process with the same time series properties as the economy itself. Jevons' 
(1884) sunspot theory of the business cycle is the standard example. 

In criticizing the work all three (Yule, Slutzky, and Frisch) had made use of 
the properties of linear difference equations driven by random disturbances. 
They found that such statistical models were very capable of producing 
simulated time series that mimicked the behavior of the actual business cycle. 
After the Second World War the linear time series techniques they promoted 
came to dominate the study of economic time series. The dominance was not 
achieved because economic theories imply that economic time series should be 
linear or because statistical tests were performed supporting the assumption of 
linearity. But rather because given the state of statistical knowledge and 
computational resources linear time series were easy to apply and appeared to 
give superior results to earlier approaches. 

However, if we return to the physical analogy introduced by the rocking 
horse example it is not clear that the behavior of the rocking horse is accurately 
described by a linear difference equation for movements far away from its 
resting point (see Ozaki, 1985 for a similar example involving a ship). 
Furthermore, there are examples of physical phenomena where the require- 
ment of clubbing or external force is not necessary for fluctuations to continue 
indefinitely. 

195 
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In our review we discuss recent advances in econometric techniques that 
have allowed economists to assess both the validity of the assumption of linear 
stochastic dynamics and the requirement of exogenous driving forces. 

We examine two potential types of nonlinear economic time series. The first 
type are time series generated by a nonlinear map with chaotic ( 'chaotic'  will 
be defined below) properties. The output of the nonlinear map may be 
observed through an 'observer'  function which is, perhaps, buffeted with 
measurement  noise. The map itself may be perturbed by exogenous noise. 
There are examples of such series which appear random to the eye and to 
traditional linear statistical techniques because the spectrum is flat (i.e., the 
autocorrelation function (ACF) is zero at all leads and lags. It is important  to 
realize that not all chaoses display white noise autocorrelation functions. For  
example consider an A R M A ( p ,  q) driven by a chaotic innovation process. 

The second type is time series generated by a nonlinear difference equation 
propagated by additive noise that satisfies a martingale difference property.  
Our emphasis is on testing for nonlinear structure of both types. 

We concentrate on a testing methodology with its origins in the deterministic 
chaos concept of correlation integrals. We exploit a connection between 
correlation integrals and classical U- and V-statistics derived by Brock, Dechert  
and Scheinkman (1987), 'BDS' hereafter,  to produce a test for both types of 
nonlinearity in time series data. 1 

2. Chaos and stochastic nonlinearity 

Let us state notation at the outset. Denote  vector valued random variables by 
bold capitals, A , X ,  Y , M , N ,  scalar valued random variables by capitals, and 
their sample values by lower case. In order to keep the exposition clear we 
shall concentrate on scalar valued processes. For the most part, we shall keep a 
convention that X signifies a chaotic time series and Y a stochastic time series. 

Following Eckmann and Ruelle (1985), and Brock (1986), we start with 
some definitions and background for chaotic time series. Next we provide some 
definitions of stochastic linearity. 

2.1. Chaotic time series 

DEFINITION. We shall say the observed data process {A(t)} is generated by a 

1 We assume throughout that the data under examination has been transformed to stationarity 
and ignore any questions of estimation error in this transformation. 
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noisy deterministically chaotic explanation, 'noisy chaotic' for short, if 

A t = h(X,, Mr) , (2.1.1a) 

Xt=G(Xt_l,Vt)  , Vt=f(Xt_l,Nt) and g[f(Xt_l,Nt) lXt_l]=O, 
(2.1.1b) 

where {Xt} (when V t = O) is generated by the deterministic dynamics, 

X t = G ( X t _ l ,  0), (2.1.1c) 

which is chaotic, that is to say the largest Lyapunov exponent (defined below) 
exists, is constant almost surely with respect to the assumed unique natural (cf. 
Eckmann and Ruelle, 1985) invariant measure of G(.), and is positive. 

Here {M,}, {N~} are mutually independent mean zero, finite variance, 
independent and identically distributed (IID) processes. The function f(x, n) 
may be constructed, for example, to ensure that the noise {V~ =f(Xt_l, N,)} 
does not move {X,} out of its basin of attraction. We interpret our setup thus: 
{Mr} represents measurement error, h(x, m) is a noisy observer function of the 
state Art, and {V,} is dynamical noise. 

The definition of chaos used here is positive largest Lyapunov exponent of 
the underlying deterministic map which is one way to formulate the hallmark 
of chaos: sensitive dependence upon initial conditions (SDIC). This is a 
popular definition but not the only one (cf. Eckmann and Ruelle, 1985). We 
need the following. 

DEFINITION. (Largest Lyapunov exponent of map F(x)). Let F : E" -~  ~n. The 
largest Lyapunov exponent A is defined by 

A --=lim in [[[DxoFt.v H]/t, (2.1.2) 

where Dx0 , .v, In, U ,  ]]-[[ denote derivative w.r.t  initial condition x 0 at time 
zero, matrix product with direction vector v, natural logarithm, map F applied 
t times (the t-th iterate of F) ,  and matrix norm respectively. 

Consider the following scalar valued example, called the tent map, 

F(x) = 1 - ] 2 x  - 11 . (2.1.3) 

Here F(x) maps [0, 1] to itself, and for almost all initial conditions, x 0 E [0, 1], 
w.r.t. Lebesgue measure on [0, 1], the trajectory xt(x0) of the dynamics is 
second-order white noise, i.e., has flat spectrum and the autocorrelation 
function (ACF) is zero at all leads and lags. The largest Lyapunov exponent 
which can be computed using (2.1.2) is A = In(2)> 0. Hence the tent map is 
chaotic on [0, 1]. We shall use Granger's term, 'white chaos', to denote a chaos 
which generates trajectories which are second-order white noise. 
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The key lesson to be learned from the study of white chaoses like the tent 
map is this. Linear time series methods will proclaim time series emitted by 
such dynamics as random and unpredictable. Yet it is obvious that such time 
series are short term predictable by nonlinear methods such as local linear 
approximation, nearest neighbors, neural networks, splines, and others (cf. 
Casdagli and Eubank, 1991). Note that h > 0 implies that any small error in 
measurement of the initial state, x o will magnify in h-step-ahead forecasts at an 
exponential rate. Hence a chaotic process is not long term predictable even 
though it is short term predictable. 

The reader is warned, however, it is possible to generate deterministic maps 
(indeed that is the purpose of good pseudo random number generator designs) 
that are impossible to short term predict by any nonlinear method using a 
machine of finite resolution. A simple example is to put F(x) = Tq(x), where 
Tq(x) denotes the tent map applied q times to x. By increasing q one can make 
the derivative of F oscillate more and more rapidly which makes the output 
appear 'more and more random'. We encourage the reader to try forecasting 
experiments using favorite nonlinear prediction algorithms on this example. 

For the purposes of this article we do not wish to take a stand on the 
meaning of randomness hence the reader should feel free to interpret IID as a 
deterministic system with a sufficiently high dimension that prediction is 
prohibitively expensive and therefore, appears IID to all statistical tests when 
implemented on machines with finite resolution. 

2.2. Some notations of  stochastic linearity and nonlinearity 

For ease of exposition we concentrate on scalar valued strictly stationary 
stochastic processes. The case of vector valued stochastic processes follows the 
same pattern as the development below by replacing the scalar innovation 
process {N~} with an ~"-valued process, {Nt} , the scalars {aj} with the n × n 
matrices {Aj}, the summation condition Zj=0a2<oo with the condition 
E;= 0 trace A/ t ;  < 0% and so on. See Hansen and Sargent (1991, Chapters 2-4) 
for a development close to what we have in mind. 

Consider the following purely nondeterministic (in the nonlinear sense, see 
Rosenblatt, 1971, p. 164) covariance stationary stochastic process: 

Yt - tz = 2 ajNt-j = A(B)Nt ,  (2.2.1) 
j=0 

where A(B) is a polynomial in the back operator with Z;= 0 a~ < oo and a 0 = 1. 
Here {Nt} is a mean zero, finite variance denoted, (0, o-2), strictly stationary 
stochastic process with E[NsN,] = 0 for s ~ t. Except for the additional condi- 
tion that {Yt} be purely nondeterministic in the nonlinear sense this is the Wold 
Representation. 

In order to test the null hypothesis of stochastic linearity one first needs to 
decide what exactly it is .  Clearly the existence of (2,2.1) requires one to 
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consider more than the second moment properties of the process unless {N~} is 
a Gaussian stochastic process. One natural definition of linearity is that the 
best linear (i.e., based on the closed linear space of linear combinations of its 
history {Y~, s < t}) predictor of Y~ is equal to the optimal mean square error 
predictor based on the past history of the process. The best linear predictor of 
{Y,} in (2.2.1) is given by A(B)nt_ 1 (see Rosenblatt, 1985, p. 30). The optimal 
mean square predictor is the same as the conditional expectation of the process 
{Y~} given the sigma fields generated by {Ys, s < t}. 

In order to process we need to define the concept of a martingale difference 
sequence (MDS). 

DEFINITION (Martingale difference sequence, Billingsley, 1986, pp. 480-481). 
Let {N~} be a sequence of random variables on a probability space (g2, o%, p)  
and let {o%} be a sequence of sigma fields in o%. The sequence {(N,, °%t): 
t = . . . ,  - 2 ,  - 1 ,  0, 1, 2 , . . . }  is a martingale difference if 

(i) o%, C o~s+l, 
(ii) Ns is measurable ~%,, 

(iii) E[N, ] ~ ,_d  = 0 a.s. 

DEFINITION (MDS linear, Hall and Heyde, 1980, p. 183). The stochastic process 
{Yt} is MDS linear if it can be represented in the form (2.2.1) above where the 
'innovations' (Nt} are a martingale difference sequence (MDS) relative to the 
sigma fields ~ generated by {Y,, s ~< t}. 

There is an equivalence between the (completion) of sigma fields generated 
by { Ys: s < t} and those generated by the random variables {Ns: s < t} defined 
by N t = Yt - E[Yt ] ~ - 1 ]  (see Hall and Heyde, 1980, p. 183). Hence, (Art} is 
also a martingale difference sequence relative to the sigma fields generated by 
{Ns, s <~t}. 

The BDS test for chaos which is discussed below can be made into a 
specification test of the following stronger definition of stochastic linearity. 

DEFINITION (l iD linear, Priestley, 1988). We call the stochastic process {Yt} l iD  
linear if it can be written in the form (2.2.1) where the innovations {Nt} are 
IID (0, o-2). 

It is well known in finance that measures of conditional variance or 
conditional volatility of asset returns are very persistent through time for an 
extremely wide range of assets. A popular class of models that display volatility 
persistence but yet are analytically tractable are the generalized auto regressive 
conditionally heteroscedastic (GARCH) class: 

Y, = h]/2Z~, (2.2.2) 
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where {Z,} is IID with zero mean and variance one and 

2 ~_ 2 
h t = a o + a l Y t _  1 + . . .  a p Y t _  p + b l h t _  1 + • . .  + b q h t _  q 

=-- a o + OXt , (2.2.3a) 

- -  2 2 
Xt  = ( Y t  1, . . . , Y , - p ,  h t - 1 ,  . .  . , h t _ q )  . (2.2.3b) 

It is becoming popular to use model (2.2.2) to parameterize (and estimate) 
heteroscedasticity of the error structure of models of the conditional mean. See 
Bollerslev, Chou, and Kroner (1992) for an extensive survey of work related to 
this model of conditional volatility. Note that the process {y2} has a 
conditional mean, 

V t ~- E[Y~ ] X t] = h t = a o + O X t ,  (2.2.4) 

that is linear with respect to {Xt}. Hence (Y~} is linear in mean in a sense 
closely related to the definition of MDS linear: 

Y~ = V t + N t, N, ~ y2 _ E[Y~ IX t], E[N t IX t] = 0.  (2.2.5) 

3. The BDS test 

3 .1 .  A p p l i c a t i o n s  o f  the  c o r r e l a t i o n  i n t egra l  a n d  o t h e r  m e a s u r e s  f r o m  

n o n l i n e a r  s c i e n c e  to  t e s t i ng  the  l i D  h y p o t h e s i s  

It turns out that a method which is very effective at testing for chaos is also 
very effective and natural for testing for IID linearity. The basic strategy is to 
design a test of the null hypothesis of IID which has high power against chaos 
in general and white chaos in particular. At the same time we design the test so 
that it has the same first-order asymptotic distribution on the estimated 
residuals of a broad class of parametric models which includes 'most' linear 
models driven by IID innovations. In this way we also obtain a test of the null 
hypothesis of IID linearity. In order to explain this testing method we must 
exposit a measure of spatial correlation called the 'correlation integral'. This 
measure, in turn, is a member of a class of statistics called U-statistics. We first 
give a brief exposition of U- and V-statistics. Much of the material below is 
based upon Brock and Potter  (1991). Distribution theory for general functions 
of the correlation integral is worked out and applied to testing problems in 
nonlinear science by Baek and Brock (1991). 

Let  {Y,} be an ~k-valued stochastic process. V-statistics and their close 
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relatives, U-statistics, are defined thus: 

1 
V ( T ) - T 2  ~ h(Y.  Ys) , (3.1.1a) 

l ~ s ,  t ~ T  

2 
U(T) - T ( T -  1) a<-s<t<-T~ h(Y,  Ys) , (3.1.1b) 

where h : ~ k x  ~k.._>~, h (y , z )=h( z ,  y), is a symmetric function, called a 
'kernel ' .  

Serfling (1980, p. 176) and Denker  and Keller (1983) develop asymptotic 
theory,  parallel to the more familiar case of single sum statistics, for U- and 
V-statistics. We concentrate on the V-statistic form in this paper. Denker  and 
Keller (1983) show the expectation of U(T) and V(T) is the same as the 
expectation of h. We note that the first-order asymptotic distributions are the 
same for U- and V-statistics. 

Denker  and Keller (1983), under appropriate mixing conditions and some 
bounds on moments of the kernel function (the 2 + 6 absolute moment  of h is 
finite for some 6 > 0), establish the following representation for the V-statistic 
(and also the U-statistic) in (3.1.1): 

2 r 
V(T) = -~ s~=a ha(Ys) + R(T) , (3.1.2) 

whe r e  ha(Ys)=E[h(Y,  Ys)IYs], and T1/2R(T)-->O in distribution. This tech- 
nique is known as the 'projection method'  because one is approximating a 
double sum statistic up to a term which converges to zero in distribution, when 
multiplied by T a/2, with a single sum statistic by 'projection' ,  i.e., taking the 
conditional expectation, h a. Note that the mean of h a is the mean of h. 
Standard central limit theory and ergodic theory for single sum averages can 
now be applied. 

We now develop the promised test of IID which is due to Brock, Dechert  
and Scheinkman (1987), hereafter  'BDS'.  Write, for e > 0, m = 1, 2 , . . . ,  M 

m m 1 ~, h(y t ,  y~ ) ,  (3.1.3) Cm(e, T) - T2 a~s, , ~ T  

Din(e, T) = C,,, - C 1 , (3.1.4) 

where y~ = (nt a . . . . .  n, m )  ~ ~m for C m. Here  h(y, z) is a symmetric in- 
dicator function equal to one if the two rn histories, ym, y~, are within e of 

• 2 each other in the sup norm and equal to zero otherwise. Hence,  Cm, C 1 are 

2 A technical issue is how well the  asymptotic behavior of  the test statistic using the indicator 
function can be approximated by a symmetr ic  'kernel '  function which is twice continuously 
differentiable. Simulation evidence as well as other  arguments  in Brock, Hsieh and LeBaron  
(1991) suggest that a workable approximation exists. 
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V-statistics, D is a smooth function of two V-statistics, {y~} is m-dependent ,  so 
the sufficient conditions to apply the theory of Denker  and Keller (1983) hold. 
Denker  and Keller 's moment  conditions on h are automatically satisfied when 
h is the indicator function. 

Put W(x, y) =- x - ym. We choose 'W'  to remind us that the test is designed to 
reject I ID when the 'width'  between Cm and C~ is sufficiently large. Then 

1/2 T D,, 1/2 
T W(Cm(E , Z),  C 1 ( ~  , Z ) )  

= TI/2[W + Wl(Cm(F., T) - -  fen(E)) -~ W2(CI(E , T) - C,(s))] 

+ Op(1), (3.1.5) 

where W1, W 2 denote the partial derivative of W w.r.t, the first argument ,  and 
the second argument respectively evaluated at the point (C~(e), Cl(e)) and 
Op(l) denotes a term that converges to zero in probabili ty as T--~ o0. 

Under  the null hypothesis, {Aft} l iD,  BDS show Cm(e ) = [Cl(e)] ~. Hence  
W(Cm(e ), Cl(e)) is zero under the null. Now use the projection method and 
compute  the partial derivatives V¢~, i = 1, 2 to obtain, up to terms which 
converge to zero in probability as T--~ co: 

1/2 T D m = [2/T1/2]{ E [hm(Y m) - Cm(e)] 

- mCl(e) m ~[h~(y~) - C~(e)]) ,  

=-[2/T1/2]{E gm(ym)}, (3.1.6) 

where the sum runs from s = 1 to T. 
Under  the null of {Nt} I ID this may be further simplified. Recall that 

m 
Yt =- (nt-1, • • • , n,-m), m = 1, 2 . . . . .  Hence,  

hm(Y m) = f i  hl(n,_i).  (3.1.7) 
i=1 

Note that 

h l ( x ) = F ( x  + e ) -  F ( x - e ) ,  where F(x)=--Prob{Nt<-x} . (3.1.8) 

It is now easy to work out the formulae for the limiting mean and variance 
under  the null hypothesis, {N,} IID. The mean of gm is zero. Using strict 
stationarity compute the variance of E gm and take T to infinity to obtain 

{ ) V m =-lim Var(T1/ZDm) : 4E gm(yT) 2 + 2 ~ gm(yr~)g,~(ylm+i) . (3.1.9) 
i>1  
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Now use the definition of gm and {Nt} IID to obtain the formula 

( ¼ ) V  m = m(m - 2)C 2m Z(g - C 2) + g m - C 2m 

rn--1 

+ 2 E [c2i( g m - / -  C 2m-2j) - mC2m-2( g - C2)] 
j=l 

=-V(C, K, m) =--Vm, (3.1.10) 

where C=-CI(e), K~E{h(Nr ,  Ns)h(Ns, N~)}. The formula (3.1.10) can be 
expressed in the possibly simpler alternative form 

m-1  
( 1 ) V  m = g m + 2 ~ K m - J C  2* + (m - 1 ) 2 C  2m - m 2 g C  2 m - 2  . ( 3 . 1 . 1 0 ' )  

j=l 

The BDS test statistic is given by 

T1/2Dm/Vm(T)I/2-->N(O, 1) as T---~oo, (3.1.11) 

where Vm(T ) denotes a consistent estimator of the variance Vm, and the 
convergence takes place under the null hypothesis (Nt} IID. 

It is important to realize that the above argument crucially depends upon the 
variance V m being positive which is true except for hairline cases. Theiler 
(1990) discusses a case ( a uniform distribution on a circle) where the variance 
is zero. More elaborate limit theory can be developed for zero variance cases 
(cf. Serfling, 1980, Chapter 5). 

A consistent estimator of the variance that is used in the IBM PC software of 
Dechert (1987) which computes BDS statistics is given by, 

Vm(r ) = Vm(CI(E, r ) ,  K(e, r ) ) ,  (3.1.12) 

where Cl(e , T) is given by (3.1.3) above and 

1 
K(e, T) ~ ~ ~ h(Nr, Xs)h(Ns, Nt) , (3.1.13) 

where that sum run over 1 ~< r, s, t ~< T. 

REMARK. It is important to realize that the proof that the asymptotic dis- 
tribution of (3.1.6) with the variance estimator (3.1.12) requires no moment 
conditions for the indicator kernel. This is so because Denker and Keller's 
(1983) sufficient condition is E[[h[2+~]<~, for some 8 > 0 ,  where h is the 
kernel function. But this is automatically satisfied for kernels which are zero off 
a compact set and bounded on a compact set like the indicator kernel. Note 
that Denker and Keller's conditions are easily satisfied for (3.1.13) as well. As 
we shall see in Section 4 being able to test for linearity with minimum moment 
conditions is very useful for financial time series. Different tests for nonlineari- 
ty are compared with respect to their moment requirements in De Lima 
(1991b) and briefly below in Section 4. The tentative conclusion of De Lima's 
work is that for high frequency financial data the possibility of nonexistence of 
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fourth or higher absolute moments means that many tests require robustifica- 
tion (usually through some type of trimming) to be reliably applied to such 
data series. The BDS test has the advantage of requiring minimal moment 
requirements but it may require longer samples to be as effective as some of 
the other tests we discuss below. 

Baek and Brock (1992) generalize the BDS test by testing for both temporal 
independence and cross sectional independence of a vector of time series. They 
show that the distribution of their test statistic is the same on estimated vector 
autoregression (VAR) residuals under the null of a VAR with known finite 
number of lags driven by IID innovations provided that the residuals are 
'standardized' by the estimated contemporaneous variance-covariance matrix. 
The article shows how this procedure can be generalized to test adequacy of 
general models of the form Yt = F(It-1, a ) +  u t where {g,} is an •m-valued 
stochastic process, {It} is an Rk-valued stochastic process, a is a vector of 
parameters which can be estimated root T consistently, {ut} is an IID Era_ 
valued stochastic process with mean 0 and finite positive definite variance 
covariance matrix E and u t is independent of I t_l for each t. 

The Savit and Green (1991) approach works as follows. Consider the 
following sequence of conditional probability statements implied by IID, 

P { l x t - x , l < e g i v e n l x t _ l - X s _ l l < e } = P { l x t - x , l < e } ,  (3.1.14) 

P { ] x t - X s l < e g i v e n l x t _ , - x s _ l [ < e , ] x t _ z - X s _ z [ < e }  (3.1.15) 

= P{lxt - xs[ < e given IXt_l - x,_l[ < e } ,  

e ( I x t - x , I  < ~ given lx,_,-X,_ll < s ,  Ixt-~-x,-2l<~, 
Ixt_3 - xs_3t < 

= P{lxt - x , I  < ~ given Ix,_, - x ,_ , ]  < s, Ix t -2-x , -2 l  < 
(3.1.16) 

Use this stationarity, the definition of Cm(e ) (cf. (3.1.13)), and the laws of 
conditional probability to rewrite these statements thus, 

C2(e)/C,(s ) = C, (s) ,  

C 3 ( E ) / C 2 ( , F , )  = C 2 ( E ) / C I ( , ~ ) ,  

C4(E) / C3(~ ) = C3(F,) / C2(F,) , 

(3.1.14') 

(3.1.15') 

(3.1.16') 

Cj+I(e)/Ci(e ) = Cj(e) /Cj_I(e ) . (3.1.17) 

The Savit and Green (1991) methods of detecting at which lag temporal 
dependence is strongest are based upon statistics based on (3.1.14')-(3.1.17). 
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The idea is to see at which j the equalities under an IID null tend to be most 
violated. For  example, if the alternative is x, = F(xt_2) Savitt and Green 's  
statistics would tend to find the largest violation at lag 2 (3.15'). Note  that the 
direct dynamical dependence is at lag 2 in this example even though indirect 
dependence which is propagated by the dynamics occurs at all lags. Savit and 
Green  (1991) demonstrate on a set of examples that their method works well at 
detecting the lag at which direct dynamical dependence occurs. 

The Baek and Brock (1991) test for nonlinear Granger causality is based on 
a comparison of a string of conditional probabilities for vectors of series that is 
somewhat similar to the comparison of Savit and Green  (1991)above ,  which 
was developed for the scalar case. 

3.2. Estimation error 

Many diagnostic tests of the adequacy of a parametric class of models are 
based upon the estimated residuals from the best fitting of a member  of the 
class. Unfortunately,  many of these diagnostic tests require a correction for 
estimation error  to the asymptotic distribution of the test statistic under the 
null hypothesis. An example of a test that requires such a correction is the 
ACF calculated on estimated residuals to evaluate A R M A  fits (cf. Brockwell 
and Davis, 1987 p. 298). 

This part of our article is devoted to outlining the proof  of the following 
property of the BDS test statistic (3.1.11): The asymptotic distribution o f  the 
B D S  statistic on estimated residuals is the same as on the true ( l iD)  innovations. 
Call this the invariance property. 

We give an heuristic discussion, with an emphasis on locating minimal 
conditions needed on moments,  of the proof  of this property for an AR(1)  case 
here. This is enough to illustrate the essential ideas behind the proof. Then we 
will indicate how the BDS test can be used to test IID linearity in general 
under  minimal moment  existence requirements. 

Let  us work on the numerator  of the test statistic first. In order  to take care 
of the denominator  all one needs to do is to locate sufficient conditions for the 
variance estimator (3.1.13) to converge to the same limit whether evaluated at 
estimated or true residuals. 

1 / 2  Consider the expression for T D m in (3.15) evaluated at estimated 
residuals. Assume enough consistency of the estimation process that the 
residuals are consistently estimated and the delta method as used in Pollard 
(1986, Appendix A) may be generalized to the case of estimated residuals. We 
are now reduced to examination of the asymptotic distribution of the es- 
timators of Cm, C~ but evaluated at estimated residuals. 

In order  to see the basic idea with a minimum of clutter consider the 
asymptotic distribution of, 

1 / 2  ~ * T [C, - C , ] ,  (3.2.1 / 
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where ^ over a symbol denotes its estimated counterpart  at true residuals and 
^* denotes estimated counterpart  at estimated residuals. 

In order to locate sufficient conditions for the limit distribution of (3.2.1) to 
be independent of whether estimated residuals fit or true residuals nt, are used 
let us examine the case of an AR(1)  below, 

X s = b S s _  1 -Jr- Ns, [b I < 1,  (3.2.2) 

where we assume {Ns} is l iD with mean zero and finite variance. 
Let b r be an estimator of b from a sample of length T from (3.2.2) and let 

F(n,x)  =-P{(Ns, Xs_~)~< (n, x)} denote the joint cumulative distribution func- 
tion of (N~, Xs- i )  generated by the stationary distribution of (3.2.2). Note that 
N, is independent of Xs_1 for all s and the distribution is independent  of s by 
stationarity. 

In order to focus on the basic ideas restrict attention to smooth kernels of 
the form h(x, y) = h(x - y )  which are zero off of [ - e  - 6, e + 6] and which are 
one on [ - e  + 6, e - 6 ]. One should think of these kernels as smooth approxi- 
mations to the indicator kernel as 3 tends to zero (cf. Brock, Hsieh and 
LeBaron (1991)). The properties we shall use are symmetry, zero off of a 
compact set, and derivatives which are zero off of a compact set and bounded 
on a compact set. Then (3.2.2) implies 

A s = (b - br)X,_  ~ + N , ,  (3.2.3) 

T1/2[ C ; - C1] = Tt /2[  C I - C1] + A r + Br , (3.2.4) 

where 

A t = - { ( b  - b r ) T 1 / Z / T 2 } { ~  ~'~ h ' (N s - Nt)(X~_ ~ - s t - l ) } ,  

B T ~  { ( b -  b T ) Z l / 2 / Z 2 } I  E E ~ h ~ t ( g s _ l -  S t _ l ) } ,  

Vh£, ~ h ' [ N  s - N t --[- T]st(gs_ 1 - Xt_ 1)(b -- br)l - h'[Ns -- Nt] . 

(3.2.5) 

(3.2.6) 

(3.2.7) 

Here  (3.2.4) is obtained from an exact first-order Taylor expansion where the 
point N s - N t  + ~ s t ( X , _ l - X t _ l ) ( b - b r )  lies between N , - N  t and N s - N t  + 
(Xs_ 1 - X t _ x ) ( b -  br). Note that since the points are random variables the 
factor ~?~t produced by Taylor's theorem is also a random variable. 

Look at term A r given by (3.2.5). This one is the key to getting conditions 
that are sufficient for the invariance property for the asymptotic distribution of 
(3.2.1) We want to illustrate the trade off involved in locating conditions for 
A r---~ 0 in probability. The trouble is in controlling the T 1/2. It can be 'soaked 
up' in two ways: 

(i) Assume b is T 1/2 consistently estimated which is the case for OLS under 
classical conditions. 

(ii) Recognize that the (1/T2) Z Z component  is a V-statistic for the 
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estimation of 

EH(Zs, Z t ) ,  Z r ~ ( N r ,  S r  1), n(Zs ,  Z t ) = - h ' ( N s - N t ) ( S s - l - S t - 1 )  • 

(3.2.8) 

Note that symmetry of h implies symmetry of H so H is a legitimate kernel. 
Under mixing conditions and EIHII 2÷° < ~ for some v > 0, Denker and Keller 
(1983, Theorem 1) prove 

(Z1/2/Z2)I£ £ h ' (N  s - N~)(gs_ 1 - S¢ 1)-/ '£/--> N(0, 0 - 2 ) ,  
t ) 

T-.---) ~ 

(3.2.9) 

where ~ = - - E h ' ( N - N ' ) ( X - X ' ) ,  0 -2 is obtained as in Denker and Keller 
(1983, p. 507), the convergence is in distribution, and the notation E on the 
RHS means the integral against the distribution, F(n,x) ,  of ( N , X )  and 
(N', X ' )  where the two vectors are treated as independent draws from F. 

But the mean /x  is zero in a leading case. Look at the first term, E h ' ( N -  
N ' ) X .  Put E [ h ( N - N ' ) I N ] - - - h l ( N  ) and note that 

E[Dhl(N)] = 0 ,  (3.2.10) 

where D denotes derivative, for the indicator kernel. This implies the first term 
is zero. Symmetry implies the second term is zero. Therefore/~ is zero. Let us 
explain why (3.2.10) is true. Recall that in the case where the kernel h(N  - N ' )  
is the indicator function I , ( N -  N ' ) ,  we have 

D h l ( N  ) =- E[I~(N - N') I NI = G(N  + e) - G(N  - e) , 

G(x) =- Prob{n  ~< x} .  (3.2.11) 

Computing (3.2.11), assuming G has a density g, we obtain 

E[Dhl(N)] = f [g(n + e) - g(n - e)]g(n) an = 0.  (3.2.12) 

The last integral is easily seen to equal zero by noticing that 

f g(n + e)g(n) dn = f g(n - e)g(n) dn (3.2.13) 

by a change of variable argument. We sum all this up into a proposition. All 
convergence is in distribution. 

PROPOSITION. Assume that the moment  ix = O. Then if either 
(i) T1/2(b - b r ) - ~ N ( 0  , 0-2), and (1/T 2) Y~ E H(Zs,Zt)-->EH==-tz , r---~oo, or 

(ii) b - br--~O, and (T1/2/T2) 2 £ {H(Zs, Z,) - / z } - -~  N(0, 0-2), T--+ oo, then 

AT--+O. (3.2.14) 
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PROOF. use the expression for A T given in (3.2.5) above and Slutsky's theorem 
(cf. Serfling, 1980, p. 19). [] 

Turn now to getting rid of term B T. If one assumes a uniform Lipschitz 
condition on h(.) and Tl/2(b - b r ) - - ~ X ,  T - - ~  then it is easy to show that B r 
converges to zero in probability. However,  it appears that one should be able 
to get by with less since b - br---~ 0 implies ~?st---~ 0, and Vh---~ 0 fast as it goes to 
zero with the product rtst(b - bT). Location of minimal sufficient conditions for 
Br---~ 0, and the consistency of the variance estimator on estimated residuals is 
under investigation in De Lima (1991a,b). 

REMARK. The proof technique for the invariance theorem that we outlined 
above does not apply to the indicator function I~ because it is not differenti- 
able. However,  under modest regularity conditions one can find C ~ symmetric 
approximations to I~ such that (3.2.10) approximately holds and, hence our 
theory is valid for each of these approximations even though it is not valid for  
the limit. Although the approximation procedure has not been established for 
the limit it appears to work well in Monte Carlo evaluations of the equality of 
the approximation. See Brock and Dechert  (1989), and Brock, Hsieh and 
LeBaron (1991). Furthermore,  De Lima (1991b) has shown that theorems of 
Randles (1982) may be applied to obtain the invariance theorem for indicator 
kernels for a class of cases. 

The same procedure outlined above easily generalizes to proof  of the 
invariance theorem for A R ( p )  models drive by IID innovations provided that 
p is finite and known by the investigator. 3 We have the following. 

PROPOSITION. The B D S  test can be used to test l i D  Linearity provided the 
number o f  lags is finite and is known. 

PROOF. Follow the same outline above. [] 

Turn now to more general models. Consider the general class of parametric 
models with additive IID errors: 

Y, = f ( X  t, a)  + Aft, {Nt}IID, (3.2.15) 

where X t is an information set of 'regressor' variables which may include past 
Ys, a is a finite-dimensional vector of parameters which can be estimated root 
T consistently, i.e., T 1 / Z ( d t  - o~)-'-~ N(0, z~), where 0 is the zero vector and ~ is 

3 For some cases of general ARMA(p, q) models without a finite autoregressive structure one 
would expect the true innovations to be well approximated by a truncation of the infinite 
autoregressive lag structure that grows with the sample size. 
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the variance-covariance matrix and N(0, X) denotes the normal distribution 
with mean vector 0 and variance-covariance matrix X. It is easy to use the 
BDS test as a test of the adequacy of the class of models. 

Estimate the parameter  vector a by a consistent method. Many estimation 
methods are root T consistent under a fourth moment  condition on {Yt} (see 
Gallant and White, 1988). 4 If f (x ,  .) can be estimated by linear least squares 
then only slightly more than second moments may be required (Lai and Wei, 
1982 p. 164). Now one may repeat the same Taylor expansion argument we 
used above to show that the asymptotic distribution of the BDS statistic is the  
same on the estimated residuals {hs} as on the true residuals. This specification 
testing procedure may be generalized to a class of cases where {N,} is not IID 
but  is a MDS which can be parameterized and the parameter  vector can be 
estimated consistently as in G A R C H  model. 

Consider the following class of parametric models 

Yt =f(X~, a) + g(X~, f l )N  t , {Nt}IID. (3.2.16) 

Note  that this class is the same as the class (3.2.15) above except that the MDS 
errors are parameterized with /3 a finite-dimensional parameter  vector to be 
estimated. One can transform the heteroscedastic error term of (3.2.16) into a 
form where the BDS test can be used to test the specifications of g(x, .) 
conditional on f (x ,  .) in (3.2.16) by writing 

67 ---ln[h~ z] = l n [ { y , - f ( x  t, &)]/g(x,, /~)}z],  (3.2.17) 

where {h~} denotes estimated residuals. Using similar techniques to those 
above one can show that the asymptotic distribution of the BDS statistic under  
the null hypothesis {Nt} IID and conditional on the estimate & is the same for 
{6,(&)} as for {V~(&)}. Recall that by definition independence applies to all 
measurable functions hence it is valid to test for {N,) IID by using the 
transformation in (3.2.17) when a is known (e.g., when a G A R C H  model is 
applied directly to the data without a model for the conditional mean). In the 
general case when both a and/3 are estimated the BDS test will contain some 
bias term that requires Monte Carlo simulation for evaluation. 5 

Note that class (3.2.17) includes many (apparently all) of the G A R C H  
models covered in the Bollerslev, Chou and Kroner  (1992) survey. The ability 
to specification test such a large class of parametric models of conditional 
volatility by examining a simple transform of estimated standardized residuals 

4 Of course an assumption of weak dependence is also important. As mentioned in the 
introduction we are assuming that the investigator has already transformed the data into a 
stationary form. We now add the assumption that the dependence after this transformation is 
sufficiently weak to allow standard limit theorems to apply. 

5 For financial time series one might expect that the bias introduced from jointly estimating the 
conditional mean and variance and using the logarithmic transformation would not be great 
because of lack of predictability of the first moment  compared to the second central moment .  
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is useful. 6 Another class of models which may be specification tested by the 
BDS procedure outlined above is nonparametric models estimated by proce- 
dures which are consistent but less than root T consistent. Consistency of 
nonparametric procedures typically depends upon the degree of smoothness of 
the regression function. Hence the type of proof of the invariance theorem 
outlined above may, possibly, be generalized to the nonparametric case (see 
De Lima, 1991b). 

4. Tests for nonlinearity 

4 . I .  O v e r v i e w  

Tests for nonlinearity in time series can be split into three broad categories: (1) 
nonparametric tests in the frequency domain; (2) nonparametric tests in the 
time domain; (3) parametric and semi-parametric tests in the time domain. As 
well as discussing tests for IID linearity and MDS linearity we also discuss the 
use of the various tests as diagnostics for estimated nonlinear models. 

The spirit of nonlinearity testing that we shall stress fits naturally into the 
philosophy of time series analysis exposited by Priestley (1988, p. 14). In view 
of the prevalence of estimable heteroscedasticity in residuals of economic and 
finance models we state it thus: 'Estimate out' all 'structure' until the 
'standardized' residuals are reduced to strict white noise, i.e., IID. To put it 
another way, our goal is to find the 'best' probability model for the data under 
scrutiny. 

Much of the difficulty and controversy in time series analysis involves 
interpreting what is 'best'. We shall place a lot of weight on the goal of finding 
probability models that aid in improving 'genuine predictions' in the sense of 
Tong (1990 p. 419). Since large linear models can often produce good one-step 
ahead forecasts based on general multivariate information sets we are particu- 
larly interested in multi-step ahead prediction. In this case the large linear 
models can be very cumbersome predictive tools because of the need to predict 
the values of all the variables in the statistical model. It is important to realize 
that optimal multi-step prediction of nonlinear models requires one to locate at 
least an IID error (see Brock and Potter, 1991). In the case of linear models 
the MDS property of conditional mean zero is all one needs to know about the 
error distribution for optimal prediction. Two other important goals, of course 
are: (i) improved estimation of parameters of interest; (ii) improved use of the 
empirical data in hypothesis testing and resolving disputes in economics (see 
Potter, 1990). 

In our review we also pay much attention to the moment requirements of the 
various tests. Our motivation is based on work in financial economics by 

6 Lumsdaine (1990) shows that a fourth moment assumption (which is frequently violated in 
applications) is not necessary for asymptotic normality in the GARCH(1,1) model. 
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Phillips and Loretan (1990) and the references they cite. They conclude that 
the existence of 2 + 8, 8 > 0, moments for 8 small enough seems consistent 
with data but becomes highly suspect for 8 approaching two for financial 
returns. Let  us explain. Assume enough moment  stationarity of {Y~} for 
(4.1.1) below to make sense. Phillips and Loretan estimate the maximal model 
exponent ,  

a ~sup(Elgt [  q < oo}, (4.1.1) 
q 

for monthly returns on a stock market  index that ranges from 1935-1987 and 
for daily returns on the Standard and Poor 's  500 index from 1962-1987. Point 
estimates of a range from 2.5 to 3.2 for the monthly series and 3.1 to 3.8 for 
the daily series. Since these estimates were more than two asymptotic standard 
deviations from 4, this evidence is consistent with nonexistence of fourth 
moments. Note,  however,  that their evidence does not support nonexistence of 
the unconditional second moment, i.e., the variance. Therefore ,  we shall 
interpret the evidence as providing some support for existence of the variance 
and nonexistence of all absolute moments greater than or equal to four. 

4.2. Nonparametric tests in the frequency domain 

Statisticians have known for a long time that properties of the higher order  
spectra could be used to test for l iD linearity in an observed time series (see 
Brillinger and Rosenblatt ,  1967) however, it was not until the work of Subba 
Rao and Gabr  (1980) that a test based on the third-order spectrum or 
bispectrum was widely applied. Their  approach to implementing the test was 
improved by Hinich (1982). 

Following Priestley (1988), the intuition of the test is as follows. Let  {Yt} be 
a third-order stationary stochastic process and define 

c(m, n) = E[Yt+nYt+mYt] , (4.2.1) 

B(%,  o)2) = (l/2'rr) 2 ~ c(m, n) exp[-i(o91m + o92n)1 , (4.2.2) 

where the sum is over - ~  < m, n < w, and (%, o92) E [-ax, ,if]2 
It i seasy  to see the following: 
(i) If {Yz} is Gaussian then all c(m, n) 7 are zero (see Brillinger, 1975 for the 

properties of higher order  cumulants of Gaussian processes). Hence the 
bispectrum is zero for Gaussian processes. 

(ii) Consider the generalized autoregressive conditionally heteroscedastic 

7 Ramsey and Rothman (1989) develop a time domain test based on third order moments of the 
special form E[y, y2+,,] by exploiting the time reversibility of Gaussian linear time series. 
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(GARCH) process (with finite absolute third moment) 

S t = h ] / z z t ,  {Zt} IID N(0, 1), h t = a o + alht_ 1 . (4.2.3) 

A simple iterated expectations argument using (4.2.1) together with zero third 
moment of the normal shows that all c(m,  n) are zero. Hence B(091, o92) is zero 
for all frequency combinations. The same argument for more general GARCH 
processes driven by Gaussian innovations, such as those presented in Section 2, 
where h t is a linear function of a finite number of lagged h as well as a finite 
number of lagged X~_i shows that all third-order cumulants, c(m,  n) are zero. 
We shall call such GARCH processes, linear G A R C H .  The point is this. No 
test based upon the bispectrum has asymptotic power against dependent 
Gaussian processes or dependent Gaussian driven linear GARCH processes. 
Depending upon the application this property, which follows from the result 
that all c(m,  n) = O, can be very useful. 

For example suppose one wishes to test the hypothesis H 0 that a sample of 
stock returns, {x,} is a sample from a random walk {Xt} driven by Gaussian 
linear GARCH innovations. Then the bispectrum will be zero. So this suggests 
a natural way to test H0. 

The bispectral test for IID linearity is based on a normalized version of the 
bispectrum which is constant in (091, °92) if {Y,} is IID linear. Following 
Priestley (1988, p. 15, p. 43) the test of the IID linear null hypothesis in (2.2.1) 
is based upon the result 

c(m,  n)=  E[N~] ~ aflj+maj+ . , (4.2.5) 
j=0 

and the quantity 

X(°)a, ° )2)~  IB(wl, 092)12 /[h(oga)h(ogz)h(091 + 092)], (4.2.6) 

where h(09) is the spectral density function of the process {lit}. 
Under IID linearity, X is constant in (w~, 092), does not depend upon A ( B ) ,  

and only depends upon the second and third moments of {Nt}. A very similar 
procedure applies to the 'noncausal' case where the sum in (4.5) ranges from 
-oe to ~. 

The Hinich (1982), Subba Rao and Gabr (1984), tests are implemented by 
constructing estimators of B(09i, 09j) and h(09k) over a grid of frequencies 
(0 < 09i < 7r, 09i < 09j < rr) with good properties. The sampling distribution of the 
resulting estimates of {X;j} are developed under the null of IID linearity, and 
used to construct a test of the constancy of X. Hinich's version of the test uses 
the asymptotic expression for the variance-covariance matrix of the bispectral 
and spectral estimates in constructing the test statistic: A choice of spectral 
window must be made to estimate the bispectrum and sometimes this makes 
the results hard to interpret when small changes in the window produce large 
changes in the test statistic (Tong, 1990, p. 223). 

Linearity tests based on higher-order spectra can be applied directly to the 
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data (after transformations to obtain stationarity). This is because of the 
invariance properties of cumulant spectra to linear filters (Brillinger, 1975 p. 
34). The invariance of the bispectrum test statistic when the observed data is 
passed through a linear filter is a major advantage of this testing approach. All 
of the other tests require the investigator to commit to a particular linear filter 
before performing the nonlinearity test, thus introducing the possibility that 
rejection is due to misspecification within the class of linear models rather than 
nonlinearity. 

Tong (1990, p. 224) points out that the bispectral based tests have poor 
power against processes of the form 

Y; = f ( Y t - ,  . . . .  , Y t -~ )  + ~ , (4.2.7) 

where {et} is symmetrically distributed and f ( Y l , . . . ,  Yk) = - f ( - Y l , . . . ,  

-Yk). 
In general the bispectral based test has not performed well in Monte Carlo 

evaluations of its finite sample performance unless the sample size has been 
over 500 (compare Ashley, Patterson and Hinich, 1986 with Chan and Tong, 
1986). 

Our reading of the bispectral test literature suggests that at absolute 
moments of least order 6 are required to ensure obtain consistent and 
asymptotically normal estimates of the bispectrum. The bispectral test statistics 
discussed are based on this asymptotic normality. 

In interpreting evidence from the bispectral and other tests for nonlinearity 
discussed in this article it must be emphasized that the rejections may be due 
not only to failure of the moment conditions that the tests require but also the 
maintained hypothesis of stationarity may be false. Failure of the stationarity 
hypothesis may be serious for economic data which are known to be highly 
nonstationary due to, for example, regime changes. 

4.3. Nonparametric tests in the time domain 

Blum, Kiefer and Rosenblatt (1961), BDS (1987), and Robinson (1991), are 
examples of nonparametric tests of IID in the time domain. The BDS test was 
discussed in detail in Section 3. They are nonparametric in the sense that the 
investigator is not required to explicitly choose a function of the past history of 
the process against which the orthogonality of the current prediction error or 
residual is assessed. However, in any finite sample the tests require the choice 
of certain parameters that implicitly parameterize a certain class of alternatives 
(see Tong, 1990 p. 224 for similar comments). All three of the tests become 
tests for IID linearity when applied to the estimated residuals of linear models. 

In general one can label tests that use estimated residuals to judge the 
adequacy of a class of fitted models without a specific alternative diagnostic 
tests. Standard examples of such tests are the Ljung-Box and McLeod-Li 
portmanteau tests which are discussed in Tong (1990, p. 324). These tests 
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examine the estimated autocorrelations of residuals and of squared residuals. 
Under  a null of I ID the autocorrelations should be zero in population except at 
lag zero. Cox and Hinkley (1974 p. 66) call such diagnostic tests pure 
significance tests and argue that it is desirable for the distribution of the test 
under  the null hypothesis to be known at least approximately in large samples 
and not to depend on the value of any nuisance parameters .  

The BDS test which was discussed in Section 3 is an example of a 
nonparametr ic  test for I ID which can be machined into a diagnostic test of the 
adequacy of fitted models with additive errors that satisfies the desiderata of 
Gox and Hinkley. Apar t  f rom BDS there appears to be a gap in the li terature 
for diagnostic tests for I ID that have power against nonlinear alternatives and 
have been shown to have nuisance parameter  free distributions (see the 
comments  of Tong, 1990 p. 324). 

The bispectral test has also been used as a diagnostic test of I ID  on 
estimated residuals by Ashley, Patterson and Hinich (1986) who do a Monte  
Carlo study of performance.  However ,  neither the bispectral test nor  the BDS 
test are consistent against all departures from IID. We mentioned departures 
f rom I ID for which the bispectral test has no power  above, s Work of Decher t  
(1988) (see also Brock and Dechert ,  1991) has shown there exist departures  
f rom I ID that the BDS test has no power to detect. In order to briefly explain 
Decher t ' s  work,  consider the case of testing ' l - independence ' .  We will say that 
strictly stationary stochastic process {Xt} is 1-independent  if X t is independent  
of X s provided I t -  s I = 1. Consider the equality 

Prob{[X~ - X t [  < e 1 ,  [Xs_ 1 - X t _ l [  < 82} 

= Prob{lXs - Xt[ < el}Prob(lX,_x - Xt_l[ < E2}, 

for all e I > 0, e 2 > 0 .  (4.3.1) 

One can see that the 1-dependent alternatives which satisfy (4.3.1) are the 
1-dependent alternatives for which no generalization of a BDS type test could 
have power against. While (4.3.1) looks close to a characterization of 1- 
independence and, hence, a basis for a consistent test, Decher t  has found a 
class of 1-dependent processes with satisfy (4.3.1). He  proved existence of such 
processes by a Laplace transform type of argument.  He  has also shown that a 
correlation integral test based on (4.3.1) is consistent within the class of 
Gaussian processes. The point to carry away from this discussion is this. 
Nei ther  BDS (1987) nor the bispectral tests are consistent tests of I ID.  9 

Asymptotically consistent time domain tests of independence can be built by 
using the definition of independence (the joint distribution is the product of the 

8 Although the bispectral test is invariant to nuisance parameters from a linear model it is not 
clear whether this would be true if it was used as a diagnostic for nonlinear models. 

9Tests based on cumulant spectra higher than the third-order would reduce the class of 
nonlinear processes against which 'bispectral' type tests were inconsistent. 
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marginals). Two candidates are (i) the classical test of independence due to 
Blum, Kiefer and Rosenblatt (1961); (ii) the entropy-based test of Robinson 
(1991). Robinson shows his test is consistent under what he admits (Robinson, 
1991, p. 445) are 'extremely strong' assumptions. We do not know the extent to 
which the asymptotic distribution of Robinson's test or the Blum-Kiefer- 
Rosenblatt test would depend upon nuisance parameters from the estimation 
process. Hence, as far as we know, it is an open question how useful these tests 
would be as diagnostic tests on the estimated residuals of fitted models. The 
performance of the BDS test in this domain has been evaluated by rather 
extensive Monte Carlo work of Hsieh and LeBaron which appears in Brock, 
Hsieh and LeBaron (1991). 

The safest conclusion is this. To a certain extent there is no substitute for 
performance evaluation via Monte Carlo work on useful experimental designs 
in order to assess the practical value of a testing procedure. Theoretical 
properties such as consistency, asymptotic efficiency, asymptotic normality may 
be of little use in practice unless Monte Carlo evaluation work is done for 
samples sizes and experimental designs likely to arise in practice. 

4.4. Parametric and semi-parametric tests in the time domain 

We are using semi-parametric and parametric to imply the choice of an explicit 
parametric form by the investigator for the function of the previous history 
used to assess the orthogonality of the prediction errors or residuals. Semi- 
parametric tests make no explicit statement of the distribution of the residuals 
or prediction errors. 

For example consider the following standard model: 

y , = f ( X t ,  O ) + N  t , O E 6 ) ,  E[Nt]Xt]=0 , (4.4.1) 

where {Xt} is a vector-valued process which may include past Ys, 
The classical parametric approach to testing requires the investigator to 

specify a null hypothesis on a parameter lying in a finite-dimensional space 
(i.e., the joint distribution of {Yt, Xt} is assumed known up to a finite number 
of parameters). However, in order to test the assumption of a martingale 
difference sequence property for {Nt} no distributional assumptions are 
required. We first outline methods for testing the MDS property in a semi- 
parametric manner. Then we consider some problems in implementing stan- 
dard classical parametric tests to test for MDS and IID linearity. 

Building on the work of Keenan (1985), Tsay (1986) and Lukkonen et al. 
(1988a,b) have constructed tests for linearity versus nonlinearity by considering 
orthogonality of estimated residuals to polynomial functions of the observed 
history of the time series. It is possible to give Lagrange multiplier interpreta- 
tion of the tests as in Granger and Terfisvirta (1992) (see below). In the 
econometrics literature there is a separate testing literature known as condi- 
tional moment (CM) tests following Newey (1985) and Tauchen (1985). Many 
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economic models have the implication that E[NtI/t_~] = 0, where lt_ ~ is the 
information available to the econometrician. Thus specification tests were built 
on the asymptotic behavior of moments of the following form: 

h~ f ( I ,_ l ) ,  where f(.) is any measurable function.  
t= l  

(4.4.2) 

Under the martingale difference sequence null the sample moment in (4.4.2) 
goes to zero. Our interest will be in deciding upon good choices of f( . ) ,  known 
as the test function, for testing MDS linear and methods of constructing 
sampling distributions for (4.4.2). In doing so we will link the two literatures. 

There are two conflicting approaches to choosing a good test function. One 
can seek to find a class of functions ~- such that 

E[f(X,)Nt]=O fo ra l l t ,  al l fEql-  ~ E[N, IX,]=0, f o r a l l t .  (4.4.3) 

Alternatively, one might concentrate in testing for nonlinearity in a certain 
direction by constructing ql- from specific nonlinear time series models. 

Lee, White and Granger (1989) discuss a particularly interesting version of a 
CM-test based on neural network theory. They define a notion of linearity of 
stochastic process with respect to information set {X~} where {X~} is an 
~k-valued stochastic process as follows. 

DEFINITION (Linearity in mean). {Yt} is linear in mean w.r.t ~k-valued 
information process (X,} if there is a vector 6) ~ Ek such that 

Yt = ~9'Xt + Nt, E[Nt [ X t] = 0.  (4.4.4) 

LWG test (4.4.4) by using a class ql- of test functions derived from neural 
network theory to approximate the 'consistency' property in (4.4.3). 

In the regression context Bierens (1990 p. 1445 (8)) shows that one may base 
a consistent conditional moment test of null hypothesis (4.4.1) on a single 
sample moment which is the estimated errors h t weighted by exp(s'q~(Xt) ) 
where qJ : ~k___> ~k is 1-1, s E ~k. Note, however, the performance of the test 
will depend upon the choice of s, and q~. Since Bierens (1990, p. 1444) suggests 
that his methods will extend to the time series case this opens up the possibility 
of a consistent test of linearity in mean which uses a T containing only one 
element. 

In the time series literature test functions have been generated by using 
Volterra series expansions starting with Keenan (1985). Other approaches to 
finding good test functions have been based on Lagrange multiplier type 
principles. If the investigator has some belief about the correct direction in 
which to test for nonlinearity this can be used in constructing the f(.)  function. 
The standard example in the statistical literature is threshold nonlinearity of 
both the self-exciting and smooth type. For example, Lukkonen et al. (1988b) 
suggest using cubic as well as quadratic terms but note that if the investigator 
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has a belief in a certain delay parameter then the higher-order terms should 
only involve products in the delay variable defining the nonlinearity. 

A slightly different class of tests arises from considering recursive estimation 
of an autoregression when the ordering of the data is given by a delay variable. 
Tests along these lines have been developed by Petruccelli and Davies (1988) 
and Tsay (1989). Potter (1990) discusses the single index nature of the 
nonlinearity behind such tests and constructs a weighted least squares test 
based on a single index. 

Given a choice of a test function the next question is how to form a sampling 
distribution for (4.4.2) that only utilizes the MDS condition. White (1991) 
gives a comprehensive discussion for the general case of (4.4.1), however, we 
concentrate on the case of a linear conditional mean from (4.4.4) using the 
techniques of Wooldridge (1990). 

(i) Estimate O by O r such that T1/2(0r - , ~ )=  Op(1) and choose a test 
function f (x)  : ~K___~ ~ .  This gives {fit = Yt - 07xt: t = 1 , . . . ,  T}. 

(ii) Run the matrix regression of f (xt)  on x t and save the residuals {At: t = 
i , . . . ,  T} 

(iii) Run the regression 1 on fi'tAt, t= i , . . . ,  T and use TR~ = T - S S R  
2 (sum of squared residuals) as asymptotically X Q under the martingale differ- 

ence assumption. An intercept is not included in the regression unless already 
contained in the test function. 

The second step allows one to ignore the fact that 0 r is estimated in forming 
the sampling distribution and the third step gives a sampling distribution that is 
asymptotically robust to the presence of higher-order dependence in {Art}, for 
example, conditional heteroscedasticity. If one is interested in testing IID 
linearity then step (iii) can be replaced with 

(iii)' Run the regression of fit on A~, t = l , . . . ,  T and use the F-statistic. 

The simplifications introduced by Wooldridge's methods in the case of testing 
MDS linearity are important because they allow the investigator to use 
standard regression software to conduct the nonlinearity tests. 

The moment requirements of the CM type tests depend on two factors: the 
properties of the innovation sequence {Nt} and the properties of the test 
function. In the form above one clearly requires at ]cast second moments of the 
product N~A t in order for step (iii) to make sense. If (iii)' is used (i.e., lID 
linearity is tested) then weaker conditions are available. For example, in the 
Tsay (1986) test where second-order polynomials of the observed time series 
are used in the test function under {Nt} IID one requires E[N~] < ~, whereas 
under the MDS condition alone one needs at least E[N 6] < ~. If the test 
function was bounded as in the example used by LWG then one can appeal to 
the results of Lai and Wei (1982) under {Nt} IID and hence only slightly more 
than second moments of {N~} are required. 

CM tests have the advantage that the particular test function can be 
immediately used to construct a regression function that fits better in-sample 
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than the linear model. When a large number of different test functions are used 
it is possible to concentrate on estimating nonlinear models suggested by the 
smallest probability values from the linearity test statistics. However, it is 
important to realize that the overall significance of the evidence against 
nonlinearity is harder to assess when more that one of the CM-tests is carried 
out. 

Polynomial type tests tend to perform very well in Monte Carlo experiments 
for smaller sample size (i.e., less than 200). For example, Terfisvirta, Lin and 
Granger (1991) report results where cubic polynomials have power very close 
to Lagrange multiplier tests for the type of nonlinearity used in the experimen- 
tal design. Petruccelli (1990) contains a comprehensive Monte Carlo evalua- 
tions of tests for threshold autoregressions. Of course until more nonlinear 
time series models are estimated on actual economic data one cannot be sure 
that the designs used in these Monte Carlo experiments are relevant. 

In some circumstances an investigator might use theory to construct a 
specific nonlinear alternative to test against a specific linear alternative. Here 
the word specific means not only that the functional form of the nonlinear 
model and the density of the innovation sequence are assumed known but also 
the lag lengths of the two models. However, standard likelihood based testing 
theory is not likely to be applicable for three reasons as outlined by Hansen 
(1991a,b) building on the work of Davies (1977, 1987): 

(1) There might be parameters of the nonlinear model unidentified under 
the null. 

(2) The likelihood surface may have more than one local optimum and the 
null hypothesis may not lie on the same 'hill' as the global optimum. 

(3) The score may be identically zero under the null hypothesis. 
We concentrate on the first point which can be illustrated with a simple 

example, 

Yt  ~- ~ ) l Y t - i  Jr (~2F(7, Yt-1) -}- e~, e t ~ IID N(0, 2 ) ,  (4.4.5) 

F(-) is a nonaffine function from the line to the line and 3' E / "  C E. 
H0:q5 2 = 0 (IID linearity), 
HA: ~b2 7~ 0. 
Under the null hypothesis 7 is not identified implying that the standard 

sampling theory for the likelihood ratio, Wald and Lagrange multiplier (score) 
statistics are not valid (see Davies, 1977). Such problems are pervasive in 
classical tests of a linear null model against a specific nonlinear alternative 
model. For example, Tong (1990, Chapter 5.3) and Chan (1990) construct 
special likelihood ratio tests to account for the problem in threshold au- 
toregressions. But also see Granger and Ter/isvirta (1992) and Godfrey (1988, 
pp. 88-89) for solutions based on normalizing the function F(-) so that 
F(y,  O) = O. 

The solution proposed by Davies is to view the test statistic as a function of 
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the unidentified parameter and construct a test statistic based on the maximum 
or supremum of this function. There are two main problems: (i) it is 
computationally intensive to find the maximum in many cases, (ii) the 
asymptotic sampling distribution of the maximum is rarely free from nuisance 
parameter problems. One can construct bounds to deal with the second 
problem as in Davies (1987) or more generally use simulation methods to 
compute asymptotic critical values using the sample covariance function of the 

Gaussian empirical process produced by the maximization as in Hansen (1991, 
1992). The advantage of Hansen's approach is its wider applicability but it can 
be computationally intensive. 

Monte Carlo evidence in Ter/isvirta, Lin and Granger (1991) suggests that 
alternatives to using the maximum of the test statistics such as randomly 
choosing a direction to test in (i.e., by random draws of the nuisance 
parameters) or fixing the nuisance parameters a priori can result in substantial 
loss of power. Both Davies's and Hansen's techniques are sufficiently general 
to allow their use in semi-parametric situations where investigators often 
maximize over test statistics. 

We should note in passing that it is very difficult to derive specific nonlinear 
alternatives using economic theory. Hence most alternative specifications tend 
to be data-driven, thus producing a problem of pre-test bias (see Learner, 
1978). If the identification scheme can be transformed into a maximization 
problem over a suitable defined test statistic then once again the above 
techniques can be useful. 

Another difficulty with classical testing approaches is the assumption that the 
underlying innovations to the two time series models are generated by the 
same distribution (i.e., in most cases Gaussian). Li and McLeod (1988) find 
evidence that non-Gaussian linear models can produce substantial improve- 
ments in in-sample fit over models estimated using a Gaussian likelihood. 
Thus, classical tests might be biased in favor of nonlinear models under the 
assumption of Gaussian innovations. One alternative that still maintains the 
fully parametric structure is to use Cox's nonnested approach (see Pesaran and 
Potter, 1991). 

5. Evidence of nonlinearity and chaos 

A lot of work has recently investigated the evidence of nonlinearity and chaos 
in economic data. Let us divide the discussion into: (i) macroeconomic and 
other economic data sets, (ii) financial data sets such as asset returns. 

In describing the evidence we shall use the term 'low-dimensional chaos' to 
refer to a chaos (possibly noisy and possibly infected with measurement and 
observation error) whose dimension is low enough and whose derivative is 
'regular' enough that short term forecasting with the algorithms in, for 
example, Casdagli and Eubank (1991), should give improvement over methods 
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noc designed to exploit properties of chaos, e.g., linear methods. The word 
'regular' is used to exclude examples like a simple one-dimensional chaos, 
xt+ 1 = F ( x t ) ,  where F is the q-th iterate of the tent map and q is large. For q 
large enough short term prediction is impossible with machines of finite 
resolution. Two recent conference volumes that contain much useful material 
on chaos are Barnett et al. (1988, 1989). 

5 .1 .  M a c r o e c o n o m i c s  

A rather large literature has emerged in economic theory on the possibility of 
chaos being consistent with rational expectations in intertemporal general 
equilibrium macroeconomic models. The Journal of Economic Theory, Oc- 
tober 1986 conference volume was one of the early collections of papers. A 
recent survey in Boldrin and Woodford (1990). The conclusion is: Yes. Chaos 
is consistent with standard assumptions on preferences and technology in 
conventional equilibrium models used in dynamic economics. This raised 
interest in testing for the presence of chaos in data. The general (but not 
universal) conclusion is this: The evidence is weak for the presence of a chaos 
of a type that could be reliably predicted out of sample using nonlinear 
prediction algorithms that are tailor made to do well when chaos (even if it is 
noisy) is present. Linear prediction algorithms appear beatable but chaos has 
no special claim. 

Brock and Sayers (1988) tested U.S. post WW II macroeconomic time series 
such as (i) quarterly U.S. employment; (ii) quarterly U.S. unemployment rate; 
(iii) monthly U.S. industrial production; and (iv) U.S. quarterly GNP and 
found some evidence consistent with nonlinearity (or possibly neglected 
nonstationarity) but found little evidence consistent with simple low-dimen- 
sional chaos even if infected with a moderate amount of noise. The testing 
methodology was to attempt to pre-filter out linear structure as well as 
'pre-filter' out nonstationarity structure and apply the BDS test to the residuals 
using the methodology laid out in Section 3 above. Pre-filtering appears to be a 
useful operation when dealing with time series whose linear persistence is so 
strong that it overwhelms any other structure that may be present (economic 
time series exhibit strong linear persistence). 

Brock (1986) and Frank and Stengos (1988) compared dimension estimates 
on detrended macroeconomic time series before and after prewhitening by low 
order autoregressions to explore, in a diagnostic way, the evidence for low- 
dimensional chaos. If the data was chaotic Brock (1986) proved the dimension 
of the AR(q) prewhitened data should not change. Note that the reverse 
procedure of applying an AR(q) to chaotic innovations will typically change 
the dimension of the output, however. The evidence for low-dimensional chaos 
was weak, but this procedure probably rejects chaos too often when it is true. 

Scheinkman and LeBaron in Barnett et al. (1989) examined U.S. real per 
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capita GNP over a much longer period and failed to reject an AR(2) on 
detrended data with correction for change of variance of the innovations over 
the periods 1872-1946 and 1947-1986 after dummies for the great depression 
(1930-1939) and WW II (1940-1945) were introduced. They applied the BDS 
test to the standardized residuals and bootstrapped the small sample dis- 
tribution under the null. 

LeBaron (1991) examined similar macroeconomic time series with a battery 
of nonlinearity tests, including BDS and Tsay, and found little evidence 
consistent with low-dimensional deterministic chaos but found evidence con- 
sistent with nonlinearity. 

Ramsey, Sayers, and Rothman (1990) examined recent studies and found 
none that generated convincing evidence consistent with a low-dimensional 
chaos after correcting for robustness and linear persistence. They disputed 
earlier claims to have found chaos in economic and financial data. 

Lee, White, and Granger (1989) examined: (i) US/Japan exchange rate 
1973-1987 (little evidence of neglected nonlinearity); (ii) 3-month US treasury 
bill interest rate, monthly 1958-1987 (linearity rejected); (iii) US M2 money 
stock, monthly, 1958-1987, (neural network, McLeod-Li,  bispectrum, BDS 
tests reject linearity; Keenan, Tsay, and information matrix tests do not 
reject); (iv) US personal income, monthly 1958-1987 (linearity is rejected 
except by the bispectral test); (v) US unemployment rate, monthly 1958-1987, 
(neural network, Tsay, McLeod-Li,  bispectrum, BDS reject linearity, the 
others do not). All of the series were prewhitened by fitting AR models to first 
differences of logs, except for unemployment and treasury bill rates where first 
differences were directly applied to the data. 

As well as testing macroeconomic time series for nonlinearities a number of 
parametric models have been estimated. In the nonlinear time series literature 
a number of parametric models have been suggested: bilinear, threshold 
autoregression (TAR), smooth transition autoregression (STAR) exponential 
autoregression (EXPAR) and doubly stochastic models. Tong (1990) contains 
descriptions of each type of model. Bilinear models were the first to enter the 
scene in economics with Granger and Anderson's 1978 book and have seen 
some limited applications (Maravall, 1983, for example). Threshold autoregres- 
sions have been more recently applied with work by Ham and Sayers (1990) on 
unemployment rates in the U.S., Cao and Tsay (1992) on volatility in financial 
data, Potter (1990) on U.S. GNP. STAR and EXPAR models are extensively 
analyzed in a book by Granger and Ter~svirta (1992) and applied to O.E.C.D. 
industrial production indices by Anderson and Ter~isvirta (1991). Hamilton 
(1989) estimates a doubly stochastic time series model on U.S. GNP that has 
produced a number of other applications. 

We concentrate on the threshold model for U.S. GNP from Potter (1991a) in 
order to illustrate how nonlinear time series models can bring fresh life to old 
debates in economics. The model is estimated on U.S. GNP from 1947 quarter 
1 to 1990 quarter 4 and has the following restricted form: 
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--0.808 + 0.516Yt_ 1 - 0.946Yt_ 2 + 0.352Y,_ 5 +e l t  if Yt-2 ~ O, 
Y~ = I, 0.517 + 0.299Y,_ 1 + 0.189~_ 2 - 0.143Y,_ 5 + e2, if I1,-2 > O, 

(5.1) 

where cr~ = 1.5, 0-22 = 0.763 and Yt = 100 x Iog(GNPt/GNPt_I).  
Potter  (1990, 1991a) contain an extensive analysis of the model 's improved 

performance against traditional linear Gaussian models. In particular the 
recursive forecasting performance of the model in the 1980s is shown to be 
superior to a range of univariate linear models and multivariate linear models. 
The nonlinear model is also evaluated against some simple linear non-Gaussian 
models produced by exogenous regime changes such as switches in monetary 
policy, oil price changes and the political business cycle. The conclusion 
of this evaluation appears to be that the nonlinear model is picking u p  
more than deterministic or nonpredictable regime changes. More recent 
work by Hansen (1991) provides statistically significant support for the 
specification using techniques that take into account the nuisance parameter  
problems. 

The dynamics implied by the model are very different in an economically 
important way from standard linear models. Following the work of Romer  
(1986, for example) there has been a heated debate about the relative 'stability' 
of the post World War II U.S. economy compared to the pre World War II 
U.S: economy. Romer  argued that previous studies finding increased stability 
in the post-war period were biased because of the methods used to construct 
pre-war data. The debate has centered on various estimates of the volatility of 
the U.S. economy, however, using the nonlinear model in (5.1) one can take a 
completely different approach. 

From 1929 to 1933 the U.S. economy suffered a contraction in size of one 
t h i r d -  the great depression. A decline unprecedented before or since. The 
threshold model of post-war U.S. GNP has an intrinsic stabilizer - the AR(2)  
coefficient in the first r e g i m e -  that prevents such large declines from persist- 
ing. Potter  (1991a) illustrates this property by taking residuals from models 
estimated on pre-1945 data and using them to propagate the post (1945) 
economy as represented by the threshold model. It is found that although the 
'impulses' produce a severe recession it is not as deep or as long-lived as the 
actual great depression. However,  if one performs the same experiment with 
standard linear models fitted to post-war U.S. GNP then the depth and 
longevity of the great depression is recreated almost exactly. 1° 

The conclusion is that evidence consistent with nonlinearity in mac- 
roeconomics is strong but evidence for low-dimensional deterministic chaos is 
weak. An issue of burden of proof arises. Barnett  and Hinich (1991) argue that 
the burden of proof should n o t  be placed on low-dimensional chaos whereas 

10 Potter (1991b) discusses the use of impulse response functions for nonlinear time series and 
defines a measure of persistence for nonlinear time series. 
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we have taken the posture in this survey that other plausible alternatives must 
be discarded with reasonable probability. Whatever one's views are on this 
issue, it appears that the evidence for nonlinearity may have helped start a 
boom in the fitting of nonlinear parametric models to macroeconomic time 
series data. 

5.2. Finance 

Versions of the efficient markets hypothesis suggest that asset returns (especial- 
ly high frequency) should approximate a martingale difference sequence with 
respect to publicly available information after correction for the opportunity 
costs of funds and transactions costs. This suggests that the conditional mean of 
asset returns should be near zero and difficult to forecast out of sample. This is 
consistent with evidence. For example, the latest evidence due to Diebold and 
Nason (1990) and Meese and Rose (1991) suggests that no nonlinear predic- 
tion algorithm can do any better at out-of-sample prediction of asset returns 
than the random walk. Therefore, the evidence consistent with chaos in studies 
such as Scheinkman and LeBaron (1989), Frank and Stengos (1988), Mayfield 
and Mizrach (1989), and others may be produced by nonpredictable non- 
stationarity or some other structure which is difficult to predict out of sample 
rather than chaos. 

An interesting attempt to estimate the conditional probability distribution of 
returns is Gallant, Hsieh, and Tauchen's chapter in Barnett, Powell and 
Tauchen (1991) (using a set of techniques described in Gallant and Tauchen, 
1990). They show that the daily British pound/dollar exchange rate, January 2, 
1974 to December 30, 1983 is 'strongly conditionally heteroscedastic but cannot 
be fit using standard methods of the autoregressive conditional heteroscedas- 
ticity (ARCH) type'. They fit a 'conditional mixture model with an autocorre- 
lated mixing process' which seems to do quite well. 

It may be possible to improve nonlinear out-of-sample prediction by looking 
for periods when such prediction is possible by clever choice of conditioning 
information. To our knowledge LeBaron's paper in Casdagli and Eubank 
(1991) is the first to adduce evidence that such prediction may be possible by 
using past volatility as well as past returns. LeBaron finds that periods 
following relatively quiet episodes display more out-of-sample predictability 
evidence than periods following relatively noisy episodes. Weigend, Huberman 
and Rumelhart's paper in Casdagli and Eubank (1991) gives related results for 
returns on foreign exchange using neural net methods. 

Brock, Lakonishok and LeBaron (1990) have shown using daily returns on 
the Dow Jones index that popular technical trading rules appears to be useful 
in locating periods of potential statistically significant out-of-sample predic- 
tability when measured against the standard of random walk models driven by 
innovations with parametric forms of heteroscedasticity such as GARCH 
models. We emphasize that none of this evidence of out-of-sample predictabili- 
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ty implies market inefficiency because transactions costs of trading, adequate 
allowance for other sources of systematic risk, or correct adjustment for 
time dependence of the price and quantity of systematic risk has not been 
done. 

However, it is well known that asset returns display structure in conditional 
variance that appears to be predictable out of sample, at least to some degree. 
The G A R C H  class of models and their off-shoots appear to do a quite good 
job of parameterizing structure in conditional heteroscedasticity. The paper of 
Bollerslev, Chou and Kroner (1992) gives an excellent guide to a huge 
literature. However, more recently some investigators have been examining 
whether the assumption of linearity in the conditional variance is appropriate 
(e.g., Cao and Tsay, 1992). 

Hsieh (1991) attempted to test for the possibility that neglected nonstation- 
arity was driving the findings consistent with nonlinearity by observing the 
pattern of rejections of linearity across frequencies. The pattern of rejections 
appeared similar across frequencies down to 15 minute periods. Unless one 
believes the probability structure of financial returns is changing every 15 
minutes it seems safer to interpret the rejections as consistent with nonlineari- 
ty. Hsieh attempted to take out well-known nonstationarities before applying 
his tests. 

The conclusion on chaos for financial returns appears similar as that for 
macro. The evidence for chaos is weak, evidence consistent with nonlinearity is 
strong. After G A R C H  effects are accounted for the evidence for 'remaining 
structure' is weakened. However, there still seems to be evidence consistent 
with neglected nonlinearity although, in some cases, it may well be evidence of 
neglected nonstationarity. Conditional forecasting work such as LeBaron's 
chapter in Casdagli and Eubank (1991) and the trading-rule-based specification 
tests of Brock, Lakonishok, and LeBaron (1990) suggest that not all the 
evidence consistent with nonlinearity is just a reflection of neglected non- 
stationarity. 

6. Summary and conclusions 

This article has selectively surveyed some recent work in the vast and rapidly 
growing area of nonlinear time series analysis. This survey concentrates on 
work that the authors themselves have been doing, and, especially, concen- 
trates on statistical testing procedures that are designed to have high ability to 
detect chaos if it is present, but it also touches on related work. While the 
activity which we reported has already experienced a lot of development in 
over half a decade, we must warn the reader that many issues remain 
unsettled. For that reason we have discussed many very recent works which are 
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on-go ing  sO the reader  may contact  the researchers  that  are ci ted for the latest  

results.  
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Estimation, Inference and Forecasting of Time 
Series Subject to Changes in Regime 

James D. Hamilton 

1. Introduction 

Many economic and financial time series undergo episodes in which the 
behavior of the series changes quite dramatically. Figure 1, taken from Town 
(1990), displays the number of mergers of U.S. firms during 1895-1919. 
Merger activity seems to have been influenced by very different factors at the 
turn of the century than at other dates in the sample. Figure 2, taken from 
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Fig. 1. Number of U.S. manufacturing and mining firms disappearing due to mergers, acquisition, 
or consolidation, quarterly 1895-1919. Source: Town (1990). 
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Fig. 2. Log of the ratio of (a) the peso value of dollar-denominated bank accounts in Mexico to (b) 
the peso value of peso-denominated bank accounts in Mexico, monthly 1978-1985. Source: Rogers 

(1992). 

Rogers (1992), records the prevalence in Mexico of bank accounts denomi- 
nated in U.S. dollars. The Mexican government took strong steps to curtail the 
use of such accounts in 1982, and this clearly has a significant effect on the 
behavior of this series. Figure 3, taken from Hetzel (1990), plots the ratio of 
total output to the money supply for the U.S. There was a persistent tendency 
each year from the end of World War II until 1980 for the public to hold less 
money relative to total spending; the trend of this series at other times seems 
very different. Figure 4, taken from Hamilton (1988), displays the nominal 
interest rate on U.S. treasury bills from 1962 to 1987. During 1979 to 1982, the 
Federal Reserve experimented with a policy of permitting more variability and 
a higher level of interest rates, and this policy experiment shows up clearly in 
this series. 

Such changes in regime are the rule rather than the exception in economic 
and financial time series. Financial panics, wars, and major changes in policy 
dramatically change the behavior of many economic indicators. 

It can be a serious error to fit a constant-parameter, linear time series 
representation across such episodes. Cecchetti, Lain and Mark (1990b) pro- 
vided a compelling example of why. They fit a model allowing changes in 
regime to a hundred years of data on the dividends paid on U.S. stocks. The 
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Fig. 3. Velocity of U.S. M1 (ratio of nominal GNP to M1 measure of money supply), annual 
19t5-1988. Source: Hetzel (1990). 

results suggested that in a typical year dividends could be expected to grow a 
few percent  faster than inflation. However ,  in several episodes over  this 
century, the economy experienced such a serious shock that dividends started 
to fall by 35% per year. When they incorporated this feature of the data in a 
prominent  model  of  the stock market ,  they concluded that least squares 
coefficient estimates and confidence intervals such as those in Fama  and French 
(1988) and Poterba  and Summers (1988) provide a very unreliable small- 
sample indication of the degree of serial correlation in stock returns. More-  
over,  if purchasers of stock seek to avoid risk, the small probabili ty of large 
changes will significantly affect the way stocks are valued. For  these data, 
accurate modeling of the t ime series propert ies led to a reversal of earlier 
conclusions. 

How could we model  a sudden, dramatic change in the behavior  of a t ime 
series? Consider a Gaussian AR(1)  process, 

Y t -  tx = c ~ ( Y t _ l -  i.~) + e t ,  (1.1) 

with e t ~ iid N(0, 0 -2) and [tb[< 1. Suppose we believe that at some point in the 
sample,  the mean value around which this series clusters (/x) changed f rom an 
initial value /x 1 to a new va lue /z  2. 
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Fig.  4. N o m i n a l  in t e res t  r a te  on  U.S.  t r easu ry  bil ls ,  qua r t e r l y  1962-1987.  Source:  H a m i l t o n  

(1988). 

This by itself is not a useful description of the data. If we do not know what 
caused the change from ~1 to ~1,2, we cannot forecast this series; if the constant 
term has changed in the past, it is surely possible for it to change again in the 
future. If we are not sure how to forecast the series, we cannot use this 
description in any economic or financial model that tries to understand people's 
forward-looking behavior. And in the absence of an explicit probability law for 
what governed the change from ].~1 to ~-~2, it is not clear what principle we 
should use to estimate pa r ame te r s -  what event are we conditioning on if we 
treat the change as deterministic, and how does this conditioning affect the 
validity of the statistical inference? 

For these reasons, it is desirable to model the probability law for changes in 
regime. The threshold models in Tong (1983) describe the change as a 
deterministic function of past realizations of Yt; for example, if Yt-1 < 0, then 
the constant term for observation t is taken to be/Xl, whereas when Yt 1 > O, 

the constant term is/x 2. 
This chapter maintains the alternative view in Hamilton (1989) that changes 

in regime are the result of processes largely unrelated to past realizations of the 
series and are not themselves directly observable. Consider, for example, an 
unobserved state variable s t that takes on the values 1 or 2 according to a 
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Markov chain: 

p ( s  t = 1 I S t _ l  = 1) = P l l ,  ( 1 . 2 a )  

p ( s t  = 2 IS,_l = 1)  = p 1 2 ,  ( 1 . 2 b )  

p(st = l lst_a = 2 ) = P 2 1 ,  (1.2c) 

p(s, -- 21 st_~ -- 2) = p 2 2 ,  (1 .2d)  

with PaI +P12 =P21 +P22 = 1. We then model the data Yt as being governed by 

( Y t  - &,) = 4 ' ( Y t - 1  - & , - i )  + et ' (1.3) 

where /x~, represents/xl when s t = 1 and /x  2 when s t = 2.  

We can rewrite (1.3) as 

(1 - 4)L)(yt - / x ~ , )  = e, ( 1 . 4 )  

for L x  =-x t_  1. Applying (1 -~bL)  -1 to both sides of (1.4) produces 

y, = m,  + z , ,  (1.5)  

where z, ~ - ( 1 -  4 L ) - l e t  follows a Gaussian AR(1) process. The model (1.5) 
might thus be viewed as an extension of the standard mixture of normals 
distribution according to which 

Yt = ~s t + 8t (1.6) 

with s t an iid Bernoulli sequence. 1 Expression (1.5) generalizes (1.6) by 
modeling s t as a Markov chain as in Baum et al. (1970) and by replacing e, with 
an autocorrelated Gaussian process. The process (1.3) could alternatively be 
viewed as an application of the switching regression idea of Quandt (1958), 
Goldfeld and Quandt (1973), and Cosslett and Lee (1985) to an autoregres- 
sion. Closely related models have been explored by Sclove (1983) and 
Tj0stheim (1986), though they did not discuss maximum likelihood estimation 
of parameters. 

Some might object that a change in regime should be represented as a 
p e r m a n e n t  change in the value o f / z ,  rather than the cycling back and forth 
between states 1 and 2 that seems to be implicit in (1.2). However, the 
specification (1.2) allows the possibility of a permanent change as a special case 
if P2~ = 0. Alternatively, we could have P2~ quite close to zero, with the 
implication that in a sample of given size T we would likely see only a single 
shift, though at some point in the future we should see a return to regime 1. 
This second parameterization that some scientific appea l -  if the stock market 

1 For a survey of mixture of normal  distributions, see Titterington, Smith and Makov (1985). 
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can crash once, it is surely possible that it could crash again. Any atheoretical 
forecast is based on the assumption that the future will be like the past. The 
past has not been exclusively characterized by 'normal' behavior, so it seems 
unlikely that the future will be either. 

Alternatively, by a change in regime we might have in mind an event such as 
World War II, that appears once in our sample of 100 years for a fixed five-year 
duration. The specification (1.2) could describe this episode by choosing P u  
and P22 such that a typical sample of size 100 would likely include only one 
such episode. Again the implicit presumption is that given another 100 years of 
data we may well see another such event. 

The advantage of (1.2) is that it allows these possibilities along with many 
others. By specifying the probability law rather than imposing particular dates 
a priori, we allow the data to tell us the nature and incidence of significant 
changes. Thus we view/t~-(~b, 0 "2, IX1, IX2, Pla, P22)' as a vector of population 
parameters that characterize the probability density P ( Y l ,  Y 2 , . . . ,  YT;  A)  of 
the observed data. Our tasks are then to find the value of the parameter A that 
best describes the data, form an inference about when the changes occurred, 
and use these parameters and inference to forecast the series and test economic 
hypotheses. 

Note that the process defined by (1.2) and (1.3) with [th[ < 1 and 0 <Pii < 1 
for i = 1, 2 is covariance-stationary, and admits a Wold representation of the 
form 

o ~  

y, = k + ~, ~et_j (1.7) 
j=o 

for e t a serially uncorrelated sequence. Although this representation exists, it 
does not yield optimal forecasts of Yr. While e t is uncorrelated with et_ 1 it is not 
independent of e t_ 1, and indeed lagged values of e l_ ~ can help forecast e r The 
optimal forecasts of Yt are obtained by using the nonlinear formulas derived 
below for forming an inference about s t . 

Note also that we have modeled the shift in intercept as in equation (1.3) 
rather than 

Yt  - IX,, = ~ ( Y t - 1  - Ixs t )  + et . (1.8) 

The model (1.8) could of course be handled equally easily with the methods 
described in this chapter. Models (1.3) and (1.8), however, imply very 
different dynamic consequences of a shift in regime, and it is worth comment- 
ing on this difference. Suppose that the process shifts from state 1 to state 2 at 
date t and stays there for j periods. According to specification (1.8), the value 
of Yt+j will be (1 + ~b + ~ 2  _~_ . . .  ~_ ~ J ) ( I X2  - IX1) units higher as a consequence 
of the shift, whereas according to specification (1.3), the value of Yt+j will be 
(/z2 - IXl) units higher for any j. Thus in (1.8), the consequences of the shift 
accumulate over time in the same way as for a permanent shift in e. By 
contrast, the effect of a change in regime in (1.8) is immediate, is not tied 
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down by the dynamic consequences of e, and is the same for all observations 
from the new regime. Our anticipation is that the formulation (1.3) will 
provide a more promising description of many economic and financial time 
series. 

We have so far confined the discussion of changes in regime to a simple 
AR(1) process with two possible values of/x. The general principles discussed 
below readily generalize to vector autoregressive specifications in which the 
intercepts, autoregressive coefficients, or variances may be functions of current 
or lagged values of an unobserved state, in which there may be K rather than 
two possible states, and where the probability law p(s t I S,-l, Yt-1, • • • , Yt-r) 
can depend on lagged y and not just s,_ 1. Such generalizations are in fact a 
fairly trivial extension of the basic approach. These extensions face a practical 
rather than theoretical restriction; if we only have a few observations on a 
regime, we cannot reliably estimate a large number of parameters for it. Thus 
most empirical applications have estimated scalar or small vector systems in 
which the change in regime is confined to a few parameters and in which only a 
few states for the Markov chain are allowed. 

This chapter is organized as follows. Section 2 discusses statistical inference 
for systems subject to changes in regime. For ease of exposition we describe 
the example (1.2)-(1.3) in detail and then note how the approach readily 
generalizes. Section 3 discusses maximum likelihood estimation and specifica- 
tion testing, while Section 4 examines forecasting and rational-expectations 
analysis of such processes, Section 5 presents some empirical applications. 

2. Inferences about the unobserved state 

2.1. Filter inferences 

We will shortly describe a procedure for estimating the population parameters 
A from the data. Let us now put this question on hold, and assume that we 
already know the value of A. Suppose we are further given observed values 
(Yl, Y 2 , . . . ,  Y,) generated from the process (1.2)-(1.3). What should we 
conclude about the state the process is in at date t? 

Since the state s t is not observed directly, our inference takes the form of a 
probability 

p(s, = l ly,, Yt-I . . . .  , YI; A). (2.1) 

Note that this denotes the probability that the process was in state 1 at date t, 
with the inference conditioned on data observed through that date 
( Y t ,  Y t - 1  . . . .  , Y l )  and on a fixed value for the population parameter vector A. 
To simplify notation, we hereafter suppress the role of A, though it is implicit 
in all the following expressions. We now show how to calculate (2.1) through a 
recursive filtering of the data. 
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We begin with the unconditional probability of the date t = 1 state, given by 
the well-known formula 2 

1 -- P22 
p(s~ = 1) = (1 - P n )  + (1 -P22) " (2.2) 

The joint unconditional probabilities for the t = 1 and t = 2 state are then found 
from (1.2) to be 

p(s 2, Sl) =p(s  2 Is1)" P(Sl). (2.3) 

The notation p(s2, Sl) denotes one of four numbers, one for each possible 
combination of s 2 and s 1. For example, 

1 - P l l  
p(s 2 = 2, s I = 2) =P22 (1 --Pll)  q- (1 --P22) " (2.4) 

The four numbers represented by (2.3) are each between zero and one and 
sum to one. 

We further know the density of Yl and Y2 conditional on sa and s2, 

P(Y2, Yl Is2, S1) 

{ I-C"2- = lall -1,2 exp -½[ (Y2-  &~) (Yl-~,,)lO-11_(yl_tz,,)j.i 
(2.5) 

where 12 is the variance-covariance matrix of two successive draws from an 
AR(1) process: 

12 = [0r2/(1- q~2)] [ ;  1~]. 

For given numerical values of Y2 and Yl, the expression P(Y2, YllS2, Sa) 
denotes four distinct numbers, one for each possible value of (s2, Sl). 

We can then calculate the joint probability-density of states and observations 
by multiplying each element of (2.3) by the corresponding element of (2.5), 

P(Y2, Yl, s2, S1) =P(Y2' Yl I $2' S1)" p(S2' S1)" (2.6) 

Again this expression denotes four distinct numbers. Note that the sum of 
these numbers has the interpretation as the unconditional density of (Y2, Yl), 

2 2 

P(Y2, Yl) = ~, • P(Y2, Yl, $2, S1)" (2.7) 
Sl=l  s2=l  

If we divide (2.6) by (2.7), we arrive at an inference about the first two 

z See for example Hamilton (1989, p. 361). 
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states, conditional on the data, 

P(Y2,  Yl,  s2, S1) 
P(S2, S1 l y2, Yl) = P(Y2, Y,) (2.8) 

We can use this to obtain an inference just about the state for date 2, if we 
wish. For example, 

p(s2 = l lY2, Yl) =p(s2 = 1, sl = l ly  2, yz) 

+ p(s  2 = 1, s~ = 2 l y  2, Yl)- (2.9) 

Let  ~1, =- (y, ,  Yt-a, • • • ,  Ya)' denote observations obtained through date t. We 
have seen how to calculate p(s,  [ ~4) for t = 2. We can use the same ideas as 
above to calculate p(s,+l 1%+1) from p(s, I~t) for any t. In particular, 

p(s,+,,st] ~,)=p(st+l Is,, ~,)" p(s, I ~ )  
= p(s,< Is3.p(s,I ~t), (2.10) 

where the last equality follows from the assumed independent  Markov law for 
s t. Next we form 

P(Yt+I I S,+l, st, °~t) 
1 

- V~-~o- exp{-[Yt+s -/zs'+l - ~b(y, - /xs , ) ]2 / (2o-2)}  , (2.11) 

and multiply (2.10) by (2.11), 

P(Yt+I, St+l, St I¢~t) 
= p(y ,+ ,  ] s t< ,s t ,  ~It). p(s ,+l ,S  t [ ~ ) .  (2.12) 

Summing these four numbers yields 

2 2 

P(Yt+I I °)Jr) = Z Z P(Yt+I, St+l, St I °~t), (2.13) 
st+l=1 st=l 

while dividing (2.12) by (2.13) gives 

P(Yt+I, St+l, st [ ~ )  
P(St+l'Stl~tt+l)= P(Yt+I I ~t) (2.14) 

Summing over s, completes the date t + 1 inference, 

2 

pG+I r ~t+~) = Z p(s,+~,s,I °~t+l). (2.15) 
st=l 

Proceeding recursively through the data in this fashion we can calculate 
(2.15) for any t. Note that the output of this recursion is a probability that the 
process was in regime 1 at any given date in the sample based on observations 
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of y through that date. Again we emphasize that this recursion treated the 
population parameters in )t as known and fixed. 

2.2. Smoothed inferences 

Above we showed how to calculate p(s t [~t), a filter inference about the 
current state based on currently available data. We now discuss how to 
calculate p(s t I ~ r ) ,  a smoothed inference about the state at date t based on 
data available through some future date T. 

Suppose we multiply (2.14) by p(st+ 2 [st+a) and by p(yt+zlSt+2, St+l, Yt+a), 

P(Yt+2, 6+2, st+a, st I °~t+x) 

= p(st+l, st I ~t+a)" P(St+21 st+l) " P(Yt+2 1 st+2, St+l, Yt+a). (2.16) 

Dividing this by the density from (2.13) calculated for date t + 2 then yields 

P(Yt+2, St+z, St+l, st I '°)Jt+ a) 
P(S,+2, St+l, st I ~t+2) - P(Yt+21 ~t+l) (2.17) 

Summing over st+ a we could then find 

2 

p(st+2,stl° ,+2) = E p(st+z,St+l,stl t+2). (2.18) 
St+l  =a  

Continuing recursively in this fashion, given p(st+j, s t I ~Yt+j) we can calculate 
P(St+j+a, st [ N,+j+I) from 

p(st+j+,, s, I 
2 

= Z {P(St+j, st[°gt+j)'P(St+j+als,+j) 
st+j=a 

x P(Yt+i+l [st+j+,,s,+i, Yt+j)}/P(Yt+j+a 1 9Jr+j) • (2.19) 

When we reach p(sr, s t ]~ r ) ,  we can calculate the full-sample smoothed 
inference from 

2 

p(s, I~r )  = • p(sr, s, [ ~ r ) -  (2.20) 
ST=I 

2.3. Generalizations 

The approach above is quite simple to generalize. For example, consider an 
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r-th order autoregression with a changing intercept and variance, 

(Y, - ~**) = ~bl(Yt-1 - ~s, 1) + ~b2(Yt-2 - list_ 2) 4 - . . .  

4- ~ r ( Y t - r  -- liSt_r ) -~ O'S t " 6 (2.21) 

with e, - iid N(0, 1) and with st = 1, 2 , . . . ,  K according to a K-state Markov 
chain. To generalize the approach in Section 2.1 we need to calculate an 
inference about the r most recent realizations of the state variable, 

p(st, s t _ l , . . . ,  St_r+ 1 [ °~t). (2.22) 

Expression (2.22) denotes K ~ separate values, one for each possible value of 
(6, S t _ l , . . .  ,S,_r+l), corresponding to the probability of that joint outcome 
conditional on the observed data. Again these numbers will sum to one by 
construction. To update this inference, we calculate 

P ( Y t + I ,  St+l,  S t , ' ' ' ,  St-r+1 ] ~lt) 

= P(Y,+, I s,+l, s t , ' ' ' ,  St-r+l, 0~,). p(S,+l ]St) 
X P(St ,  S t _ l , . . .  , St_r+ 1 I °-lJt), (2 .23)  

where 

Then 

p(y ,+ l l s t+x , s , , . . .  ,St_r+l, @Jt) 

_ 1 exp{ - 1  
V'T~o- +1 (2o-2,---+1) 

X [(Yt+l -- list+ 1) -- ffal(Yt -- list ) 

-- ff)2(Yt-1 -- list_ i) . . . . .  ffar(Yt-r+l )]2} (2 .24)  -- [~St_r+l 

K K K 

P ( Y t + I  I °~at)-~ E E . . .  E P ( Y t + l , S t + l , S t , ' ' . , S t - r + l  I °~at) 
St+l=l st=l St_r+l=l 

(2.25) 

and the updated inference is 

p ( s , + l ,  . , [ 
K 

= E P ( Y t + , ,  St+l, S t , ' ' ' ,  St-r+1 [ °~t) 
s,_r+l=l P(Yt+I ]0~,) (2.26) 

To start this iteration on (2.22)-(2.26),  we require an initial value for (2.22): 

P(Sr, sr 1 , . - - ,  Sl [ o~r). (2.27) 
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Consider first the unconditional probabilities 

~. =p(st = j ) .  (2.28) 

Assuming that the Markov chain is ergodic, these probabilities can be found 
from the solutions to the following K + 1 equations: 

K 

Pq~'s= ~r~ for j =  1,2, . , K ,  (2.29) 
i=1  

K 

~'~ ~rj = 1. (2.30) 
j= l  

We can then calculate 

p(Sr, Sr 1 , ' ' ' ,  $1) = p(Sr I Sr-,) " p(Sr 1 ] S r - 2 ) "  " " p(S1)  " (2.31) 

To generalize the procedure described in Section 2.1, we would next 
calculate 

p(O~r+IIS~+I,S, . . . ,SO (2.32) 

and from this evaluate (2.27). However, evaluation of (2.32) can be computa- 
tionally involved, and a simpler strategy that promises to yield satisfactory 
inferences is simply to replace (2.27) with (2.31) and then iterate on (2.22)- 
(2.26). 

From the value of (2.22) at step t of this filter recursion we can easily 
calculate an inference just about the state at date t, 

K K K 

p(s,] °21,) = ~ ~ . . .  ~ p ( s , ,S ,_x , . . .  ,St_r+ 1 ] °~t). (2.33) 
S t _ l = 1  s t_2=1 S t r+ l  =1 

Alternatively, an ( r -  1)-lag smoothed estimate is also immediately available: 

p(St -r+l  ]O~t) 
K K K 

= E E " '"  E p(s t ,  S t _ l , .  • • ,S t -r+l l° lJ t )  • 
S I = I  s t _ l = l  S t - r + 2  =1  

(2.34) 

By carrying inferences about a larger number of lagged states through the 
recursion, we can increase the lag of the smoothed inference immediately 
available from the recursion without going to the full-sample smoother 
described above. 

The strategy is exactly the same for an r-th-order vector autoregression in n 
variables Yt with any subset of the parameters changing. We simply replace 



Estimation, inference and forecasting 

(2.24) with an expression such as 

p(yt+llSt+l,St . . . .  ,St_r+l, ~]t) 
• ",-i x - - n / 2 1 1 - ~  1 - 1 / 2  

= I.L1"r) laZst+l I 

243 

/ [  r ] 
x exp -½ (Yt+l--~[~St+I)--j~=IAj,s,(Yt+I--j--lXS,+~ j) 

,[ ]} x ~ s , + ,  (yt+, - ~ s , + , )  - aj,,,(y,+l_j - ~ , , ÷ , _ j )  . 
j = l  

(2.35/ 

It is also possible to incorporate discrete-valued indicators in the recursion as 
in Cosslett and Lee (1985) and Kaminsky (1988). Suppose that we have 
observations on a variable I, that is regarded as an imperfect indicator of the 
regime and otherwise uncorrelated with Yt, 

p( I ,= i l s t= j ,  ~ ) = q j  ~ fori, j =  l , 2 , . . . , K .  (2.36) 

For  a perfect indicator, q ,  = 1. Returning to the r = 1 example of Section 2.1, 
let -¢t --- ( I t , / t - l ,  • • • ,/1)'. Our  recursion will then calculate p(s t ]J~t, ~t), which 
is updated as follows: 

P(It+,, Yt+,, St+l, s, I L ,  °-¢Jt) 

= p(It+l IS.l). P(Yt+, I St+l, s,, y,). p(s,+ 1 I s , ) ' pe t  I~,, ~,) ,  
(2.37) 

(2.38) 

P(/t+a, Yt+I [5~t, ~t) 
K K 

= E E p(I,+l, Yt+l,St+l,St[t , ,~,),  
S t + l = l  st=l 

p(s,+~14+l,~,+l) = 2 P(It+~'Y'+a'S'+l'S'lt'°~t) 
~,=1 P(/t+a, Y,+x 14, ~t) 

(2.39) 

If we want to generalize the Markov chain assumption and allow the state 
transitions to be influenced by previous realizations of the series, we can 
replace p(s,+ 1 = j l s t = i ) = p q  in (2.10) with some more general parametric 
function p(st+ 1 Is,, ~I,) and the rest of the recursion would carry through 
unchanged. 
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3. Maximum likelihood estimation 

3.1. Numerical  maximizat ion o f  the l ikelihood funct ion 

In the previous section we regarded the vector of population parameters 
(A=  (~b, or 2, /Xl, /x2, Pll ,  P22)' for the AR(1) example) as known. Given 
observations on ~t-= (Yt, Y t - 1 , . . . ,  Yl)', we asked, where did the changes in 
regime seem to occur? Notice that in the course of answering this question we 
calculated the densities P(Y2, Yl; A) and p(yt+l I °~t; A) as a natural byproduct 
in equations (2.7) and (2.13). Thus with exactly the same set of calculations 
used to form the inferences p(st I ~/t; A) for t = 1, 2 , . . . ,  T and given A, we will 
also know the value of the likelihood for that value of A: 

T - 1  

P(~qT; A) =P(Y2, Yl; A) 1-[ P(Yt+I ] ~t; A) . (3.1) 
t = 2  

We can thus find the maximum likelihood estimate of A by maximizing (3.1) by 
numerical methods. 3 Where the procedure of Section 2.1 is followed, expres- 
sion (3.1) gives the exact likelihood function. When (2.27) is replaced with 
(2.31) as recommended in Section 2.3, the result is an approximation to the 
conditional likelihood function P(YT, YT-1, " • • , Yr+l l Yr, Y~-I, " "" ,  Yl; A). 

3.2. Analyt ic  characterization o f  the score 

Numerical optimization techniques typically make use of the gradient of (3.1). 
Usually we frame the problem as maximization of the log of (3.1), in which 
case the gradient is known as the score 

0 log P(~r ;  A) 
0A 

(3.2) 

This can be calculated numerically, by examining what happens to the log of 
(3.1) under small perturbations in A. Alternatively, it can be characterized 
analytically, as we now discuss. 

To do so, we introduce the notation OOr ~-(ST, S t - l , ' ' - ,  Sl)' to denote the 
full sample of realized states. This vector is not observed, and could take on 
K r possible values. We reassure the reader that this vector never needs to be 
calculated nor these K r probability assessed in order to implement the 
formulas in this section. Rather, the theoretical construction of this full vector 
is used solely to help facilitate the derivation of formulas that will subsequently 
emerge. In this spirit, let the operator S dO°r denote summation over all the K r 

3 See Judge et al. (1985) for an introduction to these techniques. 
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possible values of 5¢ r, for example, 

K K 

ST=I S T _ I = I  

K 

"'" E P(S T, S T - Z , ' ' . ,  S1 I O~T) = 1.  
S l = l  

(3.3) 

The sample likelihood could then be thought of as 

,) = f p(% I G; 0). p(G; o) d r, (3.4) 

where we have decomposed the parameter vector A '=  (0 ' ,p ' )  into those 
parameters that describe the density of y conditional on states (0) and those 
that describe the transition probabilities of states (p). For the AR(1) example, 
we would have 

T - 1  

p(aJrlSer;O)=p(y2, YllSz, S,;O ) ]~ p(y,+llSt+l,s,  y jO)  (3.5) 
t=2 

for P(Y2, Yz ]Sz, S~; O) given by (2.5), p(y,+~ [st+ ,, 6, Yt; 0) given by (2.11), 
and 0 = (~b, o -2, ~1,/x2)'. Also, 

T - 1  

P ( G ;  P) =P(Sl; P) I~ p(st+l ISt; P) ,  (3.6) 
t = l  

where for K states we could parameterize 

P = (Pn,  P12 , . . . ,  Pl,K-1, P21, P22 . . . .  , P2,K-1 . . . .  , PK,K-1)' (3.7) 

with PiK = 1 -  Pi~ -Pi2 . . . . .  Pi,K-~" Again we emphasize that we would not 
want to try to calculate the likelihood from the formula (3.4); the number of 
calculations described in (3.4) grows with K r whereas the number of calcula- 
tions for the algorithm described in the previous section grows linearly with T. 

From (3.4) the score with respect to 0 will take the form 

0 log P(~r;  A) 
O0 

1 f Op(~r I G ;  0) 
- p(°~r;/t) O0 P(~r;  P) d~r  

( 0 log P(~r  ]Sfr; 0) p(°~ r ]0°r; 0)" p(0°r; P) 
J 00 

= f O log P(~rO0 ]b°y; 0) p(b°r ] dber. (3.8) 

Although in principle (3.8) involves summation over all the possible values of 
b°r, in practice log p ( ~ r  15e r; 0) can be broken down into the sum of terms 
each of which just depends on a few elements of 0°T. For the AR(1) example 
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we find on differentiating (3.5) that 

0 log p(°~ r I~; 8) 
08 

Ologp(y2, Yl[S2, Sl;O) r~a Ologp(y,+llst+l,s,,yjO ) 
- + 

O_0 t= 2 0 8  

(3.9) 

in which case (3.8) becomes 

a log p(O~r; tt) 
oo 

= ~ 31°gP(Yz'yllS2'Sl;O) 
oo p(s2, s, 1%; *) 

s2=l s , = l  

T - 1  K + ]~ E al°gP(Y'+llS'+~'st'y';O) 
t=2  S t + l = l  st=l 08 

X p(St+l, St [ ~T; ~i,). (3.1o) 

Calculation of (3.10) requires only the smoothed probabilities p(s,+~, s, [ ~r;  1) 
for t = 1, 2 , . . . ,  T -  1 and simple differentiation of (2.5) and (2.11). 

Similarly, the score with respect to the transition probabilities in p is given 
by 

0 log p(°~r; ~) f a log p(SCr; p) 
Op = Op P(SCr I ~r; •) dSer (3.11) 

which from (3.6) becomes 

O log P(C~r; A) 
Op 

~ Ologp(sl;p) 
= s,=l 0p p(sl I%; a) 

r-1 x ~, 01ogp(s,+ l [s , ;p)  
+ E E  

t = l  s t + , = 1  st=l~ Op 
p(s,+ 1, st ] ~r; '~). (3.12) 
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Thus recalling (3.7), 

0 log P (~r ;  l )  

s : t = l  

T - - I  

+Z 
t = l  

T - 1  

- Z  
t = l  

log P ( S l ;  p) 
opij p(sl  [%; 4) 

pij~'p(s,+l =j ,  s, = i] o~; a) 

- 1  piK " p(s,+~ = K, s, = i] ~ ;  4) 

for i =  1 ,2  . . . .  ,K ,  ] = 1 , 2 , . . . , K - 1 .  

(3.13) 

3.3. Finding maximum likelihood estimates using the EM algorithm 

The EM algorithm of Dempster,  Laird and Rubin (1977) is very convenient for 
maximum likelihood estimation of parameters of these models.4 This algorithm 
begins with an arbitrary initial guess of the parameter vector (denoted A (°)) 
and then generates a sequence of improved guesses (A (1~,/~(2) , . . )  each one 
of which increases the value of the likelihood function, with the sequence 
converging to a local maximum of the likelihood function. 

Given an initial estimate A (°, the EM improved estimate A (t+l~ is the value 
that satisfies 

f O log p(°~r, 5er; A (~+1~) A(0) 
0A(l+l) P(b°r I ~Yr; dSer = 0.  (3.14) 

For example, consider an autoregression or switching regression in which all of 
the parameters save the variance change with the state: 

1 
P(Yt Is,, ~t-1; 0) - V ~ o -  exp{-(Yt  - x;flst)2/(2°-2)}' (3.15) 

where, say, x t = (1, Yt-1, Yt-2,. ' '  , Yt-r)'. Expression (3.14) is then particular- 
ly simple to implement if we use the likelihood conditional on the first r 
observations and treat the probability of the initial states as parameters to be 
estimated separately from p. In this case we have 

log p(°~v, 0°r; A) 

= - [ ( T -  r)/2] log 2~- - [ ( T -  r)/2] log o -2 
T T 

-- Z (Yt - -X; f l s t )2 / (20"2)  + Z logp(stlst-1;P). 
t = r + l  t = r + l  

(3.16) 

4 This discussion is based on Hamilton (1990). 
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In this case expression (3.14) produces 

T 
, . ( t + l ) ~ _  A(O) Z [ Y t -  x ,p~  lXt • p(st = i l % ;  . = o 

t= r+ l  
f o r i = l , 2 , . . . , K ,  

(3.17) 

T 
Z ~(/+1)1_ 1 [IJq 1 " p ( s t = j ,  s t _ l = i [ q Y r ; ) t  (0) 

t=r+ l  
T 

= Z [--( /+1)1-1 = i l % ;  ,~')) ( 3 . 1 9 )  t~'iK 1 " p(s~= K , s , _  1 
t=r+ l  

for i = l , 2 , . . . , K  and j = 1 , 2 , . . . , K - 1 .  After some rearranging (3.19) 
becomes 

T 

Z p ( s , = j , s ,  l= i [ °~ r ;X  <0) 
_(/+1)] t=r+ l  (3.20) 
/U/] j =  T 

~,  p(st_ , = i] ~tr; 1 (0) 
t=r+l 

for i, j =  l , 2 , .  . . , K .  
Thus to implement a step of the EM algorithm for this example, we use the 

initial estimate ~(o to form the smoothed probabilities p(s, ] °~r; ~(0). We then 

do an OLS regression of ~t , i~ -Y t .~ /p ( s t=i l °~r ; I t (O ) o n  x t , i ~ x t  ° 

~/pG=il%;a(°). The resulting OLS coefficient estimate /3} l+1) satisfies 
(3.17), and performing i = 1 , 2 , . . .  ,K  such OLS regressions generates 
13 (l+1) a (t+l) t~(l+1) The average squared residual across these K regres- 1 ~1~2 ~ ' ' ' ~ / ~ K  " 
sions gives the estimate [o-(l+1)] 2 satisfying (3.18). Our new estimate of the 

_(1+1) transition probability /'q is from (3.20) the imputed fraction of times that 
state i was followed by state j. Thus by zig-zagging back and forth between 
calculating smoothed probabilities and OLS regressions, we can find the 
maximum likelihood estimates of ~. For other examples of using the EM 
algorithm, see Hamilton (1990). 

EM estimation will produce the identical value ~ as numerical maximization 
of (3.1). Which algorithm we choose is simply a matter of convenience. The 
EM algorithm has the advantage of being robust with respect to poorly chosen 
starting values and convex portions of the likelihood surface. Phillips (1989) 
argued that the EM algorithm could be well-approximated by using m-lag 
smoothed probabilities p(s,l  °~+m) in place of the full-sample smoothed 
inference p(s~ ] ~r ) .  

T K 

( T -  r)[o'('+a)] 2 = ~ ~ (y~ - x;13}~+a~)Z" p(s~ = [1 ~tr; ~(0) , 
t=r+ l  i=1 

(3.18/ 
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3.4. Specification testing 

Many useful tests of specification can be constructed from the conditional 
score of the t-th observation, defined as 

0 log P(Yt I ~,-a;  ,t) 
ht(tt) =- O)t (3.21) 

This is related to the full-sample score by 

T 
0 log P(~/r; A) = ~ h,(A) (3.22) 

O~ t= l  

For example, for the switching-regression specification (3.15) we have 

0 log P(Yt [ ~Yt 1; ~) 

1 
- 2 [ y , - x ; ~ i ] x , ' p ( s , = i [ ~ ; ' ~ )  

O" 

t - 1  

1 2 [Y~.-x'AS~]x~.'[P(s,=il~dt;30-P(S,~ +--7  
O r 7=r+1 

= i [  ~ - 1 ;  A)]. 

(3.23) 

The score for date t is a simple function of how the datum of date t causes us to 
change our inference about s T for r ~< t. 

One use of the conditional scores is to form an estimate of the information 
matrix as in Berndt  et al. (1974), 

~1 = -~ [ht(a)l[ht(~)]' , (3.24) 
t= l  

which could be compared with an estimate based on numerical second 
derivatives, 

- 1  02 log P (~ r ;  A) 
"~2 = T 0/~ 0A' ' (3.25) 

and used to infer the asymptotic variance-covariance matrix of the maximum 
likelihood estimate h, 

i = N ( ~ . o ,  ( 1 / T ) - , ~ - I ) .  (3.26) 

All of the asymptotic tests proposed in this subsection assume regularity 
conditions are satisfied, which to our knowledge have not yet been formally 
verified for this class of models. Certainly at corner solutions (e.g., /)i j  = 0 as 
may well occur in practice), the asymptotic distributions will not be correct,  
and the best recourse is probably to impose the values of the corner parameters 
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a priori and calculate the score with respect to the remaining free parameters 
as in Hassett (1990). 

The scores can also be used for Lagrange multiplier tests. 5 These are based 
on the principle that, when evaluated at the true value A0, the scores should 
have mean zero: 

E(ht(A0) ) = 0.  (3.27) 

If all of the elements of A are estimated by maximum likelihood, the score 
evaluated at i will have sample mean zero by construction, 

T 

0 log P (~ r ;  A) = ~ h,()t) = 0 .  (3.28) 
3A x=X t=l 

If instead a subset of m elements of A are imposed a priori and we find the 
maximum likelihood estimate A subject to this constraint, then 

T'[T~= h,(A)]'[l~t[ht(ft)][ht(A)]' ] ~[ l  rt~=lht(St)]'-~x2(m). 

(3.29) 

The last m elements of A might correspond to variables or complications that 
have been left out of the model, in which case A would consist of a vector of m 
zeros appended after the maximum likelihood estimate of the parameter  vector 
for the simpler model. The score he( i  ) is often easy to find. For  example, 
suppose some variables z~ may have been omitted from the switching regres- 
sion model (3.15), 

1 
P(Y~ I s. ~,-i, zt; O) - V'~cr e x p { -  (Yt - x'd3s, - Z ' , 8 ) 2 / ( Z o r 2 ) }  • 

(3.30) 

We can estimate the parameters under the null that 8 = 0 in the manner  
described earlier. The score with respect to ~ (evaluated at ~ = 0) turns out to 
be 

O log P ( ~ r  [ G ;  A) 

03 
T K 

= ~ ~ [Yt-x't~}'+l)]zt " p(st = i l ~ r ;  ' V ' ) )  • (3.31) 
t - r + l  i = 1  

Thus the score is found by taking the average product of the omitted variables 
z, with the residual under regime i, [yt-x't~} ~+1~] and multiplying by the 
probability that date t's observation came from regime i. By comparing this 
average product with its square, we can test whether it is far enough from zero 

5 For an introduction to these tests see Breusch and Pagan (1980), Engle (1984), or Godfrey 
(1988). 
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to warrant rejection of the null hypothesis and cause us to conclude that the 
model is misspecified. Similar Lagrange multiplier tests for omitted autocorre- 
lation or conditional heteroskedasticity are also easy to calculate from the 
smoothed probabilities of a model estimated without any of these features (see 
Hamilton, 1991b). 

The conditional scores can also be used to implement a specification test 
suggested by White (1987). If the model is correctly specified, the scores should 
be serially uncorrelated. Tests based on this principle can be used to detect 
omitted autocorrelation, conditional heteroskedasticity, or departures from the 
assumed Markovian dynamics of state variable (again see Hamilton, 1991b). 

One of the most basic hypotheses that we would like to test concerns the 
number of states; for example, we would like to test the null hypothesis of one 
state against the alternative that there are two states. We could represent this 
hypothesis in the AR(1) example (1.3) as the claim that ~1 = /t£2" Unfor- 
tunately, under this null hypothesis the parameters Pll and P22 are unidentified, 
and the information matrix is singular under the null. The standard regularity 
conditions fail to apply. Davies (1977) and Hansen (1991) developed the 
appropriate principles for testing in such situations, though these techniques 
are computationally demanding. Cecchetti, Lam and Mark (1990b) used Monte 
Carlo methods to analyze the distribution of the likelihood ratio statistic for a 
regime-switching model. Alternatively, if the standard deviation of et in (1.3) is 
also a functidn of the state 0-~, then the parameters Pll and P22 could still be 
identified under the null hypothesis that /x 1 =/x 2 through the time-dependent 
structure of the variance. For this view, we could test the null that /xa =/x 2 
without running into this problem, as in Engel and Hamilton (1990). Other 
tests are discussed in Hamilton (1990) and Cecchetti, Lain and Mark (1990b). 

3.5. Bayesian priors 

There is no natural conjugate prior for this class of models. One very simple 
approach is to add the log of a prior distribution to the sample log likelihood 
(3.1). Maximizing the resulting function gives the posterior mode. 

For example, consider univariate data drawn from one of K normal 
distributions, 

y, lst=k~N(/xk, o -2 ) f o r k = l , 2 , . . . , K ,  (3.32) 

with s t following a K-state Markov chain. Suppose we have independent 
normal-gamma priors for the parameters/x~ and 0-~-2, 

2 /zk 1°-2 ~ N(m~, 0-Jr,) (3.33) 

-2 F(%, ~k). (3.34) 0-k 
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Then we might choose/z~ and o -2 so as to maximize 

K K 

log p(°~r; A) - Z (ak/2) log o-2 _ ~ bj(2o-Zk) 
k = l  k = l  

K 

- mk) /(2o-~), (3.35) 
k - I  

where a~ = 2 % -  1, b k = 2/3k, and c k = ~k. The resulting Bayesian 
satisfy 

T 

c~m~ + 2 p(st -- k [ ~ ;  A)y t 
t = l  

/'£k = T ' (3.36) 

c~ + E p(s, = k l ~T; A) 
t= l  

estimates 

T 

b k + ~ p(s, : k I a J r ;  A)(y t - / z k )  2 + c~(m k - /x~)  2 
2 ,=1 (3.37) o - k - -  T 

ak + E p(s, = k l ~ ; X) 
t = l  

These estimates can be found from the same EM algorithm described for 
equations (3.17)-(3.20).  If  a k = c k, we are basically treating the prior  as if 
equivalent to a k observations drawn from regime k with sample mean given by 
m k and sample variance given by bk/a ~. See Hamil ton (1991a) for more  details. 

4. Forecasting and rational-expectations econometrics 

4.1. Forecasting 

An attractive feature of Markov chains is the simplicity of the forecasts they 
generate.  Collect the transition probabilities in a (K × K)  matrix: 

I - e l l  P12 • " " Plr-] 
p___ P21 P22 " ' "  P2.K (4.1) 

." : • • 

_PKa PK2 " "  PKKd 

The row i, column j element of P gives the probabili ty that the process will be 
in state j at date t + 1 given that it currently is in state i. The probabili ty that 
the process will be in state j at date t + m given that it is currently in state i is 
given by the row i, column j element of pro. 

If  we summarize our current inference about  the state with a (1 × K)  vector  
a'~, 

a', ~ [p(s t = i I ~,) p(s, = 21 ~ )  "-" p(s, = K I ~ , ) ] ,  (4.2) 
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then the forecast probabilities for the states at date t + m are given by 

[p(s,+ m = l l ~ )  p(st+ m=2  I~,) " .  p(s,+ m=K[Nt)]=a ' t  Pm. 
(4.3) 

For a K = 2 state system, this has the particularly simple form 

p(st+ m = 1 ] °~t) = 7rl + ( -1  +PH +P22)m'[p(st = l l~t) -- 7r~], (4.4) 

where 7q = (1 -p22)/[(1 -P11) + (1 -P22)]. 
To forecast the value of Yt+m, we first calculate a forecast conditional on 

~ (s~,s ,_l , . . .  ,sO', and then use the filter to form an optimal inference 
about ~ ,  

E(yt+m ] ~t) = f E(Yt+m I °2/t, 5et)P(~ ] ag,) d ~ .  (4.5) 

For example, for the AR(1) process written as in (1.5), we have 

E(y,+ m 1~,  ~ )  = E(/xs .... I°~t, ~ )  + E(zt+ m [ ~ ,  ~ ) .  (4.6) 

But from (4.3), 

E(~st+ m I %  : [81(s,) " 

• p  7mFt  7 Fpl l  P12 " " 

(4.7) 
LPl l  PK2 " '"  PK~J L;KJ 

where 6i(st)= 1 if s t = i and zero otherwise. Similarly, since z t =Y,- /xs ,  we 
have for ~ft =- (zt, Z,_l, • • • , zl) '  that 

E(Zt+m I °~t, ~ t )  : E(Zt+m I ~ t )  : 6 mZt ---- if9 m ( y  t - -  I~s,)  . (4.8) 

Substituting (4.6)-(4.8) into (4.5) we find 

E(yt+., [ °3=I) : a'/P~l ~ + 4~m(yt -- a'd~),  (4.9) 

where/x  ~ (/zl, ~LL2, . . . , / " ~ K ) t "  The expected present value of the series is given 
by 

/3mE(Yt+,,, ] ~,) = a;[l - t i p ] - 1  + [1/(1 - 4~/3)1[y, - a ; /~] .  
m=0 

(4.10) 

For more details on forecasting see Tj0stheim (1986) and Hamilton (1988, 
1989). 
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4.2. Ra t iona l -expec ta t ions  analysis  

Many theories in economics and finance assume that people's forecasts of one 
series have an effect on another series. It is often of interest to estimate such 
models under the hypothesis of rational expectations, which is the view that 
people use all the information available to them in the statistically optimal way. 

Consider the following example, taken from Engel and Hamilton (1990).Let 
e t denote the log of the number of dollars required to purchase a German 
mark. Let  i t denote the interest rate (in dollars) earned from a U.S. 
investment, and "*t t denote the interest rate (in marks) available on a German 
investment. Then a popular model of the exchange rate holds that 

i t = i* + E[(et+ 1 - et) I ~ ]  + u t .  (4.11) 

Here  [2 t denotes information available to traders in the foreign exchange 
market  at date t and u t - N ( 0 ,  o-2,) is a disturbance term that reflects measure- 
ment and specification error. Equation (4.11) claims that if traders believe that 
the value of the mark is going to rise (E[(e~+l - et) ] Or] > 0), then they would 
be willing to invest in the German asset even if it offers a lower rate of return 
than the U.S. asset (i* < it). This is because by investing in the German asset, 
they will also enjoy a capital gain when the mark appreciates against the dollar. 

The Markov-switching models are very convenient for such rational-expecta- 
tions applications. We can make either of two assumptions about g2, the 
information that people have available. One assumption is that the people in 
the economy, unlike the econometrician, know the true value of s t at date t. 
The second assumption is that people in the economy must form an inference 
about s t in the same manner as the econometrician. We discuss each of these 
specifications in turn. 

4.3. The  case w h e n  p e o p l e  k n o w  the true value o f  s t 

Suppose that the exchange rate itself follows a two-state regime-switching 
process, 

e t - et_ 1 = tXst + e t ,  (4.12) 

with e t -- N(0, cry). If foreign exchange speculators know the true value of s t at 
date t, then from (4.7) they would forecast 

E[(et+ , - e,)Is,  = 1] = ix~v H + tx2p,2 (4.13) 

whenever the current state is 1, whereas they would forecast 

E[(et+ 1 - et) ls t = 2] = ix,pzl + IXzP22 (4.14) 

whenever the current state is 2. Substituting (4.13) and (4.14) into (4.11), we 
find 

"* + u t ,  (4.15) i t - t t = C~s, 
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where  

a l  = /3"1/)11 -[- /~2P12 ' (4.16) 

a 2 = / .glP21 -[- /,z2P22 . (4.17) 

Equa t ions  (4.12) and (4.15) thus imply  tha t  the vec tor  [(e t - e , _ l ) ( i  t - i ~ ) ] '  

obeys  the  fol lowing regime-switching process:  

_ _ . ,  , - - N  , w h e n s  t = 1 ,  (4.18) 
(it i t )  J o-eu o- u 

(i t - i * )  J \ k a z J  ' o-,u o-, 

T h e  l ikel ihood for  the vec tor  [(e t - e ,_ l ) ( i  t - i*)] '  thus can be  eva lua ted  in the  
m a n n e r  descr ibed  in Sect ion 3.1, and max imized  while imposing  the  ra t ional-  
expec ta t ions  restr ict ions (4 .16) - (4 .17) .  For  m o r e  on this app roach ,  see Engel  
and H a m i l t o n  (1990). 

4.4. The  case w h e n  p e o p l e  do  n o t  k n o w  the true value o f  s t 

Alte rna t ive ly ,  suppose  tha t  specula tors '  in fo rmat ion  consists only of  observa-  
t ions on exchange  rates:  

a ,  = (e t - et_a, et_ 1 - et_ 2 . . . .  } = °~ t . (4.20) 

In  this case their  forecas t  will be  given by  

E[(et+ ~ - e,) [ a , ]  = % . p ( s ,  = 11 ~t)  + ~2 "p(s, = 21 o~,) (4.21) 

for  a I and % given by  (4.16) and (4.17) and p ( s  t ]@)  the  o u t c o m e  of  the filter 
descr ibed  in Sect ion 2.1. I f  o-u~ = 0 we then  have  f rom (4.11) tha t  

1 
P ( i t -  i* ] ~ ' )  V~-~wo-u e x p { - [ i t  - i* - a l  "P(S, = 1[ °~,) 

- % .  p ( s  t = 2[ 2 2 ag,)] /(2o-u)} " (4.22) 

N o t e  well the  no ta t ion  - p ( s  t = 1 ] @) is not  a funct ion of  the state,  but  ra ther  is 
a funct ion of cur ren t  and lagged exchange  rates.  I f  we have  gone  th rough  the 
recurs ion  for  fo rming  inference  descr ibed in Sect ion 2.1, we have  calculated 
this function.  We also saw how to calculate p ( e  t - et_l[  q/t- l)  th rough  this s ame  
recursion.  The  p roduc t  of  p ( e  t - e , _ 1 [ q l t _ i )  with (4.22) then  gives the jo int  
l ikel ihood p[(i~ - i*) ,  (e t - et_l)  ] ~t-1] ,  the sum of  whose  logs for  all t is then  to 
be  max imized  with respec t  to p/j, ~ ,  o -2, and o -2. For  m o r e  details see 
H a m i l t o n  (1988). 

O t h e r  ra t iona l -expec ta t ions  appl icat ions of  t ime-ser ies  switching mode l s  
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Fig. 5. Panel A: Probability that economy is in falling GNP state. Panel B: Rate of growth of U.S. 
real GNP, quarterly 1953-1984. Source: Hamilton (1989). 

include Cecchetti, Lam and Mark (1990a,b), Kaminsky (1988), and Turner ,  
Startz and Nelson (1989). 

5. Applications 

This section reviews some of the results obtained from fitting such regime- 
switching models to various economic and financial time series. 

The bottom panel of Figure 5 plots the quarterly percent change in U.S. real 
GNP from 1953 to 1984. Hamilton (1989) fit a fourth-order autoregression with 
intercept switching between two states as in (2.21) but with constant variance 
to these data, resulting in the following maximum likelihood estimates: 

(1 - 0.014L + 0 . 0 5 8 L  2 -t- 0.247L 3 + 0.213L4)(yt - iXs,  ) = e t , 

e t -- N(0, 0.591),  

/x I = 1.164, /~e = - 0 . 3 5 8 ,  

Pl1  =- 0 . 9 0 5  , P22 = 0.755. (5.1) 
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Thus state 1 is typically characterized by rising GNP and state 2 by falling 
GNP, with state 1 expected to persist for 1/(1 -P11) = 11 quarters on average 
and state 2 for 1/ (1-P22)  = 4 quarters. 

The top panel of Figure 5 plots the inference p( s  t = 2 1 0~,; ~) associated with 
these maximum likelihood estimates. Evidently the falling GNP state was 
entered seven times over this sample period. Also plotted as vertical lines in 
Figure 5 are the starting and ending dates of economic recessions as de- 
termined by the National Bureau of Economic Research (NBER). These 
determinations are based on a good deal of evidence besides the behavior of 
GNP, and these values were not used in the econometric estimation. It is 
interesting that the atheoretical regime-switching approach comes up with 
essentially the same dating as NBER. This provides support for viewing 
economic recessions as episodes with clearly different dynamic behavior from 
expansions. 

Other researchers have extended this characterization of output fluctuations. 
If we let 29t denote the log of the level of GNP, the growth rates in Figure 5 
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represent Yt = (1 - L))? r The specification (5.1) thus assumed that 

3 ~ t = y 0 + ~  IX, + 2t 
7-=1 

with 

(5.2) 

~, : Z z, (5.3) 
~=1 

and z, a stationary Gaussian AR(p)  process; that is, 2 t is nonstationary with a 
unit root. Lam (1991) generalized this specification to allow i t to be stationary. 
Thus in Lam's model Yt is stationary around an occasionally shifting trend. 
Lam's estimates again identify these shifts as occurring during severe reces- 
sions. 

Phillips (1991) fit a bivariate switching model to growth rates in different 
countries, to see how recessions in one country interacted with those in 
another. Hassett (1990) studied real wages and output in a bivariate system to 
study the effects of the business cycle on wages. Cecchetti, Lain and Mark 
(1990b) found regime switches associated with severe economic downturns in 
century-long studies of consumption, output, and dividends. 

In other samples, the switch in regime can be associated with one extreme 
episode. Figure 6 reports the results of estimating process (2.21) with K = 2 to 
the quarterly nominal interest rate on U.S. treasury bills. The bottom panel 
gives the raw data (quoted here at a quarterly rate), while the top panel plots 
p ( s  t = 21 ~t). The second regime is characterized by much higher levels and 
volatility of interest rates. The vertical lines are drawn at the dates 1979:IV and 
1982:IV, during which episode the U.S. Federal Reserve experimented with a 
policy of permitting higher interest rates and greater variability in an effort to 
curb the rate of monetary growth. Again, the institutional knowledge of these 
dates was not used in the estimation procedure, though it is very interesting 
that the atheoretical inference matches so closely with the known historical 
dates of the policy change. Gareia and Perron (1989) have explored a three- 
state description of interest rates adjusted for inflation. 

Other applications of this approach include studies of financial panics (Pagan 
and Schwert, 1990; Schwert, 1989, 1990), corporate mergers (Town, 1990, and 
exchange rates (Engel and Hamilton, 1990; Kaminsky, 1988). 
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Structural Time Series Models 

A n d r e w  C. H a r v e y  and  Ne i l  S h e p h a r d  

1. Introduction 

A structural time series model is one which is set up in terms of components 
which have a direct interpretation. Thus, for example, we may consider the 
classical decomposition in which a series is seen as the sum of trend, seasonal 
and irregular components.  A model could be formulated as a regression with 
explanatory variables consisting of a time trend and a set of seasonal dummies. 
Typically, this would be inadequate. The necessary flexibility may be achieved 
by letting the regression coefficients change over time. A similar t reatment may 
be accorded to other components such as cycles. The principal univariate 
structural time series models are therefore nothing more than regression models 
in which the explanatory variables are functions of  time and the parameters are 
time-varying. Given this interpretation, the addition of observable explanatory 
variables is a natural extension as is the construction of multivariate models. 
Fur thermore,  the use of a regression framework opens the way to a unified 
model selection methodology for econometric and time series models. 

The key to handling structural time series models is the state space form with 
the state of the system representing the various unobserved components such 
as trends and seasonals. The estimate of the unobservable state can be updated 
by means of a filtering procedure as new observations become available. 
Predictions are made by extrapolating these estimated components into the 
future,  while smoothing algorithms give the best estimate of the state at any 
point within the sample. A structural model can therefore not only provide 
forecasts, but can also, through estimates of the components,  present a set of 
stylised facts; see the discussion in Harvey and Jaeger (1991). 

A thorough discussion of the methodological and technical ideas underlying 
structural time series models is contained in the monographs by Harvey (1989) 
and West and Harrison (1989), the latter adopting a Bayesian perspective. 
Since then there have been a number of technical developments and applica- 
tions to new situations. One of the purposes of the present article is to describe 
these  new results. 

261 
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1.1. Statistical formulation 

A structural time series model for quarterly observations might consist of 
trend, cycle, seasonal and irregular components. Thus 

Y t = l X t + ~ + % + e t ,  t = l , . . . , T ,  (1.1) 

where/x, is the trend, 0, is the cycle, y, is the seasonal and e~ is the irregular. 
All four components are stochastic and the disturbances driving them are 
mutually uncorrelated. The trend, seasonal and cycle are all derived from 
deterministic functions of time, and reduce to these functions as limiting cases. 
The irregular is white noise. 

The deterministic linear trend is 

/z t = a + f i t .  (1.2) 

Since /,, may be obtained recursively from 

& =/x,_, + f i ,  (1.3) 

with ix 0 = a,  continuity may be preserved by introducing stochastic terms as 
follows: 

]£t = ~Lt-1 + /3t-1  + Tit ,  (1.4a) 

/3, =/3,_ 1 + ~,, (1.4b) 

where ~?, and ~, are mutually uncorrelated white noise disturbances with zero 
means and variances, o-27 and o-} respectively. The effect of ~?t is to allow the 
level of the trend to shift up and down, while ~ allows the slope to change. The 
larger the variances, the greater the stochastic movements in the trend. If 

2 2 or 7 = o-~ = 0, (1.4) collapses to (1:2) showing that the deterministic trend is a 
limiting case. 

Let $t be a cyclical function of time with frequency ac, which is measured in 
radians. The period of the cycle, which is the time taken to go through its 
complete sequence of values, is 2"rr/h c. A cycle can be expressed as a mixture of 
sine and cosine waves, depending on two parameters, a and/3. Thus 

~t = a cos Act + 13 sin ) ,J ,  (1.5) 

where (a2+/32) 1/2 is the amplitude and t an - l ( f i / a )  is the phase. Like the 
linear trend, the cycle can be built up recursively, leading to the stochastic 
model 

( ~t,'~ ( cos he sin Ac)(O,,-~'~ + ( ; ! )  (1.6) 
$, ] = P \ - s i n  h c cos h c ~k~.gt_l,] 

where K, and r,* are mutually uncorrelated with a common variance, 0 -2, and p 
is a damping factor, such that 0 ~< p ~< 1. The model is stationary if p is strictly 



less than one, and if hc is equal to 0 or ~r it reduces to a first-order 
autoregressive process. 

A model  of deterministic seasonality has the seasonal effects summing to 
zero over  a year. The  seasonal effects can be allowed to change over  t ime by 
letting their sum over  the previous year be equal to a random disturbance term 
wt, with mean  zero and variance o -2. Thus, if s is the number  of season in the 
year,  

An alternative way of allowing seasonal dummy variables to change over  
t ime is to suppose that each season evolves as a random walk but that,  at any 
particular point in time, the seasonal components ,  and hence the disturbances, 
sum to zero. This model  was introduced by Harr ison and Stevens (1976, p. 
217-218).  

A seasonal pat tern can also be modelled by a set of  tr igonometric terms at 
the seasonal frequencies, hj = 27rj/s, j = 1 . . . . .  [s/2], where Is/2] is s /2  if s is 
even and (s - 1)/2 if s is odd. The seasonal effect at t ime t is then 

When s is even, the sine term disappears for j = s /2  and so the number  of 
t r igonometric parameters ,  the yj and y j ,  is always (s - 1)/2,  which is the same 
as the number  of coefficients in the seasonal dummy formulation. A seasonal 
pat tern based on (1.8) is the sum of Is/2] cyclical components ,  each with p = 1, 
and it may be allowed to evolve over  t ime in exactly the same way as a cycle 
was allowed to move.  The model  is 

where ~% and o~j,, j = 1 , . . . ,  [s/2], are zero mean white noise processes which 
are uncorrelated with each other with a common variance o-2. As in the cycles 
(1.6) Y[t appears  as a mat ter  of  construction, and its interpretation is not 
particularly important .  Note that when s is even, the component  at j = s /2  
collapses to 

If  the disturbances in the model  are assumed to be normally distributed, the 
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h y p e r p a r a m e t e r s  (o-~, 0"25, o ' i ,  o "2, p, h c, o-~) may be estimated by maximum 
likelihood. This may be done in the time domain using the Kalman filter as 
described in Section 2, or in the frequency domain as described in Harvey 
(1989, Chapter 4). Harvey and Peters (1990) present simulation evidence on 
the performance of different estimators. Once the hyperparameters have been 
estimated, the state space form may be used to make predictions and construct 
estimators of the unobserved components. 

EXAMPLE. A model of the form (1.1), but without the seasonal component, 
was fitted to quarterly, seasonally adjusted data on US GNP from 1947Q1 to 
1988Q2. The estimated variances of ~Tt, ~t, Kt, and e t were 0, 0.0015, 0.0664 and 
0 respectively, while the estimate of p was 0.92. The estimate of h c was 0.30, 
corresponding to a period of 20.82 quarters. Thus the length of business cycles 
is roughly five years. 

A summary of the main structural models and their properties may be found 
in Table 1. Structural time series models which are linear and time invariant, 
all have a corresponding r e d u c e d  f o r m  autoregressive integrated moving 
average (ARIMA) representation which is equivalent in the sense that it will 
give identical forecasts to the structural form. For example in the local level 
model, 

y t - ~ t  W s t ,  

#, = ~,-1 +~/,, (1.12) 

where e t and ~7, are mutually uncorrelated white noise disturbances, taking first 
differences yields 

Ay,  = 7, + et - et-1 , (1.13) 

which in view of its autocorrelation structure is equivalent to an MA(1) process 
with a nonpositive autocorrelation at lag one. Thus Yt is ARIMA(0, 1, 1). By 
equating autocorrelations at lag one it is possible to derive the relationship 
between the moving average parameter and q, the ratio of the variance of r/, to 
that of e,. In more complex models, there may not be a simple correspondence 
between the structural and reduced form parameters. For example in (1.1), 
AAsy  , is ARMA(2, s + 3), where A s is the seasonal difference operator. Note 
that the terminology of reduced and structural form is used in a parallel fashion 
to the way it is used in econometrics, except that in structural time series 
models the restrictions come not from economic theory, but from a desire to 
ensure that the forecasts reflect features such as cycles and seasonals which are 
felt to be present in the data. 

In addition to the main structural models found in Table 1 many more 
structural models may be constructed. Additional components may be intro- 
duced and the components defined above may be modified. For example, 
quadratic trends may replace linear ones, and the irregular component may be 
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formulated so as to reflect the sampling scheme used to collect the data. If 
observations are collected on a daily basis, a slowly changing day of the week 
effect may be incorporated in the model, while for hourly observations an 
intra-day pattern may be modelled in a similar way to seasorlality. A more 
parsimonious way of modelling an intra-day pattern, based on time-varying 
splines, is proposed in Harvey and Koopman (1993). 

1.2. Model selection 

The most difficult aspect of working with time series data is model selection. 
The attraction of the structural framework is that it enables the researcher to 
formulate, at the outset, a model which is explicitly designed to pick up the 
salient characteristics of the data. Once the model has been estimated, it 
suitability can be assessed, not only by carrying out diagnostic tests, but also by 
checking whether the estimated components are consistent with any prior 
knowledge which might be available. Thus if a cyclical component is used to 
model the trade cycle, a knowledge of the economic history of the period 
should enable one to judge whether the estimated parameters are reasonable. 
This is in the same spirit as assessing the plausibility of a regression model by 
reference to the sign and magnitude of its estimated coefficients. 

Classical time series analysis is based on the theory of stationary stochastic 
processes, and this is the starting point for conventional time series model 
building. Nonstationarity is handled by differencing, leading to the ARIMA 
class of models. The fact that the simpler structural time series models can be 
made stationary by differencing provides an important link with classical time 
series analysis. However, the analysis of series which are thought to be 
stationary does not play a fundamental role in structural modelling methodol- 
ogy. Few economic and social time series are stationary and there is no 
overwhelming reason to suppose that they can necessarily be made stationary 
by differencing, which is the assumption underling the ARIMA methodology 
of Box and Jenkins (1976). If a univariate structural model fails to give a good 
fit to a set of data, other univariate models may be considered, but there will 
be an increased willingness to look at more radical alternatives. For example, a 
search for outliers might be initiated or it may be necessary to concede that a 
structurally stable model can only be obtained by conditioning on an observed 
explanatory variable. 

Introducing explanatory variables into a model requires access to a larger 
information set. Some prior knowledge of which variables should potentially 
enter into the model is necessary, and data on these variables is needed. In a 
structural time series model the explanatory variables enter into the model side 
by side with the unobserved components. In the absence of these unobserved 
components the model reverts to a regression, and this perhaps makes it clear 
as to why the model selection methodology which has been developed for 
dynamic regression is appropriate in the wider context with which we are 
concerned. Distributed lags can be fitted in much the same way as in 
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econometric  modelling, and even ideas such as the error-correction mechanism 
can be employed. The inclusion of the unobserved time series components 
does not affect the model selection methodology to be applied to the 
explanatory variables in any fundamental way. What it does is to add an extra 
dimension to the interpretation and specification of certain aspects of the 
dynamics. For example, it provides a key insight into the vexed question of 
whether  to work with the variables in levels or first differences, and solves the 
problem by setting up a general framework within which the two formulations 
emerge as special cases. 

The fact that structural time series models are set up in terms of components 
which have a direct interpretation means that it is possible to employ a model 
selection methodology which is similar to that proposed in the econometrics 
literature by writers such as Hendry and Richard (1983). Thus one can adopt 
the following criteria for a good model: parsimony, data coherence,  consis- 
tency with prior knowledge, data admissibility, structural stability and en- 
compassing. 

2. Linear state space models and the Kaiman filter 

The linear state space form has been demonstrated to an extremely powerful 
tool in handling all linear and many classes of nonlinear time series models; see 
Harvey (1989, Chapters 3 and 4). In this section we introduce the state space 
form and the associated Kalman filter. We show how the filter can be used to 
deliver the likelihood. Recent  work on smoothing is also discussed. 

2.1.  T h e  l inear state space  f o r m  

Suppose a multivariate time series Yt possesses N elements. This series is 
related to a p x 1 vector a,, which labelled the state, via the measurement  
equation 

y t = Z t a t + X t f l + e t ,  t = l , . . . , T .  (2.1) 

Here  Z, and X t are nonstochastic matrices of dimensions N × p and N × k 
respectively, /3 is a fixed k-dimensional vector and e t is a zero mean, N x 1 
vector of white noise, with variance H r 

The measurement  equation is reminiscent of a classical regression model,  
with the state vector representing some of the regression coefficients. How- 
ever, in the state space form, the state vector is allowed to evolve over time. 
This is achieved by introducing a transition equation, which is given by 

a t = T t a t _  1 "[- Wt/3 q- Rt'ot , t = 1 . . . .  , T ,  (2.2) 

where Tt, rzV t and R t are fixed matrices of size (p  × p) ,  (p  × k) and (p  × g) 
respectively, ~Tt is a zero mean and g-dimensional vector of white noise, with 
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variance Qc In the literature 7/t and e s have always been assumed to be 
uncorrelated for a l l s  ¢ t. In this paper  we will also assume that ~/t and e t are 
uncorrelated,  although Anderson and Moore  (1979) and more  recently De  
Jong (1991) and Koopman  (1993) relax this assumption. 

The inclusion of the R t matrix is somewhat  arbitrary, for the disturbance 
te rm can always be redefined to have a variance R t Q t R  ~. However ,  the 
transition equation above is often regarded as being more  natural.  The 
transition equation involves the state at t ime zero and so to complete  the state 
space form we need to tie down its behaviour.  We assume that a 0 has a mean  a0 
and variance P0. Further,  a 0 is assumed to be uncorrelated with the noise in 
the transition and measurement  equations: This completed state space form is 
said to be time invariant if Zt,  X~, Ht,  W~, R t and Qt do not change over  time. 

To illustrate these general points we will put the univariate structural model  
(1.1) of trends, seasonals and cycles discussed in Section 1 into t ime invariant 
state space form by writing a t = (ixt, ~t, 6~, 6t-1, " "  " ' ~ t - s + 2 '  f l i t ,  fll t*),' where 

y ~ = ( 1  0 1 0 0 . . .  0 1 0 ) a t + e t ,  (2.3a) 

"1 1 0 0 0 . - .  0 0 0 0 

0 1 0 0 0 . - -  0 0 0 0 
0 0 - 1  - 1  - 1  . . . .  1 - 1  0 0 

0 0 1 0 0 . - .  0 0 0 0 
a t =  0 0 0 1 0 "'" 0 0 0 0 at_ 1 

: : : : : : : : : 

0 0 0 0 0 . - .  1 0 0 0 
0 0 0 0 0 - . .  0 0 p c o s A  c p s inh¢  

,0 0 0 0 0 - . .  0 0 - p s i n A ¢  p c o s , ~ . ,  

¢" ,r/t 

o~ t 
0 

+ 0 (2.3b) 

0 

• t  

~ .K t 

2.2.  The  K a l m a n  fil ter 

In most  structural t ime series models the individual elements of a t are 
unobservable,  either because of the presence of some masking irregular term s, 
or because of the way a t is constructed. However ,  the observations do carry 
some information which can be harnessed to provide estimates of the unknow- 
able a t. This estimation can be carried out using a variety of information sets. 
We will write Ys to denote this information, which will be composed of all the 
observations recorded up to t ime s and our initial knowledge of ~0. The two 
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most common forms of estimation are smoothing, where we estimate a t using 
Yr, and filtering, where we estimate using only Yt- We will focus on various 
aspects of smoothing in Section 2.4, but here we look at filtering. 

Filtering allows the tracking of the state using contemporaneously available 
information. The optimal, that is minimum mean square error, filter is given by 
the mean of the conditional density of at, given Y,, which is written as atlY ~. 
The Kalman filter delivers this quantity if the observations are Gaussian. If 
they are non-Gaussian the Kalman filter provides the optimal estimator 
amongst the class of linear estimators. Here we develop the filter under 
Gaussianity; see Duncan and Horn (1972) for an alternative derivation. 

We start at time zero with the knowledge that a 0 - N(a0, P0)- If we combine 
the transition and measurement equations with this prior and write Y0 to 
express the information in it, then 

( {  alt0 ~ ( Pll0 P l l0Z;~  (2.4) 
(;:) ]g°~g ~Z la l l o+  X l f l / '  ~Z1rl]o El ] / '  

where 

Pl[0 = TIPoT[ + R1Q~R~ , F~ = Z lP l loZ '  1 + / / 1 ,  

all 0 = Tla o + W ~  . (2.5) 

Usually, we write v I = y~ -Z la l l  0 -Xl13 as the one-step ahead forecast error. 
It is constructed so that Ol]Yo~N(O,  F1). Consequently, using the usual 
conditioning result for multivariate normal distributions as given, for example, 
in Rao (1973) 

al I Y1 - N(al, P1),  (2.6) 

where 

al = al]0 -1- Pl[oZrlF11u1, el = ell0 - PlloZ~FlIZ1el]o • (2.7) 

This result means that the filter is recursive. We will use the following 
notation throughout the paper to describe the general results: at_l I Y t_ 1 
N(a,-1, P,-x), a, l Yt- l --N(a,I , -~,  P,I,-1) and vt] Yt_I--N(0, F~). The precise 
definition of these densities is given in the following three sets of equations. 
First the prediction equations 

atJt-1 = Ttat-1 + Wtfl ,  Ptt,-1 = Ttet- lT~ + RtQtR~ , (2.8) 

then the one-step ahead forecast equations 

v t = Y t -  Ztatlt_ 1 - Xtfl  , Ft--  ZtPtl t_lZ ~ +Ht ,  (2.9) 
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and finally the updating equations 

a t = atlt_ 1 + P, i t _ l Z ~ F t l v t  and Pt = Ptl,-1 - P t l t - l Z ; F 7 1 Z , P t I , - 1  • 

(2.10) 

One immediate  result which follows from the Kalman filter is that we can 
write the conditional joint density of the observations as 

T T 

f ( Y l  . . . .  , Y r  I Yo) = 1-[ f ( Y t  I Y t -1 )  = [ I  f ( v t  I Yt  1). (2.11) 
t = l  t = l  

This fracturing of the conditional joint density into the product  of conditionals 
is called the prediction error decomposition. If a, is stationary, an uncondition- 
al joint density can be constructed since the initial conditions, a o and P0, are 
known. The case where we do not have stationarity has been the subject of 
some interesting research in recent years. 

2.3.  In i t ia l i zat ion f o r  non-s ta t ionary  m o d e l s  I 

We will derive the likelihood for a model in state space form using the 
argument  in De Jong (1988a). A slightly different approach can be found in 
Ansley and Kohn (1985). We present a simplified derivation based partly on 
the results in Marshall (1992a). For ease of exposition/~ will be assumed to be 
zero and all the elements in a 0 can be taken to be nonstationary. We start by 

t t t t 
noting that if we write y = (Yl, Y2, • • • , Y T )  , then 

f( 0 = o ) f ( y  I = o) 
f(Y) - f( 0 = O ly)  (2.12) 

The density f ( y ] a  o = 0) can be evaluated by applying the Kalman filter and 
the prediction error decomposition if we initialize the filter at a 0 = 0 and 
P0 = 0. We denote this filter by KF(0, 0), and the corresponding output  as a*,  
af*lt_ 1 and v*. The density f ( a  o = O) has a simple form, which leaves us with the 
problem of f ( %  = 01 Y). If we write v* = (v ~ ', v2* ' , . .  • , Vr*' )', then we can use 
the result that v* is a linear combination of y in order to write f ( %  = 01 Y) = 
f ( %  = O[ v*). To be able to evaluate f ( %  = O Iv*) we will need to define F as a 
block diagonal matrix, with blocks being F t and A as a matrix with row blocks 
ztat=l, where G , =  T t + I ( I - K t Z t ) G , _  1, G o =  r 1, and K t = P t l t _ I Z ; F ~  1 (the 
so-called Kalman gain). In all cases the quantities are evaluated by the Kalman 
filter under the startup condition P0 = 0. Then as 

vt(ao) = y , -  E(y,  I Y,_I, %) = Y, - Z ta t l t - l (ao)  , (2.13) 

The rest of Section 2 is more technical and can be omitted on first reading without loss of 
continuity. 
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and 

at+llt(ao) = Tt+latlt_l(aO) + Tt+lKtvt(ao) 

= T t + l ( I -  KtZ,)attt_l(ao) + Tt+lKtyt 

= Gta o + a*+llt , 

we have that 

vt(ao) = y, - Z tG  t lao - Z,a*lt_ 1 

= V t --  Z tGt_ lOLo  , 

and so 

(2.14) 

(2.15) 

1 t o  1 
- 3 l o g  [S~[ - ~STJ:~ S r 

= - ½ log ISr[ - ½ log IF[ 

- 3v* ' (F -1 - F - 1 A ( A ' F - 1 A ) - I A ' F - 1 ) v  * . (2.21) 

An approximation to (2.21) can be obtained for many models by running 

v * l a  o - -N(Aa0,  F ) .  (2.16) 

Thus we can use Bayes' theorem to deliver the result that 

a0 l Y - N((Po 1 + S T ) - l ( P o l a o  + ST)' (Po 1 + ST) -1 ) '  (2.17) 

where 

S T= A ' F - 1 A  and s T= A ' F - l v  * (2.18) 

Sr and s r can be computed recursively, in parallel with KF(0, 0), by 

~ '  Z ' F - 1 Z  ~ and st = + . . . . .  -1 , ,  (2.19) St  : S t - 1  -[- u t - 1  t t t ' J t - 1  s t - 1  [ J t - l L t l ~ t  Vt 

with S o = 0  and S 0 = 0 ;  see De Jong (1991). The log-likelihood is then 
constructed as 

T T 

l (y)  = - 3 log IP0[ _ ~aor  o l  , n - l a o  - 3  ~ log I g , ] - 3  ~ Vt*'r-lrt Vt* 
t = l  t - 1  

1 S + p o l a o ) ' ( P o  1 + ST)- I (sT  -~- Po~ao) .  - 3  log[Po 1 +S~] + ~ (  r 
(2.20) 

Traditionally, nonstationary state space models have been initialised into two 
ways. The first is to use a diffuse prior on a01 Y0; this is to allow the diagonal 
elements of P0 to go to infinity. We can see that in the limit the result from this 
is that 

T T 

l (y)  + 3 log IPo[--~ _ 1  E log ] F t ] - 3  E v~*'r-Irt v,* 
t = l  t = l  
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KF(a0, P0) with the diagonal elements of P0 set equal to large, but finite, 
values. The likelihood is then constructed from the prediction errors once 
enough observations have been processed to give a finite variance. However ,  
the likelihood obtained from (2.21) is preferable as it is exact and numerically 
stable. 

The other main way nonstationary models are initialised is by taking a 0 to be 
an unknown constant; see Rosenberg (1973). Thus a 0 becomes a nuisance 
parameter  and P0 is set to zero. In this case, in the limit, the likelihood 
becomes 

T T 

l ( y ) - + - ½  Z logIFt[ ½ ~] , ,~ -1  • , 1 , (2.22) - -  U t 1~ t U t @ aoS T - -  3 a o g T a o  , 
t-1 t=l 

= - ½ 1 o g l F l - a  • 3(v - A a o ) ' F - l ( v  * - Aao)  , (2.23) 

the term a'oSTa o in (2.22) appearing when (Po 1 + ST) -1 is expanded out. We 
can concentrate a 0 out at its maximum likelihood value a0 =  
( A ' F -  I A ) -  I A ' F -  iv*,  to deliver the profile or concentrated likelihood function 

c(y )  = _ 1 l o g  IF[ _ 1  , ,  -1 3v (F - F - 1 A ( A ' F - 1 A ) - I A ' F - 1 ) v  * . (2.24) 

The difference between the profile likelihood and the likelihood given in (2.21) 
is simply the log lSrl term. The latter is called a marginal or restricted 
likelihood in the statistics literature; cf. McCullagh and Nelder (1989, Chapter  
7). It is based on a linear transformation of y making the data invariant to a 0. 

The term log ]Srl can have a significant effect on small sample properties of 
maximum likelihood (ML) estimators in certain circumstances. This can be 
seen by looking at some results from the paper by Shephard and Harvey (1990) 
which analyses the sampling behaviour of the ML estimator of q, the ratio of 
the variances of ~Tt and e,, in the local level model (1.12). When q is zero the 
reduced form of the local level model is strictly noninvertible. Evaluating the 
probability that q is estimated to be exactly zero for various true values of q 

Table 2 
Probability that ML estimator of signal-noise ratio q is exactly equal to zero 

Marginal  l ike l ihood 
T - 1  q = 0  q =0.01 q = 0 . 1  q = l  q = 1 0  

10 0.64 0.61 0.47 0.21 0.12 
30 0.65 0.49 0.18 0.03 0.01 
50 0.65 0.35 0.07 0.01 0.00 

Profile l i ke l ihood 
T -  1 q = 0  q =0.01 q =0 .1  q = 1 q = 10 

10 0.96 0.95 0.88 0.60 0.44 
30 0.96 0.87 0.49 0.20 0.13 
50 0.96 0.72 0.28 0.08 0.05 
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and sample sizes, gives the results summarised in Table 2. It can be seen that 
using a profile likelihood instead of a marginal results in a much higher 
probability of estimating q to be zero. Unless q is actually zero, this is 
undesirable from a forecasting point of view since there is no discounting of 
past observations. This provides a practical justification for the use of diffuse 
initial conditions and marginal likelihoods. 

2.4. Smoothing 

Estimating a t using the full set of observations Yv is called smoothing. The 
minimum mean square estimator of a t using Yr is E a t I Yr. An extensive 
review of smoothing is given in Anderson and Moore  (1979, Chapter  7). 

Recently there have been some important  developments in the way E a t I YT 
is obtained; see, for example, De Jong (1988b, 1989), Kohn  and Ansley (1989) 
and Koopman (1993). These breakthroughs have dramatically improved the 
speed of the smoothers. The new results will be introduced by using the 
framework of Whittle (1991). For ease of exposition, R t will be assumed to be 
an identity matrix and/3 will be assumed to be zero. 

Under  Gaussianity, E a t [ YT is also the mode of the density of a t [ YT" Thus 
we can use the general result that under weak regularity, if f(-)  is a generic 
density function and m denotes the mode,  then 

Of(x [ z) ] Of(x, z) [ 
Ox - x=m = 0 if and only i f  0 ~  x=m = 0 .  (2.25) 

The smoother  can therefore be found by searching for turning points in the 
t r 

joint density of a'l, a ~ , . . .  , a t ,  Yl, • • • , YT, the logarithm of which is 

D = constant - l ( a  o - ao)'Pol(ao - ao) 
T 

- ½ Z (Yt - Ztatl'H;I(Yt - Ztat) 
t=1 

T 

- ½ E ( a t -  T, a t _ ~ ) ' Q ? l ( a t -  Ttott_l). 
t : l  

(2.26) 

Thus 

OD p - 1  Q - 1  I 1 
O a , - Z t H t  e t -  t tit + T,+lQt+lr/t+l f o r t = l , . . . , T .  (2.27) 

Equating to zero, writing the solutions as &t and ~t = Y, - Ztat and ~t = at - 
Ttat_ 1 results in the backward recursion 

a t  1 Ttl(at , - 1 ~  , - 1  ^ = _ Q t ( Z t H t  et + Tt+lQt+l~lt+l)) 

= T ; l ( a t - C T t ) ,  t = l , . . . , T ,  (2.28) 



274 A. C. Harvey and N. Shephard 

as 

Q-l^ , - i  
l ; O t 1 6 t -  t ~t + rt+IQt+l"r}t+l : 0 .  (2 .29)  

The starting point ~r = ar is given by the Kalman filter. Unfortunately, using 

~, ~ t  1, ,+ l~ ,+ lT] t+ i  q- z t n t  1~,) ,  (2.30) 

will lead to a numerically unstable filter even though mathematically this result 
holds exactly. Koopman's (1993) shows that it can be stabilised by computing 
~, not by y , -  Z t 6  q, but by 

'T '  " ~ - '  ~ " (2.31) g:, = H,(F~- '  G - K ,  t+l~t+lTlt+l) , 

where F t and K t are computed using KF(0, 0) and vt = v* - Z , G , _ , S r l S r .  Thus 
the efficient smoother uses (2.28), (2.30) and (2.31). 

Recently, Harvey and Koopman (1992) have proposed using the smoothed 
estimates of 6 t and 7 h to check for outliers and structural breaks, while 
Koopman (1993) uses them to implement a rapid EM algorithm and Koopman 
and Shephard (1992) show how to construct the exact score by smoothing. 

3. Explanatory variables 

Stochastic trend components are introduced into dynamic regression models 
when the underlying level of a nonstationary dependent variable cannot be 
completely explained by observable explanatory variables. The presence of a 
stochastic trend can often be rationalised by the fact that a variable has been 
excluded from the equation because it is difficult, or even impossible, to 
measure. Thus in Harvey et al. (1986) and Slade (1989), a stochastic trend is 
used as a proxy for technical progress, while in the demand equation for UK 
spirits estimated by Ansley and Kohn (1989) the stochastic trend can be 
thought of as picking up changes in tastes. Such rationalisation not only lends 
support to the specification of the model, but it also means that the estimated 
stochastic trend can be analysed and interpreted. 

If stochastic trends are appropriate, but are not explicitly modelled, their 
effects will be picked up indirectly by time trends and lags on the variables. 
This can lead to a proliferation of lags which have no economic meaning, and 
which are subject to common factors and problems of inference associated with 
unit roots. An illustration of the type of problems which can arise with such an 
approach in a single equation context can be found in Harvey et al. (1986), 
where a stochastic trend is used to model productivity effects in an employment 
outpu t equation and is compared with a more traditional autoregressive 
distributed lag (ADL) regression model with a time trend. Such problems may 
become even more acute in multivariate systems, such as vector autoregres- 
sions and simultaneous equation models; see Section 5. 

Other stochastic components, such as time-varying seasonals or cycles, can 
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also be included in a model with explanatory variables. Since this raises no new 
issues of principle, we will concentrate on stochastic trends. 

3.1. Formulation and estimation 

A regression model with a stochastic trend component  may be written 

yt=lx t+x~6+et ,  t = l , . . . , T ,  (3.1) 

where /x t is a stochastic trend (1.4), xt is a k x 1 vector of exogenous 
explanatory variables, 3 is a corresponding vector of unknown parameters,  e~ is 
a normally distributed, white noise disturbance term with mean zero and 
variance o-~. A standard regression model with a deterministic time trend 
emerges as a special case, as does a model which could be estimated efficiently 
by OLS regression in first differences; in the latter case o -2 = o-~ = 0. 

In the reduced form of (3.1), the stochastic part, /x t + et, is replaced by an 
ARIMA(0 ,  2, 2) process. If the slope is deterministic, that'is o-~ = 0 in (1.3), it 
is ARIMA(0 ,  1, 1). Box and Jenkins (1976, pp. 409-412) report  a distributed 
lag model fitted to first differences with an MA(1) disturbance term. This 
model can perhaps be interpreted more usefully as a relationship in levels with 
a stochastic trend component  of the form 

/x t =/xt_ 1 + 13 + ~Tt. (3.2) 

Maximum likelihood estimators of the parameters in (3.1) can be con- 
structed in the time domain via the prediction error  decomposition. This is 
done by putting the model in state space form and applying the Kalman filter. 
The  parameters 6 and/3 can be removed from the likelihood function either by 
concentrating them out of form of a profile likelihood function as in Kohn and 
Ansley (1985) or by forming a marginal likelihood function; see the discussion 
in Section 2.3. The marginal likelihood can be computed by extending the state 
so as to include /3 and 6, even though they are time-invariant, and then 
initializing with a diffuse prior. 

The difference between the profile and marginal likelihood is in the 
determinantal  term of the likelihood. There are a number of arguments which 
favour the use of marginal likelihoods for inference in small samples or when 
the process is close to nonstationarity or noninvertibility; see Tunnicl iffe-  
Wilson (1989). In the present context, the difference in behaviour shows up 
most noticeably in the tendency of the trend to be estimated as being 
deterministic. To be more specific, suppose the trend is as in (3.2). The 
signal-noise ratio is q = o-2/o -2 and if this is zero the trend is deterministic. The 
probability that q is estimated to be zero has been computed by Shephard 
(1993a). Using a profile likelihood by concentrating out /3 leads to this 
probability being relatively high when q is small but nonzero. The properties of 
the estimator obtained from the marginal likelihood are much bet ter  in this 
respect. 
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3 . 2 .  I n t e r v e n t i o n  a n a l y s i s  

Intervention analysis is concerned with making inferences about the effects of 
known events. These effects are measured by including intervention, or 
dummy, variables in a dynamic regression model. In pure intervention analysis 
no other  explanatory variables are present. 

Model (3.1) may be generalized to yield the intervention model 

Y t =  lxt + x~6  + A w  t + et , t =  l ,  . . . , T , (3.3) 

where w t is the intervention variable and h is its coefficient. The definition of 
w t depends on the form which the intervention effect is assumed to take. If the 
intervention is transitory and has an effect only at time t, w e is a pulse variable 
which takes the value one at the time of the intervention, t = % and is zero 
otherwise. More generally the intervention may have a transitory effect which 
dies away gradually, for example, we may have w~ = q~'-', when Iq~l < 1, for 
t/> ~-. A permanent  shift in the level of the series can be captured by a step 
variable which is zero up to the time of the intervention and unity thereafter.  
An effect of this kind can also be interpreted as a transitory shock to the level 
equation in the trend, in which case it appears as a pulse variable in (1.4a). 
Other  types of intervention variable may be included, for example variables 
giving rise to changes in the slope of the trend or the seasonal pattern. The 
advantage of the structural time series model framework over the A R I M A  
framework proposed by Box and Tiao (1975) is that it is much easier to 
formulate intervention variables having the desired effect on the series. 

Estimation of a model of the form (3.3) can be carried out in both the time 
and frequency domains by treating the intervention variable just like any other  
explanatory variable. In the time domain, various tests can be constructed to 
check on the specification of the intervention; see the study by Harvey and 
Durbin (1986) on the effect of the UK seat belt law. 

4. Multivariate time series models 

4 . 1 .  S e e m i n g l y  u n r e l a t e d  t i m e  s e r i e s  e q u a t i o n s  ( S U T S E )  

The structural time series models introduced in Section 1 have straightforward 
multivariate generalisations. For instance, the local level with drift becomes, 
for an N-dimensional series Yt  = ( Y l ,  • • . , YNt)', 

y, =/x  t + e, ,  e~ ~ NID(O, X~), 

~.Lt=l.Lt_l-~-~-l-T~t, T~, ~ N I D ( 0 ,  ~¢r/) , (4.1) 

where X, and Xn are nonnegative definite N x N matrices. Such models are 
called seemingly unrelated time series equations (SUTSE) reflecting the fact 
that the individual series are connected only via the correlated disturbances in 
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the measurement and transition equations. Estimation is discussed in 
Fermindez (1990). 

The maximisation of the likelihood function for this model can be computa- 
tionally demanding if N is large. The evaluation of the likelihood function 
requires O(N 3) floating point operations and, although/3 can be concentrated, 
there are still N × (N + 1) parameters to be estimated by numerical optimi- 
sation. However, for many applications there are specific structures on 2;, and 
~n that can be exploited to make the computations easier. One example is 
where 2~ and Zn are proportional, that is 2~ -- q2~. Such a system is said to be 
homogeneous. This structure allows each of the series in Yt to be handled by 
the same Kalman filter and so the likelihood can be evaluated in O(N) 
operations. Further, ~, can be concentrated out of the likelihood, leaving a 
single parameter q to be found by numerical maximisation. The validity of the 
homogeneity assumption can be assessed by using the Lagrange multiplier test 
of Fernandez and Harvey (1990). 

4 . 2 .  E r r o r  c o m p o n e n t s  m o d e l s  

Consider the classical error components model 

Y i t =  l~ + Ai  + v t  + °git , i = l ,  . . . , N  , t =  l . . . .  , T , (4.2) 

where /x represents the overall mean and Ai, vt and t% are unit specific and 
time specific effects respectively, assumed to be serially and mutually in- 
dependent, Gaussian and with expected values equal to zero. The dynamic 
versions of this model studied in the literature usually include lagged depen- 
dent variables and autoregressive processes for the components vt and to~t; see 
Anderson and Hsiao (1982). 

A more natural approach to the specification of dynamic error components 
models, can be based on the ideas of structural time series models. This is 
suggested by Marshall (1992b), who allowed both time specific and time-unit 
specific effects to evolve over time according to random walk plus noise 
processes. The error components model becomes 

Yit = ]J~it ~- e t  "~ e i t  , 

~i, = ~,,,-1 + nt + n ~ ,  (4 .3)  

where/zi, is the mean for unit i at time t and et, ei*, ~t and ~7~* are assumed to be 
independent, zero mean, Gaussian random variables, with variances o -2, o-~., 

2 and o-z, respectively. This model is a multivariate local level model, with ° '7 /  
the irregular and level random shocks decomposed as common effects, e t and 

* and ~*. This means that r/t, and specific effects, e~t 

~ e  Z 2 ;  2 _1_ 2 t (4.4) = o-~.I+ o-~  and ~ = o-~.I o-,~ , 

where ~ is the N-dimensional unit vector and I the identity matrix. 
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If o -2 and o-~. are equal to zero, the model reduces to the static error 
components model discussed in (4.2). On the other hand if 0-2 is greater than 
zero, but o-2. is equal to zero, the N time series have, apart from a time 
invariant effect, the same time-dependent mean. In this situation, the time 
series are cointegrated in the sense of Engle and Granger (1987). 

Optimal estimates of the components IX, can be obtained by means of the 
Kalman filter. That  requires the manipulation of N x N matrices and so it 
becomes cumbersome if N is large. However,  the idea of homogeneity can be 
used to reduce these calculations dramatically. Take for each time t the 
average of the observations across units and the first N - 1 deviations from this 
average. Thus, in an obvious notation, (4.3) becomes 

Yt = ~ + et + g* , (4.5a) 

= #2t-1 + ~Tt + ~* , (4.5b) 

t = l , . . . , T ,  

( y ,  - f , )  = (Ix,, - ¢,) + (ei* - g*) , (4.6a) 

( Ix , , -  #2,) = (Ixi,,-1 - #2,_,) + (n~* - ~ * ) ,  (4.6b) 

i = I , . . . , N - 1 ,  t = l , . . . , T ,  

with the equations in (4.5) and (4.6) being statistically independent  of one 
another. As the transformation to this model is nonsingular, the estimation of 
the trends Ix, can be obtained from this model instead of from the original 
error components model. The estimation of the average level can be carried 
out by running a univariate Kalman filter over the average values of the 
observations 37. The remaining N -  1 equations can be dealt with straight- 
forwardly as they are a homogeneous system, with variances proportional  to 
( I - ~ ' / N ) ,  where I and L are now N - 1 - d i m e n s i o n a l  unit matrices and 
vectors. 

The Kalman filter which provides the estimator of #.7, t using the information o 
available up to time t is 

2 fi, 1 + o.2 + o-~.IN 
2 ( f i r -  # ~ t - i )  ( 4 . 7 )  rh,=Tfi, i +  _, +o-~ +o-~. lN+o-~ +o- . iN  

where fit is the MSE of rh,, given by 

_1_ 2 _}_ O - 2 . ) 2  (L-~ % 
= + 2 + o - ~ l * / N )  2 2 2 2 f ,  ( f ,  , o-,~ (fi,_~+o- +o-,7.1N+o- +o-~ . lN)  "(4"8) 

These recursions are run from t = 2  and with initial values r h l = y  1 and 
f~ = (o-~ + o-~./N). With respect to the formulae to obtain the estimators of the 
components ( IX, -  fit) using the information up to time t, rn~* and their MSEs, 

, - 2 2 Pi,, these have exactly the same form as (4.7) and (4.8) but with (o- + o- . / N )  
2 2 2 2 W n • 

and (o-, + o-,7./N) replaced by ( ( N -  1)o- , . /N)  and ( ( N - 1 ) o - , . / N )  respective- 
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ly and with initial values m i l  = ( Y i l  - -  371) for i = 1 . . . .  , N - 1. The estimators 
of  e a c h / z , ,  mit , and its MSE, Pit, are given by 

¢ 

mit = t~t t q- mi t  , i = 1, . . . , N - 1 , t = 1, . . . , T ,  
(4.9) 

p i , = f i t + p ~  * ,  i = l , . . . , N - 1 ,  t = l , . . . , T ,  

while mNt is obtained by differencing. 

EXAMPLE. In Marshall (1992b), a error components  model of the form given 
above,  but with a fixed slope as in (3.2), is est imated for the logarithm of the 
quarterly labour costs t ime series in Austria,  Belgium, Luxembourg  and The 
Netherlands.  The sample period considered in 1970 to 1987 and so N = 4 and 
T = 72. The maximum likelihood estimates of the parameters  were 

2 2 o-~ = 0 ,  ~r . =0.115 x 10 3, 
(4.10) 

2 2 o -  = 0.249 x 10 . 3  o'~. = 0.159 x 10 . 3  

4.3.  E x p l a n a t o r y  var iables  in S U T S E  m o d e l s  

The introduction of explanatory variables into the SUTSE model  opens up the 
possibility of incorporating ideas f rom economic theory. This is well illustrated 
in the paper  by Harvey  and Marshall (1991) on the demand for energy in the 
UK.  The  assumption of a translog cost function leads to the static share 
equat ion system 

si = oli + E olij l o g ( p j / ~ ) ,  i = 1 , . . . , N ,  (4.11) 
J 

where the ai, i = 1 , . . . ,  N and aq, i, j = 1 , . . . ,  N ,  are parameters ,  s i is the 
share of the i-th input, pj is the (exogenous) price of the j - th input and ~ is an 
index of relative technical progress for the input j which takes the factor 
augmenting form; see Jorgenson (1986). 

The model  can be made dynamic by allowing the log "9,, relative technical 
progress at t ime t for input j, to follow a random walk plus drift 

l ° g ~ t = l o g c j , t - ~  + fij + ~ j t ,  i =  l , . . . , N .  (4.12) 

If  the random disturbance te rm ej, is added to each share equation, this leads 
to a sys tem of share equations which can be written in matrix form as 

Yt = I~t + Ax~ + e~ , e, ~ NID(O, Z~), 

]~t:~-Lt 1-[-~-~-~,, ~7,-- NID(0,  ~ , ) ,  (4.13) 

where Yt is an N × 1 vector of  shares (s I . . . .  , SN)'. H e r e / z  t is an N × 1 vector  
t t t 

depending on the a i , %j and log "i'it , so that the i-th e lement  of /z t is ai + 
t 

g aq log zj,, while A is an N x N matrix of aq and x, is the N × 1 vector  of the 
log p# s. 
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Harvey and Marshall (1991) estimated (4.13) under the assumption of 
statistical homogeneity,  that is Xn = qX~ and found this to be a reasonable 
assumption using the LM test referred to in Section 4.1. One equation was 
dropped to ensure that the shares summed to one. Finally restrictions from 
economic theory, concerning cost exhaustion, homogeneity and symmetry, 
were incorporated into the A matrix. 

4.4. Common trends 

Many economic variables seem to move together,  indicating common underly- 
ing dynamics. This feature of data has been crystalised in the econometric 
literature as the concept of cointegration; see, for example Engle and Granger 
(1987) and Johansen (1988). Within a structural t ime series framework this 
feature can be imposed by modifying (4.1) so as to construct a common trends 
model 

y, = O/x* + et,  e, ~ NID(O, L ) ,  

* * * -- NID(O, X, . )  /*~ =/z,_l  +/3" +rl* , 7/t 
(4.14) 

where O is a N x K fixed matrix of factor loadings. The K × K matrix X,,  is 
constrained to be a diagonal matrix and Oij = 0 for j > i, while Oii = 1 in order  
to achieve identifiability; see Harvey (1989, pp. 450-451). As ~ , ,  is diagonal, 
the common trends, the elements o f /x* ,  are independent.  

The common trends model has K ~< N, but if K = N, it is equivalent to the 
SUTSE model,  (4.1), with/3 = 0/3* and X, = OX~,O' where O and X,,  are the 
Cholesky decomposition of X,. This suggests first estimating a SUTSE model 
and carrying out a principal components analysis on the estimated Xn to see 
what value of K accounts for a suitably large proportion of the total variation. 
A formal test can be carried out along the lines suggested by Stock and Watson 
(1988), but its small sample properties have yet to be investigated in this 
context. Once K has been determined, the common trends model can be 
formulated and estimated. 

EXAMPLE. Tiao and Tsay (1989) fitted various multivariate models to the 
logarithms of indices of monthly flour prices in three cities, Buffalo, Min- 
neapolis and Kansas City, over the period from August 1972 to November  
1980. In their comment on this paper, Harvey and Marshall fit (4.1) and 

Table 3 
Principal components analysis of estimated covariance matrix of trend disturbances 

Eigenvalues Cumulative proportion Eigenvectors 

7.739 0.965 -0.55 -0.59 -0.59 
0.262 0.998 0.35 0.48 -0.81 
0.015 1.00 0.76 -0.65 -0.06 
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conduct a principal components analysis on the estimated ,~.  The results, 
given in Table 3, indicate that the first principal component  dominates the 
variation in the transition equation and represents the basic underlying price in 
the three cities. Setting K equal to one or two might be appropriate. 

Models with common components have also been used in the construction of 
leading indicators; see Stock and Watson (1990). 

4.5. Model l ing and estimation for  repeated surveys 

Many economic variables are measured by using sample survey techniques. 
Examples include the labour force surveys which are conducted in each 
member  state of the European Community. It is now quite common practice to 
analyse the results from repeated surveys using time series methods. 

If sample surveys are nonoverlapping, then the survey errors are indepen- 
dent and a simple model for the vector of characteristics at time t, Ot, might be 

y t = O t + e t ,  e,--  N(0, H , ) ,  t = l  . . . .  , T ,  (4.15) 

where the sampling errors e t are independent over time and are independent  of 
0t. A simple estimator of 0~ would then be Yr. However ,  by imposing a model 
on the evolution of 0~, an improvement in the precision of the estimate is 
possible. This improvement  will be very marked if 0 t moves very slowly and H, 
is large. 

Scott and Smith (1974) suggested fitting A R I M A  models to 0,; see also Smith 
(1978) and Jones (1980). A more natural approach is to use structural models. 
The analysis of repeated,  nonoverlapping surveys is based on the same 
principles as standard time series model building except that constraints are 
imposed on the measurement  error  covariance matrix through sampling theory. 

EXAMPLE. Consider the repeated sample survey of a set of proportions Oxt, 
0 2 t , . . . ,  Opt, using simple random sampling with sample size n t for t = 1 . . . . .  T. 
If p = 2, and Yt denotes the sample proportion in group one, the simple model 

(0 10 ) 
Yt  = Ot q- et , e t ~ N O, n t  

1 
0, - 1 + e x p ( - a t )  ' (4.16) 

a t = a t _  1 -1-T~t , T~t- NID(0, o-2), 

will allow 01t = 0 t and 02t = 1 - 0, to evolve over time in the range zero to one. If 
p is greater than two or the state a t evolves in a more complicated way, 
perhaps with seasonals, the model can be modified appropriately. However ,  
the modelling principle is unchanged, sampling theory dictates the measure- 
ment  error and time series considerations the transition equation. A discussion 
of the way in which such models can be estimated may be found in Section 6.2. 
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When the repeated surveys are overlapping the model for the measurement 
equation can become very involved. A clear discussion of the principles 
involved is given in Scott and Smith (1974). More recent work in this area 
includes Hausman and Watson (1985), Binder and Dick (1989), Tam (1987), 
Pfeffermann a n d  Burck (1990) and Pfeffermann (1991). 

The work of Pfeffermann (1991) fits well within the framework of this 
discussion. He identifies three features of overlapping samples which may 
effect the way the measurement error is modelled. The first is the way the 
sample is rotated. For example a survey consisting of four panels which are 
interviewed quarterly, three of the panels will have been included in past 
surveys while one is wholly new. Thus each panel will remain in the panel for 
four quarters. This rotation will interact with the second feature of overlapping 
surveys, the correlation between individual observations. Pfeffermann, in 
common with most researchers in this area, relies on Henderson's  behavioural 
model for the i-th individual of the survey made at time t. The model is 

y . - O t = p ( y i . t _ l - O t  a)+ooi,,  wi, ~ NID(0, o-2) , 101<1.  

(4.17) 

The Pfeffermann model is completed by the third feature, which is that the 
design of the survey is ignorable, although this assumption can be relaxed at 
the loss of algebraic simplicity. 

With these assumptions it is possible to derive the behaviour of the 
measurement  error in a model. If we use YI~ i to denote the i individual at time 
t, from a panel established at time t -  j, then we can write 

)71_ j 1 ~ t-j = ~ -  y . ,  j = 0 , 1 , 2 , 3 ,  (4.18) 
i=1 

as the aggregate survey estimate of 0 t from the panel established at time t -  j, 
then 

/r: 
y , = / ; : 2 /  e: 2 ' 

\y :  3/ \g:-3/  

(4.19) 

where 

(i0 0 0 0 o3 r- 
e t = et_ 1 + = (4.20) p 0 g/t -2 Tet-1 + rlt • 

o p 
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The covariance of ~Tt will be 

~ r  1 0 
M 0 0 1 " 

0 0 0 1 

(4.21) 

The model can be routinely handled by using the Kalman filter to estimate 0 t, 
as well as the hyperparameters  p, and o -2. In some cases the individual panel 
results will not be available, but instead only the aggregate will be recorded. 
Then the measurement  equation becomes 

Y* : (Ytt + 371 -I + 377 -2 + 371-3) 

Or+¼(-' e, + e t  + e ,  ) .  (4.23) : E t  q_ - t - 1  - t  2 - t - 3  

5. Simultaneous equation system 

This section considers how simultaneous equation models can be estimated 
when stochastic trend components of the kind described in Section 4 are 
specified in some or all of the structural equations. We draw on the paper by 
Streibel and Harvey (1993), which develops and compares a number of 
methods for the estimation of single equations using instrumental variable (IV) 
procedures or limited information maximum likelihood (LIML). The question 
of identifiability is dealt with in Harvey and Streibel (1991). 

5.1. Model  formulation 

Consider a dynamical simultaneous model in which some or all of the structural 
equations contain stochastic trend components,  which, to simplify matters, will 
be assumed to follow a multivariate random walk. Thus 

FYt = ~lYt-1 q- " ' "  q- qbrYt-r + Boxt + "'" + BsXt-s + SN + e,,  

/xt =/x,-1 + ~Tt, (5.1) 

where F is an N x N matrix of unknown parameters,  q~l . . . .  , @r are N x N 
matrices of autoregressive parameters,  B o , . . .  , B  s are N ×  K matrices of 
parameters associated with the K x 1 vector of exogenous variables x t and its 
lagged values, /z, is an n x 1 vector of stochastic trends, S is an N x n selection 
matrix of ones and zeros, such that each of the stochastic trends appears in a 
particular equation, and ~7, and e t are mutually independent,  normally distribut- 
ed white noise disturbance vectors with positive definite covariance matrices X, 
and ~ respectively. Equations which do not contain a stochastic trend will 
usually have a constant term and if the exogenous variables are stochastic, it 
will be assumed that they are generated independently o f / z  t and e,. 

The  model is subject to restrictions which usually take the form of certain 
variables being excluded from certain equations on the basis of prior economic 
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knowledge. In a similar way, it will normally be the case that there is some 
rationale for the appearance of stochastic trend components in particular 
equations. Indeed many econometric models contain a time trend. For 
example the wage equation in the textbook Klein model has a time trend which 
is explained in terms of union pressure. Time trends also appear because of 
technical progress just as in single equations. The argument here is that such 
effects are more appropriately modelled by stochastic trends. 

Pre-multiplying (5.1) by E -1 gives the econometric reduced form. Dropping 
the lags, this may be written as 

Yt =- Otzt + Hxt + et, (5.2) 

where /7  = F 1B, e* = F- le t  and 0 = F-1S. If stochastic trends only appear in 
some of the equations, that is 1 ~< n < N, then (5.2) contains common trends; 
see Section 4.4. 

The presence of stochastic trend components in an econometric model has 
interesting implications for conventional dynamic simultaneous equation 
models, for the corresponding reduced form models, and for the associated 
vector autoregression (VAR) for (y~, x~)'. Some of the points can be illustrated 
with a simple demand and supply system. Let Ylt denote quantity, Y2t price and 
x t an exogenous variable which is stationary after first differencing, that is 
integrated of order one, and write 

D: Ylt = 3"lY2t + ~ + Elt , 
(5.3) 

S: Ylt = Y2Y2t + ~xt + E2t " 

The stochastic trend component/x, may be a proxy for changes in tastes. The 
first equation could be approximated using lags of y~ and Y2, but long lags may 
be needed and, unless /x, is constant, a unit root is present; compare the 
employment-output equation of Harvey et al. (1986). The econometric 
reduced form is 

Y l t  = OllJ't q- "l'l'lXt q- 61t , 
, (5.4) 

Y2t = 02lJbt -[- 'D'2Xa ~- e2t , 

where 01 = 32/(72- 71), 02 = 1/(3'2- 3'1), and so on. Thus there is a common 
trend. This can be regarded as a reflection of the fact that there is just a single 
co-integrating relationship, namely the supply curve; compare a similar, but 
simpler, example in Engle and Granger (1987, p. 263). Attempting to estimate 
a reduced form with lagged variables but without the stochastic trends runs into 
complications; if first differences are taken the stochastic part of the model is 
strictly noninvertible, so the approximation is not valid, while in levels any 
inference must take account of the unit root; see Sims, Stock and Watson 
(1990). The VAR representation of (y~,x;) '  is also subject to constraints 
because of the common trend, and although estimation can be carried out 
using the method of Johansen (1988), the point remains that long lags may be 
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required for a satisfactory approximation and so the number of parameters 
may be very large for moderate  size N and K. 

In summary, models which approximate stochastic trends by lags may be 
highly unparsimonious and uninformative about dynamic relationships. If 
economic theory does suggest the presence of stochastic trend components,  
therefore,  there are likely to be considerable gains from estimating the implied 
structural relationships directly. If the complete system of equations can be 
specified, a full information maximum likelihood (FIML) procedure may be 
employed. If only a subsystem is specified, but all the predetermined variables 
are named, a limited information maximum likelihood (LIML) procedure is 
appropriate.  When the rest of the system has not been specified at all, ML 
methods cannot be applied, but a valid instrumental variable (IV) estimator 
can be obtained. 

5.2. Instrumental  variable estimation 

Suppose the equation of interest is written in matrix notation as 

y = Z6  + u (5.5) 

where Z is a T x m matrix with observations on explanatory variables and u is 
a T x 1 vector of disturbances with mean zero and covariance matrix, o-2V. The 
explanatory variables may include variables which are not exogenous. How- 
ever, the K exogenous variables in the system provide a set of instrumental 
variables contained in a T x K matrix, X. 

Multiplying (5.5) through by a T x T matrix L with the property that 
L ' L  = V-1 yields 

L y  = L Z 6  + L u ,  (5.6) 

where Var(Lu) = o-~I. If the same transformation is applied to X, the matrix of 
optimal instruments is formed over a multivariate regression of L Z  on L X .  
The resulting IV estimator is then 

cl = ( Z ' L ' P o L Z ) - I  Z ' L ' P ~ L y  , (5.7) 

where Pv is the idempotent  projection matrix Pv = L X ( X ' V - 1 X )  1X'L'. It is 
known as generalized two stage least squares (G2SLS).  Under  standard 
regularity conditions, as in Bowden and Turkington (1984, p. 26), T1/2d has a 
limiting normal distribution. If V is unknown, but depends on a finite number  
of parameters which can be estimated consistently, the asymptotic distribution 
is unaffected. When there are no lagged endogenous variables in (5.5) it can be 
shown that the G2SLS estimator is at least as efficient as 2SLS in the sense that 
the determinant of its asymptotic covariance matrix cannot exceed the 
determinant of the corresponding expression for 2SLS. In a similar way, it can 
be shown that G2SLS is more efficient than an IV estimator in which 
instruments are formed from X without first transforming by L. 
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We now consider the estimation of a model which contains a random walk 
component  as well as explanatory variables, that is 

y , = / z , + z ; 6 + e t ,  t = l , . . . , T .  (5.8) 

If z t were exogenous, the GLS estimator of 6 could be computed by applying 
the Kalman filter appropriate for the stochastic part of the model,  ix t + et, to 
both yt and z t and regressing the innovations from y~ on those from zt; see 
Kohn and Ansley (1985). The same approach may be used with IV estimation. 
In the notation of (5.5) the Kalman filter makes the transformations Ly ,  L Z  
and L X .  However,  the L matrix is now ( T -  1) x T because the diffuse prior 
for /x  t means that only T -  1 innovations can be formed. The variables in (5.8) 
may be differenced so as to give a stationary disturbance term. Thus 

Ay t = A z ~ 6 + u  t ,  t = 2 , . . . , T ,  (5.9) 

where u~ = ~Tt + Ae~. This equation corresponds more directly to (5.5) than does 
(5.8) since a covariance matrix may be constructed for the disturbance vector 
and the associated L matrix is square. However,  postmultiplying this matrix by 
the ( T - 1 ) ×  1 vector of differenced y,'s gives exactly the same result as 
postmultiplying the L matrix for (5.8) by the T × 1 vector of yt's. 

A number of estimation procedures for (5.8) are considered in Streibel and 
Harvey (1993). In the preferred method, a consistent estimator of 6 is first 
obtained by applying a suitable IV estimator to (5.9); if there are no lagged 
dependent  variables, 2SLS will suffice. Consistent estimators of the hyper- 
parameters are then obtained from the residuals, and these estimators are used 
to construct a feasible IV estimator of the form (5.7). There are a number  of 
ways of estimating the hyperparameters.  In simple cases, closed form expres- 
sions based on the residual autocorrelations are available but, even with 6 
known, such estimators are not efficient. However,  what would be the ML 
estimator if 6 were known can always be computed by an iterative optimisation 
procedure.  Given values of the hyperparameters,  an IV estimate is constructed 
for 6. The hyperparameters are then estimated by ML applied to the residuals. 
This procedure is then iterated to convergence. Although. iterating will not 
change the asymptotic properties of the estimators of 6 or the hyperparameters  
when there are no lagged dependent variables, it may yield estimators with 
bet ter  small sample properties. When this stepwise estimation procedure is 
used to estimate an equation in a simultaneous equation system it may be 
referred to as G2SLS/ML. All the above procedures can be implemented in 
the frequency domain as well as the time domain. 

5.3. M a x i m u m  likelihood estimation 

It is relatively easy to construct the likelihood function for a model of the form 
(5.1). Maximising this function then gives the FIML estimators. Of course this 
may not be straightforward computationally, and the estimators obtained for 
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any one particular equation may be very sensitive to misspecification in other 
parts of the system. 

If interest centres on a single equation, say the first, and there is not enough 
information to specify the remaining equations, a limited information estima- 
tion procedure is appropriate. In a model of the form (5.1) where u t is 
NID(0, O), the LIML estimator of the parameters in the first equation can be 
obtained by applying FIML to a system consisting of the first (structural) 
equation and the reduced form for the endogenous variables appearing in that 
equation. Since the Jacobian of this system is unity, the estimator can be 
computed by iterating a feasible SURE estimator to convergence; see Pagan 
(1979). 

Now consider the application of LIML in a Gaussian system with stochastic 
trends generated by a multivariate random walk. It will also be assumed that 
the system contains no lags, although the presence of lags in either the 
endogenous or exogenous variables does not alter the form of the estimator. 
Thus 

r y  t = ~ + B x  t + s t ,  Var(et) = X~, (5.10) 

with F being positive definite and t4, given by (5.1). Hence the reduced form is 

= * * Var(s*) * r - 1 1 ; ~ ( r - 1 )  ' (5.11a) Yt  IXt + I I x t  + s t  , = "~ ~ = , 

~1~ t* :]~t_l-~-'qt* * , Var (7 ] t*  ) : ~  ~ - - / ~ - l z ~ ( / ~ - l ) v  , (5.11b) 

where/x* = F-1/Xr The equation of interest, the first in (5.10) corresponds to 
(5.8) and may be written as 

Y~t = tXl, + "Y'Y2, + f l ' X l t  + e l t ,  (5.12a) 

] ' L l t =  ] Jq , t -1  "~- ~ l t  , (5.12b) 

where Y2, is g x 1, xlt is k x 1, and both eat and ~xt may be correlated with the 
corresponding disturbances in the other structural equations. Prior knowledge 
suggests the presence of a stochastic trend in (5.10). There is no information 
on whether or not stochastic trends are present in the other structural 
equations in the system, and so they are included for generality. The reduced 
form for the endogenous variables included in (5.10) may be written as 

• ( 5 . 1 3 a )  Yet = tx2*, + ~12xt "}- E2t , 

• * * (5.13b) A[.~2t • ~L2,t_ 1 "~- T]2 t • 

The LIML estimator is obtained by treating (5.12) and (5.13) as though they 
were the structural form of a system and applying FIML. The Jacobian is unity 
and estimation proceeds by making use of the multivariate version of the GLS 
algorithm described in Harvey (1989, p. 133). 

Streibel and Harvey (1993) derive the asymptotic distribution of the LIML 
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estimator and compare the asymptotic covariance matrix of the estimators of 13 
and 3' with the corresponding matrix from the G2SLS/ML estimation proce- 
dure for a model without lagged endogenous variables. If Nn = qZ~ in (5.10), 
where q is a scalar, the multivariate part of the model is homogenous;  see 
Section 4. In this case G2SLS/ML is as efficient as LIML. Indeed efficiency is 
achieved with G2SLS without iterating, provided an initial consistent estimator 
of q is used. 

Although G2SLS/ML is not, in general, asymptotically efficient as compared 
with LIML, the Monte Carlo experiments reported in Streibel and Harvey 
suggest that in small samples its performance is usually better  than that of 
LIML. Since it is much simpler than LIML, it is the recommended estimator. 

6. Nonlinear and non-Gaussian models 

Relaxing the requirement that time series models be linear and Gaussian opens 
up a vast range of possibilities. This section introduces the work in this field 
which exploits the structural time series framework. It starts with a discussion 
of conditionally Gaussian nonlinear state space models and then progresses to 
derive a filter for dynamic generalised linear models. Some recent work on 
exact filters for nonlinear, non-Gaussian state space models is outlined. Finally, 
some structural approaches to modelling changing variance is discussed. 

6.1. Conditionally Gaussian state space models  

The state space form and the Kalman filter provides such a strong foundation 
for the manipulation of linear models that it is very natural to try to extend 
their use to deal with nonlinear time series. Some progress can be made by 
defining a conditionally Gaussian state space model 

y t =  Z , (Y ,_ l )a t  + X f l  + et ,  e t ~ N ( O ,  H t ( Y t _ , ) ) ,  
(6.1) 

o 6 = T,(Yt_l)a ,_  1 + W f l  + ~7,, ~q, ~ N(0, Qt(Y,_I)  ) . 

Here  e, and ~s are assumed to be independent for all values of t and s. In this 
model the matrices in the state space model are allowed to depend on Y,_I, the 
available information at time t -  1. The Kalman filter still goes through in this 
case and so the likelihood for the model can be built up from the prediction 
error decomposition. 

The theory behind this type of modelling framework has been studied at 
considerable length in Liptser and Shirayev (1978). The following examples 
illustrate its flexibility. 

EXAMPLE. The coefficient of a first-order autoregression can be allowed to 
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follow a random walk, as Yt-1 is in Yt-1. Thus 

Yt = Y t - i a t - 1  + et,  e t _  NID(0 ' (y2), 
(6.2) 

at = at-1  + ~ t ,  71 t ~ NID(O, o-2,). 

EXAMPLE. Some macro-economic time series appear to exhibit cycles in which 
the downswing is shorter than the upswing. A simple way of capturing such a 
feature is to specify a cyclical component  which switches from one frequency to 
another  as it moves from downswing into upswing and vice versa. This could be 
achieved by setting 

h , if ~'lt-1 -- ~t-1 > 0 ,  
h c = (6.3) 

A2, if ~tlt-1 I~t-1 ~ 0 , hi ~A2 ' 

where ~_,lt-1 and ~t-1 are estimates of the state of the cycle at times t and t - 1 
respectively, made at time t -  1. This model, which belongs within the class of 
threshold models described in Tong (1990), in effect fits two separate linear 
cycle models to the date, the division taking place and ~tlt-1 - ~0t-~ switches 
sign. 

6.2. E x t e n d e d  K a l m a n  f i l ter  

For ease of exposition suppose Yt and a t are univariate and 

Yt = zt(at) + e~, e t - NID(0, o_ (at)) , 2  
(6.4) 

at---- Tt(°tt-1) + ~/t "qt NID(0, 2 , - • 

This model cannot be handled exactly by using the Kalman filter. However ,  for 
some functions it is possible to expand z t (at )  and Tt(at_l) using a Taylor series 
to give 

Ozt(atlt 1) 
Zt(Ott) "~ zt(at]t_i) q- Oa t (at -- atl,_l) , 

OZt(a, 1) (6.5)  
at "~ Tt (a t -1)  + Oat_ 1 (at-1 -- at 1)" 

If, in addition, the dependence of the variances on the states is dealt with by 
replacing them by estimates, made at time t -  1, then the new approximate 
model  becomes 

Oz,(atl, 1) 
Yt = zt(atl,-l) + Oat (at - atlt-1) + e t '  

0T,(at_x) 
a t = T ' ( a t - 1 ) +  aa,_l ( a ' l - a ' - a ) + ~ "  

e , -  N(0, 2 

7/t N(0, 2 o-  ( a , _ l ) )  . 

(6.6) 
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This model is then in the conditionally Gaussian f ramework  and so the Kalman 
filter can be used to estimate the state. Since the model  itself is an approxi- 
mation,  we call the conditionally Gaussian Kalman filter an extended Kalman 
filter for the original model (6.4); see Anderson and Moore  (1979, Chapter  8). 

EXAMPLE. Suppose the logistic transformation is being used to keep zt(at) 
between zero and one as in (4.16). Then 

1 
zt(at) - 1 + e x p ( - a t )  " (6.7) 

Then the expanded model becomes 

1 exp(-a t l t -1)  
Yt - 1 + exp(-a t l t_ l )  + (1 + exp(-atlt_~)) 2 (at - atlt-1) + e, .  (6.8) 

This idea can be used to construct a model of opinion polls. Suppose there are 
just two parties. If the level of support  for one party is modelled as a logistic 
t ransformation of a Gaussian random walk and the measurement  error 
originates from using a simple random sample size n,, then 

/xt(1 - /x t )  
Yt = txt + et ,  e , -  N(0, o-~), tr~ - , (6.9a) 

/~t - 1 + e x p ( - a , )  ' 

OLt = 0Lt-1 ~- ~ t '  ~t-  NID(0, ~r2) .  

(6.9b) 

(6.9c) 

A s / x  t is unknown, this model cannot be analysed by using the Kalman filter. 
Instead,  an estimate of a t can be made at t ime t -  1, written atlt_ I, and it can 
be used to replace/x t in the variance. One of the problems with this approach is 
that this model does not constrain the observations to lie between zero and 
one, as e t is assumed Gaussian. Although this could be a problem if/x t were to 
be close to zero or one, this is unlikely to pose a difficulty for modera te  sample 
sizes. 

The Kalman filter can be applied in the standard way once the logistic 
t ransformation has been Taylor expanded. The resulting model is 

2 
Yt = m r - 1  + exp(-at-1)mt-l(at - a t - l )  + et , 

e , - N  (0, mt 1 ( 1 -  m r - 0 /  (6.10a) 
-n-~ / '  

1 
mt 1 - 1 + e x p ( - a t _ l )  " (6.10b) 

An approach similar to this, but using a multivariate continuous time model  to 
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allow for irregular observations, was followed by Shephard and Harvey (1989) 
in their analysis of opinion poll data from the British general election 
campaigns of October 1974, 1979, 1983 and 1987. 

6.3. N o n - G a u s s i a n  state space mode l s  

Although the Gaussian state space form provides the basis for the analysis of 
many time series, it is sometimes not possible to adequately model the data, or 
a transformation of it, in this way. Some series, such as count data, are 
intrinsically non-Gaussian and so using a Gaussian model could harm forecast- 
ing precision. In this section we outline the methods for directly modelling 
non-Gaussian series. 

The key to modelling non-Gaussian time series.is the non-Gaussian state 
space form. It will be built out of two assumptions. Firstly the measurement 
equation is such that we can write 

T 

f ( Y a ,  . . . , Y r l a x  . . . .  , a t )  = Y[ f ( y t l a t )  . (6.11) 
t=a  

This assumes that given the state a t, the observation Yt is independent of all the 
other states and observations. Thus a t is suf f ic ient  for Yr The second 
assumption is that the transition equation is such that 

T 

f ( % , . . . ,  ar  l Y o) =f(~a [Yo) [ I  f(~, I ~,_a), (6.12) 
t=2 

that is the state follows a Markov process. 
Filtering can be derived for a continuous state by the integrals 

f (a t  [ r t-a)  = f f ( a ,  [ a t_a) f (at_a [ Y t -a )  d°et-l , (6.13a) 

f(a,[Y,)=f(Ytla,)f(a, lY,_O/f f(y, lat)f(a, lY,_l)da,. (6.13b) 

Thus it is technically possible to carry out filtering, and indeed smoothing, for 
any state space model if the integrals can be computed. Kitagawa (1987) and 
Pole and West (1990) have suggested using particular sets of numerical 
integration rules to evaluate these densities. The main drawback with this 
general approach is the computational requirement, especially if parameter 
estimation is required. This is considerable if a reasonable degree of accuracy is 
to be achieved and the dimension of the state is larger; the dimension of the 
integral will equal the dimension of the state and so will be 13 for a basic 
structural model for monthly data. It is well known from the numerical analysis 
literature that the use of numerical integration rules to evaluate high-dimen- 
sional integrals is fraught with difficulty. 

The computational explosion associated with the use of these numerical 
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integration rules has prompted research into alternative methods for dealing 
with non-Gaussian state space models. Recent work by West and Harrison 
(1989) and West, Harrison and Migon (1985) has attempted to extend the use 
of the Kalman filter to cover cases where the measurement density is a member 
of the exponential family, which includes the binomial, Poisson and gamma 
densities, while maintaining the Gaussian transition density. As such this tries 
to extend the generalised linear model, described in McCullagh and Nelder 
(1989), to allow for dynamic behaviour. 

For ease of exposition we will only look at the extension of the local level 
model to cover the exponential family measurement density. More specifically, 
we will assume that 

f (y t  l tzt) = b(yt, o-t~)exp (YdXt--~(IXt) ~ , 
O'et "] (6.14) 1 ( (/x,-/x, ~) 2) 

f(/xt I/Xt_l) - ~ e x p  2o.2 

2 will and follow the development given in West and Harrison (1989). Here o-,t 
be assumed to be known at time t. By selecting a(-) and b(.) appropriately, a 
large number of distributions can result. A simple example of this is the 
binomial distribution 

nt! 
f(Yt  I "at) - yt!(n t _ yt) ! "atY'( 1 - ~)n, -y , ,  (6.15) 

which is obtained by writing 

"at a ( ~ )  = log(1 + exp(p~t) ) /z t = l o g l  "a t '  

nt ! (6.16) 
b ( y t ,  o -~ t )  - y , ! ( n  t - y , ) !  • 

Although it is relatively straightforward to place densities into their exponen- 
tial form, the difficulty comes from filtering the unobservable component N as 
it progresses through time. Suppose we have a distribution for/x t_ll gt-l-  The 
first two moments of this prior will be written as rot_ 1 and Pt-1. The random 
walk transition means that the first two moments of/xt] Yt-1 will be 

refit-1 = mr-1, Ptlt-1 =Pt  ~ + ~ • (6.17) 

As the measurement density is in the exponential family, it is always possible 
to find a conjugate density. Generically it takes the form 

f (~t  [ gt-1) = C ( r t l t - 1 ,  S t ] t - l )  exp(kctrtlt-i -- s t l t - l a ( [ - t t ) )  " (6.18) 

For a particular form of this density it is typically possible to select r t] t_ 1 and 
stir_ ~ so that the first two moments of this density match m t l t _  1 and t ) t [ t _ l .  Thus 
the actual prior density of/x t I Y,-I will be approximated by a density which has 
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identical first two moments and is conjugate to the measurement density. 
Having determined r and s, this conjugate prior can be used to construct the 
one-step ahead density 

f ( Y t  [ Y t -~ )  = f f ( Y t  ]/xt)f(/x, I Yt-i) d/x, (6.19a) 

c(rtlt-1, S t l t -1)b(y t ,  o-~t) 
m 

c(rtlt_ 1 + yt/o'~t , St[t_ 1 -]- (1/0"~,)) 
(6.19b) 

Further 

f ( N  l I t )  = c(r,,  st)  exp(rdxt - sta(/x~)) , (6.20) 

where 

Yt 1 
rt = rtlt-1 + 2 , st = stir-1 + 7 .  (6.21) 

or e (r e 

By finding the first two moments of this density, implied values for m t and Pt 
can be deduced, so starting the cycle off again. As the approximate density of 
Yt ] Yt-1 is known analytically, a maximum quasi-likelihood procedure can be 
used to estimate the unknown parameters of this model by using a predictive 
distribution decomposition of the joint density of the observations 

T 

f ( Y l , "  " " , Y r  [ Yo) = 1~ f ( Y t  [ r t -1)  - (6.22) 
t = l  

EXAMPLE. If the measurement equation is normal then 

m r [ t - 1  1 

rt]t-1 --  P t l t - 1  ' St ir-1 --  P t l t - x  ' (6.23) 

SO 

mr[t-1 y~ 1 1 
r~ - -  A v  2 ' S t - -  + 2 (6.24) 

P t l t - 1  tY~ P t l t - 1  or e 

implying 

m t  = Ptrt  = mtrt-1 Yr .  (6.25) 
P t l t - 1  o'~ 

As 

2 
° - ~ P t l t - 1  

Pt - 2,  (6.26) 
Pt l t -X  + O'e 

this is the usual Kalman filter. 
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EXAMPLE. If the measurement density is binomial then the conjugate prior is 
beta, 

f(~r, I r t - 1 )  - F ( r t l ' - I  + S ' l t -1 )  77"['1t-1-1( 1 - "trt) s*lt-1 1 (6.27) 
F ( r t l t _ l ) F ( s t l t _ ~  ) 

But as t~ t = log ~ / 1  - ~ it follows that using our prior knowledge of t~t, 

m t l t - i  = Etx t  I Y t - 1  = T(rt l t -1)  - -  " Y ( S t t t - 1 )  , 

P,lt-a =Var /z  t I Yt_~ = "~(r,i,_~) + 5,(stir_l) , (6.28) 

where 7( ')  is the digamma function and ~(-) is its derivative, we can allow rtlt_ 1 

and Stl ,_ 1 to be selected numerically. When rtt t_ 1 and S t i r _  1 are updated to give 
r t and st ,  the corresponding m t and Pt can be deduced from 

m t  = y ( r t )  - 3/(st)' (6.29) 
pt = ~,(r,) + ~(st). 

This completes the cycle, since mt+ll  t = m t and P t + l l t - = P t - I - 0  "2. 

The work on the dynamic generalised linear model and the extended Kalman 
filter share some important characteristics. The most important of these is that 
both are approximations, where the degree of approximation is difficult to 
determine. In neither case does the filtered estimate of the state possess the 
important property that it is the minimum mean square error estimate. 

An alternative approach is to design transition equations which are conju- 
gate to the measurement density so that there exists an exact analytic filter. In 
the last five years there has been some important work carried out on these 
exact non-Gaussian filters. Most of this work has been based on a gamma-be ta  
transition equation; see the discussion in Lewis, McKenzie and Hugus (1989). 
A simple example is 

-1 
a t = oJ a t_ l~Tt ,  r / t -  Beta(war_l, (1 - w)a t 1), 

at 1 I Y t - 1  ~ G ( a t - 1  b t - 1 ) ,  o) E (0, 1] .  (6.30) 

The transition equation is multiplicative. The rather strange constraints on the 
form of the beta variable are required for conjugacy. They imply a t I Yt-1 
G ( a t l t _ l ,  b,l,_1) , where 

atl t_ 1 = coa t_ l ,  b t l t_  1 = o)b t_  1 . (6.31) 

This means that 

atlt-1 a t 
E a t  l Y t -1  -- btlt_ 1 : b~ = E a t  1 Y t - 1 ,  

(6.32) 

at l t -1  - w-1Var at_ 11~-1 Vara t lYt  1 -  2 
- bt l t_l  
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Thus the expectation of the level remains the same, but its variance increases 
just as it does in a Gaussian local model. 

Gamma-beta transition equations have been used by Smith and Miller 
(1986) in their analysis of extreme value time series to enable them to forecast 
athletic world records. Harvey and Fernandes (1989a) exploited them to study 
the goals scored by the England football team, against Scotland in their 
matches at Hampden Park. A more interesting example from an economic 
viewpoint is the paper by Harvey and Fernandes (1989b) on insurance claims. 
Both papers use a Poisson measurement equation 

e -at[i¢ yt 
- t  

f (y t  [at) yt! (6.33) 

As a gamma is the conjugate prior to a Poisson distribution, this model is 
closed by using a gamma-beta transition equation, for the use of Bayes' 
theorem shows that 

a t [Y t -G(a t ,  bt),  at=atlt_l +y t ,  bt=btlt_l + l .  (6.34) 

This means that if a 0 = b 0 = 0, the filtered estimate of a t is 

t - 1  

E ,o,y,_j 
at j=o (6.35) Eat l Yt - b , - t - 1  

~ .  o) j 
j=0 

which is an exponentially weighted moving average of the observations. The 
one-step ahead predictive distribution is 

f(Yt [ Y,-~) = f f(Yt [at)f(at [ Y t-l) dat 

(a ,  - 1 ) !  
= y , ! (a t -  1 - y t ) !  (bttt-~)a'l'-lbta" (6.36) 

which is negative binomial and so the likelihood for this model can be 
computed using the predictive distribution decomposition, as in (6.22). 

6.4. Stochastic variance models 

One of the most important modelling techniques to emerge in the 1980s was 
autoregressive conditional heteroskedasticity (ARCH); see Engle (1982) and 
Bollerslev (1986). These authors suggested modelling the variability of a series 
by using weights of the squares of the past observations. The important 
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GARCH(1, 1) model has 

Y, I Y,-1 - N(0, h,) ,  (6.37) 
2 

h t = O~ 0 + OtlYt_ 1 + ol2ht_ 1 , 

that is the one step ahead predictive distribution depends on the variable h v 
Thus the conditional variance of the process is modelled directly, just like in 
ARMA models the conditional mean is modelled directly. 

Although the development of these models has had a strong influence in the 
econometric literature, a rather different modelling approach has been sug- 
gested in the finance literature; see, for example, Hull and White (1987), 
Chesney and Scott (1989) and Melino and Turnbull (1990). These papers have 
been motivated by the desire to allow time varying volatility in opinion pricing 
models, so producing a more dynamic Black-Scholes type pricing equation. 
This requires that the volatility models be written down in terms of continuous 
time Brownian motion. In general ARCH models do not tie in with such a 
formulation, although as Nelson (1991) shows there are links with EGARCH. 

The finance models, which are usually called stochastic volatility models, 
although we prefer to call them stochastic variance models, have some very 
appealing properties. They directly model the variability of the series, rather 
than the conditional variability. Thus they are analogous to the structural 
models discussed in the rest of this paper which are all direct models for the 
mean of the series at a particular point in time. A simple example is 

Yt = et exp(ht/2), e t ~ NID(0, 1), 

h ,  = a o + a l h  ~_ 1 + n ~ ,  B~ ~ NID(O, o-~). 
(6.38) 

where, for simplicity, e t and ~?s are assumed to be independent for all t and s. 
Here the logarithm of the standard deviation of the series follows an AR(1) 
process, which has an obvious continuous time generalisation. It is not 
observable, but it can be estimated from the linear state space form 

log y~ = h ,+ log  e~ = h  t + e*,  

h t = a o + % h t _  1 + "tit, 
(6.39) 

where e* is independent an identically distributed, but not Gaussian. In fact 
Ee* = - 1 . 2 7  and Vat e* = 4.93; see Abramowitz and Stegun (1970, p. 943). 
The Kalman filter provides the minimum mean square linear estimator of h t 

from the log y~ series. Further, the corresponding smoother inherits the same 
property of being the best linear estimator given the whole data set. 

As Yt is the product of two strictly stationary processes, it must also be 
strictly stationary. Thus for any stochastic variance model, the restrictions 
needed to ensure the stationarity of Yt are just the standard restrictions to 
ensure the stationarity of the process generating h i ;  compare the simplicity of 
this to the GARCH(1, 1) model, as analysed by Nelson (1990). The properties 
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of this particular autoregressive stochastic variance model can be worked out if 
I 11 < 1, for then h~ must be strictly stationary, with 

°/0 2 or  
orh = Var h t - 2 • (6.40) Y h = E h t -  1 - % '  1 - a  I 

The fact that Yt is white noise follows almost immediately given the independ- 
ence of e t and ~Tt. The mean is clearly zero, while 

E y t y t _ ~ . = E e t e t _ , E ( e x p ( h ' ? ' - ' ) ) = O  (6.41) 

a s  E e t e t _  ~ - -  0. The odd moments of Yt are all zero because e t is symmetric. The 
even moments can be obtained by making use of a standard result for the 
lognormal distribution, which in the present context tells us that since exp(ht) 
is lognormal, its j-th moment about the origin is exp(j3~, +jo-2/2). Therefore 

Var y, = Ee~E exp(h,) = exp(y h + o-2/2). (6.42) 

The fourth moment is 

Ey~ = Ee~E exp(h,) 2 = 3 exp(2y h + 2or~) (6.43) 

and so the kurtosis is 3 exp(orha), which is greater than 3 when OrE is positive. 
Thus the model exhibits excess kurtosis compared with the normal distribution. 
The dynamic properties of the model appear in log y2 rather than y~. In (6.39) 
h t is an AR(1) process and e* is white noise so log y~ is an ARMA(1,  1) 
process and its autocorrelation function is easy to derive. 

The parameter estimation of stochastic variance models is also reasonably 
simple. Although the linear state space representation of log y~ allows the 
computation of the innovations and their associated variances, the innovations 
are not actually Gaussian. If this fact is ignored for a moment and the 
'Gaussian' likelihood is constructed, then this objective function is called a 
quasi-likelihood. A valid asymptotic theory is available for the estimator which 
results from maximising this function; see Dunsmuir (1979, p. 502). 

The model can be generalised so that h t follows any stationary A R M A  
process, in which case Yt is also stationary and its properties can be deduced 
from the properties of h r Other components could also be brought into the 
model. For example, the variance could be related to a changing daily or intra 
daily pattern. 

Multivariate generalisations of the stochastic volatility models have been 
suggested by Harvey, Ruiz and Shephard (1991). These models overcome 
many of the difficulties associated with multivariate A R C H  based models; see 
Bollerslev, Chou and Kroner (1992) for a survey of these models. The basic 
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idea is to let the ith element of the N-dimensional vector Yt be 

Y i t  = ei t  exp(hi,) , 
(6.44) 

h i t  = Oloi q- O l l i h i t _  1 ~ t -~ i  t , 

where e, and ~ are N-dimensional multivariate Gaussian white noise processes 
with covariances X~ and X~. The matrix ~ will be constrained to have ones 
down its leading diagonal and so can be thought of as being a correlation 
matrix. 

The model can be put into state space form, as in (6.39), by writing 

2 * i =  1, N .  (6.45) log Y i t  = h i t  + e i t  , • • • , 

E *  . * t The covariance of e* = ( it, . . ,  6Nt ) can be analytically related to X~, so 
allowing straightforward estimation of 2f~ and 2~ by using a quasi-likelihood, 
although the signs of the elements of X~ cannot be identified using this 
procedure. However, these signs can be estimated directly from the data, for 
Y,Yi, > 0 if and only if eite~t > 0 implying the sign of the i,j-th element of ~ 
should be estimated to be positive if the number of occurrences of YitYjt > 0 is 
greater than T/2. 

Harvey, Ruiz and Shephard (1991) analyse four daily exchange rates for the 
US dollar using (6.38) and find that a 1 is approximately equal to unity for all 
the rates, suggesting that a random walk is appropriate for h r This model has 
very similar properties to IGARCH in which a 1 + a2= 1 in (6.37). The 
multivariate generalisation is straightforward and the transformed observa- 
tions, as in (6.45), are a SUTSE model of the form (4.1). Further investigation 
of the model indicates that it can be made even more parsimonious by 
specifying just two common trends, thereby implying co-integration in volatili- 
ty; compare (4.14). The first common trend affects all four exchange rates, 
while the second is associated primarily with the Yen. 

Although stochastic variance models can be made to fit within the linear 
space framework and so can be handled by using the Kalman filter, this filter 
does not deliver the optimal (minimum mean square error) estimate. It is not 
possible to derive the optimal filter analytically and so it is tempting to change 
the transition equation in an attempt to allow the derivation of exact results for 
this problem. This approach has been followed by Shephard (1993b) using the 
techniques discussed in the previous subsection. He proposed a local scale 
model 

Y, I at ~ Y(0, a~-l), (6.46) 

where ~,, the precision of the series at time t, satisfies the gamma-beta 
transition equation of (6.30). Although o~, is unknown, it can be estimated 
because 

o~ , l y~G(a t ,  b,) ,  a=a , l t  1+~,  b=b, l~ 1 +~_y~'l 2 (6.47) 
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and also 

t-1 
~ o )  J 

at j=o (6.48) Ecrt [Yt - bt - t-1 
~, j2  

o) Y t - j  
j=0 

this being the inverse of  the E W M A  of  the squares of  the observat ions.  
W h e n  the focus shifts to the one-s tep ahead  forecast  density,  then 

that  is ytl  Y_,_I is a scaled Student ' s  t variable,  with scale which is an exact  
E W M A  of  the squares  of  the past  observat ions.  If  t is large then the degrees  of  
f r e edom in the predict ive density will approximate ly  equal  o ) / ( 1 -  o)). As  
o) ~ 1, the degrees of  f r eedom increase and so the one-s tep ahead  density 
becomes  like a normal .  The  pa rame te r  o) has to be larger than 0.8 for  the 
four th  m o m e n t  to exist. Setting o) to 0.5 means  that  the density is a Cauchy  
r a n d o m  variable.  

M a n y  extensions of  this mode l  are possible,  allowing, amongs t  o ther  things, 
an exponent ia l  power  m e a su re m e n t  density instead of  normal ,  i rregularly 
spaced observat ions  and mult is tep ahead  forecasts.  The  difficulty with the 
mode l  is that  it is hard  to significantly depar t  f rom the g a m m a - b e t a  transit ion 
equat ion.  As  this is const ra ined to be a nons ta t ionary  process and is technically 
awkward  to generalise to the mult ivariate case, it is o f  less practical  use than 
the stochastic variance models .  Howeve r ,  for  dealing with this very  special case 
it does provide  a ra ther  interesting alternative.  
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Bayesian Testing and Testing Bayesians 

Jean-Pierre Florens and Michel Mouchart 

1. Introduction 

In general, a null hypothesis (H0) and its alternative (Ha) may be considered as 
two regions (actually, a partition) of the parameter  space of a unique sampling 
model or as two different models. These two interpretations cover a large class 
of problems and a wealth of different procedures have been suggested and 
analyzed in sampling theory. This survey focuses the attention on Bayesian 
methods and endeavours to illustrate both the intrinsic unity of Bayesian 
thinking and its basic flexibility to adjust to and to cope with a wide range of 
circumstances. 

Broadly speaking two kinds of approaches seem to be fruitful. One approach 
starts by remarking that a test is a statistical procedure,  i.e., a function defined 
on a sample space, with value in a two-points space, the elements of which may 
be, more or less arbitrarily, labelled 'accept' or 'reject '  a given hypothesis. It 
seems therefore natural to approach a testing problem as a two-decision 
problem: this approach gives a rather straightforward logical background and 
leads to what we shall call a 'fully Bayesian approach'.  Some colleagues among 
our Bayesian friends are tempted to assert ' that's all' and to consider testing 
exclusively as a two-decision problem. Another  approach starts by remarking 
that testing may also be viewed as a way for the statistician to handle his own 
doubt  about a statistical model: were the null hypothesis considered as certain, 
then he would go on with an inference restricted to the null hypothesis, i.e.,  
with a statistical model whose parameters sweep the null hypothesis only. Thus 
the statistician implicitly considers two models, 

{pO: 0 EHo} and {pO: 0 EHa} 

and the mere fact of testing means that (s)he is uncertain about which model is 
the 'suitable' one. We shall see that this approach is, in a sense, more flexible. 
It is characterized by the fact that the two models share the same sample space 
and two parameter  spaces characterizing different sets of sampling distributions 
but these parameters may possibly have an economic meaning which is quite 
different with the two models even if they appear in a similar analytical form. 
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As suggested by the title, this survey has two main sections: one on general 
principles, another one on procedures. Let us briefly review these sections. 

Section 2, called 'Bayesian testing', surveys general principles and is divided 
into two main parts. The first one (Section 2.2) is rather traditional in the 
Bayesian literature and focuses attention directly on inference about the 
hypotheses under considation. Its main output is the posterior probability of 
hypotheses but may also take the form of Bayes factors or of posterior odds 
and is based, essentially, on the difference between the predictive distributions 
determined by each hypothesis. Side issues also consider comparison with the 
sampling theory analogue, in particular on possible conflict with p-values. A 
second part (Section 2.3), less traditional, focuses attention on inference on the 
parameter of interest under different models and is based on a Bayesian 
approach to the encompassing principle. This is a formalization of a simple 
idea: as far as inference is concerned, model M 0 encompasses model M 1 if any 
inference based on M1, i.e., any of its posterior distributions, may be obtained 
by transforming a posterior distribution of model M 0 without retrieving the 
sample, in other words, if M 0 is a 'new' model it should be able, for being 
accepted, to explain the findings of the 'old' model M 1. A peculiarity of the 
encompassing approach is to base the binary choice among models, or 
hypotheses, on its relevance for the inference on the parameters of interest. 
These two parts are distinguished by writing (H0, HI) for the first one and 
(M0, M~) for the second one but it should be insisted that this notational 
distinction is contextual rather than substantial, i.e., it is aimed at drawing the 
attention to the question whether the interest lies in choosing among models, 
understood as hypotheses to 'explain the real world' or in choosing among 
models understood as learning rules to be used when analyzing data. We show 
in particular that this latter approach provides a Bayesian version of the 
Hausman (1978) test for model specification. Also Section 2 discusses the 
'minimal amount' of prior specification required to make these approaches 
operational and some aspect of their asymptotic behaviour. 

Section 3, called 'Testing Bayesians', surveys procedures derived from the 
general principles of Section 2 when facing specific problems of econometric 
interest. Section 3.1 considers the testing of a regression coefficient (with 
known variance). This problem is analytically the simplest one; it is used as an 
opportunity to survey most of the procedures suggested by the preceding 
section. In contrast, Section 3.2 considers an analytically more complex 
problem, namely testing for unit root(s); it surveys a literature that recently has 
been very active. It is therefore too early to claim any 'objectivity' in the 
appraisal of those recent achievements. We essentially endeavour to show how 
the general principles of Section 2 have generated useful and workable analysis 
of a problem, the solution of which has been judged of crucial importance in 
contemporary dynamic modelling. 

It should be clear, from this presentation, that Sections 2 and 3 do not do full 
justice to the complete Bayesian activity in the domain of testing. The last 
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section sketches some of the overlooked material and gives a rapid evaluation 
of the present state of the art. 

2. Bayesian testing 

2.1. Introduction 

In sampling theory, a statistical model may be viewed as a family of probability 
measures on a sample space (S, 5 °) indexed by a parameter 0: 

{(S, 5P), pO: 0 E O}.  (2.1) 

In usual cases, these probability measures may be represented by densities on a 
random variable x representing the observations on the sample space: 

{p(xlO): 0 ~ O}.  (2.2) 

Most econometric models are of the conditional type, i.e., observation x is 
decomposed into y and z, thus x = (y, z), and the statistical model is only 
partially specified, i.e., up to the conditional distribution of y given z only, 
thus, 

{ p ( y l z ,  0): 0 E O}.  (2.3) 

Bayesian models are obtained by endowing a sampling theory model with a 
(prior) probability measure Po on the parameter space (0, 3-) and interpreting 
the sampling model as a probability conditional on the parameter. This is 
allowed by defining a unique probability measure / /  on the product space 
O x S, which is written as 

17[ = Po ® pO (2.4) 

and characterized by 

rt(A xB)= fo AP°(B)dP° A E 3 - ,  ~ E 5  ~ (2.5) 

or, in terms of density, 

p(x, O) = p(O )p(x [ O ) . (2.6) 

Thus, in econometrics, a typical Bayesian model becomes a unique joint 
probability on y and 0 conditional on z, i.e., in terms of densities, 

p(y,  0 Iz) = p(O I z)p(y I z, 0) .  (2.7) 

Bayesian methods aim at performing a dual decomposition of this joint 
distribution into a predictive distribution on ( y l z )  and posterior distributions 
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on (0 l Y, Z), 

p(y, 0 I z) = p(y l z)p(O l Y, z). (2.8) 

Inference problems are connected with the analysis of the transformation 'prior 
to posterior', i.e., the transformation of p(O I z) into p(Oly, z). Prediction 
problems may be considered either in prior terms, i.e., predicting y before it 
has been observed, or in posterior terms, i.e., decomposing y into a 'past' 
component yp and a 'future' component yf, y = (yf, yp), and predicting yf after 
observing yp. In simple cases, predictions are considered conditionally on z 
and are handled by averaging the sampling distribution p (y l z ,  O) -or  
p(yf lyp,  z ,O)-weighted by the relevant distributions on the parameters 
p(O I z) - or p(O l Yp, z, O) - in order to obtain the predictive distributions 

p(y l z )  = f p (y l z ,  O)p(z I0) dO, (2.9) 

P(Yf l Yp, z) = f p(yf I Yp, z, O)p(O ]yp, z) dO. (2.10) 

A rather precise exposition of the probabilistic foundation of Bayesian 
methods may be found in 'Elements of Bayesian Statistics' (Florens, Mouchart 
and Rolin, 1990), particularly Chapter 1, to be referred to as EBS. An 
exposition specifically oriented towards econometrics may be found in Zellner 
(1971) and with a more general orientation, in Berger (1985), De Groot (1970) 
Jeffreys (1967) or Lindley (1971). 

REMARK 1. It will be seen later that both the posterior distributions and the 
predictive distributions are involved in Bayesian procedures of testing. 

REMARK 2. Up to now we have not assumed the prior independence of 0 and 
z, i.e., 0 II z or p(Olz)=p(0) .  This is motivated by two types of considera- 
tions. First, at this level of generality, such an assumption does not substantial- 
ly simplify the Bayesian model because even when 0 and z are, a priori, 
independent, all other distributions involved in the Bayesian model, namely 
the sampling, the predictive and the posterior, still depend crucially on z; in 
particular, for the inference, i.e., the evaluation of the posterior distribution, y 
and z are taken as data. Furthermore, in sequential modeling, z would involve 
lagged values of y so that 0 would not be independent of z. Second, the 
rationale of the hypothesis 0 33_ z is to ensure the admissibility of conditioning 
on z, i.e., of considering the joint distribution p(y, 0 [z) rather than the joint 
distribution p(y, z, O, A) where A would characterize the marginal sampling 
distribution of z, with the consequence that z becomes exogenous for the 
inference on 0. As the problem of exogeneity is not a basic issue in this survey, 
there is no real gain in assuming the exogeneity of z as a starting point (for a 
Bayesian treatment of exogeneity see EBS, Sections 3.4 and 6.3). As a 
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consequence, most general ideas around testing may be presented in uncondi- 
tional as well as in conditional models. 

2.2. Posterior probability of  hypotheses, posterior odds, Bayes factors 

2.2.1. The traditional Bayesian approach: Comparison of  predictive 
distributions 

Two-decision problems. Consider a two-decision problem with the set of 
possible decisions A = {a0, al}. The loss function may then be written as 
l(aj, 0) = [j(0) f o r j  = 0, 1 and H 0 and H 1 may be defined as / / j  = [j-l((0)),  i.e., 
the set of 0 for which aj is optimal (viz., has zero loss). A testing problem is 
characterized by the fact that H 0 and H 1 operate a partition of the parameter 
space constituting the maintained hypothesis. Thus aj may be interpreted as 
'decide as if Hj were true' and the loss function may be rewritten as 

l(aj, 0 ) = ~(0 )~ ~;0 ) , (2.11) 

where j =  0 if j = 1 and j =  1 if j = 0. A decision function a" S---~ A is an 
optimal one, a*, when defined as 

a*(x) = arg inf Ell(a, 0 ) I x ] ,  (2.12) 
aCA 

in general, i.e., in the case of a two-decision problem 

a*(x) = a I <=> E[ll(O){uo(O)Ix] <~ E[lo(O){,l(O ) Ix].  (2.13) 

It has been argued that Neyman-Pearson theory may be interpreted in this 
decision theoretic approach by considering the particular case of a piece-wise 
constant loss function l(aj, O) = li~ ~;(0) so that 

a*(x) = a 1 ¢:> llP(Holx ) <~ 10P(H 1 Ix) ,  (2.14) 

i.e., in terms of posterior probability of hypotheses 

lo 
a*(x) = a I 4=> P ( H  0 I x )  ~ 10 jr_ 11 , (2.15) 

or in terms of posterior odds, 

e(/-/01 x) _< lo 
a*(x) = a  I 1::> P(H1 [x~ ~-~1" (2.16) 

Thus the rule a*(x) = a I ¢:>P(H0 [ x ) ~< 5% would be justified with the piece-wise 
constant loss function such that la = 1910, a way of formalizing that type I-error 
is much more severe than type II-error. This analysis shows that Bayesian 
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testing under piece-wise constant loss functions boils down to the evaluation of 
the posterior probability of the hypothesis in presence. 

Posterior probabilities and posterior odds as foundations of Bayesian testing 
are as old as Bayesian statistics and are presented, e.g., in Jeffreys (1967). 
These definitions are given and discussed in many books and used in many 
papers: see, e.g., Berger (1985), Hodges (1990), Learner (1978, 1983 and 
1991), Zellner (1984). Asymptotic properties of posterior probabilities of the 
two hypotheses can be found in EBS, Section 7.5. Note that the posterior odds 
essentially mimic the likelihood ratio with however a crucial difference of 
interpretation: the posterior odds are based on the posterior distribution rather 
than on the sampling distribution and the critical value is defined by the loss 
structure rather that by an exogenously given level. Also the particular 
piece-wise constant structure of the underlying loss function should be stressed, 
an often disputable structure. For example, such a structure would be 
questionable when testing H0:0 = 0 for 0 being a price elasticity in a brand 
demand equation but would be rather reasonable for testing H0:0 ~< 0.5 when 0 
is the percentage of favourable intention of votes in a forthcoming two- 
candidates election and when the underlying decision is a possible reorientation 
of the electoral campaign. The connection between testing and decision is 
discussed in particular in Savage (1954), Rubin (1971). 

Prior specification and structure of  the hypotheses. The literature on the 
posterior probability of hypotheses and on posterior odds has also paid some 
attention to the role of the prior specification, particularly for the case of a 
sharp null hypothesis and for improper prior distribution. (See, e.g., Klein and 
Brown, 1984; Learner, 1978, 1983; Maddala, 1976). 

Once it is recognized that the hypotheses H 0 and H 1 operate a partition of 
the parameter space O, the prior distribution (and also the posterior) may be 
decomposed conformably with that partition, namely 

Po = ~roP°o + (1 - ~o)Plo , (2.17) 

where ~0 = Po(Ho) and PJo(A) = P(0 ~ A IHi), or in terms of density, 

p(O ) = ~op°(O )~ ,o(O ) + (1 - 7ro)pl(O )~ Hl(O ) , (2.18) 

where pJ(O)~,j(O) are the respective conditional densities. One then obtains 

~rop(x l Oo) 
P(H° Ix) = 7rop(xlHo) + (1 - 1ro)p(x ]H1) (2.19) 

or equivalently, in terms of posterior odds 

P(/401x) p(x I/-/0) 
P(HllX) 1-~r0 p(xlHO 

_ ~'0 Bx(H0;H1 ) (2.20) 
1 - %  
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where 

p(x [Hj) = £~L,j p(xl(O)PJ(O)~uJ (0) dO, j = 0, 1,  (2.21) 

are the predictive densities relative to each hypothesis and Bx(H0; Ha), called 
the Bayes factor of H 0 against H~, is deemed to measure how far an 
observation x increases or decreases the prior odds % ( 1 - % ) - ~  into the 
posterior odds, i.e., gives empirical evidence more or less in favour of H 0. 
Thus in case of piece-wise constant loss functions, the Bayes solution, in terms 
of posterior probability (2.15), posterior odds (2.16) or Bayes factor (2.20), 
essentially relies on the predictive densities (2.21) of each models. Let us now 
survey the impact of the prior specification on those predictive densities 
according to the structure of the hypotheses to be tested. 

(i) If both hypotheses/4j are simple, i.e., Hj = (0j} so that O = {00, 0a}, the 
Bayes factor is exactly equal to the likelihood ratio and is therefore in- 
dependent of any prior specification. In this case, the Bayes factor and the 
likelihood ratio give the same empirical evidence in favour of H 0 but again the 
critical value for the likelihood ratio depends on the loss structure and on the 
prior weight %, viz. 

a*(x) = a 1 ¢~ Bx(Ho; H~) =- P(xlO°) l 0 1 - % (2.22) 
p(x [ O~ <~ ~ " ~ro 

(ii) When one of the hypotheses (or both) is not simple, the corresponding 
predictive density (2.21) clearly depends on the prior specification. If P J0 is 
improper, i.e., 

f pJ(O)~ Hi(0) dO = ~ ,  (2.23) 

more precisely is a o--finite measure, the decomposition (2.17) cannot anymore 
be interpreted as a marginal-conditional decomposition with respect to H 0 and 
Ha; and p(x ]/4j) is also improper. But once an improper prior distribution is 
justified by an invariance argument, its density is defined up to a multiplicative 
constant only; for instance when O = N, pJ(O)= 1 corresponds to Lebesgue 
measure and has the same (translation) invariance property as pJ(O)= 2 (or, 
=1991). Furthermore, two improper prior distributions with proportional 
densities are associated with identical posterior distributions and therefore a 
Bayesian cannot argue in favour of pJ(O)=2 (or, =1991). This is actually 
reflected by writing pJ(O)~1 instead of p J(0)= 1. The difficulty is that the 
(2.21) suffers from the same indeterminacy and the Bayes factor is eventually 
indeterminate. 

(iii) Consider now the case where H 0 is sharp but H 1 is not (heuristically the 
Lebesgue measure of H 0 is zero and that of H a is strictly positive; for instance: 
O = R and H 0 = {00}). If Po is smooth (more precisely, dominated by Lebesgue 
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measure) % = P(H0) = 0; this implies, with smooth sampling probabilities, that 
P(H0 Ix ) = 0 and that the posterior odds and the Bayes factor are identically 
zero. Conversely, if % = P(H0) > 0, Po is not smooth but % > 0 whereas P1 o is 
smooth implies a discontinuity of Po which has been criticized in some 
contexts. Suppose, for instance, O = ~, H 0 =  {00}, % =0 .5  and (0 ]H1)--  
N(m, v). The prior distribution function is smooth everywhere except at the 
point 00 where there is a jump of height equal to 0.5. This jump may be 
considered as undesirable if the sampling model is smooth, heuristically if the 
likelihood function is continuous at 0 = 0 o. For instance, when equilibrium 
appears as a parametric restriction of the type g(O) = 0 in a model embodying 
structural disequilibrium, a prior distribution with a strictly positive mass on 
the (null measure) surface g(O)= 0 may be palatable whereas in a demand 
model where 0~ represents a price elasticity, a strictly positive prior probability 
on {0~ = - 1 }  may be much more questionable when the prior distribution is 
otherwise continuous. But it would seem unnatural to let the prior specifica- 
tion, and more particularly its points of discontinuity, depend on whether one 
intends to test for example Ho:O i = 0 against Ho:O i # 0 or to test Ho:O i = 1 
against H 0 : 0~ # 1. 

Alternative approaches to testing. It has been suggested that testing a sharp 
hypothesis might be a workable approximation for testing a neighbourhood,  
i.e., H0: g(O) = 0 would be an approximation for H0: Ig(O)l < e for some e > 0 
so that % should be interpreted as P [ - e  < g(O) < e] = 7r 0 rather than P(g(0)  = 
0) = %. The difficulty is that the optimal decision rule a*(x), the posterior 
probability, posterior odds or Bayes factors all depend crucially on e. Thus for 
the case of sharp hypothesis some statisticians have remarked that in a 
sampling theory approach a yes -no  testing at a predefined critical level a may 
be less interesting than the evaluation of a confidence interval of given level. 
Similarly, in a Bayesian framework a yes -no  decision problem may be less 
interesting, in practice, than the evaluation of a posterior probability interval, 
i.e., the evaluation of cl(x ) and c2(x ) (with cl(x ) < c2(x)) such that P[q(x)~< 
g(O) <~ c2(x) lx ] = 1 - a (see, e.g., Lindley, 1961). In this approach, the choice 
of level a is less crucial: it is introduced in the framework of a convenient 
summary of the complete posterior distribution. 

Instead of confining the attention to the two-decision problem, attention has 
also been paid to the more general problem of the weight of the evidence 
provided by the data in favour of H 0 or of H 1. Comparing sampling theory and 
Bayesian approaches suggests comparing the p-value, considered as a measure 
of empirical evidence, and one of the Bayesian natural measures viz. posterior 
probability of H 0, posterior odds or Bayes factor. A vast literature has shown 
that an observation may look very favourable to the alternative hypothesis in a 
sampling theory framework but very favourable to the null hypothesis in a 
Bayesian framework; for given data a small p-value may be associated to a 
Very high Bayes factor, so that a p-value cannot be viewed as an approximation 
of P(H 0 Ix), not even an indication of its order of magnitude. This situation has 
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been known as Lindley's paradox, after Lindley (1957) and has received an 
impressive attention in the literature. Fundamentally, the problem is that any 
posterior distribution may be associated to a given likelihood function. 

Relationships between Bayesian test and classical tests have been discussed 
in many papers see in particular Bernardo (1980), De Groot (1973), Gaver and 
Geisel (1974), Good (1985), Hill (1982, 1990), Poirier (1988), Raftery (1986); 
for the more particular problem of the relationship between p-value and Bayes 
factors, see Berger (1986), Berger and Berry (1988) Berger and Delampady 
(1987) (this paper also contains an important bibliography on this issue), 
Berger and Sellke (1987), Casella and Berger (1987) Dickey (1977), Shafter 
(1982). Moreno and Cano (1989) have however shown that the relationship 
between p-values and Bayes factors may be possibly reversed with respect to 
the undimensional case. 

Another approach takes the point of view of estimating a binary valued 
function of the parameter /3 = b(O) where b:O--->{0, 1} is such that H i =  
b-l(f), j = 0 ,  1, i.e., b(O)= ~no(O). Thus some Bayesians have suggested to 
enlarge the two-point set of possible decisions into the unit interval [0, 1] and 
to consider loss functions of the form ~(a, ~ u0(0)) with a E [0, 1]. Thus for a 
quadratic loss function, g(a, ~ no(O)) = [a - ~ ~r0(0)]2, the Bayesian solution, is 
simply a*(x) = E(~H0(0)[ x) and for 

~o(a-  ~Ho(O)) for a > ~H0(0), 

e(a, ~H0(0)) = [ga(~u0(0)_a)  for a <  ~Ho(O), 

the Bayesian solution is a corner solution, namely 

{01 a*(x) = if P(Ho I x ) ~< go + ~ '  

otherwise. 

This is exactly (2.15) with a = 0 (resp. a = 1) identified with a 1 (resp. ao). For 
more details, see Hwang, Casella, Robert, Wells and Farrel (1992). 

2.3. Inference on genuine parameters of interest: An encompassing approach 

2.3.1. Model choice and hypothesis testing 
A deep and recurrent theme of discussions in econometric modelling turns 
around the relationship between the economic meaning of a parameter and the 
model where it appears. These discussions suggest that parameters may 
possibly change their meaning under a null hypothesis. For instance we argue 
in Section 3.2.1. in the model y =/3Z 1 "~ "yZ 2 -[- E the coefficient of z 1 may have 
a different meaning according to whether y = 0 or y ~ 0. 

These considerations lead to the analysis of statistical models such that the 
'parameter' 0 has the form (A, 00, 01) where A is a 'model label' (A E {0, 1)) 
and 0j ( j  = 0, 1) are model-specific parameters. Thus the full Bayesian model 
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would be specified through a joint distribution p(A, 00, 01, x), written as: 

p(),,Oo, Ol,x)=[~op°(Oo, Ol,x)]l-A[(1-~ro)pl(Oo, Ol,x)] ~ , (2.24) 

where % = P(A = 0) and pJ(Oo, 01, x) =P(00, 01, x I & = j ) ,  j = 0, 1, with the 
followi'ng characteristics: 

pJ(Oo, 01, x) = pi(Oj)pJ(x l Oj)pr(OT [ Oj) 
=pJ(x)pJ(Ojlx)pr(O;lOj), j =0 ,  1. (2.25) 

This is, the sampling distribution of model j, pr(x I0), depends only on the 
corresponding 0 r with the consequence that the conditional distribution 
pJ(Oi[Oj) is not revised, in model j, by the observation x. Let us note the 
following points: 

(i) In this formulation 00 may be a subvector of 01, or a function of 01 and 
represents the free parameters under H 0 in the usual hypothesis testing but this 
is not a necessity: 00 and 01 may also represent unrelated parameters charac- 
terizing different models. 

(ii) When 00 is a subvector of 01 and when one is willing to specify that 0o 
keeps the same economic meaning whether A = 0 or A = 1, then the prior 
specification would be: p1(0o[01) is degenerate at 0 o and p°(O I 100) =pl(01 [00), 
the right-hand side being directly derived from pi(01). 

These features are stressed by writing M r (for model) instead of Hj (for 
hypothesis). Recall that this distinction is contextual rather than mathematical 
but we think the context of model choice is more general, in a sense to be 
made precise in the sequel. In particular, if the parameter of interest is ,~, i.e., 
if the problem is actually deciding whether model M 0 or M 1 is preferred, the 
discussion of the preceding section applies. More specifically, 

 op°(x) 
P(A = 0 Ix) = 7ropO(x) + (1 - ~ro)pl(x) ' (2.26) 

where, again, pi(x) is the predictive density relative to model j, 

pr(x) = f pJ(x l Oj)pr(Or) dO r . (2.27) 

Note that for the same reason as in Section 2.2 the evaluation of pJ(x) requires 
pJ(Oj) to be a proper (prior) distribution but also that, although formally 
present in the full Bayesian model, pJ(Of[ Or) needs not be specified at all, it is 
only assumed to be implicitly an (arbitrary) proper distribution. 

2.3.2. The encompassing approach: An overview 
Let us pursue the approach of two models, M 0 and M1, characterized by their 
parameters 00 and 01 but consider now that the parameter of interest is a 
function of 01, viz. q~ = f(O 1). 



Bayesian testing and testing Bayesians 313 

If model specification, prior elicitation, data handling and numerical compu- 
tation were 'free'  (or your research budget 'unlimited' in time and money)  one 
could apply a 'full Bayesian approach',  namely, start from the complete joint 
distribution p(A, 00, 01, x) sketched in the preceding section, marginalized into 
p(q~,x) and therefrom evaluate p(~  Ix), which can also be decomposed as 
follows: 

p(q~ Ix) = P(A = O Ix)p°(q~ Ix) + P(A = 1 I x)pl(~ Ix) ,  (2.28) 

where pJ(q~lx) is the posterior distribution of q~ obtained from each model 
separately, i.e.,  from each pJ(Oo, 01,x ). Remember  from the discussion of 
Section 2.2.1, that the evaluation of P(A]x),  and therefore of p(q~ Ix), is 
meaningful only under proper  prior specification, i.e., when p(A, 00, 01) is a 
genuine probability measure. In practical cases, the formidable 'if' starting this 
paragraph makes this solution more often 'dully Bayesian' than 'fully 
Bayesian'! 

Apar t  from the operationality requirement,  there is another  argument for 
thinking that the evaluation of p(~  Ix) as in (2.28) is not the end of the story. 
As far as M 0 and M 1 are two 'reasonable'  models for explaining how data x has 
been generated or for helping in predicting a future realization of x, it is a 
standard practice in the history of science to look for 'parsimonious modelling' • 
rather than keeping record of 'all reasonable models'  and the use of the mixed 
model (2.28) reflects precisely the idea of keeping track of 'all reasonable 
models'  as opposed to a search for as simple a model as possible (see also 
Dickey and Kadane, 1980; Hill, 1985). 

If model 1 were as simple as model 0, inference on ~ would then boil down 
to evaluating its posterior distribution pl(q~lx ) from the sole model 1 viz. from 
pl(O 1 IX)ocp~(O1)pl(x[O~); in such a case, neither model 0 nor pJ(OT]Oj) would 
have any role. Suppose now that model 0 is 'definitively simpler'. A natural 
question is now: 'how far could we build an inference on q~ relying on model 0 
only?'.  The  very same question is also relevant when M 0 and M 1 are two 
intrinsically different models and the statistician is willing to consider M 0 as a 
' true'  (or 'valid') model with the idea that if M o were ' true'  and M 1 were 'false', 
the inference on q~ should be based on M 0 rather than on M1, provided that q~ 
can be interpreted under M 0. 

Whereas the evaluation, in Section 2.3.1, of P(A]x),  treats symmetrically 
M 0 and M1, this last question introduces a basic asymmetry between M 0 and 
MI: the parameter  of interest is a function of 01 only and model 0 has prima 
facie an auxiliary role only. At this level of generality 0 o may be a subvector of 
01, or a function of 01 or a 'completely different '  parameter  and f(O~) might also 
be a function of 0 o only: this will be examplified in Section 3. We consider the 
Bayesian extension of M0, as in (2.25), 

p°(O o, 01, x) = p°(Oo)p°(x l Oo)p°(O ~ 10o), (2.29) 

where the first two terms specify a standard Bayesian model on (x, 0o) and the 
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last term, designated as a 'Bayesian pseudo true value' (BPTV) calls for several 
remarks: 

(i) Its name comes from the literature on the encompassing principle where 
a pseudo true value of a statistic means its expectation or its probabilistic limit 
under a model different from that where such a statistic 'naturally' appears. It 
is therefore a function of the parameters of that different model. This concept 
has known a wide diffusion in the classical literature since the seminal paper of 
Cox (1961). Its Bayesian version is in the form of a probability, conditional on 
the parameters of that different model, rather than a deterministic function of 
those parameters. 

(ii) The role of a BPTV is to insert 01 into model 0 in order to make an 
inference on 01 possible from model M 0. 

(iii) The role of a BPTV is also to 'interpret' 0 a in the light of model M 0 
whereas a classical pseudo true value is rather the interpretation of a statistic 
under M 0. This role gives full flexibility as far as adjusting the procedure to 
situation where 00 is a function of 01 or not, or where 01 keeps the same 
interpretation under M 0 and M 1 or not. 

(iv) Finally the role of a BPTV is to make 00 a sufficient parameter in the 
Bayesian model extending M o (i.e., x 21_ 0~ [00; p0 whereas x _IA_ 01100; p and 
x J_l_ (01, h); p are both false in general). 

These ideas have been developed, from a Bayesian point of view in Florens 
(1990), Florens and Mouchart (1985, 1989), EBS (Chapter 3), F10rens, 
Mouchart and Scotto (1983), and in various hitherto unpublished papers by 
Florens, Hendry, Richard and Scotto. 

From (2.29) the posterior distribution of q~, pO(q~ ix ) can be evaluated as 

p0((# ix ) = E0[pO(q~ [ 00) I x] 

= f p°(O o [ x)p°(~ 100) d0o, (2.30) 

where pO(q~ [00) is obtained by marginalizing on ~p the BPTVp°(01 [0o). Once 
we have built two posterior distributions on the parameter of interest, viz. 
p°(q Ix) and pl(q~ ix), a natural question consists of asking how different they 
are. 

If they are equal for q~ = 01, this means that any inference possible from 
model M 1 can be reproduced from model M o extended as in (2.29). This also 
means that model M 0 extracts from the observations all the information 
extracted by model M1 along with the information on 00, the genuine 
parameter of M 0. In such a case we say that model M o encompasses model M~. 
This concept may be viewed as a statistical translation of the idea that in order 
to be held as prevailing, a 'theory' M o should explain not only the observations 
generated by experiments naturally suggested by itself but also the observa- 
tions generated by experiments suggested by a 'competing theory' M 1. 

If p°(q~ Ix) and p~(q~ Ix) are not equal, one may measure how different they 
are by means of a discrepancy function d(x) which may be a distance (D) 
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among distributions or among characteristics of distributions (typically, among 
expectations), or a divergence function (D), 

d(x) = D(pl(~ Ix), pO(~ ix)) . (2.31) 

The basic idea is the following: if d(x) is 'small', the inference on q, produced 
by model M1, is 'almost' reproduced by model M 0. This suggests another way 
of testing model M 0 against model M1, when the parameter of interest is ~p and 
when the statistician is not willing to adopt a fully Bayesian attitude and let the 
model choice depend on prior probabilities of models. 

The use of d(x) for deciding to base the inference about ~ on M 0 rather than 
on M 1 may be guided by the asymptotic behaviour of d(x), and eventually of 
p°(~p Ix) and of pl(q~ Ix). Instead of describing a general theory let us sketch 
the structure of a rather general situation. Let us denote x I = (Xl. . .x,) .  Under 
M0, i.e., under the joint distribution p°(Oo)p°(Xl[Oo), p~(q~ [x~) typically (i.e., 
under 'good' conditions such as i.i.d, sampling with suitable smoothness of the 
likelihood) converges to a distribution degenerated at f[g(Oo) ] where g(Oo) is 
the (classical) pseudo-true value of 01, i.e., the limit under p°(x~[Oo) of the 
maximum likelihood estimator of 01 in pl(x~[01) (see Berk, 1966). Under 
similar conditions p°(Oo[x'~) also converges to a degenerate distribution, (see, 
e.g., EBS, Section 9.3 for cases more general than the i.i.d, one) but this is not 
sufficient to ensure the convergence of p°(q~ [Xl) which crucially depends on 
the specification of the BPTVp°(q~ [00) (derived from p°(01 [00) ). This analysis 

, 0 however shows that a natural specification of the BPTV p (01 [00) would be 
either a conditional distribution degenerated at the classical pseudo-true value 

0 0 g(Oo) or a sample-size dependent specification pn(01 [ 00) such that pn(Oa [Xln) 
converges to the same limit as p1(01] xln); some examples will be given later on. 
Under such a specification of the BPTVp°(01[Oo) - or ofp°n(Ox[Oo) - and with a 
suitable choice of the distance or of the divergence, d(x~) typically converges, 
under M0, to a chi-square distribution and diverges to infinity under M 1. This 
situation is therefore formally similar to most testing problems in a sampling 
theory approach. It suggests either to evaluate a Bayesian p-value, i.e., 
P°(d/> d(x)), or to build a critical partition of the sample space S = S~ k) U S~ k) 
where 

S~ ~)= {x [d(x) ~>k} = d- l ( [k ,  oo)), (2,32) 

where k is specified in such a way that P°(Sl(k)) obtains a prespecified level a,  
i.e., k in such that P°(Sl(k))= a. 

Before illustrating those procedures by some examples, let us point out some 
remarks. 

(i) Those procedures do not require the specification of % because the 
problem is not any more to choose a model but rather to decide how to make 
inference on a specific parameter of interest. Even if ~p is an injective 
transformation of 01, evaluating the predictive support of an observation x in 
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favour of a model or of an hypothesis is different from evaluating the 
discrepancy between two inferences. 

(ii) As far as the prior specification on (00, 01) is concerned, p°(Oo) should be 
proper because d(x) is to be calibrated against the predictive distribution p°(x) 
under M °. However, p1(01) might be improper, provided that pl(Ol[x ) is well 
defined (i.e., that pa(x) is finite). As far as the BPTV is concerned, pl(Oo[O1) 
needs not be specified but p°(O 1 [00) is of crucial importance. Next subsection 
gives more comments on some issues related to the prior specification. 

(iii) As mentioned earlier, a first motivation for model choice is parsimoni- 
ous modelling. In a Bayesian framework, this leads to the idea of developing 
procedures based on partially specified Bayesian models. Remark (ii) gives, in 
this respect, a first rationale for the procedures just sketched. A second 
motivation for model choice is to introduce the statistician's own doubt about 
his own model. This is the idea that, in an exploratory study, as opposed to a 
completely specified decision problem, the statistician may like to entertain the 
idea of a 'small world', within which he is willing to be 'coherent'  but, at the 
same time, to keep the idea of a 'grand world' where he is actually moving and 
the description of which is only partially specified in his small world. He is thus 
implicitly accepting the idea of receiving tomorrow information he would 
consider as unexpected today. Savage (1954, Sections 2.3 and 5.5) mentions 
the difficulty of delineating the border between the small world and the grand 
world. A possible interpretation of the critical partition S = So(k ) to Sl(k ) is 
that a simple and operational approach of the small world is So(k ) under M 0 
and that an observation in So(k ) leads to go on learning according to p0(~p [x) 
whereas an observation in S~(k) would lead to rethink the model without 
deciding today how it should be. In the same line, Pratt, Raiffa and Schalaiffer 
(1964) mention that the extensive-form analysis requires one more axiom than 
the normal-form analysis, namely their axiom 5 which says, heuristically, that 
present preferences among conditional lotteries are equivalent to conditional 
preferences among the corresponding unconditional lotteries. That supple- 
mentary axiom deals with the stability of the preferences with respect to the 
state of information. Again, the critical partition S = So(k ) tO Sl(k ) may be 
interpreted as describing the set So(k ) of observations x where one is willing to 
retain axiom 5 and eventually to use the learning rule specified by p°(q~ Ix) 
whereas an observations in Sl(k ) would lead to rethink the model without 
deciding today how it should be. Both interpretations make rather natural an a 
priori given level a defining k and its associated partition of the sample space 
S. The alternative to that specification would be a fully Bayesian approach 
sketched in the beginning of this subsection but also suggested as being of 
moderate interest in various actual situations. 

2.3.3. Prior specification and Bayesian pseudo true-values 
Comparing sampling theory procedures and Bayesian procedures, one may 
notice that in both types of procedures, M 0 and M 1 are not treated symmetri- 
cally. In particular the test statistics is calibrated against M 0 only. The main 
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difference between those two types is the prior specification involved in the 
Bayesian procedure. The examples, in Section 3, illustrate how the prior 
specification is the main source of flexibility in the working of Bayesian 
procedures. Two types of prior elicitation are required, viz. the prior dis- 
tributions for each model pJ(Oj), j = 0, 1 and the Bayesian pseudo-true value 
p°(O 1 100). We shall first discuss the specification of p°(O 1 I0o). From a purely 
subjectivist point of view, p°(0110o) represents, in probabilistic terms, the 
meaning of 01 under M0, i.e., the interpretation of the parameter 01 if M 0 were 
considered as the 'true' model. It may nevertheless be helpful to suggest some 
devices for facilitating that specification. In broad terms, those devices are 
model-based and ensure reasonable asymptotic properties, viz. that p0(~ i x~) 
and pl(q~ i x~) converge to a same limit. We sketch three such devices. 

A first device is based on an idea close to Neyman-Pearson approach, 
namely that M 0 should be rejected only if there is kind of a compelling reason. 
Thus one may look for the BPTV which minimizes the expected discrepancy 
function d(x), 

p°(O 1 100) = arg inf E°[d(x)], (2.33) 

where E ° means the expectation under p°(x), and inf runs over the set of all 
conditional distribution of (01 100). This optimization raises, in general, difficult 
problems in the calculus of variation but an example in Section 3.3.1 will show 
how to obtain a restricted optimum in a specific case. 

A second device is based on a Bayesian analogue of a sampling theory 
concept of pseudo-true value, i.e., the (sampling) expectation, under Mo, of 
the posterior distribution, in M1, of 01 namely, 

pO(01lOo) f pl(O 11 n o n ~ (2.34) = X l )  p (X1 [00) dx I - 

Section 3.1 gives an example of how operational such a device can be made. It 
may be mentioned that this construction typically leads to a BPTV depending 
on the sample size, and on the exogenous variables in case of conditional 
models, and in 'good' cases, produces a sequence of pO(q~ ] x~) converging to a 
same degenerate limit as the sequence pl(q~ ]xT). 

A third class of devices consists of considering degenerate distributions, i.e., 

P°(01 ~ F I00) ~- ~ {g(Oo)~F}, (2 .35)  

where g:Oo---~ 01 (Oj in the parameter space for Oj) is momentarily arbitrary. 
This implies 

P°(01EFIx ) =P°[g(0o) E F l x ]  and 

pO(q~ E Q Ix) = P°[f[g(Oo) ] E Q Ix]. 

A natural specification for the function g is a sampling theory pseudo-true 
value. For instance, g(Oo)= plim ° 01, . where 01," is a maximum likelihood (or 
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another consistent) estimator of 0 k in M 1 and plim ° denotes plim under M 0 or, 
in a finite sample, gn(Oo) =E°(01.n 100) or gn(Oo) = arginf01D(p°(x~100), 

1 n p (xl [01) ) for some divergence or distance function. In 'good' cases, all these 
specifications converge to a same limit and produce a sequence of p°(q~ ]x~) 
converging to a same degenerate limit as the sequence p l (p  Ix~). 

We like to stress that these three devices are offered as an eventual 
alternative to a purely subjectivist specification: whether a Bayesian statistician 
should or should not take care of the asymptotic properties of his procedure is 
not an issue to be discussed in this review. We simply suggest that different 
statisticians facing different real-life situations may be expected to adopt 
different positions on this issue. 

Suppose now that the prior specification ofpJ(0j) ( j  = 0, 1) and p°(0110o) has 
been completed in some way. Experience with computer-assisted elicitation 
programs has shown the importance of cross-checking whether a prima facie 
elicitation correctly represents subjective opinions. In this context, it should be 
realized that the prior specification implies two distributions on 01, pl(0 D, 
directly specified, and p°(O D = f p°(Oo)P°(O 1 I0o) d00. Thus, an important ques- 
tion is whether these distributions should or should not coincide (i.e., whether 
01 ~_ A or not). Similarly, when 00 is interpreted as a function of 01, one should 
ask whether p°(O 1 100) and pl(O 1 [00), obtained from pl(01), should or should 
not coincide (i.e., whether 01 II A I00 or not) and whether p~(Oo) and p°(Oo) 
should or should not coincide (i.e., whether 00 22 A or not). These questions 
are the probabilistic translation of the question about the meaning of the 
parameters under alternative models. Finally, the prior specification also 
involves two predictive distributions, p°(x) and pl(x) but note that once they 
coincide, inference on A looses any interests (i.e., once A ~_ x, the prior and 
posterior probabilities of models coincide). 

3. Testing Bayesians 

3.1. Introduction 

In this section we show, through some examples, how testing problems may be 
handled by statisticians open-minded towards Bayesian ideas. We call these 
statisticians 'Bayesians' and their activity we analyze 'testing'. 

The first example starts form a rather standard problem: testing the 
significance of a regression coefficient in a multiple regression. Through this 
seemingly simple problem we try to illustrate the diversity, and propose a 
survey, of procedures suggested by the general approach sketched in Section 2. 
The next example handles a topic more genuinely relevant in econometrics, 
namely testing for a unit root. 
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3.2. Testing a regression coefficient: An overview of procedures 

3.2.1. A simple problem of testing 
Let us consider data X = (y, Z)  along with two conditional models, 

M 0 : y = b z l + u ,  i.e., (y lZ ,  Oo, Mo)--N(bZl, tr2In), (3.1) 

Ml: Y=/3Zl +yzz+U,  i.e., (y lZ ,  O~,M1)-N(/3zl +yZz, O-2In), 
(3.2) 

where Z = (zl, z2), 0 0 = b, 01 = (/3, y )  and with o -z known. Model M o may be 
interpreted as a restriction of model M 1 by means of '3' = 0' but this is not 
always suitable. For instance, an economist (M1) could suggest that the 
quantity consumed (y) is explained by the price (zz) and the income (zl) and a 
sociologist could rather suggest that the quantity consumed is essentially a 
social-class issue and that income is a good proxy for his concept of social class; 
in such a case, the economist and the sociologist have different meanings in 
mind for the coefficient of z r A Bayesian statistician facing these two models 
may therefore want to recognize explicitly that these two models are deeply 
different and that b and/3 represent different concepts. From an operational 
point of view, this aspect will be modelled by means of the structure of the 
prior specification (including the specification of the BPTV). Note that the 
specification of known (and equal) variance is justified exclusively by an 
expository motivation: we want an example where all the analytical manipula- 
tions boil down to the exploitation of the multivariate normal distribution and 
nevertheless allow for rather subtle discussions. For the same reason, the prior 
distributions, in each model, are specified as follows: 

(b [M0) - N(bp, o-2h~1), (3.3) 

(/3,)/ M1)-N ((/3p~ o-2H; 1) (3.4) 
\ \ r / '  

If one wants to specify that the coefficient of z I has the same meaning under 
M 0 and under M1, one may, although not formally necessary, write/3 instead 
of b but in any case, coherence in the prior specification implies that b is 
distributed under M 0 as (/3 13' = O) under M1, and consequently that b e =/3e + -1 h12,phll,p3/p and h e = h11,p (here hi],p is the element (i, j)  of He). In such a case 
the specification yp = 0 may be recommended for symmetry reasons in which 
case, (3.3) and (3.4) become 

(b I Mo) -- N(/3e, 2 - 1  h11,e), (3.5) 

(3.6) 
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Note also the following identity: 

V(~/]M1) = h . . , l H ~ l  T, 1 . (3.7) 

In the following (3.5)-(3.6) are called, the 'coherent prior specification'. 

3.2.2. Posterior probability o f  hypotheses 
We first consider the traditional approach by means of posterior probability of 
hypotheses, posterior odds and Bayes factors. The literature is particularly 
abundant, see, in particular Dickey (1975), Geisser and Eddy (1979), Lempers 
(1971), Piccinato (1990), Poirier (1985), Spiegelhalter and Smith (1982), 
Zellner (1984), Zellner and Siow (1980). Thus we introduce a prior probability 
on models % = P(M0). In order to evaluate the posterior probability we need 
the predictive distribution in each models. 

(y  [ Z ,  Mo) - N[bpz 1, o-2(1, + h; l z l z ' l ) ]  , (3.8) 

( y  [ l ,  M1) ~ N[[3pZ  I + TpZ2 ,  O'2(In + Z H p l Z ' ) ]  . (3.9) 

This produces the Bayes factor 

iI n + hplzlz , l[-I /2  exp[ - (1/2o-2)1]y - bpZll[2o] 
Bx(Mo; M, )  - ii  n + Z H  pa Z ,  I 1/2 e x p [  - ( 1 / 2 o - 2 ) 1 1 y  - j~pZ 1 --    z2ll ] ' 

(3.10) 

where 

, . - 1  r \  i r  __ b p Z l  ) , Ily - bpzlll 2 = (y  - bpzl)  (In +np  ZiZl)  tY 

IlY - fipzl - ypz21121 = (y  - flpZl - ypZ2)'(I, + Z H p Z ' )  1 

x (y  - [~pZ 1 --  7 p Z 2 ) .  

The Bayes rule (2.13)-(2.16) may then then be written as 

1 
a*(X)  = a 1 <==> ~ (IlY - bpZll[ 2 - Ily - ~pZl - ~'~z2ll 2} > k A Z )  , 

(7" 

(3.11) 

where 

k n ( Z ) = - 2 1 n [ l ~  1 - %  [In+ h ; l Z l Z '  1/211 + Z H p l Z , [  -1/2] 1 *n % 

The LHS of (3.11) 'looks like' a sampling theory test statistics for testing the 
hypothesis '7 = 0' comparing the RSS under M 0 and M 1 with two important 
differences: (i) here the residuals are taken with respect to the predictive 
expectation in each model and the weighting matrix is given by the predictive 
precision matrix (ii) the critical values for the Bayesian decision problem, 
k , ( Z ) ,  blends the utility values lj, the prior specification %, hp and Hp, and the 
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exogenous variables Z. In particular, for any given data X, variations of %, hp 
and Hp let P(M0 IX ) sweep the whole interval [0, 1]. 

Let us have a look at the asymptotic behaviour of (3.11). So we denote 

1 
V = n Z ' Z = [ v q ] ,  i , ] = 1 , 2  

/ 322 .1  - -  __ 0 2 2  - -  U 1 2 U 1 1  , 
U l l  

M A = I n - A ( A ' A ) - I A  ' ,  A : n × k ,  

c = 2 In - - -  11 % 
l 0 1 - %  

For large n, the Bayesian critical region defined by (3.11) is approximately 
described as follows: 

1 
o_2 y'(Mzl-Mz)y>~c +lnhp-ln]Hpl+lnv22.1+lnn.  (3.12) 

Using (3.7), under the prior coherent specification (3.5)-(3.6),  (3.12) sim- 
plifies as follows: 

1 
cr 2 y'(Mzl - Mz)y >I c + In V(y ]M1) + In v22.1 + In n .  (3.13) 

Both in (3.12) and (3.13), the LHS follows a chi-square distribution in 
sampling under M 0 so that the probability of rejecting (i.e., a*(X) = al) tends 
to zero because of Inn.  Under M,, the LHS increases as n whereas the RHS 
increases as Inn so that the testing procedure is consistent with a slowly 
increasing critical value. As mentioned before, a sharp hypothesis is often used 
in practice as an operational approximation for a 'small' interval. In such a 
case, a frequent criticism against a blind use of classical tests of sharp 
hypotheses is that for large samples, the null hypothesis is typically rejected, 
for any test the level of which is independent of the sample size. This is indeed 
the case for the rather general situation of a consistent test with continuous 
likelihood functions. Thus from a sampling point of view the Bayesian test may 
also be viewed as an operational way to make the level of the test a 
(decreasing) function of the sample size while keeping the test consistent. This 
also explains why, for large samples, a p-value may give a quite different 
message than a Bayesian test. 

This example illustrates some difficulties raised by the use of noninformative 
prior distributions when evaluating Bayes factor or posterior probabilities of 
the hypothesis. Recall that, in general, the ratio of the predictive densities, 
under M 0 and M1, is essentially undefined under noninformative prior specifi- 
cations. Note also that (3.12) is undefined if hp = 0 and/or  IHpl = 0, and that 
In hp/[Hp] may have an arbitrary limit if we let hp and IHp[ tend jointly to 0. In 
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the case of coherent prior, the critical region, defined by (3.13) tends to 
become empty once V(7 I M1) tends to infinity. 

It may be interesting to compare that two-sided test with a one-sided test. A 
simple case is the following. Let (3.2), (3.4) represent the sampling process 
and the prior specification respectively. This allows one to evaluate P(Y >~ 0) 
and P(7 ~> 0 IX) and to construct a Bayesian test with critical region character- 
ized by P(7 ~> O IX)/P(7 < 0 I X )  < k where k is a constant defined as earlier. 
Note however, that, at variance from the two-sided test, this Bayesian test, is 
unambiguously defined even with improper priors (such as P(/3, 7) ~ 1) and it is 
easily checked that the posterior probability of the null hypothesis and the 
sampling p-value are asymptotically equivalent, and that Lindley's paradox 
eventually vanishes. 

3.2.3. Encompassing procedures 

General procedures. Suppose first that the parameter of interest is the vector 
of regression coefficients. Thus in the notation of Section 2.4, we retain .~ for 
the model labels, 0 0 = b, and 01 = (/3, 7 ) =  q~. Later on we shall also consider 
q~ = f(O~) =/3 or q~ = Y. We successively analyze several BPTVs, i.e., conditional 
distributions of (/3, 7 I b, M0) and always retain the same prior distributions as 
in (3.3) and (3.4). Consequently, for each model, the corresponding posterior 
distributions are 

(b IX, M0) - N(b. ,  o ' 2 h . 1 )  , (3.14) 

It/37) X'ml] ~N[(/3:¢~ k \ 7 , / '  cr2H*l] ' (3.15) 

where, as usual, see, e.g., Zellner (1971), 

h .=hp  + z'lz 1 , b .=h. l (hpbp + Z'ly), 

(/37:) =H*I[HP(~: )  + Z'y] . 

H .  = Hp + Z 'Z  , 

Under the coherent prior specification (3.5)-(3.6), it may be shown, either 
through clumsy analytical manipulations or through a simple argument on 
conditioning on the parameter space (see EBS, Section 1.4.3.) that one also 
has that (b IX, M0) - (/3 17 = 0, X, M1), b.  = E(/3 IT = 0, X, M1) and o-2h, a = 
g(/3 IV = 0, X, m l )  = o-2h111,,. 

For illustrative purposes, let us concentrate the attention on the class of 
normal BPTVs, i.e., 

[(/37) b, Mo] ~N[ro + r~b, o'aw] , (3.16) 
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where r0, r I E ~2 and W is a 2 x 2 SPDS matrix. This specification implies 

[(/33') X ' M °  ~N[r° + rlb*'o-2(h*lqr~ + W)] " (3.17) 

For the discrepancy function d(X) let us consider the information theoretic 
divergence, i.e., D(p,  q) = .f In (p(x)/q(x))p(x) dx. The discrepancy between 
p0(/3, 3" IX ) and p1(/3, 3" IX) is accordingly evaluated for the case of nonsingu- 
lar variances as 

d(X) = D(p°(/3, 3' IX), p1(/3, 3/IX)) 

= 1[in ]H.[-1 _ In ]W + h.lrlr'l[ + tr H . ( W  + h~lrlr;) 

+ 1 ( t o + r i b  2 - (/33":))'H,(ro-l-rlb, - ( /33 ' : ))-2]  . 

(3.18) 

This statistic is to be calibrated against the predictive distribution under M 0. In 
this case, this is a normal distribution with parameters specified in (3.8) and 
d(X) has the structure of a polynomial in y of degree 2, u o + u '1Y + Y' U2 Y; the 
predictive distribution of d(X) is therefore the distribution of the sum of a 
constant, a linear combination of normal variates and a linear combination of 

2 X variates; note that u;y is not independent of y'U2Y but u 1 = 0  if r 0 is 
specified as 

-1 -1 - q h ,  hpbp r o = H ,  Hp(/3p, 3'e)' ' (3.19) 

a case to be met later on. 

Bayesian pseudo-true value degenerate at the classical one. (i) Let us now 
consider some particular specifications of the BPTV in the class (3.16). A first 
case is a distribution degenerate at the classical pseudo-true value (b 0)'. This 
corresponds to 

r 0 = O,  r 1 = (1 0 ) ' ,  W =  0 (3.20) 

in which case (3.17) becomes 

[(~3") X, M o ] ~ S [ ( b o )  , 2(h*l 00) ] o-ko (3.21) 

(3.21) is a degenerate distribution, the information-theoretic dis- Because 
crepancy between the joint posterior distributions of (/3, 3,)' does not anymore 
provide a suitable statistic for diverging to infinity for any data X. One may use 
another discrepancy function, such as a Prohorov distance or a Kolmogorov-  
Smirnov distance. 
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(ii) If y is the only parameter of interest, i.e., in the notation of Section 2.4, 
~p = f(01) = y, the comparison between (3' I X, M0) - 6~0/(the Dirac measure on 
0) and (3"IX, M1)-N(3".,0-20-~2) (where X * = [ 0 - ~ ] = H .  1) can be done 
either in terms of some distance among probability measures, as above, or, 
more naturally, in terms of a distance among expected values. A natural such 
distance would be 

2 
3'* d ( X ) -  2 , • (3.22) 

0- 0"22 

Again this statistic is easily calibrated against pO(y I Z ) being, in this case, a 
general quadratic form in normal variates. When b and/3 are identified through 
the degenerate BPTV 6((b,O), ~ and the prior specification satisfies (b I M0) 
(/3 [3' = 0, M1), one may also look at (3.22) as a function of two variables: the 
data X and the particular value of the parameter being tested (here 3' = 0). 
Thus d(X) = p(O, X) where 

( 3 ' ,  _ 3')2 
0 ( 3 ' , X ) -  2 . (3.23) 

0" 0"22 

Now 0(3', X) is viewed as a measure of discrepancy between a particular 
hypothesis on 3' and a particular data X. Florens and Mouchart (1989) have 
sketched a rather general approach based on that kind of function illustrated 
through this example. Identifying b and /3 means that p° (y lZ  ) may also be 
written as p(y I Z, 3' = 0) in the full Bayesian model characterized by a joint 
probability p(/3,3", y I Z)  and similarly p1(3" IX ) becomes simply p(y IX). 
Now, d(X) = p(O, X) may also be calibrated against that posterior distribution 
p (y  IX). This is indeed in the spirit of Wald testing and also of evaluating a 
Bayesian p-value o~B(X ) in the sense 

~B(X) = PI[p(3', X) ~>p(0, X) IX]  (3.24) 

or a posterior confidence interval in the sense of (see, e.g., Zellner, 1971) 

P[13' - 3",1 < 13' - 0[ I x ] .  (3.25) 

But d(X)=p(0, X) may also be calibrated against the marginal joint 
distribution p(3', y [Z). The general idea of this approach is to consider both 
the particular value 3'0 for an hypothesis on 3' and a particular value X 0 of data 
X = (y, Z)  as two pieces of information (conditionally on Z),  to measure their 
conformity with their distribution p(3', y I x )  though a discrepancy function 
p(3",X) and to calibrate p(%,Xo) against p(y [Z 0,3'0), P(Y [Z0, Y0) or 
p(y, y I Zo) according to whether the particular value Y0, or Y0, or 3'o and Y0 are 
deemed to be questionable. 

(iii) Suppose now that/3 is the only parameter of interest. Under the normal 
prior specification in M 0 and in M ~ - s e e  (3.3) and ( 3 . 4 ) - a n d  a normal 
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B P T V - s e e  (3.16)-  the two posterior distributions of /3 are also normal, 
namely 

(/3 IX, Mo) ~ (b IX, Mo) ~ N(b.,  o-2h.~), (3.26) 

(/3 Ix, -N(/3, ,  (3.27) 

where h~. 1 is the (1, 1) element of H ,  1. Thus the discrepancy between 
p°(/3 IX) and p1(/3 IX ) may be evaluated exactly as in (3.18), namely 

d(X) = D(p°(/3 [/3 IX), p1(/3 IX)) 
= ½[In h~. 1 - In h ,  1 + h.~(h~.~) -~ + (cr2h11)-1(b. - /3 . )2  _ 11. 

(3.28) 

Note that under the coherent prior specification (3.5)-(3.6), we also have that 

(b, P .lt~*"2 r ,  12zr22 , , -1  32 
- = l n ,  l , n , )  y , j  . (3.29) 

Putting together (3.28) and (3.29) one obtains a Bayesian version of Haus- 
man's (1978) test, namely a test statistic based on a comparison of the 
inference on the parameter of interest/3 under the null (p0(/3 IX)) and under 
the alternative hypothesis (pl(/3 I XZ) ) but the prior coherence implies that 
this is also a comparison of a marginal distribution on/3 (pl(/31X)) and the 
conditional posterior distribution given the null hypothesis p0(/3 I X ) =  
p1(/3 IX , Y = 0). Analogously to the original Hausman test, d(X)>0 even if 
7 ,  = E ( 7  IX, M1)=0  and d ( X ) = 0  if and only if /3 and 7 are a posteriori 
uncorrelated in Model 1, i.e., hi, 2 = 0 and hi, 1= h ,  1. 

It should be noted that H ,  and h,  involve both the prior specification and 
the value of the exogenous variable; a similar property has been noticed in a 
sampling theory framework by Hausman (1978). As in the previous case, d(X) 
is distributed, under M0, as a general quadratic form in normal variates. More 
details on the properties of that expression are given in Florens and Mouchart 
(1989). 

Expected posterior distributions used as BPTV. A nondegenerate sample-based 
BPTV may be constructed by taking the sampling expectation, under M0, of 
the posterior distribution of 01 under M1, 

pO(/3, ~' ]b, Z) = f p1(/3, 7 ]X)p°(YlZ, b) dy. (3.30) 

Embedding the two distributions of the RHS into a fictitious probability on 
(/3, Y, Y I Z, b) with the condition of independence between (/3, 7) and y given 
(Z, b), allows one to make use of standard manipulations on normal dis- 
tributions, and to derive a normal distribution on (/3,7 I b, Z, Mo) with 



326 J.-P. Florens and M. Mouchart 

moments 

E(~, Y lb, Z, Mo): H.I[Hp(~2) + Z'Zlb]  , 

V(~, y lb, Z, M0) : o-2[H. ' + H. tZ 'ZI - I .1] .  

So one obtains a particular case of (3.16) with 

ro 9 
r a = H.Iz 'z1 , 
W: H, I + H.1Z'ZH, I : H,I(H, + Z'Z)H, 1 . 

(3.31) 

(3.32) 

(3.33) 

Note that for large n, and under rather general assumption on the behaviour of 
Z ' Z n - s u c h  as (Z'Zn)-I---~O or ( 1 / n ) Z ' Z n - > e > O - ( r o ,  rl,W~) may be 
approximated by (0,(1,0) ' ,  2(Z 'Z, )  -I) and therefore W,--+0 as n-- -~ .  
Therefore this BPTV converges to a point mass on (b, 0)'. Thus, in finite 
samples, a discrepancy function d(X) is evaluated as a particular case of (3.18) 
and is similarly calibrated against p ( y l Z ,  Mo). Note that a coherent prior 
specification does not affect (3.33) because (3.29) does not rely on the prior 
specification under M 0. 

Optimal BPTV. Another strategy for specifying a BPTV is to look for a 
conditional distribution that minimizes the predictive expectation, under M0, of 
a specified discrepancy function d(X). Finding the general solution to this 
problem is a difficult question in the calculus of variations but restricted optima 
are often easily obtained. We now give an example of such a situation. 

When the discrepancy function is the information theoretic divergence, the 
optimum BPTV is easily obtained in the class (3.16) of Gaussian BPTV when 
the prior specification is also normal as in (3.5)-(3.6). Indeed, in such a case, 
we have seen in (3.18) that d(X) is a general quadratic form in y, 

d(X)=uo + uly  + y'U2y , (3.34) 

where Uo, U 1 and U 2 are functions of the parameters of the BPTV, viz. r0, r 1 
and W, of the value of the exogenous variables Z and of the parameters of the 
prior distribution. As shown in Florens (1990), the solution of 

inf E°[d(X)l (3.35) 
(ro,rl,W) 
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is given by 

ro *=n, l [np(~S)-hpbp( lc )  ] 

• r 1 = h. 

H . 1  -1 . . , = - h ,  rl(rl) , 

(3.36) 

where c = (z;z1)(z rlZ1) 1 and provided that the term between brackets in W* is 
SPDS, a condition to be commented upon later on. Note that the specification 
(3.36) satisfies condition (3.19) and therefore u I = 0 under an optimal BPTV. 
Asymptotically, under the usual conditions on Z'Z  n, we have 

(ro, n, rl, n, W*)---~ (0, (1, 0)', 0) (3.37) 

and therefore the optimal BPTV also converges to a point mass on (b, 0)'. 
Under the optimal BPTV, the discrepancy function may be written as 

1 
d*(X) = 2o.~ (y 'MzlZH ,1Z'Mzly) 

1 22 r 2 
= 2o_2 h.  (y Mzz2) , (3.38) 

where h 22 is the (2, 2)-th element of H ,  1. Note that under Mo, o_-aMzly 
N(0, l(n~) and therefore d*(X), under M0, is distributed as a linear combination 

2 of independent X(1) variates. Note also that for large n, h ~  may be approxi- 
mated by z~zMzz2 and d*(X) is approximately equal to a Wald test statistics. 

Let us have a closer look on the term between brackets in W.  appearing in 
(3.36), 

C C , 0 H, -- h,(lc C2) = np --hp(l c C2) ~-z2MzlZ2(O 01). ( 3 . 3 9 )  

Clearly this term is nonnegative only if the (1, 1) element of Hp is not smaller 
than hp, i.e., V(/3 17 , M~)~<V(b ]M0) and this condition is also sufficient for 
large n because asymptotically z ;Mzz  2 diverges to infinite whereas c tends to a 
limit. For a coherent prior specification, that condition is met through equality. 
Note also that when (3.39) is not SPDS, the optimum value of W is not given 
by (3.36) and should be obtained through a constrained optimization; such 
would be the case when the prior specification is noninformative under M1 
(i.e., Hp = 0) or for some values of z 2 in finite samples. 

3.3. Testing for unit roots 

Recent econometric literature has paid considerable attention to a proper 
treatment of nonstationary time-series. At  the level of modelling, most effort is 
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concerned with the extraction of a stationary component, either a conditional 
one, though the introduction of nonstationary regressors (trend and/or 
exogenous variables) or, a marginal one, through differencing up to a suitable 
order (or, more generally, looking for cointegrated components). Nelson and 
Plosser (1982) have been path breaking in this field by calling attention to the 
empirical relevance of the problem. 

The discussion adopted a somewhat more controversial tone when it arrived 
at comparing Bayesian and sampling theory methods and became definitely hot 
when this comparison considered the problem of testing for unit root. A recent 
issue of the Journal of Applied Econometrics (Vol. 6, October-December 
1991) offered a forum for exposing conflicting views, introduced by a 'critical' 
paper by Phillips (1991a,b) along with his response to eight comments viz. 
Koop and Steel (1991), Leamer (1991), Kim and Maddala (1991), Poirier 
(1991), Schotman and Van Dijk (1991b), Stock (1991), De Jong and Whiteman 
(1991) and Sims (1991). That issue provides an interesting and up-dated 'state 
of the art' reworking past arguments and supplying new ones, in particular in 
terms of new empirical evidence on both simulated and actual data. Other 
recent contributions also include Schotman and Van Dijk (1991a) and hitherto 
unpublished papers by Lubrano. 

As often happened in such cases, the temperature of the discussion is raised 
by mixing several ingredients. Some of those ingredients are of general nature 
such as questions about the foundations and relevance of Bayesian and of 
sampling theory methods, the relevance of the problems raised by Bayesian 
inference under improper prior specification, the numerical problems such as 
the relative merits of the Laplace approximation of posterior distributions, the 
possibly striking difference between sampling characteristics, such as p-value, 
and the posterior characteristics, such as posterior odds or Bayes factors and, 
last but not least, the use of affectionate qualifications such as 'Sterile ideas', 
'unreasonable', 'logically unsound' or 'wrong headed and unenlightening'. One 
ingredient, at least, is rather particular to the topic, and possibly explains the 
level of the temperature, namely that around the unit roots the likelihood is 
smooth in finite samples but asymptotically discontinuous: this issue has been 
raised in Dickey and Fuller (1979), see also Phillips (1987, 1991a,b). Thus 
Bayesian methods, being essentially of a small sample nature, may be expected 
to diverge from asymptotic sampling methods; also Bayesian inference based 
on improper prior specification, justifiable (when possible!) as providing 
asymptotic approximation, may also be expected to raise the controversies 
generally associated with the use of such prior specifications. 

Clearly we cannot do justice to all arguments in the framework of this 
survey. The main ideas may nevertheless be sketched by discussing the simplest 
case, namely the univariate AR(1) case. Denoting y~ = (Yi, Y i + l , . . . ,  Yj) for 
any i < j, let us consider 

(Y, IY'o -1)-N(Py,-I, 2 ) ,  l ~ t < ~ T .  (3.40) 

In this dynamic context, observations are naturally indexed by t and T 
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becomes the sample size. In what follows, we only consider models conditional 
to Y0, which is therefore not modelled, without discussing under which 
circumstances is such a conditioning admissible. Thus the likelihood function is 
derived from 

P(Y~I Y0, P, o-2) = (2-rr) (~2~oº~ exp 2o -2 1-<t~r (Yt - PY~-I) 2 • 

(3.41) 

From a sampling point of view, the asymptotic distribution associated with 
the sequence P (Pr lYo ,  P, ° '2 ) -  where ~3 r is the MLE of p based on y ~ -  is 
terribly different when p < 1, p = 1 or p > 1. This feature possibly produces 
disconnected (and therefore nonconvex) confidence regions. From a Bayesian 
point of view, a particular value of p is irrelevant as far as, once a prior 
distribution is assigned to (p, o-), the evaluation of the posterior distribution 
will run smoothly for any finite sample size, possibly calling for simple 
numerical integrations. However, for testing the hypothesis p = l ,  the 
pathologies of the likelihood function implies a particular sensitivity to the 
prior specification (see Sims and Uhlig, 1991). We shall first discuss the prior 
specification and next the choice of a particular testing procedure. 

Consider ing the decomposition (2.17)-(2.18) of the prior distribution, we 
first discuss the specification of p(p ,  o-]p ~ 1). In general, one finds in the 
literature prior distributions of the form 

p(p,o, lp¢l )~  1 
o- g l (P)  (3.42) 

with no discussion of the specification relative to o-. The alternative hypothesis 
is implicitly defined by the support of the second component. One finds at least 
three such specifications: (i) Sims (1988) employs g l ( P ) =  ~R(P), i.e., the 
density of Lebesgue measure on the real line, therefore excluding no value of p 
and accepting eventually explosive models. Remember that Lebesgue measure 
favours extreme values in the sense that the measure of the interval ( -1 ,  +1) 
relative to the measure of ( - a ,  +a) tends to zero as a tends to infinity. (ii) 
Schotman and Van Dijk (1991a) starts with a uniform proper distribution of p 
on the bounded interval [a, 1], i.e., g l ( P )  = (1/(1 - a ) ) l ] [ a , l l ( P )  (with - 1  < a  < 
1) but leaves the component of or improper. Thus their alternative hypothesis is 
[a, 1], i.e., a stationary model (a priori a.e.). They show that the result of 
testing p crucially depends on the value of a and suggest an empirical 
procedure for specifying a and further develop their analysis in Schotman and 
Van Dijk (1991b). (iii) Phillips (1991a) criticizes the case of flat prior for 
favouring unduly the stationary use and argues instead for the case of Jeffrey's 
noninformative prior, i.e., gl(P)  = (1 - p 2 ) - 1 / 2 { r  - (1 - p2r)[(1 - -  p 2 ) - I  _ 

O'-2y~]}1/2{ N ( p ) ,  taking again the real line as alternative hypothesis. He also 
uses the Laplace approximation for analyzing the posterior distribution and 
reinterprets the series analyzed by Nelson and Plosser (1982). 
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As far as the choice of a testing procedure is concerned, two approaches 
have been proposed. A first one, in line with Lindley (1961), starts with a 
smooth prior specification, i.e., P(p = 1 ) = 0  and evaluates the posterior 
probability either of regions around 1 with the idea of asking whether the unit 
root lies in a high enough posterior probability region as in Phillips (1991a), or 
of regions of nonstationarity such as {p > 1) or (p < 1) as in Phillips (1991a), 
Kim and Maddala (1991) or Schotman and Van Dijk (1991b). The advantage 
of that class of procedures is to make the economy of eliciting a prior 
probability for the null hypothesis and to be well defined even under improper 
prior specification. A second approach, maybe more traditional in the Bayesian 
establishment, evaluates Bayes factor, posterior odds or posterior probability 
of hypotheses. As mentioned in Section 2.2.1, this class of procedures requires 
a proper prior specification along with a strictly positive mass on the null 
hypothesis; Schotman and Van Dijk (1991a,b) report problems when this 
requirement is overlooked. 

Extending model (3.40) to more complex structures raises new difficulties. 
For instance when Y t  = t z  + u t  with u t = p u t _  1 + 6 t and e t ~ IN(0, 0"2), a local 
identification problem appears at the null hypothesis p = 1. This issue, similar 
to the rank condition in simultaneous equation model, see Maddala (1976) and 
Dr6ze and Mouchart (1990), is analyzed in the present context by Schotman 
and Van Dijk (1991b) under a partially noninformative prior specification. The 
same paper, along with Phillips (1991a), also considers an intercept term and a 
linear trend in order to analyze further on problems of transient dynamics or of 
testing trend stationarity against difference stationarity. 

4. Other contributions 

One of the first issues to be faced by the author(s) of a survey is to bound the 
field to be surveyed. In this survey we put much emphasis on two ideas. Firstly 
hypothesis testing and model choice have been dealt with as a single class of 
problems met with so strikingly varied motivations that no clear distinction 
among them seems to be operationally fruitful. Secondly Bayesian thinking is 
rich enough to accommodate to that variety of situations and is much more 
flexible that a mechanical prior-to-posterior transformation; in particular, the 
predictive distributions have been shown to play an important role for this class 
of problems. 

Putting emphasis on general inference, on model label or on parameters of 
interest, has led to put less emphasis on solving specific decision problems. 
Thus strictly decision oriented procedures have at time been alluded to but not 
dealt with in any systematic way. This is, in particular, the case of model choice 
procedures based on specific criteria such as AIC or BIC with different degrees 
of involvement with the Bayesian idea. This literature is rather vast but 
somewhat disconnected from the main theme considered in this survey. The 
interested reader may consult Schwartz (1978) or Zellner (1978). 
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Section 3 has treated two exemplary fields of application but many more 
have been considered in the literature. A notable one is the testing for 
exogeneity considered by Florens and Mouchart (1989), Lubrano, Pierse and 
Richard (1986), Steel and Richard (1991). Many contributions have also dealt 
with the problem of specification testing in linear models, as in Bauwens and 
Lubrano (1991). A long list of applied works using Bayesian testing has been 
omitted. We just quote as an example a recent issue of the Journal of  
Econometrics (see, e.g., Connolly, 1991; Koop, 1991; McCulloch and Perossi, 
1991; Moulton, 1991) and Shanken (1987). 
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Pseudo-Likelihood Methods 

Chris t ian G o u r i e r o u x  a n d  A l a i n  M o n f o r t  

1. Introduction 

The maximum likelihood methods of inference are certainly among the more 
important tools that can be used by statisticians. The success of these methods 
is due to their high degree of generality and to their nice asymptotic properties: 
consistency, asymptotic normality, efficiency . . . .  However, it is clear that, a 
priori, these properties are valid only when the model is well-specified, i.e., if 
the true probability distribution of the observations belongs to the set of 
probability distributions which is used to define the likelihood function. This 
restriction is important since one can never be sure that the model is correctly 
specified and, therefore, it is worth considering the properties of the maximum 
likelihood methods when this assumption is not made; in this case the 
likelihood function is called a pseudo- (or quasi-) likelihood function. There 
are three kinds of situations in which a pseudo-likelihood approach can be 
advocated. In the first situation we are prepared to make assumptions about 
some conditional moments of the endogenous variables given the exogenous 
variables, but not on the whole conditional distribution. In this semiparametric 
context, the likelihood function is not defined, however it is possible to define 
pseudo-likelihood functions based on a family of density functions which does 
not necessarily contain the true density but which is compatible with the 
assumptions on the moments. The more familiar example of the previous 
situation is probably the nonlinear regression model with a constant variance, 
in which the maximization of the pseudo-likelihood function associated to the 
Gaussian family reduces to the nonlinear least squares and provides a 
consistent and asymptotically normal estimator (see Jennrich, 1969; Malinvaud, 
1970; Gallant, 1987; Gallant and White, 1988; other well-known applications of 
Gaussian pseudo-likelihood method can be found in the simultaneous equation 
model (see, e.g., Hood and Koopmans, 1953, in dynamic models (see, e.g., 
Hannan, 1970, Chapters 6 and 7) or in serially correlated limited dependent 
variable models (Robinson, 1982, Gourieroux and Monfort, 1985). The second 
context in which the pseudo-likelihood approach is useful is the parametric 
situation where a likelihood function is available but numerically untractable. 
In this case we can think to use a simpler likelihood function which, as in the 
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previous case, is adapted for some moments; moreover, since the moments are 
not likely to possess a closed form, simulated pseudo-likelihood techniques 
may be used (see Laroque and Salani6, 1989, 1990; Gourieroux and Monfort, 
1991a, 1992). The third situation in which the pseudo-likelihood techniques are 
relevant is the nonnested hypotheses context. In this case there are two 
possible parametric models and an important point is the asymptotic behaviour 
of the pseudo-maximum likelihood estimator of the parameter of one model 
when the true probability distribution belongs to the other model (see Cox, 
1961, 1962; Pesaran, 1974; Gourieroux, Monfort and Trognon, 1983b, Mizon 
and Richard, 1986); another important point is the asymptotic behaviour of the 
so-called pseudo-true value (Sawa, 1978) of the parameter of one model 
evaluated at the maximum likelihood estimator of the other model. These 
statistics are useful either for testing procedures or for model selection. 

The aim of this chapter is to describe the properties of the inference methods 
based on pseudo-likelihood functions. In Section 2 we define more precisely 
the pseudo-likelihood methods. In Section 3 we describe the pseudo-maximum 
likelihood (PML) methods adapted for the mean (PML1) and we stress that 
they provided consistent estimators of the parameters appearing in the 
(conditional) mean if, and only if, the pseudo-likelihood function is based on a 
linear exponential family; moreover, the asymptotic normality is presented and 
a kind of Cram6r-Rao bound is given. In Section 4, it is seen that this bound 
can be reached if the pseudo-likelihood function is based on a generalized 
linear exponential family and if a correct specification of the second-order 
moments is used; this method is called a quasi generalized PML method. In 
Section 5 we consider pseudo-likelihood methods which are adapted for the 
first two moments (PML2) and we show that they provide consistent estimators 
of the parameters of interest if and only if the pseudo-likelihood function is 
based on a quadratic exponential family. Section 6 considers the problem of 
hypothesis testing in the PML context. Section 7 studies the case where the 
moments do not have a closed form and must be replaced by approximations 
based on simulations. In Section 8, we describe the role of PML methods for 
testing nonnested hypotheses, and, in Section 9, we consider their role for 
model selection. Some remarks are gathered in a conclusion. The material 
presented in this chapter is mainly based on papers by Gourieroux, Monfort 
and Trognon (hereafter GMT) (1983a,b, 1984a,b) to which the reader is 
referred for the proofs. 

2. General presentation of the pseudo-likelihood methods 

Note that what we call a 'pseudo-likelihood' function is sometimes called a 
'quasi-likelihood' function (see Hood and Koopmans, 1953; White, 1982), 
however, we prefer the prefix 'pseudo' for three reasons: first it is coherent 
with the notion of 'pseudo-true' value (see Sawa, 1978) which is widely 
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accepted, secondly this choice avoids a confusion with 'quasi-generalized 
methods'  (a notion also used in this paper) and, finally, the term 'quasi- 
likelihood' is also used in a different context where some relationship between 
the mean and the variance is assumed (see Wedderburn, 1974; McCullagh and 
Nelder, 1983; McCullagh, 1983). 

2.1. Pseudo-likelihood methods based on conditional moments 

Let us first present the basic notions introduced in GMT (1984a). Since we are 
interested in concepts and results and not in technicalities, we shall adopt very 
simple assumptions; more precisely, we assume that we observe iid vectors 
(y',, x',)', t = 1 , . . . ,  T where y, is a G-dimensional vector and x, is H-dimen- 
sional. 

In the pseudo-likelihood approach based on conditional moments we are 
interested in the conditional mean E(y,/xt) and, possibly, in the conditional 
variance-covariance matrix V(yt/xt). The results presented hereafter may be 
generalized to the dynamic case where x, is made of past values of yt and of 
present and past values of a strongly exogenous variable z, (see White, 1984, 
1988). We assume that the true conditional expectation Fo(y,/x~) belongs to 
some parametric family, 

Eo(Yt/Xt)=m(x t,Oo), 0 0 E O C N p ,  (1) 

where m is a known function. In other words we assume that the conditional 
mean is well specified. We may also assume that the true variance-covariance 
matrix belongs to some parametric family, 

g20(x,) =Vo(y,/x,) = v(x,, 00), 00 E O C R p , (2) 

where v is a known function. 
The true conditional distribution of y, given x, will be denoted by A0(x~). 
Let us first only make assumption (1); in other words nothing is assumed on 

£20(x,) and we are interested in 00 appearing in m(x,, 00). Since no parametric 
assumption is made on A0(x,), the maximum likelihood method cannot be used; 
however, if we consider any family of probability density functions (pdf) 
indexed by their mean m, f(u; m), u E R c, it is possible to adapt this family for 
the mean, i.e., to replace m by re(x,, 0), and to consider the pseudo-likelihood 
function, 

T 

l i t(0) = I~ fly,; m(xt, 0)] .  (3) 
t - - 1  

In general, the maximization of l~r(0), will not provide a consistent 
estimator of 00; however, in the next section we shall characterize the functions 
f(u; m) giving this consistency result and the corresponding methods will be 
called pseudo-maximum likelihood (PML) methods of order 1 (PML1). 

Now, if we also make assumption (2) and if we consider a family of pdfs 
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indexed by their mean m and their variance-covariance matrix X, f(u; m, ~ ) ,  
we can adapt this family for the mean and for the covariance matrix and either 
consider the pseudo-likelihood function 

T 

lzr = ~ f[Yt; m(xt, 0), v(x,, 0r) l (4) 
t = l  

when O r is some consistent estimator of (a subvector of) 0 or consider the 
pseudo-likelihood function 

T 

13r = I~ f[Yt; m(xt, 0), v(x t, 0)1. (5) 
t = l  

A pseudo-likelihood function like 12T is called a quasi-generalized pseudo- 
likelihood function, since it has been fitted with a first step estimator of the 
v(xt, O) (considered as nuisance parameters) and the parameters of interest are 
those appearing in m(xt, O) (in general a subvector of 0). On the contrary, in 
13r the parameters of interest are those appearing in m(xt, O) and v(xt, 0). 
Again, in general, the maximization of lzT o r  lar does not provide a consistent 
estimator of 0. In Section 4 we give conditions on function f ensuring that the 
maximization of 12r provides a consistent estimator of 0; the corresponding 
estimators are called quasi-generalized PML estimators. In Section 5 we give 
characterizations of function f giving the consistency result for 13r; the 
corresponding estimators are called pseudo-maximum likelihood methods of 
order 2 (PML2). 

The pseudo-likelihood methods presented above are adapted for the condi- 
tional mean and, possibly, for the conditional variance-covariance matrix. 
However, it is possible to use these methods for more general conditional 
moments restrictions, for instance conditional quantiles (see Gourieroux and 
Monfort, 1987, 1989a, Chapter 8). 

2.2. Pseudo-likelihood methods based on nonnested parametric models 

In this context we no longer start from assumptions on conditional moments. 
On the contrary we study the position of the true conditional density with 
respect to two families of conditional densities H s = {f(y~; x t, a) ,  a E A C ~ }  
and Hg = {g(y,; x,,/3), 13 C B C ~K}. More precisely we have to distinguish 
two approaches. 

In the first approach we assume that the true density function belongs to 
either H I or Hg and we want to test the null hypothesis H I against Hg (or, 
symmetrically, Hg against HI). This approach is a nonnested hypotheses testing 
approach and it is also called an encompassing approach (see Mizon, 1984; 
Mizon and Richard, 1986; Hendry and Richard, 1987) since it consists in 
examining if H I can explain (or encompass) Hg in the sense that, if H I is true, 
the pseudo-true value of/3 evaluated at the maximum likelihood estimator of a 
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is not significantly different from the pseudo-maximum likelihood estimator of 
/3 based on Hg. Methods based on this idea are developed in Section 8. 

In the second approach we do not assume that the true density function 
belongs to H I or Hg and we want to choose the model (H i or He) which is the 
closest to the true density. This approach is called a model selection approach 
(see Hotelling, 1940; Amemiya, 1980; Chow, 1981, 1983, Chapter 9; Judge et 
al., 1985, Chapter 21); the procedure developed in Section 9 is based on the 
Kullback-Leibler information criterion (see Akaike, 1973; Sawa, 1978) and on 
pseudo-maximum likelihood estimators of the parameters a and/3 (see Vuong, 
1989). 

3. Pseudo-maximum likelihood methods of order one (PML1) 

3.1. The problem 

In this section we assume that the conditional expectation satisfies the 
condition 

Eo(YffXt)=m(x, Oo), 0 o C O C N K ,  

and nothing is assumed on the conditional variance-covariance matrix Oo(Xt) = 
Vo(yt/x,). We want to estimate 00. For this purpose it is useful to introduce 
classes of probability distributions, the linear exponential families. 

3.2. Linear exponential families 

A family of probability measures on ~6, indexed by a parameter m E ~ C ~o 
is called linear exponential if (i) every element of the family has a density 
function with respect to a given measure v and if this density function can be 
written as 

f(u, m) = exp[A(m) + B(u) + C(m)u], (6) 

where u E ~o, A(m) and B(u) are scalar and C(m) is a row vector of size G; 
(ii) m is the mean of the distribution whose density is f(u, m). 

A linear exponential family has many important properties; some of t h e m  
are given in the following proposition. 

PROPOSITION 1. If ( f (u ,m) ,  m C ~ } is a linear exponential family we have 

OA(m) OC(m) 
(a) 0 ~  + ~ m = 0,  

a2A ~ a2Cg aC(m) 
(b) am am ~ + mg + - -  = 0 g= a Om dm' Om ' 
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where Cg and mg are respectively the g-th component of  C and m, 

OC 
(c) a m  ' 

where X is the variance-covariance matrix associated with f(u,  m),  

(d) A(m)  + C(m)m o <- A(mo) + C(mo)mo , 

and the equality holds if  and only if m = m o. 

Many classical families of probability measures are linear exponential. Some 
examples are given in Table 1; the multivariate generalizations of Poisson, 
negative binomial distributions (see Johnson and Kotz, 1972, Chapter 11) are 
also linear exponential families. 

3.3. Properties of  the PML1 method based on linear exponential families 

As mentioned above we assume that Eo(yJxt)  = m(x,, 0o), 0 o E 0 C RK and we 
also make the identifiability assumption 

m(x,  O1)=m(x ,  02), VX ~ 0 1 = 0 2  . 

Table 1 
Examples of linear exponential families 

Family Density function C(m) 

Binomial 
(n given) ]0, n[ 

Poisson R + - (0) 

Negative 
binomial ~ + - (0) 
(a given) 

Gamma 
+ - (0) (a given) 

Normal 
(~ given) 

Multinomial 
(n given) ~ mg = n g 

Normal 
multivariate ~G 
(X given) 

F(n + 1) '~ m 
F(u+ 1 ~ 2  u + 1 ) ( ~ ) u (  1 -  ~ )  ~ L°g n - m  

e-mmU 
u ! Log m 

F(a + u) /m \" /  m~ -(a+u) m 
r(aT  7 1 ) / a )  U + a )  Log a + m , 

a - I  - u a / m  
U e a 

- - m  

1 [ 1 (u ~$2m)_2 ] m 
--3- ~r X/~w exp 2 (r o, 

n~ 

g 
exp - ½(u - rn)'2 - - I ( u  - -  m) 

( 2 T r ) G / 2 ~  

m l  m g  
Log ~ -  . . . . .  Log ~ -  

i -1  
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Let us consider any linear exponential family f(u, m); we can adapt it for the 
mean and consider the pseudo-likelihood function lir(O ) = IIr=a f [ y ,  m(x~, 0)]. 
It turns out that the PML1 estimator thus obtained has interesting properties. 

PROPOSITION 2. I f  f(u, m) is a linear exponential family, the associated PML1 
estimator 0 T of 0 o is strongly consistent and asymptotically normal, more 
precisely, 

- > N ( 0 ,  j - l / j - l )  , 

where 

Om' OC Om) /Om' 10m"x 
J = E x  O 0 0 m ~  = E x ~ o f f  - ~ °  - ~ 7 ) ,  

{ Om' OC OC' Om ) / Om' 1 1 0 m )  
I E x ~  OmOOOm , = a 0 Z o  -b-fir , 

~fo = ~(xt, 0o) [resp. Oo(Xt) ] is the variance-covariance matrix associated with the 
pdf  f[.,  m(x,, 0o) ] [resp. A0(x,) ] and all the functions are evaluated at 0 o. 

Note that it is equivalent to maximize 

T 

L i t  = Log llr = ~] Log f[Yt, m(x,, 0)1 
t = l  

and to maximize 

T 

{A[m(x t, 0)] + C[m(x,, O)]yt} . 
t = l  

Therefore it is not necessary to impose on Yt the constraints which may be 
implied by the definition of B; for instance, the PML1 method associated with 
a Poisson family may be applied even if Yt is any real variable (however, in this 
case, m(x,, O) must be positive). 

In Table 2 we give the objective functions of the PML1 method associated 
with some classical linear exponential families. Note that, for the gamma 
family and for the univariate normal family, the value of the nuisance 
parameters (a and o-) do not influence the maximization and these parameters 
could have been omitted; however, we kept them for reasons which will be 
clear in Section 4. 

For the univariate and multivariate normal families the PML1 estimators 
are, respectively, the nonlinear least squares estimator and a minimum distance 
estimator (see Jennrich, 1969; Malinvaud, 1970). It is also worth noting that a 
reciprocal of Proposition 2 exists. 

PROPOSITION 3. A necessary condition for the PML1 estimator associated with a 
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family f(u,  m), m @ ~ to be strongly consistent for any O, m, Ao(X ), is that 
f(u,  m) be a linear exponential family. 

Table 2 
Objective functions 

Family Objective functions 

Binomial 
(n given, n @ IN) 

Poisson 

Negative 
binomial 
(a given) 

Gamma 
(a given) 

Normal 
(~r given) 

Multinomial 
(n given, n E N) 

Normal 
multivariate 
(~ given) 

T ,-'~l {n Log[1 m(x,, O ) ] r m(x,, O ) n ]+Y'L°g[n-m(x,,O)]} 
{-m(x,, O) + y, Log m(x,, 0)} 

t I 

, = 1  m(xt'O)- .)I 

T 

2 (-aLogm(x,O) ay, _~ ,_, m(x,,O)/ 

1 r 
i 2 [Y,-m(x,,O)] 2 

O" t - 1  

T G 

2 Z y~,Logmg(x,,O), where E mg(x,,O)=n 
t - I  g - 1  g 

- ~  [y,-m(xt, O)]'X ~[yt-m(x,,O)] 
t = l  

In order to use the results of Proposition 2 for asymptotic tests or confidence 
regions, we need consistent estimators of I and J. A consistent estimator of J is 
obtained by replacing E x by an empirical mean and 00 by 0 r. For I it is also 
necessary to replace 120 by [y, - m(xt, 0r)][y ~ - m(x,, 0z) ]' within the empirical 
mean; moreover ,  it is clear that if the functional form of 120(xt) = v(x t, 00) is 
known, it is preferable to replace 12 o by v(xt, Or). 

From Proposition 2 we now know that the adaptation for the mean of any 
linear exponential family provides a pseudo-likelihood function from which a 
consistent asymptotically normal estimator of 00 can be derived. However ,  in 
practice, the choice of the linear exponential family arises. 

3.4. Choice of  a PMLI  estimator 

In the problem of choosing a PML1 estimator an interesting information would 
be a lower bound of the asymptotic variance-covariance matrices of these 
estimators. It turns out. that  such a bound exists. 

PROPOSITION 4. The set of  the asymptotic variance-covariance matrices of  the 
PML1 estimators 0 r based on a linear exponential family has a lower bound 
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equal to 

I ram' _ , o r a l ) '  
= t a o  0 0 ' i l  

From Proposition 2, it is seen that N is reached if Oo(X,) = Z(xt, 00), that is if 
the true variance-covariance matrix ~o(Xt) can be reached by a linear 
exponential family (whose variance-covariance matrix is X(xt, 00); a sufficient 
condition is obviously that )t0(xt) belongs to the family of probability dis- 
tributions whose PDF are f [ . ,  m(xt, 0)] since, in this case, the PML1 method 
becomes a genuine maximum likelihood method. It is also worth noting that 
this lower bound is identical to the semi-parametric efficiency bound (see Stein, 
1956; Begun et al., 1983; Chamberlain, 1987; Newey, 1989; Gourieroux and 
Monfort,  1989a, Chapter 23) based on conditional moment restrictions. 

If nothing is known about ~o(Xt), it is possible to use the computational 
convenience as a choice criterion. For instance, for a given function m(x, O) it 
may be useful to look for the pseudo-loglikelihood functions which are 
concave; such a discussion is made in GMT (1984b) for a count data model 
with re(x, 0) = exp(x'0). More generally in the univariate case (G = 1), it may 
be possible to 'link' the pseudo-likelihood function with m(x, 0), in the same 
spirit as in the generalized linear model (see McCullagh and Nelder, 1983), if 
m(x, O) can be written C-l(x'O) and if there exists a linear exponential family 
f(u, m) = exp{A(m) + B(y) + C(m)y}. In this case the pseudo-loglikelihood 
function zT1 {A[C-l(xtO)] +xtOYt} can be shown to be strictly concave and, 
therefore, the PML1 estimator is unique and easily found (see GMT, 1983a). 
Mean functions m(x, 0 ) which are linked with some classical linear exponential 
families are given in Table 3. 

Finally, it is also possible to compare PML1 estimators by simulation 
methods. Such a study is briefly made in Gourieroux, Monfort and Trognon 
(1984b) when the true model is a Poisson model with exogenous variables and 
unobservable heterogeneity factors; a more detailed study is also proposed in 
Bourlange and Doz (1988); both studies show that the PML1 method 
associated with the negative binomial family is particularly attractive in this 
case. 

All these criteria do not guarantee that the lower bound of Proposition 4 is 
reached asymptotically but, in the next section, we shall see that when a 

Table 3 
Linked mean functions 

Family Linked mean function 

Normal (G = 1) x'tO 
Binomial (n = 1) 1/[i  + exp( -x ' f l ) ]  
Poisson exp(x't0 ) 
Gamma (a = 1) -1/(x ' f l)  
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parametr ic  information on the second-order moments  is available this bound 
can easily be reached. 

4. Quasi-generalized PML methods 

4.1. The problem 

Let us now assume that not only 

Eo(Y,/X,) : m(x ,  0o) 

is true but also that 

Vo(yJxt) = v(x,, 0o) 

holds. For notational simplicity we denote by 0 0 the paramete r  appearing in m 
and v, but it is clear that, in practice, only subvectors of 0 0 will often appear  in 
m and v. We are still interested in the paramete r  appearing in m;  again this 
pa ramete r  may be in fact a subvector of 0 which is assumed to be identifiable 
f rom m. 

4.2. Generalized linear exponential families 

As shown in Table 1, some linear exponential families (negative binomial,  
gamma,  univariate or multivariate n o r m a l . . . )  also depend on an additional 
pa ramete r  that will be denoted by ~/ and this paramete r  is a function ~ = 
0(m, X)  of ~ and X (the mean and the var iance-covar iance matrix associated 
with the pdf) such that, for any given m there is a one to one relationship 
between ~/and ,~ (denoted by 0 -2 in the univariate case). For  instance, in the 
negative binomial case we have ~ = a =m2/(0-  2 -  m),  in the gamma case 
~7 = a = m2/0- 2, in the univariate normal case ~ = o -2, and in the multivariate 
normal  case , / =  ~. Such a family will be called a generalized linear exponential  
family and denoted by 

f * ( y ,  m, 7) = exp{A(m, 7) + B(~, y) + C(m, ~)y} .  (7) 

4.3. Properties of  the quasi-generalized PML estimators 

Given any consistent estimator O r of 0, we can now define a Q G P M L  est imator 
and give its main properties. 

PROPOSITION 5. Let 0 v be a strongly consbtent estimator of  O, a Q G P M L  



Pseudo-likelihood methods 345 

estimator of O, obtained by solving 

m a x  L2T 
0 

T 

= Log 12r = ~ Log f * { y .  m(xt, 0), O[m(x,, 0r), v(xt, 0r)l} 
t= l  

is strongly consistent, asymptotically normal and reaches the lower bound 
given in Proposition 4. 

So when a specification v(x. O) is available, the previous proposition solves 
the problem of the optimal choice of a pseudo-likelihood function, since the 
bound is reached, and it shows that any QGPML estimator reaches the 
semi-parametric efficiency bound. Note that the asymptotic properties of a 
Q G P M L  estimator is the same for all the generalized linear exponential 
families, so the choice among various possibilities can be based on computa- 
tional considerations. Let us consider several examples. 

Let us assume that Eo(Yt/Xt) = m(x,  01o ) and Vo(Yt/Xt) = O2ogZ(xt, 010 ) (where 
010 and 02o are subvectors of 00). It is possible, in a first step, to consistently 
estimate 010 by any PML1 estimator 01r and to consistently estimate 020 for 
instance by 

1 T X' [Y, - m(x.  01r)] 2 
¥ = gZ(x,, 01r) 

In a second step a QGPML estimator of 01 can be based for instance on the 
normal or on the gamma family. In the first case the QGPML of 01 estimator is 
obtained by minimizing 

[Y'- m(x,OOl 2 
g2(x,, G ) G  (8) 

In the second case the QGPML estimator of 01 is obtained by minimizing 

Yt 

,=1 g ( ,, G ) G  

Note that in both cases 02r can be omitted in the objective function; therefore 
02r plays no role in the computation of the estimator but it appears in the 
estimator of the asymptotic variance-covariance matrix. 

From the theory we know that these two estimators have the same 
asymptotic properties. In the particular c a s e  g(xt ,  0 )  = 1 the QGPML estimator 
based on the normal family is simply the nonlinear least squares which, 
therefore, provides an optimal PML1 estimator in one step. In the particular 
case where g(x,, O)= m(x,  0), the second QGPML is identical to the PML1 
estimator based on the gamma family which, therefore, is an optimal PML1 
estimator. 
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5. Pseudo-maximum likelihood estimators of order two (PML2) 

As in Section 4 we make the assumptions 

Eo(y/x ,)  = m(x,  0o) 

and 

Vo(y,/xt) = v(x,, 00). 

However, contrary to the context of Section 4, we are interested in the whole 
parameter 00 and not only in the subvector appearing in m. So we want m and 
v to play symmetrical roles. For this purpose it is useful to introduce new 
families of probability density functions: the quadratic exponential families 
defined by 

f(u, m, ~ )  = exp(A(m, ~ )  + B(u) + C(m, Z )u  + u'D(m, Z)u}  , 

where 
(a) A(m, ~) ,  B(u) are scalar, C(m, Z)  is a row vector of size G and D(m, ~ )  

is a square matrix (G, G), 
(b) m is the mean and ~ the variance-covariance matrix associated with 

f(u, m, Z ). 
We can now define a pseudo-likelihood function adapted for the first two 

moments: 

T 

13r = ~I f[Y,, m(x,, 0), v(x,  0)].  (11) 
t - I  

The pseudo-maximum likelihood of order 2 (PML2) estimators thus ob- 
tained have the following properties. 

PROPOSITION 6. A PML2 estimator O r of  0 o based on a quadratic exponential 
family is strongly consistent and asymptotically normal; the asymptotic variance- 
-covariance matrix of  V~(0  r -00)  is J-1I j -1 with 

OZLog/ 
J = - E x E  0 ~ - ~ -  [y, m(x, 0o), v(x, 00) ] , 

0 Log f . 0 Log f 
I = E E ~ [y, m(x, 0o), v(x, 00) ] ~ [y, m(x, 0o), v(x, 00) ] . 

More detailed expressions of I and J can be found (see GMT, 1984a, 
Appendix 5). 

It is also remarkable to note that, as in the first-order case, there exists a 
reciprocal of the previous proposition. 

PROPOSITION 7. A necessary condition for a PML2 estimator based on a family 
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f(u,  m, X)  to be strongly consistent for any O, m, v and h 0 is that f(u,  m, X)  be a 
quadratic exponential family. 

Thus we obtained results which directly generalize those obtained in the 
first-order case. 

6. Hypothesis testing 

6.1. General results 

We make the assumption 

Eo(Yt/Xt) = m(xt, 0o) 

and, possibly, the assumption 

Vo(y,/x,) = v(xt, 0o). 

We are interested in an hypothesis H 0 on 00. The more general form of such a 
null hypothesis is the mixed form (see Szroeter, 1983; Gourieroux and 
Monfort ,  1989b) defined by 

H0: {O/3a C ~ic: g(O, a) = 0} ,  (12) 

where g is an L-dimensional function such that Og/O0' is an L ×p  matrix of 
rank L and Og/Oa' is an L × K matrix of rank K (this implies K ~< L ~<p). This 
form contains as particular cases the explicit form [0 = h(a)] and the implicit 
form [~b(0)=0]. In Gourieroux and Monfort  (1989b) we propose a general 
t reatment of this kind of hypothesis when an unconstrained estimator Or of 00 
is obtained by maximizing a general objective function LT(0 ) and when the 
following assumptions are satisfied 

fir is consistent ,  

1 OL r D >N(O, Io) (13) a0 (0o) 

1 OZLT P'S ) Jo 
T aO aO' (0°) T-~ ' 

where I o and Jo are positive definite matrices. 
The PML1, Q G P M L  and PML2 methods (based on appropriate exponential 

families) fit in this general framework with L T =LIT = Log/ iT , L v = LZT = 
Log lzT or L r = L3T = Log 13r; therefore all the results obtained in the general 
framework mentioned above can be used. In particular, we can define a 
pseudo-Wald, a pseudo-score and a pseudo-Lagrange multiplier test statistic for 
testing H 0. These statistics are asymptotically equivalent under H 0 and under a 
sequence of local alternatives and their asymptotic distribution under H 0 is 
xZ(L -- K ) .  It is important to note that these statistics are not the same as the 



3 4 8  C. Gourieroux and A. Monfort 

ones that we would have obtained in the classical maximum likelihood context, 
that is if we knew that the true pdf was in the family from which the 
pseudo-likelihood function was derived. The reason of this difference is that, 
contrary to the maximum likelihood context, matrices I 0 and J0 are in general 
different in the PML1 and the PML2 contexts. However,  these matrices are 
identical in the Q G P M L  case; this property implies that the pseudo-Wald and 
pseudo-score statistics based on a Q G P M L  method have the same form as in 
the maximum likelihood context and, moreover,  that is is possible to base the 

~ 0  
pseudo-likelihood ratio test on the Q G P M L  method; in other words, if O r is 
the constrained estimator the statistic 2 [ L 2 r ( 0 r ) -  L2r(0°r)] is asymptotically 
equivalent to all the test statistics mentioned above. 

6.2. Particular cases 

Let us consider a PML1 method based on a linear exponential family (see 
Proposition 1); the unrestricted estimator of 0, denoted by O r, is obtained by 
maximizing 

T 

L1T = E Log f [ y , ,  m ( x .  0) ] .  
t = l  

Let us assume that 0 is partitioned into 0 = (a ' , /3 ' ) ' ,  that H 0 is defined by 
/3 =/3 o and let us denote by p~ the size of/3. The pseudo-Wald statistic can be 
shown to be (see Trognon, 1984, 1987) 

where 

t ^ ^ 1 ^ A 

= r(B  -/30) e w  F(/3  - /3o) ,  (14) 

where P and 17¢ are consistent estimators of 

F = Jt~t3 - J ~ J ~ J ~ ,  and 
- 1  - - J e ~ J . . . 8  + J z ~ J ~ . I . . J . . L z ,  W = I ~  It~,~J..J.t ~ -11 -1 1 

and where the indexes a , /3  refer to submatrices of I and J defined in 
Proposition 2. Under  H0, ~ w is asymptotically distributed as a chi-square with 
p~ degrees of freedom. 

In the same context the pseudo-score or (pseudo-Lagrange multiplier) test 
statistic is 

1 
~S = ~ ,~'tI~-I ~T , (15) 
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where 

c3L1T ^ 0 
At-  O0 (aT,/3o), 

~0 a T being the constrained PML1 estimator of a. 
It is also easy to give explicit formulae for the pseudo-Wald and the 

pseudo-score test statistics associated with the QPML method, when the null 
hypothesis is the same as above:/3 =/30. Let us consider any generalized linear 
exponential family f* (u ,m,71)  (see formula (7)); the relevant objective 
function is 

T 

LZT = ~ Log f * { y , ,  m(xt,  0) ,  qJ[m(x t, Or), v(x t, 0r) ] ) ,  
t = l  

where O r is a consistent estimator of 0. 
Let us denote by 0 T = (a T', /3T)*' ' the estimator obtained from the maxi- 

mization of Let. The pseudo-Wald test statistic is 

~w -_ T(fl~ -/30)'  1~'*(/3~ - /30) ,  (16) 

where 1~* is a consistent estimator of 

* - I *  (I* ~-1I* W* = It3 ~ t ~  ~ J  ~ 

and where the indexes a, /3 refer to submatrices of 

( Orn' - l O r e )  
I * = E , \  00 v ~ . 

The pseudo-score statistic is 

1 
~ s  = T A T,(Ipd.)-IA~, (17) 

with 

* - OL2r (a*° 
A T -  O0 T ' /30) ' 

*0 a r being the constrained QGPML estimator of a. 
As mentioned above the pseudo-likelihood ratio test statistic 

~R = 2[Lzr( 0 T) -- L2T(O *0 )] 

is asymptotically equivalent to ~T w and ~T s', the asymptotic distribution of 
these statistics under H 0 is X2(p~). It is also easily shown that the tests based 
on a QGPML method are asymptotically more powerful than those based on a 
PML method; this property is a consequence of the semi-parametric efficiency 
of the QGPML methods. 
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6.3. Pseudo-l ikel ihood ratio tests 

We have seen above that, in general, the pseudo-likelihood ratio tests based on 
a PML1 method are not asymptotically distributed as a chi-square; this 
distributions is, in fact, a mixture of chi-square distribution (Fourtz and 
Srivastava, 1977). 

However, there are important cases where the pseudo-likelihood ratio tests 
based on a PML1 method are asymptotically equivalent to the pseudo-score 
and the pseudo-Wald tests. The more important case is probably the multi- 
variate linear case, 

yt = Bx,  + ut , (18) 

where y, is a G-dimensional vector, B is a matrix of parameters, x t a vector of 
exogenous variables, and u t is a white noise process (independent of x,), whose 
instantaneous variance-covariance matrix is denoted by g2. The null hypothesis 
is any hypothesis on B (linear or nonlinear, in an explicit, implicit or mixed 
form). The pseudo-likelihood ratio test statistic based on the normal family is 
equal to T Logdetg~0T/det{2~, where ~0~r is the empirical variance- 
covariance matrix of the residuals obtained in the constrained PML2 estimation 
and {2~ is the similar matrix in the unconstrained case; note that in the 
unconstrained case the PML2 estimator of B is simply made of the OLS 
estimators of the rows of B. This statistic is asymptotically distributed as  xZ(K) 
(where K is the number of constraints), even if the true distribution of u, is not 
normal, and is asymptotically equivalent to the pseudo-score statistic, which is 

equal to T Trace[g20r(O0v- ~ ) ] .  Since the form is not necessarily implicit, it 
may not be possible to define a pseudo-Wald test statistic; however, for any 
form of the hypothesis, it is possible to consider a pseudo-generalized Wald test 
statistic, defined as 

Min(b r - b)'[g) ~ 1 ® X ' X ] ( [ ~ r  - b ) ,  
b E H  0 

where b = vec(B'), and/~7- is the unconstrained PML2 estimator of b, i.e., the 
ordinary least squares estimator equation by equation; it turns out that this 

statistic is equal to TTrace [O~ l (O0r -OT) ] ,  where ~0:~ is the empirical 
variance-covariance matrix of the residuals when b is estimated by the 
generalized least squares estimator derived from the previous minimization. 
This statistic is asymptotically equivalent to the pseudo-score and to the 
pseudo-likelihood ratio test statistics. 

7. Simulated PML methods 

7.1. Motivations 

As mentioned in the introduction the pseudo-likelihood methods may be useful 
for parametric models when the likelihood function does not have a closed 
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form and cannot be maximized; it is the case, for example, in some multimar- 
ket disequilibrium models (see Laroque and Salani6, 1989). When the likeli- 
hood function does not have a closed form, the same is in general true for the 
moment  functions and, therefore,  the pseudo-likelihood methods do not 
directly apply. However ,  for a given value of the parameter ,  simulation 
techniques can be used in order  to approximate these moments;  if we replace 
these moments by their evaluations based on simulations we get a simulated 
pseudo-likelihood method. 

More  precisely, let us consider the following situation. We have a typical 
econometric model 

y~=r(x~,et, O), t = l , . . . , T ,  (19) 

where 0 is a vector of parameters,  x t a vector of exogenous variables, e, a 
vector of disturbances and Yt a vector of endogenous variables. 0 is unobserv- 
able and deterministic, x, is observable and stochastic with an unknown 
distribution, e, is unobservable and stochastic with a known distribution; the 
function r is called the reduced form of the model. Note that the assumption of 
a known distribution for e~ is not very restrictive since a model with parametric 
assumptions on the distribution of the disturbance can be put in the previous 
form, for instance by writing this disturbance e* = G(e~, O) where e, has a 
known distribution and 0 is an unknown parameter  which is incorporated into 
0. As seen later it may be convenient to partition the disturbance vector into 
two subvectors, e~ = (u;, v;)'. For  sake of simplicity we assume that the 
processes {x,}, {u,}, {vt} are independent and that each process is identically 
and independently distributed (but these assumptions can easily be weakened);  
the disturbances u, and v, are assumed to be zero-mean. 

We are interested in 0 and we consider the case where the conditional pdf  
g(yt; xt, O) does not have a closed form. Since the maximum likelihood method 
cannot be used we can think of applying PML methods but, the problem is that 
the conditional moments of y~ given x, do not have, in general, a closed form. 

7.2. Description of the simulated PML methods 

Let  us first focus on the PML1 method. Since the functional form of the 
conditional mean m(xt, O)= E(yt/xt) is not known, we can try to approximate 
it by means of simulations. More precisely, we shall distinguish two cases. In 
the first case, the conditional mean ofy t ,  given x t and a subvector u t of e,, has a 
known functional form 

Eo(yt/xt, ut) = m*(xt, u t, 0). (20) 

Such a situation occurs, for instance, in models with an individual hetero- 
geneity factor; in this case the index t is an individual index and u~ is the 
heterogeneity factor (see Gourieroux and Monfort ,  1991b). 

In the second case such a conditioning does not exist (apart from the trivial 
conditioning u t = e,). 
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In the first case m(xt, O) can be replaced by ( l / H )  n . Eh= 1 m (x, l~ht , 0), where 
Uh, h = 1 , . . . ,  H, t = 1 , . . . ,  T are independent drawings in the distribution 
pV of u r In the second case m(x, O) can be replaced by ( I /H)  n r h=l fiX. uh,, O) 
(with ut = et). A drawback of the latter approximation is that r may be 
nondifferentiable, or even discontinuous, with respect to 0; however, these 
technical problems can be overcome (see McFadden, 1989; Pakes and Pollard, 
1989; Laroque and Salani6, 1989); moreover, it is possible to avoid these 
problems by using the importance sampling technique (see Gourieroux, 1992). 

The simulated PML1 (SPML1) method consists in maximizing a PML1 
objective function in which m(xt, O) is replaced by an approximation given 
above. For instance, when a relevant conditioning exists this objective function 
is 

i1  ] L o g f  Yt,-~ ~ m*(xt, Uh, O) , (21) 
t = l  L. h = l  

where f(., m) is any linear exponential family, f(y, m) = exp[A(m) + B(y) + 
C(m)yl. 

This maximization is equivalent to the maximization of 

t = l  h = l  -~- C - -  Z (22) ~ { g [ ~ - ~  m*(X,,Uht, O)] [ lh~lm*(x t ,  Uht, O)]Yt }" 

A simulated method can also be associated with the QGPML method. Let 
f*(., m, ~) be any generalized linear exponential family where rt = ~(rn, m2) , 
m 2 being the (noncentered) second moment and ~b(m, .) being one-to-one for 
any m. The simulated QGPML method consists in maximizing 

Log f* Yt,-~ ~ m*(xt, Uht, O), 
t = l  h = l  

m*(x,, uh,, uh,, 
h = l  

(23) 

where 0 r is any consistent estimator of 0 and rn~ is the (noncentered) second 
order moment of y, given x t and u r 

A simulated PML2 method can be defined in the same way. 

7.3. Asymptotic properties of the simulated PML methods 

It is important to note that the asymptotic properties given below are valid 
when the same drawings Uht, h = 1 , . . .  ,H, t= 1 . . . .  , T are used in the 
computation of the objective functions for  different values of 0. 

The main asymptotic properties of the simulated PML estimators or of the 
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simulated QGPML estimators are the following (see Gourieroux and Monfort, 
1991) for the regularity conditions. 

PROPOSITION 8. If H and T go to infinity, the simulated PML or QGPML 
estimators 0 T are consistent. If, moreover, V T / H  goes to zero, VT(  O T - 0o) has 
the same asymptotic distribution as the corresponding PML or QGPML 
estimator. 

So, in order to have the usual consistency and asymptotic normality 
properties, the number of drawings H per observation has to go to infinity at 
least as fast as the square root of the number observations; however, it seems 
that in practice the influence of the number of drawings H is quickly stabilized 
when H increases (see Laroque and Salani6, 1990). Moreover, by slightly 
modifying the procedures it is possible to obtain consistency and asymptotic 
normality when H is fixed and only T goes to infinity. Let us briefly discuss this 
point and consider, for sake of simplicity, the simulated nonlinear least squares 
(SNLS) method (which is a particular SPML method). When no relevant 
conditioning is available the SNLS estimator is a solution of the first-order 
equations 

1 ~ 1 ~ Or O)[yt - 1 ~ r(x,,Uht, O)]=O (24) ¥ -d ~(x,,uht, Hh=l 
t = l  h = l  

When H is fixed and T goes to infinity, equation (24) becomes 

Om 
E x ~ (x, O)[m(x, 0o) - re(x, 0)] 

1 Covu[~o(X,U,O.),r(x,u,O) ] +~Ex = 0 .  (25) 

So, because of the correlation between Or/OO(x, u,O) and r(x, u,O) the 
solution in 0 of (25) is, in general, different from 00 and, therefore, the SNLS 
estimator is not, in general, consistent. However, it is clear that this covariance 
term is eliminated if different drawings in pU are used for r and Or/O0. Let us 
denote by Uht (resp. Uht ) the drawings used in r (resp. Or/O0). Equation (24) 
becomes 

[ ] -~ -~ ~ (Xt, Uh*, O ) y, - --~ r(x,, u,,, O ) = 0 .  
t = l  = h = l  

(26) 

PROPOSITION 9. The SNLS estimator O r based on (26) is consistent and 
asymptotically normal when H is fixed and T goes to infinity. The asymptotic 
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variance-covariance matrix o f  X/T(0 r -00)  is 

8m am ) i f  2 Om Om 
oo (x, Oo) oo oo' 

Exo" (x, Oo) 1 + ~  2 

{ Om Om } -1 
x Ex o 0 - ~ ,  , 

1 Or - - - ~ - ;  
vuso + 00 

where o'2(x, 00) is the conditional variance of  Yt given x. 

The previous approach can be generalized to any PML1 estimator based on a 
linear exponential family since, using the identity (OA/Om)+ (OC/Om)m = O, 
the first-order conditions can be written 

am OC[m(x t, 0)] 
,=1 -~-  (x,, 0 ) Om [Yt - m(xt, 0 )] = 0.  

The same is true for other PML methods. Also note that there exist other 
modifications making SPML methods consistent when H is fixed and T goes to 
infinity (see Laffont, Ossard and Vuong, 1991; Broze and Gourieroux, 1993). 

8. Pseudo-likelihood methods and nonnested hypotheses 

In this section and the following one we no longer consider the PML methods 
based on conditional moments but we focus on PML methods based on 
nonnested hypotheses. 

8.1. Pseudo-true values 

Let us consider a family of conditional densities of Yt given x t t = 1 . . . .  , T, 

Hf = {f(yt; xt, a) ,  ~ ¢ A C N~}. (27) 

For sake of simplicity f(Yt; xt, °O will also be denoted by f,(a). Let us denote 
by fo(y,;xt)  for f0, the true conditional density, which does not necessarily 
belong to HI. The finite sample pseudo-true value of o6 denoted by oz}, is the 
value of a minimizing the Kullback-Leibler information criterion (KLIC) (see 
Sawa, 1978): 

T 

~] Eo[Log fo, - Log f ( a ) ] ,  (28) 
t - I  

where E o is the expectation operator with respect to fo,. 
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* is obtained from Equivalently ~T 

T 

Max ~ E o Log f ( a ) .  (29) 
a t = l  

Clearly II r ,  f(a~-) can be interpreted as the pdf of the form IIL, f (a)  which 
is the closest, in the KLIC sense, to the pdf IIT=I f0t. 

* converges to the As T goes to infinity the finite sample pseudo-true value a r 
asymptotic pseudo-true value a*, which is a solution of 

Max ExE 0 Log f(y; x, a).  (30) 

* is Note that, in the iid case, i.e., when there is no exogenous variables, o~ T 
equal to a*. a* is also the limit of the PML estimator &r of a, obtained from 

T 

Max ~ Log f ( a ) .  (31) 
ot t = l  

Let us now consider another family of conditional densities, 

Hg = {g(y,; x,,/3),/3 C B C R/c}. (32) 

g(y,; x,,/3) will also be denoted by gt(/3). 
For any /3 in B we can define the finite sample pseudo-true value aT(/3 ) 

of a, as the solution of 

T 

Max Z E~ Log f ( a ) ,  (33) 
a t = l  

where E~ is the expectation operator with respect to gt(/3). 
Again, as T goes to infinity, at(/3 ) converges to the asymptotic pseudo-true 

value a(/3), solution of 

Max ExEt~ Log f(y; x, a). (34) 

a(/3) is also the limit of the PML estimator &r of a, obtained from (31), when 
g,(/3) is the true density. 

Obviously, by reversing the roles of a and/3, it is also possible to define the 
finite sample pseudo-true value of/3 for any a, denoted by br(a), and the 
asymptotic pseudo-true value, denoted by b(~). 

8.2. Nonnested hypotheses 

Let us now consider the problem of testing H r against Hg. A natural idea is to 

compare the pseudo-maximum likelihood estimator /3r of /3, obtained by 
maximizing P.,r= 1 Log gt(/3), with b(~T) or bT(~r), which are respectively the 
estimation of the asymptotic and the finite sample pseudo-true value of /3 
under [If. Since [3 T - b( &T) and ~r -- br( &r) converge to zero under Hf, and 
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since it is not the case in general under Hg, a significant departure from zero of 
/3T- b(d~r) or /3 r -  br(3r)  will be in favour of H e. This idea is the basis of 
testing procedures which can be called Wald type procedures since, as easily 
seen, they both reduce to the classical Wald test in the case of nested 
hypotheses. The test based on b(d~r) will be called the W1 test, and the test 
based on br(d~r) will be called the W2 test. In fact the computation of the 
asymptotic pseudo-true values is, in general, difficult since it involves the 
distribution of the exogenous variables and, therefore, the W2 test based on 
the finite sample pseudo-true values is more useful in practice. 

Let us now introduce the following notations: 

(oLogf 0 f) 0 Logf 
Cff = ExE~o Ooe Oa / = -E~E~o Oa Oa' ' 

(0  Log f 0 Log g )  , 
Csg = E~E~0 Oa 0/3' = Cgs ' 

/ O L o g g  0 Log g )  
Cgg= E~E~°~ V 0~' ' 

/ O 2 Log g \  
K g = - E ~ E % ~  - ~  0---~ ) '  

[ / O L o g g  O L o g g ) ( O L ~ g  0 Log g ) ' ]  
c;=E Eoo[  V Eoo 0/3 EOo 0/3 ' 

where % is the true value of a and the derivatives of f (resp. g) are evaluated 
at a o (resp. b(ao) ). 

The definitions and the asymptotic properties of the W1 and W2 tests are 
given in the following proposition (see GMT, 1983b). 

PROPOSITION 10. (a) The W1 test is based on the test statistic 

= - b (  - C g ,  C , g ] -  - b (  , 

where ~2g, Cgg, Cgf and Cfr are consistent estimators of  Kg, Cgg, Cg/, Cff. Under 
HI, ~wl is asymptotically distributed as a chi-square whose number of  degrees of  
freedom d is equal to the rank of  Cgg - CgsC~ICIg. The critical region at the 
asymptotical level e is' {~Wl >~X~_~(d)}. 

(b) The W2 test is based on the test statistic 

~w2 = T[]3 - b:r(a)] K,[Cgg - CgIC ff Cf,] Kg[/3 - b r (6) ] ,  

where C u*g is a consistent estimator of  C ~g. Under Hz, ~w2 is distributed as a 
chi-square whose number of  degrees of  freedom d* is the rank of  Cgg-  
CgyC~lCfg. The critical region at the asymptotic level e is (~w2 >~X2-~(d)} • 

It is easily seen that d* cannot be greater than d. Moreover, since both 
/~r -  b(@) and [3 r -  br(~r) converge, under Hg, to /30 -b[a(/30)l, the Wald 
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type tests proposed above are consistent except in the special case /30 = 
b[a(/30) ] (see GMT, 1983b, for a discussion of this case). It is also possible to 
propose two score-type tests. The first one, denoted by $1, is based on 

1 ~ 0 L o g g  
A1 = y O - - - - ~  (y'; xt' b(&T)) ; 

t = l  

the other one, $2, is based on 

1 r 
A2 = -~ ,=~=1 0 Log g 

= 0/3  ( Y t ;  x,, bT(&r)  ) . 

PROPOSITION 11. The statistics 

~ S 1  ~ t  ^ ^ ^ - 1  ~ - = r , ~ . l [ C g g  - CgfCff C f g ]  ) t  1 

and 

are respectively asymptotically equivalent under Hy to ~w~ and ~we. 

8.3. Examples 

Various cases can be found in GMT (1983b). Let us consider here the simple 
case of two families of pdf based on the same linear exponential family with the 
mean linked in the sense of Section 3.4 and with different exogenous variables. 

In this case the two families of pdf are defined by 

Log f (YA xt, o~) = A[C- l ( x ;a ) ]  + B(Yt)  + y tx;a  , 

Log g(Yt; zt, /3 ) = A[C-l(z;°z)] + B(Yt)  + y,z;/3 . 

For instance, in the case of a Bernoulli distribution with c - l (u )  = eU/(1 + 
e"), it is the problem of the ch0ice between two logit models with two sets of 
explanatory variables; in the case of a Poisson distribution with c - l ( u ) =  
exp(u), it is the choice between two Poisson regression models. 

In this context, a simple computation shows that br(& ) is the solution of 

E - c = 0 
t = l  

T 

E z,{~7 - C-I[Z;bT(&T)]} = O, 
t = l  

o r  

(35)  

where 3~ is the prediction of y, under HI, with a = &T; in other words br(&T) is 
the PML estimator of/3 under Hg based on the observations 29~. Moreover, it 
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can be seen that, in the simple example considered here, the ~$2 statistic is 
identical to the score statistic for testing 3' = 0 in the model based on the same 
linear exponential family and the mean m e = C-l(x'ta + z* 'y)  where z* are the 
exogenous variables of Hg, linearly independent from the exogenous variables 
of H,. 

9. Model selection 

Let us consider again the families of hypotheses HI and Hg defined by (27) and 
(32). In a nonnested hypotheses testing method the idea is to examine the 
behaviour of some statistics when one of the hypotheses is assumed to be true. 
In a model selection procedure, none of the hypotheses is, a priori, assumed to 
be true and the idea is to evaluate a kind of distance between the true PDF and 
the models considered. Vuong (1989) has proposed a selection method based 
on PML estimators of a and /3 which also has the advantage to propose 
probabilistic statements, contrary to classical selection procedures (see also 
Rivers and Vuong, 1990). 

Using the (asymptotic) KLIC as a proximity criterion we can define three 
hypotheses: 

s(y;x, l 
H0: E ,E  0 Log g ( y ; x , / 3 * ) J  = 0 ,  (36) 

HF: ExE0[Log f !y;x,  a*) ] > 0  (37) 
L gty;x,/3*)J ' 

f(y;x, ] 
Ha: ExE o Log g(y;x,/3*)J < 0 ,  (38) 

where a* and/3"  are the asymptotic pseudo-true value of a and/3. 
Hypothesis H 0 means that the models are equivalent, whereas hypothesis H F 

means that the family H~ is better than the family Hg and conversely for H c. 
Let us now assume that the models we are considering are strictly nonnested, 

i.e., that the two sets Hf and H~ have no element in common (the case of 
overlapping model is also treated in Vuong, 1989) and let us introduce the 
notations 

( f(r;x, 
o92 = V  Log g(Y;X, fl*)] ' (39) 

where V is the variance taken with respect to the true joint distribution of 
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(Y, X), and 

~2 1 r [ f(Yt,;Xt, d~T)]2 [ l ~ L o g  

w r = -~ Log 
,:1 g(yt;xt,/3T)J 

T f(Y,;Xt, aT) 
LRT(aT, /3T) = ~] Log 

,=1 g(y,; x,, /3r) ' 

where &T and /3r are the PML estimators of a and ft. 
The following proposition holds. 

f(Yr;Xt, &r) ] 2 (40) 

g(Yt; xt, ~T)_] ' 

(41) 

(42) 

PROPOSITION 12. I f  the families H I and Hg are strictly nonnested, 
(a) under Ho: 

V,-~LRT( d~T ' ^ D ~ T ) / & T - ~  N(0, 1), 

(b) under He: 

VrTLRT( &T, [3T)/& T > + ~, almost surely, 
T-->~ 

(c) under He: 

V~LRr(  &T, [3T)/goT > -- 0% almost surely , 
T'--> 

(d) properties (a)-(c) holds if go T is replaced by (o r. 

So, the previous proposition provides a test procedure which can be easily 
implemented. At the asymptotic level e, H 0 is accepted if 

IV-TLRT( &r, fiT ) / goTI <~ Ul ~/2 

(where Ul_e/2 is the quantile of order 1 - el2 of N(0, 1)); if V'TLRT(& fiv)l 
&r > U1-~/2, H0 is rejected in favour of H F and if V'-TLRT(& fi)/&T < --U1-~/2, 
H 0 is rejected in favour of H~. 

10. Concluding remarks 

The methods described in the previous sections clearly have a wide applicabili- 
ty and they already have been used in various contexts. Cameron and Trivedi 
(1986) were interested in the number of consultations with a doctor or a 
specialist and they used various PML1 and QGPML methods. Boyer, Dionne 



360 C. Gourieroux and A. Monfort 

and Vanasse (1990) applied the same kind of methods to explain the number  of 
car accidents and to propose a bonus-malus system based on a Poisson model  
with individual effect. Laroque and Salani6 (1990) used the simulated PML1, 
Q G P M L  and PML2 methods in the context of a mul t imarket  disequilibrium 
models,  because the ML methods were untractable. Bollerslev and Wooldridge 
(1988) used the PML2 approach in the context of autoregressive conditionally 
heteroscedastic (AR C H)  models,  and Gourieroux and Monfor t  (1991b) used 
the same method for the qualitative threshold A R C H  modelling of stock 
indexes. Arminger  and Sobel (1990) used PML2 method in a model  for 
education and occupational status with missing data (see also Arminger  and 
Schoenberg, 1989). Wooldridge (1991) used PML1 methods in a model  
explaining the number  of times an individual was arrested. Laffont,  Ossard and 
Vuong (1991) used simulated PML1 methods,  in particular simulated nonlinear 
least squares, for econometric models of descending auctions and they applied 
these methods to daily sales on an auction market  of egg-plants. Extensions of 
the methods described here have also been proposed in order to estimate 
autocorrelation functions (Gourieroux,  Monfort  and Trognon,  1984c), spatial 
interactions (Strauss and Ikeda,  1990), possibly misspecified A R M A  models 
(Tanaka  and Satchell, 1989; P6tsher, 1991) or limited dependent  variables 
models with serial correlation (Robinson,  1982; Gourieroux and Monfort ,  
1985). The simulated PML methods also seem promising; it is clear, for 
instance, that such methods could be applied in the many kinds of models 
where unobservable variables appear: factor models,  index models,  models 
with individual effects, model with heterogeneity,  model  with lagged endogen- 
ous variables (for instance dynamic disequilibrium models). Works in some of 
these fields are in progress and more and more  experience will be accumulated. 
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Rao's Score Test: Recent Asymptotic Results 

R a h u l  M u k e r j e e *  

1. Historical  introduct ion to Rao's  score test 

Let L(x, O) be the (log-) likelihood function of a p-vector parameter 0 = 
(01 . . . .  ,0p)' given a sample x. Then the p-vector function 

l(x, O) = OL(x, O)/O0 (1.1) 

is called the score function. For given 0 and random x, we have 

Eo{l(x, 0)} = 0 ,  COVo{l(x, 0)} = J ( 0 )  = ((•rs(0))) , 

where J ( 0 )  is the Fisher information matrix. Rao (1948) introduced two test 
criteria for testing simple and composite hypotheses and gave their large 
sample null distributions. 

To test a simple hypothesis H 0 : 0  = 0o, Rao's  test statistic is 

{m'l(x, 00)} 2 
R s =maXm¢0 m'J(Oo)m - {l(x, 00)}'{J(00) }-a{/(x, 00) } , (1.2) 

assuming the positive-definite (pd)-ness of J(00). Under  14o, this is asymp- 
totically distributed as a central chi-square with p degrees of freedom (df) 
under fairly general conditions. To test a composite hypothesis of the type that 
0 lies on a surface defined by 0 = ~ ( ~ ) ,  where ~ is a q-vector parameter 
(q < p ) ,  Rao proposed the statistic 

R c = {l(x, Oc)}'{o~(0c)}-lf/(x,/~c)}, (1.3) 

where /~c is the maximum likelihood estimator (MLE) of 0 under the condition 
0 = q~(g). The asymptotic null distribution of R c is, under some conditions, a 
central chi-square with p - q dr. About  ten years later, Silvey (1959) proposed 
the same test (1.3) for a composite hypothesis and called it the Lagrangian 

* On leave from Indian Institute of Management, Calcutta, India. This work was supported 
partially by a grant from the Center from Management and Development Studies, IIM, Calcutta, 
and partially by the Air Force Office of Scientific Research under Grant AFOSR-91-0242. 
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multiplier (LM) test which led to Rao's test (1.3) for composite hypotheses 
being referred to as the LM test. About that time, Neyman (1959) introduced 
what is called the C(a) test for testing composite hypotheses of the type 

H0:01 = 010, 02 . . . .  , Op are arbitrary. 

The C(a) criterion is a signed root square of Rao's criterion (1.3) for one df 
with one difference. The estimators of the nuisance parameters 0 2 , . . . ,  Op used 
in Neyman's statistic are any root n-consistent estimators whereas in Rao's 
formulation, they are MLEs given 01 = 010. Of course, up to the first order, the 
asymptotic distribution of (1.3) remains the same whether MLEs or any root 
n-consistent estimators are used for the nuisance parameters. 

The C(a) test of Neyman is a test for one parameter in the presence of p - 1 
nuisance parameters. This has been extended by Hall and Mathiason (1990) for 
testing more than one, say p -  q, components of 0, in the presence of q 
nuisance parameters, in the form of Rao's statistic (1.3) with MLEs replaced 
by any root n-consistent estimators. They call such a modified version of (1.3) 
the Neyman-Rao test criterion. 

While introducing the score test in 1948, Rao conjectured that it is likely to 
be locally more powerful than other tests like the likelihood ratio and Wald's 
tests (see also Rao, 1965, p. 350, in this context). Recent work, based on 
higher-order asymptotics, indicates the truth of Rao's conjecture. An objective 
of this article is to review the work done in recent years in this area. We shall 
also summarize some recent results on Bartlett-type adjustment for Rao's 
statistic, a problem posed by Cox (1988) and Rao, in a private communication. 
For a review of the developments in this field till the late eighties, we refer to 
Ghosh (1991); see also Bera and Ullah (1991) and the references therein for an 
informative general review on Rao's test as applied in econometrics. 

In the sequel, we shall use the abbreviations LR, R and W to denote 
respectively the likelihood ratio, Rao's and Wald's statistics as well as the tests 
based on these statistics depending on the context. The symbol R will represent 
R~ or R c (see (1.2), (1.3)) depending on whether a simple or a composite 
hypothesis is being considered. 

2. Comparison of higher-order power 

For the scalar parameter case, under a one-sided alternative, R is evidently 
locally most powerful (see, e.g., Ferguson, 1967, pp. 235). As a consequence, 
the comparison among LR, R and W is of  more interest when (a) the 
parameter 0 is multi-dimensional or (b) the parameter is one-dimensional but 
the alternative is two-sided. Among the early authors, Peers (1971), Hayakawa 
(1975) and Harris and Peers (1980) studied these three tests, under the set-up 
of multi-dimensional 0 and contiguous (multi-sided) alternatives, and reported 
their noncomparability. In particular, they observed that, up to the second 
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order of comparison, the local power function of none of these tests uniformly 
dominates those of the others. In consideration of this, subsequent authors 
treated the problem adopting the following two approaches: 

(i) to compare slightly modified versions of the tests, the modification being 
done in a meaningful way; 

(ii) to compare the tests in their original forms but using some reasonable 
criterion other than point-by-point power. 

2.1. Comparison of locally unbiased versions 

Chandra and Joshi (1983), following a suggestion of J. K. Ghosh, adopted the 
first approach and compared the locally unbiased, up to o(n-1), versions of the 
tests. We refer to Ghosh (1991) for an illuminating discussion on the rationale 
behind this approach; see also Amari (1985, p. 172) in this context. With 
reference to a sequence of independent and identically distributed (iid) 
possibly vector-valued random variables X1, X 2 , . . . ,  having a common density 
f(., 0), where 0 is scalar-valued, Chandra and Joshi (1983) considered the 
problem of testing H 0 : 0  = 00 against a two-sided alternative, 00 being an 
interior point of the parameter space. They considered contiguous alternatives 
of the form O(n)= Oo + n-i/z6, where n is the sample size, and under the 
assumptions of Chandra and Ghosh (1980) (see also Bhattacharya and Ghosh, 
1978), which are of quite general nature, compared the signed square-root 
versions of the tests as follows: 

For i = 1, 2, 3, let 

l~* = E o o { d  ~ log f(X1; Oo)/dOi}, 

H i  ~- n-l/2 k [{ di  log f(Xj; Oo)/dO i} - l ; ]  . 
j-1 

Chandra and Joshi (1983) noted that for each of LR, R and W, there exists a 
set s¢ n with Po(n)-probability 1 + o(n -t)  uniformly over compact subsets of 6, 
such that over a/n the statistic admits an expansion of the form T2~ + o(n-1), 
where 

T~ = Hl1-1/2 + n-1/2(O1HiH 2 + 02H~) 

+ + y HIHX + + (2.1) 

I (= -12,  under standard regularity conditions) is the per observation Fisher 
information at 00, and O1, 02, Yl, Y2, Y3, Y4 are constants, free from n. The 
constants O1, 02, Yl, Y2, Y3, Y4 depend on the particular test statistic under 
consideration. In particular, by (1.2), for R, 01 = O 2 =Yl =Y2 =Y3 =Y4 = 0. 

Denoting the square-root versions of LR, R and W by Tnl, Tn2 and Tn3 
respectively, Chandra and Joshi (1983) compared them on the basis of critical 
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regions of the form 

rni ~ Z 4- n-1/2ali q- rt-la2i or  

Tni < - z  + n-1/2a3i + n-la4i (i = 1, 2, 3) ,  (2.2) 

where z is the upper 1a-point  of a standard normal variate, ali  = a21 = a31 = 
an1 = 0, and the constants ali, a2i, a3i , a4i (i --- 2, 3), free from n, are so chosen 
that 

Poo(Tni > z + n-1/2ali + n-la2i) 

= Poo(Znl > z 4- n-1/2a~1 4- n-1a21)  4- o (n  -1)  (i = 2, 3) ,  

Poo(T,i < - z  + n -1/2a3i 4- n-lani) 

= P00(Tnt < - z  + n-1/2a31 -4- n la41 ) 4- o (n  -1)  (i = 2, 3) .  (2.3) 

The conditions in (2.3) not only ensure that the three tests are of identical size 
up to o(n -~) but also, as noted in Chandra and Joshi (1983), make them locally 
unbiased up to that order. Incidentally, with all  = a21 = a31 = a41 = 0, LR is 
locally unbiased up to o(n-1). 

For i = 1, 2, 3, Chandra and Joshi (1983) considered an Edgeworth expan- 
sion for the distribution of Tn,. under O(n) (=00 + n-1/28) and showed that the 
power function, p(O(/~), under continuous alternatives, of a test based on Tni 
(see (2.2), (2.3)) can be expanded as 

p(O(6 ) = p~i)(6 ) + n-1/2p~°(~ ) + n-Xp(2i)(6 ) + o(n-1) , 

where P(0°(/5), p~O(3), p~O(6 ) are free from n but involve 6 and also z. As 
anticipated, it was seen that 

p(1)((~ ) ~ p~e)(8) _-- p(3)(6 ) ,  

so that the three tests have identical power up to the first order. It was also 
observed by Chandra and Joshi (1983) that 

p~l)((~) __= p~2)(~) ___ p~3)(6), 

which implies that, for one-dimensional 0, identity of power up to the first 
order is accompanied by that up to the second order (cf. Bickel, Chibisov and 
Van Zwet, 1981) when tests are compared on the basis of their locally unbiased 
versions. 

Therefore, in order to discriminate among the three tests, one has to 
compare third-order power, i.e., P(2°(6), i =  1, 2, 3. Since p(2i)(6) involves not 
only 8 but also z, one may wri te  p~i)(~) =_ pii)(~, z). By (2.3), the tests are of 
identical size up  to o(n -~) and are also locally unbiased up to that order. 
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Hence 

P(1)/O Z) ------ P~2)(O, z) --- P(23)(0, z) 2 \ ~ 

p~1),(0, z) ~- p~2),(O, z) ~- p(23)'(0, z) -= 0, 

identically in z, where primes denote differentiation with respect to 6. 
Considering explicit expressions for P(2i)(6, z) (i = 1, 2, 3), Chandra and Joshi 
(1983) showed that 

lim {P~2)(8, Z) - -  P ~ l ) ( 8 ,  2 : ) } / 8  2 > O ,  
(3-+0 

lim {P(22)(8, z)  - P~3)(8, z)}/8 2 > 0 (2.4) 
6--+0 

for large but reasonable z (i.e., for small but reasonable test size) provided the 
model has a nonzero statistical curvature at 00 (Efron, 1975). 

The result (2.4), indicating the superiority of R over LR and W, in terms of 
third-order power under contiguous alternatives, was extended and 
strengthened in various directions by subsequent workers. Thus, Chandra and 
Mukerjee (1984, 1985) considered an entire family of test statistics with square 
root versions of the form (2.1), with /91, 192, Yl, Y2, Y3, Y4 flee from n and z as 
happens with LR, R and W, and established the optimality of R in that family 
in the sense of (2.4). In the latter paper, they also presented more detailed 
expressions for the third-order power differences and investigated the implica- 
tions thereof. Chandra and Samanta (1988) obtained similar results with 
reference to a larger family of test statistics. Mukerjee (1989a) proved the 
optimality of R, in an even wider class, in the sense of (2.4) and streamlined 
the algebraic computations to some extent. A discussion on Mukerjee (1989a), 
who gave a simple formula for the third-order power difference, is available in 
Ghosh (1991). 

In consideration of the locally optimum property of R as noted above, it is 
natural to investigate its behaviour vis-a-vis the locally most powerful unbiased 
(LMPU) test under a two-sided alternative. Mukerjee and Chandra (1987), 
following a suggestion of J. K. Ghosh, considered this problem and observed 
that, under contiguous alternatives, R is as good as the LMPU test up to the 
second order of comparison and almost as good as the LMPU test at the third 
order for small but reasonable test size provided the statistical curvature of the 
model at 00 is not too large. 

The results summarized in the last two paragraphs were all derived under the 
framework of one-dimensional 0, a two-sided alternative and iid observations 
and comparisons were made on the basis of the locally unbiased versions of the 
tests. Continuing with the iid case, Mukerjee (1990a,b) attempted to extend 
the findings of these authors to models with multi-dimensional 0. Compared to 
the scalar parameter case, this situation presents some novelties and, with 
reference to the final results, here we propose to highlight some details which 
were not discussed in Mukerjee (1990a,b). To that effect, we introduce some 
notation. 
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Let X ~ , X 2 , . . . ,  be a sequence of iid possibly vector-valued random 
variables with a common density f(.; 0), where 0 = (01 . . . .  , Op)' ~ R p or some 
open subset thereof. Consider the problem of testing H 0 : 0  = 00 against 0 ¢ 00. 
Without loss of generality (by a reparametrization, if necessary), the per 
observation information matrix at 00 is supposed to equal the p x p identity 
matrix. Then the dispersion matrix of Ologf(Xl;Oo)/O0 ~ ( l ~ i ~ < p )  and 
O21ogf(X1;Oo)/OO~OOj (1 ~ i ,  j<~p), under 0o, is of the form 

A) 
5 =  1;* ' 

where L is the p × p identity matrix, and A and X* are of orders p x p2 and 
9 2 e . 2 2 • . 

p - x p  respechvely. The p x p  nonnegatlve definite (nnd) matrix 

S o = X  * - A ' A  

represents a generalized version of Efron's curvature at 0 o. For 1 < i, u <~p, 
define 

HI~ = n -1/2 ~ 0log f(Xj; Oo)/OOi , 
j = l  

H2,. =_n-,,2 ~ [(aelogf(Xj;Oo)/OOiO0,) (0> -l~. ], 
j = l  

where /I ° ) =  Eoo{O210gf(X1; O0)/OOiO0,}. Let H~ be a p x 1 vector with i-th 
element His and H 2 be a p  Xp matrix with (i, u)-th element H2s, (1 ~< i, u ~<p). 

For 1 ~< i, u, s ~ p  let 

V(1) = Eo0[{Olog f (X , ;  00)/O0,}{O21og f(Xl;  Oo)/O0 u OOs} ] i'us 

/(2) = Eoo{031og f(Xa; 0o)/00 i 00, OOs} ius 

7 !3),.s = Eoo[{01°g f(Xl;  Oo)/OOi} 

x {Olog f(Xa; Oo)/O0,}{Olog f(X~; 0o)/00~} ] . 

I" ( 1 )  ~!)p . ( 1 )  D e f i n e F a s a p x p  2 m a t r i x w i t h i - t h r o w  tYl.i~, . . . ,  Y , . . . ,  rp.il . . . .  , 
~,(~) x, 1 ~< i ~ p ,  and let ~- be a p2 x 1 vector with (i, i)-th element unity for p. ip) 
each i (1 ~< i ~<p) and all other elements zero (e.g., with p = 3, ~- = (1, 0, 0, 0, 
1, 0, O, 0, 1)'). 

In the following, for positive integral ~, and nonnegative A, K,.A(. ) and k~,~(-) 
denote respectively the cumulative distribution function and the probability 
density function of a possibly noncentral chi-square variate with v df and 
noncentrality parameter A. Also, for a real valued function ~(.) defined over 
O~ r' and for A > O, we shall write 

~(a)= f ~(y)dy/ f dy (2.5) 
y'y=X y'y=A 
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to denote the average of ~(.), along the sphere {y: y'y = A}, provided (2.5) is 
well defined. 

Mukerjee (1990a,b) considered a family 0%0 of test procedures as described 
below. For contiguous alternatives O(n) = 00 + n-a/26 and for every test in 0%0, 
a set s~n, with Po(nl-probability 1 + o(n -1) uniformly over compact subsets of & 
can be obtained such that over s~, the test is given by a critical region of the 
form 

a r ' r n  > + F/-1/2b 0 -1-/,/-lc 0 71- o ( n - 1 )  , (2.6a) 

where 
2 is the upper a-point of a central chi-square variate with p df, (i) zp 

T, = H  1 + n-1/Z(Q (1) + b) + n 1(Q(2) q_ C), (2.6b) 

Q(1) = aH2H 1 + B(H~ ®H1) ,  Q(2) = (Qp+l, .  . . , Qzp)' , 

Q i = & ( Q n , . . . , Q i u ~ )  (p  + l<~i<-2p) ,  

Q i s : n - 1 / 2 k  (qis(Xj)-~is(Oo)) (l<~s<~ui, p +  l<~i~<2p),  
j=l 

® denotes Kronecker product, the &(.) are polynomials and the q~s(') are such 
that 

Eo{qi,(X1)} = ~i,(O) VO ( l  <~s<~ui, p + l <-i <~2p) , 

which are assumed to exist, 
(ii) the scalar a and the p x p2 matrix B in the expression for Qo) are 

nonstochastic and free from n, 
(iii) the scalars b0, c o and the elements of the p x 1 vectors b, c are 

constants, free from n, to be so determined that the test has size a + o(n -a) 
and is locally unbiased up to o(n-a). 

As noted in Ghosh (1991), if one thinks of the acceptance region as a sphere 
then introducing b0, c o is equivalent to perturbing the radius and introducing b, 
c is equivalent to perturbing the centre with a view to attaining respectively the 
conditions of size and local unbiasedness up to o(n-1). Note that a, B, the Qi 
and the qis may vary from one test in 0% 0 to another. For any test in 0%0, we 
define 

B * = B  + a F .  

Let the i-th row of the p x p2 matrix B* be (bi*aa,.. * * * • , b i l p ,  • . . , b i p l ,  • . . , b i p p )  

(1 ~< i ~< p), and 

b(iu.s)=bi*us +bi*su +bs*iu+bs*i +b'is +bu* i (1 <~i ,u , s<-p) .  

The family 0%0 is very rich and includes, in particular, LR, R and W. It can be 
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seen (cf. Mukerjee,  1993) that the expressions for a and b(ius) for these three 
tests are respectively given by 

aLR -- ~- , a R = O ,  aw 1 , (2.7a) 

bLR(ius) = _ (3) bR(iUS ) = 0 - - 'Y  ius , 

bw(iUs ) , (2) .(3), (1 ~< i, u, s ~<p) = -I.Yi ,s  + Yi,s)  (2.7b) 

Under  standard assumptions and regularity conditions, it was shown by 
Mukerjee (1990a,b) that if b0, Co, b, c are chosen subject to the conditions of 
size and local unbiasedness, up to o(n-1),  then the power function of a test in 
~-0, under contiguous alternatives O(n)= 0 o + n-1/26, is given by 

P(6 )  = Po(6) + rt-1/2p1(6 ) + n- iP2(6  ) + 0 ( ~ - 1 )  , 

where 
(i) P0(6), P l (6) ,  P2(6) are free from n, 

(ii) Po(6) = 1 - Kp.x(z2), with A = 6 '3, is the same for all tests in the family 

(iii) P1(6) is not necessarily identical for all tests in ~0 but is such that for 
each A > 0, /51(A ), defined as in (2.5), is identical for all tests in ~0, 

(iv) P2(8) is such that for A > 0, 

P (a) = + a u  + 

w i t h  P20(/~) identical for all tests in ~o, U = U 1 - U2,  

- 1  t = - a zp (p  + 2)-'{~"£0~" + 2tr(X0)}], U1 P kp+z[a.r 2 0  T 2 2 

i , u , s=l  i=1  u = l  

and for positive integral v, k~ = k~,o(Z2p). 
The derivation of the above result required the use of a multivariate 

Edgeworth expansion for the distribution of T n under O(n). The use of a new 
kind of polynomials, analogous to Hermite polynomials, was helpful in 
simplifying the algebra. 

As a consequence of (ii) and (iii) above, if average power along spheres 
centered at 00 be the criterion, then up to the second order  of comparison, all 
tests in ~0 are equivalent and, as such, a third-order comparison on the basis of 
/52(A ) is warranted. To that effect, we write H for the set of triplets ius 
satisfying 1 <~i, u , s  <~p such that i, u, s are all distinct and, recalling the 
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permutat ion invariance of the b(ius), note that for p />  2, 

}2 
1 ~ '~22  {b(ius)} 2 - (P + 2) -1 b(iuu) 

i ,u ,s=l  i = 1  - 

__ 1222 {b(ius)} 2 + ½ {b(iii)} 2 + 2 {b(iuu)} 2 
ius~172 i = 1  u = l  

u # i  

- (p  + 2) -1 b(iuu 
= 

{U l }2 > 1 2 2 2  {b(ius } 2 + ½{b(iii)} 2 + (p - 1) -1 b(iuu) 
3 iusElI  i = 1  = 

u ¢ i  

- ( p  + 2) -1 b(iuu 

- ½ Z Z Z  {b(ius)} 2 
ius~l I  

+½(p  - 1)(p + 2) -1 b(iii) - 3(p  - 1) -1 b(iuu) >i O, 
i = 1  

u ¢ i  

the inequality being strict if and only if one of the following conditions holds: 
(C1) H is nonempty (i.e.,  p ~> 3) and b(ius)¢ 0 for some ius E 171, 
(C2) for some i (1 ~< i ~<p), the quantities b(iuu) (1 ~< u ~<p, u # i) are not 

all equal, 
(C3) for some i (1 ~< i ~<p), 

b(ii i)-  3 ( p -  l)-a { ~.=au#i b(iuu)} ¢O.  

Thus for p />  2, U 2/> 0, with strict inequality provided one of (C1), (C2), 
(C3) holds. It may also be noted that i fp  = 1 then U e = 0 for each test in ~0- In 
view of the nnd-ness of ~0, we next observe that for fixed a, U 1 ~< 0 whenever  

2 is sufficiently large, provided a does not depend on z 2. Thus if ~ o  be a Zp 

subclass of ~0 consisting of those tests in ~0 for which a does not depend on 
the test size then for each test in ~ o  one obtains U ~< 0 whenever the test size 

is sufficiently small. In fact, if X0 is nonnull then for each test in ~ o  with 
a ~ 0, U is negative for sufficiently small a while if X0 = 0 and p >/2 then for 
each test in o~ o satisfying (C1), (C2) or (C3), U is negative for all a. 

By (2.7a), LR,  R and W belong to o% o. For R one gets, a = 0, B = 0, so that 
U = U R (say) = 0. Hence,  by the discussion in the last paragraph, for each test 
in ~ 0 ,  one obtains U ~< U R whenever a is sufficiently small, the inequality 
being strict in the situations indicated above. In this sense, R is optimal in o~ o 
and hence superior to LR and W in particular. 
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It may be made explicit in this connection that, unlike in the scalar 
parameter  case, with multi-dimensional 0, one may be able to discriminate 
among the tests in o% o in terms of third,order average power even under 
models having zero statistical curvature at 00, i.e., having N0 = 0 .  This is 
because of the presence of U 2 in the expression for U. The following simple 
example serves as an illustration. 

EXAMPLE 1. Consider the sequence Xj = ( X j l , . . . ,  Xjp)', j t> 1, of iid random 
variables with a common p-variate density over RP given by 

P 

f (x;  o)  I I  -1 2 1 -1 = {(2w0/) e x p ( - : 0 i  x i )} ,  
i = 1  

where 0 = ( 0 1 , . . . ,  Op)' > 0. Suppose interest lies in testing H 0 : 0  = 00 against 
0 ~ 0 0 ,  where 00 is a p x 1 vector with each element 1/V2. Then the per 
observation information matrix at 00 equals the p x p identity matrix. It can be 
seen that here X 0 = 0. Also, by (2.7b), bLR(ius ) = bw(iUs ) = 0 unless i = u = s, 
and bLR(iii) = - 2 V ~ ,  bw(iii ) = -6V2 .  Hence for each a, U is negative for LR 
and W, provided p >/2 (cf. (C3) above), showing the superiority of R over LR 
and W, with regard to third-order average power, in the context of this 
example. 

It is interesting to note that, unlike in the scalar parameter  case, with 
multi-dimensional 0, identity of point-by-point power up to the first order  is not 
necessarily accompanied by that up to the second order even after adjustment 
for local unbiasedness. Considering in particular LR,  R and W, Mukerjee  
(1990a) gave an example to demonstrate that none of these tests is uniformly 
superior to the other two in terms of second-order (point-by-point) power. In 
other words, with multi-dimensional 0, even after adjustment for local 
unbiasedness, the situation remains essentially similar to that observed in Peers 
(1971) in the sense that the tests remain noncomparable with regard to 
point-by-point power. This is why, in order to compare the tests in a 
meaningful manner,  it becomes essential to invoke some other  reasonable 
criterion and, as noted above, the criterion of average power is helpful in this 
regard. In this connection, reference is made to Ghosh (1991) who discussed 
how, even with multi-dimensional 0, identity of point-by-point power up to the 
second order can be achieved by introducing perturbations more general than 
those considered in (2.6a,b). 

Earlier, Sengupta and Vermiere (1986) proposed a locally most mean power 
unbiased (LMMPU) test for the case of multi-dimensional 0. This test does not 
belong to o~ o and, in consideration of the nice property of R with regard to 
average power as noted above, it is of interest to compare R with the LMMPU 
test. This  problem was considered in Mukerjee and Sengupta (1993) and it was 
seen that although R is much simpler than the LMMPU test, being expressible 
only in terms of the first partial derivatives of the log-likelihood, it is almost as 
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good as the latter with regard to third-order average power for small but 
reasonable test size provided the statistical curvature of the model is not too 
large. The findings in Mukerjee and Sengupta (1993) in a sense extended the 
results in Mukerjee and Chandra (1987) to the case of multi-dimensional 0. 
The method of derivation was, however, different and inversion of approxi- 
mate characteristic functions under O(n) was required for obtaining the result. 

Turning to the case of a composite null hypothesis, Mukerjee (1989b) 
continued with the iid set-up and, under an orthogonal parametrization (Cox 
and Reid, 1987), extended the results in Mukerjee (1989a) on the optimality of 
R to a setting where the interest parameter and the nuisance parameter are 
both one-dimensional. These results can, of course, be further extended in a 
routine manner to the case of a multi-dimensional nuisance parameter at the 
expense of heavier notation and algebra. The assumption that the interest 
parameter is one-dimensional is, however, nontrivial. In particular, if both the 
interest parameter and the nuisance parameter be multi-dimensional, then, as 
noted in Cox and Reid (1987), one may not in general be able to achieve an 
orthogonal parametrization. Anyway, it is strongly believed that the results 
discussed here should have their counterparts even in such a situation. 

2.2. Comparison of tests in their original forms 

As mentioned in the introduction of Ghosh (1991), comparison of tests on the 
basis of their locally unbiased versions 'has been the subject of some 
controversy'. There have been arguments in recent years in favour of compar- 
ing the tests on the basis of the forms in which they were originally proposed 
(cf. Madansky, 1989; Kallenberg, 1983). In the scalar parameter case, 
Madansky (1989) compared LR, R and W in their original forms and 
concluded that none of them dominates another even locally. 

As noted in Ghosh (1991), the apparent conflict between the findings in 
Madansky (1989) and those discussed in the last subsection is easily resolved if 
one observes that in the former the tests are compared in their original forms 
while in the latter locally unbiased versions of the tests are compared. In fact, 
Mukerjee (1993) showed that even in the set-up of Madansky, a more detailed 
analysis can yield results similar to those discussed above. 

Mukerjee (1993) dealt with the family of tests ~0 considered in Mukerjee 
(1990a,b) with the change that the perturbations b, c employed in the earlier 
formulation to achieve local unbiasedness (see (2.6b)) were no longer used. He 
showed that if b0, c o in (2.6a) are chosen subject to the size condition, up to 
o(n-1), then the power function of a test in o~e, under contiguous alternatives 

O ( n )  = 0 0 -1-n-1/2~, is given by 

where, as before, Po(6), P1(6), P2(6) are free from n, Po(~) and /5,(A) are 
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identical for all tests in 0%0, and P2(6) is such that for h > O, 

= P ; o ( a )  + , u *  + 

with/52o(h ) identical for all tests in 0%0, U* = U 1 -[- U 2 ,  U 1 as defined in the last 
subsection, and 

F ~ 
1 - 1  [ E Z E  '" (1) * = b(uu)'y U2 7P kp+4 k U'SS 

i , u , s = l  

_ z 2 ( p  + 4)-1 { 1 E~Ei,u,s=l (b(ius))2 + ½ b(iuu) 
i=1 

the notational system being as introduced earlier. 
O72** Mukerjee (1993) considered a subclass ~0  of 0%0 consisting of those 

members of 0%0 for which a and B do not depend on the test size. This subclass 
0 * *  includes LR,  R and W. Evidently, for R, U * =  0 and for each test in ~0  , 

U * ~ 0  for sufficiently small a. Furthermore,  U* is negative for sufficiently 
* P {b(ius)} 2 > 0 when small a for any test in 0% o with either a ¢ 0 or E E E i . . . . .  1 

0 * *  Eo¢O,  and for any test in 3" o with E E E  p {b(ius)}2>O when Eo=O. i , u , s =  l 

Thus the optimality property of R, in terms of third-order average power 
under contiguous alternatives, continues to hold even when the tests are 
adjusted only for size but not corrected for local unbiasedness. It is interesting 
to note that for models with E0 = 0, under this kind of comparison, it may be 

0 * *  possible to discriminate among the members of ,~ 0 even in the case p = 1. As 
an illustration, one may consider the model in Example 1 and check that for 
each p ~ 1 and .sufficiently small a, U* is negative for LR and W. Mukerjee  
(1993) also reported some exact numerical results to demonstrate the validity 
of the asymptotic findings for moderate sample size. Further numerical results, 
in slightly different contexts, are available in Bera and McKenzie (1986), Patil, 
Taillie and Waterman (1991) and Sutradhar and Bartlett  (1991). 

Turning to the case of a composite null hypothesis, as part of a wider study 
in a different context, Mukerjee (1992a) presented results similar to those 
discussed above in a situation where the interest parameter  is one-dimensional 
and parametric orthogonality holds. In this connection, he also considered a 
conditional version of R (see Liang, 1987, Godambe,  1991) based on the 
conditional profile likelihood of Cox and Reid (1987) and indicated its 
equivalence with the estimated scores statistic of Conniffe (1990) in terms of 
third-order power under contiguous alternatives. 

It may be mentioned that if tests are compared in their original forms then a 
property of second-order local maximinity can be proved for LR in the case of 
a simple null hypothesis and for a conditional (Cox and Reid, 1987) or an 
adjusted (McCullagh and Tibshirani, 1990) version of LR in the case of a 
composite null hypothesis and orthogonal parametrization; see Mukerjee 
(1992a,b) and Ghosh and Mukerjee (1994) for details. 
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Most of the results discussed in this section were obtained considering 
'square-root' versions of the test statistics. This technique is useful in other 
contexts as well-see,  e.g., DiCiccio, Field and Fraser (1990), Bickel and 
Ghosh (1990) and Mukerjee (1992b) among others. It may also be remarked 
that the approach adopted here is different from the differential geometric one 
due to Kumon and Amari (1983, 1985) and Amari (1985) in the sense that no 
assumptions have been made here regarding curved exponentiality of the 
model or 'sphericity' of the power function. 

It will be of interest to extend the present results on R to the non-iid case. A 
recent study, based on Taniguchi's (1991) work, indicates that this should be 
possible at least in Taniguchi's set-up. The details will be reported elsewhere. 

3. Bartlett-type adjustments 

That the usual technique of Bartlett-adjustment for LR will not work for R 
becomes evident if one considers a simple null hypothesis H 0 and notes from 
(1.2) that the expectation of R under H 0 is p; see also Bickel and Ghosh (1990) 
in this context. This makes the problem of developing a Bartlett-type adjust- 
ment for R, as posed by Rao, in a private communication, and Cox (1988), 
nontrivial. Recently, Chandra and Mukerjee (1991), Cordeiro and Ferrari 
(1991) and Taniguchi (1991) addressed this issue. The objective of this section 
is to review these developments briefly. 

Chandra and Mukerjee (1991) started with the case of a scalar parameter 
and considered the null hypothesis H0:0  = 00 with reference to a sequence 
X1, X2,. • •, of iid, possibly vector-valued, random variables with a common 
density f(-;0),  where 0 E ~  1 or an open subset thereof. Without loss of 
generality, the per observation Fisher information at 00 was assumed to be 
unity. Under this set-up, they considered the square-root version of R which, 
by (1.2), is given by 

n 

H ,  = n - ' /2  E d log f(Xj; 00)/d0 . 
j = l  

They proposed a modified version of R, say R m = H2m, where 

H,m : H 1 + n-1/2t2H~ + n - a ( q H  1 + t3H~) ,  (3.1) 

the constants tl, t2, t3, free from n, being so determined that the relation 

P00(Rm ~< O) = K1,0(O ) ~- o(/'/-1) VO t> 0 (3.2) 

holds. As defined earlier, h e r e  K1,0(. ) is the cumulative distribution function of 
a central chi-square variate with 1 df. Under standard assumptions, on the 
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basis of an Edgeworth expansion for the null distribution of Him, Chandra and 
Mukerjee (1991) showed that the unique choices of tl, t2, t 3 satisfying (3.2) are 
given by 

- - 1  1 G 8 2 t] _ g ( G 4 _  3 ) _  2~G35 2 ,  t2 = - ± G 6  3 , t3 --  - ~ 4 (  4 - 3  - 3 - G 3 )  , 

(3.3) 

where 

G, = Eoo[{d log f(X1; 0o)/d0}' ] (i = 3, 4). 

In particular, if G 3 = 0, as happens in many models of practical interest (e.g., 
while testing H0:0 = 0 under the bivariate normal model with zero means, unit 
variances and unknown correlation coefficient 0), then by (3.3), 

R m ~ -  R/{1 - l n - l ( G  4 - 3 ) ( 1  - 1 R ) }  Jr- o ( / ' z -1 )  , (3.4) 

over a set with P00-probability 1 + o ( n - 1 ) ,  and, to some extent, (3.4) resembles 
the usual Bartlett correlation for LR. Chandra and Mukerjee (1991) also 
proposed an extension of this approach to the case of multi-dimensional 0. 

Taniguchi (1991) considered the scalar parameter case in a possibly non-iid 
set-up and, as a part of a wider study, suggested a Bartlett-type adjustment 
which, in its square-root version, is quite similar to but not identical with the 
one considered in (3.1). Mukerjee (1992c) extended the findings in Chandra 
and Mukerjee (1991) to a set-up where the null hypothesis is composite and 
the interest parameter is one-dimensional. In the same set-up, Mukerjee 
(1991) obtained a Bartlett-type adjustment for a conditional version of R. 

Cordeiro and Ferrari (1991) considered a very general set-up involving a 
composite null hypothesis and allowing both the interest parameter and the 
nuisance parameter to be possibly multi-dimensional. On the basis of a null 
asymptotic expansion for the distribution of R (see (1.3)), given by Harris 
(1985), they proposed a modified statistic 

U*m = R { a  - (to + t l R  + t;R2)), 
where the multiplying correction factor in braces represents a Bartlett-type 

, , , -1  adjustment as a function of R itself. The coefficients to, t t , t2, of order n 
were so determined that, up to o(n-~), the null distribution of R* m was given by 
a chi-square distribution with appropriate df. Explicit expressions for t o , t I , t 2 

were given and certain simplifications arising in the special case of orthogonal 
parametrization were highlighted. 

It will be of interest to compare the three approaches for Bartlett-type 
adjustment as considered in Chandra and Mukerjee (1991), Taniguchi (1991) 
and Cordeiro and Ferrari (1991). The most obvious way of doing this is based 
on comparison of power properties of the adjusted versions. Work in this 
direction is currently in progress and will be reported elsewhere. 
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4. Concluding remarks 

While concluding, we mention some open issues that deserve further attention. 
Three of these have already been noted in the concluding paragraphs of 
Sections 2.1, 2.2 and Section 3. Some more are presented below. 

(a) For the scalar parameter case and under a one-sided alternative, R is 
locally most powerful. Is it possible to extend this result in a meaningful way to 
the vector parameter case under a restricted alternative? Preliminary studies 
indicate that this should be possible; see Mathiason (1982) in this context. 

(b) What are the implications of the results discussed here in the discrete 
case? 

(c) Can the calculation of power, under contiguous alternatives, be sim- 
plified and made more transparent via a Bayesian route (cf. Stein, 1985, 
Dawid, 1991; Ghosh and Mukerjee, 1991)? 
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On the Strong Consistency of M-Estimates in 
Linear Models under a General Discrepancy 
Function 

Z.  D. Bai, Z .  J. L iu  and C. Radhakrishna Rao 

1 .  I n t r o d u c t i o n  

Consider the linear model 

Y~=Xifi+ei ,  i = l , 2 , . . . , n ,  (1.1) 

where Ys are observations, X~ are p x 1 known design matrices, fi is a p-vector 
parameter to be estimated, and ei are iid random errors. The M-estimate of/3 
in the model (1.1) as defined by Huber. (1964) is the value of /3 which 

• minimizes 

L P ( Y ~ - X ~ ) ,  (1.2) 
i - 1  

for a suitable choice of the function p, or a value of/3 satisfying the estimating 
equation 

4'(~, x i , /3)  = 0,  (1.3) 
i = 1  

for a suitable choice of the function O. A natural method of setting up the 
equation (1.3) is by taking the derivative of (1.2) with respect to/3 when p is 
continuously differentiable. However, in general, O need not be the derivative 
of a function and the equation (1.3) can be set up directly by choosing a 
suitable 4'. 

There is considerable literature devoted to the asymptotic theory of M- 
estimation under some assumptions on the functions p and 4'. Reference may 
be made to papers by Huber (1964, 1973, 1981, 1987), Jureckova (1971), 
Jackel (1972), Bickel (1975), Yohai and Maronna (1979); Basawa and Koul 
(1988), Heiler and Willers (1988) and others. The special case of p(x) = Ix] has 
been extensively studied; reference may be made to the paper by Rao (1988) 
for details. Most of the papers cited discuss particular choices of p and 4', or 
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general p and ~0 under heavy restrictive conditions which do not cover some 
important special cases. 

Recently, some authors have studied M-estimation using a convex function p 
with minimal restrictive conditions. Reference may be made to papers by Chen 
and Wu (1988) and Bai, Rao and Wu (1992), Rao and Zhao (1992), Zhao and 
Chen (1992), Zhao and Rao (1992) and Bai, Rao and Zhao (1993). Even 
though the results cited above are based on assumptions which are somewhat 
minimum, the assumption that p is a convex function is still too restrictive. For 
instance, the function 

I x z if ka ~<x ~< k 2 3, 

p ( x ) =  k 2 i f x < k l ,  (1.4) 

[k~ if x > k  2 

is not a convex function, but for appropriate choices of k~ and k2, the 
M-estimate based on it is asymptotically equivalent to the well-known trimmed 
mean. 

Instead of assuming p to be a convex function, we assume that p(0) = 0 and 
p is non-increasing in ( - %  0] and non-decreasing in [0, ~), which widens the 
choice of the discrepancy functions. Our main results are cited in Section 2 and 
the proofs given in Section 3. 

2. Main results 

Consider the linear model (1.1), where, without loss of generality, we assume 
that the true value of/3 is 0. We rewrite the model (1.1) as 

Y = X ' n . i / 3 + e i ,  i = l , 2 , . . . , n ,  (2.1) 

where X , ,  i = $21/2Xi, S n = E'~ X i X '  i. The M-estimate /3 of the model (1.1) and 
the M-estimate/3 of the model (2.1) have the relationship,/3 = $1/2[I. We need 
the following assumptions to establish our theory. 

(A1). p(u)>~O is a function defined on R 1 such that it is continuous, 
non-increasing on ( - %  0], non-decreasing on [0, ~) and is such that 

p(Ku) <~ C(K)p(u) (2.2) 

for any constant K, where C(K) is a constant depending only on K. 
( A 2 ) .  The errors in the model (1.1) are iid random variables with E p ( e l ) <  

(A3). Ep(e 1 - u )  has a unique minimum at 0 and there exist b 1 > 0, b 2 > 0 
such that 

E[p(e 1 - u) - p(el) ] > min{blu 2, b2}. (2.3) 
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(A4). Denote  by A 2 the largest eigenvalue of S n and 

a~ = m a x  { l l x~ , l l )  , 
l<<.i<~n 

k, =m~n#( i :  Ix' it l/llt ll > h/z , i= 1 , . . . ,  n) . 

(2.4) 

Assume that 

(i) lizn ~ S , / n  = S exists with S positive definite, (2.5) 

(ii) l i m k , / n = a > O  for some h > 0 ,  (2.6) 
n----> ~ 

(iii) p(a,An) = O(n a ) ,  0 ~< 6 < ½, (2.7) 

(As) l i m a  min{p(u), p ( - u ) }  > Ep(e l ) .  (2.8) 

NOTE 2.1. The condition A1 is much weaker than those usually made on the 
discrepancy function p. We do not assume differentiability or convexity of p(u).  
(2.2) includes almost every conventional discrepancy functions. The basic 
purpose of (2.2) is to exclude the possibility of p exponentially increasing. 

NOTE 2.2. The condition A 2 is slightly stronger than those for the Ll-norm 
estimate and the least distance estimate where the assumption is Elp(ei - u) - 
p(ea)] <w .  (See Bai, Rao and Wu, 1992 for details.) 

NOTE 2.3. Since we assume that Ep(e I - u )  reaches its minimum at 0, (2.3) is 
reasonable. If Ep(ea - u) is second differentiable with positive second deriva- 
tive at 0, then (2.3) is automatically satisfied. Note that even though p(u) itself 
may not be differentiable, the assumption that Ep(e 1 - u )  is differentiable is 
not restrictive. 

NOTE 2.4. A 4 is a condition on the design matrix X. It is not difficult to verify 
that if for every e > 0 

I l s g ( M )  - s ll 

S (M) when M is large enough, where = Z X~XiI(IIX~[ I < M ) ,  then (2.6) is 
true. In fact if the design is random having certain finite moments then both A 4 
and the above condition are satisfied. 

We have the following lemmas. 

LEMMA 2.1. Let  the conditions A 1 - A  5 be satisfied. Then 

sup 1 L  1 ~  ) - - ~ 0  
ilflll~A, nM n i=1 p(ei - X ' i f i )  - n -=  Ep(ei - X "  f l  

a . s .  ~s n---> oo (2.9) 
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for  any constant M > O. 

LEMMa 2.2. Let the conditions A ~ - A  5 be satisfied. Further, let [3~ be the 
M-estimate of~3 in the model (2.1) and B,  = (11/3,1] > A , M } .  Then 

P(B, ,  i .o.)  = 0 f o r s o m e M > O ,  (2.10) 

where i.o. stands for infinitely often. 

THEOREM 2.1. Suppose the conditions A I - A  5 are satisfied. Then the M-estimate 
fin o f  the model (1.1) for the true parameter/3 (assumed to be 0 without loss o f  
generality) is strongly consistent, i.e., 

lim/3n = 0 a.s. (2.11) 

3. Proof of main results 

We use C to deno te  a constant  which may take different  values in different  
equat ions  and I( . )  deno te  the indicator  function.  

PROOF OF LEMMA 2.1. We only prove  this l emma when /3 is two-dimensional  
while o ther  cases can be p roved  similarly. Le t  d > 0 be a constant  which will be 
de te rmined  later. D e n o t e  

%i = P(ei - X "  f l ) I (p(e i )  > d ) ,  Y*i = P(ei - X'ni/3)I(p(ei) ~ d ) ,  

9°( /3)  : = ~ni, 9".(13)--  n i ~  

2 12 * 1 E~/ni, 6 - * ( / 3 ) -  n i=1 . . . .  E Y  ni , 4'n(/3) -- n i=, 

1 " 
n ~ v ~ j (e i  -~ x n i / 3 ) ,  

-= 

1 , , ~ r , 

n * 

~ J l n ( / 3 )  = " ~  E E['YniI(ei <S:i/3)], 
"~ i = 1  

1 n * t 

q~2.(/3) = Z  ~-~ E[yniI(ei > X n f l ) ] .  
"~ i = 1  

(3.1) 

sup [~0~(/3)1 [ . 
I I ,~ l [~xnM 

(3.2) 

We have 

sup ~ . =  p(ei  - x'ni/3) - ~ i~l 
lit3 II ~A,,M 

_{_ * * = sup 1%(/3) 9 n ( / 3 ) - 0 , ( / 3 ) - 0 , ( / 3 ) 1  
II t3 II ~;%M 

~< sup Iq~*(/3) - **(/3)1 + sup [q~,(/3)] + 
II ~ II ~< ~.M IL ~ II <~AnM 
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Since IIxL,/311 ~ IlxL/ll 11/311 ~ a n A n M ,  i =  1 , . . . ,  n,  we have  

sup [q~.(/3)[_<1 ~] [p(e i _ a~h~M) + p(e  i + anA~M)] I (p (e i )  > d )  
l[/3[[~<An M ~ Ft i = 1  

sup 10.(/3)11 ~< E[p(e l  - a . A . M )  + p(e  1 + a . A . M ) ] I ( p ( e l )  > d )  . 

(3.3)  

and 

lim sup 1~(/3)1=o a.s. 
n---.~ ll/3 ii<anM 

We now concen t ra t e  on es t imat ing 

sup Iq~*( /3) -  0" ( /3 )1 .  
II t~ 1t ~ a . f  

No te  that  

sup 1~o*(/3)-  0"(/3)1 ~< s u p  [ ~ ) l n ( / 3 )  - -  01.(/3)1 
II/3 II <~AnM II/31[ <~AnM 

+ sup [ q h , ( / 3 ) -  02n(/3)1" 
II~ll~<anM 

We p rove  that  the first t e rm  on the right in the above  converges  to 0 a.s. ;  the  
second t e rm  can be deal t  with in the same  way.  Write  

x . ,  -- IIx~,ll(cos Oni, sin 0 , , ) ' ,  /3 = 11/3 II(cos 0, sin 0 ) ' .  (3.6)  

Then X',,,/3 = Ils./ll ll/3llcos(O-o.i) is a function of  (11/311,0) defined o n  

[ 0 , ~ )  x [0,2"rr). It  is easy to see that  there  is a par t i t ion ,  deno ted  by 
PI . . . .  , Pq, of  [0, 2-rr] such that  q <~ 3n and for  each  i, X ' , , f l  is e i ther  increasing 
or  decreas ing with respec t  to 0 in any subinterval  Pk. We have  

sup ]~P1~(/3) - 01.(/3)1 ~< max  s u p  [@1n(/3) --  0 1 n ( / 3 ) [ "  (3.7)  
[]/3 ][~hnM l<-k~q [l/3 [[~AnM,O EP k 

For  any fixed k, deno te  

B 1 = {i: cos(0 - O.i ) >1 0, and increasing in Pk} , 

B 2 = {i: cos(0 - Oni ) >- 0, and decreas ing in Pk} , 

B 3 = {i: cos(0 - O.i ) < 0, and increasing in Pk) , (3.8) 

B 4 = {i: cos(0 - Oni ) < 0, and decreas ing in Pk} • 

(3.5)  

F r o m  A1, we have  

p(e  i - a n A , M  ) + p(e  i + anAnM ) <~ C[p(e i )  + P(anAn)] . 

We choose  d = d,, >1 cp(anAn) for  some  c > O. T h e n  by  the condi t ion A 2 we have  

l im sup 10n( /3)[=0 (3.4) 
n--.~ ll/3l[~<xn m 
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Then we have 

max sup I~1n([3) - ~ ( [ 3 ) 1  
l<~k<-q 11/31[<~nM,o~ek 

~< max sup 
l<k~q 1[/3 [t~AnM,O ~Pk 

+ max sup 
l~k~q 11/3 II<-anM,O~ek 

+ max sup 
l~k~q II[31I<AnM,O~p~ 

~< max sup 
l<-k<~q I1/311~AnM,0~Pk 

I . "Y nil(el "-: X i [3 ) 

In icB, ~" E'Y*iI(el<" X;[3) ] 

iEB2 

_ln ieB2E ET*iI(el <~ X[[3) I 

lieB3E 7*,I(ei <- X[[3) 

1 E ET*j(el<~X;[3)] 
Ft iCB3 

1 icB4E 7*j(e~ <--X;[3) 

I ~ E  * -< ' I - -- Y niI(el ~ Xi [3) 
n iEB4 

A 
=V1 + V2 + V3 + V4. (3.9) 

Considering Va, we have 

1 2 • , = y niI(e  i <~ X i [3, 0 E P k ) '  Vl(O, 111311) ~ ,  

1 ~ E[y.j(ei <~X[[3, 0 EPk)  ] . u2(o, 111311)=~, (3.10) 

Both UI(O , I1~11) and U2(O, [[[311) are decreasing with respect to 0 for every 
fixed 111311 and they also are decreasing with respect to 111311 for every fixed 
0 E Pk. According to Lemma A.1 given in the Appendix, we have a partition 
t 1 = 0 < t  2 < - . . < t  r=AnM of [0, AnM] and 0~<7/0 ~ / 2 < ' ' "  <7/t <~2"rr of Pk 
such that 

r = O [ p ( a ~ < ) ]  = o 0 ~ ) ,  

max sup sup 
i,j ti~]l/3l]~ti+l ~Tj<~O~Tj+l,OEPk 

t =  O [ ( p O ° < ) )  ~] = o o  ~ ) ; 

IG(o, I1~11)- u~(~j,  II1,11)1 ~ ~ .  
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Therefore, by the monotonicity of Ua and U 2, we have 

V, < m a x ( l U l ( ' o ,  Iltill) - U2 (n ,  Iltill)l + IUl (n j+ , ,  Ilt, ll) - U2(vj+l ,  Iltill)l 
k , i , j  J 

+ IUI('Oj, I l t i+l l l) - v2(n;,  I lt i+,l l) l 

+ Iu , (v j+ , ,  IIt,+,ll) - u2(v j+, ,  IIt,+,l l l} 
+ max sup sup lug(o, 111311) u2(nj, IIt, ll)l 

k , i , j  ti~U[3H<ti+l ~Tj~O~lj+l,0CPk 

4 max max IUI(Bj, IIt, ll) - v2(n j ,  IIt, ll)l + ~. (3.11) 
l <<.k~q O<-i~r,O<<.j<-t 

Similar inequalities can be proved for V 2, V 3 and V 4. By using Lemma A.2 given 
in the Appendix and noting that the constant C(/3, n) here satisfies C(/3, n) i> 
C[n-l(p(a,A,)) 2] ~> Cn 1-2a, we have 

P(V t > 2e) ~ P{ max max IU10?j, IIt, ll) - uz(nj, Iltill)l > e/4} 
l ~ k ~ q  O~i<~r,O~j<-t 

~< ~ 2 ~ P(]UI(vj, I l t i l l ) -  u=(nj, Iltill)] > e/4} 
k = l  i = 1  j = l  

<~ ~ £ ~ exp(-Cnl-2~)<~Cn3~+lexp(-Cnl-2~). (3.12) 
k = l  i=l  j = l  

Then VI--~0 , a.s. using the Borel-Cantelli  lemma. Similarly we have Vt---->0 
a.s., t = 2 ,  3, 4, and further we have SUPllt~ll<~,M]q~2,(fi)--qJ2,(fl)]--->O a.s. 
Thus the lemma is proved by combining (3.2) and (3.5). [] 

PROOF OF LEMMA 2.2. Note that by the condition A 1 we have 

min - -  p ( e  i - X ' i f i  ) 

1 " 
~> min n~/=l min{p(-IX'ifil/2)' P(IX'i[31/2))I(leil <- IX'i[3]/2) " 

II~II>X,,M "= 

(3.13) 

By the condition A 4, we further get 

RHS of (3.13)/> 1 ~ min(p(-hM/2), p(hM/2))I(]ei] <~ hM/2),  
l l  iED 

(3.14) 

where D = {i: Ix'.,131/ll~ll >h/A,, i= 1 , . . .  ,n}. 
Denote k, = #D.  Then by condition A4(ii), we have for any fixed M, 

RHS of (314)---> 

aP(lel[ <-hM/2) min{p(-hM/2), p(hM/2)} a.s. (3.15) 
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By condition As, we may select M large enough such that 

l imi to fRHS of(3.14)  > Ep(el)  a.s. (3.16) 

Note that 

B. -- (llt nll >anM} 

= rain p(e i - Xn f l  ) <~ min p(e i -- Xni  • 
[It3ll>anM = IIt~ll~a,M '= 

C [  rain n I n _ _ ~<__1~ } p ( e ,  - p(<) 
- -  LI l~l]>hnM - n i=1 

g n ~" m i n { o ( - h M / 2 ) , p ( h M / 2 ) }  

1 ~  } 
x I([e,[ ~< hM/2)  <~-- p(ei) • (3.17) 

n i ; l  

It is seen that P(B n, i . o . ) = 0  using (3.16) and the strong law of large 
numbers. [] 

PROOF OF THEOREM 2.1. Using Lemmas 2.1 and 2.2, the strong law of large 
numbers and condition A3, for every e > 0, when n is large and [[fln[[ ~<AnM 

1 n 
0 >i n ~ [p(ei - X'ifl") - P(ei)] 

i=1 

> --  E[p(e 1 - X'mfl)[13= & - Ep(el)  ] - e 
h i =  1 

1 IIx,.ll II nll 2, b2} - -  e > _  min{bx , 2 -  
h i =  1 

k n  ~ 2 
~>-n-min{bl(hlifinll/Z~) , b2} - e .  

(3.18) 

Therefore  [[~nll/h,,---~O a.s. for otherwise we can choose e small enough such 
that with a positive probability the second expression in (3.18) is greater than 
0, which contradicts the inequality in the first expression of (3.18). Using the 
relationship of/3n with Dn of the model (1.1) and the condition (2.5) in A4, we 
conclude that /3n---~0, a.s. as n--+~. [] 

Appendix 

LEMMA A. 1. Let f(x,  y) : [0, M] x [0, N] ~-+ R be a continuous function. Suppose 
that for every x, f (x,  y) is an increasing (or decreasing) function of  y, and for 
every y, f(x,  y) is an increasing (or decreasing) function of  x. Then for any 
e > 0, there are partitions of  [0, M], a 0 = 0 < a 1 . --  < a m = M ,  and [0, N], 
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b 0 = 0 < b a . . . b  n = N  with 

m ~ [max{f(x)} - m i n { f ( x ) } ] / e  + 1 and n <~ 

such that 

m a x  [f(xi, ' Yh)  --f(xi2' YJ2)] ~<2e. 
lil--i2]~l,]jl--jz]~l 

m ( m  + 2) 
2 

(A.1) 

(A.2) 

PROOF. Without loss of generality, we assume that f (x ,  y) is increasing with 
respect to x, y respectively. We first prove the lemma when the function is 
strictly increasing. Note that we can find curves (xk(t), yk(t))  in the X, Y-plane 
such that (x,(0),  y~(0)) and (xk(1), yk(1)) are of the boundary of [0, M] x 
[0, N] and 

f (xk( t ) ,  yk(t))  = ke + min{f(x, y )} ,  k = 1 . . . .  , m .  (A.3) 

These curves do not cross each other. And by the monotonicity of f (x ,  y) ,  for 
each k, there is a continuous curve satisfying (A.2). Let  a 0 = 0 and denote by 
a k, k = 1 . . . .  , m the x-coordinates of the crossing points of the k-th curve with 
y = 0. There  are at most m such points. Using the monotonicity of f (x ,  y) 
again, for each k = 1 , . . . ,  m, the curve x = a k only crosses each of the curves 
(xi(t), yi(t)),  i>~k at most once. Therefore  we can find at most a total of 
n = m ( m  + 2 ) / 2  such crossing points. Denote  the y-coordinates of these 
crossing points by b ~ < b 2 . . .  < b  n and b 0 = 0 .  Then by the structure of 
{ a F i = O ,  1 . . . .  ,m} and {bj: j = 0 ,  1 , . . . ,  n}, (A.1) is proved in the case 
when f (x ,  y) is strictly increasing. 

We now assume that the function f (x ,  y) is increasing with respect to x for 
fixed y and is increasing with respect to y for fixed x. Let  fa(x, y)  = f ( x ,  y) + 
6(x + y), for some 6 > 0. fa(x, y) is strictly increasing. Therefore  (A.1) is true 
for f~(x, y). (A.1) is also true for f (x ,  y) which follows by letting 6 ~ 0. [] 

NOTE A.1. It is easy to verify that Lemma A.1 is also true for a function 
defined on a closed compact set and satisfying the remaining conditions in the 
lemma. 

LEMMA A.2. Suppose  that conditions (AI) - (A4)  in Section 2 are satisfied. For 
any fl any n and subset A o f  { 1 , . . . ,  n}, any d > 0 and any e >I O, 

P niEA1 ~ ~i -- n . E~i >~ e <<- e x p [ - c C ( f l ,  n)(en)  2] , (A.4) 

where ~i = [P(ei - X ; ~ )  - p(ei)]I(p(ei)  <~ d) ,  c > 0 and 

[6(/3, n)]-, '  = n e [ m a x { p [ - a ,  ll/3] I - us)l, p[anll/3ll + u2]} + d] 

u I > 0 and u 2 

+ # { A } [ m a x { p [ - a . l l # l ]  - Ul)], P[a,,[I/3[I + ud}  + d] = 

> 0 satisfying p ( - u l )  = p(u2) = d. 
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PROOF. Note  that  

I~i[ = IP(ei  - S ;  ~ ) - p ( e e ) l I ( p ( e i )  <<- d )  

<- max{p[-anll~ll - Ul)], P[a ll ll + u2)]) + d 

and  

Var(~i) = V a r { [ p ( e  i - X ' i ~  ) - p ( e i ) l I ( p ( e i )  <~ d)} 

[max(p[-anl l /3  II - ul)] ,  + u2)]) ÷ d ]  2 . 

By Berns te in ' s  inequal i ty ,  we have 

The  l e m m a  is proved.  [] 

(A.5) 

(A.6)  
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Some Aspects of Generalized Method of Moments 
Estimation 

A l a s t a i r  H a l l  

1. Introduction 

Since its introduction by Hansen (1982), generalized method of moments 
(GMM) estimation has had a considerable impact on econometrics. It provides 
a unifying framework for the analysis of many familiar estimators and includes 
least squares, instrumental variables and maximum likelihood as special cases. 
It also offers a convenient method of estimation in certain models which were 
computationally very burdensome to estimate by more traditional methods. 
GMM has been applied to a wide variety of models including the estimation of 
probit models with panel data (Avery, Hansen and Hotz, 1983) and nonlinear 
rational expectations models (e.g., Hansen and Singleton, 1982). 

Due to the generality of the GMM estimation principle, many theoretical 
treatments of the estimator are at an advanced level. While this generality is 
very desirable for practical purposes, it can make it more difficult for the less 
technical reader to understand the intuition behind the estimation procedure. 
In this paper we provide an introduction to GMM which is designed to 
acquaint the applied researcher with the basic ideas behind GMM and its 
statistical properties. The emphasis is placed on intuition and not mathematical 
rigor. There are many other excellent sources which provide a rigorous 
treatment of GMM, e.g., see Hansen (1982); Gallant (1987); Gallant and 
White (1988). 

Many researchers are aware that there is a close relationship between GMM 
and instrumental variables (IV) estimation, but are uncertain about the exact 
nature of the connection. This stems from the fact that GMM is most 
frequently applied to the estimation of nonlinear dynamic rational expectations 
models using a generalized IV procedure introduced by Hansen and Singleton 
(1982). In fact, as Hansen (1982) and Hansen and Singleton (1982) observe, 
IV is a special case of GMM. Although GMM can be applied to nonl inear  
dynamic models, many of the statistical issues which arise in this framework 
can be conveniently illustrated using the IV estimator of the familiar fixed 
regressor linear regression model. Sargan (1958, 1959) presents the first 
rigorous treatment of IV in linear systems, and although he concentrated on 
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the linear model, his work was the first to address and solve many of these 
issues. In fact parts of Hansen's analysis can be viewed as direct extensions of 
Sargan's work to a more general class of models (see Hansen,  1982, for further 
discussion). Although, it should be noted that Hansen (1982) was the first 
paper to develop the complete framework we describe and our discussion of IV 
relies heavily on his work. 

In this paper we use the IV estimator in the fixed linear regression model 
under the classical assumptions to introduce t h e  general principle behind 
GMM. In many textbooks the IV estimator is derived in an ad hoc manner 
(e.g., see Johnston 1984, pp. 363-366). However,  we consider an alternative 
derivation in which the estimator is obtained by minimizing a quadratic form in 
a vector of sample moments which are functions of the parameters /3  and the 
data (e.g., see White, 1984a, pp. 7-9) .  It becomes immediately apparent from 
this framework that IV has desirable asymptotic statistical properties provided 
the analogous population moments equal zero when evaluated at the true value 
of/3,/30- In this particular application the population moment  condition is that 
the instrument vector is orthogonal to the errors, and so our analysis delivers 
the familiar condition that IV is consistent provided the instruments are valid. 
This is the essential structure of GMM. To estimate/3 all one needs are a set of 
population moments 1 whose expectation is zero when evaluated at /30. The 
GMM estimate is obtained by minimizing a quadratic form in the analogous 
sample moments.  

The linear model also provides a convenient framework for introducing 
various statistical issues which arise in the GMM inference framework. We 
examine (i) the consistency of the estimator; (ii) asymptotic normality of the 
estimator; (iii) the optimal choice of weighting matrix in the quadratic form; 
(iv) the overidentifying restrictions test. It is hoped that the ideas behind GMM 
are more readily accessible when first encountered within the context of the 
linear model because its algebra is familiar to most researchers. 

We then show how these ideas are extended to nonlinear dynamic models to 
produce a very general principle of estimation. Our discussion inevitably relies 
heavily on Hansen (1982) but we place particular emphasis on showing that the 
structure of the arguments is identical to those employed for the analysis of IV 
in the linear model. 

To illustrate the power of the GMM estimation principle, we consider its 
application to the estimation of Euler equation models. Hansen and Singleton 
(1982) showed how one can use the GMM estimation principle to construct 
generalized IV estimators of the parameters of these models. Following Hansen 
and Singleton (1982) we discuss this technique in the context of a consumption 
based asset pricing model. In comparison to maximum likelihood estimation of 
these models, GMM is seen to have considerable computational and statistical 
advantages. 

1There must be at least as many moment conditions as parameters. This is discussed in detail 
below. 
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The original papers of Hansen (1982) and Hansen and Singleton (1982) have 
had such an impact on econometrics that they have prompted a number of 
studies both analyzing the properties of GMM and also extending GMM based 
inference. In this paper we offer a selective review of this recent research, and 
this discussion helps to illuminate both the strengths and weaknesses of the 
GMM framework. 

An outline of the paper is as follows. In Section 2 we consider IV estimation 
in the classical linear regression model. In Section 3 we introduce Hansen's 
(1982) GMM estimator for nonlinear dynamic models. In Section 4 we discuss 
the application of this technique by Hansen and Singleton (1982) to the 
estimation of Euler equation models. In Section 5 we summarize recent 
research on GMM based estimation and inference. Finally in Section 6 we offer 
some concluding remarks. 

2. Instrumental variables estimation in the linear model 

Consider the classical linear regression model 

y = X/30 + u ,  (2.1) 

where y is an (n x 1) vector of observations on the dependent variable, X is an 
(n x q) matrix of fixed in repeated sample regressors with rank(X) = q; u is an 
(n x 1) vector of observations on the error process with E(u)= 0, var(u)= 
o-Zln; and/3 o is the true value of/3, an (q x 1) vector of unknown parameters. 
Let Z be an (n x r) matrix of fixed in repeated sample instruments which 
satisfy E(ztut) = 0 for any t, where zt is the t-th row of Z. We define Qn(/3) to 
be the following quadratic form: 

Qn(/3 ) = [n- lu( /3  ) 'Z]Wn[n-aZ 'u( /3  )] , (2.2) 

where W, is a positive definite symmetric matrix which converges in probability 
to a positive definite symmetric matrix W and u(/3) = y  - X / 3 .  For the present 
we assume r = q. Let fi be the value of/3 which minimizes Qn(/3). If we 
substitute u ( ~ ) = y - X / 3  into (2.2), multiply out the quadratic form and 
differentiate with respect to/3 then the first-order conditions are 

- 2 X ' Z W , , Z ' y  + 2 X ' Z W ,  Z ' X f i  = 0 

which in turn implies 

X ' Z W n Z ' y  = X ' Z W , , Z ' X f i  . (2.3) 

Therefore if Z ' X  is nonsingular the solution for fi is 

fi = ( Z ' X ) - I Z ' y  . 

Within this framework it becomes immediately obvious why IV estimators 
are consistent. A heuristic explanation is as follows. The population moment 
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condition E[ztut(/3o) ] = 0 (combined with the Weak Law of Large Numbers) 
• - - 1  r P . . . .  

imphes n Z u(/30)--~0. Now W n is positive definite for all n and so Qn(/3)>~0 
with the equality only obtained for n - l Z ' u ( f l ) =  0. Therefore  if /) minimizes 

" P 2 

Q~(/3) and n-lZ'u(f lo)-~O, it follows that/3-->/30. Of course if E[ztut(flo)] v a 0 
then this argument breaks down and in general /) is not consistent. This 
corresponds to the case where at least some elements of z t are invalid 
instruments. It is interesting to compare this derivation with the more familiar 
textbook treatment of IV. Note that because X ' Z  and W, are nonsingular, 
(2.3) implies Z ' u ( f l ) =  0, and these equations are the starting point for many 
textbook derivations of /3  (e.g., see Johnston, 1984, p. 364). 

It is important to emphasize the structure of our derivation of /3. The 
estimator can be obtained by minimizing a quadratic loss function in a sample 
moment  (i.e., n-lZ'u(/3)) .  The resulting estimators are consistent because the 
population moment  equals zero when evaluated at /30 (i.e., E[ztut(/3o) ] = 0). 
This is the basic principle that lies behind the generalized method of moments 
(GMM) estimator• However ,  before considering GMM in its full generality it 
is instructive to consider further the instrumental variables estimator in the 
basic linear model• 

In our earlier discussion it was assumed that r = q and so there were exactly 
the same number of moment  conditions as parameters to be estimated• One 
can think of this as being the case where/3 is 'just identified' because we have 
just enough information (i.e., moment  conditions) to estimate/3. An immedi- 
ate consequence o f  this was that fi does not depend on W, and so the same 
estimator is obtained regardless of the choice of Wn. We now consider the 
statistical implications of r ~ q. 

If r < q then the number of parameters to be estimated exceeds the number 
of moment  conditions. In this case /3 is 'underidentified' because there is 
insufficient information (i.e., moment  conditions) from which to estimate /3 
uniquely• The previous derivation Of fi breaks down because if r < q then the 
(q x q) matrix X ' Z W ,  Z ' X  has rank less than or equal to r and so is singular. 
Consequently (2.3) cannot be uniquely solved for /3. 

If r > q then the number of moment  conditions exceeds the number of 
parameters to be estimated, and so/3 is 'overidentified' because there is more 
information (i.e., moment conditions) than is necessary to obtain an estimate 
of/3.  In this case the choice of W, affects /3. To see this we rewrite (2.3) as 

X'ZW~Z'u([3) = 0.  (2.4) 

Now X ' Z W  n is q × r and so (2.4) does not imply Z ' u ( f l ) =  0. Rather  /3 is 
chosen to be the value which sets q linear combinations of the r moment  
conditions Z'u(/3) equal to zero, and the weights of these linear combinations 

Z We must also assume E[z,u,(/~)] =/x ¢0 for any /3 ¢/3 o, to ensure /3 is uniquely defined 
asymptotically. 
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are given by X ' Z W  n. In this case the solution for D is 

fi = ( X ' Z W n Z ' X ) - a X ' Z W ,  Z 'y  (2.5) 

which clearly depends on Bin. This naturally raises the question of which W, 
leads to the most efficient choice of ft. Recall that we have made no 
assumptions about the distribution of u t and so the finite sample distribution of 

is unknown. Therefore  our efficiency comparison is based on asymptotic 
behavior and so we must first characterize the asymptotic distribution of ft. 

In our discussion of the asymptotic distribution of fi we set r ~> q and so 
include the 'just identified' case as well. Note that if r = q then (2.5) reduces to 
[3 = ( Z ' X ) - l Z ' y ,  and so (2.5) trivially holds for r/> q. If we substitute for y 
from (2.1) into (2.5) and rearrange the equation we can obtain 

/ . /1 /2( f i  _ / 3 0 )  = ( n - I X ' Z W ~ n - I Z ' X ) - ~ n - t X ' Z W n  n-1 / zZ 'u .  (2.6) 

We deduce the asymptotic distribution of fi by considering the behavior of the 
cross product  matrices on the right-hand side of (2.6). Under  suitable 
regularity conditions we can assume 

(C1): lim,,__,~n-lZ'Z = Mzz, a finite nonsingular matrix of constants; 
(C2): " -1 , . • hmn__,=n X Z = Mxz, a fimte matrix of constants with rank q; 
( C 3 ) :  " - 1 / 2  , d 2 llm~__,= n Z u ----~N(0, o- Mzz ). 
Each of these conditions places different restrictions on the asymptotic 

behavior of the instruments. (C1) requires that each instrument provides some 
unique information in the sense that no one instrument zti can be written as a 
linear combination of the others infinitely often as n - - -~ .  Condition (C2) 
requires that there must be at least q of the r instruments which are correlated 
with xt asymptotically, and so /3 is identified asymptotically. Finally (C3) 
requires that the sample moment  vector evaluated at/3 0 converges to a normal 
distribution when scaled by n 1/2. Note that the mean of this distribution is zero 
and so this condition restates the requirement that z t be a valid instrument. 
Using (C1) - (C3)  we can deduce from (2.6) that 

-/30)---~N(0, or V) ,  (2.7) 
- 1  - 1 '  t where V=  (MxzWM~x) Mx~WMz~WM~(MxzWMzx ) and Mz~ = M ~ .  There-  

fore we can perform asymptotic inference about/3 o based on (2.7) using either 
confidence intervals or using hypothesis tests (the latter will be discussed in 
more detail in Section 5). A consistent estimator of o-2V is easily constructed 
from the data using W,, the sample moment  matrices such as n - I Z ' X  and 
6 - 2 = ( y - X ~ ) ' ( y - X ~ ) / n .  In the just identified case, V reduces to 

--1 - 1  M ~ M ~ M ~  . 
We now return to the issue of characterizing the optimal choice of W n. This 

characterization is based on finding the choice of W, the probability limit of Wn, 
which yields the most efficient IV estimator asymptotically. From Hansen 
(1982) Theorem 3.2 it follows that for this model the optimal choice of W is 
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M~], in which case V reduces to 

V* - I  - i  = [MzxMzz mzxl • (2.8) 

Note that the optimal choice of W is proportional to the inverse of asymptotic 
covariance matrix of n-1/eZ'u. One can gain some intuition into this choice of 
W by considering the role of the weighting matrix in Qn(/3). The elements of 
W n control the relative importance of each term of the form ( n - l E  ztiut)x 
(n 1 X ztju,) in Qn(/3). Due to the inherent variability in zt each element of the 
moment condition contains different information about/3 and these elements 
(or pieces of information) are related to each other. This is reflected in the 
asymptotic covariance matrix n-1/ZZ'u which from (C3) is o-2Mzz. The optimal 
weighting matrix is the one which takes account of this covariance structure in 
the construction of Q,(/3). An obvious choice of W, which converges in 
probability to Mzz 1 is (n - IZ 'Z )  -~, and from (2.5) the associated sequence of 
IV estimators is characterized by 

[3* = [(X 'Z(Z 'Z)-~  Z ' X ) I - ~ X ' Z ( Z ' Z ) - I  Z 'y  (2.9) 

= ( 2 , 2 ) - ~ 2 , y ,  

where 2 = Z ( Z ' Z ) - I Z ' X  namely, the predicted value of X from regression on 
Z. 

It was noted that the asymptotic normality of ~ facilitates inference about/3. 
However, such inference is based on the assumption that the model is correctly 
specified. Typically it is desired to test whether the data is consistent with the 
model before focusing on inference within the context of that model. For the 
regression model we have discussed above, many tests of model adequacy have 
been proposed, e.g., tests for serial correlation or heteroscedasticity in u r 
However, in the more general models examined below, we typically do not 
assume E ( u u ' ) =  o-2In and so these tests do not usefully extend. Instead we 
focus on a test principle which can be applied in nonlinear dynamic models. 
This test is often referred to as Hansen's (1982) overidentifying restrictions 
test. It is clear from our earlier discussion that the desirable statistical 
properties of ¢) rely crucially on the validity of the moment condition 
E[ztut(/3o) ] = 0. It is therefore important to test whether the data are consistent 
with this moment condition. Now in the 'just identified' case Z ' u ( l ) ) =  0 by 
construction regardless of whether or not the population moment condition is 
true and so one cannot derive a useful test from the sample moment. However, 
if/3 is overidentified, then from (2.4) it is clear that only q linear combinations 
of Z ' u ( ~ )  are set equal to zero and so Z'u(¢)) ¢ 0 by construction. However, if 
the population moment condition is true then one would expect Z 'u({1)~  O. 
This provides a basis for a test of the model specification, and we base this 
inference on the asymptotically efficient estimator l)*. From Hansen (1982) 
Lemma 4.2 it follows that in this model if E[ztut(/3o) ] = 0, then the statistic 

= 
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a 6_z converges in distribution to ,)(r-q w h e r e  is a consistent estimator of 0 "2. Note 
that the degrees of freedom are the number of moment  conditions minus the 
number  of parameters to be estimated. This is the case because only r - q of 
the sample moment  conditions Z'u(~*) are free on account of the q restric- 
tions implied by the first-order conditions for D* in (2.4). 3 The statistic ~n 
provides a simple test of the model and we will discuss its properties in greater 
detail in Section 5. 

3. Generalized method of moments 

In the previous section it was shown that the familiar instrumental variables 
estimator can be derived by minimizing a quadratic form in a sample moment  
which was a function of/3. Within this framework it became apparent that the 
desirable properties of the IV estimator depended on three properties of this 
condition, namely: (i) the validity of the population moment  condition 
E[ztu,(/30)] = 0 ;  (ii) there were at least as many moment  conditions as 
parameters to be estimated; (iii) n 1/2 times the sample moment  evaluated at/30 
converged to a normal distribution as n---~ % i . e . ,  n-1/2Z'u(/3o) a--~N(O, 0-2Mz~ ). 
It is important  to realize that we could have performed a similar analysis with 
any moment  conditions which satisfied ( i)-( i i i ) .  For example we could have 
used a different set of instruments, r t say, and although this estimator would be 
numerically different from /3 in (2.5), it would have similar statistical prop- 
erties. It would be consistent and asymptotically normal, the optimal choice of 
W n would be n-IR'R and one can perform inference about the model using an 
analogous statistic to %. Furthermore,  the intuition behind our discussion was 
not specific to a static linear regression model. Rather  to estimate the 
parameters of any model, we can proceed by finding moment  conditions 
involving the parameter  vector which satisfy ( i)-( i i i )  and minimize a quadratic 
form in the analogous sample moment.  This is the essence of generalized 
method of moments estimation. 

In this section we discuss the extension of our analysis for IV estimators in 
static linear models to nonlinear dynamic models. We adopt the statistical 
f ramework in Hansen (1982) and delay discussion of its possible extensions 
until Section 5. 

Consider the case where we wish to estimate the (q x 1) parameter  vector/3 
which indexes a statistical model. Suppose we have the following (r x 1) 

3 Note that % is not asymptotically equivalent to the well-known Hausman (1978) test for the 
endogeneity of regressors. Hausman's  test compares /3 with /3, the ordinary least squares 
estimator. Although Hausman's  test can be set up using moment  conditions (see White, 1982, 
1984b) neither of these versions corresponds to r n. In particular the asymptotic properties of this 
Hausman test depend on n-1/ZX'u which is irrelevant to %. Newey (1985) discusses the 
connections between Hausman type and conditional moment  tests. 
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moment  conditions 4 

E[f(x,,  130) ] = 0 ,  (3.1) 

where x, is a (p  x 1) stationary ergodic random vector f (x ,  ~)  is a (r x 1) 
vector of continuous functions of/3 for every x, and/30 is the true value of/3. 
Before proceeding with our discussion we wish to address an issue of 
terminology. Hansen (1982) refers to the moment  conditions in (3.1) as 
'orthogonality conditions'. This term arises naturally in the IV framework 
because as we have seen the moment  conditions are based on the orthogonality 
of two sets of variables, i.e., u t and zt in Section 2. Although one can use the 
two terms interchangeably, in this paper we refer to (3.1) as moment  
conditions. 

If r >I q then these moment  conditions provide sufficient information to 
estimate/3. If we let gn(/3) be the sample moments 

g ° ( / 3 )  = n -1 f ( x , , / 3 )  
t = l  

then the intuition from Section 2 leads us to consider the quadratic form 

Q.(/3 ) = g,,( /3 )'Wng.(/3 ) , 

where W. is defined as before. The generalized method of moments estimator 
of/3 is/3 the value which minimizes Q.(/3) with respect to/3. Given our earlier 
discussion one would anticipate that /3 is consistent and asymptotically 
normally distributed just like the IV estimator in the linear model. In fact all 
our analysis of the IV estimator extends very naturally to the GMM estimator 
and in the remainder of this section we discuss the generalization of those 
arguments to this more general setting. 

The first-order conditions for minimizing Q.(/3) imply/3 is the solution to 

G.(/3) W.g.(/3) = 0 ,  (3.2) 

where G.(/3) is the (r x q) matrix with (i, j )- th element [G.(/3)]/1 = Og.i(/3)/O/3j 
and, g.i(/3) is the i-th clement of g.(/3). We assume G.(¢)) is of full rank. Just 
as in the linear case 5 the first-order conditions set q linear combinations of the 
r sample moment  conditions g.(/3) equal to zero. I f /3  is just identified then 

4 In this section we follow Hansen ' s  (1982) notat ion to expedite the  readers progression from our 
discussion to the original work. However,  this does create a slight notat ional  conflict with Section 
2. In this section x, represents the vector of all variables appearing in the momen t  condition, which 
for the linear model  are the regressors,  the ins t ruments  and the dependent  variable. With an 
obvious abuse of notat ion (3.1) reduces to the momen t  condition in Section 2 if we set 
f(x,, Go) = z,(y, - x',[3o). Note that our assumptions in Section 2 did not  include stationarity and so 
our  linear model  is not  encompassed by Hansen ' s  original framework.  However ,  one can apply 
G M M  under  much  weaker  assumptions about  x, which would include the model  of  the previous 
section. These  are discussed in Section 5. 

5 Note that in the linear model G~(/3) = n - i X ' Z ,  and g,(/3) = n-~Z 'u(~)  and so (3.2) is identical 
to (2.4). 
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G,(/3) and W n are nonsingular, in which case/3 is the solution to g,(/3) = 0 and 
so does not depend on W,. However, if/3 is overidentified then/3 does depend 
on W, in a similar fashion to the linear model. Notice that unlike the linear 
case, (3.2) does not imply an explicit solution and so one must use a numerical 
optimization routine to solve for/3 (e.g., see Gallant, 1987, pp. 26-46). 

Most commonly used statistical packages do not include a convenient 
procedure for GMM estimation of nonlinear dynamic models. However, in the 
case where the moment condition arises from the orthogonality of some 
function ut(/3 ) and an instrument vector, then one can use RATS (Doan, 1990, 
pp. 5-22, 5-23) and TSP (Hall and Cummins, 1991, pp. 67-68). One can also 
use matrix computer languages to perform GMM estimation. For example the 
Hansen/Heaton/Ogaki GMM GAUSS package (see Ogaki, 1992) contains 
suitable programs in GAUSS and Gallant (1987, pp. 448-449) presents a SAS 
PROC MATRIX (SAS, 1982) program which estimates the parameters of the 
Hansen and Singleton (1982) consumption-based asset pricing model and also 
calculates the other statistics described below. The latter provides a useful 
starting place for the structure of a numerical optimization procedure for more 
general GMM estimation or if it is desired to use an alternative matrix 
computer language. 

Although we cannot obtain an explicit solution for/3 one can show that it is 
a consistent estimator. The heuristic argument presented for the IV estimator 
in the linear model extends to this more general setting. The population 
moment condition E[f(x t,/30)] = 0 combined with the Weak Law of Large 

• . p . . . .  
Numbers lmphes g~(/30)---~0. Now W, is positive definite for all n and 
SO Qn(/3) >~ 0 with the equality only obtained for gn(/3) = 0 for all n. Therefore 

" P ~ P 6 

if/3 minimizes Q,(/3) and g,(/30)~0, it follows that/35->/30 . 
We now derive the asymptotic distribution of/3. Due to the absence of an 

explicit solution for /3 from (3.2), it is necessary to develop an asymptotic 
approximation to nl/2(/3 -/3o) using a mean value theorem expansion of the 
sample moment conditions. By the mean value theorem we have 

g . ( # )  = go(/3o) + c . ( / 3 ) ( / 3  - / 3 o ) ,  (3.3) 

where I1# - < I1# -/3011. if we premultiply both sides of (3.3) by Gn(fJ)'W n 
then from (3.2) the left-hand side of (3.3) is zero and so we obtain 

( #  - -- (3.4) 

~ p - p 
Now fi--->/3 0 implies /3--->flo and so by Slutsky's theorem we obtain 

n I / 2 ( / ~  - f lo)  = -[Gn(flo)'WnGn(~o)]-lG.(~o)'Wnnl/2gn(~O) + o p ( ] )  , 

( 3 . 5 )  

6 W e  m u s t  a l so  a s s u m e  t h a t  E [ f ( x , , / 3 ) ]  = / *  # 0  f o r / 3  #13  0 to  e n s u r e  t h a t / 3  is u n i q u e l y  d e f i n e d  
a s y m p t o t i c a l l y .  
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Under  certain regularity conditions (see Hansen, 1982), 

1/2 d 
n g,(/3o)--+Y(0, Sw), 

where 

is a finite positive definite matrix. Therefore from (3.5) 

nl,2(  d -/30)-->N(0, Vc), (3.6) 
t -I t r -I 

where V c -= [GoWGo] GoWSwWGo[GoWGo] , and G O = E[Of(xt,/30)/0/3 ]. 
Notice that the structure of V c is identical to V in (2.7). 7 

To perform inference about 130 based on (3.6), it is necessary to construct a 
consistent estimator of V c. This can be obtained by replacing the component  
matrices of V c by their consistent estimators. It is easily verified that 

~ p P 
Gn(/3) ~ G O and by definition W n ---~W, but some care is needed in constructing 
a consistent estimator of S w. There have recently been a number of studies 
proposing positive definite consistent estimators of covariance matrices like S w 
(see inter alia Gallant, 1987, pp. 445 and 532-539; Newey and West, 1987a; 
Andrews, 1991). One such covariance matrix estimator originally proposed by 
Gallant (1987) is 

l(n) 

Sw = Z O')m~nm, ( 3 . 7 )  
m - - l(n) 

where 

1 - 6 m 2  + 61m]  O<~m<~O.5l(n) 
(Din= 2 ( 1 _  Iml)3 , 0.51(n)<~m<~l, 

~nm = Fl-1 2 f(xt,  ~)f(Xt m' ~)t  
t = m + l  

and l(n)=O(nl/5). Therefore  using Gn(/3), W,, and ~w one can obtain a 
consistent estimator of Vc. and so perform inference about /30 using the 
asymptotic distribution of/3.  

In our discussion of IV in the linear model it was argued that the optimal 
choice of W, is the sequence of matrices which yields the asymptotically most 
efficient estimator as n--->oo. This criterion is still appropriate for GMM 
estimators in nonlinear dynamic models. It was noted above that the structure 
of V o is identical to V in (2.7), and so we can use analogous arguments to 
characterize the optimal W. This time the analysis shows that the optimal W, is 

7 T o  s ee  t h i s  p u t  G O = Mzx, S w = o2Mz~. 
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Sw 1, which implies the asymptotically efficient GMM estimator /~* has 
r --1 - 1  / ~ ,  covariance matrix V~ = [ G o S  w Go] . To construct we require a weighting 

matrix W which is both consistent for S~ 1 and is also positive definite. This 
presents a problem which we did not encounter  in the linear model because in 
this more general setting such an estimator will inevitably depend on/3 because 
of the definition of S w. The solution is to adopt a multi-step estimation 
procedure.  For example one could estimate/~* in two steps. In the first step we 
use a suboptimal choice of W, (which does not depend on /3) to obtain /3. 
Al though/~ is inefficient it is still consistent and so we can use/3 to construct 
Sw using (3.7). In the second step /~* is obtained from (3.2) using W, = S w . 

While this two-step estimator is asymptotically efficient, one need not stop 
here. The second step estimator of/3 can be used to form a new estimator of S w 

and the model reestimated to produce a new estimate of/3 which in turn yields 
a new estimator of S w etc. This iterative procedure could be continued until 
convergence and the resulting estimator has the same asymptotic properties as 
the two-step estimator. However  the finite sample properties may be different 
and we discuss this further in Section 5. 

Finally we consider the extension of the overidentifying restrictions test to 
nonlinear dynamic models. It was observed above that i f /3  is overidentified 
then g n ( / 3 ) ¢ 0  in general. Following the intuition from the linear model,  it 
would be anticipated that if the population moment  condition E[f(x , /3o)]  = 0 
is correct then g , ( /~ )=  0. Therefore  the sample moment  provides a convenient 
test of the model specification. Consider the test statistic 

% = n g , ( ~ * ) ' S ~ l g n ( / ~ *  ) . 

Under  the null hypothesis that E[f(xt,/30) ] = 0, % converges in distribution to 
2 

Xr-q" 
In this section it has been demonstrated that the GMM estimator can be 

used to perform inference about the parameters of a nonlinear dynamic 
econometric  model. At  this stage we wish to emphasize that we have actually 
assumed very little about the model. Apart  from certain regularity conditions, 
we have only made two key assumptions. Firstly we assumed x t is stationary 
and ergodic to facilitate the application of the Weak Law of Large Numbers 
and central limit theorem to various functions of x t. This can be relaxed as we 
discuss in Section 5. Secondly and more importantly we assumed that there are 
sufficient moment  conditions to identity/3. However ,  it is important  to realize 
that we did not make an explicit assumption about the parametric form of the 
data generation process for x t. In some cases a model for x t may be required to 
obtain the moment  conditions. Our analysis of the IV estimator in the linear 
model was an example of this case. However ,  in many situations, one can 
deduce moment  conditions without completely specifying a model for x t. This 
makes GMM a very attractive estimation principle for two reasons. Firstly the 
data generation process for x t may be a large (possibly nonlinear) system of 
equations and so GMM offers the potential to estimate /3 without the 
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computational burden of estimating the complete system. 8 Secondly economic 
theory may imply a set of moment conditions but not a suitable model for x t. 
This creates a problem for the implementation of a number of traditional 
estimation methods (e.g., maximum likelihood) which require an explicit 
model for x t. In this case we could assume specification for x t and estimate the 
complete system. However, if the model for x t is misspecified, then this may 
bias our inference about/3.9 Both of these reasons are particularly relevant in 
the estimation of the parameters of discrete dynamic programming models and 
in the next section we describe how GMM can be applied to greatly simplify 
the estimation of these models. 

4. GMM and Euler equation models 

In his famous policy critique Lucas (1976) argued that econometric policy 
evaluations based on traditional dynamic simultaneous equation models are 
seriously flawed. Most of these analyses assume that the model's parameters 
are invariant across policy regimes. Lucas argued that rational agents take 
account of policy changes in their decision making and so one cannot expect 
the same marginal response to a change in a policy instrument in different 
policy regimes. Consequently it is more appropriate to view these parameters 
as functions of the economic environment and a set of underlying fundamental 
parameters which govern peoples preferences and the technology in the 
economy: 'taste and technology' parameters. This criticism has sparked a 
considerable research program formulating rational expectational models 
which are explicitly parameterized in terms of the 'taste and technology' 
parameters. These models are typically nonlinear and are computationally 
burdensome to estimate using standard methods such as maximum likelihood. 
However, Hansen and Singleton (1982) demonstrated that GMM can be 
applied in these models relatively easily and so facilitates inference about these 
parameters. In this section we summarize Hansen and Singleton's analysis and 
follow their approach of using a consumption based asset pricing model to 
illustrate the arguments. However, we consider a simplified version of their 
model to expedite the exposition. 

Consider the case where a representative economic agent chooses consump- 
tion and investment to maximize his/her expected discounted utility 

s Note that we have made no assumption about  the relationship between p ,  the dimension of x,, 
and q the dimension of/3.  

9 Gallant  and Tauchen  (1989) propose using max imum likelihood est imation using a semi- 
nonparametr ic  approximation to the probability density function of x, which is es t imated from the 
data. This approach may avoid this bias and is discussed in the next  section. 
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where C t is consumption in period t, U(-) is a strictly concave utility function, 6 
is a constant discount factor and Et[. ] denotes conditional expectation given ~ ,  
the information set available to the agent at time t, for t = 0, 1 , . . . .  In any 
period t the agent can choose to buy either consumption goods or purchase an 
asset which yields payoff Rt+ 1 in the next period. Let Pt and Q, be the price 
and quantity purchased of the asset in period t respectively. The agent is 
assumed to receive income from assets purchased in the previous period and 
labor income W, All prices are denominated in terms of the consumption 
good. 1° Therefore the agent's budget constraint is 

C, + PtQt <~ RtQt-a + Wt. (4.2) 

The maximization of (4.1) subject to (4.2) yields the first-order condition 

PtU'(Ct) = ~Et[Rt+IU'(Ct+I) ] , (4.3) 

where U'(-)= OU/OC. It is convenient to rewrite (4.3) as 

[ Rt+l U'(Ct+I) ] 
E t 6 p~ U,(Ct) - 1  =0  (4.4) 

and we refer to (4.4) (or equivalently (4.3)) as the Euler equation of the 
system. To estimate this model it is necessary to specify the utility function. 
Following Hansen and Singleton (1982) we define 

U(C~) = C[/T, y < 1 .  (4.5) 

Therefore the Euler condition becomes 

E t [6 Rt+l 1] 0 
where a = 7 - 1. 

Now consider the problem of estimating (~, 6). Given the consumption and 
asset data customarily used in these models, it is reasonable to model Rt+I/P t 
and C~+I/C ~ as stationary series. Therefore, to estimate this model by 
maximum likelihood it is necessary to specify the conditional distribution of 
l W l t + l  = log[Rt+I/P,] and Iw2t+l  ---- log[Ct+l/Ct] given l/~t.ll The maximum likeli- 
hood estimates of the parameters of the model are obtained by maximizing the 
likelihood subject to the Euler equation constraint given in (4.6) for each t. In 
some cases the imposition of this constraint may reduce to restrictions on the 
parameters (e.g., see Hansen and Singleton, 1982, pp. 1279-1280). However, 
most often it is necessary to use a constrained optimization technique in which 
case the imposition of (4.6) requires numerical integration (see Gallant and 
Tauchen, 1989). Therefore the maximum likelihood method has both the 

10 In other  words Pt is the price of the asset in dollars + price of  the consumption good in dollars. 
n The log t ransformation is taken due to the nonnegativity of  Rt+I/P ~ and Ct+I/C r 
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problems discussed at the end of Section 3 namely: computational burden and 
potentially biased inference if the conditional distribution is misspecified. One 
can protect oneself from the second problem by adopting a flexible functional 
form for the joint conditional probability density function of ( lw1,+1,  lWzt+l ). 
This is the strategy advocated by Gallant and Tauchen (1989) who estimate a 
semi-nonparametric approximation to the true density function. However, such 
methods are inevitably computationally more burdensome. 

In contrast, now consider G M M  estimation of (a, 6). To use GMM it is 
necessary to find at least two population moment conditions. The Euler 
condition yields one directly because by the law of iterated expectations 

g{f Rt+l[C ttl]Ot g{gt{c Rt+ 1 oe -1}= -1}}=0 
from (4.6). However, we can combine the Euler equation with the rational 
expectations hypothesis to obtain additional moment conditions. If agents are 
rational, then they use all available information at time t (i.e., ~ )  to form their 
expectations. It follows that if Y , + I ~  but z~ E ~  then 

E,[y +lz,l = ( e , [ y , + d } z , .  

Now if Et[yt+l] = 0 then by the law of iterated expectations 

g [ y t + l Z t ]  = O.  

Using the same argument in the consumption based asset pricing model, the 
Euler equation implies 

a)z , ]  = o ,  (4.7) 

where Ut+l(Ot, C~)=~(Rt+l/Pt)(Ct+i/Ct) °~ - i  and z t is an (rX 1) vector of 
variables contained in ~ .  In practice there is no shortage of candidates for z,. 
One can use C,_i, Rt_ i, P,-i, i >I 0, any function of these variables or any other 
macroeconomic variables, such as lagged money supply, which are known to 
the agent at time t. This abundance can create a problem because the 
parameter estimates will vary with the choice of z,. This issue is discussed 
further in Section 5. 

Notice that the structure of (4.7) is identical to that of the population 
moment condition for IV in the linear model. For this reason z t is referred to 
as a vector of instruments. The key difference between the moment conditions 
in the two models is that in the linear model we had to explicitly specify the 
data generation process for Yt to construct ut(/~ ), whereas in the Euler 
equation model u,(a, 6) is just a function of the data with conditional 
expectation zero. Due to this close relationship between the estimators, 
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Hansen and Singleton (1982) refer to the GMM estimator based on (4.7) as a 
generalized instrumental variables estimator) z 

From this discussion it is clear that GMM has two advantages over ML 
estimation in these modelsJ 3 Firstly it is computationally more convenient and 
secondly it avoids potential bias due to misspecification of the distribution of 
(lwlt+l , lWzt+l ). However, GMM is not unambiguously better, because ML 
based on a correctly specified model yields the asymptotically most efficient 
estimators. The size of these efficiency gains depends on the model in question. 
This potential provides the incentive for the approach taken by Gallant and 
Tauchen (1989). However, to our knowledge no formal efficiency comparison 
has been made between GMM and MLE based on a semi-nonparametric 
likelihood function in the context of time series models. 14 

Due to its computational convenience Hansen and Singleton's approach has 
been used by many other researchers to estimate rational expectations models. 
In each case the Euler equation provides the basis for the moment conditions 
in the same way as we described above. Examples of these studies are (i) asset 
pricing: Mark (1985), Dunn and Singleton (1986), Epstein and Zin (1991); (ii) 
factor demand: Pindyck and Rotemberg (1983); (iii) labor supply: Mankiw, 
Rotemberg and Summers (1985), Eichenbaum, Hansen and Singleton (1988); 
(iv) inventory holdings: West (1986), Miron and Zeldes (1988), Fair (1989). 

5. Further issues concerning GMM based inference 

The discussion in Sections 3 and 4 was confined to the original articles about 
GMM by Hansen (1982) and Hansen and Singleton (1982). Subsequently there 
have been a number of studies both evaluating the performance of GMM and 
also further developing the GMM inference framework. In this section we 
provide a selective review of this literature. 

So far the discussion has focussed on the asymptotic properties of GMM. For 
practical purposes, it is important to have evidence on its finite sample 
properties. Tauchen (1986) simulated data from a small artificial economy and 
examined the finite sample behavior of the GMM estimators of (o~, 6) in the 
consumption based asset pricing model described in Section 4. He used the 
instrument vector z t = (1, w i t  , . . .  , W l t _ L  + I ,  Wz t  . . . .  , W Z t _ L  +I )  where wit = C t /  

C t - 1 ,  w z t  = R ~ / P ~ - I  for L = 1, 2, 3, 4. The sample sizes were set at 50 and 75. 

12 In this example we had only one asset and so there is only one Euler  condition. If there  are m 
assets then  there will be m Euler  equations each of which can be used to construct  m o m e n t  
conditions in the  way described above (see Hansen  and Singleton, 1982). 

13 Hansen  and Sargent (1982) provide a more  detailed comparison of G M M  and M L E  for linear 
rational expectations models.  

14 However ,  in the case where the variables are iid, Chamberla in  (1987) shows that  G M M  can be 
equally efficient asymptotically as max i mum likelihood est imation in which the probability density 
function of x t is est imated nonparametrical ly along with the parameters  of  interest  (see Section 5 
for fur ther  discussion). 
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He found that the estimator performed reasonably well but appeared sensitive 
to the choice of L. As L increased the estimators' variance decreased but there 
was an increase in bias. Tauchen concluded that it is advisable to choose L to 
be small. Finally he found that the finite sample distribution of z n was well 
approximated by its asymptotic distribution. Kocherlakota (1990) conducts a 
similar study to Tauchen (1986) but uses the iterated GMM estimator in which 
one reestimates with updated versions of Sw as the weighting matrix until the 
estimate converge (see Section 3). He considers exactly the same structure of 
artificial economy as Tauchen and also investigates the Hansen and Singleton 
(1982) consumption based asset pricing model. However,  unlike Tauchen's  
study he also examines the model with multiple assets and different instrument 
sets all of which are indexed by t (i.e., L = 0 in Tauchen's  notation). His 
simulations are for example size 90. In general he confirms many of Tauchen's  
findings although he reports evidence that z n tends to reject too frequently. 
Furthermore,  he finds GMM performs worse when larger instrument sets are 
used. In particular some coefficients are biased and confidence intervals based 
on the asymptotic distribution are too narrow. His results suggest that 
Tauchen's  finding about the sensitivity of GMM to L may in part occur 
because in Tauchen's framework an increase in L also increases the size of the 
instrument vector. 

Both these studies concentrate on highly nonlinear but small systems of 
equations. Ferson and Foerster (1991) report  evidence on the finite sample 
behavior of GMM in larger systems. Their simulation design is different from 
that of Tauchen (1986) and Kocherlakota (1990). Ferson and Foerster (1991) 
estimate a seemingly unrelated regression model with cross equation restric- 
tions for asset returns using real financial data. The residuals from these 
equations are used to bootstrap artificial data on asset returns for the observed 
sequence of explanatory variables. They control the size of the system, the 
number of instruments and the sample size. 15 Unlike the other studies cited 
above they consider the behavior of both the two-step and the iterated GMM 
estimators. In their study GMM exhibits relatively small biases even in samples 
of size 60. However,  the standard errors based on asymptotic theory understate 
the variability of the estimators and this bias increases as either the dimension 
of the system (e.g., number  of assets) or the sample size decreases. They find 
that degrees of freedom adjustments to the asymptotic standard errors reduce 
but do not eliminate this bias. The behavior of the overidentifying restrictions 
test appears sensitive to the choice of estimator. When applied using the two- 
step estimator, the test rejects too often whereas with the iterated estimator 
the test is undersized but much closer to its nominal size. 

All of these studies considered the generalized IV estimator proposed by 
Hansen and Singleton (1982) and described in the previous section. One 

15 The number of assets varies from 3 to 14, the number of instruments is 3 or 8 and the sample 
size varies from 60 to 720. 
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possible explanation for the small sample performance within these sampling 
designs may be the properties of the chosen instrument vector. In the context 
of a simple linear regression model,  Nelson and Startz (1990) provide 
simulation evidence that the finite sample behavior of % can be very sensitive 
to the quality of the instrument (i.e., the correlation between regressor and 
instrument).  If the instrument is of very poor  quality then z n tends to reject too 
frequently. They conjecture that a similar problem may be present in consump- 
tion based asset pricing models of the type described in Section 4 and may 
account for the frequent rejections of these models in practice. None of the 
other studies cited above explicitly control the correlation between ut(¢3o) and 
z,, 16 and so it is not clear to what extent instrument choice provides an 
explanation for the over rejections using ~n reported in the simulation studies 
of Kocherlakota (1990) and Ferson and Foerster  (1991). Further research is 
needed to explore the impact of instrument choice in nonlinear models. 
However  this work is an important reminder that just as in linear models, the 
quality of instrument may be very important determinant of the finite sample 
properties of the 'generalized IV' estimator in nonlinear models. 

Taken together these studies suggest that if the estimated model is correctly 
specified then the finite sample performance of GMM is sensitive to both the 
number  of moment  conditions and the sample size. In particular the asymptotic 
standard errors can understate the finite sample variances and the distribution 
of the overidentifying restriction test may not be well approximated by 
asymptotic theory in moderate  size samples. Ferson and Foerster (1991) argue 
that the iterated GMM estimator exhibits better  finite sample behavior than 
the two-step estimator and so should be used in practice. 

Newey (1985) derived the asymptotic distribution of % under local alter- 
natives to the data generation process for x t. Although in many cases this 
distribution is noncentral X 2, he found that there was a class of local 
alternatives for which rn has power equal to size. This is an important  reminder 
that zn should not be considered an 'omnibus' specification test. Clearly certain 
types of misspecification may not cause the moment  condition to be violated 
and so cannot be detected using r,. More generally, Newey shows that there 
exist local alternatives for which both the assumed population moment  
condition is invalid and a l s o  nl/Z(fi * - /3o)  is asymptotically biased but zn still 
converges to X 2 q. This can happen because zn is a function o f  nl/Zgn(fi* ) and 
so depends on the behavior of b o t h  rll/Zgn([~O) a n d  nl/Z(fi  * - i S 0 ) .  Although 
both these vectors may not converge to mean zero distributions it is possible 
for their asymptotic biases to offset in such a way that na/2gn(13* ) converges to 
a mean zero normal distribution. 17 Ferson and Foerster (1991) also report  
evidence on the finite sample behavior of GMM when the model is mis- 

16 Tauchen (1986) found no evidence that % was sensitive to the autocorrelation in lwlt and lw2t 
for his simulation design. 

17 An  example is where the local alternative is characterized by structural instability of the 
moment  condition (see Ghysels and Hall, 1990b) and is discussed further below. 
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specified. They consider the case where the data are generated from two 
different models for asset returns but the linear model described above is 
estimated. Their  results suggests that the power of the % to detect model 
misspecification depends crucially on the relationship between the true and 
estimated models. The test exhibits reasonable power against one of their 
alternatives but low power against the other. 

In all our discussion of GMM we treated the moment  condition as given. In 
many cases there are a large number of potential moment  conditions which can 
be chosen, and so it is important to consider which set yield the most 
asymptotically efficient estimators. This question has been analyzed for the 
situation were f(x~, •)=Ut(•)@Zt .18 In this case the problem is to find the 
choice of instrument, zt, which yields the asymptotically most efficient 
estimator given u,(~). Hansen (1985) provides a very general characterization 
of the asymptotic efficiency bound of GMM estimators. Hansen,  Heaton and 
Ogaki (1988) use Hansen's (1985) method to characterize the bound when the 
estimation is based on multiperiod conditional moment  conditions. 19 While it is 
possible to characterize this bound, it has proved difficult in nonlinear dynamic 
models to calculate the instrument vector which attains this bound. However ,  if 
we place more structure on the model, then the situation is more favorable. In 
the case where G(/3) is serially uncorrelated, then Tauchen (1986) shows that 
Hansen's (1985) bound implies that GMM based on E[u~(/3)®z,] with the 
optimal choice of instrument is asymptotically equivalent to GMM based on 
the population moment  conditions 

F4Z*,u,( )l = 0, ( 5 . 1 )  

where 

z 7  = ON'  . 

Typically these conditional expectations are not known and so Z* is not a 
feasible instrument choice. Consequently interest has focused on the construc- 
tion of feasible optimal GMM estimators which use an estimate of Z7 as 
instrument but are still asymptotically efficient. Most often these estimated 
instruments depend on/3 and so cannot be used in the first step estimation but 
can be calculated in subsequent estimations using /) from the previous step. 
Newey (1990) and Robinson (1991) demonstrate that under certain conditions 
on the dependence structure of x t and G(/3), a feasible optimal GMM 
estimator can be constructed using certain nonparametric estimates of Z* .  2o 

is In this case u,(/3) is ( m x  1) and the Kronecker product notation denotes that the moment  
conditions are derived by interacting each element of ut(/3 ) with each element of z,. 

19 Also, see Heaton and Ogaki (1991) for an example of this bound in the context of a 
continuous time financial economics model. 

20 Newey (1990) restricts attention to the case where xt, u,(/3) are iid and Z* is estimated by 
nonparametric regression using nearest neighbor or series approximation techniques. Robinson 
(1991) considers a bootstrap estimator of Z* when (i) u,(/3) is a function of contemporaneous and 
lagged values of the endogenous variables but G(/3) is itself uncorrelated; (ii) G(/3) is a function of 
only contemporaneous endogenous variables but may itself be serially correlated. 
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However ,  in more general models, the estimation of Z* will probably require 
numerical integration and also the imposition of distributional assumptions 
about xt. Furthermore,  Tauchen (1986) found that a feasible optimal instru- 
ment GMM estimator often performed very poorly in finite samples for his 
simulation design. One case in which the optimal instrument is easily calculated 
is the linear regression model discussed in Section 2. For  this model if we 
replace the fixed in repeated samples by the assumption by 

Xti ~-- Z ~  i ~- Dti , 

where x a is the i-th element of x t ,  z t is fixed in repeated samples, vti is an iid 
mean zero error  and "~ are unknown parameters,  then the optimal instrument 
is 2 r Therefore  D* in (2.9) is the minimum asymptotic variance GMM 
estimator. 

Given that it is possible to characterize an optimal instrument GMM 
estimator, it is natural to consider its asymptotic efficiency relative to other  
estimators. In the case where x t is iid Chamberlain (1987) shows that GMM 
based on (5.1) is asymptotically as efficient as maximum likelihood in which 
one estimates nonparametrically the probability distribution of the data along 
with the parameters of interest. Furthermore,  in linear time series models with 
moving average errors, Hansen and Singleton (1988) present a method of 
calculating the optimal instrument and show the resulting GMM estimator is 
asymptotically as efficient as maximum likelihood under normality. 21 

There  has been considerable interest in extending the inference framework 
for GMM. Gallant and White (1988, Chapter 7) and Newey and West (1987b), 
and Andrews and Fair (1988) propose Wald, likelihood ratio type and 
Lagrange multiplier tests for the null hypothesis that/3 satisfies a nonlinear set 
of restrictions. In general the likelihood ratio type statistic is only appropriate 
under more restrictive conditions which are not satisfied in many GMM 
applications. These authors show that all three tests have the same asymptotic 
power against local alternatives. 22 However ,  Monte Carlo evidence reported in 
Gallant (1987) suggests the likelihood ratio and Lagrange multiplier tests are 
more reliable in finite samples. In Section 3 we observed that % can be used to 
test all of the overidentifying restrictions of the model. If this test is statistically 
significant one may wish to test whether only a subset of these restrictions are 
satisfied with the aim of identifying which moment  conditions are violated. 
Eichenbaum, Hansen and Singleton (1988) propose a likelihood ratio type test 
which can be used to test this hypothesis. 

It was observed in Section 4 that Euler  equation models arose as part of the 
response to the Lucas (1976) policy critique. These models are formulated in 
terms of 'taste and technology' parameters which are believed to be constant 
over time. Therefore  a natural test for these models is to examine whether  the 

21 Also see Hansen and Singleton (1991). 
22 This only applies to the likelihood ratio test in the cases where it is appropriate. 
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parameter  estimates exhibit the constancy predicted by the theory. Further- 
more,  Ghysels and Hall (1990b) use Newey's (1985) analysis to show that ~'n 
has power equal to size against local alternatives characterized by structural 
instability. This suggests it may be wise to augment the test of overidentifying 
restrictions with structural stability tests. Andrews and Fair (1988) propose 
Wald, likelihood ratio type and Lagrange multiplier type tests for parameter  
constancy. The essential idea behind these tests is as follows. Suppose it is 
suspected that the parameters change their values after a particular point in the 
sample termed a breakpoint.  Accordingly we split the sample into two 
subsamples which contain the observations from before and after the break- 
point. If the parameters remain constant over the sample, then estimates from 
either of the subsamples or the whole sample should be approximately the 
same. Ghysels and Hall (1990a) propose a predictive test for structural 
stability. In this approach parameter  estimates from the first subsample are 
used to evaluate the moment  conditions in the second subsample. If the model 
is structurally constant over the sample, then these predicted moment  condi- 
tions should be statistically insignificantly different from zero. Ghysels and Hall 
(1990b) propose a test for parameter  stability based on the likelihood ratio type 
procedure developed by Eichenbaum, Hansen and Singleton (1988). All of 
these tests have the twin drawbacks of requiring the breakpoint  to be known 23 
and also the subsamples must be asymptotically large. Andrews (1990) 
proposes a procedure for testing parameter  stability when the breakpoint  is not 
known. His strategy is to calculate the Wald statistic, say, for a set of possible 
breakpoints and to use the maximum as the test statistic. In other words we 
choose the test which maximizes the evidence against structural stability. 
Andrews derives the tabulates the distribution of this test. However ,  the subset 
of breakpoints must be restricted to ensure the subsamples are asymptotically 
large for each breakpoint chosen. Therefore  like the other tests described 
above Andrews'  test cannot be used to draw inference about parameter  
constancy at either end of the sample. Dufour,  Ghysels and Hall (1991) 
propose a class of generalized predictive tests which permit inference at the 
ends of the sample. Within their framework, one must have an asymptotically 
large estimation sample from which to consistently estimate/3. This estimate is 
used to evaluate f(xt,  fl) for every observation in the prediction sample, which 
can be of any size. Unlike the Ghysels and Hall (1990a) test which focussed on 
the average of the predicted moment  conditions, the generalized predictive 
tests are based on the individual predictions f(xt,  [3). Dufour,  Ghysels and Hall 
discuss a number of methods for assessing whether these predictions residuals 
are statistically significantly different from zero. 

All of these techniques permit inference within a given model. However,  
very often it is desired to discriminate between two economic models which 
imply nonnested Euler conditions for the same data. For example we may wish 

23 If the breakpoint is unknown a common strategy is to apply the above tests assuming the 
break occurs halfway through the sample. However, intuition suggests that in this case the tests will 
lose power as the distance between the true breakpoint and the middle of the sample increases. 
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to choose which of two different nonnested utility functions is more appropri- 
ate in a consumption based asset pricing model. Singleton (1985) proposes a 
simple test based on nesting the two Euler equations within a more general 
model whose Euler equation is a convex combination of the two. While 
computationally convenient, this approach may not always be appropriate 
because the convex combination of Euler equations may not be the Euler 
equation of an economically meaningful model (see Ghysels and Hall, 1990c). 
Ghysels and Hall (1990c) propose a test based on the encompassing principle 
(Mizon and Richard, 1986), which can be used to discriminate between two 
rational expectations models. However, to implement this test it is necessary to 
specify a model for x,. This is undesirable because it requires much stronger 
assumptions that are necessary to estimate the individual Euler equation 
models by GMM. 

Finally it should be noted that the stationarity and ergodicity assumption is 
not necessary for our analysis. Its role was to facilitate the application of laws 
of large numbers and central limit theorems to the data. As part of their 
development of a unified theory of dynamic models, Gallant and White (1988) 
generalize Hansen's (1982) results to the case where x t is nonstationary but 
near epoch dependent on an a-mixing process (see Gallant and White, 1988, 
Chapter 2). This condition places sufficient restrictions on the memory of the 
process to allow the application of Laws of Large Numbers and Central Limit 
Theorems to functions of x t. Many of the tests described above can be applied 
in this more general setting. 

6. Concluding remarks 

Generalized method of moments estimation has provided important contribu- 
tions to both the theoretical and applied econometrics literature. In the 
theoretical literature it provides a unified framework for estimation theory. In 
the applied literature it provides a computationally convenient method of 
estimation in some models which were burdensome to estimate by other 
methods. We conclude our discussion of GMM by offering some final com- 
ments on both these contributions. 

The first issue has not been explicitly addressed in this paper. In Section 2 we 
showed that IV is a special case of GMM and obviously the same result holds 
for OLS in this model because it is an IV estimator with Z = X. However, it 
may not be obvious how other familiar estimators can be nested within the 
GMM framework in more general models. To understand this connection we 
consider two estimators (i)/3 the value of/3 which optimizes Nn(/3); (ii)/~ the 
GMM estimator obtained from minimizing Qn(fi)= [aN(fi)/Ofi]'Wn[ON(fl)/ 
0/3]. Now under certain regularity conditions /~ satisfies the first-order condi- 
tions 0N([3)/0/3 = 0. 24 Similarly /~ satisfies the first order conditions in (3.2) 

24 It is possible for N(/3) to have a unique op t imum without the first-order conditions having a 
solution. Our  discussion does not  apply to these cases. 
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appropriate for this choice of Qn(/3). Note that 0N(/3)/0/3 is (q x 1) by 
construction and so/3 is just identified. In this case it follows from our earlier 
discussion that ON([3)/O~. = 0. Therefore, provided there is a unique solution 
to these equations /3 =/3. The advantage to viewing any estimator from a 
GMM perspective is that it focuses attention explicitly on the moment 
condition being exploited in estimation. For example if Nn(/3) = 27= 1 LLFt(/3) 
is the quasi log likelihood function (see White, 1982), then the condition for 
the consistency is that E[0LLFt(/30)/0/3)] = 0, where LLFt(/30) is the condition- 
al quasi log likelihood of the t-th observation. Therefore the GMM framework 
ties in very naturally with previous discussions of consistency in which this 
condition has received considerable attention; e.g., in the quasi maximum 
likelihood estimator literature (see White, 1982) and also in the context of 
nonlinear FIML estimation of simultaneous equation models (see Amemiya,  
1977; Phillips 1982). 

In this discussion we have implicitly concentrated on the situation in which 
all the elements of /3 are estimated simultaneously. Newey (1984) dem- 
onstrates that sequential estimators 25 also fit within the GMM framework. For 
example consider the following two-step estimation procedure. In the first step 
one estimates the just identified parameter vector/31 from the sample moment 
conditions n -1 E fl(xt,/31). In the second step one estimates /32 conditional on 
/)1 from the sample moment conditions n - l Z  fz(Xt, 81,/32), which provides 
sufficient information so that /32 is just identified given /~1. Newey (1984) 
demonstrates that /~ = (/~[,/~'2)' is identical to the GMM estimator obtained 
from the recursive sample moment n -1~  f ( x ,  /3)=[n -1 g L(xt, /31)' 
n -1 ~ f2(x, /31, /32)']'. An advantage of viewing sequential estimators from a 
GMM perspective is that one can use the results in equation (3.6) to facilitate 
calculation of the correct asymptotic covariance matrix of the estimators. One 
can also utilize the GMM framework to analyze the asymptotic behavior of 
certain simulation estimators. Lee and Ingrain (1991) propose an estimation 
method for the time series models based on gathering artificial data. The idea 
is to estimate the parameters of the model by the values which yield sample 
moments for the artificial data that mimic the sample moments of the real 
data. 26 Lee and Ingram (1991) demonstrate that under certain regularity 
conditions their estimator is a special case of GMM and is therefore consistent 
and asymptotically normal. 

The computational convenience of GMM has been illustrated using non- 
linear rational expectations models. This convenience is achieved because for 
GMM it is only necessary to specify the Euler equation in order to obtain 
sufficient moment conditions to identify the parameters. In other words we 
gain computationally by only specifying part of the statistical model for xt. 

25 For example stage least squares (e.g., see Johnston, 1984, p. 442-443) or the residual adjusted 
Aitken estimator for partial adjustment models with serially correlated errors (see Hatanaka, 
1974). 

26 Also see Duffle and Singleton (1990) and Gourieroux and Monfort (1993). 



Some aspects o f  generalized method 415 

However,  as we have seen in Section 5, there are limits to the inference one 
can perform using a partially specified model. For example ~n is not an 
'omnibus '  specification test and one needs to specify a model for xt to calculate 
either the optimal instrument in general nonlinear dynamic models or non- 
nested hypothesis tests based on the encompassing principle. In spite of these 
limitations GMM continues to be an important method of estimation in 
econometrics. Many interesting questions remain and future work will no 
doubt provide us with a clearer understanding of the properties of GMM based 
inference. 
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Efficient Estimation of Models with Conditional 
Moment Restrictions 

Whi tney  K.  N e w e y  

1. Introduction 

Often an economic data set is used to answer questions for which it was not 
designed, because it is too expensive to collect data to answer each new 
question. The lack of control of empirical workers over the form of the data 
suggests the need for models that impose few restrictions on the distribution of 
the data. Also, because economic data often embodies response of individual 
agents to market  conditions and /or  economic incentives, it is important  to have 
models that control for these responses. The simultaneous equations models of 
econometrics,  and corresponding instrumental variable methods, are designed 
to control for such phenomena: see Hausman (1984) for further motivation and 
discussion. 

A useful type of model that imposes few restrictions and can allow for 
simultaneity is a conditional moment  restriction model, where all that is 
specified is that a vector of residuals, consisting of known, prespecified 
functions of the data and parameters,  has conditional mean zero given known 
variables. An example is regression with a disturbance that has conditional 
mean zero given the regressors, where the residual is the usual difference of 
the dependence variable and linear combination of the regressors. Other  
examples, to be discussed below, can allow for incorporation of information 
about the variance of the disturbance and for simultaneity. Estimators for the 
parameters of these models can be constructed by interacting functions of the 
residuals with functions of the conditioning variables and choosing the 
parameter  estimates so that the sample moments of these interactions are zero. 
These estimators are conditional, implicit versions of the method of moments,  
that are typically referred to as instrumental variables (IV) estimators, where 
the instruments are the functions of conditioning variables that interacted with 
the residuals. These estimators have the usual advantage of method of 
moments over maximum likelihood, that their consistency only depends on 
correct specification of the residuals and conditioning variables, and not on the 
correctness of a likelihood function. Of course, maximum likelihood may be 
more efficient than IV if the distribution is correctly specified, so that the usual 
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bias/efficiency tradeoff is present for IV and maximum likelihood. Further 
description and motivation for IV estimators is given in Sections 2 and 3. 

The precision of estimators for conditional moment models is a concern, 
because of the restrictions imposed are so weak. The purpose of this chapter is 
to discuss (asymptotically) efficient estimation of the parameters of conditional 
moment restriction models. Two notions of efficiency are of interest here. One 
is efficiency within the class of IV estimators and the other is efficiency in the 
semiparametric model sense of Stein (1956). It turns out that the two notions 
result in the same estimator, because the optimal estimator in the class of IV 
estimators is efficient for the semiparametric model. Thus, as far as efficient 
estimation is concerned, it suffices to restrict attention to the class of IV 
estimators. 

Several approaches to efficient estimation are considered. Each is based on 
constructing an estimator of the optimal instruments, i.e., of those functions 
that are interacted with the residual to obtain the IV estimator with smallest 
asymptotic variance. These approaches will work because suitably regular 
estimation of the instruments has no effect on the distribution of estimators of 
the parameters of interest (a kind of information matrix block diagonality for 
the parameters of interest and parameters of the instruments). One approach is 
to specify the optimal instruments to be functions of auxiliary parameters, and 
replace the auxiliary parameters with consistent estimators. The resulting 
estimator of the parameters of interest will be efficient if the optimal 
instruments take the specific parametric form, and will be consistent even if 
they do not. Another approach is to use a nonparametric estimator of the 
optimal instruments. The resulting estimator of the parameter of interest will 
be efficient over all possible forms for the optimal instruments, subject to 
regularity conditions. Two types of nonparametric estimators are considered, 
one based on nearest neighbor estimation of conditional expectations that form 
the optimal instruments and the other on estimation of the optimal instruments 
by linear combinations of prespecified functions. Asymptotic efficiency of the 
corresponding estimators of parameters of interest is shown in this chapter, and 
a small Monte Carlo study of their properties in the heteroskedastic linear 
regression model is given. Also, some data based methods for choosing the 
number of nearest neighbors or the number of approximating functions in the 
nonparametric estimator are given. 

The new results in this chapter are those on nonparametric estimation of the 
optimal instrumental variables. Other results have previously been given 
elsewhere. The form of the optimal instruments was derived by Amemiya 
(1974) and Berndt, Hall, Hall and Hausman (1974) for the homoskedastic 
residual case and Hansen (1985) for the general case. Chamberlain (1987) 
showed that the semiparametric efficiency bound for conditional moment 
restrictions models was attained by optimal instrumental variables estimators. 
Also, results on estimation when the optimal instruments are replaced by 
parametric estimators are given in Carroll and Ruppert (1988), nonparametric 
estimation of the optimal instruments has been considered by Carroll (1982), 
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Robinson (1987), and Newey (1988) for the linear regression model,  and by 
Newey (1990) for the homoskedastic residual case. 

Section 2 of the paper introduces the model,  describes IV estimators, derives 
the form of the optimal instruments, and describes parametric estimation of the 
optimal instruments. Section 3 gives a number of examples, including estima- 
tion of regression models, models with second moment  information, trans- 
formation models, and models with simultaneity. In each case a parametric 
estimator of the optimal instruments is discussed. Section 4 deals with nearest 
neighbor nonparametric estimation of the optimal instruments, Section 5 with 
estimation via linear combinations of functions, and Section 6 reports on a 
small Monte Carlo study. 

2. Conditional moment restrictions and instrumental variables estimation 

The general type of model that will be dealt with in this chapter can be 
described as follows. Let  z denote a single p x 1 observation on all the 
variables, and denote the data by z l , . . .  , z  n. Let  0 be a q x 1 vector of 
parameters,  p(z, O) an s x 1 residual vector of functions of a data observation 
and the parameter,  and x a vector of conditioning variables. The conditional 
moment  restriction model considered here is one where the true distribution of 
the data satisfies 

E[p(z, 00)Ix I = 0 ,  (2.1) 

where 00 denotes the true value of the parameters.  An example of this type of 
model is the linear regression model 

y =x'/3 o + e, E[e lx ]  = 0 ,  (2.2) 
/ 

where z = (y,  x ' ) ,  0 =/3, s = 1, and the residual is p(z, O ) = y -  x'O. 
The conditional moment  restriction of equation (2.1) implies that p(z, 00) is 

uncorrelated with functions of x, an unconditional moment  restriction. This 
restriction can be used to estimate 00 by setting the sample cross-product of 
p(z, O) with functions of x close to zero. To describe this estimator, let A(x) 
denote an r x s matrix of functions of x. Then E[A(x)p(z, 00) ] = 0 by equation 
(2.1) and iterated expectations, suggesting a method of moments estimator that 
sets the sample moment  of A(x)p(z, O) equal to its population value of zero. 
When r > q it will generally not be possible to set the sample moments to be 
zero, but a similar method of moments estimator can be obtained by 
minimizing a quadratic form in the sample moments.  Let  15 denote an r x r 
positive semi-definite matrix that may be random, and consider the estimator 

O = argmino~og,(O)'P~,(O), ~,n(O) = ~ A(xi)p(zi, O)/n, (2.3) 
i = 1  

where O is some set of feasible values for 0. 
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This type of estimator was developed and analyzed in a number of 
econometrics papers, including Sargan (1959), Amemiya (1974), Jorgenson 
and Laffont (1974), Burguete, Gallant and Souza (1982), Hansen (1982), and 
Newey (1990). It is often referred to as a nonlinear IV estimator, and A(x) as 
instruments. This type of estimator dates to Reiersol (1945), who suggested IV 
estimation as a method to treat measurement error in linear regression models. 
Also, IV estimators are very general, in that they include many familiar 
estimators as special cases. For example, in the linear model of equation (2.2), 
for a weight function w(x) the weighted least squares estimator /3 = 
(Einl W(Xi)XiX'i) - I  Ei~=l W(Xi)XiY i solves equation (2.3) for instruments A(x)= 
w(x)x. 

It is straightforward to derive the asymptotic variance of 0, as needed to 
discuss its (asymptotic) efficiency, by applying the usual mean-value expansion 
argument to the first-order conditions O~,n(O)/OO'Pp, n(O ) = 0  for 0. Suppose 

. . . . .  ^ P 

that there is a positive semi-definite matrix P such that P--~P, that a uniform 
A - -  P 

law of large numbers gives Ogn(O)/OO--~E[A(x)Op(z, Oo)/O0]= G for any 
- p 

0---~00, and that zl, ,zn are iid so that a central limit theorem gives 
d v gA00) y(0, v), v -  E[A(x)p(z, Oo)p(z, Oo)'A(x)']. The expanding ~n(0) 

around 00, solving for x/-n(0- 00), replacing estimated averages by their 
probability limits, and applying the Slutzky theorem gives 

n(0-0o)= (o o(o)  0 x0)] 
- oo' oo / Pv g.(Oo) 

= -(G'PG)-IG'Px:~:,.(Oo) + Op(1) 

--~ N(0, (G'PG)-IG'PVPG(G'PG)-I). (2.4) 

The asymptotic variance of 0 depends on the assumptions of independent 
observations through the form of V. With dependent observations, V might 
include covariances between A(x)p(z, 0o) for different observations, rather 
than being just an expected outer product. Because of this complication the 
analysis of optimality is much more difficult with dependent observations, 
although Hansen (1985) and Hansen, Heaton and Ogaki (1988) have made 
progress on this problem. Here attention is restricted to the iid case to avoid 
further complications, and because the assumption of iid observations is 
sufficiently general to cover many cross-section and longitudinal data models of 
interest. 

The asymptotic variance matrix (G'PG)-~PVPG(G'PG) -~ depends on both 
P and A(x). As shown by Hansen (1982), the optimal choice of P, that 
minimizes the asymptotic variance, is P = V  -~. This optimal P can be 
implemented by using P = $7-a for a consistent estimator V of V (because the 
asymptotic variance depends only on the probability limit of P). 

The main focus here is the optimal, asymptotic variance minimizing choice of 
instruments A(x). It will turn out that the optimal A(x) has q rows, so that the 
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asymptotic variance of the corresponding estimator does not depend on P. To 
describe the optimal A ( x ) ,  let 

O(x) -= g[oo(e,  Oo)/ao f x ] ,  a(x)  - g[p(z ,  00)p(e, 00)' I x] • (2.5) 
The optimal instruments are 

B(x)  = C .  D(x)Y2(x)  -1 , (2.6) 

where C is any nonsingular matrix. The asymptotic variance matrix for these 
instruments is 

a = ( E [ D ( x ) ' a ( x ) - l D ( x ) ] )  -1 . (2.7) 

For example, in the linear model of equation (2.2), D ( x ) = - x '  and J2(x)= 
E[e 2 Ix], so that for C = - I ,  B(x )  = x/~rZ(x). The corresponding IV estimator is 
just a weighted least squares estimator with weight 1/cr2(x), i.e., heteroskedas- 
ticity corrected generalized least squares. 

The form of the optimal instruments has an intuitive explanation by way of 
an analogy with the linear model. The term ~2(x) -1 is a correction for 
heteroskedasticity (and correlation between different components of p(z ,  0o) ) 
similar to that for the linear model. The derivatives Op(z, 0o)/00 correspond to 
the regressors, because as usual the model can be treated as approximately 
linear when calculating the asymptotic variance. These derivatives are not 
allowed as instruments in general, because they may not depend just on x, but 
the matrix D(x)  is the function of x that is most closely correlated with 
op(z, Oo)/Oo. 

It is straightforward to show that B(x)  gives the optimal instruments. 
First, note that A does not depend on C, so that it suffices to show the result 
with C = I in equation (2.6). Let m A = G ' P A ( x ) p ( z ,  00) and m B = B(x )p ( z ,  0o). 
Then by iterated expectations, E[mAmB] = G 'PE[A(x )F~(x )B(x ) ' ]  = 
G ' P E [ A ( x ) J 2 ( x ) B ( x ) ' ]  = G ' P E [ A ( x ) D ( x ) ]  = G ' P G ,  G ' P V P G  = E[mAm~],  and 
A = (E[mBm'B]) -1. Therefore, 

(G ' P G )  -~ G ' P V P G ( G ' P G )  - 1  _ A 

= (E[mAm~])- lE[mAmA](E[rnBm~])  -~ -- (E[mBm~])  -1 

= ( E [ m a m ~ ] ) - l { E [ m A m A ]  

- -  E[mAm~](E[mBrn~]) - lE[mem~])}E[mBrnA]  = E[RR'] , 

R = (E[mAm~]) -X{ma -- E [ m A m ' B ] ( E [ m B m B ] ) - l m ~ } ,  (2.8) 

and E[RR'] is positive semi-definite, showing that A is a lower bound for the 
asymptotic variance of all IV estimators. 

Chamberlain (1987) showed that A is a lower bound in an even stronger 
sense. In the semiparametric model where the only substantive restriction 
imposed on the distribution of the data is equation (2.1), A B is an asymptotic 
minimax bound. Consequently, A~ is a lower bound for the asymptotic 



424 W. K. Newey 

variance of any consistent, asymptotically normal (regular) estimator, and not 
just for IV estimators. 

It is generally not feasible to use the optimal instruments B(x) to form an 
efficient estimator, because they depend on unknown parameters and/or 
functions. Feasible approaches to efficient estimation can be based on an 
estimator of/)(x) of B(x). Such an estimated optimal instrument could be used 
in place of A(x) in equation (2.3), with 15 = (Ei,_ 1 [y(xi)J~(xi),/n)-l. The choice 
of t5 will not matter asymptotically, but this one has the virtue of making the 
objective function invariant to nonsingular linear transformations of the 
instruments and so may improve computation. The resulting estimator will be 

0 =argm2n {i=~ p(z,O)'/~(xi)' [i=~ B(xi)B(xi)']-l~=l ~(xi)P(Z,O )}. 

(2.9) 

This approach, based on using estimators of the optimal instruments, should 
work because estimation of optimal instruments should not affect the asymp- 
totic distribution of the estimator. Intuitively, equation (2.1) implies that 
variation of A(x) around B(x) that is asymptotically small in an appropriate 
sense will not affect the asymptotic distribution of 0. 

Linearized versions of feasible efficient estimators are convenient because an 
initial estimator is often needed anyway to form an estimator of the optimal 
instruments and the linearized estimator does not require iteration. Let 0 be 
an initial estimator, e.g., obtained form equation (2.3) with A(x) and /5 
known. One Newton-Raphson step toward the solution of (2.3) starting at 0, 
with A(x)=/)(x) (i.e., one Newton-Raphson step toward the solution of 
Ei~ 1 [~(xi)p(z~, 0) = 0) gives 

[~ B(xi) OP(Zi, 0)/001-1~ B(xi)P(Zi, 0). (2.10) O= O- 
L i = l  _l i=1 

One approach to estimation of the optimal instruments is to assume that 
D(x) = D(x, ~0) and O(x) = O(x, ~/0) for some known functions D(x, 71) and 
O(x, y)  and real vector ~/, to construct an estimator ¢/ of ~/0, and form 
B(x) = D(x, ¢q)'gl(x, ¢1) -1. For example, since D(x) and £/(x) are conditional 
expectations, the parameters ~ could be estimated by, say, least squares 
regression with the elements of Op(zi, 0)/00 and p(zi, O)p(z~, 0)' as dependent 
variables. This approach will lead to an efficient IV estimator if the specifica- 
tion of D(x, 71) and g~(x, ~/) is correct. The IV estimator will not be efficient 
otherwise, although it will remain consistent. This approach will be discussed in 
the context of the examples of the next section. 

Nonparametric estimates of the optimal instruments are also useful. Al- 
though the structure of the model may result in some elements of D(x) and/or 
S2(x) having known functional form, knowledge of the functional form of all 
these functions will generally require auxiliary distribution assumptions and/or 
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difficult calculations. For example, in the linear model knowing the form of 
~Q(x) = E[eZ]x] amounts to knowing the form of heteroskedasticity, and in 
models where D(x) = E[Op(z, 0o)/00 ]x] it may be difficult to specify D(x, 71) so 
that it is consistent with the model, or to even calculate it when the conditional 
distribution of z given x is specified as an auxiliary assumption. Nonparametr ic  
estimation of the optimal instruments provides a means of constructing efficient 
estimators that do not rely on auxiliary assumptions or the outcome of difficult 
calculations. 

3. Examples 

This section describes a number of examples, in order to illustrate the broad 
applicability of conditional moment  restriction models. These applications 
include standard ones, such as nonlinear regression, and some that are less 
familiar, but that are important in econometrics, such as models with endogen- 
ous dummy variables. 

3.1. Nonlinear regression 

To start on common ground, the first example is one that is very familiar. 
Suppose that z = (y, x ' )  where y is a dependent  variable, that [3 is a vector of 
parameters with true value 130, and that 

y = f ( X , ~ o ) + e  , E [ e l x ] = 0 .  (3.1.1) 

This model is the standard nonlinear regression model,  where the only 
restriction imposed on the disturbance distribution is that it has conditional 
mean zero. It is similar to the linear model example of equation (2.2), in that it 
is a special case of the general conditional moment  restriction model of 
equation (2.1) with 0 = / 3  and p ( z , O ) = y - f ( x , [ 3 )  being the regression 
residual. 

In this example an optimal instrument B(x)=D(x)'S2(x) -1 and its com- 
ponents D(x) and 12(x) have simple formulas, 

D(x) - of(x, 13o)' a ( x )  = E[~  2 Ix]  
0[3 ' 

B(x) = (E[e 2 Ix ] ) - '  Of(x,/3o) (3.1.2) 
0[3 

Here  the functional form of D(x) is known, so that to construct an estimator 
/)(x) it suffices to replace 130 with an estimator 1~. This feature of D(x) having 
known functional form results from the derivative of the residual depending 
only on the conditioning variables. The more difficult components  to deal with 
is the conditional variance E[e 2 Ix]. An estimator that is efficient over a 
parametric family of conditional variances can be constructed by specifying a 
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functional form g2(x, 7) for the conditional variance, and using an estimator 
of the true value r/0 to construct / ) (x)= S2(x, ~), and then form estimated 
optimal instruments as 

= - o f ( x ,  [3 ) 
0/3 • g2(x, (3 .1 .3)  

For example, ~ might be formed from a weighted nonlinear regression of 
squared least squares residuals on g2(x,,1), or might be the result of several 
iterations of such an estimator; an extensive discussion of specification of 
O(x, 7) and construction of ¢/is given in Carroll and Ruppert (1988). With 
estimator/)(x) of an optimal instrument in hand one could construct a one-step 
efficient estimator as in equation (2.10). The resulting estimator will be 
efficient in the class of all estimators that use only the conditional moments 
restriction of equation (3.1.1), as long as ~2(x, 7) and ~ are correctly specified, 
under appropriate regularity conditions. This efficiency will result from the 
instrument being optimal, and the well-known property that the estimation of 
the conditional variance will have no effect on the asymptotic distribution of/3. 

The linearized estimator in equation (2.10) amounts to one iteration of the 
Gauss-Newton algorithm for minimizing the weighted nonlinear least squares 
criteria Ein_l ~"~(Xi, ¢l)-l{yi-f(xi , /3)} 2. It is well-known that such weighted 
least squares criteria use only the moment restriction of equation (3.1.1), so 
that this estimator will be consistent and asymptoticially normal even if O(x, ~7) 
is misspecified. Other estimators have this property, in particular estimators 
that are quasi-maximum likelihood estimator for exponential families with 
conditional mean function f(x, t9), see McCullagh and Nelder (1983). As is 
well known, these estimators are asymptotically equivalent to weighted 
nonlinear least squares estimators, and so are contained in the class of 
instrumental variables estimators (with instruments equal to the product of 
Of(x,/3)/0/3 and the weight). For asymptotically efficient estimation there is no 
reason to prefer such estimators to weighted nonlinear least squares (or its 
linearized counterpart of equation (2.10)), because nonlinear weighted least 
squares is efficient if £2(x, r/) and r/ are correctly specified. 

Nonparametric estimation of the conditional variance provides a way to 
guard against efficiency loss from misspecifying the form of the conditional 
variance, as suggested in Carroll (1982) and Robinson (1987). In the next two 
sections two different approaches to nonparmetric estimation of the optimal 
instruments will be discussed, and applied to the regression model as an 
example. Section 6 gives a Monte Carlo comparison of some of the different 
estimators. 

3.2. Using second moment information 

An example that illustrates how additional conditional moment restrictions 
may improve efficiency, at the cost of additional specification sensitivity, is the 
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addition of a moment restriction based on knowing the form of the heteros- 
kedasticity in regression models. Suppose that there is a known function 
h(x,  [3, It) of [33 and some additional parameters 7r such that 

y = f ( x , [ 3 o ) + e ,  E[e Ix] = 0,  E [ e 2 [ x ] = h ( x , [ 3 o ,  rro). (3.2.1) 

The specified functional form h(x,  [3, re) of the heteroskedasticity could be used 
in construction of a weighted least squares estimator as discussed above. If one 
had great confidence in the heteroskedasticity specification, then one might 
want to incorporate this information in estimation. The way to do that in the 
context of equation (3.2.1), where only the conditional first and second 
moments are restricted, is to add the conditional variance residual as an 
additional conditional moment restriction, specifying 

p(z ,  O ) = ( y - f ( x ,  [3), { y - f ( x ,  [3)}2 - h(x,  [3, 7r))'. (3.2.2) 

The additional conditional moment restriction exploited by instrumental 
variables estimators using this residual will result in estimators that are at least 
as asymptotically efficient as the heteroskedasticity corrected least squares 
estimator, and more efficient in some cases. As usual, this efficiency gain 
comes at a price, that the resulting estimator may be inconsistent if the form of 
heteroskedasticity is not correctly specified. 

The optimal instruments are straightforward to derive for the case, taking 
the form 

of(x, [3) o 
0[3' 

D(x)  = D(x ,  0o),  D(x ,  O) = .Oh(x, [3, 7r) Oh(x, [3, ~r) ' (3.2.3) 

0[3' 0 7r ' 

g2(x) = Var((e, e2)' Ix) ,  B(x)  = D(x ) 'O(x )  -1 . 

One question that can be addressed using this formula is whether the 
additional moment restriction can give more efficient estimators. This question 
can be answered by comparing the asymptotic variance 
(E[{E[e2lx]}-l{0f(x, [3o)/O[3}{Of(x, [30)/013}']) -1 of the heteroskedasticity 
corrected least squares estimator with the block of the bound 
(E[D(x ) 'O(x )  1D(x)])-i corresponding to [3. It is easy to see that the two are 
equal if E[e3[x] = 0  or /3 does not enter the variance function. If either 
E[e 3 Ix] # 0 or/3 does enter the variance function it will generally be true that 
the conditional moment bound is less than the asymptotic variance of optimally 
weighted least squares. Surprisingly, this potential efficiency gain is present 
even when h(x,  7r, [3) and g2(x) do not depend on x or [3, but E[e 3] # 0 ,  as 
previously noted by MaCurdy (1982). 

An estimator that is efficient over a parametric family of conditional third 
and second moments could be obtained by specifying £2(x,r/). Since the 
conditional variance is already specified in the model, one only needs to specify 
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the conditional third and fourth moments. If y is continuous then one 
reasonable, parsimonious specification is to assume that E[e31x] = 0 and that 
Var(e 2 ix ) =~loh(x, jgo, %)2. This specification is more general than assuming 
normality, because it allows for a free parameter ~10, that essentially quantifies 
the degree of kurtosis. This parameter can be estimated by the sample variance 
of {y, . - f (xi ,  ~)}2/h(xi, ~, ~), where /3 and ¢r are some initial estimators. 
Then estimated optimal instruments can be constructed as 

~)(x)= D(x, O) g)(x) = [h(x, ~, Or) 0 ] 
' ~ 0 ¢1 .h(x, ~, Or) 2~ ' (3.2.4) 

9(x )  = f)(x) '  s)(x) -1 

The resulting linearized estimator in equation (2.10) is similar to that of Jobson 
and Fuller (1980), except that it does not depend on normality for it to be 
efficient relative to weighted least squares. It will be efficient in the class of all 
estimators that use only the conditional moment restrictions of equation 
(3.2.1), and hence efficient relative to least squares, as long as E[e3 Ix] = 0 and 
Var(e 2 Ix) = %h(x, ~o, %)2 for some ~/0- 

One could use the results to follow to construct an estimator that is 
asymptotically efficient over all (suitably regular) conditional third and fourth 
moments by replacing ~2(x, ~) by a nonparametric estimator in equation 
(3.2.4). As a practical matter, though, it may be difficult to estimate higher- 
order conditional moments, so that large sample sizes may be needed for the 
asymptotic theory to provide a good approximation. Alternatively, depending 
on the context, it should be possible to specify other parametric families of 
conditional third and fourth moments that give good efficiency. 

3.3. Box-Cox model 

An interesting and important example is models where the dependent variable 
has been transformed. As pointed out in Amemiya and Powell (1981), it is 
possible to estimate these models when the disturbance term is only restricted 
to have conditional mean zero. The essential idea is that nonlinear functions of 
the regressors provide information that can be used to identify the transforma- 
tion parameters. Surprisingly, as shown in Newey (1989b), the resulting 
estimators can have good efficiency relative to other procedures that use 
stronger restrictions on the disturbance distribution, such as independence or 
symmetry, and even do tolerably well relative to maximum likelihood es- 
timators (that are inconsistent if the disturbance distribution is incorrectly 
specified). 

The Box-Cox transformation model with conditional mean restriction is 

T(y,)to)=X'[3o+e, E [ e l x ] = 0 ,  T(y,) t)=(ya-1)/A.(3.3.1)  

The conditional moment restriction E[e Ix] = 0 will allow for/3 to be estimated 
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by IV where p(z, O) = T(y,  A) -x ' /3 ,  0 = (/3', A)', and the instruments consist of 
suitably chosen functions of x, e.g., including x and nonlinear functions of x. In 
this example, unlike the previous two, IV estimation rather than least squares 
is essential to finding a consistent estimator (the nonlinear least squares 
estimates are inconsistent). 

The conditional moment restriction is not strong enough to allow interpreta- 
tion of/3 and A as parameters of the conditional distribution of y given x. One 
way to deal with this problem is to add the restriction that med(e [x )=  0, in 
which case med(y[  y ) =  T-l(x'/30, A0). It also might be more natural to just 
impose med(e Ix) = 0 in estimation, as in Powell (1990), although the asymp- 
totic theory for this case is more complicated, and so for estimation attention 
here is restricted to the conditional mean case in equation (3.3.1). 

The optimal instruments for this model are, for T~(y, A) = OT(y, A)/0A, 

D(x) = ( - x ' ,  E[T,~(y, •o) Ix]), 
B(x) = D(x)'g2(x) -1 . 

n(x)  = E[e2 Ix],  
(3.3.2) 

Thus, in this example, unlike the previous two, the functional form of D(x) is 
unknown, and difficult to specify a priori. One might try and specify a 
functional form for D(x) by calculating E[T~(y, A0)]x ] for some distribution 
and/or  values of A, and then use this value in the instruments. For example, if 
E[e 2 Ix] is constant so there is no heteroskedasticity, and x includes a constant, 
then as shown in Newey (1989b), at A 0 = 0, 

D(x) = C.  (x', (x'/3o) 2) 

for a nonsingular matrix C. Thus, a specification of the optimal instruments 
that will be efficient at A 0 = 0, corresponding to a log transformation, under 
homoskedasticity, is 

= ( x ' ,  ( x ' B ) 2 )  ' , (3.3.3) 

where/3 is some initial estimator and ~/(x) is not needed because it is assumed 
constant and p is a scalar. By continuity the resulting estimator should have 
good efficiency when A is close to zero, as is often found in practice, and when 
there is little heteroskedasticity, as shown by Newey (1989b) for an example. 

An estimator that is efficient over all true A when there is heteroskedasticity 
could be formed by using as an instrument 

it(x) : (x', E[ TA (y, A)Ixl) (E[{T(y,  ~) - x '  B } 2 Ix]) -1 , (3.3.4) 

where E[Ta(y, ,~) Ix] and E[(T(y,  A) - x'/3}2 ]xl are nonparametric regression 
estimators based on the estimated derivative Ta(y, ,~) and squared residual 
l~[{T(y, A) - x ' f i}  z Ix] respectively. 
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3.4. An endogenous dummy variable model 

For an example of the form of the optimal instruments, consider the model 

y--aoS+f(x,  t3o)+e, s ~  {0,1},  E[e Ix] = 0 .  (3.4.1) 

This model has many important applications in economics to the effect of some 
event s on an economic variable, such as the effect of college education on 
income. In many of these applications it is important to allow s to be correlated 
with e, because s represents a choice variable of the economic agent that may 
be affected by variables in e that are observed by the empirical worker, such as 
'ability'. Correlation between s and e is allowed here, because E[e I x] = 0 does 
not restrict the joint distribution of e and s. See Heckman and Robb (1985) for 
further discussion and motivation. 

Optimal instruments for this model take the form, for ~-(x)= Prob(s = 
1 Ix) = g[s  Ix l, 

(3.4.2) 
B ( x )  = D ( x ) ' a ( x )  - 1  . 

As in the last example, there is a component of D(x) that does not have known 
functional form. Here this component is zr(x)= Prob(d = 1Ix ). An estimator 
that is efficient over a parametric family of possible w(x) functions can be 
obtained by specifying a functional form for ~r(x), estimating its parameters by 
binary choice maximum likelihood with s as the dependent variable, and then 
substituting the predicted probability for 7r(x). For example, assuming that 
Prob(s = l l x )  = cP(X'no) for some 77o and the standard normal CDF q~(.), one 
could form an estimate ~ from probit with s as the dependent variable, and 
then construct ¢r(x)= q~(x'~). Also one might assume homoskedasticity in 
constructing an instrument estimator. Then substituting into the formula gives 

~(x):(Of(~-~,°),ep(x'¢l)) ' , (3.4.3, 

where/3 is some initial estimator and ~)(x) is not needed because it is assumed 
constant and p is a scalar. Estimators that are efficient over all (suitably 
regular) conditional probabilities for s, for unknown heteroskedasticity, could 
be constructed from nonparametric estimators of the optimal instruments. 

4. Nearest neighbor estimation of the optimal instruments 

The first approach to construction of nonparametric estimates of the optimal 
instruments is to nonparametrically estimate the conditional expectations that 
make up the optimal instruments and plug the estimates into the formula for 
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the optimal instruments. Because of its technical convenience, the nearest 
neighbor estimation method is considered here. 

A nearest neighbor estimator of a conditional expectation is formed by 
averaging over the values of the dependent  variable for observations where the 
conditioning variable is closest to its evaluation value. To describe how this 
estimator is applied to estimation of the optimal instruments, let 6-x~ be some 
estimate of the scale of the lth component  x i of x, satisfying the conditions 
given in Stone (1977), such as the sample standard deviation of xil, and define 

r --Nil  ) /(o- l)) , where r is the dimension of x, (i, j = 
1 . . . .  , n). For a given integer K ~< n consider constants %g' satisfying 

K 

%~:>~0, l<~k<~K; % ~ : = 0 ,  k > K ;  ~ % K = l .  (4.1) 
k - 1  

For given i let Wig = 0, and rank the observations j # i according to the distance 
I lx i -  x]lln. If there are no ties among the distances assign to observation with 
j-th smallest value Ilxi - xj]l, ~ the weight W/j = (OjK. If there are ties, follow the 
same procedure,  but with equal weight given to observations with the same 
value of IIx,- xjllo. A nearest neighbor estimator of the conditional covariance 
/2(xz) at x~ can then be formed as 

~(x,) = ~ Wqp(zj, 0)p(zj, 0 ) ' .  (4.2) 
1=1 

This is a nearest neighbor estimator that excludes the own observation that is 
analogous to Robinson's (1987) conditional variance estimator. Examples of 
weights include uniform ones where %K = 1/K, k <~ K, and other smoother  
versions, e.g., as discussed in Robinson (1987). The theory here will utilize a 
uniform boundedness restriction on the weights, that there is a constant C such 
that 

C 
%K < ~ ,  l<~k<~K. (4.3) 

This restriction is satisfied by the uniform weights, as well as the other weights 
discussed in Robinson (1987). 

For  many models at least some components of D(x) will have known 
functional form, and depend only on x, and it seems wise to take advantage of 
this knowledge in construction of the estimator. One general formulation that 
allows for that knowledge is to specify an estimator that is a sum of parametric 
and nearest neighbor components. Let  D(x, 71) be some prespecified function of 
x and nuisance parameters ~7 with the same dimensions as D(x), e.g., with 
components  equal to those of D(x) that are known and zero otherwise. For an 
estimator ~ of %, let 

]~(xi)=D(xi, 4) .}- ~ W,7[Op(Z~o O) D(x], ~ ) ] .  (4.4) 
]=1 
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This estimator is fully nonparametric,  in that it will be consistent for all D(x, rl) 
and (suitably regular) estimators ¢1, and components of the nearest neighbor 
term will be zero when the corresponding components of D(x, ¢t) and Op(z, O)/ 
00 are equal. 

Another  possible use of the D(x, ~q) function is for 'detrending' in the sense 
of Stone (1977), where D(x, 77) is some simple function that is included to 
'wash out '  some of the dependence of D(x) on x. For example, D(x, rl) might 
be linear in x, in which case the nearest neighbor term would be estimating the 
deviation from a linear function. This set-up does not allow for linearity, or 
other known functional form, to be imposed on the conditional expectation, 
e.g.,  as is often done in the linear simultaneous equations models (e.g., see 
Hausman,  1984). To get such an estimator one would have to make sure that 
the components of D(x, rl) had the right functional form and delete corre- 
sponding components from the nearest neighbor terms. Although this possibili- 
ty is not explicitly allowed for in the paper, the conclusion of Theorem 1 below 
would still hold in this case. 

With estimators of the conditional expectations in hand, one can combine 
them to form an estimator of the optimal instruments in the natural way, as 
B(xi) = f)(xi)'g)(xi) -1. An efficient estimator of 00 can then be constructed in 
the way described in Section 2. An important purpose for such an estimator is 
to make asymptotically efficient inferences about the population parameter  
value 00, such as to construct confidence intervals or tests statistics. For this 
purpose it is useful to have a consistent asymptotic variance estimator. One 
natural estimator can be obtained by replacing the conditional expectations in 
the variance bound by corresponding nearest neighbor estimates and the 
expectation by a sample average. The result is 

Conditions for consistency of this estimator are given in Theorem 1 below. 
An important problem of nearest neighbor estimation is the choice of 

number of nearest neighbors K. Because the focus here is on efficient 
estimation of 0, it seems desirable to base that choice on a criteria that focuses 
on the properties of 0. Although a theoretical investigation of how to 
formulate such a criteria is beyond the scope of this paper, some heuristic ideas 
can be used to suggest a choice of K that may lead to good properties for the 
estimator of 0. Suppose that one wants to choose K so as to minimize 
' remainder terms' in the asymptotic theory that arise form estimation of the 
optimal instruments. From an expansion similar to that in equation (2.4) it is 
easy to see that there will be remainder terms of both the Jacobian matrix and 
the cross product of instruments with the residuals. Suppose that we can ignore 
the Jacobian term, which may be possible under some circumstances (e.g., if it 
is root-n consistently estimated and the size of the other remainder terms are 
greater than 1/x/B). This reasoning suggests a criteria based on an estimate of 
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the magnitude of ST= 1 { / ) ( x / ) -  B(x~)}p(z~, 00) /v~,  a difference of estimated 
and true moment  functions (or 'scores'). For the nearest neighbor estimator, 
there are two terms in this difference, one each for the estimation of D(x) and 
g~(x). Assuming higher-order terms can be ignored, this remainder can be 
linearized to give 

fC(x/)p(z,, Oo) / , 
i = 1  

/)(x/) = {/)(x~) - D(x~) + B(xi)[{2(x/) - g2(x/)]}a(x/) -1 . 

This is a vector remainder term, so to quantify its magnitude for minimization 
one has to choose a distance metric. Let  Q be a positive definite matrix. 
Assuming that the 'hat' can be ignored in taking the conditional expect- 
ation over z~, given the x/ observations (e.g., as would be the case if /)(x) 
were constructed from another sample), leads to the criteria 

n ^ ~ t tr[Q 2i= 1 R(x~)g~(x~)R(xi)]. This criteria cannot be computed,  but because 
/)(x~) depends on 'cross-validation' nearest neighbor estimates, where the i-th 
observation is not used in estimation o f / ) ( x / )  or ~)(x/), the usual crossvalida- 
tion reasoning suggests that one can estimate this criteria up to a term that 
does not depend on K by replacing the conditional expectations by their 
estimators and their estimators by the dependent  variables, as in 

Cf/(K) = tr Q R(x/)S2(x~)R(x~) , 
i = l  

R(x,) {op(z ,O) 
= - 

O0 

(4.6) 

Thus, a cross-validation criteria for the choice of K, that takes some account 
for how the estimator of parameter  of interest depends on K, is to choose k to 
minimize C f/ ( K ) . 

To illustrate the estimator and the cross-validation criteria it is helpful to 
consider an example. A simple, important example is the linear regression 
model. In this case ~(x i )=  6 -2 = Z]= 1 W j  2, where ~j = y j -  x}/~ are residuals, 
and the linearized estimator of equation (2.10) and the asymptotic variance 
estimator of equation (4.5) are 

^ - 2  t ~ - 2  B =  (xi) xix, xy i  
i = 1  )1 

A =  n . 
i = 1  

(4.7) 

These estimators were suggested and analyzed in Robinson (1987). The 
cross-validation criteria obtained by setting Op(zi, 0 ) / 0 0 - D ( x i )  to zero, as 
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appropriate here where the form of D(x) is known, and by choosing Q = 
n XiXi ) , is (E j= 1 , -1 

( / - - ~ 1 ) - 1  C g ( K )  = ' ~ ~ ~ ' . (4.8) (xiQxi)[(ei/o-i) - 1], Q = xix~ 
i=l 

The choice of Q here makes this criteria invariant to nonsingular linear 
transformations of the regressors. In the Monte Carlo example of Section 6 this 
cross-validation criteria for choice of K, choosing K to minimize CfZ(K) and 
then using this K to form the estimator in equation (4.7), leads to /3  with good 
properties. 

To prove asymptotic efficiency it is helpful to impose some regularity 
conditions. The first condition is essentially a standard one involving compact- 
ness, existence of certain moments,  and nonsingularity conditions. 

ASSUMPTION 4.1. 0 0 is an element of the interior of O, which is compact, there 
is a neighborhood ?¢" of 0 0 and d(z) such that with probability one p(z, O) is 
continuous on O, continuously differentiable on W, sup0~ollp(z, 0)11 <-d(z), 
sup0~l l0p(z ,  0)/0011 <~d(z), E[d(z)  21 < ~ .  Also, E[B(x)f2(x)B(x)'] exists and 
is nonsingular. 

The next Assumption is important for consistency of the fully iterated 
estimator given in equation (2.9). 

ASSUMPTION 4.2. E[B(x)B(x')'] exists and is nonsingular, and there is a unique 
solution to E[B(x)p(z, 0)] = 0 on O at 0 = 0 0. 

For  the linearized estimator of equation (2.10) is important to have root-n 
consistency of the initial estimator. The following condition helps guarantee 
this. 

ASSUMPTION 4.3. 0 satisfies equation (2.3) for P = (Ein=l A(xi)A(xi)') -1, there 
is a unique solution to E[A(x)p(z, 0)] = 0  on O at 0 = 0  o, E[llA(x)[12]<~, 
E[A(x)D(x)] and E[A(x)A(x)'] are nonsingular, and E[A(x)O(x)A(x)'] is finite. 

Finally, some additional smoothness and moment  existence conditions are 
useful. 

ASSUMPTION 4.4. There is a neighborhood W of 0 0 and d(z) such that for all 
0 ~ f ,  

][p(z,O)ll4 < d ( z ) ,  [[Op(z,O)/ooll4 < d ( z ) ,  

[Io2p(z, O)/Oo oO II ~ < d ( z ) ,  
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llo2p(z, 0)/oo oo - o2p(z, o)/oo oo II ~ d(z)ll 0 - 011, 

and g[d(z) z] < ~ . 

For the special case of the heteroskedastic linear model,  this condition is 
stronger than that imposed in Robinson (1987), in that it requires existence of 
eighth moments of the disturbance and of the regressors. This more restrictive 
condition allows for the presence of /)(x) and leads to a simpler proof  than 
given by Robinson (1987). 

ASSUMVnON 4.5. E[llD(x, w0)[181 < ~ ,  and there is d(z) and a neighborhood ?( 
of 70 such that for all B E N, 

IIOD(x, ~)/o~11 ~ ~< d(z) ,  

IIoD(x, ~)/o~ - OD(x, r/o) / 0rill ~< d(z)ll~ - 7o11, 

E[d(z) 2] < ~. Also v'fi(~ -r io) = Op(1). 

THEOREM 1. I f  Assumptions 4.1-4.5 are satisfied and K = K ( n )  such that 
K(n)/n--~O and K(n)2/n--~% then for O= b or O= O, 

v~(O d - Oo)---~N(0, A ) ,  

5. Series approximation of the optimal instruments 

Another  approach to estimation of the optimal instruments is by series 
approximation, where the estimator is formed as a linear combination of 
known functions. A potential advantage of this approach is that linear 
combinations of smooth functions can approximate a smooth function very well 
with only a few terms, while nearest neighbor estimators do not seem to exploit 
such smoothness. 

As previously noted, it is useful to allow some components of the optimal 
instruments to have known functional form. A way to form a series approxi- 
mation that allows for some known components is to let D(x, rl)' be a matrix 

K with q rows, {akK(X)}k= 1 be matrices of approximating functions with number  
of rows equal to the number of columns of D(x, rl)', and estimate the optimal 
instruments by 

B(x) = D(x, ~)' ~kakK , (5.1) 
= 

where YkK are estimated scalars described below, and ¢1 is an estimator of ~7. 
For example in the linear model D(x, ¢1)' could be specified as x, so that 
Z K [ ,=1 •akK(X)] corresponds to an estimator of 1/cr2(x). 

The two keys to asymptotic efficiency are the choice of akK(X ) and of 
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~ q , . . . ,  ;&. The functions akK(x ) should be specified in such a way that 
r K D(x,~lo) [Ek=lYka~K(X)] can approximate B(x) for some choice of linear 

combination coefficient, Y l , . . . ,  YK. The form of this approximation will be 
specific to the form of B(x). Given functions akK(X) with the property, it is 
possible to form ;A . . . .  ,3'K as estimators of a minimum mean-square error 
approximation that leads to asymptotic efficiency. For any 7 = (71 . . . . .  7K) 
let Ak(x ) = D(x, ~o)'akK(X), p = p(z, 00), U k = Ak(x)p, and U = 
[a l (x )p , . .  . ,  AK(X)p ]. Also, let 

M~= E l a n ( x ) O P ( ~ o 0 ° ) ] =  E[Ak(x)D(x)]=E[Ak(X)12(x)B(x)'] 

= E[UkP'b(x)'l, (5.2) 

where the second and fourth equalities follow by iterated expectations. For any 
positive definite matrix Q consider 

~ / = a r g m i n t r ( Q ' E [ { B ( x ) - - ~ T k A k ( x ) } O ( x )  
-/ERK k=l 

( 41) x B ( x ) -  7kAk 
k = l  

=argmin E[ { B(x)p - UT }' O { B(x)p - Uy}] 
~ ,E~K 

= (E[U'QUI)- IE[U'QB(x)p]  

= (E[U'QU])-I[tr(QE[B(x)pu'I]) . . . .  , tr(QE[S(x)pu~:])]' 

= (E[U'QU])-I[tr(QM1) . . . . .  , t r (QMx)] ' ,  (5.3) 

where tr(.) denotes the trace of a square matrix, the first equality holds by 
iterated expectations, and the last equality follows by equation (5.2). 

From the first two equalities it is apparent that these coefficients have two 
interpretations as mean-square approximations, one as a weighted (by g2(x)) 
mean-square approximation of the optimal instruments by K Ek= 1 ykAk(x) and 

K the other as a mean-square approximation of B(x)p by P'k=l 7kAk(x)P • The 
matrix Q is present to account for the fact that these approximations are scalar 
linear combinations rather than matrix linear combinations. For some choices 
of akr(x ) (where {akx(x)} is zero except for  one element), the approximation 
may actually be a matrix linear combination. In this case the coefficients 3' can 
also be interpreted as minimizing the asymptotic variance; see Newey (1989a) 
for details. 

It follows by equations (5.2) and (5.3) that if a linear combination of 
Ak(x ) = (D(x, ~lo)'akK(X) can approximate B(x) arbitrarily closely as K grows, in 
the weighted mean-square norm following the first equality of equation (5.3), 
then an IV estimator with A(x) = E k = 1 Yk A k(x) will be approximately efficient 
for large K. Equation (5.2) implies equation (2.8), which in turn implies that 
the asymptotic variance of an IV estimator will be close to the bound if A(x)p 
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is close in mean-square to B(x )p .  Then by the second inequality of equation 
(5.3) and Q positive definite, A ( x ) p  will be close in mean-square to B ( x ) p  
when the weighted norm approximation error for the optimal instruments is 
small. Thus, under the spanning condition that linear combination of 
D ( x ,  71o)'a~K(X) can approximate B(x )  arbitrarily closely as k grows, the IV 
estimator with instruments K ~ k = l  ~lkAk(X) will be approximately efficient. This 
spanning condition is explicitly imposed in Assumptions 5.4 and 5.5 below. 

The IV estimator based on ~ is not feasible because ~k are unknown, but the 
last equality in equation (5.3) can be used to construct an estimator. Let  ~) 
denote an estimator of Q, l~ki ~- D(xi, ¢))'akK(Xi)P(Zi, 0), 0 i = [ / ~ 1 i ,  " " " , UKi], 
and 

OP(Zi, O) 
= n -1 Z D(x i ,  

i=1 O0 

Plugging in estimates and sample averages to the last equality gives 

~, , [tr(QM1) ' . .  ~ ~, , "~ U i Q U i / n  ~ ~ , . = , t r(QMK) ] . 
i = 1  

(5.4) 

A feasible IV estimator can then be constructed by using this ~ in the 
instruments of equation (5.1). Under  appropriate regularity conditions, ~ will 
be consistent for ~, so by estimation of instruments having no effect on the 
asymptotic variance of IV, the estimator will be approximately efficient for 
large K. The asymptotic efficiency result below is even stronger, giving a 
growth rate for K as a function of sample size to achieve asymptotic efficiency. 

An efficient estimator can be constructed as in equation (2.10) using the 
estimator of the optimal instruments in equation (5.1). Also, an estimator of 
the asymptotic variance of 0 is 

/](21 )1 A=  kMk n 

This estimator is a consistent estimator for the asymptotic variance of 0, even 
for K fixed. An alternative estimator that would be consistent as K goes to 
infinity is [Ein__ i (/]J~-~)(/]J'lg/)'/rt] -1 . 

An important  problem for this estimator is the choice of K. One way to 
choose K, that is suggested a Newey (1989a), is to minimize a cross-validation 
estimator of the mean square error of product of the differences of the true and 
estimated instruments with the residual. This choice can be motivated by 
similar reasoning gives for the choice of nearest neighbors described in the last 
section. In particular, by the second equality of equation (5.3), this criterion is 
based on the difference of instruments multiplied by the residual vector, and so 
may be related to the magnitude of remainder terms. To describe this cross- 
validation method,  let Y-i be the estimator in equation (5.4) except that the 
i-th observation has been deleted when calculating the sample averages. For 
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~, = p(z,,  O) and A,i = D(x,, ¢l)'akK(Xi) consider 

[8(x3A-0  _ll 0 
i = I  

"'B ' ^B  A ~, [p, (x,) Q ( x , ) p i -  ~' ' ~ ~ ~ ~' . = 2PiB(x~) QU~y_~ + Y_ iUiOfJ i~ , i ]  
i = 1  

This criterion cannot be computed, because B(xi) is unknown. To obtain one 
that can be computed, the first term can be dropped because it does not 
depend on K and so is not needed to minimize over K. Also, equation (5.3) 
implies E[p(zi,  Oo)'B(xi)'QU~.] = [tr(QM1) , . . .  , t r (QMK) ] allowing replacement 
of the second term by tr(~) ~k=l  ~/-i.kJ~lki)' for 3~/ki = 
D(Xi, ¢I)'a~K(xi) Op(z~, 0) /00.  These changes give 

CfZ(K) = - 2 t r ( ~ )  ~=~2 k=l ~ 3'-i'k)lT/~i)+ t r(~)  ~=1~ /)~,_i(~4/_~)').  (5.5) 

To illustrate the estimator and the cross-validation criteria it is helpful to 
again consider the linear regression model as an example. In this case B ( x ) =  
o-(x)-2x, and there are several ways that one might choose D(x,  ~1) and akK(X) 
to approximate this function. One way is based on a multivariate approxi- 
mation of the entire vector o-(x)-2x. Let D(x,  ~7) be an identity matrix and each 
akK(X ) be a vector with the same dimension as x, such that there is an integer J 
and a vector pj(x)'  = (pl j (x)  . . . .  , p1j(x))' with 

[a~K(x), • • • , aKK(x)l : p & ) '  ® I ,  

for an identity matrix I with the same row dimension as x. From example, 
pjj(x) might be a power series. In this case the matrix ~) factors out and the 
estimator of the optimal instruments is given by 

( )( [3(x) = [~pj(x), ]~ = ~ pj(xi)X' i ~ pl(xi)py(xi)'~ (5.6) 
i=1 i=1 

The resulting IV estimator /3 = (Z~  1 [~(xi)x~) -1 Ei~_x B(xi)y i is equal to the 
estimator of Cragg (1983). A cross-validation criterion for the choice of J for 
this estimator can be constructed as described above. Let /~-i be the co- 
efficients in equation (5.6) with the i-th observation deleted from the sums, 
and let Pi =Pj(Xi). Then specializing the formula in equation (5.5) to this 
example gives 

^ v ~ 2  ^ ^ t Cf/(J)  = -2 t r  F~pix ~ + tr e i (F~o~)(FN/)  . (5.7) 

In the Monte Carlo example of Section 6 this cross-validation criteria for 
Choice of J leads to /3 with good properties. 

It is possible to construct alternative estimators that are more parsimonious, 
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in that they use fewer functions to achieve the same degree of approximation. 
The idea here is that the optimal instruments consist of a product of a known 
vector with a single unknown function ]/o-2(x), so that it should be possible to 
construct an estimator where the only function being approximated is 1/cr2(x). 
The way to do this is to let D(x, 7/) ' =  x and a~K(x) be scalars. In particular, 
consider letting k = j, K = J, and akK(x ) = p/~(x) for the p/j(x) in the previous 

n t - 1  estimator. Also, let O=(E~=lX~Xl/n) , which will make the estimator 
equivariant with respect to nonsingular linear transformations of x. Then for 
si = x;Ox~, the estimator of the optimal instruments is 

B ( x )  = x . ( p , ( x ) '  5' ) , 5, = s p p ; e ~  s p i .  (5.8/  
i = 1  i = 1  

In this example, it follows form equation (5.3) that 5' will be consistent for 

-~ = arg min E[crZ(x)x'Qx{1/o'Z(x) -p j ( x ) ' y }  21 for Q = (E[xix ; ] ) - ' ,  

so that pj(x)'5' can be interpreted as an estimator of 1/O'2(X). In comparison 
with the previous estimator, the approximation is more parsimonious, because 
only a linear combination of J functions is required for a j-th order approxi- 
mation, rather than the linear combination of J .  dimension(x) functions. To 
choose J by cross-validation, let 5'-1 be as given in equation (5.8), except that 
the i-th observation is deleted from the sum. The criterion of equation (5.5) is 

n L t A z t ^ x 2  ^ 2  CfZ(J) = - 2  2 si(piY-,) + sitpi y_,) e, . 
i = 1  i - 1  

(5.9) 

The Monte Carlo example of Section 6 compares the performance of this 
estimator with the previous one. 

To prove asymptotic efficiency of the estimators described in the section, it is 
useful to impose some regularity conditions. The first condition requires certain 
smoothness conditions and existence of certain moments. 

ASSUMPTION 5.1. Q is positive definite, there is v > 2, 6 > 0 ,  such that 

E[llp(z, 00)ll °1 < ~, E[IID(x , n0)ll r2~'(~ 2)]+a I < ~. v ~ ( 0  - Q) = Op(1), 
x/-B(~-7/0)=Op(1 ), D(x,~7) is continuously differentiable in r/, there is 
all(Z), d2(z), d'l(Z), dr2(z) and neighborhoods of ~70 and 00 respectively such that 

Ilap(z, o ) / o o  II ~ d~(~), 

Ilop(~, o ) / o o  - op(~, oo)/ao II ~ 4(~)11o - Oo11, 
F 

aD(x, ~) ~ a',(z) 
j = 1 O'r l j  
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and 

+ OD(x,7) OD(x,7o) 
-- nj d i ( z ) l l O  - Ool] , j/~'= ~ 07 j 

E [ d ' l ( Z )  < < 

The moment  conditions required here are weaker than in Section 4. Only 
slightly higher than two moments of the residual are required to exist, unlike 
the eight moments condition of Section 4. The next assumption imposes some 
conditions on the approximating functions. 

ASSUMPTION 5.2. a~K(X ) is bounded,  uniformly in k, K, and the smallest 

eigenvalue of E[U'QU] is bounded below by A 1K aK1/r for some a > 0. 

The boundedness of the approximating functions is not restrictive, because 
the choice of functions is controlled, and boundedness can be relaxed without 
affecting any of the following results. The eigenvalue condition is not primitive, 
and is essential for the results to follow. Primitive conditions for this hypothesis 
can be obtained for power series. Let  

p j x )  = ( I  , p ' ( x )  = ( p l ( x ) ,  . . . , p a x ) ) ' ,  
/ = 1  

where h~(j) are nonnegative integers. 

ASSUMPTION 5.3. akK(x)=pj(k)(x)C k for a constant matrix Ck,~(x ) are 
bounded,  the distribution of ( r l ( X ) , . . . ,  %(x))' has a continuously distributed 
component  with density bounded away from zero on an open set ~,  the 
smallest eigenvalue of {D(x, 7o)QD(x, 70)'} ® g2(x) is bounded away from zero 
on ~f, ( h i ( j ) , . . . ,  hr(j));= 1 consists of all distinct vectors of nonnegative 
integers, E~= 1 hi( j)  is increasing in j, for every K there is J(K) and a constant 
matrix L K such that 

LK[ {pJ(K)(x)pJ(K)(X)} ® {D(x, 7o)QD(x, 70)'} 

® {p(z, Oo)p(z, 00)}]L ~ = U'QU, 

the smallest eigenvalue of LI(L~: is bounded away from zero uniformly in K, 
and J(K)<~ CK for a constant C. 

This condition, in particular the assumption that there is some continuity in 
the distribution of r(x), will imply Assumption 5.2. It is also possible to allow 
for some discrete regressors with finite number of support points by including a 
full set of interactions of these variables with the power series, but for brevity 
this possibility is excluded here. 
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The next condition is the spanning condition. 

ASSUMPTION 5.4. There exist " ~ I K ' ' "  • , "/xK such that E[ltD(x,-q0 ) Zk:lK 

~kI~akK(X) -- B(x)  llZllf2(x)ll]---> O, and either ~2 E Y{~ with probability approach- 
ing one and the number of elements of Y{~ is bounded,  or 

{ [ 
K = I  k = l  

This condition allows for an approximation rate that is useful in proving 
efficiency when k is data-based. Primitive conditions for this hypothesis with 
power series are given in the following condition. 

ASSUMPTION 5.5. K E 3[ n with probability approaching one and the number  of 
elements of Ygn is bounded,  z(x) is one-to-one and there is a conformable 
matrix R(x)  such that B(x) = D(x,  rlo)'R(x), E[IID(x,  0)[1211 (x)ll Ile(x)ll2] < ~. 
Also, vec(R(x))= ( r i ( x ) , . . .  , rv(x))' such  that for any J and ~1 t , . - .  ,Y 1 J, 
Y21, • • •,  %J there is K and 3,1 . . . .  , Yr such that 

K v 

j = l  

THEOREM 2. I f  Assumpt ions  4.1, 4.3, 5.1, either 5.2 and 5.4, or 5.3 and 5.5. are 
satisfied, and K ~2, ~ p = K - - - ~ ,  and there is ~2(n) such ~2 <~ ~2(n) with probabil i ty  
approaching one and K(n)l /r  ln[/~(n)] / ln(n) ~ 0, then 

v ~ (  O - d 00)--,N(0, a ) ,  A & A .  

6. Sampling experiment for the heteroskedastic linear model 

A small Monte Carlo study can suggest how the estimators might perform in 
practice. The model and design considered was the heteroskedastic linear 
model with normally distributed disturbance, lognormal regressor, and quad- 
ratic variance function considered by Cragg (1983), taking the form 

Y, =/310 q-/32oXi ~- Ei, ~i/o'i ~ N(0, 1) ,  cr 2 = 0.1 + 0.2x i + 0.3x 2 , 

ln (x i ) - -N(0 ,  1 ) ,  x i and e i independent .  (6.1) 

The reported results are invariant to the values of 13 o and to multiplication of 
the disturbance by a fixed constant. Two sample sizes were considered, 50, and 
200. Computations were carried out on a microcomputer using GAUSS,  with 
1000 replications of both the x i and Yi samples. 

Table 1 reports results for sample size 50 and Table 2 for sample size 200. 
Each table gives the ratios of standard deviation (STDEV) ,  median absolute 
error  (MAE) ,  and coverage probabilities for the asymptotic 95% confidence 
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Table 1 
Ratio of variance, median absolute error, and nominal 95 percent coverage probability to that of 
Aitken estimator, and distribution of cross-validated 'Bandwidth', n = 50 

STDEV MAE COVPROB Distribution of K 

OLS 3.189 2.778 0.782 
2.110 2.055 0.751 

FGLS 1.311 1.178 0.715 
1.460 1.312 0.646 

NN 

MM-CRAGG 

MM-COMBINE 

k = 6 9 12 15 18 24 

1.515 1.344 0.878 1 
1.436 1.294 0.733 
1.523 1.333 0.875 0.32 0.28 0.18 0.10 0.05 
1.442 1.321 0.742 

J = 4 6 8 10 12 

1.500 1.367 0.904 1 
1.491 1.376 0.752 
1.795 1.622 0.894 0.50 0.26 0.14 0.05 0.05 
1.595 1.550 0.781 

J= 2 3 4 5 6 

1.515 1.278 0.866 1 
1.509 1.440 0.700 
1.583 1.356 0.870 0.28 0.44 0.12 0.11 0.05 
1.528 1.404 0.748 

0.07 

interval (COV PROB)  of several estimators to the corresponding results for 
the generalized least squares (Aitken) estimator. The estimators for which 
results are reported are ordinary least squares (OLS),  feasible generalized least 
squares (FGLS),  nearest neighbor estimators (NN), and two varieties of series 
estimators (MM). The FGLS estimator was calculated by taking the predicted 
values from a regression of the squared residual on linear and quadratic terms 
in xi, dividing by the estimated variance of the disturbance, censoring the result 
below at 0.04, and then using the inverse of the resulting quantity as a weight 
in weighted least squares results. Different truncation points were tried, in 
results not reported here, but they did not seem to make much difference. 

Several nearest neighbor estimators were calculated, one each for the grid of 
K values given in the table, and one where for each replication K was chosen 
to minimize the cross-validation criterion described in Section 4. The tables 
only report results for the K where the estimator has smallest variance and for 
the cross-validated K, with the distribution of K across replications reported on 
the right. 

Two varieties of series estimators were considered. Both used approximating 
functions pj(x)=~r(x) j, "r(x)=x/(l+ [x[), where x was normalized in each 
replication to have sample mean zero and variance one. The first type was the 
Cragg (1983) estimator that used these approximating functions (MM- 
C R A G G ) ,  and the second was the more parsimonious estimator of equation 
(5.8). For each type several estimators were calculated, one each for the grid 
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Ratio of variance, 
Aitken estimator, 
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median absolute error, and nominal 95 percent coverage probability to that of 
and distribution of cross-validated 'Bandwidth', n = 200 

VAR MAE COV PROB Distribution of K 

OLS 

FGLS 

NN 

MM-CRAGG 

MM-COMBINE 

4.892 3 .933  0.856 
2.949 2 .731 0.836 
1.369 1 .156 0.717 
1.321 1 .231 0.733 

k = 8 12 16 20 24 28 

1.462 1 .200 0.871 1 
1.449 1 .346 0.809 
1.462 1 .178 0.904 0.28 0.27 0.18 0.13 0.08 
1.436 1 .308 0.851 

J = 6 8 10 12 14 

1.154 1 .089 0.001 1 
1.115 1 .096 0.977 
1.231 1 .089 0.081 0.62 0.19 0.10 0.04 0.05 
1.205 1 .173 0.938 

J =  3 4 5 6 7 

1.154 1 .067 0.974 1 
1.192 1 .250 0.948 
1.246 1 .089 0.953 0.64 0.18 0.10 0.04 0.05 
1.269 1 .212 0.921 

0.06 

of  k va lues  l is ted on the  r ight  of  the  t ab le ,  and  the  one  w h e r e  for  each  
r ep l i ca t ion  K was chosen  to min imize  the  c ross -va l ida t ion  cr i te r ion .  T h e  tab les  
r e p o r t  resul ts  for  the  e s t ima to r  wi th  f ixed K tha t  had  the  smal les t  va r i ance  and  
for  the  c ross -va l ida t ion  e s t ima to r .  

B e f o r e  discussing the  tab les  it is useful  to  no te  tha t  all the  e s t ima to r s  he r e  
a re  symmet r i ca l l y  d i s t r ibu ted  a r o u n d  the  t rue  p a r a m e t e r  va lues ,  so tha t  t h e r e  is 
no  need  to  be  c o n c e r n e d  a b o u t  cen t ra l  t endency .  A l s o ,  un l ike  Cragg  (1983),  
the  resul ts  a re  no t  cond i t iona l  on  a pa r t i cu l a r  set  of  regressors ,  which  he re  
we re  s imu la t ed  for  each  rep l ica t ion .  

T h e  resul ts  in the  tab les  can be  s u m m a r i z e d  by  saying tha t  for  s a m p l e  size 
50, the  F G L S  e s t ima to r  does  s o m e w h a t  b e t t e r  t han  the  N N  e s t i m a t o r  (cross- 
v a l i d a t e d ) ,  which in tu rn  does  sl ightly be t t e r  than  the  M M  es t ima to r s  (cross- 
v a l i d a t e d ) ,  bu t  for  s amp le  size 200 the  M M  e s t i m a t o r  does  bes t ,  the  F G L S  
e s t i m a t o r  next  bes t ,  and  the  N N  e s t i m a t o r  leas t  best .  A l s o ,  the  e s t ima to r s  tha t  
use  the  c ross -va l ida t ion  cr i ter ia  sugges ted  ea r l i e r  do a b o u t  as well  as the  ones  
wi th  bes t  choice  of  nea re s t  n e i g h b o r  or  n u m b e r  of  ser ies  t e rms ,  b o t h  in t e rms  
of  d i spe r s ion  and  accuracy  of  a sympto t i c  conf idence  in te rva ls ,  pa r t i cu la r ly  for  
the  la rger  sample  sizes. I n d e e d ,  in a n u m b e r  of  cases the  c ross -va l ida ted  
e s t ima to r s  p e r f o r m  be t t e r  in some  respec ts  t han  the  fixed K vers ions .  A l s o ,  the  
Cragg  type  ser ies  e s t ima to r  does  worse  than  the  m o r e  p a r s i m o n i o u s  e s t i m a t o r  
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for the smaller sample size, but bet ter  for the larger sample size. One would 
expect to find a bigger advantage for the more  parsimonious est imator 
suggested here in more  realistic cases where there are more  regressors, and 
hence more  linear combination coefficients in the Cragg est imator relative to 
the more  parsimonious one. 

Appendix 

In order  to state and prove some useful lemmas it is necessary to introduce 
some additional notation. Throughout  C will denote a generic positive constant 

n that can take on different values in different uses and Z i = Z,= 1. The first 
l emma gives a general set of sufficient conditions for asymptotic efficiency of 
nonlinear instrumental variables estimators with est imated optimal instru- 
ments.  

LEMMA A. 1. Suppose that Assumption 3.1 is satisfied, 

E l i D ( x , )  2 . - B ( x , ) l l  / n ~ 0 ,  
i 

and 

E {/7(x,) - B(x , )}p(z  i, Oo)X/fiPo. 
i 

d 
Then if Assumption 3.2 /s  satisfied, x/n( 0 - 0o)--->N(0, A) for 0 f rom equation 

(2.9), and if Assumption 3.3 /s satisfied, and V-n(O d - O0)--,N(O, a ) .  

PROOF. Let  /)i = B(x,),  Bi = B(xi), ~(0) = g i Bip(z,, O)/n and g(O) = 

E i Bip(z i, O)/n. By CS and M, 

2 /  \1/2 
:upllg(0 ) -- g(0)l I ~ ( ~ /  I IBi -  Bill2/n)l/2(~ i d (z i ) /n )  

= Op(1)Op(1) = Op(1) , 

while by the usual uniform law of large numbers,  sup0~ollg(0 ) - E [ g ( e ) ] N  &0, 
so b T su 0 E 0 -if->0 It follows similarly that for do(0) Y , po~ollg( ) -  [g(  )111 • L ; 
0~,(0)/00 and g0(O)= Og(O)/O0, SUPoE~,~llgo(O)-E[go(O)lll 0. Also, by the 
Sluztky and Lindbergh-Levy  theorems,  for p, = p(z,, 0),  

2 i1,p,/x/-n = Z (B, - B,)p,/x/-n + Z B,p,/x/-n 
i i i 

Op(1) + E ~ ' = BiPi/x/n--->N(O , A -  ) . i 
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The estimator of equation (2.9) is an IV estimator with P =  (Ei/~/~i/  
n ) - I P P  = (E[BiBI]) -~ under Assumption 3.2, so g(o)'Pd(o) converges uni- 
formly in probability to g(O)'Pg(O), g(O )'Pg(O ) is continuous, and has a unique 
minimum (of zero) at 0 = 00, and hence is consistent by the standard Wald 
argument. The first conclusion then follows by a mean-value expansion like 
that of equation (2.4). For the second conclusion, asymptotic normality of the 
initial estimator follows by a similar argument to that just given. Then by a 
mean-value expansion 

v ~ ( 0  - 00) = {I - [~0(0)]-ld0(0)}x/fi(0 - 0o) - [d0(0) ] - lv~(0o)  
1 d 

= Op(1)Op(l) - [d0(0)]- v'fig(00)-->N(0, a) .  [] (A.I)  

Some other Lemmas are useful for proving Theorem 1. Let h(z, O) be a 
function of z and a parameter vector 0 and let 0 be a consistent estimate of 
some value 0 o. Let 

gi = E[h(zi, 00) [xi], 

8, = ~ ~jh(zj, 0o), 
j = I  

~ = ~ W#.E[h(zj, 0o) I x~] , 

~, = Y~ %h(z,  0).  
j = l  

(A.2) 

The following assumption concerning h(z, O) and 0 will be maintained. 

ASSUMPTION A.1. (i) O - 0o = Op(lV'fi). (ii) For p > 2 ,  E[lh(z,., 0o)1 ~1 is finite. 
(iii) there is M(z) with E[M(zi) 2] finite such that for 0 close enough to 0 o, 
Ih(z,, o) - h(z,, Oo)l ~< M(z,)IlO - 0o11. (iv) k/v'fi--->, k/n ---> O. 

LEMMA A.2 (Stone, 1977, Proposition 1). limn~= E[lffi - g i l  p] = O. 

The proofs of the following three lemmas are nearly identical to the proofs 
of Lemmas 8, 9, and 5, respectively, of Robinson (1987), and so will be 
omitted. 

LEMMA A.3. {E[Ig,-~GI~]} x'~ = O ( k  1/2) .  

LEMMA A.4. max;_<. [g, - L[ = Op(rt ' /pk-I /2)  

LEMMA A.5. maxi~ n [gi - gi[ = Op(k-1/2) • 

Let Z,  = ( z i , . . .  ,zn). The following two lemmas are proven in Newey 
(1990). 
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LEMMA A.6. Suppose that (i) pn(z, X~) is a function such that 
E[pn(z i, X~)Ixi, Z_i] = 0 and E[lPn(Zi, Xn)] 2p/(p-2)] = O ( 1 ) ;  ( i i )  h(zi, O) is con- 
tinuously differentiable with derivative ho(zi, O) in a convex neighborhood N of  
0o; (iii) there are random variables Mo(z~) and Moo(Z~) satisfying I]ho(z~, 0)][ <~ 
Mo(zi) - h o and 

[Iho(z, o) - ho(z i, 00)1[ <-Moo(Z,)]]O - 0011 for 0 in N ,  

and E[Mo(zy I and E[Moo(Zi) 2p/(p+2)] finite. Then 

Z (gi -- gi)Pn(Zi, gn)/%/-n = O p ( ] )  . ( A . 3 )  
i 

The following lemma is an 'asymptotic trimming' result, that allows us to 
ignore the 'denominator problem' associated with the nearest neighbor es- 
timator ~2(xi). Let ~2i, Oi, f2i, g2i, Dg, Di, Di, Oi be the estimators corre- 
sponding to equation (A.1), where h(z, O) is an element of p(z, O)p(z, 0)' and 
Op(z, 0 ) / 00, respectively. 

LEMMA A.7. I f  the hypotheses of  Theorem 3.1 are satisfied then there is a 
constant C such that ]lg2,71]l<C , I l t~i-1]]<c and the indicator 1~= 

~ - ]  

l ( m a x ~  max{I ] / )~  II, II s2~ ]l} < c)  is equal to one with probability approach- 
ing one. Furthermore, for any sequence of  random variables Y, and constants 
b~, if Y, ln = Op(b~) then Yn = Op(b~). 

PROOF. Let A(A) denote the smallest eigenvalue of a symmetric matrix A. 
Then A(g2i)> C for all i by A(/2(x)) bounded away from zero. Also, by W~j 

t t  nonnegative and Zj=IVC~j=I the extremal characterization of A(.) gives 
A(I)~) = A(ET_ 1 W~jg2j) i> Ejn_l W/jA(/2j) > C, giving the first conclusion. As is well 

known, [A(A) - A(A)[ ~ < C[IA - All where the constant C here depends only on 
the dimension of A. By Lemma A.4, with h(z,O) and element of 
O(z, O)p(z, 0)' and p = u / 2 > 4 ,  

max Ih(l)~) - h(l)i) [ < C maxll~)i- = Op( nl/pk 1/2) 
i ~ n  i < - n  

• " ~  / 1 / 4 ~ - 1 / 2 " ,  
= t3p l .n  K ) = O p ( 1 )  . 

Similarly, by Lemma A.5, maXi~nlA(~2i) " P - a(o,)l--,0, so that Prob(in = 1)---, 1 
by T and specification of small enough C. The final conclusion follows by 
noting that (ln - 1)Yn is equal to zero with probability approaching one, and 
hence ( 1 - i n ) Y  n =Op(bn) for any b~, giving Yn =lnYn + ( 1 -  in)Y n = 
Op(bn). [] 

PROOF OF THEOREM 1. The result is first proved for the case where D(x, ~7) = 0, 
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by verifying the hypotheses of Lemma A.6. For 1, in Lemma A.7, by CS, 

<~i.llY)iIll II&- n, I111~?7111 
<~ cLH&- &ll ~< c l l n , -  &ll. 

Therefore, by Lemmas A.4 and A.5, 

ln(~i ]l~-~71--~71114/n) 1/4 

C m.2211~ i - ~i[I -~- C ( ~ / I I ~ i  - ~ill4/t~) 1/4 

= Op(k  - I / 2 )  -[- Op({g[l]~ i - ~,[I ~/2]} 2/~) = o p ( k - 1 / 2 )  . (A.4) 

Similarly, (Z, 11'3,- JOill2/n) 1/2 = Op(k-1/2). Then by CS, H, T, and 1, = 1 with 
probability approaching one, 

~i (h i  -- Di)'(~')71 - $) ' l )P ' /v~  

 ill2 ot 
(A.5) 

Similarly, by E[IID, I141 <oo, implying E[ItD, I141 = o(1), 

~i -t ~--1 ~i)~'~i Pi/V~ Oi(~.~i - - i  i~~i (~i ^ --1 - & ) p i / v ~  - ~ ~ '  - - ~  - - 
i 

-< t. Z II&ll 11&lll2ll& - *?,l1211&[I [Ip;/Va + O p ( 1 )  i 

~<c2 II&ll II&- &llillp, ll/v~ i 
C (  l~ " II Dill 4/~)1/4 ( ~ / I ] ~ i -  ~i114/1~)1/2(~ i ]loill8/H) 1/8 

= Op(X/fi/k) = Op(1). 

By Lemma A.6, with p,(zi ,  X,) equal to an element of vec([D;O71] ® [~')7i]), 
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p = 4 and h(z, O) equal to an element of p(z, O)p(z, 0)', 

E --¢ -- --1 D i ~ Q i  ( ~ i  - 1 P - S2i)S2 i p i / v ~ O ,  
i 

and for h(z, O) equal to an element of E[p(z, O)p(z, 0)'  [x] ,  

E - t  - - 1  - _ D i ~ Q i  ('-Qi ~ ' - 2 i ) ~ / l p i / V ' ~ - - ~ O  
i 

Then by the triangle inequality, 

E - t  ^ --1 - 1  P Di( g2 i - Oi )pi/x/-n---~O . (A.6) 
i 

Also, by Lemma A.6 with pn(z~, Xn) equal to an element of $2 1 i Pi, p = 4 a n d  
h(z, O) equal to an element of Op(z, 0)/00, 

E ( f ) i  --  O i ) ' ~ - 2 / l p i / V ' ~ p - - > O "  ( A . 7 )  
i 

Also, by Lemma A.2 and E[(/)~ , - -1  1 - O~ )P~I = 0 E[p~pj I Xn] 0 -- D i )  (~(~i and = 

for i ¢ j, 

E[~i (~)i-  Di ) ' (~71-  O/1)p/x/-n 2] 

~ g[llZS~ Dil]2II(~0; 1 - 1  - - 1  -- -- a i ) a i ( a  i --  o51)111< c ,  
E[II ZSi - O~ll2[I s~/- aill2l ~< (E[II ~ , -  DilI4])1'2(E[II S~e 

- a ,  l l 4 1 ) 1 ' 2 ~ 0 ,  

- D i )  ( a  i - ~ 7  )Pi/*/-~--->0 • ( A . 8 )  
i 

It then follows by equations (A.5)- (A.8)  and the triangle inequality that 

E,=I (Bi P n -B~)p~x/-~--~O. Furthermore, by T, CS, and Lemma A.2, it follows 
similarly to equation (A.4) that 

BillzJn 14LI ,n) 1,4 
1 4 \ 1/4 P 

P 
Similarly, ZLIlI~iD,-BiDiH/n--'O, and by the law of large numbers,  

n P 1 Ei= 1B~D~/n--->A- , so the final conclusion follows by T. 
For the case where D(x, rl) is not equal zero, by Assumption 4.5, the 

conclusions previously given hold with Op(z,O)/OO-D(x, rt) replacing 
Op(z, 0)/00 throughout. For simplicity, assume 7/ is a scalar. Therefore,  by 
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Assumption 4.5, a mean-value expansion, and H, 

E i {D(x,, ~) - D(x,  no)}({~/' - 127')pi/~/-n 

~<x/Bi]~ -~70[[ ~ sup OD(xi'~) I1~/~ - 07~ ~11 [[pi[l/n 
" n ~ x  0 ~  

__ 1 4 \ 1/4/,c~ 8 / n )  1/8 ~ - ~ O p ( l ) ( ~ /  d ( z i ) 2 / n ) I / 4 ( ~  i" [ l ~ i  -1 12i / n )  ~ +  Hoill 
/ 

= Op(1)Op(1)Op(1) = Op(1). 

Also, it follows similarly to equation (A.6) that 

-1 P E D(x,, ~o)({2, ' - 12, )p/x/fi--->O. 
i 

Also by the usual uniform law of large numbers, 

• { OD(xi'&l (1)} pJnp--~E[{OD(x~'~q°)/Orl}p~]=O' 

so that by a mean value expansion, 

~/ {D(xi, ¢1) - D(x~, 71o)}12/lpi/x/fi 

L &/ 

Also, the previous proof gives 

~'~ {(/)i - D(xi, ¢I))X) , ~ - (D, - O(xi, ~O))12 51} pi/X/-n-P o . 
i 

Therefore, by T, 

~i (Bi-Bi)Pi/~'/-~ : ~i {D(xi '  ~1)~?'-D(xi,r lo)12/-1}pg/x/n + O p ( 1 )  

= Op(1). (A.91 

2 P 
Similar reasoning also gives r.~ [I [ ~ -  B~]] /n-->O, so the first conclusion follows 
by Lemma A.1, and also gives, Z~ H/)~D, DiDiH P 

- /n-->O, so the second 
conclusion follows as above. [] 

Two lemmas are useful for the proof of Theorem 2. Let m~(z, 0 ,~)= 
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D(x, ~)' akK(X)p(Z , 0), SO that 

U = [m,(z, 0 o, n o ) , . . . ,  InK(Z, 00, ~/0)] , 

(1, = [mi(z i, O, ¢7) , . . . ,  mK(Zi, O, ~)], 

)f4~ = ~ Omk(z,, O, ¢7)100 . 
i=1 

LEMMA A.8. If Assumption 5.3 is satisfied then Assumption 5.2 is satisfied. 

PROOF. It follows by the extremal characterization of the smallest eigenvalue 
and Lemma A1 of Newey (1988) that 

A(E[U'QU]) 

>1 A(LKL~:)A(E[ {pJ(K)(x)pJ(K)(x) } ® { D(x, rlo)QD(x , n0)'} ® O(x)]) 

> CJ(K)- C'(K)~'r (a .  10) 

The conclusion then follows by J(K)<~ CK. [] 

LEMMA A.9. If Assumptions 5.3 and 5.5 are satisfied then Assumption 5.4 is 
satisfied. 

J y PROOF. By Gallant (1980), for each l their exist Y n , . . . ,  YtJ such that 

]=1 

so the conclusion follows from Assumption 5.5. [] 

PROOF OF THEOREM 2. The proof proceeds by verifying the hypotheses of 
Lemma 5.1 of Newey (1989) (L5 henceforth). It follows by standard arguments 
that v~ll0-0011 =Op(1) for the initial estimator 0. Consider nonrandom 
K = K(n) such that K - + %  and let the v(K) of L5 be K 1/r. By hypothesis Q is 
positive semidefinite. Also, by H and Assumption 5.1, 

lie[ore(z, 0o, ,70)/00]ll 

<~KsupllakK(x)llE[llD(x, rto)l I OP(~; 0°) J<~CK<<Cv(K)C~(K) 
k,x 

and there is e > 0 small enough that 

0 Z 0 2+e  
KCE[ [ID(x, 2+, P( , o) ] E[llVec(U)H 2+e] %)11 O0 J ~ Cv(K)C~(K) " 

In addition, it follows by Assumption 5.2 or Assumption 5.3 and Lemma A.8 
that A(E[U'QU]) >i Cv(K) -c'(K), so that hypothesis (i) of L5 is satisfied. 

Next, by Assumption 5.4, [ 1 0 -  QII = O p ( n - l %  - Also, by Assumption 5.1 
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E[[lOm~(z, 0o, 77o)/00 l[ ~+~1 < C for some e > 0, so by Newey (1988), 

n-1 ~i Om(zi'o00°' ~qo) E[ Om(z' O°' ~l°) 1 = O p ( n  ct ' (K)C'(K))  
O0 

(A.11) 

By H, each of the following are finite: 

E[dz(z,)d'l(Z,)], E[l[Po,[[d'~(z,)], E[]lG(zi)]] HDo,[[], 
2 ~ 2 F,[di(zi) dl(Zi) ], E[l]P,l[2d'l(zi)2], E[lld2(zi)ll2llDo,][2]. 

for m(z, 0, rl) = (ms(Z , 0, "O)', . . . .  mK(Z, O, ~)')', b i = D(x i, 4), Ooi = Then, 
D(xi ,  ~qo), Poi = Op(zi, 0 ) / 00 ,  Poi = OP(zi, Oo) / O0, ~"k = ~" k~ 

<~n-lg2 [ll~oi-Po, II I l b i -  Do, II +[IPo, II I[bi - Doill 
i 

+ IlPoi-Poi[[ ]IDol]I] + n  ~.  Om(zi'o00°' ~/o)_ E[  Om(z'-o~' 7/°)] 

<~n-lK 2 {d2(z~)d'~(zg) + Ilpoilld'~(zi) + IId2(z,)ll [IDoilr}{ll 0-Oo1[ 
i 

+ 11 4 --7"/011} + Op(n-Cl" (K)  cv(K)) = Op(n-CP(K)C~'(K)) • ( A . 1 2 )  

n-' ~ [[m(z,, O, 4) - m(z,, 0o,7o)112 
i 

- 2  ~ / ~  K E  2 i 2 2 r 2 {d~(z,) dl(z~) + Ilp~ll dl(Zi)  
i 

2 2 
q-[[d2(zi)[[ IlDo,[[ }op(1/v~) ( A . 1 3 )  

= Op(n-Cp(K)C~(K)) .  

Furthermore, by a mean-value expansions and the same 
equation (A.12),  

V n  n - 1 E  fn(Z i, O, 4)  -- n - 1 E  m(z i ,  0o, 4)  
i i 

[ Om(z, 0o, ~1o) ] 
- E l  50 ](0 -Oo) 

Om(z,, O, 4) E[°m(z'°°'n°)]llvfi}lb-°oll[ oo J rl-l  E O0 
= O p ( f / -  c~,(K) C,(K)). (A. 14) 

argument as for 
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where 0 denotes the mean value, satisfying ~ l l  0 - 0oll ~ v~l l  0 - 0oll = Op(1). 
Also, E[Om(zi, 0o, rlo)/O~] = 0 and for some e > O, by H, 

1 + ~  1+el E[ Omk(ZfO°'~°) l+eJ ~CE[ OO(~ 7~0) Pi ] <C,  

where it is assumed that ~/ is a scalar, for simplicity. Then by a lemma of 
Newey (1988), 

n-1 ~ Om(zi, 00, ~/0). = Op(n-Cv(K)C~(K)) 
i O~/ 

and expanding around ~70 gives, 

v n  1"1 1 Z m(zi, 0o, ¢1) - n-1 ~ m(zi, 0o, ~7o) 
i i 

<~ n-1 ~ Om(zi, 0o, 7o) 7o 

+ g 4(zz)llo, II/n Vall~-~01[  2 

= Op(n %(K)C~(%. (A.15) 

It then follows by equations (A.12)-(A.15) that part (ii) of the hypotheses of 
L5 is satisfied, with u =- m(z,  rio, T0). Part (iii) follows by equation (2.6). Also, 

E Bi& - Tkmk(zi, 0o, To) 
k=l 

Oo d 
<~ E i - -  D o i  TkakK Xi i , 

so the remainder of the hypotheses of L5 follow by Assumption 5.4 or 
Assumption 5.5 and Lemma A.9. The conclusion then follows by the conclu- 
sion of L5. [] 
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Generalized Method of Moments: Econometric 
Applications 

Masao Ogaki 

1. Introduction 

The purpose of this paper is to explain Hansen's (1982) generalized method of 
moments (GMM) to applied researchers and to give practical guidance as to 
how GMM estimation should be implemented. 1 The statistical properties of 
GMM estimators and test statistics are discussed. This paper also presents 
some of the recent developments in the GMM procedure that have been used 
in applications. These include sequential (or two-step) estimation, GMM with 
deterministic trends, applications for cross sectional and panel data, and some 
statistics that are often used for hypothesis testing. In explaining empirical 
applications, the present paper emphasizes some of the pitfalls that researchers 
have encountered, and how they have dealt with them. 2 

The rest of this paper is organized as follows. Section 2 presents the basic 
GMM framework. Section 3 illustrates how ordinary least squares and linear 
and nonlinear instrumental variables estimation are embedded in the GMM 
framework as special cases. Section 4 presents some GMM related statistical 
procedures that extend the basic GMM framework. These include sequential 
(or two-step) estimation, GMM with deterministic trends, applications of 
GMM to cross sectional and panel data, and the minimum distance estimation. 
Section 5 discusses important assumptions for GMM that applied researchers 
should be aware of. In Section 6, methods for covariance matrix estimation are 
explained. These methods are necessary for calculating standard errors of 
GMM estimators and for using the optimal distance matrix for GMM 
estimation. Section 7 explains Wald, Lagrange multiplier and likelihood ratio 
type statistics for hypothesis testing and recently developed specification tests. 
In Section 8, empirical applications are discussed. Section 9 examines the 
optimal choice of instrumental variables, the relation between GMM and 

i Hall (1993) provides a nontechnical introduction to GMM that offers the basic intuition behind 
GMM. 

"-In a companion paper, Ogaki (1993a), I describe the use of the Hansen/Heaton/Ogaki 
GAUSS GMM package for implementing GMM estimation and for forming test statistics. 
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semi-parametric  estimation, and small sample propert ies of G M M  estimators 
and test statistics. Section 10 concludes. 

2. Generalized method of moments 

This section explains the basic GMM framework. 

2.1. Moment  restrictions and G M M  estimators 

Let  { X t : t =  1 , 2 , . . . }  be a collection of random vectors Xt, /30 be a p-  
dimensional vector of the parameters  to be estimated, and f (X , , /3 )  a q- 
dimensional vector of functions. The time series context is maintained through- 
out this paper,  except for Section 4.3, where applications of G M M  to cross 
sectional data and panel data are discussed. Assume that X t is (strictly) 
stationary. 3 We refer to u~ = f ( X  t,/30) as the disturbance of GMM. Consider the 
(unconditional) moment  restrictions 

E(f(X,,/30)) = 0 .  (2.1) 

Suppose that a law of large numbers can be applied to f(Xt,/33) for all 
admissible/3, so that the sample mean of f (X , , /3 )  converges to its population 
mean: 

lira ~ f (X , , /3 )  = E( f (X, , /3 ) )  (2.2) 
T--*~ t = l  

with probabili ty one (or in other words, almost surely). The basic idea of 
G M M  estimation is to mimic the moment  restrictions (2.1) by minimizing a 
quadratic form of the sample means 

1 Jr(~3) = f (X , , /3)  W r -~ f (X , , /3 )  (2.3) 
t = l  t = l  

with respect t o /3 ;  where W r is a positive semidefinite matrix, which satisfies 

lim W r = W0, (2.4) 

with probabili ty one for a positive definite matrix W 0. The matrices W r and W 0 
are both referred to as the distance or weighting matrix. The G M M  estimator 
/3 r is the solution of the minimization problem (2.3). Under  fairly general 
regularity conditions, the G M M  estimator /3 r is a consistent est imator for 
arbitrary distance matrices. 4 The selection of the distance matrix which yields 
an (asymptotically) efficient G M M  estimator is discussed below in Section 2.3. 

3 See Section 5 for a definition and a discussion of stationarity. 
4 Some regularity conditions that are important for applied researchers are discussed in Section 

5. 
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2.2. Distributions of  GMM estimators 

Suppose that a central limit theorem applies to the disturbance of GMM,  
u t =f(Xt,/3o), so that (1 /V~)Et r=l  u~ has an (asymptotic) normal  distribution 
with mean  zero and the covariance matrix ~ in large samples. 5 If u, is serially 
uncorrelated,  S2 = E(u,u',). If  ut is serially correlated, 

J 
S2 =l im Z E(utu; j) .  (2.5) 

J ~  j 

Some authors refer to ~ as the long run covariance matrix of u r Let  
F = E ( 0 f ( X ,  f l ) /a /3 ' )  be the expectation of the q x p matrix of the derivatives 
of f (X, , /3 )  with respect to/3 and assume that F has a full column rank. Under  
suitable regularity conditions, VT(/3r-/3o) approximately has a normal  dis- 
tribution with mean zero and the covariance matrix 

Coy(W0) = { r ' W o r } - l { r ' W o a W o r } { r ' W o r }  '-1 (2.6) 

in large samples. 

2.3. Optimal choice of  the distance matrix 

When the number  of moment  conditions (q) is equal to the number  of 
parameters  to be estimated (p) ,  the system is just identified. In the case of a 
just identified system, the G M M  estimator does not depend on the choice of 
distance matrix. When q > p ,  there exist overidentifying restrictions and 
different G M M  estimators are obtained for different distance matrices. In this 
case, one may choose the distance matrix that results in (asymptotically) 
efficient G M M  estimator.  Hansen (1982) shows that the covariance matrix (6) 
is minimized when W 0 = O - 1 .  6 With this choice of the distance matrix, 
X/T(/3 r - /3o)  approximately has a normal distribution with mean zero and the 
covariance matrix 

COV(~'~ I) = (r,a-lr)-l, (2.7) 

in large samples. 
Let  g/r be a consistent est imator of S2. Then W r = S2r 1 is used to obtain/3r .  

The resulting est imator is called the optimal or efficient G M M  estimator.  It  
should be noted,  however,  that it is optimal given f ( X , / 3 ) .  In the context of 
instrumental  variable estimation, this means that instrumental variables are 
given. The optimal selection of instrumental variables is discussed in Section 9. 
Let  F r be a consistent estimator of F. Then the standard errors of the optimal 
G M M  es t imator /3r  are calculated as square roots of the diagonal elements  of  

5 An advantage of the GMM estimation is that a strong distributional assumption such that u~ is 
normally distributed is not necessary. 

6The covariance matrix is minimized in the sense that Cov(W0)-Cov02 i) is a positive 
semidefinite matrix for any positive definite matrix W 0. 
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T - I { I p ~ I / ~ T }  1. The appropriate method for estimating J2 depends on the 
model. This problem is discussed in Section 6. It is usually easier to estimate F 
by F r = (l/T) 2tLl (Of(X,,/3r)/0/3') than to estimate J2. In linear models or in 
some simple nonlinear models, analytical derivatives are readily available. In 
nonlinear models~ numerical derivatives are often used. 

2.4. A chi-square test for the overidentifying restrictions 

In the case where there are overidentifying restrictions (q > p ) ,  a chi-square 
statistic can be used to test the overidentifying restrictions. One application of 
this test is to test the validity of moment  conditions implied by Euler  equations 
for optimizing problems of economic agents. This application is discussed in 
Section 8. Hansen (1982) shows that T times the minimized value of the 
objective function TJr(/3r),  has an (asymptotic) chi-square distribution with 
q - p  degree of freedom if W 0 -- J2 -1 in large samples. This test is sometimes 
called Hansen's J test. 7 

3. Special c a s e s  

This section shows how linear regressions and nonlinear instrumental variable 
estimation are embedded in the GMM framework above. 

3.1. Ordinary least squares 

Consider a linear model, 

y =x ' /3o+et ,  (3.1) 

where yt and e t are scalar random variables, x~ is a p-dimensional random 
vector. OLS estimation can be embedded in the GMM framework by letting 
X, = (Yt, x;)', f(X,,  /3) = x~(y~ - x~/3), u~ = x~et, and p = q. Thus the moment  
conditions (2.1) become the orthogonality conditions: 

E(x,e ) = o .  ( 3 . 2 )  

Since this is the case of a just identified system, the distance matrix W 0 does 
not matter. Note that the OLS estimator minimizes Er=l ( Y t -  x;/3); while the 

T GMM estimator minimizes (Et= 1 (x~(y,-x~/3)))'(gtr=l (xt(y~- x'~/3))). It turns 
out that the GMM estimator coincides with the OLS estimator in this case. To 
see this, note that (E,r=l (x~(y~- x ' , /3 ) ) ) ' (g r l  (xt(y~- x;[3))) can be minimized 
by setting /3r so that ZT_I f (x t , /3)  = 0 in the case of a just identified system. 
This implies that ZL~xtyt={r.rt=ixdc't}/3r. Thus as long as {ZLlXdC't) is 

T t 1 T invertible, /3 r = {2t= 1 xrrt} {2t= 1 xyt} .  Hence the GMM est imator/3 T coin- 
cides with the OLS estimator. 

7 See Newey (1985) for an analysis of the asymptotic power properties of this chi-square test. 
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3.2. Linear instrumental variables regressions 

Consider the linear model (3.1) and let z~ be a q-dimensional random vector of 
instrumental  variables. Then instrumental variable regressions are embedded  
in the G M M  framework  by letting X t = (yt, x't, z',), f (Xt , /3)  = z t ( Y t - x ' t / 3 ) ,  

and u, = z,e r Thus the moment  conditions become the orthogonality conditions 

E(ztet) : O. (3 .3)  

In the case of a just identified system (q = p ) ,  the instrumental  variable 
regression estimator {ET_IztXtt}-I{~,T=I ztyt} coincides with the G M M  es- 
t imator.  For the case of an overidentifying system (q > p ) ,  that Sargan's (1958) 
generalized instrumental variables estimators,  the two-stage least-squares 
estimators,  and the three-stage least-squares estimators (for multiple regres- 
sions) can be interpreted as optimal G M M  estimators when e t is serially 
uncorrelated and conditionally homoskedastic,  8 

3.3. Nonlinear instrumental variables estimation 

G M M  is often used in the context of nonlinear instrumental variable estimation 
(NLIV) .  Section 8 presents some examples of applications based on the Euler  
equation approach.  Let  g(x,, 13) be a k-dimensional vector of functions and 
e t=g(x , ,~o  ). Suppose that there exist conditional momen t  restrictions, 
E[e t [I,] = 0, where E[. I/t] signifies the mathematical  expectation conditioned 
on the information se t / , .  Here  it is assumed that/~ CIt+ 1 for any t. Let  z t be a 
q x k matrix of random variables that are in the information s e t / 9  Then by 
the law of iterative expectations, we obtain unconditional momen t  restrictions: 

E[ztg(x ,,/30) ] = 0 .  (3.4) 

Thus we let X, = (x't, z't) ' and f (Xt ,  ~) = ztg(xt, ~)  in this case. Hansen (1982) 
points out that the N L I V  estimators discussed by Amemiya  (1974), Jorgenson 
and Laffont (1974), and Gallant (1977) can be interpreted as optimal G M M  
estimators when e t is serially uncorrelated and conditionally homoskedastic.  

4. Extensions 

This section explains econometric methods that are closely related to the basic 
G M M  framework  in Section 2. 

This interpretation can be seen by examining the first order condition for the minimization 
problem (2.3). 

9 In some applications, z I is a function of/3. This does not cause any problem as long as the 
resulting f(X,,/3) can be written as a function of/3 and a stationary random vector X,. 
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4.1. Sequential estimation 

This subsection discusses sequential estimation (or two-step estimation). 
Consider a system 

[ u 1 f(X¢, 13) = X ' 2 (4.1) U2( ,/3 )J' 
where/3 = (/3i, /32,),, /3i is a p/-dimensional vector of parameters, and f is a 
qi-dimensional vector of functions. Although it is possible to estimate/31 and 
/32 simultaneously, it may be computationally convenient to estimate/31 from 
fl(Xt,/31) first, and then estimate/32 from f2(X,,/31,/32) in a second step (see, 
e.g., Barro, 1977, and Atkeson and Ogaki, 1991, for examples of empirical 
applications). In general, the asymptotic distribution of the estimator of/3 a is 
affected by estimation of/31 (see, e.g., Newey, 1984, and Pagan, 1984, 1986). 
A GMM computer program for a sequential estimation can be used to 
calculate the correct standard errors that take into account of these effects 
from estimating /31. If there are overidentifying restrictions in the system, an 
econometrician may wish to choose the second step distance matrix in an 
efficient way. The choice of the second step distance matrix is analyzed by 
Hansen, Heaton and Ogaki (1992). 

Suppose that the first step estimator/3 ~ minimizes 

Jlr(/31) = ~ 4(Xt,/3 I) l rLTt_f l (X, , /31)  , (4.2) 

and that the second step estimator minimizes 

j2r(/32) = fz(X "/3~,/32) W2 r fz(X,,/3~,/32) , (4.3) 
t=I t=l 

where W~r is a positive semidefinite matrix that converges to Wi0 with 
probability one. Let F~j be the qi xpj  matrix E(Ofii/O[3;) for i = 1, 2 and j  = 1, 2. 

Given an arbitrary W10, the optimal choice of the second step distance matrix 
is W20 = (~*) 1, where 

~ *  = [ -~21(F11WloFl l ) - lF l lW1o,  l ] ~  

(4.4) 

With this choice of W20, (1/VT)Z~_ 1 (/32_/32) has an (asymptotic) normal 
distribution with mean zero and the covariance matrix 

(G2(a,)-IG}-I, (4.5) 

and TJ2T(/3 2) has an (asymptotic) chi-square distribution with q2 -P2  degrees 
of freedom. It should be noted that if F21 = 0, then the effect of the first step 
estimation can be ignored because O* = ~222 = E(fz(X,,/30)f2(X,,/30);). 
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4.2. G M M  with deterministic trends 

This subsection discusses how GMM can be applied to time series with 
deterministic trends (see Eichenbaum and Hansen, 1990, and Ogaki, 1988, 
1989, for empirical examples). Suppose that X, is trend stationary rather than 
stationary. In particular, let 

X, = d(t, [31) + X~ , (4.6) 

where d(t, [30 is a function of deterministic trends such as time polynomials 
and X*, is detrended Xt. Assume that X* is stationary with E(X*) = 0 and that 
there are q2 moment conditions 

E(L(x,*,  -- o .  (4.7) 

Let /3=(/3~',[32') ', fl(X,,[31)=X,-d(t,[3 ~) and T(X, , /3)=[f~(Xt , /31)  ', 
X* f2( ,, [3~,/32)'] '. Then GMM can be applied to f(Xt,/3) to estimate/31 and/3z 

simultaneously as shown in Hansen, Heaton and Ogaki (1992). 

4.3. Cross-sectional data and panel data 

The GMM procedure has been applied to cross-sectional data and panel data. 
Empirical examples include the work of Holtz-Eakin, Newey and Rosen 
(1988), Hotz, Kydland and Sedlacek (1988), Hotz and Miller (1988), Shaw 
(1989), Altug and Miller (1990, 1991), Engen (1991) and Runkle (1991). 
These authors also discuss many of the econometrics issues. Avery, Hansen 
and Hotz (1983) develop a method to apply GMM to probit models in panel 
data. Chamberlain's (1992) comment on Keane and Runkle (1992) discusses 
applications of GMM to obtain efficient estimators in panel data. AreUano and 
Bond (1991) discuss a GMM estimation method in panel data and propose a 
test of serial correlation. The reader who is interested in econometric issues 
that are not treated in this subsection is referred to these papers and references 
therein. This section explains a simple method which allows for both a general 
form of serial correlation and different serial correlation structures for different 
groups in panel data (see, e.g., Atkeson and Ogaki, 1991, and Ogaki and 
Atkeson, 1991, for empirical examples). 

Consider a panel data set in which there exist H groups, indexed by 
h = 1 . . . .  , H (for example, H villages). Suppose that group h consists of N h 
individuals and that the data set contain T periods of observations. Let 

H 
N = E h =~ Nh be the total number of individuals. It is assumed that N is large 
relative to T, so that we drive N to infinity with T fixed in considering 
asymptotic distributions. Assume that individuals i = 1 . . . .  , N 1 are in group 1 
and i = N~ + 1 . . . . .  N~ + N z are in group 2, etc. It is assumed that limN__,=Nh/ 
N---6 h exists. Let xi, be a random vector of economic variables for an 
individual i at period t and f,(xi, , [3) be a qt-dimensional vector of functions. 
Let q = E,~l q , ,  X i  (X i l ,  , ¢ t . . . ,  = ' . . .  xi~.) and f ( X  i, [3) = (fl(X~l)', f~(xir)')'. 
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Thus a general form of serial correlation is allowed by stacking disturbance 
terms with different dates as different disturbance terms rather than treating 
them as different observations of one disturbance term. It is assumed that X,. is 
identically and independently distributed over  the individuals. Assume that 
there exist q moment  restrictions: 

EN(f(X,,/30)) = 0 ,  (4.8) 

where EN is the unconditional expectation operator  over individuals. A 
subscript N is attached to emphasize that the expectation is taken over 
individuals. 

It is assumed that a law of large number applies to f, so that 

1 Mh 
lim -~7 ~ f(Xi,  B) = 6hE,(f(Xi,  /3)) (4.9) 
N--:'~ I'V i=Mh_i+l 

for each h = 1 , . . .  , H,  where M h = N~ + . - .  + N h and M o = 0. Let  gu(X/,/3) = 
(EN~ f ( X ~ , / 3 ) ' , . . . ,  sM~M~_I+I f(X~,/3)')'. Then the GMM estimator fiN 
minimizes a quadratic form 

' 1 
JN(/3)= {--~ gN(Xi, /3)) WN{-I~ gN(Xi, /3)} , (4.10) 

where W N is a positive definite matrix, which satisfies 

lim W u = W o . (4.11) 

with probability one for a positive definite matrix W 0. 
Suppose that a central limit theorem applies to the disturbance of GMM, 

Mh (asymptotic) normal dis- U i =f(X/ ,  rio), so that (1/~/-N)~,i=Mh_l+l lg i has a 
tribution with mean zero and the covariance matrix O h for large N. Here  
12h = 6hEN(UiU'i) for any individual i in group h. Let  12 be a matrix that has 12h 
in the h-th diagonal block for h = 1 . . . . .  H and the zeros elsewhere. With 
these modifications, the GMM framework explained in Section 2 can be 
applied to this problem with all limits taken as N---~ 0o instead of T---~ oo. For  
example, W 0 = 12-~ leads to an efficient GMM estimator and NJ(/3N) has an 
asymptotic chi-square distribution with this choice of the distance matrix. 

In estimating rational expectations models with panel data, it is important  to 
recognize that Euler equation of the form E(u~t l i t )=0  does not imply (1/ 
N) z N~I u,  converges in probability to zero as N is increased. The sample 
counterpart  of E (u ,  l/t) converges to zero as the number of time periods 
increases, but not as the number of households increases (see, e.g., Chamber- 
lain, 1984; Keane and Runkle, 1990; Runkle,  1991, and Hayashi, 1992). This 
problem is especially severe when idiosyncratic shocks are insured away and 
only aggregate shocks are present as implied by models with complete markets 
(see, e.g., Altug and Miller, 1990). One way to deal with this problem is to use 
a panel data set with relatively large number of time periods and to use 
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asymptotic theories as T--+ oo. In this case, issues of nonstationarity must be 
addressed as in applications to time series data (see Section 5 below). 

4.4. Minimum distance estimation 

Minimum distance estimation (MDE)  provides a convenient way of obtaining 
an efficient estimator that imposes nonlinear restrictions (see, e.g., Chiang, 
1956; Ferguson, 1958, and Chamberlain, 1982, 1984) and a test statistic for 
these restrictions. See Altug and Miller (1991) and Atkeson and Ogaki (1991) 
for examples of empirical applications. The MD E is closely related to GMM 
and a GMM program can be used to implement the M D E  (see, e.g., Ogaki, 
1993a). Suppose that 0 T is an unrestricted estimator for a p + s vector of 
parameters 00, and that VT(OT- 00) converges in distribution to a normal 
random vector with the covariance matrix g2. Consider nonlinear restrictions 
such that 

~b(/30) = 00, (4.12) 

where /30 is a p-dimensional vector of parameters.  The MFE estimator /3 T 
minimizes a quadratic form 

Jr ( r )  : {~b(/3) - 0 r ) 'Wv{~(f l )  - 0:r),  (4.13) 

for a positive semidefinite matrix Wr that converges to a positive definite 
matrix W 0 with probability one. As with GMM estimation, W 0 = ~ - 1  is the 
optimal choice of the distance matrix and TJv([3v) has an (asymptotic) chi- 
square distribution with s degrees of freedom. The null hypothesis (4.12) is 
rejected when this statistic is larger than critical values obtained from chi- 
square distributions. 

5. Important assumptions 

In this section, I discuss two assumptions under which large sample properties 
of GMM estimators are derived. These two assumptions are important in the 
sense that applied researchers have encountered cases where these assumptions 
are obviously violated unless special care is taken. 

5.1. Stationarity 

In Hansen (1982), X t is assumed to be (strictly) stationary. 1° A time series 
{X, : -oo < t < oo) is stationary if the joint distribution of { X t , . . . ,  Xt+~) are 
identical to those of {X,+ . . . . .  , X,+~+~} for any t, z and s. Among other things, 

10 In the context of cross sectional data discussed in Section 4.3, this assumption corresponds 
with the assumption that X i is identically distributed over individuals in cross sectional data. 
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this implies that when they exist, the unconditional moments E(X,) and 
E(X,X~+~) cannot depend on t for any ~-. Thus this assumption rules out 
deterministic trends, autoregressive unit roots, and unconditional 
heteroskedasticity. 11 On the other hand, conditional moments E(Xc+ ~ lit) and 
E(X,+~X~+~+ s I/t) can depend on I,. Thus the stationarity assumption does not  
rule out the possibility that X t has conditional heteroskedasticity. It should be 
noted that it is not enough for u t - - f ( X , / 3 0 )  to be stationary. It is required that 
X t is stationary, so that f ( X ,  f l)  is stationary for all admissible/3, not just for 
/3 =/30 (see Section 8.1.4 for an example in which f ( X , , / 3 )  is stationary but 
f ( X , / 3 )  is not for other values of/3).  

Since many macroeconomic variables exhibits nonstationarity, this assump- 
tion can be easily violated in applications unless a researcher is careful. As 
explained in Section 4.2, nonstationarity in the form of trend stationarity can 
be treated with ease. In order to treat another popular form of nonstationarity, 
unit-root nonstationarity, researchers have used transformations such as first 
differences or growth rates of variables (see Section 8 for examples). 

5.2. Identification 

Another important assumption of Hansen (1982) is related to identification. 
Let 

,/o(/3) = {Elf(X,,/3)]}'Wo{E[f(X t , / 3 ) } .  (5.1) 

The identification assumption is that /3o is the unique minimizer of J0(/3). 12 
Since J0(/3)--->0 and J0(/30)=0, /3o is a minimizer. Hence this assumption 
requires J0(/3) to be strictly positive for any other /3. This assumption is 
obviously violated if f ( X t , / 3 )  - 0 for some/3 which did not have any economic 
meaning (see Section 8 for examples). 

6. Covariance matrix estimation 

An estimate of S2 is necessary to calculate asymptotic standard errors for the 
GMM estimator from (2.6) and to utilize the optimal distance matrix g2 -1. 

11 Gallant (1987) and Gallant and White (1988) show that the GMM strict stationarity 
assumption can be relaxed to allow for unconditional heteroskedasticity. This does not mean that 
X, can exhibit nonstationarity by having deterministic trends or autoregressive unit roots. Some of 
their regularity conditions are violated by these popular forms of nonstationarity. It is still 
necessary to detrend X t if it is trend stationary. For this reason, the strict stationarity assumption is 
emphasized in the context of time series applications rather than the fact that this assumption can 
be relaxed. 

12Hansen, Heaton and Ogaki (1992) show that without the identification assumption, a 
sequence of sets of minimizers for (2.3) converges to the set of minimizers with probability one 
when all other regularity conditions hold. 
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This section discusses estimation methods for D. In the following, it is assumed 
that a consistent es t imator /3r  for/3o is available to form an estimate of u~ by 
f(X, , /3~).  In most applications, the first stage GMM estimator is obtained by 
setting W r = I, and then g]r is estimated from the first stage GMM estimate/3 r. 
The  second stage GMM estimator is formed by setting W T = ~  1. This 
procedure can be iterated by using the second stage GMM estimate to form the 
distance matrix for the third stage GMM estimator, and so on. Kocherlakota 's  
(1990) and Ferson and Foerster 's  (1991) Monte Carlo simulations suggest that 
the GMM estimator and test statistics have better  small sample properties 
when this procedure is iterated. It is preferable to iterate this procedure until a 
convergence is obtained. In some nonlinear models, this may be costly in terms 
of time. In such cases, it is recommended that the third stage GMM be used 
because the gains from further iterations may be small. 

6.1. Serially uncorrelated disturbance 

This subsection treats the case where E(u,u,+~) = 0 for r ~ 0.13 In this case, g2 
can be estimated by ( l / T )  Er~=l f(X~,/3r)f(X,,/3r)' .  In the models considered in 
Section 3, this is White's (1980) heteroskedasticity consistent estimator. For  
example, consider the NLIV model. In this model,  u, = ztg(X ,,/3o) and 

1 r = T  l k  
--f ~ f(Xt,  [3r)f(Xt, /3r)' z,g(X,, /3~)g(X,, /3~)'z' t . 

t - l ~  t = l  

Note that u, is serially uncorrelated if e t ----- g ( X t , / 3 0 )  is in the information set 
/~+a because 

E(u,u;+j) = E(E(utu;+jlI,+l) ) = E(u,E(u;+j) I1,+1)) = 0 for j 1> 1.  

In some cases, conditional homoskedasticity is assumed and an econometrician 
may wish to impose this on his estimate for g2. Then 

--T ,=1 z, ~ ,=1 g(X,, Br)g(X~,/3v)' z', 

is used to estimate g2. 

6.2. Serially correlated disturbance 

This subsection treats the case where the disturbance is serially correlated in 
the context of time series analysis. 

6.2.1. Unknown order o f  serial correlation 
In many applications, the order of serial correlation is unknown. Let  @(r )=  

13 In the context of the cross sectional model of Section 4.3, this means that the disturbance is 
uncorrelated across households, even though it can be serially correlated~ 
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E(utu~-r), 

1 r 
q~r(~')=-~ ~] f(Xt,~T)f(X,_,,~r)' for~-~>0, (6.1) 

t='r+] 

and cbr(r ) = q~r(-~')' for r < 0. Many estimators for g2 in the literature have the 
form 

T-I (~T)  (~T( _ T • k 7 ) ,  (6.2) 
12r -  T P~=- r+ l  

where k(-) is a real-valued kernel, and S r is a bandwidth parameter. The factor 
T / ( T - p )  is a small sample degrees of freedom adjustment. 14 See Andrews 
(1991) for example of kernels. The estimators of Hansen (1982) and White 
(1984, p. 152) use the truncated kernel; the Newey and West (1987a) estimator 
uses the Bartlett kernel; and the estimator of Gallant (1987, p. 533) uses 
Parzen kernel. The estimators corresponding to these kernels place zero 
weights on q~(~-) for ~-~ ST, SO that S r - 1 is called the lag truncation number. 
Andrews (1991) advocates an estimator which uses the quadratic spectral (QS) 
kernel, which does not place zero weights on any 4~(r) for Ir[ ~ T -  1.15 

One important problem is how to choose the bandwidth parameter S r. 
Andrews (1991) provides formulas for optimal choice of the bandwidth 
parameter for a variety of kernels. These formulas include unknown parame- 
ters and Andrews proposes automatic bandwidth estimators in which these 
unknown parameters are estimated from the data. His method involves two 
steps. The first step is to parameterize to estimate the law of motion of the 
disturbance u t. The second step is to calculate the parameters for the optimal 
bandwidth parameter from the estimated law of motion. In his Monte Carlo 
simulations, Andrew uses an AR(1) parameterization for each term of the 
disturbance. This seems to work well in the models he considers. 

Another issue is the choice of the kernel. One serious problem with the 
truncated kernel is that the corresponding estimator is not guaranteed to be 
positive semidefinite. Andrews (1991) shows that the QS kernel is an optimal 
kernel in the sense that it minimizes asymptotic MSE among the estimators of 
the form (6.3) that are guaranteed to be positive semidefinite. His Monte Carlo 
simulations show that the QS kernel and the Parzen kernel work better than 
the Bartlett kernel in most of the models he considers. He also finds that even 
the estimators based on the QS kernel and the Parzen kernel are not 
satisfactory in the sense that the standard errors calculated from these 
estimators are not accurate in small samples when the amount of autocorrela- 
tion is large. 

Because the estimators of the form (6.3) do not seem satisfactory, Andrews 

t4 Some other forms of small sample adjustments have been used (see, e.g., Ferson and Foerster, 
1991). 

15 Hansen (1992) relaxes an assumption made by these authors to show the consistency of the 
kernel estimators. 
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and Monahan  (1992) propose  an est imator based on a VAR prcwhitening. The  
intuition behind this is that the estimators of the form (6.2) only take care of 
M A  components  of ut and cannot handle the A R  components  well in small 
samples. The first step in the VAR prewhitening method is to run a VAR of the 
form 

U t = A l U t _  I q- A 2 u t _  2 + • • • "b A n U t _  n .q- u t . (6.3) 

Note  that the model  (6.3) need not be a true model  in any sense. Then the 
est imated VAR is used to form an estimate of v t and an est imator of  the form 
(6.2) is applied to the estimated v~ to estimate the long-run variance of vt,  g2*. 

The est imator based on the QS kernel with the automatic bandwidth pa ramete r  
can be applied to v t for example.  Then the sample counterpart  of the formula 

[, -1,1 
is used to form an estimate of £2. Andrews and Monahan use the VAR of order 
one in their Monte  Carlo simulations. Their  results suggest that the pre- 
whitened kernel est imator performs bet ter  than the nonprewhitened kernel 
estimators for the purpose of calculating standard errors of estimators.  16 

In sum, existing Monte  Carlo evidence for estimation of 12 recommends  
VAR prewhitening and either the QS or Parzen kernel est imator together  with 
Andrew's  (1991) automatic  bandwidth parameter .  Though the QS kernel  
est imator  may be preferred to the Parzen kernel est imator because of its 
asymptotic  optimality, it takes more time to calculate the QS kernel estimators 
than the Parzen kernel estimators. This difference may be important  when 
estimation is repeated many times. 

6 .2 .2 .  K n o w n  o r d e r  o f  ser ia l  c o r r e l a t i o n  

In some applications, the order of serial correlation is known. Assume that the 
order  of serial correlation is known to be s. For  example,  consider the N L I V  
model  of Section 3. Suppose that e t is in the information set It+s+1. In 
mult i-period forecasting models,  s is greater  than one (see Hansen and Hodrick 
(1980, 1983) and Section 8 of the present  paper  for examples).  Then 
E(utu;+-~) = E(E(utu;+,~  [I,+s+l)) = E(u,E(u;+.~)IL+~+I)) = 0 f o r  ~- ~ s  + 1. Thus 
the order  of serial correlation of u~ is s and u t has an MA(s)  structure in this 
case. 

In this case, there exist the zero restrictions on the autocovariances that 
@(r)---0 for I~-[ > s. Imposing these zero restrictions on the estimator:  of 12 
leads to a more  efficient estimator.  17 Since 12 = E~=_~ q~(~-) in this case, a 

16 Park and Ogaki's (1991b) Monte Carlo simulations suggest that the VAR prewhitening 
improves estimators of g2 in the context of cointegrating regressions. 

17 In some applications, the order of serial correlation may be different for different terms of u,. 
The econometrician may wish to impose these restrictions. 
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natural estimator is 

T 
q)r(~-) (6.5) D r -  T - p  .~=_~ 

which is the truncated kernel estimator. Hansen and Hodrick (1980) study a 
multi-period forecasting model that leads to s ~  > 1. They use (6.5) with 
conditional homoskedasticity imposed (as discussed at the end of Section 6.1). 
Their method of calculating the standard errors for linear regressions is known 
as Hansen-Hodrick correction. 

A possible problem with the estimator (6.5) is that O r is not guaranteed to 
be positive semidefinite if s ~>1. In applications, researchers often encounter 
cases where O r is invertible but is not positive semidefinite. If this happens, 
W r = D ;  1 should not be used to form the optimal GMM estimator (e.g., 
Newey and West, 1987a). There exist at least two ways to handle this problem. 
One way is to use Eichenbaum, Hansen and Singleton's (1988) modified 
Durbin's method. The first step of this method is to estimate the VAR (6.3) for 
a large n by solving the Yule Walker equations. The second step is to estimate 
an MA(s) representation 

H t "= B l V t _  1 + . .  • + Bsvt_ s + e t ,  (6.6) 

by running estimated u t on estimated lagged v r Then the sample counterpart of 

0 = ( I  + B 1 + ' "  + Bs)E(e te ' , ) ( I  + B a + . . .  + B~)' (6:7) 

is used to form an estimate of D that imposes the zero restrictions. One 
problem with this method is that this is not reliable when the number of 
elements in u(t)  is large compared with the sample size because too many 
parameters in (6.3) need to be estimated. The number of elements in u(t)  

needs to be kept as small as possible when this method is to be used. 
Another  method is to use one of the kernel estimators of the form (6.2) (or 

VAR prewhitened kernel estimators if s is large) that are guaranteed to be 
positive semidefinite. When this method is used, the zero restrictions should 
n o t  be imposed even though @(z) is known to be zero for [rl > s. In order to 
illustrate this in a simple example, consider the case where s = 1 and Newey-  
West's (1987a) Bartlett kernel estimator is used. Then 

T S'.t T - I z ]  @v(~'), (6.8) 
D T - r-p -- , --Y-- 

where I = S r - i is the lag truncation number. If I = 1 is used to impose the 

zero restrictions, then O T converges to @(0) + 14~(1) + 14~(-1), which is not 
equal to D. Thus 1 needs to be increased as T is increased to obtain a 
consistent estimator. On the other hand, if l >  1 is used and the zero 
restrictions are imposed b y  setting q~r(z) in (6.8) to zero for [~-[ > ]', then the 
resulting estimator is no longer guaranteed to be positive semidefinite. 
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7. Hypothesis testing and specification tests 

This section discusses specification tests and Wald, Lagrange multiplier (LM), 
and likelihood ratio type statistics for hypothesis testing. Gallant (1987), 
Newey and West (1987b), and Gallant and White (1988) have considered these 
three test statistics, and Eichenbaum, Hansen and Singleton (1988) considered 
the likelihood ratio type test for GMM (or a more general estimation method 
that includes GMM as a special case). 

Consider s nonlinear restrictions 

H0: R(ffo ) = r ,  (7.1) 

where R is an s × 1 vector of functions. The null hypothesis H 0 is tested against 
the alternative that R ( f f o )# r .  Let A =  OR~Off' and A T be a consistent 
estimator for A. It is assumed that A is of rank s. If the restrictions are linear, 
then R(f io)= Aff o and A is known. Let fiT be an unrestricted GMM estimator 
and ffT be a GMM estimator that is restricted by (9.1). It is assumed that 
W 0 = O-1 is used for both estimators. 

The Wald test statistic is 

T(R(ff  T) - r)'[AT(F~.Q ~IFT)-IA~]-I(R(ff  T ) - r ) ,  (7.2) 

where Or, Fr, and A r are estimated from ff~. The Lagrange multiplier test 
statistic is 

1 r 
t~=l f(X~, ff T)'OrlFrAT(ATA~) -1 L M r = -  ~ 

× [ar ( r  ~ TIFr)-IATI-I(ATA~)-x 
T 

x ArF~f2~ 1 ~ f(X, ,  f f~ ) ,  (7.3) 
t = l  

where Or, IT, and A r are estimated from ff~. Note that in linear models LM r 
is equal to (7.2), where Or, Fr, and A r are estimated from ff~. rather than ff~-. 
The likelihood ratio type test statistic is 

• u 

T(Jr(ff r) - Jr(f f  r)) , (7.4) 

which is T times the difference between the minimized value of the objective 
function when the parameters are restricted and the minimized value of the 
objective function when the parameters are unrestricted. It is important that 
the same estimator for O is used for both unrestricted and restricted estimation 
for the likelihood ratio type test statistic. Under a set of regularity conditions, 
all three test statistics have asymptotic chi-square distributions with s degrees 
of freedom. The null hypothesis is rejected when these statistics are larger than 
critical values obtained from chi-square distributions. 

Existing Monte Carlo evidence suggests that the small sample distributions 
of the Lagrange multiplier test and the likelihood ratio type test are better 
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approximated by their asymptotic distributions than those of the Wald test (see 
Gallant, 1987). Another disadvantage of the Wald test is that in general, the 
test result for nonlinear restrictions depends on the parameterization (see, e.g., 
Gregory and Veall, 1985, and Phillips and Park, 1988): 

Though the chi-square test for the overidentifying restrictions discussed in 
Section 2 has been frequently used as a specification test in applications of 
GMM, other specification tests applicable to GMM are available. These 
include tests developed by Singleton (1985), Andrews and Fair (1988), 
Hoffman and Pagan (1989), Ghysels and Hall (1990a,b,c), Hansen (1990), 
Dufour, Ghysels and Hall (1991), and Andrews (1993). Some of these tests are' 
discussed by Hall (1993). 

8. Empirical applications 

The GMM estimation has been frequently applied to rational expectations 
models. This section discusses examples of these applications, is The main 
purpose is not to provide a survey of the literature but to illustrate 
applications. 19 Problems that researchers have encountered in applying GMM 
and procedures they have used to address these problems are discussed. In this 
section, the notations for the NLIV model of Section 3 will be used. 

8.1. Euler equation approach to models of consumption 

8.1.1. Hansen and Singleton's (1982) model 
Hansen and Singleton (1982) show how to apply GMM to a consumption- 
based capital asset pricing model (C-CAPM). Consider an economy in which a 
representative agent maximizes 

'E(v(t) I Io) (8.1) 
t = l  

subject to a budget constraint. Hansen and Singleton (1982) use an isoelastic 
intraperiod utility function 

U ( t ) = ~ _ a ( C , -  - 1 ) ,  (8.2) 

where C t is real consumption at t and a > 0 is the reciprocal of the inter- 
temporal elasticity of substitution (a is also the relative risk aversion coefficient 
for consumption in this model). The standard Euler equation for the optimi- 

as Some other empirical examples are mentioned in Section 4. 
19 See Cochrane and Hansen (1992) for a survey on asset pricing puzzles. 
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zation problem is 

E[~Ct-+~Rt+I I It] 
- 1 ,  ( 8 . 3 )  

where Rt+ 1 is the (gross) real return of any as se t .  2° The observed C t they use is 
obviously nonstationary, although the specific form of nonstationarity is not 
clear (difference stationary or trend stationary, for example). Hansen and 
Singleton use Ct+ 1/C t in their econometric formulation, which is assumed to be 
stationary. 21 Then let /3 = (8, a), X t = (Ct+l/Ct, Rt+~)', and g(X,,/3) = 6 ( C t + l /  

Ct)-~Rt+~-1 in the notations for the NLIV model in Section 2. 22 Stationary 
variables in It, such as the lagged values of At, are used for instrumental 
variables zt. In this case, u t is in It+l, and hence u, is serially uncorrelated. 
Hansen and Singleton (1984) find that the chi-square test for the overidentify- 
ing restrictions rejects their model especially when nominal risk free bond 
returns and stock returns are used simultaneously. 23 Their finding is consistent 
with Mehra and Prescott's (1985) equity premium puzzle. When the model is 
rejected, the chi-square test statistic does not provide much guidance as to 
what causes the rejection. Hansen and Jagannathan (1991) develop a diagnos- 
tic that could provide such guidance. 24 

8.1.2. Time aggregation 
The use of consumption data for the C-CAPM is subject to a time aggregation 
problem (see, e.g., Hansen and Sargent, 1983a,b) because consumers can 
make decisions at intervals much finer than the observed frequency of the data 
and because the observed data consist of average consumption over a period of 
time. 

In linear models, the time aggregation means that the disturbance has an 
MA(1) structure and the instrumental variables need to be lagged an additional 
period. See, e.g., Grossman, Melino and Shiller (1987), Hall (1988), and 
Hansen and Singleton (1988) for applications to C-CAPM and Heaton (1990) 

20 This asset pricing equation can be applied to any asset returns. For example, Mark (1985) 
applies the Hansen-Singleton model in asset returns in foreign exchange markets. 

21 In the following, assumptions about trend properties of equilibrium consumption are made. 
The simplest model in which these assumptions are satisfied is a pure exchange economy, with the 
trend assumptions imposed on endowments. 

22 When multiple asset returns are used, g(Xt, jg) becomes a vector of functions. 
23 Cochrane (1989) points out that the utility that the representative consumer loses by deviating 

from the optimal consumption path is very small in the Hansen-Eingleton model and in Hall's 
(1978) model. In this sense, the Hansen-Singleton test and Hall's test may be too sensitive to 
economically small deviations caused by small costs of information and transactions. 

24 Garber and King (1983) criticize Hansen and Singleton's methodology by pointing out that 
their estimators for nonlinear models are not consistent when unknown preference shocks are 
present. Nason (1991) applies GMM to his linear permanent income model with stochastic 
preference shocks. 
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and Christiano, Eichenbaum and Marshall (1991) for applications to Hall 
(1978) type permanent income models. 

It is sometimes not possible for GMM to take into account the effect of time 
aggregation. For example, Heaton (1991) uses the method of simulated 
moments (MSM) for his nonlinear asset pricing model with time-nonseparable 
preferences in taking time aggregation into account. Bossaerts (1989), Duffle 
and Singleton (1989), MacFadden (1989), Pakes and Pollard (1989), Lee and 
Ingram (1991), and Pearson (1991), among others, have studied asymptotic 
properties of MSM. 

8.1.3. Habi t  format ion  and durability 
Many researchers have considered effects of time-nonseparability in pref- 
erences on asset pricing. Let us replace (8.2) by 

1 1 
U(t) = ~ _ ~  (S t -  - 1), (8.4) 

where S t is service flow from consumption purchases. Purchases of consump- 
tion and service flows are related by 

St = aoC , + alC~_i + a2C,_ 2 + . . . .  (8.5) 

This type of specification for the time-nonseparability has been used by 
Mankiw (1982), Hayashi (1985), Dunn and Singleton (1986), Eichenbaum, 
Hansen and Singleton (1988), Ogaki (1988, 1989), Eichenbaum and Hansen 
(1990), Heaton (1991, 1993), Cooley and Ogaki (1991), Ferson and Con- 
stantinides (1991), Ferson and Harvey (1991) and Ogaki and Park (1993) 
among others. 25 Depending on the values of the a,, the model (8.4) leads to a 
model with habit formation and/or durability. Constantinides (1990) argues 
that habit formation could help solve the equity premium puzzle. He shows 
how the intertemporal elasticity of substitution and the relative risk aversion 
coefficient depend on the a, and a parameters in a habit formation model. 

In this subsection, I will discuss applications by Ferson and Constantinides 
(1991), Cooley and Ogaki (1991) and Ogaki and Park (1993) to illustrate 

• 26 econometric formulations. In their models, it is assumed that a, = 0 for ~-/> 2. 
Let us normalize a 0 to be one, so that ~ = (6, a,  ax). The asset pricing equation 
takes the form 

E[6  {St-+1 -~ 6alS t-+2} Rt+ 1 lit] 
- 1 .  ( 8 . 6 )  

E [ S t  '~ q- 6alSt+al [It] 

Then let e~ = 6(St-+1 + 6alSt-+~)Rt+ , - ( S t  ~ + 6aiS,~+~). Though Euler equation 

25 Some of these authors allow for a possibility of a deterministic technological progress in the 
transformation technology (8.4). 

26 Eichenbaum, Hansen and Singleton (1988) and Eichenbaum and Hansen (1990) consider 
similar models with nonseparable preferences across goods. 
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(8.6) implies that E(e~ I I , ) =  0, this cannot be used as the disturbance for 
GMM because both of the two regularity assumptions discussed in Section 5 of 
the present paper are violated. These violations are caused by the nonstation- 
arity of C t and by the three sets of trivial solutions, a = 0 and 1 + 6a 1 = 0; 6 = 0 
and a = ~; and 6 = 0 and a a = ~ with a positive. Ferson and Constantinides 
(1991) solve both of these problems by defining e, = e°/{S/~(1  + 6al) }. Since 
S /~  is in It, E(e t I/t) = 0. The disturbance is a function of S,+,/S, (z -- 1, 2) and 
R~+~. When Ct+a/Ct and R t are assumed to be stationary, St+.~/S t and the 
disturbance can be written as a function of stationary variables. 

One problem that researchers have encountered in these applications is that 
Ct+ 1 + axC t may be negative when a a is close to minus one. In a nonlinear 
search for fir or in calculating numerical derivatives, a GMM computer  
program will stall if it tries a value of a I that makes Ct+ a + aaC t negative for 
any t. Atkeson and Ogaki (1991) have encountered similar problems in 
estimating fixed subsistence levels from panel data. One way to avoid this 
problem is to program the function f(Xt,  fl), so that the program returns very 
large numbers as the values of f ( X ,  ~ )  when nonadmissible parameter  values 
are used. However ,  it is necessary to ignore these large values of f(Xt,  fi) when 
calculating numerical derivatives. This can be done by suitably modifying 
programs that calculate numerical derivatives. 27 

8.1.4. Multiple-good models 
Mankiw, Rotemberg and Summers (1985), Dunn and Singleton (1986), 
Eichenbaum, Hansen and Singleton (1988), Eichenbaum and Hansen (1990) 
and Osano and Inoue (1991), among others, have estimated versions of 
multiple-good C-CAPM. Basic economic formulations in these multiple-good 
models will be illustrated in the context of a simple model with one durable 
good and one nondurable good. 

Let  us replace (8.2) by Houthakker 's  (1960) addilog utility function that 
Miron (1986), Ogaki (1988, 1989), and Osano and Inoue (1991) among others 
have estimated: 

1 1 ,, 0 (K~_,~_ 1) ,  (8.7) U( t )  = ~ -  a ( C t -  - 1) + 

where C t is nondurable consumption and K t is household capital stock from 
purchases of durable consumption good Dt 28 The stock of durables is assumed 
to depreciate at a constant rate 1 - a, where 0 <~ a < 1: 

1<2, = aK, + D, .  (8.8) 

27 Ogaki (1993a) explains these modifications for Hansen/Heaton/Ogaki  GMM package. 
28 Since the addilog utility function is not quasi-homothetic in general, the distribution of initial 

wealth affects the utility function of the representative consumer. The existence of a representative 
consumer under complete markets is discussed by Ogaki (1990) for general concave utility 
functions and by Atkeson and Ogaki (1991) for extended addilog utility functions. 
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Alternatively,  K~ can be considered as service flow in (8.5) with a,  = a ~. When 
a ~ 7 ,  preferences are not quasi homothetic.  In practice, the data for K t is 
constructed f rom data for an initial stock K0, and for D t for t = 1 . . . .  , T. Let  
Pt be the intratemporal  relative price of durable and nondurable consumption. 
Then the intraperiod first order  condition that equates the relative price with 
the marginal rate of substitution is 

,4 0E ~ " -"  6 a Kt+ ,. 

P, = (8.9) 
C7" 

Assume that D t + I / D  t is stationary. Then K , + , / D  t is stat ionary for any r 
because K t + , / D  t = Z~= 0 d D t + , / D  r From (8.9), 

P t C t  = OE ~'~a "~ -,7 
D~-" /t • (8.10) 

Assume that the variables in I t are stationary. 29 Then (8.10) implies that the 
P_tCT~/D~ -'7 is stationary because the right-hand side of (8.10) is stationary. 
Taking natural logs, we conclude that ln(Pt) - a ln(Ct) + r/ ln(Dt) is stationary. 
This restriction is called the stationarity restriction. 

From (8.9), define 

0 - a  
e t = P t C t  - (1 - 6 a F ) - I O K 7 "  (8.1l)  

where F is the forward operator.  The first order condition (8.9) implies that 
0 E(e ° I/t) = 0. One problem is that e t involves K t .  ~_ for r f rom 0 to infinity, so 

0 that e, cannot be used as the disturbance for GMM. To solve this problem,  
define e t = ( 1 -  ~ a F ) e  °. Note that e t involves only Ct, Ct+l, and K t and that 
E [ e  t lit] = 0. Hence  e t forms the basis of GMM. The only remaining problem is 
to attain stationarity. One might think it is enough to divide et ° by K~-', so that 
the resulting e t is stationary as implied by the stationarity restriction. It  should 
be noted that it is n o t  enough for et = g(X~, /30)  to be stationary, ra ther  it is also 
necessary for g ( X t , / 3 )  to be stationary for fi ~ 130. Hence  if a and r/ are 
unknown and C t or D t is difference stationary, G M M  cannot be applied to the 
first order condition (8.9). 30 Ogaki (1988, 1989) assumes that C t and D t are 
trend stationary and applies the method of Section 4 above to utilize the 
detrended version of e r In these applications, the restrictions on the trend 
coefficients and the curvature parameters  a and r / impl ied  by the stationarity 
restriction are imposed on the G M M  estimators. Imposing the stationarity 
restrictions also leads to more  reasonable point estimates for a and "q. 

Eichenbaum, Hansen and Singleton (1988) and Eichenbaum and Hansen  

29 If I, includes nonstationary variables, assume that the right-hand side of (8.9) is the same as 
the expectation conditioned on the stationary variables in I r 

30 Cointegrating regressions can be used for this case as explained below. 
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(1990) use the C o b b - D o u g l a s  utility function, so that a and ~ are known to be 
one. 31 They allow preferences to be nonseparable  across goods and time- 
nonseparable ,  but the stationarity restriction is shown to hold. In this case, the 
stationarity restriction implies that PtC~I/K~ a is stationary. This t ransforma- 
tion does not involve any unknown parameters .  Hence  this t ransformation is 
used to apply G M M  to their intraperiod first order conditions. 

8.1.5. The cointegration-Euler equation approach 
When at least one of C t and D t is difference stationary, the stationarity 
restriction implies cointegration as defined by Engle and Granger  (1987). 
Ogaki (1988) and Ogaki and Park (1993) propose  to estimate the curvature 
parameters  a and ~ of the addilog utility function, using a cointegrating 
regression. 32 Cooley and Ogaki (1991) combine this cointegration approach 
with the Euler  equation approach based on G M M  in a two-step procedure.  In 
the first step, curvature parameters  are est imated f rom a cointegrating 
regression. In the second step, we use this estimated value of a in the asset 
pricing equation (8.3) and estimate only 6. 33 This two-step procedure  does not 
alter the asymptotic distributions of G M M  estimators and test statistics because 
the cointegrating regression estimator for o~ is super consistent and converges 
at a faster rate than T 1/2. 

Cooley and Ogaki (1991) propose a specification test like Hausman ' s  (1978) 
based on the likelihood ratio type statistic (discussed in Section 7 of the present  
paper) that tests the cross equation restriction for the cointegrating regression 
and the G M M  disturbance on a. This test has power  against the factors that 
make  the two estimates different, such as nonseparabili ty in preferences across 
goods, measurement  errors, and liquidity constraints. 

8.1.6. Seasonality 
Miron (1986) augments Hansen and Singleton's (1982) model  by including 
deterministic seasonal taste shifters and argues that the empirical rejection of 
C-CAPM by Hansen and Singleton (1982) and others might be attributable to 
the use of seasonally adjusted data. 34 Although this is theoretically possible, 
English, Miron and Wilcox (1989) find that seasonally unadjusted quarterly 

31 Also see Ogaki (1992) for a discussion of the stationarity restriction implied by the Cobb- 
Douglas utility function. 

3z Ogaki and Park (1993) use Park's (1992) canonical cointegrating regressions and Park and 
Ogaki's (1991a) seemingly unrelated canonical regressions (also see Ogaki, 1993b,c). 

33 In the applications of Cooley and Ogaki (1991) and Ogaki and Park (1993), time-non- 
separability in preferences is allowed for nondurable consumption and the asset pricing equation 
(8.6) is used to estimate 6 and a 1. In their applications, the first and second goods are assumed to 
be separable in preferences over time. See Ogaki (1992) for an application of the cointegration 
approach without this separability assumption. 

34 It should be noted that a deterministic seasonal dummy can be viewed as an artificial 
stationary and ergodic stochastic process (see, e.g., Ogaki, 1988, pp. 26-27). Hence GMM can be 
applied to models with deterministic seasonal taste shifts. 
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data reject asset pricing equations at least as strongly as seasonally adjusted 
data. 38 Ogaki (1988) also finds similar empirical results for seasonally un- 
adjusted and adjusted data in the system that involves both asset pricing 
equations and intraperiod first order conditions. 

Singleton (1988) argues that the inclusion of taste shifters in C-CAPM is 
essentially equivalent to studying directly consumption data with deterministic 
seasonality removed. This is because we do not obtain much identifying 
information from seasonal fluctuations about preferences if most of seasonal 
fluctuations come from seasonal taste shifts. 36 On the other  hand, seasonal 
fluctuations may contain useful identifying information about production 
functions if production functions are relatively stable over the seasonal cycle. 
Braun and Evans (1991b) utilize such identifying information. 

Ferson and Harvey (1991) construct seasonally unadjusted monthly data and 
estimate a C-CAPM with time-nonseparable preferences. They find that 
seasonal habit persistence is empirically significant. Heaton (1993) also finds 
evidence for seasonal habit formation in Hall (1978) type permanent  income 
models .37 

8.1.7. State-nonseparable preferences 
Epstein and Zin (1991) estimate a model with state-nonseparable preferences 
specification in which the life time utility level 14, at period t is defined 
recursively by 

V t ~-- ( C ~  - ~  -~- 8 g [ v ~  7 l i t ] }  ( 1 - p ) / ( 1 - a )  , (8.12) 

38 Hoffman and Pagan (1989) obtain similar results. 
36 Beaulieu and Miron (1991) cast doubt on the view that negative output growth in the first 

quarter (see, e.g., Barskey and Miron, 1989) is caused by negative technology seasonal by 
observing negative output growth in the southern hemisphere. 

37 See Ghysels (1990, especially Section 1.3) for a survey of the economic and econometric issues 
of seasonality. 

where a > 0 and p > 0. The asset pricing equation for this model is 

, e ~/ 0 
E[6 (Rt+I) (C,+I/C,) Rt+l] = 1, (8.13) 

for any asset return R,+I, where 8"  = 6  ° -~) / ° -p) ,  ~ = ( p -  a ) / ( 1 - p ) ,  0 = - 
p(1 - o0/(1 - p ) ,  and R~+, is the (gross) return of the optimal portfolio (R~+I is 
the return from period t to t + 1 of a security that pays C t every period 
forever). Epstein and Zin use the value-weighted return of shares traded on the 
New York Stock Exchange as Ret+~. Thus Roll's (1977) critique of CAPM is 
relevant here as Epstein and Zin discuss. 

Even though (8.13) holds for Rt+~ = R  e t+l, the identification assumption 
discussed in Section 5 is violated for this choice of Rt+ 1 because there exists a 
trivial solution, (6", ~, 0) = ( l ,  1, 0), for g(X,,/3) = 0. When multiple returns 
that include R~+I are used simultaneously, then the whole system can satisfy 
the identification assumption but the GMM estimators for this partially 
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unidentified system are likely to have bad small sample properties. A similar 
problem arises when R,+ 1 does not include RT+ 1 but includes multiple equity 
returns whose linear combination is close to RT+ 1. It should be noted that 
Epstein and Zin avoid these problems by carefully choosing returns to be 
included as Rt+ 1 in their system. 

8.2. Monetary models 

In some applications, monetary models are estimated by applying GMM to 
Euler equations and/or intratemporal first order conditions. Singleton (1985), 
Ogaki (1988), Finn, Hoffman and Schlagenhauf (1990), Bohn (1991) and Sill 
(1992) estimate cash-in-advance models, Poterba and Rotemberg (1987), Finn, 
Hoffman and Schlagenhauf (1990), Imrohoroglu (1991), and Eckstein and 
Leiderman (1992) estimate money-in-the-utility-function (MIUF) models, and 
Marshall (1992) estimates a transactions-cost monetary model. 

It turns out that cash-in-advance models involve only minor variations on the 
asset pricing equation (8.3) as long as the cash-in-advance constraints are 
binding and C t is a cash good (in the terminology of Lucas and Stokey (1987)). 
However, nominal prices of consumption, nominal consumption, nominal asset 
returns are aligned over time in a different way in monetary models than they 
are in Hansen and Singleton's (1982) model. Information available to agents at 
time t is also considered in a different way. As a result, instrumental variables 
are lagged one period more than in the Hansen-Singleton model, and ut has an 
MA(1) structure (time aggregation has the same effects in linear models as 
discussed above). There is some tendency for chi-square test statistics for the 
overidentifying restrictions to be more favorable for the timing conventions 
suggested by cash-in-advance models (see Finn, Hoffman and Schlagenhauf, 
1990, and Ogaki, 1988). Ogaki (1988) focuses on monetary distortions in 
relative prices for a cash good and a credit good and does not find monetary 
distortions in the U.S. data he examines. 

8.3. Linear rational expectations models 

There are two alternative methods to apply GMM to linear rational expecta- 
tions models. The first method applies GMM directly to linear Euler equations 
implied by the optimization problems of economic agents. There are many 
empirical applications of this method, including those of Pindyck and Rotem- 
berg (1983), Fair (1989), and Eichenbaum (1990). In linear models, two-stage 
least squares estimators and three-stage least squares estimators can be 
considered as special cases of GMM estimators when the disturbances of the 
regressions are serially uncorrelated and conditionally homoskedastic. 

The second method is developed by Hansen and Sargent (1982), which 
applies GMM to Hansen and Sargent's (1980, 1981a) linear rational expecta- 
tions models. This method imposes nonlinear restrictions implied by Wiener- 
Kolmogorov prediction formulas (see, e.g., Hansen and Sargent, 1981b) on a 
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VAR representation. Compared with the first method,  this second method 
requires more assumptions about the stochastic law of motion of economic 
variables but utilizes more restrictions and is (asymptotically) more efficient 
when these assumptions are valid. West (1989) extends Hansen and Sargent's 
(1980) formulas to include deterministic terms, and Hansen and Sargent (1991, 
Chapters 7, 8, 9) provide the continuous time counterparts of these formulas. 
Maximum likelihood estimation has been used more frequently for the 
Hansen-Sargent  type linear rational expectations model than GMM (see, e.g., 
Sargent, 1978, 1981a,b; Eichenbaum, 1984; Finn, 1989; and Giovannini and 
Rotemberg,  1989) even though Hansen and Sargent's (1982) method can be 
applied to these models. West (1987, 1988a) does not impose the nonlinear 
restrictions on his estimates but tests these restrictions. West (1987, 1988a) uses 
West's (1988b) results when difference stationary variables are involved. 38 

8.4. Calculating standard errors for estimates of standard deviation, 
correlation and autocorrelation 

In many macroeconomic applications, researchers report  estimates of standard 
deviations, correlations, and autocorrelations of economic variables. It is 
possible to use a GMM program to calculate standard errors for these 
estimates, in which the serial correlation of the economic variables is taken into 
account (see, e.g., Backus, Gregory and Zin, 1989, and Backus and Kehoe,  
1992). 

For example, let x, and Yt be economic variables of interest which are 
assumed to be stationary and let X , = ( x , , y , )  and f(X,,[3)= 

2 (x~,x2t, Yt, Y,,x,yt,xtxt-~)'-[3. Then the parameters to be estimated are the 
= E(x, ) ,  E(yt), (y,), E(x,y,), E(xtx,_~)). population moments: [30 (E(x,), 2 E 2 

Applying GMM to f (X ,  [33), one can obtain an estimate of [30, [3r, and an esti- 
mate of the covariance matrix of Ta/2([3r - [3o), X r. In most applications, the 

order  of serial correlation of (x,, x~, y,, y2, x,yt)' is unknown, and its long-run 
covariance matrix, g2, can be estimated by any of the methods of Section 6 
(such as Andrews and Monahan's  prewhitened QS kernel estimation method).  

Standard deviations, correlations, and autocorrelations are nonlinear func- 
tions of /30. Hence one can use the delta method to calculate the standard 
errors of estimates of these statistics. Let g([3o) be the statistic of interest. For 

2 .12/2 for the standard deviation of x,. Then g([3r) is example, g([30) = ([302 - [30a~ 
a consistent estimator of g([30). By the mean value theorem, g([3r) = g([3o) + 
Ar([3r- [3o), where A r is the derivative of g(.) evaluated at an intermediate 
point between [3r and /30. Since Ar converges in probability to A 0 = Og([3o)/ 
013', (g([3r) -g([30)) has an approximate normal distribution with the variance 
(1 / T)ArJ~rA~ in large samples. 

38 It should be noted that West (1986b) treats the special case of one difference stationary 
regressor with nonzero drift (which is relevant for his applications cited here). His results do not 
extend to multiple regressors (see, e.g., Park and Phillips, 1988). 
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8.5. Other empirical applications 

Though I have focused on consumption-based pricing models that relate asset 
returns to the intertemporal decisions of consumers, GMM can be applied to 
production-based asset pricing models that relate asset returns to the inter- 
temporal  investment decisions (see, e.g., Braun, 1991, and Cochrane, 1991, 
1992). 

Singleton (1988) discusses the use of GMM in estimating real business cycle 
models. Christiano and Eichenbaum (1992) develop a method to estimate real 
business cycle models, using GMM. They apply their method to U.S. data. 
Braun (1990), Burnside, Eichenbaurn and Rebelo (1993), Braun and Evans 
(1991a,b) have estimated real business cycle models, among others. 

There  has not been much work to apply GMM to models of asymmetric 
information. An exception is an application of GMM to a model of moral 
hazard by Margiotta and Miller (1991). 

9. Further issues 

9.1. Optimal choice of instrumental variables 

In the NLIV model discussed in Section 3, there are infinitely many possible 
instrumental variables because any variable in I t can be used as an instrument. 
Hansen (1985) characterizes an efficiency bound (that is, a greatest lower 
bound) for the asymptotic covariance matrices of the alternative GMM 
estimators and optimal instruments that attain the bound. Since it can be time 
consuming to obtain optimal instruments, an econometrician may wish to 
compute an estimate of the efficiency bound to assess efficiency losses from 
using ad hoc instruments. Hansen (1985) also provides a method for calculating 
this bound for models with conditionally homoskedastic disturbance terms with 
an invertible MA representation. 39 Hansen, Heaton and Ogaki (1988) extend 
this method to models with conditionally heteroskedastic disturbances and 
models with an MA representation that is not invertible. 4° Hansen and 
Singleton (1988) calculate these bounds and optimal instruments for a continu- 
ous time financial economic model. 

9.2. GMM and semi-parametric estimation 

In many empirical applications, the density of the random variables is 
unknown. Chamberlain (1987, 1992), Newey (1988), and Hansen (1988) 
among others have studied the relationship between GMM estimators and 

39 Hayashi and Sims' (1983) estimator is applicable to this example. 
40 Heaton and Ogaki (1991) provide an algorithm to calculate efficiency bounds for a continuous 

time financial economic model based on Hansen, Heaton and Ogaki's (1988) method. 
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efficient semi-parametric estimators in this environment. Chamberlain (1992) 
links optimal GMM estimators in panel data to recent semi-parametric work, 
such as that of Robinson (1987, 1991) and Newey (1990). Technically, Hansen 
(1988) shows that the GMM efficiency bound coincides with the semi-paramet- 
ric efficiency bound for finite parameter  maximum likelihood estimators for 
dependent  processes. Chamberlain (1987) shows similar results for indepen- 
dently and identically distributed processes. 

In order to give an intuitive explanation for the relationship between GMM 
and semi-parametric estimation, let us consider a simple model that is a special 
case of a model that Newey (1988) studies: 41 

Yt =x',flo + e t ,  (9.1) 

where the disturbance e t is a scalar iid random variable with unknown 
symmetric density 4)(et) , and x~ is p-dimensional vector of nonstochastic 
exogenous variables. The MLE of/3,  fir, would maximize the log likelihood 

L = ~'~ log ~b(y, - x~/3), (9.2) 

and would solve 

d,(/3r) = 0 (9.3) 

if ~b were known, where d = 0 log 4~(Yt - x,fl)/Ofl is the score of/3. An efficient 
semi-parametric estimator is formed by estimating the score by a nonparamet- 
ric method and emulating the MLE. 

On the other hand, GMM estimators can be formed from moment  restric- 
tions that are implied by the assumption that e t is distributed symmetrically 
distributed: E(xte , )= O, E(xte~)= O, etc. Noting that the score is of the form 
xt~(e,) for a function (( . ) ,  the GMM estimator with these moment  restrictions 
approximates ~(et) with a polynomial in e r Because the density of e t is assumed 
to be symmetric, ~(et) is an odd function of e t and thus odd functions are used 
to approximate ~(et). With a sufficiently high order polynomial, the unknown 
score is well approximated and the GMM estimator is also efficient. 

9.3. Small sample properties 

Unfortunately,  there has not been much work done on small sample properties 
of GMM estimators. Tauchen (1986) shows that GMM estimators and test 
statistics have reasonable small sample properties for data produced by 
simulations for a C-CAPM. Ferson and Foerster (1991) find similar results for 
a model of expected returns of assets as long as GMM is iterated for estimation 
of g2. Kocherlakota (1990) uses preference parameter  values of 6 = 1.139 and 
o~ = 13.7 (in (8.1) and (8.2) above) in his simulations for a C-CAPM that is 
similar to Tauchen's model. While these parameter  values do not violate any 

41 The material that follows in this subsection was suggested by Adrian Pagan. 
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theoretical restrictions for existence of an equilibrium, they are much larger 
than the estimates of these preference parameters by Hansen and Singleton 
(1982) and others. Kocherlakota shows that GMM estimators for these 
parameters are biased downward and the chi-square test for the overidentifying 
restrictions tend to reject the null too frequently compared with its asymptotic 
size. Mao (1990) reports that the chi-square test overrejects for more conven- 
tional values of these preference parameters in his Monte Carlo simulations. 

Tauchen (1986) investigates small sample properties of Hansen's (1985) 
optimal instrumental variables GMM estimators. He finds that the optimal 
estimators do not perform well in small samples as compared to GMM 
estimators with ad hoc instruments. Tauchen (1986) and Kocherlakota (1990) 
recommend small number of instruments rather than large number of instru- 
ments when ad hoc instruments are used. 

Nelson and Startz (1990) perform Monte Carlo simulations to investigate the 
properties of t-ratios and the chi-square test for the overidentifying restrictions 
in the context of linear instrumental variables regressions. Their work is 
concerned with small sample properties of these statistics when the instruments 
are poor (in the sense that it is weakly correlated with explanatory variables). 
They find that the chi-square test tends to reject the null too frequently 
compared with its asymptotic distribution and that t-ratios tend to be too large 
when the instrument is poor. Their results for t-ratios may seem counterintui- 
tive because one might expect that the consequence of having a poor 
instrument would be a large standard error and a low t-ratio. Their results may 
be expected to carry over to NLIV estimation. Some of the findings by 
Kocherlakota (1990) and Mao (1990) that are apparently conflicting with those 
of Tauchen (1986) may be related to this problem of poor instruments (see 
Canova, Finn and Pagan, 1991, for a related discussion). 

Arellano and Bond (1991) report Monte Carlo results on GMM estimators 
for dynamic panel data models. They report that the GMM estimators have 
substantially smaller variances than commonly used Anderson and Hsiao's 
(1981) estimators in their Monte Carlo experiments. They also report that the 
small sample distributions of the serial-correlation tests they study are well 
approximated by their asymptotic distributions. 

10. Concluding remarks 

Many researchers have used GMM to estimate nonlinear rational expectations 
models with aggregate time series data. There are many other possible 
applications of GMM and GMM programs. We will probably see more 
applications of GMM to panel data and to models with asymmetric information 
in the near future. Other uses of a GMM program discussed here include the 
implementation of minimum distance estimation, the calculation of standard 
errors that take into account serially correlated disturbances, and generating 
inferences that take into account the effects of the first estimation step in 
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sequential (or two-step) estimation. Pagan and Pak (1993) present a method 
for using a GMM program to calculate tests for heteroskedasticity. 
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Testing for Heteroskedasticity 

A. R. Pagan and Y. Pak 

1. Introduct ion 

Although mathematical statistics has as its foundation the assumption that 
random variables are identically and independently distributed, it is generally 
recognized that the distribution functions may well not be identical. Despite 
the fact that a failure of this restriction could be due to any moments  lacking 
constancy, it has been the second moment  which has attracted the most 
attention, and which has led to interest in detecting whether an assumption of 
constancy across units of observation is reasonable. In econometrics a constant 
variance tends to be referred to as a random variable exhibiting 'homoskedas- 
ticity' whereas a non-constant one is said to be 'heteroskedastic' .  1 Sometimes 
one sees the equivalent term of heterogeneous; certainly the latter description 
is a more meaningful one for those unfamiliar with econometric rhetoric but 
the two terms will be used interchangeably in this paper. 

Early interest in heteroskedasticity arose from the concerns of users of the 
linear regression model. It was demonstrated that the ordinary least-squares 
(OLS) estimator was not efficient if the errors in the regression model were 
heteroskedastic, and, more seriously, any inferences made with standard errors 
computed from standard formulae would be incorrect. To obviate the latter 
problem, methods were derived to make valid inferences in the presence of 
heteroskedasticity (Eicker,  1967; White, 1980). To address the former problem 
it was desirable to perform efficient estimation in the presence of heteroskedas- 
ticity. If the heteroskedasticity had a known parametric form the generalized 
least-squares (GLS) estimator could be invoked; if the form of the heteros- 
kedasticity was unknown, generalized least squares based on a non-parametric 
estimation of the variance could be implemented along the lines of Carroll 
(1982) and Robinson (1987). One has the feeling that the development  of 
these procedures has mitigated some of the concern about heteroskedasticity in 
the basic regression model. 

The argument given by McCulloch (1985) regarding the spelling of heteroskedasticity with a 'k' 
rather than a 'c' seems to have been almost universally accepted in econometrics in the last decade. 

489 
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The basic regression model is now only one of the techniques used in 
econometric work, and the development of powerful packages for PCs such 
as LIMDEP, SHAZAM, GAUSS, and RATS has resulted in a much wider 
range of methods of examining data. Analyses of binary data, frequently 
called 'discrete choice models' in econometrics, censored data, 'count' data in 
which the random variable is discrete and takes only a limited number of 
values, and models in which 'volatility' affects the conditional mean of a 
variable to be explained, as in the ARCH-M model of Engle et al. (1987), 
have the characteristic that heterogeneity is an integral part of the model; or, 
in terms used later, the heteroskedasticity is intrinsic to the model. In these 
instances, what is of interest is whether the pattern of heteroskedasticity in 
the data differs from that in the model; if so, it is generally the case that the 
estimators of the specified model parameters would be inconsistent, and 
therefore, a re-specified model is called for, e.g., see Arabmazar and Schmidt 
(1981) for an analysis of this for a censored regression model. For such cases, 
the  detection of the correct format for any such heteroskedasticity is of 
fundamental importance and should be a routine part of any empirical 
investigation. 

This paper aims to provide a review of work done on testing for heteros- 
kedasticity. The basic approach taken is that all existing tests can be regarded 
as 'conditional moment tests' (CM tests) in the sense of Newey (1985a), 
Tauchen (1985) and White (1987), with the differences between them revolv- 
ing around the nature of the moments used, how nuisance parameters are 
dealt with, and the extent to which a full sample of observations is exploited. 
Given this view, it is natural to devote Section 2 of the paper to a general 
discussion of CM tests and complications in working with them. Section 3 
proceeds to categorize existing tests for the regression model according to this 
framework. This section is lengthy, largely because most of the existing 
literature has concentrated upon the regression model. In fact, there are good 
reasons for working through the diversity of approaches in this area. Binary, 
count and censored regression models, dealt with in Section 4, can be 
regarded as specialized non-linear regression models, implying that ap- 
proaches developed for the linear model will have extensions. What differen- 
tiates the models in Section 4 is that these exhibit intrinsic heteroskedasticity, 
and the prime question is whether there is any 'extra' heteroskedasticity that 
is not in the maintained model. Many terms to describe this situation are in 
use - fo r  example over-dispersion-but it is useful to adopt the descriptor of 
'extrinsic heteroskedasticity', as this is neutral towards the issue of whether 
there is 'too much' or 'too little' heteroskedasticity in the maintained model. 
Section 4 also contains a discussion of specification testing in volatility 
models; this material falls into the general framework advanced in this 
section, because it is likely that a simple model of volatility has already been 
fitted and the question posed is whether this simple model is an adequate 
explanation of the data. Section 5 reviews work done on the size and power 
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of test statistics proposed in the literature, while Section 6 concludes the 
paper.  

2. Conditional moment  tests and their properties 

When models are estimated, assumptions are made,  either explicitly or 
implicitly about  the behavior  of particular combinations of random variables. 
Let  such a combination be denoted as ~bi, i = 1 . . . . .  n, and assume that the 
restriction is that E(~b i I ~/) = 0, where o~. is some sigma field associated with 
the random variables? This is a conditional moment  restriction that is either 
implied by the model  or is used in constructing an est imator to quantify it. It  is 
useful to convert  this to an unconditional moment  restriction by denoting z i as 
a (q x 1) vector  of elements constructed from o~. By the law of i terated 
expectat ions it then follows that 

E(z,6,)  = E(rn~) = O. (1) 

Of  course it is clear that (1) is not unique, as any non-singular t ransformation 
of it satisfies the restriction, i.e., 

E(Azfl)i) = 0 ,  (2) 

where A is non-singular. A particularly useful choice of A is (E ziz~) -1. 
Given that (1) and (2) should hold in the population,  it is natural to examine 

the sample moment(s)  ÷ = n-1 g zfl, i or 4/= g Az~ch~ as a test of this restriction. 
It is clear from this why choosing A = (E ziz~ )-1 is helpful, since then 4/will be 
the regression coefficient of ~b~ on z~, whereas ~ is the regression coefficient of 
ziqS~ against unity. As emphasized in Cameron  and Trivedi (1991), the 
regression of ~b~ on z~ allows one to think in traditional terms about 'null '  and 
'a l ternat ive '  hypotheses simply by considering whether  y (the populat ion 
counterpar t  to 5/) is zero or not. Selecting either + or ") it is logical to test if (1) 
holds by testing if either r or y is zero. If  m~ does not depend u p o n  any 
nuisance parameters  that need to be estimated,  one would expect that var(÷) = 
n-2 var(E m~) = n-2 g var(m~) = n-ZV, if observations are independently distrib- 
uted. Using a central limit theorem,  nl/2÷ should be 2¢'(0, lim,__,=n-lV) and 
S = n 2 T ' V - 1 T  = (E m ~ ) ' V - l ( g  mi) will b e  xZ(q),  where all these distributional 
s tatements  are meant  to hold under (1). 3 Hence  a large value of this test 
statistic, relative to a x2(q)  random variable, would be grounds for rejection of 
(1). 

-" Mostly ~i will be a scalar in what follows, but there is no necessity for that. 
3 In what follows, mi will either be zidp~ or Azi4) i as the argument does not depend on the specific 

format. No attempt is made to spell-out what conditions are needed for central limit theorems etc. 
to apply, but a recent detailed reference would be Whang and Andrews (1991). 
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Of course, V is an unknown and the issue of its estimation arises. One 
possibility is to evaluate var(mi) = E(mim~ ) directly, but that may require some 
auxiliary assumptions about the density of m~, or the random variables 
underlying it, which are not directly concerned with (1). This point has been 
made very forcibly by Wooldridge (1990) and Dastoor (1990); the latter 
emphasizes that large values of S might simply reflect a violation of the 
auxiliary assumptions rather than a failure of (1), Such arguments have led to 
proposals that the test statistics be made robust, i.e., dependent  on as few 
auxiliary assumptions as possible, and to this end V is replaced by 12 = E mira ~ .4 
Unfortunately,  there appears to be a tradeoff between the desire for robustness 
and the need to use asymptotic theory, as the test statistic S =  
(Emi)12-1(Zmi)  is likely to converge to a x2(q) slowly, because 12 is a 
random variable itself. Much depends on how 'random' 12 is, and that in turn 
depends on the nature of m~. If the m i are highly non-linear functions of the 
basic random variables, for example being quartic or higher polynomials, 12 
will exhibit a good deal of randomness, and this will result in large departures 
of S from a x2(q).  An example of this problem is in the component  of White's 
(1980) information matrix test focusing on excess kurtosis, which involves the 
fourth power of a normally-distributed random va r i ab l e - see  Chesher and 
Spady (1991) and Kennan and Neumann (1988). For tests of heteroskedasticity 
in the basic regression model the m~ are not highly non-linear functions, and 
therefore no major difficulties have been reported; however, that situation may 
be modified when more complex models such as censored regression are 
thoroughly investigated. 

It is worth drawing attention to a potential difference between tests of (1) 
based on 4/and ~.5 In theory, there should be no difference, but the fact that 4/ 
can be computed by regressing ~b~ against zi leads to the temptation to utilize 
the t-ratio from such a regression as a test of (1). But the correct t-ratio has to 
use var (4 / )=  AZvar(Ezi4)i), whereas the regression program takes it to be 
var(4~i)A. Unless it is known that the var(~bi) is a constant, whereupon 
var(Ez~b~) = var(q~)A -1, to obtain the correct test statistic it is necessary to 
use the option for finding 'heteroscedastic consistent standard errors'  built into 
most econometric packages these days; fa i lure  to do so would create the 
potential for differing conclusions based on i- and 4/. 

In practice it will rarely be the case that m~ can be regarded  as solely a 
function of random variables. Either qSi or z i will involve nuisance parameters 0 
that are replaced by estimates 0 when computing ~, i.e., ~ = n - I S  m~(O). This 
feature may create difficulties in evaluating V. To see that, expand E m~(O) 
around the true value of 0, 00, retaining only the first terms 

E mi(O) "-~ E mi(Oo) + Mo(O - 0o), (3) 

4 When m i is dependent this formula would need to be modified. A range of possibilities is set 
out in Andrews (1991). 

5 The discussion that follows takes y and z as scalars for simplicity. 
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where M o = E[E Om~/O0 ,],.6 Accordingly, 

var (~ ,rni(O))  = V  + cov mi(Oo)(O-Oo)' M o 

+ M 0 c o v  O-Oo)~ ,mi (O  o +Movar (O)M o,  (4) 

and the appropriate term to substitute for the variance of ~ will be 
n-2var(Emi(O))  rather than n-2V. Inspection of (4) shows that the two are 
equal if M o = 0 and, happily, for many tests of heteroskedasticity in the basic 
regression model, that restriction will hold. It is important to observe that M o is 
to be evaluated under (1), since it is the var(Emi(O)) under that restriction 
which is desired. Some cases of heteroskedasticity feature M o ¢=0, except 
'under the null hypothesis'. 

When M o ¢ 0  a separate computation of va r (Emi(0) )  is needed and, 
although fairly easy with packages that have matrix manipulation capabilities, 
it is unlikely that a regression program can be utilized for the computations. 
Generally,  there will be some set of first-order conditions defining 0, say 
£hi(O ) = 0 ,  and ( 0 - 0 0 ) ~ - / - / o  1 E hi(Oo), where H o =E[EOhi/O0] 7, making 
the middle terms in (4) depend on the cov{(P, mi(Oo))(2 h~(00) }. If this turns out 
to be zero, var(Em~(O))>~var(gm~(Oo)), and any tests performed utilizing V 
would overstate the true value of the test statistic, i.e., result in over-rejection 
of the hypothesis (1). Unless h(.) is specified however,  there is no way of 
knowing if such 'directional' statements might be made. By far the simplest 
procedure to effect an adjustment is to jointly specify the moment  conditions 
to be used for estimation as E ( m ~ -  ~-)= 0 and E(h i (0 ) )=  0. By definition the 
method of moments solutions to this problem will be ÷ and 0, and the var(÷) 
would be automatically computed by any program getting such estimates. 
Notice that with 0 and ~ as starting values iteration will terminate in one step, 
so there are no convergence problems. 

The literature does contain one instance in which any dependence of var(~) 
on 0 can be accounted for. This is when 0 is estimated by maximum 
likelihood. Then h i are the scores for 0, and application of the generalized 
information equa l i ty -  Tauchen (1985) - yields E( Om J 00) = - E(h~m ~ ), E( Oh i~ 
00) = - E ( h i h  ~). After  substituting these into (4) it is possible to construct the 
test statistic as the joint test that the intercepts are all zero in the regression of 
mi(O ) against unity and hi(O ) (see Tauchen,  1985; Pagan and Vella 1989). A 
disadvantage of the proposal is that it introduces randomness into the 

t 'denominator '  of the test statistics owing to the move from M o to E h~rn i etc. 
Some preliminary evidence in Skeels and Vella (1991) using simulated data 

6 The symbol -~ is meant to indicate that terms have been neglected that will not affect the 
asymptotic properties of the left-hand side variable after it has been appropriately normalized. 

7 If h is not differentiable H o will be replaced by E OE(hi)/aO, see Whang and Andrews (1991). 
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f rom a censored  regress ion mode l  is that  Omi/O0 is poor ly  es t imated  by 
- - 1  ! 

n Zh im i ,  and that  the es t imator  de te r iora tes  as the degree  of  censor ing 
increases.  H o w e v e r ,  p rov ided  the inaccuracy does not  have  too grea t  an impac t  
u p o n  the p roper t i es  of  the test  it may  be a small pr ice to pay  for  the 
conven ience  of  the test.  

(1) is a very  genera l  s t a t emen t  of  what  might  be  tested.  A n o t h e r  v iewpoin t  is 
to conceive  of  an a l ternat ive  mode l  to the one being inves t igated which has q 
ext ra  p a r a m e t e r s  3', with the a l ternat ive  and basic models  coinciding when  3' 
t akes  values  3'*. By  specifying a densi ty or  a set o f  m o m e n t  condi t ions 3' could 
be  es t imated  and tested to see if it equals 3'*. H o w e v e r ,  if 3' is no t  of  interest  
pe r  se, the mos t  likely way to p e r f o r m  such a test  is with someth ing  like the 
Lag range  mult ipl ier  ( L M )  test  or  score test. In this app roach  the  score for  3', 
d i, is eva lua ted  at the M L E  of  0 and 3', given 3' =3"*,  and this is tes ted for  
w h e t h e r  it is zero.  Formal ly ,  this is a special case of  (1), as the  scores should 
have  a zero expec ta t ion  under  the null hypothes is  tha t  3' = 3'*. Accord ingly ,  
set t ing m i = d i makes  the  score test  a special case of  wha t  has a l ready been  
discussed. The  ma in  advan tages  of  the score test  are tha t  it yields a very  precise  
m o m e n t  condi t ion (1) and it also p roduces  a test  with op t imal  p roper t i es  if the  
densi ty  it is based  on is correct ;  its principal  d i sadvantage  is tha t  it in t roduces  
an auxil iary assumpt ion  per ta in ing  to densit ies that  m a y  be invalid,  and  such a 
c i rcumstance  would  cause it to lose its opt imal i ty  proper t ies .  8 Never the less ,  the 
score  test  is very useful as a b e n c h m a r k ,  in that  it can suggest  sui table m o m e n t  
condi t ions  which m a y  be  modif ied to allow for  u n k n o w n  densities;  a fu r the r  
discussion on this poin t  is given in Sect ion 3. 

The  p resence  of  nuisance p a r a m e t e r s  in m i m a y  actually be  conve r t ed  into an 
advan tage  ra ther  than  a d isadvantage .  Suppose  that  there  are two possible  
es t imators  of  0, 0 and 0, which are the solut ions of  Z hi(O ) = 0 and  2 gi(O) = 0 
respect ively ,  and tha t  bo th  0, 0 are consis tent  if wha t  is be ing tes ted  is t rue ,  
while they  converge  to different  values  for  0 if it is false. A compar i son  of  0 
with 0, i .e. ,  fo rming  ~b = 0 - 0, as r e c o m m e n d e d  in H a u s m a n  (1978), enables  
one  to fo rm a test  statistic tha t  the hypothes is  being tes ted is t rue,  since ~ will 
only  be  close to zero  if this is so. Asympto t ica l ly ,  an exact ly  equiva len t  
p r o c e d u r e  is to test  if E(hi (0))  = 0 using E hi(O ) (or E(gi(O)) = 0 using E gi(O)), 
since S h i ( O ) ~ Z h i ( O ) + H o ( O - O ) = H o ( O - 0 ) ,  and,  if H o is non-s ingular ,  
the  tests mus t  give the  same  ou tcome .  Hence ,  one  can define m i as gi and  use  0 
f rom Z h i (0 )  = 0 to p roduce  a m o m e n t  test. As  seen in la ter  sect ions,  such an 
idea  has been  a popu l a r  way  to test  for  heteroskedast ic i ty .  

Ul t imate ly ,  we are in teres ted  in test ing for  he te roskedas t ic i ty  in var ious  
contexts .  If  data  is o rde r ed  e i ther  chronological ly  or  by some  var iable  such as 

8 The LM test has been shown to possess a number of optimal properties. For local alternatives, 
it has maximal local power in the class of chi-square criteria, and in some situations, may be the 
locally best invariant test (see King and Hillier, 1985). The situations where this is true center 
largely on the regression model in which a single parameter entering the covariance matrix of u i is 
tested for being zero against the alternative that it is positive. In fact it is not the LM test per se 
which has this property but the one-sided version of it. 
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(say) firm size, then it is natural to think of heteroskedasticity as involving 
structural change in whatever constitutes the scale parameter  of the model. 9 
Defining E ( m i ) = 0  as the moment  condition used to estimate this scale 
parameter ,  it is therefore reasonable to test for heteroskedasticity by examin- 

nk rni(0), where k is a fraction of the sample and 0 ing the cumulative sums E i= 1 
includes both the scale parameter  (01) as well as any others (02) which form 
part of the model. Since 0 is being estimated from the same data as is being 
used for specification testing, some allowance has to be made for that fact in 

V z~nk determining the artz~i= 1 mi(O)). It will be assumed that E(Omi/OO2)=0, as 
this can be shown to be true for estimators of the scale parameter  used later, 
and such a restriction therefore means that (01 -0 1 )  asymptotically behaves 
like 

--(i=~lOmi/OO1)-l(i~=lmi) • 

,k m~(O) around 0 and applying the assumptions just made Linearizing E ~=t 
gives 

mi(O) ~- ~ mi(O) + (Omi/O01) (01 - 01) (5) 
i = 1  i = 1  - 

n k  ini~=l I ( ~ ) - 1 ( / = ~  1 ) ~" E mi(O) + (Omi/OOx) - (Orn~/O01) mi(O ) ( 6 )  
i=1 - - - 

= ~, mi(O ) - (nk/n) (nk) -1 (Omi/O01) 
i=l i=1 

nk n 
~Emi(O)-k(i~=lmi(O))'i=l _ (8 )  

as (nk) -1 E~I  (Omi/O01) -- n-1 2~=1 (Omi/O01) should be Op(1) for large enough 
n and for fixed k as they both estimate E(OmJOOl) , which is constant under  the 
null hypothesis. Consequently, the 

v a t  mi( O ) = v a r  mi(O ) -  k m~(O ) . 
i=1 

To evaluate this variance assume that rni(O) is lid with variance v; the same 
results hold if it is dependent  and Hansen (1990) has a formal proof  of that 

To apply the theory that follows the heteroskedasticity cannot arise from the variable by which 
the data is ordered, since that variable now has a trend associated with it and the asymptotic theory 
being invoked explicitly rules out the possibility of trending variables, 



496 A . R .  Pagan and Y. Pak 

fact. Then 

var mi(O ) - k mi(O ) 
t . i = l  

+ k 2 var mi(O (9) 
,= 

= (nkv) - 2k(nkv) + kZnv (10) 

= (nkv) - k2(nv) .  (11) 

Defining V( k ) nk = var(Ei= 1 mi(O))= nkv, (11) can be expressed as 

V(k)  - kzV(1) (12) 

: V ( k )  - V ( k ) V ( 1 )  i V (k )  (13) 

using the fact that k = V ( k ) / V ( 1 ) .  Consequently, var (Emi (O) )~-V(k  ) -  
V (k )V(1 ) - IV(k )  and V(k) can be estimated by f'(k) = Ei= in* m2(O). Using these 
pieces of information the following CUSUM test can be constructed: 

C ( k ) =  mi(O) / [ f ' ( k ) -  f / ' ( k )9 (1 ) - lg (k ) ] .  (14) 

For any k this will be asymptotically a gz(1) if the model is correctly specified. 
A number Of different tests can be associated with this approach. 
(a) Let k = ( l /n) ,  (2/n), etc. and define S C =  SUPkC(k ), i.e., look at the 

maximum of C ( k ) f o r  all values of k from ( l /n )  to (n - 1)/n in increments of 
( l /n) .  By definition of 01, 27=1 mi(01) = 0, forcing one to find the sup of C(k) 
over a restricted range; Andrews (1990) suggests 0.15 to 0.85. 

(b) L w = n -I E]"=-I 1 C( j /n) .  This is an average test. The L comes from the 
fact that, if the scale parameter is estimated by ML and m i are therefore the 
scores with respect to it, the statistic can be thought of as the LM test for the 
hypothesis that var(v~) = 0 in the model 01,. = 0ai_ a + v i (see Hansen, 1990). The 
distribution is non-standard and is tabulated in Hansen's paper. 

( c ) L  C : n - i V ( l )  - 1  Z ; _ - ?  J ^ 2 [Z~= 1 mi] . This is also an LM test like (b), differing 
in the covariance matrix assumed for ~ under the alternative. Hansen also 
tabulates the distribution of this test. On the basis of simulation studies (for 
testing constancy of location parameters) he finds it has better correspondence 
with asymptotic theory than (b) does. Probably this is because one is using less 
random elements in the denominator of the statistic. The more randomness 
one induces into denominators of test statistics the slower their convergence to 
limiting distributions tends to be. In some cases it can be very slow indeed, and 
leads to substantial over-rejections, e.g., Chesher and Spady (1991). 
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3. Testing heteroskedasticity in the regression model 

3.1. Testing using general moment  conditions 

The basic regression model  is 

Yi =x;/3 + Ui, (15) 

w h e r e x / i s  a (p  x 1) vector and u i will be assumed independently distributed 
(0, 2 o-i )' with o- i being a function of some variable summarized by the field ~ .  
Initially, xi will be taken to be weakly exogenous and y~ will be a scalar. If  the 
errors are to be homoskedastic,  E(zi(o--2u~ - 1)) = E(z~qSi) will be zero,  where 

2 ~ O - 2  o-~ under the assumption that there is no heteroskedasticity,  while z i is a 
(q x 1) vector drawn from o~ possessing the proper ty  E(zi) = 0.1° The  set of 
momen t  conditions E ( z / h i ) =  E ( m i ) = 0  will therefore be used to test for 
heteroskedasticity,  and this was the structure set out in (1). 

There  are obviously many tests for heteroskedasticity that may be generated 
by selection of zi, and this was the theme of Pagan and Hall (1983). Examples  
would be z i -~-(X~/3) 2 used in M I C R O F I T  (Pesaran and Pesaran,  1987); z i -~- 

(Y i-1 --X~_113)2 the test for first-order autoregressive conditional heteroskedas-  
ticity ( A R C H )  introduced in Engle (1982); z i=vec(x~®x~)  (excluding any 
redundant  elements),  used in White (1980); and z i = i, which was suggested by 
Szroeter (1978), and applied by many others after him. All of these tests can 
be constructed by regressing th~ upon zs, and all the issues concerning 
robustness and dependence on nuisance parameters  set out in Section 2 apply. 
Perhaps the issue that occupied most  attention in Pagan and Hall  was the latter 
one, As argued in Section 2, a necessary condition enabling one to ignore the 
fact that 0 ' :  (/3'o -2) is est imated rather than known, would be E(OmJO0)= 
0.11 From the definition of m~, Om~/ O0 = (Oz~/ O0 )chi + zi( Od & /O0). Both of these 
two terms will have expectation of zero; the first because E(~b~ I ~/) = 0 and 
Oz]O0 E ~ ;  the second because it equals e i the r  g(o--2uixiz~) = 0 (for /3) f rom 

- 4  2 
E(u~l ~ )  = 0, or -E(z~o- ui ) = -E(z~)o  --2 = 0 (for o-2), given the assumption 
E(z~) = 0. Consequently,  when testing for heteroskedasticity in the regular 
regression model ,  there will be no dependence of ~ = n -1 g rh~ upon /3  or d -2, 
and the variance is therefore simply found from var(m~). 

When xi is not weakly exogenous,  i.e., some members  of x~ are endogenous 
variables, it will no longer be true that E(OmJO0) = 0, since E(o--2u~x~z~)¢ 0. 
In these circumstances, an allowance must be made for the estimation of /3 .  

t0 Although, z i will typically be a function of/3, this dependence will be suppressed unless its 
recognition is important. The assumption that E(zi)=0 means that whatever is selected to 
represent z i will need to be mean corrected. 

~1 Because z i has been assumed to have zero mean, there is implicitly another parameter, E(zi) , 
that needs to be estimated. However, it is easily seen from the same argument as used later for/3 
and t~ 2 that it does not affect the distribution of 4 = n -1  Y~/'h i, 
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The simplest procedure would be to jointly estimate r and/3 and to then test if 
r takes the value zero, An alternative is to use the variance given in (4), or to 
explicitly evaluate it in the simultaneous equation context as done in Pagan and 
Hall (1983, pp. 192-194). There are papers in the literature which claim that 
the distribution does not depend on /3 (Szroeter,  1978, and Tse and Phoon, 
1985) but the assumptions made to get this result imply a degeneracy in the 
reduced form errors which has to be regarded as implausible; a fuller account 
of this point is contained in Pagan and Hall (1983, p. 195). 

Another  choice of moment  condition that is slightly more complex leads to 
the Goldfe ld-Quandt  (1965) test. Essentially they compare the residual 
variance estimated over a sub-period i =  1 . . . . .  n I with that over i =n~ + 
k , . . . , n ,  with k being the number of observations dropped. ~2 One would 
effect such a comparison by making m i = z i ( Y i - x ~ / 3 )  2, with z i being n~ 1 for 
i = 1  . . . .  , n l ;  z i = O  for i = n ~ + l , . . . , n l + k ;  and z~=n21  for i = n l  + k +  

1 , . . .  ,n ,  where /72 = n -  (n 1 + k ) .  In fact, because Goldfeld and Quandt  
estimate /3 separately for both i = 1 , . . . ,  n I and i = n~ + k + 1 , . . . ,  n, there 
are really two sets of parameters/31 and /32 in 0, with moment  conditions for 
estimating these being 

E x i ( Y i  - xi/31 = O, E x i ( y i  - -  X i /32  = O. 
"= i=nl+k+I 

However ,  Goldfeld and Quandt  did not intend that/31 and/32 be different; they 
were simply trying to make the estimated residual variances independent  of 
one another,  and this could not be done i f /3  is estimated utilizing the full 
sample. But this choice of method to estimate /3 should not be allowed to 
disguise the fact that, underlying Goldfeld and Quandt 's  test, is a very specific 
moment  condition. It would be possible to generalize the Goldfe ld -Quandt  
test to allow for more than one break. Doing so with three contiguous breaks 
would produce a test statistic emulating Bartlett 's (1937) test for homogeneity,  
popularized by Ramsey (1969) as BAMSET after the OLS residuals are 
replaced by the BLUS residuals. It is not possible to express Bartlett 's test 
exactly as a conditional moment  test, but asymptotically it is equivalent to one 
in which the z i are defined as for the Goldfe ld-Quandt  test over the three 
periods. 

Some of the testing literature is concerned with robustness. Finding the 
variance of m i could be done by writing var (mi )=var(z i )var (4 ) i )  = 

," \ -4  r" 2 vartz0o- va tui o-2), after which a distributional assumption concerning u i 
would allow var(mi) to be quantified exactly. However,  a distributional 
assumption for u~ must be an auxiliary one, and it is not directly connected 
with a test for heteroskedasticity. Consequently, as discussed in Section 2, it 
may be desirable to estimate var(m~) without making distributional assump- 

12 In fact, they use the ratio of these variances and order the observations in ascending order; the 
difference in variances is used here so that E(mi) = 0 when there is no heteroskedasticity. 
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r I 2 
t ions ,  in pa r t i cu la r ,  n - 1 2  m,m,  = n - l E  z,zi49 ~ could  be  a d o p t e d  as the  est i-  
m a t e .  A l t e r n a t i v e l y ,  if E(~b 2) is a cons tan t  one  might  use  
(n-aE4aZ](n-lEz,z~)./ , ,  This was K o e n k e r ' s  (1981) cr i t ic ism of  the  tes t  for  
h e t e r o s k e d a s t i c i t y  i n t r o d u c e d  by  Breusch  and  P a g a n  (1979) and  G o d f r e y  
(1978),  and  his ve rs ion  using the  second  f o r m u l a t i o n  a b o v e  has  b e c o m e  the  
s t a n d a r d  way  of  i m p l e m e n t i n g  a tes t  which  s tems f rom the  m o m e n t  cond i t i on  
E(zi~b,) = 0.13 I t  appea r s  tha t  t he re  can be  some  m a j o r  d i f fe rences  in tes ts  
cons t ruc t ed  with  d i f fe ren t  e s t ima tes  of  var(~bi). In  M o n t e  Ca r lo  e x p e r i m e n t s  
K a m s t r a  (1990) finds tha t  the  K o e n k e r  va r ian t  which  ad jus t s  the  size of  the  tes t  
using the  o u t e r  p r o d u c t  -1 n Zm~m, ,  l eads  to severe  ove r - r e j ec t i on .  

3.2. Testing using the optimal score 

A l t h o u g h  the  t r e a t m e n t  of  tes ts  accord ing  to  the  se lec t ion  of  z i and  the  ex t en t  
to which  robus tnes s  is a d d r e s s e d  yie lds  a sa t i s fac tory  t a x o n o m y ,  it does  no t  
add res s  e i the r  the  ques t ion  of  the  op t ima l  choice  of  zi, or  the  poss ib i l i ty  tha t  
the  d i s t r ibu t ion  of  u i might  affect  the  na tu r e  of  the  m o m e n t  cond i t i on  itself .  
O n e  r e so lu t ion  of  this l acuna  is to  de r ive  the  L a g r a n g e  mul t ip l i e r  o r  score  tes t .  
T o  this end ,  let  the  dens i ty  of  e i = O-/lu i be  f (ei)  , w h e r e  the  ei a re  iden t ica l ly  
and  i n d e p e n d e n t l y  d i s t r ibu ted  r a n d o m  var iab les .  T h e  log - l ike l ihood  o f  (15) will 
t h e r e f o r e  be  

L = _ 1  ~ log o -2 + ~ log f (o-71(y i - x ; j S ) ) .  (16) 

If  3' a re  p a r a m e t e r s  such tha t  3, = 3'* m a k e s  o-~ = o "2, the  scores  for  3' a re  the  
basis  of  the  L M  test ,  and  these  will be  

OL/Oy = - ½  2 0"7200"2103, _ 1  ~ f ; 1  (OfiilOei)o-/2(Oo-~/OY)ei. (17) 

A f t e r  r e - a r r a n g e m e n t  and  s impl i f ica t ion,  

OL/O3" ½ ~" 2 -2 = ( o ~ , / o 3 ' ) o - ~  [ -q , i~ ,  - 11 ,  ( 1 8 )  

w h e r e  q'i = fT l (o f i /Oe , )  • U n d e r  the  null  hypo thes i s  H0: 3' = 3'*, 

1 - 2  oL/a3"I,=,. =To- ~, 2 - ,  (do-,/O3"):,=:,.[-f,  (Ofii/Oe,)e , - 11. (19) 

13 There can be some dangers to this strategy in that one is attempting to estimate E(u 4) 
robustly. If E(u 4) did not exist, Koenker's test might not even be consistent whereas the 
Breusch/Pagan/Godfrey test would be as it 4 • uses 2o- as the vanance, i.e., only a second moment is 
used as a divisor. Phillips and Loretan (1990) make this observation in connection with recursive 
tests of the sorts to be discussed in Section 3.4. The problem is likely to be particularly acute when 
one is trying to make tests robust to ARCH errors as the conditions for the existence of a .fourth 
moment in u i are much more stringent than for a second moment. The problem will only affect the 
power of such robust tests as it is under the alternative that the moments may not exist. One of 
Kamstra's (1990) experiments had an ARCH(l) model for which the robust test had very poor 
power properties. When the density of o 5 lui is N(0, 1) the fourth moment fails to exist if the 
ARCH(l) parameter exceeds 0.57 and, although Kamstra sets the true parameter to 0.4, there 
may be some small sample impact of being near the boundary. 
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Studying (19) it is apparent that the 'optimal' choice of z i should be (00-2/ 
03,) 3`=7", and that the nature of the distribution of e i impinges directly upon the 
'optimal' test. For moment conditions having the s t r u c t u r e  E(zic~i ) = O, the best 

- f i  (Of/Oei)ee- 1, constituting a non-linear function of e i = choice of t~i is -1 
- 1  0- u / tha t  depends directly upon the density of eg. Interestingly enough, ~bg will 

- 2  2 only be (0- u g -  1) if f( .)  is the standard normal density; in that instance 
- 1  f i  (Ofi/Oei)=-el,  revealing that the moment conditions E[zi(0--2u~- 1)] = 0 

implicitly have the assumption of a Gaussian density for e~ underlying their 
- 2  2 construction. Notice that E[zi(o- u~ - 1)] = 0 regardless of the nature of the 

density; it will only be the power of the test statistic that is affected by not 
allowing $i to vary according to f(.).  

Consideration of (19) points to the fact that there are two issues in devising 
an appropriate test for heteroskedasticity in the regression model. The first of 
these is how to approximate (00-~/03,) 3̀ =3`.; the need to form a derivative of 0-~ 
emphasizes that the alternative has a major role to play in determining what Zg 
will be. If o-/2 has the 'single index' form 0-~ = g(z;3,), where g is some function, 
then (00"~/03,)[3`=7. is glz~, with gl being the derivative of g. Setting 3, = Y*, 
g(z;3,*) must be a constant, 0-2, if there is to be no heteroskedasticity, and gl 
will therefore be constant under the null hypothesis. In these circumstances, 

2 * (0(7" i /03`)[3,=7. =gl z i ,  and the constancy of g~ enables it to be eliminated, 
leaving the appropriate moment condition as E(zi~b~) = 0, i.e., the test statistic 

! 
is invariant to g~ and is the same as if 0-2 was the linear function zg3,. This was 
the observation in Breusch and Pagan (1979). It is important to emphasize 
however, that the result depends critically on the single index format, and it is 
not true that the test statistic is invariant to general types of heteroskedasticity, 
an interpretation sometimes given to the result. 

00-~/03` is to use non-parametric ideas, i.e., Another approach to estimating 2 
since 0-~ is an unknown function of elements in ~ ,  one might take z~ as known 
functions of these elements and then approximate o-/2 by the series expansion 

t zi 3 .̀ Examples of z i would be orthogonal polynomials or Fourier terms such as 
sines and cosines. Kamstra (1990) explores this idea through the theory of 
neural networks, which is a procedure for doing non-parametric regression by 
series methods. As z i he selects a set of q principal components of ~'ij = (1 + 
exp(-x;6j)) ,  where values of 6j ( j  -- 1 , . . .  , r) are found by randomly drawing 
from [ - R ,  R] and then used to construct ~'ij. The parameters r and q are 
chosen as 4p and p if n~<50; for n > 5 0 ,  r is increased according to 
2 log(n)n -1/6 and this rule is also applied to q after n > 100. R was always equal 
to unity in Monte Carlo experiments performed with the test. In his Monte 
Carlo work he finds that this 'nets' test works well in a wide variety of 
circumstances. 

Although the score test is a useful benchmark for suggesting suitable choices 
f o r  z~, it is known that it is only 'locally' optimal in large samples, and if 
departures from the null are strong, one might do better using alternative 
information more directly. Considering the score in (18), o-72 00-2/03, = 
0log 2 = 0-~/03` = - 2  0log 0-71/03,. For small departures from the null, i.e., 3' ~, a 
linear approximation to this quantity is likely to suffice and that c a n  be 
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regarded as being proportional t o  o i - l ( ' y )  - o - i -1 (7  * )  = o - i - l ( ' y )  - o " -1 .  H e n c e ,  

one interpretation of the LM test is that it takes as z i, o-[l(z/) for a value of 
7, "Y close to Y*. For larger departures this argument indicates that it would 
make sense to use o-[~(~/) as zi,  where -~ is now some specified value of 7 
thought to reflect the alternative hypothesis. Thus a family of tests, ~(~),  
indexed upon q, could be formed. Evans and King (1985) make this proposal. 14 
They find that choices of -~ can be made that are superior to the LM test in 
small samples, even if z/ lies away from the true value 7. In the event that 
7 = 7 their test is a point optimal test, in the sense of the Neyman-Pearson 
lemma applied to testing the simple hypothesis of Y = 7 "  versus 7 = Y. 

Even after a candidate for zi has been determined, the optimal score in (19) 
depends upon the function ~0g, and therefore requires some knowledge of or 
approximation to the density f(-). Because f(.) will be rarely known exactly, it 
is of interest to explore the possibility of allowing for general forms of ~O~. 
Within the class of generalized exponential densities giving rise to generalized 
linear models (GLM),  @iEi is known as the 'deviance' function, see McCullagh 
and Nelder (1983), and one could work within that framework in devising tests 
for heteroskedasticity, see Gurmu and Trivedi (1990). Alternatively, there is a 
large literature on estimating/3 efficiently in the face of unknown density for 
u~, and it can be applied to the current situation, see Bickel (1978). Two 
interesting ways of approximating ~ are proposals by Potscher and Prucha 
(1986) and McDonald and Newey (1988) that the Student's t and the 
generalized t density be used for f(-), as that allows a diversity of shapes in Oi. 
For the generalized t density ~0~=(rs+ 1 ) s g n ( u ) l u l r - a / ( q o ' r +  lUlr), with r , s  
being distributional parameters. McDonald and Newey propose that either r, s 
be estimated by maximizing g log f (r ,  s), where /3 is replaced by the OLS 
estimate, or by minimizing the var(/3), where/3 is the MLE,  because the latter 
depends upon (r, s) solely through a scalar. 

Within the literature there are examples of qSi functions that can be regarded 
as performing the same task as ~. does, namely adapting the functional form of 
q5 e to the nature of the density. One that appears in many econometric 
packages is Glejser's (1969) test that sets q~i = lu,I - E ( I u J ) .  Glejser proposed 
regressing luJ against a constant and z~, and the intercept in such a regression 
essentially estimates Elu~l under the null hypothesis, is Since the optimal ~bi is 
--@6 i - - 1 ,  Glejser's test will be optimal if ~ = [u~l/u ~ = leil/e~ = sgn(e~). The 

t4 zi has to be normalized such that y could be interpreted as a coefficient of variation. In their 
test  o -2 is es t imated as the  OLS residual variance while the/3 appearing in &i = [o- 2(y~ _ x,/3)2 _ 1] 
is es t imated from the GLS momen t  condition E[(l+z'/~)-l/Z(y~-x'~)]=O. Because the 
distribution of ~ does not  depend on /3 or d -z, this switch is asymptotically of no consequence.  

ts In order that  the distribution of Glejser 's  test be independent  o f /3  it will be necessary that  
E(<x'~sgn(u~)) = 0, and this requires conditional symmetry  for the  distribution of uf. Thus  in 
Kamst ra ' s  (1990) simulations one would expect that  referring Glejser 's  test to a chi-square 
distribution would be in error if the underlying density was an exponential  or a gamma,  and this is 
apparent  in his results. Conditional symmetry  is also required for the  optimal score test to be 
asymptotically independent  o f /3  as the derivative of (19) with respect to /3 will only be zero if 
E(xfl~i) = 0. For independence from 8 2, E[(0o-~10y)[~_<] = 0 is needed,  the  analogue of E(zi) = 0 
used earlier. 
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density with such an $i is the double exponential f ( e ) =  Ce -I~1, showing that 
Glesjer's test is likely to be successful in the situation of fat tailed densities. 
This would constitute an argument for its use when A R C H  is being tested for, 
as it has been observed that f( .)  has fat tails even after an A R C H  process has 
been allowed for, see Engle and Bollerslev (1986) and Nelson (1991). 

Rather than approximating 0i it is tempting to estimate it non-parametrical- 
ly. For example, one could estimate f(-) and its derivative by a kernel 
estimator at the points k~, where ki are the standardized OLS residuals, and 
then proceed to form the test using this estimated quantity 0/ in place of 0i. 
Whang and Andrews (1991) provide theorems regarding the distribution of 
conditional moment tests when a component of the test is estimated non- 
parametrically. A critical condition in their theorems needs to be  verified in 
order to ensure that the distribution of 4 does not depend upon the non- 
parametric estimator of ~ asymptotically. Here that condition requires 

- 1 / 2  
n { E [ z i ( - ~ i s i - 1 ) ] } l ; 2 = 6 i  to be Op(1), where ~'i is a function of data 
preserving whatever features f( .)  is known to possess, such as symmetry, while 
the expectation is taken before the substitution of Oi for ~'i. Writing the 
expectation in the condition to be tested as n - 1 / 2 E { z i [ - ( ~ , . -  thi)e i - tOie i - 1]}, 
independence of z i and e i along with E(zi) = 0 would ensure that E(z~6ie i )  = O, 

to n z i (Oi  - Oi)ei being op(1), which necessitates reducing the requirement -1/2 ^ 

n 1/4 consistency for whatever non-parametric estimator of ~0 e is used for ~.  

3.3 .  Tes t  s tat is t ics  b a s e d  o n  e s t i m a t o r  c o m p a r i s o n  

As mentioned in Section 2, one possible test for a specification error is to 
compare estimators whose probability limit differs only if there is a misspecifi- 
cation. One way to effect such a comparison is to substitute the parameter 
estimates from a set of first-order conditions defining them into those for 
another estimator. When testing for heteroskedasticity there have been two 
proposals based on this line of thought. 

Koenker and Bassett (1982) estimate/3 in (15) by a quantile estimator, i.e., 
/3(7/) was chosen to minimize E P ~ ( Y i - x ; / 3 ) ,  where p~(A)= 17-  I(A < 0)1 [AI, 
1(.) is the indicator function, and 0<~7< 1 defines the ~7-th quantile. They 
show that the quantile estimators of the slope coefficients /31 are consistently 
estimated when there is no heteroskedasticity, but that plim /~10/) differs 
according to 9 if there is heteroskedasticity. This feature leads to a test for 
heteroskedasticity based on a comparison of estimators of/31 at two different 
quantiles 7/1 and ~72, i.e., the test is based on/31(r/1) -/)1072). Interpreted as a 
conditional moment test of the form E(ziqS~)= 0, this would be E[Xli('ql- 
l ( y  i < x~/3))u~] = 0, where x u are the mean corrected regressors corresponding 
to the slope coefficients/31 "2 Their computation of the asymptotic local power 

_~_ ~ - 1 / 2  function of this test when o" i = i XliOn revealed that power was larger for 
this 'comparison' test than for the LM test appropriate when f(.)  is normal, 

- 2  2 i.e., one based on qS;=o- u ~ - 1 ,  whenever the true density f( .)  was a 
contaminated normal. As Newey and Powell (1987) point out, these power 
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computations made by Koenker  and Bassett exaggerated the power gain due to 
an error  in deriving the non-centrality parameters of the test statistics, but, 
even after correction, there was still an improvement.  

A major disadvantage of working with quantile estimators is that the 
function pn(.) is not differentiable. This feature led Newey and Powell to 
replace 07(') of the quantile estimators with p ~ ( h ) =  I v - I ( h < 0 ) [ A 2 ;  the 
estimator of /3 found by minimizing this function is /3(u), and was termed 
asymmetric least squares (ALS). Their  recommended test is then based on 
/31(v~)-/3~(v2). After  examining a numerical experiment they find that u~ = 
0.46, v 2 = 0.54 seems to give best power. With these values of ~ their test 
performs in a very similar fashion to the Koenker-Basse t t  test when the 
density f ( . )  is contaminated normal, but has much better  power if f(-) is 
normal, leading to their conclusion that the comparison be based on the ALS 
estimator. Now, the implicit moment  condition used in the comparison is 
E [ x x i ( P  1 - l ( y  i < x ; ~ ) ) u i ]  = 0, and, when u 1 = 0.5, this becomes E[xl~(0.5 - 
l(u~ < 0))ui] = E[0.5xli sgn(ui)ui]  = g(o.sxi~luil) = 0, which is just the moment  
condition used in constructing Glejser's test, provided z~ is set to xtg. 
Moreover ,  when the error density is symmetric, /~1(0.5) will be OLS. This 
argument points to the fact that the performance of the ALS comparison test 
/~1(0.46)-/~2(0.54) should be very close to Glejser's test based on EXlilt~i]. 
Indeed this is what Newey and Powell find, culminating in their conclusion that 
using Glesjer 's test would be a simple way of attaining the benefits of doing the 
ALS test. 

3.4. Test  statistics based  on  C U S U M S  o f  m o m e n t s  

Under  the null hypothesis the scale parameter  0 -2 is estimated from some 
moment  condition. If the errors e i are normally distributed, the moment  

- 2  2 __ 1 )  = 0 ,  For other densities, defining an estimator of 0-2 would be E(E 0- u i 
using the score for 0- from (16), with 0-~ replaced by 02, might produce a more 
satisfactory estimate. Focusing upon the normal case, the general t reatment of 
testing for structural change in the variance provided in Section 2 involved 

nk ^ - 2  ^2 looking at the CUSUMS Ei= 1 (0- u i - 1), or just b ( k )  = nk -2 ^2 Ei= 1 6- ui. Harrison 
and McCabe (1979) proposed b as a test for heteroskedasticity with fixed k, 
while Breusch and Pagan (1979) adopted the C ( k )  test in (14). Because the 
C ( k )  test is just a transformation of E "-2 ^2 0- ui, there will be no difference in 
conclusions based upon it or b ( k )  provided they are referred to their 
appropriate critical values. An advantage of C ( k )  is that it is centered and 
scaled so that asymptotically it is a X 2 random variable. McCabe (1986) 
mentions the possibility of using max k b(k ) .  However ,  he did not find the 

^ - 2  ^2 distribution of this test. Instead he ordered 0- u i and computed a test based 
on the order statistics for this sequence. As Andrews (1990) has now tabulated 
the distribution of max~ C ( k )  it seems more satisfactory to perform a test in this 
way. The other two test statistics given e a r l i e r - L  w and L c -  do not seem to 
have been formally used in the literature. 
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4. Testing for heteroskedasticity in models featuring heteroskedasticity 

Section 3 was devoted to procedures for detecting heteroskedasticity when the 
maintained hypothesis was that there was none. However,  the last two decades 
have seen a proliferation of models incorporating heteroskedasticity as one of 
their characteristics. Such heteroskedasticity is intrinsic to the model and what 
needs to be tested is not the presence of heteroskedasticity per se but whether 
it departs from that featured in the maintained model, that is it is extrinsic 
heteroskedasticity which is important. Indeed, one might argue that it is rare to 
have a situation in which there is no intrinsic heteroskedasticity in linear 
models such as (15). If Yi was a member  of the exponential family the density 
of u i is rarely homoskedastic, with the normal density being the dominant 
exception. Moreover,  the heteroskedasticity will generally have the characteris- 
tic of being a function of the conditional mean /x  i = E ( y  e [Xi). Many examples 
of models with intrinsic heteroskedasticity might be given, but four representa- 
tive 'types' are set out in this section. Each may be regarded as a regression 
model with heteroskedasticity, and it is desired to test if the predicted type of 
heteroskedasticity is sufficient to account for non-constancy in the variance of 
the errors. These models arise in situations where there is 'count' ,  binary or 
censored data or in which there is interest in explaining volatility in a series. 
Our enumeration is scarcely exhaustive. Many extensions can be made to the 
basic models, for example, the type of censoring giving rise to selectivity bias 
or the possibility of multiple rather than binary responses, but the collection 
should illustrate the common themes regarding testing that will be found in all 
such models. 

4.1. A general approach to testing for  extrinsic heteroskedasticity 

All the models considered in this section can be regarded as being character- 
ized by an error term u e that has variance 6-~ when the maintained model is 
correct. The variance 6-~ is a function of some parameters 6. Defining e i = 
- - - 1  0-i u~, it is e~ which is to be tested for heteroskedasticity, i.e., in terms of the 
analysis of Section 3, ~2 will now be the variance of u~, becoming equal t o  6-~ 
when there is none. Hence,  under the null hypothesis, the variance of ee, o- i , is 
unity. With this change, the moment conditions used for tests of heteroskedas- 
ticity in Section 3 will simply be modified by replacing u~ by e i and by setting 0 -2 
to unity. Thus the basic moment  condition used below (15) becomes E(zi(e/z - 
1))=0. 

There are however some complications. A minor one arises because the 
parameters to be estimated will now include not only those like/3 in (15) but 
also 6, the parameters entering into the intrinsic form of heteroskedasticity. 
Except for a few instances, the distribution of tests for heteroskedasticity in the 
basic regression model did not depend upon any nuisance parameters such as/3 
and 0 "2, but this is unlikely for 6. When m e = ze(e 2 - 1), and there is no overlap 
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between 6 and/3, 

Om~106 (az~lO6)(e 2 1) 2 -4  2 = - - z s u i ~ r  s ( O o ' i l a 6 ) ,  

-2  2 which has expectation of -E[ z io -  i (Oo'~/06)],  a quantity unlikely to be zero. 
Accordingly, the var(÷) must be computed from (4), or ~- and 3 must be jointly 
estimated. 

As pointed out in the introduction to this section, there are instances in 
which the variance of u i, and hence o-~, will always depend solely upon 
whatever parameters /3 enter the conditional mean (along with xi), i.e., 6 
coincides with/3. In these situations Cameron (1991) points to the possibility of 
modifying mi,  so as to asymptotically eliminate any distributional dependence. 
Defining m[ = m i + [E(Omi/alxi)  I /xi](y~ -/x~), it is clear that 

E(Om;106  ) = E ( O m ] O 6  ) + E{(OE[(Om,  lOlx,) l tx~llO6 ) ) (y  i - / z , ) }  

- E  { E[ ( Om]  Ot~i) [ ~ ] (  O~i/ O,~ ] .16 

In this expression the middle term is zero and the last is just - E ( O r n ¢ / 0 8 ) ,  
making E(Orn~/06)  =0.  Thereupon, adopting E(m~) = 0  as the requisite 
moment condition would allow any distributional dependence upon 6 to be 
eliminated. Cameron puts m i = z s { ( y  ~- /x~)  2 -  6-2} so that rn~ would be 
z i { ( y ~ - l x ~ )  2 -  6 . ~ - ( 0 6 . ~ / c 3 t x i ) ( y i - l x i )  }. For the moment condition me= 
zi(e 2 - 1), and 

e, = 6.21(y,  _ x;/3 ) , 

#x~ = x;/3 , E[(Omi/OlX,)] #.ti] = -ziE[(Od-y/OlX~)6.22 I #zi] 

making rn; = z~(e~ - E[(06.~/0~)6-~ 1 I ~i]e~ - 1). 
Inspection of the modified moment rn~ in Cameron's case highlights the fact 

that the new test involves a component ~ei, where ~ = - z i E [ ( 0 6 - ~ /  
01~)6-~11#~i], that is testing for specification error in the conditional mean, 
which makes sense given that the variance 6 .2 is a function solely of the 
conditional mean (due to the fact that there are no parameters in 6 not 
appearing in 1~). Although in the regression model with normally distributed 
errors it is possible to make a distinction between whether it is the conditional 
mean or the conditional variance which is misspecified, outside of that context 
it is frequently very difficult to conceive of an alternative model in which 
changes in #~i do not impinge upon o-~. Therefore, tests of extrinsic heteros- 
kedasticity inevitably involve a test for the correct specification of the 
conditional mean. Many of the models analyzed in this section have such a 

16 The term E[(ami/Otxi)[ixi] would actually be evaluated under the null hypothesis. It is also 
obvious that it could be replaced with the unconditional expectation E(Orni/Olxi) without changing 
the argument. In most instances it is probably easier to find the conditional moment ,  but not 
always. 



5 0 6  A . R .  Pagan and Y. Pak 

property. Moreover,  because tests for correct specification of the conditional 
mean generally involve lower order moments,  i.e., involve a test of E((iez) = 0, 
it is unclear that tests involving the square of e~ would ever be preferred. 
Indeed,  as will become apparent,  score tests for some of the models of this 
section do in fact involve examining a moment  condition like E ( ~ e i ) =  0 and 
do not involve the squares of ei at all. 

4.2. Testing for  heteroskedasticity in discrete choice models 

Discrete choice models are associated with observations on a binary random 
variable y; taking values zero or one, and some causal variables xi, with the 
two sets related in such a manner that Pr(yi = 0 [xi) = F(&, 0) = F/, where F(t) 
is a distribution function. A standard way to motivate this probability is to 
interpret it as arising from a latent variable model 

* * (20) y~ = x;13 + u~ , 

where v a r ( u * ) = l  and y i = l ( y / ~ > 0 ) .  Then F(.) will be the cumulative 
distribution function of the errors u* and, using the binary structure of y;, 

Y i = (  1 - F i )  + g i ,  ( 2 1 )  

where F~ = prob(u/* ~ < - x ; ~ )  = F ( - x ; ~ )  and u i is heteroskedastic with condi- 
tional variance F,-(1 -F~) .  Hence,  the conditional variance is always related to 
the conditional mean. 

One might introduce extrinsic heteroskedasticity into this model by setting 
t t x l / 2 , ,  

var(u*) = (1 + w i t  ), thereby modifying /~ to F ( - x ; ~ / ( 1  + w i y  ) j, where 
F(-) is now the distribution function of the standardized errors, ( 1 +  

t \ - - 1 / 2  * w i y )  u i . Intrinsic heteroskedasticity will be 6-~ = F0i (1-  F0i), where F0~ = 
! F ( - x ~ ) ,  and the task is to see if there is any extra heteroskedasticity, i.e., to 

test if 7 = 0. Following the discussion in Section 4.1 one could form a test 
statistic based on Z zi(e ~ - 1), where e~ = o-i (y~ - F0i ). Alternatively, follow- 
ing Davidson and Mackinnon (1984), the score test for 3' being zero could be 
used. As the log likelihood of ( y l , . . . ,  y , ) ,  conditional upon {x~, z~}~ 1, will be 

L = ~ {(1 - y~) log(F~) + yi log(1 - F,.)}, (22) 
i = I  

under H 0 : 7  = 0, the scores become 

d~ = ~ [(0F,./0y)~=0](1 - Foi)-lFoia(yi - Foi) 
i = l  

(23) 

= ~ ziei , (24) 
i = 1  

- -  P ~ - - 1 / 2 ] ~ 7 - 1 / 2  ¢ ¢ where zi = [(OFi/O~l)y=o](l " oi) xoi  = 0.5wi(x i~) f (x i¢ l ) (1  - Foi) -1/2 x 

f~- 1/2. As foreshadowed earlier the optimal test therefore does not involve the 
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squares of % and is effectively testing for specification errors in the conditional 
mean function. 

4.3. Testing for  heteroskedasticity in censored data models 

There are many types of censored data but the simplest would be the case of 
left censoring at zero of the latent variable y* in (20) introduced by Tobin 
(1958). Observed data is then Yi = l(y~ > 0)y*. For a non-negative random 
variable it is known that 

E ( y i  I x~) = f~-x (1 - Fo(A)) dA, 

where F0(. ) is the distribution function of u*, while the conditional variance of 
Yi would be 

%-2 = 2  ',¢ (1 - Fo(A))A dA + 2x;/3 x~¢ (1 - F0(A)) dA 

- { f_~¢ - dA} 2 ' [1 Fo(h)] 

and these could be used to define e i for the purpose of constructing the 
moment n 1 E zi(e ~ - 1). A disadvantage of the approach is that F0(A ) must 
either be estimated or specified. One possibility is to estimate it by non- 
parametric methods, see Whang and Andrews (1991), but no applications in 
that vein are reported in the literature, and there would seem little benefit in so 
doing as a misspecification of either heteroskedasticity or the density for u* 
essentially has the same impact, and it is going to be very difficult to distinguish 
between the two types of specification error. For that reason F0(. ) is likely to 
be specified, and therefore one might as well construct a score test for 
heteroskedasticity. 

Assuming that ~ = vat(u*) is a function of some parameters 7 such that 
3' = Y* produces a constant variance o -2, f(.) is the density function of u*/#-i, 
and F(A) = S_~ f (u)  du, the log likelihood of the data is 

L = ~ (1 - y~) log F(-x;t~/6-e) 
i=1 

+ ~', y i{-0 .5  log -2 , - % + log f [ (Yi  - -  Xi[3)/°-i)]}, 
i=1 

(25) 

with scores evaluated at y = y *  

I - Y i ) f o ( ~ i ) f o  ( ~ i ) ~ i - Y i ( ~ b i s i -  1)} (26)  
i=1 

r -1  t --I * -1  
where ~i = ( X i ~ ) / O - '  e i  = o" ( Y i - x i ~ ) ,  ei = °-i ui , and ff-¢i =fo i  (Ei ) (Ofoi /OEi)"  
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As expected, if there is no censoring (yi = 1), the test would be identical to 
that for the uncensored case (see (19)). In general, it does not reduce to a test 
involving the squares of e~. Jarque and Bera  (1982) derived this test and Lee 
and Maddala  (1985) interpret it as a conditional moment  test. As with the 
regression case one might base a test on a comparison of the MLE of /3  and 
another  est imator that is consistent when there is no heteroskedasticity. 
Powell 's  (1986) censored quantile estimator minimizing E~n=l p[y~ - 
max{0, x~/3}], where p(A) = [ r / -  I(A < 0)]A, could be used as the analogue of 
the Koenke r -Basse t t  proposal for the linear regression model discussed in 
Section 3.3. 

4.4. Testing fo r  heteroskedasticity in count  data models  

The modelling of discrete count data, such as the number  of patents granted or 
the number  of visits to a medical facility, has become of greater  interest to 
econometricians as large scale data sets containing such information have 
emerged.  Naturally, the 'work horse '  in the analysis of such data sets has been 
the Poisson regression model,  but, owing to the fact that it forces a restriction, 
upon the data, that the conditional mean of Yi, /xi, is equal to the conditional 
variance, there have been attempts to supplement  it with models based on 
other densities not having such a restriction. An example would be the 
negative binomial density used by Hausman,  Hall and Griliches (1984) and 
Collings and Margolin (1985). However ,  sometimes such alternatives are 
difficult to estimate,  and it is not surprising that a literature developed to test 
for whether  the type of heteroskedasticity seen in the data deviated f rom that 
intrinsic to the Poisson model,  i.e., to test whether var(yi)  equaled the E(Yi). 

Since the maintained model is generally the Poisson model the situation is 
one of a regression such as (15), albeit the conditional mean/xi  may no longer 
be linear in the x i but rather may be a non-linear function such as exp(x~/3). 
Given some specification for/xi, the Poisson regression model has 6-~ =/x~ and 

z 
the obvious momen t  condition to test is E(zz(ez - 1)) = 0. 

An alternative way to write this condition is as E(zi(e~-/x~-iE(yz)))  = 0 
which, under the maintained hypothesis of a Poisson model,  becomes 
E{z i lx i l [ (y~  _ j [ .£i)2 _ Yi]} = E{£z[(Yi  - / t £ i )  2 - Yi]} = 0. Defining a class of re- 
gression models for count data that a r e  indexed by a pa ramete r  7, and which 
reduce to the Poisson model when 7 = 0, Cameron  and Trivedi (1990) point 
out that the last ment ioned condition coincides with the score test based on 3' if 
the wider class derives from the Katz system of densities set out in Lee (1986), 
or f rom the 'local to Poisson' case of Cox (1983). Differences in score tests 
therefore reside solely in the nature o f  ~i.17 

av Assuming that/x i is a function of parameters/3, when using the moment ml = Z~[(y~ - , ~ . £ i ) 2  _ y~] 
it will be the case that E[Oml/O/3 ] = 0 and, consequently, there will be no nuisance parameter 
dependencies. In contrast, as Cameron and Trivedi observe, if rn i was replaced by rh i = zi[(Yi - 
/z) 2 -/x~], now there would be nuisance parameter dependencies, even though E(rhi) = 0 under the 
null hypothesis of a Poisson model. 
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Select ing Z~ requires  an a l ternat ive  mode l  for  the  var iance  of  ui, 6-2 = 
~ 2  2 2 o-~o-i =/x~o-~, and m a y  be found  as follows. F r o m  (18) z~ should be  set  to 

2 2 -t- (0o-~/0y)lv= 0 and,  if o-~ = 1 ygl(/X~), this would  m a k e  z i =gl( /Xi)  unde r  the 
- - 1  - 2  

Poisson specification. Conver t ing  to ~ gives z~ =/xi  g~(/xg) =/x~ g(/x~), adopt -  
ing C a m e r o n  and Tr ivedi ' s  nota t ion.  For  thei r  test  they  e m p l o y  g(/xi) as e i ther  

2 
/xi o r / x  i , i .e . ,  gl(/~i) is e i ther  unity or/x~, leading to tests based  on the m o m e n t  
condi t ions  E ( e ~ -  1 ) =  0 and E ( / x / ( e ~ -  1 ) ) =  0. In  s imulat ion studies r e p o r t e d  
in their  p a p e r  the var iances  of  the test  statistics are f o r m e d  in a n u m b e r  of  
ways,  e i ther  by explicitly evaluat ing E(m~m~ ) under  the ma in ta ined  hypothes is  
of  a Poisson mode l  or  by the  adopt ion  of a robus t  vers ion,  and it was  the  la t ter  
which had  be t t e r  pe r fo rmance .  

4.5. Speci f icat ion tests f o r  addi t ional  A R C H  effects 

In  recent  years  the A R C H  mode l  and its var iants  have  b e c o m e  a very  popu la r  
way of  model l ing  he teroskedas t ic i ty  in economet r i c  models ,  par t icular ly  those  
conce rned  with financial t ime s e r i e s -  see Bol lers lev et  al. (1992) for  a survey.  
In  t e rms  of  the s t ructure  of  Sect ion 4.1, u i is def ined by (15) (pe rhaps  with a 
non- l inear  ra ther  than  l inear  funct ion of Xi) with var iance  6-2, becoming  6 -2 
with a par t icular  ma in ta ined  type of  condi t ional  he teroskedas t ic i ty .  A n u m b e r  
of  a l te rnat ive  specifications for  6-~ have  emerged .  A genera l  express ion  would  
be g ( %  + Z~= 1 ~jhq(ui_j)  ), which is indexed by th ree  characteris t ics ,  g( . ) ,  hq(-) 
and r. Tab le  1 provides  a list of  some  of the mos t  popu l a r  cases according to 
the values  assigned to these  funct ions and the p a r a m e t e r  r. O the r s  would  be  
possible ,  e .g . ,  one  could m a k e  6-~ funct ions of  a series expans ion  in ut_ i or  
et_~, e .g. ,  using the flexible Four ie r  fo rm as in Pagan  and Schwert  (1990) or  the  
neura l  ne twork  app rox ima t ion  in K a m s t r a  (1990). 

O n e  can distinguish two different  si tuations in connec t ion  with the  above  
fo rmats .  The  first is when  6 -2 is nes ted  within the a l ternat ive  6-~ so tha t  
- 2  ~ 2  o- i = o-~ when  a set  of  p a r a m e t e r s  y take  the  value y * ,  e .g. ,  if the  ma in ta ined  
mode l  is A R C H  and the a l ternat ive  is G A R C H  or N A R C H .  Then ,  as deta i led 

2 
in Sect ion 3.2, the op t imal  choice of  z i depends  u p o n  (0o-z /0y)~=r .  = 

~ - 2  - 2  2 - 2  ~ 2  o" i (Oo'~/Oy) lv=r. ,  because  cre = o'i/~r ~ and 3' does  not  appea r  in the de- 

Table 1 
Autoregressive conditional heteroskedasticity formats 

Name r g(~) hq(u i_j) Source 
2 ARCH(p) finite identity u~ Engle (1982) 

GARCH ~ identity u r,j Bollerslev (1986) 
NARCH finite 4,1/7 u Z_rj Higgins and 

Beta (1989) 
• 2 - 2 1 MARCH c~ identity sm(ug_j) If aug_j < ~- i r  Friedman and 

• • 2 1 umty if aug_j >1 Ur Laibson (1989) 
EGARCH cc exp(~b) ~eg + ([egl - (2I~r) ~'2} Nelson (1991) 

The basic model is ~ = g(~b) where ~0 = a o + Z~= 1 ajhq(.), where (-) can be either u i j 
or eg j. When r = ~ there are restrictions between the %.. 
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nominator.  Consequently, it is simply a matter of finding the derivatives of d 2 
with respect to y evaluated with y = y*,  i.e., 8~ = 6-~. For the N A R C H  model 
as alternative this becomes 

z~ = k &je~_j log(e~_j) - d-i l og (4 )  
j= l  

(Higgins and Bera, 1989)• If, however, the two conditional variances are 
non-nested, as occurs with an E G A R C H / G A R C H  comparison, this strategy 
will not work. Ideally one wants z i to reflect the 'extra' information in 8~ not 

• ~ 2 - - 2  - 2  contained in o- i. Because the term o-i ( O o i l O y ) ~ , = r , ) n  the nested case 
essentially represents the difference between 6-~ and 8~, z~ is ideally very 

- 2  like o-~. However,  to measure this we would need to estimate under both the 
null and alternative, which is not in the spirit of a diagnostic test. A simple 
solution is to think of o-, as a function of or} and to choose z~ in that  way. If 
one has a precise alternative in mind, one could form ~-~ from o-; using 

~ 2  

whatever transformation defines 82i, e.g., e x p ( 8 i )  might be used for z~ when 
E G A R C H  is thought of as the alternative. Pagan and Sabau (1992) used 6-~ 
itself, although, as Sabau (1988) found, the power of such a test is unlikely to 
be very strong in many instances. The reason is set out in Pagan and Sabau 
(1991); the power of their test derives from the extent of the inconsistency in 
the MLE estimator of /3 induced by misspecification of the conditional 
variance. In the basic regression model there will be no inconsistency, but, 
because /3 also enters into the determination of 6 -a i, the possibility of 
inconsistency arises in A R C H  models. Pagan and Sabau determine that 
inconsistency only eventuates if the true conditional variance is an asymmetric 
function of u~, which it would be if the alternative model to an A R C H  was 
(say) E G A R C H ,  but would not be if the alternative was G A RCH .  Apart  from 
this research, the question of good choices for z i does not seen to have been 
explored in the literature, and it is worthy of some further study. 

Tests for different types of volatility specifications also encounter  the same 
set of difficulties as arose when testing for whether there is any heteroskedas- 
ticity in the basic regression model viz. possible dependence upon estimated 
nuisance parameters and the fact that the optimal form of the test will depend 
upon the density of ei. With regard to the first, 6-~ depends upon both /3  and 
other parameters ;5 (as seen in Table 1). Taking rn~ = z~(e2 - 1) it is necessary 
that E(z~(Oe~/O0)) = 0 if there is to be no dependence upon estimates of 0. It is 
easily seen that this is unlikely to be true for 0 = 6, and is even problematic for 
/3. To appreciate the complications with the latter, differentiate o-~ (yi - x [ / 3 )  2 

- 4  2 - 2  with respect to/3,  giving - 8 7 2 x i u i -  o" i u~ (Oo- i/0/3).  This will only have zero 
expectation if 082/0/3 is an odd function of u; and ui is in turn symmetrically 
distributed around zero (conditional upon ~ ) .  For the G A R C H  model,  the 
errors u~ are generally taken to be conditionally normal, while 06-2/0/3 is an 
odd function, thereby satisfying both conditions, but that would not be true of 
the E G A R C H  model. It would also not be true of the G A R C H  model if the 
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density of u~ was not symmetric. However, since the parameters are most likely 
to have been estimated by MLE,  one could always regress rh i upon unity and 
the estimated scores to allow for the effects of prior estimation. Turning to the 
second question of the selection of ~b~ in m~ = z~bi, there has been little research 
into using the alternative moment condition, mentioned in Section 3.2, in 
which (hi is set to (-q,  ie~-1)  rather than ( e~ -  1), although Engle and 
Gonzalez-Rivera (1991) attempted estimation in this way. 

Many applications of the A R C H  technology are not to pure A R C H  models 
but to ARCH-M (ARCH in mean) contexts, in which a function of 6-~ appears 
among the regressors in (15). Thus a specification error in the conditional 
variance now affects the mean and the situation is reminiscent of the models 
discussed in Sections 4.2 and 4.3. Therefore, although a test might be based 

~2 upon E zi(e i - 1 ) ,  it is likely to be better to directly test the mean using 
-1  n E ziO ~. Oddly enough, in Pagan and Sabau's (1992) application of these 

tests to the ARCH-M model estimated in Engle et al. (1987), the test based on 
the squares of ~ gave much stronger rejection than that based on 6~. 

5. The size and power of heteroskedasticity tests 

5.1. The size of  tests 

The moment tests outlined in Section 2 are based on asymptotic theory, raising 
the possibility that the asymptotic results may fail to be a reliable indicator of 
test performance in small samples. Many simulation studies have shown that 
this is true for score tests of heteroskedasticity in the regression model, 
especially for those based upon normality in u i, with a frequent finding being 
that the actual size of the tests is less than the nominal one available from 
asymptotic theory. When robust tests are utilized it is equally common to find 
that the nominal is less than the actual size, e.g., Skeels and Vella (1991) find 
that the true size for tests of heteroskedasticity in the censored regression 
model obtained by robustly estimating E(Omi/Oy ) and var(mi) can be twice the 
nominal size. Only rarely can the exact distribution of any of these tests be 
analytically determined, an exception being the Goldfeld-Quandt  test, creating 
an interest in approximating the finite sample distributions or modifying the 
test statistics to more closely approximate the asymptotic distribution. There 
are four broad approaches in the literature and these are summarized below. 

(i) Approximation by expansion. When the m i are the scores, the test 
statistic will be a score test and a general formula for the finite sample 
distribution of score tests (S) was provided by Harris (1985): 

P[S <~ c] = Pq + ( 2 4 n ) - l { c ~ 3 P q + 6  + (og 2 - 3013)Pq+ 4 

+ (3a3 - 2az + ~l)Pq+2 + (a2 - al - °~3)Pq} + ° (n - l )  , (27) 

where Pq = Prob(x 2 ~< c), q is the dimension of the extra parameters being 
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tested by the score test, and %, 0/2, oL 3 are functions of cumulants of derivatives 
of the log likelihood. Computing oq, a 2 and a 3 can be very complex and mostly 
needs to be done with a symbolic differentiation package. Honda (1988) 
specialized this general formula to the case where one was testing for 
heteroskedasticity in the linear regression model. A serious reservation with 
this approach is that the exact score test needs to be used; in particular, the 
information matrix needs to be employed as the var(mi) , thereby precluding 
the use of robust estimates. In practice the exact score test is rarely used, e.g., 
the modification in Koenker (1981) of the score test for heteroskedasticity in 
the linear regression model is what appears in most regression packages, and 
the distribution of that statistic would be different to what is presented in (27). 
Of course, if the robust statistic has the same asymptotic distribution as the 
score test we might hope that (27) would be a reliable guide to its distribution 
in finite samples. Recently, Smith (1990) has shown that the form of (27) 

! 
remains valid even when var(E mi)  is estimated by E mim i except that the a 
need to be re-defined. To date his results have not been applied to heteros- 
kedasticity tests. 

(ii) Approx ima t ion  by distribution. An alternative to an asymptotic expan- 
sion is to regard the small sample distribution as being well approximated by 
some density such as the beta, and to estimate the parameters of the latter by 
matching up the finite sample moments with those of the approximating 
distribution. The approximate Prob[÷ ~< c] may then be found from the beta 
distribution. Harrison (1980) did this and found it worked quite well for tests 
of heteroskedasticity in the linear model. 

(iii) Numerical  determination o f  p-values. Rather than approximate the 
complete distribution of the statistic ÷ it is only the p-value for a given estimate 
(c) which is sought. In the linear regression model with normally distributed 

- 2  ^ 2  errors and a single variable zi, the statistic ;r = Z z~(o- u i - 1) can be written 
as the ratio of quadratic forms in o- lui, allowing Imhof's (1961) method of 
computing p-values for such test statistics to be applied. With more than a 
single zz this is no longer true, but the fact that the quadratic form is in o--lui,  
an ?¢'(0, 1) random variable, means that realizations of o--lui can be drawn 
from an N(0, 1) random number generator. Counting the fraction of times for 
which ~, computed with these numbers, is greater than c constitutes an 
estimator of the p-value. Breusch and Pagan (1979) advocated this approach 
and regarded it as a simple and cheap way of finding p-values. The idea was 
originally mooted by Barnard (1963). In the context of testing for heteros- 
kedasticity it has been adopted by Bewley and Theil (1987) when looking at 
this problem in systems of demand equations. Working with PCs the computa- 
tion of p-values by simulation is very easy and quite cheap, although it does 
require re-estimation of the basic model, and, in the context of censored 
regression or discrete choice models, the cost may still be too high (although it 
should be remembered that one is only dealing with cases where the sample 
size is small and the iterative procedures to compute 0 can always be started 
with values from the previous replication). 
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The procedure also applies to tests modified to gain robustness or those 
designed to emulate the optimal score tests, since the latter are still functions 
of o - - l u i  . However ,  if the density of u i is unknown, one cannot simulate from 
it, and bootstrapping is now the obvious alternative numerical procedure,  with 
the u~ (or mi) being drawn from the empirical rather than the assumed density 
function. Technically, the conditions for the success of the bootstrap are not 
exactly satisfied here as the statistics are not 'pivotal', being dependent  upon 
the estimated parameters 0. However,  as this dependence disappears asymp- 
totically one would expect that the method would work well. 

(iv) Modifying the test statistic. Instead of finding an approximation to the 
small sample distribution of ~ it is sometimes more useful to modify the test 
statistic to make it correspond more closely to the asymptotic distribution. A 
simple adjustment in this vein is to form ~' = ~ - ~, where ~ is the E(÷) in 
finite samples, and to refer ~' to the asymptotic distribution of ÷. Essentially 
this is an attempt to correct for the fact that E ( ~ ) =  0 only in large samples, 
and therefore ~ will not be centered on zero in finite samples. Conniffe (1990) 
reports some success with this adjustment for score tests generally while Ara 
and King (1991) find that it works well for tests of heteroskedasticity in the 
linear regression model based on E zi(6"-2~2i- 1). The major difficulty in 
applying the idea is to determine E(÷), particularly if zg is stochastic or the data 
is censored, although one might employ simulation methods to do this. 

5.2. The power of  tests 

A number  of studies have been developed to investigate the power of tests 
mentioned in the preceding sections at detecting heteroskedasticity. Most 
effort  has been concentrated upon the linear regression model,  although Skeels 
and Vella (1991), working with n = 600, found that score tests were good in the 
censored regression model but very poor  in the Probit model. Ali and Giacotto 
(1984), Griffiths and Surekha (1986), Kamstra (1990) and Evans and King 
(1985, 1988) are perhaps the most comprehensive studies available of the linear 
regression case. Sometimes it is difficult to draw lessons from these reports as 
only overall results are provided, involving averaging across many experiments,  
and, unfortunately,  some of these experiments fail to satisfy the assumptions 
needed to apply either asymptotic or finite sample theory when determining 
the distributions under the null hypothesis. Worst in this respect is Ali and 
Giacotto who have an extremely large number of different experiments, some 
of which feature moments of u i that do not exist, while others are done with 
non-symmetric densities for ui which would invalidate the reference of tests 
such as Glejser's to chi-square distributions. It is almost impossible therefore to 
draw any conclusions from their work, as one does not know which experi- 
ments are responsible for the poor performance of any test. In other instances, 
for example Kamstra's demonstration that the power of robust tests using 
Z mira ~ as an estimate of var(Z m~) is very weak when testing for A R C H ,  no 
explanation for the phenomenon has emerged similar to those provided by 
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Chesher and Spady (1991) and Kennan and Neumann (1988) for kurtosis tests. 
Until one fully understands the causes of these results it is hard to know if one 
should recommend against the use of the associated tests. 

Some experiments come up with clear cut results, but the experimental 
design seems to be too restricted or the conditions are not sufficiently qualified. 
For example, Griffiths and Surekha conclude that the use of z i = i is to be 
recommended over the Goldfe ld-Quandt  and Breusch/Pagan/Godfrey  (B/P/  
G) test if it is possible to order the observations by increasing variance, and 
that one should use BAMSET if it is not possible to do so. 18 Because the ability 
to order data by increasing variance means that the heteroskedasticity must be 
a monotonic function of i, it follows that setting z i = i rather than to dummy 
variables, as in Goldfe ld-Quandt  and BAMSET,  should be advantageous. 
What is surprising is their conclusion concerning BAMSET,  since the B / P / G  
test is invariant to ordering. In fact, the power of B / P / G  can be directly 
compared to BAMSET in their Table 1, and it is clearly much larger. Hence,  
their conclusion is contradicted by their own results. It may be that the 
objective was to conclude that, within the class of tests that used no 
information about the variables forcing the conditional variance, B A M S E T  
was best, and indeed the body of the text seems to read this way, but that is 
not the conclusion stated in the paper. Even adopting such an interpretation 
would be odd, since the ability to order the data by increasing variance means 
that one knows the variance is driven by a time trend. 

A similar set of comments can be made about the studies by Evans and King 
(1985, 1988), and their conclusion that ' . . .  the emphasis on the B and P test in 
the recent econometric literature is probably misspecified'. Their  preference is 
for the point optimal test described in Section 3.2 over the B / P / G  or Goldfe ld-  
Quandt  tests. Again the data is generated so that the true heteroskedasticity is 
always a monotonic transformation of a trend term and the zi used is also a 
monotonic transform of the variable. This feature produces a bias against the 
Goldfe ld-Quandt  test, but there are two further factors in the experiment that 
help the performance of the point optimal test. First, the true heteroskedastici- 
ty is generated with a single unknown parameter  that is positive, and their test 
statistic takes account of the positivity of that parameter,  whereas the B / P / G  
test does not. Second, as seen in Section 3.2, the point optimal test uses 
information about the alternative, rather than just local information as in the 
score test, so the fact that it has superior power when there is a high degree of 
heteroskedasticity is quite consistent with the nature of each of the tests. Even 
with these advantages the power differential is only moderate,  of the order  of 
10%. 

t8 It may be worth emphasizing that there is no such thing as a B / P / G  test without specifying 
what z i is. What one specifies the heteroskedasticity to be when devising the test, and what it 
actually is, are two different matters. For example, in Breusch and Pagan (1979) a test was given 
with zi as a dummy variable, so one might even refer to it as the Goldfeld-Quandt test, showing 
how meaningless the appellation is. 
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6. Conclusion 

This paper has surveyed methods of testing for heteroskedasticity in a variety 
of models. Some of these tests are routinely provided as the standard output of 
computer packages, whilst others still only have spasmodic use. Our strategy 
was to treat existing tests as focusing on the validity of certain conditional 
moment  restrictions, since the general results from that literature can be 
brought to bear on this specific problem. Our inquiry also revealed that quite a 
deal of work remains to be done to understand the performance of tests. Some 
Of the issues raised relate to finite sample performance, and others to the poor  
performance of tests designed to be robust to departures from the auxiliary 
assumptions made in constructing them. To date, simulation studies have not 
addressed these questions very effectively, even neglecting to exploit what 
existing theory gives as the expected outcomes. As mentioned at various points 
in Section 5, asymptotic theoretical analysis can predict whether certain tests 
would be expected to work well in a given experiment, yet such results have 
rarely been incorporated into the analysis. For example, the power of any 
conditional moment  test against a sequence of local alternatives can be 
computed with formulae in Newey (1985). Combining together these different 
sources of information seems mandatory if we are to fully understand the 
sampling behavior of tests of heteroskedasticity. 
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Simulation Estimation Methods for Limited 
Dependent Variable Models 

V. A .  H a j i v a s s i l i o u  

1. Introduction 

This chapter discusses estimation methods for limited dependent variable 
(LDV) models that employ Monte Carlo simulation techniques to overcome 
numerical intractabilities of such models. These difficulties arise because high 
dimensional integral expressions need to be calculated repeatedly. In the past, 
investigators were forced to restrict attention to special classes of LDV models 
that are computationally tractable. The simulation estimation methods make it 
possible to estimate LDV models that are otherwise computationally intract- 
able using classical estimation methods even on modern-day supercomputers. 

Discussions of the estimation of various limited dependent variable models 
under restrictive parametric assumptions can be found in Maddala (1983), 
McFadden (1984), and Amemiya (1984). Typically, the estimation of many of 
these models involves the evaluation of multivariate integrals. This is generally 
the case with discrete choice models where the assumption is that each 
individual i evaluates all Y available choices and selects the one that gives the 
maximum expected utility. Alternative j has observable attributes Xj and yields 
(random) utility y ;  = Xj/3j + ej. McFadden (1973) solved the estimation prob- 
lem by making the restrictive assumption that the error terms e i in the random 
utility model are iid with an extreme value distribution. Under this assumption, 
the multinomial discrete choice model has the convenient closed form expres- 
sion: 

Prob(yi = k) = exp(Xikl3~) exp(XJ3j). (1.1) 
j=l 

Similar distributional assumptions enabled Dubin and McFadden (1984) to 
derive closed form expressions for a discrete/continuous model of choice of 
energy appliances and consumption of energy. 

The drawback of the iid extreme-valued distributional assumption is that it 
severely restricts the pattern of discrete choices predicted by the model, which 
may be untenable in many realistic circumstances. This restriction, known as 
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the independence of irrelevant alternatives (IIA), implies that the various 
alternatives are equally substitutable, neglecting, for example, that when 
selecting a mode of transportation between a car, a blue bus, and a red bus, 
the last two options are for all intents and purposes essentially perfect 
substitutes. See McFadden (1981). A restriction similar to the IIA is also 
exhibited by a multinomial independent probit model derived by Hausman and 
Wise (1978) by assuming that the errors ej are independent N(0, o-2). 

Heckman (1981) attempted to trade off some of the computational simplicity 
of these models for a less restrictive structure on the unobservables, thus 
overcoming frequently undesirable restrictions like the IIA property. He 
achieved this by imposing a factor-analytic error structure on the error vector 

e = F v  + S£ ~ , (1.2) 

where v is an n x 1 vector of independent random 'factors', (Eu = 0, E v v '  = 
2 o. ~In) , F is a J x n matrix of factor loadings, S is a J x J diagonal matrix, and 

is a J x 1 iid, random vector (Eg = 0, E ~ '  2 = o.#Ij). This implies that E e e ' =  
2 

O.2~FF'+ o -#SS ,  which reduces the dimension of the integral necessary in 
calculating choice probabilities. Sometimes there exists a natural economic 
interpretation of such a factor analytic error structure, thus further increasing 
the appeal of this model. For example, ~, can denote a small number of 
unmodelled factors affecting consumers' choice among airline carriers, like 
safety, comfort, on-time performance, etc. In a panel data context, v can 
denote unobserved agent-specific and time-period-specific shocks, which make 
up the structure (1.2). 

Another model that introduced some further computational complexity in 
exchange for avoiding the IIA property, is the nested multinomial model 
(NMNL) due to McFadden (1984). By introducing a hierarchical structure in 
the choice process, corresponding to blocks of 0s in the covariance matrix of e, 
this model remains consistent with the random utility maximization hypothesis, 
exhibits the IIA property only for specific stages of the hierarchical decision 
making, and still avoids the need to calculate integrals of high dimension. 

Avery et al. (1983), Chamberlain (1984), and Poirier and Ruud (1988) noted 
that in certain LDV models, notably multiperiod binary response and censored 
models with normally distributed disturbances, incorrect specification of the 
error covariance structure results in inefficient but still consistent and asymp- 
totically normal estimators. Hence, these authors developed estimation tech- 
niques that rely on period-by-period orthogonality conditions, which are 
computational tractable. As already noted, however, these methods do not 
generalize to most LDV models, in which the covariance structure of the error 
terms determines crucially the joint as well as the marginal distributions of the 
observed limited dependent variables. Moreover, as Hajivassiliou (1986) points 
out, normality of the disturbances is a crucial requirement for these methods, 
since for general non-normal random variables, the joint, conditional, and 
marginal distributions all belong to different classes. 
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The other direction followed by researchers was to investigate numerical 
analysis techniques for approximating the J-dimensional integrals. Hausman 
and Wise (1978) showed that methods due to Divgi (1979) for the case J = 3 
and Steck (1958) for J = 4 provided reasonably fast and accurate approxi- 
mations. Clark (1961) and Daganzo et al. (1977) offered some approximations 
for multivariate normal integrals. Horowitz et al. (1981) investigated the 
accuracy of the Clark approximation and found that it can be quite poor. 

The simulation methods discussed in this chapter offer a better solution than 
all of the alternative ways to address these computational problems. Section 2 
discusses the key developments that led to simulation techniques suitable for 
the estimation of LDV models. Section 3 describes the leading methods 
analytically. Section 4 examines all known simulators for likelihood contribu- 
tions and derivatives that are necessary for implementing the simulation 
estimation methods. Section 5 concludes with a summary and suggestions for 
future research. 

2. Developments of simulation techniques for the estimation of LDV models 

An important innovation occurred in 1981, in the form of the following idea 
due to Lerman and Manski (1981). These authors noted that Monte Carlo 
simulation methods are used in numerical analysis to approximate high 
dimensional integrals. (See, for example, Hammersley and Handscomb, 1964.) 
They used simulation to evaluate the choice probabilities for the multinomial 
discrete choice probit model. In this model, the utility derived from alternative 
j is assumed to be y[ -W(Xjflj, Oj). Lerman and Manski used the empirical 
frequency of observing *~ max{y~ r, ,y~r} to approximate Pk------ Y k = " " " 

Prob(y = k ; / 3 , 0 ) ,  where y*r is a Monte Carlo draw of a latent vector 
y*-N(X/3,  O), r = 1 , . . .  ,R. I will term this the crude frequency simulation 
(CFS) method. Their experience with this idea was disappointing; a huge 
number of simulations R was needed before the empirical frequency /Sk, 
defined by /5 k ( l /R)  R *~ *~ ~'r=l l(Yk =max{y[r,  . - .  ,YJ }), provided a good 
approximation of Pg, particularly when Pk was close to 0 or 1.1 This, of course, 
can be explained by the fact that since 1(.) is a Bernoulli random variable with 
probability of success P~, the variance of the simulator Pk is Pk(1-  Pg)/R, 
which falls only linearly with R. Moreover, the frequency simulator Pk takes 
the value 0 with positive probability. Hence, attempts to estimate a discrete 
choice model by using the method of simulated maximum likelihood (SML) to 
maximize iteratively Z i log Pki yielded very unsatisfactory estimates. 

The breakthrough came with an idea by McFadden, first presented in 1986 
and eventually published as McFadden (1989). McFadden's contribution was to 
recognize that using simulation to approximate choice probabilities in the 

The indicator function I(A) of event A takes the value 1 if the event is true and 0 if false. 
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context of estimation is a viable procedure even for a smaller number of 
simulations R, provided the following conditions are satisfied. (a) An unbiased 
simulator is used for the choice probabilities (which is satisfied by the crude 
frequency simulator of Lerman and Manski, 1981). (b) The functions to be 
simulated appear linearly in the conditions defining the estimator. (c) The same 
set of random draws is used to simulate the model at different trial parameter 
values in the process of iteratively searching for the estimator. Condition (b), 
violated by the SML procedure since the Pk appear inside the log(.) function, is 
crucial in ensuring that the independent simulation errors made in approximat- 
ing each P/k average out over the N observations to E(Pi~ - P/h), which is 0 by 
requirement (a). 2 Conditions for simulation-based estimators to be consistent 
and asymptotically normal were also derived in another seminal paper by 
Pakes and Pollard (1989), which appeared at about the same time. The method 
that these three authors developed satisfies requirements (a), (b), and (c) 
above and became known as the method of simulated moments (MSM). The 
key point is that the choice probabilities appear linearly in the moment 
conditions, since the expected value of a Bernoulli dependent variable is the 
probability of its taking the value 1. 

Based on a suggestion by Ruud (1986), Hajivassiliou and McFadden (1990) 
noted that another simulation estimation method can be devised by simulating 
directly the scores of likelihood function. This method of simulated scores 
(MSS) estimator is thus defined by 

OMss=argsolves{l~g~(O;yi)=O}, (2.1) 

and it will be consistent, uniformly asymptotically normal (CUAN) provided 
unbiased simulators si(') of the score vector s~(.) are used. Van Praag and Hop 
(1987) were the first to propose the use of simulation to overcome the 
computational difficulties in the evaluation of likelihood scores of LDV models 
and also noted that this approach is applicable to all classical LDV models (and 
not just discrete choice problems), though they did not use the name 'method 
of simulated scores'. Their method relied on approximating the score expres- 
sion by simulating both the linear derivative in the numerator and the 
likelihood in the denominator and taking the ratio as an approximation. It 
should be noted that, given the non-linearity of this expression, consistency 
and asymptotic normality of the resulting estimator require that the simulations 
of the denominator expression be based on an infinite number of draws. By 
contrast, the approach by Ruud, Hajivassiliou, and McFadden uses unbiased 
simulation to guarantee consistency and asymptotic normality for a finite 
number of simulations. Van Praag and Hop (1987) consider four examples as 
empirical applications. More empirical examples are given in Van Praag, Hop 
and Eggink (1989, 1991), Eggink, Hop and Van Praag (1992), and Niesing, Van 
Praag and Veenman (1991), where the authors deal with a cross-section 

2 The original SML procedure of Lerman and Manski also violated condition (c). 
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analysis of labor market data. It is pointed out in these studies that if one were 
able to draw from truncated multivariate normal distributions, the non-lineari- 
ty problem of simulating the denominator would not arise. The authors find, 
however, that a computationally preferable alternative is to use the GHK 
algorithm, described in Section 4 below, to simulate the denominator expres- 
sions. Since this algorithm simulates probability expressions very accurately, 
the biases introduced by simulating the denominator expressions are negligible. 

The next simulation-based estimation method, also to be discussed in greater 
detail later, is the method of simulated pseudo ML (SPML), developed by 
Laroque and Salani6 (1989) for the estimation of disequilibrium models with 
correlation over time. This method is defined as follows: Suppose a model 
stipulates that a dependent variable Yi has conditional moments, given the 
values of the explanatory variables, E(y i IX i) = g l ( X i ,  01) and V(yi I X  i) = 
g2(X~, 02). In the context of the LDV models we are discussing, the g(-) 
functions involve integrals of high dimensions, so that they are difficult to 
evaluate. The SPML method simulates R times the dependent variable y~ at the 
current trial parameter values 01 and 02, and then uses the empirical mean and 
variance o f  {y}r)} as simulating functions ~(01; R) and g2(02; R). By construc- 
tion, these functions are consistent estimators for g(.) as R---~ ~. The SPML 
estimator, 0SPML , is thus defined by 

bspML =arg m a x ( - 2  - g1(01; R)12/ 2(02; R) + log[g2(0 ; e ) ] } }  • 
01,02 I. i 

(2.2) 

This amounts to a combination of simulation of integral expressions together 
with pseudo-maximum likelihood estimation. The method implicitly employs 
the assumption that the limited dependent variable y~ has a distribution in the 
linear exponential class. In this specific example (2.2) the distribution is 
assumed to be normal) It should be noted that SPML is closer in spirit to the 
SML of Lerman and Manski (1981), in that consistency and asymptotic 
normality require R--~ ~. 

Finally, a method that theoretically also requires R - ~  is the smooth 
simulated maximum likelihood (SSML) method due to B6rsch-Supan and 
Hajivassiliou (1990). These authors showed that the linearity requirement that 
apparently caused the unsatisfactory performance of the SML estimator was 
not critical if extremely accurate simulators are used that are smooth functions 
of the underlying parameters. In particular, they showed that using the 
GHK/SRC simulator explained in Section 4 below makes the resulting SSML 
estimator perform well. Apart from smoothness, this simulator differs critically 
from the CFS used by Lerman and Manski in that it is bounded away from 0 
and 1 and has extremely low variance, even when the true probability is very 
close to either 0 or 1. 

3 See Gourieroux et al. (1984a,b) for the PML method without simulation. 
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Evaluation of high dimensional integrals has also been considered by applied 
physicists and mathematicians. For example, Dutt (1973, 1976) discusses the 
special case of multivariate normal orthant probabilities. Defik (1980a,b) 
proposes Monte Carlo integration as a way of approximating such prob- 
abilities. Another field in which fast and accurate calculation of multivariate 
integrals is important is Bayesian statistics, where it is necessary to calculate 
posterior density expressions in the context of Bayesian inference. Selected 
work from this voluminous literature that has investigated Monte Carlo 
simulation of integrals is Bauwens (1984), Van Dijk (1987), Kloek and Van 
Dijk (1978), Geweke (1989a) and West (1990). 

Finally, a third field that faces intractable integration problems is the 
estimation of econometric models of dynamic optimization. See Rust (1989) 
for an approach that circumvents some of the problems by using convenient 
distributional assumptions and an ingenious nested fixed point algorithm. 
Recently Hotz and Miller (1989), Hotz and Sanders (1990), and Hotz, Miller, 
Sanders and Smith (1991) have proposed introducing simulation techniques in 
the estimation of such problems. 4 These authors' preliminary work uses the 
simulated method of moments estimation framework to recover individual 
valuations of discrete alternatives by inverting observed conditional choice 
probabilities. They apply this methodology to the dynamic model of bus 
replacement considered by Rust (1989) to overcome some of the computation- 
al difficulties with the estimation of structural dynamic discrete choice models. 
In this work, however, no proofs of the asymptotic properties of the technique 
are yet available. Based on the Hotz et al. approach, Rust (1991) develops the 
simulated value function estimator, which is consistent and asymptotically 
normal, as well as computationally tractable. 

3. Simulation estimation methods for LDV models 

We shall discuss first the leading simulation estimation methods for the 
multinomial discrete choice model. This does not entail any loss of generality, 
because more general discrete/continuous LDV models can be decomposed 
into a continuous part and a discrete choice part, conditional on the continuous 
part. Specifically, suppose that for a given individual, the observed limited 
dependent variable vector y has some discrete elements, denoted by Yd, and 
some fully observed (continuous) ones, Yc. For example, consider the discrete/ 
continuous model, where individual i chooses alternative j which provides the 
highest level of utility, and simultaneously takes a continuous decision Yi*] 
which depends on the discrete choice. The observed limited dependent 

4 Two reviews that describe the state of the art in estimating dynamic optimization models are 
Rust (1991) and Pakes (1991). 
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variables (w~, yi) are then defined by 

wq = Zq3,j + eq , 

yij* = x j/3j + uij 

w i =arg max(wi*l , . . .  , w i j , . . .  , Wij), j = 1 , . . . ,  J ,  (3.1) 
J 

Yi  = Y iw  i " 

In this case, y~ corresponds to the J elements of the yq vector, while Yd to the 
J elements of wq. 

Let  y = (Yd, Y~)' and let 0 be the vector of unknown parameters in the 
model. Then 

and so 

and 

l(y; O, X)  = l(y d [Yc; 0, X) ' l (Yc;  O, X )  (3.2) 

0 In l/O0 = 0 In lalc/O0 + 0 In lc/O0. (3.3b) 

The parts with only continuous components pose no difficulties, since they 
involve only (multivariate) continuous densities, which can be evaluated 
directly. The terms involving the probability /dlc = -- Prob(y  d * E {yS: Yd = 
arg m a x j ( y ~ , . . . ,  y f ) }  [y*) are integral expressions over a conditional den- 
sity, of dimension equal to the number of discrete elements in y, which 
simulation estimation methods approximate. 

In this discrete choice model,  J mutually exclusive and exhaustive alter- 
natives yield a vector of utilities or payoffs y* = Xi/3 + e i. The disturbance 
vector e i is iid, mean-independent of Xi, with density function f~(ei; g2i(o-)). 
Individual i chooses the alternative k which yields the highest payoff. The 
observed choice is characterized by the J x 1 dummy variable vector yi, with 
yq = 1 for j = k, and yq = 0 otherwise. In this case, the vector of unknown 
parameters is 0 = (/3', ~ ') ' .  Given the non-linearity of this model, all estimation 
methods we consider will involve iterative search. Consider the trial parameter  
vector 0 (n) at iteration n. A maximum likelihood estimation algorithm requires 
the evaluation of L(O(")), 

L(O (")) = ~ .  In li(O("); y i) .  (3.4) 
i = 1  

A method of scoring seeks to evaluate 

1 ~ 1 i~=lliO(O("); s(o("b  = Y') (3 .5)  
i = 1  "=  li(O("); Yi) 

In l = In ldlc + In l c (3.3a) 
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A method of moments algorithm calculates 

1 ~ m ( o ( n ) "  1 ~ w ( O ( n ) ; X i ) , ( y  i ~ B ( n ) • x , ,  M ( O ( n ) ) = N  o, ' Y i ) = N  i=1 
i = 1  

(3•6) 

where glz-(')=-E(y~; 0 (~)) and w(-) is an instrument function• Finally, a pseudo 
maximum likelihood (SPML) routine evaluates the quadratic form 

1 N 

Q(0(~)) = -~" i~=a {[Yi - gli(O(~); Xi)]Z /g2n(O(n); Xi)  

+ log[gzn(O ("); X~)]}, (3.7) 

where gli(') ~ E(yi; 0 (n)) and g2~(') ~V(y~; 0(n)). 
If the expressions llO(n)'yg), l ¢0(")'y/), s~(O (n)'" ~ i~ , io~ , , Yi), gli(O(n); y/), and 

g 10 (n}. 2A , Yi) are analytically or numerically tractable, computer routines can be 
written to evaluate these expressions as functions of any possible trial 
parameter vector 0 (n). Estimation by simulation relies on simulating routines 
we shall denote by [ tO (n)" R) ,  y~, i, , Yi, R) ,  ~o(O(n); yi, R), s(o(n)'ix. ' Yi, ~;lgt~ B ('0", R) ,  
a n d  ~2 i  I, = [0 (n)', Yi, R)  respectively• These routines are defined as follows: Draw a 

~1 ~r  - R  set of R uniform J-dimensional random vectors u . . . . .  , u ~ , . . . ,  u~. By the 
assumptions of the model, the disturbance vector e~ is iid with density function 
f~(si; 0°), with E(e i IX/ )=  0 and E(Sgs~[Xi)= S2i(o" ). 

Consider the trial parameter vector 0 (n) = (/3 (n), o.(n)),. Using the inverse of 
the cumulative distribution function of s, F~-I(.), the uniform draws u~ can be 
transformed into a set of R g~, 

(n)) 1 -r  (n) (3.8) 

which will imply a set of R simulated latent v e c t o r s  y~r(o(n)), using the 
specification Ylj = 1 for y~ = max(y1* , . . . ,  Yi~) and ylj = 0 otherwise. From the 
R simulated ~ vectors, we calculate the empirical counterparts of the li(.) etc. 
functions and thus define the simulators [g(O(n);y~,R), [~o(O(n);yi, R) ,  
gi(0(n); yg, R),  gli(O(n)'~ y~, R),  and ff:~2i(o(n); Yi, R).  For example, [/(-) and gli(') 
will correspond to the vectors of empirical frequencies with which alternative j 
yielded the highest simulated payoff. Keeping the same uniform random 
variates, ti~, a new trial parameter vector 0 (n+l) will imply a new set of 

~ r /  (n + 1)-~ - *  simulated eAo- ), leading to new y~ and hence new values for [i, etc. The 
iterative search algorithms will keep trying different parameter vectors 0, 
always using the same ti~, to satisfy the relevant criterion, i.e., simulated ML 
will attempt to maximize /~(0), MSS will set S(0) and MSM will set ]f/(0) as 
close to 0 as possible, while SPML will attempt to minimize Q(0). 
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The  main  theoret ical  propert ies  of  such est imators can be summar ized  
fol lowing a rguments  in Hajivassil iou and M c F a d d e n  (1990). Suppose  0 is a 
s imulat ion es t imator  that  solves O= NI/2ENft( 0, 71), where  0 is an approxi-  
mat ion  (involving Monte  Carlo elements  ~7) to a funct ion y (0 )  of  l and its 

derivatives that  has expecta t ion zero at the true pa ramete r  0 °. For  example,  
for  SML and MSS, y(0)  is the logari thmic score of  the l ikelihood funct ion S(O), 
whereas  for MSM y(0)  is the or thogonal i ty  condi t ion re(O). E N denotes  
empirical  expecta t ion over  an independent  sample  of  size N. Then ,  one  can 
write 

0 = N 1/2EN~ ( 0, ~/) =- N 1/2ENT(0 o) + N I/2EN[gl( 0 o, ~1) - y(O 0)] 

+ N ~/2Eu[Y (O) -- y(0 0)] 

+ Ni/2EN[O( 0, 71) - y(O)  - O(0 °, ~/) + y ( 0 ° ) ] .  

(3.9) 

U n d e r  s tandard  regulari ty condit ions,  the first te rm is asymptot ical ly  normal ,  
reflecting the noise in the observat ions,  and the third term is p ropor t iona l  to 
V ~ ( 0  - 00). 5 The  last term will be of  order Op(1) for  simulators that  satisfy a 
' s tochast ic  equicont inui ty  condit ion ' .  6 

Le t  0z(0,~/) denote  the simulated value of  q~(0), for  a sample of  iid 
observat ions  i = 1 . . . . .  N. Define a simulation bias, 

BN(O) = - ~  [Ent~(0, ~/) - q~(O)], (3.10) 
i=1 

where  E~ denotes  an expectat ion with respect  to the simulation process,  given 
the observat ion.  Following the me thod  of  M c F a d d e n  (1989) and Pakes  and 
Pol lard (1989), Hajivassil iou and M c F a d d e n  (1990) show that  assumptions on 
the simulation bias plus regulari ty assumptions,  are sufficient for  the simulat ion 

es t imator  O N that  solves 2iN_1 qi(ON, T~)= 0 to  be consistent  and asymptot ical ly  
normal  7 

THEOREM (Hajivassil iou and McFadden ,  1990.) Assume that the parameter 0 b 
contained in a compact set O, and that the true value 0 o b in the interior o f  O. 
Assume that the criterion qi(O ) is continuously differentiable on O. Assume that 

5 When q is a smooth function of crude frequency simulators of l, Ol/O0, and 0 In I/O0 obtained 
using R Monte Carlo draws, Hajivassiliou and McFadden (1990) show that the second term will 
behave like X/N/R times an expression that is asymptotically normal, so that it will be comparable 
in magnitude to the first term when R and N are proportional. If, in addition, there is any 
averaging out of simulation noise across observations, the second term may be of order Op(1) when 
R and N are proportional, or comparable in magnitude to the first term for fixed R. 

6 The functions {~N(')} are stochastically equicontinuous at  O 1 C O if for each e > 0 and A > 0, 
there exists 6 > 0 and N O such that for N >1 No, Prob(suplo_o,p<~.o,~o,oeoll~N(O ) -~N(O')] > e)< A. 

7 The proof of the following theorem can be found in Appendix 3 of Hajivassiliou and 
McFadden. 
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the criterion and its derivatives are dominated by a function independent o f  0 
with finite first and second order moments. Assume that Eiqi(O ) = 0 if and only 
i f  0 = 0 °, and that J = -E~q~o(O °) is positive definite, where E i denotes expecta- 
tion with respect to the distribution o f  the observations• Assume that the 
observations and simulators are iid across observations. Assume that (i) the 
simulation bias converges to zero in probability, uniformly in O, and (ii) the 
simulation residual process 8 is stochastically equicontinuous. Assume that a 
simulation estimator solving 0 =  ~/N= 1 qi(ON,?~) exists for each N. 9 Then, the 
estimator satisfies 

A p 0 0 ~ j - 1  j - 1  , Ou---~O and V~(ON--O ) - -~Z--N(O,  + " V ' J  -1) 

where V = E[0i(0°,'O) - E n q i ( 0  ° " 0 ° - ,~?)][q~(,~/)  En0i(0°,r/)] '. 

To avoid technical difficulties, Hajivassiliou and McFadden (1990) assume that 
the multivariate distribution y* is truncated to a large compact  rectangle)  ° The 
simulators [i(O), [iO(O), and si(O) can be formed with several methods.  These 
are discussed in the following section. Hajivassiliou and McFadden (1990) give 
general sufficient conditions for assumption (i) of asymptotic unbiasedness and 
assumption (ii) of stochastic equicontinuity in the theorem.  Specifically, they 
show that if the simulation process is unbiased, as for example in MSM and 
MSS with unbiased simulators [i(O) and gi(O) respectively, or when the bias in 
an observation is dominated by a positive function independent  of 0 whose 
expectation is of order o(1/~/N),  then the simulation bias converges to 0. This 
results in consistent, asymptotically normal simulation estimators. McFadden 
and Ruud (1991) give further theoretical results along these lines. 
The suggestion to simulate the likelihood scores directly using the 
conditional distribution Z i -  {y~ [ y~ E D ( y l ) } ,  where D(y)  =- {y*: y = 

• . . ,  yj  )}, is due to Ruud (1986). arg maxj(y~,  * 
It  is important  to note that the method of simulated scores differs in a very 

significant way from the method of simulated moments .  MSS implicitly uses the 
optimal set of instruments, since as R---~w it corresponds to M L E  which is 
statistically efficient. On the other hand, the efficiency of MSM rests crucially 
on the choice of the instrument function w(O;X~). To highlight this issue, 
consider as a simple example the binary probit  model for an independent  
cross-section of individuals, i = 1 , . . . ,  N, for which classical estimation is, of 

8 See Hajivassiliou and McFadden (1990) for precise definitions. N 
9 It is sufficient to define O N to be an approximate solution satisfying ~(1) = ~ C~i(0N); such an 

estimator always exists, i=1 
10 This does not entail any essential loss of empirical generality, since for distributions with 

unbounded support, like the multivariate normal, one can restrict attention to the same 
distribution truncated to the square defined by the limits of computing machine representation of 
floating-point numbers. 
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course, computationally very straightforward. 

* (0  y, = x ; ~ 8 + e i ,  e i ~ N  ,1 ) ,  

Yi=  _ d i =  i fy*~<0.  

Define 

and 

In q~(yi, x~8) , 
In l; = d;-In q)(x~8) + (1 - d;). ln(1 - q~(x~)), 

si -= lio/l i 

" 4)(Yi "x'd3) 
X;" q~(yi-.X~.~) "Yi 

--x;-E(e, l Y3 • D(y;)), 
4(x;~) 

x, e(x;8)(1 - e(x~))  ( 4 -  e(x;~)) 

= w , ( o ) . ( 4  - ~ ( x ~ ) ) .  

(3.11) 

(3.12a) 
(3.12b) 

(3.13a) 

(3.13b) 

In this case, 0 =/3. Then the maximum likelihood estimator solves the first 
order c o n d i t i o n s  Luo(  O ) = ( l /N)  E i s;( O ) = O. 

Equation (3.13b) for the score of observation i highlights a method-of- 
moments interpretation of maximum likelihood estimation when the optimal 
instruments w;(O), defined in (3.13b), are used. Simulating the conditional 
expectation expressions in equation (3.13a) corresponds to the method of 
scoring. It should be noted that the basic consistency requirement that 
E(s;(y;;0*)tx;) = 0 is satisfied; in equation (3.13a) it is satisfied because 
P(Yi ] 0" ,  xi) = ~(Y i"  x'iO*) and in equation (3.13b) because E(d  i ] 0" ,  xi) = 
4)(x',O % 

The original method of simulated moments (McFadden, 1989, and Pakes 
and Pollard, 1989) substitutes an unbiased simulator, ~ ( x ~ ) ,  for q)(x'.~) and 
exploits the linearity in (d, - q)(-)) of the score expression (3.13b). For high 
efficiency this method requires that consistent estimators for the optimal 
instruments, wi(O*), be used. This is confirmed by the theoretical and Monte 
Carlo results of Hajivassiliou (1990), who reached the following conclusions. 
First, the optimal instrument function w(-) in (3.13b) (which, of course, in 
more realistic cases is intractable to calculate) yields considerable mean-square- 
error advantages over the simpler choice x;, which choice also satisfies the 
theoretical requirements for consistency and asymptotic normality. Second, the 
SML method of Lerman and Manski (1981) that uses the crude frequency 
simulators for the choice probabilities (SML/CFS) offers satisfactory per- 
formance only when the number of simulations employed is very large. This 
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number grows faster than linearly with the complexity of the LDV model under 
analysis. 11 The method that simulates separately the denominator of the scores 
by frequency methods performs unsatisfactorily, and it is easily dominated by 
all the other methods tried, primarily because frequency simulators are not 
bounded away from 0 and 1. Before barely satisfactory performance is 
achieved, a huge number of simulations for the denominator expressions in 
(3.13) must be employed. These problems are significantly alleviated once a 
smooth simulator, bounded away from 0, like the GHK/SRC simulator 

described in the next section, is used for the denominator expression. In all the 
cases investigated, the MSS based on the GSS, GHK/SRC, or PCF simulators, 
to be discussed in the next section, performs well. Moreover, the method is 
found to be numerically stable, which was to be expected given its continuity in 
the underlying parameters. Efficiency properties of various simulation estima- 
tion methods are also discussed in Lee (1990). 

The method of simulated scores bypasses the issue of searching for the 
optimal instruments and simulates instead directly the expression E(e* ]y* E 
D(yi)),  which implies that the optimal instruments are now available automati- 
cally in the form of xi. In other words, MSS uses simulators for the expression 
E(e* [y* E D(y~)), say t~(e* ]y* E D(y~)). To see the relation of MSS to MLE, 
recall that 

ck(yi . x ;~  ) 
x i .E(e* I Y* E D(yi)) = x~. eb(yi, x ;~)  - s~(y~, ~; x i ) .  

The Lerman and Manski (1981) method uses unbiased and consistent fre- 
quency simulators of eb(x'i~ ) directly in the likelihood function (3.12a). 

Gourieroux and Monfort (1990) discuss simulation estimation techniques for 
models with heterogeneity in terms of consistency, asymptotic normality, 
convergence rates, and asymptotic bias. A distinction is made between the case 
where simulations are the same across observations as opposed to different. 
Several studies have attempted to generalize the theoretical results outlined in 
this section about the properties of simulation estimators by relaxing the 
random sample assumption we have been employing. Duffle and Singleton 
(1989) use similar results to develop a simulation estimation method for models 
for financial data with temporal dependence. Laroque and Salani6 (1989) 
propose simulation estimation methods for multi-market disequilibrium using 
SPML. Laroque and Salani6 (1990) carry out an extensive Monte Carlo study 
to evaluate the relative performance of the various algorithms for disequilib- 
rium models. This study finds that the SPML methods are less liable to 
spurious maxima. Moreover, the use of simulation does not seem to entail 
substantial efficiency losses compared to full ML, which is considerably less 

11 As theory suggests, the SML/CFS is improved significantly by maintaining the same set of 
underlying random variates while iterating the optimization algorithm to convergence. 
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tractable computationally. Finally, Lee and Ingram (1991) propose simulation 
to overcome estimation problems of dynamic optimization under uncertainty. 
The main differences from McFadden (1989) and Pakes and Pollard (1989) are 
that Lee and Ingram allow for disturbances to be correlated across units of 
observations, while they require the criterion functions defining the estimators 
be continuous functions of the underlying parameters. 

As we shall see in the next section, some simulators like the crude frequency 
simulator (CFS) are not continuous functions of the unknown parameter vector 
or of the underlying Monte Carlo draws. Such a feature necessitates the use of 
derivative-flee methods like the non-linear simplex algorithm of Nelder and 
Meade (1964), since standard derivative-based optimization methods like 
Gauss-Newton or Newton-Raphson 12, cannot be used. Ruud (1991) showed 
that the EM algorithm appears promising to overcome some of the speed 
problems of MSS. See also Van Praag et al. (1991). For certain types of LDV 
models, Berry and Pakes (1990) report satisfactory numerical stability of 
simulation estimators, even when based on non-smooth simulation algorithms. 

The list of applications of simulation estimation techniques to estimate 
modern econometric models is growing rapidly. Hajivassiliou and McFadden 
(1990) apply the method of simulated scores to a model of external dept 
repayments problems using a panel data set of developing countries. Bolduc 
and Kaci (1991) use both SML and MSM to estimate a discrete choice model 
among five local residential telephone services. Keane (1990) independently 
developed the GHK/SRC simulator for the problem of estimating transition 
probabilities in his work on multi-period (panel data) probit models and used it 
to study temporal dependence in employment and wages. Berkovec and Stern 
(1991) use the method of simulated moments to investigate retirement 
decisions of older men and Stern (1991) also uses MSM to study the choice of 
transportation mode by elderly and disabled people. Hajivassiliou and Ioan- 
nides (1991) estimate by the method of simulated scores a generalized 
switching Euler equation model, to study consumption and labor supply 
behavior in the face of borrowing constraints using a large longitudinal data set 
of households. Bloemen and Kapteyn (1991) estimate a labour supply function 
jointly with a wage equation using smooth simulated maximum likelihood 
estimation following B6rsch-Supan and Hajivassiliou (1990). B6rsch-Supan et 
al. (1992) also apply SSML to investigate a multi-period, multinomial model of 
housing choices by the elderly. 

4. Simulators for 1, 01/00, and Oln 1/00 

In the canonical LDV model analyzed here, the latent vector y~ E ~M gives rise 
to the observed limited dependent Variable vector Yi (Y i), such that r(.) 
partitions ~M into regions d i=  1 . . . .  , M. Let D(Xi, O, d)  denote the set of y* 

12 See Quandt (1983). 
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that map into di. These regions typically correspond to a set of linear inequality 
constraints on the elements of y* of the form 

{Y*i ~ O ( X i ,  O, di) } ~ {a(X~, O, di) <-W(Xi, O, di) . y* <~ b(Xi, O, di)} , 

(4.1) 

where W(.) is a positive definite matrix and the boundary vectors a(.) and b(-) 
are allowed to have infinite elements. It is not difficult to set that the leading 
LDV models considered in the literature fit into this framework. 

The estimation methods discussed in the previous section require fast and 
accurate simulation of the likelihood contribution, its derivatives, and the 
score, respectively: 

l(Di, O) = f l (y* E D i ) .  f ( y*  - i.zi; ~-~i(o-)) dy* , (4.2a) 

Vol(D ~, O) = f l (y* @D~). Vo f ( y*  -/x,.; O~(o-)) dy* ,  (4.2b) 

V 0 In l(D~, O) =- s(Di, 0 ) 

= J l (y* ED~) .Vo f ( y*  - txi; gli(o-)) dy* 

E; ]1 x l (y* EDI)" f (y* - /zi ;  ~/(o-)) dy* , (4.2c) 

where /x~-=Xfl and f(.)  denotes the PDF of the latent vector y*. In the 
remainder of this section, methods are discussed for simulating expressions 
(4.2). 

It should be noted that if we assume further that the distribution of y* is a 
member of the linear exponential family, such as the normal distribution, the 
score of observation i can be written 

si(Oi, O) = Ey.(h(y*;  0, X~) I y* ED(X~, O, d,)) , (4.3) 

where h(y*; .) is a vector of polynomials in y*. See Ruud (1986) for an 
illustration of this result. Hence, this argument shows that for the successful 
implementation of MSS it is useful to devise ways to generate draws from the 
truncated distribution z= -{y* [y*  E D}, since such draws i r could then be 
used to simulate the score unbiasedly by 

1 n 

gi(Di, O, ~) =-- ~ r~=l h( fi-.r) . (4.4) 

The simulation method that is perhaps the most intuitive to demonstrate is 
the following. Write the random vector y* as 

y* =/x + Fr/ ,  (4.5) 

where ~ is an independent standard normal vector of dimension M and F(o-) is 
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a lower triangular Choleski factor of g2(o-), that is, g2(o-) = F(o)F(o-)'. A simple 
approach to approximating (4.2a) is to make repeated Monte Carlo draws for 
r/, use (4.5) to calculate y* for each parameter vector, and then form empirical 
analogs of the expectations in (4.2a) and (4.2b). This approach defines the 
crude frequency simulator (CFS) of l(D; O) and its derivatives. Similarly, a 
crude frequency simulator for 70 In l can be formed by rejecting draws of y* 
that do not satisfy the conditioning event y* E D, and then calculating an 
empirical analog of the conditional expectation in (4.2c) using the accepted 
draws. 

The CFS are quick to compute and ideal for parallel processing. However ,  
they are not continuous in parameters or in the underlying Monte Carlo draws, 
exhibiting jumps at different 0 and ~/ values. This complicates iterative 
parameter  search. A second serious shortcoming of CFS is that they take the 
value 0 with a positive probability. This explains to a large extent the 
unsatisfactory performance of SML when CFS was used by Lerman and 
Manski (1981) to approximate l i, since the SML criterion function is gi In [i- 

B6rsch-Supan and Hajivassiliou (1990) overcome these problems by de- 
veloping the method of smooth SML (SSML), which uses instead a simulator 
for l~ that is (a) smooth in the unknown parameters and (b) is bounded away 
from 0. For the normal case y* - ?¢'(/x, g2), a simulation method that possesses 
both these properties and also is extremely fast to compute is the method 
termed GHK by Hajivassiliou et al. (1992). 13 

To discuss G H K  and other simulation techniques, it is useful to introduce 
the following notation. For a vector of indices ( 1 , . . . , n ) ,  we use '< j '  to 
denote the subvector (1 . . . .  , j -  1), and ' - j '  to denote the subvector that 
excludes component j. Thus, for a matrix F, Fj,<j denotes a vector containing 
the first j - 1 elements of row j, and F_t,_j denotes the subarray excluding row j 
and column j. For a vector 7/, ~/<j is the subvector of the first j -  1 components,  
and ~/_j is the subvector excluding component j. 

Consider the triangularizing transformation y * = / ~  + F~/, where F is the 
Choleski factor of O. The indicator l(y* E D )  then becomes l(/x + F~7 ~ D ) ,  
which can be written recursively as the product of indicators of the events 

Dj('r/<j) = {r/j ] (aj - / z j  - Fj ,</r/<j) /~j  <'r / j  < ( b j  - I . t j  - ~,< / r /< j ) /q j )  
(4.6) 

for j = 1 , . . . ,  M. Define ~b(7/j I Dj(r/</) ) = ~b(7/j)l(~j E DjOQ<i))/@(Dj(~<j)), the 
conditional distribution of ~j given the event Dj07<j). A recursive scheme of 
this type was suggested by Van Praag and Hop (1987) and by Geweke (1989b). 
Define a weight 

M 

O)(T]) = I~ dP(Dj('r]<j)). (4 .7)  
j -1 

13 This stands for Geweke, Hajivassiliou and Keane. I will use the same acronyms as in 
Hajivassiliou et al. (1992) to refer to the various simulators. 



534 V. A. Hafivassiliou 

T h e n  it follows that  

and 

f M 
l = f ( / z  + FT/)oJ(~/) I ~  ~b(~/j IDj('O<j)) d~/ (4.8a) 

j=l 

M 
Vol = Vof(Ix + F~7)o~(~) I~ (o01j IDj07<j)) d~7. (4.8b) 

j=l 

A n  unbiased  s imulator  of  l is an average  of  f o x  + F~7)w07 ) and an unbiased  
s imula tor  of  Vol is an average  of V 0 f o x  + F7/)o907), where  o~(rt) is the  weight ing 
funct ion (4.7),  ove r  draws cons t ruc ted  recursively f rom the one-d imens iona l  
condi t ional  densit ies qS(~jlDj(7/<j) ). Drawing  ~j f rom this densi ty  can be 
ach ieved  by the following m e t h o d ,  which is cont inuous  in the  u n k n o w n  
p a r a m e t e r s  and the M o n t e  Car lo  draws: 

: - 1  - 
~lj ~P (~j~((aj-l . t j  

+ ( 1  - - - ( 4 . 9 )  

T h e  ~j are  drawn f rom the un i fo rm [0, 1] density,  la 
I t  should be  no ted  tha t  the G H K  s imula tor  defined by ( 4 . 6 ) - ( 4 . 9 )  is 

appl icable  also to some  non -no rma l  distr ibutions,  as long as the univar ia te  
draws fo rm the condi t ional  one-d imens iona l  distr ibutions co r respond  to the 
mul t ivar ia te  distr ibution of  e in the la tent  var iable  specification y* = X/3 + e. 
This  useful  p rope r ty  is not  shared  by m a n y  o ther  s imulators  discussed here  that  
rely on the very special  addit ivity p rope r ty  of  the no rma l  distr ibution.  

A n o t h e r  way to obta in  a smoo th  s imulator  is to begin f rom CFS and 
in t roduce  the kernel smoothed frequency simulator (KFS) ,  suggested b y  
M c F a d d e n  (1989). KFS replaces  the indicator  funct ion l ( y *  E D )  in the crude  
f requency  s imula tor  with the funct ion 

Y{o,o(Y*) =-- Y{((Y* - b)/w) - Y{((y* - a)/w) , (4.10) 

where  Y{(w) is a smoo th  kernel  funct ion f rom ~M onto  [0, 1] with y{(-oo) = 1 
and y{(+oo) = 0, and o) is a window width pa rame te r .  This s imula tor  is a b iased 
es t imate  of  l and Vol for  posi t ive o9, but  in statistical appl icat ions one  can 
shrink w as sample  size increases.  

A n o t h e r  impor t an t  s imulat ion principle is acceptance~rejection sampling 
(ARS) .  Me thods  based  on this principle p rov ide  a mechan i sm for  drawing f rom 
a condi t ional  densi ty when  practical  exact  t rans format ions  f rom un i fo rm or  

14 This is a simple application of the probability integral transform result (see Feller, 1971). Let 
X be distributed according to the univariate uniform distribution on [0, 1]. Then Z -= G-I(X) = 
~b -l[(@(b) - qb(a)) • X + qb(a)] is distributed N(0, 1) s.t. a ~< Z ~< b. The proof follows by recogniz- 
ing that the corresponding CDF is G(z)= (cI)(z)- cI)(a))/(q~(b)- 49(a)), where ~0 denotes the 
univariate normal cumulative distribution function. Note that Z is a continuous and differentiable 
function of the parameters a and b. 
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standard normal variates are not available. The crudest form of ARS is to 
sample from the unconditional distribution of y* using (4.5), reject points not 
in D until R accepted points are found, and form an empirical average of h(y*) 
over the accepted points. The following refinement (see Devroye (1986) or 
Rubinstein (1981)) permits improvement in the 'yield' of the method by 
sampling from a comparison distribution that puts little or no weight outside D 
and has the property that the ratio of the comparison density to the target 
density is uniformly bounded above by a small number. Is 

Suppose f(x) is an M-dimensional density, and one wishes to sample from 
the conditional density f(. I A) given the event x ~ A. Suppose g(x) is a density 
from which it is practical to sample, with the property that SUPA f(x)/g(x)<- 

< +~. Assume that either the support of g is A, or that it is practical to test if 
x E A; that it is practical to calculate f(x) and g(x); and that it is practical to 
calculate a bound ~. Draw x from g and ~" from a uniform density on [0, 1], 
repeat this process until a pair satisfying x E A and f(x) >1 ~ag(x) is observed, 
and accept the associated x. Then, it follows, through a simple application of 
Bayes' theorem, that the accepted points have density f(xlA)=-f(x)/f(A). The 
expected yield of this method is 1/m In the specific example in Figure 1, the 
particular x drawn would be rejected. Possible comparison distributions for 
ARS are independent exponential or truncated normal distributions in y* 
space, but greater yields can be obtained using the recursive truncated normal 
distribution (4.6) employed in the GHK simulator. Lemmas in McFadden 
(1989) and Hajivassiliou and McFadden (1990) give protocols for use of 
independent exponential or recursive truncated normal comparison distribu- 
tions. To prevent lengthy computations, ARS may be modified to incorporate 
a censoring rule, such as if the first r trials do not yield an acceptance, then the 
last draw from g(x) is accepted unconditionally. This method will be biased, 

I 

f 

x 
Fig. 1. Acceptance/reject ion.  

is The  'yield' of  an ARS procedure is defined to be the  proport ion of r andom variates that  are 
accepted out  of  all those drawn. 
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but Hajivassiliou et al. (1992) show that the bias is bounded at a geometric rate 
in r. 

Note that ARS is not a continuous function of the unknown parameters. To 
see this, note that a point y * = i x  + F~7 may, for given 7, move from the 
rejection to the acceptance region with small changes in the parameters. 
Hajivassiliou and McFadden (1990) show that the ARS nevertheless satisfies a 
stochastic equicontinuity condition that enables its use in simulation estimation 
applications. 

An important case where bias may be a major issue is simulation of 1/l in 
the score expressions V 0 l/l. One technique for achieving an unbiased simulator 
is based on the observation made by Ruud that 1/l is the expectation of the 
number of independent draws R from (4.5) required to yield y* E D; this can 
be simulated by drawing sequentially from (4.5) until y* ~ D  is observed. See 
McFadden and Ruud (1991) for details. This method is termed the sequentially 
unbiased simulator (SUS). 

Another  general principle for devising simulators is importance sampling. 
See Hammersley and Handscomb (1964). Suppose the integrands in l and Vol 
can, with multiplication and division by a factor if necessary, be written as the 
product of a density 3'(y*), whose support coincides with or contains D, from 
which it is easy to sample, and the remainder. Then, l and V 01 can be written as 

l = f {l(v CD) f ( v  - IX, ~ ) / y ( v ) } y ( v )  dv 

E~I(v E O )f(v - IX, a ) /y(v) , (4.11a) 

and 

( 
V0l = J {l(v ED)Vof (v  - IX, ~ )/y(v)}3"(v) dv 

--= E~l(v @D)Ve f(v - IX, ~ ) /y(v)  , (4.11b) 

where v -= y*, and f(-) denotes the PDF of y*. An empirical expectation using 
draws from 3'(v) gives an unbiased simulator that is smooth is parameters. For 
the y * -  dV(IX, $~) case, this is termed normal importance sampling (NIS). 

For fast computation, choose y so that the components are independent, or 
are obtained as simple transformations of independent variates. Two possible 
choices of y are considered in Hajivassiliou et al. (1992). First, the NISE 
method uses independent exponential densities, 

M 

3'(v) = I-[ exp((vi-  bi)/c~)ci, (4.12) 
i = l  

where c~ are parameters that can be set as part of the simulation. Draws from 
the density are easily computed using v~ = b~ + c~- log ~, where ~ is a uniform 
[0, 1] variate. An alternative that is more likely to concentrate probability for 3' 
in the same region as the multivariate normal is the product of truncated 
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normals, 

M 

y(v) = [ I  qb((vi- ai)lc,) /[dP((bi-  ai)/ci) - q~((ai - ai)/ci)],  v e D ,  
i=1 

(4.13) 

with a i = ~i and c i = V~/~. This defines the NIST simulator. One can sample 
from this distribution using 

v i = a i ~ - C i ( ~ - l ( ~ i ( I ) ( ( b  i - Oli)/Ci) q- (1 -- ~'i)q~((ai- a~)/c~)), (4.14) 

with ffi a uniform [0, 1] variate. 16 
Apromis ing  method,  particularly well suited to be used in conjunction with 

the MSS estimator, is the Gibbs sampler simulator for V 0 I. This simulator is 
based on a Markov chain that utilizes computable univariate truncated normal 
densities to construct transitions, and has the desired truncated multivariate 
normal as its limiting distribution. 17 The simulator was developed by Ha- 
jivassiliou, starting from stochastic relaxation methods studied by Geman and 
Geman (1984). This simulator is defined by the following Markovian updating 
schemeff  Suppose D is finite. Start from any v(°)ED.  Define a recursive 
procedure with steps i = 1 , . . . ,  M in rounds j = 1 . . . .  , r. Suppose at step i in 
round j, v (j-~) and v ~  ) have been determined. Define 

-1  o~- (j) = Kq + o-fb [ffqq~((b~- Kij)/~) + (1 - ~'q)q~((ai- Kq)/%)] , (4.15) 

where the ff~/ are independent uniform [0, 1] variates, 

[ <, IKij = ~'Li _~ ~ - ~ i , _ i ~ - 1  V(<J? - - ~ ( J )  "] - i , - ikv071) . U - l ) |  ' (4.16) 
-- ]'~>i J 

and 

°-i = [~'~ii - ~'~i,- l~ '~--] , - i~ '~-i , i]  1/2 . ( 4 . 1 7 )  

Note that v ~ D  by construction. Repeat  this process r 'Gibbs resampling 
rounds'.  Then,  as Hajivassiliou and McFadden (1990) prove, the random 
draws obtained by this simulator have a distribution which converges at a 
geometric rate to the true distribution z=- {y* I y* E D }  as the number of 
Gibbs resampling rounds r grows to infinity. They also show that an MSS 

16 A third choice for y(-) that in practice seems to be less successful than (4.13), is due to Moran 
(1984). West (1990) develops and investigates an adaptive Monte Carlo method,  based on 
importance sampling and density estimation techniques using kernels. He finds that these methods 
possess the potential to develop automatic routines for Bayesian estimation methodology. 

17 GSS can in principle be generalized to non-normal distributions, provided the corresponding 
univariate distributions are easy to draw from. 

18 This description follows Hajivassiliou and McFadden (1990). 
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estimator based on GSS with a finite number of terminal draws R will be 
consistent and asymptotically normal provided r grows at the rate log N, where 
N is the sample size. This is a very satisfactory rate. In contrast, consistency 
and asymptotic normality of a MSS estimator based on AUS or SUS require 
that R grows at rate V~.  

Geweke (1991) implements the Gibbs sampler for efficient simulation from 
the truncated multivariate normal and Student-t distributions, by developing a 
speedy algorithm for generating univariate truncated normal variates, com- 
pared to the algorithm I will denote by RNDTRN that is given in footnote 14. 
Geweke denotes his algorithm by GGRNRM. I have performed simple Monte 
Carlo experiments which gave the following comparison. To draw 20 000 x 
N(0,1)  truncated on - l < x < l ,  on a SUN4/80 workstation took 13.23 
seconds using G G R N R M  and 18.54 using RNDTRN. On the other hand, when 
the constraint was one-sided and far from the mean ( - 1 0 < x < - 5 ) ,  then 
RNDTRN was slightly faster (22.2 vs. 20.0). This follows from the fact that 
Geweke's G G R N R M  algorithm is a mixture of RNDTRN and a speedier 
method, which is only used in regions close to the unconditional mean. 

Finally, mention must be made of three simulators for l, V 0 l, and V 0 In l that 
were developed explicitly for the y* -JV(/.t, O) case, and that may be difficult 
or impossible to generalize to non-normal y*. First, consider the Stern 
decomposition simulator (SDS), suggested by Stern (1992). This method writes 
y*-aV(. ; / . t ,~2)  as a sum y * = Y + W ,  with Y--?C(.;/x, A2I) and W ~  
J~/(.;0,~Q-A2I). That is, y* equals the sum of a 'small' independently 
distributed normal vector and a second normal vector that carries the 
information on the covariance matrix of y*. Then, by the law of iterated 
expectations, 

- w , - / ~ , ) / A ) / A ]  dy}Von(w , - A2I) dw , 

(4.18) 

where n(.) denotes the normal PDF. The term in braces can be integrated 
analytically; then the SDS averages this interior integral over r Monte Carlo 
draws w = [O - Az/]l/2'q, where 7/is a standard normal vector and [O - A2I] 1/2 
is a Choleski factor of S2-  A 2 I .  The SDS provides an unbiased smooth 
simulator. This simulator is fast to compute, but it can be computationally 
burdensome to determine A such that $~ - A z / i s  positive definite, and accuracy 
fails when M is large and the eigenvalues of ~2 are uneven. 

Another simulator, developed explicitly for the y*-?¢'( /x,  S2) case, can be 
interpreted as importance sampling with the uniform distribution on the unit 
sphere intersecting the negative orthant as the comparison density. This 
simulator was suggested by McFadden (1989). A related method is De6k's 
chi-square simulator (DCS). See Defik (1980a,b). The DCS simulator is 
obtained by drawing an antithetic random grid of points on the unit sphere and 
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then using a spherical t ransformation about  the mean of the multivariate 
normal  distribution. ~9 It is unbiased for l and Vol and smooth in parameters .  

Note  that all the simulators for l, V 0 l, and V 0 In I discussed in this section 
have been implemented  in GAUSS and in F O R T R A N  computer  code in 
Hajivassiliou et al. (1992). The code can be requested from these authors. It  is 
also available via anonymous ftp at the Internet  site 'econ.yale .edu ' .  The main 
conclusion of this study is that the G H K  simulator is the best of all the 13 
simulation algorithms considered. It consistently has the best (or among the 
best) mean and median bias, standard deviation, and RMSE characteristics. 
For details, readers can refer to Hajivassiliou et al. (1992). The main 
conclusion confirms other findings in the literature by Bolduc and Kaci (1989) 
and M/ihleisen (1991), who considered G H K  against a handful of alternative 
simulators. This result is found to hold in Hajivassiliou et al. (1992) against all 

other  12 simulators presented here. 

5. Conclusion 

This chapter discussed estimation methods for limited dependent  variable 
( L D V )  models that employ Monte  Carlo simulation techniques to overcome 
numerical  intractabilities of such models. These difficulties arise because high 
dimensional integral expressions need to be calculated repeatedly.  In the past, 
investigators were forced to restrict attention to special classes of L D V  models 
that are computationally tractable. The simulation estimation methods offer 
dramatic computat ional  advantages over  classical methods.  In a typical exam- 
ple, computat ions that would require 3 months to estimate on a modern  
super-computer  with classical methods can be carried out overnight on a 
high-end personal computer .  Hence,  simulation estimation methods now make  
it possible to estimate L D V  models that are computationlly intractable using 
classical estimation methods even on state-of-the-art  supercomputers .  

The main simulation estimation methods for L D V  models developed in the 
econometrics literature, namely SML, MSM, MSS, SPML, and SSML, have 
been discussed, and results have been presented about the asymptotic prop- 
erties of such simulation-based estimators. Specific simulation algorithms to use 

19 The principle of antithetic variates is to introduce negative correlation between successive 
Monte Carlo draws in order to reduce the variance of simulation sample averages. See Hendry 
(1984) for a discussion. Hajivassiliou et al. (1992) generalize the principle to the multivariate case 
by selecting a regular grid of points whose location is random. This technique can be employed in 
simulators of l, VI, and V In l when the method has sufficient symmetry. Another way to reduce 
simulation variance in Monte Carlo methods is through the use of control variates. These are 
random variables with analytic expectations that are positively correlated with the random variable 
whose expectation is to be simulated. Then, simulation variance can be reduced by simulating only 
the difference between the expectations of the variate of interest and the control variate. See 
Hendry (1984) for details. 
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in con junc t i on  with these  five e s t ima t ion  m e t h o d s  were  also desc r ibed .  T h e  
l ead ing  s imula t ion  e s t ima t ion  m e t h o d s  r equ i r e  the  s imula t ion  of  one  o r  m o r e  of  
the  fo l lowing express ions :  p robab i l i t i e s  of  the  l imi ted  d e p e n d e n t  va r i ab les ,  
de r iva t ives  of  such p robab i l i t i e s  wi th  respec t  to  under ly ing  p a r a m e t e r s ,  and  
der iva t ives  of  the  (na tura l )  l oga r i thm of  the  p robab i l i t i e s  of  the  d e p e n d e n t  
var iab les .  

T h e r e  are  two ma in  a reas  in which fu ture  r e sea rch  in the  field shou ld  p r o v e  
pa r t i cu l a r ly  fruitful .  The  first is to des ign s imula t ion  a lgor i thms  tha t  w o r k  
sa t i s fac tor i ly  for  the  case  of  n o n - n o r m a l  d i s t r ibu t ions .  T h e  s econd  is to 
i n t roduce  s imula t ion  m e t h o d s  into s e m i - p a r a m e t r i c  e s t ima t ion  app roaches .  
This  w o u l d  be  espec ia l ly  i m p o r t a n t  in f ree ing  the  l ead ing  s imula t ion  e s t ima t ion  
m e t h o d s  for  L D V  mode l s  discussed in this c ha p t e r  f rom the i r  res t r ic t ive  fully 
p a r a m e t r i c  f r amework .  
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Simulation Estimation for Panel Data Models with 
Limited Dependent Variables 

M i c h a e l  P. K e a n e *  

1. Introduction 

Simulation estimation in the context of panel data, limited dependent-variable 
( L D V )  models poses formidable problems that are not present  in the cross- 
section case. Nevertheless,  a number  of practical simulation estimation meth- 
ods have been proposed and implemented for panel data L D V  models. This 
paper  surveys those methods and presents two empirical applications that 
illustrate their usefulness. 

The outline of the paper  is as follows. Section 2 reviews methods for 
estimating panel data models with serial correlation in the linear case. Section 
3 describes the special problems that arise when estimating panel data models 
with serial correlation in the L D V  case. Section 4 presents the essential ideas of 
method of simulated moments  (MSM) estimation, as developed by McFadden 
(1989) and Pakes and Pollard (1989), and explains why MSM is difficult to 
apply in the panel data case. Section 5 describes computationally practical 
simulation estimation methods for the panel data probit  model.  Section 5.1 
describes an efficient algorithm for the recursive simulation of probabilities of 
sequences of events. This algorithm is at the heart  of all the simulation 
estimators that have proven feasible for panel data L D V  models.  Section 5.2 
describes the simulation estimators for panel data probit  models that are based 
on such recursive simulation of probabilities. Section 5.3 describes some 
alternative estimators that are based on conditional simulation of the latent 
variables in the probit  model  via similar recursive methods.  Section 6 discusses 
issues that arise in simulation estimation of models more complex than the 
probit  model.  In Section 7, I use the simulation estimation methods presented 
in Sections 5 to 6 to estimate probit  employment  equations and selection 

* The Institute for Empirical Macroeconomics and the Alfred P. Sloan Foundation have 
supported this research. The views expressed herein are those of the author and not necessarily 
those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System. 
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bias-adjusted wage equations on panel data from the national longitudinal 
survey of young men. Section 8 concludes. 

Throughout  the exposition in Sections 2-6,  I assume strict exogeneity of the 
regressors. I do this in order to focus on the special problems that arise due to 
simulation itself. Thus, I ignore the important issues that arise when the 
regressors are endogenous or predetermined rather than strictly exogenous. 
For discussions of these issues, the reader is referred to the excellent surveys of 
Heckman (1981) and Chamberlain (1985). 

I also ignore simulation estimation in the context of discrete dynamic 
programming models. This is despite the facts that the first important 
econometric application of simulation estimation was in this area (Pakes, 
1986), the area continues to be a fertile one (see, e.g., Berkovec and Stern, 
1991; Hotz and Miller, 1991; and Geweke,  Slonim and Zarkin, 1992), and that 
much of my current research is in this area (Keane and Wolpin, 1992; Erdem 
and Keane, 1992). This omission stems from my desire to focus on the special 
problems that arise in the simulation of probabilities of sequences of events, 
excluding those additional problems that arise when the solution of a dynamic 
programming problem must also be simulated. 

2. Methods for estimating panel data models with serial correlation in the 
linear case 

Since the pioneering work of Balestra and Nerlove (1966), the importance of 
controlling for serial correlation in panel data models has been widely 
recognized. There are many situations where, if an agent is observed over 
several time periods, we would expect the errors for that agent to be serially 
correlated. For instance, in wage data, those workers who have wages that are 
high at a point in time (after conditioning on the usual human capital variables 
like education and experience) tend to have persistently high wages over time. 
As Balestra and Nerlove pointed out, failure to account for such serial 
correlation when estimating linear regressions on panel data leads to bias in 
estimates of the standard errors of the regressor coefficients. To deal with this 
problem, they proposed the random effects model, in which the existence of a 
time-invariant individual effect, uncorrelated with the regressors and distribut- 
ed with zero mean in the population, is postulated. 

The random effects model produces an error structure that is equicorrelated. 
That  is, if the true model is 

y,, = Xi,/3 + e,,, (1) 

for t = 1, T and I = 1, N, where Yi, is the dependent variable for person i at 
time t, Xi, is a vector of strictly exogenous regressors, and ei, is the error term, 
and if 

(2) 
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whe r e /x  i is a time-invariant random effect and % is iid, then the covariance 
structure of the e~, is 

/ O'~2 for j = 0 ,  
Eeitei.,_j = (3) 

Lpo'~ for j # 0 .  

Here  p is the fraction of the variance of e due to the individual random effect. 
Thus, the correlation between the errors e~t for any two different time periods 
is p regardless of how far apart the time periods are. 

This equicorrelation assumption is obviously unrealistic in many situations. 
Its virtue lies in the fact that estimation of the random effects model is 
extremely convenient. The model (1 ) - (2)  may be estimated using a simple 
two-step GLS procedure that produces consistent and asymptotically efficient 
estimates of the model parameters and their standard errors. If the equicorrela- 
tion assumption is incorrect, the estimates of /3 remain consistent but the 
estimated standard errors are biased. 

In cases where equicorrelation does not hold, it is simple to replace (2) with 
a general covariance structure and apply the same two-step GLS procedure.  In 
the first step, obtain a consistent estimate of/3 under the assumption that the e 
are iid and use the residuals to estimate the covariance matrix Z = Eeie~, where 
e~ = ( e m . . . , e i r ) '  is a T x 1 column vector. Then,  letting ~ denote the 
estimate of X, take the Cholesky decomposition ~ = AA',  where A is a 
lower-triangular matrix, and premultiply the Yi and X~ vectors by A'. In a 

second step, estimate a regression of ]t'y~ on A'Xi to produce consistent and 
asymptotically efficient estimates of all model parameters and their standard 
errors. (See Amemiya and McCurdy, 1986 or Keane and Runkle, 1992.) Note 
that, with missing data, estimation of an unrestricted A matrix would be 
problematic. However ,  restricted structures where N is parameterized as, say, 
having random effects and A R M A  error components pose no problem. 

3. The problem of estimating LDV models with serial correlation 

In sharp contrast to the linear case, estimation of LDV models with serial 
corelation poses difficult problems. As a leading case, consider the panel data 
probit model. This model is obtained if we do not observe Yi, in equation (1), 
but only observe the indicator function d i t  , where 

{10 ifYi~>O, d,, = (4) 
otherwise,  

and if we further assume that the error terms have a normal distribution, 
e i - N ( 0 ,  X ). Given this structure, we can write ei=Arh,  where ~/;= 
0/il . . . .  , ~ir) '  and 7 h -- N(0, I) .  Define 0 as the vector consisting of elements 
of fi and the parameters determining the error covariance structure ~. Further,  
define 4, = {dil, - • •,  d~,} as the set of choices made by person i through period 
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t, and Prob(Jie IX i, O) as the probability of this set, where X i = ( X i l  . . . .  , N I T ) ' .  

Then the log-likelihood function evaluated at a trial parameter estimate 0 is 

N 

5f(0) = ~ In Prob(Jir INi, 0 ) .  (5) 
i = 1  

The difficulty inherent in evaluating this log-likelihood depends on the error 
structure. If the eit are iid, then 

Prob(J/t I N  i ,  0) = I~ Prob(dit I Nil, 0 ) .  
/=1  

Thus, only univariate integration is necessary to form the log-likelihood. If 
there are random effects, as in (2), then 

Prob(JitIXi, 0) = f~  [I  Prob(d, lXil, 0)f(/x) d/x . 
l = 1  

Here,  bivariate integration is necessary. If f( . )  is the normal density, such 
bivariate integrations can be evaluated simply using the Gaussian quadrature 
procedure described by Butler and Moffitt (1982). Unfortunately, for more 
general error structures, the order of integration necessary is T. This makes 
maximum-likelihood (ML) estimation infeasible for T 1> 4. 

Results in Robinson (1982) indicate that, regardless of the correlation 
structure of the eit, if the ei, are assumed iid, then the resultant misspecified 
model produces consistent estimates of/3. Such an estimator is inefficient and 
produces biased estimates of the standard errors. However,  a covariance 
matrix correction is available. Given these results, the value in having a 
capability to deal with complex serial correlation patterns in LDV models 
resides in four things. First, there is a potential for efficiency gain in estimating 
models with richer correlation structures. Second, no proof is available that 
misspecification of the correlation structure of eit results in a consistent 
estimator of/3 for cases other than that in which eit is specified to be iid. Third, 
in the presence of lagged dependent variables, consistent estimation requires 
that the serial correlation structure be properly specified. Fourth, and most 
importantly, allowing for more complex serial correlation patterns can poten- 
tially improve out-of-sample prediction of agents' future choice behavior. 

4. MSM estimation for LDV models 

A natural alternative to ML estimation for LDV models is simulation-based 
estimation, recently studied by McFadden (1989) and Pakes and Pollard 
(1989). McFadden developed the MSM estimator for the probit model. To 
motivate the MSM estimator, it is useful to first construct the method of 
moments (MOM) estimator for the panel data probit model. 
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To construct the MOM estimator, let k = 1, K index all possible choice 
sequences Jir. Let Dik = 1 if agent i chooses sequence k and Di~ = 0 otherwise. 
Then, following McFadden (1989), the score of the log-likelihood can be 
written 

N K 

V05f(0 ) = ~ ~ W,.k[Dik --Prob(Di~ = I lX~, 0) ] ,  (6a) 
i - 1  k - 1  

where 0 is a particular trial parameter estimate and 

V 0 Prob(Dik = I IX/, 0) 
Wi~ = Prob(Dik = l IX ~, 0) (6b) 

Note that (6a) has the~form of mean zero moments [Di~ - Prob(Dik = 11X~, 0)] 
times orthogonal weights W~k. Thus, it can be used to form the first-order 
conditions (FOCs) of an MOM estimator for 0. The MOM estimator, 0MOM, 
sets the FOC vector in (6a) equal to the zero vector. If the optimal weights W~k 
are used, this MOM estimator is asymptotically as efficient as ML. Other 
choices of weights that are asymptotically correlated with the Wig and 
orthogonal to the residuals produce consistent and asymptotically normal but 
inefficient MOM estimators. Of course, for general specifications of the error 
structure, this MOM estimator is not feasible because the choice probabilities 
are T-variate integrals. 

The idea of the MSM estimator is to replace the intractable integrals 
Prob(Di~ = l IX i, 0) in (6a) by unbiased Monte Carlo probability simulators. 
The most basic method for simulating the choice probabilities is to draw, for 
each individual i, a set of iid error vectors (~/~1,.-- ,7/~r) using a univariate 
normal random number generator and to count the percentage of these vectors 
that generate D~ = 1. This is called the frequency simulator. More accurate 
probability simulators will be discussed below. 

Because the simulation error enters linearly into the MSM FOCs, it will tend 
to cancel over observations. As a result, the MSM estimator based on an 
unbiased probability simulator is consistent and asymptotically normal in N for 
a fixed simulation size. If the frequency simulator is used, 0MSM has an 
asymptotic covariance matrix that is (1 + S -1) times greater than that of 0MOM, 
where S is the number of draws used in the simulation. Use of more accurate 
probability simulators improves relative efficiency. If consistent independent 
simulators of the optimal weights are used, then 0MS M is asymptotically (in N 
and S) as efficient as ML. 

Unfortunately, the MSM estimator in (6a) is not practical to implement. The 
source of the problem is that K grows large quickly with T. In the binomial 
probit case, K = 2 r. Thus, for reasonably large T construction of (6a) requires 
a very large number of calculations. If a simple frequency simulator is used, 
such calculations can be done quickly. However, according to McFadden and 
Ruud (1987), frequency simulation does not appear to work well for this 
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problem. One difficulty is that the FOCs based on frequency simulation are not 
smooth functions. This makes it impossible to use gradient-based optimization 
methods. This problem can, however, be dealt with by use of the simplex 
algorithm. A more serious problem is that the denominators of the optimal 
weights in (6b) are the probabilities of choice sequences. These probabilities 
will tend to become very small as T gets large, and frequency simulators based 
on reasonable numbers of draws will therefore tend to produce simulated 
probabilities of zero for many choice sequences. This makes it quite difficult to 
form good approximations to the optimal weights, so that the MSM estimator 
based on frequency simulation will tend to be very inefficient. 

The natural solution to this problem is to use more efficient probability 
simulators that can accurately simulate small probabilities. Such simulators, 
based on importance sampling techniques, are considerably more expensive to 
construct than crude frequency simulators. Thus, it is not practical to use them 
in conjunction with (6a) to form the FOCs of an MSM estimator. In the next 
section, I describe a highly efficient algorithm for simulating probabilities of 
sequences of events and describe practical simulation estimators for panel data 
probit models based on this algorithm. 

5. Practical simulation estimators for the panel data probit model 

Recently, Keane (1990) and Hajivassiliou and McFadden (1990) have de- 
veloped computational practical simulation estimators for panel data LDV 
models. Both methods rely on a highly accurate recursive algorithm for 
simulating probabilities of sequences of events that I describe in Section 5.1. In 
Section 5.2, I explain how these simulators can be used to construct practical 
simulation estimators for the panel data probit model. In Section 5.3, I 
describe some alternative estimators that are based on conditional simulation 
of the latent variables in the probit model via similar recursive methods. 

5.1. Recursive simulation o f  probabilities o f  sequences o f  events 

In Keane (1990), I developed a highly accurate algorithm for simulating the 
probabilities of choice sequences in panel data probit models. To see the 
motivation for this method, first observe that the choice dit = 1 occurs if 
eit >1 -Xit[~ while the choice dit = 0 Occurs if --eit > Xit[3. Thus, the boundary of 
the ei, distribution conditional on d .  is 

(2d.  - 1)e./> (1 - 2d,t)Xit fi . 

Since e; = A~?~, this constraint may be written 

(1 - 2d,)X,~8 - (2d,  - 1)(A,1~/il + . . .  + At,  ̀  17q,,,_~) 
(2di, - 1)~. t> A ,  
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Recal l  that  Jit = { d i l ,  • • • ,  dit} denotes  the set of  choices made  by person  i in 
per iods  1 through t. Fur the r  define 

TI(J/1 ) = {T]i 1 ] (2dil - 1)rl~ ~ > (1 - 2 d i 1 ) S i l t g } ,  

7(4,) = {we1, . . . ,  ~ ,  I (2d,s - 1)T}is 

(1 - 2dis )Xis  ~ - (2d~s - 1 ) ( A s l r l i l  + . . .  + A s , s _ j l i , s _ l )  
> 

A s s  

for  all s ~< t } .  (7) 

These  are the sets of  r/~ vectors  that  are consistent  with the set of  choices made  
by person  i in per iods 1 th rough  t. The  probabi l i ty  of a choice sequence  
Prob(J~, [X~, 0) can be fac tored  into a first-period uncondi t ional  choice prob-  
ability t imes transit ion probabil i t ies as follows: 

erob(J/ ,  IX/, 0 ) 

= Prob(ni l ,  • • . ,  "Oi, • n(J i , ) )  

= Pr°b(r/~l • n(Jia)) Prob(ni l ,  r/i2 • "O(Ji2) l Vii • n ( J i l ) )  

x . . -  x P r o b ( r h l , . . .  ,Vi, • 'O(J~, ) IVia , . - .  ,n~,,-i • V(J~.,-1)) - (8) 

An  unbiased s imulator  of  this probabi l i ty  may  be ob ta ined  by the following 
sequent ia l  p rocedure :  

(1) Draw an r/i I f rom the t runca ted  univariate  normal  distr ibution such that  
Vii •V( J i l ) -  Call the par t icular  value that  is drawn rhl.* 

(2) Given  ~/i1,* there  is a range of  the values such that  

(2di2 - 1~ i  2 > [(1 - 2d~z)X,-2/3 - (2di2 - 1)Az171~*~]/Az2 . 

Using the nota t ion  of  (7),  I deno te  this set of  T}i 2 values by {r/i 2 I r/i*~, T]i 2 • 
r/(J~2)}. Draw an ~h2 f rom a t runca ted  univar ia te  normal  distr ibution such that  
(r/il, ~1i2)•~/(J~2). Call the part icular  value that  is drawn * 77/2 • 

(3) Cont inue  in this way until a vec tor  (r/~*~, * • . . . ,  9 ~ i , T _ 1 )  n(Ji,t_l) is 
obta ined.  

(4) F o r m  the simulator:  

A 

erob(J/ ,  IX/, O) = Prob(r/i t • 'l~(J/1)) x e rob( r /n  • r/(J/2) [ ~7il) 

x - - .  × Prob(r/i , • 71(Ji,)l~Ti*l, * . • " ,rh,, 1) (9) 

This probabi l i ty  s imulator  has been  named  the G e w e k e - H a f i v a s s i l i o u - K e a n e  
or G H K  s i m u l a t o r  by Hajivassil iou,  McFadden  and Ruud  (1992) because  
re la ted  independen t  work  by G e w e k e  (1991a) and Hajivassi l iou led to the 
deve lopmen t  of the same method .  In an extensive study of  31te.rnntiv~ 
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probability simulators, they find that the G H K  simulator is the most accurate 
of all those considered. 

Note that simulators of the transition probabilities in (8) can be obtained by 
the same method. In Keane (1990), I showed that, for t~>3, an unbiased 
simulator of the transition probabilities is given by 

A 
Prob(d,t [J~,t-1, X i ,  O) 

= Prob(rti , ~ 'O(Jit) lglil ,  * , • T i t - l )  . . . .  ~ i , t - - 1 ) O ) ( ~ i l ,  . . . , (lOa) 

where 

£o * " " " t (rill, ,'1, ,-l) 

~o(m*, * . . . .  " q i , t - 2 ) P r o b ( ' q i , t - 1  • ~ ( J i , t - 1 )  I T~i l ,  . . • , T l i , t -2)*  

- -  P r ° b 0 / , , , - 1  • ' / ~ ( J / , t - 1 )1"1~11  , - ' -  ,3"~i.t-2 • T / ( J / , t - 2 ) )  

• " I rh~)Prob(w. •'0(41)) Pr°b(•ia-1 • 'O(Ji , t-1)[rli~,  . . . .  hi,t-2)* "Pr°b(r/2 •'q(Ji2) * 
Prob07il , . . . ,  r/i,,_l • T ~ ( / i , t _ I )  ) 

(10b) 

This procedure may be interpreted as importance sampling where the transi- 
tion probability is simulated conditional on the draw ~7il, . *  • • ,~Ti,t-l* from the 
importance sampling density defined by steps (1) - (3)  and w0h*~, . - . ,  ~h*t-1) is 
the importance sampling weight. The form of the weight is the ratio of (1) the 
probability of event sequence d n . . . .  , d~,t_ a as simulated by the G H K  method 
using the draw ~i1,*.. . ,rh,t_ 1 .  to (2) the actual probability of the event 
sequence d i l , .  . . , di, t_ 1. 

Unfortunately, for t -  1/> 3 it is not feasible to numerically evaluate the 
object Prob( r / i l , . . .  , ~i, t-1 E~q(J i , t -1) )  that appears in the denominator of the 
importance sampling weights. However,  this probability may itself be simu- 
lated by the G H K  method. If this is done, a denominator bias is induced, and 
the resultant transition probability simulator will be asymptotically unbiased as 
the number of draws used to form the G H K  simulator becomes large. 

Let S be the number of draws used to simulate the choice sequence and 
transition probabilities by the G H K  method. Letting (~*~s, • • -, ~/i*r-l,s) be the 
s-th sequence drawn in the G H K  procedure, one obtains, for the simulated 
sequence probabilities, 

A 1 ¸s 

Prob(J~, I X~, 0 ) = -~ ~--~1 Pr°b(rhl E r/(Jn))Prob('q,2 E r/(J~2 ) I rh*~s) 

x . . .  x ProbQ/i, @ r l ( J i , ) l ' q i l ~ , . . . ,  " ~ i t t - l , s )  

(11~ 
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and for the simulated transition probabilities, 

Prob(d,  1J/,t_a, Xi,  O) 

1 
Prob(n~t E rt(Jit) I rl~*~, * ~ * * = - -  . . .  , ~ i , t - - l , s )  O ) ( ~ i l s ,  , " " " ' ~ i  t - a , s )  S s = l  

(lZa) 

where 
^ * * 

0 ) ( T / i l  . . . . . .  ~ i , t - l , s )  

Prob(rh,,_ 1 E r/(/i,,_l)I rh*~,,... , tie*,_2,,) • • • Prob(rt~2 E 71(Ji2) 171i1~) 
S 

5-1 Z Prob(r/i,,-a E r/(J~,t_a) I r f f l r , . . . ,  g~i:t_2,r)''" Prob(r/i z E 7/(,//2 ) l~Ti*lr) 
r = a  

(12b1 

for t/> 3 and 

/.-. 1 s 
Pr°b(d/z [ Jil, X~, 0) = ~ s_~a Prob(7/; 2 E ~l(Jiz ) 17/ils) 

for t = 2. Note that if the importance sampling weights are simulated as in 
(12b), they are constrained to sum to one by construction. Constraining 
importance sampling weights to sum to one is a standard variance reduction 
technique often recommended in the numerical analysis literature. In (12b), 
the simulation error in the numerator is positively correlated with that in the 
denominator,  so in some cases a variance reduction in simulation of the ratio 
may be achieved by use of the simulated rather than the true denominator. 

5.2. Practical simulation methods  fo r  panel  data probi t  models  based on 
recursive simulation o f  probabilities 

Three classical methods of estimation for panel data probit models have been 
implemented in the literature, all based on the G H K  method for simulation of 
sequence and transition probabilities. In Keane (1990), I expressed the log- 
likelihood function as a sum of transition probabilities 

N N T 

5f(O) = ~ In Prob(Jir IX i, O) = ~ ~ In Prob(di, I J~,t_a, X~, O) 
i - - i  i - 1  t = a  

and proceed to express the score as 

N T 

v0 e(0) 2 2  1 = {W~,[d, - Prob(d,  = 11 J~,,_a, Xi, 0)] 
i = 1  t = a  

+ w ° , [ ( 1  - 4 , )  - P r o b ( d .  = 01J~,t_a, si, 0 ) ] } ,  

(13) 
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where the weights Wilt and W~t have the form 

V 0 Prob(dit = 1 ] Ji,t i, Xi, O) 1 

Wit = Prob(dit = 1]J~,t_~,X,., 0) ' 

V 0 Prob(dit = O]J~,t_ 1, X i, O) 0 
W i t  

Prob(dit = O]Ji,t_l, Xi, O) 
(14) 

Note that (13) has the form of mean zero moments times orthogonal weights. 
Thus, it can be used to form the FOCs of an MOM estimator for 0, where 
0MO M sets (13) to zero and the optimal weights are given by (14). 

In Keane (1990), I formed an MSM estimator by substituting the simulated 
transition probabilities given by (12) into equation (13) and using independent 
simulations of the transition probabilities to simulate the optimal weights in 
(14). Using results in McFadden and Ruud (1991), I showed in Keane (1992) 
that the resultant MSM estimator is consistent and asymptotically normal if 
S/V~- -~  ~ as N---~ ~. In a series of repeated sampling experiments on models 
with random effects plus AR(1) error components, setting S = 10, N = 500, 
and T = 8, I also showed that the bias in this MSM estimator is negligible, even 
when the degree of serial corelation is very strong. 

The generalization of this method to more than two alternatives is straight- 
forward and is discussed in Keane (1990). Elrod and Keane (1992) successfully 
applied this MSM estimator to detergent choice models with eight alternatives 
and up to 30 time periods per household. By allowing for a complex pattern of 
serial correlation, Elrod and Keane were able to produce more accurate 
out-of-sample forecasts of agents' future choices than could be obtained with 
simpler models. This is a good illustration of why the ability to estimate LDV 
models with complex patterns of serial correlation is important. 

Hajivassiliou and McFadden (1990) expressed the score of the log-likelihood 
as  

V 0 Prob(Jir [ Xi, 0 ) 
V05f( 0 ) 

i=1 Prob(J ir lX,  O) (15) 

They implemented a method of simulated scores (MSS) estimator by using the 
GHK probability simulator in (11) to simulate the numerator and denominator 
of (15). 0MS s is obtained by setting the simulated score vector to zero. 
Hajivassiliou and McFadden showed that 0MS s is consistent and asymptotically 
normal if S / V ~ - ~  ~ as N--~ ~. 

A third alternative is simply to implement a simulated maximum likelihood 
(SML) estimator by using the GHK probability simulator to simulate the 
log-likelihood function (5) directly. 0SM L maximizes the simulated log-likeli- 
hood function. By construction, 0SM L is also a root of the simulated score 
expression (15), provided the same smooth probability simulators (with the 
same draws) are used in both. Thus the MSS estimator given by applying the 
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GHK simulator to (15) is identical to the SML estimator obtained by applying 
the GHK simulator to (4). 0sM L is also consistent and asymptotically normal if 
S / V ~ - - ~  as N--->~. See Gourieroux and Monfort (1991) for a proof. 

Hajivassiliou and McFadden (1990) reported good results using the MSS 
procedure based on the GHK simulator with 20 draws to estimate panel data 
probit models in which the existence of repayment problems for less-developed 
countries is the dependent variable. B6rsch-Supan, Hajivassiliou, Kotlikoff and 
Morris (1991) used the SML approach based on the GHK simulator to 
estimate panel data probit models where choice of living arrangements is the 
dependent variable. 

In Keane (1992), I reported repeated sampling experiments for SML based 
on the GHK simulator, using the same experiment design I used to study the 
MSM estimator. In this experiment, SML based on GHK with S = 10 exhibits 
negligible bias when the degree of serial correlation is not extreme. However, 
in experiments on a model with AR(1) errors and an individual effect, with 
p =0.20 and the AR(1) parameter set to 0.90, the SML estimator greatly 
overstates the fraction of variance due to the individual effect and understates 
the AR(1) parameter. The MSM estimator based on the GHK simulator does 
not exhibit this problem. 

Finally, McFadden (1992) observed that the FOGs used in Keane (1990, 
1992) can be rewritten in such a way that they have the form of weights times 
mean zero moments. The FOGs used in Keane (1990, 1992), obtained by 
substituting the simulators (12) into equation (13), have the form 

121 FOG(0) : W i t  dit - P r o b ( d i t  : 1 [ ~ i l s ,  • • • , ~i,t-l,s)* 
i = l  t = l  = 

• , )] 
× w(Tqil s, . . . , r l i , t - l , s  

0 . 
+ W i t  ( 1 - d i , ) - x  Pr°b(di '= 0l * ' ~ = ~ i l s ,  " " " 1 , t - l , s )  

X (.0 ~ i l s ,  " " " , 7 ~ i , t - l , s  

where the importance sampling weights w(7//1 . . . . .  , ~7/*~-1,s) are given in (12b) 
^ 1 ~ 0  

and the weights Wi~ and Wi, are simulations by the GHK method of the 
optimal weights given in (14). 

Define * * * * * o~(rlm, , is the . . .  T ~ i , t _ l , s )  = where O O A i , t - - l , s / g ' O B i , t - - l , S '  O ' ) A i , t  1 , s  

numerator of (12b) and wBi,t_l, s is the denominator. Then the FOGs can be 
rewritten as 

i = 1  t = l  k ( - O B i , t - l , S  

1 Pr°b(dit l l n i * ~ s ,  * ) ~ o A ~ , t _ l , s  = " " " , ~ i , t - l , s  
S s = l  
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+ , ( 1 -  * - -  d i t ) O ~  B i , t _  l , S  
O) B i , t -  l , S  

1 ~ P r o b ( d i = O i  . , , ]} __ - -  g ] i l s , .  • . ~ " O i , t - l , s ) O ) A i , t - l , s  • 
S s = l  

The terms in brackets are now mean zero residuals, so an MSM estimator 
based on these FOCs is consistent and asymptotically normal for fixed S. The 
potential drawback of this procedure is that, while the optimal weights W;~t and 
W~ ° for the Keane (1990, 1992) estimator have transition probabilities in the 

1 * 0 * denominator, the optimal weights W i , / w s i , , _  1 and Wit/oosi,t_ 1 for this new 
estimator (where * * have probabilities in the ('OBi,t 1 --'~ E ( t ° B i , t - I . S ) )  sequence 
denominator. Since sequence probabilities will generally be very small relative 
to transition probabilities, the denominator bias in simulation of the optimal 
weights will tend to become more severe, and efficiency relative to ML may 
deteriorate. An important avenue for future research is to explore the small- 
sample properties of this estimator. 

5.3.  A l terna t ive  m e t h o d s  based on condi t ional  s imula t ion  o f  the latent 

variables in the L D V  m o d e l  

Hajivassiliou and McFadden (1990) discussed a fourth classical method for 
estimating panel data probit models that has not yet been implemented in the 
literature. This is based on the idea, due to Van Praag and Hop (1987) and 
Ruud (1991), that the score can be written in terms of the underlying latent 
variables of the model as follows: 

N 

= x;P - E[yi- 1 4 d ,  
i - 1  

N 

VA~(0 ) = ~ { - 2  - IA + 2 E [ ( y / -  X ~ ) ( y ~  - X/})' I J~r]~, -1A}.  (16) 
i = 1  

Unbiased simulators of this score expression can be obtained if the error terms 
e i = y~ - Xi f l  can be drawn from the conditional distribution determined by J/v, 
X/, and O as in equation (7). Given such draws, unbiased simulators of the 
conditional expectations in (16) may be formed. An MSS estimator that sets 
the resultant simulated score vector to zero is consistent and asymptotically 
normal for fixed S. The first application of this MSS procedure was by Van 
Praag and Hop (1987). They used MSS to estimate a cross section tobit model, 
for which it is feasible to draw error vectors from the correct conditional 
distribution. 

Of course, it is difficult to draw the e~ directly from complex conditional 
distributions such as that given by (7). One method, investigated by Albert and 
Chib (1993), Geweke (1991a,b) and McCulloch and Rossi (1992), is Gibbs 
sampling. The Gibbs sampling procedure is related to the GHK sampling 
scheme described earlier in that it requires recursive draws from univariate 
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normals. Steps (1 ) - (3 )  of the G H K  procedure generate a vector ~/il . . . .  , r//*r 
that is drawn from an importance sampling distribution rather than from the 
true multivariate distribution of ~i conditional on Jir, X~, and 0. However ,  
under mild conditions, the Gibbs sampling procedure produces, asymptotically, 
draws from the correct distribution. To implement the Gibbs procedure,  first 
implement steps (1 ) - (3)  of the G H K  procedure to obtain a starting vector 

, 
• . - , ~ i r ) .  Note that step (3) must be amended so the r/* vector is 

extended out completely to time T. Then perform the following steps: 

(1) Starting with an initial vector (~*~, • • •, ~7ir),* drop rh1* and draw a new r/il 
from the truncated univariate normal distribution such that (~il, * "1"~ i2~  . . . , 

tie3) ~ ~(Jir). Replace the old value of ~il with the new draw for ~7ia- 
(2) Starting with the vector (~/il . . . .  , ~Ti*r) from step (1), drop 7/~2 and draw 

a new ~i2 from the truncated univariate normal distribution such that 
(7/1, r/i2, ~3 ,  • • •,  ~Tir) E "q(J~r). Replace the old value of rh2 with the new draw 
for ~2. 

(3) Continue in this way until a complete new vector (rh~, * . . . .  ,7i ) 

is obtained. 
(4) Return to step (1) and, using the W* vector from step (3) as the new 

initial rt vector, obtain a new draw for rh~ , etc. 

Steps (1 ) - (3)  are called a cycle of the Gibbs sampler. Suppose that steps 
(1 ) - (3 )  are repeated C times, always beginning step (1) with the ~/* vector that 
was obtained from the previous cycle. Gelfand and Smith (1990) showed that, 
under mild conditions, as C--+ ~ the distribution of (~il, • • •,  rhr)* converges to 
the true conditional distribution at a geometric rate. Hajivassiliou and McFad- 
den (1990) showed that using Gibbs sampling to simulate the score expression 
(16) results in an estimator that is consistent and asymptotically normal if 
C/log N-+  w as N---> w. 

The drawback of the Gibbs sampling approach to simulating the score 
expression (16) is that each time the trial parameter  estimate 0 is updated in 
the search for 0Ms s the Gibbs sampler must converge. I am not aware of 
applications in cross-section or panel data settings. (Recall that Hajivassiliou 
and McFadden,  1990 actually implemented 0Ms s based on (15) in their work.) 

An alternative GHK-like approach may also be used to simulate the 
conditional expectations in (16). As both Van Praag and Hop (1987) and 
Keane (1990) noted, weighted functions of the (~ii, • • • * • , r/it ) vectors obtained 
by steps (1 ) - (3)  of the G H K  procedure,  with importance sampling weights of 
the form (10b), give unbiased estimators of the conditional expectations in 
(16). That is, given a set of v e c t o r s  ( ~ i l s ,  • • • ,  ~ir,)* for s = 1, S obtained by 
steps (1)-(3a)  of the G H K  procedure,  one obtains unbiased simulators 

1 s 
= 7  = + " "   l'?Ti' S°Jt Ti' . . . . . .  T~i,T--l,s) 

1 s 

l = 'S s~l {At, 'q,i, + " "  + A.~?i*.} 

x{A,irh*l,+'-" .%ur/,,sj'Oatrhis,...,rl,,r_,,,). (17) 
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Of course, as was discussed above, it is not feasible to construct the exact 
weights when T - 1/> 3. In that case the weights must be simulated as in (12b), 
and the resultant conditional expectation simulators will only be asymptotically 
unbiased in S. An estimator based on substituting the expectation simulators 
(17) into the score expression (16) has not been tried in the panel data case. 

Albert and Chib (1993), Geweke (1991b) and McCulloch and Rossi (1992) 
have observed that Gibbs sampling may be used as a Bayesian inference 
procedure, rather than merely as a computational device for simulating the 
conditional expectations in (16). This procedure has the following steps. 

(1) Given a starting parameter value 0 = (/~0, Y]0) and an initial vector e0, 
use steps (1)-(3) of the Gibbs sampler described above to obtain a draw ~1 
from the distribution of e conditional on Jr, X, /~0, and Y]0- 

(2) Construct 331 = X/~ 0 + ~1. Regress 331 on X, using a seemingly unrelated 
regression framework to account for the cross-equation correlations deter- 
mined by A 0. The resultant point estimates and variance-covariance matrix for 
the /3 vector give the normal distribution of/3 conditional on Jr, X, 3)1, and 
~10. Draw /~1 from this conditional distribution. 

(3) Given 331 and/~1, we may form the residuals from the regression. These 
residuals determine an inverse Wishart distribution of Z conditional on Jr, X, 
331, and /~1. Draw ~1 from this conditional distribution, and form -'~1. 

(4) Return to step (1), using ~1 as the new initial e vector, and obtain a new 
draw ~2 from the distribution of e conditional on Jr, X, /~1, and A l. 

Steps (1)-(3) are a cycle of the Gibbs sampling inference procedure. 
Observe that e, /3, and A have a joint conditional distribution given by X and 
the observed choice sequences Jr. These can be decomposed into conditionals, 
and steps (1)-(3) represent sequential draws from these conditionals. Thus, 
the Gelfand and Smith (1990) result holds. Letting C index cycles, if steps 
(1)-(3) are repeated C times, then as C--~% the distribution of (@, /~c, fl~c) 
for C > C* can be used to integrate the true joint distribution of e,/3, and A by 
Monte Carlo. Both Geweke (1991b) and McCulloch and Rossi (1992) show 
how priors for /3 and A may be incorporated into this framework by simple 
modifications of the normal and inverse Wishart distributions from which /~ 
and Y] are drawn on steps (2)-(3). 

This Gibbs sampling inference procedure has been applied successfully to 
cross-section probit problems by McCulloch and Rossi (1992) and Geweke, 
Keane and Runkle (1992), and to cross-section tobit models by Chib (1993) 
and Geweke (1991b). McCulloch and Rossi (1992) have also successfully 
applied the method in a panel data setting. They estimate a probit model on 
margarine brand choice data, allowing for random effects in the brand 
intercepts and in the price coefficient. 

The simulated EM algorithm, due to Van Praag and Hop (1987) and Ruud 
(1991), is a method for obtaining 0MS s that is closely related to the Gibbs 
sampling inference procedure. The essential difference is that, on steps (2) and 
(3), which correspond to the M or 'maximization' step of the EM algorithm, 
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the point estimates for/3 and A are used rather than taking draws for/3 and A 
from the estimated conditional distributions. With this amendment,  repetition 
of steps (1)-(3) results in convergence of ([3c, Ac )  to a consistent and 
asymptotically ncrmal point estimate as C---~ ~. Note that step (1) of the Gibbs 
inference procedure corresponds to the E or 'expectation' step of the EM 
algorithm. Here, any method for forming the conditional expectations in (16) 
may be substituted for the Gibbs sampler. Applications of the simulated 
EM algorithm to cross-section LDV models can be found in Van Praag and 
Hop (1987) and in Van Praag, Hop and Eggink (1991), who draw directly 
from conditional distributions in the E step. To my knowledge the simulated 
EM algorithm has not yet been applied in a panel data case. 

6. Extensions to more general models 

In deciding which simulation estimation method to use in a particular 
application, it is important to recognize that there are some models that are 
difficult to put in an MSM framework. This point was made by McFadden and 
Ruud (1991). Consider the case of the selection model: 

~Xit~l -t- Uit if d~t = 1, (18) 
wit = (unobserved otherwise, 

For t = 1, T, i = 1, N, where w~t is a continuous variable (1), that is observed 
only if dg t -- 1, X~, is the same vector of exogenous regressors as in (1), y is the 
corresponding coefficient vector, and vst is the error term. Redefine J~t to 
include the wit, giving J/t = {dil, w i l , . . . ,  dit, wit}. Let wit have conditional 
density f(wit I Ji,t 1, X ,  0). Assume that s~ and v~ are jointly normally distribut- 
ed with covariance matrix X. Any exclusion restrictions in the model (i.e., 
variables in X that affect y but not w) are represented by restricting to zero the 
appropriate elements of y. 

As is discussed in Heckman (1979), OLS estimation of (18) using only 
observations where d/~ = 1 produces biased estimates of/3 when e~ and v~ are 
correlated. Thus, equations (1), (4), and (18) must be estimated jointly. The 
log-likelihood function for the selection model given by (1), (4), and (18) is 

£g(0) = ~ {~v  lnPr°b(di t=O[Ji ' t - l 'Xi 'O)  
i = 1  t i 

+ ~ In Prob(d~t = l I J,,,_l, w. ,  Xz, O)f(w~t I J~., 1, Xi, 0)} ,  
t ~ E  i 

where U i is the set of time periods for which dit= 0 and E i is the set of time 
periods for which d~t = 1. 
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The score for this likelihood may be written as 

V°Sf(0)=i=~ ~ {~v, { W ° ' [ ( 1 - d i ' ) - ,  . Pr°b(di~=0lJ/,~ 1,AS, 0)] 

where 

1 + W~,[d~ - Prob(d~t = 11Ji,,_l, As, 0)]} 

+ Z {W~,[(1 - d ~ , ) -  Prob(d~ = 0[J~,, 1, w~, AS, 0)] 
tEE i 

+ W~,[di, - Prob(di~ = 1 [ Ji,t 1, wi,, AS, 0)] 

+ V 0 In f(wi, [ J~,,-1, As, 0)}} ,  (19a) 

W~i ~, = 7 o in Prob(d~, = 0 1J~,,- 1, AS, 0 ) ,  

W/1, = V 0 In Prob(d~, = 1 ] J~,,- 1, AS, 0 ) ,  

W~ = V 0 In Prob(d~, = 0 1J~,,- l, w~, AS, 0 ) ,  

Wi 3, = V 0 In Prob(d~, = 1 [ Ji.,_,, w~, AS, 0 ) .  (19b) 

Notice that (19a) is not interpretable as the FOCs for an MOM estimator 
because the objects [ ( 1 -  dit ) -  Prob(dit = 0[J/,~ 1, wi,, xi, 0)] and [di~- 
Prob(di, = 1 [ Ji,,-1, wi,, AS, 0)] are not mean zero residuals in the population 
for which t E E~ due to the correlation between v/t and ei,. Furthermore, the 
expression V 0 In f(wit 1.~,~ i, AS, O) can be written in terms of objects [w;~ - 

Xi~ ~ - E(vi, I Ji.,_l, Xi, 0)] times weights, but these objects also have nonzero 
expectation in the population for which t E E i because of the correlation 
between v~t and e~t. Thus (19a)-(19b) cannot be used to construct an MSM 
estimator. If the score as given by (19a)-(19b) is simulated using unbiased 
simulators for the choice probabilities, including those in the numerator and 
denominator of the W{~ for j =  0, 3, then it is an MSS situation, where 
consistency and asymptotic normality are achieved only if S/X/N--~ 0o as N---~ oo 
because of the bias created by simulating the denominators of the W{,. 

McFadden and Ruud (1991) discussed a bias correction technique that can 
be used to put a large class of models, including the selection model, into an 
MSM framework. The score contribution of person i at t is given by 

V02LP~,(0 ) = (1 - di,)V o In Prob(d,, = O I J i,,_1, AS, O) 

+ di,V o In Prob(di, = 1 [ Ji.,- 1, wi,, Xi, 0 ) 

x f ( w i t l J i . , _ l , X i ,  0 ) .  (20) 
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The expected value of this score contribution, conditional on X i and J/.t-1, is 

E[Vo~.~it( O ) [ Ji.,- l, Xi] 

= Prob(dit = 0 [ J i,,_i, X i, O)V 0 In Prob(d~t = O lJi,t_l, X i, O) 

+ E[d;,V 0 In Prob(dit = 1 I J i,,-1, wit, X~, O) 

× f(witlJi , t_l ,Xi,  O)lJi , t_l ,Xi].  (21) 

Although the expected value of the simulated score contribution at the true 
parameter  vector is not zero due to denominator  bias in the simulation, the 
difference between the simulated score contribution and the expected value of 
the simulated score contribution conditional on Ji,t-1 and X~ will have 
expectation zero at the true parameter  vector. Thus, by subtracting (21) from 
(20), to obtain 

Vo~ , - E[Vo~t( O ) I J,,,_I, Xi] 

= [(1 -- dit ) - Prob(d~, = O lJi,t_,, Si,  0)] 

× V 0 In Prob(d .  = 01L,,_I, x/, O) 

+ {d;y~ In Prob(du = 11 L,,-I, wit, Xi, O)f(w,, l J/,, 1, Xi, O) 

- E[di,V 0 In Prob(d .  = 11 w,,, s .  O) 

X f(wit  [ J / . t -1,  Si ,  0 ) I  J / t - l ,  Xi] } ,  (22)  

an expression is obtained that can be used to construct an MSM estimator. 
Both the term [(1 - d i t  ) -Prob(dit  = O]Ji,t_ 1, Xi, O) and the term in the braces 
{.} are mean zero residuals. The orthogonal weight on the former term is 
V 0 ln Prob(dit = 0]Ji,t_l, X~, 0) while the weight on the latter term is simply 
one. Thus, substitution of unbiased simulators for all the probabilities in (22) 
gives an MSM estimator that is consistent and asymptotically normal for fixed 
simulation size. Of course, the transition probabilities in (22) are difficult 
objects to simulate. Using the G H K  method described in Section 5.2 to 
simulate these probabilities would again produce an MSM estimator that is 
consistent and asymptotically normal if S/VN---~ ~ as N - ~  ~. 

Observe that in (22) the object E[ditV 0 In Prob(dit[Ji,t_l, wit , Xi, 
)f(w~t [ J~,t-1, X/, 0)[ J~t-1, Xi] must be simulated. This situation is particularly 

difficult because, to take the outer expectation, wit must be drawn from the 
f(wit [Ji.t-1, Xi, O) density, and then the term V 0 lnProb(dit [Ji,t-1, wit, Xi, O) 
must be simulated conditional on each wit draw. If the first term in braces, the 
term V 0 In Prob(dit [ J~,t-1, wit, Xi, O) that involves the observed wit , is simu- 
lated using S draws, then, in order for the difference in braces to have mean 
zero, the derivatives of the log-probabilities in the second term must also be 
simulated using S draws per each wit draw. 

Keane and Moffitt (1991) implemented the MSM estimator based on (22) in 
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a cross-section choice problem-the choice by low-income single mothers of 
welfare program participation and work status - where it is feasible to construct 
unbiased probability simulators. Despite the fact that the MSM estimator is 
consistent and asymptotically normal for fixed S in this problem, Keane and 
Moffitt found that a very large number of draws is necessary for the estimator 
to produce reasonable results. This stems from the difficulty of simulating the 
expectation over wage draws described above. Thus, MSM estimation based on 
(22) may not be promising in the panel data case. Keane and Moffitt (1991) 
also reported results based on a direct simulation of the score as expressed in 
(19). This MSS estimator performed at least as well as the MSM estimator, and 
given that it is much easier to program, it may be the preferred course for 
panel data selection models. As discussed by McFadden and Ruud (1991), it is 
also rather difficult to put the tobit model in an MSM form. But Hajivassiliou 
and McFadden (1990) reported good results using MSS based on the GHK 
method to estimate panel data tobit models in which the dependent variable is 
the total external debt obligation of a country in arrears. 

7. Estimating the serial correlation structure in employment and wage data 

7.1. Results using NLS employment data 

In this section, I use the MSM estimator obtained by substituting the transition 
probability simulator (12a)-(12b) into the MSM first-order condition (13)-(14) 
to estimate panel data probit models that relax the equicorrelation assumption, 
using employment data from the national longitudinal survey of young men 
(NLS). The goal is to determine whether the simple random effects model with 
equicorrelated errors can adequately capture the pattern of temporal depen- 
dence in these data. As I discussed in Section 3, the random effects model has 
been the most popular specification for panel data LDV models. Prior to the 
advent of simulation-based inference, it was not computationaUy feasible to 
relax the equicorrelation assumption. Thus, the results in this section provide 
the first test of the equicorrelation assumption for labor market data. 

The NLS is a U.S. sample of 5225 males aged 14-24 selected in 1966 and 
interviewed in 12 of the 16 years from 1966 to 1981. Data were collected on 
employment status and other sociodemographic characteristics. The sample 
used here is exactly that employed by Keane, Moffitt and Runkle (1988). The 
data screens and overall properties of the data are discussed there. Following 
data screens, the analysis sample contains 2219 males with a total of 11 886 
person-year observations. The regressors used in the employment equation are 
a constant (CONST), the national unemployment rate (U-RATE), a time 
trend (TREND), years of school completed (EDUC), years of labor force 
experience (EXPER), the square of experience (EXPER2), a white dummy 
(WHITE), a dummy for wife present in the home (WIFE), and number of 
children (KIDS). 
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Estimation results are reported in Table 1. The first column gives constant 
cross-section estimates of the regressor coefficients obtained by ML. Columns 
(2)-(6) contain estimates when various patterns of serial correlation are 
assumed. These estimates are starred if they differ significantly from the 

Table i 
Estimates of probit employment equations on NLS young men 

Parameter /3 ML /3 ML-quadrature /3 MSM 

4 points 16 points Random RE + AR(1) RE + MA(1) 
effects error error 

(1) (2) (3) (4) (5) (6) 

p - 0.3792 0.3509 0.3577 0.3298 0.3377 
(0.0203) (0.0192) (0.0248) (0.0294) (0.0263) 

AR(1) . . . .  0.1901 - 
(0.0437) 

MA(1) . . . . .  0.1998 
(0.0685) 

CONST 0.4644 0.5454 0.5713 0.4895 0.3934 0.5411 
(0.1161) (0.1230) (0.1283) (0.1551) (0.1576) (0.1545) 

U-RATE -0.0740 -0.0678 -0.0697 -0.0647 -0.0590 -0.0664 
(0.0135) (0.0122) (0.0124) (0.0157) (0.0160) (0.0162) 

TREND -0.0121 -0.0091 -0.0124 -0.0185 -0.0205 -0.0164 
(0.0059) (0.0062) (0.0063) (0.0080) (0.0082) (0.0081) 

EDUC 0.0664 0.0599 0.0593 0.0680 0.0720 0.0634 
(0.0061) (0.0070) (0.0078) (0.0106) (0.0107) (0.0105) 

EXPER 0.0176 0.0076 0.0113 0.0094 0.0107 0.0060 
(0.0098) (0.0097) (0.0099) (0.0118) (0.0123) (0.0121) 

EXPER 2 -0.1521 -0.1260 -0.1280 -0.1140 -0.1120 -0.1040 
+ 100 (0.0414) (0.0400) (0.0400) (0.0470) (0.0490) (0.0490) 
WHITE 0.2022 0.2355 0.2453 0.2205 0.2101 0.2230 

(0.0503) (0.0639) (0.0646) (0.0637) (0.0637) (0.0627) 
WIFE 0.4548 0.3271"** 0.3394*** 0.3218"** 0.3316"* 0.3332*** 

(0.0352) (0.0363) (0.0365) (0.0448) (0.0457) (0.0453) 
KIDS 0.0716 0.0726 0.0712 0.0741 0.0713 0.0708 

(0.0138) (0.0147) (0.0150) (0.0195) (0.0196) (0.0195) 
3'(1) 0.0000 0.3792 0.3509 0.3577 0.4572 0.4520 
3,(2) 0.0000 0.3792 0.3509 0.3577 0.3540 0.3377 
7(3) 0.0000 0.3792 0.3509 0.3577 0.3344 0.3377 
Log-likelihood -3611 -3419 -3421 -3460 -3447 -3448 
function 
X2(9) - 24.68** 16.77" 15.16" 16.57" 15.83" 
CPU minutes 1.76 2.87 5.19 11.55 12.67 12.59 

Note: Standard errors of the parameter estimates are in parentheses. Three stars (***) indicate 
that a parameter differs from the ML no-effects estimate at the 1% significance level. Two stars 
(**) indicate the 5% level, and one star(*) indicates the 10% level. The X2(9) statistic is for the 
null hypothesis that the regressor coefficients equal the ML no-effects estimates (the 5% critical 
value is 16.92 and the 10% critical value is 14.68). The data set used is the NLS survey of young 
men. There are observations on 2219 individuals, with a total of 11 886 person-year observations. 
The MSM estimates were obtained using 10 draws for the GHK simulator. Log-likelihood function 
values for the MSM estimators are simulated. 
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consistent ML estimates in column (1). A X2(9) test for the null that all the 
regressor coefficients equal the column (1) values is also reported. 

Random effects estimates using approximate-ML via 4- and 16-point quadra- 
ture are reported in columns (2) and (3). There is a non-negligible change in 
the parameter estimates in moving from 4- to 16-point quadrature, as indicated 
by the fact that, for 4-point quadrature, the null that the regressor coefficients 
equal the cross-section estimates is rejected at the 5 percent level, while with 
16-point quadrature the null is only rejected at the 10 percent level. Thus, I 
will concentrate on the 16-point quadrature results. Random effects estimates 
obtained via MSM are reported in column (4). They were obtained using 
S = 10. The MSM estimates of both the parameters and their standard errors 
are quite close to the 16-point ML-quadrature estimates, and the null that the 
regressor coefficients equal the consistent cross-section estimates is again 
rejected at the 10 percent but not the 5 percent level. 

If the random effects assumption is correct, then both the cross-section and 
random effects estimates are consistent, and we would expect no significant 
difference in the regressor coefficients obtained via random effects and no 
effects estimators. The effect of the random effects estimator should be simply 
to adjust standard errors to account fo r  serial correlation. In going from 
column (1) to columns (2), (3), or (4) there is a general rise in the estimated 
standard errors. However, one of the estimated coefficients, that on the WIFE 
variable, changes substantially. The ML-quadrature and MSM estimates both 
show a drop of about three standard errors for this coefficient. 

Since random effects estimates may be inconsistent in the equicorrelation 
assumption fails and because we are interested in discovering whether the 
actual pattern of temporal dependence in the data is more complex, I relax the 
equicorrelation assumption in columns (5) and (6). Here, estimates are 
obtained which allow for AR(1) and MA(1) error components in addition to 
the random effects. Since the individuals in the data are observed for up to 12 
periods, these estimates require the evaluation of 12-variate integrals. Thus, 
the estimation is not feasible by ML and can only be performed using the MSM 
estimator. 

Turning to the MSM results, first note that the time requirements for the 
MSM estimations are quite modest - the  timings being about 12.6 cpu minutes 
on an IBM 3083 (compared to 5.2 for 16-point quadrature on the random 
effects model). Second, note that the equicorrelation assumption does fail. In 
column (5), the estimated AR(1) parameter is 0.1901 with a t-statistic of 4.4. 
In column (6), the estimated MA(I) parameter is 0.1998 with a t-statistic of 
2.9. The y(j) reported in the table are the j-th lagged autocorrelations implied 
by the estimated covariance parameters. The first lagged autocorrelation is 
about 30 Percent larger for the model with AR(1) components than it is for the 
models with random effects alone (0.46 vs. 0.35). Thus, the random effects 
model would overestimate the probability of a transition from employment to 
unemployment because it underestimates short-run persistence. 

Although these results show a significant departure from equicorrelation, 
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relaxing the equicorrelation assumption has little effect on the parameter 
estimates. Furthermore, the 10- to ll-point improvements in the simulated 
log-likelihood with inclusion of MA(1) or AR(1) components is not particular- 
ly great. Thus, it appears that false imposition of equicorrelation does not lead 
to substantial parameter bias or deterioration of fit in models of male 
employment patterns. 

7.2. Temporal dependence in wages and the movement of real wages over the 
business cycle 

In this section, I consider an application of the MSS estimator to nonrandom- 
sample selection models of the type described by Heckman (1979). In these 
models, a probit is estimated jointly with a continuous dependent-variable 
equation, where the dependent variable is only observed for the chosen state. 
Because of the truncation of the error term in the equation for the continuous 
dependent variable, OLS estimates of that equation are biased, and the 
residuals from the OLS regression produce biased estimates of the error 
structure for the continuous variable. Thus, joint estimation is necessary to 
obtain consistent estimates. As I described in Section 6, it is difficult to 
estimate such models by MSM. Instead, I implement an MSS estimator by 
simulating the score for the selection model as written in (19). 

The particular application considered here is the estimation of selection 
bias-adjusted wage equations. Keane, Moffitt and Runkle (1988) used selection 
models with random effects in order to estimate the cyclical behavior of real 
wages in the NLS. Their estimates controlled for the cross-correlation of 
permanent and transitory error components in wage and employment equa- 
tions. By controlling for these cross-correlations, they hoped to control for 
systematic movements of workers with high or low unobserved wage com- 
ponents in and out of the labor force over the business cycle. By so doing, they 
could obtain estimates of cyclical real wage movement holding labor force 
quality constant. Keane, Moffitt and Runkle found that real wage movements 
were procyclically biased by quality variation, with high-wage workers the most 
likely to become unemployed in a recession. It is possible that the Keane, 
Moffitt and Runkle results may be biased due to false imposition of the 
equicorrelation assumption. Thus, it is important to examine robustness of 
their results to the specification of the error structure. 

The NLS data used in this analysis were already described in Section 7.1 and 
used in the employment equation estimates presented there. The only new 
variable is the wage, which is the hourly straight time real wage (deflated by 
the consumer price index) at the interview date. The log wage is the dependent 
variable. 

Estimation results are reported in Table 2. The first column gives consistent 
cross-section estimates obtained by ML. Columns (2)-(6) contain estimates 
obtained assuming various patterns of serial correlation. These estimates are 
starred if they differ significantly from the consistent estimates in column (1). 



566 M.P. Keane 

Table 2 
Estimates of selection model on NLS young men 

Parameter /3 ML /3 ML-quadrature /3 MSM 

"4 points 9 points Random RE + AR(1) RE + MA(1) 
effects error error 

(1) (2) (3) (4) (5) (6) 

Wage equa~on 
U-RATE -0.0039 -0.0063 -0.0055 -0.0057 -0.0095** -0.0066 

0.0034 (0.0023) (0.0023) (0.0027) (0.0026) (0.0028) 
TIME 0.0073 0.0125"** 0.0105"* 0.0119"* 0.0124"* 0.0119" 

(0.0015) (0.0013) (0.0015) (0,0021) (0.0021) (0.0021) 
EDUC 0.0606 0.0520*** 0.0487*** 0.0500*** 0.0529** 0.0516"** 

(0.0016) (0.0018) (0.0023) (0.0032) (0.0033) (0.0032) 
EXPER 0.0263 0.0242 0.0260 0.0242 0.0276 0.0256 

(0.0024) (0.0015) (0.0016) (0.0027) (0.0030) (0.0028) 
EXPER 2 -0.0736 -0.0780 -0.0750 -0.0720 -0.0870 -0.0780 
+ 100 (0.0108) (0.0060) (0.0050) (0.0100) (0.0130) (0.0110) 
WHITE 0.1923 0.1767 0.1829 0.1936 0.1934 0.1932 

(0.0134) (0.0150) (0.0236) (0.0235) (0.0234) (0.0231) 
CONSTANT 0.0494 0.0967* 0.1510"** 0.1234" 0.0923 0.1054 

(0.0297) (0.0284) (0.0371) (0.0450) (0.0459) (0.0450) 

Employment equadon: 
U-RATE -0.0646 -0.0699 -0.0693 -0.0648 -0.0589 -0.0570 

(0.0133) (0.0131) (0.0126) (0.0157) (0.0160) (0.0160) 
TIME -0.0126 -0.0118 -0.0169 -0.0200 -0.0208 -0.0226 

(0.0058) (0.0058) (0.0062) (0.0081) (0.0081) (0.0082) 
EDUC 0.0610 0.0578 0.0655 0.0664 0.0645 0.0707 

(0.0060) (0.0058) (0.0076) (0.0106) (0.0104) (0.0104) 
EXPER 0.0014 0.0067 0.0084 0.0017 -0.0020 0.0022 

(0.0095) (0.0094) (0.0099) (0.0120) (0.0122) (0.0122) 
EXPER 2 -0.1034 -0.1020 -0.1130 -0.0920 -0.0740 -0.0860 
+ 100 (0.0401) (0.0390) (0.0400) (0.0480) (0.0500) (0.0490) 
WHITE 0.1961 0.2148 0.2493 0.2345 0.2229 0.2223 

(0.0492) (0.0500) (0.0637) (0.0635) (0.0632) (0.0635) 
WIFE 0.4597 0.3393** 0.3770** 0.3550** 0.3664** 0.3498** 

(0.0323) (0.0341) (0.0359) (0.0446) (0.0449) (0.0448) 
KIDS 0.1151 0.0621'** 0.0895* 0.0930 0.0869 0.0942 

(0.0127) (0.0131) (0.0142) (0.0198) (0.0199) (0.0199) 
CONSTANT 0.4922 0.6446 0.4936 0.5147 0.5083 0.4146 

(0.1142) (0.1117) (0.1274) (0.1554) (0.1551) (0.1536) 

Covariance parameters: 
Pwage 

Pemployment 

aR(1)w.g ° 

AR(1)emp,oy  . . . .  -- 

MA(1)wag e 

0.6073 0.5995 0.5449 0.4547 0.4807 
(0.0069) (0.0075) (0.0131) (0.0162) (0.0132) 
0.2364 0.3275 0.3548 0.3090 0.3285 

(0.0136) (0.0182) (0.0243) (0.0266) (0.0257) 
- - - 0.4803 - 

(0.0165) 
- - - 0.2538 - 

(0.0442) 
- - - 0.2426 

(0.0851) 
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Table 2 (Continued) 

Parameter ~ M L  ~ML-quadrature ~MSM 

4points  9 points Random RE+AR(1)  RE+MA(1)  
effects error error 

(1) (2) (3) (4) (5) (6) 

MA(1)employ . . . .  - -  . . . .  0 . 2 0 0 3  

(0.0564) 
Correlation of - 0.4330 -0.2798 -0.2002 -0.1859 -0.2075 
permanent parts (0.0132) (0.0213) (0.0434) (0.0508) (0.0466) 
Correlation of -0.6947 -0.2651 -0.3339 -0.3491 -0.3861 -0.3944 
transitory parts (0.0228) (0.0775) (0.0654) (0.0636) (0.0566) (0.0609) 
~rw.g e 0.4301 0.4162 0.4109 0.4055 0.4049 0.4052 

(0.0031) (0.0027) (0.0025) (0.0030) (0.0030) (0.0031) 
Log-likelihood -8984 -6312 -6216 -6321 -6004 -6244 
function 
X2(16) - 362** 164"* 75** 78** 72** 
CPU minutes 2.09 12.94 40.09 42.68 47.38 47.38 

Note: Standard errors of the parameter estimates are in parentheses. Three stars (***) indicate 
that a parameter differs from the ML no-effects estimate at the 1% significance level. Two stars 
(**) indicate the 5% level,  and one star (*) indicates the 10% level. The Xz(16) statistic is for the 
null hypothesis  that the regressor coefficients equal the ML no-effects estimates. The 5% critical 
value is 26.30. The data set used is the NLS survey of young men. There are observations on 2219 
individuals, with a total of 11 886 person-year  observations. The MSS estimates were obtained 
using 10 draws for the G H K  simulator. Log-likelihood function values for the MSS estimators are 
simulated. 

A X 2 test for the null that all the regressor coefficients equal the column (1) 
values is also reported. 

Random effects estimates via approximate ML with 4 and 9 quadrature 
points are reported in columns (2) and (3). Clearly, there is very strong 
persistence in the wage equation errors, as 60 percent of the wage error 
variance is accounted for by random effects. Observe that the ML-quadrature 
estimates are quite far from the cross-section estimates. Particularly noticeable 
is the coefficient on EDUC in the wage equation, which is from 4.8 to 5.2 
standard errors below the cross-section estimate. The X 2 tests overwhelmingly 
reject the null that the random effects estimates equal the consistent cross- 
section estimates. 

Notice that 4- and 9-point quadratures produce very different estimates of 
the cross-correlation of random effects. With 4 points, this is estimated as 
0.4330, and with 9 points, it is estimated as -0.2798, both estimates being 
highly significant. The 4-point results are what Keane, Moffitt and Runkle 
reported. Since use of roughly 4 quadrature points is typical in the literature, 
these results demonstrate the need to use larger numbers of quadrature points 
in applied work. Increasing the number of points to 12 did not produce much 
change in results (the likelihood changed only from -6216 to -6206).  Use of 
12 points is very expensive for this model, as it required 88 cpu minutes. 

These random effects results overturn the Keane, Moffitt and Runkle finding 
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that permanent wage and employment error components are positively corre- 
lated. However, it should be noted that Keane, Moffitt and Runkle considered 
their preferred specification to be a semiparametric random effects model 
estimated using the technique of Heckman and Singer (1982), and this 
technique did choose the likelihood peak which has a negative cross-correlation 
of the random effects. Such a negative correlation, indicating that those with 
permanently high wage errors supply less labor, is not surprising since it can be 
explained by income effects. More surprising is the negative correlation 
between the transitory error components, implying that those with the 
temporarily high wages supply less labor. As was noted by Keane, Moffitt and 
Runkle, this appears difficult to reconcile with intertemporal substitution 
theories of the business cycle. 

The MSS estimates of the random effects model are reported in column (4). 
These were obtained using the GHK simulator with 10 draws to simulate the 
transition probabilities. The regressor coefficient estimates are all quite close to 
the 9-point ML-quadrature estimates. Larger standard errors for the MSS 
estimates account for the smaller (but still highly significant) X 2 test for the null 
of equality with the no-effects estimates (75 vs. 164). Column (5) contains MSS 
estimates of a model that allows for random effects plus AR(1) error 
components. When the AR(1) components are included, the AR(1) parameter 
in the wage equation is a substantial 0.4803 (with standard error 0.0165) and 
the fraction of the wage error variance explained by the individual effects drops 
to 45 percent. In the employment equation, the AR(1) parameter is also highly 
significant (0.2538 with standard error 0.0442). Clearly, the equicorrelation 
assumption is overwhelmingly rejected by the data. The first four lagged 
autocorrelations of the wage equation error implied by the MSS estimates in 
column (5) are 0.72, 0.58, 0.52, 0 .48-as  compared to the autocorrelation of 
0.60 at all lags implied by the random effects model. The first four lagged 
autocorrelations of the employment equation error are 0.48, 0.35, 0.32, and 
0.31 as compared to the 0.3275 at all lags implied by the random effects model. 
Note, also, that the computational cost of the MSM estimator that allows for 
this more complex error pattern (47.38 cpu minutes on an IBM 3083) is only 
slightly greater than the cost of ML-quadrature estimation of the random 
effects model (40.49 cpu minutes). 

In the model with a moving-average error component (column (6)), the 
MA(1) parameter in the wage equation is 0.2426 (with standard error 0.0851) 
and that in the employment equation is 0.2003 (with standard error 0.0564). 
Based on the simulated log-likelihood values, this model does not seem to fit as 
well as the model with AR(1) error components. 

Although the equicorrelation assumption is rejected by the data, the 
parameter estimates obtained via MSS change only slightly when AR(1) and 
MA(1) error components are included in the model. Thus, the divergence of 
random effects estimates from the consistent no-effects estimates does not 
appear to result from the false imposition of the equicorrelation assumption in 
this case. In particular, the most likely explanation for the substantial drop in 
the education coefficient in going from the model with no effects to the models 
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with random effects is that the individual effect in the wage equation is 
correlated with the education variable. That is, the individual effect is actually 
a fixed effect. 

I now turn to the issue of the cyclicality of the real wage. All three MSS 
models give estimates of the cross-correlations of the random effects in the 
range from -0.19 to -0.21, and estimates of the cross-correlations of the time 
varying error components in the range from -0.35 to -0.39. Since negative 
correlations imply that high-wage workers are most likely to leave work in a 
recession, these results imply a degree of procyclical bias in aggregate wage 
measures which is considerably stronger than that found by Keane, Moffitt and 
Runkle, who report a positive correlation of the permanent components and a 
-0.33 correlation for the transitory components (column (4)). Since Keane, 
Moffitt and Runkle's main conclusion was that aggregate wage measures are 
procyclically biased, this can be viewed as a strengthening of that result. 

The estimated unemployment rate coefficients are -0.0039 for the no-effects 
model, -0.0055 for the random effects model estimated by 9-point quadrature, 
-0.0057 for the random effects model estimated by MSS, -0.0095 for the 
random effects plus AR(1) error model, and -0.0066 for the random effects 
plus MA(1) error model. These estimates imply that a one-percentage-point 
increase in the unemployment rate corresponds to a fall in the real wage of 
between 0.4 percent and 1 percent. Thus, Keane, Moffitt and Runkle's finding 
that movements in the real wage are weakly procyclical appears to be robust to 
relaxation for the equicorrelation assumption. 

8. Conclusion 

The application of simulation estimation techniques to panel data LDV models 
is clearly more difficult than the application of these methods to cross-section 
problems. Yet the recent development of highly accurate GHK simulators for 
transition and choice probabilities has made simulation estimation in the panel 
data LDV context feasible. Three classical methods, an MSM estimator based 
on using the GHK method to simulate transition probabilities, an MSS 
estimator based on using the GHK method to simulate the score and an SML 
estimator based on using GHK to simulate choice probabilities, have been 
successfully applied in the literature. As the empirical examples in Section 7 
show, these methods allow one to estimate panel data LDV models with 
complex error structures involving random effects and ARMA errors in times 
similar to those necessary for estimation of simple random effects models by 
quadrature. A Bayesian method based on Gibbs sampling has also been 
successfully applied. An important avenue for future research is to further 
explore the performance of methods based on conditional simulation of the 
latent variables of the LDV model, such as the simulated EM and Gibbs 
sampling approaches, in the panel data setting, and to compare the per- 
formance of these methods to that of MSM, MSS and SML. 
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A Perspective on Application of Bootstrap 
Methods in Econometrics 

Jinook Jeong and G. S. Maddala 

'In a world in which the price of calculation continues to decrease rapidly, but the 
price of theorem proving continues to hold steady or increase, elementary economics 
indicates that we ought to spend a larger fraction of our time on calculation.' 

J. W. Tukey, American Statistician (1986, p. 74). 

I. Introduction 

The boots t rap method,  introduced by Efron (1979) is a resampling method 
whereby information in the sample data is ' recycled'  for estimating variances, 
confidence interval, p-values and other propert ies of statistics. I t  is based on 
the idea that the sample we have is a good representat ion of the underlying 
populat ion (which is all right if we have a large enough sample). As a result, 
the variances, confidence intervals and so on, of  sample statistics are obtained 
by drawing samples f rom the sample. 

Resampling methods are not new. Suppose we have a set of observations 
{xl, x 2 , . . . ,  xn} and a test statistic 0. Resampling methods can be introduced 
for two purposes.  First, resampling methods are often useful to examine the 
stability of 0. By comparing the 0 computed  f rom different subsamples,  one 
can detect outliers or structural changes in the original sample. Cross-valida- 
tion tests, recursive residual tests, 1 or Go ld fe ld -Quan t ' s  test for heteroskedas-  
ticity are in this line of resampling methods.  Fur thermore ,  resampling can be 
used to compute  alternative estimators for the standard error  of 0, which are 
usually calculated from the deviations of 0 across the subsamples.  In the cases 
that  the distribution of 0 is unknown or that consistent est imators for the 
standard error of 0 are not available, the resampling methods are especially 
useful. 

The Jackknife,  introduced by Quenouille (1956), is one of the resampling 

1 Brown, Durbin and Evans (1975). 

573 
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methods to reduce bias and provide more reliable standard errors. The 
procedure of the simplest delete-one-jackknife is: 

(1) Compute O(o from {Xa,X2,. . .  , X i _ l , X i + l , . . .  , x n }  for all i. 
(2) Compute the 'pseudovalues'  Pi = nO - (n - 1)0(0.  
(3) The jackknife point estimator is given by 0j = E p i / n .  

(4) The jackknife variance estimator is given by vl = E ( P i -  OJ)2/n( n - 1). 

Hinkley (1977) shows that 0j is unbiased but generally inefficient and 6j is 
generally biased. The asymptotic properties of 0j and Oj can be found in Miller 
(1974) and Akahira (1983). More advanced jackknife methods such as the 
n-delete jackknife, the balanced jackknife, and the weighted jackknife are 
developed by Wu (1986) to overcome the above mentioned problems. Since 
much of econometric work is based on time-series data, these modifications do 
not solve all the problems. For time-series data, Cragg (1987) suggests a 
recursive jackknife method. 

The bootstrap method is another resampling method for the same purpose as 
the jackknife: to reduce bias and provide more reliable standard errors. 2 
Unlike the jackknife, the bootstrap resamples at random. In other words, 
while the jackknife systematically deletes a fixed number of observations in 
order (without replacements), the bootstrap randomly picks a fixed number of 
observations from the original sample with replacements. By repeating this 
random resampling procedure, the bootstrap can approximate the unknown 
true distribution of the estimator with the empirical 'bootstrap'  distribution. 
Formally, 

= * * . . . X *  (1) Draw a 'bootstrap sample' B 1 {Xm,X2, , n} from the original 
sample {Xl, x 2 , . . .  , Xn}. Each x* is a random pick from {Xl, x2, . . . , xn} with 
replacement. 

~ B  

(2) Compute 01 using B 1. 
^ B  ^ B  

(3) Repeat  steps (1) and (2) m times to obtain { 0 1 , 0 2 , . . .  , 0~}. 
(4) Approximate the distribution~B ha°f 0 byathe bootstrap distribution P, 

putting mass 1 / n  at each point 0 1 , 0 2 , . . . ,  0 m. 

The bootstrap estimators of bias and variance are easily derived from the 
empirical distribution F. 

Resampling does not add any information to the original sample. Thus, the 
advantage of resampling methods like the bootstrap must be the result of the 
way the sample information is processed. For instance, in the case of samples 
from a normal distribution, all the information about the distribution of the 
sample mean is summarized in the sample mean and variance, which are jointly 
sufficient statistics. Thus, other ways of processing sample information in this 
case does not yield any better results. It is in cases where there is no readily 
available finite sample distribution of the test statistics that one gets the most 

2 The method is called the 'bootstrap' because the data tighten their reliability by generating new 
data sets as if they pull themselves up by their own bootstraps. 
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mileage out of the bootstrap methods. In most econometric applications this is 
the case. 

The bootstrap is computationally more demanding than the jackknife. 
Because of this, one might think that the bootstrap would be a more efficient 
procedure in estimating functionals of sampling distributions. On the other 
hand, it has been argued that the jackknife is more robust to departures from 
the standard assumptions. Liu and Singh (1992) suggest that we can divide all 
the commonly used re-sampling procedures for the linear regression models 
into two types: the E-type (the efficient ones like the bootstrap) and the R-type 
(the robust ones like the jackknife). 

Recent developments on the bootstrap methods address the limitations of 
the simple bootstrap resampling methods. However, most of the work is for 
models with IID errors. Thus, these methods are not directly applicable to 
much of econometric work. If the observations in the original sample are not 
exchangeable, the bootstrap resampling does not provide the correct approxi- 
mation of the true distribution. Thus, neither the simple bootstrap methods nor 
some recent modifications are appropriate for serially correlated or heteros- 
kedastic data sets. Unfortunately, there are some misapplications of the 
bootstrap methods in econometrics that miss this point. Rather than criticize 
these studies, we shall outline the modifications of the bootstrap method that 
have been suggested. Obviously, much theoretical work needs to be done in 
these areas. 

There are several bootstraps in the literature. The simple bootstrap, double 
bootstrap, weighted bootstrap, wild bootstrap, recursive bootstrap, sequential 
bootstrap, and so on. Many empirical applications in econometrics do not say 
which bootstrap is being used although one can infer that the simple bootstrap 
is being used. Hall (1988a, p. 927) makes a similar complaint regarding 
applications of bootstrap confidence intervals. 

The present paper is addressed to the following questions: 
(i) What are the special problems encountered in econometric work? 

(ii) What modifications of the bootstrap method are needed? 
(iii) What are some fruitful applications and what new insights have been 

obtained by the use of the bootstrap method? 
There appears to be a lot of confusion in the applied econometric literature 

about what the bootstrap is good for. Broadly speaking, there are two main 
uses of the bootstrap that have both sound theoretical justification and support 
from Monte Carlo and/or empirical work. 

(a) In some models (e.g., Manski's maximum score estimator) asymptotic 
theory is intractable. In such cases the bootstrap provides a tractable way to 
achieved confidence intervals, etc. Typically, these results are equivalent to 
those obtained through asymptotic theory. That is, they are accurate through 
the leading term of the asymptotic expansion of the distribution of interest. 

(b) In other models, asymptotic theory is tractable but not very accurate in 
samples of the sizes used in applications. In such cases the bootstrap often 
provides a way of improving on the approximations of asymptotic theory. 



576 J. Jeong and G. S. Maddala 

However ,  in many econometric applications, modifications of the simple 
bootstrap are needed to achieve this improvement.  Some of these methods 
have been developed but others not as yet. 

Much applied econometric work seems directed towards obtaining standard 
errors. But these are of interest only if the distribution is normal, and most 
finite sample distributions arising in applications are non-normal. If one wants 
to make confidence interval statements and to test hypotheses, one should use 
the bootstrap method directly and skip the standard errors, which are useless. 

These points should be borne in mind while going through the following 
review. Many of the conflicting results on the usefulness of the bootstrap that 
we shall note can be explained by the differences in the approaches used (and 
wrong objectives). 

The plan of the paper is as follows: We first review the bootstrap methods in 
regression models with IID errors and computational aspects of bootstraps. We 
then discuss the several econometric applications of the bootstrap methods. 3 

2. Bootstrap methods with l iD errors 

2.1. Bootstrap in regressions 

Consider a regression model y = X/3 + u where y is an n × 1 vector of the 
dependent  variable, X is an n × k matrix of k regressors, and u is an n × 1 
vector of independent identically distributed errors with mean 0 and variance 
0 -2 (not known). The true distribution of u is not known. The sampling 
distribution, or the mean and variance of an estimator /} (for example, the 
OLS estimator) is of interest. 

When the regressors are non-random, the  fixed structure of the data should 
be preserved and the bootstrap estimation is done by resampling the estimated 
errors. The procedure is: 

(1) Compute the predicted residuals ~ = y  - x / 3 . 4  
(2) 

from 
(3) 
(4) 
(5) 
(6) 
(7) Compute the bootstrap variance of 

(m - 1). 

Resample fi: obtain u* by drawing n times at random with replacement 

Construct a 'fake data' y* by the formula y* = X~ + u*. 
Rees t imate /3"  using X and y*. 
Repeat  (2 ) - (4)  m times. 
Compute the bootstrap point estimator, /}B = 2/3~./m. 

3 For an earlier survey of the econometric literature, see Veall (1989). 
4 If X does not include the constant vector so the residuals f are not centered, the bootstrap 

usually fails. Freedman (1981) recommends the use of the centered residuals, fi - (Z fie~n), to 
correct this problem. 
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It is worth noting that the bootstrap point estimator and bootstrap variance 
can be derived without any computer simulation when/3 is the OLS estimator. 
If the bootstrap size m is a sufficiently large number to ensure that the 
proportions of t~ i is the bootstrap samples are equal to 1/n for all i, then 

fib = E [ ( X ' X ) - I X ' y  .1 = / 3 ,  (2.1) 

f'B = v a r [ ( X ' X ) - I X ' Y  *] = 6"2(X'X) -1 = (1 - k /n ) sZ (X 'X )  -1 , (2.2) 

where 6.2 ~ 2 U i^2/n and S 2 ~ E Ct~/(n - k).  The bootstrap variance estimator in 
(2.2) is identical to the MLE estimator with the normality assumption and is 
different from the classical estimator only by a scale factor. 5 So in this ideal 
situation, the bootstrap is not of much use. 

Note that what we need to sample is the vector u. Since it is unobserved, we 
sample from ft. Even if Var(u)=1o "2, t h e  residuals fii are correlated and 
heteroskedastic. Specifically we have 

Var(a) = 0-2( I -  H )  , 

where H is the 'hat matrix' defined by 

I-I = x ( x ' x ) -  1 x '  . 

The bootstrap succeeds even in spite of the fact that we are sampling from 
correlated and heteroskedastic residuals. The bootstrap vector u* consists of 
independent errors with constant variance regardless of the properties of ft. 

Consider next the case where the regressors are random. In this case we 
sample the raw observations (y~, X~), not the residuals. As is well known, in 
the stochastic regressor case, only the asymptotic properties of least squares 
estimators are known. Thus, in this case the bootstrap gives different answers 
even when fi is a simple linear estimator. The bootstrap method involves 
drawing a sample of size n with replacement from (Yi, X/). We then calculate fi 
for each bootstrap sample and then proceed as in the fixed regressor case to get 
/3B and VB- The only problem is that sometimes the matrix ( X ' X )  can be 
singular. In this case a new sample needs to be drawn. 

The difference between the two resampling methods in the case of the linear 
regression model is more glaring in the presence of heteroskedasticity. Suppose 
that V(u) = 0-2D where D is a diagonal matrix of rank n. The variance o f  /~OLS 
is given by 

V(~OLS ) = ( X c X ) - i X t O X ( X t X )  1. 

If we use the bootstrap method for the fixed regressor case, that is resample 
the residuals ~ ,  since the residuals are randomly scattered, the bootstrap data 
sets will show no signs of heteroskedasticity. On the other hand, random 

It is customary to 'fatten'  the residuals, fii, by a factor of (1 - k/n) 1/2 to obtain an unbiased 
bootstrap variance estimator. 
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resampling from (yi, Xi) does not change the heteroskedasticity and the 
bootstrap variance gives approximately the correct answer. Thus, in the 
presence of heteroskedasticity, even if X i are fixed, it is better to use the 
bootstrap that is appropriate for X i random. 

In the case of heteroskedasticity of an unknown form, it is customary in 
econometric work to estimate, following the suggestion of White (1980), the 
covariance matrix of /3OLS by 

where 

9(BoLs) = (X'X)  iX' b X ( X ' X )  1 

) • ^ 2  ~ 2  = Dlag[ul, ^2 U2, • . . , bin] 

MacKinnon and White (1985) compare, by a Monte Carlo study, this 
estimator with 

(i) a modification of the MINQUE estimator of Rao (1970) suggested by 
Horn, Horn and Duncan (1975), and 

(ii) the 'delete-one' jackknife estimator. 
They find the jackknife estimator the best. The Horn-Horn-Duncan estimator 
replaces D by D* where D* : Diag[o-12, 0 . 2  2 ,  . . . , 0.*2] with 0. .2= f i~/(1-  
hii ) and hii is the i-th diagonal term of the 'hat-matrix' H. The jackknife 
estimator of V(/3OhS) is 

n - -1  1 
---n-- (X 'X)- l [X '  f )X  - n (x '  aa 'X) l (X 'X)- I  

with / ) =  Diag[ti~, u2,'2..., ti 2] and ti~ = fi~/(1- h~). MacKinnon and White, 
however, did not consider the weighted bootstrap. 6 

2.2. Asymptotic theory for bootstrap 

The bootstrap estimators are known to be consistent under mild conditions. 
Bickel and Freedman (1981) and Singh (1981) show the asymptotic consistency 
of bootstrap estimators for sample mean and other statistics under mild 
regularity conditions. Freedman (1981, 1984) provides the asymptotic results 
for bootstrap in regression models. Navidi (1989) uses Edgeworth expansion to 
show that, asymptotically, the bootstrap is always at least as good as the 
classical normal approximation in linear regression models. Asymptotic prop- 
erties of bootstrap estimation in more complicated situations, such as simulta- 
neous equation systems or dynamic models, are presented in Freedman (1984). 
The following are some typical results. (We state the theorems without proof.) 

Assume that X is non-random and l im(X'X/n)= V where V is a finite 
nonsingular matrix. Then the OLS estimator/3(n) is consistent and the limiting 

6 For a comparison between the White  correction, simple bootstrap and weighted bootstrap,  see 
Jeong and Maddala (1992). 
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distribution of x/-n[/3(n) - /3] is normal with mean 0 and variance o'2V -1. The 
bootstrap point estimator using r resampled errors from a simulation, /3B(r), 
has the following asymptotic properties] 

THEOREM 2.1. Given y, as r and n tend to infinity, x/m[/3B(r ) --/3(n)] weakly 
converges in distribution to normal with mean 0 and variance ~r2V -1 (m is the 
number o f  bootstrap replications). 

THEOREM 2.2. Given y, as r and n tend to infinity, the bootstrap estimator for the 
~2  2 error variance, O-B(r ) --= E (~ /r converges in distribution to point mass at o" . 

The proofs of the above theorems using the concept of the 'Mallows metric' 
are found in Bickel and Freedman (1981) and Freedman (1981). For surveys of 
asymptotic properties using Edgeworth expansions, see Babu (1989) and Hall 
(1992). 

There are many papers that discuss sufficient conditions for consistency and 
give a number of examples where consistency does not hold. Some of these are 
Efron (1979), Singh (1981), Beran, Le Cam and Millar (1987), and Athreya 
(1983, 1987). If T~ is the statistic and n the sample size, the definition of 
consistency is 

p(Fn, t~)---~O a.s. or in prob. (weak), 

where p is some distance function between Fn, the actual DF of T n and F~, the 
bootstrap DF of Tn. Generally, p is chosen as the Kolmogorov or Mallows 
distance. These conditions for consistency are, however, difficult to check in 
the case of many of the estimators used in econometrics. 

A more important question about the bootstrap methods in econometrics is 
how well they work in small samples. This is discussed in Section 4 with 
reference to a number of econometric applications. The dominating conclusion 
is that, under a variety of departures from the standard normal model, the 
bootstrap methods performed reasonably well in small samples, provided the 
modifications of the simple bootstrap are used. 

2.3. Bootstrap confidence intervals 

There is an enormous statistical literature on confidence intervals. Since 
surveys of this literature are available, for instance see the paper by Diciccio 
and Romano (1988), we shall not go through the intricate details here. Efron 
(1987) notes that bias and variance calculations require a small number of 
bootstrap replications (50 to 200), but the computation of sufficiently stable 
confidence intervals requires a large number of replications (at least 1000 to 
2000). Even with today's fast machines this can be time consuming. 

7 In practice, as shown in the previous sections, r = n. 
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A major portion of the econometric work on bootstrap is concerned with the 
calculation of bias and standard errors. 8 This is not appropriate because even if 
the asymptotic and bootstrap standard errors agree, there can be large 
differences in the corresponding confidence intervals if the bootstrap dis- 
tribution is sufficiently skewed (the asymptotic distribution is normal). For 
instance, Efron and Tibshirani (1986, p. 58) estimate the Cox proportional 
hazard model 

h(t  [ x)  = ho(t ) e t3x 

and find /3 = 1.51 with asymptotic SE 0.41. The bootstrap SE based on 1000 
replications was 0.42. However; the bootstrap distribution was skewed to the 
right, thus, producing different confidence intervals. 9 

Again, for the autoregressive model 

Z l  ~- 4 )Z ,  - 1 -{- Et 

based on Wolfer's sunspot numbers for 1770-1889, they got ~ = 0.815 with 
asymptotic SE of 0.053. The bootstrap standard error based on 1000 replica- 
tions was 0.055, agreeing nicely with the asymptotic result. However, the 
bootstrap distribution was skewed to the left. 

The earliest example in econometrics of using the bootstrap method for the 
construction of confidence intervals is that by Veall (1987a) which involves a 
complicated forecasting problem involving future electricity demand. He used 
the percentile method. He also did a Monte Carlo study (Veall, 1987b) for this 
specific example and found the method satisfactory. However, there is a large 
amount of statistical literature criticizing the simple percentile method. Eakin, 
McMillen and Buono (1990) use both percentile method and Efron's bias- 
corrected method but find no differences in the results. Using the bootstrap 
standard deviation makes the most difference but not the different bootstrap 
methods .10 

The percentile method is the simplest method for the construction of 
confidence intervals. The ( 1 -  2a) confidence interval is the interval between 
the 100a and 100(1 - a) percentiles of the bootstrap distribution of 0* (0" is 
the bootstrap estimate of 0). Diciccio and Romano (1988) present unsatisfac- 
tory small-sample performance of the percentile method. Efron introduced a 
bias-corrected (BC) percentile method to improve the performance of the 

8 There are several examples. See for instance, Rosalsky, Finke  and Theil (1984), Korajczyk 
(1985), Green, Hahn and Rocke (1987), Datt (1988), Selvanathan (1989), Prasada, Rao and 
Selvanathan (1992) and Wilson (1992). 

9 The Cox hazard model and its extensions are widely applied in econometric work. See for 
instance, Atkinson and Tschirhart (1986) and Butler et al. (1986). In all the applications, only 
asymptotic standard errors are reported. Bootstrap methods have not been used. 

lo Eakin et al. (1990) use also what they call the basic bootstrap confidence interval. This is the 
usual confidence interval obtained from the normal distribution with the bootstrap SE substituted 
for the asymptotic SE. This procedure is not generally recommended.  



Application of bootstrap methods 581 

simple percentile method. Schenker (1985) shows that the coverage prob- 
abilities of the BC intervals are substantially below the nominal levels in small 
samples. To improve the BC intervals, Efron (1987) proposes the accelerated 
bias-corrected percentile (BCa) method. Diciceio and Tibschirani (1987) show 
that the method is a combination of a variance-stabilizing transformation and a 
skewness-reducing transformation. They also present a computationally sim- 
pler procedure (BC ° interval) which is asymptotically equivalent to the BC~ 
interval. 

The preceding methods are all percentile methods. In contrast, there is a 
second group of methods called pivotal methods. The methods that fall in this 
category are: the bootstrap-t (also known as the percentile-t) and Beran's B 
method (Beran, 1987, 1988). The idea behind the bootstrap-t method is that 
instead of using the bootstrap distribution of 0, we use the bootstrap 
distribution of the 'studentized' statistic (also called asymptotically pivotal 
statistic) t = x/B(0 -O) / s  where s 2 is a xfB consistent estimate of the variance 
of x /B(0-  0). This method gives more reliable confidence intervals. Beran 
(1988) and Hall (1986a) have shown that the bootstrap distribution of an 
asymptotically pivotal test statistic based on a x/B consistent estimator coin- 
cides through order x/-B with the Edgeworth expansion of the exact finite- 
sample distribution. 

The bootstrap-t procedure is: (a) draw the bootstrap sample, (b) compute 
the t-statistic of interest ( /3-/3)/SE(/3) using the formulas of asymptotic 
theory, and (c) estimate the empirical distribution of the statistic by repeating 
(a) and (b). Beran (1988) shows that by using critical values from the resulting 
bootstrap distribution, one obtains tests whose finite sample sizes are closer to 
the nominal size than are tests with asymptotic critical values. These critical 
values can be used to form confidence intervals whose coverage probabilities 
are closer to the nominal values than are those based on first-order asymptotics 
(Hall, 1986a). Often the errors based on the bootstrap critical values are of 
O(n-1), whereas with asymptotic distributions, they are of O(n-1/2). By 
appropriately iterating the bootstrap, one can obtain further improvements in 
accuracy. For example, Beran (1987, 1988) shows that with pro-pivoting, one 
can obtain size errors of O(n-3/2). Beran (1990) suggests further iteration and 
shows that this method, called the B 2 methods, performs better than the 
original B method. To conserve space, we shall not discuss Beran's method is 
detail here. 

It is difficult to choose a single confidence interval as the best of all the above 
confidence intervals. However, the percentile-t method, Beran's B method and 
the BC a method are shown to be asymptotically superior to the other 
methods. 11 The small sample performance of these methods are known to be 
acceptable. 12 Hall (1986b) discusses the effect of the number of bootstrap 
simulations on the accuracY of confidence intervals. 

11 See Hall (1988a) and Martin (1990) among others. 
12 See Efron (1987), Beran (1988), and Diciccio and Tibshirani (1987) for examples. 
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Most econometric applications of confidence intervals have not incorporated 
these refinements. They are often based on the simple percentile method. Two 
notable exceptions are George, Oksanen and Veall (1988) who compare the 
results from asymptotic theory with those from the percentile method, the 
percentile-t method, and Efron's BC method, and Eakin et al. (1990), who use 
the percentile and Efron's BC method. The differences arising from the use of 
these methods were minor in these applications. 

3. Computational advances in bootstrap methods 

As Efron (1990) and many other authors point out, the computational burden 
of the bootstrap simulations for reliable bootstrap confidence intervals is a 
problem even with today's fast machines. Several methods to reduce the 
computational burden have been devised. One group of the methods tries to 
reduce the required number of bootstrap replications through more sophisti- 
cated resampling schemes such as balanced sampling, importance sampling, 
and antithetic sampling. 13 All these methods were originally developed for 
Monte Carlo analysis in the 1960s. In this section, we are interested in the 
bootstrap applications of these methods. The other line of research has focused 
on analytical approximations of bootstrap estimation. The saddle-point approx- 
imations by Davison and Hinkley (1988) and the BC~ confidence intervals by 
Diciccio and Tibshirani (1987) are in this category. 

3.1. Balanced sampling 

Davison, Hinkley and Schechtman (1986) suggest the method of balanced 
bootstrap to reduce both the bias in bootstrap estimates and the number of 
simulations required in bootstrap estimations. To achieve the overall balance 
of bootstrap samples, the following sampling scheme is proposed: (1) copy the 
original sample {Xl ,  X 2 . . . . .  Xn} m times to make a string of length nm,  (2) 
randomly permute this string and cut it off in m blocks to make m bootstrap 
samples of length n (this procedure is equivalent to selecting n observations 
from the nm pool without replacement). 14 It is easy to see that the first-order 
bias in bootstrap estimates disappear with the balanced sampling. Davison et 
al. (1986) provide the theoretical background and some numerical results. 

In the regression context, the balanced resampling can be done with the 
estimated residuals. Flood (1985) introduces the augmented bootstrap which 
shares the basic idea with the balanced bootstrap: augment the estimated 

13 Weber (1984, 1986) suggests the weighted resampling method to improve the small sample 
performance of bootstrap methods, keeping the same asymptotic properties. However, it does not 
necessarily reduce the computational cost. Efron (1990) takes another route. He sticks to the usual 
way of generating bootstrap samples but seeks improvement in the final processing of the bootstrap 
data. For details, see Efron's paper. 

i4 For the computing algorithms for the balanced sampling, see Gleason (1988). 
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residuals ui =Yg-Xi[  3 (i= 1, 2 , . . .  ,n) by their negatives to construct a 
balanced (and symmetric) vector of fi~ of length 2n, resample as usual from this 
new set of residuals. Rayner (1988) provides the asymptotic theory for the 
augmented bootstrap. 

When a statistic has large higher-order components, the first-order balance 
does not significantly reduce the bias and computing time. Graham, Hinkley, 
John and Shi (1990) introduce the second-order balanced bootstrap method 
which principally reduces the bias in variance estimates. 

3.2. Importance sampling 

Since the primary purpose of balanced sampling is to reduce the bias, the 
required number of simulation for reliable bootstrap confidence intervals is not 
cut down significantly with balanced sampling. The importance resampling 
design by Davison (1988) and Johns (1988), however, is known to reduce the 
necessary replications by as much as 90%-95%. Intuitively, it is possible to 
keep higher accuracy by increasing the probabilities of samples that are of most 
'importance' in the simulation process. The 'importance' can be determined 
using the likelihood ratio from a suitably chosen alternative distribution. 

Hinkley and Shi (1989) applied the importance sampling technique to 
Beran's double bootstrap confidence l i m i t s  (B 2) method. As expected, the 
importance sampling significantly (by 90%) reduces the computational burden 
involved in the computations. Do and Hall (1991), however, argue that 
antithetic re-sampling and balanced re-sampling produce significant improve- 
ments in efficiency for a wide range of problems whereas importance re- 
sampling cannot improve on uniform re-sampling for calculating bootstrap 
estimates of bias, variance and skewness. 

3.3. Antithetic sampling 

The antithetic sampling method was introduced by Hammersley and Morton 
(1956) and Hammersley and Mauldon (1956). Hall (1989) applies the an- 
tithetic resampling method to the bootstrap confidence intervals estimation. To 
explain the basic idea, let 01 and 02 be different estimates of 0, having the same 
(unknown) expectation and negative correlation. Then 0 a ~ (01 + b2)/2 has 
smaller variance than either 01 or 02 with no higher computational cost. In 
bootstrap estimations, the question is how to obtain the suitable second 
estimate 0 z. Hall (1989) proposes the 'antithetic permutation' which can be 
described as follows: (1) rearrange the original sample {Xl, x 2 . . . .  , xn} so that 
X(1 ) <X(2 ) <'''<X(n), (2) select an ordinary bootstrap sample B 1 = { x ( j ) ,  j is a 
RV uniformly distributed on 1 , 2 , . . . , n } ,  (3) generate the corresponding 
antithetic-permuted sample B 2 = {X(k), k = n - j  + 1}. Intuitively, to minimize 
E Piqi, the antithetic permutation takes the largest pi with the smallest qi, the 
second largest pi with the second smallest qi and so on. Hall (1989) shows that 
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this type of permutation gives the greatest degree of negative correlation and 
so smallest variance of the antithetic variate. 

To compute the confidence intervals, 01 and 02 are computed from the B 1 
and B2, respectively, and the anthithetic bootstrap empirical distribution 
/~a -(FB1 + FB2)/2 can be constructed after m replications. Because Pa is more 
stable (has less variance) than the usual bootstrap empirical distribution, 
reliable confidence limits can be constructed with less simulations. Hall (1989) 
also shows that the performance of antithetic resampling method is asymp- 
totically better than the importance resampling. 

The antithetic variates method can be seen as a generalized version of the 
control variates method by Fieller and Hartley (1954). Davidson and MacKin- 
non (1990) unify the two methods and suggest a regression procedure as an 
easier and better way to compute the control variates and antithetic variates in 
Monte Carlo analyses. 

3.4. Efron's post hoc correction method 

The resampling methods introduced so far are all a priori corrections in the 
sense that the sample-generating procedure is modified. Efron (1990) offers a 
different correction method which is applied to the final processing of the usual 
bootstrap samples and so is called the post hoc correction method. The primary 
goal of the method is to reduce the first-order bias in bootstrap estimates like 
the balanced sampling method by Davison et al. (1986). 

Given the original sample {xl, x 2 , . . . ,  xn}, let P~ be the proportion of x i in 
the j-th bootstrap sample. For example, if the first observation x I appears three 
times in the j-th bootstrap sample, P~ = 3/n. Define the 'resampling vector' PJ 
by PJ~[P]I P]2 "'" PJ~]' and the average of the resampling vector by 
P=-P. PJ/m. In this framework, the j-th bootstrap estimator 0B can be 
expressed as a function of the j-th resampling vector: 0 B = O(PJ). 1Similarly, 
the original estimator 0 = 0(P °) where pO =_ [1/n 1/n . . .  1/n]', the resam- 
pling vector for the original sample. 

Then the usual bootstrap bias estimate can be written as Bias a = {0 B - 
O(P°)). Effon (1990) suggests a post hoc correction of the bias estimate: 
Bias~---= { 0 B - -  0(/})). The intuition behind this is the following. The theoretical 
expectation of the resampling vector is p0. However, the bootstrap average of 
P is/5, which is not equal to p0. Thus, by using 0(/3) instead of 0(P°), we can 
correct the discrepancy. Efron (1990) shows the Bias~ is superior to Bias B in 
magnitude and stability. 

The idea can be extended to the estimation of variance and confidence 
limits. The estimation procedure involves the ANOVA decomposition and 
regression of 0(P) on P. Details are found in Effon (1990). The balanced 
sampling method by Davison et al. (1986) and Graham et al. (1990) shares the 
same idea of bias correction with Efron's post hoc correction. What the 
balanced sampling does is choosing the resampling vectors P satisfying p0 = 15. 
Numerical comparison by Efron (1990) shows that the post hoc corrected 
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confidence intervals are more accurate than the balanced sampling confidence 
limits. 

3.5. Saddlepoint approximation 

Unlike all the above efforts trying to reduce the required number of simula- 
tions for bootstrap confidence limits, the saddlepoint approximation of the 
bootstrap distribution is an analytic approach which does not require any 
simulation. Davison and Hinkley (1988) propose the use of Daniels' (1954) 
saddlepoint approximation to approximate the distribution of bootstrap esti- 
mates which are usually sums of independent random variables. In their 
simulations, the saddlepoint approximation is surprisingly accurate. The 
drawback of the saddlepoint approximation is its limited applicability: the 
approximation is not found for all the cases so that the analytical validity of the 
approximation must be checked for each case. Young and Daniels (1990) apply 
the saddlepoint approximation to bootstrap bias estimation. 

The re-sampling methods discussed in this section are all useful for reducing 
the number of bootstrap simulations required to achieve a given level of 
accuracy. Econometricians have been using these techniques in other areas 
such as Bayesian inference using Monte Carlo (see Kloek and Van Dijk, 1978, 
Van Dijk, 1987) and simulation based inference. However, in applications of 
bootstrap methods, they are not used that often. 

4. Bootstrap methods with non-IID errors: Applications in econometrics 

As shown in Sections 2 and 3, the standard bootstrap methods assume that the 
underlying (unknown) distributions are IID. In econometric applications, 
however, most of the data sets are not IID. Either in time series data or in 
cross-section data, the serial independence and homogeneity assumptions are 
not valid. Furthermore, distributions are obviously truncated in many 
economic applications, as in the logit, probit, tobit, and several limited 
dependent variable models. In all these complicated situations, bootstrap 
methods need to be modified to produce reliable estimates. In this section, 
advanced bootstrap methods which can be used in more complicated situations 
are reviewed. As we will see, the development of bootstrap methods in this 
direction is still in its early stages. Considering the frequent deviations of 
econometric data from standard assumptions, further research is expected. The 
discussion will be limited to the linear regression model with non-random 
regressors, given in Section 2. 

4.1. Heteroskedasticity 

Consider again the regression model y -- X/3 + u, where y is an n × 1 vector of 
the dependent variable, X is an n × k matrix of k regressors, and u is an n x 1 
vector of independent errors. If the errors are distributed with heteroskedastic 
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variance, say u i - N ( 0 ,  o-~), then the standard bootstrap procedure introduced 
in Section 2 does not provide a consistent estimate of the variance of ft. The 12 B 
is asymptotically equivalent to (n -1 E o-~) (X 'X)  -1, while the true variance of fi 
is (X ,X) - I (E  o.ixixi)(X2 t i X ) - 1 .  15 Intuitively, the standard resampling scheme 
fails because the errors are not exchangeable. 

Wu (1986) proposes a different bootstrap method for a consistent variance 
estimate: the weighted bootstrap. In his method,  the i-th residual, instead of 
being resampled with replacement,  goes with the i-th fitted value to keep the 
information contained in each observation.  Instead, an additional artificial 
error  vector is created and resampled. Formally, steps (2) and (3) of the 
standard bootstrap procedure given in Section 2 are modified to create the 
artificial data y** as follows: 

Yi** =xi f i  + {fii/(1 ,1/2,~ n -wi)  /ti V i = l , 2 , . . . ,  , ( 4 . 1 )  

where ooi=-xi(X'X)- lx ' i  and t i is a random pick with replacement from a 
standard normal distribution. Thus, E ( t ) =  0 and va r ( t )=  I by construction. 
The remaining steps are exactly same as the standard bootstrap. It is easy to 
show that the bootstrap point estimate fiB* using y** is unbiased. The 
bootstrap variance estimate from Wu's weighted resampling is 

VB (X'X) -1 E { ~ / ( 1  ' ' - '  ** = - to~) } x ix~(X X )  (4.2) 

which is a very close form to the true variance of ft. Wu (1986) shows that V~ * 
is consistent under mild conditions. 16 Wu's weighted bootstrap in the non- 
regression contexts is found in Liu (1988). 

H/irdle and Mammen (1990a) have generalized Wu's method by the wild 
bootstrap. In the wild bootstrap, an error vector Uw is resampled from a 
constructed distribution F w satisfying: 

t(Uw) ~-- 0 2 , and E(U3w) = u , , E(uw ) = a2 ~3 (4.3) 

where the expectations are taken under F w. It is called 'wild' because a single 
observation is used to estimate the true distribution of the residual. Wu's 
bootstrap simply sets u w = St where t ~ N(0, I) .  It fulfills the conditions (4.3) 
and can be viewed as a special case of the wild bootstrap. The wild bootstrap 
estimates are computed using Yw -- X/3 + u w as usual. 

As noted earlier in Section 2, one other method of deriving the correct 
covariance matrix of the OLS estimator of /3 under heteroskedasticity is to 
bootstrap the data (y~, Xg) instead of the residuals, as is done in the stochastic 
regressor case. 

There  are essentially two problems here. The first is to use the OLS method 
but get the correct covariance matrix and standard errors. This is what we have 

is x~ is the i-th row of X. 
16 * *  ~ 1 ~ 0 V B is unbiased if %~xi(XX) x j= for anyi, jwith~r i¢o). 
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discussed. It is essentially a non-parametric procedure. The second and more 
important problem is to get more efficient estimates (through GLS) of/3 and 
get the correct standard errors. For this we need a parametric specification. 
Carroll and Ruppert,  in their discussion of the paper by Wu (1986), suggest 
that this is a better procedure. Cragg (1983) suggests a general parametric 
specification for handling heteroskedasticity. Most of these GLS procedures 
are iterative procedures. Although these procedures are iterated until conver- 
gence for most econometric models, a one step procedure starting with an 
initial consistent estimate is asymptotically efficient. The bootstrap procedure is 
then used to get estimates of the variances of the GLS estimates. As will be 
discussed in the next section, in the case of autocorrelated errors, a parametric 
specification of the error term is needed to use the bootstrap method. This is 
the case with heteroskedasticity as well. 

4.2.  A u t o c o r r e l a t i o n  and  o ther  d y n a m i c s  

In most time series data, the errors are serially correlated. When the errors are 
serially correlated, it is well known that OLS produces inconsistent standard 
errors and that GLS tends to over-reject the true null hypotheses in small 
samples. 17 While bootstrap estimation is a proper alternative for better small 
sample performance, the standard bootstrap resampling fails because the errors 
are not exchangeable. However, if the structure of serial correlation is known, 
a suitable bootstrap procedure can be designed utilizing the independent part 
of the error term. This group of bootstrap procedures can be called the 
recurs ive  bootstraps because they resample error terms recursively to preserve 
the serial relationships in the error terms. Veall (1986) considers the following 
first-order autocorrelation model: 

y = X/3 + u ,  (4.4) 

u i : PUi_ 1 q- e i , (4.5) 

where - 1 < p < 1 and e i is IID with mean zero. The model is first estimated by 
feasible GLS or the Cochrane-Orcutt  transformation to compute/3,  t~, t~ and 
~. Second, the independent residuals ~i are resampled with replacement, giving 
the bootstrapped residuals e*. Third, one residual is randomly selected from e* 
and divided by (1 -p2)1/2 to become t~l. 18 Then u* are recursively computed 
by (4.5), and y* is constructed by substituting/3 and u* for equation (4.4). The 
remaining procedure is the same as standard bootstrap. Veall (1986), however, 
finds that the finite sample performance of his bootstrap is no better than that 
of the asymptotic GLS. In a related study, Rayner (1990c) bootstraps the 
estimated t-values, /3/SE(/3), instead of the raw coefficient /3, and shows 

17 See Park and Mitchell (1980), King and Giles (1984), and Miyazaki and Griffiths (1984). 
18Note that var(u)=var(e)/(1-p2). This transformation is often called the Prais-Winsten 

transformation. 
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somewhat promising results on the small sample performance of the same 
bootstrap method. This method can be applied to any higher order autocorre- 
lations if the structure is known. 

The differences between the results of Veall and Rayner are presumably due 
to the fact that Rayner bootstrapped an asymptotically pivotal statistic and, 
therefore, obtained a higher-order approximation to the finite sample dis- 
tribution of t. In contrast, Veall's results are no more accurate than those from 
asymptotic theory. 19 Morey and Wang (1985) bootstrap the Durbin-Watson 
statistic to eliminate the inconclusive regions. The performance of their 
recursive bootstrap is also moderate. One important thing to note in Rayner's 
study is that he considers samples of sizes 5 to 10. Bootstrap methods are based 
on the assumption that the observed sample is the same as true distribution. It 
is unrealistic to assume that this is true for samples as small as 5 or 10 
observations. 

The problem of recursive bootstrap is that it is not useful when the structure 
of serial correlation is not known or misspecified. Recently, a more general 
bootstrap procedure for time series data, 'moving block bootstrap' has been 
introduced by K/insch (1989) and Liu and Singh (1988). Suppose that a set of 
time series observations { ~1, ~2,. • . ,  ~n } is given. The moving block bootstrap 
first forms the blocks of length l, Lk={~k,~k+~,.. .  '~k+/-1} f o r  k = 
1, 2 , . . . ,  b where b = n - l + 1. Then resample L1, L z , . . . ,  L b with replace- 
ment to create a bootstrap blocks L ~ , L 2 , . . .  ,L*/r This procedure is 
repeated M times like the standard bootstrap. In our simple model (4.4), Ca is 
replaced by t~a. 

K/insch (1989) and Lahiri (1991) show the validity of moving block 
bootstrap procedure in stationary, univariate case. Lahiri (1992) extends the 
proof to the nonstationary case. Shi and Shao (1988) and Moore and Rais 
(1990) propose different versions of bootstrap of m-dependence and for 
uniform mixing, respectively. 

In time series analyses, stationary autoregressive models are often employed 
to capture the dynamics in economic variables. The simplest example would be 
the first-order autoregressive model 

Yi = aYi-1 + ei, (4.6) 

where lal < 1 and e i is assumed to be white noise. The hypothesis is H0: a = 
%. It is well known that the Student's t-distribution is a very poor approxi- 
mation for a in the finite samples. 2° Rayner (1990b) proposes a recursive 
bootstrap procedure for this AR(1) model. First, equation (4.6) is estimated 
by the least squares method, and ~ is resampled to create the bootstrap error 

19 This was pointed out  to us by Joel Horowitz. 
zo See Tanaka  (1983) and Nankervis and Savin (1988). 
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vector e*. Second, y ;  is computed by 

Y*o = ~ aJoe*j • (4.7) 
j=0 

This transformation is plausible since the model (4.6) implies 

Yo = ~ aJe- j  • (4.8) 
j=0 

Third, y ~, y ~ , . . . ,  y ~* are rescursively constructed by 

• ~ * * (4.9) y i  = Y i _ l  + e i  • 

The remaining steps are the same as the standard bootstrap. Rayner (1990b) 
shows, through a Monte Carlo study, that his bootstrap method has better 
small sample properties than the usual t-approximation. 

In fact, Rayner' recursive bootstrap is an extension of Freedman (1984) and 
Freedman and Peters (1984a). Their resampling procedure is: estimate the 
model and compute the estimated residuals, then with a given initial value of 
the dependent variable Y0 compute the dependent variable series 
Y~, Y~ . . . .  , Y*n successively, keeping the dynamic relationship in Yi- Note that 
Y0 is assumed to be known to the researcher. In Rayner's study, it is computed 
from the equilibrium distribution. 21 Bose (1988) investigates the asymptotic 
properties of Freedman's bootstrap estimation and shows that the bootstrap 
improves the asymptotic accuracy of the least square estimates. 22 Rayner 
(1990a) shows that bootstrapping standardized statistics may give better small 
sample results than using the asymptotic results in the case of GLS estimation. 

In contrast to these studies, there is the extensive Monte Carlo study by 
Kiviet (1984) of a model with lagged dependent variables which concludes that 
bootstrap methods do not outperform standard OLS. His Monte Carlo study 
was based on the model 

Yt = flo + [31Y,-~ + [32xt + ~3Xt-1 -[- Et " 

This simulations were performed where e t - IN(0, 1) and where et - IL(0, 1). 
N indicates normal distribution, and L indicates the double-exponential or 
Laplace distribution. He argues that the deficiencies of ordinary least squares 
estimators in lagged dependent variable models are intensified when applied to 
bootstrap samples. 

One other area of extensive research in econometrics is that of unit roots and 
cointegration. It is tempting to apply mechanically the usual bootstrap 

21 An earlier study by Chatterjee (1986) considers bootstrapping ARMA models but does not 
discuss the problem of initial values. De Wet and Van Wyk (1986) consider AR(1) and MA(1) 
models and stress the importance of the distribution of initial observations. 

2z Specifically, the accuracy is improved from O(n -x/2) to o(n-1/2). 
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methods, but there are many pitfalls. First, the asymptotic theory does not 
hold in the case of bootstrap for unit root autoregressive processes. Second, if 
both x and y are I(1) and cointegrated, then y - f i x  is I(0), which is stationary. 
But stationarity does not mean the errors are IID. Thus, one cannot apply the 
bootstrap methods for l iD distributions to cointegrating regressions, as done in 
Vinod and McCullough (1991). In this case one needs either a parametric 
specification for the errors or some extensions of the bootstrap method. 

Basawa et al. (1991a), examine the case of unit roots, that is I 1--1 in 
equation (4.6). They find that the bootstrap estimate of a does not converge to 
the standard Wiener process but converges to a random distribution, even if e i 
is normally distributed. They argue that bootstrap estimation is asymptotically 
invalid when [e I = 1, and that one should be cautious in applying bootstrap 
procedures to autoregressive models when the root is suspected to be close to 
1. Ferretti and Romo (1992) propose a bootstrap resampling scheme for this 
model and prove its asymptotic validity. This method is alternative to the 
invalid one studied by Basawa et al. (1991a). In a subsequent paper, Basawa et 
al. (1991b), suggest a sequen t ia l  boots t rap  procedure for the estimation of the 
parameter a in the explosive case. They establish the asymptotic validity of this 
procedure for all [a I ~< 1. Basawa et al. (1989) analyze the case of explosive 
roots, that is lal > 1. They find that the bootstrap estimator has the same 
asymptotic distribution as the least square estimator. 23 It is not clear which 
estimator has better small sample performance. 

There are a few other applications of the bootstrap in dynamic economic 
models. Runkle (1987) applies a recursive bootstrap procedure to the vector 
autoregressions (WAR). 24 He shows that his bootstrap does not perform any 
better than the normal approximations in computing confidence intervals for 
variance decompositions. Lamoureux and Lastrapes (1990) propose the use of 
recursive bootstrap in the generalized autoregressive conditional heteroskedas- 
ticity (GARCH) models. They consider the following GARCH(1,  1) model. 

Yi  = o t y i - i  + ei , (4.10) 

2 
h i = "y -b Oei_ 1 q- A h i _  1 , (4.11) 

where e i ~ f ( 0 ,  h i )  with any distribution f. They first estimate the GARCH 
model (4.10) and (4.11) to retrieve ~ and/~. Second, Oh I/2 is resampled with 
replacement to create the bootstrap errors. The division by/~iJ2 is to adjust the 
heteroskedasticity in 0. Third, the bootstrap samples h* and y* are recursively 
computed with e 0 and Y0 specified to be 0 and h 0 to be the unconditional 
variance of e. These steps are repeated to compute the bootstrap estimates of 
the parameters. The purpose of their study was to get estimates of the bias and 

23 When the errors eg are normally distributed, the estimators have a variation of the Cauchy 
distribution. 

24 Instead of computing y~ using (4.7), Runkle takes first m (the number of lags in the VAR) 
observations as given initial conditions. This might account for the disappointing results. 
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standard error of the bootstrap estimates. There is no comparison with 
asymptotic standard errors. 

During recent years, there has been a lot of interest on testing for structural 
breaks in time-series models. The inference is complicated by the fact that the 
break point is unknown. Christiano (1992) derives small sample critical values 
using the bootstrap methods to test the hypothesis of no break in the trend in 
GNP. He argues that the standard critical values for testing the presence of a 
break are severely biased in favor of rejecting the no-break null hypothesis. He 
shows that in the case he studied, the conventional 5% critical value is 3.1, 
whereas the correct 5% critical value is closer to 5.0. If the break date is 
selected to maximize the F-statistic for a trend break, the 5% critical value is 
closer to 10.0. 

4.3. Limited dependent variables 

In many econometric applications, the dependent variable of the regression 
model is partially observed (binary, discrete, censored, truncated, etc.). For a 
discussion of the different types of models used in econometric work, see 
Maddala (1983). When the dependent variable is not fully observed, bootstrap 
methods can be a very useful tool because the small sample distributions are 
not known (even when the underlying distribution is known). However, the 
residual-resampling standard bootstrap introduced in Section 2 is not appropri- 
ate for limited dependent variable cases since the residuals have an incomplete 
distribution. 

The first paper in this area is by Efron (1981a) who proposes a general 
bootstrap procedure for censored data. His method is as follows: (1) resample 
n pairs of (x*, di) from the original sample {xl, x z , . . . ,  xn} with replacement, 
where d i = 1 if xi is not censored, and d~-= 0 if x~ is censored, (2) apply a 
suitable estimation procedure to (x*, d) to compute the parameter of interest, 
(3) repeat (1) and (2) m times to compute the bootstrap estimates. Efron 
(1981a) shows through simulation that the procedure performs reasonably well 
in finite samples. The estimation method that Efron uses is the non-parametric 
Kaplan-Meier estimation method. There were no covariates in his study. The 
data consisted of only observations on x~ (some of which were censored). 

Teebagy and Chatterjee (1989) apply Efron's general procedure to logistic 
regressions. Thus, the estimation is parametric, and interest lies in testing the 
significance of the several covariates. They consider the model 

/~ =/3X/+ u~, (4.12) 

where u i is IID and has a logistic distribution, I i takes 0 or 1. They first 
resample pairs of (Ii, Xi) with replacement from the original sample to create a 
bootstrap sample (I*,X*). Second, logit MLE is applied to (I*, X*). This 
procedure is repeated to compute the bootstrap estimator of/3. The Monte 
Carlo study they conduct shows that (1) the bootstrap consistently overesti- 
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mates the true value of the standard errors while the asymptotic estimate using 
Fisher information matrix consistently underestimates it in small samples, (2) 
the bootstrap standard errors are substantially closer to the true values than the 
asymptotic standard errors in small samples. 

Adkins (1990b) estimates bootstrap standard errors in a probit model, 
I i = ~ X  i + ui, given that u i has an IID normal distribution with mean zero. He 
considered bootstrap estimation because it was argued by Griffiths et al. 
(1987), that the small sample performance of probit MLE was unsatisfactory. 
His resampling plan is different from that of Teebagy-Chatterjee. The steps 
are: 

(1) estimate /) by probit MLE, 
(2) generate a vector of uniform random numbers u* - [0, 1], 
(3) generate 1" by 

[1  if 0~<u*~ <q~(xi/3), 

I* = ~0 if ~)(Xi~ ) < U~ ~ 1 ,  
(4.13) 

(4) compute a new /3 using 1", and 
(5) repeat (2 ) - (4 )m times to compute the bootstrap standard errors. 

Adkins (1990b) finds that his results contradict those of Griffiths et al., showing 
that the conventional MLE is satisfactory even in small samples. He also 
argues that his results are different from those of Teebagy-Chatterjee in that 
the bootstrap method is not superior to MLE. Of course, the procedures used 
to generate the bootstrap samples are different. 25 

Two points should be noted about the application of bootstrap methods to 
parametric binary response models, e.g., logit, probit, etc. First, the bootstrap 
methods are expected to be less effective in the parametric binary response 
models. The bootstrap methods for these models are based on a particular 
statistical distributions: logistic distribution for logit and normal distribution for 
probit. This voids the most important advantage of bootstrap, which is that it is 
distribution-free. Second, the benefit from bootstrap methods, in most cases of 
parametric binary response models, is only for small sample properties. In 
large samples, parametric bootstrap cannot be better than the ML estimation 
which gives asymptotically efficient estimators. Thus, bootstrap may not be 
useful unless the sample size is small, or some non-parametric approach is 
followed as in Efron (1981a). One interesting extension would be that of the 
Kaplan-Meier estimator with covariates. Another poiy~t worth mentioning is 
the one that is stated at the beginning, namely, the concentration of attention 
on standard errors (in both the Teebagy-Chatterjee study and the Adkins 
study). More attention needs to be developed to bootstrapping the t-statistics. 

25 Brownstone and Small (1989) investigate three estimators for the nested logit model: the 
sequential estimator, FIML, and LML (linearized ML). They compare the three estimators by a 
Monte Carlo study. They talk of the bootstrap method to get finite sample standard errors but do 
not describe how the bootstrap is to be implemented in the model. 
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Discriminant analysis is another technique often used in empirical work in 
economics and finance. The linear discriminant function is related to the linear 
probability model (see Maddala, 1983, Chapter 2) and the logistic discriminant 
function to the logit model. Often we not only need estimates of the 
misclassification probabilities but also the standard errors of these estimates. 
Chatterji and Chatterjee (1983) suggest the use of bootstrap methods in the 
analysis of the linear discriminant function. This method needs to be extended 
to the logit and probit models. 

Manski and Thomson (1986) study the use of bootstrap in the maximum 
score estimation of binary response models. For this estimator the asymptotic 
distribution in intractable. Using the same bootstrap procedure as Teebagy and 
Chatterjee (1989), they find that the bootstrap standard errors are very close to 
the true ones. It may be worth noting that the asymptotic distribution of 
Manski's maximum score estimator is now known (although it was not at the 
time of the Manski-Thompson work). Roughly speaking, the normalized, 
centered estimator is distributed asymptotically as the maximum of Brownian 
motion with quadratic drift. The distribution is non-normal and highly 
intractable. 26 However, knowing the asymptotic standard error of the estimator 
is not helpful since the distribution is not normal. See Kim and Pollard (1990). 

An illustration of the use of bootstrap in more complicated limited depen- 
dent variable models in the paper by Flood (1985). He applies the augmented 
bootstrap method to the simultaneous equation tobit model. He argues that 
whereas most of the other applications of bootstrap were concerned with 
getting small-sample standard errors (in contrast to asymptotic standard error 
that can be obtained from theory) his application of bootstrap to a model for 
which no asymptotic standard errors are available (which is, however, not 
true). He compares the bootstrap estimation and the two-stage estimation 
introduced by Nelson and Olson (1978). To clarify his method, let us consider 
the following simple tobit model rather than the system of tobit equations, he 
considers, 

Z i ~ - / 3 X  i ~- igi ,  

Yi = if  z~ ~< 0 ,  (4.14) 

where u i is IID normal with mean zero. Flood's augmented bootstrap procedure 
is the following. First, estimate the model by tobit MLE and compute fi+, where 
A +  
u; are the residuals for the observations for which Yi is positive. Second, an 
augmented residual vector fi is constructed where fi = [fi+ : -fi+]. If the 
total sample size is n and z~ > 0 for r observations, then this vector fi will be of 
order 2r. Third, fi is resampled with replacement to create a bootstrap sample u* 
of size n. Fourth, z* is constructed using u* and/~. Fifth, y*~ = max(z~, 0) and 
used to compute the first bootstrap estimator of/3. The procedure is repeated to 

26 This was pointed out to us by Joel Horowitz.  
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estimate the bootstrap standard error of j3. Flood (1985) finds, through 
simulation, that the augmented bootstrap gives standard errors that are close to 
the true values. 

As shown thus far, the applications of bootstrap to models with limited 
dependent variables have used a variety of different (sometimes ad hoc) 
sampling schemes. The relative merits of these methods need to be studied. 
The key question is how to resample the bootstrap errors to preserve the 
information on both the underlying relationship and the censoring (or any 
other limited observability). There is considerable literature on 'generalized 
residuals' in these models. Resampling of generalized residuals appears to be 
an important alternative (results will be reported in another paper). 

Quite a bit of work on limited dependent variable models is concerned with 
endogenously stratified samples and samples with self-selection (see Maddala, 
1983, Section 6.10 and Chapter 9). Rao and Wu (1988) discuss extensions of 
the simple bootstrap to the case of complex survey data (stratified samples, 
cluster samples and so on). However, the stratification they consider is 
exogenous stratification whereas the econometric literature is concerned with 
endogenous stratification. Bootstrap methods need further modifications for 
these models. 

Models with discrete data are widely used in econometric work. See 
Cameron and Trivedi (1986) for a survey. Rao (1973, Chapter 5) discusses in 
detail estimation of multinomial models. Many of the large sample procedures 
suggested can be studied further using the bootstrap. 

4.4.  S i m u l t a n e o u s  equa t ions  m o d e l s  

When the econometric model has more than one endogenous variable, 
unbiased estimators of the coefficients are not available. This is a situation 
where bootstrap can be applied to improve the finite sample properties of 
estimators. Freedman (1984) discusses bootstrapping the two-stage least 
squares estimation (2SLS) in simultaneous equation models. Let us consider 
the following simple system of equations. 

y,  = ~ z  i + ~ X  i + ui , (4.15) 

zi = YYi + 6Xi  + vi , (4.16) 

where y and z are endogenous and X is exogenous. The error terms u i and v i 

are assumed to be IID with zero means. Freedman (1984) suggests to resample 
the estimated residuals with the instrumental variables to preserve any possible 
relationship between them. Specifically, for the first equation (4.15), estimate 
the model by 2SLS and compute the estimated residual ~/and the instrument 2. 
Second, resample (z*, 2", a*). By resampling the data this way, any relation- 
ship between instruments and disturbances is preserved. Third, using z* and 
~/*, construct y* according to (4.15). Fourth, compute the bootstrap & and D 
using y*, z* and 2*. Repeat this to complete bootstrap estimation. Similar 
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procedure is applied for the second equation. Freedman (1984) shows that this 
procedure is asymptotically correct• 

Freedman and Peters (1984b) apply a similar bootstrap procedure to the 
three-stage least square estimation (3SLS). Since the 3SLS estimate the whole 
system, the error terms (fi*, O*) are resampled simultaneously• The remaining 
procedure is identical. In this example, the bootstrap is not superior to the 
asymptotic formula in a small sample (n =24). Park (1985) applies the 
bootstrap method to 2SLS estimation of Klein's model. He also finds that the 
bootstrap leads to little improvements in a small sample (n = 21). 

Daggett and Freedman (1985) apply the bootstra p method to compute 
standard errors of two-stage least squares estimators in a simultaneous 
equations model of the tomato industry• They find that the conventional 
asymptotic standard errors are off by as much as 40 percent, in either direction• 
Thus, it is not true, in general, that the conventional asymptotic standard 
errors are always downward biased. 27 The computations in this example were 
done in response to a litigation that depended on the significance of the 
coefficient of the post harvest supply price. The conventional standard errors 
for the coefficient were biased downward by 39 percent, thus, reversing earlier 
conclusions• 

4.5• Forecasting problems 

One of the most important objectives of econometric models is to use them for 
forecasting. The usual procedure is to get a point forecast and its standard 
error• Consider first, the linear regression model• The standard textbook 
formulas are obtained using the normal distribution (or t-distribution) under 
the assumption that the forecast period explanatory variables are known• Stine 
(1985) suggests the bootstrap method as an alternative distribution-flee 
method. Stine considers the model 

Yi =/3X/+ ui ,  (4.20) 

where ui is' IID with mean zero. The prediction is for Yn + 1 with a known X, +l- 
The classical ( 1 - 2 a )  prediction interval with normality assumption is 
[/3Xn+ 1 - t(a)sf, [3Xn+ 1 + t(a)sf], where sf is the standard error of the forecast. 
The bootstrap procedure is as follows. First, regress (4.20) and compute ft. 

• U *  Resample fi to construct a bootstrap sample {u], u~ , . .  , u*, n+l}' Use u~*+l 
to compute the bootstrap forecast * by * =/3Xn+ 1+ * Use Y n + l  Y n + l  Un+l" 
{ U l  , * * * * * u 2 , . . . ,  u, } and {Yl, Y2, • • •, Yn } to compute the bootstrap estimator 
/3*. Construct the bootstrap forecast error FE =Y*+I-  fi*X,+l. Repeat this 
procedure enough times to construct the bootstrap empirical distribution 
F*(FE) of the forecast errors. If we let F*-l(a) denote the 100a percentile of 
this distribution, then the ( 1 -  2a) coverage bootstrap prediction interval for 

27 See McManus and Rosalsky (1985). 



596 J. Jeong and G. S. Maddala 

Y.+I is: [~Xn+ 1 + F*-1(a) ,  fiX,+ 1 + F*-I(1 - a)]. Stine (1985) shows through 
Monte Carlo experiments, that the coverage of bootstrap prediction intervals is 
very accurate in small samples (n = 19, 40). He also shows that the bootstrap 
intervals obtain the asymptotically correct coverage. Stine (1987) extends this 
method to forecasting from auto-regressive models. Masarotto (1990) also 
bootstraps the prediction intervals for autoregressive time series. He shows 
that the bootstrap prediction interval for autoregressions is asymptotically 
correct and performs very well in finite samples. Son et al. (1987) also present 
results from the use of bootstrap forecasting in a second-order autoregression 
model. They consider multi-period forecasts. The bootstrap standard errors in 
their study are lower than the conventional asymptotic standard errors, 
particularly for longer horizon forecasts. Peters and Freedman (1985) also use 
the bootstrap to attach standard errors to multi-period forecasts and to select 
between alternative model specifications in the context of a dynamic energy 
demand model fitted by generalized least squares. Using simulation experi- 
ments they show that the bootstrap SEs are more reliable than the asymptotic 
ones. Findley (1986), however, questions this conclusion. He argues that the 
estimates of mean square forecast error which result from the bootstrap 
procedure proposed by Freedman and Peters are not significantly more reliable 
than the large sample estimates which are ill-behaved in small samples. The 
same arguments apply to VAR models. This does not exclude the possibility 
that other methods of bootstrapping statistics could prove useful. 

Of greater practical importance is the case where the forecast period 
explanatory variables are not known and they too need to be forecast. In this 
case the asymptotic standard errors, even with the normality assumption are 
very difficult to compute. Feldstein (1971) studied this problem with some 
restrictive assumptions. Here the bootstrap method would be very useful. This 
has been demonstrated by Bernard and Veall (1987) who apply the bootstrap 
method to estimate the probability distribution of future electricity demand for 
Hydro-Quebec. They follow the regression approach of Freedman and Peters 
(1984b) but allow for serially correlated disturbances and most importantly, the 
uncertainty in the explanatory variable. The standard econometric approach to 
this problem has been the use of stochastic simulation, which is somewhat 
similar in scope to the bootstrap method. For a discussion of the stochastic 
simulation approach, see Fair (1980). 

4.6. Data mining 

A common procedure often followed in econometric work is to try a model 
with several possible explanatory variables, delete the ones that are not 
significant (or have the 'wrong' signs) and present the final equation with the 
estimated coefficients and standard errors calculated as if that was the first 
equation estimated. Lovell (1983) criticized this 'data mining' and argued that 
even if y and x, x 2 , . . . ,  x k are all uncorrelated, by 'data mining' one can get a 
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regression of y on some xj with a significant coefficient provided k is large. It is 
well known that the distribution of the final estimates provided by this 'data 
mining' process is not known. Can bootstrap methods help in this case? If the 
data mining or regression strategy followed by the researcher is specified, then 
the bootstrap method can be used by treating the entire regression strategy as a 
single estimator. To simplify matters suppose we have the equation 

y =/31Xl +/32x2 + E 

and we use the following regression strategy: we estimate this equation and if 
the t-value for /32 < 1, we drop x 2 and reestimate the equation to get an 
estimate of/31. Otherwise, we get an estimate of/31 from the equation with 
both x 1 and x 2. What is the distribution of this conditional omitted variable 
estimator of/31 ? 

The way the bootstrap is used is as follows: we estimate the equation by OLS 
and resample the residuals t~ i to generate the bootstrap samples. For each of 
the bootstrap samples (say 200 of them), we follow the same regression 
strategy (of omitting x 2 if its t-ratio is <1). This gives us the bootstrap 
distribution of /3~. We also get the proportion of samples in which x 2 was 
dropped. 

Freedman, Navidi and Peters (1988) and Dijkstra and Veldkamp (1988) 
argue that the bootstrap does not work. The problem in the study by Freedman 
et al. is that the sample size n was 100, and the number of explanatory 
variables p was 75. This is an extreme case of data mining. In practice p/n is 
often not more than 0.25. Veall (1992) applies the bootstrap to the example of 
the deterrent effect of capital punishment to study the impact of data mining 
on the final results. (In his example, n = 44 and the constant and 5 variables 
are retained. Data mining is done over 7 other variables of which only two are 
finally retained). This example is further investigated by McAleer and Veall 
(1989) who use the bootstrap method to get estimates of the standard errors of 
the 'extreme bounds' advocated by Leamer and Leonard (1983). They argue 
that the standard errors are large enough to cast doubts on the usefulness of 
extreme bounds analysis. 

Again, there appears, at first sight, a difference of opinion regarding the 
usefulness of bootstrap methods. However, in this case the negative conclusion 
is a consequence of a high p/n. Many pretesting problems and omitted variable 
problems (see Maddala, 1977, pp. 190-191) fall in the category of data mining, 
and hence, the bootstrap method can be used to analyze these problems, as 
well. 

4.7. Panel data and frontier production models 

Two areas of considerable interest to econometricians are panel data models 
(see Maddala, 1977, Chapter 14) and frontier production models (based on 
panel data) (see Schmidt and Sickles, 1984). In panel data models a commonly 
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used model is the variance components model given by 

Yit = ~ X i t  ~- n i t  , 

Uit = Ol i "~ Dit , 

IID(0, 
vit ~ IID(0, o'2), 

Cov(a~, v,) = 0. 

We then have 

o- +o-~ f o r i = j ,  t = s ,  

Cov(uit, uj~) -- ~ for i = j, t ~ s , 

for i C j . 

The standard bootstrap cannot be applied here because simple resampling of 
flit ignores the covariance structure of u,. The correct resampling procedure 
would be to resample &i and 6,. This can be done only under a distributional 
assumption on the error components. This was what was done by Bellman et 
al. (1989). Complex covariance structures like this need modifications in the 
bootstrap. A multivariate example in which the obvious bootstrap fails is given 
in Beran and Srivastava (1985). 

Simar (1991) presents an application of bootstrap to random effects frontier 
models with panel data. Hall, Hfirdle and Simar (1991a,b) use the iterated 
bootstrap in the estimation of frontier production models with fixed effects. In 
the problem considered by Hall et al. (1991b), the parameter of interest is the 
maximum of the intercepts in a fixed effects model. Statistics such as the 
maximum that lack a normal sampling distribution require more complicated 
bootstrap methods than the usual weighted average estimators commonly used 
in econometric work. Hall et al. suggest the use of the iterated bootstrap 
method for such cases. The iterated bootstrap is discussed in Sections 1.4 and 
3.11 of Hall (1992). They illustrate the method with an analysis of the 
efficiency of railway companies in 19 countries over a period of 14 years (266 
observations). The details of the iterated bootstrap procedures are complex 
and to conserve space, they will not be reproduced here. 

4.8. A p p l i c a t i o n s  in f inance  

There are some applications of bootstrap methods in the finance area. All of 
them, however, use (sometimes incorrectly) the simplest bootstrap applicable 
to IID errors discussed in Section 2. We shall quote here only a few of these 
applications. 

Marais (1984) is the earliest application. It is addressed to the problem of 
analyzing the prediction errors from the market model. Shea (1989a) uses 
bootstrap to study excess volatility in the stock market, and Shea (1989b) uses 
the bootstrap method to study the empirical reliability of the present-value 
relation. Hsieh and Miller (1990) use the bootstrap in a study of the 
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relationship between margins and volatility. Chatterjee and Pari (1990) use 
bootstrap to study the question of how many factors need to be included in 
applications of the APT (arbitrage pricing theory). Levich and Thomas (1991) 
use the bootstrap to study the statistical significance of the profits generated by 
different trading rules in the foreign exchange market. The last study is an 
unusual application of the bootstrap since there are no statistical models. The 
data are resampled holding the initial and final observation fixed, and the 
profits from the different trading rules are generated. One possible problem 
with this is that the time-series structure is not preserved in the re-sampling, 
and the trading rules exploit this time-series structure. However, the results 
can be used to compare different trading rules if they all use the same 
bootstrap samples. 

4.9. Specification tests 

One of the areas of active research in econometrics is that of specification 
testing. Two of the most commonly used tests are the Hausman test and 
White's information matrix test (White, 1982). The latter test, which is an 
omnibus test, has been found to present some small-sample problems. In 
particular, the true size of the test often exceeds greatly the nominal size 
derived from asymptotic theory (the true size can exceed 0.50 when the 
nominal size is 0.05). Chesher and Spady (1991) propose dealing with this 
problem by obtaining the critical value for the IM test from the Edgeworth 
expansion through O(n -1) of the finite sample distribution of the test statistic. 
However, this approach involves tedious algebra, and moreover, the approach 
may not be valid if consistent estimates are substituted for the unknown 
parameters in any but the highest order term. In the examples that Chesher 
and Spady consider, the IM test statistic is pivotal-  that is under the null 
hypothesis, the finite sample distribution of the test statistic is independent of 
the parameters of the model being tested. 

Horowitz (1991a) suggests a bootstrap method to obtain small-sample critical 
values for the IM test. This does not involve tedious algebra, nor the 
limitations of the Edgeworth expansions. He suggests a modification of the 
simple bootstrap that is applicable even if the IM test statistic is not pivotal 
since in practice, it is very difficult to determine whether the IM test statistic is 
pivotal. Horowitz also presents results from a Monte Carlo study for binary 
probit models and tobit models and shows that the bootstrap corrects the size 
bias of the IM test. Bootstrap methods have also been suggested for making 
Bartlett type corrections to the likelihood-ratio, Wald and Rao-'s score tests, as 
discussed in Rocke (1989) and Rayner (1990a). They have also been used for 
two-step GLS estimation methods, as discussed in Rayner (1990b). Horowitz 
and Savin (1992) use the bootstrap method to obtain finite-sample critical 
values for the Wald test and show that the Wald test can be superior to the LR 
test despite the lack of invariance. 
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4.10. Bayesian bootstraps 

Since Bayesian methods are commonly used in econometrics, we shall discuss 
briefly the application of bootstrap methods in Bayesian inference. Resampling 
methods have been in use among Bayesians for a long time, since the paper by 
Geisser (1975). Computer intensive methods have also been popular since the 
paper by Kloek and Van Dijk (1978). The Gibbs sampling method advocated 
in Gelfand and Smith (1990) is similar in spirit to the bootstrap. Also, the term 
'Bayesian bootstrap' occurs in Rubin (1981). But the direct application of the 
bootstrap in Bayesian inference is in Boos and Monohan (1986). 

The usual approach to Bayesian inference is based on a specification of the 
likelihood function. The Bayesian posterior with given prior ~-(0) is given by 

~-(0 [ data) oc 7r(0 )L(data [ 0 ) ,  

where L(datal 0) is the likelihood function. Boos and Monohan suggest 
replacing this by an estimated posterior 

Or(0 I data) ~ or(0) • LB(data [ 0 ) 

where LB(data [ 0 ) is based on bootstrap equation of the density of (0 - 0). A 
robust estimator 0 protects against heavy-tailed error distributions and the 
bootstrap makes this approach feasible in small samples. 

An alternative approach to approximate Bayesian inference is suggested by 
Newton (1991) and Newton and Raftery (1991). They introduce the weighted 
likelihood bootstrap (WLB) method which they claim suggests natural boot- 
strap solutions to problem of inference in state-space models that may be 
non-Gaussian and non-linear and long memory time-series models. 

4.11. Other econometric applications 

There are several other areas where bootstrap methods have been used. Here 
we shall cite a few. Williams (1986) applies bootstrap to a seemingly unrelated 
regression model. His main result is that the parametrically estimated standard 
errors are biased downwards by a factor of two. This is important and changes 
the inference in an anti-trust case (as in the example considered earlier by 
Daggett and Freedman, 1985). 

Rocke (1989) also studies bootstrap methods is seemingly unrelated regres- 
sion models. 2s He suggests computing the Bartlett adjustment to the LR test 
statistic using bootstrap methods. He provides illustrations of his method, 
which performed very well, with detectable problems only in the presence of 
lagged dependent variables. 

Though James-Stein type estimators have been demonstrated to be superior 
to least squares estimators under squared error loss, they have not been used 

28 A brief survey of seemingly unrelated regression models is in Srivastava and Dwivedi (1979). 
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much in empirical work since it is difficult to derive their sampling dis- 
tributions. Brownstone (1990)and  Adkins (1990a) show that bootstrap 
methods can be used to derive the sampling distributions of these estimators. 
For this line of research, see Adkins (1990c) and the references therein. 

Srivastava and Singh (1989) use the bootstrap method to obtain confidence 
interval for the constant term in a multiplicative Cobb-Douglas m o d e l -  a 
model often used in econometric work on production functions. In this model, 
the problem of estimating the constant term and finding a confidence interval 
for it had always presented some problems. 

Dielman and Pfaffenberger (1986) consider bootstrapping the least absolute 
deviation (LAD) regression model (also known as L 1 model). This model can 
be estimated by an iterative weighted least squares method (see Maddala, 
1977, pp. 310-311), but small sample standard errors are not available. The 
bootstrap method is useful in this case. Dielman and Pfaffenberger compare 
the bootstrap standard errors with the asymptotic standard errors and also 
compare hypothesis testing results using the bootstrap and the asymptotic 
results. 

Another promising application of bootstrap methods is the bootstrap 
estimation of non-parametric regressions. Bootstrap estimation has been found 
useful in regression smoothing and kernel estimation. See Hfirdle and Bowman 
(1988), Moschini et al. (1988), H/irdle and Mammen (1990a) and Hfirdle and 
Marron (1991). Hfirdle and Mammen (1990b) use bootstrap method for 
comparing parametric and non-parametric fits. A statistic often used is the 
integrated squared difference between these curves. They show that the 
standard way of bootstrapping this statistic fails. They suggest an alternative 
called the 'wild bootstrap'. 

Stoffer and Wall (1991) apply bootstrap methods to investigate the prop- 
erties of parameter estimates from state-space models estimated by the 
Kalman's filter. They find, on the basis of Monte Carlo simulation, the 
bootstrap to be of definitive value over conventional asymptotics. In particular 
the asymptotic distribution is normal whereas the bootstrap empirical dis- 
tribution was often markedly skewed. 

5. Conclusions 

We have presented a review of the several applications of bootstrap in 
econometrics. It is clear that almost every type of model used in econometric 
work has been bootstrapped: regression models with heteroskedastic and 
autocorrelated errors, seemingly unrelated regression models, models with 
lagged dependent variables, state-space models and the Kalman filter, panel 
data models, simultaneous equation models, logit, probit, tobit, and other 
limited dependent variable models, GARCH models, robust estimators (LAD 
estimators), data mining, pretesting, James-Stein estimation, semi-parametric 
estimators, and so on. Estimation of standard errors of parameters, confidence 
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intervals for parameters, as well as generating forecast intervals (for mul- 
tiperiod forecasts), have been considered. 

Most of the studies concentrate on comparison of asymptotic standard errors 
with bootstrap standard errors. This is not sufficient because the asymptotic 
distribution is normal, but the bootstrap distribution is often skewed. It is not 
true that one can use the t-values (with the bootstrap standard errors) for 
constructing confidence intervals or test statistics. The best procedure, as 
argued by Beran (1988) and Hall (1986a) and several others in the statistical 
literature, is to bootstrap an asymptotically pivotal statistic (e.g., a t-statistic) 
based on a v ~  consistent estimator of the variance. This yields more accurate 
critical values for tests which can also be used to construct confidence intervals. 
Thus, the procedure of computing bootstrap standard errors should be skipped 
completely. There are a few illustrations of this in the econometric literature 
(see for instance Horowitz, 1991a,b), but by far, the econometric literature 
concentrates on standard errors. 

In some models, the asymptotic theory of the estimator is intractable 
(Manski's maximum score estimator). In such cases bootstrap provides a 
tractable method of deriving confidence intervals and so on. There is the 
question of how valid this procedure is. It is difficult to answer this question, 
but one can check the validity of the bootstrap procedure by Monte Carlo 
results. For instance, Horowitz (1991b) bootstrapped a smoothed maximum 
score estimator, which is not v ~  consistent. But Monte Carlo evidence 
suggests that critical values based on the bootstrap-t are much more accurate 
than those obtained from first order asymptotic theory. There are also some 
cases, as in Athreya (1987), for the heavy tailed distribution and Basawa et al. 
(1991a) for the unit root first order autoregressive process, where the asymp- 
totic distribution and the limit of the bootstrap distribution are not the same. 
In such cases the naive bootstrap needs to be modified (Basawa et al., 1991b). 

The computational advances (described in Section 3), like the use of 
balanced sampling, importance sampling, antithetic variates, and so on, do not 
seem to have been implemented in econometric work. These methods, if 
properly used, would substantially increase the efficiency of bootstrap compu- 
tations, and it would be possible to use more bootstrap samples with no extra 
computational burden. Also, it would facilitate investigation of the several 
bootstrap procedures that have been suggested with Monte Carlo experiments. 

There appears to be a conflict in the conclusions regarding the usefulness of 
bootstrap in several of the areas we have reviewed (as noted in the case of 
models with autocorrelated errors, lagged dependent variables, logit and probit 
models, data mining, and so on). As we noted, different investigators have 
used different bootstrap methods. Also, some have used the bootstrap to 
compute standard errors. Others have bootstrapped the t-statistics. The latter 
is the more desirable procedure. 

The theoretical advances in bootstrap have mostly concentrated on models 
with IID errors. More theoretical work needs to be done for the models 
considered here. The case of dynamic econometric models needs further 
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investigation because it has been demonstrated that the simple bootstrap fails 
in these models. 

On important  point to remember  is that bootstrapping defective models is of 
no value. Bootstrap does not rescue bad models. A lot of recent econometric 
work is concerned with diagnostic checking and specification testing. Diagnos- 
tic checks should be applied to a model before it is bootstrapped. Bernard and 
Veall (1987), for instance, apply several diagnostic tests before computing 
bootstrap prediction intervals. 

As the quote at the beginning of this paper states, the cost of computing 
relative to proving theorems has fallen, and economics suggests that we use 
more computing than theorizing. This does not mean that all theory should be 
dumped and all that students in econometrics need to learn is bootstrap. In 
fact, it is easy to jump on the computer  and mechanically apply a bootstrap 
procedure when theory suggests that some other type of bootstrap ought to be 
used or that the bootstrap method does not work. Before one applies the 
bootstrap procedure,  one should ask the following basic questions: 

(i) When can I apply the bootstrap? What do I need to know about an 
estimator? 

(ii) What is the appropriate bootstrap procedure for my problem? 
(iii) Why does the bootstrap work in practice? 

Acknowledgement 

We would like to thank Martin Bailey, Matt  Cushing, Stephen Donald,  Joel 
Horowitz,  In-Moo Kim and C. R. Rao for helpful comments. Responsibility 
for any errors is solely ours. 

References 

Adkins, L. C. (1990a). Small sample performance of jackknife confidence intervals for the 
James-Stein estimator. J. Statist. Comput. Simulation 19, 401-418. 

Adkins, L. (1990b). Small sample inference in the probit model. Oklahoma State University 
Working paper. 

Adkins, L. C. (1990c). Finite sample moments of a bootstrap estimator of the James-Stein rule. 
Oklahoma State University Working paper. 

Akahira, M. (1983). Asymptotic deficiency of the jackknife estimator. Austral. J. Statist. 25, 
123-129. 

Athreya, K. (1983). Strong law for the bootstrap. Statist. Probab. Lett. 1, 147-150. 
Athreya, K. (1987). Bootstrap of the mean in the infinite variance case. Ann. Statist. 15, 724-731. 
Atkinson, S. E. and J. Tschirhart (1986). Flexible modelling of time to failure in risky careers. 

Rev. Econom. Statist. 68, 558-566. 
Babu, G. J. (1989). Applications of edgeworth expansions to bootstrap. A review. In: Y. Dodge, 

ed., Statistical Data Analysis' and Inference. Elsevier Science, North-Holland, New York, 
223-237. 



604 J. Jeong and G. S. Maddala 

Basawa, I. V., A. K. Mallik, W. E McCormick and R. L. Taylor (1989). Bootstrapping explosive 
autoregressive processes. Ann. Statist. 17, 1479-1486. 

Basawa, I. V., A. K. Mallik, W. E McCormick and R. L. Taylor (1990). Asymptotic bootstrap 
validity for finite Markov chains. Comm. Statist. Theory Methods 19, 1493-1510. 

Basawa, I. V., A. K. Malik, W. P. McCormick and R. L. Taylor (1991a). Bootstrapping unstable 
first order autoregressive processes. Ann. Statist. 19, 1098-1101. 

Basawa, I. V., A. K. Mallik, W. P. McCormick and R. L. Taylor (1991b). Bootstrap test of 
significance and sequential bootstrap estimation for unstable first order autoregressive processes. 
Comm. Statist. Theory Methods 20, 1015-1026. 

Bellmann, L., J. Breitung and J. Wagner (1989). Bias correction and bootstrapping of error 
component models for panel data: Theory and applications. Empirical Econom. 14, 329-342. 

Beran, R. (1987). Prepivoting to reduce level error of confidence sets. Biometrika 74, 457-468. 
Beran, R. (1988). Prepivoting test statistics: A bootstrap view of asymptotic refinements. J. Amer. 

Statist. Assoc. 83, 687-697. 
Beran, R. (1990). Refining bootstrap simultaneous confidence sets. J. Amer. Statist. Assoc. 85, 

417-426. 
Beran, R. and M. Srivastava (1985). Bootstrap tests and confidence regions for functions of a 

covariance matrix. Ann. Statist. 13, 95-115. 
Beran, R. J., L. Le Cam and P. W. Millar (1987). Convergence of stochastic empirical measures. J. 

Multivariate Anal. 23, 159-168. 
Bernard, J.-T. and M. R. Veall (1987). The probability distribution of future demand. J. Business 

Econom. Statist. 5, 417-424. 
Bickel, P. J. and D. A. Freedman (1981). Some asymptotic theory for the bootstrap. Ann. Statist. 

9, 1196-1217. 
Boos, D. D. and J. F. Monahan (1986). Bootstrap methods using prior information. Biometrika 

73, 77-83. 
Bose, A. (1988). Edgeworth correction by bootstrap in autoregressions. Ann. Statist. 16, 1709- 

1722. 
Brown, R. L., J. Durbin and J. M. Evans (1975). Techniques for testing the constancy of 

regression relationships over time. J. Roy. Statist. Soc. Ser. B 37, 149-192. 
Brownstone, D. (1990). Bootstrapping improved estimators for linear regression models. J. 

Econometrics 44, 171-187. 
Brownstone, D. and K. A. Small (1989). Efficient estimation of nested logit model. J. Business 

Econom. Statist. 7, 67-74. 
Butler, J. S., K. H. Anderson and R. V. Burkhauser (1986). Testing the relationship between work 

and health: A bivariate hazard model. Econom. Lett. 20, 383-386. 
Cameron, A. C. and P. K. Trivedi (1986). Econometric models based on count data: Comparisons 

and applications of some estimators and tests. I. Appl. Econometrics 1, 29-53. 
Chatterjee, S. (1986). Bootstrapping ARMA models: Some simulations. 1EEE Trans. Software 

Man Cybernet. 16, 294-299. 
Chatterjee, S. and R. A. Pari (1990). Bootstrapping the numbers of factors in the arbitrage pricing 

theory. J. Financ. Res. 13, 15-21. 
Chatterji, S. and S. Chatterjee (1983). Estimation of misclassification probabilities by bootstrap 

methods. Comm. Statist. Simulation Comput. 12, 645-656. 
Chesher, A. and R. Spady (1991). Asymptotic expansion of the information matrix test statistic. 

Econometrica 59, 787-815. 
Christiano, L. J. (1992). Searching for a break in GNP. J. Business Econom. Statist. 10, 237-250. 
Cragg, J. G. (1983). More efficient estimation in the presence of heteroskedasticity of unknown 

form. Econometrica 51, 751-763. 
Cragg, J. (1987). Adaptation of the jackknife to time-series models. The University of British 

Columbia Discussion Paper No. 87-24. 
Daggett, R. S. and D. A. Freedman (1985). Econometrics and the law: A case study in the proof 

of antitrust damages. In: L. M. Le Cam and R. A. Olshen, eds., Proc. Berkeley Conf. in Honor 
of  Jerzy Neyman and Jack Kiefer, Vol. 1. Wadsworth, Belmont, CA. 



Application o f  bootstrap methods 605 

Daniels, H. E. (1954). Saddlepoint approximations in statistics. Ann.  Math. Statist. 25, 631-650. 
Datt, G. (1988). Estimating Engel elasticities with bootstrap standard errors. Oxford Bull. 

Econom. Statist. 50, 325-333. 
Davidson, R. and J. G. Mackinnon (1990). Regression-based methods for using control and 

antithetic variates in monte carlo experiments. Queen's University Discussion Paper No. 781. 
Davison, A. C. (1988). Discussion of paper by D. V. Hinkley. J. Roy. Statist. Soc. Ser. B 50, 

356-357. 
Davison, A. C. and D. V. Hinkley (1988). Saddlepoint approximations in resampling methods. 

Biometrika 75(3), 417-431. 
Davison, A. C., D. V. Hinkley and E. Schechtman (1986). Efficient bootstrap simulation. 

Biometrika 73(3), 555-566. 
De Wet, T. and J. W. J. Van Wyk (1986). Bootstrap confidence intervals for regression coefficients 

when the residuals are dependent. J. Statist. Comput. Simulation 23, 317-327. 
Diciccio, T. J. and J. P. Romano (1988). A review of bootstrap confidence intervals. J. Roy. 

Statist. Soc. Set. B 50, 338-354. 
Diciccio, T. and R. Tibshirani (1987). Bootstrap confidence intervals and bootstrap approxi- 

mations. J. Amer.  Statist. Assoc. 82, 163-170. 
Dielman, T. E. and R. C. Pfaffenberger (1986). Bootstrapping in least absolute value regression: 

An application to hypothesis testing. In: A S A  Proc. Business Econom. Statist. 628-630. 
Dijkstra, T. K. and J. H. Veldkamp (1988). Data-driven selection of regressors and the bootstrap. 

In: T. K. Dijkstra, ed., On Model Uncertainty and its Statistical Implications. Springer, Berlin, 
17-38. 

Do, K. and P. Hall (1991). On importance re-sampling for the bootstrap. Biometrika 78, 161-167. 
Eakin, K., D. P. McMillen and M. J. Buono (1990). Constructing confidence intervals using 

bootstrap: An application to a multiproduct cost function. Rev. Econom. Statist. 72, 339-344. 
Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Ann.  Statist. 7, 1-26. 
Efron, B. (1981a). Censored data and the bootstrap. J. Amer.  Statist. Assoc. 76, 312-319. 
Efron, B. (1982). The jackknife, the bootstrap and other resampling plans. CBMS-NSF Regional 

Conference Series in Applied Mathematics, Monograph 38. Society for Industrial and Applied 
Mathematics, Philadelphia, PA. 

Efron, B. (1987). Better bootstrap confidence intervals. J. Amer.  Star. Assoc. 82, 171-200. 
Efron, B. (1990). More efficient bootstrap computations. J. Amer.  Statist. Assoc. 85, 79-89. 
Efron, B. and R. Tibshirani (1986). Bootstrap methods for standard errors, confidence intervals, 

and other measures of statistical accuracy. Statist. Sci. 1, 54-77. 
Fair, R. C. (1980). Estimating the expected predictive accuracy of econometric models. Internat. 

Econom. Rev. 21, 355-378. 
Feldstein, M. S. (1971). The error of forecast in econometric models when the forecast-period 

exogenous variables are stochastic. Econometrica 39, 55-60. 
Ferretti, N. and J. Romo (1992). Bootstrapping unit root AR(1) models. Working Paper #92-22. 

Division of Economics. Universidad Carlos III de Madrid. 
Fieller, E. C. and H. O. Hartley (1954). Sampling with control variables. Biometrika 41,494-501. 
Findley, D. F. (1986). On bootstrap estimate of forecast mean square errors for autoregressive 

processes. In: M. Allen, ed., Proc. 17th Sympos. on the Interface. North-Holland, Amsterdam, 
11-17. 

Flood, L. (1985). Using bootstrap to obtain standard errors of system tobit coefficients. Econom. 
Lett. 19, 339-342. 

Freedman, D. A. (1981). Bootstrapping regression models. Ann.  Statist. 9, 1218-1228. 
Freedman, D. (1984). On bootstrapping two-stage least-squares estimates in stationary linear 

models. Ann.  Statist. 12, 827-842. 
Freedman, D. A., W. Navidi and S. C. Peters (1988). On the impact of variable selection in fitting 

regression equations. In: T. K. Dijkstra, ed., On Model Uncertainty and its Statistical 
Implications. Springer, Berlin, 1-16. 

Freedman, D. A. and S. C. Peters (1984a). Bootstrapping a regression equation: Some empirical 
results. J. Amer.  Statist. Assoc. 79(385), 97-106. 



606 J. Jeong and G. S. Maddala 

Freedman, D. A. and S. C. Peters (1984b). Bootstrapping an econometric model: Some empirical 
results. J. Business Econom. Statist. 2(2), 150-158. 

Geisser, S. (1975). The predictive sample re-use method with applications. J. Amer. Statist. Assoc. 
70, 320-328. 

Gelfand, A. E. and A. F. M. Smith (1990). Sampling based approaches to calculating marginal 
densities. J. Amer. Statist. Assoc. 85, 398-409. 

George, P. J., E. H. Oksanen and M. R. Veall (1988). Analytic and bootstrap approaches to 
testing a market saturation hypothesis. Manuscript, McMaster University. 

Gleason, J. R. (1988). Algorithms for balanced bootstrap simulations. Amer. Statist. 42, 263-266. 
Graham, R. L., D. V. Hinkley, P. W. John and S. Shi (1990). Balanced design of bootstrap 

simulations. J. Roy. Statist. Soc. Ser. B 52, 185-202. 
Green, R., W. Hahn and D. Rocke (1987). Standard errors for elasticities: A comparison of 

bootstrap and asymptotic standard errors. J. Business Econom. Statist. 5, 145-149. 
Griffiths, W. E., R. C. Hill and E J. Pope (1987). Small sample properties of probit model 

estimators. J. Amer. Statist. Assoc. 399, 929-937. 
Hall, P. (1986a). On the bootstrap and confidence intervals. Ann. Statist. 14, 1431-1452. 
Hall, P. (1986b). On the number of bootstrap simulations required to construct a confidence 

intervals. Ann. Statist. 14, 1453-1462. 
Hall, P. (1988a). Theoretical comparison of bootstrap confidence intervals. Ann. Statist. 16, 

927-953. 
Hall, P. (1988b). Unusual properties of bootstrap confidence intervals in regression problems. 

Probab. Theory Related Fields 81, 247-273. 
Hall, P. (1989). Antithetic resampling for the bootstrap. Biometrika 76, 713-724. 
Hall, P. (1992). The Bootstrap and Edgeworth Expansions. Springer, New York. 
Hall, P., W. H~irdle and L. Simar (1991a). On the inconsistency of bootstrap distribution 

estimators. CORE Discussion Paper No. 9120. 
Hall, P., W. H~irdle and L. Simar (1991b). Iterated bootstrap with applications to frontier models. 

CORE Discussion Paper No. 9121. 
Hammersley, J. M. and K. W. Mauldin (1956). A new Monte Carlo technique: Antithetic variates. 

Proc. Cambridge Philos. Soc. 52, 449-475. 
Hammersley, J. M. and J. G. Morton (1956). General principles of antithetic variates. Proc. 

Cambridge Philos. Soc. 52, 476-481. 
H~irdle, W. and A. Bowman (1988). Bootstrapping in nonparametric regression: Local adaptive 

smoothing and confidence bands. J. Amer. Statist. Assoc. 83, 102-110. 
H~irdle, W. and E. Mammen (1990a). Bootstrap methods in nonparametric regression. CORE 

Discussion Paper No. 9049. 
H~irdle, W. and E. Mammen (1990b). Comparing non-parametric vs. parametric regression fits. 

CORE Discussion Paper No. 9065. 
H~irdle, W. and J. S. Marron (1991). Bootstrap simultaneous error bars for nonparametric 

regression. Ann. Statist. 19, 778-796. 
Hinkley, D. V. and S. Shi (1989). Importance sampling and the nested bootstrap. Biometrika 76, 

435-446. 
Horn, S. D., R. A. Horn and D. B. Duncan (1975). Estimating heteroskedastic variances in linear 

models. J. Amer. Statist. Assoc. 70, 380-385. 
Horowitz, J. L. (1991a). Boot-strap based critical values for the information matrix test. Working 

paper #91-21, University of Iowa. 
Horowitz, J. L. (1991b). Semiparametric estimation of a work-trip mode choice model. J. 

Econometrics, to appear. 
Horowitz, J. L. and N. E. Savin (1992). Non-invariance of the Wald test: The boostrap to the 

rescue. Working paper 92-04, University of Iowa, Department of Economics. 
Hsieh, D. A. and M. H. Miller (1990). Margin regulation and stock market volatility. J. Finance 

45, 3-29. 
Jeong, J. and G. S. Maddala (1992). Heteroskedasticity and a nonparametric test for rationality of 



Application o f  bootstrap methods 607 

survey data using the weighted double bootstrap. Paper presented at the European Economic 
Society Meeting in Brussels. 

Johns, M. V. (1988). Importance sampling for bootstrap confidence intervals. J. Amer.  Statist. 
Assoc. 83(403), 709-714. 

Kim, J. and D. Pollard (1990). Cube root asymptotics. Ann.  Statist. 18, 191-219. 
King, M. L. and D. E. A. Giles (1984). Autocorrelation pre-testing in the linear model. J. 

Econometrics 25, 35-48. 
Kiviet, J. F. (1984). Bootstrap inference in lagged-dependent variable models. University of 

Amsterdam, Working Paper. 
Kloek, T. and H. K. Van Dijk (1978). Bayesian estimation of equation system parameters: an 

application of integration by Monte Carlo. Econometrica 46, 1-19. 
Knight, K. (1989). On the bootstrap on the sample mean in the infinite variance case. Ann.  Statist. 

17, 1168-1175. 
Korajczyk, R. (1985). The pricing of forward contracts for foreign exchange. J. Politic. Econom. 

93, 346-368. 
K/insch, H. R. (1989). The jackknife and the bootstrap for general stationary observations. Ann.  

Statist. 17, 1217-1241. 
Lahiri, S. N. (1991). Second order optimality of stationary bootstrap. Statist. Probab. Lett. 11, 

335-341. 
Lahiri, S. N. (1992). Edgeworth correction by 'moving block' bootstrap for stationary and 

nonstationary data. In: R. LePage and L. Billard, eds., Exploring the Limits o f  Bootstrap. Wiley, 
New York, 183-214. 

Lamoureux, C. G. and W. D. Lastrapes (1990). Persistence in variance, structural change and the 
GARCH model. J. Business Econom. Statist. 8, 225-234. 

Learner, E. E. and H. Leonard (1983). Reporting the fragility of regression estimates. Rev. 
Econom. Statist. 65, 306-317. 

Levich, R. M. and L. R. Thomas (1991). The significance of technical trading-rule profits in the 
foreign exchange market: A bootstrap approach. NBER Working paper series no. 3818. 

Liu, R., (1988). Bootstrap procedures under some non i.i.d, models. Ann.  Statist. 16, 1696-1708. 
Liu, R. Y. and K. Singh (1988). Moving blocks jackknife and bootstrap capture weak dependence. 

Preprint, Department of Statistics, Rutgers University. 
Liu, R. Y. and K. Singh (1992). Efficiency and robustness in resampling. Ann.  Statist. 20,370-384. 
Lovell, M. C., (1983). Data mining. Rev. Econom. Statist. 65, 1-12. 
MacKinnon, J. G. and H. White (1985). Some heteroscedastic consistent covariance estimators 

with improved finite sample properties. J. Econometrics 29, 305-325. 
Maddala, G. S. (1977). Econometrics. McGraw-Hill, New York. 
Maddala, G. S. (1983). Limited Dependent and Qualitative Variances in Econometrics. Cambridge 

Univ. Press, New York. 
Manski, C. F. and T. S. Thomson (1986). Operational characteristics of maximum score 

estimation. J. Econometrics 32, 85-108. 
Marais, M. L. (1984). An application of the bootstrap method to the analysis of squared, 

standardized market model prediction errors. J. Account. Res. 22, 34-54. 
Martin, M. A. (1990). Bootstrap iteration for coverage correction in confidence intervals. J. Amer.  

Statist. Assoc. 85, 1105-1118. 
Masarotto, G. (1990). Bootstrap prediction intervals for autoregressions. Internat. J. Forecasting 6, 

229-239. 
McAleer, M. and M. R. Veall (1989). How fragile are fragile inferences? A re-evaluati0n of the 

deterrent effect of capital punishment. Rev. Econom. Statist. 71, 99-106. 
McManus, W. S. and M. C. Rosalsky (1985). Are all asymptotic standard errors awful? Econom. 

Lett. 17, 243-245. 
Miller, R. G. (1974). An unbalanced jackknife. Ann.  Statist. 2, 880-891. 
Miyazaki, S. and W. E. Griffiths (1984). The properties of some covariance matrix estimates in 

linear models with AR(1) errors. Econom. Lett. 14, 351-356. 



608 J. Jeong and G. S. Maddala 

Moore, M. and N. Rais (1990). A bootstrap procedure for finite state stationary uniformly mixing 
discrete time series. Preprint, t~cole Polytechnique de Montr6al and Univesit6 de Montr6al. 

Morey, M. J. and L. M. Schenk (1984). Small sample behavior of bootstrapped and jackknifed 
estimators. In: A S A  Proc. Business Econom. Statist., 437-442. 

Morey, M. J. and S. Wang (1985). Bootstrapping the Durbin-Watson statistic. In: A S A  Proc. 
Business Econom. Statist., 549-543. 

Moschini, G., D. M. Prescott and T. Stengos (1988). Nonparametric kernel estimation applied to 
forecasting: An evaluation based on the bootstrap. Empirical Econom. 13(3/4), 141-154. 

Nankervis, J. C. and N. E. Savin (1988). The strudent's t approximation in a stationary first order 
autoregressive model. Econometrica 45, 463-485. 

Navidi, W. (1989). Edgeworth expansion for bootstrapping regression models. Ann.  Statist. 17, 
1472-1478. 

Nelson, F. and L. Olson (1978). Specification and estimation of a simultaneous-equation model 
with limited dependent variables. Internat. Econom. Rev. 19, 695-710. 

Newton, M. A. (1991). Results on bootstrapping and pre-pivoting. Ph.D. Dissertation, University 
of Washington. 

Newton, M. A. and A. E. Raftery (1991). Approximate bayesian inference by the weighted 
likelihood bootstrap. Technical Report #199, Department of Statistics, University of Washing- 
ton. 

Park, S. (1985). Bootstrapping two-stage least squares estimates of a dynamic econometric model: 
Some empirical results. Carleton University Working Paper. 

Park, R. E. and B. M. Mitchell (1980). Estimation the autocorrelated model with trended data. J. 
Econometrics 13, 185-201. 

Peters, S. C. and D. A. Freedman (1985). Using the bootstrap to evaluate forecasting equations. 
J. Forecasting 4, 251-262. 

Prasada Rao, D. S. and E. A. Selvanathan (1992). Computation of standard errors of Geary- 
Khamis parities and international prices: A stochastic approach. J. Business Econom. Statist. 10, 
109-115. 

Quenouille, M. (1956). Notes on bias in estimation. Biometrika 43, 353-360. 
Rao, C. R. (1970). Estimation of heteroskedastic variances in linear models. J. Amer.  Statist. 

Assoc. 65, 161-172. 
Rao, C. R. (1973). Linear Statistical Inference and Its Applications. Wiley, New York. 
Rao, J. N. K. and C. F. J. Wu (1988). Resampling inference with complex survey data. J. Amer.  

Statist. Assoc. 83, 231-241. 
Rayner, R. K. (1988). Some asymptotic theory for the bootstrap in econometric models. Econom. 

Lett. 26, 43-47. 
Rayner, R. K. (1990a). Barlett's correction and the bootstrap in normal linear regression models. 

Econom. Lett. 33, 255-258. 
Rayner, R. K. (1990b). Bootstrap tests for generalized least squares regression models. Econom. 

Lett. 34, 261-265. 
Rayner, R. K. (1990c). Bootstrapping p values and power in the first-order autoregression: A 

Monte Carlo investigation. J. Business Econom. Statist. 8, 251-263. 
Rocke, D. M. (1989). Bootstrap bartlett adjustment in seemingly unrelated regression. J. Amer.  

Statist. Assoc. 84, 598-601. 
Rosalsky, M. C., R. Finke and H. Theil (1984). The downward bias of asymptotic standard errors 

of maximum likelihood estimates of non-linear systems. Econom. Lett. 14, 207-211. 
Rubin, D. B. (1981). The Bayesian bootstrap. Ann.  Statist. 9, 130-134. 
Rubin, D. B. (1987). A noniterative sampling/importance resampling alternative to the data 

augmentation algorithm for creating a few imputations when fractions of missing information are 
modest: The SIR algorithm: Comment [the calculation of posterior distributions by data 
augmentation]. J. Amer.  Statist. Assoc. 82(398), 543-546. 

Runkle, D. E. (1987). Vector auto-regression and reality. J. Business Econom. Statist. 5,437-454. 
Schenker, N. (1985). Qualms about bootstrap confidence intervals. J. Amer.  Statist. Assoc. 80, 

360-361. 



Application of  bootstrap methods 609 

Schmidt, P. and R. C. Sickles (1984). Production frontiers and panel data. J. Business Econom. 
Statist. 2, 367-374. 

Schucany, W. R. and L. A. Thombs (1990). Bootstrap prediction intervals for autoregression. J. 
Arner. Statist. Assoc. 85, 486-492. 

Selvanathan, E. A. (1989). A note on the stochastic approach to index numbers. J. Business 
Econom. Statist. 7, 471-474. 

Shea, G. S. (1989a), A re-examination of excess rational price approximations and excess volatility 
in the stock market. In: R. M. C. Guimaraes et al., eds., A Reappraisal of  the Efficiency of  
Financial Markets. Springer, Berlin. 

Shea, G. S. (1989b). Ex-post rational price approximations and the empirical reliability of the 
present-value relation. J. Appl. Econometrics 4, 139-159. 

Shi, X. and J. Shao (1988). Resampling estimation when observations are M-dependent. Comm. 
Statist. A 17, 3923-3934. 

Simar, L. (1991). Estimating efficiencies from frontier models with panel data: A comparison of 
parametric, nonparametric and semi-parametric methods with bootstrapping. CORE Discussion 
paper no. 9126. 

Singh, K. (1981). On the asymptotic accuracy of Efron's bootstrap. Ann. Statist. 6, 1187-1195. 
Son, M. S., D. Holbert and H. Hamdy (1987). Bootstrap forecasts versus conventional forecasts: 

A comparison for a second order autoregressive models. In: ASA Proc. Business & Econom. 
Statist. 723-727. 

Srivastava, V. K. and T. D. Dwivedi (1979). Estimation of seemingly unrelated regression 
equations: A brief survey. J. Econometrics 10, 15-32. 

Srivastava, M. S. and B. Singh (1989). Bootstrapping in multiplicative models. J. Econometrics 42, 
287-297. 

Stine, R. A. (1985). Bootstrap prediction intervals for regression. J. Amer. Statist. Assoc. 80(392), 
1026-1031. 

Stine, R. A. (1987). Estimating properties of autoregressive forecasts. J. Amer. Statist. Assoc. 82, 
1072-1078. 

Stoffer, D. S. and K. D. Wall (1991). Bootstrapping state-space models: Gaussian maximum 
likelihood estimation and the Kalman filter. J. Amer. Statist. Assoc. 86, 1024-1033. 

Tanaka, K. (1983). Asymptotic expansions associated with the AR(1) model with unknown mean. 
Econometrica 51, 1221-1232. 

Teebagy, N. and S. Chatterjee (1989). Interference in a binary response model with applications to 
data analysis. Decision Sci. 20, 393-403. 

Van Dijk, H. K. (1987). Some advances in bayesian estimation methods using Monte Carlo 
integration. In: T. B. Fomby and G. F. Rhodes, eds. Advances in Econometrics, Vol. 6, Jai 
Press, Greenwich, CT, 100-120. 

Veall, M. R. (1986). Bootstrapping regression estimators under first-order serial correlation. 
Econom. Lett. 21, 41-44. 

Veall, M. R. (1987a). Bootstrapping the probability distribution of peak electricity demand. 
Internat. Econom. Rev. 28, 203-212. 

Veall, M. R. (1987b). Bootstrapping forecast uncertainty: A Monte Carlo analysis. In: I. B. 
MacNeill and G. J. Umphrey, eds., Time Series and Econometric Modelling. Reidel, Dordrecht, 
373-384. 

Veall, M. R. (1989). Applications of computationally-intensive methods to econometrics. Bull. 
Internat. Statist. Inst. 47(3), 75-83. 

Veall, M. R. (1992). Bootstrapping the process of model selection: An econometric example. J. 
Appl. Econometrics 7, 93-99. 

Vinod, H. D. and B. D. McCullough (1991). Bootstrapping cointegrating regression. Paper 
presented at Statistics Canada Meetings, Montreal. 

Weber, N. C. (1984). On resampling techniques for regression models. Statist. Probab. Lett. 2, 
275-278, 

Weber, N. C. (1986). On the jackknife and bootstrap techniques for regressions models. In: 



610 J. Jeong and G. S. Maddala 

Francis, Manly, Lam, eds., Pacific Statistical Congress, Auckland 20-24 May 1985. North- 
Holland, Amsterdam, 51-55. 

White, H. (1980). A heteroskedasticity-consistent covariance matrix and a direct test of 
heteroskedasticity. Econometrica 48, 817-838. 

White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica 50, 1-26. 
Williams, M. A. (1986). An economic application of bootstrap statistical methods: Addyston pipe 

revisited. Amer. Econom. 30, 52-58. 
Wilson, P. W. (1992). A bootstrap methodology for DEA-type efficiency models. Manuscript, 

Department of Economics, University of Texas at Austin, TX. 
Wu, C. F. J. (1986). Jackknife, bootstrap and other resampling methods in regression analysis. 

Ann. Statist. 14, 1261-1295. 
Young, G. A. and H. E. Daniels (1990). Bootstrap bias. Biometrika 77, 179-185. 



G. S. Maddala, C. R. Rao and H. D. Vinod, eds., Handbook of Statistics, Vol. 11 ,~t'~ 
© 1993 Elsevier Science Publishers B.V. All rights reserved. A,L 

Stochastic Simulations for Inference in Nonlinear 
Errors-in-Variables Models* 

Roberto S. Mariano and Bryan W. Brown 

1. Introduction and summary 

Errors in variables are pervasive in econometric modelling work. For example, 
in the case of micro data sets, Griliches (1974, 1986) cites 'direct but fallible 
indicators of relevant . . ,  latent factors' and the use of proxy variables in the 
absence of direct measures as two main sources of errors. Test scores as 
measures of ability or achievement, reported income or estimated value of 
residence as proxies for permanent income, and schooling as a measure of 'true 
education' are some examples. Preliminary values in national income accounts 
data that are used in macromodelling provide yet another type of errors in 
variables which has been discussed in various references such as Conrad and 
Corrado (1979), Griliches (1986), Howrey (1978, 1984), Trivellato and Rettore 
(1986), and Mariano and Gallo (1988). 

Although long recognized as a serious problem in statistical inference, only 
recently has there been a resurgence of econometric research on this topic. 
Fuller (1987) provides a comprehensive treatment of the linear regression 
model with measurement errors. Aigner et al. (1984), Chamberlain and 
Griliches (1975), Florens, Mouchart and Richard (1987), Geraci (1976, 1977, 
1983), Goldberger (1972), Griliches (1974), Hausman (1977), Hsiao (1976, 
1977, 1979), Hsiao and Robinson (1978), Joreskog and Goldberger (1975) and 
Zellner (1970) deal with the linear simultaneous-equations case. 

While there has been relatively extensive coverage of the linear case, 
statistical inference in nonlinear errors-in-variables models has not been 
accorded the attention that it deserves. Nonlinearities with respect to structural 
disturbances or measurement errors comprise important features of many 
econometric models in current use. Immediate examples of models with 
nonlinearities in the structural errors are macroeconomic models and limited 
dependent variables in a simultaneous setting. A common example of non- 

* Partial support from the National Science Foundation, grants SES 9011917 and SES 9011922, is 
gratefully acknowledged. 
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linearity with respect to measurement errors occurs in models where continu- 
ous independent variables are proxied by categorical measurements. 

Most of what is available for nonlinear errors-in-variables models deals with 
the single-equation structural model with a linear relationship for measurement 
errors: Amemiya (1985), Fuller (1987), Hausman et al. (1986), Hausman, 
Newey and Powell- HNP-(1987, 1988), Hsiao (1988) and Wolter and Fuller 
(1982a,b). In a related set of literature, Newey (1985, 1986, 1987) developed 
semiparametric procedures for limited dependent variable models with endog- 
enous explanatory variables. There is also an extensive set of papers dealing 
with measurement errors in single-equation qualitative response models; e.g., 
Burr (1988), Carroll et al. (1984), Clark (1982), Mouchart (1977), Schafer 
(1987), Schafer et al. (1988), Stefanski (1985, 1988), Stefanski and Carroll 
(1985) and Yatchew and Griliches (1985). Even in these cases, many important 
issues remain to be studied- especially the sensitivity of statistical tests to the 
presence of measurement errors. Surprisingly, measurement errors in simulta- 
neous nonlinear models have received little treatment to date. Likewise, 
models with nonlinear measurement error processes have been virtually 
ignored in the econometric literature. 

This paper addresses this vacuum and considers new econometric procedures 
for statistical inference in nonlinear econometric models in general and limited 
dependent variable models in particular, where explanatory variables are 
measured with (possibly) nonlinear errors. The approach utilizes the machin- 
ery that has been developed in earlier papers of ours dealing with forecasting 
and testing procedures for measurement-error-free nonlinear models. Results 
in these earlier papers-e.g. ,  Brown and Mariano (1984, 1989a,b,c, 1991) and 
Mariano and Brown (1983a,b, 1985, 1988, 1989, 1991)-show that Monte 
Carlo and residual-based stochastic simulations, and variations of them, 
provide new statistical techniques for inference, prediction, and model valida- 
tion. In the treatment of errors in variables, which we discuss in this paper, 
stochastic simulations of the model play a central role in providing numerical 
approximations to conditional moments of variables appropriate to the prob- 
lem at hand-  estimation or prediction or specification testing. 

The potential uses of the stochastic simulators developed here are also 
indicated for generalizing McFadden's (1989) method of simulated moments to 
nonlinear errors-in-variables models and for the numerical evaluation of 
maximum likelihood estimates in nonlinear errors-in-variables models. 

Before going into these general issues on stochastic simulations in nonlinear 
errors-in-variables models, we first consider in Section 2 the probit and tobit 
errors-in-variables models, focusing on the behavior of maximum likelihood 
estimators of basic parameters (quasi and appropriate) when measurement 
error parameters are estimated from the given sample. A reparameterization of 
the models establishes a direct correspondence between the MLEs when 
measurement errors are present and absent. This facilitates determination of 
the inconsistency in the quasi MLE which ignores measurement error. It shows 
further how this naive procedure can be modified in a fairly simple way to 
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calculate the appropriate MLEs which take measurement  errors into account. 
The discussion in this section serves to review the available results in the much 
covered area of probit models with measurement errors and to highlight future 
areas of research, especially the sensitivity of tests based on the quasi MLE to 
measurement  errors and the statistical gains and perhaps losses in using the 
EIV MLE in terms of finite-sample behavior, skewness of distribution and 
performance of significance tests. 

2. Probit errors-in-variables 

First, we  consider the case of  a single-equation qualitative response mode l  with 
additive measurement  errors: 

* ' (2 .1)  Y i = x i / 3  + u i ,  

y~ = I ( y *  > 0 ) ,  (2.2) 

z i = x  i + e i , (2.3) 

where I ( A )  is the indicator function which equals 1 if event A occurs and zero 
otherwise. We observe (z i ,  Yi) for i = 1, 2, 3 , . . . ,  n and assume 

(u  i, e i, x~) ~ iid N[(0, 0, /x) ,  2 ] ,  (2.4) 

1 = L . (2 .5 )  

0 Zx 

We refer to the above as the probit errors-in-variables model. Take o- = 1 and 
suppress the subscript i. Then 

e [ z -- N[A(z - ~),  ( / -  A)Z~], 

A = Y~(~ + .~x) - 1  , (2.6) 

y *  [ z ~ N [ z ' f l  - ( z  - / z ) ' A ' / 3 ,  1 + /3 ' ( I  - A)~,/31 • 

This implies that 

Pr(y  = l l z )  = P r ( y *  > 0 [ z  ) 

= dp{[z ' /3  - (z  - t x ) ' A ' / 3 ] / ( 1  + / 3 ' ( I  - A ) Z ~ / 3 ) a / 2 } ,  (2.7) 

where ~(-)  is the cdf of a standard unit normal. T a k e / ,  = 0 and let 

f t .  = (I - A')/3/(1 + /3 ' ( I  - A ) ~ e / 3 )  1/2 

= h(/3, Xx, Y,~). (2.8) 
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Then 

Pr(y = l lz ) = q~(z'/3,). (2.9) 

If £~ and "~x are known, the probit regression of y on z (the usual standard 
probit procedure) produces the MLE of /3 , ,  not/3. This estimator, say /~o is 
also the quasi MLE of/3, erroneously obtained under the assumption of no 
measurement errors on z. The appropriate MLE of/3, say /~M, is 

/3M = h-l(/3o, ~x, ~ ) "  (2.10) 

Thus, the inconsistency in the quasi MLE, which fails to take measurement 
errors into account, is /3 , - /3 .  Furthermore, from this quasi MLE, the 
appropriate MLE can be calculated by inverting the h(-) function, as indicated 
above. The following results also follow directly from this interpretation, under 
suitable regularity assumptions: 

d 1 nl/2(~Q --/3.)--+N(0, 5 ~ . ) ,  

, = -plim(O2L(y Iz)/0/3.0/3 '. ) /n ,  (2.11) 

/~1/2(/~ M -- /3)-~ N[0, (Oh-1/O/3)t .1(0h-1/0/3')]. 

In (2.11), L(y  ]z) is the log likelihood of the observations {Yl, • • •, Yn} given 
the observations {Z l , . . .  , zn}. 

If the nuisance parameter 0 = (/x,~,,~x) is not known, /3 will not be 
identifiable in the general case with more than one explanatory variable 
measured with error. With additional restrictions or additional information, 
such as replicated x observations, it may be possible to obtain consistent, 
asymptotically normal estimates of these nuisance parameters. In such cases,/3 
will be identifiable through inversion of the h(-) function, e.g., (2.8). In fact 
the pseudo MLE of/3 would be 

D = h-l(~)Q, /~, ,~, •x)" (2.12) 

Suppose we have a consistent and asymptotically normal 4* based on the 
available sample of x observations, with the following limiting distribution: 

n~/2(4. - 0)-+ N(0, V~,). 

Since the log likelihood of (z, y) can be written as 

L(y,  z;/3, qt) = L(y lz; /3, q,) + Lz(Z; 0),  

(2.13) 

(2.14) 

the pseudo MLE of/3, /3, which maximizes L(y,  z;/3, 4.), with respect to/3 for 
a given estimate 4., equivalently maximizes the conditional likelihood of y 
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given z (assuming that Lz(. ) does not depend on/3) :  

/3 =arg max L ( y l z ;  ~, 4*). (2.15) 

To obtain the asymptotic distribution of /3,  we utilize the following lemma. 

LZMMA. Let S = ( l /n )  OL(y, z)/ OCl = ( l /n )  OL(y I z)/O~. Then 

E(S- 4*) : 0 .  (2.16) 

PROOF. This follows directly from 

E(S- 4*) = EzEylz(S4*lz) = Ez{4*Eylz(Slz)} = O. [] 

The following theorem now gives the limiting distribution and the asymptotic 
covariance of the pseudo MLE. 

THEOREM. Suppose regularity conditions hold so that nl/2(S, 4* - 4') is asymp- 
totically normal with mean zero and covariance matrix 

where 

~¢¢~ = -p l im{(1 /n)  o2L(ylz)/O/3 013'}, 
(2.18) 

V o = asymptotic covariance matrix of 4*. 

Let [3 be the pseudo M L E  of  ~ obtained by maximizing L ( y l z ;  [3, O). Then 

-1  -1  ~ -1  n1/2(/~ --/~)----~ N(0, 5~t~ ¢ + lt3t3~Ct3oV o *¢Nt3t3), (2.19) 

5~, = plim{(1/n) oZL(y I z;/30, 0o)/0/3 00} .  (2.20) 

PROOF. Let 77 = (/3, 0). Then 

o :  s (L  4*) = S(~o) + G~(no)([3 - /30)  + G~(no)(4* - 4,o) 

+ °p(ll @ - ~7o11) - (2.21) 

This implies that 

H 1 1 / 2  1 / 2  ^ . nl/2(/~ -/30) = - t3t~(~7o){ n S070) - Ut3o(~o)[n ( 0  - -  I~0)]} q'- O p ( 1 )  

(2.22) 

The theorem now follows from the assumption on the limiting distribution of S 

where 
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and 4* and the fact that 

Ntis070) = ( l /n )  oZ L(  y l z ; [30, 00)/0[3 013', (2.23) 

H¢6(~0) = ( l /n )  O2L(y l z ;  [30, 00)/0[3 0 0 ' .  [] 

Gong and Samaniego (1981) and Gourieroux, Monfort and Trognon (1984) 
discuss the asymptotic theory for pseudo maximum likelihood methods in a 
more general setting. 

3. Tobit errors-in-variables 

The tobit errors-in-variables model would have, instead of (2.2), 

y~ = I (y*  > 0)y,* . (3.1) 

The conditional distribution of y given z (with subscript i suppressed) is 

y lz ~ N{z'[3 - (z -/x)'A'[3; o-] + [3'(1 - A)X[3 } (3.2) 

and 

where 

Pr(y = 0 l z  ) = Pr(y ~< 0 lz  ) = qO{-z ' ( I  - A')[3/o-.} = qb(-z'[3**), 

(3.3) 

2 2 
o-* = o-u + fi ' (I  - A)~[3 , 

[3..  = (I - A '  )[3/o-. = h([3, o-.) .  (3.4) 

The conditional likelihood of {Yl, Y2, • • • , Yn) given (z 1, z 2 . . . . .  zn) is 

[ I  ~(z;[3**).  [ I  (1 /o- . )~( (y i -z ; [3**) /o- . ) ,  (3.5) 
Yi=O Yi=l 

a standard tobit likelihood with parameters ([3. . ,  o-.). 
Let (/}Q, -2 o-Q) denote the quasi tobit MLE based on {(y/, z~): i = 1 , . . . ,  n} 

and let (/3M, -2 O'M) be the tobit MLE accounting for measurement errors. Then 

plim ¢)Q = [3..  , 
plim - 2 2 (3.6) O-Q = O- ,  . 

Furthermore, if we rewrite (3.3) and (3.4) as 

([3, o z) = g([3**, o z ) ,  (3.7) 

then 

( D M ,  - 2  - 2  o-M) = g(t}Q, O-Q) , (3 .8 )  
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assuming that N~ and X, are known. When these nuisance parameters are 
unknown, we utilize consistent estimates of them to obtain pseudo MLEs as in 
the previous section. The arguments in the preceding section also apply to the 
derivation of the asymptotic distributions of the modified MLEs in either case 
of known or unknown measurement error parameters. 

The discussion here shows that apart from the scaling difference, where the 
disturbance variance is normalized to unity in the probit but not in the tobit 
model, the inconsistency effect of measurement error (of the type considered in 
this section) on probit and tobit coefficient estimates is basically the same. 

To explain conflicts in the significance tests On/3 based on the probit and 
tobit alternatives in terms of measurement errors, one must go beyond the 
inconsistencies caused by measurement errors. The appropriateness of variance 
estimates used in the construction of the test statistics should be examined, and 
corrected if necessary. The probability distributions of the test statistics, their 
skewness in finite samples that show up in some limited experiments reported 
in the literature (e.g., Burr, 1988, and Carroll et al., 1984), and the true size 
and power of the tests should be examined more carefully. A Monte Carlo 
study along these lines is reported in Reyes (1991) and Mariano, Nerlove, 
Reyes and Lim (1990). 

4. Inference in nonlinear systems with errors in variables 

In this section, we consider a structural submodel in the form of a nonlinear 
simultaneous system of stochastic equations containing stochastic exogenous 
variables which are measured with error. The measurement error submodel, 
relating the observed to the true exogenous variables, is generalized from the 
standard formulation used in the two preceding sections to a nonlinear system 
of stochastic equations. We also assume, as before, that the disturbances in the 
two submodels and the unobservable exogenous variables are jointly in- 
dependent. The two submodels combine to complete a system which explains 
the joint behavior of the endogenous variables and the observations on the 
exogenous variables. 

The standard approach, which we have used in earlier sections, treats 
measurement errors as white noise. However, there are modeling situations- 
such as those involving preliminary values in national accounts da ta-where  
such standard treatment may be inappropriate. For instance, see Conrad and 
Corrado (1979), Denton and Kuiper (1965), Denton and Oksanen (1972, 
1973), Griliches (1986), Howrey (1978, 1984), Trivellato and Rettore (1986) 
and Mariano and Gallo (1988). Nonlinearities with respect to measurement 
errors will also arise in cases where continuous explanatory variables are 
proxied by categorical measurements. In these cases, a wider class of measure- 
ment error submodels, such as the one adopted here, may prove useful. 
Further extensions of the submodel used here can be made (though not done 
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here) through the introduction of dynamics and the inclusion of other variables 
which may be sources of systematic measurement errors. 

Current literature on measurement error stresses the need for additional 
information to achieve identification of the whole system. (Here,  identification 
is interpreted in the econometric sense of uniqueness of the data generating 
process.) Such information typically comes by way of replicated observations 
on the exogenous variables and /or  further restrictions on coefficients or 
covariance parameters in the measurement error submodel. In the formulation 
of our model, another potential source of parameter  identification is the 
nonlinearity of the measurement error submodel. Even if the true exogenous 
variables and the model disturbances are normally distributed, observations on 
the exogenous variables will not be normal. Consequently, third and higher 
order  moments of the observed exogenous variables may provide information 
for parameter  identification. 

Given consistent estimates of the model parameters based on a sample of 
observations, the discussion here focuses on the problem of predicting the 
endogenous variables given the exogenous observations with measurement 
errors. Assuming squared error loss, the objective is to estimate the condition- 
al expectation of the endogenous variables given the rest of the observations. 
The modified simulation methods developed here for this problem can be 
extended to higher moments and utilized in developing generalized method of 
moments estimators analogous to McFadden's (1989) method of simulated 
moments  (MSM). They can also be used for numerical evaluation of the joint 
likelihood of the sample of observations on endogenous and erroneous 
exogenous variables, and, hence, lead to a numerical implementation of 
maximum likelihood estimation. Prediction-based specification tests, such as 
those developed for the measurement-error-free case in Mariano and Brown 
(1983b), Mariano and Tabunda (1987), and Brown (1988), can also be 
developed for the validation of errors-in-variables models. Such tests would be 
based on stochastic simulations of the estimated model over the sample period 
and their deviations from actual observations. 

Consider a simultaneous system of n nonlinear stochastic equations 

f ( y , , x t ;  oz) = ut , (4.1) 

where f,  y,, and u t are n x 1. The vector of functions f is completely known; a 
denotes the vector of unknown parameters; the u t are unobservable disturb- 
ance terms. The components of y, are the endogenous variables in the system. 
The vector x, is exogenous. 

Some or all of the components of x, are measured with error. Thus, instead 
of x,, what is observed is z t ,  with the same dimension as x, and related to x, by 
the following measurement error model 

r e ( z , ,  x,;/3 ) = e t , (4.2) 

where m(-) has the same dimension as zt. We assume that (4.1) and (4.2) 
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define locally unique inverse relationships 

y, = g(ut, xt; a) , (4.3) 

x, = p ( %  zt ; /3) ,  (4.4) 

z : q (e , , x , ; /3 ) .  (4.5) 

In general, g(-), p(.) ,  and q(.) may not be available in closed form. In such 
cases, the values of Yt and x t are calculated as numerical solutions to (4.1), and 
(4.2), respectively, corresponding to a set of input values. We further assume 
that, for any t, u t, e t, and x t are statistically independent of each other and that 
(u~, % x~) are jointly iid with mean (0, 0, ~) and variance-covariance matrix 

= X~ . (4.6) 
0 

Given consistent, asymptotically normal estimates of the model parameters 
0 = (a, /3, /x,  X) based on o b s e r v a t i o n s  { ( y y ,  z t ) :  t = 1 ,  2 ,  . . . , T } ,  let us now 
consider the problem of predicting an unobserved value y,  given the observa- 
tions and the measurement z,. The objective is to estimate the conditional 
expectation of E ( y ,  I z,). From (4.1)-(4.5), we get 

E(y ,  I z,) = f~ ~ [g(u, p(e,  z,; /3 ); c 0 • f~ l~(u ,e ) ldude  (4.7) 

= f~ ~ [g(u, p ( e , z , ; / 3 ) ;  a)-f~(u)" f~lz(e)l du d e ,  (4.8) 

where f~lz(u, e) is the conditional joint pdf of (u~, e~) given z~, fu(') is the 
unconditional pdf of u~, and f, lz(') is the conditional pdf of e~ given z~. The 
expression simplifies to (4.8) since (4.1)-(4.6) imply that, for any t, the 
structural disturbances u, are statistically independent of the variables 
(e,, x,, zt) in the measurement error process. 

In some special cases, the conditional distribution of e~ given z, can be 
determined explicitly from the assumed joint distribution of (et, x,). For 
example, in the standard measurement error model, 

Zt = Xt "[" ~t 

with (et, xt) jointly normal, e given z will be conditional normal with mean 
vector and covariance matrix easily determined as functions of tx and ~x, ~ ,  
X~x. In cases like these, one can apply a simulation technique, directly 
analogous to what we call Monte Carlo stochastic predictors in our earlier 
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papers (e.g., Mariano and Brown, 1983a, Brown and Mariano, 1984): 

S 

)~m~ = ~ g(li,, P(~s, z , ; / ) ) ;  8 ) ,  (4.9) 
x = l  

where, for s = 1, 2 . . . . .  S, the u s and e s are independent draws from the 
unconditional distribution of u t and the conditional distribution (given z,) of e,, 
respectively. 

However ,  if we adopt the more complicated measurement-error model (4.2), 
generally, it would not be possible to draw directly from the conditional 
distribution of e, given z,. In this case, further simplification of (4.8) leads to a 
modified stochastic simulation process. Note that for x, stochastically in- 
dependent  of e~, 

and 

k j z (e ,  z )  = L , z (e ,  z ) / fz (Z)  , 

L,~(e, z) =f~(e). L(p(~, z))lap/oz'l 

(4.10) 

(4.11) 

f 
fz(Z) = J~ L,z(e, z) de = E~ (L (p (e ,  z))[Op / Oz'{} = D ,  (4.12) 

where f,.z('), fz(') and L(" ) are unconditional pdfs of (e~, z~), z~, and x~, 
respectively. 

Starting from (4.8), we get 

• L(p(e,  z))lop/oz'l] du de } / D  (4.13) 

= E,,~{g(u, p(e, z , ) ) ' f x (p (e ,  z))lOp/Oz'[}/D, (4.14) 

where D is the expression in (4.12) and Eu,~(-) and E~(.) represent expecta- 
tions with respect to the unconditional distributions of (u,, e,) and (e,), 
respectively. 

The simplification in (4.14) avoids the need to deal with the conditional 
distribution of e~ given z, and reduces the simulation requirements to draws 
from the unconditional distributions of u and e. Explicitly, our Monte Carlo 
predictor of y~ (given z,) is 

S 

33, = • {g0i, ,  P(gs, z,; fi); ~e)" fx(p(~ s, z,; fi)) 
s = l  

• lap(~, z,; B) laz ' l / (s .  bm)}, (4.15) 
where, for s = 1 , 2 , 3 , . . . , S ,  ti~ and gs are independent draws from the 
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unconditional distributions of u, and e, and fx(.) is the unconditional pdf of x,, 
and 

S 

b,,, = ~ ,  L ( p ( i s ,  z.,.; ~ ) .  Iop( i  s, z , ;  ~ ) / o z ' [ / s  . (4.16) 
s = 1  

Note that our proposed stochastic predictors (4.15) are related to but differ 
from the naive approach, suggested by the ideal measurement-error-free case, 
of first using observed z~ with the measurement error model to get an estimate 
2, of E(x, [z,) and then using the structural model alone (with 2, as an input) 
to forecast y,: 

Y~a = E,~g(u, 2~..; ~)  . (4.17) 

To see the relationship between (4.8) and (4.17), expand g(.) around x = 2,, 

g(u, x,;  a )  ~ g(u,  2,; a )  + g~(u, 2,; a)"  (2~ - x , )  

+ (2,  -x , ) 'g~x(U, 2~; a)"  (2 ,  - x , ) / 2  (4.18) 

so that 

E(y~ I z , )  ~ Eug(u, 2,; a) + tr{E,(gxx(u, 2~; a) )V}/2 ,  (4.19) 

where V is the conditional covariance matrix of x, given z,. 
To apply these results to limited dependent variable models, consider next a 

discrete choice model for c alternatives with vector attribute x i corresponding 
to alternative i and let X =  ( x l , x  2 . . . . .  xc). The alternatives are mutually 
exclusive and exhaustive. A latent variable model (see McFadden, 1989) leads 
to the following representation of the choice probability for alternative i: 

~-(i) = Pr[h(u, X; a) <~ 0], (4.20) 

where h(-) is a vector of smooth functions, a consists of unknown parameters, 
and u is a random vector. 

Further assume that X is measured with error and, representing the 
measured attributes by Z, take the nonlinear measurement error submodel 
introduced in (4.2) and (4.4): 

m ( Z , X ; j g ) = E ,  p ( E , Z ; [ 3 ) = X ,  (4.21) 

with the same stochastic behavior for (u, E, X) as in the earlier part of this 
section. 

A random sample of observations on N individuals consists of {(Yn, Zn): 
n = l , 2 , 3 , . . . , N } , w h e r e  

Y, = (Yln, Y2n," • • , Yc~) , 
] '1,  if the n-th individual chooses alternative i ;  

Yin = ].0 , otherwise. (4.22 ) 
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Here, Yin is the outcome of a multinomial trial with component probabilities 
{~-(i): i = 1, 2 . . . . .  c} with expectation equal to these choice probabilities. 

Prediction of an individual's choice, given the measured attributes for him, 
then corresponds to estimation of his choice probabilities. From (4.20), we get 

7r(i) = Pr[h(u, p(E, Z;/3); a) ~< 0[Z]  

= f, fE {I[h(u, p(E, Z;/3); a)<~ O].fu(U).felz(E; Z)} du dE 

= E,EE[I(h ~< 0)" f~(p)- [Op/OZ[]/E~[L(p)" [Op/OZ]]. (4.23) 

The vector inequality h ~< 0 means satisfaction of the inequality component by 
component. The derivation of (4.23) follows from (4.8) and generalizes the 
case considered in McFadden (1989) of linear m(.) and jointly norna l  
(x,z,E). 

Stochastic simulations can then be based on (4.23) with draws from the 
unconditional distribution of u and E for a numerical approximation of the 
choice probabilities conditional on Z. These can then be used not only for 
prediction but also to implement a generalized method of simulated moments 
or a numerical maximization of the appropriate likelihood of the sample 
observations. 

In the error-free case, the log-likelihood of the observations on (y, X) is 

L(O) = ~ ~ Yi." log[~n(ilxi.)] (4.24) 
n i 

with first order conditions 

Ot/O0 = ~, ~ [Olog('B'in)/OO'(Yin -- 7r/n)] • (4.25) 
n i 

The conventional method of moments leads to the minimization problem 

min (y - ¢r(O))'W'W(y - 7r(0)), (4.26) 
0 

where y and ~r are vectors of stacked Yi, and zrin and W is a suitably chosen 
instrument matrix. Asymptotic efficiency obtains if we use 01og(Tri,)/00 as 
ins t ruments-McFadden (1989). McFadden's method of simulated moments 
uses a simulator, instead of direct integration, to approximate 7r(0) in the 
minimization process. 

In the presence of measurement errors, the log-likelihood of the sample on 
(y,  Z)  is 

L(O ) = ~ ~ {Yin " log[Trn(i [ Zin)] + log[fz(Zin)]} " (4.27) 
n ,i 

Conditional MLE ignores the second term. Pseudo MLE uses estimates 
obtained elsewhere of the parameters in the distribution of Z. Unconditional 
MLE requires simultaneous treatment of both terms in (4.27). Stochastic 
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simulations suggested in (4.23) can be used for a numerical implementation of 
unconditional MLE. 

The method of moments, conventional or MSM, can proceed as in (4.26) 
with ~-(0) replaced by the conditional probabilities given Z. This can be 
generalized further by considering alternative minimands and choice of 
appropriate instruments based on the score of the appropriate log-likelihood. 

5. Concluding remarks 

To estimate nonlinear models with measurement errors, we have considered in 
this paper iterative simulation-based procedures. For given values of the model 
parameters, the algorithm requires stochastic simulations for the numerical 
evaluation of the likelihood function or of first order conditions. For the 
limited-dependent-variable case, this entails numerical evaluation of choice 
probabilities, conditional on measured observations of exogenous variables. 
For the general case, the process revolves around evaluation of conditional 
expectations of endogenous variables. 

Semiparametric approaches to the stochastic simulations considered in this 
paper can also be developed. They are linked closely to the related topic of 
semiparametric efficiency bounds which has received a great deal of attention 
recently in the econometric and statistical literature; e.g., Bickel and Ritov 
(1987), Bickel et al. (1989), Gourieroux and Monfort (1991), Klein and Spady 
(1991), Newey (1989a,b) and Robinson (1987, 1988, 1991). The potential uses 
of the stochastic simulators developed here are also indicated for generalizing 
McFadden's (1989) method of simulated moments and related procedures- 
e.g., Hajivassiliou and McFadden (1990) and Pakes and Pollard (1989)-to 
nonlinear errors-in-variables models and for the numerical evaluation of 
maximum likelihood estimates in nonlinear errors-in-variables models. 

Some applications of the procedures discussed here may be found in Reyes 
(1991) and Lim (1990) concerning the adoption of modern technology in 
Philippine agriculture. The method has also been used to develop simulation- 
based alternatives to Kitagawa's (1987) approach (via numerical density 
approximations) to nonlinear filtering and applied to the prediction problem in 
the presence of preliminary data. For example, see Tanizaki (1991), Mariano 
and Tanizaki (1991), the Tanizaki and Mariano (1991, 1992). 
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Bootstrap Methods: Applications in Econometrics 

H .  D .  V i n o d  

1. Introduction and motivation for resampling methods in econometrics 

Computer intensive methods are attractive in empirical research due to 
exponentially declining costs of computing. This chapter reviews Efron's 
method called the bootstrap, and briefly mentions its relation to the jackknife, 
with a particular emphasis on econometric applications. We review several 
theoretical results, especially those which appear to be practical to econometri- 
cians. Bootstrap literature has made tremendous progress in solving an old 
statistical problem: making reliable confidence statements in complicated small 
sample, multi-step, dependent, nonnormal cases. We mention examples which 
deal with important areas in both micro- and macroeconomics. For graduate 
students who do not enjoy theoretical statistics, bootstrap often substitutes raw 
computing power for intricate econometric theory, without sacrificing the 
quality of inference. 

In social sciences, including econometrics, there are severe data limitations 
and yet realistic models tend to be highly complicated. Resampling methods 
provide radically new solutions to several modeling problems involving inter- 
dependence, simultaneity, nonlinearity, nonstationarity, instability, nonnor- 
mality, heteroscedasticity, small or missing data, Hawthorne effect, etc. The 
bootstrap handles these problems nonparametrically and intuitively, avoiding 
complicated power functions, Cram6r-Rao lower bounds, bias corrections for 
Wald or Lagrange multiplier tests, etc. 

Section 2 briefly reviews econometric applications. Many early applications 
of the bootstrap in econometrics, e.g., Freedman and Peters (1984a,b), 
attempt to provide an alternative to asymptotic standard error estimates. The 
jackknife is also used to find improved estimates of the standard errors. This 
survey hopes to be self-contained and accessible, showing that the bootstrap 
offers a potentially valuable insight into the sampling distributions, beyond 
simpler and improved estimation of standard errors. When two or more 
statistical tests are used, their power is often difficult to determine analytically. 
The bootstrap sampling distribution can eliminate the need for tedious 
computations of the power in some cases. Sections 3 and 4 concentrate on the 
regression context. Section 5 is the longest, discussing solutions to the pivot 
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and bias problems, which generated criticisms of the early bootstrap methods. 
In Sections 7 through 10 we discuss recent results regarding estimation of 
confidence intervals with the help of the bootstrap. For example, we consider 
transformations to achieve stability of the variance and normality. Most users 
of confidence sets are painfully aware that the coverage probability of a 95% 
confidence set may not be 0.95 in practice. Our review shows tremendous 
promise in improving confidence statements, including the coverage correction 
algorithm by Beran (1987), a calibration adjustment by Lob (1987) and 
extensions by Martin (1990). In Sections 6 and 10 we review a post hoc 
technique for cleverly manipulating the bootstrap replications. These are 
appealing when computations are relatively expensive, perhaps due to the 
complexity of the inference problem. Section 9 discusses computational 
aspects, Section 11 discusses simultaneous equation and dynamic econometric 
models, which require a special setup different from the traditional bootstrap. 
Section 12 has our final remarks. 

2. Econometric applications of the bootstrap 

In this section we indicate a limited number of econometric and other 
applications of the bootstrap in model building, testing and forecasting. 
Economic theory often focuses on testing nonlinear functions f(/3) of parame- 
ters /3 estimated by /3. The expectation E of f(/3) is then more complicated 
than simply f(E/3) and matters get worse for estimating the corresponding 
standard errors, confidence intervals, etc., especially when simultaneous 
equations or nonnormal errors are present. Bootstrap applications below solve 
these and related problems rather simply. Lunneborg (1988) reports bootstrap 
software for applications in behavioral sciences. Resampling Stats is a software 
firm from Arlington, Virginia which offers an easy-to-use personal computer 
software language suited for learning elementary probability and statistics by 
naive resampling methods. I use the GAUSS and FORTRAN languages in my 
own work. The following classification of econometric applications is subject to 
some unavoidable overlap. 

2.1. Least squares and least absolute value regression and model selection 

Kundra (1985) evaluates linear regressions. Morey and Wang (1985) bootstrap 
the Durbin-Watson statistic. Dielman and Pfaffenberger (1986) test hypoth- 
eses in a least absolute value regression. Srivastava and Singh (1989) apply 
bootstrap in multiplicative models. Ghosh et al. (1984) discuss bootstrapping 
the median. Dijkstra and Veldkamp (1988) bootstrap data-driven model 
selection. Selvanathan (1989) estimates bootstrap standard errors of index 
numbers. Morey and Schenck (1984) study small sample behavior of the 
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bootstrap. McAleer and Veall (1989) report an application to evaluation of the 
deterrent effect of capital punishment in terms of extreme bounds analysis 
which quantifies specification uncertainty. 

2.2. Simultaneous equation models 

Section 11 discusses this topic in greater detail. Freedman and Peters (1984a,b) 
study energy demand and input shares. Lagged dependent variables, cross 
equation restrictions, unknown covariance matrices and related complications 
are handled quite simply by the bootstrap. Green et al. (1987) apply bootstrap 
to estimate elasticities of a linear expenditure system in demand analysis, and 
find that the asymptotic standard errors were too large by a factor of two. Hu 
et al. (1986) show that both the jackknife and the bootstrap can reduce the bias 
of two stage least squares (2SLS). Korajczyk (1985) bootstraps three stage 
least squares (3SLS) applied to international currency markets. 

2.3. Microeconomics 

At the 1984 meeting of the Canadian Econometric Study group Vinod and Raj 
presented a microeconomic application of the bootstrap to ordinary and ridge 
regression, which is reported in Vinod and Raj (1988). They bootstrap 
inference problems associated with the 1984 breakup of Bell system telephone 
companies, and find that the Bell system enjoyed economies of scale, 
supporting Vinod (1976). They reject over-capitalization predicted by the static 
microeconomic (Averch and Johnson, 1962) theory for firms whose rate of 
return on total investment is regulated. Eakin et al. (1990) also bootstrap the 
statistics associated with profit maximization, scale elasticity, and scope 
economies. For large demand systems, Raj and Taylor (1989) evaluate tests for 
within-equation (homogeneity) restrictions showing high power and reliability 
of the bootstrap. Market demand will satisfy the law of demand when the mean 
of certain income effect matrices is positive definite. Hardle et al. (1991) 
bootstrap the distribution of the smallest eigenvalue to test the positive 
definiteness. 

2.4. Forecasting and state space modeling 

Peters and Freedman (1985) evaluate forecasting equations. Efron and Gong 
(1983) bootstrap a three-step prediction rule from a medical application which 
is 'hopelessly beyond' traditional theory. Veall (1987) reports a forecasting 
application where the bootstrap allows for the uncertainty associated with the 
need to project the regressors. Stoffer and Wall (1991) develop a bootstrap 
algorithm for state space and Kalman filter models. 
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2.5. Autoregressive models 

In the first order autoregressions bootstrap can improve estimation of the 
p-values, power of tests, etc. The p-values are interpreted as Bayesian 
posterior tail probabilities by Sims and Uhlig (1991) to avoid complications of 
unit root asymptotics. Rayner (1990) advises against using the traditional t tests 
in favor of the bootstrap. Basawa et al. (1991) prove that for the zero mean 
unit root AR(1) models bootstrap will fail, which may not matter in economet- 
ric models having nonzero trends. Forecasting performance of second order 
autoregressive models is studied by Son et al. (1987). Generalized autoregres- 
sive conditional heteroscedasticity (GARCH) models are used for forecasting 
variances, studying volatility, persistence in variances and structural change. 
Lamoureux and Lastrapes (1990) simulate GARCH models with a bootstrap. 
Vector autoregressions or VAR models are common in applied mac- 
roeconomics, partly because they let the data speak for themselves. Runkle 
(1987) uses the bootstrap for confidence intervals around VAR estimates and 
finds them to be quite wide, similar to those of the asymptotic theory, 
concluding that the data are not 'talking very loudly'. 

2.6. Shrinkage estimation 

Delaney and Chatterjee (1986) bootstrap the biasing parameter of ridge 
regression and provide independent measures of prediction errors. Brown- 
stone's (1990) simulation shows that bootstrap performs well when applied to 
the Stein rule, principal components and related shrinkage estimators. This 
should be contrasted with Sen's (1988, p. 417) careful asymptotic results 
showing that the bootstrap has no advantages over the jackknife for the 
Stein-rule estimators. Vinod (1991b) discusses applications of the double 
bootstrap to ridge regression. 

2. 7. Financial economics 

Stock market data often need estimators of stable law parameters, whose 
sampling distribution can be studied with the help of the bootstrap, as in 
Akgiray and Lamoureux (1989). Schwartz and Torous (1989) estimate stan- 
dard errors of maximum likelihood estimates in a study of prepayment and 
valuation of mortgage-backed securities. Affleck-Graves and McDonald (1990) 
report an application to multivariate testing of the capital asset pricing model 
(CAPM). Their tests include maximum entropy methods, designed to deal with 
the singularity when the number of assets included in the CAPM exceeds the 
number of time series data points. Bartow and Sun (1987) report confidence 
intervals for relative risk models. 

2.8. Limited dependent variable models 

Nested logit models are often used for qualitative choice situations including 
travel demand, energy conservation, auto ownership, scheduling, etc. A 
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bootstrap comparison of various logit estimators is reported by Brownstone 
and Small (1989). 

2.9. Income distributions 

Elderton's kappa criterion is useful in characterizing various density functions 
used in the literature for income distributions including beta, Pareto, Gumbel, 
Weibull, etc. The bootstrap is used by Hirschberg et al. (1988) in studying the 
properties of estimated kappa. Distance type measures are used in economet- 
rics, although they are not emphasized in econometrics textbooks. Vinod 
(1985) suggests a statistic for measuring the economic distance between blacks 
and whites. Romano (1988) provides six examples of distance type measures in 
applied statistics and shows the potential applicability of bootstrapping. 

3. Definition and properties of the bootstrap in the regression context 

This section may be skipped by those familiar with basic bootstrap methods. 
The bootstrap is primarily designed for obtaining sampling distributions in 
complicated situations where analytical results are difficult to obtain. To 
motivate the econometrician, let us consider the regression model 

y = X]3 + u ,  (1) 

where y is a T x 1 vector of the dependent variable, X is a T x p matrix of p 
regressors whose first column consists of all ones. The matrix X has rank p and 
u is a T x 1 vector of independent and identically distributed (lid) errors with 
elements u t and an unknown possibly nonnormal true distribution function F 
with mean zero and variance o- . 

The ordinary least squares (OLS) estimator, b = ( X ' X ) - I X ' y ,  leads to the 
residuals defined as e = y  - X b .  The covarianee matrix of b is 

Cov(b) = s2(X'X)-l~ S 2 = ( e ' e ) / ( V -  p ) .  

An empirical cumulative distribution function (CDF) of OLS residuals puts 
probability mass 1 /T  at each et, and is denoted here by F e. Now the basic 
bootstrap idea is to use F e with mean zero and variance o-~ as a feasible, 
approximate, nonparametric estimate of the CDF of the true unknown errors 
denoted by F u. Let J be a suitably large number (=1000, say). We draw J sets 
of bootstrap samples of size T, with elements denoted by e,i ~ (j = 1, 2 , . . . ,  J 
and t =  1, 2 , . . . ,  T) from F e using random sampling with replacement. To 
understand this sampling, imagine T tickets marked with e 1 to e~, the OLS 
residuals. Next, imagine drawing J random samples with replacement of size T 
from a box containing the T tickets. This generates J sets of T x 1 vectors 
denoted by e,j  having elements e . j  t ( t  = 1 ,  2 ,  . . . , T ) .  Hence the pseudo y data 
are obtained by 

y , j = X b + e , j ,  j = l , 2 , . . . , J  (2) 
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yielding a large number J of regression problems to be used for bootstrap 
inference described below. 

Since repeated use of the same OLS residuals may intuitively seem to be 
peculiar, we will now discuss its motivation. Note that the bootstrap size J has 
been chosen to be a large number, which ensures that the probability P(e,j, = 
et) = 1/T. Hence their variance is 

1{ 
o- e = E(e , j t  ) = -~ var(et) = ~ e 2 ---- s2(T -p)/T. (3) 

t = l  = 

If each residual is 'scaled up' by multiplication by ~ / [ T / ( T -  p)], the variance 
of the rescaled e, j  t should be equal to s 2. We will see that this property is 
crucial for the motivation we seek. Applying OLS to the pseudo y data leads to 

b,j  = ( X ' X ) - ' X ' y , j  and Cov(b,j) = o ' ~ ( Y t X )  -1  (4) 

for j = 1, 2 , . . . ,  J. This expression for the covariance matrix is the same as 
Cov(b) provided we use scaled up residuals X/[T / (T -  p)]e,j  r For the familiar 
regression model satisfying standard assumptions the standard errors of OLS 
regression coefficients by the bootstrap and the conventional methods are 
almost identical. While this provides no benefit in the usual situation, it does 
show the desirability of the property when the bootstrap is applied to a messy 
situation. 

Denote the i-th element of the p x 1 vector b, j  by b,j[i]. The bootstrap 
realizations of b,j[i] over the J resamples may be used for a preliminary 
estimate of its sampling distribution. Then, an estimate of the variance is 

J 

Var(b,[i]) = ( J -  1) -1 ~] (b,:[i] - /~ , [ i ] )2 ,  
j = l  

J 

where b,[i] = J-* ~ b, j[ i] .  
j = l  

(5) 

To achieve greater accuracy, bootstrap confidence intervals involve addition- 
al notation and complications. In the following discussion we omit the index [i] 
when the reference to a single element is clear from the context. It is tempting 
to use the empirical sampling distribution of b, j  over J realizations for the 
construction of a confidence interval. Efron's (1982, p. 78) percentile method 
of constructing confidence intervals for/3 does precisely this. Let us denote the 
empirical CDF of the J estimates b, j  by F , ( z ) =  # ( b , j ~ z ) / J ,  where # ( )  
denotes the number of times the condition in the parenthesis is observed. For 
given a between 0 and 0.5 (without loss of generality) we define the following 
limits of a confidence interval. Clearly, b , j  lies between the lower limit 
bLo(o~ ) =F~l(ce),  and the upper limit bup(a ) - - -F~I (1 -a ) ,  where F21(z) 
denotes the inverse of F,(z) .  Assuming the approximate equality b, j  ~/3, we 
write the following probability from a bootstrap resample (distinguished by 
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subscript *) intended for each element: 

Prob,[bLo(a ) ~< b, i  <~ btjp(a)] = Prob,[bLo(a ) ~</3 ~< bup(a)] 

= 1 - 2 a .  (6) 

This may be called a naive percentile confidence interval based on the 
empirical CDF of bootstrap estimates. A useful property of these intervals is 
that they are invariant to any monotonic transformation. Hence, all it takes for 
them to be correct is that they are correct on some transformed scale. The 
naive interval may be unreliable when the estimator is biased and/or  no such 
transformation exists. To remedy this, Efron also suggests relaxing b , j = / 3  
with a weaker assumption that ( b - / 3 )  ~ - ( b , j -  b). To visualize why this is 
plausible, note that 

b - / 3  -- ( X ' X ) - I X ' y  - / 3  = ( X ' X ) - I X ' u  = W u ,  (7) 

where W = ( X ' X ) - I X '  is a known matrix and u are unobservable errors. Now, 

b, j  - b = ( X ' X ) -  1X'y , j  - b 

= ( X ' X ) - I X ' [ X b  + e,j] - b ,  from (2) 

= ( x ' x ) - ~ X ' e , j  = We, j .  (8) 

Since e , j  and u have the same mean zero and same variance s 2, we have 
We,i  from the right-hand side of (8) approximately equal to Wu on the 
right-hand side of (7). To obtain the left-hand side of (8) into (6) we subtract b 
from each term of the first part of (6) and write 

Prob,[bLo(a ) -  b ~ < b , j -  b ~<bup(~ ) -  b] = 1 - 2 ~ .  (9) 

Now we replace b , j -  b in the middle term of (9) by b - / 3  on the left-hand 
side of (7), which is appropriate because the right-hand side of (7) can be 
approximated by the right-hand side of (8). This manipulation is called a 
'reflection' of the naive confidence interval (6) through b. Thus we write 

Prob,[Zb - bup(a ) ~</3 ~< 2b - bLo(o~)] = 1 -- 2~ (10) 

which is called bias-corrected (BC) confidence interval, and is almost as easy as 
the naive percentile interval of (6). If the sampling distribution of b , j  is 
nonnormal,  the mean, median and mode of the empirical CDF will not 
coincide with that of b. The discrepancy between the sample and population 
medians called 'median bias' is present for asymmetric distributions. A 
correction for such a bias is discussed later (see (2) of Section 5 and (7) of 
Section 7), without restricting ourselves to the regression problem. 

There is another direct method of bootstrapping regressions without using 
the special regression structure which gives rise to residuals. It provides 
information about the variability of b even if the regression specification is not 
correct. One simply uses the empirical multivariate distribution function of 



636 H . D .  Vinod 

(y, X) to draw the bootstrap samples with replacement. As before, imagine T 
tickets marked with (y, X),  to (y, X)r ,  for the T original observations. Next, 
imagine drawing J random samples with replacement of size T from a box 
containing the T tickets leading to J sets of regression data sets. Efron (1981b) 
shows that this method gives exactly the same answer as the more complicated 
bootstrap for censored data. Vinod (1991a) applies the direct method for 
studying the cointegration between consumption and income and suggests a 
modification which makes it applicable for dependent time series data and for 
studying misspecifications. He uses Kunsch (1989) method for the dependent 
data bootstrap. 

4. Definition and properties of the jackknife in the regression context 

Since the bootstrap is a natural extension of the jackknife we shall briefly 
review the jackknife in the regression context, for an elementary comparison 
with the bootstrap. The jackknife is essentially leave-one-observation-out and 
iterate over the entire data set. Rarely, more than one observation may be left 
out. The algebra involved in leaving one observation out in a regression 
context is somewhat remarkable. We shall see that the so-called hat matrix 
H = X ( X ' X )  1 X '  plays an unexpectedly important role in this algebra. For the 
usual regression model Yt = x f i  + u, ,  let x, denote the t-th row vector from the 
matrix X of observations on the p regressors, with t = 1, 2 , . . . ,  T. Now, an 
omission of the t-th observation will result in only T -  1 observations and the 
corresponding ordinary least squares (OLS) estimate bf~ 1 of 13 will change 
depending on the omission. It can be shown that 

b[t ] = b - ( X t S ) - l x t  uO , w h e r e  Ut 0 = f , t / (1  - H,,), (1) 

where fit is the t-th residual, b = ( X ' X ) - I X ' y  from all T observations and/4,, 
denotes the t-th diagonal term of the hat matrix. Using the simple average 
/~ = ( l /T )  Z,~_l btt 1 of the leave-one-out estimates one can define the p × p  
variance of bid as 

T 

Var bit I = ( T  - 1)T- '  E (b[, 1 -/~)(b[, 1 - /~ ) ' .  (2) 
t = l  

Again, it is remarkable that one need not actually compute the variance by 
actually leaving one out and repeating. MacKinnon and White (1985) show 
that 

= - T  X u t u ,  X ] ( X X )  , (3) Varb{, 1 ( T - 1 ) T - ' ( X ' X ) - I [ ( X ' A X )  -2 , o o, , -~ 

where A is a T x T diagonal matrix with t-th element (u°) 2 which in turn 
involves the hat matrix. Liu and Singh (1987) show that the bootstrap estimate 
of variance or regression coefficients is inconsistent if the residuals are 
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heteroscedastic, whereas the jackknife estimate is better. Many early applica- 
tions of the bootstrap to regression use the variance estimate without making 
sure that the errors are not heteroscedastic. If the real interest is in the 
confidence intervals based on quantiles of the sampling distributions-rather 
than the standard errors themselves-Ghosh et al. (1984) show that the 
jackknife fails dramatically. The jackknife estimator of the variance of 
quantiles converges in law to a transform of a chi square random variable, not 
a constant. What would happen if we leave out two or more observations 
instead of one? Sen (1989) shows with asymptotic theory that there is no 
particular advantage to leaving out more observations. 

Schechtman (1991) provides a readable account of application of infinitesi- 
mal jackknifing in asymptotic theory, and gives useful references to and 
examples of Hoeffding's U statistics and influence functions. Sen (1991) shows 
that for some problems having asymptotically degenerate distributions, bias 
reduction role of jackknifing may make it superior to the bootstrap. Since 
other surveys and explanations of the jackknife are available: Hinkley (1977), 
Miller (1974), Wu (1986), etc., we shall not discuss it any further. 

5. The pivot and the bootstrap sampling distribution for a biased estimator 

This section discusses making the bootstrap applicable in non-ideal situations. 
The complexity of some of the literature reviewed here should not distract 
from the basic simplicity in applications. Readers will benefit from a review of 
functional transformations to achieve normality and variance stabilization. See 
for example, Kendall et al. (1983, §6.27, §37.10) or Bickel and Doksum (1977, 
§1.5). Variance stabilization is achieved indirectly by the double bootstrap in 
Sections 5.4 and 5.5 and directly in Section 7 below. It may be helpful to 
review a simple proof of the asymptotic normality of the bootstrap arithmetic 
mean given in Yang (1988). 

5.1. Pivot and normalization for the location scale family 

Assume that there is a statistical model of the probability distribution of a 
statistic. The term pivotal was introduced by Sir R. A. Fisher in the 1930s to 
denote standardized quantities such as Student's t =  (2 - /~ ) /SE ,  where SE 
denotes the standard error. We have SE = (sx/~/n), where 2 and Sx denote the 
sample mean and standard deviation and /, denotes the population mean. 
Fisher named as ancillary any pivotal which is solely a function of the 
observables. See Kotz and Johnson (1988) for recent references and details. 
The pivotal quantities similar to Student's t above are commonly used in the 
construction of 100(1- 2a) percent confidence intervals for/x: Pr(2 + t~SE ~< 
/x~<2=t~SE) = 1 - 2 a ,  where the two observable limits are obtained by 
inverting the pivotal. The general location-scale (/~, o-) family is studied by 
writing the density f(x; Ix, o-) of observations x I to x n as (1/o')g(z), where 
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z = (xi - /x ) /o -  is a pivotal quantity. Now we state some well-known results for 
the location-scale family of distributions without proof. 

LEMMA 1. The sampling distributions of  the following three pivotal quantities do 
not depend on unknown parameters: (i) for Ix if o" is known, pivot(/x [o') = 
x/~(/i  - /x)/o- ,  (ii) for I~ when or is unknown, pivot(/~) = x/-g(/~ - /x)/6- ,  (iii) for 
o- when IX is unknown, pivot(o') = 6-/o'. 

LEMMA 2. The (cumulative) distribution function F(x; ~, 6-) is a pivotal quanti- 
ty. 

LEMMA 3. The likelihood ratio for choosing between two models (subscripts 0 
and 1) evaluated at the maximizing parameter values, A01 = II f(xi; fLo, 6-o)/ 
II f(xi; fq, 6-1) is a pivotal quantity. 

In bootstrapping we have no assurance that the underlying distribution is 
from the location-scale family. Some criticisms on the bootstrap arise from the 
failure of the above lemmata for arbitrary distributions. 

Efron's  (1982, Chapter 10) normalized bias-corrected (NBC) method,  after 
a standardization to N(0, 1 ) -  a unit normally distributed var iab le -  makes the 
'reflection' used in equation (10) of Section 3 above. The OLS estimator b is 
usually transformed to a pivotal quantity 0 = [ ( b -  fl0)./SE], where the null 
hypothesis is assumed to state H0:13 =/3o and where ./ denotes element-wise 
division by corresponding standard errors (SE). It is convenient to use the 
same notation 0 for a scalar single element of the vector 0. From the empirical 
CDF of bootstrap replications evaluated at the pivotal quantity 0 compute 
F . ( 0 )  = P r o b . (  b .  ~< t)), a scalar in the range [0, 1]. Now denote another  scalar 

Z 0 = @ - I ( F , ( 0 ) )  (1)  

using the inverse of the distribution function @ of the standard normal variate. 
Now 0 - 0 - N ( - z  0, 1). When t) has a symmetric distribution, the median bias 
is zero and z 0 = 0. When the distribution is skewed to the right, its mean is 
larger than the median and the quantile z 0 > 0. 

The normalized bias-corrected (NBC) percentile method leads to the 
following approximate 1 -  2a confidence statement: 

Prob . [F , l (@[2z0  - z ~ ) ]  ~<0 --< F, l (@[Zz0 + z~])] = 1 - 2 a ,  (2) 

where F ,  1 denotes the inverse CDF, and z~ is the upper a point for the 
N(0, 1) normal distribution function @(z~) = 1 - a. If the bootstrap distribu- 
tion is (skewed) median biased, Efron (1982) shows that the bias correction by 
using (2) does help. If the distribution is median unbiased, z 0 = 0 and using (2) 
will not change the interval. For example, if z~ = 1.96 and z o = 0, 2z 0 - z~ = 
-1 .96 ,  @(-1.96)  = 0.025 = a and the lower limit from (2) is simply the 0.025 
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quantile of the bootstrap CDF. While 'normalization' is accomplished by (2), 
direct 'variance stabilization' will be discussed in Section 7. 

5.2. Implications of Edgeworth expansion type asymptotics 

Starting with Singh (1981) much theoretical research was attempted to use 
asymptotic theory and advanced mathematical statistics including saddlepoint 
and Edgeworth expansions to study the bootstrap for estimation of the 
underlying sampling distribution. An insightful survey of various results related 
to Edgeworth expansions is made by Babu (1989), who also reviews empirical 
Edgeworth expansions, where population moments are replaced by corre- 
sponding sample moments. Babu also provides references to the Bayesian 
bootstrap and shows when the bootstrap does not work. For example, if one 
applies the bootstrap to obtain the sampling distribution of the square of the 
sample mean a chi square is appropriate. Babu indicates the modification 
needed to make the bootstrap work. Efron (1985) shows that in the parametric 
case one can use the Edgeworth approximation instead of the empirical CDF 
based on Monte Carlo replications. 

Let us consider a univariate parameter /x with estimator /2 based on n 
observations, whose variance is o-2/n. The underlying distribution is not 
assumed to be from the location-scale family and hence Lemma 1 above fails to 
hold. The basic idea is to use the asymptotic Edgeworth expansion of the 
underlying arbitrary distribution, whose leading term is *,  the CDF of the unit 
normal. This expansion is used for approximating the distribution functions 
used in advanced econometrics as well, Amemiya (1985, p. 93). We use the 
usual notation ].z i for the i-th central moment, O(-) for order of magnitude and 
Op(.) for order in probability. Now, 

Pr(X/n(12 - / x )  ~< x) 

= *(x/o-) - n-1/z(I.,3/6o'3)[(x/cr)2 - 1]f(x/cr) + O(n-1) ,  (3) 

where (z 2 - 1) is the Hermite polynomial of degree 2 appears with z = x/o- and 
where f is the density of the normal. For brevity, denote a polynomial in x and 
its moments appearing in (3) by pl(x), its estimate by/31(x) and 'conditional on 
the sample' by (-IS). Recall from Section 3 equations (7) and (8) that the 
bootstrap insight in the present notation is to replace 12 - / z  from the left side 
of (3) by 1 2 , -  12, where the moments based on bootstrap replications are 
denoted by the subscript *. Hence, 

Pr(~/n(12, - t2) ~<x I s )  = *(x/e)  + #l(x)f(x/CO/Vn + Op(n-~/2). (4) 

Subtracting (4) from (3) and noting that /~1-Pl  and 6"-or are both of 
Op(n -1/2) we have 

Pr(X/n(12 - / x )  ~<x) - Pr(~/n(12, - 12) ~<x IS) 

= . (x /o - )  - . (x /6")  + % ( n  (5) 
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which is in error by Op(n-1/2), because 6"-or  is Op(n-1/2). To reduce the 
error of Op(n -l) w e  use a studentized pivotal quantity with 6- in the 
denominator, Babu and Singh (1983, 1984), Beran (1988), Fisher and Hall 
(1989) and Singh and Babu (1990). Then we have 

Pr(~/n(/2 - /x)/6" < x) = q~(x) + n-1/z(ix3/6o'3)(2x2 + 1)f(x) + O(n-a ) .  

(6) 

It can be shown that a bootstrap estimate similar to (4) leads to a cancellation 
of the @(x) term, when a subtraction similar to (5) is made. Thus, studentiza- 
tion reduces error and it is not surprising that the expression/x3/6o -3 reappears 
in Section 7, equation (11) in the context of improving confidence intervals. 
The notion of error above is extended to an error in rejection probability 
(ERP) which permits formal comparison of tests in Beran (1988). These results 
have multivariate and multiparameter extensions by the same authors. 

Babu and Singh (1983, 1984) show that the bootstrap can estimate the 
sampling distribution F up to a second order term. Their proofs require the 
technical assumption that the underlying distribution is strongly nonlattice 
defined as follows. Denote F(t )= f e itx dF, the characteristic function. F is 
called strongly nonlattice if I P(t)l # 1 for all t # 0. A practical implication of 
Babu and Singh's work is that studentization is recommended, even for non- 
location-scale families. For certain estimators like the ratios of means one can 
get around the problem of lattice distribution by a transformation (Babu, 1989, 
p. 227). 

5.3. The definition o f  a root which may depend on unknown parameters 

Beran (1987) has introduced a concept of a root which is important in the 
bootstrap literature. It has two properties. First, the root is motivated by a 
pivot, but is not necessarily a pivot, because the sampling distribution of a root 
may depend on the unknown parameters. Second, the form of a root should be 
such that its sampling distribution can be consistently estimated. Often, we 
have a root when an attempt to studentize or standardize by a monotonic 
transformation does not necessarily remove the dependence on unknown 
parameters. 

5.4. Sampling distribution of  a root is uniform only in the ideal situation 

Since a CDF is always between 0 and 1, the estimated CDF of a root will also 
C[0, 1]. If all values in [0, 1] are equally likely, we have a uniform density over 
the [0, 1] interval. Beran (1987) suggests a transformation of the scalar root Rn 
designed to improve the performance of the bootstrap. His subscript n reminds 
us about the presence of an underlying null hypothesis. 

R~,~ = H. (Rn) ,  (7) 
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where H,  is the estimated CDF of R~ and the subscript n, 1 will be replaced by 
n, L later in the multivariate context. Note that the original roots Rn are not 
restricted to the range [0, 1], but the transformed roots are CDFs, and must be 
in the range [0, 1]. The key result here is that the sampling distribution of R,,  1 
is uniform over [0, 1] only in the ideal situation when the root is a pivot having 
a continuous distribution free from the problems of bias, lattice distribution, 
etc. When the situation is not ideal, often double bootstrap can be used to 
make a simple adjustment. The double bootstrap needs vast computations to 
estimate the CDF of R~, 1 denoted by Hn, 1. F r o m  this, one finds the largest 
1 - a quantile called c.,~. In other words, we solve for cn,~ in 

Hn,l(Rn, 1 = Cn,1) = 1 -- a (8) 

which must be in the range [0, 1], because it is a quantile of a variable 
restricted to [0, 1]. However, c., 1 itself need not be 1 - a, unless we have the 
ideal situation mentioned above. The difference between c.,~ and 1 - a  
suggests skewness, nonnormality, etc. The simple adjustment mentioned above 
is to use the (c.,1)-th quantile of the CDF of the original root denoted by H. .  
A compact equivalent formula is to consider the confidence set defined by the 
inequality 

R.  < H~ 1 (Hn)l(1 - a)} (9) 

which can be seen from (7) and (8). 

5.5. Double  bootstrap for  regression: One parameter case 

Now we explain the double bootstrap for the regression example of equations 
(1) and (2) of Section 3. Let us define a root R,  -- ~-(b) with a transformation "r 
(e.g., studentization). Recall that b , j  estimates from j -- 1, 2 , . . . ,  J bootstrap 
iterations are computed first; and then we store their residual vectors as e,j. 
The CDF of R n = z(b,j)  is called Hn(w ) = Pr(Rn < w) for any w which is a 
function of b,j .  If we were to stop with the single bootstrap, the null hypothesis 
would have been rejected when R,  ~> cj = H~I(1 - a) ,  where the critical value 
cj is for a 100(1-  a)  percent test. The double bootstrap is designed to refine 
the critical values of the single bootstrap, whether studentizing was done at the 
first stage or not. For each j we compute a T x 1 vector of pseudo y values 
defined by the equation: y , k = X b , j + e , j k ,  where e,] k are found from the 
T x 1 vector of e,] values, by using sampling with replacement. This is 
repeated for k = 1, 2 . . . .  , K (=1000, say) second stage bootstrap iterations. 
Regressing these pseudo y values on X yields b, j  k and Rn, j = ~-(b,jk) for each j. 
Let  Zj denote the fraction of Rn, j values which are less than R,  = ~-(b,j) in the 
second stage bootstrap over K iterations. Note that Zj E [0, 1] is the key 
computation from the double bootstrap, used to adjust the quantile associated 
with R,  from the single bootstrap. 

Vinod's (1991b) ridge regression example has J = 1000 and a 95% confidence 
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interval is desired. Since 2.5% of 1000 is 25, the lower limit is based o n  R n at 
the 25-th ranked value of the first stage bootstrap distribution. The corre- 
sponding Zi from the second stage bootstrap with K = 1000 is 0.030. Why is 
0.030 close to 0.025 for this example? A plot of the distribution of K times Zj 
attached as Figure 1 is close to the uniform distribution over the range 0 to 
1000, where the corresponding normal distribution is superimposed. Uni- 
formity implies that there is no serious nonnormality, lack of a pivot, etc. 
According to above theory, 0.030 is a somewhat more believable location of 
the true quantile than 0.025, because the latter represents only one out of K 
realizations. For sufficiently large K and J, the CDF of Zj over j = 1, 2 , . . . ,  J 
approximates Hn. 1 and its inverse evaluated at 1 - a  and (9) yield the 
confidence interval quite simply. In the above example, we just use the 30-th 
ranked value from the first stage sampling distribution as the lower limit of the 
desired confidence interval. Vinod (1991b) also reports the case where 1000 
times the earlier ridge regression shrinkage factor is used, leading to a highly 
nonuniform sampling distribution in Figure 2, providing a warning that the 
ridge estimator is ill-behaved, with excess shrinkage suggested by the consider- 
able probability mass in the left-most pillar. Figure 2 is similar to Figure 1 with 
the normal curve included for comparison. 

5.6. Mult iparameter regression case 

Confidence intervals and significance testing in the multivariate case is 
discussed in detail in the readable work of Miller (1981, Section 2.1). In the 
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Fig. 1. Sampling distribution of 1000 times Zj = #(~'(b**j~)~<~'(b,j)), the number of times 
transformed second stage bootstrap estimates are no greater than the first stage estimates. 
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Fig. 2. Sampling distribution of 1000 times Zj= #(r(b .Sk)~r(b . j )  ) for the case when excess 
shrinkage (1000 times that in Figure 1) is used, leading to highly nonuniform distribution. 

normal regression framework where 

b ~ N(13, 0 - 2 ( X ' X ) - I ) ,  

s 2 = y ' [ / -  X ( X ' X ) - l X ' ] y / ( r t  - p ) ,  (n - P) $2cr2 ~XT-p2 (10) 

which is a chi square random variable with T - p  degrees of freedom (df). If 
we are interested in a fixed q-dimensional subspace of ~ T = { L =  
(L 1, L 2, . . . ,  Lp)) of the p-dimensional space, and let L'13 = £i:lP Li/3 i denote  a 
linear combination defined in the q-dimensional subspace: For example, if 
q = 2 and Li = 1 for all i ~< 2 and Li = 0, otherwise, L'13 =/31 + 132- The Scheff6 
technique gives simultaneous confidence intervals for L'13 implying that 

er{L'13 E L ' b  +_ X/( q F q , . _ p ) s X / [ L ' ( X ' X ) - I L  ] , V L  E ~ }  = 1 - a ,  

(11) 
c~ 

where V denotes 'for all', Fv,n_ q denotes the upper 100a percent point of the F 
distribution, with q degrees of freedom (df) in the numerator  and n - p  df in 
the denominator.  If only one linear combination is involved, the classical 

ct regression theory would lead to a similar interval except that ~/ (qFv , ._p )  is 
replaced by t a /2  the upper 100a/2 percent point of the t-distribution with n - p ,  

n - p  degrees of freedom. 
In Beran's  (1990) terminology, the subscript n denotes the null hypothesis, 

subscript L refers to the matrix defining linear combinations and a root of the 
confidence set is defined by 

R . ,  L = IL ' (b  - 13)ISEn, 1 , where SE., L = s ~ / [ L ' ( X ' X ) - I L ]  (12) 
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which is studentized. In the nonparametric regression case the F distribution of 
(11) is replaced by q-1 times a chi square with q df in computing the standard 
error. In the nonnormal case the asymptotic distribution of the root depends 
upon both/3 and the linear combination L. The bootstrap method can generate 
the sampling distribution and CDF of Rn, L and its supremum supL R.,L, over 
all possible linear combinations. Denote the above CDFs by H . ,  r and H.  (for 
the null) respectively, when the CDF is evaluated at the estimated values of 
the unknown parameters. In the regression case, we have the following 
analytical expressions for the CDFs, which can also be estimated from 
bootstraps. 

H~, L = qt(l&rL) , where ~c = ~ r X / [ L ' ( X ' X ) - I L ] ,  (13) 

where ~ denotes CDF of [Z[, where Z has a standard normal distribution. The 
reason for the absolute value is that the root in (12) is defined as an absolute 
value. For the regression case the null distribution is 

I4,  = Xq " r e - ' ( . ) ,  (14) 

where Xq is the CDF of the square root of chi square distribution with q df. 
The critical value of the underlying test is denoted by c L. For a 100a percent 
test, the critical value is at 100(1 - a)-th quantile of the CDF of the underlying 

- 1  - 1  null distribution. Denote by Hn,L( t  ) and H n (t) the largest t-th quantiles of the 
corresponding CDFs. It can be verified that the critical value is 

- 1  - 1  
c L = H n , L ( H  ~ (1 - a)) (15) 

by the method of bootstrapped roots, or the B method. In other words, when 
the value of the statistic L ' b  is larger than c L, the null hypothesis is rejected. 
This is similar to (9) above. 

Beran (1990) renames double bootstrap as the B 2 method, which uses an 
induced root defined by 

- 1  - 1  
S,,,L = H . . L ( H .  (R . ,L ) )  = Xq[ lL ' (b  - / 3 ) ] / S E . , L ] ,  (16) 

where the standard error is from (12) above. This induced root becomes the 
root in the next iteration. The bootstrap CDF of S.,L is denoted by K~, L. The 
bootstrap null CDF of supLS., L is denoted by K~. The critical value of the B 2 

method becomes 

- 1  - 1  - 1  K-1 c L = H . , L ( H  . {K.,L( . (1 - a))}) (17) 

and generalizes the pre-pivoting transformation (7) of Beran (1988). It appears 
to be computationally burdensome, but achieves error reduction and increased 
balance compared to the B method. Beran (1990) shows that in the regression 
setting, B 2 method yields Scheff6's exact simultaneous confidence intervals, is 
balanced and has the correct asymptotic level at every sample size, whereas the 
B (single bootstrap) method may not. Vinod and Raj (1988) show that ridge 
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regression leads to a lack of pivot and dependence on unknown regression 
parameters. Using the double bootstrap (B 2) method is a possible new solution 
to this and similar problems. Vinod (1991b) shows that the lack of a pivot for 
ridge regression problems need not be serious when the sample distribution 
(see Figure 1) of K times Zj is close to being uniform. The computational 
pointers are given in Section 9. An econometric application to cointegrating 
regressions is found in Vinod and McCullough (1991). Although Veall (1986) 
finds that the bootstrap for regression under serially correlated errors does not 
help solve the bias problem, Rayner (1991) shows that it works with a simple 
modification. 

6. Improved estimation of the bias in the regression context by the post hoc 
method 

Bootstrap estimates of the bias in the regression context may be obtained 
directly from (4) of Section 3 as 

J 

Bias d = j-1 ~] b,j - b . (1) 
j=l 

Efron (1990) has suggested an alternative estimator which retains the simple 
random sampling with replacement of the original bootstrap, but attempts to 
process the data differently. The aim is to reduce the number J of iterations 
and improve estimates of the bias, variance and quantiles of the sampling 
distribution. The new data processing keeps track of the number of times 'an 
individual value e I to e r of the original vector of residuals e = y - X b  occurs in 
the J bootstrap replications. For t = 1, 2 , . . . ,  T let 

Pt = (total number of occurrences of e t over J 

bootstrap replications)/J. (2) 

The following method is called a post hoc correction, because its data 
processing is made after the J bootstrap replications are chosen. It is obviously 
simpler than a balanced method of resampling suggested by Davison et al. 
(1986), where balancing is enforced before the bootstrap sample is chosen. 

Consider a T x 1 vec to r  pe whose t-th element is pte t  and generate the 
pseudo y values by Y,a = X b  +pe. N o w ,  regressing Y*a on X yields the vector 
b , p  of post hoc corrected regression coefficients and an alternative post hoc 
estimate of the bias denoted by 

J 

Biasp = j -1 E b,j - b . p .  (3) 
j=l 

With considerable ingenuity Efron proves that the post hoc Biasp estimate is 
superior to the direct estimate Bias~ of (1). Efron also supplements his proofs 
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with simulations. The post hoc method can also improve confidence interval 
estimation, and will be discussed later in Section 10, after we review newer 
confidence interval estimators. 

7. Efron's  bias-corrected accelerated B C  a interval 

The progression from naive and bias-corrected (BC) confidence intervals (see 
(10) of Section 3) to normalized BC (see (2) of Section 5) involved normaliza- 
tion. In this section we consider the next step of 'variance stabilization', though 
it may be computationally burdensome. The accelerated bias correction BC~ 
method proposed by Efron (1987) stabilizes the variance and was motivated by 
Schenker's (1985) counterexample to the BC method. The expression 'accele- 
ration' is used, because one computes the speed at which the standard 
deviation is changing. This section also reviews Diciccio and Tibshirani's (1987) 
extension of BC a intervals designed to achieve second order correctness 
described by Efron (1987, p. 199) as follows. The coverage probability on each 
side of the confidence interval should be within O(T -1) of the claimed correct 
value, and the endpoints should agree through order Op(T -1) with the 
endpoints of the correct interval. 

For easy access to details in the original article, let us now use Efron's (1987) 
notation as much as possible. The starting point is the asymptotic result for an 
estimator 0 of 0 

(0  - 0)/6- - N(0, 1) implying 

Pr[0 + z(")5 ~< 0 ~< 0 + z ( 1 - a ) 6 - ]  = 1 - 2 a ,  (1) 

where z (") is 100a percentile of the unit normal. By defining a 100(1-  2o 0 
percent confidence interval instead of the usual 100(1-  a) ,  Efron's notation 
avoids several expressions containing ½a. For example, when a = 0.025, we 
have z (") = ,1 .96  and z (1-") = 1.96 giving the usual 95% interval. The interval 
(1) can be misleading if E(0 - 0 ) ¢ 0 ,  that is if 0 is a biased estimator, or if 6- 
is not a constant. The BC a interval uses a monotone transformation which in 
turn involves a bias constant z 0 used above and an acceleration term denoted 
by a and derived in (11) below. For the transformed variable we seek the 
simple setup: (~ = 4) + (a transformation of Z) ,  where Z - N(0, 1). Thus, we 
let 

= g ( 0 ) ,  4) = g O ) ,  Z - N ( 0 ,  1),  (2) 

o-6 = 1 + a~b subject to % > O, (3) 

which introduces flexibility in the true standard deviation by allowing it to vary 
with ~ the true 4) as a multiple of the acceleration constant a. Choosing 
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% ( Z  - z0) as our transformation of Z,  

6 = ~b + % ( Z  - z0) implying E ( 6  - ~b) = % ( - z 0 )  (4) 

providing an expression for the bias which depends on a, because % depends 
on a. From (2), (3) and (4) one can verify an algebraic identity: 

(1 + a 6 )  = (1 + aqS)[1 + a(Z  - z0) l . (5) 

Taking natural logs of both sides leads to the linear model: 

ln(1 + a 6 )  = In(1 + a4~) + ln[1 + a(Z  - z0)] ,  or briefly ~ = ~ + W .  

(6) 

The corresponding confidence interval is 

Pr[~ - w (1 ~) ~< ~" ~< ~ - w (~)] = 1 - 2 a ,  (7) 

where w (~) is 100a percentile for the error W in (6). Now, the transformation 
g(O) is a sequence of two mappings 0 ~ ~b ~ ( which stabilize the variance and 
normalize the original 0, as much as possible. Starting with (7) and using 
inverse transformation g-1 one improves the confidence interval (1). For 
example,  the definition ~ = In(1 + a 6 )  implies that e x p ( ~ ) =  1 + a6 ,  or 6 = 
[exp(~) - 1]/a is the inverse map ~---~ 6. Similarly, Z - z 0 = (e TM - 1) /a  can be 
derived from (6). Briefly, the BC a method assumes: 

g(O) = ( 6  - ~b) -  N ( - z 0 %  , o-~), (8) 

where % is affected by the acceleration constant a from (3). Hence,  z 0 + ( 6  - 
q5 ) /%- -N(0 ,  1). Let  z ( ) denote the a-level lower limit of the confidence 
interval from N(0, 1). From (2), (4) and (8) after some algebra we have a 
practical f o rmu la  for the lower limit of an a-level confidence interval for ~b as 

~bLO(a) = 6 + % A / ( 1  - a A ) ,  where A = [z 0 + z (~)] (9) 

and the upper limit has a negative sign after 6. This formula can be used only 
after we develop expressions for z 0 and a. The expression for z 0 was derived 
earlier in (1) of Section 5 as 

z o = q ) - l ( F , ( O ) ) .  (10) 

Efron's  approximation for the acceleration constant a is 

a = ~SKEW(SCORE)  where SKEW(u) , 3 / 2  3 , = ~Z3//[Z 2 = / x 3 / o -  u . (11) 

SKEW(u) is related to the usual skewness coefficient, defined as a ratio of 
moments  of u indicated by the subscripts of ~ in (11). Note that u equals 
SCORE,  or the score function of the density function f ( 0 )  evaluated at 0 = 0. 
Thus, S C O R E = ( d / d O )  ln f ( 0 ) .  In the nonparametric case, assuming iid 
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observations xl ,  x 2 , . . .  , x T we have 0 = h(F),  where P denotes the empirical 
CDF, and h ( F )  is smoothly defined for choices of F near/~. Here ,  Efron (1987, 
p. 178) replaces the SCORE by the empir i ca l  in f luence  f u n c t i o n  Ui, i = 
1 , 2 , . . . ,  T defined by 

U i =l im ° (1/A)Ih((1 - A)P + a6,) - h ( F ) ] ,  

where 6~ is a point mass at x i . 

Observe that U i measures the change in the estimate 0 with respect to the mass 
on point x i and has a finite difference approximation and uses A = (1 + T)  -1. 
In the robust statistics terminology, Hoaglin et al. (1983), U i measures the 
empirical influence of the observation x i on the estimate. The acceleration 
constant for the nonparametric case is given by 

a = ~ U U ( l l a )  
. =  

- l 1 

if 0 is the sample mean Ui = (x i - 2)  and both a and z 0 are sample skewness 
divided by 6X/T. Vinod and UUah (1981, p. 44) give an elementary discussion 
of the definition of U i and derive the particular case of the mean. The 
expression (11) with factor 1 is justified on the basis of an asymptotic 
skewness-reducing transformation, DiCiccio (1984). Recall equation (6) of 
Section 5. The acceleration constant a measures the speed at which the 
standard deviation of g ( O )  is changing with respect to g(O).  Martin (1990) 
provides further asymptotic results for the B C  a method and remarks that it 
suffers from two undesirable properties arising from the  presence of inversion 
and the use of sample estimates of high order moments.  Efron recommends 
using the B C  a method when z 0 < 0.2 and la[ < 0.2 on the basis of simulation 
experiments. 

DiCiccio and Tibshirani (1987) have extended the B C  a method to what they 
call BC °, where the superscript 0 reminds us that the starting point c of an 
integral in a variance-reducing transformation gl ( t )  of (13) below is chosen to 
make g (0)  = 0. Although explicit knowledge of g is not required for the BC a 
method,  DiCiccio and Tibshirani suggest that in one-parameter  problems g can 
be explicitly written as 

g(t )  = g A ( g l ( t ) )  with gA(S) = (e As - 1 ) /A ,  (12) 

where A is an acceleration constant. In particular, one may choose A = a of 
(11) to achieve skewness reduction. Observe that the inverse of (12) leads to 
s = l n ( l + A g z ) / A ,  which is reminiscent of ~ = l n ( l + a ~ b )  in (6) above, 
provided A = a and 4, = gA exp(1/A) + [exp(1/A) - 1] /A .  Asymptotic theory 
suggests that a variance (related to the Fisher information) stabilizing trans- 
formation is given by 

g~(t) = X/[Kz(U)] d u ,  (13) 
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where c is an arbitrary constant chosen to m a k e  g l ( 0 )  = 0 and where K2(0)  : 
E[dZln Lkhd/d0 2] is the expected Fisher information evaluated at 0 for 0 from 
the relevant log likelihood (denoted by In Lkhd). Often, one can use asymp- 
totic theory to obtain c and gl explicitly. Efron's (1987, p. 199) rejoinder states 
that if one uses ga and gl the computational burden is reduced, but one is 
placing a greater reliance on asymptotic approximations. The BC a method uses 
the bootstrap distribution F .  to compute z 0 whereas BC°a computes g = gA(g l )  
explicitly. It can be shown that BC a and BC°a are second order equivalent. 
Both methods generalize ( 0 -  0 ) /6 - -  N(0, 1) to the assumption that 

g( O ) - g(O ) - N(-z0(1 + ag(O )), [1 + ag(O )] 2) (14) 

designed to stabilize the variance and achieve normality by eliminating the 
skewness. The transformation gl stabilizes the variance and then ga eliminates 
the skewness while changing the variance to [l+ag(O)] 2. Although this 
destabilizes the variance somewhat, exact pivotal analysis is still possible 
because of the simplicity of the variance expression. 

Using g(0) = 0, DiCiccio and Tibshirani (1987) show that the explicit g from 
(12) and (13) leads to the following expression for the density 

f (s)  = fN[Z0 + (exp{gl (s )a  } -- 1)/a] exp{gl(s)a}[Kz(S)] 1/2 , (15) 

where fN is the N(0, 1) unit normal density. The usual central limit theorem 
approximation leads to N(0, [K2(0)]-1), which is correct to order T -1/z. The 
BC ° procedure refines it further. A practical use of (15) appears to be 
cumbersome, and further work is needed to mechanize the estimation of 
constants z0, a and g functions. For example, estimation can involve empirical 
influence components, a matrix of second order influences and numerical 
integration, DiCiccio and Tibshirani (1987, p. 168). The method of importance 
sampling and exponential tilting described by Johns (1988) leaves the variance 
of the original statistic unchanged, uses a pivot and Huber's influence function 
and yields symmetric confidence intervals. However, symmetry may not be 
desirable in all situations. The BC a method does not assume symmetry, 
whereas BC ° may be effective even when a nonmonotonic transformation, 
similar to Fisher's classical tanh -1 transformation of the simple correlation 
coefficient, is needed. 

8. Confidence interval: Coverage correction and adjustments 

It was stated earlier that the practitioners are painfully aware that a 95% 
confidence set may not actually have a coverage probability of 0.95, and that 
the bootstrap can help. Consider a sample X = { X 1 , X 2 , . . . , X r }  aimed at 
estimating the parameter 0 and a bootstrap resample X* = {X1, X 2 , . - - ,  X r  } 
obtained by sampling with replacement. Let CI0(a IX ) = [OLo, Oup] denote a 
nominal ( 1 - o  0 level confidence interval for 0 based on the sampling 
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distribution of O, where OLO and Oup denote the usual lower and upper 
(a/2)-points.  Let  the coverage probability of CI 0 be denoted by 

COVG0(~ ) = Prob{0 E CI0(a IX) : [0LO, 0UP]} • (1) 

Thus the problem faced by the practitioner is that CO V G  0 ¢ 1 -  ~. The idea 
behind the coverage correction algorithm is to try other values in the neigh- 
borhood of a and use the bootstrap resampling distribution to adjust the CI 0. 
One can then choose a value of a denoted by & which yields the correct 
coverage probability in the sense that & solves the. following equation: 

COVG0(& ) : Prob{0 E CI0(& IX*) = [0LO, 0uPl} : 1 -- a ,  (2) 

where it is understood that there may be nonuniqueness. That  is, several values 
of & may satisfy (2). Martin (1990) calls this nonunique solution method the 
coverage correction algorithm and attributes it to Beran (1987), Hall and 
Martin (1988) and Lob (1987). Actually Loh calls this the method of 
calibration and considers a reflected confidence interval 

gcI0(alx*) [20 * ~ * . = --0up, 20- -0LO ] (3) 

Loh (1987) goes one step further and suggests choosing that & which minimizes 
the length = (0 uP* - 0 LO* ) and ensures correct coverage of both the CI 0 and 
RCI 0. This obviously solves the nonuniqueness problem yielding a single &CSR 
value. Loh calls the resulting interval the calibrated shortest length reflection 
(CSR) interval and reports its superiority in a simulation. Note that in finding 
the shortest interval CSR, there is no need to treat the tails symmetrically, 
providing further realism. 

Considerable asymptotic theory is reported by Martin (1990) for the 
nonunique & case, providing a separate set of results for one-sided and 
two-sided confidence intervals. For example, he proves that the coverage 
correction algorithm reduces the error in coverage by a factor 1/X/T for the 
one-sided and a factor 1/T for the two-sided intervals. The theory suggests 
superiority of RCI 0 intervals of (3) over Efron's accelerated bias-corrected BC a 
method. Martin also considers X** as a resample drawn from X* which is 
similar to the double bootstrap. 

9. Practical bootstrap computations from sorted resampling estimates 

In this section we discuss some practical aspects in bootstrapping. As before,  
consider a sample X = {X1, X2, • • • , XT} aimed at estimating the parameter  0 
and a bootstrap resample X* = {X~, X 2 , . . . ,  X~} obtained by sampling with 
replacement.  Now X* yields a sampling distribution of 0 from the bootstrap 
replicates 0 i f o r j  = 1, 2 . . . .  , J as follows. Simply sort the J values of 0j from 
the smallest to the largest by a standard computer  algorithm, and find the 
quantiles from the sorted values to represent the bootstrap distribution. Let  us 
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denote  the integer part of a number x by Ix] and let J = 101. The median or the 
50-th percentile with a = 0.5 is the j-th sorted value with j = [Ja] + 1 = [50.5] + 
1, which may be denoted by Sor t (0 j ,  51). On the other hand, when J = 100 we 
have J a  = 50 is an integer, and the median is 0.5[Sort(07,50) + Sort(0 7, 51)] 
the average of [Ja] = 50-th and [Joz] + 1 = 51-st sorted values. If the dis- 
tribution of bootstrap replicates is median-unbiased, we expect the median to 
equal 0. It is convenient to write a separate computer  procedure Qnt(0~,  Ja) 
to compute a quantile from the sorted values for any a in the interval 0 to 1, 
which carefully deals with both cases, whether J~ is an integer or not. 

How do the sorted values help find the coverage probability C O V G  0 of (1) 
above? Recall that we have CI 0 = [0Lo, Ore], where the limits may be from the 
normal (or asymptotic) theory. Since 0 is unknown, we can never know the 
true coverage probability of (1). However ,  the bootstrap approximation of 

- 0 by 0 * - 0 may be used to find the number J '  of the sorted 0j values that 
belong to the [OLo, Ovp ] interval. Now an estimate of CO V G  0 is J'/J, which 
may not exactly equal 1 -  a. The coverage correction algorithm suggests 
changing the a slightly, find the corresponding interval [0Lo, Otjp], and a new 
J'/J, which may or may not equal 1 - a. The i-th change of a which yields the 
correct coverage probability, J' /J  -= 1 - a, is denoted by &i, and their complete 
set is denoted by & = {&i}. One can proceed to estimate the calibrated shortest 
length reflected (CSR) interval along the lines indicated above. 

How do the Qn t (0 j ,  Jo 0 from the sorted values yield a confidence interval? 
Consider a two-sided naive 95% interval which has 2.5% mass in each tail. We 
seek 2.5 percentile as the lower limit and 97.5 percentile as the upper limit. In 
standard textbook notation the confidence level is denoted by 1 - a = 0.95 with 

= 0.05 resulting in the interval [Qnt(0j*, Ja/2) ,  Qnt(0j*, J(1 - a ) /2) ] .  How- 
ever, this naive interval may be median-biased, or may not have the correct 
coverage probability. The BC, BC a and BC ° intervals are computed by using 
reflection, acceleration, etc. for appropriate quantiles. 

The computation of the double bootstrap is costly. For each resample from 
the J sets of X* one further resamples K times. If J = 1000, and K = 1000 we 
are considering a million resample estimates. For each j = 1, 2 , . . . ,  J there are 
k = 1, 2 , . . . ,  K bootstrap estimates denoted by 0j~. The corresponding confi- 
dence intervals are defined by [Qnt(0j~, K~/2) ,  Qnt(0j~, K ( 1 - 0 0 / 2 ) ] .  Of  
course, one may use (9) of Section 7 and BC ° methods here. The estimate of 
coverage probability in these cases is simply the proport ion of J intervals of 
nominal level 1 - a that covers 0. Clearly, by slightly changing o~ one obtains 
new intervals and new coverage probability estimates. We are interested in the 
set & = {a~} of o~ values yielding the correct coverage probability. The set & 
may be explored further for finding intervals with minimum length. The 
confidence intervals based on & are called coverage-corrected intervals. This is 
similar to the case above, where the initial interval, CI 0 = [0Lo , 0tjp] is from the 
normal theory,  rather than from a first level bootstrap. In complex problems, it 
is recommended to start with the bootstrap, because they have stable variances 
and are invariant under monotone transformations. 
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In some applications one uses maximum likelihood estimates and the result 
that the likelihood is distributed as a chi square random variable. In the 1930s 
Bartlett  suggested a correction to the chi square statistic with a linear 
transformation designed to equate the expected value to the theoretically 
c o r r e c t  expected value of the chi square. For the corresponding confidence 
intervals Martin (1990) shows that applying the bootstrap coverage correction 
algorithm reduces the coverage error of Bartlett-corrected confidence regions 
from O(T -z) to O(T-3) .  

10. Post hoe computational method for confidence intervals 

The post hoc method of Efron (1990) cleverly manipulates the available 
bootstrap resample data, and was mentioned before. In this section we review 
it retaining a notation close to Efron's.  From the observed data x - -  
(xl, x 2 . . . . .  xn) it is assumed that one is interested in a statistic S(x) which is 
unaffected by a reordering of x. Note that this means that the post hoc 
methods may not be reliable when they are applied to time series data where 
the ordering of observations is important. Each bootstrap sample 
(x~, x 2 , . . . ,  x*) yields proportions (P1, P2, • • •,  Pn) where Pi = # ( X *  = xi)/n, 
where # ( . )  denotes the number of times the condition in parenthesis is 
satisfied. Each j-th bootstrap ( j  = 1, 2 , . . . ,  J )  gives a new vector P J =  {Pi}, 
called the resarnpling vector. We expect J to be a large number,  J i> 100. The 
original observed value of the statistic uses all x I to x~ values exactly once. 
Hence,  it is denoted by S°(P°),  where all components of the resampling vector 
are equal, or p0 _- 1/n for all i. Bootstrap replications can be represented in 
the form of an analysis-of-variance decomposition from Efron and Stein 
(1981). 

S(P) = p~ + P'3" + e(P) subject to p0,3' = 0 ,  (1) 

where/x  = E(S(P)) and 3, is an n x 1 vector. Now t~ and 3, are parameters to be 
estimated by minimizing the error sum of squares. From j =  1 , 2 , . . . ,  J 
bootstraps obtain pairs of the values of the statistic and resampling vector 
(S j, P J). Now regress S j on p i  to obtain following estimates. Let  p denote an 
n x J matrix of (P~, p 2 , . . . ,  p J) comprising resampling vectors, define an 
n x 1 vector of least squares slopes A = (pp')-lpS, where S is a J x 1 vector 
the values of the statistic. Now letting 1 n = ( 1 , . . . ,  1) a column vector of n 
ones, /x is estimated as an average of n elements of A, or ~ = l'nA/n. Also, 
~) = A - ~ ln  estimates the 3' vector. The familiar R 2 of regression analysis can 
be computed for (1) as the ratio of variances: var(~(P)) /var(S(P)) ,  measuring 
the proportion of S(P) explained by the linear part. Hence it is intuitively 
apparent,  that the post hoc methods described in this section are likely to be 
most helpful when the R 2 is large. In termS of the statistic, we write 

S j = • j + M  j ,  w h e r e L  ~ = P ~ ' ~  a n d  M r = S  j - L  j .  (2) 
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The residuals M j will be added back in, after a transformation of L described 
below. With 4/ treated as fixed, compute the first four cumulants of L = p'4/ 
when P has the n-category multinomial distribution with the probability of 
each category fixed at 1/n. When all elements of P are the same, the cumulants 
of 4/and L are the same, except for the term (I /n) .  The theoretical cumulants 

n ^ 2  of L are as follows. The mean is zero. Denote o -2 = Ei= 1 ~/i/n. The theoretical 
2 2 n variance of L is o-v/n. The theoretical skewness is (1/o-rX/n) Ei= 1 4/~/n, and the 

4 n theoretical kurtosis is (1/n)[(1/o-r) E~= a q~/n - 3]. The direct estimates of the 
mean, variance, skewness and kurtosis of the J estimates L j are not expected 
to be exactly equal to the corresponding theoretical values given above for the 
multinomial. Improved estimates of quantiles are obtained by transforming L 
to L such that the first four cumulants match. 

Consider a general cubic transformation given by Efron (1990, p. 86) to find 
the values of variable x(skwx, krtx) from y(skwp krty), where the skewness and 
kurtosis of x and y are denoted in an obvious notation, and where y is 
standardized to have zero mean and variance unity. 

x = (1 --~ (krt x - krty) + ~6 (SkWx - SkWy)(5skw x + 7SkWy))y 

+ ~(skw x - skwy)(y 2 - 1) 

+ ( 1  (krtx - krty) - l(skwx - SkWy)(skwx/2 + SkWy))y 3 . (3) 

In our application of (3), x represents the theoretical variable L whose 
cumulants use the n known values of 4/ and y represents the directly 
standardized J values of L. It is more convenient to implement the mapping 
from L to L backwards, by first constructing J values of L j from the standard 
normal, and simply mapping the sorted values of L to the sorted values of L, 
as follows. 

Step 1: Compute the skw x and krt x from the n estimates of 4/ using the 
formulas given above. 

Step 2: Find direct estimates of SkWy and krty from J estimates of L. 
1 Step 3: Define J elements yj = q~- [(j - 0.5)/J] where q) denotes the CDF 

of unit normal. 
Step 4: Use equation (3) to map from yj to xj using the skewness and 

kurtosis values computed in the first two steps. 
Step 5: Verify that the skewness and kurtosis of xj are equal to the desired 

theoretical values. If they are not equal, repeat Steps 4 and 5 until the desired 
match is achieved. Of course, skw~ and krt x remain fixed at the theoretical 
values, and  SkWy and krty are sequentially improved. 

Step 6: Transform xj to 2j = (o-v/~/n)xj. 
Step 7:  Rank order 2j from the smallest to the largest and replace similarly 

sorted L j values by the corresponding 2j values. This replacement is the 
mapping from L to/2.  Note that the cumulants of L match with the theoretical 
cumulants. 
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Now we return to the statistic S of interest. Using (2) we obtain adjusted 
values of the statistic SJ -- / , ]  + M j. Care is needed here. We must add back 
the unsorted residual M j in (2) to t.he correct (unsorted) L values. Sorting the 
adjusted values of the statistic SJ from the lowest to the largest, find the 
quantiles of the sampling distribution of the statistic S, which are more reliable 
than those based on S j, the direct bootstrap estimates of the statistic. Efron 
(1990) also discusses properties of post hoc estimates of variance and bias, 
along with some examples. 

II. Bootstrap for dynamic and simultaneous equation models in econometrics 

Econometricians are often concerned with technical difficulties arising from 
simultaneity, heteroscedasticity, autocorrelated errors, temporal dependence, 
nonstationarity, etc. Among common methods for dealing with these problems 
are feasible generalized least squares (FGLS), maximum likelihood, in- 
strumental variables, two- and three-stage least squares. For many of these 
techniques, the stan&/rd errors of estimates are estimated by asymptotic 
formulas. Freedman (1981, 1984), Freedman and Peters (1984a,b) suggested 
bootstrap methods for improving the asymptotic estimates of standard errors. 
The Berndt-Wood (1975) model seeks to explain the shares of capital, labor, 
energy and materials (KLEM) inputs in terms of their relative prices. The 
specific econometric model is the 'seemingly unrelated regression' equations 
model of Zellner (1962), Kmenta and Gilbert (1968). Freedman and Peters 
(1984b) apply the bootstrap to the Berndt-Wood model and find that the 
nominal standard errors may have been underestimated by about 10% if the 
traditional asymptotic methods are used instead of the bootstrap. 

Freedman and Peters (1984a,b) suggested the preliminary steps needed to 
generate the pseudo data for bootstrapping in the presence of these technical 
difficulties, except for non-stationarity. In this section we review his sug- 
gestions with a notation close to his. A properly identified and well specified 
system for simultaneous equations is given by 

Yt = Y tA  + Yt_~B + X tC  + s t ,  (1) 

where the subscript t represents values at time t from a set of T observations, 
Yt is a l x g  vector of endogenous variables, and X t is a l x  k vector of 
exogenous variables. The parameter matrices are as follows: A is g x g, B is 
g x g, and C is k x g. The error vector e t is 1 x g, assumed to be iid with mean 
zero and covariance matrix V. Rao and Wu (1988) show an extension of the 
bootstrap to non-iid sampling designs. It is well known that many higher order 
models can be reduced to the first order form (1). The initial values Y0 are 
assumed to be known, and the bootstrap pseudo data for the initial time period 
is assumed to be Y0 also. Various econometric estimation methods including 
two stage least squares (2SLS) yield estimates of the parameters denoted by A, 
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/~, and C. An important purpose of the bootstrap is to develop a deeper 
understanding of the sampling distribution of these parameter estimates. 
Pseudo data for Y* in conjunction with the fixed data for X~ are used to 
generate j = 1, 2 , . . . ,  J, where J i> 100 estimates of the parameter matrices by 
simply applying the 2SLS or similar estimation methods J times. 

How to generate the Y* from (1) retaining the basic properties of the data 
generating process? We assume that the process starts with ¥0 known values. 
Define a 1 x g vector of residuals from (1) as 

~t = r ,  -- [Yt A -[- Y t_ l  ~ -}- X t O  ] . (2) 

From the empirical distribution function of these residuals, which puts a mass 
( l / T )  at each of the computed residuals, one can generate a large number J of 
pseudo residuals e,,j by sampling with replacement. Freedman and Peters 
(1984a,b) suggest rescaling the residuals of each equation by a factor ~ / [ T / ( T  - 
p)] ,  where p denotes the number of parameters in that equation. This removes 
an underestimation bias of regression residuals compared to the true errors. 

Assuming that I - A is an invertible matrix, we have from (1) the following 

Yt = ( Y t - 1 B  + X t C  + e , ) ( I  - A )  -1 . (3) 

Hence, 

Yt , j  = ( Y , _ I , j B  + Xt (?  + e t . j ) ( I  - A )  -~ (4) 

can be recursively used by using the same starting values Y0 for all j. The 
consistency of a similar bootstrap procedure is proved by Freedman (1984). 
Each replicate Yt*j gives rise to a new estimation problem (1). There are J 

A A 

such estimates of each of the elements of the parameter matrices A j, Bj and Cj. 
As before, we apply the basic bootstrap strategy of approximating the sampling 
distribution of A -  A by the observable bootstrap difference A j -  A, and 
similarly for B and C. 

Freedman and Peters (1984b) use J = 400 bootstrap replications to compute 
the variance of each of the elements of A and C. In their application to the 
Berndt-Wood model the lag term is absent (B ~ 0). Freedman and Peters 
(1984a) study the regional demand forecasting (RDFOR) model for energy 
with the bootstrap. They find that the traditional asymptotic standard errors 
may be too optimistic by a factor of nearly three. It is well known that 
econometric estimators for simultaneous equation models are biased in small 
samples, where the bias depends on unknown parameters. Vinod and Raj 
(1988) discuss a similar situation for ridge regression, where the pivot is 
missing. Recent bootstrap theory developed by Efron and Beran, among 
others, shows that double bootstrap with a heavy computational burden can 
provide reliable statistical inference in these situations. 

Econometric estimators can be viewed as functionals, where the local 
properties (e.g., the derivatives at a point) of the underlying distribution are 
important. Then, results by Silverman and Young (1987) indicate advantages 
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of using kernels to smooth the bootstrap. Hall, DiCiccio and Romano (1989) 
prove that smoothing with higher order kernels helps in estimating the variance 
of quantile estimators. Nonparametric regression analog of analysis of variance 
and tests for the differences between means are developed by Hall and Hart 
(1990). Hardle and Bowman (1988) show that the bootstrap can be better than 
the method of 'plugging' into asymptotic formulas for the mean squared error 
for choosing the smoothing parameter and to construct confidence interval 
around nonparametrically fitted regression curves. Hardle et al.'s (1991) 
application of the bootstrap (mentioned in Section 2.3) illustrates potential 
benefits of combining bootstrap with nonparametric regression for a sophisti- 
cated test of important economic propositions, such as the law of demand. 

12. Final remarks 

The bootstrap literature is increasing at an exponential rate, and it is difficult 
for any survey to be reasonably comprehensive. Both theoretical and applied 
statisticians have embraced the new tool, which would have been unthinkable 
before the era of modern computers with exponentially declining costs. Some 
highly mathematical papers of recent vintage may tend to discourage some 
applied econometricians by increasing the cost of entry. We hope that our 
review of the issues addressed by the mathematical papers helps reduce the 
cost. We find that applications-oriented researchers who have a comparative 
advantage in computer programming can continue to use the bootstrap. The 
computational pointers are given in Sections 9 and 10 above. Considerable 
theoretical research is shown to enhance the bootstrap by using basically simple 
transformations which normalize and stabilize the variance. Many econometric 
estimators are biased in small samples, where the bias and sampling dis- 
tributions of estimators depend on the unknown parameters and the ap- 
plicability of central limit theorems is unknown. For some of these problems 
double bootstrap with a million (if J =  K =  1000) resamples can provide 
superior statistical inference. Some post hoc methods can reduce the computa- 
tions by orders of magnitude. The bootstrap becomes attractive when: 
traditional variance approximations may be imprecise, especially for nonlinear 
functionals, nonnormality is suspected, dimensionality and the number of 
parameters of interest is large and the ratio of computing cost relative to the 
cost of researcher's own time is low. According to Efron and Tibshirani (1986, 
p.  55) the bootstrap provides a powerful arguement 'against unnecessary 
theory'. Graduate students will be grateful if the bootstrap lightens the burden 
of highly statistical econometrics. 
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Identifying Outliers and Influential Observations in 
Econometric Models 

S t e p h e n  G. D o n a l d  a n d  G. S. M a d d a l a  

Yesterday,... 
All my data seemed to fit okay, 

Now it seems INFLUENCE is here to stay, 
Oh I believe in yesterday. 

From a poem by Michael Greenacre, 
Journal of Applied Statistics 14 (1987) 185. 

I. Introduction 

The literature on the detection of outliers and influential observations is large. 
Most of it, however, is confined to the linear regression model and there is a 
plethora of diagnostics in the literature. Chatterjee and Hadi (1986, p. 387) list 
14 diagnostics. Though many are minor variations of others, some standard 
diagnostics like hat value, studentized residual, DFFITS,  Cook distance etc., 
are standard outputs in the popular regression programs like SAS, SPSS, 
MINITAB,  S H A Z A M  and so on. 

A useful distinction may be made between outliers and influential observa- 
tions. Influential observations are data points that have a 'large' or influential 
impact on some aspect of the estimation of the model of interest. Outliers may 
be considered points that are (in some sense to be defined later) away from the 
rest of the data. It is often argued that the two terms are not synonymous; that 
is outliers may not be influential and influential observations may not be 
outliers. 

The plan of the paper is as follows: In Section 2, we review the literature on 
the regression model. We also present a critique of the criteria commonly used 
to distinguish between outliers and influential observations. In Section 3, we 
relate the outlier and influence diagnostics to standard tests of the linear 
hypotheses and to commonly used specification tests in econometrics (such as 
the Hausman test). Section 4 discusses the issue of what to do with outliers. 
Section 5 presents a brief review of bayesian approaches. In Sections 6, 7 and 8 
we present our extensions of influence diagnostics to nonlinear models and the 
probit,  logit and tobit models commonly used in econometrics. A regression 
based method,  using artificial regressions for computing the diagnostics is 
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proposed. Section 9 contains some brief comments on outliers in time series 
models and panel data. The final section presents our conclusions. 

2. Linear regression models 

In this section we briefly review some of the methods that have been proposed 
in the context of the linear regression model for the detection of outliers and 
influential observations. A large literature exists I that addresses this problem, 
although most appears to be directed at the linear model. Since many of the 
ideas that arise in the context of the linear model are important  when we 
consider the more complicated models it is useful to provide a short summary 
of some of the techniques developed for the detection of influential and 
outlying observations in the linear model. 

2.1.  De le t ion  m e t h o d s  

To check whether (Yi, xi) is an outlying observation in multiple regression, the 
standard procedure is to begin by fitting the regression with this observation 
deleted. Let /3( i )  denote the estimator of/3 and s(i) 2 the estimator of 0 -2 when 
the i-th observation is deleted. Let  X ( i )  be the submatrix of X with the i-th 
row, x '  i deleted. Define the residual 

ui = Yi - x;[3(i)  

which is the pred ic ted  residual.  It is the residual from a prediction of the 
deleted observation y~ using the regression estimates /3(i). 

The sum of squares of the predicted residuals (PRESS) has Long been 
considered as a criterion for model choice. Ouan (1988) suggests using a 
statistic Q2 (suggested by H. Wold in 1982) along with R 2 in the assessment of 
both model fit and data quality. Q2 is defined as 

~'~ (y, - 33(0) 2 
Q 2 = 1  

(y~ - y(i)) 2" 

He argues that differences between R 2 and Q2 suggest that some observations 
may have undue influence on the regression equation, and illustrates this with 
two examples. However,  there is the issue of the significance of these 
differences and, moreover,  since the predicted residuals are already available, 
one can use all the other criteria suggested in the literature without much 
computational effort. 

1 See for example, Barnett and Lewis (1978), Belsley, Kuh and Welsch (1980), Bollen and 
Jackman (1990), Cook and Weisberg (1982), Draper and John (1981), Hoaglin and Welsch (1978), 
Rousseeuw and Leroy (1987). 
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The OLS residual /~i divided by its standard error  is called the standardized 
residual, and the predicted residual divided by its standard error  is known as 

* To derive the variances of the studentized residual. We shall denote this by u i. 
these residuals, we shall define the hat matrix, H -- X ( X ' X )  IX' .  It is discussed 
in Hoaglin and Welsch (1978) and plays an important  part in the literature on 
outliers and influential observations. Hoaglin and Welsch define observations 
with high values of hi, the i-th diagonal element of H,  as being high leverage 
points. The H matrix is called the hat matrix because ~9 = Hy,  and also 
t~ = ( I -  H)y .  It is easy to check that H and I -  H are idempotent  matrices. 
Hence  we have that if E(uu ' )  = o-21, 

V(t~) = (I - H)0- 2 . 

Then V ( ~ i ) =  ( 1 -  hi)0- 2. Also provided /3(i) is defined, rig = ~ i / ( 1 - h , )  and 
hence, V( t i i )=  0 -2 / (1 -  hi). The standardized residual is R i / ( s ( 1 -  hi) 1/~) and 
the studentized residual is 

/ i i (1  --  h i )  1/2 lgi 

u* - s(i) s(i)(1 - hi) 1/2" 

Thus the two residuals differ only in the estimate of 0-2. 
To compute s(i) we do not need to estimate the regression equation with the 

i-th observation deleted. In Section 3, we shall see that 

(n - k)s  2 - (n - k - 1)s(i) 2 - (1 - hi) " 

Thus, using just the hat matrix, the OLS residuals and the estimate of 0 -2 from 
the OLS regression, we can compute the predicted residuals and the studen- 
tized residuals (as well as /3(i) as shown later). Thus, all the statistics for the 
row-deletion case can be calculated with the results from the OLS regression. 

One way of modeling an outlier is through a mean shift model: 

Yi = X ' . ~  + T  + Ui , 

y j = x } / 3 + u j  for j # i .  

Then ~ is just the predicted residual lii because the estimate of /3  is obtained 
from the ( n - l )  observations excluding the i-th and ~ , = y i - x ' j 3 ( i ) .  The 
significance of p is given by a test involving the studentized residual (an 
alternative notation for this is t i because this is in the form of a t-ratio). The  
distribution o f  the studentized residual is a t-distribution with df n -  k -  1, 
where n is the number of observations and k is the dimension of/3.  

The studentized residuals, thus, determine the outliers. What about influen- 
tial observations? To answer this questions, we have to ask: Influence on what? 
We can consider influence on 

(i) the prediction of Yi, 
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(ii) ¢), 
(iii) /~j. 
Consider first the influence on prediction. The change in the prediction of Yi 

from the whole sample and from the sample with the i-th observation deleted, 
is given by 

x ' i ( [3  - [3 ( i ) )  = ( y  - x ; [ 3 ( i ) )  - ( Y i  - x~[3 ) = a i - :t i = higt  i . 

Since h i is a given constant, the significance of this can be tested by testing the 
significance of t~ i, that is by the studentized residual u*. This reasoning leads us 
to the conclusion that an influential observation is an outlier and vice versa, 
contrary to what many have argued. However, there are exceptions to this, and 
we shall return to this point later. 

Belsley, Kuh and Welsch (1980), hereafter referred to as BKW, suggest the 
use of DFFITS i to 'test' the change in prediction. They divide the change in 
prediction by what they call a scaling factor,  which is the standard e r ro r  of 
))i = x'i/3. Note that V(:i) = hio -a. They u s e  s(i) 2 to estimate 0 "2 .  Hence, they get 

h i u  i £t i 
DFFITSi - s ( i ) V ~  - (hi)l/2 s(i)(1 - hi) " 

This gives 

DFFITS~= (1 s(i) 2 - 1 - h  i u i " 

Thus DFFITS i depends on both h i and the studentized residual. Using this 
expression, it is also argued.that  an influential observation need not be an 
outlier (u* not significant but DFFITS i is) or that an outlier need not be 
influential (u* significant but DFFITS i is not). Note that this conclusion arises 
from an arbitrary deflation, that is dividing x' i( /3-/3(i))  not by its correct 
standard error but by the standard error of x~8 with s(i) 2 used as an estimator 
for 0 -2  . 

The Cook distance does the same but uses s 2 as an estimator for 02. It is 
given by 

The division by k allows an approximate F-distribution interpretation. Cook 
cautions against a strict test procedure or interpretation since, D i does not 
actually have the F ( n ,  n -  k )  distribution. In large samples it may be more 
appropriate to 'compare' k D  i to a x2-distribution. Note that 

DFFITS~ 1 . k s 2 D i  
= s - ~  ( ~  - [ 3 ( i ) ) ' X ' X ( ~  - ~ ( i ) )  = s ( i )  z . 
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Cook (1987) argues that while D i looks at fi - f i ( i )  in a fixed scale, DFFITS i is 
based on a variable scale. Thus, D i measures the influence on fi whereas 
DFFITS i measures the influence on the estimates of/3 and o -2 simultaneously. 

Consider next the influence on ft. We have 

f i ( i)  = ( X ( i ) t X ( i ) ) - ~ X ( i ) ' y ( i )  

and a well-known result is that 

t - - 1  ^ 

( X  X )  x iu  i _ (XtX)_lxi l~i  
f i  - f i ( i )  - l - h i 

Again since ( X ' X ) - l x i  is a vector of constants, the significance of fi - fi(i) is 
tested by the significance of tii, that is by the studentized residual. 

Finally, for the influence on individual/3j we have to consider fij - fij(i). This 
is given by 

fij - fij( i ) = ( X t X  ) ;1Xil~i , 

where (X'X)j -1 is the j-th row of (X'X) -1. Again the significance of this is 
tested by the studentized residual. 

Thus as the saying goes: 'All roads lead to Rome'.  Outlier tests and the three 
influence measures (when compared with their appropriate distributions) all 
lead to the studentized residual. We shall see later that this is because of 
concentration on influence on/3 alone rather than on o -2 or both. BKW (1980) 
suggest the statistic DFBETASq to test the difference fij - fi(i)J" It is defined 
by 

- f i ( i ) j )  
DFBETASq - s(i) ( X ~ ~ I  , 

where (X 'X) j~  ~ is the j-th diagonal element of ( X ' X )  -1. The expression is 
obtained by dividing fij - fi(i)j, not by its correct standard error but by a 'scale 
a ' • • ^ 1 / 2  • - • f ctor which is Var(/3j) , with s(t) substituted for 07 The expression BKW 

derive for DFBETAq is complicated and we shall not present it here. 
In summary, the differences between the different influence measures and 

the differences between outlier diagnostics and influence diagnostics that BKW 
(1980) and several others obtain is due to the arbitrary deflators of the relevant 
statistics. If the correct standard errors are used, then these differences vanish 
and everything leads to the studentized residual. 

Turning next to the several 'cut-off' points used in practice we have the 
following 'rules of thumb'.  (See Table 2, p. 387 of Chatterjee and Hadi, 1986 
or Table 6.1, p. 268 of Bollen and Jackman, 1990). Since trace(H) = k,  and the 
average of hi is k / n  (and in a balanced design h i = k / n  for all i) the i-th 
observation is considered a leverage po in t  if h i > 2k /n .  For DFFITSi, BKW 
suggest the cutoff 2 kV~7-nn and for DFBETASq they suggest 2/x/B. As for the 
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Cook distance, Cook suggests comparing D2/k to the F-distribution with k and 
n - k degrees of freedom. Weisberg suggests using the 50 percent point of the 
F-distribution which translates roughly to an F-value of 1. 

2.2. The conflict between outliers and influential observations 

The preceding discussion suggests no conflict between outliers and influential 
observations. Where does this presumed conflict come from? Consider for 
instance DFFITS i. It is defined as 

( hi ~t/2 
DFFITSi = \ l - h i /  u* 

and if we consider DFFITS i > 2 k~ZkT~ as 'significant', it can turn out that it is 
significant even if u* is not (and vice versa). This is the argument, for instance, 
in Welsch (1980, p. 160). But this conflict is, as noted earlier a consequence of 
dividing the change in prediction, not by its standard error,  but by an arbitrary 
scale factor. Implicit in this discussion is an assumption that large studentized 
residuals indicate outliers (as we shall see this is questionable) and that 
influence needs to be measured by something else, such as DFFITS,  Cook's  D 
and so on. 

The argument that studentized residuals do not tell the whole story and one 
needs to consider h i (the diagonals of the hat matrix) is a valid one. To 
illustrate this we generated data following Figure 2.1 (d) of BKW (1980, p. 8). 
The data consisted of nine observations around low values of x and y and the 
10-th observation with a higher value x and y. By design the 10-th observation 
is an outlier. The question is: Does the studentized residual pick it? The 
answer is no. It is h i that picks it. In all the simulations the h i values ranged 
between 0.10 and 0.12 for the first nine observations but were greater than 0.99 
for the 10-th. As for the studentized residuals, none were significant. Of course 
DFFITS i picked the 10-th observation but this is because of its dependence on 
h i. We tentatively conclude that studentized residuals alone should not be used 
to detect outliers. It is h i in conjunction with u* that should be used. As for 
determining influential observations, the valid statistic is the studentized 
residual. 

In the example we considered suppose that y denoted consumption and x 
family income for a group of families. The 10-th observation is an outlier (a 
high income family). But the studentized residual suggests that its behaviour is 
similar to that of the rest of the group. This implies that this outlier should not 
be thrown out. 

There  are two senses in which an observation can be considered an outlier. 
Observations consist of the pairs {xi, Yi}. First, we may have that Yi is not 
'close' to E ( y  Ixi), i.e., it is in the tail of the distribution of y given x = x i. 
Second, x i may not be close to the other observations on x. Unfortunately,  the 
presence of the second type of outlier may make it difficult to determine if one 
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has an outlier of  the first type. It  is in this case that the studentized residual 
may fail to pick an outlier of the first type. Essentially, one does not have 
enough data on x near  x i to be able to get a very precise estimate of  E ( y  Ixi),  
which is obviously required if one wants to determine if the observed Yi is 
outlying or not. 

The measures of ' influence' proposed by B K W  are typically some combina- 
tion of the studentized residual and the leverage measure.  They construct cut 
off values based on the arguments that 

(a) a value of 2 for the studentized residual is significant, based on formal  
tests of hypotheses,  

(b) a value of 2k /n  for the h i m e a s u r e  is ' large'  based on a largely subjective 
rule. 

Clearly, one will not exceed the constructed cut off value unless one of the 
above are exceeded. Plus an element of subjectivity has been introduced. 2 The 
question is, however,  whether  these influence measures  contain any informa- 
tion not already contained in the measures independently.  

Mention must be made of the example of an 'influential observat ion '  with a 
zero residual in Figure 2 of Chat ter jee and Hadi  (1986, p. 281). In this example  
/3(i) is not defined. Thus there is no point in talking about  influence on 
prediction of/3. Examples  like this are misleading and do not prove anything. 

As an illustration of the conflicting results f rom h i and u*, consider the 
example f rom Reiss (1990) on the relationship between R and D and 
productivity. He  had n = 27 and k = 3 (constant term included). The results 
were: 

Industry Stud. residual Hat value Cook distance 

2. Missiles -1.70 0.943* 14.78" 
14. Engines -2.13" 0.071 0.10 
15. Farm machinery 2.57* 0.045 0.08 
18. Computers 1.26 0.415" 0.37 

What  do we conclude? According to Hoaglin and Welsch (1978) the significant 
hat values for industries 2 and 18 indicate they have 'high leverage' .  Reiss 
argues that the studentized residuals indicate that industries 14 and 15 are 
outliers. However ,  the significant studentized residuals for these observations,  
could be due to the fact that industry 2 has high leverage (and may  also be an 
outlier), and so causes the regression line to move  away from these points. 

A major  omission f rom the preceding discussion is that it considers influence 
on/3 only and it does not consider influence on 0 -2 . Although Cook argued that  
the Cook distance measures influence on 13 only whereas DFFITS i measures  
influence on both/3  and 0-2, in his comment  on Chat ter jee  and Hadi  (1986) he 

2As has been noted by Chatterjee and Hadi (1988, p. 95) the notion of an influential 
observation (as distinct from an outlier) is 'subjective' so it is not surprising that determining cut off 
values for 'influence measures' is based on subjective criteria. 
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argues that DFFITS i is an unsatisfactory measure of the influence on/3 and 0 .2 
simultaneously. He suggests that the likelihood displacement LDi(/3 , 0-2) is a 
bet ter  measure. He notes that LD;(/3) is related to the Cook distance. The 
Bayesian literature (reviewed in Section 5), also makes a distinction between 
influence on /3  only, o n  0-2 only, and on /3  and 0-2 together.  Before that we 
shall discuss the LD i measures. 

2.3. The likelihood displacement method 

The likelihood displacement method discussed in Cook (1987) and Cook and 
Pefia (1988) looks at the change in the value of the maximum of the likelihood 
function that results when observation i is omitted. In this case one is able to 
be more explicit about the parameters of interest. For example suppose that 
the value of the (normal) likelihood function at the MLE is L(/3, 0-2),  t h e n  
various measures of influence can be defined in terms of likelihood 
d i sp lacement -  one may obtain different measures depending on the parame- 
ters of interest. In the case of the linear regression model it is fairly simple to 
concentrate the likelihood function so that it depends on either/3 or 0 -2 alone. 
For  example since 

6 -2 = (y - X ~ ) ' ( y  - X [ 3 ) / n ,  

we may rewrite the concentrated likelihood function in terms o f / 3  alone as 
L(/3).  If one were interested in a measure of the influence on/3 of deleting an 
observation, then a natural measure could be defined by 

LDi(/3 ) = 2(L(/3, 6-2) _ L([3(i))) 

which is shown by Cook and Weisberg to be identical to 

L D , ( / 3 )  = n l o g ( k D i / ( n  - k + 1 ) ) .  

Alternatively one may be interested in a measure of influence on 0-2 alone or 
on /3 and o -2 jointly. Thus depending on one's focus one may obtain 
displacement measures which can be written as LDi(o-2), LD,.(/3) and 
LDi(/3 ' 0-2), the latter being the difference between the unconcentrated 
likelihood functions evaluated at the different estimators, i.e.,  at (/3, 0-2) and 
(/3(i), 0-2(i)). Note that the last measure provides an upper bound on the other  
two measures. Define 

^2 
U i 

bi  - s2(1  - h i ) ( n  - k )  " 

Then,  

n ) (n-1)bi 
LDi(0- 2) = n log ~ + n log(1 - bi) + bi 1 
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and 

(n - 1)bih i 
LDi(/3, o -2) = LDi(o. 2) + 

1 - b  i 

The form of the LD i diagnostics is suggestive of a likelihood ratio type test 
for influence since in large samples 

2(L(fi ,  6 -2) - L(/3, o.2)) _ x Z ( k  + 1) 

however,  Cook warns that this should be used more as a guide than as a formal 
testing procedure.  This is because replacing the true parameters by the 
per turbed estimates (which gives rise to one of the LDi measures) gives no 
reason to expect that the resulting limit distribution is appropriate. There  are a 
plethora of other measures of influence in regression which are discussed more 
completely in references such as Cook and Weisberg (1982). 

2.4. Local  perturbation methods 

Since there may be some apprehension on the part of the econometrician to 
actually delete an observation if it is 'outlying', 3 others have proposed methods 
that look at the effect of a small perturbation in the weight given to the i-th 
observation in the calculation of the estimator. Such methods are considered 
by Cook (1986, 1987). These methods are known as 'perturbation methods' .  
Instead of looking at the change in the estimate when an observation is 
dropped completely one looks at the effect of changing the weight infinitessi- 
mally evaluated at some point - a local perturbation. This is based on the idea 
that one may not really be interested in dropping outlying observations 
c om ple t e ly -  rather one would just alter the weight given to the i-th observa- 
tion. 

The usual way one proceeds with this in the case of the linear model is to 
look at the derivative of 

f i(w) = ( X ' W X ) - I X ' W y  

with respect to the weight given to observation i 

3 
owi fi(w) 

evaluated at some point. Points of interest would be where the set of weights is 
equal to one for all the obse rva t ion-  looking at the sensitivity of fi to a small 
reduction in the weight given to observation i -  or at the point where all 
observations have weight equal to 1 expect for the i-th which has value 0 - thus 
giving a measure of the change due to the inclusion of any information 
contained in observation i. 

3 See Learner (1990) for example. 
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In the context of maximum likelihood estimation one may compute for each 
possible value of the n × 1 weight vector w a likelihood displacement measure 
LD(w). We can then study the curvature of LD(w). To show how this is 
developed we follow Cook and write L(O I w) for the likelihood function that 
has a p x 1 vector of weights w attached and the MLE denoted 0 w satisfies the 
usual normal equation 

a(L(OwlW) 
- - 0 .  ao 

Then the curvature of the graph of LD(w) in the direction l is given by Cook 
(1986) as 

1' 02L(O I w)' O2L(Olw)-t O2L(O I w) 
C~= 2 aO Ow OO OO OO Ow 1 , 

where l is some directional p × 1 vector with l'l = 1. One case that may be of 
interest, may be where one examines the effect of a perturbation in the weight 
being given to a particular o b s e r v a t i o n - t h a t  is in the regression case having 
weights of 1 for all but the i-th observation and looking at the curvature when 
one changes the weight given to the i-th observation locally - Cook shows this 
is to be equal to 

2u~h i 
C =  ~2 Or 

in the case of the regression model. This can be shown to be related to the 
statistic D i by 

C = k(1 - hi)2Oi 
and hence appears to be not as sensitive to extreme values in the design matrix. 
A measure analogous to this may be derived by appropriate standardization of 
the measure mentioned above 

0 
ow, 

evaluated at the value where w~ = 1 and all other weights are 1. As shown by 
Pregibon (1981) 

0 
Owi fi(1) : ( X ' X ) -  lxifii 

so that standardization by o'2(X'X)-I would give a value equal to ½C. 
There  may be other cases of interest. For example for a subset of weights 

one may be interested in the maximal cu rva tu re -  i.e., the direction in which 
curvature is largest so the results may be most sensitive. This is related to eigen 
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values of the matrix 

02L(O I w)' oiL(b I w) -1 02L(0 I w) 
O0 Ow O0 O0 O 0 0 w  

See Cook (1986, 1987) for more  discussion on the various uses of the C 
statistics. 

In this paper  we concentrate on measures related to the deletion diagnostics 
since they are relatively simple to compute.  The measures ment ioned in the 
previous section may also be developed for the  models considered later, 
however,  for ease of exposition and brevity we consider only deletion 
diagnostics for particular models.  

3. Relationship between influence diagnostics, tests of linear hypotheses and 
specification tests 

One question that deserves attention is what relationship, if any, do the 
diagnostics presented in the previous section have to standard tests of linear 
hypotheses and commonly used specification tests in econometrics (like the 
Hausman  test). Consider the model  with n observations and k regressors: 

y = X /3  + u ,  where u - N(0, 0.21). 

Partition the data into two subsamples of sizes n 1 and n 2 respectively (/'t I + n 2 = 
n). We can then write 

Yl = X1/31 + Ul,  

Y2 = X2/32 -~ u2"  

Let  the residual sums of squares from the samples of size nl ,  n 2 and n be 
denoted by RSS1, RSS 2 and RSS respectively. Then we have the following two 
well-known results: 

(i) (RSS~ + RSS2)/0. 2 and (RSS - RSS 1 - RSS2)/0. z are independently dis- 
t r ibuted as X 2 with df n -  2k and non-central X 2 with df k respectively. If  
/31 =/32 then both have a central X 2 distribution and 

(RSS - RSS 1 - RSS2)/k 

(RSS 1 + R S S E ) / ( n  - 2k) 

has an F-distribution. (This is known as the second fundamental  theorem of 
least squares, see Rao,  1973, p. 191.) 

(ii) RSS 1/o .2 and (RSS - RSS1)/0. 2 are independently distributed as g 2 with 
df n I - k and non-central X 2 with df n 2 respectively. If/31 =/32 then both have a 
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central X 2 distribution and 

(RSS - RSS1)/n 2 

R S S 1 / ( n - k  ) 

has an F-distribution. (This is known as the third fundamental theorem of least 
squares, see Rao, 1973, p. 193.) 

Results (i) and (ii) are known in the econometric literature as Chow tests for 
stability. Result (i) was presented in a book by C. R. Rao in 1952, but result 
(ii) was published by Chow in 1960. If n z < k it is not possible to use the first 
test and Chow suggests using test (ii). But as pointed out in Rea (1978), since 
/32 cannot be estimated from the sample of size n:,  what is being tested is 
unbiasedness of predictions and not the hypothesis/31 =/32- Thus the second 
test is often called the predictive test for stability. In the case of deletion of a 
single observation, we have that n;  = 1 and thus, test (i) can never be used. 

3.1.  De le t i on  o f  a s ingle  observa t ion  

In the case of, say, deletion of the i-th observation, it can be shown that 

RSS - RSSl  = a~/(1 - hi).  

,2 Thus the F-statistic in (ii) reduces to u i , the square of the studentized 
residual. This is not surprising since the test we derived earlier for influence on 
prediction is based on the studentized residual and the Chow test actually tests 
the unbiasedness of prediction. 

Consider now, the relationship with Hausman's  specification test. Define, 
H0: the i-th observation is not an influential observation, 
Ha: the i-th observation is an influential observation. 
Then /3 is efficient under H 0 but not unbiased under H1, whereas /3(i) is 

unbiased under both H 0 and H I ,  but not efficient under H 0. Using the result 
(5a.2.2) in Rao (1973, p. 318) we get 

V = Var(/3 (i) - / 3  ) = Var(fi (i)) - Var(fl ) 

= o -Z (X( i ) 'X ( i ) )  -1 - o-2(XtX)  -1 

The Hausman test statistic is 

H = ( f3( i )  - ~ ) ' V - ( ~ ( i )  - / 3 ) ,  

where V -  denotes the inverse of V if V-1 exists and the generalized inverse if 
V -1 does not exist. Now 

(X 'X ) -  lxiai 
- [3(i) - 1 - h i 
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and using the result that 

( A  + B D C ' )  -~ = A -~ - A - ~ B ( D  -~ + C A - a B ) - I C ' A  -~ 

we get that 

( X ( i ) ' X ( i ) )  -1 = ( X ' X -  xix'i) -1 = ( X ' X )  -x + 
( x , x ) -  (x ,x  ; ) ( x , x )  - 

1 - h i 

Hence, 

( 1  - -  hi) 
V - -  2 

or 
- -  ( x ' x ) ( x , x ; ) -  ( x ' x )  . 

Substituting the expressions for f i -  fi(i) and V- in H, and noting that (see 
Rao and Mitra, 1971) 

x ;(x~x ; ) - x  i = I 

we get that 

H =  
(1 - h i ) o  "2 " 

Using s(i) 2 for o -2 we get H = u . 2 ,  the square of the studentized residual. Thus 
the Hausman specification error test also gives the same result. 

3.2.  The  case o f  mul t ip le  outl iers 

In Cook and Weisberg (1982, p. 136) expressions are given for the generaliza- 
tion of the Cook distance to the case of multiple outliers. However, the 
statistics do not have any known distributions though the F-distribution is 
suggested as an analogy. Following the paper by Reiss (1990) we shall show the 
relationship between outlier diagnostics, influence diagnostics, and the two 
F-tests (i) and (ii). 

Consider the case of n 2 outliers. The mean shift model for detection of 
outliers would be to introduce a vector of parameters 3' of dimension n 2 and 
estimate the model, 

Yl = X I ~  + Ul , 

Y2 = X2/~ "+ ~/ + u2"  

A test of 3' = 0 is given by 

(RSS - R S S I ) / n  z 
F =  

RSS 1/(n 1 - k )  
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which  is d i s t r ibu ted  as F(n2, n I - k) .  This  is the  test  g iven by  (ii)  or  the  C h o w  
tes t  for  p red ic t ive  s tabi l i ty .  4 

C o n s i d e r  next  the  H a u s m a n  tes t  for  tes t ing the  d i f fe rence  /31- /32 .  T h e  

m o d e l  now is Yl = X l f l  + ul  and  Y2 = X2fl  + u2. The  H a u s m a n  tes t  s tat is t ic  is 
g iven above .  F o r  the  case  n 2 ~ k,  Reiss  (1990) shows,  using the  resul ts  for  
g e n e r a l i z e d  inverses  in R a o  and  Mi t r a  (1971),  tha t  

RSS - RSS 1 
H =  2 

o r 

which  has  a X 2 dis t r ibu t ion  with  df  n 2 u n d e r  the  null  and  for  the  case n 2 > k ( in 
this  case  V -1 is de f ined)  he  shows tha t  

H =  
RSS - RSS 1 - R S S  2 

2 o- 

which  has  a X 2 d i s t r ibu t ion  wi th  df  k u n d e r  the  null .  I f  we use &2 = R S S 1 / ( n l  _ 

k)  in the  case  n 2 ~< k and  &2 = (RSS  1 + R S S 2 ) / ( n  _ 2k)  in the  case  n > k we ge t  
the  F-s ta t i s t ics  in ( i i)  and  ( i)  respec t ive ly .  Thus  the  inf luence  stat is t ics  to  tes t  
/ 3 1 - / 3  r educe  to the  fami l ia r  F - t e s t s  and  it is in t e res t ing  to  no te  tha t  the  
H a u s m a n  tes t  also r educes  to these  tests .  

I f  we use 6 -2=  R S S / ( n -  k)  as used  in the  C o o k  d is tance ,  we  ge t  a b e t a  
r a n d o m  var i ab le  ins t ead  of  the  F. ( N o t e  tha t  R a o ,  1973, p. 193, wr i tes  the  tes t  
in the  b e t a  d i s t r ibu t ion  fo rm. )  

In  s u m m a r y ,  when  the  tes t  s tat is t ics  for  inf luence  d iagnos t ics  a re  wr i t t en  wi th  
the  a p p r o p r i a t e  covar i ance  mat r ices ,  r a the r  than  with  a rb i t r a ry  scale  fac tors ,  as 
in the  C o o k  d is tance ,  we are  back  to the  s t a n d a r d  F - t e s t s  of  l inear  hypo theses .  

4.  W h a t  d o  w e  d o  w i t h  o u t l i e r s  

If  a m o n g  these  e r rors  a re  some  which  a p p e a r  too  la rge  to  be  
admiss ib le ,  then  those  obse rva t ions  which  p r o d u c e d  these  e r ro r s  
will be  r e j ec t ed ,  as coming  f rom too  faul ty  e x p e r i m e n t s ,  and  the  
u n k n o w n  will be  d e t e r m i n e d  by  m e a n s  o f  the  o the r  obse rva t ions ,  
which will then  give much  smal le r  e r rors .  

L e g e n d r e ,  in 1805, in the  first pub l i ca t ion  on  leas t  squares .  

The  m e t h o d  o f  leas t  squares  is seen  to  be  our  bes t  course  when  
we have  t h rown  a cer ta in  po r t i on  of  our  da t a  - a sor t  of  sacrif ice 

4 Reiss (1990, p. 297) suggests that the test is a Chow test if and only if n 2 ~< k. However, the 
usual test for testing y = 0 (third fundamental theorem in Rao, 1973, p. 191) is the test given here, 
and is the same for n 2 ~ k or n 2 ~< k. 
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which has often to be made by those who sail upon the stormy 
seas of probability. 

F. Y. Edgeworth,  Philosophical Magazine, 1887, p. 269. 

There  are essentially three approaches to dealing with outliers and influential 
observations. These can be described as: 

(1) Throw the rascals out. 
(2) Leave the rascals in but keep them under control. 
(3) Listen to what the rascals are saying and change the model. 

4.1. Throwing out the observations 

This approach goes back to Legendre and Edgeworth and is the one often 
followed in empirical work. It would be the correct approach if the outlier is 
due to a recording error,  or there is some information why the observation 
does not belong to the sample. Solow (1957) in his famous paper found that 
some observations deviated from the rest. He  called them 'mystery observa- 
tions' and discarded them. Later  it was found by Hogan that the mystery points 
resulted from computational errors, and these errors were corrected. However ,  
in his original analysis, Solow was lucky that he threw away his mystery 
observations because, otherwise, he would have arrived at some strange 
results. This was a case where 'outliers' were initially thrown out but replaced 
by corrected values in subsequent analysis. 

Fisher's (1962) study on the demand for aluminum ingot is an example of a 
case where prior information was brought in to discard some observations and 
to correct some others. First, he started with data for 1922-1940 and 1948- 
1955. He then discarded the data for 1948-1955 because of some structural 
changes in the aluminum market  after the war. Next, the data for 1922-1924 
and 1938 were discarded on the basis of some other information relating to the 
aluminum market.  Finally, of the remaining 15 observations, the 10 observa- 
tions for 1926-1935 were adjusted for stock piling. The final estimation gave 
'satisfactory' results. 

When outliers are caused by recording errors or there is some extraneous 
reason to discard them, the proper  approach is to throw the 'rascals' out. In the 
case of time series data (discussed in Section 9) it is customary to distinguish 
between an 'additive outlier'  and an ' innovation outlier ' .  The former is a bad 
piece of information and is thrown out. Things are different with cross section 
data. Consider an example where some high income families show up in a 
study of consumer behaviour. In this case it may not be appropriate to throw 
these observations out. The proper  approach is to analyze the data within two 
groups (using some dummy variables or some pooling method)  or use some 
robust estimation procedures that minimize the influence of these outlying 
observations on the estimated equation. 
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4.2. Controlling the influence of outliers 

The second approach to the handling of outliers is to leave them in but use 
methods that minimize their influence. The robust estimators (M-estimators, 
Lp-norm estimators, R-estimators, bounded-influence estimators, etc.) are not 
as strongly affected by outliers as the OLS estimators. The earliest of these 
estimators is the LAD (least absolute deviation) estimator or the L 1 norm 
estimator. It is usually thought to have been suggested by Edgeworth in 1887 
but Rao (1989) traces it back to Galilei in 1632, Boscovich in 1757, Laplace in 
1793 and Gauss in 1809. Rao also provides a survey of recent developments in 
LAD estimation. In practice, the LAD estimation in the regression context is 
usually undertaken with iteratively weighted least squares (see Maddala, 1977, 
pp. 310-314). The LAD estimator minimizes, 

Q = E lail-- E w,a , 

where w~= 1/lai[. The iterative weighted least squares (WLS) procedure 
proceeds as follows: First we use OLS to get a i. Next we construct w~ and use 
WLS. The new residuals are used to get new weights and the WLS procedure is 
repeated. Fair (1974) found that this procedure converged after two or three 
iterations. As for small sample standard errors, it is not clear how to best 
calculate them and hence one could use the bootstrap methods. 

There is an issue of when robust methods are to be used. One approach is to 
use the methods described in earlier sections to identify the outliers and 
influential observations and then to use robust methods if there are such 
observations and we have decided to retain them. This is a commonly used 
approach. An example of this is the simple bounded influence estimator 
suggested by Welsch (1980) which is a weighted least squares estimator that 
minimizes 

E wi(yi - x ~ )  a 

which uses c i = IDFFITSil and a cut off value cg = 0.34 is chosen so that 

I 1 if c i < 0.34, 

wi= 0.34 i f c i > 0 . 3 4 .  
1, ci 

Welsch says that the cutoff value of 0.34 is chosen for approximately 95 percent 
asymptotic efficiency. In contrast to this two step procedure, the bounded 
influence estimation (BIE) method is an iterative weighted least squares 
method where the outliers are identified within the context of the BIE 
method. 5 Krasker (1981) uses this estimator for a forecasting problem faced by 
Korvette's department stores in 1975 which had to choose between two sites A 

5 For the sake of brevity, we are omitt ing the detailed expressions here. Fur thermore ,  these 
expressions can be written in the score vector form which is useful when  considering non-l inear  
models  and models  more  complicated than the  linear regression model.  
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ant. B for the location of a new store. Of the 25 existing stores, to develop a 
model, Krasker finds two to be outliers. But his bounded influence estimator 
and OLS with the outliers thrown out gave almost the same results. As far as 
prediction from the model goes, site A was similar to one of the outliers and 
hence the estimated model was useful only for predictions about site B but not 
for site A. 

There is the question of what to do with the outliers identified by the BIE 
method. As far as estimation goes, the BIE method has already taken them 
into account. So, of what use is it to identify them as outliers? The answer is 
that it is useful when it comes to prediction, as in the example of Korvette's 
department stores. Since site A is similar to one of the outliers the model 
cannot be used to make any predictions for site A. 

There are other examples where OLS with outliers thrown out and bounded 
influence estimation (BIE) gave almost the same results. The method of BIE 
has been extended to other models by Stefanski, Carrol and Rupert (1986) for 
logistic regression, by Peracchi (1990a,b, and 1991) to tobit models and 
seemingly unrelated regression models and by Kao and Dutkowsky (1989) to a 
switching regression model. One troublesome feature in all these models is the 
choice of the bounding constant for bounded influence which is arbitrary. Since 
there is no well defined theory for this, Powell (1990) suggests that semi- 
parametric and non-parametric methods with more well defined inference 
should be preferred to BIE. But these methods address a different problem- 
that of general distribution of errors, rather than the outlier problem that the 
robust procedures are concerned with. Often a byproduct of the BIE method is 
a vector of weights which some authors have suggested may be useful for the 
detection of influential observations. In this approach, thus, the influential 
observations are not determined first but are identified in the context of BIE 
estimation. If the data do not contain influential observations, however, the 
BIE estimation procedure is an unnecessary complication. 

Rousseeuw and Leroy (1987) argue that robust procedures should not be 
used after detecting outliers from the OLS procedure. Rather, the robust 
procedures should be used first with all the data and then one should discover 
the outliers as those points that possess large residuals from the robust 
solution. A question again arises as to how large is large, and the distribution 
theory for robust residuals is very complicated. They suggest the LMS (least 
median squares) method, proposed earlier in Rousseeuw (1984) which minim- 
izes med{y i -xi/3} 2. In the LMS procedure the regression surface lies within 
the closest pair (in the direction of the dependent variable) of parallel 
hyperplanes that contain 50 percent of the data. It has a break down point 6 
(fraction of contamination that can produce large changes in the regression 
surface) close to 50 percent in contrast to OLS, which can be broken down by a 
single observation. 7 

6 The notion of breakdown point is discussed in Donoho and Huber  (1983). 
7 Computer  programs for LMS regression are discussed in The American Statistician, February, 

1991, p. 74. 
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After  computing the residuals u~ from the LMS regression, Rousseeuw and 
Leroy use (1987, p. 240) what they call 'resistant diagnostics' defined by 

U i 
RD i - meAr_a  , 

where the median is taken over the data set. 50 percent of the RD i will be at 
most 1. They suggest using RD~ > 2.5 to detect outliers (this is arbitrary). They 
give two examples where the criteria based on least squares produced no 
outliers, but those based on their statistic RD~ produced some (pp. 243-245). 
This raises questions about the whole issue of what outliers are. In these 
illustrations, it appears that finding outliers is an end in itself. 

The above discussion gives a rough summary of some robust procedures that 
have been used in empirical work relating to outliers and influential observa- 
tions. Some have used the procedure of first identifying outliers and influential 
observations and then using methods that give less weight to these observa- 
tions. Others have argued that we should use robust procedures first and then 
detect outliers and influential observations next. But then the problem arises as 
to what you do with outliers. In the BIE method,  you do not throw them out. 
In the case of Rousseeuw and Leroy (1987) it is not clear. 

4.3. Changing the model 

Very often the outliers point out the deficiencies in the specification of the 
model. The outliers sometimes form a separate group in which case the data 
need to be analyzed in the framework of two groups (either separately or in a 
pooled sample with dummies). In fact, it is always best to investigate whether 
there are any special features about the outliers, before considering the options 
of throwing out the outliers or using robust estimation procedures. There are 
several illustrations for this but we shall discuss only one of them. Gray (1989) 
gives an example of how an outlier led to a change of a model. The example 
concerns a multiple regression of y on x 1, x 2, x 3 and x4, based on data for the 
48 contiguous states in the USA. The variables were: 

y = state per capita fuel consumption, 
x I = state gasoline tax, 
x 2 = percent of licensed drivers in the state, 
x 3 = state average per capita income, 
x 4 = total length of federal aid primary roads in the state. 
The multiple regression equation gave an R 2 of 0.68. Several regression 

diagnostics suggested that Wyoming was an outlier. The average fuel consump- 
tion per capita for that state was higher than that predicted by the model. One 
approach is to delete this observation. A better  approach is to ask why it is an 
outlier. One possible reason one could suggest is the degree of isolation, the 
long distances that separate towns, cities, stores, facilities and so on, in 
Wyoming, thus requiring more driving. A proxy for this isolation is population 
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density (ratio of state population to state area). Gray found, on plotting the 
variables, that the log of population density was a better explanatory variable. 
The simple r 2 between y and this variable was 0.73 (compared with the R 2 of 
0.68 for the multiple regression of y on xa, x 2, x 3 and x4). Thus, Wyoming, the 
outlier, led to the reformulation of the model. However, Gray says, 'The irony 
is that Wyoming, which provided the clue to an important missing variable 
remains an outlier in a simple regression equation with log population density 
as the explanatory variable'! 

Influential observations and outliers may contain important information and 
may suggest some important missing variables or other deficiencies in the 
formulation of the model. Mechanically throwing these observations out and 
staying with the original model, or using some estimation methods that 
minimize their influence, like M-estimators or BIE estimators (within the 
framework of the original model) might be the wrong thing to do. 

5. Bayesian and decision theoretic approaches 

There is a lot of work on bayesian approaches to the problem of outliers and 
influential observations. We shall present here only a brief review. As in the 
classical approach one can talk of outliers and influential observations and 
distinguish between influence on parameters and influence on prediction. In 
the case of a single outlier, we saw that in the classical approach, detecting 
outliers and observations with influence on parameters and on predictions, all 
are based on studentized residuals when the measures are deflated by their 
correct standard errors. The test statistics differ only in the case of multiple 
outliers when the number of outliers p is greater than the number of 
explanatory variables k (plus one if there is a constant term). 

In the bayesian approaches, even with a single outlier, measures of influence 
on parameters and predictions differ, and also the expressions for multiple 
outliers do not depend on whether p > k or p < k as in the classical approach. 
This is because of incorporation of priors into the analysis, which essentially 
circumvents the indeterminacy problem outlined in Rea (1978). 

The common point in several of these papers is the Kullback-Leibler 
divergence. In general, given two pdfs fl and f2, the average information of 
proceeding from fl to f2 is defined as 

I(fa, f2) = f l°g( f l / f2) f l  dx .  

This directed divergence is not symmetric. A more general measure of distance 
between fl and f2 is the symmetric divergence 

J ( f l ,  f2) = I ( f l ,  f2) + I(f2, f~) .  

Using this measure of change with fl denoting the distribution based on the 
whole sample and f2 denoting the corresponding distribution with some 
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observations deleted, several measures of 'outlyingness' and influence have 
been developed. For instance, Pettit and Smith (1985) and Guttman and Pefia 
(1988) study the change in the posterior distributions of the parameters: p(/3), 
p(o2) and p(/3, o -2) and Johnson and Geisser (1982, 1983, 1985) study the 
change in the predictive distributions. 

The measures of influence, suggested in the several papers differ based on 
the differences in the priors and the approximations to the posteriors used. The 
measures have been derived for p outliers and the dichotomy p > k and p < k 
does not exist in the bayesian literature. Furthermore, influence on/3 as well as 
0 .2 is considered separately and jointly. Though the results are available for p 
outliers, we shall present the results for the case of a single outlier, so as to 
compare the results with those in our earlier discussion. In much of the 
bayesian literature p is the number of regressors and k is the number of 
outliers, but to maintain consistency with our earlier notation, we shall use k 
for the number of regressors and p ~or the number of outliers. 

If fl and f2 are k-variate normal distributions with means, /x 1 and ix 2 and 
covariance matrices ~1 and N2 respectively, then the Kullback-Leibler diver- 
gence is, 

1 - 1  J(fl ,  f2) = ~(IXl - g2)'(2 71 + ~2 )(ix1 - t~2) + l tr(21~ 21 + X2N [1) - k .  

Consider the normal regression model, 

y = X / 3  + u 

where u - N(0, 0.21). Then Guttman (1991) assumes that the posteriors for/3 
(with non-informative priors) from the whole sample and from the sample with 
p (equals 1) observations deleted are approximately given by 

/3 ]Y ~ N(/~, s2 (X 'X ) - l ) ,  

/3 [ y(i) ~ N(/3(i), s(i)2(X(i)'X(i))-l) . 

Then the Kullback-Leibler divergence, which they denote by M(/3) is given by 
(in the case of a single deleted variable), 

2 s ( i )2(k  + h i )  82 
M ( / 3 ) = k ( D 2 + D ( i ) ) / 2 +  2s---5- ~ + - ~ 7 ~  ( k - h i ) - k '  

where D 2 is the Cook Distance, and 

2 1 
D(i ) - ks(i)2 (f~ - f~(i))'(X(i)'X(i))(f3 - f3(i)). 

For 02 the corresponding measure is, 

~ 1 2 M(0. 2) ½10g +~(t i - r 2 ) ,  

where t i = fii/((1-hi)l/2s(i)), the studentized residual and r i is the stan- 
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dardized residual. The expression for M(/3, o -2) is 

h 2 k / s ( i )  2 2 s2 ) 
M(fi'° '2)=M(o-2)+½ 1 - h ~  J-2 \ s 2 D(i) +s~t) 2D2i_" 

Instead of considering such 'estimative influence' measures Johnson and 
Geisser consider 'predictive influence'. They derive predictive density for 
future values, based on full data sets and subset deleted data sets and define 
Kullback-Leibler divergences between these predictive densities as predictive 
influence functions (PIFs). The expression for these PIFs are rather complex. 
For the case of a single deleted observation, Geisser (1987, p. 137) shows that 

, 8 the expression is only a function of n, h i and u i. 
Geisser has often argued (for instance, see his comment on Cook, 1986) that 

perturbations have much less effect on prediction, than they do on estimation. 
In the predictive approach suggested in Geisser (1987, 1990) and also discussed 
in Pettit and Smith (1985) one looks at the predictive distribution of Yi given 
y(i). Geisser defines the conditional predictive ordinate (CPO), c i as the 
predictive density of the i-th observation given y(i) evaluated at the observed 
value Yi, that is ci=p(yi ly( i)) .  The values of c i give a ranking of the 
observations, with the most discordant having the smallest value of c~. The ci 
work when the y~ are iid. For regression problems, Geisser suggests using the 
tail area of P(y~ly(i)). This is defined by pd~ and Geisser calls this the 
'predictive discordancy test'. This is the probability under P(yily(i)) of an 
observation with a smaller c i than the observed Yi. In the case of a linear model 
with non-informative priors, the predictive discordancy tests are closely related 
to studentized residuals, pd i is the p-value from the outlier test based on 
comparing the studentized residual u* to its t-distribution. Similarly, the value 
of c i is the density of a t-distribution with ( n -  k -  1) degrees of freedom 

1/2 multiplied by ( 1 -  hi) /s(i). Thus these predictive discordancy tests are all 
related to the studentized residuals u i. 

The question of what to do with outliers still remains in the bayesian 
approaches. Kempthorne (1986) suggests using a decision theoretic approach, 
wherein the problems of detection of influential observations and what to do 
with them are handled simultaneously. He suggests measuring influence on 
posterior risk (which depends on the specification of the underlying loss 
function and prior distribution). For a detailed discussion see Kempthorne's  
paper. 

6. Generalizing the results 

The deletion measures have, in many cases, analogues in nonlinear economet- 
ric models. The main problem with computing them is that each time an 

s One troublesome feature of the expression he derives in the term log(1 - U~ 2) which will be 
undefined if u* > 1. 
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observation is dropped one must perform estimation of the model, and for 
more complicated models this will require iterative techniques. 

Note that the actual perturbed estimator O(i) satisfies the pseudo normal 
equation 

~-~ 0 log l,(O(i)) 
0, 

t~i 00  

where log I t denotes the contribution to the likelihood function for observation 
t. Instead of iterating to find the solution to this normal equation we will follow 
Pregibon (1981) and Cook and Weisberg (1982), for example, and approxi- 
mate the perturbed estimator 0(i) by taking one step away from the full sample 
MLE 0. 

In particular taking one step using the method of scoring, using some 
estimate for the hessian (denoted i)  we get an equation of the form 

O log lt(O ) 
0(i) = 0 + (~)-1 ~'  00 

tel 

There will be certain instances where particular ] estimates are more conveni- 
ent to use than o thers -  examples below will show such cases. 

We may interpret the value O(i), thus obtained, as an approximation to the 
perturbed estimate, and one would expect that the difference between the 
values 0 and O(i) would be small if the i-th observation were not influential. 
This will form the basis for diagnostics for influential observations in the class 
of models we have included. The use of the artificial regressions framework 
which has been developed and extensively used by Davidson and MacKinnon 
(1989) in various applications to testing specification, will provide a convenient 
means of computing diagnostics which are analogous to those for the linear 
regression model. The major advantage of the artificial regression framework is 
that one may compute many approximations to diagnostics for the linear model 
simply using the basic formulae for the linear model. Hence, any regression 
package that is able to compute diagnostics for the linear model may be used to 
compute such diagnostics for the models that fit into the likelihood type 
framework. 

We will follow the setup in Gourieroux, Monfort, Renault and Trognon 
(1987a) (hereafter GMRT) which is flexible enough to include many economet- 
ric models and estimators, which can be put into the exponential family. 
Suppose that some latent variable y* can be written as depending on a vector 
of explanatory variables xt, a parameter vector 0 which is a p x 1 vector (where 
typically p = k + 1 when for example in the regression model 0 = (/3, o-2), and 
a residual u,(O), 

T(y*t) =f(xt, O) + u,(O) , 

where T (which is a q x 1 vector) is defined as the canonical, based on the 
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assumption made by GMRT that y* has density belonging to the exponential 
family. In many cases, for example the normal case with known variance, it is 
the identity mapping so that q = 1. Also it is assumed that 

E(u,(0)) = 0 

and 

Var(u,(0) Ix,) = a(x , ,  0) 

and ~ - 1  can be decomposed as 

a - l (x , ,  0) = V'(x,, o )v(x,, o ) .  

We may also define the standardized error vector or S-error vector v,(O) (where 
standardized means it has covariance matrix equal to the identity matrix) by 

v,(o ) = V(x,, O )v,(O ) . 

The variable y, is actually observed through the relationship 

Yt = g(Y*~) 

and we assume that the observations are independent. This framework is quite 
general and includes as special cases linear regression, nonlinear regression, 
limited dependent variable models and so on. 

As GMRT show, the score vector can be written in a form that provides a 
pseudo normal equation interpretation. When the latent variable itself is 
observed (as would be the case in regression models) then we have the score 
vector 

of(x,  o) V'(x,, 0 )v,(0) 
t=I O0 

In limited dependent variable models where a transformation of the latent 
variable is observed the score vector can be written as, 

k Of(xt' O)V'(x,, O)z3,(O) 
t=l  O0 

where ~ is defined as the S-generalized residual, and is related to the respective 
latent S-error by the following expression 

~,(0) = E(<(01 y , ) ) ,  

where the expectations are assuming the true model has parameter vector 0. 9 
Note that although the S-error vector has covariance matrix equal to the 
identity matrix the same does not necessarily hold for the S-generalized 
res idual -  in fact it may be heteroskedastic and have non-zero off diagonals. 

9 Note that the generalized error,  denoted ti,(0), may also be defined by f i , (0)= E(u,(OlY,)). 
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Denote the covariance matrix of the S-generalized residual by 

F(x t, O) = Q' (x ,  O )Q(x,, 0 ) .  

In some instances Q will be simple to f ind-  notably univariate models with 
known scale parameters. We will assume that the model is such that the 
information matrix inequality holds so that for the MLE of 0, 0 we have 

o ) - - , ~ ( o ,  nI(o ) - 1 )  , 

where 

I(0) = EQ~ Of(xt'O--) V'(xt, O)['(xt, O)V(xt, O ) Of(xt'O)) 
_ O 0  0 0 '  " 

In the case where the latent model and the observed model coincide (as occurs 
in nonlinear regression models) this simplifies to the expression, 

I(O) = E o ~  V'(xt, O )V(x. O) --o0 ~ -  

There are a number of convenient estimators for the information matrix that 
will be consistent under reasonable conditions. These include, for example in 
the case where the latent and observed model are identical 

Of(xt, O) 
i1-- Z t=l O0 

- -  V'(xt, b)v(x, b) of(x. O) 
O0 ,~ 

and when the observed and latent models do not coincide, 

i2= ~ of(x,, ~) V'(x,, O)o(O)o'(b)V(x,, O) of(x. O) 
t=l O0 00' 

Of(xt, O) i 3 ~ Of(xt 'O) t x = t=l O ~  V'(xt, O)Q ( t, O)Q(xt, O)V(x,, O) oO' 

6.1. Artificial regressions 

We may define three different types of artificial regressions, that may be used 
to generate the approximations to the perturbed estimates for different 
circumstances. Suppose we define the following three matrices. Let 

Z;t = V(xt, O) Of(x, O) 
O0 ' 

Zzt = Ot( O )V(xt, O) af(xt' O) 
O 0  ' 
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and 

z; t  = Q(xt, O)V(x. O) of(x. O) 
oO 

which are respectively q x p, 1 x p and q x p matrices and let 

Z, = ( Z , 1 , . . . ,  Z, , ) '  

denote the matrix formed by stacking the respective matrices. Next, define 

w .  = z ,O + o,(0),  

Wzt = Z;tO + 1 ,  

Wat = Z;tO -[- Q- l (x t ,  O)Ot(O ) 

and w t denote the vectors (of dimension qn x 1, n x 1 and qn x 1 respectively) 
formed by stacking these into a single vector. Denote the /-th artificial 
regression model 

w t = ZtO + errors 

by ARGo. Given this set-up, the usual simple formulae for linear regression 
diagnostics may be used in the context of this artificial regression to generate 
diagnostics for the nonlinear models, that have an interpretation as being 
approximations to the exact analogues of those diagnostics. When all n 
observations are included, the OLS estimator will be the full MLE (which is 
obviously already known) and when the i-th observation is deleted t° then the 
one step approximation to the estimate O(i) will be produced by OLS. Another 
nice feature is the fact that the OLS estimate of the variance covariance matrix 
of the OLS estimate, 

t 

will in general be a consistent estimate of the variance covariance matrix of the 
M L E -  thus the analogy is practically complete with the only drawback being 
the fact that the perturbed estimates are really only approximations. 

The artificial regressions ARG 1 and ARG 3 are quite similar and will be 
more convenient when q = 1)* The regression ARG3 will he required when 
q = 1 and the latent and observed models do not coincide. The artificial 
regression ARG 2 will be needed when q > 1 (as in the regression model with 
unknown scale parameter and consequently also in the tobit model). In cases 
where the location and scale parameters are orthogonal, one may concentrate 
on either parameter separately and use the more convenient regression ARGo. 

10 Note that for artificial regressions 1 and 3 one must omit the components  of the w and Z 

matrices corresponding to the i-th observation. This will not be a single row unless q = 1, al though 
in the examples that follow these artificial regressions are only convenient  in cases where q = 1. 

11 In fact A R G  1 is a special case of A R G  3 corresponding to Q(x, O)= 1. 
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Generally, when q > 1 and the observed and latent models do not coincide, the 
orthogonality will not hold and the reduction of dimension (or concentration 
on a subset of parameters) will be problematic. The examples in the following 
sections will provide more guidance regarding the choice of artificial regression 
and interpretation of diagnostics. 

One must be careful with A R G  2 since the residuals from the artificial 
regression will be identically equal to 1. Note however, that the orthogonality 
condition between the regressors and the residual holds since the regressors in 
this case are just the derivative of the log density for each observation. Thus 
the orthogonality condition is just that the average of the derivative of the 
likelihood function is zero. The analogue of the studentized residuals for this 
case can be shown to behave (in large samples) essentially like 1 / ( 1 - h i )  
where h i formed using the regressor Z 2. Thus values that exceed 1 by 'a large 
amount '  may be indicative of  an observation with a large relative residual 
Vector (or contribution to the derivative of the likelihood function). Of course 
the question of how large is 'large' remains. 

For situations where this regression is most convenient it may be necessary, 
if one wishes to examine the residuals ~,(0), to plot them separately. In such 
situations the interpretation of the D i and DFFITS measures is more clear in 
terms of an overall standardized measure of the difference in estimates of 0 
with and without the i-th observation included rather than being in terms of 
some aspect of the f i t -  Such as the fitted value in a regression. 

Below we will consider a number of popular non-linear models in most 
detail, and make suggestions regarding which of the artificial regression may be 
most appropriate and consider various aspects of the diagnostics. In discussing 
the different situations more closely we will focus on analogous measures to 
DFBETAS,  D i and DFFITS for the linear model - however, it is clear that the 
likelihood displacement measures and local perturbation measures could also 
be computed for each situation although these may not be as convenient as the 
aforementioned measures. 

7. Nonlinear regression models 

Suppose we have the nonlinear regression model given by 

y ,  = g(x,;  f l )  + u, 

and that there are n observations in total. It will be convenient to use the 
notation gt(/3) for the term g(x,;  f l )  and the notation u,(/3) for y, - g,(/3). Also 
the notation/3 will be used for the least squares estimator and gt will be used 
for h t evaluated at the least squares estimator. Also let G ( f l )  denote the n x k 
matrix of first derivatives of the n x 1 regression function vector g(/3) 
evaluated at/3. 

To set up the problem in a form that fits the framework of the previous 
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section, suppose that u t - N ( 0 ,  O2). This is not necessary, and in no way limits 
results since least squares and MLE under  normality are equivalent. We may 
consider at least two cases -  one where we are interested in looking at the 
sensitivity of the /3  estimates to observation deletion and the other  where we 
are interested in looking at the sensitivity of the complete (/3, 02) vector. 

7.1. Case 1 - In f luence  o n / 3  

Since the covariance matrix of the MLE of (/3, 0 "2) is block diagonal,/3 and 6 -2 
may be considered orthogonal, so it will be convenient to treat 02 as known to 
be equal to 6-2 _ this will simplify matters without altering the conclusions. This 
being the case the canonical statistic in this case is the identity map and is a 
scalar (see G M R T  for details) and the normal distribution (with assumed 
known variance) belongs to the linear exponential f am i ly -  in that case 

T ( Y t ) = y t  = g ( x t , / 3 ) + u t  

so that q = 1 ,  V = 1 /6 - ,  

Of(x, 0 ) Og(xt, /3 ) 
ao a/3 

and 

v t ( / ~ )  _ y ,  - g t ( / 3 )  1 
6- 

It is most convenient in this case to use A R G  1, since V is known (and the 
artificial regression in this case will correspond to Gauss-Newton  type 
iterations). Then Z1 = (1/6-)G(/3) and 

1 

and the regression in this case will be 

w t = Z1/3 + errors .  

It is easy to verity that OLS on the regression using all the observations will 
give /3 while omission of the i-th observation will give the one step approxi- 
mation above for /~( i ) .  Then the result for the linear model approximation to 
the perturbation in the least squares estimator due to omitting the i-th 
observation can be written as 12 

[3 - [3(i) = (G(f l  )'G([3 ))-'G~([3 )'u~(fl ) 
1 - h , (G(f i ) )  

12 This was also noted by Cook and Weisberg (1982) although they did not explicitly use the 
artificial regression formulation. 
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Which can be interpreted as an approximate DFBETAi  vector. Analogues of 
DFFITS and D may be defined as in the linear model using this artificial 
regression, in terms of the elements of G and the residuals from the nonlinear 
regression. 

In the context of the linear model the DFFITS measure had an interpreta- 
tion in terms of the fit - in the case of the nonlinear model the perturbation in 
the fit is given by 

gi(£} ) - g~( f i ( i ) )  . 

The analogues of DFFITS using the artificial regression framework can be 
interpreted as an approximation to this since by a Taylor series approximation 

gi([3 ) - g i ( £ } ( i ) ) =  Gi ( f i  )( f3 - f i ( i ) )  . 

One could use a standardized version of the deviance in the fit itself, 13 
however,  this measure is not as convenient as the DFFITS type measure,  which 
may be generated using a regression package that is able to compute such 
measures using the artificial regression. 

7.2.  Case  2 - I n f l u e n c e  o n  ([3, {r 2) 

When IT 2 is treated as an unknown parameter  and one is interested in measures 
of influence on ([3, o-2), things become more complicated. As shown by 
GMRT,  the canonical in this type of situation is a vector 

T ( Y t )  = (Yt ,  Y~) '  

so that in terms of our notation q = 2. The corresponding error  vector in this 
case is given by 

uXO ) = ( y ,  - g (x , ,  [3), y2 t - g (x , ,  [3)2 _ o.2), 

and the S-error vector in this case is given by 

1 ( (u2-- {f2)) ' 
v , ( 0 )  = -  u,, 

For this case it is most convenient to use A R G  2. In doing so it is easy to see 
that 

13 Although as noted above the question of what the appropriate standardization is may be 
problematic. 
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and 

w2t = z ; , ( L  a-b' + 1, 

W 2 = Z 2 ( / 3  , 0-2) ' q- e r r o r s .  

Measures  analogous to those for the linear model  may be found for the 
individual components  of the/3 vector or o -2 and overall measures may also be 
found. As noted in the previous section the interpretation of the D i and 
DFFITS type measures should be as an overall measure  of the difference 
between the estimates with and without the i-th observation included. 

8. Limited dependent variable models 

It  is relatively straightforward to show that the above analysis may be applied 
to a large class of limited dependent  variable models.  G M R T  have shown how 
residuals may be defined for various L D V M s  used in e c o n o m e t r i c s -  probit ,  
logit, Poisson regression, gompit ,  and tobit models plus others. 14 

These models may be separated into two categories. The first is where there 
is an index x,/3 appearing in the model and for the observed variable Yt, 

E(y , )  = F Q ; / 3 )  

and one only estimates the /3  vector. Models that satisfy this include all those 
ment ioned above except for the tobit m o d e l -  it may also include other  
so-called generalized linear models (see McCullagh and Nelder,  1989). The 
other  case is where a scale paramete r  o- must be est imated along with the 
parameters  of  the index - usually one has 

E(y , )  = G ( x ; / 3 ,  ~r) . 

This includes, for example the tobit and sample selection models.  Since in 
LDVMS,  the scale paramete r  is not typically orthogonal  to the /3  parameter ,  
the analysis for the non-linear regression model  with focus on /3  is not really 
appropriate .  It  will turn out to be move convenient  and possibly more  useful to 
look at the complete  paramete r  vector (/3, or) in examining influence measures.  

8.1. No scale parameters present 

For  models that fit into this category G M R T  have shown that the score vector  

14 In Gourieroux, Monfort, Renault and Trognon (1987b) another form of residuals, termed 
simulated residuals were defined for LDVMs and an example given of how they may be used to 
detect outlying observations. It would appear that these residuals may be more useful for other 
specification tests, such as tests for heteroskedasticity, than in the detection of outliers. 
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may be written as 

x ,a , (B)  = o ,  
t = l  

where ti is the generalized residual, which in some cases may be the same as 
the actual residual (e.g., Poisson). It is convenient to write this as 

x,V(x,, ~)O(x,,  ~)Q-~(xt ,  ~)6t(~)  = O. 
t = l  

Since the canonical statistic for these models is a scalar (i.e., q = 1) then it is 
relatively straightforward to find each of the components.  This is because the 
S-generalized residual will be a scalar so that its variance and hence the 
Q(x , /3 )  will be easy to find. The use of A R G  3 is quite straightforward to 
derive for these models. 

Two popular discrete choice models are the logit 15 and probit model and are 
motivated by the latent linear model 

y* = x',/3 + u, , 

where u, is usually taken to be iid and without loss of generality can be 
assumed to have a variance of i so that for these models V(x,,/3) = 1. In actual 
fact the variance in the logit model is "rr2/3, but it makes no difference to the 
actual diagnostics to be developed due to various cancellations. The Poisson 
model is usually motivated by letting the usual parameter  A in the Poisson 
density depend on the x t variables through the relation 

! 
a(x,) = exp(x, 13). 

The Poisson model then can be used as a latent model to motivate the gompit 
model,  which is a form of discrete choice model. (See G M R T  for more details 
on these models.) The Poission model may be written as a latent regression 
model with latent error 

u t ( / 3 )  - * - -y~  exp(x,[3) 

which has variance exp(xf l ) ,  so using the results in Section 7 it can be seen that 
for these two models V(x , /3)  = e x p ( - 1  , ~x~/3). Each of these four models are 
covered in GMRT,  so using their results it is easy to deduce that the 
components  Q(x ,  [3) and 0(/3) are given by 

a5 There is quite a large literature that has considered diagnostics for the logit model - sometimes 
referred to as the logistic regression m o d e l - s e e ,  Pregibon (1981), Johnson (1985), Bedrick and 
Hill (1990), Lesaffre and Albert  (1989). 
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probit: 

4~;/3) 
6t(fi) = @&;/3)(1- @~;/3))(yt- ~;/3)), 

4~;/3) 
QQt'/3)= (@~;/3)(1- @~;/3)))1/2, 

logit: 

1 
vt(/3) = Y ' -  1 + exp( -x ; /3 )  ' 

e x p ( -  1 t ~Xt j~ ) 

Q(xt , /3)  = (1 - e x p ( - x ; f l ) )  ' 

Poisson: 

(Yt - exp(x~/3)) 
U t ( / 3 )  - -  1 ' ' exp(~x,/3) 

Q(xt, fl ) =  l , 

gompit: 

-exp(x ; /3)  
u t (/3) - 1 - exp( - exp(x; 13 )) (yt - x;/3 ) ,  

¢ 1 r exp(x t/3) e x p ( -  ~- exp(x,/3)) 
Q ( x , ,  /3 ) = ( 1  , 112 - exp ( - exp (x  t/3))) 

Using these results it is straightforward to set up the artificial regression 
A R G  a. One would let 

Z3t = Q(xt, /3 )V(xt, /9 )x, , 

W3t = Z ; t  ~ n t- Q a(xt, f i )6t( f l )  

and the regression would be 

w 3 = Z f l  + errors .  

Thus approximately valid diagnostics for these models can be provided by 
using the regression diagnostic formulae for the artificial regression model. 
Note that for the Poisson model A R G  3 is identical to performing A R G  1 since 
in that case Q ( x ,  fl ) =  1. 

The interpretation of the measures should be noted. Although the 
D F B E T A S ,  D i and DFFITS measures have easy interpretations in terms of 
normalized differences between /3 and /3(i) (using normalizations mentioned 
above) the interpretation of the latter two as measures of the change in the 'fit' 
due to the omission of the i-th observation must be looked at more closely. 
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There  are at least two ways in which one could look at the effect on fit in the 
context of these models. The first is to look at the change in the fit of the latent 
index, 

x ; (~  - / 3 ( i ) )  . 

The second is to note that for these models, 

E ( y  i Ixi) = F(x;[3) 

so that one may be interested in the quantity 

F(x ;~ )  - F ( x ; ~ ( i ) ) .  

The DFFITS measure that would be generated using the artificial regression 
framework may be interpreted as linear approximations to either of these. Of 
course the problem of appropriate standardization remains with this type of 
measure. 

8.2. Scale parameters present 

In the case of more complicated models, for example the tobit or censored 
regression model we must also worry about the scale parameter.  It is 
convenient to consider the complete (/3, o.) vector when developing the 
sensitivity measures)  6 Unlike the regression model we can not really set up an 
artificial regression in such a way that we can look at changes in/3 alone - the 
variance covariance matrix does not have the block diagonal structure posses- 
sed by the latent model from which it is derived. 

Note that since in this case we have an underlying latent model for which the 
canonical statistic is a vector (q = 2) (since o. is t reated as unknown) it will 
prove to be convenient to use ARG2 (as we did in the nonlinear regression 
model with focus on the complete (/3, o -z) vector which we write in shorthand 
as 0 and denote the MLE by 0 = (/), dr)). It is easy to see that if the latent 
model is linear (which it usually is although need not be), 

y* =x;/3 + u , ,  

where u t - N ( 0 ,  o-2), then the components required to perform the artificial 
regression are 

, 1 
z2 ,  = -d o ), 02,(0)), 

t a 

W2t = g 2 t o  -~- 1 

16 Diagnostics for the  censored model  have been proposed by Weissfeld and Schneider (1990), 
based on one step approximations using the EM algorithm - the standardization in that case is not  
in te rms  of an approximation of the variance matrix of  the  estimator. 
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and the S-generalized residual vector 6 in this case as given by G M R T  has 
elements 

Ult(0) = I ( y  t > O) ut c~(x;~/o')  
- I ( y ,  = O) , f ( - x ; ~ / o ' )  

and 

(u 2 -  o -2) 1 x ; f l  O ( x ; ~ / o ' )  

62t(0) = I ( y  t > O) X/2o" + I ( y t  = O) X/2 o- cb(-?x;f l /o-)  ' 

where u t = Y t -  x~/3. The artificial regression in this case is given by 

w 2 = Z20 + errors .  

Again it should be stressed that the D i and DFFITS type measures should be 
regarded as overall measure of the effect on the complete parameter  vector of 
omitting the i-th observation since the measure does not correspond to any 
reasonable aspect of the fit of  the model. Alternatively a measure of the 
change of fit in the latent index model, i.e., the change in xi/3, can be 
computed from the normalized change in /~ alone. This is more complicated 
due to the fact that the variance matrix of (/3, 6-) does not have a block 
diagonal structure so the VC(/3) involves a partitioned inverse. 

8.3.  A n  e x a m p l e  

It may be interesting to examine to what extent the diagnostics for different 
models agree. The tobit, probit and linear model can all be related to the same 
underlying latent variable. Let,  

y* =/30 + X;~ 1 -~" U, 

and then as is well known the observed dependent  variables in the three 
models are I ( y * > 0 ) y * ,  I ( y * > 0 )  and y*. Here  we will generate the same 
series for y* with an outlier or bad observation and then for each of the three 
models construct the various diagnostics to see if they agree on which 
observation is the culprit. 

The example we use is similar in spirit to Gourieroux,  Monfort ,  Renault  and 
Trognon (1987b). We generate the 40 observations on x t as being evenly spaced 
between - 3  and 1, so that the mean is - 1 .  In other words we let x t = -2 .95  + 
( 0 . 1 ) ( t -  1). The true values of both coefficients are 1 so that in the probit and 
tobit cases roughly half the observations on the observed dependent  variable 
are zero. The u t are generated as N(0, 1) random variables. There  are many 
ways in which we can introduce outliers or influential observations. Here  we 
will simply set the value of y~ equal to 10, which will generally result in the 
observed value in the probit model as being a 1 instead of the much more likely 
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value of 0, and a positive value for the tobit model being observed. This may 
correspond to a situation where there is a coding error. 

A second example is to put in an extreme value of x. In this case we let 
x40 = 10 and the data on y* are generated as normal (with mean zero and 
variance one) random numbers (so in the notation of the above regression 
model/30 = 0 and/31 = 0). The y* for the 40-th observation is generated as in 
the first example (that is with both coefficients equal to one). This is the classic 
case where the extreme observation will basically determine the regression line 
in the context of the linear regression model, so may have a small residual, but 
is quite influential. 

In the first example, as expected h~ did not pick the outlier but the 
studentized residual, DFFITS~ and the Cook distance did. There  was no 
difference between the different methods of estimation. In the second exam- 
ple, again as expected, h~ picked the outlier but so did the other diagnostics. 
Also, there was not much difference between the different models. 

We also tried the different diagnostics suggested in the section with the 
bankruptcy data analyzed by Johnson (1987). The data were on 46 firms, with 
y = 1 for 25 and y = 0 for 21 observations. The equation was estimated by the 
linear probability (LP),  logit and probit models. The logit and probit models 
gave almost identical results. For both these models, the studentized residual, 
DFFITS/ and Cook distance all picked observation 34 as an influential 
observation. As for the LP model, the Cook distance was larger than 1 for 
observations 16 and 46 but not for observation 34 which was identified as an 
influential observation by the other criteria. 

Our aim was not to conduct an exhaustive study of the measures here but to 
check on how they perform with two simulated data sets and a real world data 
set. The computations were easy and straightforward (using the S H A Z A M  
program) and the limited results suggested that this approach is worth 
pursuing. 

9. Dynamic models and panel data 

In dynamic models one must be careful about the interpretation of outliers. 
There  may be two interpretations of outliers in dynamic models. The first, 
known as an additive outlier occurs when a particular observation is bad but 
subsequent observations are not affected by the badness. For  example there is 
a misrecording of a particular observation in a time series, although the 
underlying model is unaffected. The second type of outlier in time series 
contexts is known as an innovational outlier and results when the effect of a 
large (or outlying innovation) is perpetuated through the dynamics of the 
model. An example will make the distinction more obvious. Suppose that w t 
follows an AR(1)  process so that 

Wt = P W t - 1  + ~'t • 
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An additive outlier at observation i would occur if we observed the time series 
y~ given by 

Yt = w t  + I ( t  = i ) z t  , 

where I ( t  = i )  is an indicator function for the event, and z t represents perhaps a 
misrecording error. In the innovational outlier model we observe Yt  = w t  except 
that 

W t = D W t _ I  ~- E t ~- I ( t  = i ) z  t 

so the z, represents an 'unusually large' innovation occurring in period i. 
The main complication that arises in the development of diagnostics is for an 

additive outlier. The case of an innovational outlier may be covered by the 
usual deletion diagnostics since the only place where the model fails is for the 
i-th observation i.e., in the example above p w i _  1 is not a very good predictor 
of wi. The work in the previous sections is therefore appl icable-  and as 
G M R T  suggest the generalized residuals may be easily adapted to deal with 
dynamic models. In the additive case the i-th observation is a bad piece of data 
so not only is it not well predicted by the previous observation i.e., pwi_l, but 
it is also not very useful in predicting subsequent observations. Thus a useful 
diagnostic for this case would see how the model is affected by the omission of 
all data observed in period i -  this raises a problem of dealing with a missing 

17 regressor. 
In dynamic models two issues need special attention. The first is that there 

are two sources of outliers: a shift in mean and an error term with increased 
variance. In dynamic models the distinction is important. The second issue is 
that of sensitivity of unit root tests to outliers. Most macroeconomic time series 
are judged to be unit root processes on the basis of unit root  tests. However ,  
these tests are sensitive to structural breaks and the presence of outliers. Liu 
and Praschnik (1991) compare the powers of four commonly used unit root 
tests, DF, ADF,  Z~ and Z, tests, through Monte Carlo and find the A D F  test 
to be the only one robust to outliers. 

The issues of outliers in panel data are complex. For the sake of simplicity, 
consider the case of N cross section units with T time series observations on 
each. We can analyze each cross section separately and determine the outliers. 
But very often the data from the different cross sections are not analyzed 
separately but are pooled. In this case each one of the outliers in the i-th cross 
section will have less effect o n  the individual/3i than without pooling, but the 
outliers will have some effect on/~j ( j  ¢ i). In many of the pooling procedures,  

17A number of papers have proposed methods of dealing with a missing regressor and 
diagnostics for an additive outlier, see Ledolter (1990), Pefia (1990), Fiebig and Maasoumi (1990). 
Muirhead (1986), Abraham and Yatawara (1988) and Tsay (1988) discuss methods for determining 
the types of outliers. Balke and Fomby (1991) is an illustration of these methods to analyze GNP 
data. 
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the individual /~i are 'shrunk' towards a common estimator /3", which is a 
weighted average of the/~i. A common formula for/3" (see Lee and Griffiths, 
1978, for example) is given by the equations 

/3T : ( X ; K )  ..~ ~ , - 1  -1 1 
S~ xix~/3~ + I;*-l tx* , 

1 

S~ = 1  X * '  , ~(Yg-  i/3i) (Yg- X~/3*i) 
1 

, = -/3,),.  

Thus an outlier in the i-th cross section has an effect on/3* both through its 
effect on /~ and its effect on S~. 

10. Conclusion 

We have presented a review of the literature on outliers and influential 
observations in the linear regression model and presented an extension of these 
methods to non-linear models and the logit, probit and tobit models. Though 
there are some earlier results on non-linear models in Cook and Weisberg 
(1982) and Pregibon (1981) and soon,  we have presented here a unified and 
computationally simpler approach based on artificial regressions. This should 
be useful in further work on outliers and influential observations. 

Though our critique of the literature on regression models suggests some 
problems with the commonly used diagnostics for outliers and influential 
observations, and that a likelihood based approach would be preferable, we 
have presented here an extension of the commonly used dignostics in the 
regression context. These are computationally much simpler and are adequate 
in many cases if carefully interpreted. Extensions based on the likelihood 
approach are under investigation. 

Space limitations have prevented a more complete review of the literature on 
dynamic and time series models as well as models based on panel data. Also, 
we have presented only a cursory review of the bayesian approaches. 
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Statistical Aspects of Calibration in 
Macroeconomics 

Al lan  W. Gregory and  Gregor W. Smi th  

1. Introduction 

Empirical questions in macroeconomics often are addressed with dynamic, 
equilibrium models. Studying such questions involves formulating a model,  
solving it, assigning parameter  values (i.e., calibration), and then conducting 
experiments with the model and evaluating the results. This chapter reviews 
some methods for parameterization and evaluation. Researchers typically study 
models by conducting simulations and studying simulated data using statistics 
(such as moments) which also may be calculated with historical data. The aim 
may be deduce some of the model 's properties or implications, a to compare its 
properties to those of data, or to test the model formally. In this chapter we 
study the statistical aspects of these calibration methods. We refer to illustrative 
applied studies, but do not provide a comprehensive bibliography. 

Section 2 provides a background to calibration methods in macroeconomics. 
Section 3 describes a simple asset-pricing model, which serves as the setting for 
an outline of estimation and calibration. Section 4 discusses testing and 
evaluating calibrated models and demonstrates several tests using the asset- 
pricing model. Section 5 surveys some recently proposed, alternative tools for 
evaluation. A brief conclusion follows in Section 6. 

2. Background 

Calibration exercises begin with the assignment of parameter  values. Just as in 
the calibration of applied general equilibrium models in the study of interna- 
tional trade or public finance (see for example Shoven and Whalley, 1984) 
parameter  values are assigned on the basis of other studies or evidence. 2 For 

For example, Lucas (1987) and Imrohoro~lu (1989) use calibrated models to measure the costs 
of business cycles. 

2 Lau (1984), MacKinnon (1984), and Pagan and Shannon (1985) suggest the use of formal 
estimation, testing, and sensitivity analysis in applied general equilibrium models. 

703 



704 A. W. Gregory and G. W. Smith 

example, dynamic, representative-agent models might be calibrated with 
reference to averages found in panel data. The rationale is not that identifica- 
tion and estimation are impossible; indeed Singleton (1988) notes that often 
standard econometric methods may be applied to estimate parameters. Rather 
the idea is to strengthen results and discipline modelling by avoiding free 
parameters. Usually model properties are studied with several different 
parameter vectors, as a check on sensitivity. Information drawn from other 
studies usually is informal and does not include standard errors. Canova (1991) 
and Hoover (1991) discuss this issue. Moreover, some method of aggregation is 
required in order to use parameters estimated from microeconomic panels in 
representative-agent models (i.e., to make sure one is measuring the same 
thing). If the relationships estimated from microeconomic studies do aggre- 
gate, then estimation also could be done in the aggregate data, at least as a 
check. If those relationships do not aggregate, then using the micro-based 
estimates may be misleading. 

In some cases parameters are set so as to match exactly a statistic generated 
by the model with one in data. For example, Kydland and Prescott (1982) 
calibrated the coefficient of relative risk aversion in their business-cycle model 
by matching the variance of detrended output. This matching constitutes 
estimation, and is often done by simulation. In Section 3 we outline this aspect 
of these empirical methods. 

Once a macroeconomic model is parameterized it can be evaluated using 
data and then perhaps used to answer quantitative questions. A second 
statistical method in macroeconomics involves more general comparison of a 
model's properties with those of data. A typical business-cycle study reports 
measures of variability and of covariance with output for actual data and for a 
business-cycle model, for such variables as consumption, investment, and 
hours; a good example is given in Tables 1.1 and 1.2 of McCallum (1989). This 
comparison can be viewed as an informal test, which guides reformulation or 
respecification of the model, particularly when the discrepancies appear to be 
large. 

Obviously the inferences drawn from the comparison depend on the 
variables and moments used. The moments must exist for the comparison to be 
meaningful, so often data must be transformed to induce stationarity. Singleton 
(1988) and Cogley and Nason (1991) show that the detrending method (or 
spectral bandwidth) considered in calculating moments may itself have a large 
effect on conclusions. Typical comparisons involve variances, but one also 
could study dynamic properties, i.e., the shape of a spectrum rather than its 
integral. 

Studies which use calibration methods in macroeconomics are now too 
numerous to list, and it is safe to say that the approach is beginning to 
predominate in the quantitative application of  macroeconomic models. One 
influential example of calibration is the study of business cycles by Kydland and 
Precott (1982), in which fluctuations are driven by an unobservable productivi- 
ty shock. They assigned most parameter values based on evidence from 
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microeconomic studies and long-run averages and studied the model's business- 
cycle properties by simulation. Further study of equilibrium business-cycle 
models driven by technology shocks has led to several reformulations. For 
example, the variability of the labour input (hours worked) in the Kydland- 
Prescott economy was less than that in detrended historical data for the U.S. 
This discrepancy was largely resolved in versions of the business-cycle model 
which include labour supply variation caused by variation in the number of 
persons working as well as in hours per worker. Other versions have included 
labour contracts, government spending, and tax distortions to widen the range 
of questions studied and to improve the models' fit. Although reformulations 
like this are suggested partly by theory they also are impelled by comparisons 
of the models' predictions with data. Sections 4 and 5 discuss several ways to 
formalize such comparisons. 

3. Estimation and calibration 

To keep notation as simple as possible, we shall survey estimation and 
calibration methods entirely within an asset-pricing model, as outlined by 
Lucas (1978). This model is simple enough to allow clear and direct com- 
parisons between calibration and standard econometric methods. Singleton 
(1990) provides a comprehensive outline of asset-pricing theory and evidence. 
In the example here a representative consumer has preferences represented by 
the utility functional 

in which E is the expectations operator, ~ is the consumer's information at 
time t, /3 is a discount factor, u(c) = c1-~/(1 - a)  (log c if a = 1), and ~ is a 
positive, constant coefficient of relative risk aversion. Consumption c t evolves 
according to ct__ 1 = x~+ 1 • c~, so that {xt} is the sequence of consumption growth 
rates. 

Relative prices are calculated by equating them to intertemporal marginal 
rates of substitution. The price of a one-period, risk-free, discount bond which 
provides one unit of consumption at time t + 1 is given by 

p~ =/3E[u'(c t+O/u'(c~)l~t l  =/3E[(ct+I/c,) -~ [W S] 

=/3E[x,+ 1 [ ~ ] ,  (2a) 

and the price of an equity claim to the consumption stream is given by 

pe =/3E[(u,(ct+l)/U,(C,)).(ct+ 1 +pt+l) i W S] 

=/3E[x/+~ "(ct+ ~ +Pt+l) I ~ ]  • (2b) 

The structural parameters of this model are 7 = (a,/3). Denote the realized 
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history {Yt = (P,, x,): t = 1 , . . . ,  T + 1}, where Pt is a vector of asset prices and 
x t is the forcing variable, which here is a scalar for simplicity. We next consider 
estimation under various assumptions about the investigator's knowledge and 
aims. Estimation and inference usually are based on the sample moments of 
the observable variables: 

T 

W r = T -1 ~ ,  w(y, ) ,  (3) 
t=l 

where T is a sample size, w is a q-dimensional vector of observable continuous 
functions, and W r is a vector of sample moments of the observable variables. 
For example, W r could include the sample means and variances of bond and 
equity prices. 

Next suppose that an economic theory predicts a vector ~v(yt, 7 )  where 
7 E F C R ~  is a v-vector of parameters, and the model determines the 
endogenous variables from the forcing variable and the parameters. Tildes 
label the predictions of theory. Denote the true parameter values 7o so that 
unconditionally E[w(yt)] = E [ ~ ( y ,  %)] if the model is correct. We assume that 
these conditions are satisfied only at 7o. The sample analogues to these 
population conditions may be used for estimation. The parameters of the 
economic model (such as a in the asset-pricing model above) may be 
consistently estimated if q ~> v and some identification conditions are satisfied. 
For the most part we shall assume identification and sufficient regularity. We 
consider and contrast three different methods of obtaining parameter values: 
first the generalized method of moments (GMM), second the method of 
simulated moments (MSM), and third calibration. 

First, if the econometrician can calculate the theoretical moments then 
estimation can be based o n  the generalized method of moments (i.e., 
generalized instrumental variables, surveyed by Ogaki, 1993): 

~)GMM =arg min [[W r - lVr(y)[I , (4) 
"y~F 

where the asymptotic distribution of the estimator will depend on the norm 
II" II. Hansen (1982) shows consistency and asymptotic normality (CAN) using 
the L 2 norm under regularity and stationarity conditions. For example if the 
minimization is 

%MM =arg min [(W T - rtfVT(7 ) )  T S T I ( W T  --  ~V~l'rT(7))] , 
-yEF 

(4') 

where the superscript T denotes transposition and S T equals the sample 
variance-covariance matrix of the moment condition W T - 17VT(7 ),  then 
T 1 / 2 , .  ^ (TGMM 70) a N (  0, T -1 -1 - (Vw0S 0 Vw0 ) ), where Vw0 is the expected Jacobian of 
the same condition and S o is the population variance-covariance matrix, both 
evaluated at 7o- GMM describes the optimal weighting of moment conditions. 
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Efficiency may be increased if population moments E[v~(yt, y)] can be 
calculated for the model and used in place of lVr(y ). 

An example of estimation is suggested by equation (2a). From the law of 
iterated expectations, Ep~ = E/3xt+ r Thus one could estimate o~ by GMM with 
q = v = 1 (presetting fl, say) based on the moments: W r = T -1 Ztr_l pt  y and 
f i r (y )  = T-lZrt=l/3"xt+ ~. In this simple example a constant is the only 
instrument. Hansen and Singleton (1982) estimate a and 13 using this method 
with some additional moment conditions that provide overidentifying restric- 
tions and hence a test of the model. 

The advantage of this method is that one can estimate and test the model in 
(2a) and (2b) without specifying the law of motion for the forcing variable. 
Data on (xt} are used, and some weak restrictions on its properties are 
required for asymptotic distribution theory, but there is no parameterization of 
the {xt} process. The disadvantage of this method is that it cannot be used to 
predict asset prices since the expectations in (2a) and (2b) are unknown. 
Solving for asset prices requires further, testable assumptions on the data 
generation process (DGP). If the forcing process {xt} is parameterized then 
GMM or maximum likelihood methods can be used to estimate its parameters 
along with a and/3. For example, Hansen and Singleton (1983) specify a joint, 
log-normal distribution for {Yt} and hence solve for asset prices and estimate 
by maximum likelihood. Hansen and Sargent (1980) outline methods for 
testing cross-equation restrictions in the multivariate (Yt} process for linear 
models. 

Macroeconomic models frequently include unobservable or latent variables 
such as productivity shocks in growth models or, in the case of the asset-pricing 
example, measurement error in aggregate consumption. Computing the likeli- 
hood or even moments can be difficult with a latent variable. In these 
circumstances a heuristic device is to set the parameters and simulate the 
model. Then comparing statistics from the simulations to those in data, while 
varying the parameter settings to seek a good match, amounts to estimation. 
Formal simulation estimators in economics originated with McFadden (1989), 
and Pakes and Pollard (1989) (see the reviews by Hajivassiliou, 1993, and 
Gourieroux and Monfort, 1991). Simulation estimators sometimes can be 
constructed without the complete DGP (see McFadden and Ruud, 1990). In 
macroeconomics Kydland and Prescott (1982) estimated some of their parame- 
ters by grid search and simulation, while others were set on the basis of other 
evidence. Thus their method of parameterization was a hybrid of estimation by 
simulation and calibration. Several subsequent studies have simply calibrated 
related models with the Kydland-Prescott parameter settings. 

Natural examples of moments which are difficult to calculate analytically in 
macroeconomics arise from measurement schemes. Typically data are collected 
by time-averaging, skip sampling, or other schemes the effects of which on 
moments may be difficult to work out analytically. Simulating the measurement 
or sampling model along with the underlying economic model provides a very 
simple estimation method. Other settings for estimation by simulation arise in 



708 A. W. Gregory and G. VII. Smith 

financial modelling in continuous time. There the conditional likelihood 
(transition probability density function) often is the solution to a partial 
differential equation which, for interesting processes, is difficult to solve. 

To illustrate a formal version of this second approach to estimation, suppose 
that the econometrician measures {x,} with error. In some cases a and/3 may 
still be estimatable by GMM but generally estimation (and certainly prediction) 
requires one to parameterize and simulate the unobserved process. Then the 
unknown expression for the theoretical moment can be replaced by a simulated 
moment i f ( Y , , 7 ) ,  where n indexes simulated observations. For example, 
suppose that the researcher parameterizes the process for the consumption 
growth rate as Mehra and Prescott (1985) did. Let the growth rate Xn follow a 
Markov process on a finite, discrete state space A = (hi ,  h 2 , . . . ,  Aj}. This 
process is stationary and ergodic, with transition matrix ~b, 

~bq=Prob [x ,+~=h j lx , - -h i ] ,  i , j = l , 2 , . . . , J .  (5) 

The equilibrium or unconditional probabilities are given by 

thi = Prob[x, = h/] Vn.  (6) 

If the current state is (c., hi), then from equations (2a) and (2b) the prices 
(relative to one unit of the commodity at time t) of the two assets are 

J 
pe(a,, c.) =/3E[(xL1) I =/3 E  q*7 , (7a) 

j=l 

pe(Ai, cn) =/3E[(xn+l)"  (c.+ 1 + p e ( h j ,  C.+I)) [ ~ . ]  
J 

= /3 E 6ij)t;°c(~jCn -~-Pe(t~j, l~jCn)). 
j=l 

(7b) 

The finite-state Markov process allows analytical expressions for the asset 
prices. In many cases realistic models will not have this feature and a recent 
and important development in macroeconomics is the use of numerical 
methods for solving models (see Taylor and Uhlig, 1990, and references 
therein). Burnside (1990) discusses estimation when moments are approxi- 
mated analytically, rather than by Monte Carlo methods. So far there are few 
examples of estimation and testing in macroeconomics which take into account 
approximation error arising from solution methods. In this chapter we focus on 
estimation and testing and hence use an example in which deducing the 
predictions of the theory is straightforward, once {xn} is simulated, i.e., we 
assume that the true growth rate x, (observable only by agents) also follows a 
J-state Markov chain. 

Next simulations {xn: n = 1, 2, 3 , . . . ,  N + 1} are drawn from this probability 
law and functions {~(y , ,  3')} are calculated using specific values of 3'. Then 
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estimation can be based on the method of simulated moments (MSM): 

YMSM =arg min IIWT. - (8) 
" /EF  

where 17VN(y ) = N -1 N Y'n=l w(Yn, Y) are the simulated moments. The vector Y 
now may include parameters of the forcing process. If the rationale for 
estimation by simulation is that {xt} is measured with error then W T will 
include moments of asset prices only. Under ergodicity the two sample 
moments which are matched in (8) converge, as T and N approach infinity, to 
two population moments which are equal at %; this equality forms the basis of 
estimation. 

The argument in equation (8) can be rewritten as 

W T - l~ZN(y ) = [W T - 17¢r(y)l + [lYCT(y) -- E~]  + [E~ - 17ON(T) ] 

= [ W z -  WT(Y)] +ST + UN" (9) 

In equation (9) the first term is the argument of the GMM estimator in (4). 
The second term s~ is a sampling error which arises if GMM or MSM is based 
on sample moments rather than population moments E~ .  The third term u N is 
a simulation error. Thus the difference between GMM and MSM estimators 
depends on the properties of u N. In many macroeconomic applications no 
simulation bias arises, but consistency and asymptotic normality results in 
MSM require some restrictions on the error u N. 

One possibility suggested by (9) is to prove a central limit theorem by 
applying empirical process methods (see Pollard 1984, 1985) to the simulation 
residual. Let 6N be the empirical process operator defined as ~0 n =-N1/2[E-  
N 1 N End1], where E is the population probability measure and N -1  N Z n = 1 is the 
empirical measure, with mass N -1 at each observation W(yN, Y)" The stan- 
dardized residual is  N1/ZuN----~NW(Yn, 'y). An important necessary condition 
for CAN is that the empirical process ~N~(y,,, y )  is stochastically equicontinu- 
ous in y. This smoothness condition requires that Monte Carlo random 
numbers not be redrawn as y is varied. It does allow some discontinuities. For 
example, in finance many applications (e.g., with kinked payoffs) involve 
functions w which are not pointwise differentiable with respect to 7. In these 
circumstances Taylor's theorem applied to ~(Yn, Y) cannot be used to establish 
asymptotic normality. Pakes and Pollard (1989) describe central limit theorems 
for such environments; as in (9) these theorems take limiting operations first, 
then rely on the differentiability of the expectation. 

Duffle and Singleton (1990) note two reasons why standard proofs of CAN 
for MSM in iid environments may not apply to dynamic models. First, 
simulations begin from some initial values, yet the unconditional distribution of 
the forcing variables typically is not known as a function of the parameters. For 
example, one would simulate the asset-pricing model here by choosing an 
initial state (Co, hi) then calculating prices as in (7a) and (7b) by drawing 
consumption growth rates from the conditional probability density function. 
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Geometric ergodicity in {xn} is sufficient for the effects of using arbitrary initial 
conditions in simulation to die out. Second, in a non-iid environment the 
simulated moment depends on the parameters directly through the moment 
condition (as in GMM) but also indirectly because values of parameters such as 
4} are used in generating the past history of the simulated variables. For 
example, the simulated mean price of the risk-free asset is 

N 

17¢u(y ) =- N -1 ~'~ /3 .x2+1, (10) 
n~l 

which is a function of /3  and a (just as in GMM) but also depends on the 
parameters through their use in simulating {x.}. Duffle and Singleton provide 
CAN results for MSM under these conditions. 

In fact, in this example one can calculate the unconditional mean of the 
risk-free price (given the form of the forcing process) as: 

J J 

= E(p ) = 6 i 6 i j a f  . ( 1 1 )  
i = l j = l  

This population moment would provide more efficient estimates than would 
the simulated m o m e n t -  both s r and u N can be avoided. In general, though, 
the simulation error u N will make the MSM estimator less efficient than a 
comparable GMM estimator. For E 1~ 2 < ~ ,  @NI~ is asymptotically distributed 
as N ( 0 ,  E ~2 _ ( E  1~)2), i.e., N(0, var[~]). This result is a heuristic version of 
Lee and Ingram's (1991) finding that if N = T then the asymptotic (as T and 
N--->~) variance is twice that of the GMM estimator. The idea is that 
simulations are independent of the observed data and hence their contribution 
to the variance is orthogonal to that of the usual GMM component. 

Other simulation methods and variance-reduction techniques can reduce 
sampling variability. Duffle and Singleton (1990) note that averaging over R 
independent simulations with N = T yields an asymptotic variance (1 + R -1) 
times the GMM one. By ergodicity the same result holds if there is one long 
simulation with N =  R T .  Melino (1991) suggests other improvements: for 
example, if one is simulating an It6 process, then one need only simulate the 
predictable component, since the expectation (used in estimation) is unaffected 
by the martingale component. In many cases one can simply set N very large, 
calculate population moments, and then apply GMM; in such cases there is 
little efficiency loss from simulation, which is simply used as a calculation 
device. 

Estimation sometimes may be based on matching properties other than 
moments. For example, macroeconomic evidence might be summarized in the 
coefficients of a vector autoregression or of a linear regression. Given 
identifiability, one could calculate the population coefficients in the same 
regressions in a theoretical model and match the two sets in order to estimate 
parameters. Smith (1989) shows that such matching yields consistent, asymp- 
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totically normal estimators provided it is based on regular functions of 
asymptotically normal variables. 

In practice the choice among estimators often hinges on computation. Much 
remains to be learned about practical estimation in specific applications, 
particularly with non-differentiabilities. Bossaerts and Hillion (1991) outline 
applications of MSM in financial models. They describe methods for estimating 
option-pricing models in which prices are found by simulation (see also Boyle, 
1977). In some economic models a further approximation arises because 
moments of a continuous-time process are approximated by moments from a 
simulated discrete-time process. Bossaerts and Hillion (1991) let the order of 
discretization grow with the sample size, and interpolate to reduce bias in finite 
samples. Duffle and Singleton (1990) discuss discretization schemes and 
asymptotic results. 

So far we have noted that simulation methods may be useful in parame- 
terizing macroeconomic models in which there are unobservable variables or 
simply analytical intractabilities. But there is a further, more conventional use 
for simulation methods even if GMM is feasible: repeated simulation can allow 
study of the sampling behaviour of estimators and tests. For example, Tauchen 
(1986) and Gregory and Smith (1990) find numerically that for this asset- 
pricing DGP and for realistic persistence in consumption growth rates ~G~M is 
biased down if s 0 = 2.0 or 4.0 (for N = 100 or 500). Setting N = T and making 
R large traces out the finite-sample density of ~GMM and hence can be used to 
make bias corrections. Canova, Finn and Pagan (1991) synthesize numerical 
and analytical evidence on instrument choice. Kocherlakota (1990) uses the 
same method to study properties of tests of this model. 

A third method of parameterization, and an alternative to formal estimation 
methods such as GMM and MSM, is to assign parameter values with reference 
to other studies, i.e., to calibrate, as sketched in Section 2. One idea behind 
this method is simply to reduce uncertainty about a model's predictions, and 
hence strengthen tests, by assigning parameter values using point estimates 
from related studies. Gregory and Smith (1990) study mixed estimators in 
which some parameters are pre-set (calibrated) and others are estimated, as in 
Kydland and Prescott (1982). Obviously there is a trade-off between efficiency 
and robustness- generally estimators will be inconsistent if the pre-setting is 
incorrect but may have relatively low mean square error if the pre-setting error 
is not large. The importance of pre-setting a parameter, as opposed to 
estimating it consistently, can be gauged in sample size: How much larger an 
historical sample would be required with estimation, as opposed to calibration, 
to achieve as much precision in some measure? Moreover, in some cases 
moment conditions can be found which can consistently estimate some 
parameters even if others are set incorrectly. Gregory and Smith (1990) give an 
example. 

Many models contain parameters which cannot be set with reference to other 
studies. In such cases calibration often proceeds by setting parameters to match 
a population moment from the model with a sample moment from the data. 
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One potential pitfall in informal moment-matching is that parameters may be 
selected even if they are not identifiable. Another is that parameters in 
business cycle models sometimes are assigned so that deterministic steady-state 
predictions of the model match sample averages of the data. An analogous 
method in the asset-pricing model discussed here would be to set/3 to equal 
the mean bill price, because that is its value in a deterministic steady state (by 
setting consumption growth equal to zero in equation (2a)) and then to find 
by inserting this value for/3 in the equation for the equity price. As we have 
seen in this section, standard statistical methods (even in models with 
unobserved shocks) can avoid these pitfalls. 

4. Model evaluation and testing 

Once a model has been formulated, solved, and parameterized its properties 
can be studied and compared to those in data. Relatively informal comparisons 
of moments have become widespread in macroeconomics. These comparisons 
may illuminate respects in which the model seems inadequate. Of course, an 
exact match is unduly restrictive since historical moments have sampling 
variability and so can differ from a model's population moments even if the 
model is true. Therefore, some method for gauging the discrepancy between 
actual and predicted moments is necessary. Three sources of uncertainty may 
affect the comparison. First, uncertainty may arise from simulation or from 
approximation. Second, uncertainty arises if parameters are estimated. Third, 
there is sampling variability in the historical moments themselves. 

This section illustrates and contrasts two standard techniques of model 
evaluation using a common data set. The data are annual returns used by 
Grossman and Shiller (1981) and Mehra and Prescott (1985) for 1889-1979. 
Consumption is measured as annual per capita real consumption on non- 
durables and services. The real return on equity is constructed from the 
corresponding consumption deflator, the annual average of the Standard and 
Poor composite stock price index, and annual dividends. The risk-free real 
return is based on prices of short-term securities (such as treasury bills). 

Economic models typically restrict a wide range of properties, and hence one 
approach to formal testing is based on overidentification. Suppose that v 
parameters have been estimated using q moment conditions. Hansen (1982) 
shows that T times the minimized value of the criterion in (4') is asymptotically 
x 2 ( q  - v) under H0: 

j = T [ ( W  T V~7 ^ T S - 1  - ~ a 2 , -- (7GMM)) :~ (Wr-W(YGMM))]--X ( q -  V) (12) 

where S r is defined in Section 3. This test of overidentifying restrictions allows 
for sampling variability in moments and for parameter uncertainty. A similar 
test can be applied if only v moments are first chosen for estimation, and then 
the remaining q - v  are used for testing. 
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To illustrate the test in equation (12) we first calculate GMM estimates of a 
and 13 by transforming equations (2a) and (2b) to give the following moment  
conditions: 

E[(13xT+ 1 • rt+ i f  - -  1 ) "  Zt] = O, (13a) 

E[(13xt+ 1 .rt+ 1 - 1) .z t ]  = 0 ,  (13b) 

f e e e 
where r,+ 1 = 1/p~ and r,+ I = (Pt+l + Ct+l)/Pt are the real, annual, gross returns 
on bonds and equity and z t C ~ ,  is a vector of instruments in agents' 

f e r e  information set. In this example z t = (1 x, xt_ 1 r~ rt_ 1 r, ,_~). With seven 
instruments and two equations q = 14 and v = 2. The parameter  estimates are 
/3aMM = 1.030 (0.0681) and f~MM = 9.747 (2.383), with standard errors given in 
parentheses. Note that the estimate of 13 is outside the range to which it would 
usually be restricted in calibration. The value of the J-statistic is 29.689 and 
comparison to its asymptotic distribution X2(12) gives a prob-value of 0.0031 so 
that the model is rejected at the usual significance levels. 

Many tests of calibrated models can be viewed as more detailed studies of 
the dimensions in which a model might fail empirically, because complete 
calibration of a model is not required to test it (as the J-test illustrates). The 
aim of calibrating a model economy is to conduct experiments in which its 
properties are derived and compared to those of an actual economy. A 
standard reporting style in business-cycle modelling involves listing uncondi- 
tional moments  of historical data alongside of population moments from a 
calibrated economic model. 

For  example, Mehra and Prescott (1985) calibrated a version of the asset- 
pricing model outlined above, by setting a = 1.5, fl = 0.99, a~ = 0.982, a 2 = 
1.054, and 

[-0.43 0.57] 
~b = 1_0.57 0.43_1 " 

The rationale for this calibration is that some of the population moments of 
this consumption growth-rate process (mean, variance, and autocovariance) 
match those of the U.S, annual sample for 1889-1979. Based on various 
applied studies which estimate a Mehra and Prescott concluded that a is 
probably between 1 and 2. This choice of a lies outside the 95% confidence 
interval around &GMM estimated from the annual returns data. In fact they 
examined the sensitivity of findings to values of a between 0 and 10 as well as 
values for 13 between 0 and 1; one also could study the moment  comparison 
with these ranges. 

Table 1 lists moments implied by the model and found in data, as is typically 
done in calibration studies. The first column presents the first two population 
moments  of consumption growth, the risk-flee return, and the equity premium 
for the model. The second column of the table gives the same moments for 
U.S. historical data. The population equity premium rate ( E r ~ - E r ~ )  is 
0.20%. 
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Table 1 
Population and sample moments (Mehra-Prescott model) 

Moment Mode l  1889-1979 95% confidence interval 

/x (x,) 1.8 1.83 (1.2, 2.4) 
std(x,) 3.60 3.57 (3.6, 3.6) 
/x(r I - 1) 3.51 0.80 (3.4, 3.6) 
std(r~- 1) 0.8 5.67 (0.8, 0.8) 
tx(r 7 - rf,) 0.20 6.18 (-0.6, 1.0) 
std(r~ - rl) 3.9 16.67 (3.7, 4.0) 

Note: Values are given in percent terms. /z denotes a mean, std denotes a 
standard deviation, rf, is the gross, real return on the risk-free asset (T-bill), 
r7 is the gross, real return on equity. Returns are measured as percentages. 
Confidence intervals are interquantile ranges from the empirical density 
function of the simulated moments, based on R = 1000 replications. 

One way to describe the comparison between these two sets of moments  is to 
use the language of classical statistical inference: if the actual propert ies  could 
not have been generated by the economic model  except with very low 
probabili ty then the model is rejected and otherwise it is not. But nothing 
hinges on viewing the comparison as a classical test. For example,  one could 
treat  the comparison simply as a measurement  exercise in which one gauges the 
proport ion of some observed variance, say, which the theoretical model  can 
reproduce.  However ,  at some stage in an investigation one must test a model  
against data or against other models in order to have confidence in its 
economic implications. 

In contrast to the J-test,  most  tests of calibrated models evaluate models 
while ignoring parameter  uncertainty. However ,  one advantage in testing 
calibrated models is that exact procedures are available because the complete  
D G P  is specified, including the density of the forcing variable x. Thus in a fully 
calibrated model  an alternative to asymptotic tests is to use the sampling 
variability of  the simulated moment  to gauge the closeness of  the historical 
momen t  to the model 's  population moment  (see Gregory  and Smith 1991, 
1992). To conduct this test, one simulates repeatedly with the same sample size 
as is available in historical data and then forms the empirical density of the 
simulated moments  {l~N(y)r: r = 1 , . . . ,  R}. With this density one can calcu- 
late critical values, or treat  the historical momen t  as a critical value. For  
example,  the proport ion of the sequence { Wur} that exceeds W r gives the size 
of the one-sided test implicit in the comparison of the historical and populat ion 
moments .  Since N = T the inference is exact as R becomes large. The same 
principle can underlie joint tests. 

Mehra  and Prescott tested the model by examining whether  it could (with a 
and/3 in the restricted range) generate both a population value for the risk-free 
rate of return less than 4% and an equity premium of at least 6 .2%, which is 
the value for the historical sample for the U.S. f rom 1889-1979. Formalizing 
this test using Monte  Carlo methods requires no auxiliary assumptions,  since 
the model  is completely parameterized.  The proport ion of simulations (with 
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N = T) which satisfy the criterion given above is the size of the test. This 
proportion is zero, so that the model is very unlikely to have generated the 
data. Some other parameterizations lead to positive prob-values. The same 
method can be used to formalize comparisons using other moments shown in 
Table 1 and to construct confidence intervals. These prob-values and confi- 
dence regions are themselves estimates, but in this example increasing the 
number of replications or local smoothing of the empirical densities had no 
effect to several decimal places. 

The two tests outlined - based on orthogonality restrictions and on matching 
the mean equity p remium-bo th  reject the model. In this case they yield 
similar results, although they use different information. For example, the first 
rejection does not require a parametric model of the consumption growth rate 
x t and does not restrict the values of /3 and a. It thus suggests that 
reformulating the asset-pricing functional in (2a) and (2b) (as opposed to the 
forcing process in (5) and (6) only) is necessary. Numerous reformulations of 
this and other asset-pricing models have sought to generate features such as a 
larger mean equity premium than that generated by the DGP here. 

5. Further topics in model evaluation 

Models also may be evaluated according to their ability to reproduce features 
of standard 'windows' applied to historical data. For example, one could study 
a linear regression or vector autoregression which has been fitted to data, and 
calculate the population regression coefficients in the same statistical window 
implied by a fully calibrated model. Again sampling variability can be taken 
into account to gauge the distance between the two. Such comparisons can 
highlight particular directions towards which reformulations might aim. Bac- 
kus, Gregory and Zin (1989) study the term structure of interest rates along 
these lines. Kwan (1990) matches impulse response functions in a business- 
cycle model. Cecchetti, Lam and Mark (1990) study negative autocorrelation 
in long-horizon stock returns, summarized in variance ratios or regression 
coefficients. They show that an equilibrium model of asset prices generates 
Monte Carlo samples of these statistics which include the values found in 
historical data. 

One weakness of the simulation test outlined in Section 4 is that it ignores 
parameter uncertainty. Several proposals for model evaluation have been made 
which return to the issue of parameter uncertainty. One possibility is simply to 
examine the sensitivity of findings to parameter settings by reporting results for 
various sets of parameters. Cecchetti, Lam and Mark (1989) test a fully- 
parameterized version of the consumption-based asset-pricing model by com- 
paring the unconditional moments of its predicted asset prices with those in 
historical data. Their asymptotic test allows for sampling variability in moments 
and in parameters of the {xt} process, and shows the effect of fixing a and/3 as 
is done in calibration. Canova, Finn and Pagan (1991) suggest local sensitivity 
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analysis in calibrated models by differentiating statistics with respect to 
parameters, at the calibrated values. 

An alternative suggested by Canova (1991) is to do exact tests again by 
constructing Monte Carlo densities of sample moments just as in Section 4, but 
to resample from a density of parameters y as well as a density of underlying 
shocks x. This allows a global sensitivity analysis of results. In standard 
calibration methods the density of parameter values is sharp and has point 
mass at specific values. Canova suggests drawing from the frequency dis- 
tribution of existing estimates to allow for observed, cross-study uncertainty 
about parameter values. He discusses other possible densities as well as the 
issue of efficient resampling when the parameter space is large. Kwan (1990) 
suggests a similar procedure, but based on formal Bayesian methods. He 
adopts subjective priors and evaluates models in relative terms according to 
posterior odds ratios rather than using an absolute comparison with historical 
data. 

Investigators sometimes calibrate models which are not complete probability 
models and hence are not intended to mimic the complete random properties 
of the series under study. These models cannot be evaluated statistically, or 
fairly treated as null hypotheses, unless they are augmented by some random 
variables, perhaps interpreted as measurement error. For example, Hansen 
and Sargent (1980) observe that stochastic singularities often arise in dynamic 
economic models. An example can be given in the asset-pricing model. Recall 
that f -'~ Pt = E[[3xt+ll~t], and suppose that to test the model an investigator 
proposes that the expectation be modelled as E[fixt+~]xt] = g(xt). In that case 
the predicted asset price is a deterministic function of x t. Since such determinis- 
tic relationships are not detected in data, this model would be rejected. It can 
be made testable if there is some component of the information set used in 
forecasts which is not observed by the investigator so that p~ = g(xt) + et, where 
e t = E[/3xt-~ [ o~]-  E[[3x,+~ [xt]. A further example is given by Altu~ (1989) 
who begins with a one-shock business-cycle model and then augments variables 
with idiosyncratic error. Watson (1990) proposes identifying the error process 
by the requirement that its variance be as small as possible. He also proposes 
goodness-of-fit measures which evaluate the contribution of  the original model 
to accounting for movements in the endogenous variables, by measuring the 
variance of error necessary to match theoretical and data properties. 

6. Conclusion 

Although we have attempted to give a formal statistical interpretation to some 
aspects of calibration in macroeconomics, it perhaps is best viewed as an 
informal guide to reformulating a theoretical model. Setting parameter values 
(i.e., calibrating), simulating a model, and comparing properties of simulations 
to those of data often suggests fruitful modifications of the model. Precisely 
this method has led to numerous modifications of the simple asset-pricing 
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model used as an expository device in this chapter. Further statistical formali- 
zation and refinement of the methods used to evaluate calibrated models will 
help improve them. 
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Panel Data Models with Rational Expectations 

K a j a l  L a h i r i  

I.  Introduction 

Econometric analysis based on panel data has many advantages over the ones 
which use only time-series or cross-section data. By tracking the behavior of a 
large number of economic agents over time, panel or longitudinal data sets 
allow researchers to estimate structural parameters after controlling for 
unobservable individual idiosyncracies and unforecastable aggregate shocks. 
Since economic theories are typically posited for a representative economic 
agent, such data can be used to test certain derivable implications of these 
theories without the aggregation problems associated with the use of either 
time-series or cross-section data only. Moreover, by pooling time-series data 
on a large cross-section of individuals, one can study the short-run dynamic 
behavior of economic agents in relation to their long-run equilibria in greater 
generality. The increased availability and the consequent use of panel data in 
recent years has led to a very rapid and impressive development in appropriate 
estimation and testing procedures. 1 Fortunately, there are now a number of 
excellent monographs and articles which have surveyed and summarized the 
literature; see, for instance, Chamberlain (1984), Dielman (1989), Heckman 
and Singer (1985), Hsiao (1986), and Maddala (1987a,b). Much of current 
research has considered models of the form Y~t = Xit~ + ~7i + Uit where T~i is the 
individual (fixed or random) effect, where at least a subset of X~t is assumed to 
be strictly exogenous with respect to U/t; that is, E(XitUi, ) = 0 for all t and s. 
All right-hand side endogenous variables are taken to be correlated with both 
~7~ and Uir In the fixed-effect case, where T/i is assumed to be correlated with all 
the right-hand variables, the usual solution is to eliminate ~7~ by taking 
deviations from individual means (i.e. Y,t- I2/, where I?/= ( l / t )Z  Y/t) and 

1 Three widely used U.S. panel data sets are the University of Michigan's Panel Study of Income 
Dynamics (PSID), National Longitudinal Surveys of Labor Market Experience (NLS) and the 
Survey of Income and Program Participation (SIPP). See Borus (1982) and Ashenfelter and Solon 
(1982) for an annotated inventory of such data sets for economists. 
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using instrumental variable estimation methods. 2 In the random-effects case, 
estimation is done with quasi-demean data of the form Y~, - A~ where A = 1 - 
O" 2 ~ 2,,1/2 2 2 u/(o'u + ,  o ' )  , (o" and o- u are the variances of */i and Ui, respectively) as 
suggested in Fuller and Battese (1973, 1974). The identifiability of the model 
depends on the availability of instruments which, in turn, is conditioned by the 
nature of correlation of ~/i and Uit with Xi,. 3 For instance, the demeaned 
exogenous variables are valid instruments whereas their means (i .e. ,)?i)  are 
not. 

Much of the aforementioned developments took place under the assumption 
that potential instruments are strictly exogenous. In economics, there are 
important situations where regressors and other potential instruments are only 
predetermined or weakly exogenous in the sense that E(Xi, Uis ) = 0 for t ~< s, 
but the possibility that E(XitU~, ) ~ 0 for t > s cannot be ruled out. Models with 
lagged dependent variables as in Balestra and Nerlove (1966) or with pre- 
determined choice variables are two examples where similar one-sided moment 
conditions are present. In models with rational expectations Uit, which is the 
forecast error, can certainly affect future values of the instruments. The 
rational expectations hypothesis, however, rules out the possibility of any 
relationship between U~, and past values of the instruments. Unfortunately, the 
standard panel data estimation methods are no longer consistent when the 
instruments are only weakly exogenous. The problem of predetermined 
regressors in the context of time-series models was first analyzed by Hayashi 
and Sims (1983); Hansen and Hodrick (1980) and Brown and Maital (1981) 
analyzed the problem in models with rational expectations. 4 In a single 
equation model with autocorrelated errors, an otherwise consistent instrumen- 
tal variable estimator becomes inconsistent when the autocorrelation is cor- 
rected for by the standard autoregressive transformation. In panel data models 
with predetermined instruments, the standard fixed-effects and random-effects 
procedures become inconsistent due to similar reasons. The presence of 
time-invariant individual effects creates certain structure of autocorrelation in 
the errors, and the conventional panel-data procedures are alternative ways of 
correcting for this. 

It is thus clear that efficient estimation and testing strategies in the context of 
panel data models with rational expectations will be quite different from the 
conventional procedures. In what follows, we review this new literature in 
greater detail. In Section 2, we discuss efficient estimation of such models in a 
generalized method of moments (GMM) framework. Section 3 discusses 
certain specification tests whereas Section 4 extends the analysis to simulta- 
neous equations. We present an empirical illustration in Section 5 where the 

2 See, for instance, Hausman and Taylor (1981), Atri and Lahiri (1984), Amemiya and MaCurdy 
(1986), Breusch, Mizon and Schmidt (1989), Bhargava and Sargan (1983), Arellano and Bover 
(1990), and Arellano and Bond (1991). 

3 Bhargava (1991) discusses the identifiability conditions in models of this type. 
4 See also Cumby, Huizinga and Obstfeld (1983) and Kinal and Lahiri (1988). 
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Euler  equation for optimal consumption is estimated and analyzed using the 
Michigan Panel of Income Dynamics data over 1976-82. Finally, concluding 
remarks are given in Section 6. 

2. Efficient estimation 

2.1. Strictly exogenous instruments 

Consider a structural equation 

Y / , = X J 3 + e ,  ( i = 1 , 2  . . . .  ,N,  t = l , 2  . . . .  , T ) ,  (1) 

where eit= ~i "~- f i t "  ~i and Uit are unobserved individual effects and random 
error  respectively with r/i - l ID(0,  o-~) and U/t - IID(0, or]). Xit is a row vector 
of regressors. Since a part of X/, could be endogenous,  we have data on k 
instrumental variables Z ,  which include the subset of )fit which is exogenous. 
Rationally expected explanatory variables, when proxied by their ex-post 
counterparts,  will have classical errors-in-variables problem, and can conveni- 
ently be handled as additional endogenous variables. 5 We can write the 
equation for individual i as 

Y i  = g i ~  q- T]i "~ f i  (i = 1, 2 , . . . ,  g ) ,  (2) 

where Y/= (I1,1 . . . .  , Y/v)- Xi and U i are similarly defined. Equation (1) for all 
NT observations can be written as 

Y = X ~ + n + U ,  (3) 

where Y' = ( Y ; , . . .  , Y'), 7/' = (71 . . . .  , ~TN) ® l~- where l r is a T x 1 vector of 
ones. X and U are defined similar to Y. All elements of 7/i are assumed to be 
uncorrelated with all elements of U. Then the covariance matrix of e is 

Cov(rt + U) = S2 2 2 = or,Iur, (4) ornC+ 

where C =IN®IriS. Equation (3) can be transformed by 0 -1/2 to make the 
error  term to have a scalar covariance matrix: 

.¢~-1/2y = j~a/2XB + j.2-1,2(~1 + U ) .  (5) 

However ,  equation (5) is equivalent to writing (1) in terms of quasi-demean 
variables: 

Yi ,  - a Y i  "~- ( S i t  - -  a S / ) / ~  -~" (Ei, - -  i ~ i )  , ( 6 )  

,7, 2,,1/2 where h = 1 - o- u/(orz u + i or,) . The error components instrumental variable 
estimator (EC-IV) uses instruments A = [Qv Z, Pv Z] where Pv = (IN®IriS~T) 

s See McCallum (1976), Lahiri (1981) and Wickens (1982). 



724 K. Lahiri 

and Qv = I N r -  Pv- Thus, Qv Z gives 'within' (or demean) and Pv Z gives the 
'between' version (i.e., individual means) of all instruments. Then, under the 
assumption that the Zit are strictly exogenous, the EC-IV estimator of /3 
becomes 

[3 = [X'£2-'/ZPag2-1/zXl-iX'g2 ~/2PAa-1/2Y, (7) 

where PA = A ( A ' A )  1A', the projection onto the column space of A. The 
above estimator is also obtained by estimating (6) using instruments A. This is 
the so-called random-effects estimator. 

However, if ~71 is correlated with all the instruments Zit, (7) is not consistent. 
In this case, so far as X/~ is strictly exogenous, consistent estimation of/3 can be 
obtained from an instrumental variable estimation of (8) with A = QvZ, 

Y, , -  : ( x , -  + (8) 

This is the so-called fixed effect estimator. Here the individual effects are first 
'partialled out' by subtracting individual means from each variable and running 
an IV regression. Mundlak (1978) shows that when ~i is correlated with all 
instrumental variables, the 'within' estimator is, in fact, efficient. 

Note that with cr 2 = 0 (i.e., no individual heterogeneity), a straightforward 
IV estimation of (1) will yield consistent estimates of/3 and its standard errors. 
Following Schmidt, Ahn and Wyhowski (1992) if we generalize U~ to have an 
unrestricted T x T covariance matrix (X) such that X2 = IN@• then the 
optimal IV estimator can be derived in Hansen's (1982) generalized method of 
moments (GMM) framework, (see Arellano and Bond, 1991). For t =  
1, 2 . . . .  , T, define Zg ° = (Zi~ . . . .  , Z~t), a 1 × kt row vector. Note that strong 
exogeneity assumption implies E(ZisU~t ) = 0 for all t, s = 1, 2 , . . . ,  T, which is a 
set of K T  2 moment conditions. These conditions can be expressed as 
E(A'I~U~) = 0, where A~i = IT@Z~r. If A 1 is the full N T  x K T  2 matrix with 
i-th block A~,  then the GMM estimator using the K T  2 moment conditions can 
be written as 

[3 = [X'A I(A '~g2A ~)- I A IXI-  I X ' A  z(A 'lg2A 1)- 1A 'aV (9) 

which is obtained by minimizing g(/3)'Wg(/3) with respect to/3, where g(/3) is 
the sample average orthogonality conditions specified above and W is the 
weighting matrix. Generally speaking, the optimal weighting matrix is the 
inverse of the covariance matrix of the orthogonality conditions. Note that 
GMM procedure estimates A'lg2A ~ by (l/N)XiA',i~igZlAli where ei is the 
residual from a consistent first-stage estimation. Also, the specific structure of 
g~- - I  N ®Y~ can be relaxed to incorporate more general conditional heteros- 
kedasticity and autocorrelation, cf. White and Domowitz (1984). Unlike time- 
series problems, estimation of g~ using panel data presents very little problem 
with N--+ ~. 

Now if o- n2 ~ 0 such that eit -- ~ + U~t, and ~h is correlated with Z~t, the strong 
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exogeneity condition E(Ui ,Z , )  = 0 (t, s = 1 , . . . ,  T )  can be reformulated as  the 
T ( T  - 1)K moment  conditions that, for s = 1, 2 , . . . ,  T, E(Z,.seit ) = C, the same 
value for all t. The fixed effect ~7i can be removed either by first-differencing or 
by within transformation. In the case of first-differencing, these moment  
conditions become E(Zisae~t ) = 0 (s = 1, 2 , . . . ,  T; t = 2 , . . . ,  T).  Define one 
T x ( T -  1) matrix D as follows: 

[--1 0 0''" Oil 1 - 1  0 . . "  0 
D =  0 1 - 1  . - -  

: : : * , .  • 

0 0 0 . . . .  
0 0 0 . . -  

(lO) 

We can first-difference equation (1) by premultiplying by D '  and then using the 
t ! 

instruments B3i = I t _  1 @ Z~'r. This yields the moment  conditions E[B3i(D ei) ] = 
0. It is interesting to note that L has the same column space as the demeaning 
matrix ( I r - l f l J T ) .  This shows that the within and the first-difference 
transformation preserve the same amount of information in the data, see Ahn 
and Schmidt (1990). 

2.2. Predetermined but  not  strictly exogenous instruments 

With weakly exogenous instruments such that only 

E(Zisei, ) = O, t = 1, 2 , . . . ,  T, s <~ t (11) 

the number  of moment  conditions dramatically falls. First, let us consider the 
case with no fixed effects, i.e., 0-2 = 0. The number  of moment  conditions 
available now is only T ( T  + 1)K/2 rather than K T  2. These moment  conditions 
can be written as E(A2,.ei) = 0 where A2i is the T x T(T  + 1)K/2 matrix 

z , 0 - . -  ] 
A2  i = 0 Z°2 "'" O0 . 

; " . .  : 

o . . .  

(12) 

Since econometric panel data sets are typically short, these models can 
conveniently be written as a set of simultaneous equations in which i is the 
observation index and t is the equation number. The main difference between 
conventional simultaneous equations models and the present model is that now 
the set of instruments Z°t = (Zil . . . .  , Z i t  ) is different fo r  different equations. 
Hayashi (1992) notes that with conditional homoskedasticity the above GMM 
estimator becomes equivalent to the full information instrumental variables 
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estimator (FIVE) due to Brundy and Jorgenson (1971). Also, the asymptotic 
theory for such simultaneous equations models with N---~ ~ is fully developed, 
see White (1984). With o-~ = 0, the N T  x N T  covariance matrix of U, is 2 O- uIN T 
and hence, GMM estimates can be readily obtained. 

2 If we now allow o-n ~ 0 and B~ to be correlated with instruments, the number 
of moment conditions will be only T ( T  - 1)K/2: for s = 1, 2 , . . . ,  T, E (Zueu)  = 

C, the same for all t t> s. The estimation then implies first-differencing (1) and 
then implementing GMM with instruments matrix: 

z , 0 .-- ] 
B4 i = 0 Z i 0 . . .  ~ . 

: " . .  OiiT 0 " "  Z -1 

(13) 

Thus, the relevant moment conditions can be expressed as E[B'4i(D'ei)  ] = O. 
Looking at this as a system of ( T -  1) first difference simultaneous equations, 
the N ( T -  1) x N ( T  - 1) covariance matrix of errors takes the convenient form 
~ ® I  r where ~a is the ( T -  1) × ( T -  1) matrix 

~ d  

- 2 2 -2o-. -o-~ U "'" 0 
2 2 2 -o- .  -20-u -o-u - . .  0 

0 
: • . . - - 0  - 2  

0 . . . .  2o" 2_ 

(14) 

Keane and Runkle (1992) have suggested an alternative way of estimating 
panel data models with predetermined instruments where £2 -- I N ® X and ~ is 
an unrestricted T x T matrix. They extend the idea of forward filtering (FF) 
due to Hayashi and Sims (1983) to  panel data models. First obtain the 
upper-triangular Cholesky decomposition of Z which they called PTS" Then 
premultiplying (1) by QTS = (IN ®PTs) and estimating the transformed equa- 
tion using the original instruments Zit, they obtained the forward filter 
estimator: 

tiFF = ( X ' Q T s Z ( Z ' Z ) - ' Z ' Q T s X ) - I X ' Q ~ r s Z ( Z ' Z ) - ~ Q T s Y "  (15) 

As pointed out before, this estimator need not utilize the special structure of g2 
as the random effects estimator does. The forward filter transformation 
removes autocorrelation while preserving weak exogeneity of the instruments. 
Hayashi and Sims (1983) have shown that as the number of instruments is 
increased, the GMM and FF estimators converge to the optimal estimator. 
Schmidt, Ahn and Wyhowski (1992) demonstrate the same result in the present 
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context: forward filtering is irrelevant when the G M M  optimal  instruments set 
is used in estimation. However ,  Keane and Runkle (1992) have argued that in 
situations where the panel data has many missing values, the forward filter 
method may turn out to be more  practical than the G M M  method,  which uses 
all predetermined instruments going back to the first observat ion in the panel. 6 

3. Specification tests 

There  are a number  of specification tests which take special significance in this 
class of models.  First, are the instruments only predetermined,  or, can they be 
t reated as strictly exogenous? Secondly, is there unmeasured  individual 
heterogenei ty affecting the dependent  variable? If  this is present ,  is there any 
evidence that the individual effects are correlated with the instruments? Third, 
can we identify a common component  A,, called aggregate shock, as part  of the 
t ime-varying forecast error U,? These issues are important ,  because in short 
panels the interaction of aggregate shocks and random individual effects can 
make  G M M  estimators inconsistent. As Chamberlain (1984) has pointed out, 

1 T 

E(U.Z~.) =plir m ~ -~ t__~=~ Ui,Z,. (16) 

is indeed zero for t/> s under rational expectations. However ,  

1 N 

E(U/tZ,.) =plimN_,~ ~ ~-= U~'Zis (17) 

is not necessarily zero for t/> s. In short panels, it is the second one that needs 
to be zero for Zit to be valid instruments. Hayashi  (1992) presents a simple 
example where Zit is predetermined in the time-series sense but not in the 
cross-section sense. 

Suppose individual i 's income eit is given by % = a i M  t where M, is serially 
uncorrelated over  time. M, could be rainfall, common to all agents, whereas a i 
is agent i 's ability. Since M, is assumed to uncorrelated,  % is also the farmer ' s  

6 It should, however, be noted that the problem of missing values can be handled very flexibly in 
the GMM framework, see for instance Blundell et al. (1992). Also, rational expectations models 

E 0 imply somewhat stronger conditions than E(e,Zi~ ) = 0 for s ~<t, namely (ei,Z,) = 0 for t = 
1, 2,. T. This implies that any measurable function of Z °, like cross-products of elements of Z ° 

• " ' i t  

will be valid instruments. See Chamberlain (1987, 1992), Robinson (1991), Newey (1985a, 1990) 
and Holtz-Eakin, Newey and Rosen (1988). 



728  K .  L a h i r i  

forecast error over period t. Define the instrument Zi, = e i t-a. Now 

g(sitZio ) =plim -T 8itZis 
T--+oa t= 1 

2 = plim ~ (ai) MtM,-1 
T - - ~  t=l  

= (oei) 2 plim -~ MtM,_ 1 
T-->~ t = l  

=0  for t > s ,  (18) 

1 N 

1 N 
=plim ~ • (eei)2MtMs_l 

N->~ t = 1 

1 N 

= M,M,_a plim ~ (a~) 2 
N--+~ i=1"= 

# 0  even for t1>s. (19) 

Thus, the assumption of rational expectations does not guarantee that all the 
moment conditions based on information available at time t can be used for 
consistent estimation. 

Following Newey (1985b) and Eichenbaum, Hansen and Singleton (1988), a 
simple specification test for the presence of aggregate shocks can be designed 
using the GMM framework. The presence of such shocks will invalidate 
time-dummies as valid instruments since these will be correlated with the 
aggregate shocks. Consider the model with weakly exogenous instruments 
without fixed effects. (The test with fixed effects is similar.) There are T(T + 
1)K/2 valid moment conditions. Let the minimized value of the GMM 
criterion function using these instruments be J~. If there are no aggregate 
shocks, the time dummies should be valid instruments. Re-estimate the 
equation adding T -  1 time dummies to the instruments set. Let the minimized 
value of GMM criterion function be J~. In this case, J ~ - J ~  should be 

2 distributed asymptotically as a Xr_ ~ variable. A large value of this test statistic 
will indicate that these T - 1  moment conditions are contaminated, implying 
the presence of aggregate shocks. 

Let us now consider the test of the null hypothesis that instruments are 
strictly exogenous, maintaining the presence of fixed effects. One common 
feature of all these tests is that the set of moment conditions under the 
alternative is a subset of those under the null. Thus, the basic Hausman- 
principle can be directly applied. As we have discussed in Section 2, the 
instruments in B4~ is a subset of instruments in B3i. There are T ( T - 1 ) K  
instruments under the null, whereas T(T-  1)K/2 under the alternative so that 
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there are T ( T -  1)K/2 extra instruments under the former. If the dimension/3 
is g then the Hausman test will be asymptotically X 2 w i t h  g degrees of 
freedom, providing g <- T ( T -  1)K/2. 

Finally, using the same principle we can design a statistic to test for null 
hypothesis that effects and instruments are uncorrelated, maintaining only 
weak exogeneity of the instruments with respect to the time-varying Uit. The 
same test with strictly exogenous instruments is well known, cf. Hausman and 
Taylor (1981). Here the absence of fixed effects avoids the process of first- 
differencing, thereby generating additional TK (i.e., T(T + 1)K/2 in Azi minus 
T ( T -  1)K/2 in A4i ) moment conditions. 

4. Simultaneous equations 

The above ideas can be generalized to a system of simultaneous equations 
quite straightforwardly. Error component models in a conventional simulta- 
neous equations framework have been analyzed by Baltagi (1981, 1984), 
Chamberlain (1982), Cornwell et al. (1992) and Kinal and Lahiri (1993). Let 
us write the g-th equation (g = 1, 2 , . . . ,  G) as 

Y~tg = Xi~g~S g + %g , (20) 

where %g=71ig + V~g. As before, let us assume that we have a set of 
instruments Z/t (1 x K vector) which is the same for all g, even though this 
assumption can be relaxed at no additional computational burden. If we 
rewrite (2) as the g-th structural equation 

Yu : Xg/3u + eu (2') 

and stack the equations as in a SURE system: 

_Y = _X/3 + e ,  (21) 

where _Y= ( Y ~ , . . . ,  Yh), g = ( e ~ , . . . ,  e~) and 

_x= x2 

0 

the assumption of weak exogeneity will imply 

E(Z, se,tg ) = 0 ,  t = l , 2 , . . . , T ,  s<~t, g = l , 2 , . . . , G  (22) 

assuming that there are no individual-specific fixed effects. This gives GT(T + 
1)K/2 moment conditions. These moment conditions can be expressed as 
E(A£ie,.) = 0 where A2i is the GT x GT(T  + 1)K/2 block diagonal matrix with 
g-th block Azi for all g. Defining O as the GNT x GN T  variance-covariance 
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matrix of the stacked error _e, this yields the three-stage least squares estimator 
(3SLS) 

: [_X'A_2(A_ ;X] ;_OA_0-1A_ ;y  (23) 

with predetermined instruments 7 

5. Empirical illustration 

In this section we apply the strategy for estimating and testing outlined so far 
to study the so-called Euler equation of the intertemporal consumption theory, 
which states that consumption growth should depend only on the real interest 
rate, cf. Hall (1988). In recent years many authors including Hall and Mishkin 
(1982), Zeldes (1989), Runkle (1991) and Keane and Runkle (1992) have used 
panel data from the Michigan panel on income dynamics (PSID) to test this 
basic prediction of the permanent income-life cycle hypothesis. Specifically, the 
equation is 

A C i t + l  = a J- b "  t i t  "q- ei t+l , (24) 

where h C i , + l  = In Ci~+l - In C , ,  ;'it is the after-tax real interest rate from period 
t to t + 1. By the assumption of rational expectations, E(ei t+l l i t  ) = 0 where Iit is 
the information available to individual i at time t. Note that b is an important 
structural parameter measuring a consumer's intertemporal elasticity of substi- 
tution. No other study before Runkle (1991) and Keane and Runkle (1992) 
found the coefficient of tit in (24) to be statistically significant. 8 

If 8it+l is conditionally homoskedastic and non-autocorrelated, var(eit+l ) = 
2 O'eINr. Thus a simple instrumental variable estimator (2SLS) will give con- 

sistent estimates. We need 2SLS and not OLS as rit and eit+l are expected to be 
correlated since they share the common forecast error over (t, t + 1). There are 
a number of reasons why e~t+l is expected to have a more complicated 
error-structure. First, there may be individual specific effects present in (24), 
viz. e~+1 =~/i + Uit. If ~i is correlated with the instruments, the conventional 
solution (under the assumption of strict exogeneity) is to run IV regression on 

AC/t+I -AC~ = b(r~t - f i )  + eit+ ~ - ~i . (25) 

However, when the instruments are only weakly exogenous, (e,+l - gi) can be 
correlated with the instruments contemporaneously since we cannot rule out 
the possibility that E(eitZi, ) ¢ 0 for t < s. The solution is to first-difference (24) 
and apply GMM estimation using instruments B4i given in (13). 

7 The computational burden in implementing the 3SLS can be formidable. Kinal and Lahiri 
(1990, 1993) have suggested an alternative algorithm which can simplify the calculations under 
certain circumstances. See also Haque, Lahiri and Montiel (1990, 1993). 

s For example, Hall (1988) and Zeldes (1989). 
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Following Kinal and Lahiri (1993), we found it convenient to implement the 
GMM estimation by stacking the data first by time and then by individual. 
Thus, we set (24) as a system of six equations (one for each t = 1, 2 , . . . ,  6) 
and use different instruments in different equations. 

One of the principal issues discussed by all authors using PSID consumption 
data is the problem of measurement errors. If In Ci,+l is observed with a 
random measurement error 6it+~ then even in the absence of individual effects, 
the error will be MA(1). That is 

e i t + l  = 8 i t+ l  - -  6it -}- U i t + l  . ( 2 6 )  

Hence 

o- ,+2o- e i f / = ] ,  t = s ,  

Cov(e~ te#)  = -o '2 if /=./ ' ,  I t - s  I = 1, (27) 

0 otherwise. 

Note that with individual effects present, i.e., 

e~,+l = 6~+1 - 6it -[-T~i -~- Uit+l , (28) 

~g can be eliminated by first-differencing. The covariance structure of the 
resulting error eit+l - ei~ = Aei ,+l  = 6i,+1 - 26it + Uit+l - Uit will be 

2o-~+6O-g i f i = j ,  t = s ,  
2 2 

C o v ( A e i t  ' Aeis ) = --o~ - 4O'g if i = j ,  I t -  s[ = 1, (29) 
2 o-g if i = j ,  I t - s ]  = 2 ,  

0 otherwise. 

In other words, the Aei, will have MA(2) errors. Note that since we are 
estimating (24) as a system of six SUR equations, the N T  × N T  covariance 
matrix ~2 =~6×6@IN will be obtained very conveniently and the ( i j )  off- 
diagonal element of ~ will give an estimate of the [ i - j ] - t h  autocorrelation in 
the residuals. 

We reported the estimated equations in Table 1. Following Keane and 
Runkle (1992) we have also included an age variable (Ag%) in (24) to control 
for demographic and other factors. Simple 2SLS and IV-within estimates are 
presented in first two columns. GMM1 estimates are based on a full set of 
instruments A li with assumed strong exogeneity, see equation (9). These 
estimates should be inconsistent. The last three columns of Table 1 are GMM 
estimates, assuming weakly exogenous instruments. GMM3 is fully efficient 
since it is based o n  A2i in (12). GMM2 is consistent but not fully efficient since 
here we only use the latest instruments Zi,. GMM4 is obtained from the 
first-difference equation assuming the existence of ~/i which are correlated with 
the instruments. GMM4 used B4i a s  instruments, see equation (14). GMM1-3  
were based on MA(1) whereas GMM4 assumed errors to be moving average of 
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Table 1 
IV estimation of the Euler equation 

K. Lahiri 

2SLS Within GMM1 GMM2 GMM3 GMM4 

0.0854* - 0.0713" 0.1470" 0.1467" - 
(0.0271) (0.0129) ( 0 , 0 3 5 8 )  (0.O350) 
0.2537 0.4572* 0.2354 1.1997" 1.111" 1.029 

(0.1516) ( 0 . 1 6 5 3 )  ( 0 . 1 2 8 4 )  ( 0 . 3 5 3 0 )  ( 0 . 2 6 3 5 )  (0.9901) 
-0.002* -0.0145' -0.0017" -0.0024* -0.0024* 0.0065 
(0.0006) ( 0 . 0 0 4 1 )  ( 0 . 0 0 0 2 )  ( 0 . 0 0 0 8 )  ( 0 . 0 0 0 8 )  (0.0240) 

Const, 

tit 

Age 

Note: All GMM estimates are corrected for MA errors. GMM1 takes all instruments to be strictly 
exogenous. Rest of the GMM estimates are based on the assumption that instruments are 
predetermined. GMM2 uses only the latest set of instruments, whereas GMM3 uses the full 
optimal set. GMM4 is on first-difference Euler equation with full set of instruments. An estimate 
marked (*) means it is significant at the 5% level of significance. Standard errors are in 
parentheses. All estimates use the instrumental variables-hours worked in period t -  2, log of 
disposable income in t - 2, after-tax real interest rates in period t-2 based on passbook and T-bill 
rates, and a constant. 

o rder  2. As  expected,  the gain in efficiency as we go f rom G M M 2  to G M M 3  is 
r emarkab le  since the es t imated s tandard  er ror  of  the main  pa rame te r  b is 
r educed  f rom 0.35 to 0.26, whereas  the pa ramete r  est imates remained  very 
close to each other.  The  validity of  the strong exogenei ty  assumpt ion  can be 
studied by testing the goodness  of  the addit ional instruments  in G M M 1  over  
those in GMM3.  The  difference be tween  the minimized values of  the G M M  
object ive funct ion times N gives the usual H a u s m a n  (1978) statistic which was 
calculated to be 194.25, thereby rejecting the s trong exogenei ty  assumpt ion  
quite resoundingly.  The  test for fixed effects can be similarly conduc ted  by 
compar ing  the minimized values of  the G M M  criterion functions under  G M M 3  
and G M M 4 .  The  statistic was calculated to be 1.916 which was no t  significant 
at the 5% level. Thus,  like Keane  and Runkle  (1992) we find no evidence in 
favor  of  corre la ted fixed effects. 

The  existence of  aggregate shocks can be very convenient ly  tested in our  
f r amework  of  S U R E  system. The  presence of  a c o m m o n  c o m p o n e n t  in ACit+l  

that  was not  explained by expected interest rates can lead to inconsistent  
pa rame te r  est imates in short  panels. The  composi te  er ror  now becomes  eit+~ = 

A t + Uit and as we have explained before ,  the sample version of  the or tho-  
gonali ty condi t ion E(eit+lZis ) need  not  be zero for all t>~s  even where  the 
n u m b e r  of  households  is large (see equat ion  (16)). We tested the impor tance  o f  
t ime dummies  by allowing the intercepts in each of  the six equat ions  to vary 
wi thout  changing the opt imal  instruments  set since each equa t ion  has a l ready a 
constant  in its list of  instruments.  The  resultant  H a u s m a n  test statistic 
c o m p u t e d  in the same fashion as before  was again very small and statistically 
insignificant. 

The  results of  our  specification tests are suppor ted  by the es t imated 
va r i ance -cova r i ance  matrices of  residuals based on G M M 3  and G M M 4  
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estimations. GMM3 yielded 

0.123 ) 
-0.047 0.119 

= 0.008 -0.063 0.137 (27') 
0.001 -0.000 -0.050 0.127 

-0.004 -0.006 -0.002 -0.064 0.133 
0.001 0.002 -0.001 -0.007 "0.038 0.126 

whereas GMM4 gave 

0.338 ) 
-0.239 0.383 

: 0.060 -0.249 0.364 . (29') 
0.000 0.053 -0.239 0.391 
0.004 -0.006 0.056 -0.228 0.337 

The above two estimated matrices are consistent with the hypothesis that there 
are substantial measurement errors in consumption and that individual effects 
are not important. By comparing (27) with (27') we expect the diagonal terms 
to be 0-2 + 20-~, the MA(1) terms to be -o-2~ and all other entries to be zero. 
The results clearly support the hypothesis. On the average 0-2 and 0 -2 are 
estimated to be 0.022 and 0.053 respectively. By comparing (29) with (29') we 
again see the remarkable feature that, as expected, all autocorrelations in 
excess of order two are essentially zero, and the estimates are consistent with 
our previous 0 -2 =0.053 and 02 =0.022. Since variance of ln(C,+l) over the 
sample was 0.233, we find that measurement errors constitute nearly 23% of 
measured consumption. The severity of measurement error problem in the 
consumption data from the PSID surveys has been of concern to all researchers 
who have used these surveys. 9 One advantage of the GMM framework is that 
these complications can be handled in a very convenient and effective 
manner. 1° 

6. Conclusion 

In panel data models with rational expectations the conventional fixed-effects 
or random-effects treatment of the error components will lead to inconsistency 
because instruments are only predetermined, and not strictly exogenous. Thus, 
the efficient instrumental variable procedures that have been developed in 
recent years by Hausman and Taylor (1981), Amemiya and MaCurdy (1986), 
Breusch, Mizon and Schmidt (1989) and others are no longer applicable. Panel 
data models with lagged dependent variables also pose similar problems. The 

9 See, for instance, Altonji and Siow (1987), Hall and Mishkin (1982), Hayashi (1987), Zeldes 
(1989), and Runkle (1991). 

10 We used TSP-PC (version 4.2) to obtain GMM estimates. 
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generalized method of moments framework seems to be the appropriate 
framework in which estimation and tests can be carried out efficiently. Fixed 
effects are handled by first-differencing rather than demeaning the variables. 
The appropriate GMM procedure can be interpreted as a 3SLS procedure with 
different instruments in different equations. Of course, as is well known, the 
GMM procedure will accommodate a very general error covariance matrix 
involving conditional heteroskedasticity and autocorrelation. The assumption 
of strong exogeneity is pitted against that of only predeterminatedness in terms 
of the use of certain contaminated instruments, whose validity can be tested 
using the Hausman principle. Tests for the existence of aggregate shocks, 
individual effects and measurement errors are considered in a unified frame- 
work. We illustrate the procedures by estimating the Euler equation of the 
intertemporal life-cycle consumption theory using PSID panel data. The 
empirical results clearly show that the extent of inconsistency and incorrect 
statistical inference can be substantial if one uses the instruments as strictly 
exogenous when they are only predetermined. 

Data appendix 

We followed Keane and Runkle (1992) to construct a balanced panel on 514 
households over 1975-1982. This gave us a total of 3084 observations. For all 
regressions, the instrument list included a constant, the household's hours 
worked in period t - 2, the log of family's disposable income in period t - 2, 
the value of the after-tax real interest rate for passbook and 12-month 
treasury-bill interest rates in period t -  2. A household is included in the 
sample if actual data (not imputed) were available for all variables, no change 
occurred in the marital status of the head, or the household head is not a 
farmer or self-employed. Following Runkle (1991), we also excluded all 
households with head aged 65 years and older. This is the reason we ended up 
having 514 households rather than 627, as in Keane and Runkle (1992). 
Annual hours of work are directly available in the surveys; all other variables 
were constructed from data available in the survey. Real food consumption, 
disposable income and taxes were computed by following Keane and Runkle 
exactly. The after-tax interest rate was computed as (1 - O~t)R t where O. is the 
marginal tax rate and R t is the nominal interest rate. The average annual 
passbook savings rate was used as the interest rate. The after-tax real interest 
rate was computed by subtracting the actual inflation rate over the period 
(t + 1, t) from R c 
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Continuous Time Financial Models: Statistical 
Applications of Stochastic Processes 

K. R. Sawyer 

1. Introduction 

If there were to be one characterization of the complexity, yet curiously the 
utility of modern finance, it would be in the use of continuous time models. 
The complexity of these models has distanced a significant number of 
practitioners except in rudimentary applications of the pricing of derivative 
assets. But the utility of these models is so powerful in pricing virtually any 
financial claim on a firm, that the number of applications in continuous time 
proliferates. Indeed Melino (1991) has documented this trend, illustrating that 
the proportion of articles using continuous time processes in four leading 
finance journals increased from 0.8% in 1970 to 17.1% in 1989. 

Surveys of continuous time methods are also prolific; it is appropriate that 
some insightful surveys have been provided by Robert Merton who introduced 
It6 calculus to economics in his consideration of the problem of lifetime 
consumption and portfolio selection for an individual consumer under uncer- 
tainty (Merton 1971). The surveys to which I refer are Merton (1975) and 
Merton (1990), the latter a compilation of his writings over twenty years. From 
different perspectives, Malliaris (1983) and Melino (1991) have also reviewed 
continuous time methods in finance. 

There are two principal justifications for the use of continuous time 
formulations in finance, the first theoretical and the second due to the richness 
of stochastic calculus. As Merton (1975) asserts, in multiperiod discrete time 
portfolio models, there are four time intervals relevant to the investor: 

(1) The trading interval: the period between successive transactions. 
(2) The decision interval(h): the period between successive decisions. 
(3) The planning interval: the length of time for which the investor gives 

non-zero weight to the utility of wealth function. 
(4) The observation interval: the period between successive observations as 

sampled by the researcher. 
The solution to the discrete time portfolio problem typically depends on the 
decision interval h. For if the solution were invariant to h, the portfolio 
decision for investors who hold portfolios for 20 years, and for those who 
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revise daily, would be equivalent, a clearly implausible outcome. There are two 
possibilities; either specify a value for h or allow h to be stochastic. The 
continuous time solution (h = 0) has been shown to approximate a wide class of 
stochastic decision interval models with HARA utility functions (Magill and 
Constantinides, 1976) and a wide class of non-stochastic decision interval 
models for which h is small. This last approximation seems even more 
appropriate given the contemporary use of high frequency data (such as 
tick-by-tick and intra-daily data). 

The convergence of discrete time asset models to a limiting form continuous 
time model involves the convergence of the information structure governing the 
evolution of asset prices and the convergence of the stochastic process describ- 
ing asset prices. Willinger and Taqqu (1991) have shown that the limiting 
model can preserve characteristics hitherto only well defined in discrete 
markets, characteristics such as absence of arbitrage and completeness. Nelson 
(1990) has also shown that certain empirically rich discrete stochastic proces- 
ses, such as the ARCH process, can be approximated by continuous time 
stochastic processes. These contributions strengthen the contention that con- 
tinuous time financial models are indeed proper approximations to a wide class 
of discrete time formulations. 

The processes generating latent financial variables are logically continuous 
time processes. For example, the processes describing the evolution of 
decisions, of information (Ross, 1989), of tastes and technology (Cox, 
Ingersoll and Ross, 1985) and of primitive asset prices (Black and Scholes, 
1973) are best prescribed in a continuous time setting. Furthermore, theoret- 
ical restrictions are most easily imposed on the continuous time latent process 
rather than their discrete approximations, analogous to the arguments in 
continuous time econometric models (Bergstrom, 1988). 

While the theoretical justifications for continuous time processes in finance 
are strong, there is arguably a more compelling reason for their use, due to the 
richness of It6's stochastic calculus. It6 (1946, 1951) developed a consistent and 
operational calculus for analysing a set of continuous time random processes 
(It6 processes). The underpinnings of this calculus lie in the work of a British 
botanist Robert Brown who in 1827 sought to describe the perpetual irregular 
motions of particles immersed in a fluid. The Brownian motion identified in 
1827 was later fully characterised by Einstein and Smoluchowski (see Doob, 
1953) as a continuous time stochastic process with independent Gaussian 
increments, and by Wiener (1923) as having sample paths continuous with 
probability one. Wiener provided the mathematical antecedents for It6 who 
first established the conditions for the existence and uniqueness of solutions to 
stochastic differential equations (SDEs). The quintessential result of It6 was 
the definition of a stochastic integral when the integrator is a Brownian motion. 
It6 defined his integral as the limiting sum of terms composed of non- 
anticipating step functions, stochastic functions whose present increments are 
uncorrelated with future increments. The stochastic integral of It6 is one of 
many possible definitions of a stochastic integral; for example a well-known 
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alternative is the Stratonovich (1966) integral. The use of non-anticipating 
functions in the It6 integral reflects the theoretical notion that agents cannot 
anticipate future price movements, and for this reason the It6 integral is often 
preferred in analysing intertemporal financial decisions. 

It6 calculus confers two powerful results for the study of asset pricing in a 
complete market. First, a non-linear transformation of an It6 process is itself 
an It6 process under mild regularity conditions. This implies, for example, that 
the prices of contingent claims and indeed the wealth process itself will follow 
an It6 process given an It6 process for the underlying asset. Secondly, and 
more importantly, the precise dynamics of the transformed process may be 
deduced by using an additional result, It6's lemma. It is this second result 
which permits the pricing of derivative assets as in the Black-Scholes option 
pricing formula. Indeed, the approach can be applied to the firm as a whole to 
price the entire capital structure. Huang (1985) has provided the conditions 
under which the complete price system may be represented by It6 processes; 
essentially these conditions are the absence of arbitrage opportunities in the 
economy and the existence of an information structure generated by a 
Brownian filtration. 

The characterisation of the complete price system by It6 processes, while 
theoretically appealing, has often been found to be empirically inappropriate. 
In particular, It6 processes are typically misspecified in three important ways. 
First, financial innovations are often more realistically modelled as discrete 
jumps, rather than by the continuous sample paths of It6 processes. This 
contention has a long pedigree; Kendall in 1946 suggested such an innovation 
process and solutions to both the SDE generated by jump processes and to the 
prices of derivative assets based on jump processes are well established (see 
Kushner, 1984; Merton, 1976; Cox and Ross, 1976). Secondly, the assumption 
of a constant variance rate of diffusion in the simplest It6 processes is 
empirically questionable; such simple models have been replaced by heteros- 
cedastic and stochastic volatility models, for which closed form solutions to the 
SDE or to the prices of derivative assets are not assured. Finally, Gaussian 
innovations have been replaced by innovations which better reflect the 
leptokurtosis in asset prices. The development of stochastic processes which 
exhibit greater empirical fidelity has not been costless; both the solutions to the 
SDE and to the pricing of derivative assets must usually be determined 
numerically. It is not surprising then that another literature more appealing to 
financial practitioners has emerged, whereby simple It6 processes are used to 
describe asset prices, and the consequent misspecification of the data generat- 
ing process and the mispricing of derivative assets is assessed (see Davis, 1991 
for an example). 

While finance theory and the existence of a supportive stochastic calculus 
both provide strong justifications for the use of continuous time models, 
empirical considerations often dominate. There are two empirical issues in 
particular. First, the measurement of economic and financial data can take 
many forms; for example variables point sampled with fixed frequency or with 
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random frequency, or variables observed as integrals (flows). By formalising 
the mapping from the operational time of the latent continuous time process to 
the calendar time of the observed process, an empirically rich stochastic 
process encompassing all types of economic variable can be formulated. In 
such a setting, continuous time models are clearly preferred. They are also 
preferred for accurately representing the dynamics of the latent continuous 
time process. For, as Sims (1971) has shown, the dynamics of some approx- 
imating discrete time process may be quite misleading. Unfortunately, continu- 
ous time processes lack the empirical acuity required for high frequency data, 
such as transactions and intra-daily data. High frequency data is replete with 
empirical anomalies, such as day of the week effects, heteroscedasticity and 
heterokurtosis. It is a paradox of modern finance that continuous time 
processes perform relatively better for low frequency sampling (e.g., monthly), 
where the decision interval is large, and rather poorly for high frequency data 
where the decision interval is small. In part, this is due to a higher incidence of 
theoretical anomalies in high frequency data, such as noise trading (Black, 
1986). 

It is important to distinguish the continuous time processes reviewed in the 
present paper from another class of continuous time models whose literature is 
well represented by Phillips (1974), Bergstrom (1976) and Harvey and Stock 
(1985). The processes that we consider satisfy non-linear first order stochastic 
differential equations while the Phillips and Bergstrom processes satisfy n-th 
order linear stochastic differential equations. The non-linear first order proces- 
ses in finance are typically restricted to be generated by mixtures of Gaussian 
diffusion processes and Poisson jump processes. Lo (1988) and Melino (1991, 
p. 18) both discuss the difference between the non-linear first order and n-th 
order linear paradigms, and why the finance literature has tended to adopt the 
former. Essentially, non-linear first order processes tend to be preferred 
because of the non-linear structure of the conditional first moments of asset 
returns, but also because higher order processes may not be consistent with 
weak efficiency. 

The structure of the present paper is as follows. In Section 2, the theoretical 
preliminaries and general theory of continuous time processes in finance is 
presented. In Section 3, the discussion centers on more specific issues in 
estimation and inference. 

2. Theoretical issues 

2.1. Preliminaries 

There are now hierarchical surveys of stochastic processes in finance. Readers 
are referred to three collections of writings: 

(1) The statistical literature inter alia Kopp (1984), Karlin and Taylor 
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(1981), Jacod and Shiryaev (1987), Karatzas and Shreve (1988) and Protter 
(1990). 

(2) The stochastic differential equations literature; for example Schuss 
(1980) and Wu (1985). 

(3) Stochastic processes in finance; Duffle (1988) and Melino (1991, Appen- 
dix). 

Let T = [0, ~) be the set of all trading dates for an infinite time horizon. To 
describe an investor's information structure, let (12, F, P) be a probability 
space. 12 denotes the set of all states of nature w, F is a o--algebra of subsets of 
12 called events, and P is a probability measure on F. The information 
available to an investor at time t E T is specified by the sub-o--algebra F t C F so 
that at time t investors know which events in F~ have occurred and which have 
not. When investors learn without forgetting, the entire information structure is 
a non-decreasing family F = {F 0 C F 1 C .  • -F~} of sub-o--algebra called a filtra- 
tion. 

An N-dimensional stochastic process X = (Xt: t E T) is a map X : T x 
S2--~R N such that the maps oJ---~X,(oJ) are measurable VtE T. The function 
t---~ X,(~o) mapping T into R N is called the sample path (or trajectory) of the 
stochastic process. In financial data, it is common to assume the sample path to 
be right-continuous on [0, oo) with finite left-hand limits on (0, oo). These 
processes are labelled RCLL, alternatively cadlag, a French acronym for 
continu ~ droite, limites ~ gauche. RCLL processes include diffusions, for 
which the sample data is also left-continuous on (0, oo), and jump processes for 
which the sample path is left-discontinuous. The left limit of the process at time 
t is denoted by Xt_ and the jump by zL~(, = X t - X , _ .  

A stochastic process is measurable if the mapping (t, w)---~X,(~o) is jointly 
measurable. In particular, RCLL processes are measurable. A process is 
adapted to the filtration F if X, if F,-measurable Vt. Clearly, every process is 
adapted to the so-termed natural filtration FXt generated by the process itself, 
i.e., 

FX= cr(Xs; O<~s <~t) (2.1.1) 

the o--field generated by the process up to time t. 
The principal reason for defining RCLL and adapted processes is to 

introduce an important class of stochastic processes in finance, namely 
continuous time martingales. The filtration F is further assumed to be right- 
continuous, that is, F, = f-)~>, Fs. In this case the probability space is called a 
filtered probability space or stochastic basis and denoted (O, F, F, P). A real- 
valued, adapted process X on the stochastic basis (12, F, F, P), whose P-almost 
sure paths are RCLL,  is called a martingale (resp. submartingale, resp. 
supermartingale) if for s ~< t: 

(a) E(IX{I ) < oo for each component X{; i.e., the process is integrable. 

(b) Ss---E(X, IFs)(resp. S ~ E ( S ,  IFs),resp. Ss>~E(S, IFs) ) . (2.1.2) 
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A martingale is square-integrable if supt,0 E(IX{I 2) < ~ for each X~. 
The martingale property (2.1.2) is a sufficient condition for a price system 

not to admit any arbitrage opportunities. For this reason, it is common to 
characterize asset pricing using martingales. Furthermore,  it is also common to 
assume square-integrability, due to a well-defined theory of stochastic integra- 
tion for such processes developed by Kunita and Watanabe (1967). The 
purpose of the theory of stochastic integration discussed in Section 2.2 below, is 
to give meaning to the notion of a stochastic integral (and differential) for the 
widest possible class of stochastic processes. Square-integrable martingales are 
one such class; two other classes are Levy processes and semi-martingales. 

An adapted process X = Oft) is  a Levy process if 
(a) X has increments independent of  the past: that is, X t - X s is independent  

of F s. 
(b) X has stationary increments: that is, Xt - Xs has the same distribution as 

X~_ s, 0 ~ < s < t < * ~ .  
(c) X t is continuous in probability: that is, limt__,sX t = X~, where the limit is 

taken in probability. 
Levy processes were the first stochastic processes to be studied in a modern  

way, and include Brownian motions and Poisson processes as special cases. 
A Brownian motion is a Levy process for which X ~ - A s  is a Gaussian 

variable with mean zero and variance-covariance matrix ( t -  s)C, for a given 
non-random matrix C. When C is the identity matrix, we term the process a 
standard Brownian or Wiener process. The Brownian motion with E( IX~I )<  ~ 
is a martingale. When the mean of the process is non-zero, ~(t  - s), the process 
becomes a Brownian motion with drift or a regular multivariate diffusion 
process. There are a number of characterisations of diffusion processes, inter 
alia: 

(1) If X is a stochastic process with stationary independent  increments, and 
for which the sample paths are P-a.s. continuous, then X is a diffusion process. 

(2) A sufficient condition for a RCLL process to be a diffusion is that 

1 j 
P(IX,+h(o , )  - x{(o) ) l  > I : 0 

This condition is called the Dynkin condition. 

when e > 0 ,  V j, co. 

(2.1.3) 

The drift and variance parameters of multivariate diffusions can be extended 
to more general forms as in the generalised It6 processes discussed in Section 
2.2. 

A Poisson process is a Levy process which is also an adapted counting 
process. Specifically, the increment X t - X s counts the number of times that a 
strictly increasing sequence of posi t ive random variables T n (n I> 0) occurs 
between the fixed times s and t. The Poisson process follows a Poisson 
distribution with parameter A, the intensity or arrival rate of the process. 

The widest class of processes for which stochastic integrals can be defined is 
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the vector space of semimartingales. A semimartingale is a process X of the 
form X = X 0 + M + A where X 0 is finite-valued and F0-measurable, M is a 
local martingale with M 0 = 0 and A is a process with A 0 = 0 and whose sample 
path t---~At(o~) has finite variation over finite intervals [0, t]. Most of the 
processes hitherto considered are semimartingales, including Levy processes 
and square integrable martingales with RCLL paths. In general, continuous 
time stochastic processes in finance can be represented as a stochastic integral 
of bounded predictable processes with respect to a semimartingale, where X is 
predictable if X~ is Ft_l-measurable for t ~  > 1 and X 0 is F0-measurable. This is 
the focus of the next section. 

2.2. Stochastic integrals and differentials 

The latent stochastic processes in finance are often assumed to be generated by 
a first order  non-linear SDE 

dX; = a(t, Xt_, O) dt + b(t, X,- ,  O) dM t , (2.2.1) 

where X is an N-dimensional stochastic process adapted to a filtered probabili- 
ty space (g2, F, F,  P)  in operational time, 0 E R K is a vector of parameters,  dM t 
is a G-vector of semimartingales, a(t, Xt_, O) is an N-vector of bounded 
predictable processes, and b(t, X,_, O) is an N x G matrix with components 
biJ(t, X~_, O) bounded predictable processes. There  may be some additional 
restrictions, such as in stochastic volatility models that the components of the 
bivariate semimartingale process are uncorrelated, or that when modelling 
bond price dynamics that the price converges to the face value at maturity. An 
equivalent representation to (2.2.1) is the stochastic integral equation 

Xt = X0 + a(r,X~ , 0) d~- + b('r,X~_,O)dM~, (2.2.2) 

where X 0 is F0-measurable. The differential form is often used as a convenient 
abbreviation. 

Stochastic processes of this form have been applied to variables as diverse as 
mortgage values, values of unlevered firms, inventories, portfolio values, 
information flows, bond, equity and derivative prices; some of these applica- 
tions are reviewed in Section 4. The justification for these continuous-time 
specifications is principally that important state variables such as technology 
and information evolve continuously and stochastically; unfortunately there has 
been a tendency to overuse rather simple specifications such as geometric 
Brownian motions, making few concessions to observed empirical regularities 
or to finance theory. This is in contrast to the derivation of the original 
Brownian motion from the Langevin equation which followed well prescribed 
laws of physics (see Schuss, 1980, pp. 39-43). 

In finance, the processes used are predominantly univariate. Melino (1991) 
finds that less than 15% of continuous time applications are multivariate, and 
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most of these are bivariate stochastic volatility models. The most commonly 
used financial processes are summarised as: 

Brownian motion with drift (regular diffusion). 

dX, =/~t dt + o- t dW t . (2.2.3) 

W, is a standard Brownian motion. The drift & and volatility o-~ are 
independent of X. This is rarely used, but is a benchmark model to which other 
models can be transformed. 

Geometric Brownian motion (lognormal diffusion). 

dX, = tzX t dt + o-X t dW,. (2.2.4) 

The most widely used model for equity prices. First proposed by Samuelson 
(1965), and the basis of Black-Scholes option pricing, this process has two 
main l imitations- that equity returns tend to be leptokurtic and that volatilities 
are time-varying. 

Ornstein-Uhlenbeck (arithmetic Brownian motion). 

d X  t = (a 1 + a2Xt) dt + o- dW, for a 2 < 0 .  (2.2.5) 

This process can be used to characterise mean reversion in asset prices, and is 
the basis of the Vasicek (1977) model of the term structure. 

Reflected Brownian Motion. Let 11, follow a Brownian motion with drift. 
Then 

X t = II,',1 (2.2.6) 

is called a reflected Brownian motion with drift. When X t reaches zero, it 
returns immediately to positive values. The model has been applied by 
Longstaff (1989). 

Brownian bridge. 

x, 
d X t -  ( l _ t ~ + o ' d W ,  f o r 0 ~ < t ~ l ,  X0=Xl=0. (2.2.7) 

The Brownian bridge process is subjected to a restoring force which drives it 
back to zero. The restoring force strengthens through time until at t = 1 the 
process is zero with probability one. This process has been used to price 
default-free discount bonds where the price of the bond equals the face value 
at maturity (Ball and Torous, 1983). 

Square root process. 

dX, = (a 1 + a2X,) dt + o-VX, dW,. (2.2.8) 

This process has been posited for interest rates (Cox, Ingersoll and Ross, 
1985). 

Constant elasticity of  variance (CEV) 

dX, = txX, dt + o'X~,/2 dW,. (2.2.9) 
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The CEV model has been used for stocks (Beckers, 1980), interest rates 
(Marsh and Rosenfeld, 1983) and options (Emanuel and Macbeth, 1982). The 
elasticity of return variance with respect to price equals / 3 -  2, and if /3 < 2 
volatility and price are inversely related capturing leverage effects. When 
/3 = 2, prices follow a lognormal diffusion, and for/3 > 2, the process can also 
be analysed but it follows different boundary behaviour. 

Generalised constant elasticity o f  variance. 

d X  t = ( a l X t  (1-13) + a2Xt)  dt + oX~t/2 dW t . (2.2.10) 

This process has been studied by Marsh and Rosenfeld (1983) and includes as 
special cases the lognormal diffusion (13 = 2), square root process (/3 = 1), and 
when /3 = 0, the process behaves much like an Ornstein-Uhlenbeck process, 
but without mean reversion. 

Double square root process. 

d X  t = a l ( / Z  - ~¢/X,) d t +  0-X/X t d W  t tx = o'2/4ai  , a I > 0.  (2.2.11) 

Longstaff (1989) fitted a double square process to interest rates and noted the 
reflective properties of the process at Art = 0. 

Generalised diffusions. 

dX, = a(X,, t, O) dt + o-(X,, t, 0) dig, (2.2.12) 

for which there is greater flexibility, at the possible cost of tractability in 
determining the stationary and transitional densities discussed below. 

Jump processes. 

d X  t = c(X,, t, O) dNt(A), (2.2.13) 

where Nt(A ) is a continuous time Poisson process, i.e., N t records the number 
of price jumps during dt and is distributed as Poisson(A dt). A is called the 
intensity of the process and c the jump amplitude. 

Generalised ItO processes (jump-diffusion processes). 

dX, = a (X  t, t, O) dt + b(Xt, t, O) dW, + c(X,, t, O) dN,(A). (2.2.14) 

This is a mixture of the generalised diffusion and jump processes defined 
before. 

Leptokurtic process. 

X,  = W(Y,)  , (2.2.15) 

where W is a standard Brownian motion, and I1, is a process of independent 
gamma increments with mean dt and variance 0 -2 dr. This has been used by 
Madan and Seneta (1987) and Madan and Milne (1987). 

Diffusion-white noise process. 

d X  t = a(X,, t) + 0-1 dW, + 0- 2 dZ, ,  (2.2.16) 
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where d Z  t is a drawing from an N(0, 1) distribution. This is a generalisation of 
both Brownian motion and white noise. As dt increases, so does the variance 
at a rate o-~. When dt becomes infinitely small, the variance of dX t does not 
converge to zero, but rather to a residual noise related variance o-~. This 
process is discussed in Hoel (1972, Chapter 4) and Merville and Pieptea (1989, 
p. 203). 

Heteroscedast ic  process .  

d X  t = a(X, ,  t) dt + o-(Xt, Yt, t) dW,, (2.2.17) 

where Y~ is some set of exogenous variables. For example, in the pricing of 
bond options Schaefer and Schwartz (1987) use a process where the standard 
deviation is proportional to the bond's duration. 

Stochast ic  volatility processes .  

d X  t = i ~ X  t dt  + O t X  t dV¢ t (2.2.18) 

with a number of possible stochastic processes for ot: 

d(ln ot) = al (a  2 - ot) dt  + a 3 dW2,, (Chesney and Scott, 1989), 

dot = a l (a  2 - ot) dt  + a 3 dW2t, (Scott, 1987), 

dot = a~(a 2 - ot) dt + a 3 dW2t , (Hull and White, 1987), 

do t = alO t dt + a20 t dW2,, (Johnson and Shanno, 1987). 

These are well summarised by Taylor (1990). The process W2t is another 
Wiener process, typically assumed independent of W t. 

The theory of stochastic integration which determines solutions to the SDE 
(2.2.1) began with It6 (1944) who defined an integral of a bounded measurable 
adapted process with respect to a Brownian motion. Briefly, we consider 
integrals of the form f b( ,c ,X~_,  O)d M~ as in (2.2.2). For ease of exposition, 
we restrict the analysis to univariate processes (for the multivariate generalisa- 
tion see Stroock and Varadhan, 1979). If the integrand b were a continuous 
process, and the differential dM a process of bounded variation on compact 
intervals [tk, t~+l], the Riemann-Stieltjes integral would be defined in the usual 
sense as the limit of approximating sums. However, the Brownian motion 
process has paths of infinite variation on compact sets, so that the Riemann- 
Stieltjes integral is not defined. The idea of It6 was to restrict the integrands to 
those that could not see into the future increments. Formally, the It6 integral is 
defined to be 

n - - i  

Iw(b ) = f b(,c, X , _ ,  0) dW~ =lim ~ b(tk,  X~ _, O )[W(tlc + l ) - -  W(tk)  ] 
n - +  c~ k = 0  

for max Itk + ~ -- tkl ~ O, (2.2.19) 

where the integrand b t is assumed to be non-anticipating, that is, independent 
of future increments in the Wiener process W(t  + s) - W( t ) .  Non-anticipating is 
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an older term for a process which is adapted to the filtration F. The integral so 
defined has two fundamental properties of an integral, namely Iw(b) is linear 
and satisfies a version of the bounded convergence theorem. However, the 
integral will differ markedly from the Riemann-Stieltjes integral; for example 

' w ~ d W  _ 1 2 - -  ~ [ W  b - W ~ ]  1 _ 7[b a] (2.2.20) 

a result which can be proved quite simply by using the properties of telescoping 
sums and probability limits. Other types of stochastic integral have been 
defined for modelling physical phenomena, such as the backward integral and 
the Stratonovich (1965) integral. The It6 integral is particularly appropriate in 
finance since the non-anticipating process is consistent with market efficiency. 

The It6 integral has been successively extended to more general differentials 
and to bounded predictable processes as in (2.2.2). An abridged bibliographic 
history would emphasise the following contributions for more general differen- 
tials and integrands: 

(1) Doob (1953), Martingales. 
(2) Kunita and Watanabe (1967), Square-integrable martingales. 
(3) Meyer (1967), Predictable integrands. 
(4) Meyer (1976), Semimartingales. 
As a practical consideration, we are concerned primarily with the stochastic 

integrals associated with the processes defined in (2.2.3) to (2.2.18) and not 
with more general semimartingale processes, for which solutions to the SDE 
may be intractable, if they exist at all. The stochastic integral so defined 
determines the solution process of the SDE and its statistical properties. In the 
following sections, we discuss the existence and uniqueness of solutions to 
particular SDEs, and the statistical properties of those solutions, namely the 
conditional moments, the transitional density functions and the stationary 
distributions. 

2.3. Existence and uniqueness o f  solutions 

In presenting results on the existence and uniqueness of solutions to SDEs, 
there are many choices to be made. First, we may restrict ourselves to either 
generalised diffusions (2.2.12) or generalised It6 processes (2.2.14) for which 
existence theorems are well known and tractable solutions can often be 
obtained. Secondly, we may restrict ourselves to SDEs for which the coefficient 
processes a(t, Xt_, O) and b(t, Xt_, O) are linear in X. We discuss both of these 
restrictions. Typically, even if a solution exists, it cannot be represented in 
closed form. However, for most of the processes in (2.2.3)-(2.2.18), closed 
form solutions do exist. 

For expositional purposes, we again consider univariate processes. The 
conditions required to ensure the existence and uniqueness of the solution to 
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an SDE are now given, assuming as before bounded predictability for 
a(t,X,_,O) and b(t,X~_,O). 

(1) Generalised diffusion process (2.2.12). 
(a) Growth condition. There exists a constant C independent of 0 ~< z ~< t and 

of - o o < X < ~  s.t. 

aZ(-r,X,O)+bZ(,r,X,O)<~CZ(l+X2), - ~ < X < o o .  (2.3.1) 

This restriction is crucial for otherwise the solution can reach infinity in finite 
time with positive probability. 

(b) Lipschitz condition. There exists a constant L independent of 0 ~< z 1, 
~'2~<t and of - ~ < X ,  Y < ~  s.t. 

laff, x ,  0) - a(T, Y, 0)l + [b(r, X,  O) - b(z, Y, 0)[ ~< L [ X -  Y{, (2.3.2) 

la(T1, X ,  0 )  - a(r2, X, 0){ + Ibff~, X, 0) - b(z 2, X, 0){ ~< Zl,r I - -  "r2l. 

(2.3.3) 

The Lipschitz condition is fundamental to the solution of SDEs. 
(2) Generalised It6 processes. We can extend the above conditions to It6 

processes, as given in Lo (1988). 
There  exists a constant L, independent of 0 ~< ~-~, z 2 ~< t and of - ~  < X, Y < o~ 

s.t .  

(a) aZ( 'r ,X,O)+bz(%x,O)+cZ( 'r ,X,O)<~L2(l+X2),  (2.3.4) 

(b) [a( 'r ,X,O)-a( 'r ,Y,O)l+lb( 'r ,X,O)-b( 'r ,Y,O)[ 

+ {c(z, X, O) - c('r, Y, 0)l ~ L[X - Y{, (2.3.5) 

[a('q, X,  O ) - a(z2, X, O )l + [b('rl, X,  O ) - b('r2, X, O ){ 

+ [c(~-,, X, 0) - cff2, x ,  0)l ~< L{~-~ - ~21. (2.3.6) 

(3) Semimartingales. Conditions for the existence and uniqueness of the 
solution to the univariate form of (2.2.2) with M 0 = 0 are 

(a) The processes a(t, Xt_ , O) and b(t, X~_, O) are left continuous with right 
limits (LCRL).  

(b) There exists a constant L independent of 0 ~< r ~< t and of -oo < X <  oo 
s.t., for all ~1, ~'2, X, Y, 

la(.r,S,O)-a(~' ,Y,O)l+lbff ,  X , O ) - b ( . ~ , Y , O ) } ~ Z } X -  YI (2.3.7) 

and 

]a(~-~, X, O) - a(~- 2, X, 0)[ + [b(r 1, X, O) - b(z 2, X, 0){ ~< LIz~ - z2[. 

(2.3.8) 

This result is shown in Protter  (1990, Theorem 5.6). 
The form of solution differs markedly for different types of processes. When 
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the coefficient processes are linear in X, a quite general solution can be 
obtained. This is examined in detail by Melino (1991, pp. 14-20) and is quite 
generally considered by Protter (1990, Theorem 5.63). Formally, consider the 
SDE 

G 

dX, = [al(t, O) + a2(t, O )X t ] dt + ~ [b il(t, O) + b2(t, O )X, ] dM I . 
i = I  

(2.3.9) 

Melino asserts that under certain regularity conditions on the discontinuities in 
the stochastic integral, the solution to (2.3.9) can be written as 

i = 1  

X {d(/-/ ,Mi)-  d ( fo  H~_ a M : ) -  d ( fo  M: ar ts)}]]  

where 

//t =Xo + alO')dr + bz(r ) M~, 
i = 1  

fl U t = l +  dV, U~_ fo rV= b'2(7) dM; ~ . (2.3.10) 
i = 1  

This solution is too impractical for most purposes, except in the calculation of 
conditional first and second moments. However, it reduces in particular cases 
to tractable solutions. In particular, when the process is a linear generalised It6 
process, conditional distributions of X~ given. X 0 can be obtained. Other 
simplifications are possible. For example if b~2 = 0 for all i, much simpler 
solutions obtain and the conditional moments may be readily determined. 

Nonlinearities in the coefficient processes a(t, X~_, O) and b(t, Xt_, O) obvi- 
ously complicate matters, so that even restricting to generalised diffusions or 
generalised It6 processes does not guarantee tractable solutions. A general 
procedure is to establish directly the kinetic equation associated with a 
stochastic process. We denote by 

(1) f(X,, t) the probability density function(pdf) of the process X at t, 
(2) f~(X~ [X k 1) the transitional or conditional density function of X k given 

Xg_ i where X k = Xtk for some discrete sampling process t o , . . . ,  t k . . . .  , 
(3) E(X~) and E(X~ [Xk_l) the r-th moment and r-th conditional moments, 
(4) ar(X,t)=limh~o(1/h)E([X~+h-X,]r[X~=x) as the r-th derivate mo- 

ment. 
The kinetic equation is derived by establishing the conditional characteristic 

equation and then applying an inverse Fourier transform to obtain 
ce 

o f ( x ,  t) ( - 1 )  r o r 
Ot r! Ox r [at(x, t)f(x, t)] = 0. (2.3.11) 

r = l  
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This can be readily generalised to vector processes. The importance of this 
equation occurs when certain restrictions are imposed on the derivate moments 
o~ r. In particular, it can be shown, using the Cauchy-Schwarz inequality, that if 
a r exists for all r and is zero for some even r, then ar = 0 for all r t>3. 
Physically, this implies the stochastic process can only change by small amounts 
in small time intervals; the incremental moments approach zero faster than h 
as h--~ O. Processes which satisfy the condition that ar = 0 for all r ~> 3 include 
generalised diffusion processes. In the case of Markov processes, the transi- 
tional density function also satisfies the kinetic equation (2.3.11), and when the 
associated derivate moments are zero for higher than second order moments, 
the equation reduces to 

Ofk -O 0 2 
Ot (X [ Xk-1) = ~ [al(X)fk] + ½ - ~  [az(X)fk] (2.3.12) 

with the initial condition 

fk(X, tg_ 1 [X~_ 1, tk_l) = •(X - Xk_l) ,  (2.3.13) 

where 3 is the Dirac-delta generalised function centered at X~_~. 
Equation (2.3.12) is called the Fokker-Planck equation. It can be used to 

construct solutions for the transitional density function when the solution 
process is Markovian as in generalised diffusions. The Fokker-Planck equation 
has been extended to generalised It6 processes. Lo (1988) considers general- 
ised It6 processes (2.2.14) satisfying the Lipschitz conditions (2.3.4)-(2.3.6), 
with the further requirement that the function X +  c(X, O) is bijective and 
[Oc/OX+ 1] ¢ 0  and with true parameters in the interior of the parameter 
space. Under these conditions, he shows that 

0 - 0  02 
+ - + l , 

(2.3.14) 

where d = X + c(X),  with the initial condition (2.3.13). 
Solutions to the kinetic equation (2.3.11), or variants of the Fokker-Planck 

equation, (2.3.12) and (2.3.14), can often only be conjectured and then 
checked to satisfy the equations. The usual existence and uniqueness theorems 
for solutions to partial differential equations are not relevant in this case, 
except when the coefficient processes a , b , c  are constant or when the 
equations can be transformed to constant coefficients. The solution for some 
relatively simple processes is given in the next section. Numerical solutions to 
either the kinetic equation or Fokker-Planck equations may be a feasible 
alternative, but have yet to be investigated. 

2.4. Transitional density functions and moments 

For general linear stochastic process of the form (2.3.9), the solution repre- 
sentation (2.3.10) can be used to calculate the conditional mean and variance 
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of the process (Melino, 1991, p. 20). When the process is a generalised 
diffusion (2.2.12), the moments of the solution process can be shown to satisfy 
from the Fokker-Planck equation (2.3.12), 

d 
--dt E(X~) = rE[a(Xt)X tr-1] + r(r - 1)E[b 2(Xt)X~- 2] . (2.4.1) 

This leads to a hierarchy of differential equations for the moments. When a(X~) 
is a polynomial of order 2 or more, the moment equation for E(X~) involves 
moments of order higher than r, so that an infinite hierarchy of differential 
equations for the moments is established. Unfortunately, this problem will be 
common to all non-linear generalised diffusions. 

To construct the transitional density functions, solutions to either the kinetic 
equation (2.3.11) 0r the Fokker-Planck equations (2.3.12), (2.3.14) need to 
be found. If solutions exist, they may be found by a number of methods, either 
by Fourier transforms, by guessing possible solutions, or for generalised 
diffusions by reducing the Fokker-Planck equation to a constant coefficient 
PDE. This reduction involves the use of It6's lemma. 

It6's lemma is one of the most powerful results in It6 calculus, it is used most 
widely in the pricing of derivative assets. In Section 2.6, we give a general 
statement of It6's lemma for semimartingales, but for the moment we state the 
result for generalised diffusions (2.2.12). 

IT6's LEMMA. Let u(X,  t) : R × T---~R be a continuous non-random function 
with continuous partial derivatives Ou/OX, OZu/OX 2 and Ou/Ot o f  the diffusion 
process (2.2.12). Suppose Yt = u(X,, t). Then the process Y satisfies the S D E  

Ou Ou 0 u 2 Ou 
dYt = - - ~ + - ~ - - ~ a ( X ) + ½ - - ~ b ( X )  dt+-0-~bdW t. (2.4.2) 

We can use It6's lemma to transform a diffusion process with coefficients 
depending on X to a diffusion process with coefficients independent of X. 
Briefly, if X follows a generalised diffusion (2.2.12), Schuss (1980, Chapter 4) 
shows that provided the functions a and b satisfy the reducibility condition 

0 [ 0 b l  0 +1 02b] 

there exists a transformed process Y for which the transformed coefficients are 
independent of Y. The transitional density function can then be calculated. In 
Table 1, we present the transitional density functions for some of the important 
processes used in finance. 

These represent the main transition density functions in finance, building on 
the work of Feller (1951) and others. Two notable omissions from the table are 
the double square root process and a Brownian motion with an absorbing 
barrier. The transitional densities of these processes are given in Longstaff 
(1989) and Schuss (1980, p. 117) respectively. Since all of the processes in the 
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Table 1. 
Transitional density functions 

K.  R.  Sawyer  

Brownian  mo t ion  with drif t  (2 .2 .3)  

_ - X k - _ - r )  d r  

P(X~ I Xk_l) = 2~r 0-Z(r) dr  

Geometr ic  Brown ian  mot ion  (2 .2 .4)  

/2. [ - (In X k - In Xk_ ~ - / z  At) 2 ] 
P(X~ I x~ ) At} -1 e x p  1 [ 2tr2 At J 

for A t = t  k - t k _  1. 

Orns te in=Uhlenbeck  (2 .2 .5)  

-1,2. exp [ - (Xk -- Xa -- al At)2] 
P(Xk I Xk-0 {2v0-2t.} [ 20-2ta J , 

where t a = ( - i /2a2) [1  - exp(2a 2 At)] and Xa = X k 1" exp(a2 At) 

Brown ian  bridge (2.2. 7) 

[.--[Xk/(1 - - t k ) -  X k 1/ (1  - tk_1)]2_1 
P(Xk l Xk  1) L 20-Ztb J 

where t b = At/((1 - t~)(1 - tg_l) ) 

General ised constant  elasticity o f  variance (2 .2 .10)  

b /exp --b[Xk + Xk-1  exp(b At)] 
P(Xk I X k - ' )  - a [exp (bA t )  - 11 t ~ - e ~  --- 1] } 

f 2 Xk  )c , - - - "~" - , f 2 b [ e x p ( _ b A t ) X k . X ~  a] 1'2] 
x {4b e x p ( - b  At) X---~_I) x I 2 - c t a[ l  - e x p ( - b  At)] J '  

where a, b, c are functions of a 1, a 2, 0-,/3 and 6 is the modified Bessel function 

General ised l t6  process  (2 .2 .14)  (a = I x .  X ,  b = 0-. X ,  c = c .  X )  

(a Aty 
P ( X k [ X  k 1 ) = ~  exp(--aAt) j ~  

j=0 
~,~ r lnXk_ 1 - j l n ( l + c ) - a a t ) ~  1 

X At} e x p  L 20 -2 At  J 

(2.4.4) 

(2.4.5) 

(2.4.6) 

(2.4.7) 

(2.4.8) 

(2.4.9) 

table are Markovian, the transitional density will determine the likelihood 
function. This is considered in Section 3.2. 

2.5. Stationary density function 

Under conditions that the derivate moments at(x, t) used in defining the kinetic 
equation (2.3.11) are independent of t, the density function approaches a 
stationary solution fs(x) where af~(x)/Ot= O. From the kinetic equation, we 
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have that 

( -1 ) r  d r 
r=, r! dx r Jar(x)" fx(X)] = 0 (2.5.1) 

and if the derivate moments are zero for orders r > 2, we obtain the Fokker -  
Planck equation for the stationary solution 

d d 2 
dx [°~l(X)" L(x)] 1 _ _  . - -  - ~ dx 2 [az(X ) f~(x)] = 0 (2.5.2) 

which has a general solution [lxo  s  ] 
fs(x) = ~ exp 2 J0 a2(s) ds a2(x ) exp [ 2 f  • -I - - ~  dsJ dr. 

(2.5.3) 
The tractability of stationary solutions has enhanced their use especially in 
term structure models (Cox, Ingersoll and Ross 1985; Longstaff, 1989). They 
have the advantage that quite flexible functional forms for the stochastic 
process may be adopted, provided the derivate moments are independent of t. 
Unfortunately, in most applications in finance, the first two derivate moments 
are likely to be time-dependent, attenuating this approach. 

2.6. It6's lemma and the pricing of  derivative assets 

We have already encountered It6's lemma for diffusion processes in the 
derivation of the reducibility condition (2.4.3) It6's lemma has a more 
pervasive role, however, in the pricing of derivative assets. Protter (1990, p. 
71) gives a general representation of It6's lemma. 

IT6'S LEMMA. Let X be a semimartingale and let f be a C 2 real function. Then 
f(x)  is a semimartingale, and the following formula holds: 

fo fo f ( X t ) - f ( X o )  = f ' ( X  s ) d X , +  ½ f" (Xs_)d[X,X][  

+ ~ { f ( X ~ ) - f ( X s _ ) - f ' ( X s _ ) ~ Y , }  , (2.6.1) 
O<~s<~t 

where [X, X]~ = X 2 - -  2 f X,_ d X  s - gO~_s,t (&Xs) 2. 

The use of It6's lemma in the pricing of derivative assets originated with the 
work of Black and Scholes (1973). The Black-Scholes analysis is in three 
stages: 

(a) Stochastic process. Assume a particular form of process for the underly- 
ing asset price. The most common assumptions are lognormal diffusions and 
constant elasticity of variance process. 
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(b) Hedging. Construct a hedged portfolio, that is, a riskless portfolio 
consisting of the stock and the derivative asset. 

(c) No arbitrage condition. In the absence of arbitrage, the return on this 
hedged portfolio must equal the risk-free rate of return. The return on the 
hedged portfolio is derived using It6's lemma. The equating of the return of 
the hedged portfolio with the risk-free rate generates a second order differen- 
tial equation for the price of the derivative asset. This second order differential 
equation may admit closed form solutions, depending on the nature of the 
stochastic process governing the underlying asset price. 

To make the Black-Scholes argument succinct, consider a lognormal 
diffusion process for an equity (2.2.4). Let the value of an option on the equity 
be given by Y(X,, t). By It6's lemma, the stochastic dynamics governing the 
behavior of the option is given by 

where 

dY_, = P~YYt dt + tryY t dW,, 

OY OY 02Y 
~ ,  = tx. X . ~  + ~ + ½0X~- Z • o'2X 2 , (2.6.2) 

OY 
o - y  = - ~  . o ' X  . 

The no arbitrage condition reduces to 

(l~ - r)/o- = (~y - r)/~rY. (2.6.3) 

Inserting (2.6.2) into (2.6.3) gives the familiar Black-Scholes equation 

2 2 32Y OY OY 
½o- X ~ + r X - ~ - ~ + - - ~ -  - r Y = O  (2.6.4) 

which admits a closed form solution. 
There are several caveats to Black-Scholes approach. The no arbitrage 

condition can also be derived using the capital asset pricing model, and in some 
applications this is more convenient; for example in jump processes (Merton, 
1976, p. 133) the hedging technique of Black-Scholes cannot be employed, but 
the CAPM approach generates a second order differential equation which can 
be solved computationally. Secondly, the Black-Scholes approach has been 
extended to a number of other applications where some problem-specific 
modifications need to be made. 

One implication of the Black-Scholes approach is that it provides a second 
measure of the misspecification of the stochastic process generating the 
underlying asset price. For, mispricing of observed option prices using the 
generated option price from equation (2.6.4) will be attributable to misspecifi- 
cation of the SDE in addition to other biases, such as the European bias 
evident when pricing American options. There is considerable scope for tests 
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of misspecification by using all the information in the asset markets, that is all 
prices of derivative assets. General misspecification tests should encompass this 
information. 

3. Estimation and inference 

3.1. Measurement process 

In macroeconomics, especially business cycle theory, there is a wide class of 
models suggesting that latent economic processes evolve in economic time 
rather than calendar time. The relationship between economic and calendar 
time depends on the economic history of the latent process; for example, Flood 
and Garber (1980) contended that decisions concerning money balances will be 
made more often during periods of high inflation. Clark (1973) suggested that 
the operational or economic time scale for the evolution of commodity prices 
should be based on information flows. Models which explicitly characterise the 
transformation between economic time and calendar time are called time 
deformation models, and have been applied in papers by Stock (1985, 1988). 

For illustrative purposes, consider a univariate stochastic process X defined 
on the economic time scale s. Let g(t) be the transformation from calendar 
time t to economic time s. To be a valid transformation, Stock (1985) specifies 
the following requirements for g. 

(1) For tractability, A g ( t ) = g ( t ) - g ( t -  1) must not depend on current or 
future values of X t. 

(2) Economic and calendar time proceed in the same direction, so that 
0 < Ag(t) < 

(3) The unknown parameters of the time scale transformation must be 
identified. For example, linear transformations (such as from daily to weekly 
data) will not be identified. 

(4) For simple estimation, the transformation should be continuous in its 
unknown parameters. 

Stock (1985) posits an exponential transformation for g when estimating 
business cycle models. In financial data, a reasonable specification for g should 
include some non-anticipating measure of volatility, since increased volatility 
will usually correlate with enhanced information flows, and subsequent time 
deformation. 

The process X is observed through some sampling procedure. It may be 
sampled in calendar time as: 

(1) A point process sampled at fixed intervals, 

Xk=X(g( t k )  ) ,  t j - - t j_ l=tk- - tk_  1 forallk,  k .  

(2) A point process sampled at random intervals, 

= x ( g ( t A ) ,  to < < . . . .  
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(3) An economic flow, 

ft tk XI, = X(g(~-))  d'r . 
lk 1 

As an example, for a lognormal diffusion process in economic time, we observe 
that process in calendar time as 

dXg(o = ~Xg(t  ) + o'Xg(t ) dWg(o • (3.1.1) 

An important question in the resolution of processes such as (3.1.1) is the 
dependence on the sampling procedure. For example, a plausible proposition is 
that time deformation properties are more likely to be stable for low frequency 
data (monthly) than high frequency data (transactions), so that the estimates 
recovered for tz and o- in (3.1.1) may well be more reliable in monthly data. 
The presence of significant empirical anomalies in high frequency data, 
including time varying second and higher order moments, may be induced by a 
time transformation that is appreciably sensitive to variables such as market 
volatility. 

3.2. Discrete  approx ima t ions  

While continuity in time is assumed in building financial models, we are 
compelled to estimate their discrete time equivalents. The theoretical argu- 
ments given in the introduction of this paper suggest these approximations 
should be invoked using high frequency data. However, there are other 
theoretical considerations. First, the approximation by a discrete time model 
involves the convergence of the information structure (the filtration F )  and of 
the stochastic process to their continuous time equivalents. A priori, while the 
filtration approximation has greater fidelity for high frequency data, the 
approximation of the stochastic process may be less accurate. Secondly, the 
degree of non-synchronous trading is likely to be greater in high frequency 
data; the proportionate error of approximation in daily and intra-daily will 
generally be greater. Finally, as noted by Marsh and Rosenfeld (1983) in many 
models it is necessary to impose additional theoretical assumptions, such as a 
zero term premium in some models of the term structure. These assumptions 
are less tenable as the length of approximating interval increases. 

If the time process generating the data is in continuous time, inappropriate 
discretisations will produce biased and inconsistent estimates. This is a familiar 
proposition in higher order continuous time models, where the bias in 
approximating discrete time models has been shown to be  O(h 2) as h,  the 
length of the observation period, tends to zero (see Bergstrom, 1988, pp. 
371-373). The bias induced in approximating n-th order linear SDEs arises 
from truncating an infinite sum of matrices. The bias induced in approximating 
the non-linear SDEs of finance arises from using an incorrect transitional 
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density and likelihood function. Lo (1988, pp. 240-242) discusses this point 
further for a lognormal diffusion process. 

Suppose t k = kh,  for k = 0, 1 , . . . ,  n = T / h ,  denotes a partition of the trading 
time space. Then a discretisation of the lognormal diffusion model (2.2.4) is 

X~+ I = X~ + txXkh + ~ X  k AWk+ 1 

o r  

S k +  1 -- S k = [ . z S k h  q- SkF,  k+l  , (3.2.1) 

where e,+ 1 is iid N(0, oh). 
The maximum likelihood estimators of/~ and o- are given by 

1 ~  X~ = T  
] ~ h = " ~  "X--~-_I i_ 6 .2 X-~-_I 1 - / 2 h  (3.2.2) 

k=l  = 

For fixed h, the estimates /2h, 6 -2 are biased and inconsistent. If h approaches 
zero as n increases without bound so that T is constant, 6-2 is consistent, but/2 h 
remains inconsistent. 

The inconsistency in the estimate of/z may not be economically important of 
course, because option pricing models are preference independent, i.e., do not 
depend on /x. Inconsistency in the volatility estimate is more important, but 
can be overcome by using the proper transitional density function (2.4.5), (i.e., 
the error process in (3.2.1) is lognormal not normal). 

There is another type of discretisation bias which induces leptokurtosis in 
asset returns. This bias is due to asset prices being measured in discrete units, 
usually to the nearest eighth of a dollar of the major U.S. exchanges. Ball 
(1988) has formalised the estimation bias induced by discrete security prices 
when the underlying continuous time process is a continuous state process. He 
establishes the transition density function for a Brownian motion with zero 
drift, when prices are rounded to some discrete value. The transitional 
probabilities need to be calculated by numerical methods, but the volatility 
estimates are then essentially unbiased. 

In assessing discretisation bias, it is important to regard the problem in a 
more general context as the approximation of one stochastic process to 
another. For example, the bias in the discretised form of the lognormal 
diffusion is due to the approximation of a Gaussian process by a lognormal, 
and the bias induced by discrete security prices is due to the approximation of a 
continuous state process to a discrete state process. There is now a quite 
extensive literature documenting stochastic process approximations. We cite 
just two rather important results. First, Cox and Ross (1976) show that the 
limiting form of the jump process 

d X  t = t x X  t dt + c X  t dNt(A ) (3.2.3), 
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as A--~ ~ is the diffusion process 

dX, = / z X  t dt + o-X~ dW~, (3.2.4) 

where tr is determined as a function of c. This result extends to more general 
jump processes; that is, as the intensity increases, the process approaches a 
diffusion limit. 

A second result connects the discrete time modelling of the second moment 
function (the A R C H  and G A R C H  models) to diffusions. Nelson (1990) shows 
that by partitioning the trading space more and more finely, the G A R C H  (1, 1) 
mean process of Engle and Bollerslev (1986) for the log of cumulative excess 
returns Y, on a portfolio: 

x ,  = x , _ 1  + + , 

2 
O'e+ 1 ~- 0~0[0¢ 1 "~ (~2Z~] ( 3 . 2 . 5 )  

approaches a limiting diffusion 

dX, = Co-~ dt + o- t dWl,t, 

do-~ = (a 0 - 0o-,2) dt + a2o- ~ dW2, , , (3.2.6) 

where Z t is N(0, 1), W1, . W2, , are independent Wiener processes, and 0 is a 
limiting parameter. 

3.3. Estimation problems 

The stochastic processes in Table 1 have all been estimated using maximum 
likelihood methods, but with mixed success. It is of course straightforward to 
estimate the discrete time equivalent of the lognormal diffusion model, simply 
by using logarithmic returns. In the only systematic study of the general 
constant elasticity of variance model, Marsh and Rosenfeld (1983) estimated 
the model for 0 equal to 0, 1, and 2 for rates of return on T-bills with one-week 
and one-month to maturity. Marsh and Rosenfeld found it difficult to estimate 
the parameters A and B (both were found to have very large standard errors), 
yet the volatility estimate(o-) was strongly significant. Marsh and Rosenfeld did 
not maximise the likelihood across all feasible values of 0, but for the grid of 
values considered found the lognormal model (0 = 2) to have marginally higher 
likelihood. This study represents the only formal attempt to embed a series of 
distributions within a family o f  distributions, and to test between them 
parametrically. There was no testing of whether the type of stochastic volatility 
embedded in this model is appropriate for this data. 

Estimation of the jump-diffusion process presents rather more problems. 
Three methods have been used. Ball and Torous (1985)employed  both 
method of cumulants and maximum likelihood estimation to estimate daily 
returns on NYSE listed common stocks. In the majority of returns, they found 
evidence of statistically significant jumps, but that these jumps did not induce 
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significant differences in the pricing of call options. Indeed, this relative 
robustness of the Black-Scholes pricing model to extreme observations is 
confirmed in a study by Madan and Milne (1987), who find some robustness of 
the Black-Scholes values to leptokurtosis. One of the difficulties in estimating 
the jump-diffusion model by maximum likelihood methods is the requirement 
to replace an infinite sum in the density function by a finite approximation. 
This motivated the study of Stern (1989) who uses an empirical characteristic 
function in a Monte Carlo exercise on generated log returns. Stem's results 
indicate some superiority of the empirical characteristic function in terms of 
root mean squared errors particularly when the number of jumps is small. 

The cumulative evidence from these results is that volatility and its associ- 
ated stochastic dynamics is probably the most significant factor in the estima- 
tion of continuous time asset pricing models. While there is substantial 
evidence for the presence of jumps and for leptokurtosis in asset returns, these 
do not appear to significantly bias Black-Scholes pricing of derivative assets. 

Stochastic volatility has at least three literatures, the stylised fact  literature 
(see Black, 1976 and Trevor, 1990), stochastic volatility diffusions (see 
Wiggins, 1987 and Johnson and Shanno, 1987) and finally stochastic volatility 
in discrete time as encompassed by A R C H - G A R C H  models, It is apparent 
that some convergence in the literature is emerging following the seminal paper 
of Nelson (1990); for substantiation of this point, the paper of Taylor (1990) is 
useful. 

Briefly, the stylised facts literature reflects certain empirical patterns con- 
cerning volatilities, inter alia leverage effects (volatility increases subsequent to 
large negative returns), financial leverage effects, trading day effects, au- 
toregressive patterns, and macroeconomic volatilities. The challenge is to 
parameterise these effects, and some partial solutions have been posited by 
Nelson (1991) in the development of the E G A R C H  model. 

In the stochastic volatility diffusion models, the volatility itself is modelled as 
an It6 process; a general formulation is 

dX t =/J.X t d t +  o-rX t dWt, 

do-, = f(o-,) dt + 0o- t dW2t , (3.3.1) 

where dW and dW 2 are Wiener processes with correlation p, and 0 is the 
variability of the stochastic volatility o- t. Wiggins (1987) uses a form of 
Ornstein-Uhlenbeck process for the volatility as given in (2.2.18), but is 
unable to find a closed form solution for the transitional density. This is the 
typical case for stochastic volatility diffusion models. An additional concern is 
that the stochastic volatilities appear manufactured; it is difficult to envisage 
how some of the stylised facts would be assimilated into these models. 

The importance of A R C H - G A R C H  models has been amplified by the work 
of Nelson (1990), who showed that properly chosen sequences of E G A R C H  
and G A R C H  models will converge weakly to bivariate diffusion processes as 
the discrete time interval approaches 0. This may be relaxed to include 
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GARCH processes with symmetric non-normal distributions. These limiting 
theorems imply that we may replicate the behavior of bivariate stochastic 
diffusions through properly specified EGARCH and GARCH models. The 
limiting results do not extend to diffusions with random coefficients. However, 
as suggested by Nelson, such limiting theorems do apply to jump processes, so 
that a challenge in future work is the specification of discrete time approxi- 
mations of bivariate jump-diffusions. 

4. Concluding remarks 

The discussion in this chapter has reviewed some of the critical applications of 
continuous time modelling in finance; in particular the estimation of It6 
processes for asset pricing distributions and the use of It6 processes in pricing 
contingent claims. 
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