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Preface
Donald W. K. Andrews and James H. Stock

The chapters in this volume are dedicated to Thomas Rothenberg in honor of
his retirement from the Economics Department at the University of California,
Berkeley. Tom Rothenberg has made fundamental contributions to economet-
ric theory and has been an inspiring teacher, advisor, and colleague. Rothen-
berg’s early work focused on efficient estimation and identification in simulta-
neous equations models. In a paper (written with C. T. Leenders) published in
Econometrica while he was still a graduate student, Rothenberg established the
asymptotic efficiency of the linearized maximum likelihood estimator for si-
multaneous equations models and thus the asymptotic efficiency of three-stage
least squares. This line of research was summarized in his monograph Efficient
Estimation with A Priori Information, where he laid out a unified theory of
efficient estimation in simultaneous equations systems.

Because exact optimality results for estimators and tests in simultane-
ous equations models are generally unavailable, the notion of efficiency in
Rothenberg’s initial work typically is first-order asymptotic efficiency. Often,
however, there are a number of estimators that are asymptotically equivalent
to first order; k-class estimators in a single equation with multiple endogenous
regressors is a leading example. In finite samples, these estimators have dif-
ferent behavior, but their finite-sample distributions can be either unavailable
or so complicated that they fail to provide useful comparisons between the
estimators. Thus, Rothenberg undertook to examine the differences between
first-order equivalent estimators and tests by studying their higher-order prop-
erties using Edgeworth expansions. Much of this work is summarized in his
masterful chapter in the 1984 Handbook of Econometrics, which remains a key
reference for researchers interested in the deviations of the distributions of in-
strumental variables estimators from their first-order asymptotic distributions.
More recently, Rothenberg’s interest in efficient inference led him to consider
efficient testing in time series with a possible unit root.

Both of the editors of this Festschrift had the privilege of being students
of Tom Rothenberg. Like his other students, we benefited from traits that are
hallmarks of his research: an insistence on working on problems that are im-
portant to econometrics, bringing common sense to both the economics and
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the econometric theory at hand, an appreciation for the statistical foundations
of econometric theory, and a realization that careful analysis of simple models
can yield deeper insights about econometric procedures applied in the more
complicated settings found in practice.

Most of the papers in this volume fall into one of the three main areas
of Rothenberg’s research: identification and efficient estimation; analysis of
asymptotic approximations, for example, via higher-order asymptotic analy-
sis; and inference involving potentially nonstationary time series. In addition,
several papers are in the area of nonparametric and semiparametric inference.

The majority of the papers in this volume were presented at a National
Science Foundation conference in honor of Tom Rothenberg held in Berkeley,
California, in August 2001. This conference was organized by James Powell
and Paul Ruud.

Identification and Efficient Estimation (Part I)

At the request of the editors, this Festschrift starts with a classic unpublished
paper in which Rothenberg explores the subtle role of modeling assumptions
for causal inferences. By illustrating how seemingly innocuous assumptions
can lead to incredible inferential conclusions, the chapter emphasizes the im-
portance of thoughtful consideration of the assumptions underlying a statisti-
cal analysis and of focusing on results that are robust to untestable modeling
assumptions.

The chapter by Arthur Goldberger continues this theme. Goldberger con-
siders studies of twins in behavioral genetics. He illustrates how modeling
assumptions that seem plausible on their face can lead to implausibly strong
conclusions that are not robust to questionable assumptions on unobservables —
specifically, assumptions about correlations between genetic characteristics and
the environment.

Jeffrey Wooldridge’s chapter addresses the identification and estimation of
causal effects in nonlinear models and examines how certain estimands are more
robust than others to violation of assumptions on unmodeled heterogeneity. In
particular, he shows that, under certain conditional independence assumptions,
itis possible to estimate average partial effects in nonlinear models consistently,
even with unobserved heterogeneity and even though this heterogeneity can lead
to inconsistency of estimated parameters (such as probit slope coefficients) of
standard nonlinear models.

David Freedman’s chapter also considers what assumptions are needed to
provide a causal interpretation to regression coefficients estimated using non-
experimental data and emphasizes the importance of having prior information
about causal mechanisms — that is, a model in which one believes — if one is
to draw causal inferences. Freedman makes these arguments using graphical
causal models, a framework more commonly encountered outside rather than
inside the field of econometrics. His conclusions reinforce those in the chapters
by Rothenberg and Goldberger about the key role played in identification by
subsidiary modeling assumptions.
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James Stock and Motohiro Yogo consider a different aspect of identification
in econometrics: instrumental variables regression when the coefficient of inter-
est is identified but, for the sample size at hand, the marginal explanatory power
of the instruments is small, that is, the instruments are weak. As Rothenberg and
others have shown, in this case the distributions of IV estimators are poorly
approximated by their first-order asymptotic distributions, and Stock and Yogo
propose tests of the hypothesis that the instruments are weak against the alter-
native that they are strong. In a companion chapter, they also derive alternative
asymptotic distributions for k-class IV estimators when there are many weak
instruments.

The chapter by Douglas Steigerwald and Richard Vagnoni examines the
role of modeling assumptions in achieving identification in the context of a
dynamic financial model of stock and stock option prices. The model captures
salient stylized empirical facts, including serial correlation in stock trades, serial
correlation in stock price changes, and more persistent serial correlation in
stock trades than in squared stock price changes. Steigerwald and Vagnoni use
this model to illustrate how subsidiary modeling assumptions (in this case,
assumptions about the process of trader arrival) play an important role in the
identification of the model parameters.

Asymptotic Approximations (Part 1)

Rothenberg’s teaching and research have emphasized the virtues of using alter-
native asymptotic frameworks, beyond conventional 1/z-normal asymptotics,
to understand and compare the performance of estimators and test statistics.
For example, Rothenberg’s work on higher-order expansions is well known.
The chapters by Hidehiko Ichimura and Oliver Linton, by Donald Andrews, by
Guido Imbens and Richard Spady, and by Whitney Newey, Joaquim Ramalho,
and Richard Smith all follow this approach and employ higher-order expansions
to analyze and improve methods based on first-order asymptotics.

Ichimura and Linton calculate higher-order expansions for semiparametric
estimators of treatment effects. They use these expansions to define a method for
bandwidth selection and to specify a degrees of freedom-like bias correction.

Andrews uses Edgeworth expansions to compare competing bootstrap meth-
ods for parametric time series models. In particular, he shows that a parametric
bootstrap based on the maximum likelihood estimator achieves greater im-
provements in coverage probabilities than the nonparametric block bootstrap.
Moreover, he shows that these improvements can be achieved using a linearized
k-step version of the estimator, resulting in substantial computational savings.

Imbens and Spady calculate higher-order biases and mean-squared errors
of generalized method of moments (GMM) and generalized empirical likeli-
hood (GEL) estimators in a simple model with a sequence of moment condi-
tions. Their analysis suggests that GEL estimators outperform feasible GMM
estimators. In addition, they find that the relative performances of different
GEL estimators depend on the magnitudes of third moments of the moment
conditions.
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Newey, Ramalho, and Smith establish stochastic expansions for GMM and
GEL estimators that may depend on preliminary nuisance parameters. Examples
considered include estimators of models with sample selection corrections and
estimators of covariance structures. Their results also cover two-step GMM
estimators with sample splitting employed to estimate the weight matrix. The
stochastic expansions are used to analytically bias-correct the GMM and GEL
estimators. Simulation experiments are used to show that this method works
well in the case of covariance structure models.

The chapter by Ron Mittelhammer, George Judge, and Ron Schoenberg
uses Monte Carlo simulation methods to analyze the finite-sample properties
of GEL, GMM, and two-stage least-squares estimators in a linear structural
model. They also provide an algorithm for computation of GEL estimators.

The chapter by Ole Barndorff-Nielsen and Neil Shephard considers asymp-
totic approximations in time series models. The authors numerically compare
different first-order equivalent approximations to the distribution of the local
sum of squared financial returns (the so-called realized variance).

The chapter by Gene Savin and Allan Wiirtz considers tests concerning the
transformation parameter in Box—Cox regression models with unknown error
distributions. Using Monte Carlo simulations, they find that Wald tests based
on first-order asymptotics have poor size properties. In contrast, they find that
GMM residual-based bootstrap tests have only small discrepancies between
nominal and true null rejection probabilities.

Inference Involving Potentially Nonstationary Time Series (Part III)

The chapters by Michael Jansson, by Samuel Thompson, and by Andrew Harvey
consider inference about the degree of persistence in time series. Jansson con-
siders tests of the null hypothesis that a vector time series is cointegrated.
Specifically, he applies the theory of point optimal tests for a unit moving av-
erage root to the residual from a cointegrating regression to develop a new
family of tests of the null hypothesis of cointegration. Thompson focuses on
the problem of constructing confidence intervals for autoregressive coefficients
when the true value is nearly one. Thompson shows that intervals based on
inverting robust tests can result in substantial improvements over procedures
using only second moments when the errors are heavy-tailed. In his chapter,
Harvey proposes a unified framework for testing for stationarity and unit roots
in both univariate and multivariate time series. The unifying concept is that the
tests have generalized Cramér—von Mises distributions, and Harvey shows how
to derive such tests via the Lagrange multiplier principle.

The chapters by Jushan Bai and Serena Ng and by Brownwyn Hall and
Jacques Mairesse examine inference in potentially persistent panel data. Bai and
Ng consider a common components model and study tests for the stationarity
of the common components against the alternative that one or more common
components have a unit root. In their chapter, Hall and Mairesse use Monte
Carlo simulations to compare the performance of various unit root tests that
have been proposed for panel data, focusing on the common case in which
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there are few time series observations on a large number of individuals or firms.
They find that many existing tests have substantial size distortions, especially
when there is firm-level heteroskedasticity.

David Hendry and Grayham Mizon consider forecasting in the presence of a
different sort of nonstationarity: structural breaks and policy regime shifts. They
develop a framework in which structural shifts in causal structural models lead
those causal models to produce poor forecasts, whereas nonstructural models
can produce reliable forecasts; one of their conclusions is that forecast failure
of an econometric model need not rule out its usefulness for forecasting.

Nonparametric and Semiparametric Inference (Part 1V)

The chapter by Peter Bickel, Ya’acov Ritov, and Tom Stoker examines the
fundamental question of the choice of regressors in a regression model. In
contrast to much of the literature on this problem, they analyze a nonparametric
regression model rather than a linear model. They develop tests for exclusion
restrictions in the nonparametric regression context.

Bo Honoré and James Powell exploit the pairwise differencing approach
commonly used to eliminate a fixed effect in a linear panel data model to estimate
various semiparametric nonlinear models, including the partially linear logit
model. They establish »/n-consistency and asymptotic normality of estimators
that are minimizers of kernel-weighted U-statistics.

The chapter by Whitney Newey and Paul Ruud considers semiparametric
estimation of single-index models. The authors establish /n-consistency and
asymptotic normality of the inverse-density-weighted quasi—-maximum likeli-
hood estimator introduced by Ruud in 1986. This estimator has an advantage
over alternative estimators in that it allows for discontinuities in the unknown
transformation function.






PART I

IDENTIFICATION AND EFFICIENT
ESTIMATION






CHAPTER 1

Incredible Structural Inference
Thomas J. Rothenberg

1. INTRODUCTION

In the course of their everyday work, economists routinely employ statistical
techniques to analyze data. Typically, these techniques are based on probability
models for the observations and justified by an appeal to the theory of statis-
tical inference. An important example is the estimation of structural equations
relating economic variables. Such equations are interpreted as representing
causal mechanisms and are widely used for forecasting and policy analysis.
This econometric approach is arguably the dominant research methodology
today among applied economists both in and out of academia.

The econometric approach is not without its critics. Scholars from other
disciplines often seem puzzled by the emphasis that economists place on re-
gression analysis. Statisticians express surprise that their techniques should be
applicable to so many situations. Recently, anumber of leading econometricians
have added to the critique. In his paper “Let’s Take the Con Out of Economet-
rics,” Ed Leamer (1983) chides economists for ignoring the fragility of their
estimates. The title of this paper comes from Christopher Sims’s (1980) paper
“Macroeconomics and Reality,” which argues that the economic and statistical
assumptions underlying most macromodels are not believable. They are, he
asserts, literally “incredible.”

Although my purpose is similar to that of Leamer and Sims, my approach will
be rather different. In any area of application there will always be differences of
opinion on what constitutes a reasonable set of assumptions on which to base
the statistical analysis. Particularly in macroeconomics, where one is trying to
summarize in a manageable aggregate model the behavior of millions of deci-
sion makers with regard to thousands of products, the disagreements are bound
to be enormous. Therefore, instead of discussing typical economic examples

Presented at the International Symposium on Foundations of Statistical Inference, December
1985, Tel Aviv, Israel. This paper evolved from a series of lectures given in June 1985 at
the University of Canterbury, Christchurch, New Zealand. I am grateful to Yoel Haitovsky and
Richard Manning for providing me with the opportunity to discuss these ideas in such marvelous
settings.
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where assumptions are always controversial, I shall go to the other extreme and
discuss two very simple, almost trivial, examples of statistical inference where
the assumptions are quite conventional yet the inferences could naturally be
called incredible. Although the examples have nothing to do with economics, I
hope to persuade the reader that the key problems with econometric inference
are illuminated by their analysis.

2. EXAMPLE ONE: A MEASUREMENT PROBLEM

In order to learn the dimensions of a rectangular table, I ask my research assistant
to measure its length and width a number of times. The measuring device
is imperfect, so the measurements do not yield the exact length and width. I
believe, however, that the measurement errors behave like unpredictable random
noise, with any particular error having equal probability of being positive or
negative. Therefore, I decide to treat the measurement errors as independent,
identically distributed random variables, each with median zero. In addition, I
assume that the common error distribution is symmetric and possesses finite
fourth moment. For example, the normal probability curve (truncated to insure
the measurements are positive) might serve as an approximate model for the
error distribution.

These assumptions would not usually be called incredible. They might
not be valid for every measurement situation, but they could be reason-
able for many such situations. (One might worry about my ruling out thick-
tailed distributions that could capture the effects of gross measurement
errors. I do that to simplify my story; the analysis could be conducted using me-
dians rather than means, but only with harder distribution theory.) Now I shall
make one further assumption. My research assistant mistakenly thinks I care
only about the area of the table and hence multiplies the length and width
measurements. Instead of receiving n length measurements L, Ly, ..., L,
and n width measurements Wy, W,, ..., W,, I get only n area measurements
A =L W, Ay =L,W,, ..., A, = L,W,. Worse yet, my research assistant
throws away the original data so they are lost forever.

Can I get reasonable estimates of the true length and width of the table
using only these area measurements? Can I salvage anything from this badly
reported experiment? If there were no measurement error, the answer is clearly
no; I will learn the true area of the table, but there are an infinity of length and
width pairs that are consistent with any given area. Length and width are simply
not identifiable in this experiment. In the presence of measurement error, the
answer is quite different. Both length and width are identifiable and can be well
estimated from a moderately large sample. In this case credible assumptions
seem to lead us to incredible inference!

To demonstrate that inference about length and width is possible, some
notation will prove useful. Suppose « is the true length of the table and 8 is the
true width. Let u; be the error in the ith length measurement, let v; be the error
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in the ith width measurement, and let o2 be the common error variance. Then
we can write

Ai:a,B—i—av,-—i-ﬂu[—i—u,-vi. (11)

Given the assumption that u; and v; are independent random variables dis-
tributed symmetrically about zero and possessing third moments, we find:

E[A;1=ap, Var[A;]=oc%c*+ B*+0?)
E(A; — apf)’ = 6apo’.

By convention, ¢ > $ > 0. Simple algebra demonstrates that the three pop-
ulation moments uniquely determine the three parameters «, 8, and o%. Fur-
thermore, under our assumptions, the sample moments converge in probability
to the population moments as n tends to infinity. Denoting the sample mean
of the area measurements by M|, the sample variance by M;, and the sample
third central moment by M3, a natural method of moments estimator of ot is
M;/6M,. Assuming this is positive and denoting its square root by S, we can
estimate (« + B)* by the equation

(a+ﬁ)2=%—s+2M1. (1.2)

If 2 > 0, the probability that both estimates are positive goes to 1 as n tends
to infinity. Define A to be the square root of expression (1.2) if real, and zero
otherwise. Then A is a consistent estimate of « 4+ 8. A natural estimate of
(@—p)is

(a—ﬁ)zz%—S—le. (1.3)

If this expression is positive, its square root is a consistent estimate of @ — .
However, if the table is almost square, a negative value for (1.3) is quite likely.
Define B to be the square root of expression (1.3) if real, and zero otherwise.
Then (A + B)/2 and (A — B)/2 should be reasonable estimates of « and S.

These method of moments estimates will converge in probability to the
true values as long as there is some measurement error. Central limit theory
can be employed to develop large sample approximations of their sampling
distributions. These approximate distributions are typically normal, although
things get slightly more complicated when the table is square (because then the
length and width estimates are confounded). To avoid this technical problem in
the asymptotic distribution theory, I shall continue the discussion using « + 8
as the parameter of interest and A as my estimate. The essential feature of my
example — that the parameter is estimable in the presence of measurement error
but not otherwise — is unchanged.

If 0 > 0 and the errors possess finite sixth moments, then the standardized
estimator /n(A — o — B) converges in distribution to a zero-mean normal
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Table 1.1. Asymptotic relative standard errors for estimates

ofa+p
Relative standard error®

o/a Bla o unknown o known Original data
0.01 1.0 14.44 0.35 0.01
0.05 1.0 291 0.36 0.04
0.10 1.0 1.50 0.37 0.07
0.20 1.0 0.84 0.41 0.14
0.30 1.0 0.69 0.47 0.21
0.40 1.0 0.68 0.54 0.28
0.50 1.0 0.73 0.62 0.35
0.60 1.0 0.82 0.71 0.42
1.00 1.0 1.53 1.15 0.71
2.00 1.0 7.87 2.67 1.41
0.01 0.5 15.86 0.39 0.01
0.05 0.5 3.23 0.40 0.05
0.10 0.5 1.70 0.42 0.09
0.20 0.5 1.05 0.48 0.19
0.30 0.5 0.96 0.67 0.28
0.40 0.5 1.03 0.68 0.38
0.50 0.5 1.20 0.81 0.47
0.60 0.5 1.44 0.94 0.57
1.00 0.5 3.39 1.60 0.94
2.00 0.5 2291 4.12 1.89
0.01 0.2 39.13 0.51 0.01
0.05 0.2 8.04 0.52 0.05
0.10 0.2 4.35 0.54 0.12
0.20 0.2 2.86 0.62 0.24
0.30 0.2 2.74 0.74 0.35
0.40 0.2 3.05 0.89 0.47
0.50 0.2 3.65 1.05 0.59
0.60 0.2 4.53 1.25 0.71
1.00 0.2 11.67 2.19 1.18
2.00 0.2 84.67 5.98 2.34

@ Standard deviation of the limiting distribution of /n(A —a — B)/
(o + B) for alternative estimates A. Approximate relative standard errors
for any given sample size n are obtained by dividing by /n.

random variable as the sample size n tends to infinity. The asymptotic vari-
ance is a complicated function of «, 8, o2, and the higher moments of the
error distribution. Table 1.1 gives the asymptotic relative standard error for the
estimate of o + B [i.e., the standard deviation of the limiting distribution of
(A —a — B)/(a + B)] for the special case where the fourth and sixth mo-
ments are equal to those of a normal random variable. Also given in the table are
the asymptotic relative standard errors for the estimate using the true variance
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o? in place of the estimate S in (1.2) and for the estimate using the sample
means of the original length and width data. (Note that the tabulated values
must be divided by /7 to get approximate standard errors for sample size n.)

The table suggests the following conclusions. Depending on the values of
o, B, and o, the efficiency loss from having only the area data ranges from
very large to quite modest. If one knows o2, the best results are obtained by
measuring the table as carefully as possible (but not perfectly!). If one does not
know o2, the best results are obtained by measuring the table rather badly; for
a table that is nearly square, o /o should be approximately 0.5. In this latter
case, there is a simple moral to the story: if one cannot have a smart research
assistant, at least have a sloppy one. Truly, an incredible result! Needless to
say, I do not seriously propose estimating the length and width of a table from
area measurements. My point is quite different. No sensible person would ever
use the estimation method derived here. Yet many sensible people would use
the sample means of the original observations — if they were available. The
assumptions made are not incredible. But they are also not credible enough
to justify the inference procedure described. I shall return to this point in a
moment, but let me first develop another example.

3. EXAMPLE TWO: A REGRESSION PROBLEM

In order to estimate the gravitational constant I ask another of my research
assistants to drop a coin from various heights and to report how long it takes
before the coin hits the ground. On the basis of my study of physics, I believe
that the true time ought to be proportional to the square root of the distance
the coin travels and that the constant of proportionality is related in a simple
way to the gravitational constant. This particular research assistant is very good
at measuring lengths, but not so good at stopping the stopwatch at the right
moment. I therefore propose the regression model

Vi =o+ Bx; +u; (i=1,...,n), (1.4)

where y; is interpreted as the measured time on the ith trial, x; is the (correctly
measured) square root of distance, and u; is the error in measuring the time.
(Of course, here I know « is zero, but I shall not use that fact). I am tempted to
estimate 8 by the least-squares slope coefficient b = Y (x; — X)y;/ Y. (x; — %)*
and to form a confidence interval using the statistic

TR V)
T=(0b-p) |:Z (x’s—zx):| , (1.5)

where s? is the sum of squared residuals divided by n — 2.

If the errors are independent, identically distributed random variables with
mean zero and finite variance, the least-squares estimates are unbiased and have
small variance as long as the sample is reasonably large and there is sufficient



8 Rothenberg

variation in x;. Furthermore, if the errors are normal, these estimates are best
unbiased and the statistic 7 is distributed exactly as Student’s ¢ with n — 2
degrees of freedom.

It would be nice to assume that the measurement errors behave like zero-
mean random noise. But what if my research assistant is not so regular in
making errors? Maybe he sometimes forgets to stop the stopwatch when he
goes out for coffee. Maybe he forgets to reset the watch at zero when he starts
a new trial. Given my previous experience with research assistants, anything is
possible! I would not like to assume any more than that his errors are a sequence
of unobserved numbers. It would be more attractive if the analysis could be
conducted on the basis of assumptions on observables, like the regressors, rather
than on these mysterious unobserved errors. In fact, as R. A. Fisher (1939)
showed many years ago, this can easily be done. Least-squares regression can
be justified with almost no assumptions on the errors if we are willing to make
some assumptions about the process generating the regressors. The following
is a special case of a general result on linear models with multivariate normal
regressors:!

Theorem 1.1. In the regression model (1.4), suppose the x; are i.i.d. normal
random variables with variance o> and are distributed independently of the
errors. Then the least-squares slope estimate b is distributed symmetrically
about B and the statistic T is distributed exactly as Student’s t with n — 2
degrees of freedom, no matter how the errors are generated. If the errors have
second moments, the mean and variance of b are given by

Ey=p. Varty=£Y T
= . ar = .
o2(n—-3)n—-1)
When the Eul2 are uniformly bounded, the variance is O(n™') as n tends to
infinity and b is a consistent estimate of f.

Thus, I have a simple solution to my problem of coping with a research as-
sistant whose errors cannot be easily modeled. Before the experiment begins, I
randomly draw » numbers from