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Preface
Donald W. K. Andrews and James H. Stock

The chapters in this volume are dedicated to Thomas Rothenberg in honor of
his retirement from the Economics Department at the University of California,
Berkeley. Tom Rothenberg has made fundamental contributions to economet-
ric theory and has been an inspiring teacher, advisor, and colleague. Rothen-
berg’s early work focused on efficient estimation and identification in simulta-
neous equations models. In a paper (written with C. T. Leenders) published in
Econometrica while he was still a graduate student, Rothenberg established the
asymptotic efficiency of the linearized maximum likelihood estimator for si-
multaneous equations models and thus the asymptotic efficiency of three-stage
least squares. This line of research was summarized in his monograph Efficient
Estimation with A Priori Information, where he laid out a unified theory of
efficient estimation in simultaneous equations systems.

Because exact optimality results for estimators and tests in simultane-
ous equations models are generally unavailable, the notion of efficiency in
Rothenberg’s initial work typically is first-order asymptotic efficiency. Often,
however, there are a number of estimators that are asymptotically equivalent
to first order; k-class estimators in a single equation with multiple endogenous
regressors is a leading example. In finite samples, these estimators have dif-
ferent behavior, but their finite-sample distributions can be either unavailable
or so complicated that they fail to provide useful comparisons between the
estimators. Thus, Rothenberg undertook to examine the differences between
first-order equivalent estimators and tests by studying their higher-order prop-
erties using Edgeworth expansions. Much of this work is summarized in his
masterful chapter in the 1984 Handbook of Econometrics, which remains a key
reference for researchers interested in the deviations of the distributions of in-
strumental variables estimators from their first-order asymptotic distributions.
More recently, Rothenberg’s interest in efficient inference led him to consider
efficient testing in time series with a possible unit root.

Both of the editors of this Festschrift had the privilege of being students
of Tom Rothenberg. Like his other students, we benefited from traits that are
hallmarks of his research: an insistence on working on problems that are im-
portant to econometrics, bringing common sense to both the economics and
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the econometric theory at hand, an appreciation for the statistical foundations
of econometric theory, and a realization that careful analysis of simple models
can yield deeper insights about econometric procedures applied in the more
complicated settings found in practice.

Most of the papers in this volume fall into one of the three main areas
of Rothenberg’s research: identification and efficient estimation; analysis of
asymptotic approximations, for example, via higher-order asymptotic analy-
sis; and inference involving potentially nonstationary time series. In addition,
several papers are in the area of nonparametric and semiparametric inference.

The majority of the papers in this volume were presented at a National
Science Foundation conference in honor of Tom Rothenberg held in Berkeley,
California, in August 2001. This conference was organized by James Powell
and Paul Ruud.

Identification and Efficient Estimation (Part I)
At the request of the editors, this Festschrift starts with a classic unpublished
paper in which Rothenberg explores the subtle role of modeling assumptions
for causal inferences. By illustrating how seemingly innocuous assumptions
can lead to incredible inferential conclusions, the chapter emphasizes the im-
portance of thoughtful consideration of the assumptions underlying a statisti-
cal analysis and of focusing on results that are robust to untestable modeling
assumptions.

The chapter by Arthur Goldberger continues this theme. Goldberger con-
siders studies of twins in behavioral genetics. He illustrates how modeling
assumptions that seem plausible on their face can lead to implausibly strong
conclusions that are not robust to questionable assumptions on unobservables –
specifically, assumptions about correlations between genetic characteristics and
the environment.

Jeffrey Wooldridge’s chapter addresses the identification and estimation of
causal effects in nonlinear models and examines how certain estimands are more
robust than others to violation of assumptions on unmodeled heterogeneity. In
particular, he shows that, under certain conditional independence assumptions,
it is possible to estimate average partial effects in nonlinear models consistently,
even with unobserved heterogeneity and even though this heterogeneity can lead
to inconsistency of estimated parameters (such as probit slope coefficients) of
standard nonlinear models.

David Freedman’s chapter also considers what assumptions are needed to
provide a causal interpretation to regression coefficients estimated using non-
experimental data and emphasizes the importance of having prior information
about causal mechanisms – that is, a model in which one believes – if one is
to draw causal inferences. Freedman makes these arguments using graphical
causal models, a framework more commonly encountered outside rather than
inside the field of econometrics. His conclusions reinforce those in the chapters
by Rothenberg and Goldberger about the key role played in identification by
subsidiary modeling assumptions.
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James Stock and Motohiro Yogo consider a different aspect of identification
in econometrics: instrumental variables regression when the coefficient of inter-
est is identified but, for the sample size at hand, the marginal explanatory power
of the instruments is small, that is, the instruments are weak. As Rothenberg and
others have shown, in this case the distributions of IV estimators are poorly
approximated by their first-order asymptotic distributions, and Stock and Yogo
propose tests of the hypothesis that the instruments are weak against the alter-
native that they are strong. In a companion chapter, they also derive alternative
asymptotic distributions for k-class IV estimators when there are many weak
instruments.

The chapter by Douglas Steigerwald and Richard Vagnoni examines the
role of modeling assumptions in achieving identification in the context of a
dynamic financial model of stock and stock option prices. The model captures
salient stylized empirical facts, including serial correlation in stock trades, serial
correlation in stock price changes, and more persistent serial correlation in
stock trades than in squared stock price changes. Steigerwald and Vagnoni use
this model to illustrate how subsidiary modeling assumptions (in this case,
assumptions about the process of trader arrival) play an important role in the
identification of the model parameters.

Asymptotic Approximations (Part II)
Rothenberg’s teaching and research have emphasized the virtues of using alter-
native asymptotic frameworks, beyond conventional

√
n-normal asymptotics,

to understand and compare the performance of estimators and test statistics.
For example, Rothenberg’s work on higher-order expansions is well known.
The chapters by Hidehiko Ichimura and Oliver Linton, by Donald Andrews, by
Guido Imbens and Richard Spady, and by Whitney Newey, Joaquim Ramalho,
and Richard Smith all follow this approach and employ higher-order expansions
to analyze and improve methods based on first-order asymptotics.

Ichimura and Linton calculate higher-order expansions for semiparametric
estimators of treatment effects. They use these expansions to define a method for
bandwidth selection and to specify a degrees of freedom–like bias correction.

Andrews uses Edgeworth expansions to compare competing bootstrap meth-
ods for parametric time series models. In particular, he shows that a parametric
bootstrap based on the maximum likelihood estimator achieves greater im-
provements in coverage probabilities than the nonparametric block bootstrap.
Moreover, he shows that these improvements can be achieved using a linearized
k-step version of the estimator, resulting in substantial computational savings.

Imbens and Spady calculate higher-order biases and mean-squared errors
of generalized method of moments (GMM) and generalized empirical likeli-
hood (GEL) estimators in a simple model with a sequence of moment condi-
tions. Their analysis suggests that GEL estimators outperform feasible GMM
estimators. In addition, they find that the relative performances of different
GEL estimators depend on the magnitudes of third moments of the moment
conditions.
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Newey, Ramalho, and Smith establish stochastic expansions for GMM and
GEL estimators that may depend on preliminary nuisance parameters. Examples
considered include estimators of models with sample selection corrections and
estimators of covariance structures. Their results also cover two-step GMM
estimators with sample splitting employed to estimate the weight matrix. The
stochastic expansions are used to analytically bias-correct the GMM and GEL
estimators. Simulation experiments are used to show that this method works
well in the case of covariance structure models.

The chapter by Ron Mittelhammer, George Judge, and Ron Schoenberg
uses Monte Carlo simulation methods to analyze the finite-sample properties
of GEL, GMM, and two-stage least-squares estimators in a linear structural
model. They also provide an algorithm for computation of GEL estimators.

The chapter by Ole Barndorff-Nielsen and Neil Shephard considers asymp-
totic approximations in time series models. The authors numerically compare
different first-order equivalent approximations to the distribution of the local
sum of squared financial returns (the so-called realized variance).

The chapter by Gene Savin and Allan Würtz considers tests concerning the
transformation parameter in Box–Cox regression models with unknown error
distributions. Using Monte Carlo simulations, they find that Wald tests based
on first-order asymptotics have poor size properties. In contrast, they find that
GMM residual-based bootstrap tests have only small discrepancies between
nominal and true null rejection probabilities.

Inference Involving Potentially Nonstationary Time Series (Part III)
The chapters by Michael Jansson, by Samuel Thompson, and by Andrew Harvey
consider inference about the degree of persistence in time series. Jansson con-
siders tests of the null hypothesis that a vector time series is cointegrated.
Specifically, he applies the theory of point optimal tests for a unit moving av-
erage root to the residual from a cointegrating regression to develop a new
family of tests of the null hypothesis of cointegration. Thompson focuses on
the problem of constructing confidence intervals for autoregressive coefficients
when the true value is nearly one. Thompson shows that intervals based on
inverting robust tests can result in substantial improvements over procedures
using only second moments when the errors are heavy-tailed. In his chapter,
Harvey proposes a unified framework for testing for stationarity and unit roots
in both univariate and multivariate time series. The unifying concept is that the
tests have generalized Cramér–von Mises distributions, and Harvey shows how
to derive such tests via the Lagrange multiplier principle.

The chapters by Jushan Bai and Serena Ng and by Brownwyn Hall and
Jacques Mairesse examine inference in potentially persistent panel data. Bai and
Ng consider a common components model and study tests for the stationarity
of the common components against the alternative that one or more common
components have a unit root. In their chapter, Hall and Mairesse use Monte
Carlo simulations to compare the performance of various unit root tests that
have been proposed for panel data, focusing on the common case in which



Preface xiii

there are few time series observations on a large number of individuals or firms.
They find that many existing tests have substantial size distortions, especially
when there is firm-level heteroskedasticity.

David Hendry and Grayham Mizon consider forecasting in the presence of a
different sort of nonstationarity: structural breaks and policy regime shifts. They
develop a framework in which structural shifts in causal structural models lead
those causal models to produce poor forecasts, whereas nonstructural models
can produce reliable forecasts; one of their conclusions is that forecast failure
of an econometric model need not rule out its usefulness for forecasting.

Nonparametric and Semiparametric Inference (Part IV)
The chapter by Peter Bickel, Ya’acov Ritov, and Tom Stoker examines the
fundamental question of the choice of regressors in a regression model. In
contrast to much of the literature on this problem, they analyze a nonparametric
regression model rather than a linear model. They develop tests for exclusion
restrictions in the nonparametric regression context.

Bo Honoré and James Powell exploit the pairwise differencing approach
commonly used to eliminate a fixed effect in a linear panel data model to estimate
various semiparametric nonlinear models, including the partially linear logit
model. They establish

√
n-consistency and asymptotic normality of estimators

that are minimizers of kernel-weighted U-statistics.
The chapter by Whitney Newey and Paul Ruud considers semiparametric

estimation of single-index models. The authors establish
√

n-consistency and
asymptotic normality of the inverse-density-weighted quasi–maximum likeli-
hood estimator introduced by Ruud in 1986. This estimator has an advantage
over alternative estimators in that it allows for discontinuities in the unknown
transformation function.





PART I

IDENTIFICATION AND EFFICIENT
ESTIMATION





CHAPTER 1

Incredible Structural Inference
Thomas J. Rothenberg

1. INTRODUCTION

In the course of their everyday work, economists routinely employ statistical
techniques to analyze data. Typically, these techniques are based on probability
models for the observations and justified by an appeal to the theory of statis-
tical inference. An important example is the estimation of structural equations
relating economic variables. Such equations are interpreted as representing
causal mechanisms and are widely used for forecasting and policy analysis.
This econometric approach is arguably the dominant research methodology
today among applied economists both in and out of academia.

The econometric approach is not without its critics. Scholars from other
disciplines often seem puzzled by the emphasis that economists place on re-
gression analysis. Statisticians express surprise that their techniques should be
applicable to so many situations. Recently, a number of leading econometricians
have added to the critique. In his paper “Let’s Take the Con Out of Economet-
rics,” Ed Leamer (1983) chides economists for ignoring the fragility of their
estimates. The title of this paper comes from Christopher Sims’s (1980) paper
“Macroeconomics and Reality,” which argues that the economic and statistical
assumptions underlying most macromodels are not believable. They are, he
asserts, literally “incredible.”

Although my purpose is similar to that of Leamer and Sims, my approach will
be rather different. In any area of application there will always be differences of
opinion on what constitutes a reasonable set of assumptions on which to base
the statistical analysis. Particularly in macroeconomics, where one is trying to
summarize in a manageable aggregate model the behavior of millions of deci-
sion makers with regard to thousands of products, the disagreements are bound
to be enormous. Therefore, instead of discussing typical economic examples

Presented at the International Symposium on Foundations of Statistical Inference, December
1985, Tel Aviv, Israel. This paper evolved from a series of lectures given in June 1985 at
the University of Canterbury, Christchurch, New Zealand. I am grateful to Yoel Haitovsky and
Richard Manning for providing me with the opportunity to discuss these ideas in such marvelous
settings.
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where assumptions are always controversial, I shall go to the other extreme and
discuss two very simple, almost trivial, examples of statistical inference where
the assumptions are quite conventional yet the inferences could naturally be
called incredible. Although the examples have nothing to do with economics, I
hope to persuade the reader that the key problems with econometric inference
are illuminated by their analysis.

2. EXAMPLE ONE: A MEASUREMENT PROBLEM

In order to learn the dimensions of a rectangular table, I ask my research assistant
to measure its length and width a number of times. The measuring device
is imperfect, so the measurements do not yield the exact length and width. I
believe, however, that the measurement errors behave like unpredictable random
noise, with any particular error having equal probability of being positive or
negative. Therefore, I decide to treat the measurement errors as independent,
identically distributed random variables, each with median zero. In addition, I
assume that the common error distribution is symmetric and possesses finite
fourth moment. For example, the normal probability curve (truncated to insure
the measurements are positive) might serve as an approximate model for the
error distribution.

These assumptions would not usually be called incredible. They might
not be valid for every measurement situation, but they could be reason-
able for many such situations. (One might worry about my ruling out thick-
tailed distributions that could capture the effects of gross measurement
errors. I do that to simplify my story; the analysis could be conducted using me-
dians rather than means, but only with harder distribution theory.) Now I shall
make one further assumption. My research assistant mistakenly thinks I care
only about the area of the table and hence multiplies the length and width
measurements. Instead of receiving n length measurements L1, L2, . . . , Ln

and n width measurements W1, W2, . . . , Wn , I get only n area measurements
A1 = L1W1, A2 = L2W2, . . . , An = Ln Wn . Worse yet, my research assistant
throws away the original data so they are lost forever.

Can I get reasonable estimates of the true length and width of the table
using only these area measurements? Can I salvage anything from this badly
reported experiment? If there were no measurement error, the answer is clearly
no; I will learn the true area of the table, but there are an infinity of length and
width pairs that are consistent with any given area. Length and width are simply
not identifiable in this experiment. In the presence of measurement error, the
answer is quite different. Both length and width are identifiable and can be well
estimated from a moderately large sample. In this case credible assumptions
seem to lead us to incredible inference!

To demonstrate that inference about length and width is possible, some
notation will prove useful. Suppose α is the true length of the table and β is the
true width. Let ui be the error in the i th length measurement, let vi be the error
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in the i th width measurement, and let σ 2 be the common error variance. Then
we can write

Ai = αβ + αvi + βui + uivi . (1.1)

Given the assumption that ui and vi are independent random variables dis-
tributed symmetrically about zero and possessing third moments, we find:

E[Ai ] = αβ, Var [Ai ] = σ 2(α2 + β2 + σ 2)

E(Ai − αβ)3 = 6αβσ 4.

By convention, α ≥ β > 0. Simple algebra demonstrates that the three pop-
ulation moments uniquely determine the three parameters α, β, and σ 2. Fur-
thermore, under our assumptions, the sample moments converge in probability
to the population moments as n tends to infinity. Denoting the sample mean
of the area measurements by M1, the sample variance by M2, and the sample
third central moment by M3, a natural method of moments estimator of σ 4 is
M3/6M1. Assuming this is positive and denoting its square root by S, we can
estimate (α + β)2 by the equation

(α + β)2 = M2

S
− S + 2M1. (1.2)

If σ 2 > 0, the probability that both estimates are positive goes to 1 as n tends
to infinity. Define A to be the square root of expression (1.2) if real, and zero
otherwise. Then A is a consistent estimate of α + β. A natural estimate of
(α − β)2 is

(α − β)2 = M2

S
− S − 2M1. (1.3)

If this expression is positive, its square root is a consistent estimate of α − β.
However, if the table is almost square, a negative value for (1.3) is quite likely.
Define B to be the square root of expression (1.3) if real, and zero otherwise.
Then (A + B)/2 and (A − B)/2 should be reasonable estimates of α and β.

These method of moments estimates will converge in probability to the
true values as long as there is some measurement error. Central limit theory
can be employed to develop large sample approximations of their sampling
distributions. These approximate distributions are typically normal, although
things get slightly more complicated when the table is square (because then the
length and width estimates are confounded). To avoid this technical problem in
the asymptotic distribution theory, I shall continue the discussion using α + β

as the parameter of interest and A as my estimate. The essential feature of my
example – that the parameter is estimable in the presence of measurement error
but not otherwise – is unchanged.

If σ > 0 and the errors possess finite sixth moments, then the standardized
estimator

√
n(A − α − β) converges in distribution to a zero-mean normal
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Table 1.1. Asymptotic relative standard errors for estimates
of α + β

Relative standard errora

σ/α β/α σ unknown σ known Original data

0.01 1.0 14.44 0.35 0.01
0.05 1.0 2.91 0.36 0.04
0.10 1.0 1.50 0.37 0.07
0.20 1.0 0.84 0.41 0.14
0.30 1.0 0.69 0.47 0.21
0.40 1.0 0.68 0.54 0.28
0.50 1.0 0.73 0.62 0.35
0.60 1.0 0.82 0.71 0.42
1.00 1.0 1.53 1.15 0.71
2.00 1.0 7.87 2.67 1.41

0.01 0.5 15.86 0.39 0.01
0.05 0.5 3.23 0.40 0.05
0.10 0.5 1.70 0.42 0.09
0.20 0.5 1.05 0.48 0.19
0.30 0.5 0.96 0.67 0.28
0.40 0.5 1.03 0.68 0.38
0.50 0.5 1.20 0.81 0.47
0.60 0.5 1.44 0.94 0.57
1.00 0.5 3.39 1.60 0.94
2.00 0.5 22.91 4.12 1.89

0.01 0.2 39.13 0.51 0.01
0.05 0.2 8.04 0.52 0.05
0.10 0.2 4.35 0.54 0.12
0.20 0.2 2.86 0.62 0.24
0.30 0.2 2.74 0.74 0.35
0.40 0.2 3.05 0.89 0.47
0.50 0.2 3.65 1.05 0.59
0.60 0.2 4.53 1.25 0.71
1.00 0.2 11.67 2.19 1.18
2.00 0.2 84.67 5.98 2.34

a Standard deviation of the limiting distribution of
√

n(A − α − β)/
(α + β) for alternative estimates A. Approximate relative standard errors
for any given sample size n are obtained by dividing by

√
n.

random variable as the sample size n tends to infinity. The asymptotic vari-
ance is a complicated function of α, β, σ 2, and the higher moments of the
error distribution. Table 1.1 gives the asymptotic relative standard error for the
estimate of α + β [i.e., the standard deviation of the limiting distribution of√

n(A − α − β)/(α + β)] for the special case where the fourth and sixth mo-
ments are equal to those of a normal random variable. Also given in the table are
the asymptotic relative standard errors for the estimate using the true variance
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σ 2 in place of the estimate S in (1.2) and for the estimate using the sample
means of the original length and width data. (Note that the tabulated values
must be divided by

√
n to get approximate standard errors for sample size n.)

The table suggests the following conclusions. Depending on the values of
α, β, and σ , the efficiency loss from having only the area data ranges from
very large to quite modest. If one knows σ 2, the best results are obtained by
measuring the table as carefully as possible (but not perfectly!). If one does not
know σ 2, the best results are obtained by measuring the table rather badly; for
a table that is nearly square, σ/α should be approximately 0.5. In this latter
case, there is a simple moral to the story: if one cannot have a smart research
assistant, at least have a sloppy one. Truly, an incredible result! Needless to
say, I do not seriously propose estimating the length and width of a table from
area measurements. My point is quite different. No sensible person would ever
use the estimation method derived here. Yet many sensible people would use
the sample means of the original observations – if they were available. The
assumptions made are not incredible. But they are also not credible enough
to justify the inference procedure described. I shall return to this point in a
moment, but let me first develop another example.

3. EXAMPLE TWO: A REGRESSION PROBLEM

In order to estimate the gravitational constant I ask another of my research
assistants to drop a coin from various heights and to report how long it takes
before the coin hits the ground. On the basis of my study of physics, I believe
that the true time ought to be proportional to the square root of the distance
the coin travels and that the constant of proportionality is related in a simple
way to the gravitational constant. This particular research assistant is very good
at measuring lengths, but not so good at stopping the stopwatch at the right
moment. I therefore propose the regression model

yi = α + βxi + ui (i = 1, . . . , n), (1.4)

where yi is interpreted as the measured time on the i th trial, xi is the (correctly
measured) square root of distance, and ui is the error in measuring the time.
(Of course, here I know α is zero, but I shall not use that fact). I am tempted to
estimate β by the least-squares slope coefficient b =∑(xi − x̄)yi/

∑
(xi − x̄)2

and to form a confidence interval using the statistic

T = (b − β)

[∑ (xi − x̄)2

s2

]1/2

, (1.5)

where s2 is the sum of squared residuals divided by n − 2.
If the errors are independent, identically distributed random variables with

mean zero and finite variance, the least-squares estimates are unbiased and have
small variance as long as the sample is reasonably large and there is sufficient
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variation in xi . Furthermore, if the errors are normal, these estimates are best
unbiased and the statistic T is distributed exactly as Student’s t with n − 2
degrees of freedom.

It would be nice to assume that the measurement errors behave like zero-
mean random noise. But what if my research assistant is not so regular in
making errors? Maybe he sometimes forgets to stop the stopwatch when he
goes out for coffee. Maybe he forgets to reset the watch at zero when he starts
a new trial. Given my previous experience with research assistants, anything is
possible! I would not like to assume any more than that his errors are a sequence
of unobserved numbers. It would be more attractive if the analysis could be
conducted on the basis of assumptions on observables, like the regressors, rather
than on these mysterious unobserved errors. In fact, as R. A. Fisher (1939)
showed many years ago, this can easily be done. Least-squares regression can
be justified with almost no assumptions on the errors if we are willing to make
some assumptions about the process generating the regressors. The following
is a special case of a general result on linear models with multivariate normal
regressors:1

Theorem 1.1. In the regression model (1.4), suppose the xi are i.i.d. normal
random variables with variance σ 2 and are distributed independently of the
errors. Then the least-squares slope estimate b is distributed symmetrically
about β and the statistic T is distributed exactly as Student’s t with n − 2
degrees of freedom, no matter how the errors are generated. If the errors have
second moments, the mean and variance of b are given by

E(b) = β, Var (b) = E
∑ (ui − ū)2

σ 2(n − 3)(n − 1)
.

When the Eu2
i are uniformly bounded, the variance is O(n−1) as n tends to

infinity and b is a consistent estimate of β.

Thus, I have a simple solution to my problem of coping with a research as-
sistant whose errors cannot be easily modeled. Before the experiment begins, I
randomly draw n numbers from a normal distribution with large mean and unit
variance. (I truncate to avoid negative outcomes, but with a large mean the results
will look almost normal.) I then instruct my research assistant to use the square
of these numbers as the heights (in meters) in the coin-dropping experiment. If
the sample is large enough, I can rely on Theorem 1.1 to convince myself that I
will get good estimates of the gravitational constant no matter how badly my as-
sistant botches the time measurements. Statistical theory triumphs over a flawed
experiment. Once again, credible assumptions lead to incredible inference.

1 Although this result is not new, I have not found a good reference. A multivariate version is
derived in the mimeographed paper by C. Cavanagh and T. Rothenberg (1984). See also Box and
Watson (1962). For asymptotic results, the normality assumption can be dropped; symmetry of
the x distribution is all that really matters.
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Of course, I do not really believe that I can get good estimates of the grav-
itational constant without making any assumptions about the errors. Indeed,
the point of the example is to emphasize that the key assumption in the linear
model is that the errors are independent of the regressors. The other assumptions
about the errors are easily dispensed with. Moreover, if I am really unhappy
about modeling the error process, I should be just as unhappy about trying to
model the relation between the errors and the regressors. Independence be-
tween regressors and errors is a powerful assumption and cannot be taken
lightly.

4. IMPLICATIONS FOR ECONOMETRICS

What has any of this to do with econometrics? Measuring the length of a table
and the time it takes a coin to drop seem totally unrelated to the activities that
occupy economists. Nevertheless, these examples are, I believe, relevant. Actual
econometric models are much more complicated than the ones I have presented
and concern more important phenomena. But, deep down, they possess the
same key features that drive the examples.

Economists are usually interested in parameters that have a structural or
causal interpretation. If, other things equal, the price of coffee doubles, by how
much would price-taking consumers decrease their purchases? Such numbers
are treated by economists in much the same way as the length of the table
and the gravitational constant in my examples. They are parameters of interest
that could in principle be determined by very carefully conducted experiments.
Unfortunately, these experiments are much too difficult, so we have to rely on
different ones. Usually, the actual data we have available were generated by
someone else using methods very far from the ones we would have used in our
ideal experiment. Instead of actually changing the price of coffee, we simply
observe the historical variation that has taken place over time. Just as in the
artificial examples given earlier, structural inference in economics involves the
analysis of data from flawed experiments.

The error terms in econometric equations represent misspecifications of
functional form, omitted variables, and pure measurement error. It is not hard
to make assumptions about these errors that are moderately plausible. Unfortu-
nately, their converses are often also moderately plausible. Most econometric
models are reasonable, but they are not compelling. There always exist alter-
native models that are just as reasonable. Yet, as in the examples, the results
are often very sensitive to the assumptions. If we are suspicious of estimating
the length of a table from area measurements and if we are suspicious of esti-
mating the gravitational constant from an experiment where the measurement
errors may take on arbitrary values, then we should be even more suspicious
of structural econometric inference in models where the number of unknown
parameters and the number of unverified assumptions are much larger. The
estimation of separate supply and demand curves from equilibrium market
data is considerably more difficult than the estimation of the length of a table.
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Using cross-sectional variation in the crime rate to determine the effect of longer
jail sentences on the level of crime is certainly just as difficult as using flawed
experimental data to determine the gravitational constant. Relevant research is
not easier than trivial research.

Not all econometrics involves structural inference. Sometimes we collect
economic data just to describe the current state of affairs or to indicate trends.
Sometimes we run regressions simply to summarize the pattern of correlations
in a data set or to take advantage of stable relations for use in forecasting. Many
of the most successful applications of statistics in economics have nothing to do
with the estimation of structural relations. Nevertheless, the temptation to inter-
pret empirical regularities as representing causal mechanisms is overwhelming.
For better or worse, econometrics is generally viewed as a method for learning
about the underlying structure of the economy.

Structural inference in econometrics, like the structural inference in my sim-
ple examples, is indeed incredible. Surprisingly strong conclusions about causal
mechanisms can be drawn from seemingly weak assumptions. Unfortunately,
the conclusions are often not very robust to changes in these assumptions. In
those cases, it is difficult to put much credence in the results. More empha-
sis by applied econometricians on presenting alternative estimates based on
alternative models might help make econometrics less incredible.
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CHAPTER 2

Structural Equation Models in Human
Behavior Genetics
Arthur S. Goldberger

1. INTRODUCTION

That IQ is a highly heritable trait has been widely reported. Rather less well
known are recent reports in major scientific journals such as those announcing
that the heritability of controllable life events is 53 percent among women and
14 percent among men (Saudino et al. 1997), while the heritabilities of inhibi-
tion of aggression, openness to experience, and right-wing authoritarianism are
respectively 12, 40, and 50 percent (Pedersen et al. 1989; Bergeman et al. 1993;
McCourt et al. 1999). It seems that milk and soda intake are in part heritable,
but not the intake of fruit juice or diet soda (de Castro 1993).

These reported heritabilities are parameter estimates obtained in structural
modeling of measures taken on pairs of siblings – prototypically, identical
(monozygotic) twins and fraternal (dizygotic) twins, some reared together and
others reared apart. The models are of the linear random effects type, in which
an observed trait – a phenotype – is expressed in terms of latent factors –
genetic and environmental – whose prespecified cross-twin correlations differ
by zygosity and rearing status. Estimation is by maximum likelihood applied
to the phenotypic variances and covariances. Heritability, the key parameter
of interest, refers to the proportion of the variance of the phenotype that is
attributable to the variance of the genetic factors.

Regarding these studies, various issues arise. Those that I will touch on
here include identification, nonnegativity constraints, alternative estimators,
pretest estimation, conditioning of the design matrix, multivariate analyses,
and the objectives of structural modeling. Some of these issues were featured
in Thomas Rothenberg’s dissertation (1972), a remarkable book that led me to
appreciate the generality of the minimum chi-square principle in estimation, and
the contrast between equality and inequality constraints in efficient estimation.

In the present chapter, I will focus on the SATSA project – the Swedish
Adoption/Twin Study of Aging – which, from the early 1980s on, has assembled
a sample of adult twin pairs: approximately 200 MZT (identical twins reared
together), 200 DZT (fraternal twins reared together), 100 MZA (identical twins
reared apart), and 150 DZA (fraternal twins reared apart). The fraternal twins
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are all same-sex pairs. The twins have been assessed in person and via mail
questionnaires on several occasions, on a wide range of traits, some cognitive
and others relating to personality, temperament, and recollections of childhood
upbringing. Concerns about the representativeness of the samples and the relia-
bility and validity of the measures were raised in Goldberger and Kamin (1998)
and Kamin and Goldberger (2002). I suppress those concerns here in order to
focus on the modeling.

2. PRIMARY MODEL

The specification of the main SATSA model is captured as follows. Consider
a typical individual, whose phenotype (observable trait value) Y is determined
by unobservable factors as

Y = α1G + α2 D + α3S + α0U. (2.1)

Here G is the additive genetic factor, D the nonadditive genetic factor, S the
shared environment factor, and U the nonshared environment factor. (The dis-
tinction between the two genetic factors will be exposited later). Assume that
the factors are uncorrelated and standardize all variables to have zero means
and unit variances, so that the phenotypic variance is

V (Y ) = α2
1 + α2

2 + α2
3 + α2

0 = 1. (2.2)

The individual is paired with his or her sibling, whose phenotype is determined
as

Y ′ = α1G ′ + α2 D′ + α3S′ + α0U ′. (2.3)

Across the sibling pair, all factor correlations are assumed to be zero except
perhaps for those that link one sibling’s additive genetic, nonadditive genetic,
and shared environment factors with the corresponding factors of the other
sibling. So the phenotypic sibling covariance is

C(Y, Y ′) = C(G, G ′)α2
1 + C(D, D′)α2

2 + C(S, S′)α2
3 . (2.4)

Referring to identical and fraternal twins (MZs and DZs), reared together and
apart (Ts and As), those factor covariances are assumed to be

C(G, G ′) = 1 for MZs, 1/2 for DZs

C(D, D′) = 1 for MZs, 1/4 for DZs (2.5)

C(S, S′) = 1 for Ts, 0 for As.

With all variables standardized, covariances are also correlations. The con-
sequence is that in the population, the phenotypic correlations for the four
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twin types are

MZT ρ1 = α2
1 + α2

2 + α2
3

DZT ρ2 = α2
1/2+ α2

2/4+ α2
3 (2.6)

MZA ρ3 = α2
1 + α2

2

DZA ρ4 = α2
1/2+ α2

2/4.

Let β1 = α2
1, β2 = α2

2, and β3 = α2
3, and define the vectors

ρ =

⎡⎢⎢⎣
ρ1

ρ2

ρ3

ρ4

⎤⎥⎥⎦ , x1 =

⎡⎢⎢⎣
1
0.5
1
0.5

⎤⎥⎥⎦ , x2 =

⎡⎢⎢⎣
1
0.25
1
0.25

⎤⎥⎥⎦ , x3 =

⎡⎢⎢⎣
1
1
0
0

⎤⎥⎥⎦ . (2.7)

Then SATSA’s primary model has this linear specification for the population
phenotypic correlations:

ρ = x1 β1 + x2 β2 + x3 β3. (2.8)

These βs are components of phenotypic variance, as is the implied nonshared
environment component, β0 = α2

0 = 1− (β1 + β2 + β3). The parameter β1 is
called narrow heritability, while the sum β1 + β2 is called broad heritability.

With four correlations expressed in terms of three parameters, there is one
equality restriction, namely

ρ1 − ρ3 = ρ2 − ρ4,

which says that the difference between MZ and DZ correlations is the same
whether the twins are reared together or apart. Further, with all four βs assumed
to be nonnegative, there is an inequality restriction, namely

ρ3/4 ≤ ρ4 ≤ ρ3/2,

which says that the DZA correlation should lie between one-fourth and one-half
of the MZA correlation.

Given random samples from each of the four twin groups, one might take
observed phenotypic correlations r1, r2, r3, r4, interpret them as estimates of
the population correlations, and estimate β = (β1 β2 β3)′ by running the least-
squares linear regression of the 4× 1 vector r = (r1 r2 r3 r4)′ on the 4× 3 matrix
X = (x1 x2 x3), thus minimizing

4∑
i=1

(ri − ρi )
2.

A more appropriate procedure would take into account the fact that the vari-
ance of a sample correlation coefficient depends on the population correlation
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coefficient as well as the sample size, and choose values for the β estimates to
minimize

4∑
i=1

wi (ri − ρi )
2,

where wi = ni/(1− r2
i )2, with ni being the number of observations in the i th

twin group.
However, it is most convenient to work with Fisher’s z transforms of corre-

lation coefficients, namely

z = (1/2) log[(1+ r )/(1− r )],

ζ = (1/2) log[(1+ ρ)/(1− ρ)],

relying on the presumption that in random sampling, sample size n, the variable z
is distributed approximately N (ζ, 1/n); see Wilks (1962, p. 276). So a particular
application of the minimum chi-square principle, which I label FZLS, chooses
values for the β-estimates to minimize

4∑
i=1

ni (zi − ζi )
2,

which amounts to a straightforward, albeit nonlinear, regression problem. With
four observations and three parameters, the minimized criterion provides an
asymptotic χ2 (1) statistic of model fit that can serve to test the equality restric-
tion ρ1 − ρ3 = ρ2 − ρ4.

I have oversimplified the procedure of the SATSA group in several respects.
They do not standardize the observed variables, but rather work with variances
and covariances, taking β0 as a free parameter. (They then rescale parameter es-
timates ex post to obtain the proportional components of variance.) They do not
use FZLS, but rather Gaussian ML, following Neale and Cardon (1992, Chap-
ters 6 and 7). Often, they take as data eight phenotypic variances: for each twin
group, the between-family and within-family components. That gives them
three additional degrees of freedom for model fit, which are implicitly allo-
cated to the hypothesis that the four phenotypic variances are the same. This
may be an interesting hypothesis, but has little to do with behavior-genetic
theory. Sometimes they work with twelve observed phenotypic variances and
covariances: for each twin group, a variance for twin A, a variance for twin B,
and a covariance. This gives four additional degrees of freedom for model fit,
which are implicitly allocated to equating the phenotypic variances for twins
A and B in each twin group. The labeling of the twins was arbitrary, so those
four additional degrees of freedom are in effect allocated to the hypothesis
that SATSA’s own assignment of the labels was in fact random. This is hardly
an interesting hypothesis, and has nothing to do with behavior-genetic the-
ory. (The economists Ashenfelter and Krueger [1994], working with twins,
albeit not with behavior genetics, also treat an arbitrary labeling of twin A and
twin B as meaningful.)
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Typically, the SATSA group residualize the observed traits on age and gender
before beginning the modeling exercise, but occasionally they introduce age
into the model itself as a covariate. This adds two parameters (a population
age variance and a population trait-on-age slope), and adds twelve observed
moments: for each twin group, the covariance of twin A’s trait with age, the
covariance to twin B’s trait with age, and the variance of age. (Twins in Sweden,
as elsewhere, have the same age.) In this manner, Lichtenstein, Pedersen, and
McClearn (1992) were able to report a total of 18 degrees of freedom for model
fit, while the core of the model in correlation terms had just 1.

3. GENETIC THEORY

The genetic basis for this line of research is minimal. The biological content of
the model, after all, consists of the ratios 1/2 and 1/4 for DZ twins relative to
MZ twins. (It is true that the theory does extend to cover kinships other than
twins.) The formal distinction between the two genetic factors should be familiar
to econometricians: it lies in the distinction between the conditional expecta-
tion function and the best linear predictor. Consider a gene with two variants
(alleles), − and +. At this locus, an individual may be −−, −+, +−, or
++. Score these as Z = 0, 1, 1, 2, and consider the distribution of pheno-
types Y for persons of each score Z . If E(Y | Z ) is linear, that is if the ex-
pected observable trait for heterozygotes (Z = 1) is halfway between those
for homozygotes (Z = 0 and Z = 2), then only an additive genetic factor is
present. If E(Y | Z ) is nonlinear, for example if the expected observed trait
for Z = 2 is the same as for Z = 0, then a nonadditive genetic factor is
present. In that case, the BLP(Y | Z ) gives the additive factor, and the devi-
ations E(Y | Z )− BLP (Y | Z ) give the nonadditive factor. So the two genetic
factors are uncorrelated by construction. The Appendix sketches why, under
certain assumptions, MZs and DZs correlate 1/2 and 1/4 on those two factors.
Remarkably, the argument for a single locus extends directly to multiple loci.
On all this, see Falconer and Mackay (1996, Chapters 7–9).

In SATSA’s primary model, identification is obtained by ruling out many
possibilities a priori. Covariance between an individual’s genetic factors and
shared environment factor is not allowed, conventional wisdom on the role of
parents to the contrary notwithstanding. Nor is there any allowance for the
possibility that the separated twins were placed into similar environments. Nor
is there any allowance for MZTs to have more similar environments than DZTs,
that is, for C(S, S′) to differ by zygosity; any excess phenotypic similarity of
MZTs over DZTs is attributed to their excess genetic similarity. Joseph (1998)
provides a critical assessment of the evidence in favor of this “equal environment
assumption.” Even the specified ratios 1/2 and 1/4 are not sacred; those values
are valid under random mating, but would be different if there is assortative
mating for the trait.

It is quite ironic that the assumptions of the behavior-genetic model refer so
directly to social behavior, rather than biological processes.
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4. SECONDARY MODEL

On occasion, the SATSA group adopts an alternative model that makes
allowance for some environmental similarity for twins reared apart, thus
addressing the objection that the separated twins may not have been reared
in randomly different environments. This is accomplished by replacing the
nonadditive genetic factor with a “selective placement” or “correlated environ-
ment” factor that correlates perfectly across twins of all types. In terms of the
display in (2.7) replace x2 with a new variable whose value is 1 for all four twin
groups. Then x4 = (1, 1, 1, 1)′ and the secondary model has

ρ = x1γ1 + x4γ2 + x3γ3. (4.1)

As the SATSA group recognizes, it is not feasible to include both genetic factors
along with the new environmental factor because exact collinearity would result:
x4 = 3x1 − 2x2.

The design columns in (4.1) span the same space as those in (2.8) so the
secondary model implies the same equality constraint, namely ρ1 − ρ3 = ρ2 −
ρ4. However, with all its γ s assumed to be nonnegative, the implied inequality
constraint is now

ρ3/2 ≤ ρ4 ≤ ρ3,

which says that the DZA correlation should lie between 1/2 and 1 times the
MZA correlation. So SATSA researchers are either attracted to this model
immediately when the observed DZ correlations run high relative to the MZ
correlations, or else choose it retroactively after observing that the nonnegativity
constraint binds when fitting the primary model.

5. AGNOSTIC MODEL

The need to choose between the primary and secondary models may be avoided
by freeing up the relation between ρ4 and ρ3. This can be accomplished by
allowing two distinct genetic factors, one for MZs and one for DZs. If we let
x5 = (1 0 1 0)′ and x6 = (0 1 0 1)′, we can write the agnostic model as

ρ = x5δ1 + x6δ2 + x3δ3. (5.1)

Observe that x5 = −x1 + 2x2 and x6 = 4x1 − 4x2, so the columns of this design
span the same space as the previous ones did, and this model implies the same
equality constraint, ρ1 − ρ3 = ρ2 − ρ4. One may suppose that all three δs are
nonnegative, and also δ1 > δ2 (genetic similarity greater for MZs than for DZs).
But even with all δs assumed to be nonnegative, it allows ρ4 to range from 0
up to ρ3. (A similar idea was employed by Lykken et al., 1988). Adopting
the agnostic model would reduce the need to follow SATSA’s model selection
strategy and would also dispel some of the mystique of a rigorous biological
foundation for the SATSA analyses.
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6. SKEPTICAL MODEL

A crucial feature of SATSA’s models is that they make no allowance for en-
vironmental resemblance to differ between MZTs and DZTs, as a result, say,
of more similar treatment by parents and peers. A simple alternative three-
parameter specification would include the additive genetic factor x1, an MZT
shared environment factor x7 = (1 0 0 0)′, and a DZT shared environment factor
x8 = (0 1 0 0)′. This skeptical model can be written as

ρ = x1θ1 + x7θ2 + x8θ3. (6.1)

These design columns span a different space, and the single equality restriction
is now

ρ4 = ρ3/2.

One may suppose that all three θs are nonnegative, and also θ2 > θ3 (envi-
ronmental similarity greater for MZTs than DZTs). This model has, as far as
I know, not been used by the SATSA researchers, and only rarely by other
behavior geneticists, for example, Loehlin (1987, pp. 122–6).

7. IDENTIFICATION AND CONSTRAINTS

In practice it is rare for SATSA to publish estimates of a full three-factor version
of either their primary or secondary model. Almost invariably, one or another
of the three factors will be dropped and a reduced model fitted and reported.
That happens either when one of the estimated parameters is “nonsignificant,”
or when their algorithm (which apparently precludes negative estimates) finds
a nonnegativity constraint to be binding and sets the offending parameter at
zero. As a consequence of this general-to-specific strategy, almost always the
only model published is a reduced two-factor, or one-factor, model.

In particular, throughout the SATSA publications, one rarely – perhaps 5
percent of the time – finds traits for which both additive and nonadditive genetic
variance components are estimated to be nonzero. It is not hard to see why.
Consider the primary model. If only MZT and DZT data were available, it
would be impossible to distinguish between the additive and nonadditive genetic
components. The availability of separated twins formally identifies β1, β2, and
β3, but the identification is tenuous. Treating the 4× 3 design matrix X =
(x1 x2 x3) as if it simply had four observations, the “correlation” (about zero)
between x1 and x2 is 0.97. That high degree of collinearity carries over to FZLS
and ML estimation, producing unreliable and negatively correlated estimates of
β1 and β2. Pedersen et al. (1992) cast their lot with the additive side; Plomin et
al. (1994), analyzing the same cognitive traits, cast their lot with the nonadditive
side. Similar considerations apply to the secondary model.

Had the agnostic model been used, in many cases the SATSA group could
have maintained a full three-factor model for the correlation coefficients. For ex-
ample, the condition δ1 > δ2 > 0 is equivalent to β1 + β2 > 0.5β1 + 0.25β2 >

0, implying 0.5β1 + 0.75β2 > 0, and even when unconstrained estimates of
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one of those βs was negative, the corresponding estimates of the δs might be
admissible.

8. EMPIRICAL IMPLEMENTATION

To illustrate the applications, for three traits selected from SATSA publications,
I give estimates of the various models. In Pedersen et al. (1988), extraversion
and neuroticism were each measured as the sum of yes–no responses (coded
1–0) to nine items drawn from a short form of the Eysenck Personality Inven-
tory, residualized on age and gender. In Lichtenstein et al. (1992), occupation
was measured by four nonfarm occupational categories (coded 1, 2, 3, 4, then
logged), gender-specific and residualized on age; I use only the results for men.

Table 2.1 refers to those three traits. First, the observed correlations are
given along with sample sizes. Then come model-fitting results, with Roman
letters denoting estimates of the corresponding Greek-letter parameters, and
standard errors where available in parentheses. SATSA’s ML estimates for the
particular reduced primary model that they published are given, followed by my
FZLS estimates for that model. (Reassuringly, our numbers are generally close;
the exception, b3 for occupation, I take to be a misprint. For neuroticism,
Pedersen et al. (1988) also report and prefer the full secondary model, with
parameter estimates b1 = .13, b4 = .16, b3 = .07.)

Then follow results of my fitting the full primary, secondary, agnostic, and
skeptical models by FZLS. Readers may, for each model, readily calculate the
fitted correlations from the parameter estimates. And they may also estimate
reduced versions of these models: the FZLS method requires only the ri s and
ni s, which are often what is available in SATSA publications.

Throughout the table, the chi-square statistic is the minimized value of the
FZLS criterion. Degrees of freedom for model fit are the number of correlations,
4, minus the number of parameters estimated, 3 for full models and 2 for the
reduced models. For their reduced models, the χ2s for model-fit approach or
exceed significance by conventional standards. As is to be expected, chi-square
values coincide when design matrices span the same space.

A curiosity of the SATSA analyses, one that is not inherent in the behavior-
genetic approach, is that they typically formulate the model in terms of path
coefficients (such as our αs) rather than the variance components (such as our
βs, the squared αs). As a result, they report ML standard errors for estimated
path coefficients, which do not translate into standard errors for the parameters
of theoretical interest, namely the contributions to variance. For our FZLS
estimates, standard errors are routinely calculated.

In the table, we observe that the total genetic component, β1 + β2, is
estimated to be virtually the same whether the full or reduced primary model is
used, and is the same (apart from rounding) as the estimate of δ1 in the agnostic
model. So it might be argued that broad heritability of each trait is clearly
discernible in the data. On the other hand, we also observe that the agnostic and
skeptical models appear as plausible competitors for SATSA’s preferred models,
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while providing alternative interpretations of the data. For example, the skeptical
model attributes only 22 percent of the variance in extraversion to genetic
factors, rather than 40 percent or so.

The FZLS method does not constrain the parameter estimates to be nonneg-
ative, and indeed for many of the SATSA data sets, FZLS produces negative
estimates where SATSA would reduce the model and effectively report zeros.
One could test the nonnegativity constraints, a task never undertaken by the
SATSA researchers. For example, in the primary model for extraversion, forc-
ing b1 = 0 increases χ2 by 3.55 (= 5.84− 2.29), approaching significance by
conventional standards for a single constraint. To be sure, the appropriate test
procedure is that for inequality constraints, which is more tolerant of depar-
tures; see Kodde and Palm (1986) and Wolak (1987). Recently, some behavior
geneticists have reported confidence intervals using the profile likelihood. The
source article is Neale and Miller (1997), which recommends discarding any
negative portion of the interval, that is, left-truncating the interval at zero.

If the SATSA group insist on the requirement that all βs be nonnegative,
it is because of their insistence on interpreting them as components of vari-
ance. Perhaps the frequent occurrence of binding constraints should serve as
an indication that their general behavior-genetic approach is not valid. On
the other hand, there is nothing in principle that precludes factors that con-
tribute to dissimilarity rather than similarity of twins. Perhaps negative pa-
rameter estimates should not serve to reject a particular full model out of
hand.

9. PRETESTING ISSUES

SATSA’s empirical implementation of the behavior-genetic approach is not a
routine exercise, but involves a sequence of choices and stopping rules. Nothing
about the track that leads to their final variant is accounted for when they engage
in statistical inference. So the standard errors and confidence intervals that they
do report are merely nominal. The pretesting issues associated with such model
selection are not mentioned in the behavior-genetic reports or in the standard
textbook of Neale and Cardon (1992). My impression from the econometric
and statistical literature is that, under pretesting, nominal standard errors are
misleadingly low, so that actual precision is overstated.

To investigate this, Monte Carlo runs may be useful. I report on one here.
Adopt the primary model with parameter values β1 = 0.4, β2 = 0.1, β3 = 0.3,
implying ρ1 = 0.800, ρ2 = 0.525, ρ3 = 0.500, ρ4 = 0.225. Take the sample
sizes to be n1 = 100, n2 = 100, n3 = 50, n4 = 100. Generate sample correla-
tions ri (i = 1, . . . , 4), or rather the z transforms thereof zi , by random sampling
from zi ∼ N (ζi , 1/ni ). Estimate parameters by FZLS, reducing the model and
reestimating when a parameter estimate is negative.

Table 2.2 summarizes results of a 1000-replication run. Column 1 gives,
for estimation of the full model, the average parameter estimates, their average
standard errors, and their actual standard deviations. The next three columns
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Table 2.2. Monte Carlo results

Pretest estimator

Unrestricted Conditional Unconditional

(1) (2) (3) (4) (5)
Mean b1 .389 Mean b∗1 – .499 .291 .343
Mean b2 .109 Mean b∗2 .463 – .208 .154
Mean b3 .298 Mean b∗3 .343 .293 .302 .302

Mean s(b1) .268 Mean s(b∗1) – .079 .272 .185
Mean s(b2) .248 Mean s(b∗2) .077 – .252 .151
Mean s(b3) .081 Mean s(b∗3) .075 .076 .082 .079

SD (b1) .264 SD (b∗1) – .079 .146 .179
SD (b2) .247 SD (b∗2) .079 – .131 .164
SD (b3) .079 SD (b∗3) .078 .078 .077 .078

give that information conditionally for the three branches of the pretest estima-
tor: column 2 refers to the 71 samples in which the additive genetic factor was
dropped because its unrestricted coefficient estimate was negative, column 3
refers to the 349 samples in which the nonadditive factor was dropped because
its unrestricted coefficient estimate was negative, and column 4 refers to the
580 samples in which all factors were retained because none of the unrestricted
estimates were negative. In the rightmost column, the information is given un-
conditionally for the pretest estimator, blanks in columns 2 and 3 being treated
as zeroes. We observe some bias in the pretest estimators of β1 and β2, and
more variability in them than would be indicated by the standard errors for the
reduced models. On the other hand, we observe that the sum β1 + β2 is virtually
unbiasedly estimated by b∗1 + b∗2.

10. MULTIVARIATE MODELS

Having analyzed dozens of observed traits individually in the same manner,
the SATSA group has moved on to multivariate analyses, in which several
phenotypes are modeled jointly in terms of latent factors. So now the concern
is with accounting for covariances, as well as variances, of observed traits. For
example, Lichtenstein and Pedersen (1995) analyze five phenotypes jointly: life
events, loneliness, preceived support, quantity of relationships, and health.

Their structure may be captured as follows. For an individual,

y = A1g+ A3s+ A0u, (10.1)

where the observed vector y is 5× 1, and the uncorrelated latent factors g, s,
and u are 5× 1 with identity variance matrices, while the parameter matrices
A1,A3, and A0 are at most lower triangular. (Nonadditive genetic factors are



22 Goldberger

dropped a priori, so A2 is absent.) An individual is paired with his or her twin,
for whom

y′ = A1g′ + A3s′ + A0u′. (10.2)

The now familiar assumptions are made about cross-twin correlations among
the latent factors. Gaussian maximum-likelihood estimation of the parameter
matrices yields a decomposition of the 5× 5 variance matrix of y into its
genetic and environmental constituents. This leads Lichtenstein and Pedersen
to conclude, for example, that of the 0.17 correlation between perceived support
and health among women, 0.15 is due to genetic factors, and 0.02 to nonshared
environment.

Following Neale and Cardon (1992, Chapter 12), they refer to their spec-
ification as a Cholesky model. Indeed, the recursive structure will be fa-
miliar to macroeconomists, but here the ordering of the elements of y
is to some extent arbitrary. Behavior geneticists credit Martin and Eaves
(1977) for introducing the idea of multivariate twin modeling. In the
same year the economists Behrman, Taubman, and Wales (1977) empiri-
cally implemented such a twin model, one with a natural recursive order-
ing running from education to initial occupation to current occupation to
earnings.

11. OBJECTIVES

The stream of human behavior-genetic research tapped here represents struc-
tural modeling in several senses: the equations depict causal links rather than
mere empirical associations, the regressions among observable variables are
derived in terms of more fundamental parameters, and the parameters of inter-
est are not those of the conditional expectation of one observed variable given
others. However, the requirement that one of the structural parameters may
change while others remain unchanged has not been invoked by the behavior
geneticists.

It is fair to ask what the objectives of the behavior-genetic exercises are.
Should one be reassured by a finding that broad heritability β1 + β2 is estimated
robustly? What indeed does one learn from a report that genetic factors account
for, say, 50 percent of the variance of a certain trait? It might be argued that to the
extent that a trait is heritable, it is not malleable, that is, not subject to change by
policy intervention. That argument is incorrect. The geneticist Newton Morton
(1974) wrote:

[O]ne would be quite unjustified in claiming that heritability is relevant to
educational strategy. The teacher confronted with a neighborhood in which
a substantial fraction of the children appear uneducable by either academic
or vocational criteria seems to me like a physical therapist treating a case of
poliomelitis: neither need be concerned with the extent to which susceptibility
to the observed disorder is genetic.
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The geneticist Richard Lewontin (1974) wrote:

The fallacy is that a knowledge of the heritability of some trait in a population
provides an index of the efficacy of environmental or clinical intervention in
altering the trait either in individuals or in the population as a whole.

In a review article that does recognize some contributions of the
behavior-genetic approach, the developmental psychologist Maccoby (2000)
wrote:

. . . high heritability of a trait does not imply that it is not also subject to the
influence of environmental factors, or that it cannot be changed by alterations
in environmental conditions.

But economists need not go that far afield. After all, the behavior-genetic
parameters are effectively R2s: they measure the proportion of the variation in
an observed trait that is accounted for by variation in this or that latent factor.
As Cain and Watts (1970) explained years ago, such measures of “importance”
are simply not indicators of policy effectiveness. Their argument was applied
to the heritability context by Goldberger (1979).
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APPENDIX

Consider a single locus at which there are two possible alleles− and+, so that
individuals are either −−, −+, +−, or ++. Let Z = “the score” denote the
number of +’s an individual has at that locus, so Z = 0, 1, 2. For simplicity,
suppose that the two alleles are equally prevalent, and that in equilibrium,
Prob(Z = 0) = 1/4, Prob(Z = 1) = 1/2, Prob(Z = 2) = 1/4. Assuming that
all phenotypic variance is genetic, for each Z there is a phenotype Y = Y (Z ),
which we can code as

Y (0) = −a, Y (1) = b, Y (2) = a.

Then E(Y ) = b/2 and V (Y ) = a2/2+ b2/4. The two terms in V(Y) are the
additive and nonadditive genetic variances, respectively. If b = 0, Y is linear
in Z , the heterozygote’s phenotype is halfway between those of the homozy-
gotes: all genetic variance is additive. If a = 0, there is no linear component in
Y (Z ), the two homozygotes’ phenotypes are the same: all genetic variance is
nonadditive.

Denote the scores of husband, wife, and child by H , W , and S, respectively. It
is easy to verify the tabulations of Pr(S | H, W ) below, and then E(Y | H, W )
for the two extreme cases. The final column gives the probabilities for each
H–W combination under the assumption of random-mating equilibrium.
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Conditional probabilities Expected phenotypes

H W S = 0 S = 1 S = 2 If b = 0 If a = 0 Pr(H, W )

0 0 1 0 0 −a 0 1/16
0 1 1/2 1/2 0 −a/2 b/2 2/16
0 2 0 1 0 0 b 1/16
1 0 1/2 1/2 0 −a/2 b/2 2/16
1 1 1/4 1/2 1/4 0 b/2 4/16
1 2 0 1/2 1/2 a/2 b/2 2/16
2 0 0 1 0 0 b 1/16
2 1 0 1/2 1/2 a/2 b/2 2/16
2 2 0 0 1 a 0 1/16

Conditional on H, W , any two (non-MZ) siblings are drawn independently,
so across all families, C(Y, Y ′), the covariance of their phenotypes, is the same
as the variance of the subship means.

For the b = 0 case, where E(Y) = 0 and V (Y ) = a2/2, we calculate

V [E(Y | H, W )] = (a2/16)(1+ 4/2+ 1) = a2/4,

which is one-half of the additive variance. For the a = 0 case, where E(Y ) =
b/2 and V (Y ) = b2/4, we calculate

E[E2(Y | H, W )] = (b2/16)(1+ 4/2+ 1+ 1) = b2(5/16),

so

V [E(Y | H, W )] = b2(5/16)− (b/2)2 = b2/16,

which is one-fourth of the nonadditive variance. (A similar calculation will
show that parent and child share one-half of the additive variance, and none of
the nonadditive variance.)

The same conclusions follow when Y (Z ) has both additive and nonadditive
components, when allele probabilities are unequal, when there is random vari-
ation in Y for given Z , and when multiple loci are introduced; see Falconer
and Mackay (1996, Chapter 9). When Y (Z ) is not deterministic, then one ex-
treme case has E(Y | Z ) linear so BLP(Y | Z ) = E(Y | Z ), and the other has
BLP(Y | Z ) horizontal with E(Y | Z ) not constant.
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CHAPTER 3

Unobserved Heterogeneity and Estimation
of Average Partial Effects
Jeffrey M. Wooldridge

ABSTRACT

I study the problem of identifying average partial effects (APEs), which are partial effects averaged
across the population distribution of unobserved heterogeneity, under different assumptions. One
possibility is that the unobserved heterogeneity is conditionally independent of the observed covari-
ates. When the unobserved heterogeneity is independent of the original covariates, or conditional
mean independent but heteroskedastic, the derivations of APEs provide a new view of traditional
specification problems in widely used models such as probit and Tobit. In addition, the focus on
average partial effects resolves scaling issues that arise in estimating the parameters of probit and
Tobit models with endogenous explanatory variables.

1. INTRODUCTION

Econometric models, especially at the individual, family, or firm level, are
often specified to depend on unobserved heterogeneity in addition to observable
covariates. Models with unobserved heterogeneity are sometimes derived from
economic theory; at other times they are based on introspection.

In nonlinear models, much has been made about the deleterious effects
that ignoring heterogeneity can have on the estimation of parameters, even
when the heterogeneity is assumed to be independent of the observed covari-
ates. A leading case is the probit model with an omitted variable. Yatchew
and Griliches (1985) show that when the omitted variable is independent of
the explanatory variables and normally distributed, the probit estimators suf-
fer from (asymptotic) attenuation bias. This result is sometimes cited to il-
lustrate how a misspecification that is innocuous in linear models leads to
problems in nonlinear models (see, for example, Greene [2000, p. 828]). Dis-
cussions of bias caused by omitted heterogeneity in nonlinear models tend
to focus on the problems with estimating parameters. In this paper I argue
that the focus on parameters is often misguided. Instead, I consider estimat-
ing partial effects that are averaged across the distribution of the unobserved
heterogeneity.
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Rather than the assumption that the unobserved heterogeneity is independent
of the observed covariates in the structural conditional expectation, a weaker
assumption is that the heterogeneity and covariates are independent conditional
on a set of additional controls. In many cases, the additional controls can be
viewed as proxy variables for the unobserved heterogeneity. (Sometimes the
additional controls are referred to as “control functions,” as in Heckman and
Robb [1985] and Blundell and Powell [2002].) Conditional independence be-
tween unobserved heterogeneity and covariates is often implicit in regression
analyses that include many explanatory variables in addition to the key theo-
retical or policy variables of interest. Conditional independence assumptions
have also been used in the treatment effect literature, where they are called
“ignorability” assumptions.

Under ignorability assumptions, I show that the quantities of primary in-
terest for empirical analysis – partial effects averaged across the population
distribution of any unobserved heterogeneity – are identified by the condi-
tional expectation of the observed response given all observed conditioning
variables. While this result is a rather simple application of the law of iterated
expectations, it has important practical implications. One special case is where
the unobserved heterogeneity is assumed to be independent of the structural
covariates – a common assumption in random coefficient and mixture models.
In such cases I show that we have tended to focus too much on identification of
parameters and not enough on identification of partial effects. The same is true
when proxy variables are brought into the analysis.

The basic insights of this paper have been used by others. Chamberlain
(1984) shows how to estimate average partial effects in the context of his ran-
dom effects probit model. Angrist (1991) derives the average treatment effect in
a probit model with a single binary, endogenous explanatory variable. Blundell
and Powell (2002) study semiparametric estimation of a class of nonlinear
models with endogenous explanatory variables. I routinely use the basic re-
sults in Wooldridge (2002) for analyzing nonlinear models. Here, I hope to
give a systematic treatment that helps to unify the discussion of estimating
partial effects for cross-sectional applications. I also provide some new, fairly
complicated examples of where average partial effects can be identified and
estimated.

The rest of the paper is organized as follows. Section 2 gives some basic
results that are applications of the law of iterated expectations. Section 3 shows
how the basic results apply to some commonly used parametric models for
cross-sectional data, including some interesting extensions. Section 4 considers
models with endogenous explanatory variables, of the kind studied by Smith
and Blundell (1986), Rivers and Vuong (1988), and Blundell and Powell (2002),
among others. I derive scale adjustments that turn estimates from simple two-
step procedures into estimates of the parameters indexing the average partial
effects, and I show how heteroskedasticity in the conditional heterogeneity
distribution is easily handled. Section 5 contains some caveats and concluding
thoughts.
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2. THE FRAMEWORK AND SOME BASIC RESULTS

It is useful to have a framework for unifying the discussion of partial effects in
models with unobserved heterogeneity. Let y be an observed scalar response, let
x be a K -vector of observed explanatory variables taking values in X , and let q
denote a J -vector of unobserved heterogeneity taking values in Q. The random
vector (y, x, q) represents the underlying population. (In many examples, q is
a scalar, but the general setup is no easier in that case.)

The structural expectation of interest is

E(y|x,q) ≡ µ1(x,q), (2.1)

where µ1(x,q) is the conditional mean function. Because x is the vector of
observed covariates in (2.1), as a shorthand we call x the “structural covariates.”
Often, we would model µ1, parametrically, but that is not required at this level.
We are interested in how the x j affect E(y|x,q). When x j is continuous the
partial effect is

∂E(y|x,q)/∂x j , (2.2)

which, for small changes in x j , can be multiplied by �x j to obtain the approx-
imate change in E(y|x,q), holding the other elements in x and q fixed. If x j is
discrete, we can instead look at the difference in E(y|x,q) for two different x j

values – such as 1 and 0 when x j is binary – holding q and the other elements of
x fixed. We focus on (2.2) for concreteness, but all of the following discussion
applies to partial effects based on differences in E(y|x,q).

Heckman (2001) discusses the notion of a “Marshallian structural function,”
and (2.1) is in the same spirit. The idea is that economic theory postulates that
a response variable depends on observed and unobserved individual factors. In
the current notation, Heckman (2001) would write y as a deterministic function
of (x,q), say y = m(x,q), whereas (2.1) allows for randomness in y even
after conditioning on (x,q). Blundell and Powell (2002) use essentially the
same setup as Heckman (2001). Whether one prefers (2.1) or y = m(x,q) is
mostly a matter of taste, as each formulation can be expressed in the other
form. Nevertheless, as we will see in Section 3, (2.1) allows us to make direct
connections between the notion of average partial effects and more traditional
treatments that focus on parameter estimation.

Unless E(y|x,q) is separable in x and q, the partial effect in (2.2) depends on
q as well as x. While we can plug in interesting values for the x j – such as sample
averages, medians, quartiles, minimums, maximums, and values representing
policy changes – it is less clear what to do about the dependence of (2.2) on q. In
parametric models, usually the heterogeneity can be normalized to have a zero
mean without loss of generality. Sometimes a different normalization is more
convenient, but for concreteness suppose E(q)= 0. Then, we might estimate
the effect of x j by evaluating (2.2) at q = 0.

If q has a continuous distribution, setting q = 0 may be representative of
only a small fraction of the population, a point made by Chamberlain (1984,
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p. 1273) in the context of unobserved effects panel data models. [Technically,
P(q = 0) = 0 when q is continuous.] An alternative is to average the partial
effect over the distribution of q; that is, we “integrate out” q in (2.2). This leads
to the average partial effect (APE) of x j . To define the APE, let θ j (x,q) be
the partial derivative in (2.2) or, for discrete changes, define θ j (x,q) as the
difference in E(y|x,q) at two different values of x j , holding q and the other
elements of x fixed. The APE of x j , evaluated at x◦, is

δ j (x◦) ≡
∫
Q
θ j (x◦, q) f (q)η(dq) ≡ Eq[θ j (x◦,q)], (2.3)

where f (·) is the density of q, which we take to be absolutely continuous with
respect to the σ -finite measure η(·). If q is continuous, η(·) can be taken to be
Lebesgue measure; if q is discrete, η(·) is counting measure, in which case the
integral is a weighted average. These are the leading cases, but heterogeneity
distributions with q neither continuous nor discrete are allowed. We use script
variables as dummy arguments in the integration, and Eq[·] denotes expectation
with respect to the distribution of q. Givenµ1(·, ·), f (·), and, in the case of (2.2),
the assumption that the derivative and integral can be interchanged, δ j (x◦) can
be computed as a function of x◦.

The definition of an average partial effect is implicit in Chamberlain’s (1984)
treatment of unobserved effects probit panel data models. In the current no-
tation, Blundell and Powell (2002) would write y = µ1(x,q) and then call
Eq[µ1(x◦,q)] the average structural function (ASF). By taking differences of
the ASF or derivatives with respect to the elements of x, and assuming the
derivative and expectation can be interchanged, we arrive at the APEs. For the
remainder of the paper, I assume that partial derivatives and expectations can
be interchanged without saying so explicitly. The assumptions under which
this interchange is allowed are quite weak; see, for example, Bartle (1966,
Corollary 5.9).

In some cases we may want to estimate partial effects averaged over only a
subset of the original population. For example, we may specify a wage equation
for the population of all working-age adults, but we might want the average
partial effect of schooling for those growing up in poverty. Let z denote an
observed variable that appropriately stratifies the population. Then the average
partial effect for subpopulation z◦ is

δ j (x◦, z◦) ≡
∫
Q
θ j (x◦, q) f (q|z◦)η(dq) ≡ E(q|z=z◦)[θ j (x◦,q)], (2.4)

where f (q |z◦) is the density of q given z = z◦. For simplicity, we will focus
on (2.3).

Heckman (2001) seems to imply that, for policy analysis, we should be inter-
ested in estimating µ1(x,q). Unfortunately, µ1(x,q) is often unidentified, and
so we could not estimate the structural function even if we had interesting values
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to plug in for q. We will see examples of how µ1(x,q) is unidentified in the
probit and Tobit examples of Section 3. Unless we assume that the unobserved
heterogeneity is additively separable in µ1(x,q), we need to confront the twin
issues of lack of identification of µ1(x,q) and interesting values to plug in for
q. As I show in this paper, the focus on average partial effects often resolves
both problems.

Of course, nothing guarantees that the APEs are identified, even ifµ1(x,q) is
specified parametrically, for two reasons: (1) the relevant parameters inµ1(x,q)
may not be identified; and (2) the density of q might not be known. Often, the
APEs are identified if we specify a conditional distribution of q given some
observed covariates, w. The following simple lemma follows by the law of
iterated expectations.

Lemma 2.1. For an L-vector w taking values inW , let g(·|w) be the conditional
density of q given w with respect to a σ -finite measure, η(·). For any x◦ ∈
X ,w◦ ∈W , define

µ2(x◦,w◦) ≡
∫
Q
µ1(x◦, q)g(q|w◦)η(dq). (2.5)

Then

Eq[µ1(x◦,q)] ≡ Ew[µ2(x◦,w)], (2.6)

and so APEs can be obtained by taking derivates or changes of Ew[µ2(x,w)]
with respect to the elements of x, and inserting x◦ for x. If instead we are
interested in the APE for a subpopulation described by z = r (w) for some
function r (·), then we have

E(q|z=z◦)[µ1(x◦,q)] = E(w|z=z◦)[µ2(x◦,w)]. (2.7)

Because the right-hand side of (2.5) is E[µ1(x◦,q)|w = w◦], (2.6) follows
directly by iterated expectations, and similarly for (2.7) because z = r (w). At
this point, µ2(x◦,w◦) is not necessarily the same as E(y|x = x◦,w = w◦).

Whether Lemma 2.1 is useful hinges on whetherµ2(·, ·) is identified, and this
depends, loosely, on whether enough features ofµ1(·, ·) and g(·|·) are identified.
If µ2(·, ·) is identified, then the right hand side of (2.6) can be consistently
estimated by averaging µ̂2(x◦,wi ) across the random sample i = 1, . . . , N ,
where µ̂2 is a consistent estimator ofµ2(·, ·). In particular, a consistent estimator
of δ̂ j (x◦) when x j is continuous is simply

δ̂ j (x◦) = N−1
N∑

i=1

∂µ̂2(x◦,wi )/∂x j . (2.8)

[Estimation of (2.7) follows by restricting the average to those i with zi = z◦.
Consistency is straightforward provided P(z = z◦) > 0.] When x j is discrete,
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or we simply want to estimate the discrete difference at two different values,
say x (1)

j and x (0)
j , we use

δ̂ j (x◦) = N−1
N∑

i=1

[
µ̂2

(
x (1)

j , x◦( j),wi

)
− µ̂2

(
x (0)

j , x◦( j),wi

)]
, (2.9)

where x◦( j) denotes fixed values of the other elements of x.
Nothing prevents us from choosing w = x in stating Lemma 2.1. However,

with w = x and q and x dependent, we will not be able to identify APEs unless
the dependence is restricted in some way. (Section 3 covers probit and Tobit
models when the scalar heterogeneity, q, has zero mean conditional on x but a
conditional variance that depends on x. In this case, the APEs are shown to be
identified.) Wooldridge (2004) effectively uses Lemma 2.1 to identify APEs in
nonlinear, dynamic unobserved effects panel data models once a distribution
for the unobserved heterogeneity, given the initial condition and a set of strictly
exogenous covariates, has been specified. Wooldridge (2002, Chapters 15, 16)
uses Lemma 2.1 to estimate APEs in unobserved effects probit and Tobit panel
data models.

In many cases, we want to apply Lemma 2.1 when w and x can vary freely.
Provided we make ignorability assumptions about the structural expectation
and the conditional distribution of heterogeneity, we can identify the APEs by
identifying E(y|x,w). The first assumption is that w is appropriately excluded
from the structural mean.

Assumption A.1. The L-vector w is redundant, or ignorable, in (2.1):

E(y|x,q,w) = E(y|x,q). (2.10)

In cross-sectional settings, Assumption A.1 is not especially controversial be-
cause any element in w that we think belongs in the structural expectation should
be included in x as well. Assumption A.1 simply allows for the fact that we
have observed variables that are properly omitted from a structural equation that
contains unobserved heterogeneity. For example, suppose that y is earnings, x
is schooling, and q is innate ability. Suppose that w contains outcomes on cog-
nitive tests. Then (2.10) simply means that if we could control for “ability,” the
test scores (such as IQ) would not be helpful in explaining average earnings.
This exclusion restriction essentially holds by the definition of “ability.”

The second assumption is ignorability of x in the distribution of q given
(x,w):

Assumption A.2. Conditional on w, q and x are independent: D(q|x,w) =
D(q|w), where D(·|·) denotes conditional distribution.

Assumption A.2 is typically much more restrictive than Assumption A.1. If
w is closely related to q, Assumption A.2 is often reasonable. As we will see
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in Section 4, Assumption A.2 can apply to models where we need instrumen-
tal variables for one or more endogenous explanatory variables. Then, w is a
set of reduced-form errors and x contains endogenous explanatory variables
correlated with q.

Assumption A.2 has been called “selection on observables” in the econo-
metrics literature because q is not dependent on x once we control for w. (See,
for example, Heckman and Robb [1985].) In the treatment effect literature, As-
sumption A.2 is the “igorability of treatment” assumption, where x is the vector
of treatments, q contains the counterfactual outcomes on y, and w is a set of
observed controls.

For special forms of µ1(x,q), Assumption A.2 can be relaxed; sometimes
a conditional mean independence assumption suffices. But to handle general
nonlinear models we need full conditional independence. The following lemma
is simple but fundamental.

Lemma 2.2. Define µ2(x◦,w◦) as in Equation (2.5). Then, under Assumptions
A.1 and A.2,

µ2(x◦,w◦) = E(y|x = x◦,w = w◦) (2.11)

for x◦ ∈ X ,w◦ ∈W . Therefore, if E(y|x,w) is identified, so are the average
partial effects with respect to x.

Proof. The law of iterated expectations implies that

E(y|x,w) = E[E(y|x,q,w)|x,w]

= E[µ1(x,q)|x,w] (2.12)

=
∫
Q
µ1(x, q)g(q|w)η(dq) (2.13)

where (2.12) follows from Assumption A.1 [E(y|x,q,w) does not depend on
w] and (2.13) follows from A.2 [D(q|x,w) does not depend on x]. But (2.13)
with x = x◦ and w = w◦ is simply (2.5).

If E(y|x,w) is identified, usually it can be consistently estimated given a
random sample on (y, x,w) from the population, which means that we have a
consistent estimator µ̂2(x,w) of µ2(x,w) for all x and w. Then we can estimate
δ j (x◦) generally as in (2.8) or (2.9). In some of the examples we cover in
Sections 3 and 4, we will have a parametric distribution for w, and so we can
compute Ew[µ2(x◦,w)] as a function of parameters and then take derivatives
or changes with respect to the elements in x◦.

One way to view Lemma 2.2 is that it says, under the ignorability Assump-
tions A.1 and A.2, we should simply estimate E(y|x,w), compute the partial
derivative or discrete change of interest with respect to elements of x, and ei-
ther average across the population distribution of w or average E(y|x,w = wi )
across the sample. For estimating (2.7), we just average E(y|x,w = wi ) across
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the subsample with zi = z◦. We need never explicitly account for unobserved
heterogeneity: all quantities of interest are obtained from E(y|x,w).

In light of Lemma 2.2, one might wonder what all the fuss about unob-
served heterogeneity is, if one is willing to make the ignorability assumptions
A.1 and A.2. Indeed, one branch of the treatment effect literature is based on
estimating expectations of the form E(y|x,w), where x is a binary treatment
and w is a set of controls that might be needed to control for self-selection
into treatment. The conclusion of Lemma 2.2 is that, regardless of an under-
lying “structural” response model that contains unobserved heterogeneity, we
should simply estimate E(y|x,w) for x = 1 and x = 0, and then average the
difference, [Ê(y|1,wi )− Ê(y|0,wi )], across the sample. The resulting estima-
tor is a well-known estimate of the average treatment effect. (See, for example,
Heckman, Ichimura, and Todd [1997], Hahn [1998], and Wooldridge [2002,
Section 18.3].)

The claim that it is sufficient to focus on E(y|x,w), without any reference to
E(y|x,q), can be questioned when the focus is on “structural” parameters that
are needed for general policy analysis; see, for example, Heckman (2001). Still,
as I mentioned above, there is a general issue of identifiabilty of E(y|x,q) along
with the distribution of q, whether or not these features change when applied
to a new population. In the next section I show how Lemmas 2.1 and 2.2 can
be applied to several common parametric models with unobserved effects. The
basic message is that if we insist on specifying models of E(y|x,q), we still
must be careful in interpreting the parameters, and in making claims about
“biases” caused by neglected heterogeneity.

As a corollary to Lemma 2.2, we have the case when q is independent
of x, which is a common assumption in nonlinear models with unobserved
heterogeneity. We replace Assumption A.2 with

Assumption A.2′. q is independent of x.

Corollary 2.1. Under Assumption A.2′,

Eq[µ1(x◦,q)] = E(y|x = x◦).

Therefore, average partial effects are obtained directly from E(y|x).

Corollary 2.1 follows from Lemma 2.2 by taking w to be empty. Note that
Assumption A.1 has no content when q and x are independent because then
A.1 simply defines µ1(x,q) ≡ E(y|x,q).

Many cross-sectional models, and panel data models, assume that unob-
served heterogeneity is independent of the observed covariates. A large class
of mixture models for all kinds of responses typically assume that the hetero-
geneity is independent of the covariates. One way to interpret Corollary 2.1 is
that complicated ways of modeling unobserved heterogeneity is largely a waste
of time: if we are just going to assume that the heterogeneity is independent of
the covariates, and if we are interested in average partial effects of the observed
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covariates on mean responses, it suffices to focus on flexible ways of modeling
E(y|x) and forget about q.

The conclusions of Lemmas 2.1 and 2.2, and Corollary 2.1, clearly hold if we
replace E(y|x,q) with E[g(y)|x,q] for any known function g(·). Sometimes
we are interested in higher moments of y, or conditional probabilities of the
form P(y ∈ A|x,q). The latter can be written as E[g(y)|x,q] by taking g(y) =
1[y ∈ A], where 1[·] is the indicator function.

3. APPLICATION TO SOME POPULAR
CROSS-SECTIONAL PARAMETRIC MODELS

I now provide several examples that illustrate the usefulness of the simple results
from Section 2. Throughout this section the unobserved heterogeneity, q, is a
scalar.

3.1. Random Coefficient Model

Let x be a scalar and let w be a 1× L vector. Consider a structural model linear
in parameters, but where the structural covariate of interest, x , interacts with
unobserved heterogeneity:

E(y|x, q,w) = η + βx + q + γ x · q. (3.1)

We can think of x as a variable whose effect is predicted by an economic the-
ory, or as a key policy variable. Without loss of generality, the coefficient on
q is normalized at unity and E(q) = 0. The partial effect of x on E(y|x, q) is
∂E(y|x, q)/∂x = β + γ q. Therefore, the APE of x is β + γ E(q) = β. Impor-
tantly, β is the APE with respect to x regardless of any correlation between q
and x .

To identify β, we assume that

E(q|x,w) = E(q|w), (3.2)

which is a conditional mean independence version of Assumption A.2. As-
sumption (3.2) is the so-called “selection on observables” assumption in the
random coefficient context, and it is implicit in studies that put many controls
in w in order to estimate the causal effect of x . Under (3.1) and (3.2),

E(y|x,w) = α + βx + E(q|w)+ γ x · E(q|w)

= α + βx + ψ(w)+ γ x · ψ(w), (3.3)

where ψ(w) ≡ E(q|w). If we knew ψ(·) we could estimate β from a regression
that includes x, ψ(w), and the interaction between x andψ(w). In the linear case,
ψ(w) = (w− ξ)δ where ξ = E(w). [Demeaning w ensures that E[ψ(w)] = 0,
which must hold because E(q) = 0.] In practice, we would replace ξ with w̄,
the sample mean, and run the OLS regression

yi on 1, xi ,wi , xi (wi − w̄), i = 1, . . . , N ; (3.4)
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the coefficient on xi , say β̂, is a consistent, asymptotically normal estimator of
β. The focus on the APE implies that we should demean the extra covariates,
wi , before interacting them with xi .

Equation (3.3) suggests the possibility that β can be estimated using a semi-
parametric method, that is, without imposing a parametric form on ψ(·). Cer-
tainly, we can always approximate ψ(w) using various series expansions, being
sure to demean each term so that the coefficient on xi keeps its APE interpreta-
tion. Robinson (1988) considers the case without the interaction term and shows
how to use kernel methods to estimate the relevant conditional expectations.
It would be useful to extend Robinson’s method to (3.3), using the interactive
nature of the additional term x · ψ(w) and the restriction E[ψ(w)] = 0.

When x is a binary variable and we explicitly consider the counterfac-
tual framework in Rosenbaum and Rubin (1983), we are led immediately
to a standard estimator of the average treatment effect. First, we estimate
E(y|x = 1,w) and E(y|x = 0,w) by flexible methods, which could be non-
parametric or parametric with good approximating properties. If m̂1(w) and
m̂0(w) denote such estimates, then the average treatment effect is estimated as
β̂ ≡ N−1∑N

i=1[m̂1(wi )− m̂0(wi )].

3.2. Probit Model

We now consider the structural probit model

P(y = 1|x, q,w) = �(α + xβ + q) = E(y|x, q), (3.5)

where � is the standard normal cumulative distribution function and the co-
efficient on q is normalized at unity without loss of generality. The vector x
is 1× K and w is 1× L; by assumption, w is redundant in (3.5) once x and
q have been included. Yatchew and Griliches (1985) assume that q and x are
independent, where q has a normal distributed with zero mean. We allow for a
weaker ignorability assumption:

q|x,w ∼ Normal (η + wδ, τ 2). (3.6)

Because Assumptions A.1 and A.2 are satisfied, we can use Lemma 2.2 to com-
pute the APE of each x j . First, we need to find E(y|x,w) = P(y = 1|x,w). We
can show that this follows a probit model by writing y = 1[λ+ xβ + wδ + a +
u ≥ 0], whereλ = α + η, a = q − (η + wδ), and u|(x,w, a) ∼ Normal (0, 1).
Because a|(x,w) ∼ Normal(0, τ 2), it follows that a + u is independent of (x,w)
and distributed as Normal (0, τ 2 + 1). Therefore,

P(y = 1|x,w) = �
[
(λ+ xβ + wδ)/(1+ τ 2)1/2

]
, (3.7)

and the partial derivative with respect to x j is[
β j/(1+ τ 2)1/2

]
φ(zθ), (3.8)
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where φ(·) is the standard normal density function, z = (1, x,w), and θ =
(λ,β′, δ′)′/(1+ τ 2)1/2. From Lemma 2.2 it follows immediately that the APE
of x j is the average of (3.8) across the distribution of w.

From (3.7) we can also read off the plims from a probit of y on 1, x, w. In
particular, if θ̂ j is the coefficient on x j , then

plim θ̂ j = β j/(1+ τ 2)1/2 = θ j . (3.9)

Equation (3.9) implies an attenuation bias in estimating the β j . This bias is
also present when we drop w and assume that q and x are independent, a fact
that has been cited as a serious problem in omitting unobserved heterogeneity
in probit models. But why are the β j of interest? Rarely do the magnitudes
of the parameters in the underlying latent variable model have meaning; only
the effects of the x j on the response probability have quantitative meaning.
For obtaining the directions and relative magnitudes of the effects, the scaled
parameters β j/(1+ τ 2)1/2 are just as informative as the β j .

One reason to be interested in the β j is that they appear directly in the
structural partial effects evaluated at q = 0:

∂P(y = 1|x, q = 0)/∂x j = β jφ(α + xβ). (3.10)

However, as we discussed in Section 2, (3.10) applies only to a small part of
the population, and plugging in any other value of q is arbitrary, as q rarely has
known units of measurement. But there is another subtle point about attenuation
bias that seems to have gone unnoticed. Even if we claim we are interested in
(3.10), it is not obvious for what values of x unobserved heterogeneity causes an
attenuation bias. To see this, drop w and assume that q and x are independent.
The average partial effect, which we consistently estimate from probit of y on
(1, x), is [

β j/(1+ τ 2)1/2
]
φ
[
(α + xβ)/(1+ τ 2)1/2

]
. (3.11)

Now, while θ j = β j/(1+ τ 2)1/2 is attenuated toward zero compared with
β j , the bias works in the opposite direction in the second term because φ[·]
is symmetric about zero and reaches its maximum at zero, and |(α + xβ)/
(1+ τ 2)1/2| < |α + xβ|. Without knowing α,β, τ 2, and a particular value of
x, we cannot know which is greater in magnitude, (3.10) or (3.11). (And re-
member, α,β, and τ 2 are not separately identified.)

A related point involves comparing estimated coefficients on the covariates
of interest, x, across studies that use different control variables. It is quite
common to see several studies address the same policy question using different
sets of controls. Let w1 and w2 denote different proxy variables such that (3.5)
and (3.6) are both assumed when w is replaced with w1 or w2 [with appropriate
subscripts in (3.6)]. Then, for the coefficient on x j , the probability limits of
the MLEs in the two cases are β j/(1+ τ 2

1)1/2 and β j/(1+ τ 2
2)1/2, respectively.

While it makes sense to compare signs and relative effects, it makes no sense
to use the magnitudes of the estimates to argue that controlling for w1 versus
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w2 makes the effect of x j more or less important. One should compute average
partial effects by averaging out w1 and w2.

My view is that the so-called attenuation bias from neglected heterogeneity
is a good thing: we want to estimate β/(1+ τ 2)1/2 because this is exactly the
parameter vector that appears in the APEs. In particular, for a continuous x j ,
the APE evaluated at x◦ is estimated as

θ̂ j

(
N−1

N∑
i=1

φ(θ̂0 + x◦θ̂1 + wi θ̂2)

)
, (3.12)

where the estimates are from probit of yi on (1, xi ,wi ). A similar expression
holds for discrete changes in x j .

What if we claim to be interested in (α,β) in the structural equation (3.5)
because we want to evaluate the effects of a policy on a new population, as
described in Heckman (2001)? Assume that (3.5) holds for the new population
as well as the old. Then, because (α,β) is not identified, we cannot estimate
the partial effects on P(y = 1|x, q); this has nothing to do with whether the
distribution of q is the same in the new population. (However, we would still face
the issue of interesting values to plug in for q in the new population.) At least
we can consistently estimate the average partial effects under the assumption
that the distribution of q has not changed. Unfortunately, if, say, the variance
of q is different in the new population – say, ψ2 – then we cannot estimate the
APEs for the new population because we only have estimates of β/(1+ τ 2)1/2,
not β/(1+ ψ2)1/2.

In cases where the magnitudes of the β j are clearly of interest – in particular,
where the probit model arises from data censoring – it turns out that ignoring
the heterogeneity still does not have any harmful effects. A leading case is
estimating willingness-to-pay functions using survey data. Suppose we assume
an underlying classical linear model,

y∗ = α + xβ + q + u

u|x, q,w ∼ Normal (0, σ 2),

where y∗ is unobserved willingness to pay. Now we are interested in E(y∗|x, q).
We also assume (3.6). Then

y∗ = λ+ xβ + wδ + a + u ≡ zγ + v,

where z = (1, x,w) and v = a + u. Let i denote a random draw from the pop-
ulation. Each individual i is presented with a cost, ci , of the project or good.
Usually, ci is generated to be independent of all other factors, or, at least, of
ai and ui . Individual i approves of the project if y∗1 ≥ ci . Let yi = 1[y∗i ≥ ci ]
denote the observed binary response (accept or reject). Then

P(yi = 1|xi ,wi , ci ) = P(ziγ + vi ≥ ci |zi , ci )

= P[vi/ω ≥ −zi (γ/ω)+ (1/ω)ci ]

= �[zi (γ/ω)− (1/ω)ci ], (3.13)
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where ω2 = τ 2 + σ 2 = Var(vi ). Equation (3.13) shows that γ and ω are identi-
fied and can be consistently estimated by maximum likelihood. In particular, the
β j are identified. While τ 2 and σ 2 are not separately identified, this is irrelevant
for estimating the partial effects of interest, the β j .

The derivations in this example lead me to one conclusion: there is no reason
to fret about the effects of unobserved heterogeneity in probit models when the
heterogeneity and structural covariates satisfy a conditional independence as-
sumption, and the heterogeneity is conditionally normally distributed. A corol-
lary is that if q and x are independent, we should not worry about the effects of
unobserved heterogeneity.

Of course, the previous discussion presupposes that assumptions (3.5) and
(3.6) hold. If either assumption fails, P(y = 1|x,w) does not have the probit
form in (3.7). For example, if we keep (3.6) but start with a logit model in
(3.5), α,β, and τ 2 would be identified, and we could estimate ∂P(y = 1|x, q)
at different values of q. Or, if we keep (3.5) but change (3.6), α and β, and
the parameters in the distribution of q, could be identified. But this means we
would be getting identification of α and β by excluding the leading case in
(3.5) and (3.6). By contrast, if we focus on APEs, all we have to do is estimate
P(y = 1|x,w). So why not model this probability directly? It is not very difficult
to specify and estimate models that are more flexible than probit and logit models
without being wedded to a particular form of unobserved heterogeneity.

If q and x cannot be made conditionally independent, identification of APEs
is much more tenuous. Still, under assumptions that restrict the dependence
between q and x, the APEs can be identified by applying Lemma 2.1. To
illustrate this point, we assume

E(y|x, q) = �(α + xβ + q), (3.14)

where q has zero mean and variance τ 2. If q is independent of x and normally
distributed, we just saw that probit of y on (1, x) consistently estimates the aver-
age partial effects. Whether or not q and x are independent, if x j is continuous,
the APE of x j at x◦ in (3.14) is

β j Eq [φ(α + x◦β + q)], (3.15)

which can be estimated only if we have consistent estimators of α,β, and the
distribution of q. Even though we cannot estimate (3.15) in general, Equation
(3.15) has an important implication: if we can estimate the β j consistently up
to a common, nonzero scale factor, then the relative effects of the continuous
variables on the APEs can be found. [In fact, we can replace �(·) in (3.14) with
an unknown function.] Manski (1975, 1985) and Horowitz (1992) show how
to estimate coefficients up to a common scale under a zero conditional median
assumption, which would apply to the composite error underlying (3.14). In
particular, q and x need not be independent. Estimation of even the relative
APEs for discrete x j does not seem possible unless we know more, although
the signs of the APEs can be estimated using Manski’s approach.
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Under what additional assumptions can we estimate the APEs when q and x
are dependent? Certainly, we cannot allow general dependence. For example,
if we assume that q given x has a conditional normal distribution, say q|x ∼
Normal (η + xδ, ω2), then only (β + δ)/(1+ ω2)1/2 is identified without addi-
tional information. This is an example of the usual kind of endogeneity problem
encountered in econometric models, linear or nonlinear. We study estimation of
these models in Section 4. But suppose we assume that the dependence between
q and x is only in the conditional variance, and not the conditional mean:

q|x ∼ Normal [0, exp(xδ)]. (3.16)

Interestingly, Assumption (3.16), along with (3.14), is enough to identify the
APEs. To see why, we apply Lemma 2.1 with w = x. For fixed x◦, we first need to
find E[�(α + x◦β + q)|x]. If we let u denote the standard normal random vari-
able underlying (3.14), which is independent of (q, x), then �(α + x◦β + q) =
E[1(α + x◦β + q + u ≥ 0)|q, x], where 1(·) is the indicator function. By iter-
ated expectations, E[�(α + x◦β + q)|x] = E[1(α + x◦β + q + u ≥ 0)|x] =
P{(q + u)/[1+ exp(xδ)]1/2 ≥ −(α + x◦β)/[1+ exp(xδ)]1/2}. Therefore,

E[�(α + x◦β + q)|x] = �
{
(α + x◦β)/[1+ exp(xδ)]1/2

}
(3.17)

Provided α,β, and δ can be consistently estimated – they can be, as we show
below – the APEs are consistently estimated by taking derivatives, or changes,
with respect to x◦ in

N−1
N∑

i=1

�
{

(α̂ + x◦β̂)/[1+ exp(xi δ̂)]1/2
}
. (3.18)

Notice the different roles played by x◦ and xi . The vector x◦ multiplies β̂,
whereas xi appears in the variance function. The xi are averaged out, whereas
we compute changes or derivatives with respect to x◦. Letting h(x, δ) ≡ 1+
exp(xδ) and taking the derivative with respect to x◦j shows that the APE for a
continuous variable, evaluated at x◦, is estimated as

β̂ j

(
N−1

N∑
i=1

[1/h(xi δ̂)]φ[(α̂ + x◦β̂)/h(xi δ̂)]

)
. (3.19)

The scale factor needed to turn β̂ j into an APE can be easily estimated in this
context. APEs defined as discrete changes are also easy to estimate.

Why are the parameters in (3.17) identified? The reason is simple. Under
(3.14) and (3.16),

P(y = 1|x) = �[(α + xβ)/h(xδ)], (3.20)

and, given the form of the variance function, α,β, and δ are identified and can
be consistently estimated by maximum likelihood.

Equations (3.17) and (3.20) reveal something curious about this example.
While the response probability, conditional only on x, has the same form as



Estimation of Average Partial Effects 41

Equation (3.17), the average partial effects are not obtained by differentiating
(3.20) with respect to x.

The peculiar feature that the APEs are not obtained by differentiating (3.20)
with respect to x hinges on the specification of E(y|x, q) and, just as importantly,
on the special way that q and x are allowed to be dependent. If, instead, q|x ∼
Normal (η + xδ, ω2) – so that the conditional mean of q depends on x, rather
than just the conditional variance – then the APEs are not identified, let alone
obtainable from estimating the model for P(y = 1|x).

A linear example may help. Suppose that, for a scalar, continuous variable
x, E(y|x, q) = α + βx + q, so that the APE with respect to x is simply β. If
E(q|x) = η + δx , then β is not identified; only β + δ is. But suppose E(q|x) =
η + δx2. Then E(y|x) = (α + η)+ βx + δx2, and so β is identified from the
population regression E(y|x). But the APE of x is not obtained by taking the
derivative of E(y|x).

It is difficult to envision a researcher running a regression of y on 1, x , and
x2, but then reporting the coefficient on x as the relevant partial effect. This
simple example is a reminder that one cannot distinguish omitted heterogeneity
from a misspecified functional form in the observable covariates. The same is
true in the probit example. While (3.19) is the appropriate APE under (3.14) and
(3.16), the response probability in (3.20) is indistinguishable from P(y = 1|x)
obtained from the model

P(y = 1|x, q) = �[α + xβ + exp(xδ/2)q] (3.21)

q|x ∼ Normal (0, 1). (3.22)

Since q is independent of x, under (3.21) and (3.22) it follows from Lemma 2.2
that the APEs are computed by taking derivatives of, or changes in, (3.20), which
is the common way of obtaining partial effects in heteroskedastic probit models.
We might claim to prefer (3.19) because (3.14) seems more appealing than
(3.21) as a way of introducing unobserved heterogeneity. [In addition, (3.19)
has the simplifying feature that the signs of the APEs are the same as the signs of
the β̂ j .] Still, (3.21) is a way to allow observed and unobserved heterogeneity to
have an interaction effect inside�(·), a feature that can hardly be labeled bizarre.
Unfortunately, we cannot settle the issue statistically because both models lead
to the same form of P(y = 1|x): fundamentally, we lack the identification of
the APEs. Rather, we must take a stand on how the observed covariates and
unobserved heterogeneity enter the probit function, as well as on whether we
think unobserved heterogeneity should be assumed to be independent of the
observed covariates. This is not a promising state of affairs, especially given
that the average partial effects computed in the two different ways can differ in
sign as well as magnitude. [Notice that this is not just an issue with the APEs;
the same is true of the unaveraged partial effects based on P(y = 1|x, q).]

A few more comments are in order before we leave this example. First,
the same conclusions follow if we start with the more standard binary re-
sponse formulation y = 1[α + xβ + q ≥ 0], so that all unobservables are
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lumped into q. Then, if q satisfies (3.16), we obtain a probit model with
standard exponential heteroskedasticity. The APEs are computed as in (3.19)
but with h(xi δ̂) = exp(xi δ̂). Second, if we specify a different distribution for
q|x, given by a density g(·|x), we would still obtain the APEs by integrat-
ing �(α + x◦β + q) against g(q|x). Provided the parameters are identified, the
APEs are identified, and are easily estimated by generalizing (3.18). A third
point is that the formulation in (3.14) applies to more than just binary re-
sponses. In particular, y could be a fractional response taking any value in [0,
1]. The estimation method, maximizing the Bernoulli log-likelihood with the
probit response function, is a consistent and

√
N -asymptotically normal esti-

mator. [See, for example, Gourieroux, Monfort and Trognon (1984), Papke and
Wooldridge (1996).]

3.3. Tobit Model

For the basic Tobit model, the literature appears to be silent on the consequences
of unobserved heterogeneity that satisfies an assumption like (3.6). I think
this is partly a case of getting the right answer for the wrong reason. Recall
that Tobit models are applied to two conceptually different problems. One
application is to data censoring, where an underlying response variable satisfies
the classical linear model but is censored because of data collection methods or
institutional constraints. As in the willingness-to-pay probit example, interest
centers unambiguously on the coefficients β j in E(y∗|x). It is easy to see that
unobserved heterogeneity satisfying (3.6) causes no problems in estimating β.
But here my interest is in a more common application of Tobit models: the
response we are interested in, y, has a population distribution that piles up
at zero, but is roughly continuously distributed over strictly positive values.
[In Wooldridge (2000, 2002) I call such responses corner solution outcomes.]
Then, we are interested in conditional means involving y, and these are nonlinear
functions of E(y∗|x) = α + xβ and Var(y∗|x) = σ 2. So how does the presence
of unobserved heterogeneity affect estimation of the quantities of interest in
corner solution applications? While the argument is a little more subtle, the
conclusions are very similar to the probit case: we cannot identify the partial
effects evaluated at the average heterogeneity, but we can identify the partial
effects averaged across the distribution of heterogeneity.

Write the Tobit model with unobserved heterogeneity as

y = max(0, α + xβ + q + u) (3.23)

u|x, q,w ∼ Normal (0, σ 2). (3.24)

Here we have in mind cases where y is not a censored variable but, rather, a
corner solution outcome. Often, we are interested in E(y|x, q), which depends
on the parameters α,β, and σ 2. (See, for example, Wooldridge [2000a, Sec-
tion 17.2].) Since E(q) = 0, we might evaluate the expectations at q = 0. But
even if we assume (3.6) – as we now do – σ 2 is not identified, and therefore, nor
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is E(y|x, q) for any value of q. But the average partial effects are identified, as
we now show.

Under (3.23), (3.24), and (3.6), we have

y = max(0, λ+ xβ + wδ + a + u)

≡ max(0, λ+ xβ + wδ + v), (3.25)

where λ, a, and v are defined as in the probit case. Under the assumptions
made, v|(x,w) ∼ Normal (0, ω2), where ω2 = τ 2 + σ 2. It follows immedi-
ately that Tobit of y on (1, x,w) consistently estimates λ,β, δ, and ω2. For
data censoring, this is fine, as β is the vector of interest, and we can compute
the appropriate asymptotic variance by estimating ω2. But for corner solution
outcomes, we might initially worry about our inability to estimate σ 2 and, there-
fore, ∂E(y|x, q)/∂x j . Nevertheless, Lemma 2.2 implies that ∂E(y|x, q)/∂x j ,
averaged across the distribution of q|w, is exactly the conditional mean function
we estimate from Tobit of y on (1, x,w). To get the APEs, we estimate λ,β, δ,
and ω2, apply the usual formula for the partial effects in a Tobit model, and
then average across wi . More precisely, for z ∈ R and s > 0, define

m(z, s) ≡ �(z/s)z + sφ(z/s). (3.26)

Then the APEs are estimated from

N−1
N∑

i=1

m(λ̂+ x◦β̂ + wi δ̂, ω̂), (3.27)

where all estimates are the Tobit MLEs. Therefore, our initial reaction that we
may safely ignore the heterogeneity is correct, but for the wrong reason: we are
not only interested in β, but we obtain consistent estimators of the APEs by
ignoring the heterogeneity.

If we drop w but introduce heteroskedasticity into Var(q|x), as in the probit
example, the conclusions are very similar. In particular, the parameters indexing
the APEs are generally identified from the distribution of y given x, and can
be consistently estimated by conditional maximum likelihood. However, the
APEs are not obtained from differentiating or differencing E(y|x). Instead,
they would be obtained from

N−1
N∑

i=1

m
{
α̂ + x◦β̂, [h(xi , θ̂)]1/2

}
, (3.28)

where h(x,θ) is the model for Var(q + u|x), for example, h(xi ,θ) = σ 2[1+
exp(xδ)].

4. APPLICATION TO MODELS WITH
ENDOGENOUS EXPLANATORY VARIABLES

I now turn to some examples of models where instrumental variables assump-
tions are needed to identify the average partial effects. Blundell and Powell
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(2002) cover semiparametric and nonparametric approaches, and so some of
the results in this section are subsumed by their work. Here, I focus on flexible
parametric models and the adjustments needed to turn parameter estimates from
common two-step procedures, and some interesting extensions, into estimates
of the APEs. Lemmas 2.1 and 2.2 still apply once we properly define the vectors
x and w.

4.1. Random Coefficient Model

I now consider the random coefficient model but where instrumental variables
are needed for at least one covariate. A general model is

E(y1|z, y2, q1) = α1 + x1β1 + a1 + b1x1γ1, (4.1)

where a1 and b1 are the unobserved heterogeneity and x1 is a 1× K1 vector func-
tion of exogenous variables, z1, and endogenous variable, y2: x1 = f1(z1, y2).
The leading case is x1 = (z1, y2), but general nonlinear functions are allowed.
The parameters are α1,β1, and γ1. We assume, without loss of generality, that
E(a1) = E(b1) = 0, so that β1 indexes the average partial effects. Notice that
(4.1) assumes that some elements of z, those in z2, are excluded from (4.1). If
z1 is 1× M1 and z is 1× M , then we should have, at a minimum, the order
condition for identification: M > M1.

For a strictly monotonic function h(y2) defined on the support of y2, we
assume a linear reduced form for h(y2) in the conditional expectations sense:

h(y2) = zδ2 + v2 (4.2)

E(v2|z) = 0. (4.3)

These assumptions imply that E[h(y2)|z] = zδ2, which is not a trivial restriction
because it means that we can transform the endogenous explanatory variable
so that it has a linear conditional mean given the exogenous variables. The idea
is that we might want y2 to appear linearly, or perhaps as a quadratic, in the
structural equation, but we think a priori that linearity of E(y2|z) might not
be a reasonable assumption. If y2 is a continuous variable with large support,
we might just take h(y2) = y2. But if y2 is a fraction in the open unit interval,
we might take h to be h(y2) = log[y2/(1− y2)]; this can transform a fractional
variable into one that takes on unbounded positive and negative values, and
therefore might roughly have a conditional expectation linear in parameters.
For a strictly positive, unbounded endogenous explanatory variable, we might
use the logarithmic transformation. Because h(·) is an invertible function, we
can write y2 = h−1(zδ2 + v2), which means that y2 is a well-defined function
of (z, v2). If y2 has discrete characteristics, (4.2) and (4.3) rule out common
models, such as logit, probit, Tobit, and count data models.

To estimate the parameters, we need to make further assumptions about the
distribution of (a1, b1, v2) conditional on z. We extend an approach due to Garen
(1984), who assumes that (a1, b1, v2) is multivariate normal and independent
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of z. A weaker set of assumptions is

E(a1|v2, z) = (η1 + zλ1)v2 (4.4)

E(b1|v2, z) = (ξ 1 + zψ1)v2. (4.5)

Assumptions (4.4) and (4.5) assume that, given z, the expectations of a1 and
b1, given v2, are linear in v2. [Assumptions (4.3), (4.4), and (4.5) imply that
E(a1|z) = E(b1|z) = 0 by iterated expectations.] Relaxing these assumptions
to allow for polynomials or higher powers in v2 is, as we will see, straightfor-
ward. In Garen (1984), Wooldridge (1997a), and Heckman and Vytlacil (1998),
λ1 = 0 and ψ1 = 0. Allowing the exogenous variables to interact with v2 may
be important in practice. For example, Card (2001) discusses why this gener-
ality might be necessary in a wage function where y2 is years of schooling and
z is a binary variable that shifts the schooling supply function. While it may
be reasonable to assume E(a1|z) = E(b1|z) = 0 along with E(v2|z) = 0, Card
(2001) shows, in an economic model of education choice, that the joint distri-
bution of (a1, b1, v2) given z can depend on z because of heteroskedasticity in
the 3× 3 conditional variance–covariance matrix Var(a1, b1, v2|z). Generally,
assumptions (4.3), (4.4), and (4.5) can hold when Var(a1, b1, v2|z) depends on
z. With a change in notation, one can replace the linear functions in z with
general functions that are linear in parameters.

To obtain an estimating equation, we take the expectation of Equation (4.1)
with respect to (z, v2), use the fact that y2 is a deterministic function of (z, v2),
and use (4.4) and (4.5):

E(y1|z, v2) = α1 + x1β1 + (η1 + zλ1)v2 + (ξ 1 + zψ1)v2x1γ1.

(4.6)

If we multiply all of the interaction terms, we see that the expectation involves
linear functions in (x1, v2), interactions in z and v2, interactions in x1 and v2, and
interactions between z and x1v2. (The last set of interactions contains M · K1

terms.) Importantly, the elements of z2 – the instrumental variables excluded
from the structural model (4.1) – neither show up in linear form nor interact with
just the elements of x1. If we allowed either of these, we would lose identification
unless we made tenuous functional form assumptions. The exclusion of z2 along
with the interactions z2 j x1 is implied by the exclusion restriction in (4.1) and
the way in which z is allowed to appear in (4.4) and (4.5).

A two-step method that consistently estimates all of the parameters in (4.6)
is fairly clear:

1. Run the OLS regression of

h(yi2) on zi , i = 1, . . . , N (4.7)

and save the residuals, v̂i2, i = 1, . . . , N .
2. Run the OLS regression

yi1 on 1, xi1, v̂i2, zi v̂i2, xi1v̂i2, vec[(zi ⊗ xi1)]′v̂i2, (4.8)

i = 1, . . . , N .
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to obtain α̂1, β̂1, and the other parameter estimates. The term vec[(zi ⊗
xi1)]′ simply denotes all possible interactions between zi and xi1. With
large M and K1, one might be selective about which to include.

In step 2, we are interested in the coefficient estimates on xi1, β̂1, particularly
those involving y2. In the case of a model with just an additive, linear term in y2,
we simply want the coefficient on y2. But we might have a quadratic in y2, or
we might have y2 interacted with the elements of z1. In any case, the estimation
procedure is unchanged.

A practical problem with (4.8) is that the standard errors, and joint test
statistics, should be adjusted for the first-stage estimation of δ2 in the reduced
form of h(y2). Newey and McFadden (1994) contains a general discussion about
how these adjustments can be made. The simplest approach might be to stack
the first-order conditions for the two estimation problems and use the formulas
for generalized method of moments.

Adding polynomials in v̂2, interacted with the elements in z and x1, poses
no difficulties, except that it further complicates standard errors and reduces
degrees of freedom. If we replace y2 with y2, a 1× G1 vector, then v2 is re-
placed with the 1× G1 vector v2. (We would assume, at a minimum, that
M − M1 ≥ G1.) Then, we must run G1 reduced form regressions, h j (yi2 j ) on
z1, i = 1, . . . , N , and collect these in the residuals v̂i2. (Each h j should be a
strictly monotonic transformation of the corresponding endogenous explana-
tory variable.) Regression (4.8) would become

yi1 on 1, xi1, v̂i2, vec[(z1 ⊗ v̂i2)]′,
vec [(xi1 ⊗ v̂i2)]′, vec{vec[(zi ⊗ xi1)]′ ⊗ v̂i2}′, i = 1, . . . , N .

The notation is a bit daunting and the mechanics are tedious, but the idea
is conceptually straightforward. We simply include xi1, the G1 reduced form
residuals v̂i2, and each reduced form residual interacted with all elements of
{zi , xi1, vec[(zi ⊗ xi1)]′}. Even for moderate M and G1, a large sample size
might be needed to make this approach practical.

4.2. Probit Response Function

We consider a model where y1 has a conditional expectation that follows a
probit model. This is applicable to the binary response case, but, as mentioned
at the end of Section 3.2, it can also be applied when y1 is a fractional re-
sponse that may take on the extreme values of 0 and 1. (Examples include
cases when y1 is the fraction of pension assets invested in the stock market
and the fraction of students in a class passing a standardized exam.) The probit
conditional mean function keeps all predicted values in the unit interval, and,
as in Section 3.2, is very convenient for identifying APEs. Wooldridge (2002)
covers the standard model where the index is linear in the single endogenous
explanatory variable. Here we allow for a vector of endogenous explanatory
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variables that may need to be transformed to satisfy a conditional normality
assumption.

The structural expectation is

E(y1|z, y2, q1) = E(y1|z1, y2, q1) = �(α1 + x1β1 + q1), (4.9)

where x1 ≡ f1(z1, y2), y2 is the vector of G1 endogenous explanatory variables,
z is the 1× M vector of all exogenous variables, and q1 is the unobserved
heterogeneity. As in Section 4.1, the function f1(·) is assumed to be known,
with the leading case f1(z1, y2) = (z1, y2). Because of the intercept inside the
probit function, we can assume that E(q1) = 0 without loss of generality. In fact,
we make the strong assumption that q1 ∼ Normal(0, σ 2

1). While q1 is assumed
to be independent of z, it is allowed to be correlated with all elements of y2.
Unless f1 depends on y2 in a restrictive fashion, we need at least G1 elements
in z that are not also in z1.

Under the normality assumption for q1, the average partial effects in (4.9)
with respect to the elements of (z1, y2) are indexed by the vectorβ1/(1+ σ 2

1)1/2,
something that follows directly from Section 3.2. Without further assump-
tions, the APEs are not identified. We add the assumption that monotonic
transformations of each y2 j can be found so that a linear reduced form with
additive, normal disturbances can be found. (This is more restrictive than in
Section 4.1, where we simply required a linear conditional expectation.) Let
h j (·), j = 1, . . . , G1, denote strictly monotonic transformations, and define
h(y2) ≡ [h1(y21), . . . , hG1 (y2G1 )]. Then we assume

h(y2) = z�2 + v2, v2|z ∼ Normal(0, �2), (4.10)

where ∆2 is an M × G1 matrix and �2 is a G1 × G1 positive definite matrix.
[In (4.10) we assume that z includes an intercept.]

Under joint normality of (q1, v2), with independence from z, we can write

q1 = v2γ1 + e1 (4.11)

where γ1 = �−1
2 E(v

′
2q1), so that e1 is independent of (z, v2) with a Normal

(0, σ 2
1 − γ

′
1�2γ1) distribution. (The vector y2 is exogenous if and only if γ1 =

0.) A simple two-step estimation approach follows Smith and Blundell (1986)
and Rivers and Vuong (1988), with the extension that we are generally applying
a conditional quasi-MLE unless y1 is binary. Using the assumptions we have
made,

E(y1|z, y2, v2) = �
[
(x1β1 + v2γ 1)/(1+ η2

1)1/2
]
, (4.12)

where η2
1 = Var(e1) = σ 2

1 − γ
′
1�2γ1 ≤ σ 2

1. [That h(·) in (4.10) is invertible
ensures that D(e1|z, y2, v2) = D(e1|z, v2) because y2 is a function of (z, v2).]
The parameters that are identified from (4.12) (assuming, for the moment,
that we know v2), are βη1 ≡ β1/(1+ η2

1)1/2 and γη1 ≡ γ1/(1+ η2
1)1/2. The

following two-step procedure is justified by standard two-step estimation results
and the fact that the Bernoulli log-likelihood is in the linear exponential family
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(see Gourieroux et al. [1984]; Papke and Wooldridge [1996]):

1. For j = 1, . . . , G1, run the OLS regression

h j (yi2 j ) on zi , i = 1, . . . , N (4.13)

and save the residuals, v̂i2 j , i = 1, . . . , N . Put these into 1× G1 vec-
tors v̂i2, i = 1, . . . , N . [Alternatively, use SUR estimation on the sys-
tem (4.10), which is algebraically identical to OLS equation by equa-
tion.]

2. Use the Bernoulli quasi–log-likelihood function and do “probit” of

yi1 on xi1, v̂i2, i = 1, . . . , N (4.14)

to obtain β̂η1 and γ̂η1.

If γ1 �= 0, the asymptotic variance matrix from step 2 needs to be adjusted
for the first-stage estimation of δ2 (see, for example, Newey and McFadden
[1994].) If γ1 = 0 – as occurs under the null hypothesis that y2 is exogenous –
first-stage estimation of �2 can be ignored, but the variance matrix estimator
should have the Huber–White “sandwich” form unless y1 is a binary response.
See, for example, Papke and Wooldridge (1996) for the specific formulas for
the Bernoulli case.

The main question is: How can we turn the estimates from the second-stage
estimation into parameter estimates that index the APEs? This is potentially im-
portant because, when γ1 �= 0,η2

1 < σ2
1. Focusing on the parameter estimates

from the second-stage probit can lead us to overestimate the importance of the
explanatory variables (although, of course, the relative effects are unaffected).
It is somewhat common to compare the parameter estimates from a probit that
assumes exogeneity of y2 with those from a two-step procedure. But the mag-
nitudes are not directly comparable because of the rescaling that occurs when
adding v̂i2 to the probit. (Evidently, whether we underestimate or overestimate
the partial effects depends on the values of (z1, y2) that we plug in.) Moreover,
in order to compare the nonlinear probit model that accounts for endogeneity
with those from a linear probability model estimated by two-stage least squares,
we need to estimate the APEs.

Fortunately, it is very easy to adjust β̂η1 to obtain estimates of βσ1 =
β/(1+ σ 2

1)1/2. One possibility is to simply apply Lemma 2.2 with x ≡
(z1, y2), q ≡ q1, and w ≡ v2. First, Assumption A.1 holds because v2 is a func-
tion of (z, y2), and so E(y1|z, y2, q1, v2) = E(y1|z, y2, q1). Second, Assump-
tion A.2 holds because y2 is a function of (z, v2) and (q1, v2) is independent of
z : E(q1|z, y2, v2) = E(q1|z, v2) = E(q1|v2). It now follows from Lemma 2.2
that the APEs with respect to (z1, y2) are obtained from

Ev2 [�(x◦1βη1 + v2γη1)], (4.15)

where x◦1 is nonrandom and the expectation is over the distribution of
v2. Write the function inside the expectation as r(v2). Then r(v2) =
E[s(v2, a1)|v2], where s(v2, a1) = 1(x◦1βη1 + v2γη1 + a1 ≥ 0) and a1 is
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independent of v2, with a standard normal distribution. By iterated ex-
pectations, E[r(v2)] = E[s(v2, a1)], where the latter expectation is over the
distribution of (v2, a1). But v2γη1 + a1 ∼ Normal(0, 1+ γ

′
η1�2γη1), and

so E[1(x◦1βη1 + v2γη1 + a1 ≥ 0)] = �[(x1βη1/(1+ γ
′
η1�2γη1)1/2]. There-

fore, we have shown that (4.15) equals

�
[
(x◦1βη1/(1+ γ

′
η1�2γη1)1/2

]
(4.16)

We already have obtained β̂η1 and γ̂η1 from (4.14). We estimate �2 from the
G1 sets of reduced form residuals: �̂2 = N−1∑N

i=1 v̂
′
i2v̂i2. A SUR routine

would report �̂2 routinely. Then, we simply divide each element of β̂η1 by
(1+ γ̂

′
η1�̂2γ̂η1)1/2 to obtain the parameter estimates used in obtaining esti-

mated APEs.
An alternative approach, which does not exploit the normality of v2, is to

directly use the sample analog of (4.15):

N−1
N∑

i=1

�(x◦1β̂η1 + v̂i2γ̂ η1). (4.17)

This kind of estimate is used by Blundell and Powell (2002) in semiparametric
contexts. If all of the assumptions are correct, (4.16) and (4.17) should yield
similar estimates of the APEs.

As in Section 3.2, the derivations here have implications for comparing
estimates across studies that use different sets of IVs. Different IVs imply
different error variances for v2, which means that different scale factors are
implicit in the IV estimation. Once we focus on APEs, the effects obtained
from different IV estimates are comparable.

As exploited by Blundell and Powell (2002), the focus on APEs is liberat-
ing in the sense that much more flexible methods for estimating E(y1|x1, v2)
are possible. A simple parametric extension would be to allow q1 given v2 to
have normal distribution with a mean that is polynomial in v2 and possibly
heteroskedastic, too. (Then, unconditional normality of q1 would be unrealis-
tic, but that might be tolerable since we often specify conditional, rather than
unconditional, normal distributions.) If we also specify an exponential func-
tion for the heteroskedasticity, we would add a low-order polynomial in v̂2 to
the quasi-probit in Equation (4.14) and also allow exponential heteroskedas-
ticity in v̂2 (or a polynomial in v̂2). The APEs would be estimated from the
analog of (4.17). For example, with scalar y2, we might put a quadratic in
v̂2 in the mean and allow Var(q1|v2) = exp(θ2v2). The estimated APEs would
come from

N−1
N∑

i=1

�
{(

x◦1β̂1 + γ̂ 1v̂i2 + ρ̂1

(
v̂2

i2 − σ̂ 2
2

))/
[1+ exp(θ̂2v̂i2)]1/2

}
,

where the estimates denote the quasi-MLEs from the two-step heteroskedastic
probit and the scaling is now implicit. While analytical standard errors would
be cumbersome to compute, simulation methods should be tractable.
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The possibility of allowing heteroskedasticity in Var(q1|v2) suggests a sim-
ple extension that allows a test of the assumption that q1 and x1 are indepen-
dent, conditional on v2. For example, we could specify a variance function
Var(q1|v2, x1) = exp(v2θ21 + x1θ22) in the probit model and test θ22 = 0. This
produces a test of conditional independence even if we do not have overidenti-
fication in the usual sense.

4.3. Tobit Model

Obtaining APEs after two-step estimation of a Tobit model with an endogenous
explanatory variable is also simple. Along with (4.10), write

y1 = max[0, f1(z1, y2)β1 + q1], (4.18)

where (q1, v2) is independent of z with a zero mean normal distribution. Define
e1 as in (4.9), where σ 2

1 = Var(q1), �2 = Var(v2), and γ1 = �−1
2 E(v

′
2q1).

For estimating APEs, we need the function m(x◦1β1, σ 1), where the function
m(·, ·) is defined in Equation (3.26). The Smith–Blundell (1986) approach is to
write

y1 = max(0, x1β1 + v2γ1 + e1), (4.19)

where e1|z, v2 ∼ Normal(0, η2
1) and x1 = f1(z1, y2). The Smith–Blundell pro-

cedure for estimating β1, γ 1, and η2
1 is the same as for the probit, except that

in step 2 we do Tobit of yi1 on xi1, v̂i2, i = 1, . . . , N .
Since σ 2

1 = γ
′
1�2γ1 + η2

1, and η̂2
1, and �̂2 are immediately available, the

APEs are easy to obtain. The same sorts of embellishments possible for probit –
namely, adding polynomials in v2 to E(q1|v2) and allowing Var (q1|v2) to be
heteroskedastic – apply to Tobit, too.

5. CONCLUSIONS, CAVEATS, AND FURTHER
CONSIDERATIONS

There are two main points I have tried to make in this paper. The first is that
average partial effects can be estimated rather easily in commonly used nonlin-
ear models, even when some explanatory variables are endogenous and require
instrumental variables. Further, the general approach applies easily to useful
extensions of the basic models. Several of the models in Sections 3 and 4, along
with the simple two-step estimation methods and estimation of average partial
effects, have not previously appeared in the literature.

A second, and more controversial, point concerns how we should view the
problem of unobserved heterogeneity when it is assumed to be independent,
or conditionally independent, of observed covariates, at least when we are in-
terested in expectations of the form E[g(y)|x,q] for some known function
g(·). The focus on average partial effects suggests that, under independence,
we should ignore unobserved heterogeneity and model, or estimate in a flex-
ible manner, E(y|x) or D(y|x). The same conclusion holds if we have some
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proxy or control variables that deliver conditional independence between q
and x. Discussions of bias in parameter estimators in nonlinear models that
contain unobserved heterogeneity are largely off the mark if the heterogene-
ity and covariates satisfy an independence, or a conditional independence,
assumption.

The conclusions of the previous paragraph rely entirely on population con-
siderations, and have nothing to do with the sampling environment. But the case
where the data might be censored because of data collection – such as in top
coding or duration censoring – deserves some comment. Estimating E(y|x) or
E(y|x,w) with a nonrandom sample generally requires additional distributional
assumptions. If we are wedded to explicitly including unobserved heterogeneity
in a “structural” model, data censoring typically requires us to model the entire
distribution of y given (x, q) along with the distribution of q given w. For exam-
ple, in the random coefficient model (3.1), suppose for each i we observe only
min(yi , ci ), where ci is a censoring variable independent of (xi , qi ). Because of
the censoring, estimating E(y|x,w) requires more than just assumptions (3.1)
and (3.2). But since the APEs are eventually obtained from E(y|x,w), why not
focus our efforts there? It is not as if we have widely agreed upon distributions
for unobserved heterogeneity. Instead, we can use flexible densities to model
D(y|x,w), and then account for the censoring by using standard maximum
likelihood methods.

There is a stronger case for explicitly introducing unobserved heterogeneity
when features of a distribution other than E[g(y)|x,q] are of interest, although
there is room for skepticism about what can be learned. One case is testing
assumptions about variances conditional on unobserved heterogeneity. Lemma
2.2 does not apply because Var (y|x,q) = E(y2|x,q)− [E(y|x,q)]2 is not in
the form E[g(y)|x,q]. That is, even if q and x are independent, we cannot ob-
tain ∂Var(y|x,q)/∂x j , averaged across the distribution of q, as ∂Var(y|x)/∂x j .
Therefore, in order to learn interesting things about Var(y|x,q), we must model
it directly and place restrictions on how the covariates and unobserved hetero-
geneity appear in the conditional moments.

As an illustration, consider testing for overdispersion after controlling for un-
observed heterogeneity. Specifically, let y be a count variable, let x be observed
covariates, and let q be the scalar unobserved heterogeneity. The hypothesis of
interest is

H0 : Var(y|x, q) = E(y|x, q), (5.1)

as would occur if y given (x, q) has a Poisson distribution. Evidently, without
more structure, it is impossible to test (5.1). A common approach is to assume
that heterogeneity affects the conditional mean multiplicatively:

E(y|x, q) = q · m(x), (5.2)

where q > 0 is independent of x and E(q) = 1 is a normalization. The function
m(·) > 0 is usually modeled parametrically, say m(x) = exp(α + xβ), but the
point of this example is best made by allowing m(·) to be a general function.
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A common model that allows for under- or overdispersion in the variance,
after conditioning on (x, q), is

Var(y|x, q) = δE(y|x, q) = δq · m(x), (5.3)

where δ > 0 is the variance–mean ratio. In the context of assumptions (5.2)
and (5.3), the null of variance–mean equality (after controlling for x and q) is
H0 : δ = 1. This is a testable hypothesis because

E(y|x) = m(x), (5.4)

which means that m(·) is (nonparametrically) identified, and

Var(y|x) = E[Var(y|x, q)|x]+ Var[E(y|x, q)|x]

= δ · E(y|x)+ τ 2[E(y|x)]2 = δ · m(x)+ τ 2[m(x)]2, (5.5)

where τ 2 = Var(q). Since m(·) is identified, Equation (5.5) implies that δ and
τ 2 are generally identified provided m(x) actually depends on x.

The above derivations show that, under (5.2) and (5.3), we can test hypothesis
(5.1). But our ability to do so hinges crucially on assumption (5.2), which limits
the way in which unobserved heterogeneity can interact with the observed
covariates in the conditional mean. In particular, under (5.2), log[E(y|x, q)] =
log(q)+ log[m(x)], and so all semielasticities of E(y|x, q) with respect to x
do not depend on q. If we want to allow more generality – for example, an
exponential random coefficient model would have E(y|x,q) = exp(a + xb),
where q ≡ (a,b) is the vector of unobserved heterogeneity – then we cannot test
(5.1) without a full distributional assumption for q. (And this is still assuming
q is independent of x.)

Should we care about being able to test (5.1)? Not if we are interested in
estimating average partial effects on the mean response. As is well known, the
Poisson quasi-MLE consistently estimates the conditional mean parameters
for any variance function Var(y|x), and robust inference is very simple (see,
for example, Wooldridge [1997b]). Further, a method of moments procedure,
or a weighted least-squares procedure with a flexible variance function for
Var(y|x), could be used to improve asymptotic efficiency over the Poisson quasi-
MLE without sacrificing robustness. There is no need to introduce unobserved
heterogeneity to arrive at variance models such as (5.5), or even more general
models.

One argument in favor of testing H0 : δ = 1 in (5.3) is to determine whether
the Poisson distribution is sensible for D(y|x, q), because we may want to
estimate partial effects on probabilities such as P(y = j |x, q), rather than partial
effects on the mean. But, since P(y = j |x, q) = E{1[y = j]|x, q}, we obtain
the average partial effects on P(y = j |x, q) by differentiating or differencing
P(y = j |x). We can model the distribution D(y|x) in a flexible manner without
introducing unobserved heterogeneity.

A similar analysis applies to duration models, where it is very common to
add unobserved heterogeneity to a hazard function. A question of considerable
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interest is whether duration dependence is present conditional on observed
covariates and unobserved heterogeneity. This hypothesis makes the most sense
when the hazard function has the proportional hazard form

λ(t, x, q) = κ(x, q)λ0(t), (5.6)

where κ(x, q) > 0 is a function of observed covariates and unobserved hetero-
geneity, and λ0(t) is the baseline hazard. The null hypothesis is that λ0(t) is
constant. Unfortunately, even when we assume that q and x are independent,
λ(t, x, q) is fundamentally unidentified without further assumptions.

A very common assumption is that κ(x, q) = q · h(x), so that the hazard is
multiplicative in the unobserved heterogeneity

λ(t, x, q) = q · h(x)λ0(t), (5.7)

in which case λ0(·), h(·), and the distribution of q are all identified under fairly
weak assumptions; see, for example, Lancaster (1990, Section 7.3) and Van den
Berg (2001, Section 5). An important finding in the duration literature – see, for
example, Lancaster (1990, Chapter 10) and Van den Berg (2001, Section 5.1) –
is that under (5.7) and independence between q and x, failure to account for
heterogeneity can easily lead one to find duration dependence when none exists
conditional on (x, q). From the perspective of the current paper, the problem
is that the analog of Lemma 2.2 does not hold: averaging the hazard λ(t, x, q)
across the distribution of q is not the same as computing the hazard of y (now
a duration) conditional only on x. In other words, if we normalize E(q) = 1, it
is not true that h(x)λ0(t) is the hazard of y given x. (Lemma 2.2 does not apply
because the hazard function is obtained by conditioning on an event involving
y, namely, y > t , for a fixed length of time t .)

Testing for duration dependence shares the same weakness as testing for
overdispersion: in order to test the hypothesis of interest, one must either re-
strict the way in which the unobserved heterogeneity appears – multiplica-
tively, in both examples – or specify parametric functions of (x,q) along with
a parametric distribution for q. While (5.7) may seem natural for testing for
duration dependence, it is not especially general. When h(x) = exp(α + xβ),
Lancaster (1990, Section 2.3) justifies (5.7) by appealing to omitted variables
among the original covariates. Unfortunately, the argument assumes no inter-
actions among covariates within the exponential function in the “structural”
model. Extensions that allow for interaction effects lead to serious difficulties
in identifying duration dependence. For example, a random coefficient exten-
sion of the standard model κ(x, q) = q · exp(α + xβ) is κ(x,q) = exp(a + xb),
where q = (a,b) is the vector of random coefficients with E(q) = (α, β). Even
for this parametric function of (x,q), identification results for λ0(·) seem to
be unavailable unless q follows a known parametric distribution. If we want
average partial effects on the expected duration, or on probabilities of the
form P(y ∈ A|x,q), then these are fully identified from E(y|x) and D(y|x),
respectively.
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CHAPTER 4

On Specifying Graphical Models for
Causation and the Identification Problem
David A. Freedman

ABSTRACT

This paper (which is mainly expository) sets up graphical models for causation, having a bit
less than the usual complement of hypothetical counterfactuals. Assuming the invariance of error
distributions may be essential for causal inference, but the errors themselves need not be invariant.
Graphs can be interpreted using conditional distributions, so that we can better address connections
between the mathematical framework and causality in the world. The identification problem is
posed in terms of conditionals. As will be seen, causal relationships cannot be inferred from a data
set by running regressions unless there is substantial prior knowledge about the mechanisms that
generated the data. The idea can be made more precise in several ways. There are few successful
applications of graphical models, mainly because few causal pathways can be excluded on a priori
grounds. The invariance conditions themselves remain to be assessed.

1. INTRODUCTION

In this paper, I review the logical basis for inferring causation from regression
equations, proceeding by example. The starting point is a simple regression;
next is a path model, and then simultaneous equations (for supply and demand).
After that come nonlinear graphical models. The key to making a causal in-
ference from nonexperimental data by regression is some kind of invariance,
exogeneity being a subsidiary problem. Parameters need to be invariant to in-
terventions: this well-known condition will be stated here with a little more
precision than is customary. Invariance is also needed for (i) errors or (ii) error
distributions, a topic that has attracted less attention. Invariance for distributions
is a weaker assumption than invariance for errors. I will focus on invariance of
error distributions in stochastic models for individual behavior, eliminating the
need to assume sampling from an ill-defined superpopulation.

With graphical models, the essential mathematical features can be formu-
lated in terms of conditional distributions (“Markov kernels”). To make causal
inferences from nonexperimental data using such techniques, the kernels need
to be invariant to intervention. The number of plausible examples is at best quite
limited, in part because of sampling error, and in part because of measurement
error, but more fundamentally because few causal pathways can be excluded
on a priori grounds. The invariance condition itself remains to be assessed.
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Figure 4.1. Linear regression.

Many readers will “know” that causal mechanisms can be inferred from
nonexperimental data by running regressions. I ask from such readers an un-
usual boon – the suspension of belief. (Suspension of disbelief is all too readily
at hand, but that is another topic.) There is a complex chain of assumptions
and reasoning that leads from the data via regression to causation. One objec-
tive in the present essay is to explicate this logic. Please bear with me: what
seems obvious at first may become less obvious on closer consideration, and
properly so.

2. A FIRST EXAMPLE: SIMPLE REGRESSION

Figure 4.1 is the easiest place to start. In order to make causal inferences from
simple regression, it is now conventional (at least for a small group of mathe-
matical modelers) to assume something like the setup in Equation (2.1) below.
I will try to explain the key features in the formalism, and then offer an al-
ternative. As will become clearer, the equation makes very strong invariance
assumptions, which cannot be tested from the data on X and Y .

Yi,x = a + bx + δi . (2.1)

The subscript i indexes the individuals in a study, or the occasions in a repeated-
measures design, and so forth. A treatment may be applied at various levels x .
The expected response a + bx is by assumption linear in x , with intercept a
and slope b; these parameters are the same for all subjects and all levels of
treatment. When treatment at level x is applied to subject i , the actual response
Yi,x deviates from the expected by a “random error” or “disturbance” δi . This
presumably reflects the impact of chance. For some readers, it may be more
natural to think of a + δi in (2.1) as a random intercept.

In this paper, as is commonplace in statistics, random variables like δi are
functions on a probability space �. Informally, chance comes in when Nature
chooses a point at random from �, which fixes the value of δi . The choice is
made once and once only: Nature does not re-randomize if x is changed in (2.1).
More technically, Yi,x is a function of x and δi , but δi does not vary with x .
(The formalism is compact, which has certain advantages; on the other hand, it
is easy to lose track of the ideas.)

The δi are assumed to be independent and identically distributed. The com-
mon “error distribution”D is unknown, but its mean is assumed to be 0. Nothing
in the equation is observable. To generate the data, Nature is assumed to choose
{Xi : i = 1, . . . , n} independently of {δi : i = 1, . . . , n}, showing us

(Xi , Yi ),
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where

Yi = Yi,Xi = a + bXi + δi

for i = 1, . . . , n.
Notice that x could have been anything: the model features multiple parallel

universes, all of which remain counterfactual hypotheticals – because, of course,
we did no intervening at all. Instead, we passively observed Xi and Yi . (If
we had done the experiment, none of these interesting issues would be worth
discussing.) Nature obligingly randomizes for us. She chooses Xi at random
from some distribution, independently of δi , and sets Yi = a + bXi + δi as
required by (2.1).

“Exogeneity” is the assumed independence between the Xi and the errors
δi . Almost as a bookkeeping matter, your response Yi is computed from your
Xi and error term δi : nobody else’s X and δ get into the act, precluding inter-
actions across subjects. According to the model, δi exists – incorruptible and
unchanging – in all the multiple unrealized counterfactual hypothetical uni-
verses, as well as in the one real factual observed universe. This is a remarkably
strong assumption: all is flux, except a, b and δi .

An alternative setup will be presented next – more like standard regression –
to weaken the invariance assumption. We start with parameters a, b and an
error distribution D. The last is unknown, but has mean 0. Nature chooses
{Xi : i = 1, . . . , n} at random from some n-dimensional distribution. Given
the X ’s, the Y ’s are assumed to be conditionally independent, and the random
errors

Yi − a − bXi

are assumed have a common distribution D. In other words, the Y ’s are built
up from the X ’s as follows: Nature computes the linear function a + bXi , then
adds some noise drawn at random from D to get Yi . We get to see the pairs
(Xi , Yi ) for i = 1, . . . , n.

In this alternative formulation, there is a fixed error distribution D, but there
are no context-free random errors: the latter may be functions of the treatment
levels among other things. The alternative has both a causal and an associational
interpretation. (i) Assuming invariance of error distributions to interventions
leads to the causal interpretation. (ii) Mere insensitivity to x when we condition
on Xi = x gives the associational interpetation – the probability distribution of
Yi − a − bXi given Xi = x is the same for all x . This can at least in principle be
tested against the data; invariance to interventions cannot, unless interventions
were part of the design.

The key difference between Equation (2.1) and the alternative is this: in (2.1),
the errors themselves are invariant, whereas in the alternative, only the error
distribution is invariant. In (2.1), inference is to the numerical value that Yi

would have had, if Xi had been set to x . In the alternative formulation, causal
inference can only be to the probability distribution that Yi would have had. With
either setup, the inference is about specific individuals, indexed by i ; inference
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at the level of individuals is possible because, by assumption, b is constant
across individuals. The two formulations of invariance, with the restrictions on
the Xs, express different ideas of exogeneity. The second set of assumptions is
weaker than the first and seems generally more plausible.

An example to consider is Hooke’s law. The stretch of a spring is proportional
to the load: a is length under no load and b is stretchiness. The disturbance term
would represent measurement error. We could run an experiment to determine
a and b, or we could passively observe the behavior of springs and weights. If
heavier weights are attracted to bigger errors, there are problems. Otherwise,
passive observation might give the right answer. Moreover, we can with more
or less power test the hypothesis that the random errors Yi − a − bXi are in-
dependent and identically distributed. By contrast, consider the hypothesis that
Yi − a − bXi itself would have been the same if Xi had been 7 rather than 3.
Even in an experiment, testing that seems distinctly unpromising.

What happens without invariance? The answer will be obvious. If interven-
tion changes the intercept a, the slope b, or the mean of the error distribution,
the impact of the intervention becomes difficult to determine. If the variance
of the error term is changed, the usual confidence intervals lose their meaning.
How would any of this be possible? Suppose, for instance, that – unbeknownst
to the statistician – both X and Y are the effects of a common cause operating
through linear statistical laws like (2.1), errors are independent and normal,
and Nature has randomized the common cause to have a normal distribution.
The scatter diagram will look lovely, a regression line is easily fitted, and the
straightforward causal interpretation will be wrong.

3. CONDITIONALS

Let us assume (informally) that the regression in Figure 4.1 is causal. What
the Yi ’s would have been if we had intervened and set Xi to xi – this too isn’t
quite mathematics, but does correspond to either of two formal objects. One
object is generated by equation (2.1): the random variables Yi = a + bxi + δi

for i = 1, . . . , n. The second object is this: n independent Y s, the i th being
distributed as a + bxi plus a random draw from the error distribution D. One
object is defined in terms of random variables; the other, in terms of conditional
distributions. There is a similar choice for the examples presented below.

So far, I have been discussing linear statistical laws. In Figure 4.1, for exam-
ple, if we set X = x , then the conditional distribution of Y is a + bx , plus some
random noise with distribution D. Call this conditional distribution Kx (dy).
On the one hand, Kx may just represent the conditional distribution of Y given
X = x , a rather dry statistical idea. On the other hand, Kx may represent the
result of a hypothetical intervention: the distribution that Y would have had,
if only we had intervened and set X to x . This is the more exciting causal
interpretation. Data analysis on X and Y cannot decide whether the causal
interpretation is viable. Instead, to make causal inferences from a system of
regression equations, causation is assumed from the beginning. As Cartwright
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(1989) says, “No causes in, no causes out.” This view contrasts rather sharply
with rhetoric that one finds elsewhere.

Of course, solid arguments for causation have been made from observational
data, but fitting regressions is only one aspect of the activity (Freedman 1999).
Replication seems to be critical, with good study designs and many different
kinds of evidence. Also see Freedman (1997, pp. 120–21), noting the difference
between conditional probabilities that arise from selection of subjects with
X = x , and conditional probabilities arising from an intervention that sets X to
x . The data structures may look the same, but the implications can be worlds
apart.

4. A SECOND EXAMPLE: TWO LINEAR
REGRESSIONS

The discussion can now be extended to path diagrams, with similar conclusions.
Figure 4.2 involves three variables and is a cameo version of applied statistics.
If we are interested in the effect of Y on Z , then X confounds the relationship.
Some adjustment is needed to avoid biased estimates, and regression is often
used. The diagram unpacks into two response schedules:

Yi,x = a + bx + δi (4.1a)

Zi,x,y = c + dx + ey + εi . (4.1b)

We assume that δ1, . . . , δn, ε1, . . . , εn are all independent. The δ’s have a com-
mon distribution D. The ε’s have another common distribution F . These two
distributions are unknown, but are assumed to have mean 0. Again, nothing
in (4.1) is observable.

To generate the data, Nature chooses {Xi : i = 1, . . . , n} independently of
{δi , εi : i = 1, . . . , n}. We observe

(Xi , Yi , Zi )

Y Z

X

Figure 4.2. A linear path model.
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for i = 1, . . . , n, where

Yi = Yi,Xi = a + bXi + δi

Zi = Zi,Xi ,Yi = c + d Xi + eYi + εi .

Basically, this is a recursive system with two equations. The X ’s are “exoge-
nous,” that is, independent of the δ’s and ε’s. According to the model, Nature
plugs the X ’s into (4.1a) to compute the Y ’s. In turn, those very X ’s and Y ’s
get plugged into (4.1b) to generate the Z ’s. That is the recursive step. In other
words, Yi is computed as a linear function of Xi , with intercept a and slope b,
plus the error term δi . Then Zi is computed as a linear function of Xi and Yi .
The intercept is c, the coefficient on Xi is d, the coefficient on Yi is e; at the
end, the error εi is tagged on. Again, the δ’s and ε’s remain the same no matter
what x’s and y’s go into (4.1); so do the parameters a, b, c, d, e. (Interactions
across subjects are precluded because, for instance, subject i’s response Yi is
computed from Xi and δi rather than X j and δ j .)

The proposed alternative involves not random errors but their distributions
D and F . These distributions are unknown but have mean 0. We still have the
parameters a, b, c, d, e. To generate the data, we assume that Nature chooses
X1, . . . , Xn at random from some n-dimensional distribution. Given the X ’s,
the Y ’s are assumed to be conditionally independent: Yi is generated by com-
puting a + bXi , then adding some independent noise distributed according to
D. Given the X ’s and Y ’s, the Z ’s are assumed to be conditionally independent:
Zi is generated as c + d Xi + eYi , with independent additive noise distributed
according to F . The exogeneity assumption is the independence between the
X ’s and the errors.

As before, the second setup assumes less invariance than the first: it is error
distributions that are invariant, not error terms; the inference is to distributions
rather than specific numerical values. Either way, there are unbiased estimates
for the parameters a, b, c, d, e; the error distributions D and F are identifi-
able: parameters and error distributions are constant in both formulations. As
before, the second setup may be used to describe conditional distributions of
random variables. If those conditional distributions admit a causal interpre-
tation, then causal inferences can be made from observational data. In other
words, regression succeeds in determining the effect of Y on Z if we know
that (i) X is the confounder and (ii) the statistical relationships are linear and
causal.

What can go wrong? Omitted variables are a problem, as discussed be-
fore. Assuming the wrong causal order is another issue. For example, suppose
Equation (4.1) is correct; the errors are independent and normally distributed;
moreover, the exogenous variable X has been randomized to have a normal
distribution. However, the unfortunate statistician regresses (i) Y on Z , then
(ii) X on Y and Z . Diagnostics will indicate success: the distribution of resid-
uals will not depend on the explanatory variables. But causal inferences will
be all wrong. The list of problem areas can easily be extended beyond omitted
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variables and causal orderings to include functional form, stochastic specifica-
tion, measurement, and so forth.

The issue boils down to this. Does the conditional distribution of Y given
X represent mere association, or does it represent the distribution Y would
have had if we had intervened and set the values of X? There is a similar
question for the distribution of Z given X and Y . These questions cannot
be answered just by fitting the equations and doing data analysis on X, Y,
and Z ; additional information is needed. From this perspective, the equations
are “structural” if the conditional distributions inferred from the equations tell
us the likely impact of interventions, thereby allowing a causal rather than
an associational interpretation. The take-home message is clear: you cannot
infer a causal relationship from a data set by running regressions – unless
there is substantial prior knowledge about the mechanisms that generated the
data.

5. SIMULTANEOUS EQUATIONS

Similar considerations apply to models with simultaneous equations. The in-
variance assumptions will be familiar to many readers. Changing pace, I will
discuss hypothetical supply and demand equations for butter in the state of Wis-
consin. The endogenous variables are Q and P , the quantity and price of butter.
The exogenous variables in the supply equation are the agricultural wage rate
W and the price H of hay. The exogenous variables in the demand equation are
the prices M of margarine and B of bread (substitutes and complements). For
the moment, “exogeneity” just means “externally determined.” Annual data
for the previous twenty years are available on the exogeneous variables, and on
the quantity of Wisconsin butter sold each year as well as its price. Linearity is
assumed, with the usual stochastics.

The model can be set up formally with two linear equations in two unknowns,
Q and P:

Supply Q = a0 + a1 P + a2W + a3 H + δt , (5.1a)

Demand Q = b0 + b1 P + b2 M + b3 B + εt . (5.1b)

On the right-hand side, there are parameters (the as and bs). There are also error
terms (δt , εt ), which are assumed to be independent and identically distributed
for t = 1, . . . , 20. The common two-dimensional “error distribution” C for
(δt , εt ) is unknown, but is assumed to have mean 0.

Each equation describes a thought experiment. In the first, we set
P, W, H, M, B and observe how much butter comes to market: by assumption,
M and B have no effect on supply, while P, W, H have additive linear effects.
In the second we set P, W, H, M, B and observe how much butter is sold: W
and H have no effect on demand, while P, M, B have additive linear effects.
In short, we have linear supply and demand schedules. Again, the error terms
themselves are invariant to all interventions, as are the parameters. Since this
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is a hypothetical, there is no need to worry about the EEC, NAFTA, or the
economics.

A third gedanken experiment is described by taking Equations (5.1a)
and (5.1b) together. Any values of the exogenous variables W, H, M, B –
perhaps within certain ranges – can be substituted in on the right, and the
two equations solved together for the two unknowns Q and P , giving us the
transacted quantity and price in a free market, denoted

QW,H,M,B and PW,H,M,B . (5.2)

Since δ and ε turn up in the formulas for both Q and P , the random variables
in (5.2) are correlated – barring some rare parameter combinations – with the
error terms. The correlation is “simultaneity.”

So far, we have three thought experiments expressing various assumptions,
but no data: nothing so far is observable. We assume that Nature generates data
for us by choosing Wt , Ht , Mt , Bt for t = 1, . . . , 20, at random from some high-
dimensional distribution, independently of the δ’s and ε’s. This independence
is the exogeneity assumption, which gives the concept a more technical shape.
For each t , we get to see the values of the exogenous variables

Wt , Ht , Mt , Bt ,

and the corresponding endogenous variables computed by solving (5.1a) and
(5.1b) together, namely,

Qt = QWt ,Ht ,Mt ,Bt and Pt = PWt ,Ht ,Mt ,Bt .

Of course, we do not get to see the parameters or the disturbance terms. A
regression of Qt on Pt and the exogenous variables leads to “simultaneity
bias,” because Pt is correlated with the error term; hence two-stage least squares
and related techniques. With such estimators, enough data, and the assumptions
detailed above, we can (almost) recover the supply and demand schedules (5.1a)
and (5.1b) from the free market data – using the exogenous variables supplied
by Nature.

The other approach, sketched above for Figures 4.2 and 4.3, suggests that
we start from the parameters and the error distribution C. If we were to set
P, W, H, M, B, then Nature would be assumed to choose the errors in (5.1)
from C: farmers would respond according to the supply equation (5.1a), and
consumers according to the demand equation (5.1b). If we were to set only
W, H, M, B and allow the free market to operate, then quantity and price would
in this parable be computed by solving the pair of equations (5.1a) and (5.1b).

The notation for the error terms in (5.1) is a bit simplistic now, since these
terms may be functions of W, H, M, B. Allowing the errors to be functions of
P may make sense if (5.1a) and (5.1b) are considered in isolation; but if the two
equations are considered together, this extra generality would lead to a morass.
To generate data, we assume that Nature chooses the exogenous variables at
random from some multidimensional distribution. The market quantities and
prices are still computed by solving the pair of equations (5.1a) and (5.1b) for
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Q and P , with independent additive errors for each period drawn from C; the
usual statistical computations can still be carried out.

In this setup, it is not the error terms that are invariant, but their distribution.
Of course, parameters are taken to be invariant. The exogeneity assumption
is the independence of {Wt , Ht , Mt , Bt : t = 1, 2 . . .} and the error terms. The
inference is for instance to the probability distribution of butter supply, if we
were to intervene in the market by setting price as well as the exogenous vari-
ables. By contrast, with assumed invariance for the error terms themselves, the
inference is to the numerical quantity of butter that would be supplied.

I have presented the second approach with a causal interpretation; an associ-
ational interpretation is also possible, although less interesting. The exposition
may seem heavy-handed, because I have tried to underline the critical invari-
ance assumptions that need to be made in order to draw causal conclusions
from nonexperimental data: parameters are invariant to interventions, and so
are errors or their distributions. Exogeneity is another concern. In a real exam-
ple, as opposed to a butter hypothetical, real questions would have to be asked
about these assumptions. Why are the equations “structural,” in the sense that
the required invariance assumptions hold true?

Obviously, there is some tension here. We want to use regression to draw
causal inferences from nonexperimental data. To do that, we need to know
that certain parameters and certain distributions would remain invariant if we
were to intervene. That invariance can seldom, if ever, be demonstrated by
intervention. What then is the source of the knowledge? “Economic theory”
seems like a natural answer, but an incomplete one. Theory has to be anchored
in reality. Sooner or later, invariance needs empirical demonstration, which is
easier said than done.

6. NONLINEAR MODELS: FIGURE 4.1 REVISITED

Graphical models can be set up with nonlinear versions of Equation (2.1), as in
Pearl (1995, 2000). The specification would be something like Yi,x = f (x, δi ),
where f is a fairly general (unknown) function. The interpretation is this: if
the treatment level were set to x , the response by subject i would be Yi,x . The
same questions about interventions and counterfactual hypotheticals would then
have to be considered. Instead of rehashing such isues, I will indicate how to
formulate the models using conditional distributions (“Markov kernels”), so that
the graphs can be interpreted either distributionally or causally. In the nonlinear
case, Kx – the conditional distribution of Y given that X = x – depends on x in
some fashion more complicated than linearity with additive noise. For example,
if X, Y are discrete, then K can be visualized as the matrix of conditional
probabilities P(Y = y|X = x). For any particular x , Kx is a row in this matrix.

Inferences will be to conditional distributions, rather than specific numerical
values. There will be some interesting new questions about identifiability. And
the plausibility of causal interpretations can be assessed separately, as will
be shown later. I will organize most of the discussion around two examples
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used by Pearl (1995); also see Pearl (2000, pp. 66–8 and 83–5). But first,
consider Figure 4.1. In the nonlinear case, the exogenous variables have to be
assumed independent and identically distributed in order to make sense out of
the mathematics; otherwise, there are substantial extra complications, or we
have to impose additional smoothness conditions on the kernel.

Now assume that (Xi , Yi ) are independent and distributed like (X, Y ) for
i = 1, . . . , n; the conditional distribution of Yi given Xi = x is Kx , where K is
an unknown Markov kernel. With a large-enough sample, the joint distribution
of (X, Y ) can be estimated reasonably well; so can Kx , at least for xs that are
likely to turn up in the data. If K is only a conditional probability, that is what
we obtain from data analysis. If K admits a causal interpretation – by prior
knowledge or assumption, not by data analysis on the Xs and Y s – then we can
make a causal inference: What would the distribution of Yi have been if we had
intervened and set Xi to x? (Answer: Kx .)

7. TECHNICAL NOTES

The conditional distribution of Y given X tells you the conditional probability
that Y is in one set C or another, given that X = x . A Markov kernel K assigns
a number Kx (C) to pairs (x,C); the first element x of the pair is a point; the
second, C , is a set. With x fixed, Kx is a probability. With C fixed, the function
that sends x to Kx (C) should satisfy some minimal regularity condition. Below,
I will write Kx (dy) as shorthand for the kernel whose value at (x,C) is Kx (C),
where C is any reasonable set of values for Y . Matters will be arranged so
that Kx (C) is the conditional probability that Y ∈ C given X = x , and perhaps
some other information: Kx (C) = P(Y ∈ C |X = x . . .).

Without further restrictions, graphical models are nonparametric, because
kernels are infinite-dimensional “parameters.” Our ability to estimate such
things depends on the degree of regularity that is assumed. With minimal as-
sumptions, you may get minimal performance – but that is a topic for another
day. Even in the linear case, some of the fine points about estimation have
been glossed over. To estimate the model in Figure 4.1, we would need some
variation in X and δ. To get standard errors, we would assume finite variances
for the error terms. Conditions for identifiability in the simultaneous-equations
setup do not need to be rehearsed here, and I have assumed a unique solution
for (5.1). Two-stage least squares will have surprising behavior unless variances
are assumed for the errors; some degree of correlation between the exogenous
and endogenous variables would also be needed.

More general specifications can be assumed for the errors. For example,
in (2.1), the δi may be assumed to be independent, with common variances
and uniformly bounded fourth moments; then the hypothesis of a common
distribution can be dropped. In (5.1), an ARIMA model may be assumed. And
so forth. The big picture does not change, because (i) questions about invariance
remain, and (ii) even an ARIMA model requires some justification.



66 Freedman

Y Z W

X
(Unobserved)

Figure 4.3. A graphical model.

8. MORE COMPLICATED EXAMPLES

The story behind Figure 4.3 will be explained below. For the moment, it is an
abstract piece of mathematical art. The diagram corresponds to three kernels,
Kx (dy), L y(dz), and Mx,z(dw). These kernels describe the joint distribution
of the random variables shown in the diagram (X, Y, Z , W ). The conditional
distribution of Y given X = x is Kx . The conditional distribution of Z given
X = x and Y = y is L y : there is no subscript x on L because, by assumption,
there is no arrow from X to Z in the diagram. The conditional distribution of
W given X = x , Y = y, Z = z is Mx,z : there is no subscript y on M because,
again by assumption, there is no arrow leading directly from Y to W in the
diagram.

You can think of building up the variables X, Y, Z , W from the kernels and
a base distribution µ for X , in a series of steps:

(i) Choose X at random according to µ(dx).
(ii) Given the value of X from step (i), say X = x , choose Y at random

from Kx (dy).
(iii) Given X = x and Y = y, choose Z at random from L y(dz).
(iv) Given X = x , Y = y, and Z = z, choose W at random from Mx,z(dw).

The recipe is equivalent to the graph.
By assumption, the variables (Xi , Yi , Zi , Wi ) are independent and distributed

like (X, Y, Z , W ) for i = 1, . . . , n. There is one more wrinkle: the circle marked
“X” in the diagram is open, meaning that X is not observed. In other words,
Nature hides X1, . . . , Xn but shows us

Y1, . . . , Yn, Z1, . . . , Zn, W1, . . . , Wn.

That is our data set.
The base distribution µ and the kernels K , L , M are unknown. How-

ever, with many observations on independent and identically distributed
triplets (Yi , Zi , Wi ), we can estimate their joint distribution reasonably well.
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Moreover – and this should be a little surprising – we can compute L y from
that joint distribution, as well as

Mz(dw) =
∫

Mx,z(dw)µ(dx), (8.1a)

where µ is the distribution of the unobserved confounder X . Hence we can also
compute

Ly(dw) =
∫
Mz(dw) L y(dz). (8.1b)

Here is the idea: L is computable because the relationship between Y and Z is
not confounded by X . Conditional on Y , the relationship between Z and W is
not confounded, so Mz in (8.1a) is computable. Then (8.1b) follows.

More specifically, with “P” for probability, the identity

P(Z ∈ C |Y = y) = P(Z ∈ C |X = x, Y = y) = L y(C)

can be used to recover L from the joint distribution of Y, Z . Likewise, we
can recover M in (8.1a) from the joint distribution of Y, Z , W , although the
calculation is a little more intricate. Let Px,y,z = P(• |X = x, Y = y, Z = z)
be a regular conditional probability given X, Y, Z . Then

P(W ∈ D|Y = y, Z = z) =
∫

Px,y,z(W ∈ D) P(X ∈ dx |Y = y, Z = z)

=
∫

Mx,z(D) P(X ∈ dx |Y = y),

because

Px,y,z(W ∈ D) = Mx,z(D)

by construction, and X is independent of Z given Y by a side calculation.
We have recovered

∫
Mx,z(D) P(X ∈ dx |Y = y) from the joint distribution of

Y, Z , W . Hence we can recover∫ ∫
Mx,z(D) P(X ∈ dx |Y = y)P(Y ∈ dy) =

∫
Mx,z(D)µ(dx)

= Mz(D),

although the distribution µ of X remains unknown, and so does the
kernel M .

These may all just be facts about conditional distributions, in which case (8.1)
is little more than a curiosity. On the other hand, if K , L , M have causal in-
terpretations, then Mz in (8.1a) tells you the effect of setting Z = z on W ,
averaged over the possible X ’s in the population. Similarly, Ly in (8.1b) tells
you the effect of Y on W : if you intervene and set Y to y, then the distribution
of W will be Ly , on the average over all X and Z in the population. (There may
be exceptional null sets, which are being ignored.) How to estimate M and L
in a finite sample is another question, not discussed here.
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W

Y

Figure 4.4. A graphical model: seven variables, of which five are observed.

The next example (Figure 4.4) is a little more complicated; again, the story
behind the figure is deferred. There are two unobserved variables, A and B.
The setup involves six kernels, which characterize the joint distribution of the
random variables (A, B,U, X, V, W, Y ) in the diagram:

Ka(db) = P(B ∈ db|A = a),

La(du) = P(U ∈ du|A = a),

Ma(dx) = P(X ∈ dx |A = a),

Nu,x (dv) = P(V ∈ dv|A = a, B = b,U = u, X = x),

Qb,v(dw) = P(W ∈ dw|A = a, B = b,U = u, X = x, V = v),

Rx,v,w(dy) = P(Y ∈ dy|A = a, B = b,U = u, X = x, V = v, W = w).

Here, P represents “probability”; it seemed more tasteful not to have kernels
labeled O or P . There is no a, b, u among the subscripts on R because there
are no arrows going directly from A, B, U to Y in the diagram; similarly for
the other kernels. The issue is to determine the effect of X on Y , integrating
over the unobserved confounders A, B. This is feasible, because conditional on
the observed U, V, W, the relationship between X and Y is not confounded.
(If the kernels have causal interpretations, “effect” is meant literally; if not,
figuratively.)

To fix ideas, we can go through the construction of the random variables.
There is a base probability µ for A. First, choose A at random from µ. Given
A, choose B,U, X independently at random from K A, L A, MA, respectively.
Given A, B,U, X , choose V at random from NU,X . Given A, B,U, X, V ,
choose W at random from Q B,V . Finally, given A, B,U, X, V, W , choose
Y at random from RX,V,W . The data set consists of n independent septuples
Ai , Bi ,Ui , Xi , Vi , Wi , Yi , distributed as A, B,U, X, V, W, Y – except that the
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A’s and B’s are hidden. The “parameters” are µ and the six kernels. Calcula-
tions proceed as for Figure 4.3. Again, the graph and the description in terms
of kernels are equivalent. Details are (mercifully?) omitted.

9. PARAMETRIC NONLINEAR MODELS

Similar considerations apply to parametric nonlinear models. Take the logit
specification, for example. Let Xi be a p-dimensional random vector, with
typical values x ; the random variable Yi is 0 or 1. Let β be a p-dimensional
vector of parameters. Let Kx assign mass

eβx

1+ eβx

to 1, and the remaining mass to 0. Given X1, . . . , Xn , suppose the Yi are con-
ditionally independent, and

P(Yi = 1|X1 = x1, . . . , Xn = xn) = Kxi . (9.1)

On the right-hand side of (9.1), the subscript on K is xi : the conditional dis-
tribution of Y for a subject depends only on that subject’s x . If the x1, . . . , xn

are reasonably spread out, we can estimate β by maximum likelihood. (With
a smooth, finite-dimensional parametrization, we do not need the Xi to be
independent and identically distributed.)

Of course, this model could be set up in a more strongly invariant form, like
(2.1). Let Ui be independent (unobservable) random variables with a common
logistic distribution P(Ui < u) = eu/(1+ eu). Then

Yi,x = 1 ⇐⇒ Ui < βx . (9.2)

The exogeneity assumption would make the Xs independent of the Us, and the
observable Yi would be Yi,Xi . That is, Yi = 1 if Ui < βXi , else Yi = 0.

This is all familiar territory, except perhaps for (9.2), so familiar that the
critical question may get lost. Does Kx merely represent the conditional prob-
ability P(Yi = 1|Xi = x), as in (9.1)? Or does Kx tell us what the law of
Yi would have been if we had intervened and set Xi to x? Where would
the Ui come from, and why would they be invariant if we manipulated
x? Nothing in the mysteries of Euclidean geometry and likelihood statis-
tics can possibly answer this sort of question: other kinds of information are
needed.

10. CONCOMITANTS

Some variables are potentially manipulable; others (“concomitants”) are not.
For example, education and income may be manipulable; age, sex, race, person-
ality, etc., are concomitants. So far, we have ignored this distinction, which is
less problematic for kernels, but a difficulty for the kind of strong invariance in
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Equation (2.1). However, if Y depends on a manipulable X and a concomitant
W through a linear causal law with additive error, we can rewrite (2.1) as

Yi,x = a + bx + cWi + δi . (10.1)

In addition to the usual assumptions on the δ’s, we would have to assume
independence between the δs and the W s. In applications, defining and isolating
the intervention may not be so easy, but that is a topic for another day. Also see
Robins (1986, 1987).

11. THE STORY BEHIND FIGURES 4.3 AND 4.4

When some variables are unobserved, Pearl (1995) develops an interesting cal-
culus to define confounding and decide which kernels or composites – see (8.1)
for example – can be recovered from the joint distribution of the observed vari-
ables. That is a solution to the identification problem for such diagrams. He uses
Figure 4.3 to illustrate his “backdoor criterion.” The unobserved variable X is
genotype; the observed variables Y, Z , W represent smoking, tar deposits in the
lung, and lung cancer, respectively (Figure 4.5). The objective is to determine
the effect of smoking on lung cancer, via (8.1).

Data in this example would consist of a long series of independent triplets
(Yi , Zi , Wi ), each distributed like (Y, Z , W ). Pearl interprets the graph causally.
The timeworn idea that subjects in a study form a random sample from some hy-
pothetical superpopulation still deserves a moment of respectful silence. More-
over, there are three special assumptions in Figure 4.5:

(i) Genotype has no direct effect on tar deposits.
(ii) Smoking has no direct effect on lung cancer.

(iii) Tar deposits can be measured with reasonable accuracy.

There is no support for these ideas in the literature. (i) The lung has a
mechanism – “the mucociliary escalator” – for eliminating foreign matter,

Smoking Tar
Deposits

Lung
Cancer

Genotype
(Unobserved)

Figure 4.5. A graphical model for smoking and lung cancer.
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including tar. This mechanism seems to be under genetic control. (Of course,
clearance mechanisms can be overwhelmed by smoking.) The forbidden ar-
row from genotype to tar deposits may have a more solid empirical basis than
the permitted arrows from genotype to smoking and lung cancer. Assump-
tion (ii) is just that – an assumption. And (iii) is clearly wrong. The conse-
quences are severe: if arrows are permitted from genotype to tar deposits or
from smoking to lung cancer, or if measurements of tar are subject to error,
then formula (8.1) does not apply. Graphical models cannot solve the problem
created by an unmeasured confounder without introducing strong and artificial
assumptions.

The intellectual history is worth mentioning. Fisher’s “constitutional hy-
pothesis” explained the association between smoking and disease on the basis
of a gene that caused both. This idea is refuted not by making assumptions but
by doing some empirical work. For example, Kaprio and Koskenvuo (1989)
present data from their twin study. The idea is to find pairs of identical twins
where one smokes and one does not. That sets up a race: who will die first,
the smoker or the nonsmoker? The smokers win hands down for total mortality
or death from heart disease. The genetic hypothesis is incompatible with these
data.

For lung cancer, the smokers win two out of the two races that have been run.
(Why only two? Smoking-discordant twin pairs are unusual, lung cancer is a rare
disease, and the population of Scandinavia is small.) Carmelli and Page (1996)
have a similar analysis with a larger cohort of twins. Do not bet on Fisher. The
International Agency for Research on Cancer (1986) reviews the health effects
of smoking and indicates the difficulties in measuring tar deposits (pp. 179–
98). Nakachi et al. (1993) and Shields et al. (1993) illustrate conflicts on the
genetics of smoking and lung cancer. The lesson: finding the mathematical
consequences of assumptions matters, but connecting assumptions to reality
matters even more.

Pearl uses Figure 4.4 to illustrate his “front-door criterion,” calling the figure
a “classical example due to Cochran,” with a citation to Wainer (1989). Pearl’s
vision is that soil fumigants X are used to kill eelworms and improve crop
yields Y for oats. The decision to apply fumigants is affected by the worm
population A before the study begins – hence the arrow from A to X . The worm
population is measured at base line, after fumigation, and later in the season:
the three measurements are U, V, W . The unobserved B represents “birds and
other predators.”

This vision is whimsical. The example originates with Cochran (1957,
p. 266), who had several fumigants applied under experimental control, with
measurements of worm cysts and crop yield. Pearl converts this to an observa-
tional study with birds, bees, and so forth – entertaining, a teaching tool, but
unreal. It might be rude to ask too many questions about Figure 4.4, but surely
crops attract predators. Don’t birds eat oat seeds? If early birds get the worms,
what stops them from eating worms at baseline? In short, where have all the
arrows gone?



72 Freedman

12. MODELS AND KERNELS REVISITED

Graphical models may lead to some interesting mathematical developments.
The number of successful applications, however, is at best quite limited.
Figures 4.4 and 4.5 are not atypical (there are citations to the literature be-
low). And it is all too tempting to forget the limitations of such methods. Given
that the arrows and kernels represent causation, while variables are indepen-
dent and identically distributed, we can use Pearl’s framework to determine
from the diagram which effects are estimable. This is a step forward. However,
we cannot use the framework to answer the more basic question: Does the di-
agram represent the causal structure? As everyone knows, there are no formal
algorithmic procedures for inferring causation from association; everyone is
right.

Pearl (1995) considers only models with a causal interpretation, the latter
being partly formalized; and there is new terminology that some readers may
find discouraging. On the other hand, he draws a clear distinction between
averaging Y ’s when the corresponding X is

� set to x , and
� observed to be x in the data.

That is a great advantage of his formalism.
The approach sketched here would divide the identification problem into

two: (i) reconstructing kernels – viewed as ordinary conditional distributions –
from partial information about joint distributions, and (ii) deciding whether
these kernels bear a causal interpretation. Problem (i) can be handled entirely
within the conventional probability calculus. Problem (ii) is one of the ba-
sic problems in applied statistics. Of course, kernels – especially mixtures
like (8.1) – may not be interesting without a causal interpretation.

In sum, graphical models can be formulated using conditional distributions
(“Markov kernels”), without invariance assumptions. Thus, the graphs can be
interpreted either distributionally or causally. The theory governing recovery
of kernels and their mixtures can be pushed through with just the distributional
interpretation. That frees us to consider whether or not the kernels admit a
causal interpretation. So far, however, the graphical modelers have few if any
examples where the causal interpretation can be defended.

Pearl generally agrees with analysis presented here; he says,

Causal analysis with graphical models does not deal with defending modeling
assumptions, in much the same way that differential calculus does not deal
with defending the physical validity of a differential equation that a physicist
chooses to use. In fact no analysis void of experimental data can possibly
defend modeling assumptions. Instead, causal analysis deals with the conclu-
sions that logically follow from the combination of data and a given set of
assumptions, just in case one is prepared to accept the latter. Thus, all causal
inferences are necessarily conditional. These limitations are not unique to
graphical models. In complex fields like the social sciences and epidemiology,
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there are only few (if any) real life situations where we can make enough com-
pelling assumptions that would lead to identification of causal effects. [private
communication]

13. LITERATURE REVIEW

The model in (4.1) was proposed by Neyman (1923). It has been rediscovered
many times since; see, for instance, Hodges and Lehmann (1964, Section 9.4).
The setup is often called “Rubin’s model,” but this simply mistakes the history:
see Speed (1990), with a comment by Rubin; also see Rubin (1974) and Holland
(1986). Holland (1986, 1988) explains the setup with a superpopulation model
to account for the randomness, rather than individualized error terms. These
error terms are often described as the overall effects of factors omitted from the
equation. But this description introduces difficulties of its own, as shown by
Pratt and Schlaifer (1984, 1988). Stone (1993) presents a clear superpopulation
model with some observed covariates and some unobserved.

Dawid (2000) objects to counterfactual inference. Counterfactual distribu-
tions may be essential to any account of causal inference by regression methods.
On the other hand, as the present paper tries to show, invariant counterfactual
random variables – such as δi in Equation (2.1) – are dispensable. In partic-
ular, with kernels, there is no need to specify the joint distribution of random
variables across inconsistent hypotheticals.

There is by now an extended critical literature on linear statistical models for
causation, starting perhaps with the exchange between Keynes (1939, 1940) and
Tinbergen (1940). Other familiar citations in the economics literature include
Liu (1960), Lucas (1976), Leamer (1978), Sims (1980), Hendry (1993), Manski
(1993), Angrist, Imbens, and Rubin (1996). Heckman (2000) traces the devel-
opment of econometric thought from Haavelmo and Frisch onwards, stressing
the role of “structural” or “invariant” parameters. According to Heckman, the
enduring contributions of the field are the following insights:

. . . that causality is a property of a model, that many models may explain
the same data and that assumptions must be made to identify causal or
structural models . . . recognizing the possibility of interrelationships among
causes . . . [clarifying] the conditional nature of causal knowledge and the im-
possibility of a purely empirical approach to analyzing causal questions. . . .
The information in any body of data is usually too weak to eliminate com-
peting causal explanations of the same phenomenon. There is no mechanical
algorithm for producing a set of “assumption free” facts or causal estimates
based on those facts. [pp. 89–91]

For other accounts of causal models from an econometric perspective, see An-
grist (2001) or Heckman and Vytlacil (2001). Angrist and Krueger (2001) pro-
vide a nice introduction to instrumental variables; an early application of the
technique was to fit supply and demand curves for butter (Wright 1928, p. 316).
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Engle, Hendry, and Richard (1983) distinguish several kinds of exogeneity, with
different implications for causal inference.

Any discussion of empirical foundations must take into account a remark-
able series of papers, initiated by Kahneman and Tversky (1974), that explores
the limits of rational choice theory. These papers are collected in Kahneman,
Slovic, and Tversky (1982), and in Kahneman and Tversky (2000). The heuris-
tics and biases program has attracted its own critics (Gigerenzer 1996). That
critique is interesting and has some merit; but in the end, the experimental
evidence demonstrates severe limits to the descriptive power of choice theory
(Kahneman and Tversky 1996). If people are trying to maximize expected util-
ity, they don’t do it very well. Errors are large and repetitive, go in predictable
directions, and fall into recognizable categories: these are biases, not random
errors. Rather than making decisions by optimization – or bounded rationality,
or satisficing – people seem to use plausible heuristics that can at least in part be
identified.

Recently, modeling issues have been much canvased in sociology. Abbott
(1997) finds that variables (like income and education) are too abstract to have
much explanatory power. Clogg and Haritou (1997) review various difficul-
ties with regression, noting in particular that you can all too easily include
endogenous variables as regressors. Hedström and Swedberg (1998) edited a
lively collection of essays by a number of sociologists, who turn out to be
quite skeptical about regression models; rational choice theory also takes its
share of criticism. Goldthorpe (1998, 2001) describes several ideas of causa-
tion and corresponding methods of statistical proof, with different strengths
and weaknesses. Nı́ Bhrolcháin (2001) has some particularly forceful examples
to illustrate the limits of regression. There is an influential book by Lieberson
(1985), with a followup by Lieberson and Lynn (2002); the latest in a series
of papers is Sobel (2000). Meehl (1978) reports the views of an empirical psy-
chologist; also see Meehl (1954), with data showing the advantage of using
regression to make predictions – rather than experts. In political science, Brady
and Collier (2004) compare regression methods with case studies; invariance is
discussed under the rubric of causal homogeneity. Citations from other perspec-
tives include Freedman, Rothenberg, and Sutch (1985), as well as Freedman
(1985, 1987, 1991, 1995, 1999).

There is an extended literature on graphical models for causation. Greenland,
Pearl, and Robins (1999) give a clear account in the context of epidemiology.
Lauritzen (1996, 2001) has a careful treatment of the mathematics. These au-
thors do not recognize the difficulties in applying the methods to real problems.
Equation (8.1) is a special case of the “g-computation algorithm” due to Robins
(1986, 1987); also see Gill and Robins (2001), Pearl (1995, 2000), or Spirtes,
Glymour, and Scheines (1993). If charitably read, the last-named text offers
a formulation in terms of kernels. Robins (1995) explains – all too briefly –
how to state Pearl’s results as theorems about conditionals. For critical re-
views of graphical models (with responses and further citations) see Freedman
(1997), Humphreys (1997), Humphreys and Freedman (1996, 1999): among
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other things, these papers discuss various applications proposed by the mod-
elers. Woodward (1997, 1999) stresses the role of invariance. Freedman and
Stark (1999) show that different models for the correlation of outcomes across
counterfactual scenarios can have markedly different consequences in the legal
context. Scharfstein, Rotnitzky, and Robins (1999) demonstrate a large range
of uncertainty in estimates, due to incomplete specifications; also see Robins
(1999).
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CHAPTER 5

Testing for Weak Instruments
in Linear IV Regression
James H. Stock and Motohiro Yogo

ABSTRACT

Weak instruments can produce biased IV estimators and hypothesis tests with large size distortions.
But what, precisely, are weak instruments, and how does one detect them in practice? This paper
proposes quantitative definitions of weak instruments based on the maximum IV estimator bias, or
the maximum Wald test size distortion, when there are multiple endogenous regressors. We tabulate
critical values that enable using the first-stage F-statistic (or, when there are multiple endogenous
regressors, the Cragg–Donald [1993] statistic) to test whether the given instruments are weak.

1. INTRODUCTION

Standard treatments of instrumental variables (IV) regression stress that for in-
struments to be valid they must be exogenous. It is also important, however, that
the second condition for a valid instrument, instrument relevance, holds, for if
the instruments are only marginally relevant, or “weak,” then first-order asymp-
totics can be a poor guide to the actual sampling distributions of conventional
IV regression statistics.

At a formal level, the strength of the instruments matters because the natural
measure of this strength – the so-called concentration parameter – plays a
role formally akin to the sample size in IV regression statistics. Rothenberg
(1984) makes this point in his survey of approximations to the distributions of
estimators and test statistics. He considers the single equation IV regression
model

y = Yβ + u, (1.1)

where y and Y are T × 1 vectors of observations on the dependent variable and
endogenous regressor, respectively, and u is a T × 1 vector of i.i.d. N (0, σ uu)
errors. The reduced form equation for Y is

Y = ZΠ+ V, (1.2)

where Z is a T × K2 matrix of fixed, exogenous instrumental variables, Π is
a K2 × 1 coefficient vector, and V is a T × 1 vector of i.i.d. N (0, σ V V ) errors,
where corr(ut , Vt ) = ρ.
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The two-stage least-squares (TSLS) estimator of β is β̂TSLS = (Y′PZy)/
(Y′PZY), where PZ = Z(Z′Z)−1Z′. Rothenberg (1984) expresses β̂TSLS as

µ(β̂TSLS − β) =
(

σ uu

σ V V

)1/2
ζ u + (SV u/µ)

1+ (2ζ V /µ)+ (SV V /µ2)
, (1.3)

where ζ u =Π′Z′u/(σ uuΠ′Z′ZΠ)1/2, ζ V =Π′Z′V/(σ V V Π′Z′ZΠ)1/2, SV u =
V′PZu/(σ uuσ V V )1/2, SV V = V′PZV/σ V V , and µ is the square root of the con-
centration parameter µ2 = Π′Z′ZΠ/σ V V .

Under the assumptions of fixed instruments and normal errors, ζ u and ζ V

are standard normal variables with correlation ρ, and SV u and SV V are elements
of a matrix with a central Wishart distribution. Because the distributions of ζ u ,
ζ V , SV u , and SV V do not depend on the sample size, the sample size enters the
distribution of the TSLS estimator only through the concentration parameter.
In fact, the form of (1.3) makes it clear that µ2 can be thought of as an effective
sample size, in the sense that µ formally plays the role usually associated with√

T . Rothenberg (1984) proceeds to discuss expansions of the distribution of
the TSLS estimator in orders of µ, and he emphasizes that the quality of these
approximations can be poor when µ2 is small. This has been underscored by
the dramatic numerical results of Nelson and Startz (1990a, 1990b) and Bound,
Jaeger, and Baker (1995).

If µ2 is so small that inference based on some IV estimators and their con-
ventional standard errors are potentially unreliable, then the instruments are
said to be weak. But this raises two practical questions. First, precisely how
small must µ2 be for instruments to be weak? Second, because Π, and thus
µ2, is unknown, how is an applied researcher to know whether µ2 is in fact
sufficiently small and that his or her instruments are weak?

This paper provides answers to these two questions. First, we develop precise,
quantitative definitions of weak instruments for the general case of n endoge-
nous regressors. In our view, the matter of whether a group of instrumental
variables is weak cannot be resolved in the abstract; rather, it depends on the
inferential task to which the instruments are applied and how that inference is
conducted. We therefore offer two alternative definitions of weak instruments.
The first definition is that a group of instruments is weak if the bias of the IV
estimator, relative to the bias of ordinary least squares (OLS), could exceed a
certain threshold b, for example 10%. The second is that the instruments are
weak if the conventional α-level Wald test based on IV statistics has an ac-
tual size that could exceed a certain threshold r , for example r = 10% when
α = 5%. Each of these definitions yields a set of population parameters that
defines weak instruments, that is, a “weak instrument set.” Because different
estimators (e.g., TSLS or LIML) have different properties when instruments are
weak, the resulting weak instrument set depends on the estimator being used.
For TSLS and other k-class estimators, we argue that these weak instrument
sets can be characterized in terms of the minimum eigenvalue of the matrix
version of µ2/K2.



82 Stock and Yogo

Second, given this quantitative definition of weak instrument sets, we show
how to test the null hypothesis that a given group of instruments is weak against
the alternative that it is strong. Our test is based on the Cragg–Donald (1993)
statistic; when there is a single endogenous regressor, this statistic is simply the
“first-stage F-statistic,” the F-statistic for testing the hypothesis that the instru-
ments do not enter the first stage regression of TSLS. The critical values for the
test statistic, however, are not Cragg and Donald’s (1993): our null hypothesis is
that the instruments are weak, even though the parameters might be identified,
whereas Cragg and Donald (1993) test the null hypothesis of underidentifica-
tion. We therefore provide tables of critical values that depend on the estimator
being used, whether the researcher is concerned about bias or size distortion,
and the numbers of instruments and endogenous regressors. These critical val-
ues are obtained using weak instrument asymptotic distributions (Staiger and
Stock 1997), which are more accurate than Edgeworth approximations when
the concentration parameter is small.1

This paper is part of a growing literature on detecting weak instruments,
surveyed in Stock, Wright, and Yogo (2002) and Hahn and Hausman (2003).
Cragg and Donald (1993) proposed a test of underidentification, which (as dis-
cussed earlier) is different from a test for weak instruments. Hall, Rudebusch,
and Wilcox (1996), following the work by Bowden and Turkington (1984), sug-
gested testing for underidentification using the minimum canonical correlation
between the endogenous regressors and the instruments. Shea (1997) consid-
ered multiple included regressors and suggested looking at a partial R2. Neither
Hall et al. (1996) nor Shea (1997) provide a formal characterization of weak
instrument sets or a formal test for weak instruments, with controlled type I
error, based on their respective statistics. For the case of a single endogenous
regressor, Staiger and Stock (1997) suggested declaring instruments to be weak
if the first-stage F-statistic is less than 10. Recently, Hahn and Hausman (2002)
suggested comparing the forward and reverse TSLS estimators and conclud-
ing that instruments are strong if the null hypothesis that these are the same
cannot be rejected. Relative to this literature, the contribution of this paper is
twofold. First, we provide a formal characterization of the weak instrument set
for a general number of endogenous regressors. Second, we provide a test of
whether the given instruments fall in this set, that is, whether they are weak,
where the size of the test is controlled asymptotically under the null of weak
instruments.

The rest of the paper is organized as follows. The IV regression model and
the proposed test statistic are presented in Section 2. The weak instrument sets
are developed in Section 3. Section 4 presents the test for weak instruments and
provides critical values for tests based on TSLS bias and size, Fuller-k bias,
and LIML size. Section 5 examines the power of the test, and conclusions are
presented in Section 6.

1 See Rothenberg (1984, p. 921) for a discussion of the quality of the Edgeworth approximation
as a function of µ2 and K2.
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2. THE IV REGRESSION MODEL, THE PROPOSED
TEST STATISTIC, AND WEAK INSTRUMENT
ASYMPTOTICS

2.1. The IV Regression Model

We consider the linear IV regression model (1.1) and (1.2), generalized to have
n included endogenous regressors Y and K1 included exogenous regressors X:

y = Yβ + Xγ + u, (2.1)

Y = ZΠ+ XΦ+ V, (2.2)

where Y is now a T × n matrix of included endogenous variables, X is a T × K1

matrix of included exogenous variables (one column of which is 1’s if (2.1) in-
cludes an intercept), Z is a T × K2 matrix of excluded exogenous variables to
be used as instruments, and the error matrix V is a T × n matrix. It is assumed
throughout that K2 ≥ n. Let Y = [y Y] and Z = [X Z] respectively denote the
matrices of all the endogenous and exogenous variables. The conformable vec-
tors β and γ and the matrices Π and Φ are unknown parameters. Throughout
this paper, we exclusively consider inference about β.

Let Xt = (X1t · · · X K1t )′,Zt = (Z1t · · · Z K2t )′,Vt = (V1t · · · Vnt )′, and Zt =
(X′

t Z′
t )
′ denote the vectors of the t th observations on these variables. Also let

Σ and Q denote the population second moment matrices,

E

[(
ut

V t

) (
u1 V′

t

)] = [σ uu ΣuV

ΣVu ΣVV

]
= Σ and

E(Zt Z
′
t ) =

[
QXX QXZ

QZX QZZ

]
= Q. (2.3)

2.2. k-Class Estimators and Wald Statistics

Let the superscript “⊥” denote the residuals from the projection on X, so for ex-
ample Y⊥ = MXY, where MX = I− X(X′X)−1X′. In this notation, the OLS es-
timator of β is β̂ = (Y⊥′Y⊥)−1(Y⊥′y). The k-class estimator of β is

β̂(k) = [Y⊥′(I− k MZ⊥ )Y⊥]−1[Y⊥′(I− k MZ⊥ )y⊥]. (2.4)

The Wald statistic, based on the k-class estimator, testing the null hypothesis
that β = β0, is

W (k) = [β̂(k)− β0]′[Y⊥′(I − kMZ⊥ )Y⊥][β̂(k)− β0]

nσ̂ uu(k)
, (2.5)

where σ̂ uu(k) = û⊥(k)′û⊥(k)/(T − K1 − n), where û⊥(k) = y⊥ − Y⊥β̂(k).
This paper considers four specific k-class estimators: TSLS, the limited

information maximum likelihood estimator (LIML), the family of modi-
fied LIML estimators proposed by Fuller (1977) (“Fuller-k estimators”), and
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bias-adjusted TSLS (BTSLS) (Nagar 1959; Rothenberg 1984). The values of k
for these estimators are (cf. Donald and Newey 2001):

TSLS: k = 1, (2.6)

LIML: k = k̂LIML is the smallest root of det (Y′MXY− kY′MZY) = 0,

(2.7)

Fuller-k: k = k̂LIML−c/(T−K1−K2),where c is a positive constant, (2.8)

BTSLS: k = T/(T − K2 + 2), (2.9)

where det(A) is the determinant of the matrix A. If the errors are symmetrically
distributed and the exogenous variables are fixed, LIML is median unbiased
to second order (Rothenberg 1983). In our numerical work, we examine the
Fuller-k estimator with c = 1, which is the best unbiased estimator to sec-
ond order among estimators with k = 1+ a(k̂LIML − 1)− c/(T − K1 − K2)
for some constants a and c (Rothenberg 1984). For further discussion, see
Donald and Newey (2001) and Stock et al. (2002, Section 6.1).

2.3. The Cragg–Donald Statistic

The proposed test for weak instruments is based on the eigenvalue of the matrix
analog of the F-statistic from the first-stage regression of TSLS,

GT = Σ̂
−1/2′
VV Y⊥′PZ⊥Y⊥Σ̂

−1/2
VV

/
K2, (2.10)

where Σ̂VV = (Y′MZY)/(T − K1 − K2).2 The test statistic is the minimum
eigenvalue of GT :

gmin = mineval(GT ). (2.11)

This statistic was proposed by Cragg and Donald (1993) to test the null
hypothesis of underidentification, which occurs when the concentration matrix
is singular. Instead, we are interested in the case that the concentration matrix
is nonsingular but its eigenvalues are sufficiently small that the instruments
are weak. To obtain the limiting null distribution of the Cragg–Donald statistic
(2.11) under weak instruments, we rely on weak instrument asymptotics.

2.4. Weak Instrument Asymptotics: Assumptions and Notation

We start by summarizing the elements of weak instrument asymptotics from
Staiger and Stock (1997). The essential idea of weak instruments is that Z is
only weakly related to Y, given X. Specifically, weak instrument asymptotics
are developed by modeling Π as local to zero:

2 The definition of GT in (2.10) is GT in Staiger and Stock (1997, Equation (3.4)), divided by K2

to put it in F-statistic form.
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Assumption LΠ. Π = ΠT = C/
√

T , where C is a fixed K2 × n matrix.

Following Staiger and Stock (1997), we make the following assumption on
the moments:

Assumption M. The following limits hold jointly for fixed K2:

(a) (T−1u′u, T−1V′u, T−1V′V)
p→ (σ uu,ΣVu,ΣVV);

(b) T−1Z′Z
p→ Q;

(c) (T−1/2X′u, T−1/2Z′u, T−1/2X′V, T−1/2Z′V)
d→ (ΨXu,ΨZu,ΨXV,

ΨZV), where Ψ ≡ [Ψ′
Xu,Ψ

′
Zu, vec(ΨXV)′, vec(ΨZV)′]′ is distributed

N (0,Σ⊗Q).

Assumption M can hold for time series or cross-sectional data. Part (c)
assumes that the errors are homoskedastic.

Notation and Definitions. The following notation in effect transforms the
variables and parameters and simplifies the asymptotic expressions. Let
ρ = Σ−1/2′

VV ΣVuσ
−1/2
uu , θ = Σ−1

VVΣVu = σ
1/2
uu �

−1/2
VV ρ, λ = Ω1/2CΣ−1/2

VV , Λ =
λ′λ/K2, and Ω = QZZ −QZXQ−1

XX QXZ. Note that ρ′ρ ≤ 1. Define the K2×
1 and K2 × n random variables zu = Ω−1/2′(ΨZu −QZXQ−1

XXΨXu)σ−1/2
uu and

zV = Ω−1/2′ (ΨZV – QZXQ−1
XXΨXV)Σ−1/2

VV , so(
zu

vec(zV)

)
∼ N (0,Σ⊗ IK2 ), where Σ =

[
1 ρ′

ρ In

]
. (2.12)

Also let

ν1 = (λ+ zV)′(λ+ zV) and (2.13)

ν2 = (λ+ zV)′zu. (2.14)

2.5. Selected Weak Instrument Asymptotic Representations

We first summarize some results from Staiger and Stock (1997).

OLS Estimator. Under assumptions L� and M, the probability limit of the OLS

estimator is β̂
p→β + θ.

k-class Estimators. Suppose that T (k – 1)
d→ κ . Then under assumptions L�

and M,

β̂(k)− β
d→ σ 1/2

uu �
−1/2
VV (ν1 − κIn)−1(ν2 − κρ) and (2.15)

W (k)
d→

(ν2 − κρ)′(ν1 − κIn)−1(ν2 − κρ)

n[1− 2ρ′(ν1 − κIn)−1(ν2 − κρ)+ (ν2 − κρ)′(ν1 − κIn)−2(ν2 − κρ)]
,

(2.16)

where (2.16) holds under the null hypothesis β = β0.



86 Stock and Yogo

For LIML and the Fuller-k estimators, κ is a random variable, while for
TSLS and BTSLS κ is nonrandom. Let Ξ be the (n + 1) × (n + 1) matrix,
Ξ = [zu(λ+ zV)]′[zu(λ+ zV)]. Then the limits in (2.15) and (2.16) hold with

TSLS: κ = 0, (2.17)

LIML: κ = κ∗, where κ∗ is the smallest root of det (Ξ− κΣ̄) = 0, (2.18)

Fuller-k: κ = κ∗ − c, where c is the constant in (2.8), and (2.19)

BTSLS: κ = K2 − 2. (2.20)

Note that the convergence in distribution of T (k̂LIML − 1)
d→ κ∗ is joint with

the convergence in (2.15) and (2.16). For TSLS, the expressions in (2.15) and
(2.16) simplify to

β̂TSLS − β
d→ σ 1/2

uu �
−1/2
VV ν−1

1 ν2 and (2.21)

W TSLS d→ ν ′2ν
−1
1 ν2

n
(
1− 2ρ′ν−1

1 ν2 + ν ′2ν
−2
1 ν2

) . (2.22)

Weak Instrument Asymptotic Representations: The Cragg–Donald Statistic.
Under the weak instrument asymptotic assumptions, the matrix GT in (2.10)
and the Cragg–Donald statistic (2.11) have the limiting distributions

GT
d→ν1/K2 and (2.23)

gmin
d→mineval(ν1/K2). (2.24)

Inspection of (2.13) reveals that ν1 has a noncentral Wishart distribution with
noncentrality matrix λ′λ = K2Λ. This noncentrality matrix is the weak instru-
ment limit of the concentration matrix

Σ−1/2
VV Π′Z′ZΠΣ−1/2′

VV
p→ K2Λ. (2.25)

Thus the weak instrument asymptotic distribution of the Cragg–Donald
statistic gmin is that of the minimum eigenvalue of a noncentral Wishart, di-
vided by K2, where the noncentrality parameter is K2Λ. To obtain critical
values for the weak instrument test based on gmin, we characterize the weak
instrument set in terms of the eigenvalues of Λ, the task taken up in the next
section.

3. WEAK INSTRUMENT SETS

This section provides two general definitions of a weak instrument set, the first
based on the bias of the estimator and the second based on size distortions of the
associated Wald statistic. These two definitions are then specialized to TSLS,
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LIML, the Fuller-k estimator, and BTSLS, and the resulting weak instrument
sets are characterized in terms of the minimum eigenvalues of the concentration
matrix.

3.1. First Characterization of a Weak Instrument Set: Bias

One consequence of weak instruments is that IV estimators are in general biased,
so our first definition of a weak instrument set is in terms of its maximum
bias.

When there is a single endogenous regressor, it is natural to discuss bias in
the units of β, but for n > 1, a bias measure must scale β so that the bias is
comparable across elements of β. A natural way to do this is to standardize the
regressors Y⊥ so that they have unit standard deviation and are orthogonal or,
equivalently, to rotate β by Σ1/2

Y⊥Y⊥ , where ΣY⊥Y⊥ = plim(Y⊥′Y⊥/T ). In these
standardized units, the squared bias of an IV estimator, which we generically
denote by β̂IV, is (Eβ̂IV − β)′ΣY⊥Y⊥ (Eβ̂IV – β). As our measure of bias, we
therefore consider the relative squared bias of the candidate IV estimator β̂IV,
relative to the squared bias of the OLS estimator

B2
T =

(Eβ̂IV − β)′ΣY⊥Y⊥ (Eβ̂IV − β)

(Eβ̂ − β)′ΣY⊥Y⊥ (Eβ̂ − β)
. (3.1)

If n = 1, then the scaling matrix in (3.1) drops out and the expression simpli-
fies to BT = |Eβ̂IV − β|/|Eβ̂ − β|. The measure (3.1) was proposed, but not
pursued, in Staiger and Stock (1997).

The asymptotic relative bias, computed under weak instrument asymptotics,
is denoted by B = lim T→∞BT . Under weak instrument asymptotics, E(β̂ −
β) → θ = σ

1/2
uu Σ−1/2

VV ρ and ΣY⊥Y⊥ → ΣVV, so that the denominator in (3.1)
has the limit (Eβ̂ − β)′ΣY⊥Y⊥ (Eβ̂ − β) → σ uuρ

′ρ. Thus for ρ′ρ > 0, the
square of the asymptotic relative bias is

B2 = σ−1
uu lim T→∞

(Eβ̂IV − β)′ΣY⊥Y⊥ (Eβ̂IV − β)

ρ′ρ
. (3.2)

We deem instruments to be strong if they lead to reliable inferences for
all possible degrees of simultaneity ρ; otherwise they are weak. Applied to
the relative bias measure, this leads us to consider the worst-case asymptotic
relative bias

Bmax = max
ρ:0<ρ′ρ≤1

|B|. (3.3)

The first definition of a weak instrument set is based on this worst-case
bias. We define the weak instrument set, based on relative bias, to consist
of those instruments that have the potential of leading to asymptotic relative
bias greater than some value b. In population, the strength of an instrument is
determined by the parameters of the reduced form Equation (2.2). Accordingly,
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let Z = {Π, ΣVV, Ω}. The relative bias definition of weak instruments is

Wbias = {Z: Bmax ≥ b}. (3.4)

Relative Bias vs. Absolute Bias. Our motivation for normalizing the squared
bias measure by the bias of the OLS estimator is that it helps to separate the
two problems of endogeneity (OLS bias) and weak instrument (IV bias). For
example, in an application to estimating the returns to education, based on a
reading of the literature the researcher might believe that the maximum OLS
bias is ten percentage points; if the relative bias measure in (3.1) is 0.1, then the
maximum bias of the IV estimator is one percentage point. Thus formulating
the bias measure in (3.1) as a relative bias measure allows the researcher to
return to the natural units of the application using expert judgment about the
possible magnitude of the OLS bias.

This said, we will show that the maximal TSLS relative bias is also its
maximal absolute bias in standardized units, so that for TSLS the maximal
relative and absolute bias can be treated interchangeably. We return to this
point in Section 3.3.

3.2. Second Characterization of a Weak Instrument Set: Size

Our second definition of a weak instrument set is based on the maximal size of
the Wald test of all the elements of β. In parallel to the approach for the bias
measure, we consider an instrument strong from the perspective of the Wald test
if the size of the test is close to its level for all possible configurations of the IV
regression model. Let W IV denote the Wald test statistic based on the candidate
IV estimator β̂IV. For the estimators considered here, under conventional first-
order asymptotics, W IV has a chi-squared null distribution with n degrees of
freedom, divided by n. The actual rejection rate RT under the null hypothesis
is

RT = Prβ0

[
W IV > χ2

n;α

/
n
]
, (3.5)

where χ2
n;α is the α-level critical value of the chi-squared distribution with n

degrees of freedom and α is the nominal level of the test.
In general, the rejection rate in (3.5) depends onρ. As in the definitions of the

bias-based weak instrument set, we consider the worst-case limiting rejection
rate

Rmax = max
ρ:ρ′ρ≤1

R, where R = lim T→∞RT . (3.6)

The size-based weak instrument set Wsize consists of instruments that can
lead to a size of at least r > α:

Wsize = {Z: Rmax ≥ r}. (3.7)

For example, if α = .05 then a researcher might consider it acceptable if the
worst-case size is r = 0.10.
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3.3. Weak Instrument Sets for TSLS

We now apply these general definitions of weak instrument sets to TSLS and
argue that the sets can be characterized in terms of the minimum eigenvalue
of Λ.

3.3.1. Weak Instrument Set Based on TSLS bias

Under weak instrument asymptotics,(
BTSLS

T

)2 → ρ′h′hρ
ρ′ρ

≡ (BTSLS
)2

and (3.8)

(Bmax,TSLS)2 = max
ρ:0<ρ′ρ≤1

ρ′h′hρ
ρ′ρ

, (3.9)

where h = E[ν−1
1 (λ+ zV)′zV]. The asymptotic relative bias BTSLS depends on

ρ and λ, which are unknown, as well as on K2 and n.
Because h depends on λ but not on ρ, by (3.8) we have Bmax,TSLS =

[maxeval(h′h)]1/2, where maxeval(A) denotes the maximum eigenvalue of the
matrix A. By applying the singular value decomposition to λ, it is further possi-
ble to show that the maximum eigenvalue of h′h depends only on K2, n, and the
eigenvalues ofλ′λ/K2 = Λ. It follows that, for a given K2 and n, the maximum
TSLS asymptotic bias is a function only of the eigenvalues of Λ.

When the number of instruments is large, it is possible to show further that
the maximum TSLS asymptotic bias is a decreasing function of the minimum
eigenvalue of Λ. Specifically, consider sequences of K2 and T such that K2 →
∞ and T →∞ jointly, subject to K 4

2/T → 0, where Λ (which in general
depends on K2) is held constant as K2 →∞.3 We write this joint limit as (K2,
T →∞) and, following Stock and Yogo (2005), we refer to it as representing
“many weak instruments.” It follows from (3.9) and Theorem 4.1(a) of Stock
and Yogo (2003) that the many weak instrument limit of BTSLS

T is

lim
(K2,T→∞)

(
BTSLS

T

)2 = ρ′(Λ+ I)−2ρ

ρ′ρ
. (3.10)

By solving the maximization problem (3.9), we obtain the many weak instru-
ment limit, Bmax,TSLS = [1+mineval(Λ)]−1. It follows that, for many instru-
ments, the set Wbias,TSLS can be characterized by the minimum eigenvalue of
Λ, and the TSLS weak instrument set Wbias,TSLS can be written as

Wbias,TSLS = {Z: mineval(Λ) ≤ �bias,TSLS(b; K2, n)}, (3.11)

where �bias,TSLS(b; K2, n) is a decreasing function of the maximum allowable
bias b.

Our formal justification for the simplification that Wbias,TSLS depends only
on the smallest eigenvalue of Λ, rather than on all its eigenvalues, rests on

3 In Stock and Yogo (2005), the assumption that Λ is constant is generalized to consider sequences
of Λ, indexed by K2, that have a finite limit Λ∞ as K2 →∞.
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the many weak instrument asymptotic result (3.10). Numerical analysis for
n = 2 suggests, however, that Bmax,TSLS is decreasing in each eigenvalue of
Λ for all values of K2. These numerical results suggest that the simplification
in (3.11), relying only on the minimum eigenvalue, is valid for all K2 under
weak instrument asymptotics, even though we currently cannot provide a formal
proof.4

3.3.2. Reinterpretation in Terms of Absolute Bias

Although Bmax was defined as maximal bias relative to OLS, for TSLS Bmax

is also the maximal absolute bias in standardized units. The numerator of
(3.9) is evidently maximized when ρ′ρ = 1. Thus, for TSLS, (3.2) can be re-
stated as (Bmax)2 = σ−1

uu maxρ:ρ′ρ=1 lim T→∞(Eβ̂TSLS − β)′�Y⊥Y⊥ (Eβ̂TSLS −
β). But (Eβ̂TSLS − β)′�Y⊥Y⊥ (Eβ̂TSLS − β) is the squared bias of β̂TSLS, not
relative to the bias of the OLS estimator. For TSLS, then, the relative bias mea-
sure can alternatively be reinterpreted as the maximal bias of the candidate IV
estimator, in the standardized units of σ−1/2

uu Σ1/2
Y⊥Y⊥ .

3.3.3. Weak Instrument Set Based on TSLS Size

For TSLS, it follows from (2.22) that the worst-case asymptotic size is

Rmax,TSLS = max
ρ:ρ′ρ≤1

Pr

[
ν ′2ν

−1
1 ν2

1− 2ρ′ν−1
1 ν2 + ν ′2ν

−2
1 ν2

> χ2
n;α

]
.

(3.12)

Rmax,TSLS, and consequently Wsize,TSLS, depends only on the eigenvalues of Λ
as well as n and K2 (the reason is the same as for the similar assertion for
Bmax,TSLS).

When the number of instruments is large, the Wald statistic is maximized
whenρ′ρ = 1 and is an increasing function of the eigenvalues ofΛ. Specifically,
it is shown in Stock and Yogo (2005), Theorem 4.1(a), that the many weak
instrument limit of the TSLS Wald statistic, divided by K2, is

W TSLS/K2
p→ ρ′(Λ+ In)−1ρ

n[1− 2ρ ′(Λ+ In)−1ρ+ ρ′(Λ+ In)−2ρ]
. (3.13)

The right-hand side of (3.13) is maximized when ρ′ρ = 1, in which case this
expression can be written asρ′(Λ+ In)−1ρ/n−1ρ′[In − (Λ+ In)−1]2ρ. In turn,
the maximum of this ratio over ρ depends only on the eigenvalues of Λ and is
decreasing in those eigenvalues.

4 Because in general the maximal bias depends on all the eigenvalues, the maximal bias when
all the eigenvalues are equal to some value �0 might be greater than the maximal bias when
one eigenvalue is slightly less than �0 but the others are large. For this reason the set Wbias is
potentially conservative when K2 is small. This comment applies to size-based sets as well.
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The many weak instrument limit of Rmax,TSLS is

Rmax,TSLS = max
ρ:ρ′ρ≤1

lim
(K2,T→∞)

Pr
[
W TSLS/K2 > χ2

n;α/nK2
] = 1,

(3.14)

where the limit follows from (3.13) and from χ2
n;α/(nK2) → 0. With many weak

instruments, the TSLS Wald statistic W TSLS is Op(K2), so that the boundary
of the weak instrument set, in terms of the eigenvalues of Λ, increases as a
function of K2 without bound.

For small values of K2, numerical analysis suggests that Rmax,TSLS is a non-
increasing function of all the eigenvalues of Λ, which (if so) implies that the
boundary of the weak instrument set can, for small K2, be characterized in
terms of this minimum eigenvalue. The argument leading to (3.11) therefore
applies here and leads to the characterization

Wsize,TSLS = {Z : mineval(Λ) ≤ �size,TSLS(r ; K2, n, α)}, (3.15)

where �size,TSLS(r ; K2, n, α) is decreasing in the maximal allowable size r .

3.4. Weak Instrument Sets for Other k-Class Estimators

The general definitions of weak instrument sets given in Sections 3.1 and 3.2
can also be applied to other IV estimators. The weak instrument asymptotic
distribution for general k-class estimators is given in Section 2.2. What remains
to be shown is that the weak instrument sets, defined for specific estimators and
test statistics, can be characterized in terms of the minimum eigenvalue of Λ.
As in the case of TSLS, the argument for the estimators considered here has
two parts, for small K2 and for large K2.

For small K2, the argument applied for the TSLS bias can be used generally
for k-class statistics to show that, given K2 and n, the k-class maximal relative
bias and maximal size depend only on the eigenvalues of Λ. In general, this
dependence is complicated and we do not have theoretical results characterizing
this dependence. Numerical work for n = 1 and n = 2, however, indicates that
the maximal bias and maximal size measures are decreasing in each of the
eigenvalues of Λ in the relevant range of those eigenvalues.5 This in turn means
that the boundary of the weak instrument set can be written in terms of the
minimum eigenvalue of Λ, although this characterization could be conservative
(see Footnote 4).

For large K2, we can provide theoretical results, based on many weak in-
strument limits, showing that the boundary of the weak instrument set depends
only on mineval(Λ). These results are summarized here.

5 It appears that there is some nonmonotonicity in the dependence on the eigenvalues for Fuller-k
bias when the minimum eigenvalue is very small, but for such small eigenvalues the bias is
sufficiently large so that this nonmonotonicity does not affect the boundary eigenvalues.
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3.4.1. LIML and Fuller-k

As shown in Stock and Yogo (2003), Theorem 2(c), the LIML and Fuller-k
estimators and their Wald statistics have the many weak instrument asymptotic
distributions√

K2(β̂LIML − β)
d→ N

(
0, σ uuΣ

−1/2
VV Λ−1(Λ+ In − ρρ′)Λ−1Σ−1/2′

VV

)
, (3.16)

W LIML d→ x′(Λ+ In − ρρ′)1/2Λ−1(Λ+ In − ρρ′)1/2′x/n, where

x ∼ N (0, In), (3.17)

where these distributions are written for LIML but also apply to Fuller-k.
An implication of (3.16) is that the LIML and Fuller-k estimators are consis-

tent under the sequence (K2, T ) →∞, a result shown by Chao and Swanson
(2002) for LIML. Thus the many weak instrument maximal relative bias for
these estimators is zero.

An implication of (3.17) is that the Wald statistic is distributed as a weighted
sum of n independent chi-squared random variables. When n = 1, it follows
from (3.17) that the many weak instrument size has the simple form

Rmax,LIML = max
ρ:ρ′ρ≤1

lim
(K2,T→∞)

Pr
[
W LIML > χ2

1;α

]
= Pr

[
χ2

1 >
Λ

Λ+ 1
χ2

1;α

]
, (3.18)

that is, the maximal size is the tail probability that a chi-squared distribution with
one degree of freedom exceeds [Λ/(Λ+ 1)]χ2

1;α . Evidently, this is decreasing
in Λ and depends only on Λ (which, trivially, here is its minimum eigenvalue).

3.4.2. BTSLS

The many weak instrument asymptotic distributions of the BTSLS estimator
and Wald statistic are (Stock and Yogo 2003, Theorem 2(b))√

K2(β̂BTSLS−β)
d→N

[
0, σ uuΣ

−1/2
VV Λ−1(Λ+ In+ρρ′)Λ−1Σ−1/2′

VV

]
,

(3.19)

W BTSLS d→ x′(Λ+ In + ρρ′)1/2Λ−1(Λ+ In + ρρ′)1/2′x/n, where

x ∼ N (0, In). (3.20)

It follows from (3.19) that the BTSLS estimator is consistent and that its
maximal relative bias tends to zero under many weak instrument asymptotics.

For n = 1, the argument leading to (3.18) applies to BTSLS, except that the
factor is different: the many weak instrument limit of the maximal size is

Rmax,BTSLS = Pr

[
χ2

1 >
Λ

Λ+ 2
χ2

1;α

]
, (3.21)

which is a decreasing function of Λ.
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It is interesting to note that, according to (3.18) and (3.21), for a given value
of Λ the maximal size distortion of LIML and Fuller-k tests is less than that of
BTSLS when there are many weak instruments.

3.5. Numerical Results for TSLS, LIML, and Fuller-k

We have computed weak instrument sets based on maximum bias and size for
several k-class statistics. Here, we focus on TSLS bias and size, Fuller-k (with
c = 1 in (2.8)) bias, and LIML size. Additional results are reported in Stock
et al. (2002). Because LIML does not have moments in finite samples, LIML
bias is not well defined so we do not analyze it here.

The TSLS maximal relative bias was computed by Monte Carlo simulation
for a grid of minimal eigenvalue of Λ from 0 to 30 for K2 = n + 2, . . . , 100,
using 20,000 Monte Carlo draws. Computing the maximum TSLS bias entails
computing h, defined following (3.8), by Monte Carlo simulation, given n, K2,
and then computing the maximum bias [maxeval(h′h)]1/2. Computing the max-
imum bias of Fuller-k and the maximum size distortions of TSLS and LIML
is more involved than computing the maximal TSLS bias because there is no
simple analytic solution to the maximum problem (3.6). Numerical analysis
indicates that RTSLS is maximized when ρ′ρ = 1, and so the maximization
for n = 2 was done by transforming to polar coordinates and performing a
grid search over the half unit circle (half because of symmetry in (2.22)). For
Fuller-k bias and LIML size, maximization was performed over this half circle
and over 0 ≤ ρ′ρ ≤ 1. Because the bias and size measures appear to be de-
creasing functions of all the eigenvalues, at least in the relevant range, we set
Λ = �In . The TSLS size calculations were performed using a grid of � with 0
≤ � ≤ 75 (100,000 Monte Carlo draws); for Fuller-k bias, 0 ≤ � ≤ 12 (50,000
Monte Carlo draws); and for LIML size, 0 ≤ � ≤ 10 (100,000 Monte Carlo
draws).

The minimal eigenvalues of Λ that constitute the boundaries of Wbias,TSLS,
Wsize,TSLS, Wbias,Fuller-k, and Wsize,LIML are plotted, respectively, in the top pan-
els of Figures 5.1–5.4 for various cutoff values b and r . The figures show the
boundary eigenvalues for n = 1; the corresponding plots of boundary eigenval-
ues for n = 2 are qualitatively, and in many cases quantitatively, similar. First
consider the regions based on bias. The boundary of Wbias,TSLS is essentially
flat in K2 for K2 sufficiently large. The boundary of the relative bias region for
b = 0.1 (10% bias) asymptotes to approximately 8. In contrast, the boundary of
the bias region for Fuller-k tends to zero as the number of instruments increases,
which agrees with the consistency of the Fuller-k estimator under many weak
instrument asymptotics.

Turning to the regions based on size, the boundary of Wsize,TSLS depends
strongly on K2; as suggested by (3.14), the boundary is approximately linear in
K2 for K2 sufficiently large. The boundary eigenvalues are very large when the
degree of overidentification is large. For example, if one is willing to tolerate a
maximal size of 15%, so the size distortion is 10% for the 5% level test, then
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Figure 5.1. Weak instrument sets and critical values based on bias of TSLS
relative to OLS.

with 10 instruments the minimum eigenvalue boundary is approximately 20 for
n = 1 (it is approximately 16 for n = 2). In contrast, the boundary of Wsize,LIML

decreases with K2 for both n = 1 and n = 2. Comparing these two plots shows
that tests based on LIML are far more robust to weak instruments than tests
based on TSLS.
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Boundary of weak instrument set (n = 1)
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Figure 5.2. Weak instrument sets and critical values based on size of TSLS
Wald test.

4. TEST FOR WEAK INSTRUMENTS

This section provides critical values for the weak instrument test based on
the Cragg–Donald (1993) statistic gmin. These critical values are based on the
boundaries of the weak instrument sets obtained in Section 3 and on a bound
on the asymptotic distribution of gmin.
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Figure 5.3. Weak instrument sets and critical values based on bias of Fuller-k
relative to OLS.

4.1. A Bound on the Asymptotic Distribution of gmin

Recall that the Cragg–Donald statistic gmin is the minimum eigenvalue of
GT , where GT is given by (2.10). As stated in (2.23), under weak in-
strument asymptotics, K2GT is asymptotically distributed as a noncentral
Wishart with dimension n, degrees of freedom K2, identity covariance matrix,
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Figure 5.4. Weak instrument sets and critical values based on size of LIML
Wald test.

and noncentrality matrix K2Λ; that is,

GT
d→ν1/K2 ∼ Wn(K2, In, K2Λ)/K2. (4.1)

The joint pdf for the n eigenvalues of a noncentral Wishart has an infinite
series expansion in terms of zonal polynomials (Muirhead 1978). This joint
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pdf depends on all the eigenvalues of Λ, as well as n and K2. In principle the
pdf for the minimum eigenvalue can be determined from this joint pdf for all
the eigenvalues. It appears that this pdf (the “exact asymptotic” pdf of gmin)
depends on all the eigenvalues of Λ.

This exact asymptotic distribution of gmin is not very useful for applications
both because of the computational difficulties it poses and because of its de-
pendence on all the eigenvalues of Λ. This latter consideration is especially
important because in practice these eigenvalues are unknown nuisance param-
eters, and so critical values that depend on multiple eigenvalues would produce
an infeasible test.

We circumvent these two problems by proposing conservative critical values
based on the following bounding distribution.

Proposition 4.1. Pr[mineval(Wn(k, In,A)) ≥ x] ≤ Pr[χ2
k(mineval(A)) ≥ x],

where χ2
k(a) denotes a noncentral chi-squared random variable with noncen-

trality parameter a.

Proof. Letα be the eigenvector of A corresponding to its minimum eigenvalue.
Then α′Wα is distributed χ2

k(mineval(A)) (Muirhead 1982, Theorem 10.3.6).
But α′Wα ≥ mineval(W), and the result follows.

Applying (4.1), the continuous mapping theorem, and Proposition 4.1, we
have

Pr[gmin ≥ x] → Pr[mineval(ν1/K2) ≥ x]

≤ Pr

[
χ2

K2
(mineval(K2Λ))

K2
≥ x

]
. (4.2)

Note that this inequality holds as an equality in the special case n = 1.
Conservative critical values for the test based on gmin are obtained as follows.

First, select the desired minimal eigenvalue of Λ. Next, obtain the desired
percentile, say the 95% point, of the noncentral chi-squared distribution with
noncentrality parameter equal to K2 times this selected minimum eigenvalue,
and divide this percentile by K2.6

6 The critical values based on Proposition 4.1 can be quite conservative when all the eigenvalues of
Λ are small. For example, the boundary of the TSLS bias-based weak instrument set with b = 0.1,
n = 2, and K2 = 4 is mineval(Λ) = 3.08, and the critical value for a 5% test with b = 0.1 based
on Proposition 1 is 7.56. If the second eigenvalue in fact equals the first, the correct critical
value should be 4.63, and the rejection probability under the null is only 0.1%. (Of course, it is
infeasible to use this critical value because the second eigenvalue of Λ is unknown.) If the second
eigenvalue is 10, then the rejection rate is approximately 2%. On the other hand, if the second
eigenvalue is large, the Proposition 1 bound is tighter. For example, for values of K2 from 4 to
34 and n = 2, if the second eigenvalue exceeds 20 the rejection probability under the null ranges
from 3.3% to 4.1% for the nominal 5% weak instrument test based on TSLS bias with b = 0.1.
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4.2. The Weak Instruments Test

The bound (4.2) yields the following testing procedure to detect weak instru-
ments. To be concrete, this is stated for a test based on the TSLS bias measure
with significance level 100δ%. The null hypothesis is that the instruments are
weak, and the alternative is that they are not:

H0: Z ∈Wbias,TSLS vs. H1: Z /∈Wbias,TSLS. (4.3)

The test procedure is

Reject H0 if gmin ≥ dbias,TSLS(b; K2, n, δ), (4.4)

where dbias,TSLS(b; K2, n, δ) = K−1
2 χ2

K2,1−δ(K2�bias,TSLS(b; K2, n)), where
χ2

K2,1−δ(m) is the 100(1− δ)% percentile of the noncentral chi-squared
distribution with K2 degrees of freedom and noncentrality parameter m, and
the function �bias,TSLS is the weak instrument boundary minimum eigenvalue
of Λ in (3.11).

The results of Section 3 and the bound resulting from Proposition 1 imply
that, asymptotically, the test (4.4) has the desired asymptotic level:

lim T→∞Pr[gmin ≥ dbias,TSLS(b; K2, n, δ) | Z ∈Wbias,TSLS] ≤ δ.

(4.5)

The procedure for testing whether the instruments are weak from the per-
spective of the size of the TSLS (or LIML) is the same, except that the critical
value in (4.4) is obtained using the size-based boundary eigenvalue function,
�size,TSLS(r ; K2, n, α) (or, for LIML, �size,LIML(r ; K2, n, α)).

4.3. Critical Values

Given a minimum eigenvalue �, conservative critical values for the test are
percentiles of the scaled noncentral chi-squared distribution χ2

K2,1−δ (K2�)/K2.
The minimum eigenvalue � is obtained from the boundary eigenvalue functions
in Section 3.5.

Critical values are tabulated in Tables 5.1–5.4 for the weak instrument tests
based on TSLS bias,TSLS size, Fuller-k bias, and LIML size, respectively,
for one and two included endogenous variables (and three for TSLS bias)
and up to 30 instruments. These critical values are plotted in the panel be-
low the corresponding boundaries of the weak instrument sets in Figures 5.1–
5.4. The critical value plots are qualitatively similar to the corresponding
boundary eigenvalue plots, except of course that the critical values exceed the
boundary eigenvalues to take into account the sampling distribution of the test
statistic.

These critical value plots provide a basis for comparing the robustness to
weak instruments of various procedures: the lower the critical value curve, the
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Table 5.2. Critical values for the weak instrument test based on TSLS size
(Significance level is 5%)

n = 1, r = n = 2, r =
K2 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25

1 16.38 8.96 6.66 5.53
2 19.93 11.59 8.75 7.25 7.03 4.58 3.95 3.63
3 22.30 12.83 9.54 7.80 13.43 8.18 6.40 5.45
4 24.58 13.96 10.26 8.31 16.87 9.93 7.54 6.28
5 26.87 15.09 10.98 8.84 19.45 11.22 8.38 6.89
6 29.18 16.23 11.72 9.38 21.68 12.33 9.10 7.42
7 31.50 17.38 12.48 9.93 23.72 13.34 9.77 7.91
8 33.84 18.54 13.24 10.50 25.64 14.31 10.41 8.39
9 36.19 19.71 14.01 11.07 27.51 15.24 11.03 8.85

10 38.54 20.88 14.78 11.65 29.32 16.16 11.65 9.31
11 40.90 22.06 15.56 12.23 31.11 17.06 12.25 9.77
12 43.27 23.24 16.35 12.82 32.88 17.95 12.86 10.22
13 45.64 24.42 17.14 13.41 34.62 18.84 13.45 10.68
14 48.01 25.61 17.93 14.00 36.36 19.72 14.05 11.13
15 50.39 26.80 18.72 14.60 38.08 20.60 14.65 11.58
16 52.77 27.99 19.51 15.19 39.80 21.48 15.24 12.03
17 55.15 29.19 20.31 15.79 41.51 22.35 15.83 12.49
18 57.53 30.38 21.10 16.39 43.22 23.22 16.42 12.94
19 59.92 31.58 21.90 16.99 44.92 24.09 17.02 13.39
20 62.30 32.77 22.70 17.60 46.62 24.96 17.61 13.84
21 64.69 33.97 23.50 18.20 48.31 25.82 18.20 14.29
22 67.07 35.17 24.30 18.80 50.01 26.69 18.79 14.74
23 69.46 36.37 25.10 19.41 51.70 27.56 19.38 15.19
24 71.85 37.57 25.90 20.01 53.39 28.42 19.97 15.64
25 74.24 38.77 26.71 20.61 55.07 29.29 20.56 16.10
26 76.62 39.97 27.51 21.22 56.76 30.15 21.15 16.55
27 79.01 41.17 28.31 21.83 58.45 31.02 21.74 17.00
28 81.40 42.37 29.12 22.43 60.13 31.88 22.33 17.45
29 83.79 43.57 29.92 23.04 61.82 32.74 22.92 17.90
30 86.17 44.78 30.72 23.65 63.51 33.61 23.51 18.35

Notes. The test rejects if gmin exceeds the critical value. The critical value is a function of
the number of included endogenous regressors (n), the number of instrumental variables
(K2), and the desired maximal size (r ) of a 5% Wald test of β = β0.

more robust is the procedure. For discussion and comparisons of TSLS, BTSLS,
Fuller-k, JIVE, and LIML, see Stock et al. (2002, Section 6).

4.3.1. Comparison to the Staiger–Stock Rule of Thumb

Staiger and Stock (1997) suggested the rule of thumb that, in the n = 1 case,
instruments be deemed weak if the first-stage F is less than 10. They motivated
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Table 5.3. Critical values for the weak instrument test based on Fuller-k bias
(Significance level is 5%)

n = 1, b = n = 1, b =
K2 0.05 0.10 0.20 0.30 0.05 0.10 0.20 0.30

1 24.09 19.36 15.64 12.71
2 13.46 10.89 9.00 7.49 15.50 12.55 9.72 8.03
3 9.61 7.90 6.61 5.60 10.83 8.96 7.18 6.15
4 7.63 6.37 5.38 4.63 8.53 7.15 5.85 5.10
5 6.42 5.44 4.62 4.03 7.16 6.07 5.04 4.44
6 5.61 4.81 4.11 3.63 6.24 5.34 4.48 3.98
7 5.02 4.35 3.75 3.33 5.59 4.82 4.08 3.65
8 4.58 4.01 3.47 3.11 5.10 4.43 3.77 3.39
9 4.23 3.74 3.25 2.93 4.71 4.12 3.53 3.19

10 3.96 3.52 3.07 2.79 4.41 3.87 3.33 3.02
11 3.73 3.34 2.92 2.67 4.15 3.67 3.17 2.88
12 3.54 3.19 2.80 2.57 3.94 3.49 3.04 2.77
13 3.38 3.06 2.70 2.48 3.76 3.35 2.92 2.67
14 3.24 2.95 2.61 2.41 3.60 3.22 2.82 2.58
15 3.12 2.85 2.53 2.34 3.47 3.11 2.73 2.51
16 3.01 2.76 2.46 2.28 3.35 3.01 2.65 2.44
17 2.92 2.69 2.39 2.23 3.24 2.92 2.58 2.38
18 2.84 2.62 2.34 2.18 3.15 2.84 2.52 2.33
19 2.76 2.56 2.29 2.14 3.06 2.77 2.46 2.28
20 2.69 2.50 2.24 2.10 2.98 2.71 2.41 2.23
21 2.63 2.45 2.20 2.07 2.91 2.65 2.36 2.19
22 2.58 2.40 2.16 2.04 2.85 2.60 2.32 2.16
23 2.52 2.36 2.13 2.01 2.79 2.55 2.28 2.12
24 2.48 2.32 2.10 1.98 2.73 2.50 2.24 2.09
25 2.43 2.28 2.06 1.95 2.68 2.46 2.21 2.06
26 2.39 2.24 2.04 1.93 2.63 2.42 2.18 2.03
27 2.36 2.21 2.01 1.90 2.59 2.38 2.15 2.01
28 2.32 2.18 1.99 1.88 2.55 2.35 2.12 1.98
29 2.29 2.15 1.96 1.86 2.51 2.31 2.09 1.96
30 2.26 2.12 1.94 1.84 2.47 2.28 2.07 1.94

Notes. The test rejects if gmin exceeds the critical value. The critical value is a func-
tion of the number of included endogenous regressors (n), the number of instru-
mental variables (K2), and the desired maximal bias of the IV estimator relative to
OLS (b).

this suggestion based on the relative bias of TSLS. Because the 5% critical
value for the relative bias weak instrument test with b = 0.1 is approximately
11 for all values of K2, the Staiger–Stock rule of thumb is approximately a 5%
test that the worst-case relative bias is approximately 10% or less. This provides
a formal, and not unreasonable, testing interpretation of the Staiger–Stock rule
of thumb.
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Table 5.4. Critical values for the weak instrument test based on LIML size
(Significance level is 5%)

n = 1, r = n = 1, r =
K2 0.10 0.15 0.20 0.25 0.10 0.15 0.20 0.25

1 16.38 8.96 6.66 5.53
2 8.68 5.33 4.42 3.92 7.03 4.58 3.95 3.63
3 6.46 4.36 3.69 3.32 5.44 3.81 3.32 3.09
4 5.44 3.87 3.30 2.98 4.72 3.39 2.99 2.79
5 4.84 3.56 3.05 2.77 4.32 3.13 2.78 2.60
6 4.45 3.34 2.87 2.61 4.06 2.95 2.63 2.46
7 4.18 3.18 2.73 2.49 3.90 2.83 2.52 2.35
8 3.97 3.04 2.63 2.39 3.78 2.73 2.43 2.27
9 3.81 2.93 2.54 2.32 3.70 2.66 2.36 2.20

10 3.68 2.84 2.46 2.25 3.64 2.60 2.30 2.14
11 3.58 2.76 2.40 2.19 3.60 2.55 2.25 2.09
12 3.50 2.69 2.34 2.14 3.58 2.52 2.21 2.05
13 3.42 2.63 2.29 2.10 3.56 2.48 2.17 2.02
14 3.36 2.57 2.25 2.06 3.55 2.46 2.14 1.99
15 3.31 2.52 2.21 2.03 3.54 2.44 2.11 1.96
16 3.27 2.48 2.18 2.00 3.55 2.42 2.09 1.93
17 3.24 2.44 2.14 1.97 3.55 2.41 2.07 1.91
18 3.20 2.41 2.11 1.94 3.56 2.40 2.05 1.89
19 3.18 2.37 2.09 1.92 3.57 2.39 2.03 1.87
20 3.21 2.34 2.06 1.90 3.58 2.38 2.02 1.86
21 3.39 2.32 2.04 1.88 3.59 2.38 2.01 1.84
22 3.57 2.29 2.02 1.86 3.60 2.37 1.99 1.83
23 3.68 2.27 2.00 1.84 3.62 2.37 1.98 1.81
24 3.75 2.25 1.98 1.83 3.64 2.37 1.98 1.80
25 3.79 2.24 1.96 1.81 3.65 2.37 1.97 1.79
26 3.82 2.22 1.95 1.80 3.67 2.38 1.96 1.78
27 3.85 2.21 1.93 1.78 3.74 2.38 1.96 1.77
28 3.86 2.20 1.92 1.77 3.87 2.38 1.95 1.77
29 3.87 2.19 1.90 1.76 4.02 2.39 1.95 1.76
30 3.88 2.18 1.89 1.75 4.12 2.39 1.95 1.75

Notes. The test rejects if gmin exceeds the critical value. The critical value is a function of
the number of included endogenous regressors (n), the number of instrumental variables
(K2), and the desired maximal size (r ) of a 5% Wald test of β = β0.

The rule of thumb fares less well from the perspective of size distortion.
When the number of instruments is one or two, the Staiger–Stock rule of thumb
corresponds to a 5% level test that the maximum size is no more than 15%
(so that the maximum TSLS size distortion is no more than 10%). However,
when the number of instruments is moderate or large, the critical value is much
larger and the rule of thumb does not provide substantial assurance that the size
distortion is controlled.
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5. ASYMPTOTIC PROPERTIES OF THE TEST
AS A DECISION RULE

This section examines the asymptotic rejection rate of the weak instrument test
as a function of the smallest eigenvalue of Λ. When this eigenvalue exceeds
the boundary minimum eigenvalue for the weak instrument set, the asymptotic
rejection rate is the asymptotic power function.

The exact asymptotic distribution of gmin depends on all the eigenvalues ofΛ.
It is bounded above by (4.2). On the basis of numerical analysis, we conjecture
that this distribution is bounded below by the distribution of the minimum
eigenvalue of a random matrix with the noncentral Wishart distribution Wn(K2,
In , mineval(K2Λ)In)/K2. These two bounding distributions are used to bound
the distribution of gmin as a function of mineval(Λ).

The bounds on the asymptotic rejection rate of the test (4.4) (based on
TSLS maximum relative bias) are plotted in Figure 5.5 for b = 0.1 and n = 2.
The value of the horizontal axis (the minimum eigenvalue) at which the upper
rejection rate curve equals 5% is �bias(.1; K2, 2). Evidently, as the minimum
eigenvalue increases, so does the rejection rate. The rejection curve becomes
steeper as K2 increases. The bounding distributions give a fairly tight range for
the actual power function, which depends on all the eigenvalues of Λ.

The analogous curves for the test based on Fuller-k bias,TSLS size, or
LIML size are centered differently because the tests have different critical val-
ues but otherwise are qualitatively similar to those in Figure 5.5 and thus are
omitted.

Interpretation as a Decision Rule

It is useful to think of the weak instrument test as a decision rule: if gmin is
less than the critical value, conclude that the instruments are weak, otherwise
conclude that they are strong.

Under this interpretation, the asymptotic rejection rates in Figure 5.5 bound
the asymptotic probability of deciding that the instruments are strong. Evidently,
for values of mineval(Λ) much below the weak instrument region boundary,
the probability of correctly concluding that the instruments are weak is effec-
tively equal to 1. Thus, if in fact the researcher is confronted by instruments
that are quite weak, this will be detected by the weak instruments test with
probability essentially equal to 1. Similarly, if the researcher has instruments
with a minimum eigenvalue of Λ substantially above the threshold for the weak
instruments set, then the probability of correctly concluding that they are strong
also is essentially equal to 1.

The range of ambiguity of the decision procedure is given by the values
of the minimum eigenvalue for which the asymptotic rejection rates effectively
fall between 0 and 1. When K2 is small this range can be 10 or more, but
for K2 large this range of potential ambiguity of the decision rule is quite
narrow.
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Figure 5.5. Power function for TSLS bias test (Relative bias = 0.1, n = 2).

6. CONCLUSIONS

The procedure proposed here is simple: compare the minimum eigenvalue of
GT , the first-stage F-statistic matrix, to a critical value. The critical value is
determined by the IV estimator the researcher is using, the number of instru-
ments K2, the number of included endogenous regressors n, and how much
bias or size distortion the researcher is willing to tolerate. The test statistic is
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the same whether one focuses on the bias of TSLS or Fuller-k or on the size of
TSLS or LIML; all that differs is the critical value.

Viewed as a test, the procedure has good power, especially when the number
of instruments is large. Viewed as a decision rule, the procedure effectively
discriminates between weak and strong instruments, and the region of ambiguity
decreases as the number of instruments increases.

Our findings support the view that LIML is far superior to TSLS when
the researcher has weak instruments, at least from the perspective of coverage
rates. Actual LIML coverage rates are close to their nominal rates even for
quite small values of the concentration parameter, especially for moderately
many instruments. Similarly, the Fuller-k estimator is more robust to weak
instruments than TSLS when viewed from the perspective of bias. Additional
comparisons are made in Stock et al. (2002).

When there is a single included endogenous variable, this procedure provides
a refinement and improvement to the Staiger–Stock (1997) rule of thumb that
instruments be deemed “weak” if the first-stage F is less than 10. The difference
between that rule of thumb and the procedure of this paper is that, instead of
comparing the first-stage F to 10, it should be compared to the appropriate
entry in Table 5.1 (TSLS bias), Table 5.2 (TSLS size), Table 5.3 (Fuller-k bias),
or Table 5.4 (LIML size). Those critical values indicate that their rule of thumb
can be interpreted as a test, with approximately a 5% significance level, of the
hypothesis that the maximum relative bias is at least 10%. The Staiger–Stock
rule of thumb is too conservative if LIML or Fuller-k are used unless the number
of instruments is very small, but it is insufficiently conservative to ensure that
the TSLS Wald test has good size.

This paper has two loose ends. First, the characterization of the set of weak
instruments is based on the premise that the maximum relative bias and the
maximum size distortion are nonincreasing in each eigenvalue of Λ, for values
of those eigenvalues in the relevant range. This was justified formally using
the many weak instrument asymptotics of Stock and Yogo (2003); although
numerical analysis suggests it is true for all K2, this remains to be proven.
Second, the lower bound of the power function in Section 5 is based on the
assumption that the cdf of the minimum eigenvalue of a noncentral Wishart
random variable is nondecreasing in each of the eigenvalues of its noncen-
trality matrix. This too appears to be true on the basis of numerical analysis,
but we do not have a proof, nor does this result seem to be available in the
literature.

Beyond this, several avenues of research remain open. First, the tests pro-
posed here are conservative when n > 1 because they use critical values com-
puted using the noncentral chi-squared bound in Proposition 4.1. Although
the tests appear to have good power despite this, tightening the Proposi-
tion 4.1 bound (or constructing tests based on all the eigenvalues) could pro-
duce more powerful tests. Second, we have considered inference based on
TSLS, Fuller-k, and LIML, but there are other estimators to explore as well.
Third, the analysis here is predicated upon homoskedasticity, and it remains to
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extend these tests to GMM estimation of the linear IV regression model under
heteroskedasticity.
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CHAPTER 6

Asymptotic Distributions of Instrumental
Variables Statistics with Many Instruments
James H. Stock and Motohiro Yogo

ABSTRACT

This paper extends Staiger and Stock’s (1997) weak instrument asymptotic approximations to the
case of many weak instruments by modeling the number of instruments as increasing slowly with
the number of observations. It is shown that the resulting “many weak instrument” approximations
can be calculated sequentially by letting first the sample size, and then the number of instruments,
tend to infinity. The resulting distributions are given for k-class estimators and test statistics.

1. INTRODUCTION

Most of the literature on the distribution of statistics in instrumental variables
(IV) regression assumes, either implicitly or explicitly, that the number of instru-
ments (K2) is small relative to the number of observations (T ); see Rothenberg’s
(1984) survey of Edgeworth approximations to the distributions of IV statis-
tics. In some applications, however, the number of instruments can be large;
for example, Angrist and Krueger (1991) had 178 instruments in one of their
specifications. Sargan (1975), Kunitomo (1980), and Morimune (1983) pro-
vided early asymptotic treatments of many instruments. More recently, Bekker
(1994) obtained first-order distributions of various IV estimators under the
assumptions that K2 →∞, T →∞, and K2/T → c, 0 ≤ c < 1, when the
so-called concentration parameter (µ2) is proportional to the sample size and
the errors are Gaussian. Chao and Swanson (2002) have explored the consis-
tency of IV estimators with weak instruments when the number of instruments
is large, in the sense that K2 is also modeled as increasing to infinity, but more
slowly than T .

This paper continues this line of research on the asymptotic distribution
of IV estimators when there are many instruments. Our focus is on the case
of many weak instruments, that is, when there are many instruments that are,
on average, only weakly correlated with the included endogenous regressors.
Specifically, we extend the weak instrument asymptotics developed in Staiger
and Stock (1997) to the case of many instruments. The key technical device of
the Staiger–Stock (1997) weak instrument asymptotics is fixing the expected
value of the concentration parameter, along with the number of instruments,
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as the sample size increases. Here, we extend this to the case that the ex-
pected value of the concentration parameter is proportional to the number of
instruments, and the number of instruments is allowed to increase slowly with
the sample size, specifically, as T →∞, K2 →∞, E(µ2)/K2 → Λ∞ (a fixed
matrix), and K 4

2/T → 0. We refer to asymptotic limits taken under sequences
satisfying these conditions as many weak instrument limits. (The term “many”
should not be overinterpreted because while the number of instruments is al-
lowed to tend to infinity, the condition K 4

2/T → 0 requires it to do so very
slowly relative to the sample size.) Under these conditions, and some addi-
tional technical conditions stated in Section 2 (including i.i.d. sampling and
existence of fourth moments), it is shown that the limits of k-class IV statistics
as K2 and T jointly tend to infinity can in general be computed using sequential
asymptotic limits. Under sequential asymptotics, the fixed-K2 weak instrument
limit is obtained first, then the limit of that distribution is taken as K2 →∞.
The advantage of this “first T then K2” approach is that the sequential calcu-
lations are simpler than the calculations that arise along the joint sequence of
(K2, T ). A potential disadvantage of this approach is that this simplicity comes
at the cost of a stronger rate condition than might be obtained along the joint
sequence.

We begin in Section 2 by specifying the model, the k-class IV statistics of
interest, and our assumptions. Section 3 justifies the sequential asymptotics by
showing that, under these assumptions, a key uniform convergence condition
holds. In Section 4, we derive the many weak instrument limits of k-class
estimators and test statistics using sequential asymptotics. These many weak
instrument limits are used in Stock and Yogo (2004) to develop tests for weak
instruments when the number of instruments is moderate. Some of these results
might be of more general interest, however; for example, Chao and Swanson
(2002) show that LIML is consistent under these conditions, and in this paper
we provide its

√
K2-limiting distribution. Section 5 provides some concluding

remarks.

2. THE MODEL, STATISTICS, AND ASSUMPTIONS

2.1. Model and Notation

We consider the IV regression model with n included endogenous regressors:

y = Yβ + u, (2.1)

Y = ZΠ+ V, (2.2)

where y is the T × 1 vector of T observations on the dependent variable, Y is
the T × n matrix of n included endogenous variables, Z is the T × K2 matrix
of K2 excluded exogenous variables to be used as instruments, and u and V
are a T × 1 vector and T × n matrix of disturbances, respectively. The n × 1
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vector β and K2 × n matrix Π are unknown parameters. Throughout this paper
we exclusively consider inference about β.

It is useful to introduce some additional notation. Let Zt = (Z1t · · · Z K2t )′,
Vt = (V1t · · · Vnt )′,Y = [y Y],QZZ = E(Zt Z′

t ),

Σ = E

[(
ut

Vt

) (
ut V′

t

)] = [σ uu ΣuV

ΣVu ΣVV

]
, (2.3)

ρ = Σ−1/2
VV

′
ΣVuσ

−1/2
uu , (2.4)

C =
√

TΠ, and (2.5)

ΛK2 = TΣ−1/2
VV Π′QZZΠΣ−1/2′

VV

/
K2 = Σ−1/2

VV C′QZZCΣ−1/2′
VV

/
K2. (2.6)

The n × n matrix ΛK2 is the expected value of the concentration parameter,
divided by the number of instruments, K2. Note that ρ′ρ ≤ 1.

2.2. k-Class Statistics

The k-class estimator of β is

β̂(k) = [Y′(I− kMZ)Y]−1[Y′(I− kMZ)y], (2.7)

where MZ = I – Z(Z′Z)−1Z′ and k is a scalar. The Wald statistic, based on the
k-class estimator, testing the null hypothesis β = β0 is

W (k) = [β̂(k)− β0]′[Y′(I − kMZ)Y][β̂(k)− β0]

nσ̂ uu(k)
, (2.8)

where σ̂ uu(k) = û(k)′û(k)/(T − n) and û(k) = y− Yβ̂(k).
Specific k-class estimators of interest include two-stage least squares

(TSLS), the limited information maximum likelihood (LIML) estimator,
Fuller’s (1977) k-class estimator, and bias-adjusted TSLS (BTSLS; Nagar 1959;
Rothenberg 1984). The values of k for these estimators are (cf. Donald and
Newey 2001):

TSLS: k = 1, (2.9)

LIML: k = k̂LIML is the smallest root of det (Y′Y− kY′MZ Y) = 0, (2.10)

Fuller-k: k = k̂LIML − c/(T − K2),where c is a positive constant, (2.11)

BTSLS: k = T/(T − K2 + 2), (2.12)

where det(A) is the determinant of matrix A.
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2.3. Assumptions

We assume that the random variables are i.i.d. with four moments, the in-
struments are not multicollinear, and the errors are homoskedastic; that is, we
assume:

Assumption A
(a) There exists a constant D1 > 0 such that mineval(Z′Z/T ) ≥ D1 a.s.

for all K2 and for all T greater than some T0.
(b) Zt is i.i.d. with EZt Z′

t = QZZ, where QZZ is positive definite, and
E Z4

i t ≤ D2 < ∞, where i = 1, . . . , K2.
(c) ηt = [ut V′

t ]
′ is i.i.d. with E(ηt | Zt ) = 0, E(ηtη

′
t | Zt ) = Σ, which

is positive definite, and E(|ηi tη j tηktηlt | | Zt ) = E(|ηi tη j tηktηlt |) ≤
D3 < ∞, where i , j , k, l = 1, . . . , n + 1.

The next assumption is that the instruments are weak in the sense that the
amount of information per instrument does not increase with the sample size,
that is, the concentration parameter is proportional to the number of instruments.
For fixed K2, this assumption is achieved by considering the sequence of models
in which C = Π/

√
T is fixed, so that Π is modeled as local to zero (Staiger

and Stock 1997). We adopt this nesting here, specifically:

Assumption B. maxi, j |Ci, j | ≤ D4 <∞, where D4 does not depend on T or
K2, and C′C/K2 → H as T →∞, where H is a fixed n × n matrix.

Assumption B implies that ΛK2 → Λ∞ as T →∞, where Λ∞ is a fixed
matrix with maxeval(Λ∞) <∞. When the number of instruments is fixed, this
assumption is equivalent to the weak-instrument Assumption L� in Staiger and
Stock (1997).

Our analysis focuses on sequences of K2 that, if they increase, do so slower
than

√
T . Specifically, we assume:

Assumption C. K 4
2/T → 0 as T →∞.

Note that Assumption C does not require K2 to increase, but it limits the rate
at which it can increase.

3. UNIFORM CONVERGENCE RESULT

This section provides the uniform convergence result (Theorem 3.1) that jus-
tifies the use of sequential asymptotics to compute the many weak instrument
limiting representations. We adopt Phillips and Moon’s (1999) notation in
which (T , K2 →∞)seq denotes the sequential limit in which first T →∞,
then K2 →∞; the notation (K2, T →∞) denotes the joint limit in which K2

is implicitly indexed by T .
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Lemma 6 of Phillips and Moon (1999) provides general conditions under
which sequential convergence implies joint convergence.

Phillips and Moon (1999), Lemma 6
(a) Suppose there exist random vectors X K and X on the same probabil-

ity space as X K ,T satisfying, for all K , X K ,T
p→ X K as T →∞ and

X K
p→ X as K →∞. Then X K ,T

p→ X as (K , T →∞) if and only if

lim supK ,T Pr [‖X K ,T − X K‖ > ε] = 0 for all ε > 0. (3.1)

(b) Suppose there exist random vectors X K such that, for any fixed K ,

X K ,T
d→ X K as T →∞ and X K

d→ X as K →∞. Then X K ,T
d→ X

as (K , T →∞) if and only if, for all bounded continuous functions f ,

lim supK ,T |E[ f (X K ,T )]− E[ f (X K )]| = 0. (3.2)

Note that condition (3.2) is equivalent to the requirement

lim supK ,T supx |FX K ,T (x)− FX K (x)| = 0, (3.3)

where FX K ,T is the c.d.f. of X K ,T and FX K is the c.d.f. of X K .
The rest of this section is devoted to showing that the conditions of this

lemma, that is, (3.1) and (3.3), hold under assumptions A, B, and C for the
statistics that enter the k-class estimators and test statistics. To do so, we use
the following Berry–Esseen bound proven by Bertkus (1986):

Berry–Esseen Bound (Bertkus 1986). Let {X1, . . . , XT } be an i.i.d. sequence
in R

K with zero means, a nonsingular second moment matrix, and finite ab-
solute third moments. Let PT be the probability measure associated with
T−1/2∑T

t=1 Xt , and let P be the limiting Gaussian measure. Then for each T ,

supA∈C K |PT (A)− P(A)| ≤ const× (K/T )1/2 E‖X‖3

= O
([

K 4
2/T

]1/2
)

(3.4)

where C K is the class of all measurable convex sets in R
K .

We now turn to k-class statistics. First note that, for fixed K2, under Assump-
tions A and B, the weak law of large numbers and the central limit theorem
imply that the following limits hold jointly for fixed K2:

(T−1u′u, T−1V′u, T−1V′V)
p→ (σ uu,ΣVu,ΣVV), (3.5)

Π′Z′ZΠ
p→ C′QZZC, (3.6)

(Π′Z′u,Π′Z′V)
d→ (C′ΨZu,C′ΨZV), (3.7)

(u′PZu,V′PZu,V′PZV)
d→ (

� ′
Zu Q−1

ZZ�Zu, �
′
ZV Q−1

ZZ�Zu,

� ′
ZV Q−1

ZZ�ZV
)
, (3.8)
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where ΨZu and ΨZV are, respectively, K2 × 1 and K2 × n random variables
and Ψ ≡ [Ψ′

Zu , vec(�ZV)′]′ is distributed N (0, � ⊗ QZZ).
The following theorem shows that the limits in (3.5)–(3.8) and related limits

hold uniformly in K2 under the sampling assumption (Assumption A), the weak
instrument assumption (Assumption B), and the rate condition (Assumption C).
Let ‖A‖ = [tr(A′A)]1/2 denote the norm of the matrix A and, as in (3.3), let FX

denote the c.d.f. of the random variable X (etc.).

Theorem 3.1. Under Assumptions A, B, and C,

(a) lim supK2,T Pr[‖(u′u/T,V′u/T,V′V/T )− (σ uu,ΣVu,ΣVV)‖ >

ε] = 0 ∀ ε > 0,
(b) lim supK2,T Pr[‖Π′Z′ZΠ‖/K2 − C′QZZC/K2‖ > ε] = 0 ∀ ε > 0,
(c) lim supK2,T supx |FΠ′Z′u(x)− FC′�Zu (x)| = 0,
(d) lim supK2,T supx |FΠ′Z′V(x)− FC′�ZV (x)| = 0,
(e) lim supK2,T supx |Fu′PZ u(x)− F� ′

Zu Q−1
ZZ�Zu

(x)| = 0,
(f) lim supK2,T supx |FV′PZu(x)− F� ′

ZVQ−1
ZZ�Zu

(x)| = 0,
(g) lim supK2,T supx |FV′PZ V(x)− F� ′

ZVQ−1
ZZ�ZV

(x)| = 0.

The proof of Theorem 3.1 is contained in the Appendix.
Theorem 3.1 verifies the conditions (3.1) and (3.3) of Phillips and Moon’s

(1999) Lemma 6 for statistics that enter the k-class estimator and Wald statis-
tic. Some of these objects converge in probability uniformly under the stated
assumptions (parts (a) and (b)), while others converge in distribution uniformly
(parts (c)–(g)). It follows from the continuous mapping theorem that continu-
ous functions of these objects also converge in probability (and/or distribution)
uniformly under the stated assumptions. Because the k-class estimator β̂(k) and
Wald statistic W (k) are continuous functions of these statistics (after centering
and scaling as needed), it follows that the (K2, T →∞) joint limit of these
k-class statistics can be computed as the sequential limit (T , K2 →∞)seq.

4. MANY WEAK INSTRUMENT ASYMPTOTIC
LIMITS

This section collects calculations of the many weak instrument asymptotic
limits of k-class estimators and Wald statistics. These calculations are done
using sequential asymptotics (justified by Theorem 3.1), in which the fixed-K2

weak instrument asymptotic limits of Staiger and Stock (1997, Theorem 1)
are analyzed as K2 →∞. The limiting distributions differ depending on the
limiting behavior of k. The main results are collected in Theorem 4.1, which is
proven in the Appendix.

Theorem 4.1. Suppose that Assumptions A, B, and C hold, and that K2 →∞.
Let x be an n-dimensional standard normal random variable. Then the following
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limits hold as (K2, T →∞):

(a) TSLS: If T (k − 1)/K2 → 0, then

β̂(k)− β
p→ σ 1/2

uu Σ−1/2
VV (�∞ + In)−1ρ and (4.1)

W (k)/K2
p→ ρ′(Λ∞ + In)−1ρ

n[1− 2ρ′(Λ∞ + In)−1ρ+ ρ′(Λ∞ + In)−2ρ]
. (4.2)

(b) BTSLS: If
√

K2[T (k − 1)/K2 − 1] → 0 and mineval (Λ∞) > 0, then√
K2(β̂(k)− β)

d→ N (0, σ uu�
−1/2
VV Λ−1

∞ (Λ∞ + In

+ ρρ′)Λ−1
∞ �

−1/2
VV

′) and (4.3)

W (k)
d→ x′(Λ∞ + In + ρρ′)1/2Λ−1

∞ (Λ∞ + In + ρρ′)1/2′x/n. (4.4)

(b) LIML, Fuller-k: If T (k − kLIML)/
√

K2 → 0 and mineval(Λ∞) > 0,
then√

K2[T (k − 1)/K2 − 1]
d→ N (0, 2), (4.5)√

K2(β̂(k)− β)
d→ N (0, σ uu�

−1/2
VV Λ−1

∞ (Λ∞ + In − ρρ′)

Λ−1
∞ �

−1/2
VV

′) and (4.6)

W (k)
d→ x′(Λ∞ + In − ρρ′)1/2�−1

∞ (Λ∞ + In − ρρ′)1/2′x/n. (4.7)

5. DISCUSSION

To simplify the proofs we have assumed i.i.d. sampling. Götze (1991) provides
a Berry–Esseen bound for i.n.i.d. sampling. The bound in the i.n.i.d. case is
const× (K 2

1/T )E‖X‖3 = O([K 5
2/T ]1/2), so the rate in Assumption C would

be slower, K 5
2/T → 0. With this slower rate, the results in Section 3 would

extend to the case where the errors and instruments are independently but not
necessarily identically distributed.

The many weak instrument representations in Theorem 4.1 for BTSLS,
LIML, and the Fuller-k estimator rule out the partially identified and unidenti-
fied cases, for which mineval(Λ∞) = 0. This suggests that the approximations
in Theorem 4.1, parts (b) and (c), might become inaccurate as ΛK2 becomes
nearly singular. The behavior of the many weak instrument approximations in
partially identified and unidentified cases remain to be explored.
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APPENDIX

This appendix contains the proofs of Theorems 3.1 and 4.1. The proof of The-
orem 3.1 uses the following lemma.

Lemma A.1. Let �T = (Z′Z/T )−1 −Q−1
ZZ. Under Assumptions A and C,

(a) lim supK2,T Pr[|T−1u′Z�T Z′u| > ε] = 0 ∀ ε > 0,
(b) lim supK2,T Pr[‖T−1V′Z�T Z′u‖ > ε] = 0 ∀ ε > 0,
(c) lim supK2,T Pr[‖T−1V′Z�T Z′V‖ > ε] = 0 ∀ ε > 0.

Proof of Lemma A.1. The strategy for proving each part is first to show that the
relevant quadratic form (for example, in (a), the quadratic form T−1u′Z�T Z′u)
has expected mean square that is bounded by const× (K 2

2/T ), and then to apply
Chebychev’s inequality and the condition in Assumption C that K 2

2/T → 0.
The details of these calculations are tedious and are omitted; they can be found
in an earlier working paper (Stock and Yogo 2002, Lemma A.2).

Proof of Theorem 3.1. (a) This follows from the weak law of large numbers
because (u′u/T , V′u/T , V′V/T ) do not depend on K2.

(b) Note that E[Π′Z′ZΠ/K2 − C′QZZC/K2] = 0. The (1,1) element of this
matrix is

(Π′Z′ZΠ− C′QZZC)1,1/K2

= (T K2)−1
T∑

t=1

K2∑
i=1

K2∑
j=1

Ci1C j1(Zit Z jt − qi j ),

where qi j is the (i , j) element of QZZ. Because Zt is i.i.d. (Assumption A(b))
and the elements of C are bounded (Assumption B), the expected value of the
square of this element is

E{[(�′Z′Z�− C′QZZC)1,1/K2]2}

= E

[
1

TK2

T∑
t=1

K2∑
i=1

K2∑
j=1

Ci1C j1(Zit Z jt − qi j )

]2

= 1

TK 2
2

K2∑
i=1

K2∑
j=1

K2∑
k=1

K2∑
l=1

Ci1C j1Ck1Cl1 E[(Zit Z jt − qi j )(Zkt Zlt − qkl)]

≤ const× K 2
2

T
×
(

1

K2

K2∑
i=1

|Ci1|
)4

≤ const× K 2
2

T
.

By the same argument applied to the (1,1) element, the remaining elements
of �′Z′Z�/K2 − C′QZZC/K2 are also bounded in mean square by const×
(K 2

2/T ). The matrix Π′Z′ZΠ/K2 is n × n and so the number of elements does
not depend on K2, and the result (b) follows by Chebychev’s inequality and
noting that, under Assumption C, K 2

2/T → 0.
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(c) Under Assumption B, Π′Z′u = T−1/2C′Z′u = C′(T−1/2∑T
t=1 Zt ut ).

Let PT denote the probability measure associated with T−1/2Z′u and let
P denote the limiting probability measure associated with ΨZu . Define the
convex set A(x) = {y ∈ R

K2 : C′y ≤ x}, so that PT (A(x)) = FΠ′Z′u(x) and
P(A(x)) = FC ′ΨZu

(x). By Assumption A, Zt ut is an i.i.d., mean zero K2-
dimensional random variable with finite third moments, so the Berry–Esseen
bound (3.4) applies and supx |FΠ′Z′u(x)− FC′ΨZu(x)| ≤ const×

√
K 4

2/T . The
result (c) follows from Assumption C. We note that this line of argument is used
in Jensen and Mayer (1975).

(d) The proof is the same as for (c).
(e) Write u′PZu = (T−1/2u′Z)(T−1Z′Z)(T−1/2Z′u) = ξ 1 + ξ 2, where ξ 1 =

(T−1/2u′Z)Q−1
ZZ(T−1/2Z′u) and ξ 2 = (T−1/2u′Z)�T (T−1/2Z′u). As in the proof

of (c), let PT denote the probability measure associated with T−1/2Z′u and let
P denote the limiting probability measure of ΨZu . Let B(x) be the convex set,
B(x) = {y ∈ R

K2 : y′Q−1
ZZy ≤ x}, so that PT (B(x)) = Fξ 1

(x) and P(B(x)) =
F� ′

Zu Q−1
ZZ�Zu

(x). It follows from (3.4) that supx |Fξ 1
(x)− F� ′

Zu Q−1
ZZ�Zu

(x)| ≤
const×

√
K 4

2/T . By Lemma A.1(a), ξ 2
p→ 0 uniformly as (K2, T →∞), and

the result (e) follows.
(f) and (g). The dimensions of V′PZu and V′PZV do not depend on K2, and

the proofs of (f) and (g) are similar to that of (e).

Proof of Theorem 4.1. We first state the fixed-K2 weak instrument asymptotic
representations of the k-class estimators. Define the K2 × 1 and K2 × n random
variables zu = Q−1/2

ZZ
′�Zuσ

−1/2
uu and zV = Q−1/2

ZZ
′�ZV�

−1/2
VV (�Zu and �ZV are

defined following (3.8)), so that(
zu

vec(zV)

)
∼ N (0, Σ̄⊗ IK2 ),where Σ̄ =

[
1 ρ′

ρ In

]
. (A.1)

Also let

ν1 = (λ+ zV)′(λ+ zV) and (A.2)

ν2 = (λ+ zV)′zu, (A.3)

where λ = Q1/2
ZZ C�

−1/2
VV . Then under Assumptions A and B, with fixed K2,

β̂(k)− β
d→ σ 1/2

uu �
−1/2
VV (ν1 − κIn)−1(ν2 − κρ) and (A.4)

W (k)
d→ (ν2 − κρ)′(ν1 − κIn)−1(ν2 − κρ)

n[1− 2ρ′(ν1 − κIn)−1(ν2 − κρ)+ (ν2 − κρ)′(ν1 − κIn)−2(ν2 − κρ)]
,

(A.5)

where (A.5) holds under the null hypothesis β = β0. The representations (A.4)
and (A.5) follow from Staiger and Stock (1997, Theorem 1) because Assump-
tions A and B imply Staiger and Stock’s Assumptions M and L� when K2 is
fixed.
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The following limits hold jointly as K2 →∞:

ν1/K2
p→Λ∞ + In, (A.6)

ν2/K2
p→ρ, (A.7)⎛⎜⎜⎜⎜⎜⎜⎜⎝

z′uzu − K2√
K2

λ′zu√
K2

z′Vzu − K2ρ√
K2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
d→ N (0, B), whereB =

⎡⎣ 2 0 2ρ′

0 Λ∞ 0
2ρ 0 In + ρρ′

⎤⎦,
(A.8)

(ν2 − K2ρ)/
√

K2 → N (0,Λ∞ + In + ρρ′). (A.9)

The results (A.6)–(A.9) follow by straightforward calculations using the central
limit theorem, the weak law of large numbers, and the joint normal distribution
of zu and zV in (A.1).

We now turn to the proof of Theorem 4.1.
(a) From (A.4), the fixed-K2 weak instrument approximation to the distri-
bution of the TSLS estimator is β̂TSLS − β ∼ σ

1/2
uu �

−1/2
VV ν−1

1 ν2 = σ
1/2
uu �

−1/2
VV

(ν1/K2)−1(ν2/K2). The limit stated in the theorem for the estimator follows
by substituting (A.6) and (A.7) into this expression. The many weak instrument
limit for the TSLS Wald statistic follows by rewriting (A.5) as

W TSLS/K2 ∼ (ν2/K2)′(ν1/K2)−1(ν2/K2)

n[1− 2ρ′(ν1/K2)−1(ν2/K2)+ (ν2/K2)′(ν1/K2)−2(ν2/K2)]

and applying (A.6) and (A.7).
(b) The fixed-K2 weak instrument approximation to the distribution of a k-class
estimator, given in (A.4), in general can be written as√

K2[β̂(k)− β] ∼ σ 1/2
uu Σ−1/2

VV

[
ν1 − K2In

K2
− 1√

K2

(
κ − K2√

K2

)
In

]−1

×
[
ν2 − K2ρ√

K2
−
(
κ − K2√

K2

)
ρ

]
, (A.10)

where T (k − 1)
d→ κ for fixed K2. The assumption

√
K2[T (k − 1)/K2 − 1] →

0 implies that (κ − K2)/
√

K2 → 0, so by (A.6) and (A.9) we have, as K2 →∞,

ν1 − K2In

K2
− 1√

K2

(
κ − K2√

K2

)
In

p→Λ∞ and

ν2 − K2ρ√
K2

−
(
κ − K2√

K2

)
ρ

d→ N (0,Λ∞ + In + ρρ′),

and the result (4.3) follows. The assumption mineval(�∞) > 0 is used to ensure
the invertibility of Λ∞. The distribution of the Wald statistic follows.
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(c) For fixed K2, T (kLIML − 1)
d→ κ∗. We show below that, as K2 →∞,

κ∗ − K2√
K2

= z′uzu − K2√
K2

+ op(1). (A.11)

The result (4.5) follows from (A.11) and (A.8). Moreover, applying (A.6), (A.8),
(A.9), and (A.11) yields

ν1 − K2In

K2
− 1√

K2

(
κ∗ − K2√

K2

)
In

p→Λ∞ and

ν2 − K2ρ√
K2

−
(
κ∗ − K2√

K2

)
ρ = λ′zu√

K2
+ z′V zu − K2ρ√

K2

−
(

z′uzu − K2√
K2

)
ρ+ op(1)

d→ N (0,�∞ + In − ρρ′),

where �∞ is invertible by the assumption mineval(Λ∞) > 0. The result (4.6)
follows, as does the distribution of the Wald statistic.

It remains to show (A.11). From (2.11), κ∗ is the smallest root of

0 = det

[(
z′uzu ν ′2
ν2 ν1

)
− κ∗

(
1 ρ ′

ρ In

)]
. (A.12)

Let φ = (κ∗ − K2)/
√

K2, a = (z′uzu − K2)/
√

K2, b = (ν2 − K2ρ)/
√

K2, and
L = (ν1 − K2In)/K2. Then (A.12) can be rewritten so that φ is the smallest
root of

0 = det

[
a − φ (b− φρ)′

b− φρ
√

K2L− φIn

]
. (A.13)

We first show that K−1/4
2 φ

p→ 0. Let φ̃ = K−1/4
2 φ. By (A.6), (A.8), and (A.9),

K−1/4
2 a

p→ 0, K−1/4
2 b

p→ 0, and L
p→Λ∞. By the continuity of the determinant,

it follows that in the limit K2 →∞, φ̃ is the smallest root of the equation

0 = det

[
φ̃ φ̃ρ′

φ̃ρ φ̃In + Op(K 1/4
2 )

]
, (A.14)

from which it follows that φ̃ = K−1/4
2 φ

p→ 0.
To obtain (A.11), write the determinantal equation (A.13) as

0 = [(a − φ)− (b− φρ)′(K 1/2
2 L− φIn)−1(b− φρ)] det(K 1/2

2 L− φIn)

= K n/2
2 {(a − φ)− [K−1/4

2 (b− φρ)]′(L− K−1/2
2 φIn)−1

× [K−1/4
2 (b− φρ)] det(L− K−1/2

2 φIn)

= K n/2
2 {[(a − φ)] det(Λ∞)+ op(1)}, (A.15)

where the final equality follows from K−1/4
2 b

p→ 0, L
p→ Λ∞, K−1/4

2 φ
p→ 0,

and det(Λ∞) > 0. By the continuity of the solution to (A.13), it follows that
φ = a + op(1), which, in the original notation, is (A.11).
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CHAPTER 7

Identifying a Source of Financial Volatility
Douglas G. Steigerwald and Richard J. Vagnoni

ABSTRACT

Our primary goal is to develop and analyze a dynamic economic model that takes into account
several sources of information-based trade – the markets for a stock and options on that stock.
We study identification within the model, paying particular attention to assumptions about the
latent trader arrival process. We also derive the stochastic properties of trade-by-trade decisions
and prices. Finally, we aggregate trade-by-trade quantities and to show that data generated by the
model is consistent with empirical benchmarks from exchange data.

1. INTRODUCTION

Much of Tom Rothenberg’s long and insightful career has focused on iden-
tification in econometrics. The theme is perhaps most evident in Rothenberg
(1973), which has long been the standard for identification in simultaneous
equation models. We analyze a market microstructure model, paying particular
attention to issues of identification. (The term microstructure refers to study of
asset markets at the highly disaggregated level corresponding to the arrival of
individual traders.) Working from the asymmetric information model in Easley,
O’Hara, and Srinivas (1998), we first detail the assumptions needed to identify
the parameters. We then derive the stochastic properties of trades and squared
price changes for each market and the dynamic pattern of trade across markets.
Finally, we use the methods in Kelly and Steigerwald (2004) to construct aggre-
gate trades and squared price changes and compare these to empirical bench-
marks. Together, these results provide a theory-based link between asymmetric
information, the behavior of market participants, and stochastic volatility.

In Section 2 we first present a model of informed trade in stock and options
markets and the resultant likelihood function needed to estimate the parameters.
Parameter identification requires specification of the frequency at which traders
arrive. We show how misspecification of the arrival frequency imparts bias. In
particular, we find that arrival frequency misspecification leads to downward
bias of informed trade frequencies. Even with correct specification of the arrival
frequency, the likelihood function is sensitive to aggregation and we pinpoint
the difficulty. Empirical identification requires a further assumption, by which



122 Steigerwald and Vagnoni

trades are assigned to a quote. Estimates of the accuracy of the assignment rules
typically find an error rate of 15 percent. We determine the bias that arises from
such an error rate and again find that informed trade frequencies are biased
downward.

In Section 3 we focus on the dynamic pattern of trade within and across mar-
kets. We derive (in Theorem 3.1) how frequently, in equilibrium, the informed
trade in the options market. Our results nest those of Easley et al. (1998) who
implicitly derive conditions under which the informed trade with constant fre-
quency in the options market. We next derive the properties of trade-by-trade
price changes. Because informed traders may choose to trade in the options
market, option trades can convey information about the stock price (Black
1975; Back 1993; Biais and Hillion 1994). As a result, options are not redun-
dant assets as assumed by the Black–Scholes pricing model (Black and Scholes
1973). We detail these linkages and, in Theorem 3.3, we show that the (condi-
tional) variance of price changes in a market is bounded by the squared bid–ask
spread for that market. As trade reveals information the bid–ask spread shrinks,
thereby reducing the conditional variance. The evolution of the bid–ask spread
leads to autocorrelation in the conditional variance, although not specifically of
the form modeled in a GARCH process.

In Section 4, we aggregate the trade-by-trade quantities of Section 3 to
study the behavior of trades and prices over calendar periods. Three empirical
features of stock market data form natural benchmarks for testing the model.
There is strong evidence of serial correlation in calendar period squared price
changes and in the number of trades across calendar periods, and the serial
correlation in the number of trades tends to be larger and to diminish more
slowly than serial correlation in squared price changes (Andersen 1996; Harris
1987; Steigerwald 1997). We first show that both trades (or trading volume)
and squared price changes are positively correlated. Because the conditional
variance of trade-by-trade price changes shrinks as information is revealed
through trading, while trade decisions are unaffected, the serial correlation in
trades is larger and tends to diminish more slowly than does the serial correlation
in squared price changes.

2. IDENTIFICATION IN A MICROSTRUCTURE
MODEL WITH OPTIONS MARKETS

We consider a model with markets for a stock and for call and put options on
the stock. We base our dual-market, sequential-trade, asymmetric information
model on the market microstructure models of Easley and O’Hara (1992);
Easley et al. (1998). Full details of the model and the derivations that follow
are contained in Steigerwald and Vagnoni (2001).

Trade in the stock and options markets occurs over a sequence of trading days,
indexed by m. On trading day m, the stock realizes some per share dollar value,
given by the random variable Vm ∈ {vLm , vHm }, with vLm < vHm . The stock takes
the lower value, vLm , with positive probability δ. Prior to the commencement
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of trading on day m, informed traders receive a randomly determined signal,
Sm , about the value of the stock on m. This signal takes one of three values,
Sm ∈ {sL , sH , sO}. The informative signals, sL and sH , reveal the true value of
the stock. The uninformative signal, sO , provides no information regarding the
true value of the stock. Informed traders learn the true value of the stock with
probability θ > 0. Proportion α of the traders receives the signal, characterizing
the universe of informed traders. The proportion of traders that does not receive
the signal characterizes the universe of uninformed traders. Neither market
maker is privy to the signal. At the end of each trading day, the signal is revealed
to the market makers and uninformed traders and, hence, all agree on the value
of a share of the stock.1

The market makers set an ask and a bid, collectively termed the quotes, for
either one share of stock or an option contract that controls λ ≥ 1 shares of
the stock. Each option is of the European type – precluding the possibility of
exercise prior to the end of the trading day – and expires upon revelation of the
signal. Consider the call option, which provides the owner with the right to buy
one share of the stock for a specified strike price, κCm , with κCm ∈

[
vLm , vHm

]
,

from the call option writer at the end of the trading day. The value of the call
option, VCm , is max

(
Vm − κCm , 0

)
.

As all traders are risk neutral, informed traders will trade only if they re-
ceive an informative signal. For example, if Sm = sL , then an informed trader
implements one of three possible “bearish” strategies, selling short one share
of the stock with probability ε I B , writing λ call options with probability ε I BC ,
or buying λ put options with probability ε I AP = 1− ε I B − ε I BC . Conditional
on receiving an informative signal, the informed trader employs the strategy
that provides the largest net gain. Uninformed traders are assumed to trade
for liquidity reasons and not speculation. The uninformed trade with positive
frequency in each market. For example, proportion εU B potentially sells the
stock short and proportion εU AC potentially buys λ call options. The sum of
the positive frequencies in each market is ε, thus 1− ε is the proportion of the
uninformed traders that never trade.

Traders randomly arrive to the markets one at a time, so we index them by
their order of arrival, i . The i th trader arrives, observes the quotes, and makes
a trade decision, Di . The random variable, Di , takes one of seven values. For
example, if trader i buys the stock at the ask, Ai , then Di = dA. If trader i writes
λ call options at the bid, BCi , then Di = dBC . If trader i elects not to trade, then
Di = dN . We define the sequence of trading decisions on m as {Dk}ik=1. Given
all publicly available information prior to the commencement of trade on m, Z0,
we specify the publicly available information set prior to the arrival of trader
i + 1 on m as Zi , with Zi = {Z0, Dk}ik=1.

The information set, Zi , is shared by the market makers and all traders. The
market makers (and uninformed traders) perform Bayesian updating, by which

1 A trading day captures the interval over which asymmetric information due to a particular signal
persists in the markets and is not necessarily coincident with a calendar day.
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they learn the signal received by the informed. After witnessing the i th trading
decision, the market makers’ beliefs regarding the signal that the informed
traders received are

P(Sm = sL |Zi ) = xi and P(Sm = sH |Zi ) = yi .

Each trading decision – even if the decision is not to trade – conveys information
about the signal received by the informed traders.

Quotes are determined by two equilibrium conditions. The first condition is
that a market maker earns zero expected profit from each trade. From the zero
expected profit condition it follows that the quotes are equal to the expected
value of the asset conditional on the trade. The second condition is that the
informed will trade the asset that offers the highest net gain. From the second
condition it follows that the quotes are set so that an informed trader earns an
equal net gain from each possible trade.

The microstructure model yields the likelihood of each trade decision Di

as a function of the parameters � = (α, δ, ε̄, θ ), where ε̄ is the vector of trade
probabilities (for both the informed and uninformed) for each trade decision.
As trader arrivals are independent, the likelihood for a sequence of n arrivals is

L(�|D1 = d1, . . . , Dn = dn) = �n
i=1 P(Di = di |�).

From the structure of the model, the probability of each trade decision is straight-
forward. For example, the probability of a trade at the ask in the stock market
is

P(Di = dA|�) = θ (1− δ)[αε I A + (1− α)εU A]+ θδ(1− α)εU A

+ (1− θ )(1− α)εU A.

If n = (n A, nB, . . . , nN ) is the vector of trade counts that correspond to each
trade decision, then the corresponding value of the likelihood function is

L(�) = θ (1− δ) pn A
1A · pnB

0B · pn AC
1AC · pnBC

0BC · pnB P
1B P · pn AP

0AP [(1− α) (1− ε)]nN

+ θδ pn A
0A · pnB

1B · pn AC
0AC · pnBC

1BC · pnB P
0B P · pn AP

1AP [(1− α) (1− ε)]nN

+ (1− θ ) pn A
0A · pnB

0B · pn AC
0AC · pnBC

0BC · pnB P
0B P · pn AP

0AP [α+ (1−α) (1− ε)]nN

where p1 j = αε I j + (1− α) εU j and p0 j = (1− α) εU j with j indexing trade
decisions.

Two assumptions are needed to construct the sequence of trade decisions
that identify the parameters. The first assumption identifies the length of time
that corresponds to a decision not to trade.2 As the no-trade decision is designed
to isolate periods in which information is not present, the assumption is needed
to identify α and ε. We first investigate how misspecification of the no-trade
interval affects estimation. Let c correspond to the true length of the interval
and let ĉ correspond to the assumed length of the interval. Because all trades

2 Specifying the no-trade interval is equivalent to specifying the frequency of trader arrivals.
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are observed, only nN – the number of no-trade decisions, is affected by the
misspecification. If c > ĉ, then the number of no trades is biased upward, while
if c < ĉ the number of no trades is biased downward (as a sequence of actual no-
trade decisions are required to record an observed no trade). Given the structure
of the likelihood function, it is not straightforward to analytically determine the
bias on individual parameters. To measure the bias, we simulate data under c
and construct estimators under ĉ. We use the equal payoff condition (derived
later), under which the uninformed trade frequency in each market is ε

6 while
the informed trade frequency in each market is 1

3 . For the population model we
use parameter values that correspond to estimates in Easley, Kiefer, and O’Hara
(1997); news arrives on half of the trading days (θ = .5), bad news is slightly
more prevelant than good news (δ = .6), 20 percent of traders are informed
(α = .2), and the overall frequency of trade by uninformed traders is 80 percent
(ε = .8). The population model assumes a trader arrives every minute during
a six-hour-trading day, for thirty trading days. The estimates are constructed
under each of the alternative assumptions that a trader arrives every two, three,
four, or five minutes.

As revealed in Panel A of Table 7.1, incorrectly specifying the no-trade
interval underestimates the impact of informed traders (α is biased downward
and ε is biased upward). The parameters governing behavior at the daily level,
θ and δ, are largely invariant to misspecification of the no-trade interval. For the
case in which the specified no-trade interval is too long, the number of recorded
no trades declines and days with and without news become more similar. To
account for the greater relative frequency of trades on all days, ε must increase.
To account for the infrequency of no-trade decisions on days without news,
α must decline. If the specified no-trade interval is too short, the number of

Table 7.1. Impact of misspecification on parameter estimates

Panel A

No-trade interval length α ε θ δ

1 minute .2017 .7982 .4667 .5714
(.0082) (.0059) (.0913) (.1433)

2 minutes .1633 .8360 .4667 .5714
(.0095) (.0064) (.1173) (.1409)

3 minutes .1428 .8583 .4666 .5714
(.0108) (.0064) (.1588) (.1421)

4 minutes .1238 .8767 .4667 .5714
(.0117) (.0067) (.2045) (.1426)

5 minutes .1114 .8899 .4672 .5712
(.0104) (.0063) (.2011) (.1405)

Panel B
15% Trade misclassification .1862 .7954 .4667 .5714

(.0093) (.0063) (.1021) (.1435)
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recorded no trades increases and, again, days with news become more similar
to days without news. Because the relative frequency of trades has declined
on all days, ε decreases. To account for the infrequency of trade decisions on
days with news, α declines. Incorrect specification of the no-trade interval, in
either direction, biases the estimator of α downward and makes the presence of
informed traders more difficult to detect.

Even if the no-trade interval is correctly specified, empirical identification
may be problematic. The analysis of a related likelihood in Easley et al. (1997)
is confined to a stock that is not heavily traded. For more heavily traded stocks,
numerical difficulties prevent analysis. Rewriting the likelihood makes investi-
gation of the numerical difficulties quite straightforward. Under the equal payoff
condition, for which p0 j equals p0 = (1− α) ε

6 for all j , the likelihood is

pn−nN
0 [(1− α) (1− ε)]nN ·

{
θ (1− δ)

(
α

3p0
+ 1

)n A+n AC+nB P

+ θδ

(
α

3p0
+ 1

)nB+nBC+n AP

+ (1− θ )
(α

c
+ 1
)nN

}
.

The issue concerns the three terms ( α
3p0

+ 1)n A+n AC+nB P , ( α
3p0

+ 1)nB+nBC+n AP ,
and ( αc + 1)nN . For frequently traded stocks, the observed value of trade deci-
sions is quite large. As all three terms are greater than one, these terms dominate
the likelihood function when raised to a large power and render the likelihood
numerically unstable. (The most common difficulty is simply overflow, the
calculated value exceeds the largest number the computer is able to store.)
Figures 7.1 and 7.2 reveal the issue. In Figure 7.1, a trader arrives every minute
and with 360 trader arrivals in one day no numerical problems are encountered.
In Figure 7.2, a trader arrives every twenty seconds, with 1,080 trader arrivals
numerical difficulties are prevelant.3 Because the three terms are increasing
functions of α and decreasing functions of ε, the likelihood function is cor-
rectly computed only for smaller values of α and larger values of ε. For the
population valuesα = .2 and ε = .8 the likelihood function cannot be evaluated
with an arrival frequency of twenty seconds.

The second assumption regards the classification of trades. Within the model,
all trades occur at a quote. In practice, many trades are recorded at prices between
the quotes. To empirically identify the model, all trades must be assigned to a
quote. While there are several assignment rules popular in the literature, each
of the rules has an estimated error rate of 15 percent. To understand the impact
of the misclassification of trades, we randomly misclassify 15 percent of trades.
Panel B of Table 7.1 contains the results. Estimation of θ and δ is again largely
unaffected. As misclassification of trades does not alter the relative frequency of
trades, estimation of ε is also unaffected. Yet random misclassification of trades

3 For ease of viewing, we set the numerically unstable values to an arbitrarily small value, to
emphasize that the empirical likelihood is essentially flat.
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Figure 7.1. Log-likelihood function for 360 arrivals in a trading day.

does impact estimation of α. On days without news, random misclassification
is equally likely to affect trades at either set of quotes. Yet on days with good
news, for which there are more trades at the ask, misclassification is more
likely to affect trades at the ask quotes. Similarly, on days with bad news,
misclassification is more likely to affect trades at the bid quotes. As a result,
the imbalance of trades (the number of ask trades minus bid trades) on news
days is reduced and the presence of informed traders are again hidden.

3. INTRA-TRADING DAY DYNAMICS

The evolution of the quotes over the course of the trading day reflects the
information revealed through trading. We show that at each point in the trading
day the quotes have bounds that reflect the information asymmetry facing the
market makers. We then study the frequency with which the informed trade
in each market. We show that informed trade frequency in the options market
generally declines over the course of the trading day and we derive the effect of
the underlying parameters on this frequency. In doing so, we demonstrate that
the separating equilibrium derived in Easley et al. (1998), in which the informed
trade only in the options market, will not generally prevail over an entire trading
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Figure 7.2. log-likelihood function for 1080 trader arrivals.

day. We also show how the bid–ask spread changes as the informed trade
frequencies change. The spread in the options market declines more rapidly
than does the spread in the stock market, reflecting the flow of informed traders
into the stock market. Finally, we derive a condition under which the informed
trade with constant frequency in the options market over the course of the
trading day; constant informed trade frequencies greatly simplify the analysis
of calendar period aggregates in Section 3.

In parallel to the opening quotes for the call, the i th-trade quotes for each
asset are obtained as the solution to the zero profit condition with the relevant
informed trade frequency. For example, the i th-trade quotes for one share of
the stock are

Ai = vHm −
(1− α)

[
vHm − E (Vm |Zi−1)

] (
ϕSεU A + λϕCεU AC + λϕPεU B P

)
[αyi−1 + (1− α) (εU A + εU AC + εU B P )]ϕS

and

Bi = vLm +
(1− α)

[
E (Vm |Zi−1)− vLm

] (
ϕSεU B + λϕCεU BC + λϕPεU AP

)
[αxi−1 + (1− α) (εU B + εU BC + εU AP )]ϕS

.
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From these equations it is easy to see that each set of quotes is bounded by
the respective limit values of the asset, with strict inequality unless the market
maker is certain the informed learn the true value of Vm (no adverse selection).
We also find that the quotes for the stock and the options bound the respective
expected values of the assets, which illustrates the spread generated by the
market makers in an effort to offset expected losses to traders with superior
information.

The quotes process is driven by xi and yi , which are the market makers’
beliefs about the signal received by the informed traders. The beliefs evolve
according to Bayes’ Rule and are determined in large part by the equilibrium in-
formed trade frequencies. In general, informed trade frequencies vary through-
out the trading day. The dynamic behavior of the options market trade frequency
is intuitive; as private information is revealed through trading, the advantage
gained by the informed through trade in the options market declines. To make
the analysis of variable informed trade frequencies concise, we focus on an em-
pirically relevant case in which options offer leverage and the option payoffs
are symmetric, (λ(κ Pm − vLm ) = λ(vHm − κCm ) ≡ λβ).

Theorem 3.1. If the options offer greater leverage and have symmetric payoffs,
then the informed trade frequencies behave in the following ways:

(a) As λ increases, the informed are less likely to trade in the stock market.
As α increases, the informed are more likely to trade in the stock
market.

(b) As learning evolves, the informed flow from the options market to the
stock market. The rate of flow declines over the course of a trading
day. The rate of flow also declines as α increases.

(c) Informed trade frequencies in the option market are always positive.
If the uninformed trade each asset with equal frequency, then ε I ACi =
ε I B Pi > ε I Ai and ε I BCi = ε I APi > ε I Bi .

(d) The ith informed trade frequencies in the stock market are positive if,
for j = H, L,

λ <
(vHm − vLm )

β

(
1+ α

1− α

1

ε j
b j,i−1

)
,

with εH = εU AC + εU B P , εL = εU BC + εU AP , bH,i−1 = yi−1, and
bL ,i−1 = xi−1.

Proof. See Appendix.

An increase in the proportion of informed traders reduces the depth (the ratio
of uninformed traders to informed traders) of the options market, which in turn
makes the stock market more attractive to informed traders, as detailed in (a).
To understand the dynamic pattern revealed in (b), consider a day on which
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Sm = sH . As the informed trade and reveal their information, yi increases. As
yi increases, the gains to trade on information shrink, as does the advantage
from trading in the options market. Hence, over the course of a trading day the
informed flow from the options market to the stock market. As the updating
of yi slows over the course of a trading day to reflect the reduced information
content of trades, so too does the rate of flow of informed traders. In similar
fashion, as α increases, the information gain from each trader increases, so
higher values of α lead to faster learning and greater attenuation of the rate of
flow of informed between markets over the course of a trading day. While the
informed flow from the options market to the stock market over the course of
a trading day, if the uninformed are equally likely to trade in each market then
the informed trade frequency is higher in the options market uniformly over the
trading day, as stated in (c).

Leverage attracts informed traders to the options market. If λ exceeds the
separating bound in (d), then the frequency of informed trade in the stock
market is zero and the equilibrium separates the markets in which the informed
trade. As either α decreases or ε j increases, the informed are able to hide
more easily in the options market, so the separating bound in (d) decreases
and informed trade is more likely to occur only in the options market. Because
λ is fixed over the course of a trading day while bi evolves with the trade
flow, it will generally not be the case that a separating equilibrium exists in all
periods.

The bid–ask spread reflects the dynamic pattern of informed trade frequen-
cies. To illustrate the dynamic pattern of the spread, we simulate the arrival of
traders over the course of 1,000 trading days on which Sm = sH . We set the
information advantage of the informed at 5 percent of the initial value of the
asset, so vHm = 105, vLm = 95, and δ = .5. (We ensure that option payoffs are
symmetric and set κCm = vLm and κ Pm = vHm . The greater leverage afforded by
options is then captured by λ > 1.4) We further suppose that the uninformed
are equally likely to trade each asset, so that the informed trade frequencies,
and hence the spreads, are identical for the two options. Finally, we suppose
that α = .2 and ε = .75, noting that the essential features we report hold as α

and ε vary over [0, 1]. In Figure 7.3 we present the average bid–ask spread over
the course of a trading day. First, as λ increases the adverse selection problem
in the options is exacerbated and forces the market maker to widen the bid–ask
spreads for the call and put options, while the adverse selection problem in the
stock is mitigated and allows the market maker to reduce the spread for the
stock. As the trading day evolves the options spread declines more rapidly than
the stock spread, reflecting the movement of informed traders into the stock
market.

If the payoff from all three assets is equal, then the informed trade with
constant frequency throughout the trading day. Because constant informed trade

4 For the given parameter values, the separating bound is 1.2.
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Figure 7.3. Bid–ask spreads with (λ) for α = .2 and ε = .75.

frequencies greatly simplify analysis when trade-by-trade variables are aggre-
gated into calendar periods, we make note of the condition.

Equal Payoff Condition. The options leverage and strike prices satisfy

vHm − vLm = λ(vHm − κCm ) = λ(κ Pm − vLm ).

The constant informed trade frequencies mirror the behavior of uninformed
traders in that the informed and uninformed trade with identical relative fre-
quency in each market

ε I Ai =
εU A

εU A + εU AC + εU B P
, ε I ACi =

εU AC

εU A + εU AC + εU B P
,

and

ε I B Pi =
εU B P

εU A + εU AC + εU B P
.

If the informed trade frequencies are constant, then ratios of xi and yi are
recursive. (If the informed trade frequencies are variable, then it is difficult
to obtain a recursive structure.) With constant informed trade frequencies we
establish that if there were an infinite number of trader arrivals on m, then
market makers would learn the signal, Sm . As a result, the quotes for each asset
converge to the strong-form efficient value of that asset, reflecting both public
and private information. As transaction prices are determined by the quotes,
these prices also converge to the respective strong-form efficient values of the
assets.
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Theorem 3.2. If the equal payoff condition is satisfied, then the sequence of
quotes and, hence, the sequence of transaction prices for each asset converge
almost surely to the strong-form efficient value of that asset at an exponential
rate. Specifically, the following results obtain as i −→∞.

If Sm = sL then xi
as−→ 1, yi

as−→ 0, so Ai
as−→ vLm , Bi

as−→ vLm , ACi

as−→ 0,

BCi

as−→ 0, APi

as−→ κ Pm − vLm and BPi

as−→ κ Pm − vLm .

If Sm = sH then xi
as−→ 0, yi

as−→ 1, so Ai
as−→ vHm , Bi

as−→ vHm , ACi

as−→
vHm − κCm , BCi

as−→ vHm − κCm , APi

as−→ 0 and BPi

as−→ 0.

If Sm = sO then xi
as−→ 0, yi

as−→ 0, so Ai
as−→ EVm, Bi

as−→ EVm , ACi

as−→
EVCm , BCi

as−→ EVCm , APi

as−→ EVPm and BPi

as−→ EVPm .

Proof. See Appendix.

Convergence of the beliefs {xi }i≥0 and {yi }i≥0 immediately implies that Ui
as−→

0, so that individual trader price volatility converges to zero.
Careful analysis of individual trader price changes reveals three interesting

features. First, option trades affect stock prices. Many standard option pricing
models assume that the option price is derived from the stock price. Such models
are misspecified when informed trade occurs in option markets. Second, price
changes are predictable with respect to private information (in contrast to public
information). Third, price changes are dependent and heterogenous, and the
conditional variance of each price change is bounded by the squared bid–ask
spread.

Price changes reflect public information after the decision of trader i but
before the arrival of trader i + 1. The stock price change associated with a
specific trade decision for trader i is Ui (Di = d j ) = E(Vm |Zi−1, Di = d j )−
E(Vm |Zi−1). Consider a trade at the ask in the stock. Because E(Vm |Zi ) =
xivLm + yivHm + (1− xi − yi )EVm , the stock price change is

Ui (Di = dA) = [vHm − E(Vm |Zi−1)]
αε I Ai yi−1

P (Di = dA|Zi−1)
.

The price change reflects expected learning from the informed; if the market
maker knows that the trader is uninformed, there is no learning from the trade
and the price change is zero.

Because informed trade occurs in the options market, options are not redun-
dant assets. If trader i elects to buy the call option contract, then

Ui (Di = dAC ) = [vHm − E(Vm |Zi−1)]
αε I ACi yi−1

P (Di = dAC |Zi−1)
.

Trade in an option affects the price of the stock.
Prices are predictable with respect to private information. Consider the stock

price change expected by an informed trader with Sm = sH . The informed
trader’s expectation differs from that of the market maker because the market
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maker is unsure of the signal. The stock price change expected by an informed
trader is

E (Ui |Zi−1)+ α (1+ yi−1) [vHm − E (Vm |Zi−1)]

+ αxi−1[EVm − vLm ] > 0.

A direct implication is that price changes are serially correlated with respect
to private information. If Sm = sH , then the serial correlation expected by an
informed trader is

E (UhUi |Zi−1, Sm = sH ) = Uh E (Ui |Zi−1, Sm = sH ) �= 0.

Price changes are conditionally heteroskedastic with

E
(
U 2

i |Zi−1
) = ∑

j=A,B,AC,BC,AP,B P,N

P(Di = d j |Zi−1)U 2
i (Di = d j ).

As the conditional heteroskedasticity is path dependent, we construct analytic
bounds. To do so, we use the effective bid–ask spread, Âi − B̂i , which is the
maximum revision in price resulting from a trade. In almost all cases, Âi − B̂i

is simply the bid–ask spread. If, however, a decision not to trade is quite rare
and generally made by informed traders (when ε is very large and α is very
small) then a decision not to trade can yield a larger price change than a decision
to trade. Hence,

Âi − B̂i = max
j∈{AC,B P,N }

[
Ai , E

(
Vm |Zi−1, Di = d j

)]
− min

j∈{BC,AP,N }
[
Bi , E

(
Vm |Zi−1, Di = d j

)]
.

(The effective bid–ask spreads for the call option and the put option, ÂCi − B̂Ci

and ÂPi − B̂Pi , are defined in the same way.)
We find that price changes conditional on public information are dependent

and not identically distributed, although they are mean zero and serially uncor-
related. An asset’s bid–ask spread drives the conditional variance of its price
changes, introducing autoregressive heteroskedasticity.

Theorem 3.3. Price changes in economic time for each asset are mean zero
and serially uncorrelated with respect to the public information set. In addition

E
(
U 2

i | Zi−1
) ≤ ( Âi − B̂i

)2
, and E

(
U 2

ji
| Zi−1

) ≤ ( Â ji − B̂ ji

)2
for j = C, P.

Proof. See Appendix.

The fact that the price change variance is bounded by the effective bid–ask
spread is an important component of the model. (This was shown in Kelly
and Steigerwald (2004) in the context of a single asset market.) Because the
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Table 7.2. EH
(
U 2

i |Zi−1
)− EO

(
U 2

i |Zi−1
)

Trader 1 2 3 4 5 6 7 8 9 10

ε = 0.9 14.40 1.12 1.80 0.25 0.23 0.05 0.04 0.01 0.01 0.00
ε = 0.8 15.06 1.21 1.81 0.20 0.20 0.04 0.03 0.01 0.00 0.00
ε = 0.7 15.77 1.24 1.78 0.21 0.18 0.04 0.02 0.01 0.00 0.00
ε = 0.6 16.53 1.22 1.65 0.23 0.15 0.04 0.02 0.00 0.00 0.00
ε = 0.5 17.34 1.17 1.43 0.24 0.10 0.03 0.01 0.00 0.00 0.00
ε = 0.4 18.23 1.11 1.15 0.27 0.06 0.04 0.01 0.00 0.00 0.00
ε = 0.3 19.17 1.10 0.82 0.30 0.05 0.03 0.01 0.00 0.00 0.00
ε = 0.2 20.19 1.20 0.52 0.31 0.04 0.01 0.01 0.00 0.00 0.00
ε = 0.1 21.30 1.52 0.29 0.22 0.05 0.00 0.00 0.00 0.00 0.00

price uncertainty associated with informed trading widens the effective bid–
ask spread, Theorem 3.3 suggests that price change behavior is systematically
different on days for which the signal is informative.

To show that the price uncertainty is greater on days with an informative
signal, we examine the market maker’s price uncertainty on a trading day with
Sm = sH , EH (U 2

i |Zi−1), relative to the price uncertainty on a trading day with
Sm = sO , EO (U 2

i |Zi−1). Straightforward calculations reveal that for the first
trader EH (U 2

1 |Zi−1) is larger than EO (U 2
1 |Zi−1). To determine the sign of

EH (U 2
i |Zi−1)− EO (U 2

i |Zi−1) for i > 1, we study the behavior of U 2
i .5 If α

is large, then learning is rapid and largely occurs with the first ten traders. For
illustration, in Table 7.2 we calculate EH (U 2

i |Zi−1)− EO (U 2
i |Zi−1) for α = .9,

from the exact distributions for U 2
i . We first note that as traders arrive to the

market, the market maker learns and the relative price uncertainty decreases.
The speed of learning increases as the proportion of uninformed traders who
trade, ε, decreases. Most importantly, the price uncertainty during a day with
an informative signal is always at least as large as the price uncertainty during
a day with an uninformative signal.

For smaller values of α, learning is slowed and reduction of an asset’s bid–
ask spread to zero requires many more trader arrivals. For trader i , there are 7i

possible values for Ui , so calculation of the distribution of U 2
i is cumbersome for

large i . In Figure 7.4 we approximate EH (U 2
i |Zi−1)− EO (U 2

i |Zi−1) forα = .2,
with 1,000 simulations. We confirm the results of Table 7.2. Again, learning
is more rapid if the uninformed trade with less frequency. Also, we again find
that the variance of Ui is higher, uniformly, on a day with an informative signal
than it is on a day with an uninformative signal.

4. CALENDAR PERIOD IMPLICATIONS

Aggregation of trader arrivals into calendar periods allows us to compare the
model with three empirical benchmarks. For constant informed trade frequen-
cies, we prove that the number of trades has positive serial correlation in each

5 We assume that the equal payoff condition is satisfied, with λ = 1.
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Figure 7.4. EH (U 2
i |Zi−1)− EO (U 2

i |Zi−1) with ε = .25 and ε = .75.

market in accord with the first benchmark. We are also able to compare the
serial correlation for different levels of aggregation and find that, generally, se-
rial correlation is higher for data gathered at five minute intervals than for data
gathered at hourly intervals. For variable informed trade frequencies, we derive
the formula for trade correlation and a sufficient condition for the correlation
to be positive. We then demonstrate that squared price changes are positively
serially correlated, in accord with the second benchmark. Last, we verify that
the model is able to satisfy the third benchmark and produce serial correlation
in trades that is larger and diminishes more slowly than the serial correlation in
squared price changes.

To determine the serial correlation properties for calendar periods, such as
thirty-minute intervals, we divide each trading day into k calendar periods. We
let t index, calendar periods. To understand how t maps into k and m, suppose
that t = 1, . . . , n in which t = 1 corresponds to the first calendar period on a
trading day. The sample would then consist of the vectors of k calendar periods
drawn from n

k consecutive trading days. Each calendar period contains η trader
arrivals (each trader arrival can be thought of as a unit of economic time). For
a given trading day, we have τ = kη trader arrivals.

We first derive the serial correlation in trades (per calendar period). Under
the assumption of constant informed trade frequencies, we show that trades
are positively correlated. We also find that correlation in trades in an individual
market is less than the correlation in total trades, as segmenting trades into three
markets is not a scale transformation. (Our result for total trades corresponds to
the result reported in Kelley and Steigerwald (2004), in which only one market
is analyzed and so informed trade frequencies are constant.) The formula for
serial correlation directly links the parameters of the market microstructure
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model to the serial correlation pattern in trades. We analyze the more complex
case, in which the informed trade frequency is not constant, in Proposition 4.6.
The proposition contains both a formula for trade correlation and a condition
that ensures the correlation is positive. The intuition is straightforward: Positive
trade correlation arises from the entry and exit of informed traders in response
to the arrival of private information.

For correlation in trades in a specific asset, we focus on trades in the call
option ICt . (Analogous results hold for the stock and the put option.) Given η

trader arrivals in t , ICt takes integer values between 0 and η and so is a binomial
random variable for which the number of trades in t corresponds to the number
of successes in η trials. For each period on trading day m we have

E
(
ICt |Sm �= sO

) = η (1− α) εUC

+
ηt∑

i=η(t−1)+1

α
[
δε I BCi + (1− δ) ε I ACi

] = µC1

and

E
(
ICt |Sm = sO

) = η (1− α) εUC = µC0.

In general, derivation of calendar period trades is quite complicated, as the in-
formed trade frequencies are not constant. To begin, we assume that equal payoff
condition holds so that the informed trade frequencies are constant throughout
the trading day. For simplicity, we assume that the uninformed trade frequencies
are equal across assets, so that each informed trade frequency is 1

3 . We then
arrive at the following theorem and corollary in which r > 0.

Theorem 4.4. Let the equal payoff condition hold. If r < k, then ICt−r and ICt

are positively serially correlated. If r ≥ k, then ICt−r and ICt are uncorrelated.
For all r , we have

Cor
(
ICt−r , ICt

) = θ (1− θ )
(
α
3 η
)2

Var
(
ICt

) [
k −min (k, r )

k

]
.

Proof. Straightforward, but tedious, calculations yield the formula.

The correlation in trades for each market is less than the correlation in total
trades, which as derived in Kelley and Steigerwald (2004) is

Cor (It−r , It ) = θ (1− θ ) (αη)2

σ 2

(
k − r

k

)
.

The correlations differ because the probability of success for a binomial random
variable is not the scale of the random variable, so the variance of trades in a
specific asset is not a scale transformation of the variance of total trades.
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Corollary 4.5: Let r < k. The positive correlation between ICt−r and ICt is
increasing in α, η, and k. The correlation is decreasing in r . The effects of
changing the market parameters, ε and θ , and of altering calendar period
aggregation through τ = kη, on the positive correlation between ICt−r and ICt

are ambiguous.

Proof. The comparative static results follow from differentiation.

As either the frequency of informed trade, α, the number of trader arrivals,
η; or the number of calendar periods, k, increases, the trade serial correla-
tion increases through the heightened impact of the entry and exit of informed
traders. In general, increasing the frequency of uninformed trade reduces serial
correlation, but if ε is close to one, then further increases in ε can amplify the
impact of the informed trader flows and increase serial correlation. Increasing
the probability of an informative signal, θ , leads to higher serial correlation if
informative signals are rare. Perhaps most importantly for empirical work, we
can compare the serial correlation in hourly observations with the serial corre-
lation in five-minute observations. We find that serial correlation is generally
higher in five-minute intervals, but that the impact is not constant across r . For
longer lags, r ≥ k

2 , the serial correlation in five-minute data is unambiguously
higher than the serial correlation in hourly data.

For the case in which the informed trade frequencies vary over the course of
the day, we focus on trades in the stock market, ISt . From the results of Section 3,
we deduce that the frequency of informed trade in the stock market rises as the
trading day evolves. We capture this evolution with a simple structure in which
(because informed trading frequencies are zero if Sm = sO )

E
(
ISj |Sm = sO

) = µS0 for j = 1, . . . , k,

and

E
(
ISj |Sm �= sO

) = µSj for j = 1, . . . , k,

with 0 < µS0 < µS1 < µS2 < · · · < µSk .
As any one calendar period is drawn at random from the periods of a trading

day, the unconditional mean of stock trades in a calendar period is

E ISt = θµSk + (1− θ )µS0 with µSk =
1

k

k∑
j=1

µSj .

In deriving the serial correlation properties of
{

ISt

}
t≥1, an important condition

emerges that ensures the correlation is positive.

Positive Trade Covariance Condition. The positive trade covariance condi-
tion is said to hold for period j , with 1 ≤ j ≤ k, if j is the smallest value of j
for which

µSj > θµSk + (1− θ )µS0.
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The positive trade covariance condition is most intuitive for the case k = 2.
From the structure for the expectation of calendar period trades it follows
that µS0 lies below the unconditional mean and µS2 lies above the uncondi-
tional mean. Suppose that t − 1 corresponds to the first calendar interval –
the morning – of the trading day. For days without private news, we have
E
(
ISt−1 |Sm = sO

) = µS0 and E
(
ISt |Sm = sO

) = µS0. Thus, for days on which
the morning observation tends to be below the unconditional mean, the after-
noon observation also tends to be below the unconditional mean. For days with
private news, we have E

(
ISt−1 |Sm �= sO

) = µS1 and E
(
ISt |Sm �= sO

) = µS2.
While it is clear that the afternoon observation tends to be above the uncondi-
tional mean, it is not clear whether E ISt < µS1. If the positive trade covariance
condition holds (for period 1), then E ISt < µS1. As a result, on days with pri-
vate news both the morning and afternoon observations tend to lie above the
unconditional mean and positive serial correlation is assured.

Proposition 4.6. Let r > 0. The covariance of calendar period stock trades is

[
k −min (k, r )

k

]⎡⎢⎢⎢⎣
θ (1− θ )

k−r∑
j=1

(
µSj − µS0

) (
µSj+r − µS0

)
+ θ2

k∑
j=1

(
µSk − µSj

) (
µSk − µSj+r

)
⎤⎥⎥⎥⎦ ,

where the addition is wrapped at k. That is, if j + r > k, then replace j + r
with j + r − k.

If r < k = 2 and the positive trade covariance condition holds for period
one, then

Cov(ISt−r , ISt ) =
[

2− r

2

][
θ (1− θ )

(
µS1 − µS0

) (
µS2 − µS0

)
+ θ2

(
µS2 − µS1

) (
µS2 − µS2

) ]
≥ 0.

Proof. See Appendix.

Serial correlation in squared price changes follows directly from serial corre-
lation in trades if trade-by-trade price changes are i.i.d. As trade-by-trade price
changes are not i.i.d, serial correlation in squared price changes is more complex
than serial correlation in trades. As a result, formulae linking the parameters
of the market microstructure model to the serial correlation are intractable.
Positive serial correlation in squared price changes will obtain if squared price
changes are higher in periods with higher trading (due to trade by informed
traders). We numerically construct the distribution of squared price changes
and show that expected squared price changes are higher in periods in which
the informed are trading. We then verify that squared price changes are serially
correlated, satisfying the second benchmark.
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Figure 7.5. Behavior of expected squared price changes.

Serial correlation in an asset’s squared price changes stems from the infor-
mation content of trades, which in turn depends on the history of trades. Trade
decisions in early economic time contain more information than later trade
decisions. We define the (stock) price change over calendar period t on day
m as

�Pt =
tη∑

i=(t−1)η+1

Ui = E
(
Vm |Ztη

)− E
(
Vm |Z(t−1)η

)
.

A closed-form expression for the population moments of squared price
changes as a function of all of the underlying parameters is, in general, in-
tractable. To show that squared price changes have positive serial correlation,
we compare price change volatility on days with and without news. If price
change volatility is systematically higher on news days, then the random arrival
of information leads to positive serial correlation in squared price changes. To
illustrate, in Figure 7.5 we present expected squared price changes on trading
days with and without news. A trading day is assumed to consists of six calen-
dar periods, with two trader arrivals per period. (In detail, we consider only the
stock market and we set α = .2 and ε = .5.6) Expected squared price changes
are uniformly higher on news days, which implies that squared price changes
are positively serially correlated.

To show that squared price changes are positively serially correlated, we
consider a sequence of trading days in which θ = .4 have news (with good and

6 Estimates of α = .17 and ε = .33 are obtained in Easley et al. (1997) for an actively traded stock.
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Figure 7.6. Autocorrelation in squared price changes.

bad news equally likely). As is evident in Figure 7.6, the interplay between se-
quences of squared price changes that lie above the unconditional mean (from
news days) with sequences of squared price changes that lie below the uncon-
ditional mean (from days without news) leads to positive serial correlation in
prices. Further, the serial correlation declines as we move from lag 1 to lag 5,
as it is less likely that observations separated by five periods occur on the same
trading day. Because the news arrival process is independent across trading
days, it would seem that squared price changes are uncorrelated after lag 5.
Yet the nonstationarity of the process due to the signal arrival at the start of
each trading day leads to correlation in squared price changes at longer lags,
which is more pronounced as θ moves away from .5. The first hour of each
trading day is noisier than other hours, which leads to serial correlation at lag
6 (and at integer multiples of lag 6) that mirrors the cyclical effects in asset
market data.

To verify the third benchmark, we must show that positive serial correlation
in trades declines more slowly than does the positive serial correlation in squared
price changes. We alter the setting slightly to more closely approximate behavior
in a liquid stock traded on the NYSE. We define a trading day to be 32.5 hours,
which corresponds to a normal trading week on the NYSE. We measure price
and trades at thirty-minute intervals, so there are sixty-five calendar periods in
a trading day. A trader arrives every five minutes, so there are six trader arrivals
in each calendar period and 390 trader arrivals in a trading day. We simulate
195,000 trader arrivals over the course of 500 trading days.

The strike prices of the options are at their respective limits, κCm = vLm = 95
and κPm = vHm = 105, so that λ = 1.15 captures the greater leverage of an
option. In Figure 7.7, we find the positive serial correlation in the total number
of trades declines more slowly than does the positive serial correlation in the
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squared (stock) price changes. A similar picture emerges if we consider stock
trades, rather than total trades, although the level of the trade correlation is
reduced.

5. CONCLUSIONS

We focus on the role of private information in the formation of securities prices.
The model captures the link between asset prices and informational asymme-
tries among traders, given a stylized arrival process for private information. But
in actual markets the arrival and existence of private information is not easily
captured, and the theoretical construct of a defined period over which asymmet-
ric information persists is elusive. Moreover, the possibility of the occurrence
of multiple, overlapping information events introduces significant complexity.
It is not surprising, therefore, that without knowledge of the existence of private
information it may be difficult to accurately detect such a pattern in actual data.
Further, there is widespread consensus that adverse selection problems faced
by market makers are not solely responsible for bid–ask spreads; rather, they
are the result of multiple additional factors, including market maker inventory
considerations and market power. Nonetheless, our simple economic model
provides a theory-based explanation for observed empirical phenomena and, in
so doing, establishes an economic foundation for the use of statistical models
employed to capture stochastic volatility in asset prices.
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APPENDIX

Proof of Theorem 3.1. We present the analysis for ε I ACi and ε I Ai . Identical
logic holds for the remaining informed trade frequencies in the options and
stock markets, respectively.

(a) Calculation reveals that
∂ε I ji
∂λ

> 0 for j indexing an option trade and
∂ε I ji
∂λ

> 0 for j indexing a stock trade. The sign of
∂ε I ACi
∂α

is the sign of

εU A
[(
vHm − vLm

)− λβ
]
,

which is negative by the greater leverage of options. The sign of
∂ε I Ai
∂α

is the
sign of

(εU AC + εU B P )
[
λβ − (vHm − vLm

)]
,

which is positive by the greater leverage of options.
(b) The sign of

∂ε I ACi
∂yi−1

is the sign of the first displayed equation in (a) while

the signs of
∂2ε I ACi

∂y2
i−1

and
∂2ε I ACi
∂yi−1∂α

are opposite to the sign of
∂ε I ACi
∂α

. The sign of
∂ε I Ai
∂yi−1

is the sign of the second displayed equation in (a) while the signs of
∂2ε I Ai

∂y2
i−1

and
∂2ε I Ai
∂yi−1∂α

are opposite to the sign of
∂ε I ACi
∂α

.
(c) Consider ε I ACi . This informed trade frequency is positive if

εU A
[
λ
(
vHm − κCm

)− (vHm − vLm

)]
+ εU B P

[
λ
(
vHm − κCm

)− λ
(
κ Pm − vLm

)]
> 0.

The first term on the left side is positive because of the greater leverage of
options. The second term on the left side is zero because of equal option payoffs.
If the uninformed trade each asset with equal frequency, then the remaining
inequalities are deduced by inspection of the informed trade frequencies.

(d) For informed trade in the stock market, symmetric option payoffs imply
that ε I Ai is positive if

αyi−1
(
vHm − vLm

)+ (1− α) (εU AC + εU B P )
[(
vHm − vLm

)− λβ
]
> 0.

Because options offer greater leverage, the second term on the left is negative
and the inequality becomes

αyi−1
(
vHm − vLm

)
> (1− α) (εU AC + εU B P )

[
λβ − (vHm − vLm

)]
,

from which the bound in the text is easily deduced.

Proof of Theorem 3.2. The proof follows from calculations similar to those in
Kelley and Steigerwald (2004) [Theorem 3.1].

Proof of Theorem 3.3. For the proof of Theorem 3.3, let D j represent Di = d j .
We verify the theorem for Ui ; identical logic holds for UCi and UPi . Proof that
E (Ui |Zi−1) = 0 and E(UhUi |Zi−1) = 0 is straightforward. The upper bound
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for the conditional variance is

E
(
U 2

i |Zi−1
) ≤ ∑

j=A,AC,B P

P
(
D j
) [

Âi − E (Vm |Zi−1)
]2

+
∑

j=B,BC,AP

P
(
D j
) [

B̂i − E (Vm |Zi−1)
]2

+ P(DN ) [E (Vm |Zi−1, DN )− E (Vm |Zi−1)]2

≤
∑

j=A,AC,B P,N

P
(
D j
) [

Âi − E (Vm |Zi−1)
]2

+
∑

j=B,BC,AP,N

P
(
D j
) [

B̂i − E (Vm |Zi−1)
]2

≤ [ Âi − E (Vm |Zi−1)
]2 + [B̂i − E (Vm |Zi−1)

]2
≤ [( Âi − E (Vm |Zi−1)

)− (B̂i − E (Vm |Zi−1)
)]2

= ( Âi − B̂i
)2

,

where the first inequality follows from the definition of Âi and B̂i and the fourth
inequality follows from Bi ≤ E (Vm |Zi ) ≤ Ai .

Proof of Proposition 4.6. We derive Cov(ISt−r , ISt ) for k = 2. Derivation of the
general covariance expression follows similar logic. Let N = 1 if t − 1 is the
first calendar period in a trading day and N = 2 if t − 1 is the second calendar
period. First note that

Cov
(
ISt−r , ISt

) = E

{[
E
(
ISt−r ISt |N

)− E
(
ISt−r |N

)
E
(
ISt |N

)]
+ [E ISt−r − E

(
ISt−r |N

)] [
E ISt − E

(
ISt |N

)]
}

,

or the sum of the conditional covariance and the covariance of the conditional
means. Given that

E
(
ISt−1 |N = 1

) = θµS1 + (1− θ )µS0 = E
(
ISt |N = 2

)
and

E
(
ISt−1 |N = 2

) = θµS2 + (1− θ )µS0 = E
(
ISt |N = 1

)
.

Because P(N = 1) = P(N = 2) = 1
2 , the conditional covariance is

P (N = 1) · Cov
(
ISt−1 , ISt |N = 1

)+ P(N = 2) · Cov(ISt−1 , ISt |N = 2)

= 1
2

[
E(ISt−1 ISt |N = 1)− E(ISt−1 |N = 1)E(ISt |N = 1)

]
+ 1

2

[
E(ISt−1 ISt |N = 2)− E(ISt−1 |N = 2)E(ISt |N = 2)

]
which simplifies to

1
2θ (1− θ )

(
µS1 − µS0

) (
µS2 − µS0

)
.
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AsµS0 < µS1 < µS2, the conditional covariance is unequivocally positive. The
covariance of the conditional means,

P(N = 1) · [E ISt−1 − E(ISt−1 |N = 1)
] [

E ISt − E(ISt |N = 1)
]

+ P(N = 2) · [E ISt−1 − E(ISt−1 |N = 2)
] [

E ISt − E
(
ISt |N = 2

)]
simplifies to

θ2

(
µS1 − µS2

2

)(
µS2 − µS1

2

)
.

As µS1 < µS2, the covariance of the conditional means is negative. We have
Cov

(
ISt−1 , ISt

)
> 0 if (1− θ )

(
µS1 − µS0

) (
µS2 − µS0

)
> θ

2

(
µS2 − µS1

)2
. By

inspection, µS2 − µS0 > µS2 − µS1, so it is enough to show that

(1− θ )
(
µS1 − µS0

)
>

θ

2

(
µS2 − µS1

)
.

Now, as θ
2

(
µS2 − µS1

) = θ
(
µS2 − µS1

)
, this is equivalent to showing that

(1− θ )
(
µS1 − µS0

)
>

θ

2

(
µS2 − µS1

)
.

From the positive trade correlation condition,

(1− θ )
(
µS1 − µS0

)
> θ (1− θ )

(
µS2 − µS0

)
.

Then

(1− θ )
(
µS1 − µS0

)− θ
(
µS2 − µS1

)
> θ (1− θ )

(
µS2 − µS0

)− θ
(
µS2 − µS1

)
.

The right side of the preceding inequality equals

θ
[(
µS1 − µS0

)− θ
(
µS2 − µS0

)]
,

which is positive by the positive trade correlation condition.
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CHAPTER 8

Asymptotic Expansions for Some
Semiparametric Program
Evaluation Estimators
Hidehiko Ichimura and Oliver Linton

ABSTRACT

We investigate the performance of a class of semiparametric estimators of the treatment effect
via asymptotic expansions. We derive approximations to the first two moments of the estimator
that are valid to “second order.” We use these approximations to define a method of bandwidth
selection. We also propose a degrees of freedom–like bias correction that improves the second-
order properties of the estimator but without requiring estimation of higher-order derivatives of the
unknown propensity score. We provide some numerical calibrations of the results.

1. INTRODUCTION

In a series of classic papers Tom (Rothenberg 1984a,b,c, 1988) introduced
Edgeworth expansions to a broad audience. His treatment of the generalized
least-squares estimator (1984b) in particular was immensely influential because
it dealt with an estimator of central importance and the analysis was both deep
and precise, but comprehensible. This is in contrast with some of the more
frenzied publications about Edgeworth expansions that had hitherto appeared
in econometrics journals. The use of Basu’s theorem in that paper to establish
the independence of the correction terms from the leading term is a well-known
example of his elegant work. The review paper (1984a) was also very influential
and highly cited.

It is our purpose here to present asymptotic expansions for a class of semi-
parametric estimators used in the program evaluation literature. We have ar-
gued elsewhere (Linton 1991, 1995; Heckman et al. 1998) that the first-order
asymptotics of semiparametric procedures can be misleading and unhelpful.
The limiting variance matrix of the semiparametric procedure � does not de-
pend on the specific details of how the nonparametric function estimator ĝ is
constructed, and thus sheds no light on how to implement this important part of
the procedure. Specifically, bandwidth choice cannot be addressed by using the
first-order theory alone. Also, the relative merits of alternative first-order equiv-
alent implementations, for example, one-step procedures, cannot be determined
by the first-order theory alone. Finally, to show when bootstrap methods can pro-
vide asymptotic refinements for asymptotically pivotal statistics requires some
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knowledge of higher-order properties. This motivates the study of higher-order
expansions. Carroll and Härdle (1989) was to our knowledge the first published
paper that developed second-order mean squared error expansions for a semi-
parametric, that is, smoothing-based but root-n consistent, procedure, in the
context of a heteroskedastic linear regression. Härdle et al. (1992) developed
expansions for scalar average derivatives, which were extended to the multi-
variate case, actually only the simpler situation of density-weighted average
derivatives, by Härdle and Tsybakov (1993); these papers used the expansions
to develop automatic bandwidth selection routines. This work was extended
to the slightly more general case of density-weighted averages by Powell and
Stoker (1996). In his Ph.D. thesis (Linton 1991), written under Tom’s supervi-
sion, the second author developed expansions for a variety of semiparametric
regression models including the partially linear model and the heteroskedas-
tic linear regression model; some of this work was later published in Linton
(1995, 1996a). The Linton (1995) paper also provided some results on the
optimality of the bandwidth selection procedures proposed therein. Xiao and
Phillips (1996) worked out the same approximations for a time series regression
model with serial correlation of unknown form; Xiao and Linton (2001) give the
analysis for Bickel’s (1982) adaptive estimator in the linear regression model.
Nishiyama and Robinson (2000) proved the validity of an Edgeworth approxi-
mation to the distribution of the density-weighted average derivative estimator.
Linton (2001a) derived an Edgeworth approximation to the distribution of the
standardized estimator and a Wald statistic in a semiparametric instrumental
variables model.

In this paper, we develop asymptotic expansions for an estimator of the treat-
ment effect recently proposed in Hirano, Imbens, and Ridder (2000), henceforth
HIR. Propensity score matching is a nonexperimental method for estimating
the average effect of social programs.1 The method compares average out-
comes of participants and nonparticipants conditioning on the propensity score
value. When averaged over the propensity score, the average measures the
average impact of a program if the conditioning on the observable variables
makes the choice of the program conditionally mean-independent of the po-
tential outcomes. This methodology has received much attention recently in
econometrics. While the method often in practice uses the nearest match in
either regressors or estimated propensity score to compare the treatment and
the comparison groups, the asymptotic distribution theory for these methods
have not been developed. The asymptotic distribution theory has been devel-
oped by Heckman, Ichimura, and Todd (1998) for the kernel-based matching
method. HIR consider reweighting the estimator that estimates the treatment
effect as well. Both methods require choosing smoothing parameters, but opti-
mal methods to choosing the smoothing parameter have not been discussed.
In this paper we consider optimal bandwidth selection for the reweighting
estimator.

1 See Cochran (1968), Rosenbaum and Rubin (1983), and Heckman, Ichimura, and Todd (1998).
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2. THE MODEL AND ESTIMATOR

We investigate a class of estimators for the treatment effect, studied by HIR.
Let Y1 and Y0 denote potential outcome for an individual with and without “the
treatment,” respectively. Define

Y = Y1 · T + Y0 · (1− T ) ,

where T is an indicator variable denoting the presence of treatment, that is,

T =
{

1 if treated
0 if untreated.

Let X be a vector of covariates or pretreatment variables. Actually, for con-
venience we will take X to be a scalar and to have a continuous density f
bounded away from zero on its compact support. We will also assume that
Y possesses many finite moments. We are interested in the average treatment
effect parameter

τ 0 = E(Y1)− E(Y0).

We shall assume the following identifying conditions:

E[Y1|X, T = 1] = E[Y1|X, T = 0]

E[Y0|X, T = 1] = E[Y0|X, T = 0]

0 < p (X ) < 1

with probability 1 in X, where

p(x) = Pr[T = 1|X = x] = E(T |X = x)

is the propensity score. The first two assumptions are that treatment and po-
tential outcome are mean independent given covariates; the final assumption
is that there are at least some unobserved influences on the probability of re-
ceiving the treatment. See Rosenbaum and Rubin (1983) and Heckman et al.
(1998). Clearly, under these assumptions, E[Y1|X = x, T = 1] = E[Y1|X =
x] = m1 (x) and E[Y0|X, T = 0] = E[Y0|X = x] = m0 (x). Furthermore, the
following observable regressions are related to the unobservable regressions:

g1(x) ≡ E[Y · T |X = x] = m1(x) · p(x), and

g0(x) ≡ E[Y · (1− T ) |X = x] = m0(x) · (1− p(x)).

It now follows that the average treatment effect parameter τ 0 satisfies

τ 0 = E(Y1)− E(Y0) = E[m1 (X )]− E[m0 (X )]

= E

[
g1(X )

p(X )

]
− E

[
g0(X )

1− p(X )

]
= E

[
E(Y · T |X )

p(X )

]
− E

[
E(Y · (1− T ) |X )

1− p(X )

]
= E

[
Y · T

p(X )

]
− E

[
Y · (1− T )

1− p(X )

]
,



152 Ichimura and Linton

where the last line follows from the law of iterated expectations. The last line is
the relation that HIR use to suggest an estimator. Suppose now that we observe
a sample {Zi , i = 1, . . . , n}, where Zi = (Yi , Ti , Xi ). The HIR estimator is

τ̂ = 1

n

n∑
i=1

[
Yi · Ti

p̂(Xi )
− Yi · (1− Ti )

1− p̂(Xi )

]
,

where p̂(Xi ) was a nonparametric estimate of p(Xi ) – in fact, they chose series
estimates.

We allow a slightly greater degree of generality; in particular, we consider
the estimator τ̂ of τ 0 to be any sequence that solves

1√
n

n∑
i=1

�(Zi , τ , p̂(Xi )) = op
(
n−5/4

)
, (2.1)

where

�(Zi , τ , p̂(Xi )) = Yi · Ti

p̂(Xi )
− Yi · (1− Ti )

1− p̂(Xi )
− τ (2.2)

and

p̂(Xi ) =
n∑

j=1

wi j Tj ,

where wi j are smoothing weights that only depend on the covariates
X1, . . . , Xn.

2 As we mentioned earlier, HIR used series estimates. The bias
correction method we propose below can also be applied to series estimates and
indeed to any linear smoother, but detailed discussion of smoothing bias terms
requires that we use kernel or local polynomial estimators. We will also adopt
the leave-one-out paradigm that is used in many semiparametric estimates. To
be specific we let the parameter vector (̂α0(Xi ), α̂1(Xi )) minimize the criterion
function∑

j �=i

K

(
X j − Xi

h

)
{Tj − α0 + α1(X j − Xi )}2, (2.3)

with respect to (α0, α1), where K is a differentiable probability density func-
tion symmetric about zero with support [−1, 1], while h = h(n) is a positive
bandwidth sequence. Then let p̂(Xi ) = α̂0(Xi ) and let wi j be the correspond-
ing smoothing weights. We have taken the fixed bandwidth leave-one-out local
linear kernel smoother as our estimator of the regression function. This estima-
tor is preferable to the local constant kernel estimator because of its superior
bias properties both at interior and boundary regions (see Fan and Gijbels
1996).

2 The precise magnitude of the error of (2.1) is sufficient for both of our higher order expansions in
Theorems 3.1 and 3.2 below. It is certainly much smaller than is needed for root-n consistency.
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3. MAIN RESULTS

HIR showed that the standardized estimator T = √
n(̂τ − τ 0) satisfies

T = 1√
n

n∑
i=1

ρi + op(1) = T0 + op(1), (3.1)

where ρi = �(Zi ; τ 0, p(Xi ))+ sp(Xi )εi , where ε j = Tj − p(X j ) and

sp(x) = E[�p(Zi ; τ 0, p(Xi ))|Xi = x] = −
[

m1(x)

p(x)
+ m0(x)

1− p(x)

]
.

Here, the derivatives of � with respect to p are denoted by �p, �pp, and so
forth. Therefore, T is asymptotically normal with finite variance

v0 = E
[(
�(Zi ; τ 0, p(Xi ))+ sp(Xi )εi

)2]
. (3.2)

In fact, they rewrote the asymptotic variance in the more interpretable form

v0 = var [E(Y1 − Y0|X )]+ E

[
var(Y1|X )

p(X )

]
+ E

[
var(Y0|X )

1− p(X )

]
.

They also established that this estimator is semiparametrically efficient, that
is, it has the smallest asymptotic variance amongst the class of all feasible
estimators.

We are interested in the higher-order properties of their estimator. We derive
a stochastic expansion for T by Taylor-expanding �(Zi , τ , p̂(Xi )) around
�(Zi , τ , p(Xi )), thereby obtaining the representation

T = T0 + T1 + R = T ∗ + R, (3.3)

where the leading term T0 is as defined in (3.1), T1 contains the second-order
terms, while R is a remainder term that is of smaller order in probability. To
be specific, we show that R = op(n−α) in probability for some α > 0, where
α is determined by the order of magnitude of the bandwidth and of course
by the number of terms in the Taylor expansion we retain. The magnitude
op(n−α) is determined to ensure that our results in Theorems 3.1 and 3.2 below
are sensible. The random variable T ∗ has finite moments to various orders
and indeed it is a linear combination of certain U-statistics. We shall calculate
the moments of T ∗ and interpret them as if they were the moments of T .

This methodology has a long tradition of application in econometrics following
Nagar (1959).3 The two largest (in probability) second-order terms inT1 are both

3 When supn E[T 2] <∞, we might reasonably expect that E[T 2] = E[T ∗2]+ o(n−α), but see
Srinavasan (1970) for a cautionary tale in this regard. In any case, our T does not necessarily have
uniformly bounded moments. Therefore, some additional justification for examining the moments
of the truncated statistic must be given. With some additional work and regularity conditions, it
is possible to establish the stronger regularity that T and T ∗ have the same distribution to order
n−α , which requires some restrictions on the tails of R; see the discussion in Rothenberg (1984a).
In this case our moment approximations can be interpreted as the moments of the approximating
distribution.
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nonzero mean and are

Op(h2√n)+ Op(n−1/2h−1). (3.4)

InT1 there are also mean zero random variables of order h2 and order n−1/2h−1/2.

However, according to the criterion of mean squared error, these stochastic terms
are dominated by the bias terms, and the optimal thing to do is to minimize the
size of (3.4) by choosing h appropriately. The optimal bandwidth is therefore of
order h � n−1/3, in which case both terms in (3.4) are of the same magnitude,
and indeed are both of order n−1/6. Thus, the second-order terms are very
large and are mostly bias related. This suggests that the usual (first-order)
asymptotic approximation may not be very well located. We shall now assume
that a bandwidth of the optimal order h � n−1/3 has been chosen so as to
simplify the discussion of the results. Define the functions

β(x) = p′′(x)

spp(x) = E[�pp(Zi ; τ 0, p(Xi ))|Xi = x] = 2

[
m1(x)

p(x)2
− m0(x)

(1− p(x))2

]
µ2(K ) =

∫
u2 K (u)

2
du, ‖K‖2 =

∫
K (u)2 du.

Theorem 3.1. Under some regularity conditions, as n →∞, R = op(n−1/3)
in (3.3) and

E(T ∗) � √
nh2bn1 + 1√

nh
b2 + o(n−1/3)

var(T ∗) � v0 + o(n−1/3),

where bn1 is deterministic and satisfies bn1 → b1 with

b1 = µ2(K )E
[
sp(Xi )β(Xi )

]
,

b2 = ‖K‖2 E

[
spp(Xi )

p(Xi )(1− p(Xi ))

2 f (Xi )

]
.

The leading smoothing bias term b1 can take either sign, since it depends on
the covariance between the smoothing bias quantityβ(X ) and on the conditional
expectation sp(X ). When p is a standard normal c.d.f., p′′(x) < 0 for all x and
the smoothing bias function is always negative; in this case the direction of
the bias is effectively determined by the sign of the treatment effect. The term
b2 can also take either sign depending on the sign of spp(x). Suppose there
is a constant treatment effect τ independent of X, that p(x) = 1/2 for all x,
and that f is uniform with range 1. Then b2 = ‖K‖2 × τ , and the sign of b2

is determined by the direction of the treatment effect. The correction term in
the variance is clearly of smaller order than the squared bias no matter what
bandwidth is chosen.
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Define the asymptotic mean squared error of the estimator to be (apart from
a factor of order n−1)

AMSE( τ̂ ) = E(T ∗2) = var(T ∗)+ E2(T ∗), (3.5)

and define an optimal bandwidth hopt to be a sequence that minimizes
AMSE( τ̂ ). By Theorem 3.1,

AMSE( τ̂ ) = v0 +
(√

nh2b1 + 1√
nh

b2

)2

+ o(n−1/3)

and it suffices to minimize the size of the term inside the brackets. If the biases
have opposite signs, then the optimal bandwidth is going to set

√
nh2b1 + 1√

nh
b2 = 0,

and this second-order bias will then be of smaller order. Otherwise, the optimal
bandwidth will minimize this second-order bias and there will be an interior so-
lution to the optimization problem that can be found by calculus. To summarize,
we have

hopt =

⎧⎪⎨⎪⎩
(
−b2
b1

)1/3
n−1/3 if sign(b2) �= sign(b1)(

b2
2b1

)1/3
n−1/3 if sign(b2) = sign(b1).

A feasible bandwidth selection method can be defined on the basis of estimates
of the quantities b j , j = 1, 2, either nonparametric estimates or parametric
estimates suggested from some sort of Silverman’s rule-of-thumb idea.4

In some semiparametric estimators it has been shown that by using leave-one-
out estimators and other devices, one can eliminate the degrees of freedom bias
terms of order n−1/2h−1; see, for example, Hall and Marron (1987) and Linton
(1995). Indeed, we have used a leave-one-out estimator here. Unfortunately, it
has not completely eliminated the degrees of freedom bias. Instead, we define an
explicit bias correction method and show that it does indeed “knock” this term
out and therefore permits a smaller bandwidth and a better AMSE. Specifically,
we define the bias-corrected estimator

τ̂ bc = τ̂ − b̂n2, (3.6)

where

b̂n2 = 1

n

n∑
i=1

n∑
j=1

j �=i

[
Yi · Ti

p̂(Xi )3
− Yi · (1− Ti )

[1− p̂(Xi )]3

]
w2

i j ε̂
2
j ,

where ε̂ j = Tj − p̂(X j ). Note that the way we have defined the bias correction
can be applied to any linear smoother with weights wi j . Conceptually, this bias

4 This would require a model for m j , p, and f. See Fan and Gijbels (1996, p. 111) for the solution
to a similar problem.
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correction is similar to using n − 1 instead of n in estimating a population vari-
ance; significantly, in this context we do not need to estimate higher derivatives
of the unknown functions, and it follows that the sampling properties of this
bias estimator should be relatively good.5

The stochastic expansion for τ̂ bc is the same as that for τ̂ except for the
additional bias-correcting term b̂. On computing the moments of the leading
terms of this expansion, however, we find that the bias term b2 has been elimi-
nated; we therefore end up with a better trade-off in the mean squared error of
this estimator. The largest terms are a squared bias of order h4n and a variance
of order n−1h−1. This trade-off leads to an optimal bandwidth h ∝ n−2/5 and
mean squared error of n−3/5. Let

ζ i = �p(Zi ; τ 0, p(Xi ))− E[�p(Zi ; τ 0, p(Xi ))|Xi ]

(K ∗ K )(t) =
∫

K (t)K (t − u) du

〈 f, g〉 =
∫

f (t)g(t) dt.

Now let T = √
n( τ̂ bc − τ 0) and obtain the stochastic expansion T = T ∗ + R

as in (3.3).

Theorem 3.2. Under some regularity conditions, as n →∞, R = op(n−3/5)
in (3.3) and

E(T ∗) � √
nh2b1 + o(n−3/5)

var(T ∗) � v0 + 1

nh
v1 + o(n−3/5),

where

v1 = ‖K‖2 ×
{

E

[
E
(
ε2

j |X j
)
E
(
ζ 2

j |X j
)

f (X j )

]
+ 2E

[
E2(ε jζ j |X j )

f (X j )

]}

+‖K ∗ K‖2 × E

[
3s2

pp(X j )E2
(
ε2

j |X j
)

4 f (X j )

]

+〈K , K ∗ K 〉 × E

[
3spp(X j )E

(
ε2

j |X j
)
E
(
ε jζ j |X j

)
f (X j )

]
.

5 Effectively, we are estimating the quantity b2/nh. We could alternatively estimate b2 itself by

b̂2 = ‖K‖2 1

n

n∑
i=1

ŝ pp(Xi )
p̂(Xi )(1− p̂(Xi ))

2 f̂ (Xi )
.

This is just a sample average of nonparametric estimators, and is similar in this respect to a
weighted average derivative (in our case second derivatives) estimator. Therefore, under some
regularity conditions we can expect it to satisfy

√
n(̂b2 − b2) = Op(1).
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This shows that the bias correction can lead to improved mean squared error
properties.6 In this case,

AMSE( τ̂ bc) = v0 + nh4b2
1 +

1

nh
v1 + o(n−3/5),

and the optimal bandwidth is

hopt =
(

v1

4b2
1

)1/5

n−2/5,

since b2
1, v1 are both nonnegative. This bandwidth is smaller in magnitude than

is optimal for the raw estimator τ̂ .A feasible bandwidth selection method can be
defined on the basis of estimates of the quantities b1, v1, either nonparametric
estimates or parametric estimates suggested from some sort of Silverman’s
rule-of-thumb idea.

The degrees of freedom bias correction has been analyzed before in other
contexts. For example, Jones and Sheather (1991) investigated squared den-
sity derivatives, the situation of Hall and Marron (1987). They argued against
doing the degrees of freedom bias correction by itself in this case. Their rea-
soning was that the leading smoothing bias term was always negative, while
the degrees of freedom bias term was always positive. Therefore, by a judi-
cious choice of bandwidth one could cancel these terms out. If we applied their
method successfully to our problem, we would end up with (assuming that
h � n−1/3)

AMSE( τ̂ JS) � v0 +
(√

nh4b11
)2 + 1

nh
v1,

say, where b11 is a higher-order smoothing bias term (assuming that the under-
lying functions are smooth enough). In this case, the correction term is of order
n−2/3, which is even smaller than the order n−3/5 obtained with our degrees of
freedom bias correction. The catch is that in our more complicated model, the
signs of the two bias terms are not necessarily opposite and so the Jones and
Sheather method is not guaranteed to work, and the resulting correction term is
then larger than ours. In any case, the Jones and Sheather method requires esti-
mation of higher-order derivatives of the regression function and is (a) unlikely
to work well in practice, and (b) against the spirit of our approach.

We have just presented results concerning the moments of the estimators,
but this can also be extended to distributional approximations. In fact, to the
relevant order τ̂ is normally distributed, that is,

Pr
[√

n( τ̂ − τ 0) ≤ x
] = �

(
x −√

nh2b1 + 1√
nh

b2√
v0

)
+ o(n−1/3).

6 We are happy to report that this finding is partly in agreement with Rothenberg (1984a, p. 909),
who says, “This suggests that correction for bias may be more important than second order
efficiency consideration when choosing among estimators.”

In our case, correction for bias improves mean squared error.
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Table 8.1. Rates of convergence for bandwidth and mean squared error
correction

Model Optimal bandwidth Optimal MSE correction

1. Average derivative n−2/7 n−1/7

2. Variance estimation n−1/5 n−3/5

3. Partially linear model n−2/9 n−7/9

4. Heteroskedastic linear regression n−1/5 n−4/5

5. Variance, a function of mean n−2/11 n−5/11

6. Symmetric location n−1/7 n−4/7

7. HIR n−1/3 n−1/3

8. HIR with bias correction n−2/5 n−3/5

Notes. Models 2–6 are given in Linton (1991, Chapter 3). The result for model 1 is taken
from Härdle et al. (1992).

The approximation for
√

n( τ̂ bc − τ 0) is more complicated because if we require
an error rate consistent with our mean squared error (i.e., of order n−3/5), then
we will have to include the skewness terms of order n−1/2.7 In this case the
approximate distribution is not normal in general but can be expressed in terms
of the Edgeworth signed measures and the first three cumulant approximations.
See Linton (2001a) for a computation of this type.

Finally, we remark that the standard errors of τ̂ also depend on the nonpara-
metric estimator p̂(·), and there are similar concerns about the small sample
properties of these quantities. These standard errors also suffer from a degrees
of freedom bias problem, which can be corrected in the same way as we have
done for the estimator of τ .

4. SOME NUMERICAL RESULTS

For comparison we present the optimal rates associated with a variety of semi-
parametric models that have been studied before. These are all for the univariate
case with second-order kernels or a similar method.

The optimal bandwidth for nonparametric regression is of order n−1/5 and
has a consequent MSE of order n−4/5. Table 8.1 shows that there is quite a
variety of magnitudes for the optimal bandwidth in semiparametric estima-
tion problems; sometimes the optimal bandwidth is bigger, but usually it is
smaller than the optimal rates for nonparametric estimation. These different
rates reflect different magnitudes for bias and variance in these semiparametric
functionals.

7 In both cases,

E[{T ∗ − E(T ∗)}3] � O(n−1/2),

which is the same magnitude as in parametric models.
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We investigate the magnitudes of the second-order effects in Theorems 3.1
and 3.2 and the optimal bandwidth size. We theoretically compute the optimal
bandwidths and mean squared errors for the following model.

Design 4.1.

X ∼ U [−0.5, 0.5]; T = 1 (βX + δ > 0)

m0(x) = x ; m1(x) = τ + m0(x)

Y0 = m0(X )+ η; Y1 = y0 + τ ,

where η, δ ∼ N (0, 1) and are mutually independent. We vary the parameters τ
and β with τ ∈ {−2,−1, 0, 1, 2} and β ∈ {1, 2, 3}.8

We compute the quantities in Theorem 3.1 and 3.2 by simulation meth-
ods. Note that v0 changes substantially with β and less so with τ . For
example, when (β, τ ) = (1,−2), v0 = 4.28, while when (β, τ ) = (1,+2),
v0 = 4.31. However, when (β, τ ) = (3,−2), v0 = 29.57, and when (β, τ ) =
(3,+2), v0 = 42.86. By contrast, b1 and b2 are quite small in absolute terms.
For (β, τ ) = (1, 2), (b1, b2) = (0.031, 0.484), while for (β, τ ) = (3,−2),
(b1, b2) = (12.88,−3.59). In most cases b1 and b2 have opposite signs. The
constant v1 is very large when β = 3. When (β, τ ) = (1, 0), v1 = 0.5, while
when (β, τ ) = (3,−2), v1 = 110.36.

We report the relative root mean squared error against bandwidth (RRMSE =√
AMSE/v0) in Figures 8.1 and 8.2 for a sample size of n = 100 and n = 1000,

respectively. The solid line is for the raw estimator and the dashed line is for
the bias corrected estimator. The effects of bandwidth on performance are quite
clear from these pictures. As discussed earlier, there is a bandwidth in this case
for which the RRMSE of τ̂ is exactly equal to 1, but this never happens for τ̂ bc.

This gives the misleading impression that the uncorrected estimator is better.
But of course the error in the expansion for τ̂ bc is of much smaller order than in
τ̂ – for a meaningful comparison, we should include more terms in expansion
of τ̂ . It is clear from the pictures that τ̂ bc has better RRMSE when h is small,
but that the estimators have similar RRMSE when h is large.

Note that the Silverman’s rule-of-thumb bandwidth (for Gaussian kernels)
hrot = 1.06σn−1/5 is for n = 100, hrot = 0.35, n = 200, hrot = 0.30, n = 500,
hrot = 0.25, n = 1000, hrot = 0.22, and n = 10, 000, hrot = 0.14. Another
common bandwidth choice is just 0.2×range, which in this case would re-
sult in h = 0.2. For the small sample size, these bandwidths rarely do dread-
fully, but such large bandwidths can have disastrous effects in the larger
samples.

8 The regression R2 of βX + δ on X is R2 = 2β2/(2β2 + 3) and of Y j on X is given by the same
formula with β = 1, that is, R2 = 0.4.
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Figure 8.1. Relative root mean squared error against bandwidth [RRMSE =√
AMSE/v0] for n = 100. The solid line is for the raw estimator and the

dashed line is for the bias corrected estimator. The figure shows RRMSE
against bandwidth h.

5. CONCLUSIONS

Our asymptotic expansions revealed some facts about the HIR estimator. The
main thing is that its properties are dominated by bias: one bias term is related to
the curvature of the function p and the covariate density f, and would naturally
be called a smoothing bias; the second bias term is what we have called a
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Figure 8.2. Relative root mean squared error against bandwidth [RRMSE =√
AMSE/v0] for n = 1, 000. The solid line is for the raw estimator and the

dashed line is for the bias corrected estimator. The figure shows RRMSE
against bandwidth h.

degrees of freedom bias. The magnitude of the bias terms can be quite large,
and their signs are unknown in general. We proposed a simple bias correction
that eliminates the degrees of freedom bias term, thereby permitting a smaller
bandwidth and consequently better mean squared error.
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APPENDIX

Sufficient conditions for consistency and asymptotic normality of semiparamet-
ric estimators can be found in numerous places for a variety of nonparametric
estimators and estimation criteria. See, for example, Andrews (1994), Newey
and McFadden (1994), Bickel et al. (1993), and so forth. Linton (1996b)
develops higher-order asymptotic expansions for a general class of semipara-
metric estimators. We will clearly require smoothness conditions on p, f. We
require that both p and f be bounded away from zero on the compact support
of X. We also need some moment conditions on Y ji . The conditions should at
least imply that

sup
x∈C

|̂p(x)− p(x)| = op(n−1/4), (A.1)

where C is the support of X . Sufficient conditions for this can be found in Masry
(1996a,b), who actually shows that

sup
x∈C

|̂p(x)− p(x)| = Op(h2)+ Op

(√
log n

nh

)
, (A.2)

which is Op(n−1/3√log n) when h � n−1/3 and Op(n−3/10√log n) when h �
n−2/5; in either case this magnitude is op(n−1/4), as required. We also use the
decomposition

p̂(Xi )− p(Xi ) =
∑
j �=i

wi jε j + βn(Xi ), (A.3)

where wi j are the smoothing weights that just depend on the covariates
X1, . . . , Xn, while βn(Xi ) = E[ p̂(Xi )|X1, . . . , Xn]− p(Xi ) is the conditional
smoothing bias that also just depends on the covariates X1, . . . , Xn. It can be
shown that h−2βn(x) →p β(x) and that this convergence is uniform; see, for
example, Masry (1996a,b). In fact,

E[( p̂(Xi )− p(Xi ))
2|X1, . . . , Xn]

� 1

nh
||K ||2 p(Xi )(1− p(Xi ))

f (Xi )
+ h4

4
µ2

2(K )β2(Xi ) ≡ Mn(Xi ).

See Fan and Gijbels (1996) for more discussion.

Proof of Theorem 3.1. By a geometric series expansion,

√
n( τ̂−τ 0) = 1√

n

n∑
i=1

�(Zi ; τ 0, p(Xi ))

+ 1√
n

n∑
i=1

�p(Zi ; τ 0, p(Xi ))( p̂(Xi )− p(Xi ))
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+ 1

2
√

n

n∑
i=1

�pp(Zi ; τ 0, p(Xi ))( p̂(Xi )− p(Xi ))
2

+ 1

6
√

n

n∑
i=1

�ppp(Zi ; τ 0, p(Xi ))( p̂(Xi )− p(Xi ))
3

+ 1

24
√

n

n∑
i=1

�pppp(Zi ; τ 0, p(Xi ))( p̂(Xi )

−p(Xi ))
4 + op(n−3/4). (A.4)

The magnitude of the remainder in (A.4) follows from (A.1) and because the
derivatives of � with respect to p are dominated by a function with finite
moment (since p is bounded away from zero).

When h � n−1/3 and we only require expansion to order n−1/3, we can
further drop the cubic and quartic terms to obtain

√
n( τ̂ − τ 0) = 1√

n

n∑
i=1

�(Zi ; τ 0, p(Xi ))

+ 1√
n

n∑
i=1

sp(Xi )( p̂(Xi )− p(Xi ))

+ 1√
n

n∑
i=1

ζ i · ( p̂(Xi )− p(Xi ))

+ 1

2
√

n

n∑
i=1

spp(Xi )( p̂(Xi )− p(Xi ))
2

+ 1

2
√

n

n∑
i=1

ξ i · ( p̂(Xi )− p(Xi ))
2 + op(n−1/3)

≡ J1 + J2 + J3 + J4 + op(n−1/3),

where the random variables ζ i = �p(Zi ; τ 0, p(Xi ))− E[�p(Zi ; τ 0, p(Xi ))
|Xi ] and ξ i = �pp(Zi ; τ 0, p(Xi ))− E[�pp(Zi ; τ 0, p(Xi ))|Xi ] are both i.i.d.
and conditional mean zero given X j .

We then write

J1 = 1√
n

n∑
i=1

sp(Xi )( p̂(Xi )− p(Xi ))

= 1√
n

n∑
j=1

sp(X j )ε j + 1√
n

n∑
j=1

ε j

[∑
i �= j

wi j sp(Xi )− sp(X j )

]

+ 1√
n

n∑
i=1

sp(Xi )βn(Xi )

≡ J11 + J12 + J13, (A.5)
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where J11 = Op(1) and is asymptotically normal (also jointly asymptotically
normal with the leading term in our expansion, n−1/2∑n

i=1 �(Zi ; τ 0, p(Xi ))),
and the term J12 is mean zero and has variance of the same magnitude as
E[
∑

i �= j wi j sp(Xi )− sp(X j )]2,which we expect to be O(h4).The reason is that
wi j are approximately symmetric (see Linton 2001b), and so

∑
i �= j wi j sp(Xi )−

sp(X j ) is rather like
∑

i �= j w j i sp(Xi )− sp(X j ) in terms of its magnitude, and
this latter quantity is just the bias function from smoothing sp(Xi ) against Xi .

Therefore, J12 = Op(h2). The term J13 is a bias term with magnitude h2√n
and variance also h4. This term contributes to the second approximation of
Theorem 3.1, specifically,

h−2 1

n

n∑
i=1

sp(Xi )βn(Xi ) →p b1,

as stated.
We next turn to the term

J2 = 1√
n

n∑
i=1

ζ i · ( p̂(Xi )− p(Xi ))

= 1√
n

n∑
i=1

ζ i

∑
j �=i

wi jε j + 1√
n

n∑
i=1

ζ iβn(Xi ) ≡ J21 + J22, (A.6)

where J21 is a second-order degenerate U -statistic that has mean zero and
variance of order n−1h−1; it is also uncorrelated with the leading terms. The
second term, J22, is mean zero and Op(h2), and hence of smaller order.

We next turn our attention to the term J3. First,

J3 = 1√
n

n∑
i=1

spp(Xi )( p̂(Xi )− p(Xi ))
2

= 1√
n

n∑
i=1

spp(Xi )E[( p̂(Xi )− p(Xi ))
2|X1, . . . , Xn]

+ Op(n−1/2h−1/2)

= 1

h
√

n
||K ||2 1

n

n∑
i=1

spp(Xi )
p(Xi )(1− p(Xi ))

f (Xi )

+ Op(h4√n)+ Op(n−1/2h−1/2), (A.7)

where we have substituted in the expression for E[( p̂(Xi )− p(Xi ))2|X1, . . . ,

Xn]. Finally, taking probability limits,

h
√

n J3 = b2 + op(1),

using the fact that h5n → 0. The omitted term in (A.7) is mean zero and un-
correlated with the lead, so that only its variance, which is of order n−1h−1,
contributes to the mean squared error; with the bandwidth magnitude of The-
orem 3.1, it is of smaller order. To make clearer the claim in (A.7), and in
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anticipation of the proof of Theorem 3.2 where this term is important, we give
another argument here. Using (A.3), we can write

J3 = 1√
n

n∑
i=1

spp(Xi )

[∑
j �=i

wi jε j + Op(h2)

]2

= 1√
n

n∑
i=1

spp(Xi )

[∑
j �=i

wi jε j

]2

+ Op(h4√n)

� 1√
n

n∑
i=1

spp(Xi )
∑
j �=i

w2
i j E
(
ε2

j |X j
)

+ 1√
n

n∑
i=1

spp(Xi )
∑
j �=i

w2
i j

[
ε2

j − E
(
ε2

j |X j
)]

+ 1√
n

n∑
i=1

spp(Xi )
∑
j �=1

∑
l �=1

j �=i

wi jwilε jεl ≡ J31 + J32 + J33.

The first term, J31, is the leading bias term of order h−1n−1/2, analyzed above.
The second term, J32, is mean zero and is of order n−1h−1 in probability, and
so is insignificant in both Theorems 3.1 and 3.2. The third term, J33, is mean
zero and Op(n−1/2h−1/2). We can rewrite this term as

1√
n

n∑
i=1

spp(Xi )
∑
j �=1

∑
l �=1

j �=i

wi jwilε jεl

=
∑∑

j �=i

(
1√
n

n∑
i=1

spp(Xi )wi jwil

)
ε jεl

� 1

n
√

nh

∑∑
j �=i

(K ∗ K )

(
X j − Xl

h

)
spp(X j )

f (X j )
ε jεl ,

where K ∗ K (u) = ∫ K (t − u)K (t) dt. See Linton (1995) for a similar calcu-
lation. This term does not feature in the expansion of Theorem 3.1 (but does
contribute in Theorem 3.2, as will be seen).

Finally, it is easy to see that

J4 = 1

2
√

n

n∑
i=1

ξ i · ( p̂(Xi )− p(Xi ))
2 = Op(h4 + n−1h−1).

Specifically, because we are using a leave-one-out estimator, ξ i is independent
of p̂(Xi )− p(Xi ) conditional on Xi . Therefore, this term is mean zero and its
order in probability is the same as E Mn(Xi ).
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In conclusion, we have

√
n(̂τ − τ 0) � 1√

n

n∑
i=1

�(Zi ; τ 0, p(Xi ))+ sp(Xi )εi
[=Op(1)

]
+ 1√

n

n∑
j=1

ε j

[∑
i �= j

wi j sp(Xi )− sp(X j )

] [=Op(h2)
]

+
∑∑

j �=i

ϕn(Zi , Z j )
[=Op(n−1/2h−1/2)

]
+ 1√

n

n∑
i=1

sp(Xi )βn(Xi )
[=Op(h2√n)

]
+ 1

2
√

n

n∑
i=1

spp(Xi )Mn(Xi )
[=Op(h4√n)+ Op(n−1/2h−1)

]
,

(A.8)

where

ϕn(Zi , Z j ) = 1

nh
√

n

1

f (Xi )

[
K

(
Xi − X j

h

)
ζ iε j

+ 1

2
(K ∗ K )

(
Xi − X j

h

)
spp(Xi )εiε j

]
.

Clearly, E[ϕn(Zi , Z j )|Zi ] = E[ϕn(Zi , Z j )|Z j ] = 0 and
∑∑
j �=i ϕn(Zi , Z j ) is a

degenerate weighted U -statistic of the stated order in probability. Because this
term is uncorrelated with the leading term, it does not contribute to the mean
squared error expansion of Theorem 3.1. Likewise, the Op(h2) term does not
contribute because it is mean zero. Therefore, the leading terms in the mean
squared error expansion come from

√
n( τ̂ − τ 0) � 1√

n

n∑
i=1

[�(Zi ; τ 0, p(Xi ))+ sp(Xi )εi ]

+ 1√
n

n∑
i=1

sp(Xi )βn(Xi )+ 1

2
√

n

n∑
i=1

spp(Xi )Mn(Xi ).

Proof of Theorem 3.2. In this case we have h ∝ n−2/5 and require a mean
squared error expansion up to order n−3/5.

Write b̂2 = h
√

n b̂n2, where (recall the target quantity)

b2 = ||K ||2 E

[
spp(Xi )

p(Xi )(1− p(Xi ))

2 f (Xi )

]
.
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First of all, we suppose that

√
n( b̂2 − b2) = 1√

n

n∑
i=1

ψ(Xi )+ op(1), (A.9)

where Eψ(Xi ) = 0 and var(ψ(Xi )) <∞. This can be justified by a lengthy
argument using standard techniques of semiparametric estimation; see, for ex-
ample, Andrews (1994), Newey and McFadden (1994), and so forth. The con-
sequence of (A.9) is

√
n( τ̂ bc − τ 0) = √

n( τ̂ − τ 0)− b2

h
√

n
(1+ Op(n−1/2))

= √
n( τ̂ − τ 0)− b2

h
√

n
+ Op(n−3/5),

where the Op(n−3/5) term is mean zero. Furthermore, this remainder term is un-
correlated with the leading term because E[�(Zi ; τ 0, p(Xi ))+ sp(Xi )εi |Xi ] =
0, and therefore this term does not contribute to the mean squared error
expansion.

We must examine (A.4) again because the bandwidth magnitude is different
from that in Theorem 3.1. The term

1

6
√

n

n∑
i=1

�ppp(Zi ; τ 0, p(Xi ))( p̂(Xi )−p(Xi ))
3 = Op(n−2/5(log n)3/2)

in principle must be analyzed in this case. It can be shown that it does not
contribute to the mean squared error because essentially the correlations with
leading terms are of smaller order (the square of this term is obviously n−3/5).

In conclusion,

√
n( τ̂ bc − τ 0) � 1√

n

n∑
i=1

�(Zi ; τ 0, p(Xi ))+ sp(Xi )εi

+
∑∑

j �=i

ϕn(Zi , Z j )+ 1√
n

n∑
i=1

sp(Xi )βn(Xi ),

where omitted terms do not contribute to the mean squared error to order n−3/5.

Finally,

var

[∑∑
j �=i

ϕn(Zi , Z j )

]
= n(n − 1)E

[
ϕ2

n(Zi , Z j )
]+ 2n(n − 1)E[ϕn(Zi , Z j )ϕn(Z j , Zi )],
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where, by the law of iterated expectations,

E
[
ϕ2

n(Zi , Z j )
]

= 1

n3h2
E

[
1

f 2(Xi )
K 2

(
Xi − X j

h

)
E
[
ζ 2

i |Xi
]

E
[
ε2

j |X j
]]

+ 1

4n3h2
E

[
1

f 2(Xi )
(K ∗ K )2

(
Xi − X j

h

)
s2

pp(Xi )E
[
ε2

i |Xi
]

E
[
ε2

j |X j
]]

+ 1

n3h2
E

[
1

f 2(Xi )
(K∗K )×K

(
Xi − X j

h

)
spp(Xi )E

[
ζ iεi |Xi

]
E
[
ε2

j |X j
]]

E[ϕn(Zi , Z j )ϕn(Z j , Zi )]

= 1

n3h2
E

[
1

f (Xi ) f (X j )
K 2

(
Xi − X j

h

)
E[ζ iεi |Xi ]E[ζ jε j |X j ]

]
+ 1

4n3h2
E

[
spp(Xi )spp(X j )

f (Xi ) f (X j )
(K ∗ K )2

(
Xi − X j

h

)
E
[
ε2

i |Xi
]

E
[
ε2

j |X j
]]

× 1

n3h2
E

[
spp(Xi )

f (Xi ) f (X j )
(K×(K∗K ))

(
Xi − X j

h

)
E
[
ζ iεi |Xi

]
E
[
ε2

j |X j
]]
.

We use the fact that K ∗ K is symmetric, then take expectations with respect
to X j and use the localizing operation of K and K ∗ K to see that

n(n − 1)E
[
ϕ2

n(Zi , Z j )
] � 1

nh
‖K‖2 E

[
E
[
ζ 2

i |Xi
]

E
[
ε2

i |Xi
]

f (Xi )

]

+ 1

4nh
‖K ∗ K‖2 E

[
s2

pp(Xi )E2
[
ε2

i |Xi
]

f (Xi )

]

+ 1

nh
〈K , K ∗ K 〉E

[
spp(Xi )E[ζ iεi |Xi ]E

[
ε2

i |Xi
]

f (Xi )

]

2n(n − 1)E[ϕn(Zi , Z j )ϕn(Z j , Zi )]

= 2

nh
‖K‖2 E

[
E2[ζ iεi |Xi ]

f (Xi )

]
+ 1

2nh
‖K ∗ K‖2 E

[
s2

pp(Xi )E2
[
ε2

i |Xi
]

f (Xi )

]

× 2

nh
〈K , K ∗ K 〉 E

[
spp(Xi )E[ζ iεi |Xi ]E

[
ε2

i |Xi
]

f (Xi )

]
.

Therefore, the result is as stated.
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CHAPTER 9

Higher-order Improvements of
the Parametric Bootstrap for
Markov Processes
Donald W. K. Andrews

ABSTRACT

This paper provides bounds on the errors in coverage probabilities of maximum likelihood-based,
percentile-t, parametric bootstrap confidence intervals for Markov time series processes. Analogous
results are given for delta method confidence intervals (which are based on first-order asymptotics).
The bounds show that the parametric bootstrap for Markov time series provides higher-order
improvements over delta method confidence intervals that are comparable to those obtained by the
parametric and nonparametric bootstrap for i.i.d. data and are better than those obtained by the
block bootstrap for time series. Additional results are given for Wald-based confidence regions.

The paper also shows that k-step parametric bootstrap confidence intervals achieve the same
higher-order improvements as the standard parametric bootstrap for Markov processes. The k-
step bootstrap confidence intervals are computationally attractive. They circumvent the need to
compute a nonlinear optimization for each simulated bootstrap sample. The latter is necessary to
implement the standard parametric bootstrap when the maximum likelihood estimator solves a
nonlinear optimization problem.

1. INTRODUCTION

A line of research to which Tom Rothenberg has made significant contribu-
tions is that of Edgeworth expansions for parametric models. His Economet-
rica papers on Edgeworth expansions for estimators and tests statistics in the
normal linear model, (Rothenberg 1984a,b) are paradigms of elegance. The
current paper is in the same line of research, though it is not so elegant. We de-
velop Edgeworth expansions in parametric time series models and utilize these
Edgeworth expansions to explore the properties of the parametric bootstrap.

Specifically, this paper analyzes the higher-order properties of the paramet-
ric bootstrap for maximum likelihood (ML)–based confidence intervals (CIs)
for κth order Markov processes, possibly with exogenous variables. It is shown
that under correct model specification the parametric bootstrap obtains essen-
tially the same higher-order improvements in coverage probabilities relative to
standard delta method CIs in the time series context as do the parametric and
nonparametric bootstraps for independent and identically distributed (i.i.d.)
observations. This contrasts with the (nonparametric) block bootstrap for time
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series, which does not obtain as large improvements; see, for example, Andrews
(2002b), Zvingelis (2003), and Inoue and Shintani (2005).

In particular, the paper shows that symmetric two-sided percentile t CIs
constructed using the parametric bootstrap have errors in coverage probabil-
ity of order O(N−2), where N is the sample size. Two-sided percentile t CIs
constructed using the delta method, which utilizes the asymptotic normal dis-
tribution, are shown to have coverage probability errors of magnitude O(N−1).
Hence, the use of the parametric bootstrap reduces the errors in coverage prob-
ability by O(N−1).

For one-sided percentile t CIs, the use of the parametric bootstrap is shown
to yield errors in coverage probabilities of order o(N−1 ln N ), whereas those of
the delta method are shown to be O(N−1/2). (Here the ln N factor is a product
of the method of proof. The sharp result for the parametric bootstrap is probably
O(N−1), as in the i.i.d. case.) Hence, for one-sided CIs, the parametric bootstrap
reduces the errors in coverage probability by o(N−1/2 ln(N )).

In contrast, the improvements established in Andrews (2002b) for the block
bootstrap are only of magnitude O(N−1/4) for both two- and one-sided CIs.
This is due to the effect of the independence across blocks, which does not
mimic the dependence in the time series of interest, and to the fact that the
number of blocks employed must be of smaller order than O(N ).

This paper also analyzes the higher-order properties of a k-step parametric
bootstrap procedure for ML estimators. We show that for suitable choice of
k, the k-step parametric bootstrap CIs yield the same higher-order improve-
ments over delta method CIs as does the standard parametric bootstrap. The
k-step bootstrap has computational advantages over the standard bootstrap.
It was first proposed by Davidson and MacKinnon (1999a). For the case of
the (nonparametric) block bootstrap, its properties are analyzed in Andrews
(2002b). The k-step bootstrap is related to the one-step and k-step estimators
considered by Fisher (1925), LeCam (1956), Rothenberg and Leenders (1964),
Pfanzagl (1974), Janssen, Jureckova, and Veraverbeke (1985), and Robinson
(1988), among others.

The standard bootstrap for an ML estimator requires that one solve B non-
linear optimization problems to obtain B bootstrap estimators, where B denotes
the number of bootstrap repetitions. These estimators are then used to construct
bootstrap CIs, test statistics, and so on. On the other hand, the k-step bootstrap
involves calculation of a closed-form expression for each of the B bootstrap
repetitions. The k-step bootstrap estimator is obtained by taking k-steps of a
Newton–Raphson (NR), default NR, line-search NR, or Gauss–Newton (GN)
iterative procedure initiated at the estimate based on the original sample. For
the NR, default NR, and line-search NR k-step bootstraps, it is often sufficient
to take k ≥ 2 for a = 1 and k ≥ 3 for a = 2. For the GN k-step bootstrap, it is
often sufficient to take k ≥ 3 for a = 1 and k ≥ 5 for a = 2.

The method of proof of the results outlined above is as follows. First, we
establish Edgeworth expansions for the ML estimator and the t statistic based on
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the ML estimator that hold uniformly over a compact set in the parameter space.
The method of doing so is similar to that of Bhattacharya and Ghosh (1978).
This method is also used by Hall and Horowitz (1996) and Andrews (2002b),
among others. We utilize an Edgeworth expansion for the normalized sum of
strong mixing random variables due to Lahiri (1993), which is an extension of
a result of Götze and Hipp (1983), whereas Bhattacharya and Ghosh (1978)
consider i.i.d. random variables and use a standard Edgeworth expansion for
i.i.d. random variables. These Edgeworth expansions yield the bounds on the
coverage probability errors of delta-method CIs.

Second, we convert the (uniform) Edgeworth expansions for the ML esti-
mator and t statisitc into Edgeworth expansions for the bootstrap ML estimator
and bootstrap t statistic using the fact that the ML estimator lies in a neigh-
borhood of the true value with probability that goes to 1 at a sufficiently fast
rate. This gives the bounds on coverage probabilities of one-sided parametric
bootstrap CIs. For symmetric percentile t bootstrap CIs, we use the argument
of Hall (1988) to obtain the errors in coverage probability using the Edgeworth
expansions for the t statistics and bootstrap t statistics.

Third, to prove the results for the k-step parametric bootstrap, we use the
method in Andrews (2002a,b). In particular, we show that the distribution func-
tion of a k-step bootstrap statistic differs from that of a standard bootstrap
statistic by at most N−a with probability 1− o(N−a) for any a > 0, provided
k is sufficiently large and sufficient smoothness and moment conditions hold.
The method is related to that used in the numerical analysis literature to es-
tablish the quadratic convergence of the Newton–Raphson algorithm. It is also
similar to that used in the statistics and econometrics literature to determine the
distributional and stochastic differences between statistics; see, for example,
Pfanzagl (1974) and Robinson (1988).

The results of the paper are for parametric time series models in which
the likelihood is a smooth function of the parameter and the observations are
weakly asymptotically dependent. Thus, the type of models covered include
ARCH/GARCH-type models, threshold autoregressive models, regime switch-
ing models, and so forth (although the results do not cover nonstandard testing
problems in such models, such as testing for the existence of thresholds or
regimes). The results do not cover long-memory models. Results for the para-
metric bootstrap for long-memory models are given in Andrews and Lieberman
(2005).

The results of the paper apply to a correctly specified model. In a misspec-
ified model, the parametric bootstrap typically does not provide higher-order
improvements over the delta method for CIs and tests regarding the pseudo–true
value (although it is still valid for first order). The reason is that the bootstrap
generates samples according to the parametric model evaluated (approximately)
at the pseudo–true value for n large. In contrast, the original sample is gen-
erated by some distribution not in the parametric family. In consequence,
the coefficients of the Edgeworth expansions of original sample statistics
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and corresponding bootstrap statistics typically are different, even in the limit.
Since the Edgeworth expansions of the bootstrap statistics do not mimic those
of the original sample statistics, the bootstrap does not yield higher-order
improvements.

This paper provides some Monte Carlo results to illustrate the performance of
the parametric bootstrap compared to the delta method in the second-order au-
toregressive (AR(2)) model with Gaussian errors. This model is convenient for
Monte Carlo experiments because the ML estimator is the LS estimator, which
is available in closed form and, hence, computation is quick. We consider CIs
for a nonlinear function of the AR parameters, namely, the cumulative impulse
response (CIR), as well as for the AR parameters themselves. We consider
sample sizes of 50 and 100 and a variety of different parameter combinations.
To see how robust the (Gaussian) parametric bootstrap is to nonnormal errors,
we also consider errors with t distribution with five degrees of freedom, which
exhibits fat tails, andχ2 distribution with one degree of freedom, which exhibits
skewness.

The performances of the delta method and the parametric bootstrap CIs
are found to depend on how close the sum of the AR coefficients is to 1.
When the sum is close to 1, both types of CIs perform much more poorly than
otherwise. In virtually all parameter combinations, the parametric bootstrap
outperforms the delta method in terms of coverage probability. The difference
is most pronounced when the sum of AR coefficients is close to 1. For example,
when the AR parameters are .90 and 0.0, the sample size is 100, the errors are
normal, and the nominal coverage probabilities of the CIs are .95; the actual
coverage probabilities of the delta method, symmetric parametric bootstrap,
and equal-tailed parametric bootstrap CIs for the CIR are .714, .876, and .847,
respectively. As a second example, when the AR parameters are .50 and 0.0
and everything else is the same as above, the analogous coverage probabilities
are .880, .929, and .915. The results change very little when t5 or χ2

1 errors
are used. Overall, the simulation results indicate that in one Markov model of
interest the parametric bootstrap outperforms the delta method.

An alternative bootstrap procedure that can be used in the AR(2) model is the
residual-based (RB) bootstrap; see Bose (1988). We compare the (Gaussian)
parametric bootstrap to the RB bootstrap when the errors are normal, t5, and
χ2

1. For normal and t5 errors, there is very little difference in the coverage
probabilities of the parametric and RB bootstraps. For χ2

1 errors, the differences
are larger. The coverage probabilities of the parametric bootstrap CIs are almost
always higher than those of the RB bootstrap CIs. For about half of the parameter
combinations considered, the parametric bootstrap coverage probabilities are
closer to the nominal value .95 than the RB bootstrap coverage probabilities, and
vice versa. Hence, the overall performance of the parametric and RB bootstraps
are quite similar in the AR(2) model.

Note that Bose (1988) shows that the RB bootstrap estimates the distribution
function of the LS estimator with known covariance matrix up to o(n−1/2),
whereas the delta method does so up to O(n−1/2). Bose’s results do not apply to
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the RB bootstrap considered in the Monte Carlo section because the covariance
matrix of the LS estimator is taken to be unknown, as would be the case in
practice.

No other papers in the literature that we are aware of consider higher-order
improvements of the parametric bootstrap for time series processes. In fact,
there are few papers that consider higher-order improvements of the parametric
bootstrap even for i.i.d. observations. Two papers that do are Davidson and
MacKinnon (1999b) and Kim (2002). On the other hand, numerous papers in
the literature consider different types of bootstrap procedures for time series ob-
servations. Rajarshi (1990), Datta and McCormick (1995), and Horowitz (2003)
consider a nonparametric bootstrap for Markov processes that utilizes a non-
parametric estimator of the transition densities of the process. Bose (1988)
and Inoue and Kilian (2002) consider an RB bootstrap for AR processes
that relies on transforming the data to obtain approximately i.i.d. residuals.
Paparoditis (1996), Bühlmann (1998), Choi and Hall (2000), Park (2001), and
Chang and Park (2003), consider sieve bootstraps for linear time series pro-
cesses. Hansen (1999) considers a grid bootstrap. Many other papers consider
the block bootstrap. These include Carlstein (1986), Künsch (1989), Lahiri
(1992, 1993, 1996), Hall and Horowitz (1996), Götze and Künsch (1996),
Andrews (2002b), Zvingelis (2003), Gonçalves and White (2004), and Inoue
and Shintani (2005).

The results of the present paper differ from those of Andrews (2002b) in
the following ways. First, the parametric bootstrap is considered rather than the
block bootstrap. In consequence, the form of the Edgeworth expansions for the
bootstraps differ and, in consequence, different higher-order improvements re-
sult. Second, in the present paper, we establish the Edgeworth expansions for
the parametric bootstrap by establishing Edgeworth expansions for the original
sample that hold uniformly over certain subsets of the parameter space. This
differs from the approach taken in Andrews (2002b). Third, the results of the
present paper apply with fixed exogenous variables and, hence, the observations
are neither identically distributed nor stationary. We consider fixed exogenous
variables because it is preferable to take the exogenous variables to be the
same in each bootstrap sample. In contrast, the results for the block bootstrap
of Andrews (2002b) are for stationary random variables, because one cannot
take exogenous variables to be the same in each block bootstrap sample and,
hence, one typically does not condition on exogenous variables when using
the block bootstrap. Fourth, we impose much weaker moment conditions and
smoothness conditions here than in Andrews (2002b). This is possible because
the parametric bootstrap is simpler than the block bootstrap.

The remainder of the paper is organized as follows. Section 2 introduces
the parametric Markov model that is considered in the paper and defines the
ML estimator, the t and Wald statistics, the delta method CIs, and the delta
method confidence regions (CRs). Section 3 defines the parametric bootstrap
CIs and CRs. Section 4 states the assumptions. Section 5 provides bounds on
the coverage probability errors of the delta method CIs and CRs. Section 6
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does likewise for the parametric bootstrap CIs and CRs. Section 7 introduces
k-step parametric bootstrap CIs and CRs and shows that the same bounds on
the coverage probability errors apply as for the standard parametric bootstrap,
provided k is taken to be large enough. Section 8 presents some Monte Carlo
simulation results for the parametric bootstrap for an AR(2) model. The
Appendix contains proofs of the results.

2. MARKOV MODEL AND MAXIMUM
LIKELIHOOD ESTIMATOR

In this section, we provide results for likelihood-based methods using the
parametric bootstrap. The parametric bootstrap utilizes the ML estimator to
generate bootstrap samples. It can be used for both bootstrap confidence inter-
vals and tests.

We obtain higher-order improvements of the parametric bootstrap that are
the same whether or not the data are dependent.

We consider a correctly specified parametric model for a time series
{Wi : i = 1, . . . , n}, where Wi ∈ RLw . Let Wi = (Y ′

i , X ′
i )
′, where Yi is a vector

of dependent (or response) variables and Xi is a vector of “regressor” variables.
The dependent random variables {Yi : i = 1, . . . , n} form a κth order Markov
process. The regressor variables {Xi : i = 1, . . . , n} are strictly exogenous and,
hence, are taken to be fixed (i.e., nonrandom). All probabilities are based on
the randomness in {Yi : i = 1, . . . , n} alone.

Assumption 2.1. (a) The parametric model specifies the density of Yi given
(Xi , Wi−1, Wi−2, . . . , W1) (with respect to some σ -finite measure µ) to be
d(·|Xi , Wi−1, Wi−2, . . . , Wi−κ ; θ ) for i = κ + 1, . . . , n, for some integer κ ≥
0,where θ is a parameter in the parameter space� ⊂ RLθ . (b) For any θ0 ∈ �,
when {Yi : i ≥ 1} is distributed with true parameter θ0, then {Yi : i ≥ 1} is
a strong mixing sequence of random variables with strong mixing numbers
{α(θ0,m) : m ≥ 1} that satisfy supθ0∈�α(θ0,m) ≤ C1 exp(−C2m) for some
constants 0 < C1,C2 <∞.

Let Eθ0 and Pθ0 denote expectation and probability, respectively, when the
distribution of the observations is given by the parametric model with true
parameter θ0.

It is convenient notationally to define overlapping observations W̃i =
(W ′

i , . . . , W ′
i+κ )′ for i = 1, . . . , N , where N = n − κ. The sample in terms

of the overlapping variables is denoted by χ N :

χ N = {W̃i : i = 1, . . . , N }. (2.1)

The normalized negative of the log likelihood function is

ρN (θ ) = N−1
N∑

i=1

ρ(W̃i , θ ), where

ρ(W̃i , θ ) = − log d(Yi+κ |Xi+κ , Wi+κ−1, Wi+κ−2, . . . , Wi ; θ ).1 (2.2)
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By definition, the ML estimator θ̂ N solves

min
θ∈�

ρN (θ ). (2.3)

The ML estimator also satisfies the first-order conditions

N−1
N∑

i=1

g(W̃i , θ̂ N ) = 0, where

g(W̃i , θ ) = (∂/∂θ )ρ(W̃i , θ ). (2.4)

The asymptotic covariance matrix, �(θ0), of the ML estimator θ̂ N when the
true parameter is θ0 is

�(θ0) = D(θ0)−1V (θ0)D(θ0)−1, where

V (θ ) = lim
N→∞

N−1
N∑

i=1

Eθg(W̃i , θ )g(W̃i , θ )′ and

D(θ ) = lim
N→∞

N−1
N∑

i=1

Eθ

∂

∂θ ′
g(W̃i , θ ). (2.5)

A consistent variance matrix estimator �N for θ̂ N can be defined in several
ways because D(θ0) and V (θ0) are square matrices and the information matrix
equality implies that D(θ0) and V (θ0) are equal. In particular, one can use

�N = �N (̂θ N ) for

�N (θ ) = D−1
N (θ )VN (θ )D−1

N (θ ), �N (θ ) = D−1
N (θ ), or

�N (θ ) = V−1
N (θ ), where

VN (θ ) = N−1
N∑

i=1

g(W̃i , θ )g(W̃i , θ )′, and

DN (θ ) = N−1
N∑

i=1

∂

∂θ ′
g(W̃i , θ ). (2.6)

Let θ r , θ0,r , and θ̂ N ,r denote the r th elements of θ, θ0, and θ̂ N , respectively.
Let (�N )rr denote the (r, r )-th element of �N . The t statistic for testing the null
hypothesis H0 : θ r = θ0,r is

TN (θ0,r ) = N 1/2(̂θ N ,r − θ0,r )/(�N )1/2
rr . (2.7)

Two-sided and upper one-sided delta method CIs for θ0,r of confidence level
100(1− α)% are given by

�2S = [̂θ N ,r − zα/2(�N )1/2
rr /N 1/2, θ̂ N ,r + zα/2(�N )1/2

rr /N 1/2] and

�UP = [̂θ N ,r − zα(�N )1/2
rr /N 1/2, ∞), (2.8)

1 This specification of the log likelihood does not utilize the first κ observations, except as condi-
tioning variables. It should be possible to extend the results of the paper without much difficulty
to the case where the likelihood for the first κ observations is included in the likelihood function.
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respectively, where zα denotes the 1− α quantile of the standard normal
distribution.

Suppose β ∈ RLβ is a sub-vector of θ, say, θ = (β ′, δ′)′. The Wald statistic
for testing H0 : β = β0 versus H1 : β �= β0 is

WN (β0) = HN (̂θ N , β0)′HN (̂θ N , β0), where

HN (θ, β0) = ([ILβ

...0]�N (θ )[ILβ

...0]′)−1/2 N 1/2(β − β0). (2.9)

The delta method confidence region (CR) for β0 of confidence level 100(1−
α)% is

�REG = {β ∈ RLβ : N (̂βN − β)′([ILβ

...0]�N [ILβ

...0]′)−1

× (̂βN − β) ≤ zLβ ,α
}, (2.10)

where zLβ ,α
is the 1− α quantile of the chi-square distribution with Lβ degrees

of freedom.

3. PARAMETRIC BOOTSTRAP

The parametric bootstrap sample {W ∗
i : i = 1, . . . , n} is defined as follows.

The bootstrap regressors are the same fixed regressors as in the original
sample and the bootstrap dependent variables are generated recursively for
i = 1, . . . , n using the parametric density evaluated at the unrestricted ML
estimator θ̂ N . That is, one takes W ∗

i = (Y ∗′
i , X ′

i )
′, where Y ∗

i has density
d(·|Xi , W ∗

i−1, W ∗
i−2, . . . , W ∗

i−κ i
; θ̂ N ) for i = 1, . . . , n, where κ i = min{κ, i +

1}.The bootstrap observations W̃ ∗
i are defined to be W̃ ∗

i = (W ∗′
i , . . . , W ∗′

i+κ )′ for
i = 1, . . . , N . Under Assumption 2.1, the conditional distribution of the boot-
strap sample given θ̂ N is the same as the distribution of the original sample,
except that the true parameter is θ̂ N rather than θ0.

The bootstrap estimator θ∗N is defined exactly as the original estimator θ̂ N

is defined, but with the original sample {W̃i : i = 1, . . . , N } replaced by the
bootstrap sample {W̃ ∗

i : i = 1, . . . , N }. That is, θ∗N solves

min
θ∈�

ρ∗N (θ ), where ρ∗N (θ ) = N−1
N∑

i=1

ρ(W̃ ∗
i , θ ). (3.1)

The bootstrap covariance matrix estimator, �∗
N , is defined to be �∗

N (θ∗N ),
where�∗

N (θ ) has the same definition as�N (θ ) (see (2.6)), but with the bootstrap
sample in place of the original sample. (For example, V ∗

N (θ ) equals VN (θ ) with
W̃i replaced by W̃ ∗

i .)
The bootstrap t and Wald statistics need to be defined such that their dis-

tributions mimic the null nonbootstrap distribution even when the sample is
generated by a parameter in the alternative hypothesis. This is done by center-
ing the statistics at θ̂ N ,r and β̂N , respectively, rather than at the values specified
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under the null hypotheses. We define

T ∗
N (̂θ N ,r ) = N 1/2((θ∗N )r − θ̂ N ,r )/(�∗

N )1/2
rr and

W∗
N (̂βN ) = H∗

N (θ∗N , β̂N )′H∗
N (θ∗N , β̂N ), where

H∗
N (θ, β̂N ) =

(
[ILβ

...0]�∗
N (θ )[ILβ

...0]′
)−1/2

N 1/2(β − β̂N ), (3.2)

(θ∗N )r denotes the r th element of θ∗N ,
2 and (�∗

N )rr denotes the (r, r )-th element
of �∗

N .

Let z∗|T |,α, z∗T,α, and z∗W,α denote the 1− α quantiles of |T ∗
N (̂θ N ,r )|, T ∗

N (̂θ N ,r ),

and W∗
N (̂βN ), respectively. To be precise, we define z∗|T |,α to be a value that

minimizes |P∗(|T ∗
N (̂θ N ,r )| ≤ z)− (1− α)| over z ∈ R. (This definition allows

for discreteness in the distribution of |T ∗
N (̂θ N ,r )|.) The precise definitions of

z∗T,α and z∗W,α are analogous.
The symmetric two-sided bootstrap CI for the r th element of θ0, θ0,r , of

confidence level 100(1− α)% is

CISYM = [̂θ N ,r − z∗|T |,α(�N )1/2
rr /N 1/2, θ̂ N ,r + z∗|T |,α(�N )1/2

rr /N 1/2
]
. (3.3)

The equal-tailed two-sided bootstrap CI for θ0,r of confidence level 100(1−
α)% is

CIET =
[̂
θ N ,r − z∗T,α/2(�N )1/2

rr /N 1/2, θ̂ N ,r + z∗T,1−α/2(�N )1/2
rr /N 1/2

]
. (3.4)

The upper one-sided bootstrap CI for θ0,r of confidence level 100(1− α)% is

CIUP = [̂θ N ,r − z∗T,α(�N )1/2
rr /N 1/2, ∞). (3.5)

The bootstrap confidence region (CR) for β0 of confidence level 100(1− α)%
is

CR = {β ∈ RLβ : N (̂βN − β)′([ILβ

...0]�N [ILβ

...0]′)−1

× (̂βN − β) ≤ z∗W,α}. (3.6)

Correspondingly, the symmetric two-sided bootstrap t test of H0 : θ r = θ0,r

versus H1 : θ r �= θ0,r of significance level α rejects H0 if |TN (θ0,r )| > z∗|T |,α.
The equal-tailed two-sided bootstrap t test of significance level α for the same
hypotheses rejects H0 if TN (θ0,r ) < z∗T,1−α/2 or TN (θ0,r ) > z∗T,α/2. The one-
sided bootstrap t test of H0 : θ r ≤ θ0,r versus H1 : θ r > θ0,r of significance
level α rejects H0 if TN (θ0,r ) > z∗T,α.

To carry out tests of the above sort, an alternative parametric bootstrap
procedure can be used that employs the restricted ML estimator of θ. Results
of Davidson and MacKinnon (1999b) and Kim (2002) indicate that the error
in test rejection probability for one-sided tests may be smaller using such a
procedure than using a bootstrap based on the unrestricted ML estimator. For

2 The r th element of θ∗N is denoted by (θ∗N )r , rather than θ∗N ,r , to distinguish it from the k-step
bootstrap estimator θ∗N ,k , defined in Section 7.
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this reason, the results of this paper for one-sided procedures are more useful
for CIs than for tests.

Note that while there are two types of two-sided bootstrap CIs – symmetric
and equal-tailed – there is only one type of two-sided delta method CI. This
is because two-sided delta method CIs are necessarily both symmetric and
equal-tailed by the symmetry of the standard normal distribution.

4. ASSUMPTIONS

In this section, we state assumptions that are used in conjunction with Assump-
tion 2.1 to obtain the results of the paper.

Let a be a nonnegative constant such that 2a is an integer. The following as-
sumptions depend on a – the larger a is, the stronger are the assumptions. To ob-
tain higher-order improvements of the parametric bootstrap CIs, we require the
assumptions to hold with a equal to 1/2, 1, 3/2, or 2, depending upon the CI.

Let f (W̃i , θ ) ∈ RL f denote the vector containing the unique components of
g(W̃i , θ ) and g(W̃i , θ )g(W̃i , θ )′ and their partial derivatives with respect to θ

through order d = max{2a + 2, 3}. Let (∂ j/∂θ j )g(W̃i , θ ) denote the vector of
partial derivatives with respect to θ of order j of g(W̃i , θ ). Let λmin(A) denote
the smallest eigenvalue of a matrix A. Let d(θ, B) denote the usual distance
between a point θ and a set B (i.e., d(θ, B) = inf{||θ − θ1|| : θ1 ∈ B}).

We establish asymptotic refinements that hold uniformly for the true param-
eter lying in a subset �0 of �. For some δ > 0, let �1 = {θ ∈ � : d(θ,�0) <
δ/2} be a slightly larger set than �0. To obtain the asymptotic refinements, we
need to establish Edgeworth expansions that hold uniformly for the true param-
eter lying in �1. The reason is that the parametric bootstrap uses θ̂ N as the true
parameter and �1 contains θ̂ N with probability that goes to 1 (at a sufficiently
fast rate) when the true parameter is in �0. In turn, to establish the Edgeworth
expansions for all true parameters θ0 in �1, we need some assumptions to hold
uniformly over the slightly larger set �2 = {θ ∈ � : d(θ,�0) < δ}.

We use the following assumptions.

Assumption 4.1. (a) � is compact and �1 is an open set. (b) θ̂ N min-
imizes N−1∑N

i=1 ρ(W̃i , θ ) over θ ∈ �. (c) ρ(θ, θ0) = limN→∞N−1∑N
i=1

Eθ0ρ(W̃i , θ ) exists and satisfies limN→∞supθ∈�,θ0∈�1
|N−1∑N

i=1 Eθ0ρ(W̃i ,

θ )− ρ(θ, θ0)| = 0. (d) For all θ0 ∈ �1, ρ(θ, θ0) is uniquely minimized over θ ∈
� by θ = θ0. Furthermore, given any ε > 0, there exists η > 0 such that ||θ −
θ0|| > ε implies that ρ(θ, θ0)− ρ(θ0, θ0) > η for all θ ∈ � and θ0 ∈ �1. (e)
supθ0∈�1,i≥1 Eθ0 supθ∈�||g(W̃i , θ )||q0 <∞ and supθ0∈�1,i≥1 Eθ0 |ρ(W̃i , θ )|q0 <

∞ for all θ ∈ � for q0 = max{2a + 1, 2}.

Assumption 4.2. (a) g(w̃, θ ) is d = max{2a + 2, 3} times partially differenti-
able with respect to θ on �2 for all w̃ in the support of W̃i for all i ≥ 1.
(b) supθ0∈�1,i≥1 Eθ0 || f (W̃i , θ0)||q1 <∞ for some q1 > 2a + 2. (c) V (θ0)
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and D(θ0) satisfy: infθ0∈�1λmin(V (θ0)) > 0, infθ0∈�1λmin(D(θ0)) > 0,
limN→∞supθ0∈�1

|Eθ0 VN (θ0)− V (θ0)| = 0 and limN→∞ supθ0∈�1
|Eθ0 DN

(θ0)− D(θ0)| = 0. (d) There is a function C f (W̃i ) such that || f (W̃i , θ )−
f (W̃i , θ0)|| ≤ C f (W̃i )||θ − θ0|| for all θ ∈ �2 and θ0 ∈ �1 such that
||θ − θ0|| < δ and all i ≥ 1 and supθ0∈�1,i≥1 Eθ0 Cq1

f (W̃i ) <∞ for some
q1 > 2a + 2.

Assumption 4.1 imposes some fairly standard conditions used to establish
consistency of the ML estimator, as well as some moment conditions. Assump-
tion 4.2 imposes smoothness and moment conditions on the parametric densities
and their derivatives, as well as full rank conditions on the information matrix.

The next assumption comes from Lahiri (1993), which extends results of
Götze and Hipp (1983). The assumption guarantees that an Edgeworth expan-
sion holds for N−1/2∑N

i=1( f (W̃i , θ0)− Eθ0 f (W̃i , θ0)) with remainder o(N−a)
uniformly over θ0 ∈ �1, given the moment condition in Assumption 4.2b. The
assumption is rather complicated and is not easy to verify in general. Never-
theless, Götze and Hipp (1983, 1994) provide a number of examples in which
this condition is verified. For a fixed value θ0, the assumption is weaker than
the corresponding assumptions employed in Hall and Horowitz (1996) and
Andrews (2002b), which are based on sufficient conditions for the assumption
given below.

The following assumption can be replaced by any set of sufficient condi-
tions for an Edgeworth expansion for N−1/2∑N

i=1( f (W̃i , θ0)− Eθ0 f (W̃i , θ0))
when the true parameter is θ0, whose remainder is o(N−a) uniformly over
θ0 ∈ �1. For example, there are several Edgeworth expansions in the literature
designed specifically for Markov processes. These include Malinovskii (1987,
Theorem 1) and Jensen (1989, Theorem 2).3

Let (�,A, Pθ0 ) for θ0 ∈ � be the probability space on which the random
vectors {Wi : i ≥ 1} are defined. Let D0,D±1,D±2, . . . be a sequence of sub-
σ -fields of A. Let Dq

p denote the σ -field generated by D j for p ≤ j ≤ q.

Assumption 4.3. (a) There exists a constant d1 > 0, such that for all
m, i = 1, 2, . . . with m > d−1

1 , there exist Di+m
i−m -measurable random vec-

tors Zi,m(θ0) for which Eθ0 || f (W̃i , θ0)− Zi,m(θ0)|| < d−1
1 exp(−d1m) for

all θ0 ∈ �1. (b) There exists a constant d2 > 0, such that for all
m, i = 1, 2, . . . , A ∈ Di

−∞, and B ∈ D∞
i+m, |Pθ0 (A ∩ B)− Pθ0 (A)Pθ0 (B)| ≤

d−1
2 exp(−d2m) for all θ0 ∈ �1. (c) There exists a constant d3 > 0, such

that for all m, i = 1, 2, . . . with d−1
3 < m < i and all t ∈ RL f with ||t || ≥

3 The latter results only require strong mixing coefficients that decline polynomially fast. In
this case, it is useful to weaken the conditions on the mixing numbers in Assumption 1.2b
to
∑∞

m=1(m + 1)λ/2−1αδ/(λ+δ)(m) <∞ for some λ > max{2a, 2} and some δ > 0, where
α(m) = supθ0∈�1α(m, θ0). This weakening is possible because one can establish the results
of Lemmas A.2a and A.2b in the Appendix using the given condition and results of Yokoyama
(1980) and Doukhan (1995, Theorem 2 and Remark 2, pp. 25–30).
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d3, Eθ0 |Eθ0 (exp(
√−1t ′(

∑i+m
j=i−m f (W̃ j , θ0)))|D j : j �= i)| ≤ exp(−d3) for all

θ0 ∈ �1. (d) There exist a constant d4 > 0, such that for all m, i, p = 1, 2, . . .
and A ∈ Di+p

i−p , Eθ0 |Pθ0 (A|D j : j �= i)− Pθ0 (A|D j : 0 < |i − j | ≤ i + p)| ≤
d−1

4 exp(−d4m) for all θ0 ∈ �1. (e) There exist matrices �(θ0) ∈ RL f ×L f

for θ0 ∈ �1, such that limN→∞supθ0∈�1
||Varθ0 (N−1/2∑N

i=1 f (W̃i , θ0))−
�(θ0)|| = 0 and �(θ0) has smallest eigenvalue bounded away from 0 over
θ0 ∈ �1. (f) There exists a constant d5 > 0, such that for all i > d−1

5 and
m > d−1

5 , inf{t ′Varθ0 (
∑i+m

j=i f (W̃ j , θ0))t : ||t || = 1, θ0 ∈ �1} > d5m.

Assumption 4.3 is a conditional Cramér condition. In the case of an i.i.d.
sequence of random variables, Assumption 4.3 reduces to the standard Cramér
condition.

5. COVERAGE PROBABILITY ERRORS OF DELTA
METHOD CONFIDENCE INTERVALS

In this section, we consider delta method CIs and CRs.

Theorem 5.1. Suppose Assumptions 2.1 and 4.1–4.3 hold with the constant a
in Assumptions 4.1 and 4.2 as specified below. Then,

(a) supθ0∈�0
|Pθ0 (θ0 ∈ �2S)− (1− α)| = O(N−1) for a = 1,

(b) supθ0∈�0
|Pθ0 (θ0 ∈ �UP)− (1− α)| = O(N−1/2) for a = 1/2, and

(c) supθ0∈�0
|Pθ0 (θ0 ∈ �REG)− (1− α)| = O(N−1) for a = 1.

Comments. 1. The results of Theorem 5.1 are sharp.
2. The conditions on d, q0, and q1 in Assumptions 4.1 and 4.2 are as follows.

For a = 1, the assumptions require d ≥ 4, q0 ≥ 3, and q1 > 4. For a = 1/2,
the assumptions require d ≥ 3, q0 ≥ 2, and q1 > 3.

6. HIGHER-ORDER IMPROVEMENTS OF THE
PARAMETRIC BOOTSTRAP

A main result of this paper is the following theorem.

Theorem 6.1. Suppose Assumptions 2.1 and 4.1–4.3 hold with the constant a
in Assumptions 4.1 and 4.2 as specified below. Then,

(a) supθ0∈�0
|Pθ0 (θ0 ∈ CISYM)− (1− α)| = O(N−2) for a = 2,

(b) supθ0∈�0
|Pθ0 (θ0 ∈ CIET)− (1− α)| = o(N−1 ln(N )) for a = 1,

(c) supθ0∈�0
|Pθ0 (θ0 ∈ CIUP)− (1− α)| = o(N−1 ln(N )) for a = 1, and

(d) supθ0∈�0
|Pθ0 (θ0 ∈ CR)− (1− α)| = o(N−3/2 ln(N )) for a = 3/2.
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Comments. 1. The result of Theorem 6.1a is sharp and the results of Theo-
rem 6.1b and 6.1c are very nearly sharp. (On the basis of results available for
population means in i.i.d. scenarios, sharp results would be errors of magnitude
O(N−1) in parts (b) and (c).) But, the result of part (d) for the CR probably
is not sharp or nearly sharp. One may be able to obtain an error in part (d) of
O(N−2) via an argument somewhat similar to that of Hall (1988) for symmetric
t CIs.

2. Theorems 5.1 and 6.1 show that two-sided symmetric parametric bootstrap
CIs reduce the coverage probability errors of two-sided delta method CIs by
the multiplicative factor O(N−1).

For one-sided CIs and Wald-based CRs, the corresponding reductions are
shown to be at least o(N−1/2 ln(N )). For one-sided CIs, these higher-order im-
provements are almost the same as the improvements that have been established
for parametric and nonparametric one-sided bootstrap CIs for a population mean
(based on the sample mean) in i.i.d. scenarios, which are O(N−1/2); see, for
example, Hall (1988, 1992). (The difference is probably only due to our method
of proof.) For Wald-based CRs, the improvements established by Theorems 5.1
and 6.1 probably are not sharp.

For equal-tailed two-sided parametric bootstrap CIs, the parametric bootstrap
does not provide any improvement over the two-sided delta method CI in terms
of overall coverage probability, as in the i.i.d. case. But, there are improvements
of o(N−1/2 ln(N )) for the probability of the equal-tailed bootstrap CI missing
to the left, and similarly for its probability of missing to the right, just as in the
i.i.d. case.

In sum, in contrast to the block bootstrap (e.g., see the higher-order im-
provement results in Andrews 2002b), the parametric bootstrap for time series
observations performs essentially as well asymptotically as for independent
observations. The only exception is for Wald-based CRs, and this is probably
because the results in Theorem 6.2d are not sharp.

3. The conditions on d, q0, and q1 in Assumptions 4.1 and 4.2 are as follows.
For a = 1, the assumptions require d ≥ 4, q0 ≥ 3, and q1 > 4. For a = 3/2,
the assumptions require d ≥ 5, q0 ≥ 5, and q1 > 6. For a = 2, the assumptions
require d ≥ 6, q0 ≥ 5, and q1 > 6.

7. k -STEP PARAMETRIC BOOTSTRAP

In this section, we define the k-step bootstrap estimator, t statistic, and Wald
statistic and corresponding CIs and CRs. Then we establish bounds on the
coverage probability errors of these CIs and CRs. Provided k is taken to be
large enough, the bounds are of the same magnitude as those obtained for the
standard parametric bootstrap.

The k-step bootstrap estimator is denoted as θ∗N ,k . The starting value for
the k-step estimator is θ̂ N , the estimator based on the original sample. We
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recursively define

θ∗N , j = θ∗N , j−1 − (Q∗
N , j−1)−1 N−1

N∑
i=1

g(W̃ ∗
i , θ

∗
N , j−1) for 1 ≤ j ≤ k, (7.1)

where θ∗N ,0 = θ̂ N .

The Lθ × Lθ random matrix Q∗
N , j−1 depends on θ∗N , j−1. It determines

whether the k-step bootstrap estimator is a NR, default NR, line-search NR,
GN, or some other k-step bootstrap estimator. The NR, default NR, and line-
search NR choices of Q∗

N , j−1 yield k-step bootstrap estimators that have the
same higher-order asymptotic behavior. The results below show that they re-
quire fewer steps, k, to approximate the ML bootstrap estimator θ∗N to a
specified accuracy than does the GN k-step estimator. The NR choice of
Q∗

N , j−1 is

Q∗,NR
N , j−1 = D∗

N (θ∗N , j−1), where

D∗
N (θ ) = N−1

N∑
i=1

∂

∂θ ′
g(W̃ ∗

i , θ ). (7.2)

The default NR choice of Q∗
N , j−1, denoted as Q∗,D

N , j−1, equals Q∗,NR
N , j−1 if

Q∗,NR
N , j−1 leads to an estimator θ∗N , j via (7.1) for which ρ∗N (θ∗N , j ) ≤ ρ∗N (θ∗N , j−1),

but equals some other matrix otherwise. In practice, one wants this other matrix
to be such thatρ∗N (θ∗N , j ) < ρ∗N (θ∗N , j−1) (but the theoretical results do not require
this). For example, one might use the matrix (1/ε)ILθ

for some small ε > 0.
(See Ortega and Rheinboldt 1970, Theorem 8.2.1, for a result that indicates that
such a choice will decrease the criterion function.)

The line-search NR choice of Q∗
N , j−1, denoted as Q∗,LS

N , j−1, uses a scaled

version of the NR matrix Q∗,NR
N , j−1 that optimizes the step length. Specifically,

let A be a finite subset of (0, 1] of step lengths that includes 1. One computes
θ∗N , j = θ

∗,α
N , j via (7.1) for Q∗

N , j−1 = (1/α)Q∗,NR
N , j−1 for each α ∈ A. One takes

Q∗,LS
N , j−1 to be the matrix (1/α)Q∗,NR

N , j−1 for the value ofα that minimizesρ∗N (θ∗αN , j )
over all α ∈ A. (If the minimizing value of α is not unique, one takes the largest
minimizing value of α in A.)

The GN choice of Q∗
N , j−1, denoted as Q∗,GN

N , j−1, uses a matrix that differs

from, but is a close approximation to, the NR matrix Q∗,NR
N , j−1. In particular,

Q∗,GN
N , j−1 = D∗

N , j−1, (7.3)

where D∗
N , j−1 is determined by some function �(·, ·) as follows:

D∗
N , j−1 = N−1

N∑
i=1

�(W̃ ∗
i , θ

∗
N , j−1) ∈ RLg×Lθ and

E∗
θ0
�(W̃ ∗

i , θ0) = E∗
θ0

∂

∂θ ′
g(W̃ ∗

i , θ0) for all i ≥ 1 and all θ0 ∈ �1. (7.4)
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The latter condition is responsible for D∗
N , j−1 being a close approximation to

D∗
N (θ∗N , j−1) = Q∗,NR

N , j−1.

An example of a GN matrix Q∗,GN
N , j−1 is the sample outer-product estimator

of the bootstrap information matrix. By the information matrix equality,

E∗
θ0

∂

∂θ ′
g(W̃ ∗

i , θ0) = E∗
θ0

g(W̃ ∗
i , θ0)g(W̃ ∗

i , θ0)′ for all i ≥ 1 and all θ0 ∈ �1.

(7.5)

In this case, the NR matrix Q∗,NR
N , j−1 is the sample analogue of the expectation

on the left-hand side of (7.5): Q∗,NR
N , j−1 = N−1∑N

i=1(∂/∂θ ′)g(W̃ ∗
i , θ

∗
N , j−1). The

GN matrix Q∗,GN
N , j−1 is the sample analogue of the expectation on the right-hand

side of (7.5). Thus, Q∗,GN
N , j−1 is as in (7.3) and (7.4) with

�(W̃ ∗
i , θ ) = g(W̃ ∗

i , θ )g(W̃ ∗
i , θ )′. (7.6)

The GN matrix does not require calculation of the second derivative of the log
likelihood function.

Alternatively, one can use a GN matrix Q∗
N , j−1 based on the expected boot-

strap information matrix:

Q∗,GN2
N , j−1 = N−1

N∑
i=1

E∗
θ

∂

∂θ ′
g(W̃ ∗

i , θ )

∣∣∣∣∣
θ=θ∗N , j−1

. (7.7)

In this case, the function �(W̃ ∗
i , θ ) of (7.4) is E∗

θ (∂/∂θ ′)g(W̃ ∗
i , θ ), which is

nonrandom. The expected information matrix is often used in the statistical
literature on one-step and k-step estimators; see, for example, Pfanzagl (1974).

The bootstrap covariance matrix estimator �∗
N ,k is defined as �N in (2.6),

but with the bootstrap sample in place of the original sample and θ∗N ,k in place
of θ̂ N .

The k-step bootstrap t and Wald statistics, T ∗
N ,k (̂θ N ,r ) and W∗

N ,k (̂βN ), are
defined as in (3.2), but with θ∗N and �∗

N replaced by θ∗N ,k and �∗
N ,k , respec-

tively. Let z∗|T |,k,α, z∗T,k,α, and z∗W,k,α denote the 1− α quantiles of |T ∗
N ,k (̂θ N ,r )|,

T ∗
N ,k (̂θ N ,r ), and W∗

N ,k (̂βN ), respectively (whose precise definitions are analo-
gous to that of z∗|T |,α given earlier.)

The k-step bootstrap CIs and confidence regions, denoted as CISYM,k,CIET,k,

CIUP,k, and CRk, are defined as in (3.3)–(3.6), but with z∗|T |,α, z∗T,α, and z∗W,α

replaced by z∗|T |,k,α, z∗T,k,α, and z∗W,k,α respectively.
The matrices {Q∗

N , j−1 : j = 1, . . . , k} are assumed to satisfy the following
assumption.

Assumption 7.1. The matrices {Q∗
N , j−1 : j = 1, . . . , k} satisfy the following

condition: for some sequence of nonnegative constants {ψN : N ≥ 1} with
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limN→∞ψN = 0 and for all ε > 0,

sup
θ0∈�1

P∗
θ0

(||Q∗
N , j−1 − D∗

N (θ∗N , j−1)|| > ψN )

= o(N−a) for j = 1, . . . , k,

where P∗
θ0

denotes the probability when the bootstrap sample is generated using
the parameter θ0 rather than θ̂ N , and the initial estimator θ∗N ,0 is θ0 rather
than θ̂ N .

We now give sufficient conditions for Assumption 7.1 for the NR, default
NR, line-search NR, and GN choices of Q∗

N , j−1.

Lemma 7.1. Suppose Assumptions 2.1 and 4.1–4.3 hold for some a ≥ 0 with
2a an integer. Then Assumption 7.1 holds with ψN = 0 for all N for the NR,
default NR, and line-search NR choices of Q∗

N , j−1 for j = 1, . . . , k. In ad-
dition, Assumption 7.1 holds with ψN = N−1/2 ln(N ) for the GN choice of
Q∗

N , j−1 for j = 1, . . . , k provided Assumptions 2.1 and 4.3 hold with the
elements of �(W̃i , θ ) (defined in (7.4)) added to f (W̃i , θ ) and the function
�(·, ·) satisfies: (i) Eθ0 (�(W̃i , θ0) −(∂/∂θ ′)g(W̃i , θ0)) = 0 for all i ≥ 1 and
all θ0 ∈ �1, (ii) �(W̃i , θ ) is continuously differentiable with respect to θ

on �2, (iii) supθ0∈�1,i≥1 Eθ0 ||�(W̃i , θ0)− (∂/∂θ ′)g(W̃i , θ0)||2a+3 <∞, and
(iv) supθ0∈�1,i≥1 Eθ0 supθ∈B(θ0,ε) ||(∂/∂θu)(�(W̃i , θ )− (∂/∂θ ′)g(W̃i , θ ))||q2 <

∞ for all u = 1, . . . , Lθ , for some ε > 0, and for q2 = max{2a + 1, 2}, where
B(θ0, ε) denotes an open ball at θ0 of radius ε.

Comment. Conditions (ii)–(iv) of Lemma 7.1 hold for the outer-product GN
matrix of (7.6) by Assumption 4.2.

The higher-order asymptotic equivalence of the k-step and standard bootstrap
statistics is established in parts (a) and (b) of Theorem 7.1. Part (b) gives
conditions under which the Kolmogorov distances (i.e., the sup norms of the
differences between the distribution functions) between N 1/2(θ∗N ,k − θ̂ N ) and
N 1/2(θ∗N − θ̂ N ), T ∗

N ,k (̂θ N ,r ) and T ∗
N (̂θ N ,r ), andW∗

N ,k (̂βN ) andW∗
N (̂βN ), respec-

tively, are o(N−a) for some a ≥ 0.
In part (a) of the theorem, the difference between the k-step bootstrap estima-

tor and the standard ML bootstrap estimator is shown to be of greater magnitude
than µN ,k with bootstrap probability o(N−a), except, on a set with probability
o(N−a), where

µN ,k =
⎧⎨⎩ N−2k−1

ln2k
(N ) for NR, default NR,

and line-search NR matrices
N−(k+1)/2 lnk+1(N ) for GN matrices.

(7.8)

Thus, for the NR procedures the difference decreases very quickly as k increases,
and for the GN procedure the difference decreases more slowly as k increases.
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More generally, for ψN as in Assumption 7.1, µN ,k is defined by

µN ,k = max
j=0,...,k

N−2k− j−1
ln2k− j

(N )ψ j
N . (7.9)

The key condition in part (b) of Theorem 7.1 is

µN ,k = o
(
N−(a+1/2)

)
, (7.10)

where 2a is a nonnegative integer. Given this condition, the Kolmogorov dis-
tances between the k-step and bootstrap statistics are o(N−a), except on a set
with probability o(N−a).

If Assumption 7.1 holds with ψN = 0, as it does for the NR, default NR,
and line-search NR procedures, then (7.10) holds if

2k ≥ 2a + 2, (7.11)

where 2a is an integer. Thus, for k = 1, we have a = 0; for k = 2, we have
a = 1; for k = 3, we have a = 3; for k = 4, we have a = 7; and so forth.

If Assumption 7.1 holds with ψN = N−1/2 ln(N ), as it does for the GN
procedure under the conditions in Lemma 7.1, then (7.10) holds if

k ≥ 2a + 1, (7.12)

where 2a is an integer. Thus, for k = 1, we have a = 0; for k = 2, we have
a = 1/2; for k = 3, we have a = 1; for k = 4, we have a = 3/2; etc.

The aforementioned Theorem is as follows:

Theorem 7.1. Suppose Assumptions 2.1, 4.1–4.3, and 7.1 hold for some a ≥ 0
with 2a an integer in parts (a) and (b).
(a) Then, for all ε > 0,

sup
θ0∈�0

Pθ0

(
P∗
θ̂ N

(‖ θ∗N ,k − θ∗N ‖ > µN ,k

)
> N−aε

)
= o(N−a),

sup
θ0∈�0

Pθ0

(
P∗
θ̂ N

(|T ∗
N ,k (̂θ N ,r )− T ∗

N (̂θ N ,r )| > N 1/2µN ,k) > N−aε
)
= o(N−a),

and

sup
θ0∈�0

Pθ0

(
P∗
θ̂ N

(|W∗
N ,k (̂βN )−W∗

N (̂βN )| > N 1/2µN ,k) > N−aε
)
= o(N−a).

(b) Suppose µN ,k = o(N−(a+1/2)). Then, for all ε > 0,

sup
θ0∈�0

Pθ0

(
sup

z∈RLθ

∣∣∣P∗
θ̂ N

(N 1/2(θ∗N ,k − θ̂ N ) ≤ z)

−P∗
θ̂ N

(N 1/2(θ∗N − θ̂ N ) ≤ z)
∣∣∣ > N−aε

)
= o(N−a),

sup
θ0∈�0

Pθ0

(
sup
z∈R

∣∣∣P∗
θ̂ N

(T ∗
N ,k (̂θ N ,r ) ≤ z)− P∗

θ̂ N
(T ∗

N (̂θ N ,r ) ≤ z)
∣∣∣ > N−aε

)
= o(N−a), and
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sup
θ0∈�0

Pθ0

(
sup
z∈R

∣∣∣P∗
θ̂ N

(W∗
N ,k (̂βN ) ≤ z)− P∗

θ̂ N
(W∗

N (̂βN ) ≤ z)
∣∣∣ > N−aε

)
= o(N−a).

We use the results of Theorem 7.1 to show that the errors in coverage proba-
bility of the k-step bootstrap CIs are the same as those of the standard bootstrap
CIs given in Theorem 6.1. In consequence, one can obtain higher-order improve-
ments using the bootstrap without doing the nonlinear optimization necessary
to compute the standard bootstrap ML estimator.

Theorem 7.2. (a) Suppose Assumptions 2.1, 4.1–4.3, and 7.1 hold with
a = 2 and µN ,k = o(N−5/2). Then supθ0∈�0

|Pθ0 (θ0 ∈ C ISYM,k)− (1− α)| =
O(N−2).
(b) Suppose Assumptions 2.1, 4.1–4.3, and 7.1 hold with a = 1 and
µN ,k = o(N−3/2). Then supθ0∈�0

|Pθ0 (θ0 ∈ CIET,k)− (1− α)| = o(N−1 ln(N ))
and supθ0∈�0

|Pθ0 (θ0 ∈ CIUP,k)− (1− α)| = o(N−1 ln(N )).
(c) Suppose Assumptions 2.1, 4.1–4.3, and 7.1 hold with a = 3/2 and µN ,k =
o(N−2). Then, supθ0∈�0

|Pθ0 (θ0 ∈ CRk)− (1− α)| = o(N−3/2 ln(N )).

Comment. For the NR, default NR, and line-search NR procedures, the
condition µN ,k = o(N−5/2) in part (a) is satisfied if k ≥ 3; the condition
µN ,k = o(N−3/2) in part (b) is satisfied if k ≥ 2; and the condition µN ,k =
o(N−5/2) in part (c) is satisfied if k ≥ 3. For the GN procedure, the condition
µN ,k = o(N−5/2) in part (a) is satisfied if k ≥ 5; the condition µN ,k = o(N−3/2)
in part (b) is satisfied if k ≥ 3; and the condition µN ,k = o(N−5/2) in part (c) is
satisfied if k ≥ 4. Hence, the k-step NR bootstrap procedures require fewer
steps than the k-step GN bootstrap procedure to achieve the same higher-order
improvements as obtained by the standard parametric bootstrap. But, with NR
or GN k-step bootstrap procedures, the number of steps does not need to be
very large.

8. MONTE CARLO SIMULATIONS

In this section, we compare the performance of standard delta method CIs, sym-
metric percentile t parametric bootstrap CIs, and equal-tailed percentile t para-
metric bootstrap CIs using Monte Carlo simulation. We consider a stationary
Gaussian AR(2) model because it is a well-known model, the standard delta
method is known to perform poorly when the sum of the AR coefficients is close
to 1, and the parameter estimates are available in closed form, which greatly
speeds computation.

Other methods of constructing CIs for the model considered here are given
in Stock (1991), Andrews and Chen (1994), Hansen (1999), and Romano and
Wolf (2001). We do not provide results for these methods.



Parametric Bootstrap for Markov Processes 189

8.1. Experimental Design

The model we consider is given by

Yi = µ+ ρ1Yi−1 + ρ2Yi−2 + σUi for i = 3, . . . , n,

Y1 =
(

1

1− ρ2
1 − ρ2

2 − 2ρ2
1ρ2/(1− ρ2)

)1/2

U1,

Y2 = ρ1

1− ρ2
Y1 +

(
1− ρ2

1/(1− ρ2)2

1− ρ2
1 − ρ2

2 − 2ρ2
1ρ2/(1− ρ2)

)1/2

U2, and

Ui = i.i.d. N (0, 1) for i = 1, . . . , n. (8.1)

As defined, this model is a stationary Gaussian AR(2) model. The model can
also be defined in augmented Dickey–Fuller form as

Yi = µ+ αYi−1 − ρ2�Yi−1 + σUi for i = 3, . . . , n, where

α = ρ1 + ρ2,

�Yi−1 = Yi−1 − Yi−2, (8.2)

and (Y1, Y2,Ui ) are as in (8.1).
In terms of the notation of Section 3, κ = 2, N = n − 2, Wi = Yi for i =

1, . . . , n, W̃i = (Yi+2, Yi+1, Yi )′ for i = 1, . . . , N , and θ = (µ, ρ1, ρ2, σ
2)′.

The normalized negative log-likelihood of {W̃i : 1 ≤ i ≤ N } (conditional on
Y1 and Y2) is

ρN (θ ) = 1

2
log(2π )+ 1

2
log(σ 2)+ 1

2

N∑
i=1

(Yi+2 − µ− ρ1Yi+1 − ρ2Yi )
2.

(8.3)

The parameter space for θ is R3 × R+. In consequence, the ML estimators of
µ, ρ1, and ρ2, denoted by µ̂, ρ̂1, and ρ̂2, respectively, are the least-squares
estimators from the regression of Yi+2 on 1, Yi+1, and Yi for i = 1, . . . , N . The
ML estimator, α̂, of α is ρ̂1 + ρ̂2. The ML estimator of σ 2 is

σ̂ 2 = 1

N

N∑
i=1

(Yi+2 − µ̂− ρ̂1Yi+1 − ρ̂2Yi )
2. (8.4)

Researchers are often interested in the persistence of a time series. This can
be measured by the impulse response function (IRF). The IRF traces out the
effect of an increase in the innovation σUi by a unit quantity on the values
Yi+h, denoted by IRF(h), for h = 0, 1, . . . and i ≥ 3. The cumulative impulse
response (CIR), defined by CIR =∑∞

h=0 IRF(h), provides a convenient scalar
summary measure of the persistence of the time series. In the model of (8.1),
the CIR equals 1/(1− α). The ML estimator of CIR is ĈIR = 1/(1− α̂). (For
further discussion of CIR, see Andrews and Chen 1994).

In the simulation experiment, we consider CIs for the CIR, as well as for the
parameters α, ρ1, and ρ2. Note that the CIR only depends on the parameter
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α, so α also is a useful measure of persistence. (The spectrum of {Yi : i ≥ 1}
at zero equals σ 2/(1− α)2 and, hence, is another measure of persistence that
depends on the regression coefficients only through α.)

The standard delta method CI for CIR with nominal coverage probability
100(1− τ )% is given by

CICIR =
[

ĈIR− σ̂CIRz1−τ/2√
N

, ĈIR+ σ̂CIRz1−τ/2√
N

]
, where

σ̂ 2
CIR = σ̂ 2

α/(1− α̂)4, (8.5)

and σ̂ 2
α equals σ̂ 2 times the (2, 2) element of the inverse of

N−1∑N
i=1(1, Yi−1,�Yi−1) ×(1, Yi−1,�Yi−1)′. The delta method CIs for α,

ρ1, and ρ2, denoted by CIα, CIρ1
, and CIρ2

, respectively, are defined anal-
ogously with σ̂CIR replaced by σ̂ α, σ̂ ρ1

, and σ̂ ρ2
, where σ̂ 2

ρ1
and σ̂ 2

ρ2

equal σ̂ 2 times the (2, 2) and (3, 3) elements, respectively, of the inverse of
N−1∑N

i=1(1, Yi−1, Yi−2)(1, Yi−1, Yi−2)′.
The symmetric and equal-tailed parametric bootstrap CIs for CIR, α, ρ1,

and ρ2 are as defined in (3.3) and (3.4) of Section 3.4

Because the ML estimators of CIR, α, ρ1, and ρ2 are available in closed
form, we do not consider k-step bootstrap CIs.

An alternative to the parametric bootstrap that can be applied in the AR(2)
model above is the residual-based (RB) bootstrap. The RB bootstrap is the
same as the parametric bootstrap except that the distribution of the bootstrap
errors is given by the empirical distribution of the residuals from the original
sample, rather than by the normal distribution. Symmetric and equal-tailed RB
bootstrap CIs for CIR, α, ρ1, and ρ2 are defined just as with the parametric
bootstrap but with the bootstrap errors being i.i.d. with distribution given by
the empirical distribution of the residuals. We compute RB bootstrap CIs and
compare them to the parametric bootstrap CIs. We do not consider subsampling
confidence intervals. These confidence intervals do not provide higher-order
improvements.

We report coverage probabilities for 95% CIs for each of the three types of
CI, namely, delta method, symmetric bootstrap, and equal-tailed bootstrap, for
each of the four parameters, namely, CIR, α, ρ1, and ρ2. In addition, for the CIs
for CIR, we report the probabilities that the CIs miss the true value to the left

4 Stationarity of an AR(2) process with AR parameters (ρ1, ρ2) requires that (i)−1 < ρ2 < 1, (ii)
ρ1 + ρ2 < 1, and (iii) ρ2 − ρ1 < 1. To ensure that the parametric bootstrap distribution of the
AR(2) process is stationary, we adjust the LS estimators (̂ρ1, ρ̂2) (only when generating bootstrap
samples and not in the expressions for the CIs given in (3.3) and (3.4)), so that they necessarily
satisfy the stationarity conditions. In particular, the parametric bootstrap distribution is based on
the estimators (̃ρ1, ρ̃2), where ρ̃2 = sgn(̂ρ2) min{|̂ρ2|, .98} and ρ̃1 = 1(̂ρ1 ≥ 0) min{̂ρ1, .98−
ρ̃2} + 1(̂ρ1 < 0) min{̂ρ1, ρ̃2 − .98}.These alterations have no effect on the asymptotic properties
of the bootstrap CIs (for the true parameter values that we consider) because ρ̃1 = ρ̂1 and ρ̃2 = ρ̂2
with probability that approaches 1 at a sufficiently fast rate as N →∞. In fact, these adjustments
very rarely come into play in the simulations and, hence, have no noticeable impact on the results.
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Table 9.1. Coverage probabilities of nominal 95% confidence intervals for the
cumulative impulse response, 1/(1− α), for AR(2) processes, N(0, 1) Errors,
and N = 100

Type of Probability Probability Average
confidence Coverage CI CI length

(ρ1, ρ2) α interval probability misses left misses right of CI

(1.4, −.5) .9 Delta .802 .198 .000 11.4
Sym boot .909 .091 .000 24.5
ET boot .886 .058 .056 18.1

(.9, 0) .9 Delta .714 .286 .000 15.0
Sym boot .876 .124 .000 50.3
ET boot .847 .087 .067 34.8

(0, .9) .9 Delta .591 .409 .000 218
Sym boot .822 .178 .000 4018
ET boot .794 .131 .074 2599

(1.0, −.5) .5 Delta .920 .080 .001 1.11
Sym boot .945 .055 .000 1.35
ET boot .930 .033 .038 1.21

(.5, 0) .5 Delta .880 .121 .000 1.52
Sym boot .929 .071 .000 2.19
ET boot .915 .041 .045 1.81

(0, .5) .5 Delta .855 .145 .000 1.82
Sym boot .921 .079 .000 2.99
ET boot .905 .048 .046 2.36

(0, −.5) −.5 Delta .941 .053 .007 .215
Sym boot .947 .050 .003 .223
ET boot .937 .033 .030 .220

(−.5, 0) −.5 Delta .931 .067 .002 .301
Sym boot .944 .057 .000 .336
ET boot .933 .035 .033 .316

(−1.0, −.5) −1.5 Delta .947 .042 .011 .101
Sym boot .949 .043 .008 .101
ET boot .938 .031 .031 .101

and to the right and the average length of the CIs. We report results for sample
size N = 100, as well as some results for N = 50.

We consider nine different parameter combinations for ρ1 and ρ2, which
correspond to four different values of α, namely, .9, .5, −.5, and −1.5; see
Table 9.1. These parameter combinations have been chosen because they cover
a broad spectrum of different performances of the CIs considered. All results
reported are invariant to the values ofµ and σ 2, and so we setµ = 0 and σ 2 = 1
without loss of generality.

To assess the robustness of the parametric bootstrap CIs to the distribution
of the innovation Ui , we also consider the case where Ui has a t distribution
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with five degrees of freedom, which has fat tails, and when it has a chi-squared
distribution with one degree of freedom (shifted to have mean zero), which has
considerable skewness.

All results are based on R = 10,000 Monte Carlo repetitions and B = 5199
bootstrap repetitions. With this number of Monte Carlo repetitions, the standard
deviation of the reported coverage probabilities is .0022.

8.2. Simulation Results

Table 9.1 reports results for CIs for CIR for all nine (ρ1, ρ2) parameter combi-
nations and N = 100. Several features of the results are immediately apparent.
First, all three types of CIs perform most poorly when α = .9. They perform
better when α = .5 and best when α = −.5 or −1.5.

Second, the error that the CIs make in almost all cases is undercoverage, not
overcoverage.

Third, both bootstrap CIs perform better than the delta method CIs in terms
of coverage probability whenever α = .9, .5, or−.5, and are comparable when
α = −1.5. This is consistent with the asymptotic results of Section 6, which
show that the error in coverage probability of the bootstrap CIs converges to zero
at a faster rate than for the delta method CIs. When α = .9 or .5, the bootstrap
CIs perform substantially better than the delta method CIs. For example, when
(ρ1, ρ2) = (.9, 0), the coverage probabilities of nominal 95% delta, symmetric
bootstrap, and equal-tailed bootstrap CIs are .71, .88, and .85, respectively.
In this case and others in which the delta method performs quite poorly, the
bootstrap CIs perform much better. But, they do not eliminate undercoverage.

Fourth, the symmetric bootstrap CIs perform better in terms of coverage
probability than the equal-tailed bootstrap CIs in almost all cases. Especially
whenα = .9, the difference is noticeable. This also is consistent with the asymp-
totic results of Section 6, which show that the error in coverage probability of
the symmetric bootstrap CIs converges to zero at a faster rate than for the
equal-tailed bootstrap CIs.

Fifth, the center of the delta method and symmetric bootstrap CIs is signifi-
cantly smaller than the true value in all cases. This is reflected in the fact that
the probability that these CIs miss to the right is essentially zero in all cases.
On the other hand, the equal-tailed bootstrap CIs are fairly well centered around
the true parameter values. The probability that these CIs miss to the left is
roughly the same as the probability that they miss to the right, in most cases.

Sixth, the average length of the CIs mirrors their coverage probabilities.
The delta method CIs are shorter than the bootstrap CIs in all cases except
when α = −1.5. In these cases, they are too short, which causes their coverage
probabilities to be too low. Similarly, the equal-tailed bootstrap CIs are shorter
than the symmetric bootstrap CIs in those cases in which the former exhibit
undercoverage, which occurs in all cases except when α = −1.5.

Overall, it is clear that both bootstrap CIs outperform the delta method
CI. The comparison between the two bootstrap CIs is not as clear-cut. The
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Table 9.2. Coverage probabilities of nominal 95% Confidence
intervals for α, ρ1, and ρ2 for AR(2) processes, N(0, 1) errors, and
N = 100

Type of Coverage probability of
confidence confidence interval for

(ρ1, ρ2) α interval α ρ1 ρ2

(1.4, −.5) .9 Delta .926 .933 .945
Sym boot .943 .947 .946
ET boot .930 .946 .939

(.9, 0) .9 Delta .907 .930 .939
Sym boot .934 .946 .944
ET boot .920 .947 .936

(0, .9) .9 Delta .880 .908 .853
Sym boot .918 .933 .916
ET boot .907 .932 .912

(1.0, −.5) .5 Delta .943 .939 .950
Sym boot .951 .946 .952
ET boot .943 .946 .945

(.5, 0) .5 Delta .937 .937 .943
Sym boot .948 .946 .948
ET boot .938 .945 .943

(0, .5) .5 Delta .933 .934 .927
Sym boot .944 .945 .944
ET boot .934 .942 .937

(0, −.5) −.5 Delta .945 .942 .949
Sym boot .948 .946 .951
ET boot .945 .944 .945

(−.5, 0) −.5 Delta .942 .942 .944
Sym boot .947 .947 .948
ET boot .942 .944 .943

(−1.0, −.5) −1.5 Delta .945 .942 .949
Sym boot .948 .947 .951
ET boot .943 .944 .945

symmetric bootstrap CIs outperform the equal-tailed bootstrap CIs in terms
of coverage probability. But the equal-tailed bootstrap CIs are much better
centered. Depending upon how one weights these two characteristics of the
CIs, one might prefer one bootstrap CI or the other.

Table 9.2 reports coverage probabilities for CIs forα, ρ1, and ρ2 for the same
cases as in Table 9.1. The results for α are quite similar to those for CIR in a
qualitative sense. In particular, the delta method CIs undercover by more than
the bootstrap CIs and the equal-tailed bootstrap CIs undercover by more than
the symmetric bootstrap CIs. The main difference is that all three types of CIs
perform much better in terms of the amount of undercoverage. For example,
the coverage probabilities for (ρ1, ρ2) = (.9, 0) are .91, .93, and .92 for the
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delta, symmetric bootstrap, and equal-tailed bootstrap CIs, respectively. These
probabilities are much closer to .95 than the probabilities listed above for the
CIR CIs.

Note that one could construct a CI for CIR by transforming the CI for α,
because CIR is a monotone transform of α. (That is, the lower endpoint of such
a CI for CIR is given by 1/(1− LEα), where LEα is the lower endpoint of the
CI for α, and the upper endpoint is defined analogously.) The resulting CI for
CIR has the same coverage probability as the CI for α.

The results of Table 9.2 for ρ1 and ρ2 are better than those for α for all three
types of CIs. That is, the magnitudes of undercoverage are smaller. In fact, in a
few cases there is a small amount of overcoverage. In the cases where the delta
method CIs undercover, the bootstrap CIs undercover by a smaller amount or
by none at all. Hence, the bootstrap CIs for ρ1 and ρ2 provide an improvement
over those of the delta method.

Tables 9.1 and 9.2 do not report results for RB bootstrap CIs because they
differ very little from the parametric bootstrap results. In most cases, the differ-
ences in coverage probabilities are .001 or less. In a few cases, the differences
are .002.

Tables 9.3 and 9.4 report coverage probability results for the cases of t5
errors, and χ2

1 errors, respectively. These results show that the Gaussian para-
metric bootstrap CIs still outperform the delta method CIs even when the
errors are not Gaussian. In fact, the most salient feature of the results in Ta-
bles 9.3 and 9.4 is how similar they are to the results when the errors are
Gaussian.

Table 9.3 does not report results for RB bootstrap CIs because, as in the
normal error case, the results are quite similar to those for the parametric boot-
strap. The differences between the two for t5 errors are slightly larger than for
N (0, 1) errors, but are still small in most cases. There are a few cases where
the differences are as large as .004, but in most cases the differences are .002
or less. The coverage probabilities of the parametric bootstrap CIs are almost
always the same as, or closer to, the nominal value .95 than those of the RB
bootstrap CIs. This holds because it is almost always the case that the parametric
bootstrap CIs have coverage probabilities that are as high or higher than those
of the RB bootstrap CIs, and both bootstrap CIs usually exhibit undercoverage.
These results indicate that the parametric bootstrap CIs are fairly robust to the
existence of fat-tailed t5 errors.

Table 9.4 lists the coverage probabilities of the RB bootstrap CIs for the
case of χ2

1 errors, which are skewed. The differences in coverage probabilities
between the parametric and RB bootstrap CIs are noticeably larger than in the
N (0, 1) and the t5 error cases. The differences are as large as .021 but, usually,
are smaller. In almost all cases, the coverage probabilities of the parametric
bootstrap CIs exceed those of the RB bootstrap CIs. Thus, the parametric boot-
strap CIs are more conservative. In roughly half the cases, the parametric boot-
strap coverage probabilities are closer to .95 than the RB bootstrap coverage
probabilities. Hence, in an overall sense, the parametric bootstrap performs at
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Table 9.3. Coverage probabilities of nominal 95% confidence intervals for
1/(1− α), α, ρ1, and ρ2 for AR(2) processes, t5 errors, and N = 100

Type of Coverage probabilities of Average length
confidence confidence intervals for of CI for

(ρ1, ρ2) α interval 1/(1− α) α ρ1 ρ2 1/(1− α)

(1.4, −.5) .9 Delta .805 .917 .941 .950 11.3
Sym boot .910 .943 .951 .953 24.1
ET boot .890 .932 .951 .945 17.8

(.9, 0) .9 Delta .713 .908 .934 .947 14.9
Sym boot .874 .931 .950 .952 50.4
ET boot .848 .920 .952 .946 34.9

(0, .9) .9 Delta .592 .879 .908 .850 328
Sym boot .824 .916 .932 .913 6120
ET boot .794 .906 .934 .917 3916

(1.0, −.5) .5 Delta .914 .943 .943 .953 1.10
Sym boot .938 .950 .950 .954 1.34
ET boot .934 .948 .948 .949 1.20

(.5, 0) .5 Delta .883 .939 .942 .948 1.51
Sym boot .929 .947 .949 .954 2.17
ET boot .920 .940 .948 .946 1.80

(0, .5) .5 Delta .854 .932 .941 .934 1.81
Sym boot .922 .945 .949 .948 2.96
ET boot .906 .936 .946 .943 2.34

(0, −.5) −.5 Delta .941 .948 .947 .954 .215
Sym boot .946 .952 .951 .955 .223
ET boot .940 .947 .950 .949 .219

(−.5, 0) −.5 Delta .932 .945 .944 .944 .300
Sym boot .944 .949 .950 .950 .334
ET boot .935 .946 .947 .947 .315

(−1.0, −.5) −1.5 Delta .949 .948 .948 .950 .100
Sym boot .951 .951 .951 .952 .101
ET boot .941 .946 .948 .946 .101

least as well as the RB bootstrap in the case of (skewed) χ2
1 errors (at least for

sample size 100).
Table 9.5 presents results for the case of sample size N = 50 and N(0,

1) errors. Comparing the results to those of Tables 9.1 and 9.2 for N = 100,
it is found that the results are what one would expect. The magnitudes of
undercoverage of the CIs and the average lengths of the CIs are larger when N =
50 than when N = 100. The comparative performances of the delta, symmetric
parametric bootstrap, and equal-tailed parametric bootstrap CIs for N = 50 are
quite similar to those for N = 100. The symmetric parametric bootstrap CIs
outperform the delta method CIs in terms of coverage probabilities in all cases.
The equal-tailed parametric bootstrap CIs outperform the delta method CIs in
terms of coverage probabilities in most cases.
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Table 9.4. Coverage probabilities of nominal 95% confidence intervals for
1/(1− α), α, ρ1, and ρ2 for AR(2) processes, χ2

1 errors, and N = 100

Type of Coverage probabilities of Average length
confidence confidence intervals for of CI for

(ρ1, ρ2) α interval 1/(1− α) α ρ1 ρ2 1/(1− α)

(1.4, −.5) .9 Delta .814 .939 .952 .960 11.5
Sym boot .925 .954 .962 .962 24.8
ET boot .900 .941 .960 .957 18.3
Sym RB boot .912 .945 .953 .955 23.1
ET RB boot .889 .928 .949 .942 17.0

(.9, 0) .9 Delta .714 .918 .950 .949 53.8
Sym boot .887 .944 .963 .955 522
ET boot .862 .929 .958 .953 342
Sym RB boot .870 .930 .954 .950 539
ET RB boot .844 .916 .954 .948 344

(0, .9) .9 Delta .587 .884 .915 .860 205
Sym boot .826 .923 .938 .924 3760
ET boot .806 .917 .937 .923 2422
Sym RB boot .812 .906 .929 .908 3619
ET RB boot .788 .900 .928 .908 2340

(1.0, −.5) .5 Delta .933 .954 .956 .958 1.10
Sym boot .954 .960 .963 .960 1.34
ET boot .942 .954 .961 .955 1.20
Sym RB boot .943 .951 .954 .956 1.23
ET RB boot .934 .947 .951 .947 1.12

(.5, 0) .5 Delta .900 .953 .954 .951 1.51
Sym boot .952 .961 .961 .957 2.18
ET boot .936 .953 .957 .947 1.81
Sym RB boot .932 .949 .952 .952 1.96
ET RB boot .922 .940 .951 .944 1.65

(0, .5) .5 Delta .866 .951 .947 .949 1.81
Sym boot .941 .961 .957 .964 2.98
ET boot .925 .948 .951 .950 2.35
Sym RB boot .920 .951 .949 .953 2.69
ET RB boot .910 .936 .947 .941 2.14

(0, −.5) −.5 Delta .952 .956 .953 .952 .215
Sym boot .959 .958 .957 .953 .224
ET boot .947 .954 .956 .946 .220
Sym RB boot .952 .953 .952 .949 .214
ET RB boot .945 .952 .951 .948 .211

(−.5, 0) −.5 Delta .949 .955 .956 .957 .300
Sym boot .961 .960 .960 .962 .334
ET boot .946 .954 .957 .954 .315
Sym RB boot .952 .950 .954 .953 .305
ET RB boot .938 .946 .951 .948 .294

(−1.0, −.5) −1.5 Delta .955 .954 .952 .957 .100
Sym boot .959 .956 .955 .959 .101
ET boot .946 .951 .954 .954 .101
Sym RB boot .951 .951 .951 .953 .098
ET RB boot .944 .949 .953 .948 .097
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Table 9.5. Coverage probabilities for nominal 95% confidence intervals for
1/(1− α), α, ρ1, and ρ2 for AR(2) processes with N = 50

Type of Coverage probabilities of Average length
confidence confidence intervals for of CI for

(ρ1, ρ2) α interval 1/(1− α) α ρ1 ρ2 1/(1− α)

(1.4, −.5) .9 Delta .702 .902 .919 .941 17.7
Sym boot .874 .930 .947 .947 93.1
ET boot .839 .917 .946 .933 63.3

(.9, 0) .9 Delta .576 .870 .913 .935 84.0
Sym boot .811 .912 .943 .947 1647
ET boot .783 .909 .943 .930 1089

(0, .9) .9 Delta .429 .827 .874 .790 13,355
Sym boot .726 .889 .914 .890 495,905
ET boot .714 .897 .918 .902 322,854

(1.0, −.5) .5 Delta .883 .937 .927 .941 1.55
Sym boot .928 .948 .945 .946 2.28
ET boot .908 .934 .944 .932 1.88

(.5, 0) .5 Delta .830 .930 .928 .937 2.08
Sym boot .913 .947 .944 .948 3.87
ET boot .892 .931 .945 .935 2.94

(0, .5) .5 Delta .787 .919 .924 .912 2.44
Sym boot .898 .940 .944 .935 5.50
ET boot .871 .924 .940 .926 4.01

(0, −.5) −.5 Delta .932 .942 .936 .945 .307
Sym boot .938 .948 .946 .948 .340
ET boot .925 .940 .944 .937 .322

(−.5, 0) −.5 Delta .907 .936 .935 .936 .422
Sym boot .929 .945 .946 .946 .533
ET boot .917 .938 .941 .936 .468

(−1.0, −.5) −1.5 Delta .943 .939 .942 .942 .144
Sym boot .946 .944 .949 .946 .148
ET boot .924 .936 .946 .934 .146
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APPENDIX OF PROOFS

In the first subsection of this Appendix, we state Lemmas A.1–A.8 that are used
in the proofs of Theorems 5.1, 6.1, 7.1, and 7.2 and Lemma 7.1. In the second
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subsection, we prove Theorems 5.1, 6.1, 7.1, and 7.2. In the third subsection,
we prove Lemmas 7.1 and A.1–A.8.

Throughout the Appendix, a denotes a constant that satisfies a ≥ 0 and 2a is
an integer, C denotes a generic constant that may change from one equality or
inequality to another, and B(θ, ε) denotes an open ball of radius ε > 0 centered
at θ.

Lemmas

Lemma A.1. Suppose supθ0∈�0 Pθ0 (̂θ N /∈ B(θ0, δ/2)) = o(N−a) (for δ as in the
definitions of �1 and �2 given in Section 4) and {λN (θ ) : N ≥ 1} is a sequence
of (nonrandom) real functions on �1 that satisfies supθ∈�1 |λN (θ )| = o(N−a).
Then, for all ε > 0,

sup
θ0∈�0

Pθ0 (|λN (̂θ N )| > N−aε) = o(N−a).

Comments. 1. This is a simple, but key, result that is used to obtain
bootstrap results from results that hold for statistics based on the original
sample uniformly over θ0 ∈ �0. For example, suppose we take λN (θ ) =
P∗
θ (||V ∗

N (θ∗N )− V (θ )|| > ε) and we show that supθ0∈�1 Pθ0 (||VN (̂θ N )−
V (θ0)|| > ε) = o(N−a) and supθ0∈�0 Pθ0 (̂θ N /∈ B(θ0, δ/2)) = 1− o(N−a).
Note that λN (θ ) = Pθ (||VN (̂θ N )− V (θ )|| > ε) because the bootstrap distri-
bution of V ∗

N (θ∗N ) when the true parameter is θ is the same as the origi-
nal sample distribution of VN (̂θ N ) when the true parameter is θ. Hence, we
know that supθ∈�1 |λN (θ )| = o(N−a) and, by Lemma A.1, we conclude that
supθ0∈�0

Pθ0 (P∗
θ̂ N

(||V ∗
N (θ∗N )− V (̂θ N )|| > ε) > N−aε) = o(N−a).

2. The condition of Lemma A.1 on θ̂ N is an implication of Lemma A.4.

Lemma A.2. Suppose Assumption 2.1 holds.
(a) Let m(·, θ0) be a matrix-valued function that satisfies Eθ0 m(W̃i , θ0) = 0 for
all i ≥ 1 and all θ0 ∈ �1 and supθ0∈�1,i≥1 Eθ0 ||m(W̃i , θ0)||p <∞ for p > 2a
and p ≥ 2. Then, for all ε > 0,

sup
θ0∈�1

Pθ0

(∥∥∥∥∥N−1
N∑

i=1

m(W̃i , θ0)

∥∥∥∥∥ > ε

)
= o(N−a).

(b) Let m(·, θ0) be a matrix-valued function that satisfies supθ0∈�1,i≥1

Eθ0 ||m(W̃i , θ0)||p <∞ for p > 2a and p ≥ 2. Then, there exists K <∞ such
that

sup
θ0∈�1

Pθ0

(∥∥∥∥∥N−1
N∑

i=1

m(W̃i , θ0)

∥∥∥∥∥ > K

)
= o(N−a).

(c) Suppose Assumptions 4.2b and 4.3 also hold. Then, for all ε > 0,

sup
θ0∈�1

Pθ0

(∥∥∥∥∥N−1/2
N∑

i=1

( f (W̃i , θ0)− Eθ0 f (W̃i , θ0))

∥∥∥∥∥ > ln(N )ε

)
= o(N−a).
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Lemma A.3. Suppose Assumptions 2.1, 4.1, and 4.2 hold. Let θ N denote an
estimator that satisfies: For all ε > 0, supθ0∈�1 Pθ0 (||θ N − θ0|| > ε) = o(N−a).
Then, for all ε > 0 and some K <∞,

sup
θ0∈�1

Pθ0 (||VN (θ N )− V (θ0)|| > ε) = o(N−a),

sup
θ0∈�1

Pθ0 (||DN (θ N )− D(θ0)|| > ε) = o(N−a),

sup
θ0∈�1

Pθ0

(∥∥∥∥ ∂3

∂θ3 ρN (θ N )

∥∥∥∥ > K

)
= o(N−a), and

sup
θ0∈�1

Pθ0

(∥∥∥∥∥N−1
N∑

i=1

g(W̃i , θ N )

∥∥∥∥∥ > ε

)
= o(N−a).

Lemma A.4. Suppose Assumptions 2.1 and 4.1–4.3 hold. Then, for all ε > 0,

sup
θ0∈�1

Pθ0

(
N 1/2||̂θ N − θ0|| > ln(N )ε

) = o(N−a).

Lemma A.5. Suppose Assumption 2.1 holds. Let {AN (θ0) : N ≥ 1} be
a sequence of L A × 1 random vectors with Edgeworth expansions for
each θ0 ∈ �1 with coefficients of order O(1) and remainders of order
o(N−a) both uniformly over θ0 ∈ �1. (That is, there exist polynomials
{π N ,i (z, θ0) : i = 1, . . . , 2a} in z whose coefficients are O(1) uniformly
over θ0 ∈ �1, such that supθ0∈�1 supB∈BL A

|Pθ0 (AN (θ0) ∈ B)− ∫B(1+∑2a
i=1 N−i/2π N ,i (z, θ0))φ�N (θ0)(z) dz| = o(N−a), where φ�N (θ0)(z) is the den-

sity function of a N (0, �N (θ0)) random variable, �N (θ0) has eigenvalues that
are bounded away from zero and infinity as N →∞ uniformly over θ ∈ �1,

and BL A denotes the class of all convex sets in RL A .) Let {ξ N (θ0) : N ≥ 1} be
a sequence of random vectors with supθ0∈�1 Pθ0 (||ξ N (θ0)|| > ωN ) = o(N−a)
for some constants ωN = o(N−a), where ξ N (θ0) ∈ RL A . Then,

sup
θ0∈�1

sup
B∈BL A

|Pθ0 (AN (θ0)+ ξ N (θ0) ∈ B)−Pθ0 (AN (θ0) ∈ B)| = o(N−a).

Let SN (θ ) = N−1∑N
i=1 f (W̃i , θ ) and S∗N (θ ) = N−1∑N

i=1 f (W̃ ∗
i , θ ).

Lemma A.6. Suppose Assumptions 2.1 and 4.1–4.3 hold. Let �N (θ0) de-
note N 1/2(̂θ N − θ0), TN (θ0,r ), or HN (̂θ N , β0), where θ0 = (β ′0, δ

′
0)′. Let L

denote the dimension of �N (θ0). For each definition of �N (θ0), there is an in-
finitely differentiable function G(·) that does not depend on θ0 and that satisfies
G(Eθ0 SN (θ0)) = 0 for all N large and all θ0 ∈ �1, and

sup
θ0∈�1

sup
B∈BL

|Pθ0 (�N (θ0) ∈ B)− Pθ0 (N 1/2G(SN (θ0)) ∈ B)| = o(N−a).

We now define the components of the Edgeworth expansions of TN (θ0,r )
and WN (β0), as well as their bootstrap analogs T ∗

N (̂θ N ,r ) and W∗
N (̂βN ).

Let �N (θ0) = N 1/2(SN (θ0)− Eθ0 SN (θ0)). Let �N , j (θ0) denote the j th



200 Andrews

element of �N (θ0). Let νN ,a(θ0) denote a vector of moments of the form
Nα(m) Eθ0

∏m
µ=1 �N , jµ (θ0), where 2 ≤ m ≤ 2a + 2, α(m) = 0 if m is even,

and α(m) = 1/2 if m is odd. Let πT i (δ, νN ,a(θ0)) be a polynomial in δ = ∂/∂z
whose coefficients are polynomial functions of the elements of νN ,a(θ0) and
for which πT i (δ, νN ,a(θ0))�(z) is an even function of z when i is odd and is an
odd function of z when i is even for i = 1, . . . , 2a. The Edgeworth expansion
of TN (θ0,r ) depends on πT i (δ, νN ,a(θ0)). In contrast, the Edgeworth expansion
of WN (β0) depends on πWi (y, νN ,a(θ0)), where πWi (y, νN ,a(θ0)) denotes
a polynomial function of y whose coefficients are polynomial functions of
the elements of νN ,a(θ0) for i = 1, . . . , [a]. The Edgeworth expansions of
T ∗

N (̂θ N ,r ) and W∗
N (̂βN ) depend on πT i (δ, νN ,a (̂θ N )) and πWi (y, νW,N ,a (̂θ N )),

respectively.
Let �(·) denote the distribution function of a standard normal random vari-

able. Let χ2
λ denote a chi-square random variable with λ degrees of freedom.

Let θ0,r denote the r th element of θ0.

Lemma A.7. Suppose Assumptions 2.1 and 4.1–4.3 hold. Then, for all ε > 0,

sup
θ0∈�1

Pθ0 (N 1/2||νN ,a (̂θ N )− νN ,a(θ0)|| > ln(N )ε) = o(N−a).

Lemma A.8. Suppose Assumptions 2.1 and 4.1–4.3 hold.
(a) Then,

sup
θ0∈�1

sup
z∈R

|Pθ0 (TN (θ0,r ) ≤ z)

−
[

1+
2a∑

i=1

N−i/2πT i (δ, νN ,a(θ0))

]
�(z)| = o(N−a) and

sup
θ0∈�1

sup
z∈R

|Pθ0 (WN (β0) ≤ z)

−
∫ z

−∞
d

[
1+

[a]∑
i=1

N−iπWi (y, νN ,a(θ0))

]
P(χ2

L H
≤ y)| = o(N−a).

(b) Then, for all ε > 0,

sup
θ0∈�0

Pθ0

(
sup
z∈R

|P∗
θ̂ N

(T ∗
N (̂θ N ,r ) ≤ z)

−
[

1+
2a∑

i=1

N−i/2πT i (δ, νN ,a (̂θ N ))

]
�(z)| > N−aε

)
= o(N−a) and

sup
θ0∈�0

Pθ0

(
sup
z∈R

|P∗
θ̂ N

(W∗
N (̂βN ) ≤ z)

−
∫ z

−∞
d

[
1+

[a]∑
i=1

N−iπWi (y, νN ,a (̂θ N ))

]
P(χ2

L H
≤ y)| > N−aε

)
= o(N−a).
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Comments. 1. The terms in the Edgeworth expansions for the Wald statistic
involve only integer powers of N−1, not powers N−1/2, N−3/2, and so forth, as
in the Edgeworth expansions for the t statistic, because of a symmetry property
of the expansions.

2. The conditions on q1 and d in Assumption 4.2 are not needed in all
of the Lemmas A.1–A.8. In particular, Lemmas A.3 and A.4 only use q1 ≥
max{2a + 1, 2} and d = 3.

Proofs of Theorems

Proof of Theorem 5.1.

The results of parts (a)–(c) hold by Lemma A.8a. In the proof of part (a),
the N−1 term in the Edgeworth expansion of Lemma A.8(a) drops out by the
evenness of πT i (δ, νN ,a(θ0)) when considering the probability Pθ0 (TN (θ0,r ) ≤
zα/2)− Pθ0 (TN (θ0,r ) ≤ −zα/2).

Proof of Theorem 6.1.

We establish part (c) first. Note that Pθ0 (θ0,r ∈ C IU P ) = Pθ0 (TN (θ0,r ) ≤ z∗T,α).
We show that the latter equals 1− α + o(N−1 ln(N )) uniformly over θ0 ∈ �0.

By Lemma A.8b, Lemma A.7, and Lemma A.8a, respectively, each with a = 1,
we have, for all ε > 0,

sup
θ0∈�0

Pθ0

(
sup
z∈R

|P∗
θ̂ N

(T ∗
N (̂θ N ,r ) ≤ z)

−
[

1+
2∑

i=1

N−i/2πT i (δ, νN ,1(̂θ N ))

]
�(z)| > N−1

)
= o(N−1),

sup
θ0∈�0

Pθ0

(
sup
z∈R

|[πT i (δ, νN ,1(̂θ N ))

− πT i (δ, νN ,1(θ0))]�(z)| > N−1/2 ln(N )ε
)

= o(N−1) for i = 1, 2, and

sup
θ0∈�0

sup
z∈R

∣∣∣∣∣Pθ0 (TN (θ0,r ) ≤ z)

−
[

1+
2∑

i=1

N−i/2πT i (δ, νN ,1(θ0))

]
�(z)

∣∣∣∣∣ = o(N−1). (A.1)

The results of (A.1) combine to give

sup
θ0∈�0

Pθ0

(
sup
z∈R

|P∗
θ̂ N

(T ∗
N (̂θ N ,r ) ≤ z)

−Pθ0 (TN (θ0,r ) ≤ z)| > N−1 ln(N )ε
)
= o(N−1). (A.2)

If T ∗
N (̂θ N ,r ) is absolutely continuous, then P∗

θ̂ N
(T ∗

N (̂θ N ,r ) ≤ z∗T,α) = 1− α.

Whether or not T ∗
N (̂θ N ,r ) is absolutely continuous, the Edgeworth expansion of
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Lemma A.8b with a = 1 implies that

sup
θ0∈�0

Pθ0 (|P∗
θ̂ N

(T ∗
N (̂θ N ,r ) ≤ z∗T,α)− (1− α)| > N−1ε) = o(N−1) (A.3)

for all ε > 0. This holds because the continuity in z of the Edgeworth expansion
in Lemma A.8b implies that there exists a value z∗∗T,α for which the Edgeworth
expansion at z = z∗∗T,α equals 1− α and, by definition of z∗T,α, |P∗

θ̂ N
(T ∗

N (̂θ N ,r ) ≤
z∗T,α)− (1− α)| ≤ |P∗

θ̂ N
(T ∗

N (̂θ N ,r ) ≤ z∗∗T,α)− (1− α)|.
Taking z = z∗T,α in (A.2) and combining it with (A.3) gives

sup
θ0∈�0

Pθ0 (|1− α − Pθ0 (TN (θ0,r ) ≤ z∗T,α)| > N−1 ln(N )ε) = o(N−1).

(A.4)

The expression inside the absolute value sign is nonrandom. Hence, for N
large, |1− α − Pθ0 (TN (θ0,r ) ≤ z∗T,α)| ≤ N−1 ln(N )ε,which establishes part (c)
of Theorem 6.1.

The proof of part (b) is analogous to that of part (c). The proof of part (d) is
also analogous to that of part (c), but using the Wald statistic results of Lemmas
A.7 and A.8, rather than the t statistic results, and with these lemmas applied
with a = 3/2 rather than a = 1. In part (d), the coverage probability error is
o(N−3/2 ln(N )), rather than o(N−1 ln(N )), which is the error in part (c), because
the first terms in the Edgeworth expansions for the Wald statistic in Lemma A.8
are O(N−1), whereas those for the t statistic are O(N−1/2).

Next, we prove part (a). Note that Pθ0 (θ0 ∈ C ISYM ) = Pθ0 (|TN (θ0,r )| ≤
z∗|T |,α). We show that the latter is O(N−2) uniformly over θ0 ∈ �0.

By Lemma A.6 with a = 2, it suffices to establish the result with TN (θ0,r )
and T ∗

N (̂θ N ,r ) replaced by N 1/2G(SN (θ0)) and N 1/2G(S∗N (̂θ N )), respectively.
Part (a) now can be established using methods developed for “smooth
functions of sample averages,” as in Hall (1988, 1992). Define z|G|,α by
Pθ0 (|N 1/2G(SN (θ0))| ≤ z|G|,α) = 1− α and let � = z|G|,α − z∗|T |,α. The idea
of the proof is to show that

Pθ0 (N 1/2G(SN (θ0))+� ≤ z|G|,α)

= 1− α/2+ N−3/2r1(z|G|,α)φ(z|G|,α)+ O(N−2) and

Pθ0 (N 1/2G(SN (θ0))−� ≤ −z|G|,α)

= α/2− N−3/2r1(−z|G|,α)φ(−z|G|,α)+ O(N−2), (A.5)

uniformly over θ0 ∈ �0, where r1(x) is a constant times x and φ(·) denotes the
standard normal density function, as in of Hall (1988). Then,

Pθ0 (|TN (θ0,r )| ≤ z∗|T |,α) = Pθ0 (|N 1/2G(SN (θ0))| ≤ z∗|T |,α)+ O(N−2)

= 1− α + N−3/2r1(z|G|,α)φ(z|G|,α)

+ N−3/2r1(−z|G|,α)φ(−z|G|,α)+ O(N−2)

= 1− α + O(N−2), (A.6)
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uniformly over θ0 ∈ �0, using the fact that r1(x) is an odd function and φ(·)
is an even function. The results of (A.5) are established by the same argu-
ment as used to prove (3.2) of Hall (1988), where his T corresponds to our
N 1/2G(SN (θ0)). (More details of this argument can be found in Hall (1992,
Proof of Theorem 5.3), which considers one-sided confidence intervals but can
be extended to symmetric two-sided confidence intervals.) This argument relies
on Edgeworth expansions of N 1/2G(SN (θ0)) and N 1/2G(S∗N (̂θ N )):

sup
θ0∈�0

sup
z∈R

∣∣Pθ0 (|N 1/2G(SN (θ0))| ≤ z)

− [1+ N−1π2(δ, νN ,2(θ0))+ N−2π4(δ, νN ,2(θ0))](�(z)−�(−z))
∣∣

= o(N−2) and

sup
θ0∈�0

Pθ0

(
sup
z∈R

∣∣∣P∗
θ̂ N

(|N 1/2G(S∗N (̂θ N ))| ≤ z)− [1+ N−1π2(δ, νN ,2(̂θ N ))

+ N−2π4(δ, νN ,2(̂θ N ))](�(z)−�(−z))
∣∣ > N−2

)
= o(N−2), (A.7)

which hold by Lemma A.8 with a = 2 and with TN (θ0,r ) and T ∗
N (̂θ N ,r ) replaced

by N 1/2G(SN (θ0)) and N 1/2G(S∗N (̂θ N )), respectively. The former replacements
are valid by the proof of Lemma A.8.

Proof of Theorem 7.1

Define θ̂ N ,k, QN , j−1, TN ,k(θ0,r ), and WN ,k(β0) just as θ∗N ,k, Q∗
N , j−1,

T ∗
N ,k (̂θ N ,r ), and W∗

N ,k (̂βN ) are defined but with the bootstrap sample {W̃ ∗
i :

i = 1, 2, . . . , N } replaced by the original sample {W̃i : i = 1, 2, . . . , N } and
with the initial estimator θ̂ N ,0 used to generate θ̂ N ,k given by the true parameter
θ0. To establish part (a) of the theorem, we apply Lemma A.1 three times with

λN (θ0) = P∗
θ0

(||θ∗N ,k − θ∗N || > µN ,k) = Pθ0 (||̂θ N ,k − θ̂ N || > µN ,k),

λN (θ0) = P∗
θ0

(|T ∗
N ,k(θ0,r )− T ∗

N (θ0,r )| > N 1/2µN ,k)

= Pθ0 (|TN ,k(θ0,r )− TN (θ0,r )| > N 1/2µN ,k), and

λN (θ0) = P∗
θ0

(|W∗
N ,k(β0)−W∗

N (β0)| > N 1/2µN ,k)

= Pθ0 (|WN ,k(β0)−WN (β0)| > N 1/2µN ,k). (A.8)

The condition of Lemma A.1 on θ̂ N is established in Lemma A.4. In conse-
quence, to establish part (a) of the theorem, it suffices to show that

sup
θ0∈�1

Pθ0 (||̂θ N ,k − θ̂ N || > µN ,k) = o(N−a),

sup
θ0∈�1

Pθ0 (|TN ,k(θ0,r )− TN (θ0,r )| > N 1/2µN ,k) = o(N−a), and

sup
θ0∈�1

Pθ0 (|WN ,k(β0)−WN (β0)| > N 1/2µN ,k) = o(N−a). (A.9)
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We establish the first result of (A.9) first. A Taylor expansion about θ̂ N ,k−1

gives

0 = ∂

∂θ
ρN (̂θ N )

= ∂

∂θ
ρN (̂θ N ,k−1)+ ∂2

∂θ∂θ ′
ρN (̂θ N ,k−1)(̂θ N − θ̂ N ,k−1)+ RN ,k

= ∂

∂θ
ρN (̂θ N ,k−1)+ QN ,k−1(̂θ N ,k − θ̂ N ,k−1)+ QN ,k−1(̂θ N − θ̂ N ,k)

+
(

∂2

∂θ∂θ ′
ρN (̂θ N ,k−1)− QN ,k−1

)
(̂θ N − θ̂ N ,k−1)+ RN ,k

= QN ,k−1(̂θ N − θ̂ N ,k)+
(

∂2

∂θ∂θ ′
ρN (̂θ N ,k−1)− QN ,k−1

)
× (̂θ N − θ̂ N ,k−1)+ RN ,k, where

RN ,k =
[

(̂θ N − θ̂ N ,k−1)′
∂3

∂θu∂θ∂θ
′ ρN (θ+N ,k−1,u)(̂θ N − θ̂ N ,k−1)/2

]
Lθ

. (A.10)

[
ξ u

]
Lθ

denotes an Lθ vector whose uth element is ξ r , θ
+
N ,k−1,u lies between

θ̂ N and θ̂ N ,k−1, the first equality holds except with supremum Pθ0 probability
over θ0 ∈ �1 equal to o(N−a) by Lemma A.4, and the fourth equality holds
because (∂/∂θ )ρN (̂θ N ,k−1) + QN ,k−1 (̂θ N ,k − θ̂ N ,k−1) = 0 by the definition of
θ̂ N ,k . Rearranging (A.10) yields

||̂θ N ,k − θ̂ N ||
≤ ||(QN ,k−1)−1 RN ,k || + ||(QN ,k−1)−1

(
∂2

∂θ∂θ ′
ρN (̂θ N ,k−1)− QN ,k−1

)
× (̂θ N ,k−1 − θ̂ N )||

≤ ζ N (||̂θ N ,k−1 − θ̂ N ||2 + ψN ||̂θ N ,k−1 − θ̂ N ||), where

ζ N = max
j=1,...,k

{
||(QN , j−1)−1)|| ·

Lθ∑
u=1

|| ∂3

∂θu∂θ∂θ
′ ρN (θ+N , j−1,u)/2||

+ ||(QN , j−1)−1)|| · ψ̃N ||
∂2

∂θ∂θ ′
ρN (̂θ N , j−1)− QN , j−1|| + 1

}
, (A.11)

ψ̃N = ψ−1
N if ψN > 0 and ψ̃N = 0 if ψN = 0. Repeated substitution into the

right-hand side of the inequality gives an upper bound that is a finite sum of
terms with dominant terms of the form

Cζ
φ

N ||̂θ N ,0 − θ̂ N ||2k− j
ψ

j
N for j = 0, . . . , k, (A.12)

where φ is a positive integer and θ̂ N ,0 = θ0 when the true parameter is θ0. To
see this, consider the solution in terms of x0 of the equation xk = x2

k−1 + λxk−1.
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Collect all terms in powers of λ that are multiplied by the smallest number of
x0 terms.

An upper bound on the right-hand side of the inequality in (A.11) is

Cζ
φ

N max
j=0,...,k

(γ N )2k− j
N−2k− j−1

ln2k− j
(N )ψ j

N , where

γ N = N 1/2||̂θ N ,0 − θ̂ N || ln−1(N ). (A.13)

For all ε > 0, supθ0∈�1 Pθ0 (γ N > ε) = o(N−a) by Lemma A.4, because
θ̂ N ,0 = θ0. In addition, by Lemma A.3 and Assumptions 4.2a and 7.1, there
exists a finite constant K such that supθ0∈�1 Pθ0 (ζ N > K ) = o(N−a). As-
sumption 7.1 applies here because P∗

θ0
(||Q∗

N , j−1 − D∗
N (θ∗N , j−1)|| > ψN ) =

Pθ0 (||QN , j−1 − (∂2/∂θ∂θ ′)ρN (̂θ N , j−1)|| > ψN ). Combining these results with
(A.11) and (A.13) gives

sup
θ0∈�1

Pθ0

(
||̂θ N ,k − θ̂ N || > max

j=0,...,k
N−2k− j−1

ln2k− j
(N )ψ j

N

)
≤ sup

θ0∈�1

Pθ0 (Cζ
φ

NλN > 1)

= sup
θ0∈�1

Pθ0 (C K φε > 1)+ o(N−a)

= o(N−a), (A.14)

where the last equality holds for ε > 0 sufficiently small. Hence, the first result
of part (a) of the theorem holds.

Next, we establish the second result of part (a) of the theorem. Let �r

denote (�N )rr . Let �k,r denote �r with θ̂ N replaced by θ̂ N ,k in all parts of its
definition in (2.6). We use the following:

|TN ,k(θ0,r ) − TN (θ0,r )| ≤ N 1/2||̂θ N ,k − θ̂ N ||/�1/2
k,r

+ N 1/2||̂θ N − θ0|| · |�1/2
k,r −�1/2

r |/(�k,r�r )1/2. (A.15)

By (A.13), the second result of part (a) is implied by the first result plus the
following. There exists a K <∞ and a δ > 0 such that

sup
θ0∈�1

Pθ0 (|�1/2
k,r −�1/2

r | > µN ,k) = o(N−a), (A.16)

sup
θ0∈�1

Pθ0 (||̂θ N − θ0|| > K ) = o(N−a), (A.17)

sup
θ0∈�1

Pθ0 (�k,r < δ) = o(N−a), and (A.18)

sup
θ0∈�1

Pθ0 (�r < δ) = o(N−a). (A.19)

Equation (A.17) holds by Lemma A.4. Equations (A.18) and (A.19) hold
by Lemma A.4, the first result (A.9), and the first and/or second results of
Lemma A.3.
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Equation (A.16) is implied by (A.18), (A.19), and

sup
θ0∈�1

Pθ0 (|�k,r −�r | > µN ,k) = o(N−a) (A.20)

by a mean value expansion. Equation (A.20) is implied by

sup
θ0∈�1

Pθ0 (||DN (̂θ N ,k)− DN (̂θ N )|| > µn,k) = o(N−a) and/or

sup
θ0∈�1

Pθ0 (||VN (̂θ N ,k)− VN (̂θ N )|| > µn,k) = o(N−a). (A.21)

These results hold by mean value expansions, Lemma A.2b with m(W̃i , θ0) =
supθ∈�2

||(∂2/∂θu∂θ
′)g(W̃i , θ )|| and m(W̃i , θ0) = supθ∈�2

||(∂/∂θu)(g(W̃i , θ )g
(W̃i , θ )′)|| for u = 1, . . . , Lθ , Lemma A.4, the first result of (A.9), and
Assumption 4.2.

We now prove the third result of part (a). Let HN = HN (̂θ N ) and
HN ,k = HN (̂θ N ,k). We have

|WN ,k(β0)−WN (β0)| = |(HN ,k − HN )′HN ,k + H ′
N (HN ,k − HN )|

≤ ||HN ,k − HN ||(||HN ,k || + ||HN ||). (A.22)

Hence, it suffices to show that

sup
θ0∈�1

Pθ0 (||HN ,k − HN || > N 1/2µN ,k) = o(N−a) and

sup
θ0∈�1

Pθ0 (||HN || > M) = o(N−a) for some M <∞. (A.23)

The second result of (A.23) holds by Lemma 9(a) because ||HN ||2 =WN (β0).
The first result of (A.23) is implied by the matrix version of (A.20) and the first
result of (A.9).

To establish part (b) of the theorem, we apply Lemma A.1 three times with

λN (θ0)

= sup
z∈RLθ

∣∣P∗
θ0

(N 1/2(θ∗N ,k − θ0) ≤ z)− P∗
θ0

(N 1/2(θ∗N − θ0) ≤ z)
∣∣

= sup
z∈RLθ

∣∣Pθ0 (N 1/2(̂θ N ,k − θ0) ≤ z)− Pθ0 (N 1/2(̂θ N − θ0) ≤ z)
∣∣ ,

(A.24)

and so forth. In consequence, it suffices to show that

sup
θ0∈�1

sup
z∈RLθ

∣∣Pθ0 (N 1/2(̂θ N ,k − θ0) ≤ z)− Pθ0 (N 1/2(̂θ N − θ0) ≤ z)
∣∣

= o(N−a),

sup
θ0∈�1

sup
z∈R

∣∣Pθ0 (TN ,k(θ0,r ) ≤ z)− Pθ0 (TN (θ0,r ) ≤ z)
∣∣ = o(N−a), and

sup
θ0∈�1

sup
z∈R

∣∣Pθ0 (WN ,k(β0) ≤ z)− Pθ0 (WN (β0) ≤ z)
∣∣ = o(N−a).

(A.25)
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We apply Lemma A.5 three times with ωN = N 1/2µN ,k and with
(AN (θ0), ξ N (θ0)) equal to (N 1/2(̂θ N − θ0), N 1/2(̂θ N ,k − θ̂ N )), (TN (θ0,r ),
TN ,k(θ0,r )− TN (θ0,r )), and (HN (̂θ N ), HN (̂θ N ,k)− HN (̂θ N )). In the third ap-
plication, we consider the convex sets Bz = {x ∈ RLβ : x ′x ≤ z} and use
the fact that WN ,k = HN (̂θ N ,k)′HN (̂θ N ,k). By the assumption that µN ,k =
o(N−(a+1/2)),we haveωN = o(N−a), as required by Lemma A.5. The condition
of Lemma A.5 on ξ N (θ0) holds by (A.9). As required by Lemma A.5, the random
vector TN (θ0,r ) has an Edgeworth expansion with remainder o(N−a) by Lemma
A.8a. The same is true for �−1/2 N−1/2(̂θ N − θ0) and HN (̂θ N ) by an argument
analogous to that used to prove Lemma A.8a.

Proof of Theorem 7.2

The proof of Theorem 7.2 is the same as that of Theorem 6.1, except that
the results of Theorem 7.1b allow one to replace T ∗

N (̂θ N ,r ), z∗T,α, and z∗|T |,α by

T ∗
N ,k (̂θ N ,r ), z∗T,k,α, and z∗|T |,k,α , respectively, throughout. In particular, the results

of Theorem 7.1b allow one to replace T ∗
N (̂θ N ,r ) by T ∗

N ,k (̂θ N ,r ) in the first line of
(A.1), and the replacements elsewhere all follow.

Proofs of Lemmas

Proof of Lemma 7.1

The NR result of Lemma 7.1 holds by definition of QN R,∗
N , j−1. For brevity, the

proof of the other results is given in Andrews (2001). It is similar to the proof
of Lemma 17 in Andrews (2002).

Proof of Lemma A.1

We have

sup
θ0∈�0

Pθ0 (|λN (̂θ N )| > N−aε)

≤ sup
θ0∈�0

Pθ0 (|λN (̂θ N )| > N−aε, θ̂ N ∈ B(θ0, δ/2))

+ sup
θ0∈�0

Pθ0 (̂θ N /∈ B(θ0, δ/2))

≤ sup
θ0∈�0

Pθ0 ( sup
θ∈�1

|λN (θ )| > N−aε)+ o(N−a)

= 1(o(N−a) > N−aε)+ o(N−a)

= o(N−a), (A.26)

where the second inequality uses the fact that when θ̂ N ∈ B(θ0, δ/2) and θ0 ∈
�0, one has θ̂ N ∈ �1.
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Proof of Lemma A.2

A strong mixing moment inequality of Yokoyama (1980) and Doukhan (1995,
Theorem 2 and Remark 2, pp. 25–30) gives supθ0∈�1 Eθ0 ||

∑N
i=1 m(W̃i , θ0)||p <

C N p/2 provided p ≥ 2.Application of Markov’s inequality and the Yokoyama–
Doukhan inequality yields the left-hand side in part (a) of the lemma to be less
than or equal to

ε−p N−p sup
θ0∈�1

Eθ0

∥∥∥ N∑
i=1

m(W̃i , θ0)
∥∥∥p
≤ ε−pC N−p/2 = o(N−a).

(A.27)

Part (b) follows from part (a) applied to m(W̃i , θ0)− Eθ0 m(W̃i , θ0) and the
triangle inequality.

To establish part (c), we use the Edgeworth expansion given in Theorem 2.1
or 2.3 of Lahiri (1993) (also see Corollary 2.9 of Götze and Hipp 1983) with
their s = 2a + 2. Conditions 1 and 3–6 of Lahiri (1993) hold uniformly over
θ0 ∈ �1 by Assumption 4.3. Their condition 2 holds uniformly over θ0 ∈ �1

by Assumption 4.2b. Because the result of the lemma can be proved element
by element, we consider an arbitrary element fv(·, θ0) of f (·, θ0). Let �(·)
denote the standard normal distribution function. By the Edgeworth expansion,
for each θ0 ∈ �1, there are homogeneous polynomials π i (δ, θ0) in δ = ∂/∂z
for i = 1, . . . , 2a such that

sup
z∈R

∣∣∣∣∣Pθ0

(
N−1/2

N∑
i=1

( fv(W̃i , θ0)− Eθ0 fv(W̃i , θ0)) ≤ z

)

−
(

1+
2a∑

i=1

N−i/2π i (δ, θ0)

)
�(z)

∣∣∣∣∣
= o(N−a). (A.28)

The error o(N−a) holds uniformly over θ0 ∈ �1 because Assumptions 4.2b
and 4.3 hold uniformly over θ0 ∈ �1. Equation (A.28) implies that for any
constant zN

Pθ0

(
|N−1/2

N∑
i=1

(
fv(W̃i , θ0)− Eθ0 fv(W̃i , θ0)

) | > zN

)

= 1−
(

1+
2a∑

i=1

N−i/2π i (δ, θ0)

)
(�(zN )−�(−zN ))+ o(N−a)

= 2�(−zN )−
(

2a∑
i=1

N−i/2π i (δ, θ0)

)
(�(zN )−�(−zN ))+ o(N−a),

(A.29)
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where the error holds uniformly over θ0 ∈ �1. Let zN = ε ln(N ). Using
�(−z) ≤ C exp(−z2/2) for z > 1, we have

�(−zN ) ≤ C exp(−ε2 ln2(N )/2) ≤ C exp(−(a + 1) ln(N ))

= C N−(a+1) = o(N−a), (A.30)

where the second inequality holds for any given a ≥ 0 and ε > 0 for N
sufficiently large. The expression π i (δ, θ0)�(zN ) is a finite sum of terms
of the form b(θ0)z j

Nφ(zN ) for some integer j and some function b(θ0) that
satisfies supθ0∈�1 |b(θ0)| <∞ (which holds by the uniform moment bound
over θ0 ∈ �1 given in Assumption 4.2b), where φ(·) denotes the stan-
dard normal density. By a calculation analogous to that in (A.30), z j

Nφ(zN )
= ε j ln j (N )(2π )−1/2 exp(−ε2 ln2(N )/2) = o(N−a). This completes the
proof.

Proof of Lemma A.3

The first result of the lemma follows from

sup
θ0∈�1

Pθ0 (||VN (θ N )− VN (θ0)|| > ε) = o(N−a), (A.31)

sup
θ0∈�1

Pθ0 (||VN (θ0)− Eθ0 VN (θ0)|| > ε) = o(N−a), and (A.32)

sup
θ0∈�1

|Eθ0 VN (θ0)− V (θ0)| = o(1). (A.33)

To establish (A.31), we take mean value expansions about θ0, apply
Lemma A.2b with m(W̃i , θ0) = supθ∈�2

||g(W̃i , θ )|| · ||(∂/∂θ ′)g(W̃i , θ )|| and
p = q1, where the sup is over θ ∈ �2 because supθ0∈�1 Pθ0 (θ N /∈ �2) =
o(N−a), and use the assumption on θ N .To establish (A.32), we use Lemma A.2a
with m(W̃i , θ0) = g(W̃i , θ0)g(W̃i , θ0)′ −Eθ0 g(W̃i , θ0)g(W̃i , θ0)′ and p = q1.

Equation (A.33) holds by Assumption 4.2c.
The remaining results of the lemma hold by mean value expansions about

θ0, multiple applications of Lemma A.2b with m(W̃i , θ0) = (∂ j/∂θ j )g(W̃i , θ0)
for j = 0, . . . , 3, multiple applications of Lemma A.2a with m(W̃i , θ0) =
(∂ j/∂θ j ) g(W̃i , θ0)− Eθ0 (∂ j/∂θ j ) g(W̃i , θ0) for j = 0, 1 and p = q1, the as-
sumption on θ N , and Assumption 4.2c.

Proof of Lemma A.4

For brevity, the proof is given in Andrews (2001). It is similar to the proof of
Lemma 3 in Andrews (2002).

Proof of Lemma A.5

For brevity, the proof is given in Andrews (2001). It is similar to the proof of
Lemma 5 in Andrews (2002).
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Proof of Lemma A.6

Suppose �N (θ0) = N 1/2(̂θ N − θ0). By Lemma A.4 and Assumption 4.1a,
we have infθ0∈�1 Pθ0 (̂θ N is in the interior of �) = 1− o(N−a) and
infθ0∈�1 Pθ0 (∂/∂θ )ρN (̂θ N ) = 0) = 1− o(N−a). Element-by-element Taylor
expansions of (∂/∂θ )ρN (̂θ N ) about θ0 of order d − 1 give

0 = ∂

∂θ
ρN (̂θ N ) = ∂

∂θ
ρN (θ0)+

d−1∑
j=1

1

j!
D j ∂

∂θ
ρN (θ0)

× ( θ̂ N − θ0, . . . , θ̂ N − θ0
)+ ζ N (θ0),

where

ζ N (θ0) = 1

j!

(
Dd−1 ∂

∂θ
ρN (θ+N )− Dd−1 ∂

∂θ
ρN (θ0)

)
× ( θ̂ N − θ0, . . . , θ̂ N − θ0

)
, (A.34)

θ+N lies between θ̂ N and θ0, and D j (∂/∂θ )ρN (θ0)(̂θ N − θ0, . . . , θ̂ N −
θ0) denotes D j (∂/∂θ )ρN (θ0) as a j-linear map, whose coefficients are
partial derivatives of (∂/∂θ )ρN (θ0) of order j, applied to the j-tuple
(̂θ N − θ0, . . . , θ̂ N − θ0). Let RN (θ0) denote the column vector whose ele-
ments are the unique components of (∂/∂θ )ρN (θ0), D1(∂/∂θ )ρN (θ0), . . . ,
Dd−1(∂/∂θ )ρN (θ0). Each element of RN (θ0) is an element of SN (θ0). Let
eN (θ0) = (ζ N (θ0)′, 0, . . . , 0)′ be conformable to RN (θ0). The first equation
in (A.34) can be written as ν(RN (θ0)+ eN (θ0), θ̂ N − θ0) = 0, where ν(·, ·)
is an infinitely differentiable function, ν(Eθ0 RN (θ0), 0) = 0 for all N ≥
1, and (∂/∂x)ν(Eθ0 RN (θ0), x)|x=0 = N−1∑N

i=1 Eθ0 g(W̃i , θ0)g(W̃i , θ0)′ is
positive definite for N large by Assumption 4.2c. Hence, the implicit func-
tion theorem can be applied to ν(·, ·) at the point (Eθ0 RN (θ0), 0) to obtain

inf
θ0∈�1

Pθ0 (̂θ N − θ0 = �(RN (θ0)+ eN (θ0))) = 1− o(N−a), (A.35)

where � is a function that does not depend on N or θ0, is infinitely dif-
ferentiable in a neighborhood of Eθ0 RN (θ0) for all N large, and satisfies
�(Eθ0 RN (θ0)) = 0.

We apply Lemma A.5 with AN (θ0) = N 1/2�(RN (θ0)) and ξ N (θ0) =
N 1/2(�(RN (θ0)+ eN (θ0))−�(RN (θ0))) to obtain

sup
θ0∈�1,B∈BLθ

|Pθ0 (N 1/2�(RN (θ0)+ eN (θ0)) ∈ B)

− Pθ0 (N 1/2�(RN (θ0)) ∈ B)| = o(N−a). (A.36)

Lemma A.5 applies because (i) Pθ0 (||ξ N (θ0)|| > ωN ) ≤ Pθ0 (C N 1/2||
eN (θ0)|| > ωN ) by a mean value expansion; (ii) ||eN (θ0)|| = ||ζ N (θ0)||;
(iii) ζ N (θ0) satisfies infθ0∈�1 Pθ0 (||ζ N (θ0)|| ≤ C ||̂θ N − θ0||d ) = 1− o(N−a);
(iv) ωN , which is defined to equal N 1/2−d/2 lnd (N ), is o(N−a) because
d ≥ 2a + 2 by Assumption 4.2a; (v) supθ0∈�1 Pθ0 (N 1/2||eN (θ0)|| > ωN ) ≤
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supθ0∈�1
Pθ0 (C N 1/2||̂θ N − θ0||d > ωN )+ o(N−a) = o(N−a) by Lemma A.4;

(vi) �(RN (θ0)) can be written as G(SN (θ0)), where G(·) is infinitely dif-
ferentiable and G(Eθ0 SN (θ0)) = 0 for all N large; and (vii) AN (θ0) =
N 1/2�(RN (θ0)) = N 1/2G(SN (θ0)) has an Edgeworth expansion (with remain-
der o(N−a) uniformly over θ0 ∈ �1) by the proof of Lemma A.8.

Equations (A.35) and (A.36) and �(RN (θ0)) = G(SN (θ0)) yield the result
of Lemma A.8.

Each of the remaining forms of �N (θ0) (viz., TN (θ0,r ) and HN (̂θ N , β0)) is
a function of θ̂ N . We take a Taylor expansion of �N (θ0)/N 1/2 about θ̂ N = θ0

to order d − 1 to obtain

�N (θ0) = N 1/2(�∗∗(SN (θ0), θ̂ N − θ0)+ ζ ∗∗N (θ0)), (A.37)

where �∗∗ is an infinitely differentiable function that does not depend on
θ0, �∗∗(Eθ0 SN (θ0), 0) = 0 for N large, ζ ∗∗N (θ0) is the remainder term in the
Taylor expansion, and ||ζ ∗∗N (θ0)|| = O(||̂θ N − θ0||d ). Combining (A.35) with
(A.37) gives �N (θ0) = N 1/2(�∗∗(SN (θ0), �(RN (θ0)+ eN (θ0))) +ζ ∗∗N (θ0)).
We apply Lemma A.5 again, using the earlier result for ||ζ ∗∗N (θ0)||, to
obtain an analog of (A.36) with AN (θ0) = N 1/2�∗∗(SN (θ0),�(RN (θ0))).
We can write G(SN (θ0)) = �∗∗(SN (θ0), �(RN (θ0))), where G(·) is in-
finitely differentiable and G(Eθ0 SN (θ0)) = �∗∗(Eθ0 SN (θ0), �(Eθ0 RN (θ0))) =
�∗∗(Eθ0 SN (θ0), 0) = 0 for all N large. Combining this, the analog of (A.36),
and (A.37) gives the result of the lemma for �N (θ0) equal to TN (θ0,r ) and
HN (̂θ N , β0).

Proof of Lemma A.7

We show below that for all θ0 ∈ �1 and all θ ∈ �2 such that ||θ − θ0|| < δ

(where δ is as in the definition of �1),∣∣∣∣∣Nα(m) Eθ

m∏
µ=1

�N , jµ − Nα(m) Eθ0

m∏
µ=1

�N , jµ

∣∣∣∣∣ ≤ BN ||θ − θ0||, (A.38)

where lim supN→∞BN <∞. Let η > 0 satisfy η < ε/(L1/2
ν lim supN→∞BN ),

where Lν denotes the dimension of νN ,a(θ0). Then,

sup
θ0∈�1

Pθ0 (N 1/2||νN ,a (̂θ N )− νN ,a(θ0)|| > ln(N )ε)

≤ sup
θ0∈�1

Pθ0 (N 1/2||νN ,a (̂θ N )− νN ,a(θ0)|| > ln(N )ε,

N 1/2||̂θ N − θ0|| ≤ ln(N )η)

+ supθ0∈�1
Pθ0 (N 1/2||̂θ N − θ0|| > ln(N )η)

≤ sup
θ0∈�1

Pθ0 (L1/2
ν BN N 1/2||̂θ N − θ0|| > ln(N )ε, N 1/2||̂θ N − θ0|| ≤ ln(N )η)

+ o(N−a)

= o(N−a), (A.39)

where the second inequality uses (A.38) and Lemma A.4.
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Under the assumptions, (A.38) holds provided, for all θ0 ∈ �1 and all θ ∈ �2

such that ||θ − θ0|| < δ,

|Eθ

m∏
µ=1

f jµ (W̃i , θ )− Eθ0

m∏
µ=1

f jµ (W̃i , θ0)| ≤ B1,N ||θ − θ0||, (A.40)

for all m ≤ 2a + 2, all i ≥ 1, and all jµ ≤ L f , where f jµ (W̃i , θ ) denotes the
jµth element of f (W̃i , θ ) and lim supN→∞B1,N <∞. The triangle inequality,
a mean value expansion, and some calculations show that (A.40) holds if

sup
θ0∈�1,i≥1

Eθ0 ||C j
f (W̃i ) f 2a+3− j

jµ
(W̃i , θ0)|| <∞ (A.41)

for all j = 0, . . . , 2a + 2 and for all elements jµ of f (W̃i , θ0). This holds if
q1 ≥ 2a + 3, as is assumed.

Proof of Lemma A.8

We establish the first result of part (a) first. By Lemma A.6, it suffices to show
that the random variable N 1/2G(SN (θ0)) of Lemma A.6 possesses an Edge-
worth expansion with remainder o(N−a) uniformly over θ0 ∈ �1. We obtain
an Edgeworth expansion for N 1/2(SN (θ0)− Eθ0 SN (θ0)) for each θ0 ∈ �1 via
Theorem 2.1 of Lahiri (1993) (also see Corollary 2.9 of Götze and Hipp, 1983),
as in the proof of Lemma A.2c. The remainder is uniform in θ0 ∈ �1 be-
cause the conditions in Assumptions 4.2b, 4.2c, and 4.3 hold uniformly over
θ0 ∈ �1. Edgeworth expansions for N 1/2G(SN (θ0)) are now obtained from
those of N 1/2(SN (θ0)− Eθ0 SN (θ0)) by the argument in Bhattacharya (1985,
Proof of Theorem 1) or Bhattacharya and Ghosh (1978, Proof of Theorem 2)
using the smoothness of G(·),G(Eθ0 SN (θ0)) = 0 for all N ≥ 1 and all θ0 ∈ �1,

and Assumption 4.2c.
To establish the second result of part (a), we consider the convex sets Bz =

{x ∈ RLβ : x ′x ≤ z} for z ∈ R. By Lemma A.6a, with �N (θ0) = HN (̂θ N , β0),
we have

o(N−a) = sup
θ0∈�1

sup
z∈R

|Pθ0 (HN (̂θ N , β0) ∈ Bz)

− Pθ0 (N 1/2G(SN (θ0)) ∈ Bz)|
= sup

θ0∈�1

sup
z∈R

|Pθ0 (WN (β0) ≤ z)

− Pθ0 (N G(SN (θ0))′G(SN (θ0)) ≤ z)|. (A.42)

Hence, it suffices to show that the second result of part (a) holds with WN (β0)
replaced by N G(SN (θ0))′G(SN (θ0)). By the same argument as in the previ-
ous paragraph, N 1/2G(SN (θ0)) has a multivariate Edgeworth expansion with
remainder o(N−a) uniform in θ0 ∈ �1, when N 1/2G(SN (θ0)) corresponds
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to HN (̂θ N , β0). This Edgeworth expansion, coupled with Theorem 1 and
Remark 2.2 of Chandra and Ghosh (1979), yields an Edgeworth expansion
for N G(SN (θ0))′G(SN (θ0)) equal to that given for WN (β0) in Lemma A.8.

The first result of part (b) follows from Lemma A.1 with

λN (θ0) = sup
z∈R

|P∗
θ0

(T ∗
N (θ0,r ) ≤ z)

−
[

1+
2a∑

i=1

N−i/2πT i (δ, νN ,a(θ0))

]
�(z)|

= sup
z∈R

|Pθ0 (TN (θ0,r ) ≤ z)

−
[

1+
2a∑

i=1

N−i/2πT i (δ, νN ,a(θ0))

]
�(z)|. (A.43)

The first condition of Lemma A.1 holds by Lemma A.4, and the second con-
dition of Lemma A.1 holds by part (a) of the present lemma. The proof of the
second result of part (b) is analogous.
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CHAPTER 10

The Performance of Empirical Likelihood
and its Generalizations
Guido W. Imbens and Richard H. Spady

ABSTRACT

We calculate higher-order asymptotic biases and mean squared errors (MSE) for a simple model
with a sequence of moment conditions. In this setup, generalized empirical likelihood (GEL)
and infeasible optimal GMM (OGMM) have the same higher-order biases, with GEL appar-
ently having an MSE that exceeds OGMM’s by an additional term of order (M − 1)/N , i.e.,
the degree of overidentification divided by sample size. In contrast, any two-step GMM estimator
has an additional bias relative to OGMM of order (M − 1)/N and an additional MSE of order
(M − 1)2/N . Consequently, GEL must be expected to dominate two-step GMM. In our simple
model all GEL’s have equivalent next higher order behavior because generalized third moments
of moment conditions are assumed to be zero; we explore, in further analysis and simulations, the
implications of dropping this assumption.

1. INTRODUCTION

This paper has two parts. In the first part, we calculate higher-order asymptotic
biases and mean squared errors (MSE) for a simple model with a sequence of
moment conditions. In this setup, generalized empirical likelihood (GEL) and
infeasible optimal GMM (OGMM) have the same higher-order biases, with
GEL having an MSE that apparently exceeds OGMM’s by an additional term
of order (M − 1)/N , i.e., the degree of overidentification divided by sample
size. In contrast, any two-step GMM estimator has an additional bias relative
to OGMM of order (M − 1)/N and an additional MSE of order (M − 1)2/N .

Although these features do depend on the simple framework we have adopted
(and on the force of “apparently,” cf. the discussion of Lemma 9) we cannot see
how a more complicated framework will rescue two-step GMM (generalized
method of moments) from these fundamental difficulties. Consequently, we
conclude that GEL must be expected to dominate two-step GMM, and our
interest shifts to distinguishing between variants of GEL and the closely related,
(if not dual) empirical discrepancy (ED) estimators.

In our simple model all GEL’s have equivalent next higher-order behavior be-
cause third moments of moment conditions (i.e., products of the formψ jψkψ�,

where any or all of j, k, and � may be equal) are assumed to be zero. We ex-
plore, in further analysis and simulations, the implications of dropping this
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assumption. Our analysis indicates that one variant of GEL/ED, which can be
identified with continuously updated GMM, ignores third and higher-order cu-
mulants of the moment conditions used in GMM estimation, effectively treating
these cumulants as zero. Whether this is advantageous depends, heuristically,
on whether higher-order cumulants of moment conditions can be usefully es-
timated to deviate from zero, which of course depends on sample size and the
data generating process. We find that when third moments are unimportant,
all variants of GEL/ED provide virtually identical performance in our simple
experiments. However, in cases where there is substantial skew, continuously
updated GMM is usually inferior to other variants, including exponential tilt-
ing (ET) and empirical likelihood (EL), at small and moderate sample sizes. In
some of these cases, ET is superior to EL; and in no case is there substantial loss
in applying ET/EL in preference to the continuously updated estimator (CUE).

In their recent unpublished work Newey and Smith (2002) have demonstrated
that bias-corrected EL is second-order efficient within the class of bias-corrected
GEL estimators. The line of argument in some ways parallels the argument that
bias corrected parametric ML is second-order efficient in the parametric case.
As such, it does not explicitly calculate the higher order approximations to
the mean squared error that are computed here, albeit for special cases. These
calculations help us frame and examine cases where we conjecture (correctly)
that ET outperforms EL in small and moderately sized samples. The practical
relevance of the analogy of empirical likelihood to parametric likelihood in
higher-order asymptotic behavior is problematic: for example, although the EL
likelihood ratio test (ELRT) is Bartlett correctable in the absence of nuisance pa-
rameters, the behaviors of the ELRT and its Bartlett correction do not resemble
their parametric counterparts (cf. Corcoran, Davison, and Spady, 1995; Imbens,
Spady, and Johnson, 1998). Consequently, we feel that caution is warranted in
choosing between members of the GEL class when moment conditions have
nonzero third and higher order cumulants.

2. FRAMEWORK

Consider a sequence of independent and identically distributed pairs of random
vectors {(vi , wi )}N

i=1. The dimension of vi and wi is M ≥ 1. We are interested
in a scalar parameter θ , satisfying

E[ψ(vi , wi , θ )] = 0,

for i = 1, . . . , N , where

ψ(vi , wi , θ ) = (vi + e1) · θ − wi =

⎛⎜⎜⎜⎝
(vi1 + 1) · θ − wi1

vi2 · θ − wi2
...

vi M · θ − wi M

⎞⎟⎟⎟⎠ ,
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and e1 is an M−vector with the first element equal to one and the other elements
equal to zero.

We are interested in the properties of various estimators for θ as the degree
of overidentification (M − 1), increases. Following Donald and Newey (2004)
who look at the behavior of various instrumental variables estimators as the
number of instruments increases, and Newey and Smith (2001) who look at bias
of GEL and GMM estimators, we look at the leading terms in the asymptotic
expansion of the estimators and consider the rate at which the moments of these
terms increase with M .

We make the following simplifying assumptions. The pairs (vim, wim) and
(v jn, w jn) are independent if either i �= j or n �= m (or both), and have the same
distribution. Let µr p = E[vr

im · w p
im] denote the moments of this distribution.

Moments up to order p + r ≤ 6 are assumed to be finite. Without essential
loss of generality, let µ10 = µ01 = 0, implying the true value of θ is θ∗ =
0, let µ20 = µ02 = 1, and let µ11 = ρ be the correlation coefficient of vim

and wim .
With these assumptions the system of moment conditions, in fact, contains

no identifying information after the first moment, although this would not be
known to an investigator. Since in general a system of M moment conditions
being used to estimate a scalar parameter can be renormalized to a system with
one efficient moment condition that depends on the parameter of interest and
(M − 1) moment conditions that are uncorrelated with it, the above system
models the situation in which successive moment conditions are increasingly
less informative. One purpose of our analytical investigation is to demonstrate
that some estimators are better able to resist the deterioration of efficiency
caused by the addition of irrelevant moment conditions.

Let

v = 1

N

N∑
i=1

vi ,

w = 1

N

N∑
i=1

wi ,

ww′ = 1

N

N∑
i=1

wiw
′
i ,

denote sample averages, let v j and w j denote the j th element of v and w,
respectively, and let ww′

i j denote the (i, j)th element of ww′.
Denote the optimal, infeasible, GMM estimator by

θ̂opt = w1/(1+ v1).

This is the estimator based on using the optimal linear combination of the
moments. Since only the first moment is informative, this implies using only
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the first moment, thus estimating θ by solving

N∑
i=1

(vi1 + 1) · θ − wi1.

This estimator is not feasible because the researcher does not know the optimal
linear combination of the moments, but it provides a useful benchmark against
which to judge feasible estimators. Note that increasing M does not affect this
estimator as all the additional moments are ignored.

First we expand this estimator up to terms of order Op(N−3/2).

Lemma 2.1. (EXPANSION OPTIMAL GMM ESTIMATOR)

θ̂opt = w1 − w1v1 + w1v
2
1 + op

(
N−3/2

)
.

Proof. See Appendix.
Define

(i) Ropt = w1 = Op(N−1/2),
(ii) Sopt = −w1v1 = Op(N−1),

(iii) T opt = w1v
2
1 = Op(N−3/2),

so that θ̂opt = Ropt + Sopt + T opt + op
(
N−3/2

)
.

Lemma 2.2. (BIAS OF θ̂opt)
The bias of the leading terms is

E[Ropt + Sopt + T opt − θ∗] = −ρ/N + µ21/N 2.

Proof. See Appendix.

Lemma 2.3. (MEAN SQUARED ERROR OF θ̂opt)
The mean squared error of the leading terms is

E[(Ropt + Sopt + T opt − θ∗)2] = 1/N − 2µ12/N 2

+ 3(2ρ2 + 1)/N 2 + o(1/N 2).

Proof. See Appendix.

3. TWO-STEP GMM ESTIMATOR

The first estimator we consider is the standard two-step generalized method of
moments (GMM) estimator, due to Hansen (1982). Consider a generic GMM
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estimator, defined as the minimand of(
1

N

N∑
i=1

ψ(vi , wi , θ )

)′
· C ·

(
1

N

N∑
i=1

ψ(vi , wi , θ )

)
.

We focus here on the efficient GMM estimator, with the choice for the weight
matrix C equal to(

1

N

N∑
i=1

ψ(vi , wi , θ
∗) · ψ(vi , wi , θ

∗)′
)−1

= (ww′)−1,

so that the GMM “weight” matrix is estimated at the true value of θ. Thus, the
GMM objective function is(

1

N

N∑
i=1

ψ(vi , wi , θ )

)′
· (ww′)−1 ·

(
1

N

N∑
i=1

ψ(vi , wi , θ )

)
= ((v + e1) · θ − w)′ · (ww′)−1 · ((v + e1) · θ − w) .

The first order condition for the GMM estimator is

0 = 2(v + e1)′ · (ww′)−1 · ((v + e1) · θ − w),

with the solution for the GMM estimator equal to

θ̂gmm =
(
(v + e1)′ · (ww′)−1 · (v + e1)

)−1 · ((v + e1)′ · (ww′)−1 · w) .
The goal is to approximate this estimator up to terms of order Op(1/N ) and
evaluate the mean squared error of this approximation. In particular, the terms
whose moments depend on M are of interest, and specifically how fast the mean
squared error increases with the number of excess moments.

Lemma 3.4. (EXPANSION OF θ̂gmm)

θ̂gmm = w1 − 2v1w1 + (ww′
11 − 1) · w1 − e′1(ww′ − IM )w + v′w

− v(ww′ − IM )w + e1(ww′ − IM )(ww′ − IM )w − 2v1v
′w

+ 2v1e′1(ww′ − IM )w + 2w1e1(ww′ − IM )v

−w1e′1(ww′ − IM )(ww′ − IM )e1 + 4v2
1w1

+w1(ww′
11−1)(ww′

11 − 1) − 4v1w1(ww′
11 − 1)

+ (ww′
11 − 1)v′w − (ww′

11 − 1)e′1(ww′ − IM )w

−w1v
′v + op

(
N−3/2

)
.

Proof. See Appendix.
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Now define

(i) Rgmm = w1 = Op(N−1/2),
(ii) Sgmm = −2v1w1 + (ww′

11 − 1) · w1 − e′1
(
ww′ − IM

)
w + v′w =

Op(N−1),
(iii) T gmm = −v(ww′ − IM )w + e1(ww′ − IM )(ww′ − IM )w −

2v1v
′w + 2v1e′1(ww′ − IM )w + 2w1e1(ww′ − IM )v −

w1e′1(ww′ − IM )(ww′ − IM )e1 + 4v2
1w1 + w1(ww′

11 − 1)×
(ww′

11 − 1)− 4v1w1(ww′
11 − 1)+ (ww′

11 − 1)v′w − (ww′
11 − 1)

e′1(ww′ − IM )w − w1v
′v = Op(N−3/2). so that

θ̂gmm = Rgmm + Sgmm + T gmm + op
(
N−3/2

)
.

For the bias of the GMM estimator we therefore investigate the moments of
Rgmm + Sgmm − θ∗.

Lemma 3.5. (BIAS OF θ̂gmm)
The expectation of the leading terms is

E[Rgmm + Sgmm − θ∗] = −ρ/N + ρ(M − 1)/N + o(N−1).

Proof. See Appendix.

Lemma 3.6. (MEAN SQUARED ERROR OF θ̂gmm)
The mean squared error of the leading terms is

E
[
(Rgmm + Sgmm + T gmm − θ∗)2

]
= 1/N − 2µ12/N 2 + 3(2ρ2 + 1)/N 2 + ρ2(M − 1)2/N 2

+ (M − 1)(3ρ2 + 1+ 2ρµ03)/N 2 + o(1/N 2).

Proof. See Appendix.

Note that the difference between the MSE for θ̂gmm and θ̂opt is in the last
two terms. The first of these is proportional to (M − 1)2 and is the reason
for the poor performance of the two-step GMM estimator when the degree of
overidentification is high. If M = 1, the two extra terms vanish as the optimal
GMM estimator and feasible GMM estimator coincide.

4. GENERALIZED EMPIRICAL LIKELIHOOD
ESTIMATORS

In this section we consider alternatives to the standard two-step GMM es-
timators. The estimators considered include empirical likelihood (Qin and
Lawless, 1994; Imbens, 1997), exponential tilting (Imbens et al., 1998;
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Kitamura and Stutzer, 1997; Rothenberg, 1999), and the continuously updating
estimator (Hansen, Heaton, and Yaron, 1996). The specific class of estimators
we consider is related to that of the Cressie–Read family (cf. Baggerly, 1998;
Corcoran, 1995), as well to the generalized empirical likelihood estimators,
introduced by Smith (1997). For a given function g(a), normalized to satisfy
g(0) = 1, g′(0) = 1, and g′′(0) = λ, the estimator for θ is defined through the
system of equations

0 =
N∑

i=1

ψ(vi , wi , θ ) · g(t ′ψ(vi , wi , θ )),

0 =
N∑

i=1

t ′
∂ψ

∂θ ′
(vi , wi , θ ) · g(t ′ψ(vi , wi , θ )),

solved as a function of θ and t . The leading choices for g(a) are g(a) =
1/(1− a) (empirical likelihood), g(a) = exp(a) (exponential tilting), and
g(a) = 1+ a (continuously updating).

Under standard conditions, the solution for t , denoted by t̂g converges to a
vector of zeros; θ̂ g, the solution for θ, converges to θ∗, and

t̂g = Op(1/
√

N ),

θ̂ g = Op(1/
√

N ).

The choice of g(a) does not matter for the standard large sample distribution,
and

t̂g1 − t̂g2 = op(1/
√

N ),

θ̂ g − θ̂opt = op(1/
√

N ).

Lemma 4.7. (EXPANSION FOR θ̂ g)

θ̂ g = w1 + (ww′
11 − 1)w1 − e′1(ww′ − IM )w

+w′v − 2w1v1 − ρw′w + ρw2
1 + op(1/N ).

Proof. See Appendix.

Note that the choice of g in the family of generalized empirical likelihood
estimators does not matter for the O(1/N 2) term. This is special to our case. It
relies on the fact that the first and other moments are independent. In general,
with a scalar parameter one can always renormalize the moments in such a
way that only the derivative of the first moment depends on the parameter of
interest, and that in addition the other moments are uncorrelated with the first
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one. This, however, does not make the first and other moments independent and
the equivalence result here depends on the cross moments of the type E[ψ1ψ

2
2]

being equal to zero.
Now define

(i) T1 = w1,

(ii) R1 = −2v1w1,

(iii) R2 = w1(ww′
11 − 1),

(iv) R3 = −w′(ww′ − IM )e1,

(v) R4 = w′v,
(vi) R5 = ρw2

1,
(vii) R6 = −ρw′w.

Lemma 4.8. (BIAS OF θ̂ g)
The expectation of the leading terms is

E[T1 + R1 + R2 + R3 + R4 + R5 + R6 − θ∗] = −ρ/N + op(1/N ).

Proof. See Appendix.

Lemma 4.9. (MEAN SQUARED ERROR OF θ̂ g)
The mean squared error due to terms of magnitude Op(N−1) and greater (i.e.,
those given explicitly in Lemma 4.7) are:

E
[
(T1 + R1 + R2 + R3 + R4 + r5 + R6 − θ∗)2

]
= 1/N − 2µ12/N 2 + (1+ 2ρ2)/N 2

+ ρ2(M − 1)/N 2 + 2(M − 1)/N 2 + op(1/N 2).

Proof. See Appendix.

Lemmas 2.3 and 3.6 show that the MSE of feasible GMM exceeds that
of OGMM by a term that is of order (M − 1)2/N 2. This term is due to an
order (M − 1)/N bias in feasible GMM that is not in OGMM. This term is
not present in the bias of GEL either. Lemma 4.9 differs from Lemmas 2.3 and
3.6 by not considering Op(N−3/2) · Op(N−1/2)= Op(N−2) terms as they arise
from the expansion of the estimator; but these terms do not give rise to the key
(M − 1)2/N 2 order term in Lemma 3.6, which is the product of two Op(N−1)
terms that are fully reflected in Lemma 4.9.

Consequently, we conclude that feasible GMM acquires MSE at rate
(M − 1)2/N 2. This is basically due to the fact that the bias of feasible GMM
grows at rate (M − 1)/N , GEL’s bias does not. This is not an artifact of our spe-
cial situation and is consistent with the more general bias argument in Newey
and Smith (2000).
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5. EMPIRICAL DISCREPANCY THEORY

Having argued that generalized empirical likelihood offers “asymptotic resis-
tance” to the deterioration of estimation efficiency as moment conditions are
added, we turn to analyzing differences between members of this class. To do
this, we interpret these estimators from the point of view of empirical discrep-
ancy (ED, also sometimes called minimum discrepancy) theory, as found in the
statistics literature in Corcoran (1995, 1998) and Baggerly (1998). In this sec-
tion we show that the probabilities or reweighting implicit in GEL estimators
can be expressed as functions of dot or inner products of Lagrange multipliers
with moment conditions. In the following section we show that leading GEL
estimators can be explicitly characterized as having reweighting functions that
are polynomials in these dot products. Consequently, different GEL estimators
weigh the higher-order moments of moment conditions differently, affecting
their stability and ability to incorporate such higher-order information into es-
timation and inference.

We modify and extend some of the previous notation in order to deal with
this more general context. A random variable z is i.i.d. according to F(·) and we
have a sample z1, z2, . . . , zn. In addition, for unknown θ of dimension k there
is a (known) function ψ(z, θ ) such that E

F
ψ(z, θ ) = 0. ψ(z, θ ) is of dimension

m ≥ k. Empirical discrepancy theory considers choosing θ and probabilities
p1, . . . , pn on each of the data points such that

n∑
i=1

h

(
pi ,

1

n

)
is minimized subject to E

p
ψ(z, θ ) = 0 and∑

pi = 1

where h(·, ·) is a measure of the discrepancy between two discrete measures,
with the property that h( 1

n ,
1
n ) = 0; there are also some technical conditions on

h(·, ·)’s partial derivative with respect to its first argument.
Thus, empirical discrepancy theory chooses θ and a reweighting of the data

so that the moment conditions hold and a discrepancy measure is minimized.

Q(θ, p) =
n∑

i=1

h

(
pi ,

1

n

)
+ α

(∑
pi − 1

)
+ t

n∑
i=1

piψ i (θ ). (5.1)

Consider the determination of p first:

∂Q(θ, p)

∂pi
= ∂h

∂pi
+ α + tψ i (θ ) = 0 (5.2)

n∑
i=1

{
∂Q(θ, p)

∂pi
pi

}
=
∑ ∂h

∂pi
pi + α

∑
pi + t

n∑
i=1

piψ i (θ )

=
∑ ∂h

∂pi
pi + α + 0
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So α = −∑ ∂h
∂pi

pi ; substituting into (5.2):

∂Q(θ, p)

∂pi
= ∂h

∂pi
−
∑ ∂h

∂pi
pi + tψ i (θ ) = 0.

Note:

∂h

∂pi
= −tψ i (θ ) is a solution.

Note that t is an m-dimensional Lagrange multiplier of the original problem.
Remaining with the problem of constructing p for given θ, there are three

common choices for h(·, ·):
� h(pi ,

1
n ) = pi (pi − 1

n ), or effectively
∑

h(pi ,
1
n ) =∑ p2

i , in which
case pi = k(1+ tψ i (θ )) and t = −(

∑
ψ iψ

′
i )
−1(
∑

ψ i ); this is often
called Euclidean likelihood.

� h(pi ,
1
n ) = 1

n {log( 1
n )− log pi }, or effectively −∑ h(pi ,

1
n ) =∑

log pi ; pi = k 1
1+tψ i (θ ) ; this is Owen’s (1988) empirical likelihood

(EL).
� h(pi ,

1
n ) = pi {log( 1

n )− log pi }, or effectively −∑ h(pi ,
1
n ) =∑

pi log pi ; pi = ket ·ψ i (θ ); this is called exponential tilting (ET).

Empirical likelihood and exponential tilting exchange the role of the em-
pirical measure and the measure p that is under construction: ET finds the p
to which the empirical measure is “KLIC-closest,” while EL finds the p that
is KLIC-closest to the empirical measure. Thus, ET “imagines” that the data
generating process is p, (which obeys E(ψ) = 0) while EL imagines the DGP
as a repetition of the observed data, which does not obey the specified moment
conditions. To us, this suggests ET should be superior to EL. But EL has some
higher-order asymptotic properties that mimic those of parametric likelihood,
such as Bartlett correctability of its likelihood ratio test (but only when there
are no nuisance parameters) and higher-order efficiency (when bias corrected)
within the bias-corrected GEL class.

The preceding three cases are all members of the Cressie–Read (Cressie and
Read, 1984) family, with

h

(
pi ,

1

n

)
=
(

pi

1/n

)−λ

− 1

pi = k

(
1

1+ tψ i (θ )

)1/(λ+1)

for λ ∈ [−2, 1] so that λ = −2 is Euclidean likelihood, λ = −1 is ET, and
λ = 0 is EL.
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Turning now to the problem of estimating θ, the minimum discrepancy
estimate is obtained by differentiating (5.1) with respect to θ to obtain:

∂Q(θ, p)

∂θ
= t

n∑
i=1

pi
∂ψ i (θ )

∂θ
= 0,

a system of equations in k elements of θ. Thus, the entire system of (m + k)
equations can be written simply as:

E
p
ψ(θ ) = 0 (m equations) (5.3a)

t · E
p

∂ψ(θ )

∂θ
= 0 (k equations). (5.3b)

One way to think of these equations is that, having fixed θ and a formula for p
(by choice of h (·, ·)), the first m equations determine t. Similarly, for a fixed t
and p, the remaining k equations determine θ.1

The duality of GEL and ED is examined in two papers of Newey and Smith
(2000, 2001). Writing the GEL estimator as:

θ̂GEL = arg min
θ∈�

sup
t∈T

n−1g(t · ψ i (θ ))

the GEL estimator’s estimating equations coincide with (5.3a) in cases where
the derivative of g(·), denoted g′, can be interpreted as being proportional to a
probability. This can be done for the three cases under consideration here, as
well as for all members of the Cressie–Read family. Newey and Smith (2000,
2001) show that for Euclidean likelihood, g(tψ i ) = −tψ i − (tψ i )

2/2 and the
resulting GEL estimator coincides with the continuously updated GMM esti-
mator of Hansen et al. (1996). Consequently, we will denote the three estimators
as θ̂CUE, θ̂ET, and θ̂EL.

6. A FURTHER CHARACTERIZATION OF ED/GEL
ESTIMATORS

Rewriting the first equation of system (5.3a) as

n∑
i=1

p(t · ψ i (θ ))ψ i (θ ) = 0 (6.4)

1 This schema cannot be used to define a simple iterative procedure to compute θ, for in fact the
saddlepoint nature of these equations makes the naive iterative procedure of (1) fix θ ; (2) calculate
t ; (3) calculate new θ ; unstable in a neighborhood of the solution θ∗ of θ∗ − θ (t(θ∗)) = 0.
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we can express the probabilities associated with CUE, ET, and EL (after ab-
sorbing some sign changes into k) as

pi [CUE] = kCUE(1+ tψ i (θ ))

pi [ET] = kET(etψ i (θ ))

pi [EL] = kEL

(
1

1− tψ i (θ )

)
.

Taking a Taylor series expansion of pi [ET ] we can define a sequence of p
functions:

pi [ET, 1] = kET,1(1+ tψ i (θ )) = pi [CUE]

pi [ET, 2] = kET,2

(
1+ tψ i (θ )+ (tψ i (θ ))2

2

)
pi [ET, 3] = kET,3

(
1+ tψ i (θ )+ (tψ i (θ ))2

2
+ (tψ i (θ ))3

6

)
...

...

pi [ET,∞] = kET,∞

(
1+ tψ i (θ )+ (tψ i (θ ))2

2
+ (tψ i (θ ))3

6
+ . . .

)
k∞et ·ψ i (θ ) = pi [ET].

And similarly for pi [EL] we have

pi [EL, 1] = kEL,1(1+ tψ i (θ )) = pi [CUE]

pi [EL, 2] = kEL,2(1+ tψ i (θ )+ (tψ i (θ ))2)

pi [EL, 3] = kEL,3(1+ tψ i (θ )+ (tψ i (θ ))2 + (tψ i (θ ))3)
...

...
pi [EL,∞] = kEL,∞(1+ tψ i (θ )+ (tψ i (θ ))2 + (tψ i (θ ))3 + . . . )

= kEL,∞
(

1
1−tψ i (θ )

)
= pi [EL].

Thus, all three p functions have the same first-order Taylor series expansion,
coinciding exactly with p[CUE]. Then p[ET] and p[EL] include higher pow-
ers of (t · ψ i ), the former having factorially declining weights or coefficients
and the latter the coefficients {1, 1, . . . 1}. Since t is an Op(n−1/2) object, the
difference in the treatment of t2 terms induces differences of Op(n−1) in θ̂CUE,

θ̂ET, and θ̂EL and consequently their MSE behavior differs at Op(n−2). (This
will be true for all members of the Cressie–Read family.2)

2 The Cressie–Read expansion is p[CR] = 1+ (t · ψ i)/(1+ λ)+ (2+ λ)(t · ψ i)
2/2(1+ λ)2 +

(2+ λ)(3+ 2λ)(t · ψ i)
3/6(1+ λ)3 + · · ·
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To see the effect of these differences, let us consider the difference between
the first two elements of the sequence of ET functions for the equation setting
the expectation of the j th component of ψ :

n∑
i=1

p(t · ψ i (θ ))ψ i j (θ ) = 0 (6.5)

n∑
i=1

kET,1(1+ tψ i (θ ))ψ i j (θ ) = 0 (6.6)

n∑
i=1

kET,2

(
1+ tψ i (θ )+ (tψ i (θ ))2

2

)
ψ i j (θ ) = 0 (6.7)

Supressing the i subscript momentarily, the extra terms in (6.7) (relative to
(6.6)) are of the form:

.5 ∗ (t1ψ1 + t2ψ2 + · · · tmψm)2ψ j ,

so that sums of these involve third moments of ψ. Consequently, in problems
where third moments are zero, notably those in which ψ is symmetric, these
terms will be converging rapidly to zero and thus have no effect even at Op(n−2).

7. A DETAILED ANALYSIS OF SOME
SIMPLE EXAMPLES

To examine further the relation between the choice of a GEL/ED and the higher
order moments of the underlying data, consider the estimation of the scalar
parameter θ from a scalar random variable x where it is known that x has mean
θ and variance 2θ. Thus ψ(x, θ ) is given by:

x − θ = 0

x2 − θ2 − 2θ = 0 (7.8)

Writing the second moment condition in the way indicated (rather than
(x − θ )2 − 2θ = 0) does not change the numerical values of the resulting esti-
mates of θ, but it does simplify ∂ψ

∂θ
to:

∂ψ

∂θ
=
{ −1
−2θ − 2

Consequently, ∂ψ

∂θ
does not depend on the data so E

p

∂ψ

∂θ
does not depend on p.

Using (5.3b) this means θ̂ can be determined from

t · E
p

∂ψ

∂θ
= 0

t1(−1)+ t2(−2θ − 2) = 0

θ = −t1
2t2

− 1.
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Table 10.1. Symmetric distributions with E(x) = 1 and
V (x) = 2 used in the Monte Carlo experiments

Case Distribution First four cumulants

1 N (1, 2) {1, 2, 0, 0}
2 Symmetric mixture of normals: {1, 2, 0,−2}

.5N (0, 1)˜.5N (2, 1)
3 t(d f = 4) {1, 2, 0,∞}
4 Uniform (on 1−√

6,1+√
6) {1, 2, 0,−4.8}

It is apparent that our three estimators will differ, in this special case, only in
their choice of t. For the CUE estimator, t = (ψ ′ψ)−1ψ, that is, the coefficients
of the regression of a column of 1’s on ψ, and so θ is determined by the fixed
point of a function of five moment functions of ψ : the means of the two moment
functions (expressed as functions of θ ) and the corresponding three variances
and covariances. CUE is thus committed to local (to θ ) sufficiency of five
statistics and will ignore, for example, differences in skew between elements
of the sample space. In cases where skew is zero, we can expect the difference
between CUE and ET or EL to be negligible, whereas for nonzero skew, we
might expect ET and/or EL to prove superior to CUE, but only at sample sizes
at which Op(n−2) effects are operative.

To demonstrate these effects, we construct several data-generating processes
which satisfy the moment conditions in (7.8) but have different properties for
their higher-order moments. For each case we compute MSE and bias, and
do this for CUE, ET, and EL. In addition, for ET and EL we compute p ac-
cording to successive terms in the relevant Taylor series expansion, so that
pi [EL, 1] = kEL,1(1+ tψ i (θ )) = pi [CUE], pi [EL, 3] = kEL,3(1+ tψ i (θ )+
(tψ i (θ ))2 + (tψ i (θ ))3), and so forth.

In this way we can see whether the advantages, if any, of ET and EL over
CUE set in after taking into account only a relatively small number of additional
higher moments, and similarly if differences between EL and ET require the full
limiting case of including some information about all higher-order moments.

We consider eight data generating processes: the first four of these are sym-
metric distributions with mean 1 and variance 2; the second four are asymmetric,
also with mean 1 and variance 2. A short description of these, together with
the first four cumulants of the distributions, is given in the following two tables
(Tables 10.1 and 10.2).

Appendices B and C (not included here, but available at http://www.faculty.
econ.northwestern.edu/spady/imbens-spady) contain tables for all eight cases,
tabulating the MSE and the bias, respectively, of the parameter θ (which in all
cases is 1) for a variety of sample sizes and 6,000 replications. In each of the
tables, we report the value of the MSE (Appendix B) or bias (Appendix C) in
6,000 replications for CUE, ET, and EL, together with the MSE’s or bias of
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Table 10.2. Asymmetric distributions with E(x) = 1 and
V (x) = 2 used in the Monte Carlo experiments

Case Distribution First four cumulants

5 χ 2(1) {1, 2, 8, 48}
6 Asymmetric mixture of normals: {1, 2,−1.777,−1.185}

.25N (−1, 2/3)˜.75N (5/3, 2/3)
7 Lognormal: θ = 0, σ 2 = log(3) {1, 2, 20, 624}
8 Inverse gaussian: µ = 1, λ = .5 {1, 2, 24, 84.85}

Table 10.3. Estimates of MSE of θ̂ and jackknifed standard error estimates
from 6,000 simulations of system (7.8) with normal errors

Case 1: N (1, 2) n = 50

Taylor degree 1 = CUE 3 5 7 ET(Infinity) Sample mean
MSE 0.020821 0.020702 0.020691 0.020688 0.020687 0.039753
s.e. 0.000366 0.000365 0.000365 0.000365 0.000365 0.000705

Taylor degree 1 = CUE 3 5 7 EL(Infinity) Sample mean
MSE 0.020821 0.020675 0.020671 0.020656 0.020586 0.039753
s.e. 0.000366 0.000365 0.000366 0.000367 0.000367 0.000705

Case 1: N (1, 2) n = 100

Taylor degree 1 = CUE 3 5 7 ET(Infinity) Sample mean
MSE 0.010304 0.010256 0.010255 0.010254 0.010254 0.019945
s.e. 0.000189 0.000188 0.000188 0.000188 0.000188 0.000353

Taylor degree 1 = CUE 3 5 7 EL(Infinity) Sample mean
MSE 0.010304 0.010235 0.010226 0.010224 0.010218 0.019945
s.e. 0.000189 0.000188 0.000188 0.000188 0.000188 0.000353

the estimators based on the Taylor series expansion of degrees 3, 5, and 7, and
the simple mean. (CUE corresponds to a Taylor series expansion of degree 1,
ET and EL to degree ∞). For each entry we report a jackknife estimate of the
standard error, this is given in the row labeled ‘s.e.’.

The results from cases 1 through 4 are easily summarized; specimen results
for MSE in case 1 at n = 50 and 100 are given in Table 10.3.

The main points are (1) there is no important difference in the MSE perfor-
mance of any of the estimators; (2) the apparent asymptotic efficiency gain from
exploiting the second moment condition (as measured by the ratio of the MSE
of any of the GEL estimators to the MSE of the sample mean) is achieved by
n = 50 in case 1 and within the sample sizes presented in Appendix B in other
cases. EL and ET typically offer a (very) small improvement over CUE and there
is no case where employing EL or ET presents any real cost relative to CUE.
Thus, taking the higher-order moments into account, as do ET and EL, does not
generate an unstable estimator in these cases. This is true even in case 3 (t with
d f = 4) where the fourth cumulant of the first moment condition is infinite.
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Table 10.4. Estimates of MSE of θ̂ from 6,000 simulations of system (7.8) with
χ2(1) errors

Case 5: χ2(1) n = 50

Taylor degreee 1 = CUE 3 5 7 ET(Infinity) Sample mean
MSE 0.047774 0.041204 0.039950 0.039545 0.037596 0.040168
s.e. 0.001024 0.000918 0.000886 0.000870 0.000740 0.000752

Taylor degree 1 = CUE 3 5 7 EL(Infinity) Sample mean
MSE 0.047774 0.041705 0.040883 0.040684 0.033915 0.040168
s.e. 0.001024 0.000948 0.000941 0.000941 0.000679 0.000752

Case 5: χ 2(1) n = 100

Taylor degree 1 = CUE 3 5 7 ET(Infinity) Sample mean
MSE 0.018503 0.015828 0.015564 0.015521 0.015508 0.020042
s.e. 0.000400 0.000333 0.000321 0.000317 0.000315 0.000365

Taylor degree 1 = CUE 3 5 7 EL(Infinity) Sample mean
MSE 0.018503 0.015656 0.015386 0.015327 0.014741 0.020042
s.e. 0.000400 0.000339 0.000332 0.000330 0.000294 0.000365

Case 5: χ 2(1) n = 800

Taylor degree 1 = CUE 3 5 7 ET(Infinity) Sample mean
MSE 0.001827 0.001832 0.001832 0.001832 0.001833 0.002444
s.e. 0.000033 0.000033 0.000033 0.000033 0.000033 0.000045

Taylor degree 1 = CUE 3 5 7 EL(Infinity) Sample mean
MSE 0.001827 0.001843 0.001845 0.001846 0.001848 0.002444
s.e. 0.000033 0.000033 0.000033 0.000033 0.000033 0.000045

More interesting and varied results are obtained in the presence of skew.
For case 5 (Table 10.4), in which x is χ2(1), we see for CUE at n = 50 that
the effect of adding an additional moment is to produce an estimator that is
worse than the sample mean; the MSE’s of the estimators at Taylor degrees 3,
5, and 7 are about the same as the sample mean; and that ET and EL are better
than their corresponding degree 7 estimators and also the sample mean; both
of these effects are greater for EL than ET. The superiority of EL and ET to
CUE (and of EL to ET) continues through some of the larger sample sizes, but
by n = 800 this ranking has reversed itself, though the differences are now no
longer greater than estimated standard errors.

Thus, in this example with skew, we find results in accord with our earlier
conjecture that EL and ET can be expected to outperform CUE because the
former reflect skew and higher moments in the construction of t (and thus in
general in the distribution estimates embodied in p) in a way that CUE does
not. These effects must eventually disappear as the sample size grows, because
all the estimators in question reach the same GMM efficiency bound.

Case 6 (an asymmetric normal mixture) is unremarkable except for the fact
that the second moment condition is extremely informative in this case: adding
it reduces MSE for all the estimators to the (apparent) asymptotic relative bound
of 0.25 times the sample mean’s MSE.
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Table 10.5. Estimates of MSE of θ̂ from 6,000 simulations of system (7.8) with
lognormal errors

Case 7: lognormal n = 50

Taylor degree 1 = CUE 3 5 7 ET(Infinity) Sample mean
MSE 0.068870 0.061752 0.058380 0.056165 0.033665 0.039825
s.e. 0.001650 0.001567 0.001517 0.001481 0.000601 0.001013

Taylor degree 1 = CUE 3 5 7 EL(Infinity) Sample mean
MSE 0.068870 0.069696 0.072404 0.073894 0.041134 0.039825
s.e. 0.001650 0.001672 0.001699 0.001719 0.000668 0.001013

Case 7: lognormal n = 100

Taylor degree 1 = CUE 3 5 7 ET(Infinity) Sample mean
MSE 0.022288 0.018707 0.017705 0.017130 0.015554 0.020098
s.e. 0.000623 0.000508 0.000470 0.000446 0.000310 0.000578

Taylor degree 1 = CUE 3 5 7 EL(Infinity) Sample mean
MSE 0.022288 0.022046 0.023572 0.024439 0.022448 0.020098
s.e. 0.000623 0.000569 0.000574 0.000583 0.000378 0.000578

Case 7: lognormal n = 400

Taylor degree 1 = CUE 3 5 7 ET(Infinity) Sample mean
MSE 0.003789 0.004283 0.004310 0.004309 0.004307 0.005090
s.e. 0.000071 0.000077 0.000077 0.000077 0.000077 0.000099

Taylor degree 1 = CUE 3 5 7 EL(Infinity) Sample mean
MSE 0.003789 0.004713 0.004858 0.004904 0.004943 0.005090
s.e. 0.000071 0.000085 0.000089 0.000091 0.000093 0.000099

Cases 7 and 8, lognormality and the inverse Gaussian distribution, have
greater skew and kurtosis than case 5, the χ2(1) example. Results for MSE in
these cases for n = 50, 100, and 400 are shown in Tables 10.5 and 10.6. As with
case 5, at small sample sizes CUE does worse than the sample mean; ET does
better than the sample mean for the lognormal case, as do both ET and EL in
the inverse Gaussian case. Unlike the χ2(1) case, at small and moderate sample
sizes, ET outperforms EL. In addition, as the Taylor degree is expanded from
CUE to ET, ET shows continuous improvement (at those small and moderate
sample sizes in which ET outperforms CUE); this is not the case for EL in these
two examples.

In Appendix C, we present biases for the cases considered here and in Ap-
pendix B. Quite notably, bias does not generally make a substantial difference
to the MSE. This could perhaps be expected from the fact that the correlation
between ψ and ∂ψ

∂θ
is zero in this example, because the latter does not depend on

x . This suggests that the (sometimes erratic) effects typically seen in Appendix
C are O(n−2) or higher.

The cases where bias is most evident and potentially important to the MSE
ranking of the estimators, given in Tables 10.7 and 10.8, occur when x is
lognormal or inverse Gaussian; the biases tend to be largest for EL. In view of
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Table 10.6. Estimates of MSE of θ̂ from 6,000 simulations of system (7.8) with
inverse Gaussian errors

Case 8: inverse Gaussian n = 50

Taylor degree 1 = CUE 3 5 7 ET(Infinity) Sample mean
MSE 0.049724 0.043575 0.041270 0.039837 0.027857 0.038833
s.e. 0.001349 0.001271 0.001228 0.001197 0.000551 0.000821

Taylor degree 1 = CUE 3 5 7 EL(Infinity) Sample mean
MSE 0.049724 0.048685 0.050107 0.051142 0.032708 0.038833
s.e. 0.001349 0.001361 0.001382 0.001399 0.000599 0.000821

Case 8: inverse Gaussian n = 100

Taylor degree 1 = CUE 3 5 7 ET(Infinity) Sample mean
MSE 0.016042 0.013755 0.013263 0.013023 0.012420 0.019573
s.e. 0.000434 0.000356 0.000334 0.000321 0.000246 0.000387

Taylor degree 1 = CUE 3 5 7 EL(Infinity) Sample mean
MSE 0.016042 0.015417 0.016079 0.016453 0.015510 0.019573
s.e. 0.000434 0.000392 0.000394 0.000398 0.000281 0.000387

Case 8: inverse Gaussian n = 400

Taylor degree 1 = CUE 3 5 7 ET(Infinity) Sample mean
MSE 0.003160 0.003246 0.003247 0.003246 0.003243 0.004931
s.e. 0.000059 0.000059 0.000059 0.000059 0.000059 0.000092

Taylor degree 1 = CUE 3 5 7 EL(Infinity) Sample mean
MSE 0.003160 0.003381 0.003419 0.003432 0.003428 0.004931
s.e. 0.000059 0.000062 0.000062 0.000063 0.000063 0.000092

the result of Newey and Smith (2000) demonstrating the higher-order efficiency
of bias-corrected EL, (and EL alone among the GEL class), it is interesting to
note that even after bias-correction, EL continues to have a larger MSE than
ET in these particular examples.

8. SUMMARY

Higher-order asymptotic arguments suggest that GEL/ED/ “one-step efficient”
estimates of overidentified moment models will prove superior to two-step
GMM, since the MSE of two-step GMM grows at rate O((M − 1)2/N 2) where
(M − 1) is the degree of overidentification, whereas the GEL class apparently
has (in the special case considered) an MSE that grows at rate O((M − 1)/N 2).
Consequently, interest shifts to distinguishing between elements of the GEL
family on the basis of estimation performance. With a simple argument and
example, it appears that the simplest GEL variant, the continuously updated or
Euclidean likelihood estimator, is dominated by the more elaborate ET and EL
estimators. The difference between these two variants can be seen to lie in their
treatment of third and higher-order moments of moment conditions, with EL
weighing these more heavily than ET.
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While EL has an array of higher-order theoretical properties that are in some
ways similar to those of parametric likelihood, our analysis shows that it weighs
higher-order moments of moment conditions much more heavily than does ET.
Consequently, in contexts where these higher-order moments are likely both to
be important and poorly defined in the sample sizes of interest, EL may prove
to have a more erratic behavior than ET. This is borne out rather clearly in a
few examples considered in this paper; this in turn suggests that no member of
the GEL class will dominate the field unambiguously.

APPENDIX A

Complete details of the more mechanical aspects of the proofs can be found on
http://www.nuff.ox.ac.uk/users/spady/imbens-spady.pdf.

Lemma A.10. (EXPANSION OF MATRIX INVERSION)
Let A, B, and C be M × M symmetric matrices of order Op(1), with A invert-
ible. Then

(i) (A + B/
√

N )−1 = A−1 + op(1),
(ii) (A + B/

√
N )−1 = A−1 − A−1 B A−1/

√
N + op(1/

√
N ),

(iii) (A + B/
√

N )−1 = A−1 − A−1 B A−1/
√

N + A−1 B A−1 B A−1/N +
op(1/N ),

(iv) (A + B/
√

N + C/N )−1 = A−1 − A−1 B A−1/
√

N − A−1C A−1/

N + A−1 B A−1 B A−1/N + op(1/N ).

Proof of Lemma A.10. See the web page.

Proof of Lemma 2.2
We show the following three results, which then imply the main result:

(i) E[Ropt] = E[w1] = θ∗,
(ii) E[Sopt] = −E[v1w1] = −ρ/N ,

(iii) E[T opt] = E[w1v1v1] = µ21/N 2.

(i) This is immediate.

(ii) E[Sopt] = −E[v1w1] = −E
[

1
N 2

∑N
i=1

∑N
j=1 vi1wi1

]
=

−E
[

1
N 2

∑N
i=1 vi1wi1

]
= −ρ/N .

(iii) E[T opt] = E[w1v1v1] = E
[

1
N 3

∑N
i=1

∑N
j=1

∑N
k=1 wi1v j1vk1

]
=

E
[

1
N 3

∑N
i=1 wi1vi1vi1

]
= µ21/N 2.

Proof of Lemma 2.3. We first show the following results:

(i) E[Ropt Ropt] = E[w1w1] = 1/N ,
(ii) E[RoptSopt] = −E[w1vww1] = −µ12/N 2,

(iii) E[SoptSopt] = E[v1w1v1w1] = (1+ 2ρ2)/N 2 + o(1/N 2)
(iv) E[RoptT opt] = E[w1w1v1v1] = (2ρ2 + 1)/N 2.
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In the following, let δmn = 1 if m = n and zero otherwise.

(i) E[Ropt Ropt] = E[w1w1] = E[
∑N

i=1

∑N
j=1 wi1w j1] =

E[
∑N

i=1 w
2
i1] = 1/N .

(ii) E[RoptSopt · R1] = −E[w1w1v1] =
−E[ 1

N 3

∑N
i=1

∑N
j=1

∑N
k=1 wi1w j1vk1] =

−E[ 1
N 3

∑N
i=1 w

2
i1vi1] = −µ12/N 2.

(iii) E[SoptSopt] = E[(v1w1)2] = E[( 1
N 2

∑N
i=1

∑N
j=1 vi1w j1)2] =

E[ 1
N 4

∑N
i=1

∑N
j=1

∑N
k=1

∑N
l=1 vi1w j1vk1wl1].

Because the (vim, wim) is independent of (v jn, w jn) if either i �= j or m �= n, we
can ignore all terms where one of the four indices i , j , k, and l, does not match up
with at least one of the others. Ignoring also the N terms with all four indices
matching up because they are of lower order, we only consider terms with
(i = j, k = l, i �= k), (i = l, j = k, i �= j), or (i = k, j = l, i �= j), leading to

E[SoptSopt] = 1

N 4
E

[
N∑

i=1

∑
k �=i

vi1wi1vk1wk1

+
N∑

i=1

∑
j �=i

vi1w j1v j1wi1 +
N∑

i=1

∑
j �=i

vi1w j1vi1w j1

]
+ o(1/N 2)

= 1

N 2

(
ρ2 + ρ2 + 1

)+ o(1/N 2) = (2ρ2 + 1)/N 2 + o(1/N 2).

(iv)

E[RoptT opt] = E[w1w1v1v1]

= E

[
1

N 4

N∑
i=1

N∑
j=1

N∑
k=1

N∑
l=1

wi1w j1vi1vk1

]
= (2ρ2 + 1)/N 2 + o(1/N 2),

by the same argument as in Lemma 2.2(iii).
Then, adding up the three components

E[(Ropt + Sopt + T opt − θ∗)2)]

= E[Ropt Ropt + 2RoptSopt + SoptSopt + 2RoptT opt]+ o(N−2)

= 1/N − 2µ12/N 2 + 3(1+ 2ρ2)/N 2 + o(N−2).

Proof of Lemma 3.4. First we expand ww′−1
using Lemma A.10:

ww′−1 = IM − (ww′ − IM )+ (ww′ − IM )(ww′ − IM )+ op(N−1).
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Second, we expand (v + e1)′ww′−1
(v + e1):

(v + e1)′ww′−1
(v + e1)

= (v + e1)′
(
IM − (ww′ − IM )+ (ww′ − IM )(ww′ − IM )

)
× (v + e1)+ op(N−1)

= 1+ 2v1 − (ww′
11 − 1)+ v′v − 2e′1(ww′ − IM )v

+ e1(ww′ − IM )(ww′ − IM )e1 + op(N−1).

Next, we invert this expression, again using Lemma A.10:(
(v + e1)′ww′−1

(v + e1)
)−1

= 1− 2v1 + (ww′
11 − 1)+ 2e1(ww′ − IM )v

− e1(ww′ − IM )(ww′ − IM )e1 − v′v + 4v2
1

+ (ww′
11 − 1)2 − 4v1(ww′

11 − 1)+ op(N−1).

Fourth, we expand (v + e1)′ww′−1
w:

(v + e1)′ww′−1
w

= (v + e1)′
(
IM − (ww′ − IM )+ (ww′ − IM )(ww′ − IM )

)
w

+ op(N−3/2)

= w1 + v′w − e′1(ww′ − IM )w − v′(ww′ − IM )w

+ e′1(ww′ − IM )(ww′ − IM )w + op(N−3/2).

Finally, we consider the product:(
(v + e1)′ww′−1

(v + e1)
)−1

(v + e1)′ww′−1
w

= w1 + v′w − e′1(ww′ − IM )w − 2v1w1 + (ww′
11 − 1)w1

− v(ww′ − IM )w + e1(ww′ − IM )(ww′ − IM )w

− 2v1v
′w + 2v1e′1(ww′ − IM )w

+ 2w1e1(ww′ − IM )v − w1e′1(ww′ − IM )(ww′ − IM )e1

+ 4v2
1w1 + w1(ww′

11 − 1)(ww′
11 − 1)

− 4 v1w1(ww′
11 − 1)+ (ww′

11 − 1)v′w
− (ww′

11 − 1)e′1(ww′ − IM )w − w1v
′v + op(N−3/2).

Proof of Lemma 3.5. Define:

(i) Sgmm
1 = −2v1w1,

(ii) Sgmm
2 = (ww′

11 − 1) · w1,

(iii) Sgmm
3 = −e′1

(
ww′ − IM

)
w,

(iv) Sgmm
4 = v′w.
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We show the following results:

(i) E[Rgmm] = E[w1] = θ∗,
(ii) E[Sgmm

1 ] = E[−2v1w1] = −2ρ/N ,

(iii) E[Sgmm
2 ] = E[(ww′

11 − 1) · w1] = µ03/N ,

(iv) E[Sgmm
3 = −e′1

(
ww′ − IM

)
w] = −µ03/N ,

(v) E[Sgmm
4 ] = E[v′w] = Mρ/N ,

which then by adding up imply the result in Lemma 3.5. The details of the
calculation are shown on the web page.

Proof of Lemma 3.6.
The proof proceeds by computing the expectations of eighteen separate

terms, using methods similar to those of Lemma 3.5.The details are on the web
page.

Before proving Lemma 4.7, it is useful to consider the solution for t given
θ . Define t̂(θ ) implicitly through the first equation:

0 =
N∑

i=1

ψ(vi , wi , θ ) · g(t(θ )′ψ(vi , wi , θ )).

Lemma A.11. (EXPANSION FOR t̂(θ ))
If θ = θ̂opt + op(1/

√
N ), then

t̂(θ ) = −e1θ + w − vw1 − ww′(w − e1w1)w′(w − e1w1)λ/2

+ (ww′ − IM )e1w1

− (ww′ − IM )w − 2ρw2
1e1 + 2ρw1w + op(1/N ).

Proof of Lemma A.11: Use a Taylor series expansion around zero for g(a),
g(a) = g(0)+ g′(0)a + g′′(ã)a2/2 = 1+ a + g′′(ã)a2/2, to write the equation
characterizing t̂(θ ) as

0 =
N∑

i=1

ψ(vi , wi , θ ) ·
(

1+ t(θ )′ψ(vi , wi , θ )+ g′′(a)
(
t(θ)′ψ(vi , wi , θ )

)
/2

)
,

for some a between zero and t(θ )′ψ(vi , wi , θ ). Hence,

t̂(θ ) = −
(

1

N

N∑
i=1

ψ(vi , wi , θ )ψ(vi , wi , θ )′
)−1

×
(

N∑
i=1

ψ(vi , wi , θ )+ ψ(vi , wi , θ )g′′(a)
(
t(θ )′ψ(vi , wi , θ )

)2
/2

)
.
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The second step is to show that

1

N

N∑
i=1

ψ(vi , wi , θ )g′′(a)
(
t(θ )′ψ(vi , wi , θ )

)2
/2

= ww′(w − e1w1)w′(w − e1w1)λ/2+ op(1/N ), (A.9)

To see this, first note that because θ = w1 + op(1/
√

N ), we have t̂(θ ) = w −
e1w1 + op(1/

√
N ). Hence,

1

N

N∑
i=1

ψ(vi , wi , θ )
(
t(θ )′ψ(vi , wi , θ )

)2
= 1

N

N∑
i=1

ψ(vi , wi , θ
∗)
(
t(θ )′ψ(vi , wi , θ

∗)
)2 + op(1/N )

= 1

N

N∑
i=1

wi
(
t(θ )′wi

)2 + op(1/N )

= 1

N

N∑
i=1

wi
(
(w − e1w1)′wi

)2 + op(1/N )

= ww′(w − e1w1)w′(w − e1w1)+ op(1/N ).

Since t = op(1), a = op(1), and g′′(a) = λ+ op(1), so that the result in Equa-
tion (A.9) follows.

The third step is to show that, with θ = w1 + op(1/
√

N ), we have[
1

N

N∑
i=1

ψ(vi , wi , θ )ψ(vi , wi , θ )′
]−1

= IM + (ww′ − IM )+ 2ρw1IM + op(1/
√

N ). (A.10)

To see this, first write

1

N

N∑
i=1

ψ(vi , wi , θ )ψ(vi , wi , θ )′

= ww′ − 2vw′θ − 2e1w
′θ + θ2(v + e1)(v + e1)′

= IM + (ww′ − IM )− 2ρIMθ + op(1/
√

N )

= IM + (ww′ − IM )− 2ρIMw1 + op(1/
√

N ).

Hence, using Lemma A.10,[
1

N

N∑
i=1

ψ(vi , wi , θ )ψ(vi , wi , θ )′
]−1

= IM − (ww′ − IM )+ 2ρIMw1 + op(1/
√

N ),

which proves the equality in Equation (A.10).
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Then, using the fact that ψ(v,w, θ ) = (v + e1)θ − w, we can approximate
the expression for t̂(θ ) as

t̂(θ ) = − (IM − (ww′ − IM )+ 2ρIMw1
)

× ((v + e1)θ − w + ww′(w − e1w1)w′(w − e1w1)λ/2
)

= − (v + e1)θ + w − ww′(w − e1w1)w′(w − e1w1)λ/2

+ (ww′ − IM )e1w1 − (ww′ − IM )w − 2ρw2
1e1

+ 2ρw1w + op(1/N ).

= − e1θ + w − w1v − ww′(w − e1w1)w′(w − e1w1)λ/2

+ (ww′ − IM )e1w1 − (ww′ − IM )w − 2ρw2
1e1

+ 2ρw1w + op(1/N ).

Proof of Lemma 4.7. The solution for θ̂ g is characterized by the equation

0 = t̂(θ )′
1

N

N∑
i=1

∂ψ

∂θ ′
(vi , wi , θ ) · g(t̂(θ )′ψ(vi , wi , θ )).

We can write this as

0 = ([−e1θ + w − w1v − ww′(w − e1w1)w′(w − e1w1)λ/2

+ (ww′ − IM )e1w1 − (ww′ − IM )w − 2ρw2
1e1 + 2ρw1w

]
+ t̂(θ )− [e1θ + w − w1v − ww′(w − e1w1)w′(w − e1w1)λ/2

+ (ww′ − IM )e1w1 − (ww′ − IM )w − 2ρw2
1e1 + 2ρw1w

])′
1

N

N∑
i=1

∂ψ

∂θ ′
(vi , wi , θ ) · g(t̂(θ )′ψ(vi , wi , θ )).

Hence,

θ̂ g =
(

e′1
1

N

N∑
i=1

∂ψ

∂θ ′
(vi , wi , θ ) · g(t̂(θ )′ψ(vi , wi , θ ))

)−1

× ([w − w1v − ww′(w − e1w1)w′(w − e1w1)λ/2

+ (ww′ − IM )e1w1 − (ww′ − IM )w − 2ρw2
1e1 + 2ρw1w

]
+ t̂(θ )− [e1θ + w − w1v − ww′(w − e1w1)w′(w − e1w1)λ/2

+ (ww′ − IM )e1w1 − (ww′ − IM )w − 2ρw2
1e1 + 2ρw1w

])′
1

N

N∑
i=1

∂ψ

∂θ ′
(vi , wi , θ ) · g(t̂(θ )′ψ(vi , wi , θ )).
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We break this up in a couple of parts. First we show that

1

N

N∑
i=1

∂ψ

∂θ ′
(vi , wi , θ ) · g(t̂(θ )′ψ(vi , wi , θ ))

= e1 + v − ρw + ρe1w1 + op(1/
√

N ). (A.11)

To see this, write out ψ(vi , wi , θ ) = (vi + e1)θ − wi to get

1

N

N∑
i=1

(vi + e1) · g(t̂(θ )′(viθ + e1θ − wi ))

= 1

N

N∑
i=1

(vi + e1) · (1+ t(θ )′(viθ + e1θ − wi ))+ op(1/
√

N )

= e1 + v − 1

N

N∑
i=1

viw
′wi + op(1/

√
N )

= e1 + v − ρw + ρe1w1 + op(1/
√

N ),

which proves the equality in Equation (A.11). A direct implication is that(
e′1

1

N

N∑
i=1

∂ψ

∂θ ′
(vi , wi , θ ) · g(t̂(θ )′ψ(vi , wi , θ ))

)−1

= 1− v1 + op(1/
√

N ). (A.12)

Second, we show that(
t̂(θ )− [e1θ + w − w1v − ww′(w − e1w1)w′(w − e1w1)λ/2

+ (ww′ − IM )e1w1 − (ww′ − IM )w − 2ρw2
1e1 + 2ρw1w

])′
1

N

N∑
i=1

∂ψ

∂θ ′
(vi , wi , θ ) · g(t̂(θ )′ψ(vi , wi , θ )) = op(1/N ).

This follows from Lemma 4.7, which implies that the first factor is op(1/N ),
combined with the fact that the left-hand side of Equation (A.11) is Op(1).
Third, we show that(

w − w1v − ww′(w − e1w1)w′(w − e1w1)λ/2+ (ww′

− IM )e1w1 − (ww′ − IM )w − 2ρw2
1e1 + 2ρw1w

)′
1

N

N∑
i=1

∂ψ

∂θ ′
(vi , wi , θ ) · g(t̂(θ )′ψ(vi , wi , θ ))

= w1 − e′1w1v − e′1ww′(w − e1w1)w′(w − e1w1)λ/2

+ e′1(ww′ − IM )e1w1 − e′1(ww′ − IM )w − 2ρw2
1

+ 2ρw2
1 + w′v − ρw′w + ρw2

1 + op(1/N ).
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= w1 − w1v1 − e′1ww′(w − e1w1)w′(w − e1w1)λ/2

+ e′1(ww′ − IM )e1w1 − e′1(ww′ − IM )w

+w′v − ρw′w + ρw2
1 + op(1/N ).

Now note that although ww′(w − e1w1)w′(w − e1w1) = Op(1/N ),
e′1ww′(w − e1w1)w′(w − e1w1) = op(1/N ), because the subtraction of
e1w1 from w makes (w − e1w1) independent of e1w. This relies on the full
independence assumption we are using in the sequence of the moments.
Because of this the term e′1ww′(w − e1w1)w′(w − e1w1) is of lower order,
and the above expression reduces to

w1 − w1v1 + e′1(ww′ − IM )e1w1 − e′1(ww′ − IM )w

+ w′v − ρw′w + ρw2
1 + op(1/N ).

Finally bringing all the terms together, we get

θ̂ g = w1 + e′1(ww′ − IM )e1w1 − e′1(ww′ − IM )w

+ w′v − ρw′w − 2w1v1 + ρw2
1 + op(1/N ).

Proof of Lemma 4.8. The proof proceeds by calculating:

(i) E[T1] = θ∗,
(ii) E[R3] = −µ03/N ,

(iii) E[R5] = ρ/N ,

(iv) E[R4] = ρM/N ,

(v) E[R6] = −ρM/N ,
(vi) E[R1] = −ρ/N ,

(vii) E[R2] = µ03/N ,
(viii) E[R7] = op(1/N ).

The result then follows from adding up the expectations; details are on the web
page.

Proof of Lemma 4.9. The expectations of twenty-eight component terms are
defined and calculated; the result then follows from summing these components.
The explicit calculation is given on the web page.
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CHAPTER 11

Asymptotic Bias for GMM and
GEL Estimators with Estimated
Nuisance Parameters
Whitney K. Newey, Joaquim J. S. Ramalho,

and Richard J. Smith

ABSTRACT

This chapter studies and compares the asymptotic bias of GMM and generalized empirical like-
lihood (GEL) estimators in the presence of estimated nuisance parameters. We consider cases in
which the nuisance parameter is estimated from independent and identical samples. A simulation
experiment is conducted for covariance structure models. Empirical likelihood offers much reduced
mean and median bias, root mean squared error and mean absolute error, as compared with two-step
GMM and other GEL methods. Both analytical and bootstrap bias-adjusted two-step GMM esti-
mators are compared. Analytical bias-adjustment appears to be a serious competitor to bootstrap
methods in terms of finite sample bias, root mean squared error, and mean absolute error. Finite
sample variance seems to be little affected.

1. INTRODUCTION

It is now widely recognized that the most commonly used efficient two-step
GMM (Hansen, 1982) estimator may have large biases for the sample sizes
typically encountered in applications. (See, for example, the Special Section,
July 1996, of the Journal of Business and Economic Statistics). To improve
the small sample properties of GMM, a number of alternative estimators have
been suggested, which include empirical likelihood (EL) (Owen 1988, Qin and
Lawless 1994, Imbens 1997), continuous updating (CUE) (Hansen, Heaton,
and Yaron 1996), and exponential tilting (ET) (Kitamura and Stutzer 1997,
Imbens, Spady, and Johnson 1998). As shown by Smith (1997), EL and ET
share a common structure, being members of a class of generalized empirical
likelihood (GEL) estimators. Newey and Smith (2004) showed that CUE and
members of the Cressie–Read power family (Cressie and Read 1984) are mem-
bers of the GEL class (see also Smith 2001). All of these estimators and GMM
have the same asymptotic distribution but different higher-order asymptotic
properties. In a random sampling setting, Newey and Smith (2004) used the
GEL structure, which helps simplify calculations and comparisons, to analyze
higher-order properties using methods like those of Nagar (1959). Newey and
Smith (2004) derived and compared the (higher order) asymptotic bias for all of
these estimators. They also derived bias-corrected GMM and GEL estimators
and considered their higher-order efficiency.
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Newey and Smith (2004) found that EL has two theoretical advantages. First,
the asymptotic bias does not grow with the number of moment restrictions,
whereas the bias of the others often does. Consequently, for large numbers
of moment conditions the bias of EL will be less than the bias of the other
estimators. The relatively low asymptotic bias of EL indicates that it is an
important alternative to GMM in applications. Furthermore, under a symmetry
condition, which may be satisfied in some instrumental variable settings, all the
GEL estimators inherit the small bias property of EL. The second theoretical
advantage of EL is that after it is bias-corrected, using probabilities obtained
from EL, it is higher-order efficient relative to the other estimators. This result
generalizes the conclusions of Rothenberg (1996) who showed that for a single
equation from a Gaussian, homoskedastic linear simultaneous equations model
the asymptotic bias of EL is the same as the limited information maximum
likelihood estimator and that bias-corrected EL is higher-order efficient relative
to a bias-corrected GMM estimator.

This chapter reconsiders Newey and Smith’s results for scenarios in which
GMM and GEL estimation criteria involve a preliminary nuisance parameter
estimator (Newey and Smith 2004). This type of situation arises in a number
of familiar cases. Firstly, generated regressors employed in a regression model
context require a preliminary estimator of a nuisance parameter (see Pagan
1984). Heckman’s sample selectivity correction (Heckman 1979) is a special
case with the nuisance parameter estimator obtained from a selectivity equa-
tion. Secondly, covariance structure models typically require an initial estimator
of the mean of the data, which itself may not be of primary interest. Thirdly,
but trivially, the use of a preliminary consistent GMM estimator to estimate
the efficient GMM metric may be regarded as a nuisance parameter estimator
and is thus a special case also. Consequently, the sample-splitting method for
efficient two-step GMM metric estimation proposed to ameliorate the bias of
efficient GMM estimators also falls within our analysis, the preliminary esti-
mator being obtained from one subsample with the other subsample then used
to implement efficient GMM (see also Altonji and Segal 1996). The presence
of the nuisance parameter estimator typically affects the first-order asymptotic
distribution of the estimator for the parameters of interest in the first and third
examples, with sample splitting inducing asymptotic inefficiency because of the
reduction in sample size. There is no loss in efficiency in the second example
because the Jacobian with respect to the nuisance parameter is null. However,
the presence of the nuisance parameter estimator alters the higher-order asymp-
totic bias in all of these examples as compared to the nuisance parameter – free
situation.

To provide sufficient generality to deal with these various setups we de-
fine a sampling structure that permits the nuisance parameter estimator to
be obtained from either an identical or an independent sample. Sample se-
lectivity and covariance structure models together with the standard method
for estimation of the efficient GMM metric are examples of the first type,
whereas the sample-splitting example fits the latter category. We provide general
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stochastic expansions for GMM and GEL estimators. These expansions are then
specialized for identical and independent samples and for the case when no nui-
sance parameters are present. The analytical expressions for asymptotic bias
obtained from these expansions may be consistently estimated as in Newey and
Smith (2004) to bias-correct GMM or GEL estimators. Some simulation ex-
periments for covariance structure models show that these analytical methods
for bias adjustment of the efficient two-step GMM estimator may be effica-
cious as compared with bootstrap methods, which are computationally more
complex.

The outline of this chapter is as follows. Section 2 describes the setup and
GMM and GEL estimators. Section 3 details the asymptotic biases for situa-
tions that involve either an independent or an identical sample. A simulation
experiment in Section 4 for covariance structures with a single nuisance param-
eter estimated from the same sample considers the finite sample properties of
GMM, CUE, ET, and EL estimators and compares some bootstrap and analyti-
cal bias-adjusted versions of the efficient two-step GMM estimator. Appendix A
contains general stochastic expansions for GMM and GEL estimators together
with proofs of the results in the chapter. For ease of reference, some notation
used extensively in the paper is given in Appendix B.

2. THE ESTIMATORS AND OTHER PRELIMINARIES

2.1. Moment Conditions

Consider the moment indicator gβ(z, α, β), an mβ-vector of functions of a data
observation z, and the pβ-vector β of unknown parameters, which are the object
of inferential interest, where mβ ≥ pβ . The moment indicator gβ(z, α, β) also
depends on α, a pα-vector of nuisance parameters. It is assumed that the true
parameter vector β0 uniquely satisfies the moment condition

E[gβ(z, α0, β0)] = 0,

where E[·] denotes expectation.
Estimation of the nuisance parameter vector α0 is based on the additional

moment indicator gα(x, α), an mα-vector of functions of a data observation x
and α, where mα ≥ pα . The true value α0 of the nuisance parameter vector is
assumed to uniquely satisfy the moment condition

E[gα(x, α0)] = 0.

2.2. Sample Structure

Let zi , (i = 1, . . . , nβ), and x j , ( j = 1, . . . , nα), denote samples of i.i.d. ob-
servations on the data vectors z and x , respectively. An additional i.i.d. sample
of observations on z, zk , (k = 1, . . . , n), is also assumed to be available. This
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second sample of observations on z is used to obtain the preliminary consistent
estimator for β required to estimate the efficient GMM metric. We identify
the indices i , j , and k uniquely with these respective samples throughout this
chapter.

This sampling structure is sufficiently general to permit consideration of
a number of scenarios of interest, including the various examples outlined
in the introduction. Firstly, sample-splitting schemes are allowed by defining
the samples zi , (i = 1, . . . , nβ), and zk , (k = 1, . . . , n), to be independent.
Secondly, situations in which these samples are identical may be addressed by
setting k = i , (i = 1, . . . , nβ), which allows generated regressors, such as a
sample selectivity correction, to be considered in our analysis. Our framework
also allows for the possibility that the nuisance parameter estimator for α is
obtained from a sample that is either independent of or identical to the sample
of observations zi , (i = 1, . . . , nβ), the latter case obtained by setting x = z
and j = i , (i = 1, . . . , nβ).

2.3. GMM and GEL Estimation of α0

Initially, we describe a two-step GMM estimator of the nuisance parameter α
following Hansen (1982). Let

gα
j (α) ≡ gα(x j , α), ĝα(α) ≡

nα∑
j=1

gα
j (α)

/
nα.

A preliminary estimator for α0 is given by α̃ = arg minα∈A ĝα(α)′

(Ŵ αα)−1ĝα(α), where A denotes the parameter space and Ŵ αα = W αα +∑nα

j=1 ξ
α(x j )/nα + Op(n−1

α ) with W αα positive definite and E[ξα(x)] = 0. The
two-step GMM estimator is one that satisfies

α̂2S = arg min
α∈A

ĝα(α)′[�̂αα(α̃)]−1ĝα(α), (2.1)

where �̂αα(α) ≡∑nα

j=1 gα
j (α)gα

j (α)′/nα .
We also examine as alternatives to GMM generalized empirical likelihood

(GEL) estimators, as in Smith (1997, 2001) (see also Newey and Smith 2004).
Let ϕ = (α′, µ′)′, where µ is a mα-vector of auxiliary parameters; ρϕ(·) be a
function that is concave on its domain, which is an open interval Vα containing
zero; and ρϕ

v (·), ρϕ
vv(·), and ρϕ

vvv(·) denote first, second, and third derivatives
of ρϕ(·), respectively. Without loss of generality we normalize the first- and
second-order derivatives of ρϕ

v (·) at 0 as ρϕ
v (0) = ρϕ

vv(0) = −1. Let �̂α
nα

(α) =
{µ : µ′gα

j (α) ∈ Vα, j = 1, . . . , nα}.
The GEL estimation criterion is

P̂ϕ(ϕ) =
nα∑
j=1

ρϕ(µ′gα
j (α))

/
nα. (2.2)
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Then a GEL estimator for α0 is obtained as the solution to the saddle point
problem

α̂GEL = arg min
α∈A

sup
µ∈�̂α

nα (α)

P̂ϕ(ϕ). (2.3)

The GEL criterion (2.2) admits a number of estimators as special cases: empir-
ical likelihood (EL) with ρϕ(v) = log(1− v) (Imbens 1997, Qin and Lawless
1994), exponential tilting (ET) with ρϕ(v) = − exp(v) (Imbens, Spady, and
Johnson 1998, Kitamura and Stutzer 1997), continuous updating (CUE) with
ρϕ(v) quadratic and ρϕ

v (0) �= 0 and ρϕ
vv(0) < 0 (Hansen, Heaton, and Yaron

1996), and the Cressie–Read power family ρϕ(v) = −(1+ γ v)(γ+1)/γ /(γ + 1)
for some scalar γ (Cressie and Read 1984). See Newey and Smith (2004) for
further discussion.

Let α̂ denote a consistent estimator for α0 obtained as described in (2.1) or
(2.3).

2.4. GMM and GEL Estimation of β0

Let

gβ

i (α, β) ≡ gβ(zi , α, β), ĝβ(α, β) ≡
nβ∑

i=1

gβ

i (α, β)
/

nβ.

A two-step GMM estimator of β is obtained using α̂ as a plug-in estimator of
α in ĝβ(α, β). The second sample of observations on z, zk , (k = 1, . . . , n),
is used to obtain a preliminary consistent estimator β̃ for β0 defined by
β̃ = arg minβ∈B

∑n
k=1 gβ

k (α̂, β)′(Ŵ ββ)−1∑n
k=1 gβ

k (α̂, β), where B denotes the
parameter space gβ

k (α, β) = gβ(zk, α, β), (k = 1, . . . , n). As earlier it is as-
sumed that Ŵ ββ = W ββ +∑nβ

i=1 ξ
β(zi )/nβ + Op(n−1

β ) with W ββ positive def-
inite and E[ξβ(z)] = 0. This second sample is also used to estimate a GMM
metric, which has generic form

�̂ββ(α, β) ≡
n∑

k=1

gβ

k (α, β)gβ

k (α, β)′
/

n.

This structure for the GMM metric allows a number of important special
cases. Sample-splitting schemes are included by specifying the samples zi ,
(i = 1, . . . , nβ), and zk , (k = 1, . . . , n), to be mutually independent. A setup in
which these samples are identical is permitted. Hence, generated regressors are
a special case of our analysis. Our framework also allows the nuisance para-
meter estimator α̂ to be obtained from either an independent or the same sample
of observations; in the latter case, we define x = z and k = i , (i = 1, . . . , nβ).
See Section 3 for further details of these particular specializations.

The two-step GMM estimator for β0 is one that satisfies

β̂2S = arg min
β∈B

ĝβ(α̂, β)′[�̂ββ(α̂, β̃)]−1ĝβ(α̂, β). (2.4)
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For GEL estimators of β0, let θ = (β ′, λ′)′, where λ is a mβ-vector of auxil-
iary parameters; ρθ (·) be a function that is concave on its domain, which is an
open interval Vβ containing zero; and ρθ

v (·), ρθ
vv(·), and ρθ

vvv(·) denote first, sec-
ond, and third derivatives of ρθ (·), respectively. Again without loss of generality
we normalize ρθ

v (0) = ρθ
vv(0) = −1. Let �̂

β
nβ

(β) = {λ :λ′gβ

i (α̂, β) ∈ Vβ, i =
1, . . . , nβ}.

When the samples zi , (i = 1, . . . , nβ), and zk , (k = 1, . . . , n), are mutually
independent we assume that they are pooled for GEL estimation. Let N = nβ +
n and define n∗ = nβ if the samples zi , (i = 1, . . . , nβ), and zk , (k = 1, . . . , n),
are identical and n∗ = N if they are independent. The GEL estimation criterion
is then

P̂θ (α̂, θ ) =
n∗∑

i=1

ρθ (λ′gβ

i (α̂, β))
/

n∗. (2.5)

A GEL estimator for β0 is obtained as the solution to the saddle point problem

β̂GEL = arg min
β∈B

sup
λ∈�̂β

nβ (β)

P̂θ (α̂, θ ). (2.6)

Let λ̂GEL = sup
λ∈�̂β

nβ (β̂GEL) P̂θ (α̂, β̂GEL, λ).

3. HIGHER-ORDER ASYMPTOTIC PROPERTIES

Before detailing the various cases delineated in Section 2, we discuss the asymp-
totic bias of estimators α̂2S or α̂GEL for the nuisance parameter α. We use the
generic notation α̂ for α̂2S or α̂GEL where there is no possibility of confusion.

3.1. The Asymptotic Bias of the Nuisance Parameter Estimator

Let gα
j = gα

j (α0), Gα
j (α) = ∂gα

j (α)
/
∂α′, Gα

j = Gα
j (α0) and

Gα = E
[
Gα

j

]
, �αα = E

[
gα

j gα′
j

]
, �αα = (Gα′ (�αα)−1Gα)−1,

Hα = �ααGα′ (�αα)−1, Pα = (�αα)−1 − (�αα)−1Gα�ααGα′ (�αα)−1.

Under conditions stated in Newey and Smith (2004, Theorems 3.3 and 3.4),
both two-step GMM and GEL estimators for α admit stochastic expansions of
the form

α̂ = α0 + ψ̃α/
√

nα +
(
Mϕ

α

)−1

[
Ãϕψ̃ϕ+

qϕ∑
r=1

ψ̃ϕ
r Mϕ

r ψ̃
ϕ
/

2

]/
nα+Op

(
n−3/2
α

)
,

where ψα
j = −Hαgα

j , ψ
ϕ

j = −[Hα′ , Pα]′gα
j , ψ̃α =∑nα

j=1 ψ
α
j /
√

nα , ψ̃ϕ =∑nα

j=1 ψ
ϕ

j /
√

nα , and Ãϕ =∑nα

j=1 Aϕ

j /
√

nα . The matrix (Mϕ
α )−1 = (�αα,−Hα)

and the matrices Mϕ and Ãϕ are defined by analogy with Mθ
θθ and Ãθ given in

Eqs. (A.1) and (A.2) of Appendix A.



Asymptotic Bias for GMM and GEL Estimators 251

For GMM, to O(n−3/2
α ),

Bias(α̂2S)

= Hα
(−aα + E

[
Gα

j Hαgα
j

])/
nα −�αα E

[
Gα′

j Pαgα
j

]/
nα

+ Hα
[
gα

j gα′
j Pαgα

j

]/
nα

− Hα
(
E
[
Gα

j Hα
W�αα Pαgα

j

]+ E
[
gα

j tr
(
Gα

j Hα
W�αα Pα

)])/
nα,

where Hα
W = (Gα′W−1Gα)−1Gα′W−1 and aα is an m-vector such that

aαs ≡ tr
(
�αα E

[
∂2gα

js(α0)
/
∂α∂α′

])/
2 (s = 1, . . . ,mα), (3.1)

where gα
js(α) denotes the sth element of gα

j (α) (see Newey and Smith 2004,
Theorem 4.1).

For GEL, to O(n−3/2
α ),

Bias(α̂GEL) = Hα
(−aα + E

[
Gα

j Hαgα
j

])/
nα

+ [1+ (ρϕ
vvv(0)/2

)]
Hα E

[
gα

j gα′
j Pαgα

j

]/
nα.

See Newey and Smith (2004, Theorem 4.2). If ρϕ
vvv(0) = −2, then the asymp-

totic bias of α̂GEL is identical to that of an infeasible GMM estimator with op-
timal linear combination of moment indicators Gα′ (�αα)−1gα

j (α), a condition
that is satisfied by the EL estimator; (Newey and Smith 2004, Corollary 4.3).
Moreover, this property is shared by any GEL estimator when third moments
are zero, E[gα

js gα
j gα′

j ] = 0, (s = 1, . . . ,mα) (Newey and Smith 2004, Corollary
4.4).

To describe the results, let gβ

i = gβ

i (α0, β0), Gβ

βi (α, β) = ∂gβ

i (α, β)/∂β ′,
Gβ

βi = Gβ

βi (α0, β0),

�ββ = E
[
gβ

i gβ ′
i

]
, Gβ

β = E
[
Gβ

βi

]
, �ββ = (Gβ′

β (�ββ)−1Gβ

β

)−1
,

Hβ = �ββGβ ′
β (�ββ)−1, Pβ = (�ββ)−1 − (�ββ)−1Gβ

β�
ββGβ ′

β (�ββ)−1.

We define aβ as an m-vector such that

aβr = tr
(
�ββ E

[
∂2gβ

ir

/
∂β∂β ′

])/
2, (r = 1, . . . ,mβ).

Also let Gβ

αi (α, β) = ∂gβ

i (α, β)
/
∂α′, Gβ

αi = Gβ

αi (α0, β0), Gβ
α = E

[
Gβ

αi

]
and

�
ββ

W = (Gβ ′
β (W ββ)−1Gβ

β

)−1
, Hβ

W = �
ββ

W Gβ ′
β (W ββ)−1.

3.2. Independent Samples

In this case, zi , (i = 1, . . . , nβ), x j , ( j = 1, . . . , nα), and zk , (k = 1, . . . , n), are
independent i.i.d. samples of observations on the variables z and x . We assume
that α is estimated by α̂2S or α̂GEL as described in Section 2.
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The precise form of the bias requires some additional notation. Let aβ

ββ , aβ

βα ,
and aβ

αα be mβ-vectors such that

aβ

ββr = tr
(
HβGβ

α�
ααGβ ′

α Hβ ′ E
[
∂2gβ

ir

/
∂β∂β ′

])/
2,

aβ

βαr = −tr
(
HβGβ

α�
αα E

[
∂2gβ

ir

/
∂α∂β ′

])
,

aβ
ααr = tr

(
�αα E

[
∂2gβ

ir

/
∂α∂α′

])/
2, (r = 1, . . . ,mβ).

and cβββ and cββα are pβ-vectors with elements

cβββr = tr
(
E
[
∂2gβ ′

i

/
∂β∂βr

]
PβGβ

α�
ααGβ ′

α Hβ ′),
cββαr = −tr

(
E
[
∂2gβ ′

i

/
∂α∂βr

]
PβGβ

α�
αα
)
, (r = 1, . . . , pβ).

For the two-step GMM estimator β̂2S , let

Biasα0 (β̂2S) = Hβ
(−aβ + E

[
Gβ

βi Hβgβ

i

])/
nβ

−�ββ E
[
Gβ ′

βi Pβgβ

i

]/
nβ.

This asymptotic bias corresponds to that for β̂2S when α0 and �ββ are known.
For GEL estimation the samples zi , (i = 1, . . . , nβ), and zk , (k = 1, . . . , n), are
pooled. Hence,

Biasα0 (β̂GEL) = Hβ
(−aβ + E

[
Gβ

βi Hβgβ

i

])/
N

+ [1+ (ρθ
vvv(0)

/
2
)]

Hβ E
[
gβ

i gβ ′
i Pβgβ

i

]/
N ,

where N = n + nβ , which is the asymptotic bias for β̂GEL after pooling when
α0 is known. See Newey and Smith (2004, Theorems 4.1 and 4.2).

The remainders in the following results are O(max[n−3/2, n−3/2
α , n−3/2

β ]) for
GMM and O(max[N−3/2, n−3/2

α ]) for GEL.
For GMM:

Theorem 3.1. To O(max[n−3/2, n−3/2
α , n−3/2

β ]), if zi , (i = 1, . . . , nβ), x j , ( j =
1, . . . , nα), and zk, (k = 1, . . . , n), are independent samples, the asymptotic
bias of the two-step GMM estimator is

Bias(β̂2S)

= Biasα0 (β̂2S)− HβGβ
αBias(α̂)

+ Hβ
(−aβ

ββ − aβ

βα − aβ
αα

)/
nα −�ββ

(−cβββ − cββα
)
/nα

− Hβ
(
E
[
Gβ

βi Hβ

W Gβ
α�

ααGβ ′
α Pβgβ

i

]+E
[
gβ

i tr
(
Gβ

βi Hβ

W Gβ
α�

ααGβ ′
α Pβ

)])
/n

+ Hβ
(
E
[
Gβ

αi�
ααGβ ′

α Pβgβ

i

]+ E
[
gβ

i tr
(
Gβ

αi�
ααGβ ′

α Pβ
)])

/nα.

As in Newey and Smith (2004), we may interpret the terms comprising the
bias of the two step GMM estimator β̂2S . The first two terms of Biasα0 (β̂2S),
which is the asymptotic bias for β̂2S whenα0 and�ββ are known, are the bias that
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would arise from the (infeasible) optimal (variance minimizing; Hansen, 1982)
linear combination Gβ ′

β (�ββ)−1gβ(z, α0, β). The third term in Biasα0 (β̂2S) arises
because of inefficient estimation of the Jacobian Gβ

β . The second and third terms
of Bias(β̂2S) reflect the presence of the nuisance parameter estimator α̂ in the
(infeasible) linear combination Gβ ′

β (�ββ)−1gβ(z, α̂, β), whereas the fourth term
arises because of the presence of α̂ in estimation of the Jacobian Gβ

β . Likewise,
the remaining terms are due to the presence of the nuisance parameter estimator
α̂ used in the estimation of �ββ . Overall, therefore, the only role here for the
preliminary two step GMM estimator β̃ in the estimation of �ββ is through α̂

(see α̂2S earlier and also Newey and Smith (2004)). That is, if gβ

k (α, β) = gβ

k (β),
(k = 1, . . . , n), these remaining terms vanish. If the GMM estimator is iterated
at least once, Hβ

W should be replaced by Hβ .
We now turn to the bias formula for GEL based on the pooled samples zi ,

(i = 1, . . . , nβ), and zk , (k = 1, . . . , n).

Theorem 3.2. To O(max[N−3/2, n−3/2
α ]), where N = nβ + n, if zi , (i =

1, . . . , nβ), x j , ( j = 1, . . . , nα), and zk, (k = 1, . . . , n), are independent sam-
ples, the asymptotic bias of the GEL estimator is

Bias(β̂GEL)

= Biasα0 (β̂GEL)− HβGβ
α Bias(α̂)

+ Hβ
(−aβ

ββ − aβ

βα − aβ
αα

)/
nα −�ββ

(−cβββ − cββα
)/

nα

+�ββ E
[
Gβ ′

βi PβGβ
α�

ααGβ ′
α Pβgβ

i

]/
nα

+ (ρθ
vvv(0)/2

)
E
[
gβ

i gβ ′
i PβGβ

α�
ααGβ ′

α Pβgβ

i

]/
nα

− Hβ
(
E
[
Gβ

βi HβGβ
α�

ααGβ ′
α Pβgβ

i

]
+ E

[
gβ

i tr
(
Gβ ′

βi PβGβ
α�

ααGβ ′
α Hβ ′)])/nα

+ Hβ
(
E
[
Gβ

αi�
ααGβ ′

α Pβgβ

i

]+ E
[
gβ

i tr
(
Gβ ′

αi PβGβ
α�

αα
)])/

nα.

The first four terms are similar to those for GMM. The fifth and sixth terms
arise because of the presence of the nuisance parameter estimator α̂ in the
implicit estimation of �ββ and its inefficient estimation (see Newey and Smith
2004, Theorem 2.3). The remaining terms are similar to those for GMM except
that Hβ

W is replaced by Hβ and would coincide if the GMM estimator were
iterated at least once. If Gβ

α = 0, which ensures that β̂GEL is first-order efficient
and occurs, for example, if gβ

i (α, β) is linear in α, there is no effect due to
the implicit estimation of �ββ except through Biasα0 (β̂GEL) and, except for this
term, Bias(β̂GEL) and Bias(β̂2S) coincide.

From Theorem 3.2, all GEL estimators have the same bias when third mo-
ments are zero as Biasα0 (β̂GEL) is the same for all GEL estimators in this case
(see Newey and Smith 2004, Corollary 4.4).
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Corollary 3.1. To O(max[N−3/2, n−3/2
α ]), where N = nβ + n, if zi , (i =

1, . . . , nβ), x j , ( j = 1, . . . , nα), and zk, (k = 1, . . . , n), are independent sam-

ples and E[gβ

ir gβ

i gβ ′
i ] = 0, (r = 1, . . . ,mβ), then all GEL estimators possess

identical asymptotic bias.

We now specialize these results for a standard sample-splitting scheme.
Here the nuisance parameter vector α is not present. The remainders in the
following results are O(max[n−3/2, n−3/2

β ]) for GMM and O(N−3/2) for GEL.
The sample-split two-step GMM estimator for β is one that satisfies

β̂2S = arg min
β∈B

ĝβ(β)′�̂ββ(β̃)−1ĝβ(β),

where �̂ββ(β) ≡∑n
k=1 gβ

k (β)gβ

k (β)′/n.
For GMM we have the following result:

Corollary 3.2. In the absence of nuisance parameters, to O(max[n−3/2,

n−3/2
β ]), if zi , (i = 1, . . . , nβ), and zk, (k = 1, . . . , n), are independent samples,

the asymptotic bias of the two-step GMM estimator is

Bias(β̂2S) = Biasα0 (β̂2S)

= Hβ
(− aβ+ E

[
Gβ

βi Hβgβ

i

])/
nβ−�ββ E

[
Gβ ′

βi Pβgβ

i

]/
nβ.

This asymptotic bias result is that in Newey and Smith (2004) when �ββ is
known. In particular, it is clear that because of independent sampling comprising
the sample-split scheme an inefficient preliminary estimator for β0 may be used
with no effect on asymptotic bias. However, there would be implications for
higher-order variance.

We now turn to the bias formula for GEL, which uses the pooled sample zi ,
(i = 1, . . . , nβ), and zk , (k = 1, . . . , n).

Corollary 3.3. In the absence of nuisance parameters, to O(N−3/2), where
N = nβ + n, if zi , (i = 1, . . . , nβ), and zk, (k = 1, . . . , n), are independent
samples, the asymptotic bias of the GEL estimator is

Bias(β̂GEL) = Biasα0 (β̂GEL)

= Hβ
(−aβ + E

[
Gβ

βi Hβgβ

i

])
/N

+ [1+ (ρθ
vvv(0)/2

) ]
Hβ E

[
gβ

i gβ ′
i Pβgβ

i

]
/N .

In comparison with the GMM bias, we find that the Jacobian term drops
out, i.e., there is no asymptotic bias from estimation of the Jacobian. As noted
in Newey and Smith (2004), the absence of bias from the Jacobian is due
to its efficient estimation in the first-order conditions. However, the last term
reflects the implicit inefficient estimation of the variance matrix�ββ (see Newey
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and Smith 2004, Theorem 2.3). The deleterious effect of this term relative
to GMM will be offset at least partially by the use of the expanded pooled
sample size N . However, in certain circumstances this term can be eliminated
altogether.

The following corollary is immediate from Newey and Smith (2004,
Corollary 4.3).

Corollary 3.4. In the absence of nuisance parameters, to O(N−3/2), where
N = nβ + n, if zi , (i = 1, . . . , nβ), and zk, (k = 1, . . . , n), are independent
samples, then

Bias(β̂EL) = Hβ
(−aβ + E

[
Gβ

βi Hβgβ

i

])/
N .

EL uses an efficient second moment estimator, which leads to the aforemen-
tioned result (see Newey and Smith 2004, Theorem 2.3). Thus, for EL the
bias is exactly the same as that for the infeasible optimal GMM estimator with
moment functions Gβ ′

β (�ββ)−1gβ(z, β). This same property would be shared
by any GEL estimator with ρθ

vvv(0) = −2. It will also be shared by any GEL
estimator when third moments are zero as detailed in Corollary 3.1 above.

3.3. Identical Samples

In this case, the samples zi , (i = 1, . . . , nβ), and zk , (k = 1, . . . , n), co-
incide. Hence, the estimator �̂ββ(α, β) for �ββ is based on the sam-
ple zi , (i = 1, . . . , nβ). That is, k = i , n = nβ , and now �̂ββ(α, β) =∑nβ

i=1 gβ

i (α, β)gβ

i (α, β)′. Moreover, the nuisance parameter estimator α̂ is
also based on the same sample zi , (i = 1, . . . , nβ). That is, the samples zi ,
(i = 1, . . . , nβ), and x j , ( j = 1, . . . , nα), also coincide. So x = z, j = i , and
nα = nβ . The remainders in the following results are thus O(n−3/2

β ).
Let gβ·α

i = gβ

i − Gβ
α Hαgα

i ,

�ββ·αα = E
[
gβ·α

i gβ·α′
i

]
, �ββ·α = E

[
gβ

i gβ·α′
i

]
,

�αβ·α = E
[
gα

i gβ·α′
i

]
.

Also let aβ

ββ , aβ

βα and aβ
αα be mβ-vectors such that

aβ

ββr = tr
(
Hβ�ββ·αα Hβ ′ E

[
∂2gβ

ir

/
∂β∂β ′

])/
2,

aβ

βαr = tr
(
Hα�αβ·α Hβ ′ E

[
∂2gβ

ir

/
∂β∂α′

])
,

aβ
ααr = tr

(
�αα E

[
∂2gβ

ir

/
∂α∂α′

])/
2, (r = 1, . . . ,mβ),

and cβββ and cββα are pβ-vectors with elements

cβββr = tr
(
Hβ�ββ·αα Pβ E

[
∂2gβ

i

/
∂β ′∂βr

])
,

cββαr = tr
(
Hα�αβ·α Pβ E

[
∂2gβ

i

/
∂α′∂βr

])
, (r = 1, . . . , pβ).



256 Newey, Ramalho, and Smith

For GMM we have the following result:

Theorem 3.3. To O(n−3/2
β ), if the samples zi , (i = 1, . . . , nβ), x j , ( j =

1, . . . , nα), and zk, (k = 1, . . . , n), are identical, the asymptotic bias of the
two-step GMM estimator is

Bias(β̂2S) = − HβGβ
αBias(α̂)

+ Hβ
(−aβ

ββ − aβ

βα − aβ
αα + E

[
Gβ

βi Hβgβ·α
i

]+ E
[
Gβ

αi Hαgα
i

])
/nβ

−�ββ
(−cβββ − cββα + E

[
Gβ ′

βi Pβgβ·α
i

])
/nβ

+ Hβ E
[
gβ

i gβ ′
i Pβgβ·α

i

]
/nβ

− Hβ(E
[
Gβ

βi Hβ

W�ββ·αα Pβgβ

i

]+E
[
gβ

i tr
(
Gβ

βi Hβ

W�ββ·αα Pβ
)])

/nβ

− Hβ
(
E
[
Gβ

αi Hα�αβ·α Pβgβ

i

]+ E
[
gβ

i tr
(
Gβ

αi Hα�αβ·α Pβ
)])

/nβ.

If β̃ is iterated at least once, Hβ

W is replaced by Hβ . The second line arises
because of the presence of the nuisance parameter estimator α̂ in the (infeasible)
linear combination Gβ ′

β �ββ−1gβ(z, α, β) and the third is due to the estimation of
the Jacobian Gβ

β . The remaining terms reflect using α̂ and β̃. The penultimate
and final lines reflect estimation of �ββ using respectively the preliminary
estimator β̃ and the nuisance parameter estimator α̂.

For GEL:

Theorem 3.4. To O(n−3/2
β ), if the samples zi , (i = 1, . . . , nβ), x j , ( j =

1, . . . , nα), and zk, (k = 1, . . . , n), are identical, the asymptotic bias of the
GEL estimator is

Bias(β̂GEL)

= − HβGβ
αBias(α̂)

+ Hβ
(−aβ

ββ − aβ

βα − aβ
αα + E

[
Gβ

βi Hβgβ.α

i

]+ E
[
Gβ

αi Hαgα
i

])/
nβ

−�ββ
(−cβββ − cββα + E

[
Gβ ′

βi Pβ
(
�ββ −�ββ·αα)Pβgβ·α

i

])
/nβ

+ Hβ
(
E
[
gβ

i gβ ′
i Pβgβ·α

i

]+ (ρθ
vvv(0)/2

)
E
[
gβ

i gβ ′
i Pβ�ββ·αα Pβgβ

i

]
/nβ

− Hβ
(
E
[
Gβ

βi Hβ�ββ·αα Pβgβ

i

]+E
[
gβ

i tr(Gβ

βi H
β�ββ·αα Pβ

)])
/nβ

− Hβ
(
E
[
Gβ

αi Hα�αβ·α Pβgβ

i

]+ E
[
gβ

i tr
(
Gβ

αi Hα�αβ·α Pβ
)])

/nβ.

The terms in Bias(β̂GEL) are mostly identical to those for β̂2S . The major
differences are the third line, which reflects the inefficient estimation of the
Jacobian term Gβ

β . This term arises solely because of the presence of the
nuisance parameter estimator α̂ and vanishes if the nuisance parameter is
absent (see Newey and Smith 2004, Theorem 2.3). Other differences are,
firstly, Hβ in place of Hβ

W in the penultimate line, a difference which is
eliminated if two-step GMM is iterated once, and, secondly, the additional
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terms �ββ E[Gβ ′
βi Pβ�ββ·αα Pβgβ·α

i ] and (ρθ
vvv(0)/2)E[gβ

i gβ ′
i Pβ�ββ·αα Pβgβ

i ],
which arise through the implicit estimation of �ββ using both α̂ and β̂GEL.

From Theorem 3.4, all GEL estimators have the same bias when third mo-
ments are zero; cf. Corollary 3.1 (see also Newey and Smith 2004, Corol-
lary 4.4).

Corollary 3.5. To O(n−3/2
β ), if the samples zi , (i = 1, . . . , nβ), x j , ( j =

1, . . . , nα), and zk, (k = 1, . . . , n), coincide and E[gβ

ir gβ

i gβ ′
i ] = 0, (r =

1, . . . ,mβ), then all GEL estimators possess identical asymptotic bias.

The above results in Theorems 3.3 and 3.4 may be specialized straight-
forwardly to deal with when zi , (i = 1, . . . , nβ), and x j , ( j = 1, . . . , nα), are
independent samples. In this case, �ββ·αα = �ββ + Gβ

α�
ααGβ ′

α , �ββ·α = �ββ

and �αβ.α = −�αα Hα′Gβ ′
α . Also, let aβ

ββ , aβ

βα , aβ
αα , cβββ , and cββα be defined as

in Section 3.2; that is, aβ

ββ , aβ

βα , and aβ
αα are mβ-vectors such that

aβ

ββr = tr
(
HβGβ

α�
ααGβ ′

α Hβ ′ E
[
∂2gβ

ir

/
∂β∂β ′

])
/2,

aβ

βαr = −tr
(
HβGβ

α�
αα E

[
∂2gβ

ir/∂α∂β
′]),

aβ
ααr = tr

(
�αα E

[
∂2gβ

ir/∂α∂α
′])/2, (r = 1, . . . ,mβ).

and cβββ and cββα are pβ-vectors with elements

cβββr = tr
(
E
[
∂2gβ ′

i /∂β∂βr
]
PβGβ

α�
ααGβ ′

α Hβ ′),
cββαr = −tr

(
E
[
∂2gβ ′

i /∂α∂βr
]
PβGβ

α�
αα
)
, (r = 1, . . . , pβ).

The remainders in the following corollaries are O(max[n−3/2
α , n−3/2

β ]). Let

Biasα0 (β̂2S)

= Hβ
(−aβ + E

[
Gβ

βi Hβgβ

i

])
/nβ

−�ββ E
[
Gβ ′

βi Pβgβ

i

]
/nβ + Hβ E

[
gβ

i gβ ′
i Pβgβ

i

]
/nβ

−Hβ
(
E
[
Gβ

βi Hβ

W�ββPβgβ

i

]+E
[
gβ ′

i tr
(
Gβ

βi Hβ

W�ββPβ
)])

/nβ,

Biasα0 (β̂GEL) = Hβ
(−aβ + E

[
Gβ

βi Hβgβ

i

])
/nβ

+ [1+ (ρθ
vvv(0)/2)

])
Hβ E

[
gβ

i gβ

i Pβgβ

i

]
/nβ,

which are the biases for β̂2S and β̂GEL when α0 is known (see Newey and Smith
2004, Theorems 4.1 and 4.2).

Corollary 3.6. To O(max[n−3/2
α , n−3/2

β ]), if zi , (i = 1, . . . , nβ), and x j , ( j =
1, . . . , nα), are independent samples and the samples zi , (i = 1, . . . , nβ), and
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zk , (k = 1, . . . , n), are identical, the asymptotic bias of the two-step GMM
estimator is

Bias(β̂2S)

= Biasα0 (β̂2S)− HβGβ
αBias(α̂)

+ Hβ
(−aβ

ββ − aβ

βα − aβ
αα

)
/nα −�ββ

(−cβββ − cββα
)
/nα

− Hβ
(
E
[
Gβ

βi Hβ

W Gβ
α�

ααGβ ′
α Pβgβ

i

]+E
[
gβ

i tr
(
Gβ

βi Hβ

W Gβ
α�

ααGβ ′
α Pβ

)])
/nα

+ Hβ
(
E
[
Gβ

αi�
ααGβ ′

α Pβgβ

i

]+ E
[
gβ

i tr
(
Gβ

αi�
ααGβ ′

α Pβ
)])

/nα.

Corollary 3.7. To O(max[n−3/2
α , n−3/2

β ]), if zi , (i = 1, . . . , nβ), and x j , ( j =
1, . . . , nα), are independent samples and the samples zi , (i = 1, . . . , nβ), and
zk, (k = 1, . . . , n), are identical, the asymptotic bias of the GEL estimator is

Bias(β̂GEL)

= Biasα0 (β̂GEL)− HβGβ
αBias(α̂)

+ Hβ
(−aβ

ββ − aβ

βα − aβ
αα

)
/nα −�ββ

(−cβββ − cββα
)
/nα

+�ββ E
[
Gβ ′

βi PβGβ
α�

ααGβ ′
α Pβgβ

i

]
/nα

+ (ρθ
vvv(0)/2

)
E
[
gβ

i gβ ′
i PβGβ

α�
ααGβ ′

α Pβgβ

i

])
/nα

− Hβ
(
E
[
Gβ

βi HβGβ
α�

ααGβ ′
α Pβgβ

i

]+E
[
gβ

i tr
(
Gβ

βi HβGβ
α�

ααGβ ′
α Pβ

)])
/nα

+ Hβ
(
E
[
Gβ

αi�
ααGβ ′

α Pβgβ

i

]+ E
[
gβ

i tr
(
Gβ

αi�
ααGβ ′

α Pβ
)])

/nα.

The representations given in Corollaries 3.6 and 3.7 are identical to those of
Theorems 3.1 and 3.2, respectively. The only differences are in Biasα0 (β̂2S) and
Biasα0 (β̂GEL). Here, because of the use of identical samples zi , (i = 1, . . . , nβ),
and zk , (k = 1, . . . , n), Biasα0 (β̂2S) additionally includes terms associated with
the preliminary estimator β̃ and the estimation of�ββ . For GEL, the only differ-
ence is the use of single sample nβ rather than the pooled sample N = nβ + n
when the samples zi , (i = 1, . . . , nβ), and zk , (k = 1, . . . , n), are independent.

4. SIMULATION EXPERIMENTS FOR COVARIANCE
STRUCTURE MODELS

Our investigation concerns models of covariance structure estimated on the
same sample. Therefore, the asymptotic bias expressions in Section 3.2 and, in
particular, Theorems 3.3 and 3.4 apply. Altonji and Segal (1996) carried out an
extensive analysis of the finite sample properties of GMM estimators for co-
variance structure models and found that the efficient two-step GMM estimator
is severely downward biased in small samples for most distributions and in
relatively large samples for “badly behaved” distributions. They argue that this
poor performance is due to the correlation between the estimated second mo-
ments used to estimate the optimal weighting matrix and the moment indicators.
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Thus, as the theoretical results in Section 3 reveal, both equally weighted GMM,
which uses the identity matrix as weighting matrix, and efficient GMM estima-
tion based on a sample-split estimator for the optimal weighting matrix produce
parameter estimators with significantly improved properties in finite samples
(see Theorem 3.3, Corollary 3.2, and also Horowitz 1998). Horowitz also con-
sidered a bias-adjusted GMM estimator using the re-centred nonparametric
bootstrap of Hall and Horowitz (1996), which is outlined later in this chapter.
This estimator, although biased in some cases, performed much better than the
standard two-step GMM estimator.

The particular focus of attention of this section is GMM and GEL estimators
for a common variance parameter constructed from a simulated panel data set
in circumstances where the mean parameter is assumed unknown and is treated
as a nuisance parameter. We initially consider the finite sample bias properties
of the two-step GMM estimator, CUE, ET, and EL estimators. We also examine
analytical bias adjustment methods for two-step GMM based on Theorem 3.3
and compare their finite sample properties with those of various forms of boot-
strap bias-adjusted two-step GMM, both of which achieve bias adjustment of the
two-step GMM estimator to the order of asymptotic approximation considered
in this chapter.

4.1. Bootstrap Bias Adjustment

The generic form of bootstrap bias adjustment for the two-step GMM estimator
β̂2S is as follows. The original data zi , (i = 1, . . . , nβ), is sampled indepen-
dently with replacement to yield a bootstrap sample of size nβ and a two-step
GMM estimator is thereby calculated from this bootstrap sample. This process
is independently replicated. The bias of the two-step GMM estimator is esti-
mated as the difference between the mean of the resultant bootstrap two-step
GMM estimator empirical distribution and the two-step GMM estimator β̂2S .
The bootstrap bias-adjusted two-step GMM estimator is then β̂2S less the bias
estimator.

We consider three forms of bootstrap bias-adjusted two-step GMM estima-
tor. The first uses the standard nonparametric (NP) bootstrap. This resampling
scheme applies equal weights 1/nβ to each observation zi , (i = 1, . . . , nβ).
That is, resampling is based on the empirical distribution function Fnβ

(z) =∑nβ

i=1 1(zi ≤ z)/nβ , where 1(·) is an indicator function. Direct application of
the NP bootstrap in the GMM framework seems to be unsatisfactory in many
cases though. When the model is over-identified as in our experiments, while
the population moment condition E[gβ(z, α0, β0)] = 0 is satisfied, the esti-
mated sample moments are typically nonzero, that is, there is typically no β

such that EFnβ
[gβ(z, α̂, β)] = 0, where EFnβ

[·] denotes expectation taken with
respect to Fnβ

. Therefore, Fnβ
may be a poor approximation to the underlying

distribution of the data and, hence, the NP bootstrap may not yield a substan-
tial improvement over first-order asymptotic theory in standard applications
of GMM. A second resampling scheme is the recentred nonparametric (RNP)
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bootstrap (see Hall and Horowitz 1996). This method replaces the moment
indicator gβ(z, α̂, β) used in the GMM estimation criterion (2.4) by the recen-
tred moment indicator gβ∗(z, α̂, β) = gβ(z, α̂, β)− EFnβ

[gβ(z, α̂, β̂2S)]. As
EFnβ

[gβ(z, α̂, β̂2S)] = ĝβ(α̂, β̂2S), this recentring guarantees that the moment
condition is satisfied with respect to Fnβ

, that is, EFnβ
[gβ∗(z, α̂, β̂2S)] = 0.

Apart from the reformulation of the moment indicator, the RNP bootstrap
is identical in execution to the NP bootstrap. The third bootstrap suggested
by Brown and Newey (2002) employs an alternative empirical distribution to
Fnβ

for resampling, which also ensures that the moment condition is satisfied.
That is, the observations zi , (i = 1, . . . , nβ), are assigned different rather than
equal weights, the moment indicator gβ(z, α̂, β) remaining unaltered. Given
the two-step GMM estimator β̂2S , let λ̂2S = arg sup

λ∈�̂β
nβ (β̂2S ) P̂θ (α̂, β̂2S, λ),

cf. (2.6). Each observation zi is assigned the implied probability π̂2S
i =

ρθ
v (λ̂′2Sgβ

i (α̂, β̂2S))/
∑nβ

j=1 ρ
θ
v (λ̂′2Sgβ

j (α̂, β̂2S)) associated with the two-step
GMM estimator, (i = 1, . . . , nβ). The implied empirical distribution function
FGEL

nβ
(z) =∑nβ

i=1 π̂
2S
i 1(zi ≤ z) is thus obtained from the first step of a GEL

estimation procedure and is denoted as (first-step GEL) FSGEL. From the
first-order conditions for GEL, the moment condition is satisfied with respect
to FGEL

nβ
as
∑nβ

i=1 π̂
2S
i gβ

i (α̂, β̂2S) = 0 and, thus, EFGEL
nβ

[gβ(z, α̂, β̂2S)] = 0, where
EGEL

Fnβ
[·] denotes expectation taken with respect to FGEL

nβ
. We employ the EL

criterion P̂θ (α̂, β̂2S, λ) =∑nβ

i=1 log(1− λ′gβ

j (α̂, β̂2S))/nβ in our experiments.
In the absence of nuisance parameters, the FSGEL bootstrap is asymptotically
efficient relative to any bootstrap based on the empirical distribution function
Fnβ

, as shown by Brown and Newey (2002).

4.2. Analytical Bias Adjustment

We also consider direct bias adjustment of β̂2S by subtraction of an estimator for
Bias(β̂2S) given in Theorem 3.3 (see also Newey and Smith 2004, Theorem 5.1).
We consider four forms of bias estimator. The first estimator for Bias(β̂2S),
BCa, uses the empirical distribution function Fnβ

for obtaining expectation
estimators, that is, functions of observation i are equally weighted by 1/nβ , (i =
1, . . . , nβ). The second estimator, BCb, uses the FSGEL empirical distribution
function FGEL

nβ
, that is, functions of observation i are weighted by π̂2S

i , (i =
1, . . . , nβ). The third, BCc, uses Fnβ

but with the true parameter values α0 and
β0 substituted. The final estimator, BCd, employs the simulated counterpart of
the expression for the asymptotic bias of β̂2S given in Theorem 3.3.

4.3. Experimental Design

We consider an experimental design analyzed by Altonji and Segal (1996) where
the objective is the estimation of a common population variance β0 for a scalar
random variable zt , (t = 1, . . . , T ), from observations on a balanced panel
covering T = 10 time periods. Thus, z = (z1, . . . , zT )′. We assume that nβ

observations are available on z and that zti is independent over t and i.i.d. over i .
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We consider the case where the mean α0 of z is unknown. Hence, the results
of Section 3.2 apply. The nuisance parameter estimator is α̂ = (α̂1, . . . , α̂T )′,
where the unbiased estimator α̂t =

∑nβ

i=1 zti/nβ , (t = 1, . . . , T ). The moment
indicator vector is gβ(z, α, β) = m(z, α)− ιβ, where ι is a T -vector of units,
m(z, α) = (m1(z1, α1), . . . ,mT (zT , αT ))′, and

mt (zt , αt ) = nβ(zt − αt )
2/(nβ − 1), (t = 1, . . . , T ).

Thus, m̂(α̂) =∑nβ

i=1 m(zi , α̂)/nβ is an unbiased estimator for ιβ0. Here pβ = 1,
mβ = T , and pα = mα = T .

In this study, all observations zti are i.i.d. across both t and i , although
the common mean assumption is ignored in estimation. Although the ele-
ments of m̂(α̂) are independent, the estimated variance matrix �̂ββ(α̂, β̃) =∑nβ

i=1 gβ

i (α̂, β̃)gβ

i (α̂, β̃)′/nβ ignores this information. Seven different distribu-
tions for zt , scaled to have mean α0 = 0 and variance β0 = 1, were considered
for two sample sizes nβ = 100, 500. In each experiment, 1000 replications were
performed.

In this framework, the two-step GMM estimator is a weighted mean
of the sample variances, β̂2S = w′m̂(α̂) =∑nβ

i=1 w
′mi (α̂)/nβ , where w =

(ι′�̂ββ(α̂, β̃)−1ι)−1ι′�̂ββ(α̂, β̃)−1. The preliminary estimator β̃ is obtained using
equal weights (w = ι/T ). For GEL estimators, as Gβ

βi = −ι, it can be straight-
forwardly shown that β̂GEL = nβ

∑nβ

i=1 π̂
GEL
i i ′mi (α̂)/T (nβ − 1) where π̂GEL

i =
ρv(λ̂′GELgβ

i (α̂, β̂GEL))/
∑nβ

j=1 ρv(λ̂′GELgβ

j (α̂, β̂GEL)), (i = 1, . . . , nβ). The two-
step GMM estimator ascribes equal weights over i , whereas GEL applies
the GEL implied probabilities π̂GEL

i . Over t , GMM assigns distinct weights
given by the vector w while for GEL each time period receives an equal
weight.

A number of important implications of this structure for the results of Sec-
tion 3.2 may be deduced. Firstly, as Gβ

αi = −2nβ diag(zi1 − α1, . . . , ziT −
αT )/(nβ − 1) and, thus, Gβ

α = 0, GMM or GEL estimators for β0 are first-
order efficient. Secondly, as Gβ

βi = −ι from the linearity of gβ(z, α, β) in β,
substantial simplifications result in the asymptotic bias expressions of The-
orems 3.3 and 3.4. In particular, it is evident from the asymptotic biases
given in Theorems 3.3 and 3.4 that those for two-step and iterated GMM
are identical and, moreover, that CUE also possesses an identical asymptotic
bias.

To be more precise, for these experiments aβ

ββ = aβ

βα = 0 and cβββ = cββα = 0
from the linearity of gβ(z, α, β) in β. Also aβ

αα = 2[nβ/(nβ − 1)]ιβ0. As

gβ·α
i = gβ

i ,�ββ·αα = �ββ ,�ββ·α = �ββ , and�αβ·α = E[gα
i gβ ′

i ] = �αβ . There-
fore, from Theorems 3.3 and 3.4,

Bias(β̂2S)

= Biasα0 (β̂2S)+ Hβ
(−aβ

αα + E
[
Gβ

αi Hαgα
i

])
/nβ

− Hβ
(
E
[
Gβ

αi Hα�αβ Pβgβ

i

]+ E
[
gβ

i tr
(
Gβ

αi Hα�αβ Pβ
)])

/nβ,
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and

Bias(β̂GEL)

= Biasα0 (β̂GEL)+ Hβ
(−aβ

αα + E
[
Gβ

αi Hαgα
i

])
/nβ

− Hβ
(
E
[
Gβ

αi Hα�αβ Pβgβ

i

]+ E
[
gβ

i tr
(
Gβ

αi Hα�αβ Pβ
)])

/nβ.

Therefore, there is no role for Bias(α̂). Moreover, Bias(β̂2S) and Bias(β̂GEL)
differ only in Biasα0 (β̂2S) and Biasα0 (β̂GEL). Because gβ(z, α, β) = m(z, α)−
ιβ is linear in β and, thus, Gβ

βi = −ι is non-stochastic, the asymptotic biases

for β̂2S and β̂GEL when the nuisance parameter α0 is known reduce to

Biasα0 (β̂2S) = Hβ E
[
gβ

i gβ ′
i Pβgβ

i

]
/nβ,

Biasα0 (β̂GEL) = [1+ (ρθ
vvv(0)/2

)]
Hβ E

[
gβ

i gβ ′
i Pβgβ

i

]
/nβ.

As there is no effect due to the preliminary estimator β̃, it is evident from
Bias(β̂2S) that the asymptotic biases for the two-step GMM and iterated
GMM estimators are identical. Moreover, from Biasα0 (β̂GEL), they also co-
incide with that of CUE as ρθ

vvv(0) = 0. Furthermore, it is only the asym-
metry of gβ

i which accounts for the differences in asymptotic biases be-
tween two-step GMM and other GEL estimators. Note that, apart from
−Hβaβ

αα/nβ , the second and third lines in Bias(β̂2S) and Bias(β̂GEL) vanish if
zti is symmetrically distributed; that is, Bias(β̂2S) = Biasα0 (β̂2S)− Hβaβ

αα/nβ

and Bias(β̂GEL) = Biasα0 (β̂GEL)− Hβaβ
αα/nβ . Furthermore, Biasα0 (β̂E L ) = 0

and Biasα0 (β̂GEL) = 0 if ρθ
vvv(0) = −2.

4.4. Results

The tables report estimated mean and median bias (as a percentage), 0.05 and
0.95 quantiles, standard error (SE), root mean squared error (RMSE), and me-
dian absolute error (MAE) of four asymptotically first-order equivalent methods
for estimating moment condition models, two-step GMM (2S-GMM), CUE, ET,
and EL estimators.

Table 11.1 considers a sample size of nβ = 100. The results obtained for
the two-step GMM estimator are very similar to those presented by Altonji
and Segal (1996). As in their study, this estimator is clearly downward biased.
This distortion is particularly marked for “badly-behaved” distributions, namely
thicker-tailed symmetric (t5) and long-tailed skewed (lognormal and exponen-
tial) distributions. As noted above, the asymptotic bias expressions for GMM
and GEL involve further terms for asymmetric distributions. Note, however,
that these expressions are not strictly valid for the t5 distribution as moments
of order greater than 4 do not exist. The worst case is given by the lognor-
mal distribution, where the biases (MAE) are −0.415 and −0.430 (0.430).
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Table 11.1. Covariance structure models (nβ = 100)

Bias Quantiles

Estimator Mean Median 0.05 0.95 SE RMSE MAE

t5

2S-GMM −.111 −.116 0.789 0.998 .065 .129 .116
CUE −.125 −.128 0.765 0.990 .069 .143 .128
ET −.094 −.098 0.805 1.021 .067 .115 .099
EL −.065 −.069 0.835 1.057 .067 .094 .073

t10

2S-GMM −.059 −.060 0.856 1.026 .053 .079 .062
CUE −.066 −.067 0.845 1.022 .055 .086 .068
ET −.046 −.048 0.866 1.042 .054 .071 .053
EL −.028 −.030 0.886 1.063 .055 .062 .043

Normal

2S-GMM −.036 −.034 0.889 1.041 .047 .059 .041
CUE −.040 −.038 0.881 1.039 .049 .063 .044
ET −.026 −.025 0.896 1.051 .048 .055 .038
EL −.015 −.012 0.905 1.063 .048 .050 .035

Uniform

2S-GMM −.007 −.008 0.946 1.043 .029 .030 .021
CUE −.008 −.009 0.945 1.042 .030 .031 .021
ET −.005 −.007 0.948 1.045 .030 .030 .020
EL −.003 −.004 0.950 1.048 .030 .030 .020

Lognormal

2S-GMM −.415 −.430 0.434 0.777 .111 .429 .430
CUE −.481 −.490 0.332 0.727 .125 .497 .490
ET −.396 −.408 0.429 0.807 .120 .414 .408
EL −.303 −.317 0.513 0.927 .131 .331 .317

Exponential

2S-GMM −.141 −.146 0.722 1.004 .087 .166 .147
CUE −.162 −.166 0.680 0.996 .097 .189 .166
ET −.108 −.110 0.751 1.043 .088 .140 .113
EL −.058 −.061 0.803 1.097 .087 .105 .076

Bimodal

2S-GMM −.009 −.009 0.945 1.036 .028 .029 .020
CUE −.010 −.010 0.944 1.035 .028 .030 .021
ET −.006 −.005 0.948 1.040 .028 .029 .020
EL −.002 −.001 0.951 1.044 .028 .028 .019

In this case the empirical 0.95 confidence interval does not cover the true
value β0 = 1.

Although, as noted above, the biases of GMM and CUE should be similar,
Table 11.1 indicates that the results for CUE are in fact worse than for the
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Table 11.2. Covariance structure models (nβ = 500)

Bias Quantiles

Estimator Mean Median 0.05 0.95 SE RMSE MAE

t5

2S-GMM −.041 −.042 0.904 1.013 .034 .053 .042
CUE −.042 −.043 0.903 1.012 .034 .054 .043
ET −.029 −.029 0.917 1.024 .033 .044 .031
EL −.016 −.016 0.929 1.039 .034 .038 .026

t10

2S-GMM −.016 −.016 0.945 1.024 .025 .029 .021
CUE −.016 −.016 0.945 1.024 .025 .030 .021
ET −.010 −.010 0.952 1.030 .024 .026 .018
EL −.004 −.005 0.957 1.036 .025 .025 .017

Normal

2S-GMM −.008 −.008 0.959 1.027 .021 .022 .015
CUE −.008 −.008 0.959 1.027 .021 .022 .015
ET −.005 −.005 0.962 1.030 .020 .021 .014
EL −.001 −.001 0.965 1.034 .021 .021 .014

Uniform

2S-GMM −.002 −.002 0.976 1.019 .013 .013 .009
CUE −.002 −.002 0.976 1.019 .013 .013 .009
ET −.001 −.001 0.977 1.019 .013 .013 .009
EL −.001 −.001 0.977 1.019 .013 .013 .009

Lognormal

2S-GMM −.225 −.227 0.652 0.917 .082 .239 .227
CUE −.231 −.233 0.634 0.912 .085 .246 .233
ET −.178 −.182 0.705 0.965 .079 .194 .182
EL −.118 −.124 0.757 1.034 .081 .143 .125

Exponential

2S-GMM −.041 −.042 0.894 1.029 .040 .057 .044
CUE −.042 −.043 0.892 1.028 .040 .058 .045
ET −.024 −.025 0.914 1.043 .039 .046 .032
EL −.006 −.007 0.929 1.059 .039 .040 .029

Bimodal

2S-GMM −.002 −.001 0.977 1.018 .012 .013 .009
CUE −.002 −.001 0.976 1.018 .012 .013 .009
ET −.001 −.000 0.978 1.019 .012 .012 .008
EL −.000 .001 0.979 1.020 .012 .012 .008

two-step GMM estimator. Because the bias expressions for GMM and GEL
differ only according to Biasα0 (β̂2S) and Biasα0 (β̂GEL), ET and EL estima-
tors should display better finite sample properties relative to GMM and
CUE. In particular, Biasα0 (β̂2S) = 2Biasα0 (β̂ET) and Biasα0 (β̂EL) = 0. While all
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methods have very similar standard errors (SE), the improvement for ET and
EL in terms of both mean and median bias, root mean square error (RMSE),
and mean absolute error (MAE) is clear. This is particularly marked for EL
estimation. For ET, the improvements over GMM are rather more modest than
those for EL as predicted by our theoretical results. However, although bias is
not completely eliminated, especially for the skewed lognormal and exponen-
tial distributions, even for these cases, EL shows a marked improvement over
two-step GMM.

Table 11.2 deals with the increased sample size nβ = 500. Overall, all es-
timators display less bias with reduced SE, RMSE, and MAE. The general
pattern across estimators revealed for the smaller sample size nβ = 100 is still
apparent. CUE is somewhat worse than two-step GMM with ET delivering
rather moderate improvements, whereas EL dominates all other estimators in
terms of mean and median biases, RMSE and MAE. For the skewed distribu-
tions, lognormal and exponential, EL offers substantially reduced bias, RMSE
and MAE relative to other estimators including ET with very little or no increase
in SE. For a number of the symmetric distributions, EL is able to eliminate bias
more or less entirely.

The results reported in Table 11.3 with nβ = 100 use 100 bootstrap samples
in each replication. In all cases, the bootstrap methods substantially reduce the
bias of the two-step GMM estimator, although at the expense of a rather modest
increase in SE. RMSE and MAE are also reduced, also quite substantially in
the asymmetric cases for the RNP and FSGEL bootstrap methods. Clearly,
the gain from bias reduction outweighs the increased contribution of SE to
RMSE. The behavior of these methods is not uniform, however, but overall the
performances of RNP and FSGEL seem quite similar. It appears that RNP and
FSGEL are rather better than NP, which may be accounted for by the sample
moments evaluated at the two-step GMM estimator being far from zero in these
experiments. The performance of the feasible bias adjustment methods BCa and
BCb is also quite encouraging leading to a substantial reduction in bias relative
to β̂2S in the “badly behaved” cases with BCb tending to dominate BCa. Like the
bootstrap methods, SE increases somewhat for the analytical methods but again
is less important compared to bias reduction for RMSE which in some cases is
also reduced by a nontrivial amount. The results for BCc and BCd indicate that
the theoretical expression for asymptotic bias in Theorem 3.3 accounts for the
vast majority of finite sample bias. Comparing bootstrap and bias adjustment
methods, BCb is rather similar to RNP and FSGEL in most cases in terms of
bias reduction, RMSE, and MAE. Therefore, BCb appears to be an efficacious
rival to bootstrap methods.

Similar qualitative conclusions may be drawn from Table 11.4 for nβ =
500 with two-step GMM bias being more or less eliminated for a number
of symmetric distributions. Again, for the “badly behaved” cases, bias is not
eliminated entirely but is reduced substantially by RNP, FSGEL bootstrap bias
adjustment methods and the analytical approach BCb.
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Table 11.3. Covariance structure models for bias-corrected and bootstrap
GMM estimators (nβ = 100)

Bias Quantiles

Estimator Mean Median 0.05 0.95 SE RMSE MAE

t5

2S-GMM −.111 −.116 0.789 0.998 .065 .129 .116
NP −.073 −.079 0.808 1.061 .076 .105 .084
RNP −.049 −.056 0.834 1.084 .077 .091 .068
FSGEL −.044 −.050 0.845 1.089 .075 .086 .065
BCa −.060 −.066 0.828 1.065 .072 .094 .072
BCb −.049 −.054 0.841 1.081 .073 .088 .067
BCc −.067 −.073 0.817 1.065 .076 .101 .079
BCd −.016 −.021 0.884 1.093 .065 .067 .047

t10

2S-GMM −.059 −.060 0.856 1.026 .053 .079 .062
NP −.026 −.028 0.881 1.072 .060 .065 .046
RNP −.017 −.020 0.890 1.079 .059 .061 .044
FSGEL −.011 −.013 0.899 1.084 .058 .059 .040
BCa −.018 −.020 0.891 1.076 .057 .060 .043
BCb −.015 −.017 0.895 1.079 .057 .059 .043
BCc −.022 −.024 0.882 1.077 .061 .065 .045
BCd −.002 −.003 0.914 1.083 .053 .053 .036

Normal

2S-GMM −.036 −.034 0.889 1.041 .047 .059 .041
NP −.008 −.007 0.911 1.074 .050 .051 .036
RNP −.005 −.004 0.916 1.076 .050 .050 .035
FSGEL −.001 .000 0.920 1.078 .049 .049 .033
BCa −.004 −.004 0.918 1.076 .049 .049 .034
BCb −.003 −.002 0.918 1.076 .049 .049 .034
BCc −.007 −.007 0.910 1.079 .053 .053 .038
BCd .002 .003 0.926 1.078 .047 .047 .033

Uniform

2S-GMM −.007 −.008 0.946 1.043 .029 .030 .021
NP .006 .004 0.958 1.055 .030 .030 .020
RNP .005 .004 0.959 1.055 .030 .030 .020
FSGEL .007 .006 0.961 1.057 .030 .030 .020
BCa .005 .004 0.958 1.055 .030 .030 .020
BCb .005 .004 0.958 1.055 .029 .030 .020
BCc .005 .003 0.954 1.058 .032 .032 .022
BCd .006 .005 0.959 1.055 .029 .030 .020

Lognormal

2S-GMM −.415 −.430 0.434 0.777 .111 .429 .430
NP −.380 −.403 0.429 0.887 .145 .407 .403
RNP −.230 −.282 0.511 1.128 .453 .508 .289
FSGEL −.264 −.290 0.531 1.024 .158 .308 .292
BCa −.352 −.371 0.465 0.889 .135 .377 .371
BCb −.278 −.302 0.524 0.991 .152 .317 .303
BCc −.369 −.393 0.449 0.874 .137 .394 .393
BCd −.096 −.111 0.753 1.096 .111 .147 .121
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Bias Quantiles

Estimator Mean Median 0.05 0.95 SE RMSE MAE

Exponential

2S-GMM −.141 −.146 0.722 1.004 .087 .166 .147
NP −.089 −.095 0.744 1.096 .108 .140 .107
RNP −.060 −.066 0.771 1.125 .105 .122 .085
FSGEL −.042 −.048 0.799 1.136 .102 .110 .077
BCa −.080 −.086 0.764 1.092 .099 .128 097
BCb −.059 −.065 0.788 1.115 .098 .114 .082
BCc −.089 −.096 0.746 1.092 .104 .137 .106
BCd −.026 −.031 0.838 1.119 .087 .091 .060

Bimodal

2S-GMM −.009 −.009 0.945 1.036 .028 .029 .020
NP .006 .006 0.958 1.051 .029 .029 .021
RNP .006 .006 0.959 1.052 .028 .029 .020
FSGEL .008 .008 0.963 1.053 .028 .029 .020
BCa .007 .007 0.960 1.052 .028 .029 .021
BCb .007 .006 0.960 1.052 .028 .029 .021
BCc .006 .006 0.955 1.055 .031 .031 .022
BCd .008 .008 0.962 1.052 .028 .029 .020

5. CONCLUSIONS

The context of this chapter is the estimation of moment condition models in
situations where the moment indicator depends on a nuisance parameter. The
particular concern is the analysis of the higher-order bias of GMM and GEL
estimators when a plug-in estimator is employed for the nuisance parameter.
Such an environment covers a number of cases of interest including the use of
generated regressors and sample-splitting methods. Expressions for the higher-
order bias of these estimators is obtained in a general framework that allows
specialization to cases when the nuisance parameter is estimated from either an
identical or an independent sample.

The efficacy of these asymptotic bias expressions is explored in a number
of simulation experiments for covariance structure models. A rather pleasing
conclusion from these experiments is that the mean and median bias, root mean
squared error, and mean absolute error properties of empirical likelihood rep-
resent a substantial improvement of those of two-step GMM, CUE, and ET
estimators with little or no increase in variance. Further experiments compar-
ing various bootstrap bias adjustment methods with those based on estimated
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Table 11.4. Covariance structure models for bias-corrected and bootstrap
GMM estimators: (nβ = 500)

Bias Quantiles

Estimator Mean Median 0.05 0.95 SE RMSE MAE

t5

2S-GMM −.041 −.042 0.904 1.013 .034 .053 .042
NP −.020 −.020 0.921 1.042 .038 .042 .029
RNP −.014 −.015 0.927 1.050 .039 .041 .028
FSGEL −.014 −.015 0.927 1.048 .037 .040 .028
BCa −.017 −.018 0.924 1.043 .037 .041 .028
BCb −.015 −.016 0.926 1.045 .037 .040 .028
BCc −.018 −.019 0.923 1.043 .037 .041 .029
BCd −.004 −.004 0.942 1.050 .034 .034 .023

t10

2S-GMM −.016 −.016 0.945 1.024 .025 .029 .021
NP −.003 −.003 0.955 1.039 .026 .026 .018
RNP −.002 −.002 0.957 1.040 .026 .026 .018
FSGEL −.002 −.001 0.958 1.040 .026 .026 .018
BCa −.002 −.002 0.957 1.039 .026 .026 .018
BCb −.002 −.002 0.958 1.039 .026 .026 .018
BCc −.002 −.003 0.956 1.040 .026 .026 .018
BCd −.000 −.000 0.961 1.040 .025 .025 .017

Normal

2S-GMM −.008 −.008 0.959 1.027 .021 .022 .015
NP .000 .001 0.966 1.035 .021 .021 .014
RNP .001 .001 0.966 1.035 .021 .021 .014
FSGEL .001 .001 0.966 1.036 .021 .021 .014
BCa .001 .001 0.967 1.036 .021 .021 .013
BCb .001 .001 0.967 1.036 .021 .021 .013
BCc .001 .000 0.967 1.036 .021 .021 .014
BCd .001 .001 0.968 1.036 .021 .021 .013

Uniform

2S-GMM −.002 −.002 0.976 1.019 .013 .013 .009
NP .001 .001 0.979 1.022 .013 .013 .009
RNP .001 .001 0.979 1.021 .013 .013 .009
FSGEL .001 .001 0.980 1.022 .013 .013 .009
BCa .001 .001 0.979 1.021 .013 .013 .008
BCb .001 .001 0.979 1.021 .013 .013 .008
BCc .001 .001 0.979 1.022 .013 .013 .009
BCd .001 .001 0.979 1.022 .013 .013 .008

Lognormal

2S-GMM −.225 −.227 0.652 0.917 .082 .239 .227
NP −.161 −.166 0.674 1.027 .108 .194 .168
RNP −.107 −.118 0.724 1.109 .123 .163 .129
FSGEL −.121 −.128 0.720 1.068 .106 .161 .131
BCa −.161 −.166 0.691 1.007 .097 .188 .166
BCb −.132 −.138 0.724 1.038 .097 .164 .139
BCc −.164 −.169 0.687 1.005 .098 .191 .170
BCd −.044 −.046 0.833 1.098 .082 .093 .067
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Bias Quantiles

Estimator Mean Median 0.05 0.95 SE RMSE MAE

Exponential

2S-GMM −.041 −.042 0.894 1.029 .040 .057 .044
NP −.012 −.013 0.914 1.065 .044 .046 .032
RNP −.009 −.011 0.919 1.066 .044 .045 .031
FSGEL −.007 −.009 0.923 1.069 .043 .044 .030
BCa −.011 −.013 0.917 1.062 .043 .044 030
BCb −.009 −.011 0.921 1.064 .043 .044 .030
BCc −.012 −.013 0.916 1.062 .043 .045 .031
BCd −.003 −.004 0.932 1.067 .040 .040 .027

Bimodal

2S-GMM −.002 −.001 0.977 1.018 .012 .013 .009
NP .002 .002 0.980 1.021 .013 .013 .008
RNP .002 .002 0.980 1.021 .013 .013 .008
FSGEL .002 .002 0.981 1.022 .012 .013 .008
BCa .002 .003 0.980 1.022 .012 .013 .008
BCb .002 .003 0.980 1.022 .012 .013 .008
BCc .002 .003 0.980 1.022 .013 .013 .008
BCd .002 .003 0.981 1.022 .012 .013 .008

analytical asymptotic bias expressions indicate that the less computationally in-
tensive analytical methods are efficacious rivals to their bootstrap counterparts.

An interesting avenue for future research would be an exploration of the
usefulness of the asymptotic bias expressions for bias-adjustment of GEL esti-
mators such as CUE, ET, and EL.

APPENDIX A: PROOFS

We find the asymptotic bias using a stochastic expansion for each estimator.
Regularity conditions for the results given below may be obtained by suitable
adaptation of those in Newey and Smith (2004). Lemmas A.1–A.3 generalize
Newey and Smith (2004, Lemmas A4–A6) to the nuisance parameter context.

Lemma A.1. Suppose the estimators θ̂ and α̂ and vector of functions
mθ (z, θ, α) satisfy (a) θ̂ = θ0 + Op(max[n−1/2, n−1/2

α , n−1/2
β ]), α̂ = α0 +

ψ̃α/
√

nα+Qα( Ãϕ, ψ̃ϕ)/nα + Op(n−3/2
α ), ψ̃α = Op(1), Qα(ãϕ, ψ̃ϕ) = Op(1);

(b) m̂θ (θ̂ , α̂) =∑nβ

i=1 mθ (zi , θ̂ , α̂)/nβ = 0 w.p.a.1 and m̂θ (θ0, α0) =
Op(max[n−1/2, n−1/2

α , n−1/2
β ]), Ãθ = n1/2

β [∂m̂θ (z, θ0, α0)/∂θ ′ − Mθ ] =
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Op(max[n−1/2, n−1/2
α , n−1/2

β ]), Ãθ
α = n1/2

β [∂m̂θ (z, θ0, α0)/∂α′ − Mθ
α ] =

Op(max[n−1/2, n−1/2
α , n−1/2

β ]), where Mθ = E[∂mθ (z, θ0, α0)/∂θ ′] and
Mθ

α = E[∂m(z; θ0, α0)/∂α′]; (c) mθ (z, θ, α) is two times continuously
differentiable and for some d(z) with E[d(z)] <∞∥∥∂2m(z, θ, α)/∂(θ, α)r∂(θ, α)s − ∂2m(z, θ0, α0)/∂(θ, α)r∂(θ, α)s

∥∥
≤ d(z)‖(θ, α)− (θ0, α0)‖

on a neighbourhood of (θ0, α0); (d) E[mθ (z, θ0, α0)] = 0 and Mθ exists and is
nonsingular. Let

Mθ
θθr = E

[
∂2m(z, θ0, α0)/∂θr∂θ

′] ,
Mθ

θαs = E
[
∂2m(z, θ0, α0)/∂αs∂θ

′] ,
Mθ

αθr = E
[
∂2m(z, θ0, α0)/∂θr∂α

′] ,
Mθ

ααs = E
[
∂2m(z, θ0, α0)/∂αs∂α

′] ,
ψ̃θ = −n1/2

β

(
Mθ
)−1

m̂θ
(
θ0, α0

)
.

Then

θ̂ = θ0 + ψ̃θ /
√

nβ −
(
Mθ
)−1

Mθ
α

(
ψ̃α/

√
nα + Qα

(
ãϕ, ψ̃ϕ

)
/nα

)
− (Mθ

)−1[
Ãθ
(
ψ̃θ /

√
nβ − (Mθ )

−1
Mθ

α ψ̃
α/
√

nα

)√
nβ + Ãθ

αψ̃
α/
√

nαnβ

]
− (Mθ )−1

[
qθ∑

r=1

e′r
[
ψ̃θ/

√
nβ −

(
Mθ
)−1

Mθ
α ψ̃

α/
√

nα

]
Mθ

θθr

× [ψ̃θ/
√

nβ − (Mθ )−1 Mθ
α ψ̃

α/
√

nα

]]/
2

− (Mθ )−1
pα∑

s=1

e′sψ̃
ϕ Mθ

θαs

[
ψ̃θ/

√
nβ −

(
Mθ
)−1

Mθ
α ψ̃

α/
√

nα

]
/2
√

nα

− (Mθ )−1

[
qθ∑

r=1

e′r
[
ψ̃θ/

√
nβ −

(
Mθ
)−1

Mθ
α ψ̃

α/
√

nα

]
Mθ

αθr ψ̃
α/
√

nα

]/
2

− (Mθ )−1

[
pα∑

s=1

e′sψ̃
αMθ

ααsψ̃
α/nα

]/
2+ Op

(
max

[
n−3/2, n−3/2

α , n−3/2
β

])
.

Proof. Let m̂θ (θ, α) = ∑nβ

i=1 mθ
i (θ, α)/nβ , M̂θ (θ, α) =∑nβ

i=1[∂mθ
i (θ, α)/∂θ ′]/nβ and M̂θ

α (θ, α) =∑nβ

i=1[∂mθ
i (θ, α)/∂α′]/nβ . A Tay-

lor expansion with Lagrange remainder gives

0 = m̂θ (θ0, α0)+ M̂θ (θ0, α0)(θ̂ − θ0)+ M̂θ
α (θ0, α0)(α̂ − α0)

+
[

qθ∑
r=1

(θ̂r − θ0r )[∂ M̂θ (θ̄ , ᾱ)/∂θr ](θ̂ − θ0)
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+
pα∑

s=1

(α̂s − α0s)[∂ M̂θ (θ̄ , ᾱ)/∂αs](θ̂ − θ0)

+
qθ∑

r=1

(θ̂r − θ0r )[∂ M̂θ
α (θ̄ , ᾱ)/∂θr ](α̂ − α0)

+
pα∑

s=1

(α̂s − α0s)[∂ M̂θ
α (θ̄ , ᾱ)/∂αs](α̂ − α0)

]/
2.

Then adding and subtracting Mθ (θ̂ − θ0) and solving gives

θ̂ = θ0 − (Mθ )−1[m̂θ (θ0, α0)+ Mθ
α (α̂ − α0)]

− (Mθ )−1[(M̂θ (θ0, α0)− Mθ )(θ̂ − θ0)

+ (M̂θ
α (θ0, α0)− Mθ

α )(α̂ − α0)]

− (Mθ )−1

[
qθ∑

r=1

(θ̂r − θ0r )[∂ M̂θ (θ̄ , ᾱ)/∂θr ](θ̂ − θ0)

+
pα∑

s=1

(α̂s − α0s)[∂ M̂θ (θ̄ , ᾱ)/∂αs](θ̂ − θ0)

+
qθ∑

r=1

(θ̂r − θ0r )[∂ M̂θ
α (θ̄ , ᾱ)/∂θr ](α̂ − α0)

+
pα∑

s=1

(α̂s − α0s)[∂ M̂θ
α (θ̄ , ᾱ)/∂αs](α̂ − α)

]/
2

so that θ̂ = θ0 + Op(max[n−1/2, n−1/2
α , n−1/2

β ]) and hence θ̂ − θ0 =
−(Mθ )−1[m̂θ (θ0, α0)− Mθ

α (α̂ − α0)]+ Op(max[n−1, n−1
α , n−1

β ]). Note that
replacing ∂ M̂θ (θ̄ , ᾱ)/∂θr by Mθ

θθr , ∂ M̂θ (θ̄ , ᾱ)/∂αs by Mθ
θαs , ∂ M̂θ

α (θ̄ , ᾱ)/∂θr

by Mθ
αθr and ∂ M̂θ

α (θ̄ , ᾱ)/∂αs by Mθ
ααs introduces an error that is

Op(max[n−3/2, n−3/2
α , n−3/2

β ]) by hypothesis (c). Hence,

θ̂ = θ0 − (Mθ )−1[m̂θ (θ0, α0)+ Mθ
α (α̂ − α0)]

− (Mθ )−1[(M̂θ (θ0, α0)− Mθ )(θ̂ − θ0)+ (M̂θ
α (θ0, α0)− Mθ

α )(α̂ − α0)]

− (Mθ )−1

[
qθ∑

r=1

(θ̂r − θ0r )Mθ
θθr (θ̂ − θ0)+

pα∑
s=1

(α̂s − α0s)Mθ
θαs(θ̂ − θ0)

+
qθ∑

r=1

(θ̂r − θ0r )Mθ
αθr (α̂ − α0)+

pα∑
s=1

(α̂s − α0s)Mθ
ααs(α̂ − α)

]/
2

+ Op(max[n−3/2, n−3/2
α , n−3/2

β ]).

Therefore, by recursive substitution (see Newey and Smith 2004, Lemma A4)
the result is obtained.
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Lemma A.2. Suppose α̂ = α0 + ψ̃α/
√

nα + Qα(ãϕ, ψ̃ϕ)/nα + Op(n−3/2
α ),

where ψ̃α and Qα(ãϕ, ψ̃ϕ) are Op(1). Let Pβ

W = (W ββ)−1 −
(W ββ)−1 Gβ

β�
ββ

W Gβ ′
β (W ββ)−1, ψ̃θW = − [Hβ ′

W , Pβ

W ]′
∑n

k=1 gβ

k /
√

n, gβ

k =
gβ

k (α0, β0),

MθW = −
(

0 Gβ ′
β

Gβ

β W ββ

)
, (MθW )−1 = −

(
−�

ββ

W Hβ

W

Hβ ′
W Pβ

W

)
,

MθW
α = −

(
0

Gβ
α

)
.

Then for λ̃ = −(Ŵ ββ)−1ĝβ(α̂, β̃), θ̂ = (β̃ ′, λ̃′)′, we have

θ̂ = θ0 + ψ̃θW/
√

n − (MθW )−1 MθW
α ψ̃α/

√
nα + Op(max[n−1, n−1

α ]).

Proof. Let θ = (β ′, λ′)′, λ0 = 0, mθ
k (θ, α) = −(λ′∂gβ

k (α, β)/∂β ′, gβ

k (α, β)′ +
λ′[W ββ + ξβ(z)])′ and m̂θ (θ, α) =∑n

k=1 mθ
k (θ, α)/n. The first-order condi-

tions for β̃, the definition of λ̃ imply

0 = m̂θ (θ̂ , α̂)+ [0,−λ̃′(Op(n−1))]′.

Hence, it follows from Lemma A.1 that θ̂ = θ0 + Op(max[n−1/2, n−1/2
α ]).

Therefore,

m̂θ (θ̂ , α̂) = Op(n−1 max[n−1/2, n−1/2
α ]).

A further application of Lemma A.1 gives the result.

Lemma A.3. Suppose that α̂ = α0 + ψ̃α/
√

nα + Qα(ãϕ, ψ̃ϕ)/nα +
Op(n−3/2

α ), where ψ̃α and Qα(ãϕ, ψ̃ϕ) are Op(1). Let �
ββ

k = gβ

k gβ ′
k −�ββ ,

�̃ββ =∑n
k=1 �

ββ

k /
√

n, �̄βr = E[∂[gβ

k gβ ′
k ]/∂βr ] and �̄αs = E[∂[gβ

k gβ ′
k ]/∂αs].

Then

�̂ββ(α̂, β̃) = �ββ + �̃ββ/
√

n

+
pβ∑

r=1

�̄βr e′r
(
ψ̃θW/

√
n − (MθW )−1 MθW

α ψ̃α/
√

nα

)
+

pα∑
s=1

�̄αse′sψ̃
α/
√

nα + Op(max[n−1, n−1
α ]).

Proof. Similarly to the proof of Lemma A.1, expanding gives

�̂ββ(α̂, β̃) = �̂(α0, β0)+
pβ∑

r=1

�̄βr (β̃r − β0r )+
pα∑

s=1

�̄αs(α̂s − α0s)

+ Op(max[n−1, n−1
α ]).

By Lemma A.1, β̃r − β0r = e′r (ψ̃θW/
√

n − (MθW )−1 MθW
α ψ̃α/

√
nα )+

Op(max[n−1, n−1
α ]). The conclusion follows by substitution into the above

equation.
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Let �̂ββ =∑nβ

i=1 gβ

i gβ ′
i /nβ , Ĝβ

β =
∑nβ

i=1 Gβ

βi/nβ , Ĝβ
α =

∑nβ

i=1 Gβ

αi/nβ ,

Gβr
ββi = ∂2gβ

i /∂βr∂β
′, Gβs

βαi = ∂2gβ

i /∂αs∂β
′, gβr

βi = ∂gβ

i /∂βr , and gβs
αi =

∂gβ

i /∂αs .
We detail an expansion for GMM in the general case. Let θ = (β ′, λ′)′,

θ0 = (β ′0, 0′)′, β̂ be the two-step GMM estimator and

m̂θ (θ, α) = −
(

Ĝβ

β(α, β)′λ
ĝβ(α, β)+ (�ββ + ξ̃�ββ

)λ

)
,

where ξ̃�ββ =�̃ββ/
√

n +∑pβ

r=1 �̄βr e′r (ψ̃θW/
√

n − (MθW )−1 MθW
α ψ̃α/

√
nα)+∑pα

s=1 �̄αse′sψ̃
α/
√

nα . Also, let λ̂ = −�̂ββ(α̂, β̃)−1ĝβ(α̂, β̂). Then λ̂ =
Op(max[n−1/2

α , n−1/2
β ]). The first-order conditions for GMM and Lemmas A.1–

A.3 imply

0 = m̂θ (θ̂ , α̂)+ [0,−λ̂′(Op(max[n−1, n−1
α ]))]′

= m̂θ (θ̂ , α̂)+ Op(max[n−1/2
α , n−1/2

β ] max[n−1, n−1
α ]).

Therefore, we can solve for θ̂2S − θ0 as in the conclusion of Lemma A.1 using
the definitions m̂θ (θ0, α0) = −(0′, ĝβ(α0, β0)′)′,

Mθ = −
(

0 Gβ ′
β

Gβ

β �ββ

)
, (Mθ )−1 = −

(−�ββ Hβ

Hβ ′ Pβ

)
,

Mθ
α = −

(
0

Gβ
α

)
,

Ãθ = −n1/2
β

(
0 (Ĝβ

β − Gβ

β)′

(Ĝβ

β − Gβ

β) ξ̃�ββ

)
,

Ãθ
α = −n1/2

β

(
0

(Ĝβ
α − Gβ

α)

)
,

Mθ
θθr = −

(
0 E[Gβr

ββi ]
′

E[Gβr
ββi ] 0

)
, (r ≤ pβ),

Mθ
θθ,pβ+r = −

(
E[∂2gβ

ir/∂β∂β
′] 0

0 0

)
, (r ≤ mβ).

Mθ
θαs = −

(
0 E[Gβs

βαi ]
′

E[Gβs
βαi ] 0

)
, (s ≤ pα),

Mθ
αθr = −

(
0

E[∂2gβ

i /∂βr∂α
′]

)
, (r ≤ pβ),

Mβ

αθ,pβ+r = −
(

E[∂2gβ

ir/∂β∂α
′]

0

)
, (r ≤ mβ).

Mθ
ααs = −

(
0

E[∂2gβ

i /∂αs∂α
′]

)
, (s ≤ pα). (A.1)
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For a general expansion for GEL, we apply Lemma A.1. Let θ = (β ′, λ′)′,
θ0 = (β ′0, 0′)′, θ̂ be the GEL estimator and

m̂θ (θ, α) =
n∗∑

i=1

ρθ
v (λ′gβ

i (α, β))

(
Gβ

βi (α, β)′λ
gβ

i (β)

)/
n∗.

Therefore, using similar arguments to those in Newey and Smith (2004) we
can solve for θ̂GEL − θ0 as in the conclusion of Lemma A.1 by setting nβ = n∗,
dropping n and with the definitions m̂θ (θ0, α0) = −(0′, ĝβ(α0, β0)′)′,

Mθ = −
(

0 Gβ ′
β

Gβ

β �ββ

)
, (Mθ )−1 = −

(−�ββ Hβ

Hβ ′ Pβ

)
,

Mθ
α = −

(
0

Gβ
α

)
Ãθ = −n1/2

∗

(
0 (Ĝβ

β − Gβ

β)′

(Ĝβ

β − Gβ

β) �̂ββ −�ββ

)
,

Ãθ
α = −n1/2

∗

(
0

(Ĝβ
α − Gβ

α)

)

Mθ
θθr = −

(
0 E[Gβr

ββi ]
′

E[Gβr
ββi ] E[gβr

βi gβ ′
i + gβ

i gβr ′
βi ]

)
, (r ≤ pβ),

Mθ
θθ,pβ+r = −

(
E[∂2gβ

ir/∂β∂β
′] E[Gβ ′

βi er gβ ′
i + gβ

ir Gβ ′
βi ]

E[gβ

i e′r Gβ

βi + gβ

ir Gβ

βi ] −ρθ
vvv(0)E[gβ

ir gβ

i gβ ′
i ]

)
, (r ≤ mβ).

Mθ
θαs = −

(
0 E[Gβs

βαi ]
′

E[Gβs
βαi ] E[Gβ

αi es gβ ′
i + gβ

i e′s Gβ ′
αi ]

)
, (s ≤ pα),

Mθ
αθr = −

(
0

E[∂2gβ

i (β0, α0)/∂βr∂α
′]

)
, (r ≤ pβ),

Mβ

αθ,pβ+r = −
(

E[∂2gβ

ir/∂β∂α
′]

E[gβ

i ∂gβ

ir/∂α
′]+ E[gβ

ir Gβ

αi ]

)
, (r ≤ mβ).

Mθ
ααs = −

(
0

E[∂2gβ

i /∂αs∂α
′]

)
, (s ≤ pα). (A.2)

Proof of Theorem 3.1. The matrices Mθ and (Mθ )−1 are as defined in (A.1).
Thus, ψ̃θ = −n1/2

β [Hβ ′ , Pβ]′ĝβ . For independent samples, ξ̃�ββ

is uncorrelated
with ĝβ as is Ãθ

α with ψ̃α . Thus,

Bias(θ̂2S) = θ0 − (Mθ )−1 Mθ
αBias(α̂)

− (Mθ )−1 E[ Ãθ (ψ̃θ/
√

nβ − (Mθ )−1 Mθ
α ψ̃

α/
√

nα)]/
√

nβ
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− (Mθ )−1
qθ∑

r=1

e′r [E[ψ̃θ Mθ
θθr ψ̃

θ ]
/

nβ

+ (Mθ )−1 Mθ
α E[ψ̃αMθ

θθr (Mθ )−1 Mθ
α ψ̃

α]/nα]/2

+ (Mθ )−1
pα∑

s=1

e′s E[ψ̃αMθ
θαs(Mθ )−1 Mθ

α ψ̃
α]/2nα

+ (Mθ )−1

[
qθ∑

r=1

e′r (Mθ )−1 Mθ
α E[ψ̃αMθ

αθr ψ̃
α]

]/
2nα

− (Mθ )−1

[
pα∑

s=1

e′s E[ψ̃αMθ
ααsψ̃

α]/nα

]/
2

+ Op(max[n−3/2, n−3/2
α , n−3/2

β ]).

Note that the penultimate two terms are identical. Now,

E[ Ãθ ψ̃θ ] =
(

E[Gβ ′
βi Pβgβ

i ]

E[Gβ

βi Hβgβ

i ]

)
,

E[ Ãθ (Mθ )−1 Mθ
α ψ̃

α]

=
(

0
−∑pβ

r=1 �̄βr PβGβ
α�

ααGβ ′
α Hβ ′

W er +
∑pα

s=1 �̄αs PβGβ
α�

ααes

)
.

Let (Mθ
β )−1 = (−�ββ, Hβ). By a similar analysis to that in Newey and Smith

(2004, Proof of Theorem 4.1),

(Mθ
β )−1

pβ∑
r=1

e′r E[ψ̃θ Mθ
θθr ψ̃

θ ] = −Hβaβ.

(Mθ
β )−1

qθ∑
r=pβ+1

e′r E[ψ̃θ Mθ
θθr ψ̃

θ ] = 0.

(Mθ
β )−1

pβ∑
r=1

e′r (Mθ )−1 Mθ
α E[ψ̃αMθ

θθr (Mθ )−1 Mθ
α ψ̃

α]

= �ββcβββ − Hβaβ

ββ.

(Mθ
β )−1

mβ∑
r=pβ+1

e′r (Mθ )−1 Mθ
α E[ψ̃αMθ

θθr (Mθ )−1 Mθ
α ψ̃

α] = �ββcβββ.

−(Mθ
β )−1

pα∑
s=1

e′s E[ψ̃αMθ
θαs(Mθ )−1 Mθ

α ψ̃
α] = �ββcββα − Hβaβ

βα.

(Mθ
β )−1

pα∑
s=1

e′s E[ψ̃αMθ
ααsψ̃

α] = −Hβaβ
αα.
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Therefore, as

�̄βr = E[Gβ

βi er gβ·α
i + gβ·α

i e′r Gβ ′
βi ],

�̄αs = E[Gβ

αi es gβ·α
i + gβ·α

i e′s Gβ ′
αi ],

and Bias(β̂2S) = (Ipβ
, 0)Bias(θ̂2S), after simplification and collecting terms the

result of the theorem is obtained.

Proof of Theorem 3.2. From (A.2), because of independent sampling Ãθ and
Ãθ
α are uncorrelated with ψ̃α . Hence,

θ̂GEL = − (Mθ )−1 Mθ
αBias(α̂)

− (Mθ )−1 E[ Ãθ ψ̃θ ]/N

− (Mθ )−1
qθ∑

r=1

e′r [E[ψ̃θ Mθ
θθr ψ̃

θ ]+ (Mθ )−1 Mθ
α E[ψ̃αMθ

θθr

× (Mθ )−1 Mθ
α ψ̃

α]]/2N

+ (Mθ )−1
pα∑

s=1

e′s E[ψ̃αMθ
θαs(Mθ )−1 Mθ

α ψ̃
α]/2nα

+ (Mθ )−1
qθ∑

r=1

e′r (Mθ )−1 Mθ
α E[ψ̃αMθ

αθr ψ̃
α]/2nα

− (Mθ )−1
pα∑

s=1

e′s E[ψ̃αMθ
ααsψ̃

α]/2nα + Op(max[n−3/2, n−3/2
α , n−3/2

β ]).

Note that the penultimate two terms are identical. Also, Biasα0 (θ̂GEL) =
−(Mθ )−1(E[ Ãθ ψ̃θ ]+∑qθ

r=1 e′r [E[ψ̃θ Mθ
θθr ψ̃

θ ]/2)/N (see Newey and Smith
2004, Proof of Theorem 4.2). Let (Mθ

β )−1 = (−�ββ, Hβ). By a similar analy-
sis to that in Newey and Smith (2004, Proof of Theorem 4.2),

(Mθ
β )−1

pβ∑
r=1

e′r (Mθ )−1 Mθ
α E[ψ̃αMθ

θθr (Mθ )−1 Mθ
α ψ̃

α]

= �ββcβββ − Hβaβ

ββ − Hβ(E[Gβ

βi HβGβ
α�

ααGβ ′
α Pβgβ

i ])

+ E[gβ

i tr (Gβ ′
βi PβGβ

α�
ααGβ ′

α Hβ)]).

(Mθ
β )−1

qθ∑
r=pβ+1

e′r (Mθ )−1 Mθ
α E[ψ̃αMθ

θθr (Mθ )−1 Mθ
α ψ̃

α]

= �ββcβββ + 2�ββ E[Gβ ′
βi PβGβ

α�
ααGβ ′

α Pβgβ

i ]

− Hβ(E[Gβ

βi HβGβ
α�

ααGβ ′
α Pβgβ

i ]

+ E[gβ

i tr (Gβ ′
βi PβGβ

α�
ααGβ ′

α Hβ ′ )])
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+ ρθ
vvv(0)Hβ E[gβ

i gβ ′
i PβGβ

α�
ααGβ ′

α Pβgβ

i ].

(Mθ
β )−1

pα∑
s=1

e′s E[ψ̃αMθ
θαs(Mθ )−1 Mθ

α ψ̃
α]

= �ββcββα − Hβaβ

βα

− Hβ(E[Gβ

αi�
ααGβ ′

α Pβgβ

i ]+ E[gβ

i tr (Gβ ′
αi PβGβ

α�
αα)]).

(Mθ
β )−1

pα∑
s=1

e′s E[ψ̃αMθ
ααsψ̃

α] = −Hβaβ
αα.

Therefore, simpifying and collecting terms gives the result of the
theorem.

Proof of Corollary 3.2. Immediate as Gβ
α = 0, E[∂2gβ

ir/∂β∂α
′] = 0 and

E[∂2gβ

kr/∂β∂α
′] = 0.

Proof of Corollary 3.3. Follows immediately as in Proof of Corollary 3.2 and
from Newey and Smith (2004, Theorem 4.2).

Proof of Theorem 3.3. From (A.1), as Bias(β̂2S) = (Ipβ
, 0)Bias(θ̂2S),

Bias(β̂2S)= − HβGβ
αBias(α̂)

−�ββ E[Gβ ′
βi Pβgβ·α

i ]/nβ + Hβ E[Gβ

βi Hβgβ·α
i ]/nβ

+ Hβ E[gβ

i gβ ′
i Pβgβ·α

i ]/nβ

− Hβ

(
pβ∑

r=1

�̄βr Pβ E[gβ·α
i gβ·α′

i ]Hβ ′
W er

+
pα∑

s=1

�̄αs Pβ E[gβ·α
i gα′

i ]Hα′es

)/
nβ

+ Hβ E[Gβ

αi Hαgα
i ]/nβ

+
pβ∑

r=1

(�ββ E[Gβr
ββi ]

′Pβ−Hβ E[Gβr
ββi ]Hβ)E[gβ·α

i gβ·α′
i ]Hβ ′er/2nβ

+
mβ∑
r=1

�ββ E[∂2gβ

ir/∂β∂β
′]Hβ E[gβ·α

i gβ·α′
i ]Pβer/2nβ

+
pα∑

s=1

(�ββ E[Gβs
βαi ]

′Pβ − Hβ E[Gβs
βαi ]Hβ)E[gβ·α

i gα
i ]Hα′es/2nβ

−
pβ∑

r=1

Hβ E[∂2gβ

i /∂βr∂α
′]Hα E[gα

i gβ·α′
i ]Hβ ′er/2nβ
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+
mβ∑
r=1

�ββ E[∂2gβ

ir/∂β∂α
′]Hα E[gα

i gβ·α′
i ]Pβer/2nβ

−
pα∑

s=1

Hβ E[∂2gβ

i /∂αs∂α
′]�ααes/2nβ.

As

�̄βr = E[Gβ

βi er gβ ′
i + gβ

i e′r Gβ ′
βi ], �̄αs = E[Gβ

αi es gβ ′
i + gβ

i e′s Gβ ′
αi ],

simplifying and collecting terms yields the result in Theorem 3.3.

Proof of Theorem 3.4. From (A.2), as Bias(β̂GEL) = (Ipβ
, 0)Bias(θ̂GEL),

Bias(β̂GEL)=−HβGβ
αBias(α̂)

−�ββ E[Gβ ′
βi Pβgβ·α

i ]/nβ + Hβ(E[Gβ

βi Hβgβ·α
i ]

+ E[gβ

i gβ ′
i Pβgβ·α

i ])/nβ + Hβ E[Gβ

αi Hαgα
i ]/nβ

−
pβ∑

r=1

(−�ββ E[Gβr
ββi ]

′Pβ + Hβ(E[Gβr
ββi ]Hβ

+ E[gβr
βi gβ ′

βi + gβ

i gβr ′
βi ]Pβ))E[gβ·α

i gβ·α′
i ]Hβ ′er/2nβ

+
mβ∑
r=1

�ββ(E[∂2gβ

ir

/
∂β∂β ′]Hβ

+ E[Gβ ′
βi er gβ ′

i + gβ

ir Gβ ′
βi ]Pβ)E[gβ·α

i gβ·α
i ]Pβer/2nβ

−
mβ∑
r=1

Hβ(E[gβ

i e′r Gβ

βi + gβ

ir Gβ

βi ]Hβ

− ρθ
vvv(0)E[gβ

ir gβ

i gβ ′
i ]Pβ)E[gβ·α

i gβ·α
i ]Pβer/2nβ

−
pα∑

s=1

[−�ββ E[Gβs
βαi ]

′Pβ

+ Hβ(E[Gβs
βαi ]Hβ+E[gβs

αi gβ ′
i +gβ

i gβs ′
αi ]Pβ)]E[gβ·α

i gα′
i ]Hα′es/nβ

− Hβ

pα∑
s=1

E[∂2gβ

i

/
∂αs∂α

′]�ααes/2nβ.

Simplifying and collecting terms gives the result in Theorem 3.4.

APPENDIX B: SOME NOTATION

We use the generic notation er and es to indicate unit vectors of dimension
indicated by context.
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B.1. System-α

gα
j (α) ≡ gα(x j , α), ( j = 1, . . . , nβ), ĝα(α) ≡

nα∑
j=1

gα
j (α)/nα,

�̂αα(α) ≡
nα∑
j=1

gα
j (α)gα

j (α)′/nα.

B.2. System-β

gβ

i (α, β) ≡ gβ(zi , α, β), (i = 1, . . . , nβ),

ĝβ(α, β) ≡
nβ∑

i=1

gβ

i (α, β)/nβ,

gβ

k (α, β) ≡ gβ(zk, α, β), (k = 1, . . . , n),

�̂ββ(α, β) ≡
n∑

k=1

gβ

k (α, β)gβ

k (α, β)′/n.

B.3. Asymptotic Bias System-α

gα
j = gα

j (α0), Gα
j (α) = ∂gα

j (α)/∂α′,
Gα

j = Gα
j (α0), ( j = 1, . . . , nα),

Gα = E[Gα
j ], �αα = E[gα

j gα′
j ], �αα = (Gα′ (�αα)−1Gα)−1,

Hα = �ααGα′ (�αα)−1,

Pα = (�αα)−1 − (�αα)−1Gα�ααGα′ (�αα)−1.

aαs ≡ tr(�αα E[∂2gα
js/∂α∂α

′])/2, (s = 1, . . . ,mα). (B.1)

B.4. Asymptotic Bias System-β

gβ

i = gβ

i (α0, β0), Gβ

βi (α, β) = ∂gβ

i (α, β)/∂β ′,

Gβ

βi = Gβ

βi (α0, β0), (i = 1, . . . , nβ),

�ββ = E[gβ

i gβ ′
i ], Gβ

β = E[Gβ

βi ], �ββ = (Gβ ′
β (�ββ)−1Gβ

β)−1,

Hβ = �βGβ ′
β (�ββ)−1,

Pβ = (�ββ)−1 − (�ββ)−1Gβ

β�
ββGβ ′

β (�ββ)−1.

aβr ≡ tr (�ββ E[∂2gβ

ir/∂β∂β
′])/2, (r = 1, . . . ,mβ). (B.2)

Gβ

αi (α, β) = ∂gβ

i (α, β)/∂α′, Gβ

αi = Gβ

αi (α0, β0), Gβ
α = E[Gβ

αi ]

�
ββ

W = (Gβ ′
β (W ββ)−1Gβ

β)−1, Hβ

W = �
ββ

W Gβ ′
β (W ββ)−1.
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B.5. Independent Samples

aβ

ββr = tr(HβGβ
α�

ααGβ ′
α Hβ ′ E[∂2gβ

ir/∂β∂β
′])/2,

aβ

βαr = − tr(HβGβ
α�

αα E[∂2gβ

ir/∂α∂β
′]),

aβ
ααr = tr(�αα E[∂2gβ

ir/∂α∂α
′])/2, (r = 1, . . . ,mβ).

cβββr = tr(E[∂2gβ ′
i /∂β∂βr ]PβGβ

α�
ααGβ ′

α Hβ ′ ),

cββαr = −tr(E[∂2gβ ′
i /∂α∂βr ]PβGβ

α�
αα), (r = 1, . . . , pβ).

B.6. Identical Samples

gβ·α
i = gβ

i − Gβ
α Hαgα

i , (i = 1, . . . , nβ),

�ββ·αα = E[gβ·α
i gβ·α′

i ], �ββ·α = E[gβ

i gβ·α′
i ], �αβ·α = E[gα

i gβ·α′
i ]

aβ

ββr = tr(Hβ�ββ·αα Hβ ′ E[∂2gβ

ir/∂β∂β
′])/2,

aβ

βαr = tr(Hα�αβ·α Hβ ′ E[∂2gβ

ir/∂β∂α
′]),

aβ
ααr = tr(�αα E[∂2gβ

ir/∂α∂α
′])/2, (r = 1, . . . ,mβ),

cβββr = tr(Hβ�ββ·αα Pβ E[∂2gβ

i /∂β
′∂βr ]),

cββαr = tr(Hα�αβ·α Pβ E[∂2gβ

i /∂α
′∂βr ]), (r = 1, . . . , pβ).
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CHAPTER 12

Empirical Evidence Concerning the Finite
Sample Performance of EL-Type Structural
Equation Estimation and Inference Methods
Ron C. Mittelhammer, George G. Judge,

and Ron Schoenberg

ABSTRACT

This paper presents empirical evidence concerning the finite sample performance of conventional
and generalized empirical likelihood–type estimators that utilize instruments in the context of linear
structural models characterized by endogenous explanatory variables. There are suggestions in the
literature that traditional and nontraditional asymptotically efficient estimators based on moment
equations may, for the relatively small sample sizes usually encountered in econometric practice,
have relatively large biases and/or variances and provide an inadequate basis for estimation and
inference. Given this uncertainty we use a range of data sampling processes and Monte Carlo
sampling procedures to accumulate finite sample empirical evidence concerning these questions
for a family of generalized empirical likelihood–type estimators in comparison to conventional
2SLS and GMM estimators. Solutions to EL-type empirical moment-constrained optimization
problems present formidable numerical challenges. We identify effective optimization algorithms
for meeting these challenges.

1. INTRODUCTION

It is known in the literature that a number of moment-based estimators for
the linear structural model are asymptotically normally distributed and mu-
tually asymptotically equivalent. There is also a growing body of evidence
(see, for example, Newey and Smith 2004 and the references therein) that tra-
ditional asymptotically efficient moment-based estimators may exhibit large
biases and/or variances when applied to the relatively small samples usually
encountered in applied economic research.

Econometric models that specify a set of moment-orthogonality conditions
relating to the underlying data sampling process, and involving parameters, data
outcomes, and model noise, lead to a corresponding set of unbiased empirical
estimating functions. These estimating functions often involve instrumental
variables (IV), whose number exceeds the number of unknown parameters of
interest and overdetermines the model parameters. In some instances the IV
may be only moderately or weakly correlated with the endogenous variables in
the model. In this situation it is generally recognized that significant bias and/or
variability problems may arise and that large sample normal approximations
may provide a poor basis for evaluating finite sample performance (see, for
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example, Nelson and Startz 1990, Maddala and Jeong, 1992, Bound, Jaeger,
and Baker 1995, Stock and Wright 2000).

In an effort to avoid an explicit likelihood function specification, semi-
parametric empirical likelihood (EL)-type estimators have been proposed as
moment-based estimation and inference alternatives to classical maximum like-
lihood methods (Owen 1988, 1991, Qin and Lawless 1994, Imbens, Spady, and
Johnson 1998, Corcoran 2000, Mittelhammer, Judge, and Miller 2000). Given
this new class of estimators, and in line with the ongoing search for efficient
linear structural equation estimators having small finite sample bias, and associ-
ated inference procedures with accurate size, good power, and short confidence
intervals with proper coverage, we provide some empirical evidence relating to
the finite sample performance of a trio of EL-type estimators when estimating
functions overdetermine the model parameters and parameters are moderately
well-identified. The results are based on Monte Carlo sampling experiments
applied to a range of underlying data sampling processes and to estimators that
include the optimal estimating function (OptEF) and two stage least squares
(2SLS) estimator, the generalized method of moments (GMM) estimator based
on an identity weight matrix, as well as the EL, exponential empirical likelihood
(EEL), and log Euclidean likelihood (LEL) estimators. As noted by Imbens
et al. (1998), the computation of solutions to EL-type moment-constrained op-
timization problems can present formidable numerical challenges. From both a
theoretical and a practical standpoint, reliable and efficient solution algorithms
are critically needed. Toward this end, we suggest an algorithm that performs
well.

In the context of finite sample situations where the IV are moderately well-
correlated with the endogenous variables in question and the orthogonality
condition between the IV and the structural equation noise holds, we seek
information relative to the following questions:

(i) Do EL-type estimators offer reductions in either small sample bias or
variance relative to traditional OptEF-2SLS and non-optimal GMM
estimators?

(ii) In terms of a mean square measure of estimator performance, are any
of the EL-type estimators superior to the traditional semiparametric
estimators?

(iii) In terms of inference in small samples, do EL-type testing procedures
have, relative to traditional testing procedures, more accurate coverage,
shorter confidence intervals, and/or test sizes that are closer to nominal
target size?

(iv) What is the relative small sample performance of the traditional and
EL-type inference procedures relative to testing the moment restric-
tions?

(v) What is the basis for a reliable and efficient solution algorithm for
EL-type moment-constrained estimation problems?
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The format of this chapter is as follows: In Section 2 the linear structural
model is defined and the competing semiparametric estimators and inference
procedures are specified. In Section 3 the design of the sampling experiment
is presented and the alternative data sampling processes are defined. Monte
Carlo estimation results are presented and discussed in Section 4. Conclusions,
implications, and speculations are presented in Section 5.

2. STATISTICAL MODELS, ESTIMATORS, AND
INFERENCE PROCEDURES

Consider a single structural equation that is contained within a system of struc-
tural equations and that has the semiparametric linear statistical model form
Y = Xβ + ε. We observe a vector of sample outcomes y = (y1, y2, . . . , yn)′

associated with this linear model, where X is a (n × k) matrix of stochas-
tic explanatory variables, ε is an unobservable random noise vector with
mean vector 0 and covariance matrix σ 2In , and β ∈ B is a (k × 1) vector
of unknown parameters. If one or more of the regressors is correlated with
the equation noise, then E[n−1X′ε] �= 0 or plim[n−1X′ε] �= 0 and traditional
Gauss–Markov based procedures such as the least squares (LS) estimator, or
equivalently the method of moments (MOM)-extremum estimator defined by
β̂mom = argβ∈B[n−1X′(Y− Xβ) = 0], are biased and inconsistent, with uncon-
ditional expectation and probability limit given by E[β̂] �= β and plim[β̂] �= β.

2.1. Traditional Instrument-Based Estimators

Given a sampling process characterized by nonorthogonality of X and ε, in
order to avoid the use of strong distributional assumptions it is conventional
to introduce additional information in the form of a (n × m),m ≥ k, random
matrix Z of instrumental variables whose elements are correlated with X but
uncorrelated with ε. This information is introduced into the statistical model
by specifying the sample analog moment condition

h(Y,X,Z;β) = n−1[Z′(Y− Xβ)]
p→ 0, (2.1)

relating to the underlying population moment condition derived from the or-
thogonality of instruments and model noise defined by

E
[
Z′ (Y− Xβ)

] = 0. (2.2)

If m = k, the vector of moment conditions just determine the model parameters,
and the sample moments (2.1) can be solved for the basic IV estimator β̂ iv =
(Z′X)−1Z′Y. When the usual regularity conditions are fulfilled, this IV estimator
is consistent, asymptotically normal distributed, and is an optimal estimating
function (OptEF) estimator (Godambe 1960, Heyde 1989, Mittelhammer et al.
2000).
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For m > k, the vector of moment conditions overdetermine the model param-
eters and other IV-like estimation procedures are available, such as the well-
known two stage least squares (2SLS) estimator, β2sls = (X′PzX)−1X′PzY,

where Pz = Z(Z′Z)−1Z′ is the projection matrix for Z. This estimator is
equivalent to the estimator formed by applying the OptEF transforma-
tion n(X′Z(Z′Z)−1Z′X)−1X′Z(Z′Z)−1 to the moment conditions in (2.2)
(Godambe 1960, Judge et al. 1985, Heyde and Morton 1998).

The GMM estimator (Hansen 1982) is another estimator that makes use of
the information in (2.2). The GMM estimators minimize a quadratic form in
the sample moment information

β̂(W) = arg min
β∈B

[Qn (β)]

= arg min
β∈B

[(
n−1Z′ (Y−Xβ)

)′
W
(
n−1Z′ (Y−Xβ)

)]
(2.3)

= arg min
β∈B

[
n−2 (Y−Xβ)′ ZWZ′ (Y−Xβ)

]
.

The GMM estimator can be shown to have optimal asymptotic properties if
the weighting matrix W is appropriately defined. The optimal choice of W
in the context of moment conditions (2.2) leads back to the definition of the
2SLS-OptEF estimator.

2.2. Empirical Likelihood–Type Estimators

In contrast to traditional instrument moment–based estimators, the EL approach
(Owen 1988, 1991, 2001, Qin and Lawless 1994, Imbens et al. 1998, Corcoran
2000, Mittelhammer et al. 2000) allows the investigator to employ likelihood
methods for model estimation and inference without having to choose a spe-
cific parametric family of probability densities on which to base the likelihood
function. Under the EL concept, empirical likelihood weights supported on a
sample of observed data outcomes are used to reduce the infinite dimensional
problem of nonparametric likelihood estimation to a finite dimensional one.

2.2.1. Estimation

The constrained estimation problem underlying the EL approach is in many
ways analogous to allocating probabilities in a contingency table where w j and
q j are observed and expected probabilities. A solution is achieved by mini-
mizing the divergence between the two sets of probabilities by optimizing a
goodness-of-fit criterion subject to the moment constraints. One possible set of
divergence measures is the power divergence family of statistics (Cressie and
Read 1984, Read and Cressie 1988)

I (w,q, λ) = 2

λ (λ+ 1)

n∑
i=1

wi

[(
wi

qi

)λ

− 1

]
, (2.4)
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where λ is an arbitrary unspecified parameter. In the limit as λ ranges from −1
to 1, several estimation and inference procedures emerge.

If in an instrumental variable context for the linear structural equation we use
(2.4) as the goodness-of-fit criterion and (2.1) as the moment-estimating func-
tion information, the EL estimation problem can be formulated as the following
extremum-type estimator:

β̂ = arg max
β

[
�E (β) = max

w

{
−I (w,q, λ)|

n∑
i=1

wi z′i. (yi − xi.β) = 0,

n∑
i=1

wi = 1, wi ≥ 0∀i,β ∈ B

}]
. (2.5)

Three main variants of I (w,q, λ) have received explicit attention in the litera-
ture. Letting λ→−1 leads to the traditional empirical log-likelihood objective
function, n−1∑n

i=1 ln (wi ) and the maximum empirical likelihood (MEL) esti-
mate ofβ. Whenλ→ 0, the empirical exponential likelihood objective function
−∑n

i=1 wi ln (wi ) is defined and the maximum empirical exponential likelihood
(MEEL) estimate of β results. Finally, when λ = 1, the log Euclidean likeli-
hood function −n−1

(∑n
i=1 (n2w2

i − 1)
)

is implied and leads to the maximum
log euclidean likelihood (MLEL) estimate of β.

In the sense of objective function analogies, the Owen MEL approach is the
closest to the classical maximum likelihood approach. The MEEL criterion of
maximizing −∑n

i=1 wi ln(wi ) is equivalent to defining an estimator by mini-
mizing the Kullback–Leibler (KL) information criterion

∑n
i=1 wi ln(wi/n−1)

(Kullback 1959, Golan, Judge, and Miller 1996). Interpreted in the KL context,
the MEEL estimation objective finds the feasible weights ŵ that define the min-
imum value of all possible expected log-likelihood ratios consistent with the
structural moment constraints. The MLEL solution seeks feasible weights ŵ
that minimize the Euclidean distance of w from the uniform probability distri-
bution, the square of this Euclidean distance being (w− 1nn−1)′(w− 1nn−1),
where 1n denotes an n × 1 vector of unit values. All of the preceding estima-
tion objective functions achieve unconstrained (by moment constraints) optima
when the empirical probability distribution is given by w = 1nn−1.

If the optimization problem is cast in Lagrangian form, where α and η are
Lagrange multipliers for the moment and adding up conditions, respectively,
then the constrained optimal w′

i s for the MEL estimator can be expressed as

wi (β,α) = [n (α′z′i. (yi − xi.β)+ 1
)]−1

, (2.6)

and the constrained optimal wi ’s for the MEEL estimator can be expressed as

wi (β, α) = exp
(
α′z′i. (yi − xi.β)

)∑n
j=1 exp

(
α′z′j.(y j − x j.β)

) . (2.7)

In the case of the MLEL estimator, the constrained optimalwi ’s can be expressed
as wi (β,α, η) = (2n)−1(α′z′i.(yi − xi.β)+ η). The Lagrange multiplier η can
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be eliminated by solving the adding up condition 1′nw(β,α, η) = 1 for η, yield-
ing the expression η(α, β) = (2− n−1∑n

i=1 α
′z′i.(yi − xi.β)

)
, and then substi-

tution into wi (β,α, η) yields

wi (β,α) = (2n)−1

(
α′z′i. (yi − xi.β)+ 2− n−1

n∑
i=1

α′z′i. (yi − xi.β)

)
.

(2.8)

Under the usual regularity conditions assumed when establishing the asymp-
totics of traditional structural equation estimators, all of the preceding EL-type
estimators of β obtained by optimizing the wi ’s in (2.6), (2.7), or (2.8) with
respect to β, α, and/or η are, given the set of estimating equations under con-
sideration, consistent, asymptotically normally distributed, and asymptotically
efficient relative to the OptEF estimator. Calculating the solution to the MEL,
MEEL, or MLEL estimation problem will generally require that a computer-
driven optimization algorithm be employed. When m = k, the solutions to all
of the EL-type extremum problems lead back to the standard IV estimator β̂iv

with wi = n−1. When m ≥ k, the estimating equations overdetermine the un-
known parameter values to be recovered and a nontrivial EL solution results.
The solution to the constrained optimization problem (2.5) based on any of the
members of the Cressie–Read family of estimation objective functions yields
an optimal estimate, ŵ and β̂, that cannot, in general, be expressed in closed
form and thus must be obtained using numerical methods.

2.2.2. Inference

EL-type inference methods, including hypothesis testing and confidence region
estimation, bear a strong analogy to inference methods used in traditional ML
and GMM approaches. Owen (1988, 1991) showed that an analog of Wilks’

Theorem for likelihood ratios, −2 ln(LR)
a∼χ2

j , hold for the MEL approach,
where j denotes the number of functionally independent restrictions on the
parameter space. Baggerly (1998) demonstrated that this calibration remains
applicable when the likelihood is replaced with any properly scaled member of
the Cressie–Read family of power divergence statistics (2.4). In this context, the
empirical likelihood ratio (LR) for testing the linear hypothesis cβ = r, when
rank (c) = j , is given for the MEL case by

LREL(y) = maxβ [�E (β) s.t. cβ = r]

maxβ �E (β)
(2.9)

where −2 ln(LREL(Y))
a∼χ2( j, 0) under H0 when m ≥ k. An analogous

pseudo-LR approach can be applied, mutatis mutandis, to other members of
the Cressie–Read family. One can also base tests of cβ = r on the Wald Cri-
terion in the usual way by utilizing the inverse of the asymptotic covariance
matrix of cβ̂EL as the weight matrix of a quadratic form in the vector cβ̂EL − r, or
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construct tests based on the Lagrange multipliers associated with the constraints
cβ = r imposed on the EL-type optimization problem. Confidence region es-
timates can be obtained from hypothesis test outcomes in the usual way based
on duality. The validity of the moment conditions (2.1)–(2.2) can be assessed
via a variation of the preceding testing methodology. We provide further details
later regarding the empirical implementation of inference methods.

2.3. Test Statistics

Two different types of inference contexts are examined in this paper: testing
the validity of the moment constraints, and testing hypotheses and generating
confidence intervals for parameters of the structural model.

2.3.1. Moment Validity Tests

Regarding the validity of the moment restrictions, Wald-type quadratic form
tests, often referred to as average moment tests, are calculated for all five esti-
mators. The Wald test statistics are specified as

Wald = (1′n(Z� (Y− Xβ̂)))′
[
(Z� (Y− Xβ̂))′(Z� (Y− Xβ̂))

]−1

× (1′n(Z� (Y− Xβ̂))) (2.10)

where β̂ is any one of the five different estimators of the β vector and� denotes
the generalized Hadamard (elementwise) product operator. Under the null hy-
pothesis of moment validity, the Wald statistic has an asymptotic chi square
distribution with degrees of freedom equal to the degree of overidentification
of the parameter vector, that is, m − k.

Pseudo-LR–type tests of moment validity, referred to as criterion function
tests by Imbens et al. (1998, p. 342), are also calculated for the three EL-type
procedures. The respective test statistics for the MEEL and MEL procedures
are LREEL = 2n(w′ ln(w)+ ln(n)) and LREL = −2(1′n ln(w)+ n ln(n)).

In the case of MLEL, the pseudo-LR statistic is derived as a special case of
the generalized empirical likelihood (GEL) class of procedures identified by
Newey and Smith (2004, p. 8) given by

LRLEL = n

(
1− n−11′n

[
(Z� (Y− Xβ))

(
α

η

)]2
)

= n

(
1−

(
2

η

)2

n
n∑

i=1

w2
i

)
. (2.11)

Since LRLEL ≡ WaldLEL, we later report on the performance of only one version
of this particular test. The w weights, β vector, and Lagrange multipliers α and
η appearing in the LR test statistics are replaced by the respective EL-type
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estimates. All of the pseudo-LR–type test statistics follow the same asymptotic
chi square distribution as for the Wald statistics of moment validity.

The final set of moment validity tests are based on the Lagrange multipliers
of the moment constraints. In the case of the EEL-type test statistic, we examine
the following quadratic form in the Lagrange multiplier vector that incorporates
a robust estimator of the covariance matrix of the moment constraints,

LMEEL = nα′
[
(h(β)� w)′ h(β)

] [
(h(β)� w)′ (h(β)� w)

]−1

× [(h(β)� w)′ h(β)
]
α (2.12)

where h(β) ≡ (Z� (Y− Xβ)) and w, α, and β are estimated on the basis of
the MEEL method. In the case of the MEL and MLEL methods, we instead
utilize LM tests that are based on equivalences with GEL tests implied by the
asymptotic results of Newey and Smith (2004, p. 8). Both of these LM tests are
based on the statistic

LM = nα′
(
�−1 −�−1G′VG�−1

)−
α (2.13)

where � ≡ n−1(Z� (Y− Xβ))′(Z� (Y− Xβ)),G ≡ n−1X′Z,V ≡ (G�−1

G′)−1, and the values of β and α are replaced by either MEEL or MLEL
estimates. Under the null hypothesis, all of the LM tests are asymptotically chi
square distributed with degrees of freedom equal to m − k.

2.3.2. Tests of Parameter Restrictions

A test of the significance of the parameters of the structural model is conducted
based on the usual asymptotic normally distributed Z -statistic and concomi-
tantly, by duality, the accuracy of confidence region coverage of the parameters
is examined. The test statistic for all of the estimation procedures examined has
the familiar form

Z = β̂ i

ŝtd(β̂ i )

a∼ N (0, 1) under H0 : β i = 0, (2.14)

and the associated confidence interval estimate is (β̂ i − zτ ŝtd(β̂ i ), β̂ i +
zτ ŝtd(β̂ i )) where zτ denotes the 100τ% quantile of the standard normal distribu-
tion. In (2.14) β̂ i and ŝtd(β̂ i ) are the appropriate estimates of the parameter and
the estimated standard error of the estimate based on one of the five alternative
estimation procedures. The respective estimates of the standard errors used in
the test and confidence interval procedures were obtained as the square roots of
the appropriate diagonal elements of the asymptotic covariance matrices of the
B2SLS-OptEF, GMM(I), and the EL-type estimators defined respectively as

AsyCov
(
B̂2sls

) = σ̂ 2
(
X′Z(Z′Z)−1Z′X

)−1
, (2.15)

AsyCov
(
B̂GMM(I)

) = σ̂ 2(X′ZZ′X)−1(X′Z(Z′Z)Z′X)(X′ZZ ′X)−1, (2.16)
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and

AsyCov
(
B̂EL-type

)
= [(X′(Z� ŵ))

[
((Z� (Y− XB̂))� ŵ)′((Z� (Y− XB̂))� ŵ)

]−1

×((Z� ŵ)′X)
]−1

, (2.17)

where σ̂ 2 is the usual consistent estimate of the equation noise variance, and ŵ
and B̂ are the appropriate estimates obtained from applications of the MEEL,
MEL, or MLEL estimation procedure.

2.4. Computational Issues and Approach

As noted by Imbens et al. (1998), the computation of solutions to EL-type con-
strained optimization problems can present formidable numerical challenges.
This results because, in the neighborhood of the solution to such problems, the
gradient matrix associated with the moment constraints will approach an ill-
conditioned state. This occurs by design in these types of problems because the
fundamental method by which EL-type methods resolve the overdetermined
nature of the empirical moment conditions,

∑n
i=1 wi z′i. (yi − xi.β) = 0, is to

choose sample weights that ultimately transform the m moment equations into
a functionally dependent, lower rank (k < m) system of equations capable of
being solved uniquely for the parameters. This creates instability in gradient-
based constrained optimization algorithms regarding the representation of the
feasible spaces and feasible directions for such problems. Moreover, attempt-
ing to solve the optimization problems in primal form is complicated by the
dimensionality of the problem, where there are as many wi sample weights
as there are sample observations, and requires that explicit constrained opti-
mization methods be used to enforce the moment conditions and the convexity
properties of the sample weights.

Given these complications, Imbens et al. (1998) found it advantageous in
their EEL and EL simulations to utilize a dual penalty function method for en-
forcing the moment constraints, whereby a penalty-augmented objective func-
tion is optimized within the context of an unconstrained optimization problem.
Although their penalty-function approach appeared to perform well for the
range of applications that were examined in their work, the algorithm failed
(nonconvergence) too frequently when applied to the IV-based moment con-
strained problems examined in this chapter.

The computational approach utilized in this work for solving the EL-type
problems consisted of concentrating out the Lagrange multiplier vector and
scalar, α and η, from the EL-type optimization problems, expressing α and η

as a function of the β vector (in the case of MEEL and MEL, the optimal η
is simply the scalar 1). The actual process of concentrating out the Lagrange
multipliers cannot be accomplished in closed form, requiring a numerical non-
linear equation solving procedure, but solving the system of equations proved
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to be quite stable and efficient. Then the resulting concentrated Lagrange rep-
resentations of the EL-type estimation problems were optimized with respect
to the choice of β, leading to the parameter estimates.

More specifically, in the first step of the computational procedure the
Lagrange multiplier vector α was expressed as a function of β by utilizing
the empirical moment conditions and the weight representation (2.6)–(2.8) for
the vector w (β, α) as

α (β) ≡ argα

[
(Z� (Y− Xβ))′ w(β, α) = 0

]
. (2.18)

The solution to (2.18) was determined numerically using the NLSYS nonlinear
equation solver in the GAUSS mathematical programming language (Aptech
Systems, Maple Valley, Washington, Version 3.6). Regarding the Lagrange
multiplier η, the first-order conditions for either the MEL or MEEL estimation
problems imply that η (β) ≡ 1. In the case of the MLEL problem, η (β) can be
defined by substituting the value ofα (β) obtained from (2.18) into the definition
of η (α, β) that precedes (2.8), yielding

η (β) ≡
(

2− n−1
n∑

i=1

α(β)′z′i. (yi − xi.β)

)
. (2.19)

In the second step relating to optimization, the concentrated Lagrange function
can be represented as

L∗(β) ≡ L(w(β,α(β)), β,α(β), η(β))

≡ φ (w (β,α(β)))−α(β)′
n∑

i=1

wi (β,α(β)) z′i. (yi − xi.β)

− η (β)

(
n∑

i=1

wi (β,α (β))− 1

)
. (2.20)

The value of L∗(β) is then optimized (maximized for MEL, minimized for
MEEL and MLEL) with respect to the choice of β, where φ(·) can also de-
note any of the estimation objective functions in the Cressie–Read family. The
algorithm used to accomplish the optimization step was based on a Nelder–
Meade polytope-type direct search procedure written by the authors and imple-
mented in the GAUSS programming language (Nelder and Mead 1965, Jacoby,
Kowalik, and Pizzo 1972, Bertsekas 1995) using the values 0.5, 0.5, and 1.1,
respectively, for the reflection, contraction, and expansion coefficients. The
Nelder–Meade approach is especially well-suited for this problem because it
requires that only the function itself be evaluated at trial values of the β vec-
tor, and does not require calculation of the numerical derivatives of the first or
second order used by gradient-based search algorithms, which were inaccurate
and unstable in the current context.
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3. DESIGN OF SAMPLING EXPERIMENTS

The finite sample properties of the EL-type estimators and associated inference
procedures delineated in Section 2 cannot be derived from a direct evaluation of
closed functional forms applied to distributions of random variables. Moreover,
the finite sample probability distributions of the traditional 2SLS and GMM
estimators are also generally intractable. Consequently, we use Monte Carlo
sampling experiments to examine and compare the finite sample performance of
competing estimators and inference methods. Although these results are specific
to the collection of particular Monte Carlo experiments analyzed, the wide
ranging sampling evidence reported does provide an indication of the types of
relative performance that can occur over a range of scenarios for which the
unknown parameters of a model are moderately well-identified.

3.1. Experimental Sampling Design

Consider a data sampling process of the following form:

Yi1 = Zi1β1 + Yi2β2 + ei = Xi.β + εi (3.1)

Yi2 =
5∑

j=1

πj Zi j + vi = Zi.π + vi (3.2)

where Xi . = (Zi1, Yi2) and i = 1, 2, . . . , n. In the sampling experiment, the
two-dimensional vector of unknown parameters, β, in (3.1) is arbitrarily set
equal to the vector [−1, 2]′. The outcomes of the (6× 1) random vector
[Yi2, εi , Zi1, Zi2, Zi3, Zi4] are generated i.i.d. from a multivariate normal dis-
tribution with a zero mean vector and standard deviations uniformly set to
5 for the first two random variables and 2 for the remaining random vari-
ables, and Zi5 ≡ 1, ∀i . Also various other conditions relating to the corre-
lations among the six scalar random variables were assumed. The values of
the π j ’s in (3.2) are determined by the regression function between Yi2 and
[Zi1, Zi2, Zi3, Zi4, Zi5], which is itself a function of the covariance specifica-
tion relating to the marginal normal distribution associated with the (5× 1)
random vector [Yi2,Zi1, Zi2, Zi3, Zi4]. Thus the π j ’s generally change as the
scenario postulated for the correlation matrix of the sampling process changes.
In this sampling design, the outcomes of [Yi1, Vi ] are then calculated by
applying the equations (3.1 and 3.2) to the outcomes of [Yi2, Zi1, Zi2, Zi3,
Zi4, Zi5].

3.2. Sample Characteristics and Outcome Basis

Regarding the details of the sampling scenarios simulated for these Monte Carlo
experiments, sample sizes of n = 50, 100, and 250 were examined. The outcomes
of εi were generated independently of the vector [Zi1, Zi2, Zi3, Zi4] so that the
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Table 12.1. Monte Carlo experiment definitions, with β = [−1, 2]′,
σ εi = σ Y2i = 5, and σ Zi j = 2,∀i and j = 1, . . . , 5

Experiment
number ρ y2i ,εi

ρ y2i ,zi,1
ρ y2i ,zi j ; j > 1 ρzi j ,zik

R2
Y1,Ŷ1

R2
Y2,Ŷ2

1 0.25 0.25 0.25 0 0.84 0.25
2 0.25 −0.25 0.25 0.5 0.86 0.40
3 0.50 0.25 0.25 0 0.89 0.25
4 0.50 −0.25 0.25 0.5 0.90 0.40
5 0.75 0.25 0.25 0 0.95 0.25
6 0.75 −0.25 0.25 0.5 0.94 0.40
7 0.50 0.1 0.5 0.25 0.89 0.53
8 0.50 0.1 0.5 0.5 0.89 0.50
9 0.50 0.1 0.5 0.75 0.89 0.68

10 0.50 0.5 0.1 0.75 0.89 0.53

Note: ρ y2i ,εi
denotes the correlation between Y2i and ei and measures the degree of

nonorthogonality; ρ y2i ,zi j
denotes the common correlation between Y2i and each of the

four random instrumental variables, the Zi j ’s; ρzi j ,zik
denotes the common correlation

between the four random instrumental variables; R2
Y1,Ŷ1

denotes the population squared
correlation between Y1 and Ŷ1 = Xβ; and R2

Y2,Ŷ2
denotes the population squared corre-

lation between Y2 and Ŷ2 = Zπ .

correlations between εi and the Z ′
i j s were zero, thus fulfilling a fundamental

condition for [Zi1, Zi2, Zi3, Zi4] to be considered a set of valid instrumental
variables for estimating the unknown parameters in (3.1). Regarding the degree
of nonorthogonality and identifiability in (3.1), correlations of 0.25, 0.50, and
0.75 between the random variables Yi2 and εi were utilized to simulate moder-
ately to relatively strongly correlated nonorthogonality relationships between
the explanatory variable Yi2 and the equation noise εi .

For each sample size, alternative scenarios were examined relating to both
the degree of correlation existing between each of the random instruments in the
matrix Z and the Y2 variable, and the levels of collinearity existing among the
instrumental variables themselves. By varying the degrees of intercorrelation
among the variables, the overall correlation of the instrumental variables with
Y2 is effected and contributes to determining the overall effectiveness of the set
of instruments in predicting values of the endogenous Y2. The joint correlation
between Y2 and the set of instruments range from a relatively low 0.25 to a
relatively strong 0.68.

The major characteristics of each sampling scenario are delineated in
Table 12.1. In general, the scenarios range from relatively weak but independent
instruments to stronger but more highly multicollinear instruments. All models
have a relatively strong signal component in the sense that the squared correla-
tion between the dependent variable Y1 and the explanatory variables (Z.1,Y2)
ranges between 0.84 and 0.95. In total there are 10 different MC experimental
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designs in combination with the 3 different sample sizes, resulting in 30 different
sampling scenarios in which to observe estimator and inference behavior.

The sampling results, reported in Section 4, are based on 5,000 Monte Carlo
repetitions, which was sufficient to produce stable estimates of the empirical
mean squared error (MSE), expressed in terms of the mean of the empirical
squared Euclidean distance between the true parameter vector β and β̂ (mea-
suring parameter estimation risk), the MSE between y with ŷ (measuring pre-
dictive risk), the average estimated bias in the estimates, Bias (β̂) = E[β̂]− β,
and the average estimated variances, Var(β̂ i ).

Regarding inference performance, we (i) compare the empirical size of 10
alternative tests of moment equation validity with the typical nominal target size
of 0.05, (ii) examine the empirical coverage probability of confidence interval
estimators based on a target coverage probability of 0.99, (iii) compare the
empirical expected lengths of confidence intervals, and (iv) examine power of
significance tests associated with the different estimation methods.

4. MONTE CARLO SAMPLING RESULTS

The results of the estimation and inference simulations are presented in this
section. We report MSE results for the entire parameter vector β, but limit our
reporting of bias, variance, hypothesis tests, and confidence region estimation
performance to the structural parameter β2 and note that the results for the
remaining structural parameter were qualitatively similar. (Tables containing
the detailed simulation results are available from the authors.)

4.1. Estimator MSE Performance

The simulated mean squared errors associated with estimating the β vector are
presented in Figure 12.1, where results are expressed relative to the MSE of the
2SLS estimator and scenarios are numbered sequentially to repeatedly represent
the 10 sampling scenarios in Table 12.1 for each of the sample sizes 50, 100,
and 250. A number of general patterns are evident from the MC results. First
of all, the 2SLS estimator dominates the other four estimators in terms of pa-
rameter MSE, with the exception of the smallest sample size and scenario 5, in
which case the MEEL estimator is marginally superior to all others. Second, the
MSEs of the GMM(I) estimator are very close to the MEEL estimator across all
scenarios, but MEEL is actually MSE superior to GMM(I) in only a few cases.
Third, there is a general order ranking of the MSEs of the EL-type estimators
whereby generally MSE(MEEL) < MSE(MEL) < MSE(MLEL). However, dif-
ferences in MSE performance among these estimators is small at n = 100 and
practically indistinguishable at n = 250. Fourth, the MSE differences between
all of the estimators dissipate as the sample size increases, with the differences
being negligible at the largest sample size (n = 250).
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4.2. Bias and Variance

Empirical bias and variance results for the estimators of β2 are presented in Fig-
ures 12.2 and 12.3. Again some general estimator performance patterns emerge.
First of all, the EL-type estimators, as a group, generally tend to be less biased
than either the 2SLS or GMM estimators, but the EL estimators also tend to ex-
hibit more variation than the traditional estimators. These performance patterns
are especially evident for the small sample size (n = 50). Second, volatility
in bias across MC scenarios is notably more pronounced for 2SLS and GMM
than for the EL estimators, whereas just the opposite is true regarding volatility
in variance measures across MC scenarios. Again this performance pattern is
notably more pronounced at the smallest sample size than for the larger sam-
ple sizes. Third, regarding comparisons among EL-type estimators, the MEEL
estimator tends to be the least variable among the three EL alternatives, with
the ranking of variability tending to be in the order var(MEEL) < var(MEL) <
var(MLEL). The ranking of relative bias performance among the EL estima-
tors is less distinct, where, especially for the smallest sample size, each of the
EL-type estimators exhibits least bias for at least one MC scenario. For larger
sample sizes the MEEL estimator more often than not has the smallest bias,
but again there are exceptions for some scenarios, and in any case the bias of
all of the EL-type estimators tends to be small, bordering on inconsequential
for most of the scenarios when sample sizes are n = 100 or larger. Fourth, for
the largest sample size (n = 250), both bias and variance tend to be quite small
for all of the estimators considered, although in a relative sense, the traditional
estimators continued to have notably larger bias for most scenarios than any of
the EL-type estimators.

4.3. Prediction MSE

In the context of generating predictions closest in expected Euclidean distance
to actual dependent variable outcomes, the 2SLS and GMM estimators were
notably superior to the EL-type estimators across the majority of sampling
scenarios, and in any case were never worse. On the other hand, if one intended to
use estimated residuals to generate an estimate of the model noise variance, the
EL-type methods exhibited MSE measures that were closer in proximity to the
true noise variance of σ 2 = 25. Among the EL-type methods, the general rank
ordering of prediction MSE was MSE(MEEL) < MSE(MEL) < MSE(MLEL).

4.4. Size of Moment Validity Tests

Figure 12.4 presents empirical sizes of the 10 different tests of moment validity
decribed in Section 2.3. The target size of the test was set to the typical 0.05
level, and when n = 250 all of the test are generally within ±0.01 of this level
across all MC scenarios. However, a number of the test procedures, most notably
the LR tests for MEEL and MEL, the LM test for MEL, and to a lesser extent
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the Wald–average moment test for 2SLS and GMM, are erratic and notably
distant from the target test size when n = 50. The most consistent suite of tests
in terms of average proximity to the true test size across MC scenarios were the
Wald–average moment tests for all three of the EL-type estimators. In addition
the LM tests in the case of MEEL and MLEL was reasonably accurate when
n ≥ 100. As noted in the literature, for a subset of the scenarios, the size of
the tests based on the traditional 2SLS and GMM methods were substantially
distant from target size.

4.5. Confidence Interval Coverage and Expected Length

Figure 12.5 displays results relating to the empirical coverage probability of
confidence intervals for the β2 parameter, where target coverage is 0.99. Except
for two scenarios involving the 2SLS and GMM methods, all of the confidence
intervals are generally within 0.01 of the target coverage for the large sample size
of n = 250. Again with the preceding two exceptions noted relating to the tradi-
tional estimators, coverage is generally within 0.03 of target for the sample size
of n = 100. Coverage degrades significantly for the small sample size n = 50,
with the traditional estimators generally having better coverage, although they
also exhibit demonstrably the worst coverage performance for two sampling
scenarios. Moreover, the traditional methods exhibited more volatility across
MC scenarios than EL-methods. We note that the coverage results observed for
the EL-methods are consistent with other observations in the literature that the
EL-type methods consistently underachieve target coverage probability under
the asymptotic chi square calibration (Baggerly, 2001). In the large majority of
cases, the traditional inference procedures also underachieved target coverage.

In the case of expected confidence interval (CI) length, a clearer relative per-
formance pattern was apparent. In particular, the general relative ranking of CI
length among the five alternative estimators was given by the following ordering
of empirical average lengths: CI(MEEL) < CI(MEL) < CI(MLEL) < CI(2SLS) <
CI(GMM). As expected, differences in length were most pronounced at the
smallest sample size, in some cases exceeding 15%, but differences dissipated
to effectively negligible levels when n = 250.

4.6. Test Power

All of the test procedures exhibited substantial power in rejecting the false null
hypothesis H0 : β2 = 0, where all rejection probabilities were in the range of
0.92 or higher. Among the EL-type methods, the relative power performance
ranking was P(MEEL) > P(MEL) > P(MLEL). When comparing power perfor-
mance to traditional methods, it was generally the case that 2SLS resulted in the
most test power, followed by either MEEL or GMM, depending on the scenario,
although the powers of the latter two procedures were in any case always very
close to each other. The differences in power dissipated substantially for the
higher sample sizes, and when n = 250, there was effectively no difference in
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power between any of the procedures, with all procedures achieving the ideal
power of 1.

5. SOME FINAL REMARKS

In statistical models consisting of linear structural equations, the 2SLS and
GMM estimators have long been the estimator of choice when the number of
moment conditions IV variables exceeded the number of unknown response
parameters in the equation in question. Both the 2SLS and GMM estimators
solve the problem of overidentification by defining particular rank-k linear
combinations of the moment conditions. In contrast the nontraditional EL-
type estimator transforms the overdetermined moments problem into a set of
equations that is solvable for the model parameters by imposing a functional
dependence on the moment equations through the choice of sample observation
weights. Although both the traditional and EL-type estimators perform well in
terms of first-order asymptotics, questions persist as to their small sample bias
and variance performance in estimation, and their coverage, interval width, and
power characteristics in terms of inference.

Given these questions and corresponding conjectures that appear in the lit-
erature, in this chapter we provide some empirical evidence concerning the
sampling performance of 2SLS, GMM, and EL-type methods by simulating a
range of sampling processes and observing empirical sampling behavior of the
estimators and associated inference procedures. While MC sampling results are
never definitive, the base results presented in this paper provide insights into
the relative sampling performance of different types of general moment based
estimators for a range of data sampling processes. Some distinct and interesting
estimation and inference properties that we observed and did not know prior to
our study are as follows:

(i) The EL-type estimators tend to exhibit less bias and more variance
than the traditional estimators.

(ii) In terms of MSE, the 2SLS estimator wins almost all competitions.
At a sample size of 100 or more, the estimators exhibit similar perfor-
mances.

(iii) In terms of accurate size of moment tests, the EL-type inference meth-
ods are superior, based on the average moment (or Wald) statistics,
across all sample sizes. For sample sizes of 100 or more the LM tests
also do reasonably well, especially in the case of MEEL and MLEL,
and for a sample size of 250 all of the moment tests are in the neigh-
borhood of the correct size.

(iv) On CI coverage, the traditional estimators perform somewhat errati-
cally across differing data sampling processes until the highest sample
size is reached. The EL-type methods are similar to each other in in-
terval coverage performance, and exhibit a more orderly convergence
to the correct coverage.
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(v) Test power for significance tests is very high for a sample size of 100
and is essentially 1 and ideal across all significance tests for sample
size 250.

(vi) A combination of concentrating out Lagrangian multipliers via nu-
merical nonlinear equation solving algorithms and then optimizing
the concentrated optimization problem based on a nongradient driven,
direct search polytope (Nelder–Meade) type optimization algorithm
appears to be a tractable and computationally efficient method for
calculating solutions to EL-type problems in the IV-based moment
constraint setting.

Many of the results appear reasonable and consistent with the limited amount
of previous finite sample results (Mittelhammer and Judge, 2002, 2003a) and
speculations in the literature relating to applications of EL-type estimators to
structural equation estimation. The different pseudo-distance measures opti-
mized by the trio of EL-type methods result in differing sampling performances
for the varying estimator and test statistics, and those preferring a particular
pseudodistance measure will no doubt still be able to rationalize why their
choice was not superior for a particular estimation or inference comparison.
However, it is striking that none of the EL-type methods was found to be a
compelling alternative to the ubiquitous 2SLS approach for parameter estima-
tion, and there were only limited cases where the EL-type methods exhibited
competitive inference properties.

Speculating further about the observed results, both the 2SLS and EL-type
methods begin with the same ill-posed, overidentified set of moment conditions
but transform them in differing ways into well-posed systems of equations that
are solvable for the parameters. The 2SLS approach applies an optimal (in the
optimal estimating function, OptEF, sense) linear transformation to the moment
conditions that has a unique solution. This OptEF transformation can be derived
analytically, its functional form is completely known, and it does not depend
on any of the β or σ 2 parameters to be estimated. Even though the unknown
variance parameter σ 2 does appear in the explicit OptEF transformation, it
is a scale factor that is redundant and can be eliminated when the optimal
transform matrix is applied. On the other hand, the EL-type methods introduce
n additional unknown parameters in order to resolve the overdetermined nature
of the moment equations. These parameters must be estimated from the data,
and act as slack variables that scale the sample observation components of the
moment conditions to define a functionally dependent set of equations with
rank equal to the dimension of the β parameter vector. The particular set of
transformed moment conditions that is solved for β in EL-type methods is, in a
sense, arbitrarily determined by an arbitrary choice of pseudodistance measure
(some member of the Cressie–Read family), and an optimal choice for finite
samples, if it exists at all, is a measure zero set. Thus, it is to be expected that
almost all EL-type methods are suboptimal in the class of estimating function-
type estimators.
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Looking toward future research, there are several ways to extend the em-
pirical evidence concerning the performance of EL-type estimators in recover-
ing unknown response parameters in structural equations. We and others have
noted that confidence regions generated by EL-type distance measures using χ2

calibrations consistently under cover. Baggerly (2001) has suggested forming
empirical regions through the use of a studentization of the moment constraints.
Studentizing permits an escape from the convex hull of the moment data ob-
servations and may yield more accurate inferences in small samples.

It would be interesting to extend performance questions to data sampling
processes that involve non-normal, nonsymmetric distributions. Here the EL
methods may exhibit improved performance because the moment information
obtained from nonsymmetric and/or improperly centered distributions may be
better accommodated by the flexible data weights available within the EL frame-
work However, the answer is not clear because EL may attain smaller levels of
bias, but at the expense of increased variance.

One interesting alternative data sampling process would be a statistical model
in which Y is a discrete random variable. On the basis of the preliminary work,
we speculate that the use of EL-type estimators would perform well relative to
semiparametric alternatives in terms of quadratic loss.

Finally, in pursuit of achieving finite sample reductions in mean squared
error, it is useful to consider, in a semiparametric Stein-type of way, a mix-
ture estimator that combines a consistent estimator having questionable finite
properties, with an estimator that is inconsistent but has small finite sample
variability. Such an estimator, which utilizes an EL-type moment formulation,
has been proposed by Mittelhammer and Judge (2003b) and is currently under
further evaluation.

References

Baggerly, K. A. (1998), “Empirical Likelihood as a Goodness of Fit Measure,”
Biometrika, 85, 535–547.

Baggerly, K. A. (2001), “Studentized Empirical Likelihood and Maximum Entropy:
Empirical t,” Working Paper, Department of Statistics, Rice University.

Bertsekas, D. P. (1995), Nonlinear Programming. Belmont: Athena Scientific.
Bound, J., D. Jaeger, and R. Baker (1995), “Problems with Instrumental Variable Esti-

mation When the Correlation Between the Instruments and the Endogenous Variables
is Weak,” Journal of the American Statistical Association, 90, 443–450.

Corcoran, S. A. (2000), “Empirical Exponential Family Likelihood Using Several
Moment Conditions,” Statistica Sinica, 10, 545–557.

Cressie, N., and T. Read (1984), “Multinomial Goodness of Fit Tests,” Journal of Royal
Statistical Society, Series B, 46, 440–464.

Godambe, V. (1960), “An Optimum Property of Regular Maximum Likelihood Estima-
tion,” Annals of Mathematical Statistics, 31, 1208–1212.

Golan, A., G. G. Judge, and D. Miller (1996), Maximum Entropy Econometrics. New
York: John Wiley and Sons.



Empirical Evidence Concerning Finite Sample EL Performance 305

Hansen, L. P. (1982), “Large Sample Properties of Generalized Method of Moments
Estimators,” Econometrica, 50, 1029–1054.

Heyde, C. (1989), “Quasi-Likelihood and Optimality of Estimating Functions: Some
Current and Unifying Themes,” Bulletin of International Statistical Institute, 1,
19–29.

Heyde, C., and R. Morton (1998), “Multiple Roots in General Estimating Equations,”
Biometrika, 85(4), 954–959.

Imbens, G. W., R. H., Spady, and P. Johnson (1998), “Information Theoretic Approaches
to Inference in Moment Condition Models,” Econometrica, 66, 333–357.

Jacoby, S. L. S., J. S. Kowalik, and J. T. Pizzo (1972), Iterative Methods for Nonlinear
Optimization Problems. New York: Prentice Hall.

Judge, G., R. Hill, W. Griffiths, H. Lutkepohl, and T. Lee (1985), The Theory and Practice
of Econometrics. New York: John Wiley and Sons.

Kullback, S. (1959), Information Theory and Statistics. New York: John Wiley and Sons.
Maddala, G. S., and J. Jeong (1992), “On the Exact Small Sample Distribution of the

Instrumental Variable Estimator,” Econometrica, 60, 181–183.
Mittelhammer, R., and G. Judge (2002), “Endogeneity and Moment Based Estimation

under Squared Error Loss,” in Handbook of Applied Econometrics and Statistical
Inference (ed. by Alan Wan, Aman Ullah, and Anoop Chaturvedi), New York: Marcel
Dekker, 347–71.

Mittelhammer, R., and G. Judge (2003a), “Finite Sample Performance of the Empirical
Likelihood Estimation under Endogeneity,” in Computer Aided Econometrics (ed. by
David Giles), New York: Marcel Dekker, 149–74.

Mittelhammer, R., and G. Judge (2003b), “Robust Empirical Likelihood Estimation of
Models with Non-Orthogonal Noise Components,” Volume in Honor of Henri Theil,
Journal of Agricultural and Applied Economics, 35, 91–102.

Mittelhammer, R., G. Judge, and D. Miller (2000), Econometric Foundations. Cam-
bridge: Cambridge University Press.

Nelder, J. A., and R. Mead (1965), “A Simplex Method for Function Minimization,”
Computer Journal, 7, 308–313.

Nelson, C. R., and R. Startz (1990), “Some Further Results on the Exact Small Sample
Properties of the Instrumental Variable Estimator,” Econometrica, 58, 967–976.

Newey, W. K., and R. J. Smith (2004), “Asymptotic Bias and Equivalence of GMM and
GEL Estimators,” Econometrica, 72, 219–256.

Owen, A. (1988), “Empirical Likelihood Ratio Confidence Intervals for a Single Func-
tional,” Biometrika, 75, 237–249.

Owen, A. (1991), “Empirical Likelihood for Linear Models,” The Annals of Statistics,
19(4), 1725–1747.

Owen, A. (2001), Empirical Likelihood. New York: Chapman and Hall.
Qin, J., and J. Lawless (1994), “Empirical Likelihood and General Estimating Equa-

tions,” The Annals of Statistics, 22(1), 300–325.
Read, T. R., and N. A. Cressie (1988), Goodness of Fit Statistics for Discrete Multivariate

Data. New York: Springer Verlag.
Stock, J. H., and J. H. Wright (2000), “GMM with Weak Identification,” Econometrica,

68(5), 1055–1096.



CHAPTER 13

How Accurate Is the Asymptotic
Approximation to the Distribution of
Realised Variance?
Ole E. Barndorff-Nielsen and Neil Shephard

ABSTRACT

In this paper we study the reliability of the mixed normal asymptotic distribution of realized
variance error, which we have previously derived using the theory of realized power variation. Our
experiments suggest that the asymptotics is reliable when we work with the logarithmic transform
of the realized variance.

1. INTRODUCTION

Tom Rothenberg’s outstanding teaching and research has raised the level of
understanding econometricians have of the asymptotic properties of estimators
and testing procedures used in economics. His frequent trips away from the
United States, and his particular kindness to research students during his aca-
demic visits, has spread his influence changing the way we carry out theoretical
econometric research. This paper touches on some of Tom’s research interests.
It will look at the effectiveness of an asymptotic theory. His influential paper
Rothenberg (1984) was devoted to issues of this type.

1.1. The Model

This paper assesses the accuracy of the mixed normal asymptotic approximation
to the distribution of realized variance (that is the sum of squares of financial
returns) we recently derived in Barndorff-Nielsen and Shephard (2002) and
extended in Barndorff-Nielsen and Shephard (2003, 2004). This theory assumes
a flexible stochastic volatility (SV) model for log prices.

In the SV model for log prices a basic Brownian motion is generalized to
allow the volatility term to vary over time. Then the log price y∗ follows

y∗(t) = α(t)+
∫ t

0
σ (u)dw(u) t ≥ 0, (1.1)

where σ and α is assumed to be stochastically independent of the standard
Brownian motion w. We call σ the instantaneous or spot volatility, σ 2 the
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corresponding variance, and α the mean process. A simple example of this is

α(t) = µt + βσ 2∗(t), where σ 2∗(t) =
∫ t

0
σ 2(u)du,

in which case we might call β a risk premium. The process σ 2∗ is called the
integrated variance. Throughout we will assume the following conditions hold
with probability one:

(C) σ 2 > 0 is càdlàg on [0,∞) and α has the property

h̄−3/4 max
1≤ j≤M

|α( j h̄)− α(( j − 1)h̄)| = o(1), (1.2)

in h̄.

Condition (C) implies that the α process is continuous and so is predictable.
Hence, y∗ is a rather flexible special semimartingale. See, for example, Back
(1991) for a discussion of the economic implications of this type of property.
Assumption (C) also allows the volatility to have, for example, deterministic di-
urnal effects, jumps, long memory, no unconditional mean, or be nonstationary.
The mean processα is much more constrained (e.g., it cannot be a Lévy process).
A rather flexible example of the process is

α(t) =
∫ t

0
g(σ 2(s))ds,

where g is a smooth function. Note that condition (C) implies that σ 2 and α are
bounded Riemann integrable functions on any finite interval [0, t].

Over an interval of time of length h̄ > 0, which could represent a day or a
month for example, returns are defined as

yi = y∗ ( h̄i)− y∗ ((i − 1) h̄) i = 1, 2, . . . , T, (1.3)

which implies that

yi |αi , σ
2
i ∼ N (αi , σ

2
i ), where αi = α(i h̄)− α {(i − 1) h̄} ,

while

σ 2
i = σ 2∗(i h̄)− σ 2∗ {(i − 1) h̄} .

Here σ 2
i is called actual variance and αi is the actual mean. Reviews of the

literature on the SV topic are given in Taylor (1994), Shephard (1996), and
Ghysels, Harvey, and Renault (1996), while statistical and probabilistic aspects
are studied in detail in Barndorff-Nielsen and Shephard (2001).

1.2. Realized variance

Suppose one was interested in estimating actual volatility σ 2
i using M intra-h̄

observations (that is M equally spaced increments in the interval (i − 1)h̄ to i h̄).
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A natural candidate is the realized variance1

[y∗M ]i =
M∑

j=1

y2
j,i , where

y j,i = y∗
(

(i − 1) h̄+ h̄ j

M

)
− y∗

(
(i − 1) h̄+ h̄ ( j − 1)

M

)
(1.4)

and its cousin realized volatility√√√√ M∑
j=1

y2
j,i ,

have been used in financial economics for many years by, for example, Poterba
and Summers (1986), Schwert (1989), Taylor and Xu (1997), Christensen
and Prabhala (1998), Andersen, Bollerslev, Diebold, and Labys (2001), and
Andersen, Bollerslev, Diebold, and Ebens (2001). However, until recently little
theory was known about realized variance outside the Brownian motion case.
See the review by Andersen, Bollerslev, and Diebold (2004).

In independent and concurrent work Barndorff-Nielsen and Shephard (2001)
and Andersen and Bollerslev (1998) pointed out that the theory of quadratic
variation (e.g., Jacod and Shiryaev, 1987, p. 55; Protter, 1990; Back, 1991)
implies [y∗M ]i is a consistent estimator of σ 2

i as M →∞. This is an interesting
result for it is semi-parametric – it does not depend upon the exact form of
α or σ 2. Unfortunately, quadratic variation does not provide a theory of the
magnitude of the realized variance error

ui = [y∗M ]i − σ 2
i , or ei = [y∗M ]i

/
σ 2

i

the realized variance ratio. This is important, for although modern econometri-
cians routinely have transaction based data, continuous sample paths processes
such as SV models are rather poorly fitting at very short time horizons. There
are a number of reasons for this, mostly due to market microstructure effects. In
particular assets are usually quoted and traded on fixed meshes of points (e.g.,
decimals or eighths), while the quoting and trading process tends to occur at
irregular points in time. Bai, Russell, and Tiao (2000) discusses the impact of
these type of effects on realized variance. The implication of this is that it is

1 Sums of squared returns are often called realized volatility in econometrics, while we use the name
realized variance for that term and realized volatility for the corresponding square root. The use of
volatility to denote standard deviations rather than variances is standard in financial economics.
See, for example, the literature on volatility and variance swaps, which are derivatives written
on realized volatility or variance, which includes Demeterfi, Derman, Kamal, and Zou (1999),
Howison, Rafailidis, and Rasmussen (2000) and Chriss and Morokoff (1999). We have chosen to
follow this nomenclature rather than the one more familiar in econometrics. Confidence intervals
for the realized volatility follow by square rooting the confidence intervals for the realized
variance.
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Figure 13.1. Actual σ 2
i and realized [y∗M ]i (with M varying) variance based

upon a "(4, 8)-OU process with λ = − log(.98) and h̄ = 1. This implies
ξ = .5 and ξω−2 = 8.

dangerous to make inference based on extremely large values of M for the ef-
fect of model misspecification can swamp the effects we are trying to measure.
Instead it seems sensible to use moderate values of M and properly account for
the fact that the realized variance error is not negligible.

To see that realized variance error can be substantial, we have carried out a
small simulation. This could have been based on the familiar constant elasticity
of variance (CEV) process, which is the solution to the SDE

dσ 2(t) = −λ{σ 2(t)− ξ}dt + ωσ (t)ηdb(λt) η ∈ [1, 2],

where b is standard Brownian motion uncorrelated with w. Of course, the
special cases of η = 1 delivers the square root process, while when η = 2 we
have Nelson’s GARCH diffusion. These models have been heavily favored
by Meddahi and Renault (2002) in this context. Instead of this we will mainly
work with the non-Gaussian Ornstein–Uhlenbeck, or OU type for short process,
which is the solution to the

dσ 2(t) = −λσ 2(t)dt + dz(λt), (1.5)

where z is a subordinator (that is a Lévy process with nonnegative increments).
These models have been developed in this context by Barndorff-Nielsen and
Shephard (2001). In Figure 13.1 we have taken α = 0 and drawn a curve to
represent a simulated sample path of σ 2

i from an OU process where σ 2(t) has
a "(4, 8) stationary distribution, λ = − log (0.99) and h̄ = 1, along with the
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associated realized variance (depicted using crosses) computed using a variety
of values of M . In this case z is a simple compound Poisson process whose
details are given in, for example, Barndorff-Nielsen and Shephard (2001). We
see that as M increases the precision of realized variance increases, while
Figure 13.1(d) shows that the variance of the realized variance error increases
with the actual variance. We will return to this important observation in a
moment.

1.3. Mixed Normal Asymptotic Theory

In a recent paper Barndorff-Nielsen and Shephard (2002), subsequently ex-
tended in Barndorff-Nielsen and Shephard (2003, 2004), have strengthened the

above consistency result [y∗M ]i
p→ σ 2

i considerably. The results have two parts.
The first gives the asymptotic distribution of realized variance.

Theorem 1.1. For the SV model in (1), for any positive h̄ and M →∞√
M
h̄

(
[y∗M ]i − σ 2

i

)√
2σ [4]

i

L→ N (0, 1), where σ
[4]
i =

∫ i h̄

(i−1)h̄
σ 4(u)du.

(1.6)

We call σ 4 and σ
[4]
i the spot and actual quarticity, respectively. This theorem

implies the mixed normal limit√
M

h̄

(
[y∗M ]i − σ 2

i

) |σ [4]
i

L→ N
(
0, 2σ [4]

i

)
. (1.7)

Of course, the problem with this theory is that σ [4]
i is unknown. This is tackled

by the following theorem on realized power variation which is due to Barndorff-
Nielsen and Shephard (2003).

Theorem 1.2. Let y∗ be a stochastic process of the form (1). Define the realized
power variation (of order 2q)

[y∗M ][2q]
i =

M∑
j=1

y2q
j,i .

Then, for M →∞,

(h̄/M)−q+1 cq [y∗M ][2q]
i

p→
∫ h̄ i

h̄(i−1)
σ 2q (u)du,

where q denotes a positive integer and cq = {1 · 3 · · · · · (2q − 1)}−1.

The case of q = 1 is the standard quadratic variation result. When q = 2 we
obtain
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M

h̄
[y∗M ][4]

i = M

h̄

M∑
j=1

y4
j,i

p→ 3σ [4]
i .

An implication of this is that we can use the feasible limit theory

[y∗M ]i − σ 2
i√

2
3

∑M
j=1 y4

j,i

L→ N (0, 1). (1.8)

Of course, in practice it may make sense to transform the above limit the-
orem to impose, a priori, positivity on the approximating distribution (see, for
example, the discussion of transformations in Rothenberg 1984, pp. 887–889).
In particular it seems natural to work with the logarithmic transformation of the
realized variance ratio so that√

M
h̄

{
log[y∗M ]i − log σ 2

i

}√
2σ [4]

i /
(
σ 2

i

)2 L→ N (0, 1)

and so, using the realized power variation theory,

log[y∗M ]i − log σ 2
i√

2
3[y∗M ]2

i

∑M
j=1 y4

j,i

L→ N (0, 1). (1.9)

It is not clear, without further study, whether the log-based asymptotic the-
ory (1.9) is more or less accurate in finite samples than the nontransformed
version (1.8).

The following remarks can be made about these results:

�

∑M
j=1 y2

j,i converges to
∫ h̄ i

h̄(i−1) σ
2(u)du at rate

√
M . This considerably

strengthens the quadratic variation result, for now we know the rate of
convergence, not just that it converges.

� The limit theorem is unaffected by the form of the drift process α;
the smoothness assumption (C) is sufficient for its effect to becomes
negligible. Again this considerably strengthens the quadratic variation
result which says the p-lim is unaffected by the drift. Now we know
this result extends to the next order term as well.

� Knowledge of the form of the volatility dynamics is not required in
order to use this theory. In a sense this is a semiparametric result.

� The fourth moment of returns need not exist for the asymptotic normal-
ity to hold. In such heavy-tailed situations, the stochastic denominator∫ i h̄

(i−1)h̄ σ 4(u)du loses its unconditional mean. However, this property
is irrelevant to the workings of the theory.

� The volatility processσ 2(t) can be nonstationary, exhibit long memory,
or include intraday effects.

�

∑M
j=1 y2

j,i −
∫ h̄ i

h̄(i−1) σ
2(u)du has a mixed Gaussian limit implying that

marginally it will have heavier tails than a normal.
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� The magnitude of the error
∑M

j=1 y2
j,i −

∫ h̄ i
h̄(i−1) σ

2(u)du is likely to be
large in times of high volatility. This can been seen in the simulation
results in Figure 13.1.

� Conditionally on
∫ h̄ i

h̄(i−1) σ
4(u)du and

∫ h̄k
h̄(k−1) σ

4(u)du, the errors

M∑
j=1

y2
j,i −

∫ h̄ i

h̄(i−1)
σ 2(u)du and

M∑
j=1

y2
j,k −

∫ h̄k

h̄(k−1)
σ 2(u)du

are asymptotically independent and jointly normal for i �= k.
� Some of the features of (1.6) appear in the usual cross-section asymp-

totic theory of the estimation of σ 2 when zi ∼ N I D(0, σ 2). Then

√
M
{

1
M

∑M
j=1 z2

i − σ 2
}

√
2σ 4

L→ N (0, 1),

whose natural feasible version is
√

M
{

1
M

∑M
j=1 z2

i − σ 2
}

√
2

3M

∑M
j=1 z4

i

L→ N (0, 1).

This has quite a few differences from (1.8). In particular the denomi-
nator divides by M rather than multiplies by M , while in the numerator∑M

j=1 z2
i is divided by M while in the theory for realized variance it is

left unscaled. Bartlett and Kendall (1946) have studied the asymptotic
and finite sample behavior of log

∑M
j=1 z2

i in this case.
� These results are also quite closely related to the work of Foster and

Nelson (1996) (note also the work of Geno-Catalot, Laredo, and Pi-
card, 1992; Florens-Zmirou, 1993; Hansen, 1995). In the case where
the volatility follows a scalar diffusion, they provided an asymptotic
distribution theory for an estimator of σ 2(t). Their idea was to compute
a local variance from the lagged data, for example,

σ̂ 2(t) = h̄−1
M∑

j=1

{
y∗
(
t − h̄ j M−1

)− y∗
(
t − h̄ ( j − 1) M−1

)}2
.

(1.10)

They then studied its behavior as M →∞ and h̄ ↓ 0 under some
assumptions. This “double asymptotics” yields a Gaussian limit theory
so long as h̄ ↓ 0 and M →∞ at the right, related rates. Of course, this
type of argument is familiar also in nonparametric econometrics (e.g.,
Pagan and Ullah, 1999). The double asymptotics makes it harder to use
in practice than our own simpler analysis, which just needs M →∞.
It is possible because our goal is to estimate the easier integrated
variation rather than the harder spot variance.
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In this paper we use simulation to study the finite sample behavior of (1.8)
and (1.9). We will show that (1.9) works well even for moderately small values
of M , while (1.8) will typically require too large a value of M to be empirically
very reliable, although it is a helpful guide.

This paper has three other sections. In Section 2 we run Monte Carlo exper-
iments to assess the finite sample behavior of (1.8) and (1.9). In Section 3 some
new theory is introduced, which improves the small sample performance of the
statistics. Section 4 draws conclusions from this paper.

2. HOW GOOD IS THE FEASIBLE ASYMPTOTIC
DISTRIBUTION?

2.1. Simple Model

In this Section we will use simulation to assess the accuracy of our asymptotic
approximations (1.8) and (1.9). Throughout this subsection the simulations
will be based upon the type of OU-based variance process described in the
introduction. In particular we will work with a process where σ 2 has a "(4, 8)
stationary distribution, λ = − log (0.99) and h̄ = 1.

Figure 13.2 and Table 13.1 show the results from the use of the two asymp-
totic results (1.8) and (1.9) in cases where M = 12 and M = 48. In the figure
the dots in the left hand graphs show a short sequence of realized variance
errors [y∗M ]i − σ 2

i , together with plus and minus twice their associated standard

errors
√

2
3

∑M
j=1 y4

j,i . The graphs show dramatic increases and decreases in the
error bands. With M = 12 the bands range from 0.1 to around 0.75. These fluc-
tuations correspond to increases and decreases in the overall level of the variance
process, with wide bands occurring at periods of high levels of variance. The
right-hand graphs in Figure 13.2 give a corresponding normal QQ-plot for (1.8),
which should lay on the 45 degree line if the asymptotics were to hold. The
plot is calculated off a larger simulation run than that used to draw the plots
in the middle and left-hand side of the figure. It uses T = 1, 500. The graph
suggests that the asymptotic theory provides a very poor guide to the finite
sample behavior of the standardized realized variance.

The bottom graphs in Figure 13.2, which correspond to having M = 48, show
similar effects. However, the standard error bands have sharply contracted, now
ranging from 0.08 upto 0.3. The QQ plot is much better, although the asymptotic
theory still only provides a rather rough guide to the finite sample behavior.

The results for the log-based asymptotic theory (1.9) are much better. The top
graphs show that, even with M = 12, the standard error for log[y∗M ]i − log σ 2

n
does not vary dramatically with n. A failing of the approximation is that there
are quite a few errors which are extremely negative. This is picked up in the
QQ plot which is much better than any of the ones we have so far seen, but
fails in the left-hand tail to a much greater degree than in the right-hand tail. By
the time M has reach 48 the asymptotics seems to give a rather better guide to
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Table 13.1. Bias and standard error of the realized variance errors using the
raw asymptotics and the log-based asymptotics. Simulations use a "-OU
process variance model. Cove denotes estimated finite sample coverage
using the asymptotic theory setting the nomimal level at 95.0. The table
deals with the no leverage (ρ = 0) and strong leverage (ρ = −1) cases.
File: simple.ox

Raw Log

M Bias S.E. Cove Bias S.E. Cove

12 −.531 1.64 86.5 −.222 1.17 91.2
48 −.226 1.14 92.4 −.110 1.05 94.1
96 −.152 1.07 93.9 −.075 1.03 94.5

288 −.091 1.02 95.0 −.049 1.00 95.0

the behavior of the distribution. Further, the standard errors have again become
much smaller, reducing from around 0.8 to 0.35.

When we look at higher values of M these broad conclusions continue to
hold, with the log based asymptotics substantially outperforming the nontrans-
form version. This can be seen in Figure 13.3, which looks at the cases where
M = 96 and M = 288. Overall the figure shows it is preferable to rely on the
log-based theory.

Table 13.1 gives an alternative view on these simulations. It records the
bias from zero of the standardized realized variances (1.8) and log realized
variances (1.9), together with their standard error. The standard error should
be around one if the asymptotic theory is a good description of the behavior of
the statistics. Finally, the table records the coverage rate of the statistic. This is
the percentage of standardized statistics, which are larger than two in absolute
value.

The results again suggest that the raw statistic has poorer behavior in terms
of bias, standard error and coverage compared to the log version. By the time
M reaches 48 the log version of the statistic seems quite well approximated by
the asymptotic theory.

2.2. Superposition

Similar results hold when we build more sophisticated models based on a super-
position of OU type models. Such processes also have potential for modeling
long-range dependence and self-similarity in variance. This is discussed in
the OU case in Barndorff-Nielsen and Shephard (2001) and in more depth
by Barndorff-Nielsen (2001), who formalizes the use of superpositions as
a way of modeling long-range dependence and approximate self-similarity.
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Figure 13.4. Superposition case. QQ plot for standardized log[y∗M ]i − log σ 2
i .

Based on M = 12, 48, 96, and = 288. (X -axis has the expected quantiles,
Y -axis the observed).

This follows earlier related work by Granger (1980), Cox (1991), Ding and
Granger (1996), Engle and Lee (1999), Shephard (1996, pp. 36–7), Andersen
and Bollerslev (1997), Barndorff-Nielsen, Jensen, and Sørensen (1998) and,
Comte and Renault (1998).

Consider variance based on the sum of J independent OU processes

σ 2(t) =
J∑

i=1

σ 2(i)(t), where dσ 2(i)(t) = −λiσ
2(i)(t)dt + dz(i)(λi t)

where the σ 2(i)(t) process has the memory parameter λi . We parametrize the
model, in the simplest possible way in the following gamma based example, so
that

σ 2(i)(t) ∼ "(wiν, α), where {wi ≥ 0} and
J∑

i=1

wi = 1.

Barndorff-Nielsen and Shephard (2002) showed that such extensions to the
basic OU model were necessary in order to satisfactorily fit high-frequency
exchange rate data. Here we repeat the above analysis with ν = 4 and α =
8, but take J = 2, w1 = 0.8, λ1 = 4, λ2 = 0.03. This means that the second
component in the variance has considerable memory, while the first component
has very little indeed.

The normal QQ plots for the standardized asymptotic realized variance errors
are given in Figure 13.4. They show the results for M = 12, M = 48, M = 96,
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and M = 288. We broadly repeat the results from the OU case, with the log
version of the asymptotics being reasonably reliable even for moderate values
of M , particularly in the right-hand tail of the distribution. On the other hand the
nontransformed version again requires a high value of M to yield satisfactory
results.

2.3. Diffusion Case

This section will repeat the experiments reported in the previous subsections
but this time based on the Cox, Ingersoll, and Ross (1985) square root process
for the volatility dynamics. In the context of SV models this is often called the
Heston (1993) model. The experiment has two aims:

� To demonstrate that the results we indicated above are not sensitive to
the type of volatility processes used in building the model.

� To explore the effect of leverage terms (that is, correlation between
the returns and future volatility movements) on the performance of
our theory. This is interesting as it is outside the assumptions that
Barndorff-Nielsen and Shephard (2002, 2003, 2004) have been able
to prove the asymptotics for realized variance.

We write the dynamics as

dy∗(t) = σ (t)dw(t)

and

dσ 2(t) = −λ{σ 2(t)− ξ}dt + ωσ (t)db(λt) ξ ≥ ω2/2 (2.11)

where b(t) is a standard Brownian motion process. To allow for the possibility
of leverage we will assume

Cor {b(λt), w(t)} = ρt
√
λ.

The correlation parameter ρ indexes the leverage effect in the model and would
be expected to be negative for equity data (e.g., Black, 1976; Nelson, 1991).
The square root process has a marginal distribution

σ 2(t) ∼ "(2ω−2ξ, 2ω−2) = " (ν, a) ν ≥ 1,

with a mean of ξ = ν/a and a variance of ω2 = ν/a2. Throughout this section
we again take h̄ = 1, ν = 4, and a = 8.

The results, based on 10,000 replications, in the no leverage case are given
in the left-hand part of Figure 13.5. It shows that moving to the diffusion based
volatility model does not really change any of the conclusions from the previous
subsection – the asymptotics still provide a useful guide to the finite sample
behavior of these statistics. Although not surprising, since this case is covered
by our theory, this is a reassuring result.

These results are reinforced by Table 13.2 which shows the mean and stan-
dard error of the normalized statistics (1.8) and (1.9). In the table the former
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Figure 13.5. Simulation from a diffusion based SV model based on the square
root volatility processes with low and high amounts of leverage. QQ plots are
drawn. Top line has M = 72, bottom M = 288. Left-hand graphs show results
for no leverage, right-hand graphs for high leverage. The results for the raw
and log based theory is drawn.

is called the raw statistics, the latter the log version. The table shows that
there is a negative bias in the raw statistic, which corresponds to the realized
variance being too small and at the same time the corresponding denominator
being too small. This bias is an order of magnitude smaller on the log version
of the statistic. In both cases the standard error of the normalized statistic is
roughly one.

Table 13.2 also gives some results on the coverage performance of the asymp-
totic theory. This records the percentage of times the realized variance minus
the actual variance is larger, in absolute value, than twice the feasible asymp-
totic standard error. Thus, if the asymptotic theory was exact then we would
expect the coverage percentage to be 95. The results suggest that this is not a
poor approximation for moderately large values of M .

The results with strong leverage are given in the right-hand side of Fig-
ure 13.52. They are very much in line with those we reported for the nonleverage
case and suggest that our analysis may be robust to this effect. The right-hand
column of Table 13.2 confirms these observations. Proving this conjecture turns
out to be challenging mathematically even in the univariate case and is the sub-
ject of on-going research. In a stimulating piece of work Meddahi (2002) has

2 In the simulation, common random numbers are used in the leverage and nonleverage cases.
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shown that the effect of leverage on the unconditional mean square error of
the realized covariation error is asymptotically negligible in a wide class of
diffusion based volatility models. This again points to the more general result
of our asymptotics working in the leverage case.

2.4. Alternative Estimators of Quarticity

An important feature of the above results is the use of empirical quarticity as
M →∞

M

h̄

M∑
j=1

y4
j,i

p→ 3
∫ i h̄

(i−1)h̄
σ 4(u)du,

which allows us to produce a feasible limit theory for realized variance. A
difficulty with estimating quarticity using the fourth powers of returns is that it
is not very robust. In some recent work Barndorff-Nielsen and Shephard (2004)
managed to avoid this by showing that as M →∞ so for s > 0 the time series
estimator

M

h̄

M−s∑
j=1

y2
j,i y2

j+s,i
p→
∫ i h̄

(i−1)h̄
σ 4(u)du.

This can be used to provide an alternative to the standard feasible limit theory
(1.8). In particular it implies that the standardized realized variance

[y∗M ]i − σ 2
i√

2S−1
∑S

s=1

∑M−s
j=1 y2

j,i y2
j+s,i

L→ N (0, 1). (2.12)

Here we study its finite sample behavior, as well as the log-transformed version

log[y∗M ]i − log σ 2
i√

2
[y∗M ]2

i
S−1
∑S

s=1

∑M−s
j=1 y2

j,i y2
j+s,i

L→ N (0, 1). (2.13)

Throughout this subsection we return to using simulations to investigate the
finite sample behavior of these asymptotic results (2.12) and (2.13). These will
again be based upon the type of OU based variance process described in the
introduction. In particular we will start work with a process where σ 2 has a
"(4, 8) stationary distribution, λ = − log (0.99) , and h̄ = 1. The time series
versions of these results will be based on using (2.12) and (2.13) with S = 4.

Figure 13.6 gives the results for the time series based method. Thus, this
figure is directly comparable with the results given in Figures 13.2 and 13.3.
Throughout the results indicate that the new time series based estimator may
very slightly improve the finite sample behavior of the statistics, however, the
difference is very marginal compared to shifting from the raw asymptotic ap-
proximation to the one based on the logarithmic transformation.

To see how these results vary with the model, we have rerun these calculations
varying the persistence parameter λ and the marginal distribution of "(4, 8).
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Table 13.3 reinforces the same points as made by the figure using the bias and
the standard errors of the standardized feasible approximations given in (2.12)
and (2.13). These are shown with the corresponding results (1.8) and (1.9) based
on the fourth moments reported in the previous subsections. These again show
a slight improvement using the time series method compared to those obtained
by using the fourth moment.

3. SOME THEORETICAL OBSERVATIONS

3.1. Asymptotic Distribution of log[y∗
M]i

The variance of log[y∗M ]i − log σ 2
i seem to only mildly fluctuate with i , with

values around 2
M . The conditional variance in the mixed normal asymptotic

theory is

2

M

h̄−1
∫ i h̄

(i−1)h̄ σ 4(u)du(
h̄−1
∫ i h̄

(i−1)h̄ σ 2(u)du
)2 ≥

2

M
,

by Jensen’s inequality. If σ is continuous the lower bound is obtained when
h̄ → 0 for

h̄−1
∫ i h̄

(i−1)h̄ σ 4(u)du(
h̄−1
∫ i h̄

(i−1)h̄ σ 2(u)du
)2

a.s.→ 1.

On the other hand, for h̄ →∞ and assuming the spot variance is ergodic then

h̄−1
∫ i h̄

(i−1)h̄ σ 4(u)du(
h̄−1
∫ i h̄

(i−1)h̄ σ 2(u)du
)2

a.s.→ Eσ 4(t)

{Eσ 2(t)}2 .

In the above examples we had σ 2(t) ∼ "(ν, α), which implies

Eσ 4(t)

{Eσ 2(t)}2 =
ν/α2 + (ν/α)2

(ν/α)2 = 1+ 1

ν
.

Throughout ν took the value 4, which implies again that the lower bound of 2
M is

a good rough approximation. Of course, in examples where the fourth moment
of the variance process does not exist the lower bound will be wildly off.

3.2. Relationship between Integrals and Sums

In the asymptotics for [y∗M ]i we replace

2h̄σ [4]
i with

2

3
M

M∑
j=1

y4
j,i ,
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Figure 13.7. [y∗M ]i case. Plot of the integrals 2h̄σ [4]
i and the their consistent

estimators 2
3 M
∑M

j=1 y4
j,i . Based on M = 12, 48, 96, and 288.

while in the log[y∗M ]i case we estimate

2h̄σ [4]
i /
(
σ 2

i

)2
by

2

3[y∗M ]2
i

M
M∑

j=1

y4
j,i .

Although these sums are consistent estimators of the required integrals, in
practice they could be rather noisy. Here we report evidence on this issue
using the same gamma based superposition model employed in the previous
section.

Figure 13.7 shows a plot of 2h̄σ [4]
i and its estimator 2M

3
∑M

j=1 y4
j,i

against i for a

variety of values of M . The key observation is that the estimator is very noisy
when M is moderate, with quite large values of M needed in order to accurately
estimate 2h̄σ [4]

i . This is a major cause of the poor nature of the finite sample
behavior in the QQ plots we recorded in Figures 13.1, 13.2, and 13.4 above.

Figure 13.8 gives the corresponding results for the asymptotics for log[y∗M ]i .
It shows that 2h̄σ [4]

i /(σ 2
i )2 does not vary very much with n and hovers just about

2. Thus, dividing by (σ 2
i )2 we have approximately stabilized σ

[4]
i . The plot of

2M
3[y∗M ]2

i

∑M
j=1 y4

j,i shows that this estimator is still quite variable, however, it is a
very substantial improvement over the case of 2M

3
∑M

j=1 y4
j,n

. An interesting feature

is that the estimator sometimes goes below 2, which we have seen is the lower
bound for the ratio of integrals.
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Figure 13.8. log[y∗M ]i case. Plot of the ratio of integrals 2h̄σ [4]
i /(σ 2

i )2 and the
their consistent estimators 2

3[y∗M ]2
i

M
∑M

j=1 y4
j,i . Based on M = 12, 48, 96, and

288.

3.3. Finite Sample Corrections

The observation that the feasible bound sometimes goes below 2 suggests im-
posing it directly in the standardization formula. In particular we work with

log[y∗M ]i − log σ 2
i

si

L→ N (0, 1),

where s2
i = max

{
2

3[y∗M ]2
i

M∑
j=1

y4
j,i ,

2

M

}
.

It is also sensible to make a finite sample mean correction to this for [y∗M ]i

is an unbiased estimator of σ 2
i when α(t) = 0, but this implies log[y∗M ]i will

only biasedly estimate log σ 2
i . This means using approximate log normality,

working with

log[y∗M ]i − log σ 2
i + 1

2 s2
i

si

L→ N (0, 1),

where s2
n = max

{
2

3[y∗M ]2
i

M∑
j=1

y4
j,i ,

2

M

}

The corresponding QQ plot given in Figure 13.9 suggests this improves the
finite sample behavior of the method. Separate calculations indicate there is
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Figure 13.9. log[y∗M ]i case. QQ plot for standardized log[y∗M ]i − log σ 2
i (de-

noted log original) and the finite sample version
log[y∗M ]i−log σ 2

i + 1
2 s2

i
si

(denoted
log with Max in the figure). Based on M = 12, 48, 96, and 288.

very little difference between the performance of this statistic and the infeasible
version

log[y∗M ]i − log σ 2
i + 1

2 2h̄M−1σ
[4]
i /
(
σ 2

i

)2√
2h̄M−1σ

[4]
i /
(
σ 2

i

)2 .

3.4. Alternative Transformations

Throughout this paper we have studied the effect of using a log transformation
on the realized variance. We have seen this is very beneficial. We now ask if
this is the best transformation to use.

Consider a natural exponential family

p(x ; θ ) = a(θ )b(x)eθx ,

where p(x ; θ ) is a probability density function and θ are some parameters. Let
τ (µ) be the variance function of x expressed as a function of the mean µ of x .
For each κ ∈ (0, 1) introduce the transformation

ηκ (µ) =
∫

τ (µ)−κdµ,
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that is, ηκ (µ) is the indefinite integral of τ (µ)−κ . Then (subject to the usual type
of smoothness conditions) we have (cf. Barndorff-Nielsen, 1978, pp. 177–179)
the following.

� For κ = 1
3 the skewness of ηk(x) is approximately 0.

� For κ = 1
2 the variance of ηk(x) is approximately constant.

� For κ = 1
2 the spread of the log-likelihood function, expressed in terms

of ηk(µ), is approximately constant.3
� For κ = 2

3 the log-likelihood function, expressed in terms of ηk(µ), is
approximately “normal”.4

Example Barndorff-Nielsen and Shephard (2002) showed that the marginal
distribution of realized variance is well approximated by the inverse Gaussian
I G(δ, γ ) family where δ > 0, γ > 0. This has the density

f (x) = δ√
2π

eδγ x−3/2 exp
{− 1

2

(
δ2x−1 + γ 2x

)}
x > 0.

Further work on this approximation is given in Bollerslev and Forsberg (2002),
while Andersen, Bollerslev, Diebold, and Labys (2001) looked at a log-normal
approximation. Here δ2 is a scale parameter and τ (µ) = δ−2µ3. Hence, log x
is approximately normal in the sense of having an approximately symmetric
distribution. And x−1/2 has approximately constant variance. For fixed value
of the mean δ/γ of x the approximation is better the larger the value of δ.

The above discussion indicates that the log transformation has particular
attractive features in the context of realized variances.

4. CONCLUSION

In this note we have looked at the finite sample performance of our asymptotic
approximation to the distribution of realized variance. The evidence suggests
that the finite sample log version of the result:

log[y∗M ]i − log σ 2
i + 1

2 s2
i

si

L→ N (0, 1),

where s2
i = max

{
2

3[y∗M ]2
i

M∑
j=1

y4
j,i ,

2

M

}
,

is reasonably reliable for moderate values of M , say 12 or above.

3 The precise statement is as follows. Let l(η) denote the log likelihood expressed as a function of
η = η1/2(µ). Then l ′′(η̂) = 0.

4 The precise statement is as follows. Let l(η) denote the log likelihood expressed as a function of
η = η2/3(µ). Then l(3)(η̂) = 0.
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CHAPTER 14

Testing the Semiparametric Box–Cox Model
with the Bootstrap
N.E. Savin and Allan H. Würtz

ABSTRACT

This paper considers tests of the transformation parameter of the Box–Cox model when the distri-
bution of the error is unknown. Monte Carlo experiments are carried out to investigate the rejection
probabilities of the GMM-based Wald and Lagrange multiplier (LM) tests when the null hypoth-
esis is true. The results show that the differences between empirical and nominal levels can be
large when asymptotic critical values are used. In most cases, the bootstrap reduces the differences
between the empirical and nominal levels, and, in many cases, essentially removes the distortions
in levels that occur with asymptotic critical values. Experiments are also carried out to investigate
the ability of the bootstrap to provide improved finite-sample critical values with Wald tests based
on the semiparametric estimation procedure recently developed by Foster, Tian, and Wei (2001).

1. INTRODUCTION

The Box–Cox (1964) regression model is a transformation model of the form

T (Y, α) = X ′β +U, (1.1)

where T is a strictly increasing function, Y is an observed positive dependent
variable, X is an observed K -dimensional random column vector,β is a vector of
constant parameters that is conformable with X , and U is an unobserved random
variable that is independent of X. Let the cumulative distribution function of
U be denoted by F . It is assumed that E(U ) = 0, V(U ) <∞ for all x in the
support of X and that F is unknown.

The Box–Cox transformation is

T (y, α) =
yα−1
α

, if α �= 0, y ≥ 0,
log y, if α = 0, y ≥ 0.

(1.2)

The transformation provides a flexible parameterization of the relation between
Y and X . In particular, the model is a linear model if α = 1, a power transfor-
mation model if α �= 0 or 1, and a log-linear model if α = 0.

If F is known or known up to finite dimensional parameters, then α and β

and any parameters of F can be estimated by maximum likelihood. A widely
used procedure, which was suggested by Box and Cox (1964), is to estimate
α andβ by maximum likelihood (ML), assuming that U is normally distributed.
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The resulting estimator of α and β is referred to as the Box–Cox ML estimator.
The Box–Cox ML estimator is discussed in many econometric textbooks, for
example, Amemiya (1985), Greene (2000), Ruud (2000), and Mittlehammer,
Judge, and Miller (2000).

The assumption of normality cannot be strictly true, however. The Box–
Cox transformation T (y,α) is bounded from below if α > 0 (and from above
if α < 0), unless α is an odd integer or 0. Thus, the Box–Cox transformation
cannot be applied to models in which the dependent variable can be negative
or the distribution of U has unbounded support, and, hence, this rules out the
case where U is normally distributed.

In practice, however, F is often unknown. Thus, an empirically relevant sta-
tistical problem is to obtain consistent estimators ofα andβ when F is unknown.
A solution proposed by Amemiya and Powell (1981) is to use the nonlinear two-
stage least-squares (NL2SLS) estimator of α and β. The NL2SLS estimator is a
generalized method of moments (GMM) estimator (Hansen 1982), and it is the
efficient GMM estimator for the choice of instruments used by Amemiya and
Powell if U is independent of X . Horowitz (1998) discusses GMM estimation
of α and β.

Khazzoom (1989) pointed out that the NL2SLS estimates for this model are
ill-defined for data sets in which the dependent variable always exceeds (or is
exceeded by) 1. The nonnegative GMM objective function has a global mini-
mum of zero as α tends to minus infinity when y > 1 and infinity when y < 1.
Powell (1996) has proposed a simple rescaling of the GMM objective function
that helps ensure that the estimates are interior points of the parameter space.

The focus of this paper is on testing the transformation parameter α in the
Box–Cox model when F is unknown. This null is tested using the GMM-based
Wald and Lagrange multiplier (LM) tests proposed by Newey and West (1987).
The test of the null is based on an estimator of the type I critical value. Horowitz
and Savin (2000) define this critical value as one that would be obtained if the
exact finite sample distribution of the test statistic under the true data generation
process is known. In our setting, the true type I critical value is unknown because
the null hypothesis is composite: the exact finite-sample distribution of the test
statistic depends on β and F , the population parameters that are not specified
by the null. Thus, an approximation to the type I critical value is required to
implement the test.

An approximation to the type I critical value can be obtained by using the
first-order asymptotic distribution of the test statistic to approximate its finite-
sample distribution. The approximation is useful because most test statistics
in econometrics are asymptotically pivotal: their asymptotic distributions do
not depend on unknown population parameters when the null hypothesis being
tested is true. In particular, this is true for the GMM-based Wald and LM
statistics employed to test null hypotheses about the transformation parameter.
Hence, an approximate type I critical value can be obtained from first-order
asymptotic distribution theory without knowledge of the true data-generation
process.
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However, the Monte Carlo experiments discussed in this paper show that
the first-order asymptotic distribution is often a poor approximation to the true,
finite-sample distributions for the sample sizes available in applications. In other
contexts, many investigators have found that the asymptotic approximation for
GMM-based tests is poor; for example, see the 1996 special issue of the Journal
of Business and Economics.

The bootstrap often provides a practical method for improving first-order
asymptotic approximations. It is a method for estimating the distribution of a
statistic or a feature of the distribution, such as a moment or a quantile. The boot-
strap can be implemented for model (1.1)–(1.2) by randomly resampling (Y , X )
pairs with replacement or by randomly resampling GMM residuals with replace-
ment, provided the bootstrap takes into account that Y can only take positive
values. This paper reports the numerical performance of the bootstrap for both
the resampling schemes. The Monte Carlo experiments show that when boot-
strap critical values obtained by resampling residuals are used, the differences
between the empirical and the nominal levels of the tests are often very small.

In the context of the Box–Cox model, the linear model can be tested against
models that are indexed by the transformation parameter. For example, the linear
model can be tested against the log-linear model by testing the null hypothesis
α = 1 against the alternative α = 0. The tests must be able to discriminate
between alternative models in order to be useful. This paper also carries out
a Monte Carlo investigation of the powers of the tests with bootstrap critical
values.

Recently, Foster, Tian, and Wei (2001) proposed an alternative to GMM
estimation when U and X are independent and the distribution of U is unknown.
Monte Carlo experiments are conducted to investigate the performance of Wald
and LM tests when the model is estimated using the Foster, Tian, and Wei
(FTW) estimator. In the experiments reported here, the tests are carried out
with asymptotic critical values and bootstrap critical values.

The organization of the paper is as follows. Section 2 reviews the GMM
estimation of the Box–Cox model, Section 3 introduces the GMM-based Wald
and LM tests, Section 4 describes the calculation of the bootstrap critical values,
and Section 5 presents the design of the experiments and the methods used
to calculate the empirical rejection probabilities. Section 6 reports the Monte
Carlo evidence on the numerical performance of the GMM-based tests with
asymptotic and bootstrap critical values, and Section 7 presents the results
of the experiments using the FTW estimator. The concluding comments are
contained in Section 8.

2. GMM ESTIMATORS

This section introduces the Box–Cox model employed in the Monte Carlo study,
reviews GMM estimation of the parameters, and presents the rescaling proce-
dure proposed by Powell (1996) to address the problem noted by Khazzoom
(1989).
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The model simulated in the Monte Carlo experiments is

T (Y, α) = β0 + β1 X +U, (2.1)

where X is a scalar random variable and X and U are independent. The instru-
ments used are those employed by Amemiya and Powell (1981), namely, 1, X ,
and X2. With this set of instruments, the number of moment conditions is equal
to the number of the parameters, and hence the parameters are exactly iden-
tified. In the exactly identified case, NL2SLS is (trivially) the efficient GMM
estimator.

Denote the estimation data by {Yi ,Xi : i = 1, . . . , n} and assume that
they are a random sample from the joint distribution of (Y , X ). Let θ =
(α, β ′)′, Ui (θ ) = T (Yi , α)− X ′

iβ, and U (θ ) = (U1(θ ), . . . ,Un(θ ))′. Also let
W = [W1, . . . , Wn]′ denote the matrix of instruments where Wi is a vector of
functions of Xi . Finally, let θ̂n = (ân, b̂′n)′ where ân and b̂n denote the uncon-
strained GMM estimators of α and β, respectively.

The unconstrained GMM estimator solves

min
θ

: Sn(θ ) = U (θ )′W�nW′U (θ ), (2.2)

where the weight matrix �n is a positive definite, possibly stochastic, ma-
trix. One possible choice of the weight matrix is �n = [W ′W ]−1, in which
case (2.2) gives the NL2SLS estimator of Amemiya (1974, 1985). This choice
is asymptotically efficient if the errors Ui are homoskedastic. Amemiya and
Powell (1981) and Amemiya (1985) discuss the use of NL2SLS for estima-
tion of the Box–Cox model. The weight matrix does not matter in the exactly
identified case, provided the sample moment conditions are solved by the un-
constrained GMM estimator.

The change in the NL2SLS estimate of β due to a rescaling of X is the
same as the change in the ordinary least-squares (OLS) estimate in the linear
regression model. By contrast, the effect of rescaling Y depends on whether
the parameters are exactly identified or overidentified. In the exactly identified
case, rescaling Y has no effect on the NL2SLS estimate of α; only β is affected.
In the overidentified case, rescaling Y changes the estimates of both α and β.

The consistency of the estimator minimizing (2.2) is established by verifi-
cation of three conditions: compactness of the parameter space; convergence
in probability of the objective function Sn to its expected value, uniformly
in α and β; and uniqueness of the solutions satisfying the population moment
condition E{W {T (Y, α)− X ′β]} = 0.The compactness and identification con-
ditions turn out to be demanding because of the nature of the transformation
function T(Y, α).

As Khazzoom (1989) notes, if y > 1, then T (y, α) → 0 as α →−∞, and,
similarly, if y < 1, T (y, α) → 0 as α →∞. This implies that compactness of
the parameter space plays a crucial role in the uniqueness of the solution of the
population moment condition. In particular, each residual Ui (θ ) = T (yi , α)−
x
′
iβ can be set equal to 0 by setting α = −∞ and β = 0 if each yi > 1. The
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resulting pathology of the objective function is important in practice, since in
many data sets all values of the dependent variable exceed 1.

To avoid the problem associated with the scaling of the dependent vari-
able, Powell (1996) suggested the following rescaling of the GMM objective
function:

Qn(θ ) = Sn(θ ) · (ẏ)−2α, (2.3)

where the GMM objective function Sn is given in (2.2) and ẏ is the geometric
mean of the absolute values of the dependent variable:

ẏ ≡ exp

{
1

n

n∑
i=1

log(|yi |)
}
. (2.4)

The rescaled GMM objective function Qn is less likely than Sn to be mini-
mized by values on the boundary of the parameter space. However, as Powell
(1996) notes, rescaling the original GMM function by ẏ−2α cannot guarantee
that a unique and finite minimizing value of α will exist. Following Powell,
the estimator based on the rescaled GMM objective function is denoted by
RNL2SLS.

The estimation procedure for rescaled GMM simplifies to a one-dimensional
grid search, and similarly for the original GMM. The objective function

Qn(θ ) = [U (θ )′W/ẏα]′�[W′U (θ )/ẏα] (2.5)

can be concentrated as a function of α only. The reason is that for a given α,
the optimal β in (2.5) is

β(α) =
[(

n∑
i=1

Wi X ′
i

)′
�

(
n∑

i=1

Wi X ′
i

)]−1 (
n∑

i=1

Wi X ′
i

)′
�

n∑
i=1

Wi (T (Yi , α)],

(2.6)

since ẏ−α cancels. The concentrated objective function is obtained by substi-
tuting (2.6) into (2.5), which gives

Qn(α) = Qn(α, β(α)) = Sn(α, β(α))/ẏ2α

. (2.7)

Note that if NL2SLS and RNL2SLS give the same estimate of α, then they both
give the same estimate of β.

Powell (1996) argues that the original and rescaled GMM estimators have
the same asymptotic distribution. Hence, the standard formulae for the first-
order asymptotic distribution and asymptotic covariance matrix estimators for
GMM estimators apply directly to the rescaled estimators.
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3. GMM-BASED TESTS

This section introduces the null hypotheses tested in the experiments and
presents the GMM-based Wald and LM test statistics proposed by Newey and
West (1987).

The null hypotheses specify the value of the transformation parameter: H0:
α = α0. Two values of α are considered, 0 and 1. The first value specifies a
log-linear model and the second a linear model.

The GMM-based Wald test statistic is derived from the asymptotic distribu-
tional properties of the unconstrained GMM estimator. Hansen (1982) showed,
under mild regularity conditions, that θ̂n = (ân, b̂′n)′ is a consistent estimator
of θ and that θ̂n is asymptotically normally distributed:

n1/2(θ̂n − θ ) →d N (0, V ) (3.1)

where

V = (D′�D)−1, (3.2)

with D = E ∂
∂θ

W [T (Y, α)− Xβ] and � = p lim n→∞ �n . Letting Uθ = ∂U
(θ)/∂θ and Ûθ = ∂U (θ̂n)/∂θ , V can be estimated by replacing D in (3.2) by
W′Ûθ and � by �n . Thus, (3.1) and (3.2) with V replaced by

V̂n = Û ′
θW�nW′Ûθ (3.3)

makes it possible to carry out inference in sufficiently large samples.
The Wald test statistic for testing H0: α = α0 is

Wald = n(ân − α0)2

ŝ2
n

, (3.4)

where ŝ2
n is the first diagonal element in V̂n.The Wald statistic (3.4) is dis-

tributed asymptotically as chi-square variables with one degree of freedom
when the null hypothesis is true. The GMM estimators that can be used in
computing (3.4) include, as special cases, the NL2SLS and RNL2SLS esti-
mators. The principle disadvantage of the GMM-based Wald statistic is that
it is not invariant to reparametrization of the null hypothesis or rescaling of
the dependent variable. Spitzer (1984) has shown a similar lack of invariance
for the Wald statistic based on the Box–Cox ML estimator; see also Drucker
(2000).

Newey and West (1987) have developed an LM test based on the constrained
GMM estimator. This LM test is presented in Greene (2000). Suppose the con-
strained estimator, denoted by θ̃n = (ãn, b̃′n)′, solves (2.2) subject to a constraint
of the form H0: h(θ) = 0. Then the GMM-based LM statistic is

LM = ∂Sn(θ̃n)

∂θ ′

[
Var

(
∂Sn(θ̃n)

∂θ

)]−1
∂Sn(θ̃n)

∂θ
. (3.5)
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The LM statistic can also be written as

LM = n · Ũ ′PW Ũθ [Ũ ′
θ PW Ũθ ]−1Ũ ′

θ PW Ũ/Ũ ′Ũ , (3.6)

wherePW = W (W ′W )−1W ′, Ũ = U (θ̃n) and Ũθ = ∂U (θ̃n)/∂θ. The (3.6)
version of the LM statistic is n · R2 from a regression of Ũon PW Ũθ . That
is, the LM statistic can be obtained from regressing Ũθ on W , calculating the
predicted value, and then calculating n · R2 from a regression of the restricted
residual on these predicted values. The constrained NL2SLS and RNL2SLS es-
timates of α are the same, and, hence, the constrained NL2SLS and RNL2SLS
estimates of β are the same. As a result, the values of the LM statistic for
NL2SLS and RNL2SLS are also the same.

Newey (personal communication, 2001) shows that the calculation of the
GMM-based LM test statistic simplifies when the constraint imposed by the
null hypothesis is H0:α = α0 and X is included among the instruments. Note
first that by having Xi included in Wi , the constrained estimator is θ̃n =
(α0, b̃′n)′, where β̃ is the OLS estimator obtained by regressing T (Yi , α0) on Xi .
Therefore the constrained residual vector Ũ is just the residual vector from the
OLS regression of T (Yi , α0) onXi . Also Ũθ = ∂U (θ̃n)/∂θ = [T̃α,−X ], where
T̃α = (∂T (y1, α0)/∂α, . . . , ∂T (yn, α0)/∂α)′ and X = [X1, . . . , Xn]′. Further-
more, if Xi is included in Wi , thenPW Ũθ = [PX T̃α,−X ]. Thus, the LM statistic
for testing α can be obtained in three steps as follows:

1. Obtain the OLS residuals by regressing T (Yi , α0) on Xi .
2. Obtain the predicted values by regressing T (Yi , α0) on Wi .
3. Calculate the test statistic as n · R2 by regressing the residuals from

step 1 on the predicted values from step 2 and the Xi s.

The GMM-based LM statistic is invariant to reparametrization of the null
hypothesis, but not always to the rescaling of the dependent variable. Invariance
to rescaling depends on whether the parameters are exactly identified. The
LM statistic is invariant to rescaling of the dependent variable in the exactly
identified case, but not in the overidentified case.

4. BOOTSTRAP CRITICAL VALUES

This section describes the Monte Carlo procedure for computing the bootstrap
critical values. The description is given for two resampling schemes, a nonpara-
metric and a parametric scheme. In the nonparametric scheme, (Y , X ) pairs are
randomly sampled with replacement, and in the parametric scheme, residuals
are randomly sampled with replacement. Resampling the (Y, X ) pairs is used
only for the GMM-based Wald test.

When resampling (Y , X ) pairs, the Monte Carlo procedure for computing
the bootstrap critical value for the Wald test is the following:

1. Generate a bootstrap sample of size n by random sampling (Y, X ) pairs
from the estimation data with replacement.
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2. Compute the unconstrained GMM estimators of θ and V from the
bootstrap sample. Call the results θ̂n

∗ = (ân
∗, b̂n

∗′)′and V̂n
∗.

3. Compute the bootstrap version of the Wald statistic

Wald∗ = n(ân
∗ − ân)2

ŝ2
n
∗ , (4.1)

where ŝ2
n
∗ is the first element of V̂n

∗. Note that Wald∗ is centered by
replacing α0 by ân .

4. Obtain the empirical distribution function (EDF) of the test statistic
Wald∗ by repeating steps 2 and 3 many times. The bootstrap critical
value is obtained from the EDF. For example, the 0.01 type I crit-
ical value is estimated by the 0.99 quantile of the EDF of Wald∗.
Let z∗n,0.01 denote the bootstrap critical value for the nominal 0.01
level test. The 0.05 and 0.10 bootstrap critical values are obtained
similarly.

The Monte Carlo procedure using resampled residuals is based on the func-
tional form of the model (1.1)–(1.2). The bootstrap critical values are calculated
as follows:

(a) Estimate θ0 by constrained GMM using the estimation sample {Yi ,Xi :
i = 1, . . . , n} and compute the constrained GMM residualsŨ1, . . . , Ũn .

(b) Generate the bootstrap sample by setting Y ∗
i = [α0(b̃0n + X∗

i b̃1n +
U ∗

i )+ 1]1/a0 , where U ∗
i is sampled randomly with replacement from

the Ũi . The Xi are fixed in repeated samples.
(c) Estimate θ0 by unconstrained GMM using the bootstrap sample and

compute the Wald statistic

Wald∗∗ = n(ân
∗ − α0)2

ŝ2
n
∗ . (4.2)

(d) Obtain the EDF of Wald∗∗ by repeating steps (b) and (c) many times.
The bootstrap critical values are obtained from the EDFs. The 0.01
type I critical value is estimated by the 0.99 quantile of the EDF. The
0.05 and 0.10 bootstrap critical values are obtained similarly.

The advantage of resampling residuals compared to resampling (Y , X ) pairs
is numerical accuracy. Monte Carlo evidence (Horowitz 1997) indicates that the
numerical accuracy of the bootstrap tends to be much higher when residuals are
resampled than when (Y , X ) pairs are resampled. This because the functional
form of the model is exploited and the null hypothesis is imposed when obtaining
the parameter estimate.

In this paper, there is no need to recenter the GMM moment conditions due
to overidentifying restrictions. In general, when there are overidentifying re-
strictions, the GMM moment conditions have to be recentered for the bootstrap
to improve first-order approximations. This is because the sample analog of
E(WU )= 0 is not satisfied in the estimation sample, and, hence, the bootstrap
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implements a moment condition that does not hold in the population that the
bootstrap samples.

When resampling the Ũi , it may happen that the value of Y ∗
i cannot be cal-

culated (the implied value is complex) because of estimation error in the Ũi .
In such cases, Y ∗

i is chosen to be 0.0001. This procedure is valid given that the
estimation error vanishes rapidly as the sample size increases.

The Monte Carlo procedure for computing the bootstrap critical value for
the LM test when resampling residuals is similar to the one used for the Wald
test. The main difference occurs in step (c). For the LM test, estimate θ0 in the
bootstrap sample by constrained GMM and compute the LM statistic

LM = ∂S∗n (θ̃
∗
n)

∂θ ′

[
Var

(
∂S∗n (θ̃

∗
n)

∂θ

)]−1
∂S∗n (θ̃

∗
n)

∂θ
, (4.3)

where S∗n is the objective function (4.4), and θ̃
∗
nis the constrained GMM esti-

mator of θ .

5. DESIGN OF EXPERIMENTS AND
COMPUTATIONS

This section presents the design of the Monte Carlo experiments used to inves-
tigate the ability of the bootstrap to reduce the distortions in the level of the
Wald and the LM tests that occur when asymptotic critical values are used.

Two different specifications for the distribution function of U are considered
for the Box–Cox model. The first specification is a truncated normal distribu-
tion suggested by Poirier (1978). Let U be N (0, (0.5)2) with left truncation
point−1. The second is an exponential distribution for Uwith parameter λ = 4.
In both specifications, the distribution of U is corrected to have mean 0; for
example, in the exponential case, U − 1/4 is used instead of U . Foster et al.
(2001) use the exponential distribution in their Monte Carlo experiments. The
values of Xare obtained by random-sampling the following marginal distribu-
tions of X : uniform [−0.5, 0.5], lognormal based on N (0, 1), and exponential
with λ = 1.

The above specifications of the distribution function of U and of X are
combined to produce four basic specifications of the model. The specifications
are the following:

Model 1: β0 = 1, β1 = 1, F truncated normal, σ = 0.5, X uniform
[−0.5, 0.5].

Model 2: β0 = 0.1, β1 = 1, F truncated normal, σ = 0.5, X lognormal.
(β0 = 0.1 instead of β0 = 0 to avoid negative values of Y .)

Model 3: β0 = 0, β1 = 1, F exponential, X uniform [−0.5, 0.5].
Model 4: β0 = 0, β1 = 1, F exponential, X exponential.
Using these models, tests of the null hypothesis H0: α = α0, α0 = 0 and 1

are conducted at three nominal levels: 0.01, 0.05, and 0.10. The sample sizes
investigated are n = 25 and n = 50.
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The rejection probabilities of the tests when the null is true were estimated
by conducting Monte Carlo experiments. The number of Monte Carlo replica-
tions in each experiment with the GMM estimators is 10,000. Each replication
consists of the following steps:

(i) Generate an estimation data set of size n by random sampling from
the model (1.1)–(1.2) with the null hypothesis H0: α = α0 imposed.
Compute the value of the Wald statistic and the value of the LM statistic
for testing H0.

(ii) Generate a bootstrap sample of size n for the bootstrap-based test.
Compute the bootstrap critical value for the Wald test by following
steps 1–4 when the bootstrap samples are generated by resampling
(Y , X ) pairs, and denote the estimated 0.01 critical value by z∗n,0.01.
Compute the bootstrap critical value for the Wald test by following
steps (a)–(d) when the bootstrap samples are generated by resampling
residuals, and denote the estimated 0.01 critical value by z∗∗n,0.01. In (ii)
the EDF is obtained from 999 bootstrap replications.

(iii) Reject H0 at the nominal 0.01 level with the asymptotic critical value
if Wald > 6.66, with the bootstrap critical value based on resampling
(Y, X ) pairs if Wald* > z∗n,0.01 and with the bootstrap critical value
based on resampling residuals if Wald**> z∗∗n,0.01. The rules are similar
for the nominal 0.05 and 0.10 Wald tests and for the nominal 0.01, 0.05,
and 0.10 LM tests.

The powers of the Wald and the LM tests with asymptotic and bootstrap
critical values are also estimated by conducting Monte Carlo experiments. In
each replication of the power experiments, the first step consists of generating
the estimation data set under the alternative hypothesis instead of under the
null. The remaining steps in each replication are the same as (i)–(iii).

In the experiments, the unconstrained GMM estimate is calculated by min-
imizing the objective function over a grid of values of the transformation pa-
rameter α. To speed up the calculations the grid search is implemented in two
steps. The first step is to use a coarse grid with width δ and precision p. The
precision is the distance between two neighboring points in the grid. The coarse
grid is located with the true value in the middle of the grid. Suppose that the
minimum of the objective function is located at a point inside the coarse grid.
Denote this point by P . The second step is to construct a fine grid with a width
δ′ that is two times the precision of the coarse grid δ′ = 2 p and a precision p′.
The fine grid is located with point P in the middle. Thus, the fine grid evaluates
the objective function between two points in the coarse grid that are neighbors
of point P .

In some cases, the solution using the coarse grid is a point on the boundary.
If this occurs, then the coarse grid is shifted to cover the interval in the neigh-
borhood of the boundary solution. Then a new minimum is located, and the
algorithm proceeds to the fine grid. The sample is discarded if the new solution
is also a boundary solution. Therefore, the estimate of the rejection probability
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under H0 is computed as R/G where R is the number of rejections of H0 in G
nondeleted estimation samples.

The total precision of this algorithm is a grid with a total width 3δ and
precision p′. This algorithm is faster than simply using a grid with a width 3δ
and a precision p′, because it is usually not necessary to shift the coarse grid
to find the minimum. Also the fine grid is only evaluated around the minimum
located with the coarse grid. This algorithm worked well for the objective
function of the Box–Cox model.

6. EMPIRICAL REJECTION PROBABILITIES

This section reports the empirical rejection probabilities of the Wald and the
LM tests based on the GMM estimators. The results illustrate the numerical
performance of the tests with asymptotic critical values and those with bootstrap
critical values. The empirical rejection probabilities under H0 are reported for
models 1–4 in Tables 14.1–14.4 respectively.

The following is a summary of the main features of the results.

Asymptotic Critical Values

The results are first summarized for the Wald tests with asymptotic critical
values. The tables show that the model influences the differences between the
empirical and nominal levels. In Table 14.1, the empirical levels are much
smaller than the nominal levels for model 1. By contrast, Table 14.4 shows that
the differences between the empirical and nominal levels are usually very small
for model 4.

Table 14.2 shows that the empirical levels are sensitive to the estimation
method and the null hypothesis. Using NL2SLS estimation, the empirical levels
are much smaller than the nominal levels when testing H0: α = 0 and larger
than the nominal levels when testing H0: α = 1. On the other hand, when the
model is estimated by RNL2SLS, empirical levels are larger than the nominal
levels.

The tables also show that the experimental evidence is mixed when com-
paring RNL2SLS and NL2SLS. The differences between the empirical and
nominal levels of the RNL2SLS Wald tests are often, but not always, smaller
than those of the NL2SLS Wald tests. Note that in Table 14.4 the empirical
rejection probabilities for the NL2SLS and RNL2SLS Wald tests with asymp-
totic critical values are identical when testing H0: α = 1. The explanation here
is that NL2SLS and RNL2SLS give the same estimate of α. When this occurs,
both estimation methods produce the same estimate of β.

Turning to the LM tests, the differences between the empirical and nominal
levels are much smaller for the LM tests than for the Wald tests, both for n = 25
and n = 50. Indeed, inspection of Tables 14.1–14.4 shows that when n = 50
the differences between the empirical and nominal levels are, almost without
exception, essentially zero for all models.



Ta
bl

e
14

.1
.

E
m

pi
ri

ca
lr

ej
ec

ti
on

pr
ob

ab
il

it
ie

s
(p

er
ce

nt
)

of
W

al
d

an
d

L
M

te
st

s
fo

r
m

od
el

1:
β

0
=

1,
β

1
=

1,
F

tr
un

ca
te

d
no

rm
al

,σ
=

0.
5,

X
un

if
or

m
[−

0.
5,

0.
5]

N
om

in
al

R
ej

ec
tio

n
Pr

ob
ab

ili
tie

s

1
5

10
1

5
10

1
5

10

W
al

d
L

M

C
ri

tic
al

va
lu

es
H

yp
ot

he
si

s
N

L
2S

L
S

R
N

L
2S

L
S

N
L

2S
L

S

n
=

25
A

sy
m

pt
ot

ic
α
=

0
0.

00
0.

05
0.

29
0.

44
1.

34
2.

64
1.

04
5.

83
11

.4
α
=

1
0.

00
0.

17
0.

78
1.

21
3.

26
5.

62
1.

04
5.

83
11

.4

B
oo

ts
tr

ap
(Y

,
X

)
pa

ir
α
=

0
0.

03
0.

17
0.

49
0.

00
0.

01
0.

02
α
=

1
0.

03
0.

03
1.

89
0.

00
0.

00
0.

01

B
oo

ts
tr

ap
re

si
du

al
s

α
=

0
0.

69
3.

23
7.

10
0.

03
3.

05
6.

98
1.

10
5.

17
9.

89
α
=

1
0.

85
3.

74
7.

80
0.

44
3.

61
8.

04
1.

10
5.

17
9.

89

n
=

50
A

sy
m

pt
ot

ic
α
=

0
0.

00
0.

13
0.

70
0.

16
0.

90
2.

16
1.

02
5.

23
10

.4
α
=

1
0.

03
0.

43
1.

66
0.

72
2.

15
4.

45
1.

02
5.

23
10

.4

B
oo

ts
tr

ap
(Y

,
X

)
pa

ir
α
=

0
0.

00
0.

17
0.

78
0.

00
0.

00
0.

05
α
=

1
0.

06
0.

75
3.

84
0.

00
0.

00
0.

01

B
oo

ts
tr

ap
re

si
du

al
s

α
=

0
0.

83
3.

84
8.

16
0.

11
3.

31
7.

86
1.

06
5.

10
9.

87
α
=

1
0.

90
4.

56
9.

17
0.

41
3.

43
8.

41
1.

06
5.

10
9.

87

N
ot

es
:

T
he

em
pi

ri
ca

lr
ej

ec
tio

n
pr

ob
ab

ili
tie

s
ar

e
co

m
pu

te
d

us
in

g
10

,0
00

M
on

te
C

ar
lo

re
pl

ic
at

io
ns

an
d

99
9

bo
ot

st
ra

p
re

pl
ic

at
io

ns
.T

he
95

%
co

nfi
de

nc
e

in
te

rv
al

s
fo

r
th

e
0.

01
,

0.
05

,
an

d
0.

10
le

ve
ls

ar
e

(0
.8

0,
1.

12
),

(4
.5

7,
5.

43
)

an
d

(9
.4

1,
10

.5
9)

,
re

sp
ec

tiv
el

y;
th

e
99

%
co

nfi
de

nc
e

in
te

rv
al

s
ar

e
(0

.7
44

,1
.2

6)
,(

4.
44

,5
.5

6)
,a

nd
(9

.2
3,

10
.8

),
re

sp
ec

tiv
el

y.



Ta
bl

e
14

.2
.

E
m

pi
ri

ca
lr

ej
ec

ti
on

pr
ob

ab
il

it
ie

s
(p

er
ce

nt
)

of
W

al
d

an
d

L
M

te
st

s
fo

r
m

od
el

2:
β

0
=

0.
1,

β
1
=

1,
F

tr
un

ca
te

d
no

rm
al

,σ
=

0.
5,

X
lo

gn
or

m
al

N
om

in
al

re
je

ct
io

n
pr

ob
ab

ili
tie

s

1
5

10
1

5
10

1
5

10

W
al

d
L

M

C
ri

tic
al

va
lu

es
H

yp
ot

he
si

s
N

L
2S

L
S

R
N

L
2S

L
S

N
L

2S
L

S

n
=

25
A

sy
m

pt
ot

ic
α
=

0
1.

05
2.

89
5.

39
2.

78
7.

44
12

.4
1.

09
6.

20
12

.2
α
=

1
2.

38
6.

87
11

.6
2.

43
7.

01
11

.8
1.

09
6.

20
12

.2

B
oo

ts
tr

ap
(Y

,
X

)
Pa

ir
α
=

0
0.

69
3.

05
6.

49
0.

35
1.

94
4.

45
α
=

1
1.

20
5.

51
11

.7
0.

97
4.

72
10

.5

B
oo

ts
tr

ap
re

si
du

al
s

α
=

0
1.

06
4.

27
8.

70
1.

19
5.

33
10

.2
1.

10
5.

44
10

.8
α
=

1
1.

19
5.

45
10

.2
1.

16
5.

41
10

.2
1.

10
5.

44
10

.8

n
=

50
A

sy
m

pt
ot

ic
α
=

0
0.

38
1.

63
3.

17
1.

91
6.

71
11

.7
1.

06
5.

35
10

.8
α
=

1
1.

46
5.

66
10

.9
1.

50
5.

78
11

.1
1.

06
5.

35
10

.8

B
oo

ts
tr

ap
(Y

,
X

)
pa

ir
α
=

0
0.

43
1.

98
4.

44
0.

32
1.

31
2.

67
α
=

1
1.

26
5.

64
11

.4
1.

20
5.

55
11

.2

B
oo

ts
tr

ap
re

si
du

al
s

α
=

0
0.

81
3.

97
8.

53
1.

02
4.

72
9.

33
1.

10
5.

25
10

.1
α
=

1
1.

05
4.

97
10

.1
1.

04
4.

97
10

.0
1.

10
5.

25
10

.1

N
ot

es
:

T
he

em
pi

ri
ca

l
re

je
ct

io
n

pr
ob

ab
ili

tie
s

ar
e

co
m

pu
te

d
us

in
g

10
,0

00
M

on
te

C
ar

lo
re

pl
ic

at
io

ns
an

d
99

9
bo

ot
st

ra
p

re
pl

ic
at

io
ns

.T
he

95
%

co
nfi

de
nc

e
in

te
rv

al
s

fo
r

th
e

0.
01

,
0.

05
,

an
d

0.
10

le
ve

ls
ar

e
(0

.8
0,

1.
12

),
(4

.5
7,

5.
43

)
an

d
(9

.4
1,

10
.5

9)
,

re
sp

ec
tiv

el
y;

th
e

99
%

co
nfi

de
nc

e
in

te
rv

al
s

ar
e

(0
.7

44
,1

.2
6)

,(
4.

44
,5

.5
6)

,a
nd

(9
.2

3,
10

.8
),

re
sp

ec
tiv

el
y.



Ta
bl

e
14

.3
.

E
m

pi
ri

ca
lr

ej
ec

ti
on

pr
ob

ab
il

it
ie

s
(p

er
ce

nt
)

of
G

M
M

W
al

d
an

d
L

M
te

st
s

fo
r

m
od

el
3:

β
0
=

0,
β

1
=

1,
F

ex
po

ne
nt

ia
l,

X
un

if
or

m
[−

0.
5,

0.
5]

N
om

in
al

re
je

ct
io

n
pr

ob
ab

ili
tie

s

1
5

10
1

5
10

1
5

10

W
al

d
L

M

C
ri

tic
al

va
lu

es
H

yp
ot

he
si

s
N

L
2S

L
S

R
N

L
2S

L
S

N
L

2S
L

S

n
=

25
A

sy
m

pt
ot

ic
α
=

0
0.

31
1.

86
4.

32
0.

27
1.

63
3.

95
1.

15
5.

31
10

.6
α
=

1
0.

64
2.

85
6.

17
0.

58
2.

63
5.

72
1.

15
5.

31
10

.6

B
oo

ts
tr

ap
(Y

,
X

)
pa

ir
α
=

0
0.

32
1.

67
4.

44
0.

03
0.

40
1.

91
α
=

1
0.

44
2.

51
6.

51
0.

01
0.

61
3.

28

B
oo

ts
tr

ap
re

si
du

al
s

α
=

0
1.

25
5.

24
9.

83
0.

76
4.

49
9.

00
1.

22
4.

79
9.

44
α
=

1
1.

41
5.

62
10

.3
1.

26
5.

14
9.

75
1.

22
4.

79
9.

44

n
=

50
A

sy
m

pt
ot

ic
α
=

0
0.

34
2.

91
6.

39
0.

31
2.

67
5.

95
0.

73
5.

04
10

.6
α
=

1
0.

96
4.

45
8.

13
0.

91
4.

20
7.

77
0.

73
5.

04
10

.6

B
oo

ts
tr

ap
(Y

,
X

)
pa

ir
α
=

0
0.

35
2.

52
7.

35
0.

00
0.

57
3.

27
α
=

1
0.

71
4.

62
9.

22
0.

02
0.

98
5.

81

B
oo

ts
tr

ap
re

si
du

al
s

α
=

0
1.

09
5.

40
10

.4
0.

77
4.

85
9.

82
0.

84
4.

84
9.

95
α
=

1
1.

11
5.

57
10

.4
1.

02
5.

38
10

.2
0.

84
4.

84
9.

95

N
ot

es
:

T
he

em
pi

ri
ca

l
re

je
ct

io
n

pr
ob

ab
ili

tie
s

ar
e

co
m

pu
te

d
us

in
g

10
,0

00
M

on
te

C
ar

lo
re

pl
ic

at
io

ns
an

d
99

9
bo

ot
st

ra
p

re
pl

ic
at

io
ns

.T
he

95
%

co
nfi

de
nc

e
in

te
rv

al
s

fo
r

th
e

0.
01

,
0.

05
,

an
d

0.
10

le
ve

ls
ar

e
(0

.8
0,

1.
12

),
(4

.5
7,

5.
43

)
an

d
(9

.4
1,

10
.5

9)
,

re
sp

ec
tiv

el
y;

th
e

99
%

co
nfi

de
nc

e
in

te
rv

al
s

ar
e

(0
.7

44
,1

.2
6)

,(
4.

44
,5

.5
6)

,a
nd

(9
.2

3,
10

.8
),

re
sp

ec
tiv

el
y.



Ta
bl

e
14

.4
.

E
m

pi
ri

ca
lr

ej
ec

ti
on

pr
ob

ab
il

it
ie

s
(p

er
ce

nt
)

of
W

al
d

an
d

L
M

te
st

s
fo

r
m

od
el

4:
β

0
=

0,
β

1
=

1,
F

ex
po

ne
nt

ia
l,

X
ex

po
ne

nt
ia

l

N
om

in
al

re
je

ct
io

n
pr

ob
ab

ili
tie

s

1
5

10
1

5
10

1
5

10

W
al

d
L

M

C
ri

tic
al

va
lu

es
H

yp
ot

he
si

s
N

L
2S

L
S

R
N

L
2S

L
S

N
L

2S
L

S

n
=

25
A

sy
m

pt
ot

ic
α
=

0
1.

89
6.

41
11

.3
1.

95
6.

65
11

.7
1.

58
5.

89
11

.2
α
=

1
1.

82
6.

23
11

.2
1.

82
6.

22
11

.3
1.

58
5.

89
11

.2

B
oo

ts
tr

ap
(Y

,
X

)
pa

ir
α
=

0
0.

75
3.

61
8.

39
0.

73
3.

53
8.

24
α
=

1
0.

55
3.

50
8.

12
0.

48
3.

21
7.

77

B
oo

ts
tr

ap
re

si
du

al
s

α
=

0
1.

26
5.

03
9.

72
1.

26
5.

01
9.

74
1.

47
5.

23
9.

85
α
=

1
1.

32
4.

91
9.

70
1.

30
4.

90
9.

68
1.

47
5.

23
9.

85
n
=

50
A

sy
m

pt
ot

ic
α
=

0
1.

33
5.

47
10

.2
1.

46
5.

66
10

.5
1.

42
5.

32
10

.3
α
=

1
1.

39
5.

48
10

.2
1.

39
5.

48
10

.2
1.

42
5.

32
10

.3

B
oo

ts
tr

ap
(Y

,
X

)
pa

ir
α
=

0
0.

83
4.

97
10

.5
0.

81
5.

01
10

.5
α
=

1
0.

71
4.

92
10

.3
0.

70
4.

89
10

.3

B
oo

ts
tr

ap
re

si
du

al
s

α
=

0
1.

19
4.

87
9.

83
1.

27
4.

92
9.

57
1.

27
4.

95
10

.0
α
=

1
1.

24
4.

99
9.

74
1.

24
4.

99
9.

74
1.

27
4.

95
10

.0

N
ot

es
:

T
he

em
pi

ri
ca

l
re

je
ct

io
n

pr
ob

ab
ili

tie
s

ar
e

co
m

pu
te

d
us

in
g

10
,0

00
M

on
te

C
ar

lo
re

pl
ic

at
io

ns
an

d
99

9
bo

ot
st

ra
p

re
pl

ic
at

io
ns

.
T

he
95

%
co

nfi
de

nc
e

in
te

rv
al

s
fo

rt
he

0.
01

,0
.0

5,
an

d
0.

10
le

ve
ls

ar
e

(0
.8

0,
1.

12
),

(4
.5

7,
5.

43
)a

nd
(9

.4
1,

10
.5

9)
,r

es
pe

ct
iv

el
y;

th
e

99
%

co
nfi

de
nc

e
in

te
rv

al
s

ar
e

(0
.7

44
,1

.2
6)

,(
4.

44
,5

.5
6)

,a
nd

(9
.2

3,
10

.8
),

re
sp

ec
tiv

el
y.



Box–Cox Model with the Bootstrap 347

A striking feature of Tables 14.1–14.4 is that the empirical levels of the LM
tests do not depend on the hypothesized value of α. In particular, the levels
for the test of H0: α = 0 are identical to those for the test of H0:α = 1. The
key to the explanation is provided by the Newey (personal communication,
2001) procedure for calculating the LM statistic, which is presented in Section
3. In this procedure, the LM statistic is obtained by regressing T (Yi , α0) on
Xi and Wi . In the Monte Carlo experiments, when H0: α = α0 is true, the
value of T (Yi , α0) is the same no matter what the value of α0. This is because
T (Yi , α0) = β0 + β1 Xi +Ui and β0 + β1 Xi +Ui is the same, independently
of α0; that is, β0, β1, Xi , and Ui are determined independently of α0. Even
though Yi is different for different values of α0, Yi only enters in the calculation
of the LM statistic through T (Yi , α0). Hence, the results of the steps 1 and 2
of the Newey procedure do not depend on the value of α0. The same argument
applies to the LM tests based on bootstrap critical values.

Bootstrap Critical Values: (Y, X) Pairs

The experiments investigated the ability of the bootstrap critical values obtained
by resampling (Y , X ) pairs to reduce the distortions in the levels of the Wald tests
that occur when asymptotic critical values are used. The results are generally
negative: the bootstrap based on resampling (Y , X ) pairs does not reduce the
distortions in the levels for most of the cases considered. Tables 14.1 and 14.3
show that the distortions in models 2 and 3, are often larger, not smaller, when
bootstrap critical values obtained by resampling (Y , X ) pairs are used. The
poor numerical performance of these bootstrap critical values is disappointing,
but not surprising because resampling (Y , X ) pairs does not impose the null
hypothesis in the population that the bootstrap samples.

Monte Carlo experiments were also carried out to investigate the rejection
probabilities of the NL2SLS Wald test with bootstrap critical values obtained
by resampling (Y , X ) pairs when n = 100. At this sample size, the distortions
in the levels of the tests tended to be much reduced.

Bootstrap Critical Values: Residuals

The results for the Wald tests show that bootstrap critical values obtained by re-
sampling residuals reduce, in most cases, the differences between the empirical
and nominal levels that occur when asymptotic critical values are used. In some
cases, however, the bootstrap does not remove the distortions. This is shown
in Table 14.1, especially for n = 25. In other cases, the bootstrap essentially
eliminates the level distortions present with asymptotic critical values. For ex-
ample, this is illustrated for model 3 by the results for the NL2SLS Wald test
of H0:α = 0 with n = 50 in Table 14.3. Again, the experimental evidence is
mixed when comparing RNL2SLS and NL2SLS.

As noted earlier, distortions in the levels of LM tests with asymptotic critical
values occur only when n = 25. The tabled results show that these distortions
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Figure 14.1. Empirical powers of nominal 0.05 level NL2SLS-based Wald
tests of H0: α = 1 are given for α equal to 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.85, 0.9, 0.95, 1.0 using asymptotic critical values (solid line) and bootstrap
critical values (dashed line) obtained by randomly resampling residuals with
replacement.

are essentially removed when the LM tests use bootstrap critical values obtained
by resampling residuals.

Finally, Monte Carlo power experiments were performed to investigate the
ability of the Wald tests to discriminate between alternative values of the trans-
formation parameter. The powers were computed for NL2SLS Wald tests with
bootstrap critical values obtained by resampling residuals. The empirical powers
were calculated for a 0.05 level test of H0: α = 1 when the values of α are equal
to 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.85, 0.9, 0.95, and n = 25. Figure 14.1
illustrates the empirical powers in the case of model 2: β0 = 0.1, β1 = 1, F
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truncated normal, σ = .5, X lognormal; and model 3: β0 = 0, β1 = 1, F expo-
nential, X uniform [−0.5, 0.5].

In Figure 14.1, the solid line shows the empirical powers for the tests with
asymptotic critical values, and the dashed line shows the empirical powers for
the tests with bootstrap critical values. For model 2, the test using asymptotic
critical values appears to have a bit higher power, which is partly because the
test overrejects under the null when asymptotic critical values are used. The
empirical powers for model 3 are dramatically lower than those for model 2.
This illustrates that the experimental design can make a substantial difference
to the test’s potential to discriminate among alternatives. Here, the powers are
lower using asymptotic critical values, in part because the test underrejects
when asymptotic critical values are used.

We conducted additional power experiments. These show that the Wald tests
based on the NL2SLS and the RNL2SLS estimators have about the same power
when they use bootstrap critical values. The LM tests appears to have higher
power than the NL2SLS Wald test for model 2 and lower power for model 3,
again when the tests are based on bootstrap critical values.

7. FTW ESTIMATOR

This section introduces the semiparametric estimator of the parameters of the
Box–Cox model proposed in 2001 by Foster, Tian, and Wei (henceforth FTW)
and reports the results of a Monte Carlo investigation of the Wald test based on
the FTW estimator.

FTW (2001) motivate their estimation procedure by considering the case
where α is known. Again let Yi , Xi : i = 1, . . . , n be a random sample from
(Y, X ). Then the least-squares estimator of β is

bn(a) =
[∑

i
Xi X ′

i

]−1∑
i

X ′
i T (Yi , α). (7.1)

To estimateα, consider the process {I (Yi < t), t ≥ 0}, where I ( ) is the indicator
function. The expected value of I (Yi < t) is

E[I (Yi < t)] = P(Yi < t) = P[T (Yi , α)− X ′
iβ

< (T (t, α)− X ′
iβ)] = F(T (t, α)− X ′

iβ). (7.2)

A consistent estimate of the distribution function of U can be obtained using
the empirical distribution of the residuals:

Fn(t) = 1

n

n∑
i=1

[I (T (Yi , α)− X ′
i bn(α)) < t]. (7.3)
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The FTW estimator of α solves

min
α

Sn(α) = 1

n

n∑
i=1

∞∫
0

[I (Yi < t)− Fn(T (t, α)− X ′
i bn(α))]2dh(t), (7.4)

where h( ) is a strictly increasing deterministic weight function. The resulting
estimate of α is used to obtain the estimate of β via (7.1). A limitation of this
procedure is that X ′

iβ cannot be degenerate; that is, β cannot be equal to 0.
FTW use the theory of U processes to show for large n that the estimator of

α is the unique global minimizer of Sn(α) and is strongly consistent for α0 and
that the estimator of β is strongly consistent for β0. The authors also show that
the joint distribution of the estimators is asymptotically normal with a finite
covariance matrix that involves the unknown density function of F , which may
not be well estimated by directly using nonparametric density estimation. They
propose a new resampling method that they claim provides reliable estimates
of the covariance matrix.

In the Monte Carlo experiments reported here, the empirical rejection proba-
bilities of the FTW Wald tests are investigated using the four models considered
previously. The tests are carried out with asymptotic critical values and with
bootstrap critical values obtained by resampling residuals. The sample size in
the experiments is restricted to n = 25 because the simulations are very time-
consuming, which is a consequence of the method used by FTW to compute
an estimate of the covariance matrix. For the same reason, only 500 Monte
Carlo replications are used in each experiment. The bootstrap critical values
are computed using 199 bootstrap replications.

The Monte Carlo results are presented in Table 14.5. The empirical levels
of the FTW Wald tests based on the asymptotic critical value are larger than
the nominal levels, except for model 1. In models 2, 3, and 4, the differences
between the empirical and nominal levels are especially large when testing H0:
α = 0. The evidence from these experiments suggests that there may be no
advantage in using the FTW Wald test instead of the GMM Wald test when
asymptotic critical values are employed. In most cases, the bootstrap reduces
the distortions in the levels of the Wald tests that occur with asymptotic critical
values. In the case of models 1, 2, and 4, the bootstrap essentially removes the
distortions in the levels that occur with asymptotic critical values.

The bootstrap is very time-consuming because the estimation of the covari-
ance matrix also involves simulation. Moreover, several tuning parameters have
to be chosen to implement the simulation approach. An alternative approach is
to use a non-Studentized test statistic to test the hypothesis. The non-Studentized
test statistic proposed here is

√
n(ān − α0), where ān is the FTW estimator of

α. This statistic has the advantage that it does not require calculation of the
covariance matrix. This approach is motivated by the fact that higher-order ap-
proximations to the distributions of statistics that are not asymptotically pivotal



Box–Cox Model with the Bootstrap 351

Table 14.5. Empirical rejection probabilities (percent) of FTW tests

Nominal rejection probabilities

1 5 10 1 5 10

Hypothesis
Form of test and
critical value α = 0 α = 1

Model 1: β0 = 1, β1 = 1, F truncated normal, σ = 0.5, X uniform [−0.5, 0.5]
Wald

Asymptotic 1.00 5.20 12.4 1.80 5.20 10.2
Bootstrap 1.40 5.40 10.8 1.20 5.20 10.6

Non-Studentized
Single bootstrap 0.80 3.40 8.20 0.40 5.62 11.4
Double bootstrap 0.40 4.00 8.40 0.80 5.20 10.6

Model 2: β0 = 0.1, β1 = 1, F truncated normal, σ = 0.5, X lognormal
Wald

Asymptotic 9.80 17.8 23.4 3.20 7.80 15.6
Bootstrap 1.20 4.20 8.80 0.80 4.80 11.6

Non-Studentized
Single bootstrap 1.40 3.80 9.60 0.80 4.80 9.20
Double bootstrap 0.80 5.20 10.6 0.80 4.20 6.80

Model 3: β0 = 0, β1 = 1, F exponential, X uniform [−0.5, 0.5]
Wald

Asymptotic 3.40 10.8 17.4 2.80 8.40 15.2
Bootstrap 2.60 7.40 12.8 2.40 7.60 12.2

Non-Studentized
Single bootstrap 1.20 5.80 10.6 0.40 2.80 7.00
Double bootstrap 0.60 4.80 8.80 0.20 3.20 6.60

Model 4: β0 = 0, β1 = 1, F exponential, X exponential
Wald

Asymptotic 7.20 13.6 17.6 1.80 8.0 12.4
Bootstrap 0.60 3.00 9.20 1.00 5.80 10.2

Non-Studentized
Single bootstrap 1.40 5.00 8.40 0.80 3.60 8.80
Double bootstrap 0.20 4.00 8.60 0.40 4.20 9.20

Notes: The empirical rejection probabilities are computed using 500 Monte Carlo repli-
cations and 199 bootstrap replications in both the single and the double bootstrap. The
95% confidence intervals for the 0.01, 0.05, and 0.10 levels are (0.013, 1.87), (3.09,
6.91), and (7.37, 12.63), respectively; the 99% confidence intervals are (−0.15, 2.15),
(2.49, 7.51), and (6.54, 13.5), respectively.
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can be obtained through the use of bootstrap iteration (Beran 1988). The idea
is to obtain the critical values of the non-Studentized test using the double
bootstrap. Although the double bootstrap itself is computationally intensive, it
is, nevertheless, less so than bootstrapping the FTW Wald statistic.

Table 14.5 also reports the results of Monte Carlo experiments using the
non-Studentized tests with single and double bootstrap critical values obtained
by resampling residuals. Again, 500 Monte Carlo replications are used in each
experiment. Both the single bootstrap and double bootstrap results are based
on 199 bootstrap replications.

Table 14.5 shows that the differences between the empirical and nominal
levels are small when critical values based on the single bootstrap are used.
There are essentially no distortions in the levels of the non-Studentized tests.
The exception occurs when testing H0: α = 0 in design 3. The empirical levels
when the critical values are based on the double bootstrap tend to be similar to
the empirical levels based on the single bootstrap. This is surprising because
the single bootstrap applied to statistics that are not asymptotically pivotal does
not provide higher-order approximations to their distributions. This does not
imply, of course, that the single bootstrap cannot be better than the asymptotical
FTW Wald test. The comparison of the numerical performance of the asymp-
totical FTW Wald test and the bootstrap for the non-Studentized tests suggests
that applying the bootstrap to the non-Studentized test is competitive with cal-
culating the variance of the FTW estimator and using the asymptotical FTW
Wald test.

Finally, in a small power experiment, the FTW Wald test appears to have a
bit higher power than the GMM Wald tests when both tests use bootstrap critical
values. This result also appears to carry over to the case of the non-Studentized
test based on the FTW estimator.

8. CONCLUDING COMMENTS

In this section, the results are briefly reviewed and three topics are recommended
for further research. The first involves the NL2SLS and RML2SLS estimators,
the second the wild bootstrap with GMM-based tests, and the third is the double
bootstrap with tests based on the new estimation method proposed by FTW
(2001).

This study has focused on testing the transformation parameter in a Box–Cox
model where U is independent of X . In a setting where U and X are independent,
bootstrap critical values can be obtained by randomly resampling (Y , X ) pairs
with replacement or by randomly resampling residuals with replacement. The
Monte Carlo experiments show that the bootstrap often essentially eliminates
the level distortions that occur with asymptotic critical values when the bootstrap
critical values are obtained by resampling residuals.

Two versions of the GMM estimator developed for the Box–Cox model
are NL2SLS and RNL2SLS, where the latter was designed to address certain
shortcomings of the former. The experiments compared Wald tests based on
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the NL2SLS estimator with Wald tests based on the RNL2SLS estimator. The
results are somewhat mixed. The differences between the empirical and nominal
levels for the RNL2SLS Wald tests are often, but not always, smaller than those
for the NL2SLS Wald tests. This is true when asymptotic or bootstrap critical
values are used. As a consequence, more evidence is needed to determine which
estimator among the two is preferable for testing purposes.

In applications, U may have heteroskedasticity of unknown form. In par-
ticular, the variance of U may depend on the value of X . In this situation, the
bootstrap can be implemented by resampling (Y , X ) pairs. However, in our
experiments, the Wald and the LM tests using bootstrap critical values obtained
from resampling (Y, X ) pairs often do not provide satisfactory control over the
type I error. An alternative to resampling (Y , X ) pairs is to use the wild bootstrap.
Liu (1988) introduced the wild bootstrap following a suggestion by Wu (1986).
Horowitz (1997) reports the performance of the wild bootstrap in experiments
using a linear regression model with heteroskedasticity of unknown form. The
results show that using critical values obtained from the wild bootstrap substan-
tially reduces the error in the rejection probability under the null hypothesis.
In the case of the Box–Cox model, the wild bootstrap has the drawback that it
does not constrain the value of Y to be positive. Adapting the wild bootstrap to
a Box–Cox model is a topic that merits further research.

FTW (2001) have recently proposed a semiparametric estimation proce-
dure for the Box–Cox model. A small Monte Carlo experiment was carried
out to investigate the Wald test based on the FTW estimator. The results show
that the differences between the empirical and the nominal levels can be large
when the test uses asymptotic critical values. The bootstrap reduces, and of-
ten eliminates, the distortions that occur with asymptotic critical values. But
there is a complication. The bootstrap is very time-consuming because of the
fact that the estimation of the covariance matrix also involves simulation. The
alternative explored here is to avoid the computation of a covariance matrix
estimate by using a non-Studentized test and to obtain the critical values of
the non-Studentized test by using the double bootstrap. The double bootstrap
approach appears to be promising and one that merits further investigation. In-
deed, what is surprising is that the empirical levels are often close to the nominal
levels when the non-Studentized test uses critical values based on the single
bootstrap.

ACKNOWLEDGEMENTS

The authors thank Don Andrews, the editor, the referees, and Joel Horowitz,
George Judge, Whitney Newey, as well as the participants of the NSF Sum-
mer Symposium 2001 on Identification and Inference for Econometric Models,
University of California, Berkeley, for useful comments and suggestions. Allan
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CHAPTER 15

Tests of the Null Hypothesis of
Cointegration Based on Efficient Tests
for a Unit MA Root
Michael Jansson

ABSTRACT

A new family of tests of the null hypothesis of cointegration is proposed. Each member of this
family is a plug-in version of a point optimal stationarity test. Appropriately selected tests dominate
existing cointegration tests in terms of local asymptotic power.

1. INTRODUCTION

In recent years, several papers have studied the problem of testing the null
hypothesis of cointegration against the alternative of no cointegration. A variety
of testing procedures have been proposed, but very little is known about the
asymptotic power properties of these tests. In an attempt to shed some light on
the issue of power, this chapter makes two contributions.

First, a new test of the null hypothesis of cointegration is introduced. Similar
to the tests proposed by Park (1990), Shin (1994), Choi and Ahn (1995), and
Xiao and Phillips (2002), the test developed in this chapter can be viewed as
an extension of an existing test of the null hypothesis of stationarity. Unlike
the tests introduced in the cited studies, the test proposed herein is based on a
stationarity test (derived in Rothenberg (2000)), which is known to enjoy nearly
optimal local asymptotic power properties.

Second, the paper compares the power of the new test to the power of pre-
viously proposed tests by numerical evaluation of the local asymptotic power
functions. It turns out that a cointegration test based on an optimal stationarity
test inherits the good (relative to competing test procedures) local asymptotic
power properties of the stationarity tests upon which it is based. In particular,
the new test dominates existing tests in terms of local asymptotic power.

Section 2 motivates the testing procedure introduced in this paper. Section 3
presents the model and the assumptions under which the development of formal
results will proceed. The new family of tests is introduced in Section 4. Sec-
tion 5 investigates the asymptotic properties of the tests and two competing test

This paper draws on material in Chapter 2 of the author’s Ph.D. dissertation at University of Aarhus,
Denmark.
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procedures. Finally, Section 6 offers a few concluding remarks, while mathe-
matical derivations appear in three Appendices.

2. MOTIVATION

The leading special case of the testing problem considered in this chapter is the
problem of testing the null hypothesis θ = 1 against the alternative hypothesis
θ < 1 in the model

yt = β ′xt + vt , t = 1, . . . , T, (2.1)

where vt and xt are independent zero mean Gaussian time series (of dimensions
1 and k, respectively), �xt ∼ i.i.d. N (0, Ik) with initial condition x0 = 0, and
vt is generated by the model

�vt = uy
t − θuy

t−1, t = 2, . . . , T, (2.2)

where � is the difference operator, uy
t ∼ i.i.d. N (0, 1), and the initial condition

is v1 = uy
1 .The parametersβ ∈ R

k and θ ∈ (−1, 1) are assumed to be unknown.
In the literature on stationarity testing, the model (2.2) of vt is often referred

to as the moving average model. A convenient feature of the moving average
model is that the null hypothesis of stationarity can be formulated as a simple
parametric restriction.1 Indeed, vt is stationary if and only if the moving average
coefficient θ in (2.2) equals unity. (The “if” part is true because vt = uy

t ∼ i.i.d.
N (0, 1) when θ = 1, whereas the “only if” part follows from the fact vt is an
integrated process with a random walk-type nonstationarity whenever θ differs
from unity.) By implication, the time series yt and xt are cointegrated (in the
sense of Engle and Granger (1987)) if and only if θ = 1.

If β was known, the null hypothesis of cointegration could be tested by
applying a stationarity test to the observed series vt = yt − β ′xt . Studying the
moving average model (2.2), Rothenberg (2000, Section 4) derived the family
of point optimal (PO) tests of the null hypothesis θ = 1.2 The stationarity test
derived in Rothenberg (2000) rejects for large value of

PT (λ̄) =
T∑

t=1

uy
t (0)2 −

T∑
t=1

uy
t (λ̄)2,

where uy
t (l) =∑t−1

i=0(1− T−1l)i�vt−i (for l ∈ {0, λ̄} and t ∈ {1, . . . , T }),
v0 = 0, and λ̄ > 0 is some prespecified constant. The test based on PT (λ̄) is the
PO test of θ = 1 against the point alternative θ = 1− T−1λ̄ in the model (2.2).

1 An alternative to the moving average model, which also parameterizes stationarity as a point, is the
“local-level” unobserved components model. As discussed by Stock (1994), the two models are
closely related. In fact, it can be shown that the two models give rise to identical Gaussian power
envelopes for tests of the null hypothesis cointegration whenever a constant term is included
in the model (Jansson 2005). For this reason, only the moving average model will be studied
here.

2 See also Saikkonen and Luukkonen (1993), who derived the family of PO location invariant tests
of θ = 1.
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By implication, the test is also the PO test of θ = 1 against θ = 1− T−1λ̄ in
the model (2.1)–(2.2) when β is known and {xt } is independent of {vt }.3

It follows from Rothenberg (2000) that the test based on PT (λ̄) is “nearly”
optimal (has local asymptotic power function “close” to the Gaussian power
envelope) if λ̄ is chosen appropriately. In particular, such PO stationarity tests
have better local asymptotic power properties than the stationarity tests by Park
and Choi (1988), Kwiatkowski et al. (1992), Choi and Ahn (1998), and Xiao
(2001), respectively.

When β is unknown (as is assumed here), it seems natural to test the null
hypothesis of cointegration by using a plug-in approach in which a stationarity
test is applied to an estimate of vt . The cointegration tests proposed by Park
(1990), Shin (1994), Choi and Ahn (1995), and Xiao and Phillips (2002) are
all of the plug-in variety, being based on the stationarity tests proposed by Park
and Choi (1988), Kwiatkowski et al. (1992), Choi and Ahn (1998), and Xiao
(2001), respectively. This chapter explores the extent to which the superiority
of Rothenberg’s stationarity test (Rothenberg 2000) is inherited by a plug-in
cointegration test based upon it. Specifically, it is explored whether a plug-in
cointegration test based on Rothenberg’s stationarity test dominates the tests by
Park (1990), Shin (1994), Choi and Ahn (1995), and Xiao and Phillips (2002)
in terms of local asymptotic power.

3. THE MODEL AND ASSUMPTIONS

The plug-in cointegration test based on Rothenberg’s stationarity test (Rothen-
berg 2000) will be developed under the assumption that zt = (yt , x ′t )

′ is an
observed (k + 1)-vector time series (partitioned into a scalar yt and a k-vector
xt ) generated by

zt = µz
t + z0

t , t = 1, . . . , T, (3.1)

where µz
t is a deterministic component and z0

t is a zero mean stochastic compo-
nent. Partitioning z0

t conformably with zt as z0
t = (y0

t , x0′
t )′, it is assumed that

z0
t is generated by the potentially cointegrated system

y0
t = β ′x0

t + vt , (3.2)

�x0
t = ux

t , (3.3)

where vt is an error process with initial condition v1 = uy
1 and generating mech-

anism

�vt = uy
t − θuy

t−1, t = 2, . . . , T . (3.4)

3 If {xt } and {vt } are not independent, more powerful tests can often be found. Jansson (2004) has
developed PO tests under the assumption that β is known and (uy

t ,�x ′t )′ is Gaussian white noise.
These tests are more powerful than the test based on PT (λ̄) whenever the correlation between uy

t
and �xt is nonzero, but the source of these power gains is not exploitable when β is unknown
(as is assumed in this chapter).
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In (3.2)− (3.4), β ∈ R
k and θ ∈ (−1, 1] are unknown parameters and ut =

(uy
t , ux ′

t )′ is a stationary process whose long-run variance covariance matrix

� = lim
T→∞

T−1
T∑

t=1

T∑
s=1

E
(
ut u

′
s

)
is assumed to be positive definite.

For concreteness, the deterministic component µz
t is assumed to be a pth

order polynomial time trend:

µz
t = α′zdt , t = 1, . . . , T, (3.5)

where dt = (1, . . . , t p)′ andαz is a (p + 1)× m matrix of unknown parameters.
The leading special cases of (3.5) are the constant mean (p = 0) and linear trend
(p = 1) cases corresponding to dt = 1 and dt = (1, t)′, respectively.

In the development of distributional results, it will be assumed that

T−1/2
�T ·�∑
t=1

ut →d �1/2W (·), (3.6)

and

T−1
T∑

t=2

(
t−1∑
s=1

us

)
u′t →d �1/2

∫ 1

0
W (r ) dW (r )′�1/2′ + "′, (3.7)

where �·� denotes the integer part of the argument, W (·) is a Wiener process of
dimension m, and

" = lim
T→∞

T−1
T∑

t=2

t−1∑
s=1

E
(
ut u

′
s

)
is the one-sided long-run covariance matrix of ut .

Similar to the model of Section 2, the model (3.1)–(3.7) enjoys the property
that the null hypothesis of cointegration can be formulated as a simple paramet-
ric restriction. Indeed, the problem of testing the null hypothesis of cointegration
against the alternative of no cointegration can once again be formulated as the
problem of testing

H0 : θ = 1 versus H1 : θ < 1.

The model (3.1)–(3.7) generalizes (2.1) and (2.2) in several respects. The
presence of the deterministic component µz

t in (3.1) relaxes the zero mean as-
sumption of (2.1) and (2.2). Moreover, the high-level assumptions (3.6) and
(3.7) on the latent errors ut accommodate quite general forms of contempora-
neous and serial correlation (and do not require normality). Indeed, the conver-
gence results (3.6) and (3.7) hold (jointly) under a variety of weak dependence
conditions on ut . For instance, the following assumption suffices:

A1. ut =
∑∞

i=0 Ciεt−i , where {εt : t ∈ Z} is i.i.d. (0, Im),
∑∞

i=0 Ci has
full rank, and

∑∞
i=1 i‖Ci‖ <∞, where ‖ · ‖ is the Euclidean norm.
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Under A1, the long-run covariance matrix of ut is � = (
∑∞

i=0 Ci )(
∑∞

i=0 Ci )′, a
positive definite matrix. The assumption that � is positive definite is a standard,
but important, regularity condition. It implies that x0

t is a non-cointegrated
integrated process and rules out multicointegration (in the sense of Granger
and Lee 1990) under the null hypothesis of cointegration.

4. A FAMILY OF COINTEGRATION TESTS

Conformably with zt , partition αz as αz = (αy, αx ). Defining α = αy − αxβ,

the following relation can be obtained by combining (3.1), (3.2), and (3.5):

yt = α′dt + β ′xt + vt , t = 1, . . . , T . (4.1)

The family of cointegration tests proposed herein is obtained by applying (a
suitably modified version of) Rothenberg’s stationarity test (Rothenberg 2000)
to an estimate of the error term vt in (4.1).

Suppose (4.1) is estimated by OLS:

yt = α̂′dt + β̂
′
xt + v̂t . (4.2)

As it turns out, tests constructed by applying stationarity tests to v̂t generally
have limiting distributions with complicated nuisance parameter dependen-
cies unless xt satisfies a certain exogeneity condition.4 In the case of the sta-
tionarity tests proposed by Park and Choi (1988), Kwiatkowski et al. (1992),
Choi and Ahn (1998), and Xiao (2001), this problem can be circumvented by
employing an asymptotically efficient (under H0) estimation procedure when
constructing a plug-in cointegration tests (for details, see Park (1990), Shin
(1994), Choi and Ahn (1995), and Xiao and Phillips (2002)). These proper-
ties are shared by the PO stationarity test, implying that the plug-in versions
of Rothenberg’s stationarity tests (Rothenberg 2000) should employ asymp-
totically efficient (under H0) estimators of α and β in the construction of
estimates of vt . For concreteness, it is assumed that Park’s canonical coin-
tegrating regression (CCR) (Park 1992) estimators of α and β are used. (A brief
discussion of alternative estimation strategies is provided at the end of this
section.)

To construct the CCR estimators, consistent (under H0 and local alternatives)
estimators of � and " are needed. Suppose � and " are estimated by kernel
estimators of the form

�̂ = T−1
T∑

t=1

T∑
s=1

k

( |t − s|
b̂T

)
ût û

′
s, (4.3)

4 Specifically, lim T→∞T−1∑T
t=1
∑T

s=1 E(uy
t ux ′

s ) and lim T→∞T−1∑T
t=1
∑t

s=1 E(uy
t ux ′

s ) must
be zero if these nuisance parameter dependencies are to be avoided. That is, � must be block
diagonal and " must be block upper triangular, where � and " are the matrices defined in
Section 3.
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and

"̂ = T−1
T∑

t=2

t−1∑
s=1

k

( |t − s|
b̂T

)
ût û

′
s, (4.4)

where k(·) is a (measurable) kernel function, b̂T is a sequence of (possibly
random) bandwidth parameters, and ût = (v̂t ,�x̂0′

t )′, where v̂t are the OLS
residuals from (4.2) and x̂0

t are the OLS residuals from

xt = α̂′x dt + x̂0
t . (4.5)

The consistency requirement on �̂ and "̂ is met under the following assumption
on k(·) and b̂T .

A2. (i) k(0) = 1, k(·) is continuous at zero and k̄(0)+ ∫∞0 k̄(r ) dr <∞,

where k̄(r ) = sups≥r |k(s)| (for all r ≥ 0).
(ii) b̂T = âT bT , where âT and bT are positive, âT + â−1

T = Op(1),
and, bT is nonrandom with b−1

T + T−1/2bT = o(1).

Assumption A2 (i) is adapted from Jansson (2002) and is discussed there, while
A2 (ii) is adapted from Andrews (1991).

Partition "̂ and �̂ in conformity with ut = (uy
t , ux ′

t )′ and let "̂x · = (γ̂ xy, "̂xx ),
ω̂yy·x = κ̂ ′�̂κ̂ , and γ̂ yy·x = κ̂ ′"̂κ̂, where κ̂ = (1,−ω̂′xy�̂

−1
xx )′. Let α̃ and β̃ be

the OLS estimators obtained from the multiple regression

y†t = α̃′dt + β̃
′
x†

t + ṽt , (4.6)

where y†t = yt − ω̂′xy�̂
−1
xx �x̂0

t + β̂
′
"̂x ·�̂−1ût , x†

t = xt + "̂x ·�̂−1ût , �̂ =
T−1∑T

t=1 ût û′t , and β̂ is the OLS estimator from (4.2). The estimators α̃ and β̃

from (4.6) are Park’s CCR estimators (Park 1992) of α and β. Under H0, these
estimators are asymptotically efficient (in the sense of Saikkonen (1991)). In ad-
dition, the behavior of suitably normalized partial sums involving the residuals
ṽt is such that asymptotically pivotal (under H0) test statistics can be constructed
using these residuals.

Let ṽ0 = 0 and define ũ y
t (l) =∑t−1

i=0(1− T−1l)i�ṽt−i (for l ∈ {0, λ̄} and
t ∈ {1, . . . , T }). The proposed test rejects H0 for large values of

QT (λ̄) =
∑T

t=1 ũ y
t (0)2 −∑T

t=1 ũ y
t (λ̄)2 − 2λ̄γ̂ yy·x

ω̂yy·x
, (4.7)

where λ̄ > 0 is a prespecified constant. (Guidance on the choice of λ̄ will be
provided in Section 5.)

In the numerator of QT (λ̄), the term
∑T

t=1 ũ y
t (0)2 −∑T

t=1 ũ y
t (λ̄)2 is a plug-in

version of the test statistic PT (λ̄) of Section 2. The statistic QT (λ̄) is a modified
version of PT (λ̄) in which two nonparametric corrections are employed in order
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to produce a test statistic which is asymptotically pivotal under H0. Specifically,
the term −2λ̄γ̂ yy·x corrects

∑T
t=1 ũ y

t (0)2 −∑T
t=1 ũ y

t (λ̄)2 for “serial correlation
bias,” while the denominator removes scale parameter dependencies from the
limiting distribution of QT (λ̄).

Remark. Lemma A.2 in Appendix A summarizes the properties of ṽt that are
used in the derivation of the distributional result reported in Theorem 5.1 of
Section 5. These properties are shared by the “fully modified” (Phillips and
Hansen 1990) residual process

v̌t = yt − ω̂′xy�̂
−1
xx �x̂0

t − α̌′dt − β̌
′
xt ,

where α̌ and β̌ are asymptotically efficient estimators of α and β. As a conse-
quence, the test can also be based on v̌t . Likewise, the test can be based on the
DOLS (Stock and Watson 1993) residuals v̈t from the regression

yt = α̈′dt + β̈
′
xt + γ̈ (L)�xt + v̈t ,

where γ̈ (L) is a two-sided lag polynomial.

5. ASYMPTOTIC THEORY

Similar to the existing cointegration tests, the test based on QT (λ̄) has nontrivial
power against local alternatives of the form 1− θ = O(T−1). This fact moti-
vates the reparameterization θ = θT = 1− T−1λ, where λ is a non-negative
constant. Under this reparameterization, the null and alternative hypotheses are
λ = 0 and λ > 0, respectively. A similar reparameterization was implicitly em-
ployed in the definition of QT (λ̄), which is a plug-in version of the optimal test
against the alternative θ = 1− T−1λ̄. Theorem 5.1 characterizes the limiting
distribution of QT (λ̄) under H0 and local alternatives.

Theorem 5.1. Let zt be generated by (3.1)–(3.5) and suppose A1–A2 hold.
Moreover, suppose θ = θT = 1− T−1λ for some λ ≥ 0. Then

QT (λ̄) →d 2λ̄
∫ 1

0
Ũλ

λ̄
(r ) dŨλ(r )− λ̄

2
∫ 1

0
Ũλ

λ̄
(r )2dr,

where Ũλ
λ̄

(r ) = ∫ r
0 e−λ̄(r−s) dŨλ(s),

dŨλ(r ) = dUλ(r )−
(∫ 1

0
X (s) dUλ(s)

)′
×
(∫ 1

0
X (s)X (s)′ ds

)−1

X (r ) dr,

Uλ(r ) = U (r )+ λ
∫ r

0 U (s)ds, X (r ) = (V (r )′, 1, . . . , r p
)′

and U and V are in-
dependent Wiener processes of dimensions 1 and k, respectively.
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Table 15.1. Percentiles of QT (λ̄)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Constant Mean
λ̄ 10 12 14 16 18 20
90% −4.19 −5.78 −7.24 −8.68 −10.14 −11.61
95% −3.24 −4.82 −6.34 −7.74 −9.17 −10.64
97.5% −2.33 −3.90 −5.46 −6.83 −8.23 −9.66
99% −1.09 −2.74 −4.21 −5.62 −7.08 −8.63

Linear trend
λ̄ 14 16 18 19 21 23
90% −6.72 −8.25 −9.64 −10.74 −12.15 −13.55
95% −5.70 −7.24 −8.57 −9.83 −11.20 −12.59
97.5% −4.73 −6.27 −7.53 −8.84 −10.19 −11.60
99% −3.50 −4.96 −6.26 −7.67 −8.98 −10.43

To implement the test, the analyst must specify an alternative θ = 1− T−1λ̄

against which good power is desired. The approach recommended here is to
choose λ̄ in such a way that the local asymptotic power against the alternative
θ = 1− T−1λ̄ is approximately equal to 50% when the 5% test based on QT (λ̄)
is used. In related testing problems, a similar approach has been advocated by
Elliott, Rothenberg, and Stock (1996), Stock (1994), and Rothenberg (2000).
Table 15.1 tabulates the recommended values of λ̄ for k = 1, . . . , 6 regressors
in the constant mean and linear trend) case and reports selected percentiles of
the asymptotic null distributions of the corresponding QT (λ̄) statistics.5

The local asymptotic power properties of the new test will be compared
to those of the cointegration tests proposed by Xiao and Phillips (2002) and
Shin (1994), respectively.6 The cointegration test proposed by Xiao and Phillips
(2002) rejects H0 for large values of

RT = ω̂−1/2
yy·x max1≤t≤T

∣∣∣∣∣T−1/2
t∑

s=1

ũ y
s (0)

∣∣∣∣∣ , (5.1)

whereas Shin’s test (Shin 1994) rejects for large values of

ST = ω̂−1
yy·x T−2

T−1∑
t=1

[
t∑

s=1

ũ y
s (0)

]2

, (5.2)

5 The percentiles were computed by generating 20,000 draws from the discrete time approximation
(based on 2,000 steps) to the limiting random variables.

6 The local power results of Jansson and Haldrup (2002) indicate that none of the cointegration
tests proposed by Park (1990) and Choi and Ahn (1995) are superior to the test by Shin (1994).
Therefore, cointegration tests by Park (1990) and Choi and Ahn (1995) are not studied here.
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where ω̂yy·x and ũ y
t (0) are defined as in Section 4.7 It is shown in Appendix B

that RT →d sup0≤r≤1|Ũλ(r )| and ST →d
∫ 1

0 Ũλ(r )2 dr under the assumptions
of Theorem 5.1, where Ũλ(r ) = ∫ r

0 dŨλ(s).
Figure 15.1(a) plots the local asymptotic power functions of the constant

mean QT (10), RT , and ST tests in the case where xt is a scalar (k = 1).8 The
test based on QT (10) dominates existing tests in terms of local asymptotic
power whenever λ exceeds 5. Even for alternatives close to H0, where ST

enjoys certain optimality properties (Harris and Inder 1994), the new test is
very competitive in terms of power.

Figure 15.1(b) investigates the optimality properties of QT , (10) by plot-
ting its local asymptotic power function against two benchmarks. For any
alternative λ > 0, the level of the quasi-envelope plotted in Figure 15.1(b)
is obtained by maximizing (over λ̄ > 0) the power of a cointegration test
based on a member of the family {QT (λ̄) : λ̄ > 0} of test statistics proposed
herein. As a consequence, the optimality of the choice λ̄ = 10 can be eval-
uated by comparing the power of QT (10) to the quasi-envelope. The power
of QT (10) is almost indistinguishable from the quasi-envelope for values of
λ between 8 and 16 and is reasonably close to the quasi-envelope for values
of λ outside this range. By choosing λ̄ smaller (greater) than 10, the differ-
ence between the power of QT (λ̄) and the quasi-envelope can be decreased
for small (large) values of λ at the expense of a greater gap for large (small)
values of λ. Therefore, although QT (10) fails to attain the quasi-envelope, no
other value of λ̄ delivers a test statistic QT (λ̄) with uniformly better power
properties.

The envelope plotted in Figure 15.1(b) is an upper bound on the local
asymptotic power of (a class of cointegration tests that contains all) plug-
in cointegration tests. That bound, developed in a follow-up paper (Jansson
2005), can be used to investigate the optimality properties of {QT (λ̄) : λ̄ > 0}
within the class of tests that are invariant under transformations of the form
yt → yt + a′dt + b′xt , where a ∈ R

p+1 and b ∈ R
k . The presence of a visible

difference between the quasi-envelope and the power envelope suggests that
an even more powerful cointegration test might exist. A confirmation of that
conjecture is provided in Jansson (2005), where a cointegration test (not of
the plug-in variety) with nearly optimal local asymptotic power properties is
developed.

7 Strictly speaking, RT and ST are modifications of the test statistics proposed by Xiao and Phillips
(2002) and Shin (1994). Unlike RT and ST , tests by Shin (1994) and Xiao and Phillips (2002)
are not based on estimation procedure by Park (1992). Under the assumptions of Theorem 5.1,
the difference between RT and Xiao and Phillips’s test statistic (Xiao and Phillips 2002) is
asymptotically negligible, as is the difference between ST and test statistic by Shin (1994).

8 The power functions were obtained by generating 20,000 draws from the discrete time approxi-
mation (based on 2,000 steps) to the limiting distributions of the test statistics for selected values
of λ.
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Figure 15.1. Power curves (5% level tests, constant mean, scalar x).
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The result for the linear trend case are qualitatively similar to those for the
constant mean case as can be seen from Figures 15.2(a) and 15.2(b).

The test statistic QT (λ̄) has been constructed with local alternatives in mind.
As the following theorem shows QT (λ̄) can also be used to detect distant alter-
natives. Indeed, the test which rejects for large values of QT (λ̄) is consistent in
the sense that power against any fixed alternative θ = θ̄ < 1 tends to one as T
increases without bound.

Theorem 5.2. Let zt be generated by (3.1)–(3.5) and suppose A1–A2 hold.
Moreover, suppose θ < 1 is fixed. Then lim T→∞ Pr[QT (λ̄) > c] = 1 for any
c ∈ R.

6. CONCLUSION

A new family of tests of the null hypothesis of cointegration was proposed.
Each member of this family is a plug-in version of a PO stationarity test.
Similar to the PO stationarity tests upon which they are based, the cointegration
tests proposed in this chapter have good power properties. In particular, an
appropriately selected version of the new test dominates existing cointegration
tests in terms of local asymptotic power.

APPENDIX A: PROOF OF THEOREM 5.1

The proof of Theorem 5.1 utilizes the following two lemmas.

Lemma A.1. Under the assumptions of Theorem 5.1, �̂→p � and "̂ →p ".

Lemma A.2. Under the assumptions of Theorem 5.1,

T−1/2
�T ·�∑
t=1

ũ y
t (0) →d ω1/2

yy·xŨλ(·)

and

T−1
T∑

t=2

[
t−1∑
s=1

ũ y
s (0)

]
ũ y

t (0) →d ωyy·x
∫ 1

0
Ũλ(r ) dŨλ(r )+ γ yy·x

jointly, where ωyy·x = κ ′�κ, γ yy·x = κ ′"κ, and κ = (1,−ω′xy�
−1
xx )′.

Under H0, Lemma A.1 follows from Corollary 4 of Jansson (2002). The
extension to local alternatives is straightforward, but tedious, and can be estab-
lished by proceeding as in the proof of Lemma 5 of Jansson and Haldrup (2002).
Lemma A.2 follows from Lemma 6(c)–(f) of Jansson and Haldrup (2002) and
the fact that ũ y

t (0) = ṽt .
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Figure 15.2. Power curves (5% level tests, linear trend, scalar x).
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Proof of Theorem 5.1. By Lemma A.1, γ̂ yy·x →p γ yy·x and ω̂yy·x →p ωyy·x .
Since

T∑
t=1

ũ y
t (0)2 −

T∑
t=1

ũ y
t (λ̄)2

=
T∑

t=1

ũ y
t (0)2 −

T∑
t=1

[
ũ y

t (0)+ ũ y
t (λ̄)− ũ y

t (0)
]2

= −
T∑

t=1

[
ũ y

t (0)− ũ y
t (λ̄)
]2 + 2

T∑
t=1

[
ũ y

t (0)− ũ y
t (λ̄)
]

ũ y
t (0),

the proof of Theorem 5.1 can therefore be completed by establishing the fol-
lowing convergence results:

T∑
t=1

[
ũ y

t (0)− ũ y
t (λ̄)
]2 →d λ̄

2
ωyy·x

∫ 1

0
Ũλ

λ̄
(r )2 dr, (A.1)

T∑
t=1

[
ũ y

t (0)− ũ y
t (λ̄)
]

ũ y
t (0) →d λ̄

(
ωyy·x

∫ 1

0
Ũλ

λ̄
(r ) dŨλ(r )+ γ yy·x

)
.

(A.2)

Let θ̄T = 1− T−1λ̄. Using the relation ũ y
t (λ̄) = ũ y

t (0)− λ̄T−1∑t−1
j=1

θ̄
t−1− j
T ũ y

j (0) and summation by parts,

ũ y
t (0)− ũ y

t (λ̄) = T−1λ̄

(
Ũ y

t−1 − λ̄θ̄
t−2
T T−1

t−2∑
j=1

θ̄
− j
T Ũ y

j

)
, (A.3)

where Ũ y
t =

∑t
j=1 ũ y

j (0). Now, T−1/2Ũ y
�T ·� →d ω

1/2
yy·xŨλ(·) by Lemma A.2.

Moreover, lim T→∞sup0≤r≤1|θ̄ �T r�
T − exp(−λ̄r )| = 0, so

T 1/2
[
ũ y
�T ·�(0)− ũ y

�T ·�(λ̄)
]→d λ̄ω1/2

yy·xŨλ
λ̄

(·) (A.4)

by the continuous mapping theorem (CMT), Theorem 13.4 of Billingsley
(1999), and the fact that

Ũλ
λ̄

(r ) = Ũλ(r )− λ̄

∫ r

0
exp
[
λ̄(s − r )

]
Ũλ(s) ds, r ∈ [0, 1].

Using (A.4) and applying CMT,

T∑
t=1

[
ũ y

t (0)− ũ y
t (λ̄)
]2 = ∫ 1

0

(
T 1/2

[
ũ y
�T r�(0)− ũ y

�T r�(λ̄)
])2

dr

+ [ũ y
T (0)− ũ y

T (λ̄)
]2

→d

∫ 1

0

(
λ̄ω1/2

yy·xŨλ
λ̄

(r )
)2

dr,

establishing (A.1).
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By (A.3),

T∑
t=1

(
ũ y

t (0)− ũ y
t (λ̄)
)

ũ y
t (0) = T−1λ̄

T∑
t=1

Ũ y
t−1ũ y

t (0)+ T−1λ̄

T∑
t=1

×
(
−λ̄θ̄

t−2
T T−1

t−2∑
j=1

θ̄
− j
T Ũ y

j

)
ũ y

t (0).

Now,

T−1
T∑

t=1

Ũ y
t−1ũ y

t (0) →d ωyy·x
∫ 1

0
Ũλ(r ) dŨλ(r )+ γ yy·x

by Lemma A.2. Moreover,

T−1
T∑

t=1

(
−λ̄θ̄

t−2
T T−1

t−2∑
j=1

θ̄
− j
T Ũ y

j

)
ũ y

t (0)

= T−1
T∑

t=1

[
ũ y

t−1(0)− ũ y
t−1(λ̄)

]
Ũ y

t−1 →d λ̄ωyy·x
∫ 1

0
Ũλ

λ̄
(r )Ũλ(r ) dr,

where the equality uses summation by parts, (A.3), and Ũ y
T = 0, while

the last line uses (A.4), Lemma A.2, and CMT. Combining the preced-
ing displays, the limiting distribution of

∑T
t=1(ũ y

t (0)− ũ y
t (λ̄))ũ y

t (0) can be
represented as

λ̄

(
ωyy·x

[∫ 1

0
Ũλ(r ) dŨλ(r )+ λ̄

∫ 1

0
Ũλ

λ̄
(r )Ũλ(r ) dr

]
+ γ yy·x

)
= λ̄

(
ωyy·x

∫ 1

0
Ũλ

λ̄
(r )dŨλ(r )+ γ yy·x

)
,

where the equality follows from integration by parts. Therefore, (A.2) holds
and the proof is complete.

APPENDIX B: LIMITING DISTRIBUTIONS
OF RT AND ST

The limiting distribution of RT is derived as follows:

RT = ω̂−1/2
yy·x max1≤t≤T

∣∣∣∣∣T−1/2
t∑

s=1

ũ y
s (0)

∣∣∣∣∣
= (ω−1/2

yy·x + op(1)
)

sup0≤r≤1

∣∣∣∣∣T−1/2
�T r�∑
s=1

ũ y
s (0)

∣∣∣∣∣
→ dsup0≤r≤1

∣∣Ũλ(r )
∣∣ ,
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where the second equality uses Lemma A.1, while the last line uses Lemma
A.2 and CMT.

Similarly,

ST = ω̂−1
yy·x T−2

T−1∑
t=1

(
t∑

s=1

ũ y
s (0)

)2

= [
ω−1

yy·x + op(1)
]⎡⎣∫ 1

0

(
T−1/2

�T r�∑
s=1

ũ y
s (0)

)2

dr

⎤⎦
→d

∫ 1

0
Ũλ(r )2dr,

where the second equality uses Lemma A.1, while the last line uses Lemma A.2
and CMT.

APPENDIX C: PROOF OF THEOREM 5.2

Let û y
t (l) =∑t−1

j=0(1− T−1l) j�v̂t− j for l ∈ {0, λ̄} and t ∈ {1, . . . , T }, where
v̂0 = 0 and {v̂t } are the residuals from (4.2). The following lemmas are used in
the proof of Theorem 5.2.

Lemma C.1. Under the assumptions of Theorem 5.2,

T−1/2v̂�T ·� →d (1− θ )ω1/2
yy·xÛ (·),

where Û (r ) = U (r )− (
∫ 1

0 X (s)U (s))′(
∫ 1

0 X (s)X (s)′ds)−1 X (r ), while U and X
are defined as in Theorem 5.1.

Lemma C.2. Under the assumptions of Theorem 5.2, T−3/2γ̂ yy →p 0,
T−1γ̂ xy →p 0 and T−1γ̂ yx →p 0.

Lemma C.3. Under the assumptions of Theorem 5.2,

T−2

[
T∑

t=1

ũ y
t (0)2 −

T∑
t=1

ũ y
t (λ̄)2

]
= T−2

[
T∑

t=1

û y
t (0)2 −

T∑
t=1

û y
t (λ̄)2

]
+ op(1).

Lemma C.1 follows from standard spurious regression results. The
proof of Lemma C.2 uses T−1σ̂ yy = T−2∑T

t=1 v̂
2
t = Op(1), �̂xx = T−1∑T

t=1

�x̂0
t � x̂0′

t = Op(1), and the fact that T−1/2∑T−1
i=0 |k(i/b̂T )| →p 0 under A2
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(Jansson 2002). For instance,∣∣T−3/2γ̂ yy

∣∣ = ∣∣∣∣∣T−3/2
T−1∑
i=0

k

(
i

b̂T

)(
T−1

T−i∑
t=1

v̂t+i v̂t

)∣∣∣∣∣
≤ T−1/2

T−1∑
i=0

∣∣∣∣k ( i

b̂T

)∣∣∣∣
∣∣∣∣∣
(

T−2
T−i∑
t=1

v̂t+i v̂t

)∣∣∣∣∣
≤ T−1/2

T−1∑
i=0

∣∣∣∣k ( i

b̂T

)∣∣∣∣
(

T−2
T−i∑
t=1

v̂2
t+i

)1/2(
T−2

T−i∑
t=1

v̂2
t

)1/2

≤
(

T−2
T∑

t=1

v̂2
t

)(
T−1/2

T−1∑
i=0

∣∣∣∣k ( i

b̂T

)∣∣∣∣
)
→p 0,

where the second inequality uses the Cauchy–Schwarz inequality. Finally, the
proof of Lemma C.3 uses T−1γ̂ yx →p 0 and a considerable amount of tedious
algebra. To conserve space, the details are omitted.

Proof of Theorem 5.2. For any T,

Pr
[
QT (λ̄) > c

]
= Pr

[
T∑

t=1

ũ y
t (0)2 −

T∑
t=1

ũ y
t (λ̄)2 − 2λ̄γ̂ yy·x − cω̂yy·x > 0

]
.

By Lemmas C.2 and C.3 and using T−1σ̂ yy = Op(1),

T−2

[
T∑

t=1

ũ y
t (0)2 −

T∑
t=1

ũ y
t (λ̄)2 − 2λ̄γ̂ yy·x − cω̂yy·x

]

= T−2

[
T∑

t=1

û y
t (0)2 −

T∑
t=1

û y
t (λ̄)2

]
+ op(1).

In view of the portmanteau theorem (for example, Billingsley 1999), the proof
of Theorem 5.2 can therefore be completed by showing that T−2[

∑T
t=1 û y

t (0)2 −∑T
t=1 û y

t (λ̄)2] has a limiting distribution with positive support.

Let θ̄T = 1− T−1λ̄.The relation û y
t (λ̄) = û y

t (0)− λ̄T−1∑t−1
j=1 θ̄

t−1− j
T û y

j (0)
can be restated as follows:

û y
T,�T r�(l) = û y

T,�T r� − λ̄θ̄
�T r�−1
T

∫ �T r�/T

0
θ̄
−�T s�
T û y

T,�T s�ds, 0 ≤ r≤1.

Now, lim T→∞sup0≤r≤1|θ̄ �T r�
T − exp(−λ̄r )| = 0, so it follows from the preced-

ing display, Lemma C.1, and CMT that T−1/2û y
�T ·�(λ̄) →d (1− θ )ω1/2

yy·xÛλ̄(·),
where

Ûλ̄(r ) = Û (r )− λ̄

∫ r

0
exp(−λ̄(r − s))Û (s)ds.
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Using this result, Lemma C.1, and CMT,

T−2

[
T∑

t=1

û y
t (0)2 −

T∑
t=1

û y
t (λ̄)2

]

→d (1− θ )2ωyy·x

[∫ 1

0
Û (r )2dr −

∫ 1

0
Ûλ̄(r )2dr

]
,

so it suffices to show that Pr[
∫ 1

0 Û (r )2dr − ∫ 1
0 Ûλ̄(r )2dr > 0] = 1.

Since Ûλ̄(r ) = Û (r )− λ̄
∫ 1

0 1(s ≤ r ) exp[−λ̄(r − s)]Û (s)ds, where 1(·) is
the indicator function, it follows from straightforward algebra that∫ 1

0
Û (r )2dr −

∫ 1

0
Ûλ̄(r )2dr =

∫ 1

0

∫ 1

0
Kλ̄(r, s)Û (r )Û (s)drds,

where

Kλ̄(r, s) = λ̄

2

(
exp
[−λ̄(2− r − s)

]+ exp
[−λ̄ |r − s|]) .

The desired result now follows from the fact that the function Kλ̄ (·, ·) is positive
definite in the sense that

∫ 1
0

∫ 1
0 Kλ̄(r, s) f (r ) f (s)drds > 0 for any nonzero,

continuous function f (·).
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CHAPTER 16

Robust Confidence Intervals for
Autoregressive Coefficients Near One
Samuel B. Thompson

ABSTRACT

We construct outlier robust confidence sets for autoregressive roots near unity. There are a few
difficulties in doing this – the asymptotics for robust methods generally involve several poorly
estimated nuisance parameters, and robust procedures are more difficult to compute than least-
squares-based methods. We propose a family of “aligned” robust procedures that eliminate the
need to estimate some of the nuisance parameters. The procedures are computationally no more
burdensome than least squares. In thick-tailed data the robust sets outperform those based on
normality.

1. INTRODUCTION

A recurring problem in financial econometrics is how to conduct valid inference
on a linear mean function estimated from monthly, weekly, or daily data. For
example, most interest rate models specify the conditional mean to be linear
in the previous value of the process. The data typically exhibit outliers and
substantial serial dependence, and in most cases standard methods do not reject
the presence of a unit root in the autoregressive representation of the series. For
empirical problems such as quantifying the effect of parameter uncertainty on
short-term forecasts and asset pricing formulas, reporting only the unit root test
and the parameter estimates are an unsatisfying way to describe the data. For
these applications it can be useful to construct confidence sets for the largest
autoregressive root of the series.

Both directly and through his students, Thomas Rothenberg has made many
contributions to our understanding of inference for integrated and nearly inte-
grated data. One way to construct a confidence set is to invert a sequence of
tests, where each test in the sequence evaluates a particular point null hypoth-
esis. The confidence set contains all the point nulls that are not rejected by the
sequence of tests. Elliott and Stock (2000) argued that, since a more powerful
test leads to a more accurate interval, inverting the asymptotically point optimal
tests in Elliott, Rothenberg, and Stock (1996) should lead to more accurate con-
fidence sets than had been previously proposed (see Stock 1991; Andrews 1993;
Hansen 1999). While it is not possible to do better than the tests in Elliott et al.
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(1996) when the innovations are normal, the outliers present in financial data
suggest that other methods may lead to improvements.

This paper proposes “robust” confidence sets which have good accuracy
for a variety of error distributions. We create the confidence sets by inverting
a sequence of robust t tests. Unlike the tests in Elliott et al. (1996), t tests
do not efficiently model the deterministic trend and are not point optimal for
any particular distribution. We use t tests because they are robust. Thompson
(2004a) showed that point optimal tests based on nonnormal likelihoods can
behave very badly when the true error density is unknown and asymmetric.
Thus, there is a trade-off between Elliott and Stock’s (2000) confidence sets,
which efficiently handle deterministic trends, and the confidence sets described
here, which are robust to outliers.

Since the robust test statistics generally have null distributions that depend
on unknown nuisance parameters, finding appropriate critical values is a non-
trivial problem. Furthermore, all the robust tests require estimation of more
nuisance parameters than do the least-squares tests, and the cumulative effect
of estimation error can be large. In some cases nonparametric estimators must
be used, resulting in slow rates of convergence. An additional problem is that
robust tests are somewhat more difficult to compute than least-squares-based
tests.

We construct a sequence of robust tests which eliminate the need to estimate
several of the unknown nuisance parameters. To compute critical values we ex-
tend a simple procedure suggested by Rothenberg and Stock (1997). Following
Rothenberg and Thompson (2001) we compute “aligned” robust tests which
are no more difficult to compute than least-squares-based tests.

The resulting confidence sets perform well so long as the errors are known to
follow an i.i.d. process. In this case both asymptotic analysis and a Monte Carlo
study show that the robust sets are useful alternatives to the sets proposed by
Elliott and Stock (2000). While the sets in Elliott and Stock (2000) have accurate
coverage probabilities only for integrated or nearly integrated data, the robust
sets exhibit accurate coverage probabilities for integrated data and when the
true data generating process is i.i.d. We also compare the areas of the various
sets and conclude that with normal errors the robust sets are slightly longer
than sets in Elliott and Stock (2000), and with nonnormal errors the robust
sets are much shorter. However, when the errors follow an unknown serially
correlated process neither the robust sets nor the Elliott and Stock (2000) sets
have satisfactory small sample coverage properties.

2. INVERTING A SEQUENCE OF TESTS

The observations {yt }T
t=1 come from the data generating process

yt = µ1 + µ2t + ut

ut = (1+ γ ) ut−1 + vt

" (L) vt = εt
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where {εt }T
t=1 is an i.i.d. sequence with mean 0 and variance σ 2

ε . "(L) is the lag
polynomial 1− "1L − · · · − "p L p, and I assume that the roots of "(z) = 0
all lie outside the unit circle. I also assume that the initial value u0 has a finite
variance. I wish to put a confidence region around γ .

Since I am interested in inference when γ is close to zero, I adopt the local-
to-zero reparameterization γ = c/T so that the parameter space is a shrinking
neighborhood of zero as the sample size grows. Following Bobkoski (1983),
Cavanagh (1985), Chan and Wei (1987), and Phillips (1987), I take c fixed when
making limiting arguments, obtaining asymptotic representations as a function
of the local alternative c. With this reparameterization, the augmented Dickey
and Fuller (1979) representation of the model is

�Y = Xα + Zβ + ε (2.1)

where �Y = (yp+2 − yp+1, . . . , yT − yT−1)′, X = (yp+1, . . . , yT−1)′/T , and
Z is the design matrix with row t − p − 1 equal to (1, t,�yt−1, . . . , �yt−p).
The parameter α is c"(1), β is a (p + 2)× 1 parameter vector and ε =
(ε p+2, . . . , εT )′. For the intercept only model (e.g., µ2 = 0) the design matrix
Z has rows (1,�yt−1, . . . , �yt−p).

A 100 (1− a) % confidence set C(y) where y is the data has the property
that Prc [c ∈ C(y)] ≥ 1− a for all c. Here Prc indicates that the probability is
computed assuming c is the true autoregressive parameter. We construct C(y)
from a sequence of tests. Suppose, for each point c̄ in the parameter space �,
we construct a test of asymptotic size a for the hypothesis c = c̄ versus c �= c̄.
We define C(y) as the set of all c̄ that we fail to reject. In large samples C(y)
has the desired property that Prc [c ∈ C(y)] ≥ 1− a for all c.

Stock (1991) constructed confidence sets by inverting a sequence of t tests
based on the ordinary least squares (OLS) estimator for α in Equation (2.1).
Each null hypothesis α = ᾱ versus α �= ᾱ is rejected when the t statistic[
X ′M X

]1/2
α̂ls is too large or too small, where α̂ls is the OLS estimator and

M is the projection matrix I − Z
(
Z ′Z
)−1

Z ′. This procedure gives us a confi-
dence region for α which, combined with a consistent estimate of "(1), leads
to a confidence region for c. Andrews (1993) and Hansen (1999) also proposed
confidence intervals based on the OLS estimator.

Elliott and Stock (2000) attempted to improve on Stock’s (1991) intervals
by inverting tests that are point optimal for Gaussian errors. In a stationary
autoregressive model with Gaussian errors, the least-squares t test is asymptot-
ically uniformly most powerful against all one-sided alternatives. Elliott et al.
(1996) have shown that when γ is local to zero this result does not hold, and
there does not exist a uniformly most powerful test, even in large samples.
Instead, for each null c = c̄ we have a family of point optimal tests, each one
most powerful only against the point alternative c = c̄. While none of the point
optimal tests dominate the others, they are generally more powerful than the t
test because the point optimal tests efficiently model the trend coefficients µ1
and µ2.
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Table 16.1. Some robust tests

Test ψ or ϕ function ω

Least squares ψ (x) = x 1
LAD ψ (x) = sign (x) 2 f (η)
Huber’s M ψ (x) = x1 (|x | ≤ k) Pr [|ε1 − η| ≤ k]

+ ksign (x) 1 (|x | > k)
Student’s t ψ (x) = log(1+ x2/n) Eψ ′ (ε1 − η)
Wilcoxon ranks ϕ (s) = s − 1/2 E f (ε1)
Normal ranks ϕ (s) = �−1 (s) E f (ε1) /�′ (�−1 (F (ε1))

)
Sign ranks ϕ (s) = sign (s − 1/2) 2 f (m)

Notes: F (x) = Pr [ε1 ≤ x] and f (x) = F ′ (x). k is chosen by the researcher. n is the
number of degrees of freedom. m is the median of the errors. η solves Eφ (ε1 − η) = 0.

Confidence sets inherit the properties of the tests used to form them. In the
present paper we prefer confidence sets that tend to cover small areas. While
there is no direct link between test power and confidence set area, in Section 3.2
we will see that the point-optimal tests lead to smaller sets than the OLS t tests.

Elliott et al.’s (1996) tests are not point optimal in thick-tailed data. The
present paper proposes a method for creating confidence sets from a sequence
of traditional robust t tests which inefficiently handle the deterministic trend.
An alternative approach would be to invert point-optimal tests for non-Gaussian
likelihoods. I prefer to invert t statistics because Thompson (2004a) has shown
that point-optimal robust tests can behave badly when the error density is un-
known and asymmetric. Robust t tests perform well for a variety of asymmetric
error distributions.

One way to “robustify” the least-squares-based t test is to replace the OLS
estimate for α with a robust M estimate. M estimators may be characterized as
solutions to maximization problems or, equivalently, as solutions to first order
conditions. It will be convenient to adopt the notation that, for any function h(·)
mapping � into � and any n-dimensional column vector x with components
xi , h(x) is the n-dimensional column vector with components h(xi ). The M
estimators (̂α, β̂) solve the equations

Z ′ψ
(
�Y − X α̂ − Z β̂

) = 0

X ′ψ
(
�Y − X α̂ − Z β̂

) = 0
(2.2)

where ψ(·) is a scalar “score”-type function chosen by the researcher. The
choice of ψ determines the sensitivity of α̂ to outliers; when ψ (x) = x , α̂ is the
OLS estimator, and when ψ (x) = sign (x), α̂ is the least absolute deviations
(LAD) estimator. Some common choices for ψ are given in Table 16.1. Robust
t tests of the unit root hypothesis ᾱ = 0 have been proposed by Lucas (1995)
and Herce (1996).
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I propose an alternative sequence of tests based on a locally asymptotic
representation of the t statistic. Under both, the nullα = ᾱ and fixed alternatives
α �= ᾱ, the t statistic satisfies the approximation

[
X ′M X

]1/2
(̂α − ᾱ) = 1

ω

X ′Mψ
(
�Y − X ᾱ − Z β̂R (ᾱ)

)
[X ′M X ]1/2 + op(1)

where β̂R(ᾱ ) is the restricted estimator that solves the first-order conditions
with the null hypothesis α = ᾱ imposed:

Z ′ψ
(
�Y − X ᾱ − Z β̂R (ᾱ)

) = 0.

ω is the nuisance parameter
∫

R
f (x)dψ(x − η), where f denotes the density

function for ε1, and η solves Eψ(ε1 − η) = 0. Some robust tests and the corre-
sponding ω parameters are given in Table 16.1. When ψ (x) = x , α̂ is the OLS
estimator and ω = 1, and it is straightforward to show that the approximation
holds exactly, with the op(1) term equal to zero.

The parameter ω appears in the asymptotic null distribution of the t statistic,
and it must be estimated in order to obtain critical values. In large samples the
estimates will converge to their true values and the estimation error will have
an asymptotically negligible effect on inference. In small samples estimation
error may affect the size and power of the tests. This is especially true if ω is
poorly estimated. For example, ω = 2 f (η) for LAD estimation. The standard
kernel estimate of a density at a point does not converge to the true value at
root-T speed and is quite variable in small samples.

Since eliminating the (1/ω) term does not affect asymptotic power, a natural
alternative is to reject the null when the ratio

(aligned M test) Q (ᾱ) = X ′Mψ
(
�Y − X ᾱ − Z β̂R (ᾱ)

)
[X ′M X ]1/2 (2.3)

is too large or too small. Theorem 3.1 shows that the asymptotic null distribution
of this statistic does not depend on ω.

Computing the sequence of tests requires solving for β̂R (ᾱ) at each ᾱ. De-
pending on the choice of ψ , this can be a computationally burdensome proce-
dure. Instead of computing β̂R(ᾱ) using ψ , compute it using an alternative set
of first-order conditions:

Z ′φ
(
�Y − X ᾱ − Z β̂R (ᾱ)

) = 0. (2.4)

φ is a function chosen by the researcher. We could take φ = ψ , or we could take
φ to be a function that leads to computationally convenient solutions for β̂R(ᾱ).
For example, φ(x) = x leads to OLS estimates of β̂R(ᾱ), and φ(x) = sign(x)
leads to LAD estimates. If φ, ψ , and the error density are all symmetric around
zero, the asymptotic distribution of Q(ᾱ) does not depend onφ. When symmetry
of the errors does not hold Q(ᾱ) will in many cases retain its robustness to
outliers. I should note that choosing φ not equal to ψ changes the definition of
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η: it solves Eφ(ε1 − η) = 0. Following Adichie (1986) and Akritas (1991), we
call the test based on Q(ᾱ) an “aligned” M test.

It is also possible to construct robust confidence sets based on a single
statistic, like Q(0). We choose instead to compute a sequence of test statistics,
because under each null hypothesisα = ᾱ the parameterω does not appear in the
null distribution of Q(ᾱ). Inverting Q(0) requires us to calculate its distribution
under both the null and under various alternatives. The asymptotic theory in
Theorem 3.1 shows that ω appears in the distribution of Q(0) when α �= 0.
Thus, computing a sequence of test statistics allows us to avoid computing the
additional nuisance parameter.

Hansen’s (1999) parametric bootstrap might provide an alternative method
to avoid estimation of ω. Thompson (2004b) demonstrates that under the null
the limiting distribution of the t statistic [X ′M X ]1/2(̂α − ᾱ) depends on α and
several nuisance parameters that can be consistently estimated. Therefore, the
test statistic fits into Hansen’s (1999) framework.1

We can also construct Q(ᾱ) statistics which are asymptotically equivalent to
the rank-based unit root tests described in Hasan and Koenker (1997). Consider
a test of the null hypothesis α = ᾱ using the test statistic [X ′M X ]−1/2 X ′Mb,
where b = ∫ 1

0 â(s) dϕ(s) and â solves the linear programming problem

â (τ ) = argmax
{
a′(�Y − X ᾱ) | Z ′a = (1− τ ) Z ′1, a ∈ [0, 1]T−p

}
(2.5)

ϕ is a function chosen by the researcher. This construction for b is a way to
handle the nuisance parameters β and allows the researcher to consider general
functions of the ranked residuals: when Z is a vector of ones and ϕ(τ ) = τ , each
element of b is the rank of the corresponding element of �Y − X ᾱ. Table 16.1
lists some common choices for ϕ.

Confidence regions for α may be constructed using a sequence of tests of the
form [X ′M X ]−1/2 X ′Mb. We instead use a computationally simpler family of
aligned rank tests. Given a pair of functions ϕ and φ, for each null hypothesis
α = ᾱ use the φ function to compute the residuals �Y − X ᾱ − Z β̂R(ᾱ) from
Equation (2.4). Letting Rt denote the rank of the t th residual and R(ᾱ) the
(T − p − 1)-dimensional vector of the ranks, form the statistic

(“aligned” rank test) Q (ᾱ) =
X ′Mϕ

(
R(ᾱ)−.5
T−p−1

)
[X ′M X ]1/2 .

1 Here is one adaptation of Hansen’s (1999) bootstrap. 1. Draw a bootstrap sample ε∗ from the
residuals �Y − X α̂ − Z β̂. 2. For each ᾱ, form data vectors �Y ∗, X∗, Z∗ from the model
�Y ∗ = X∗ᾱ + Z∗β̂ + ε∗. 3. Use Equation (2.2) to compute the estimate α̂∗ from �Y ∗, X∗,
and Z∗, and form the t statistic [X ′M X ]1/2( α̂∗ − ᾱ ). 4. Repeat this procedure many times to
obtain bootstrap quantiles of the distribution of [X ′M X ]1/2( α̂ − ᾱ ) and apply Hansen’s (1999)
procedure for constructing confidence intervals. This procedure does not require the estimation
of ω.
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This test is based on the idea that under the null, functions of the ranked
residuals should be approximately independent of M X . So long as β̂R(ᾱ) is
a root-T consistent estimate, any choice of φ leads to a Q(ᾱ) test with the
same asymptotic null distribution and power function as the test based on
[X ′M X ]−1/2 X ′Mb.

3. ASYMPTOTIC ANALYSIS

Deriving a large sample representation for Q (ᾱ) requires assumptions about
ψ , ϕ, and the error distribution.

Assumption 3.1. The errors {εt }T
t=1 are i.i.d. with E |ε1|2+δ finite for some

δ > 0. The density function f has uniformly continuous derivatives f ′ and
finite Fisher Information.

We require that the preliminary estimator β̂R(ᾱ) is root-T consistent. Let ξ
denote the (p + 2)-dimensional vector with first element equal to one and the
remaining elements equal to zero.

Assumption 3.2. There exists a constant η so that
√

T (̂βR(ᾱ)− β − ξη) has
a limiting distribution.

The assumption on β̂R(ᾱ) is easy to verify when preliminary estimation is by
least squares. Theorem 3.1 in Thompson (2004b) can be adapted to verify that
the assumption also holds when φ is the derivative of a convex function with
finitely many points of nondifferentiability. This covers preliminary LAD and
Huber’s M estimates.

Since many of the ψ and ϕ functions considered in this paper are discontin-
uous or nondifferentiable, continuity is not required.

Assumption 3.3. (for M tests): ψ satisfies

E sup
u1:‖u−u1‖<δ

(ψ (εt + u1)− ψ (εt + u))2 ≤ C2δ2#

for all fixed u and all δ > 0 in a neighborhood of zero, and for some finite
constants C and #. Furthermore, E sup‖u‖<δ(ψ(εt − u))2 exists for δ > 0 in a
neighborhood of zero.

The assumption is satisfied by differentiable ψ like the least squares and Stu-
dent’s t functions, as well as by nondifferentiable ψ like the LAD and Huber’s
M functions.

Assumption 3.4. (for rank tests): ϕ is continuous from the right and nonde-
creasing on the interval [ϕ0, 1− ϕ0] for some ϕ0 ∈ (0, .5) and ϕ is constant on
the set [0, ϕ0] ∪ [1− ϕ0, 1].
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The assumption on ϕ is taken from Hasan and Koenker (1997). As they point
out, we can weaken the requirement that ϕ is constant in the tails at the cost of
adding complexity to the proof.

The limiting distribution of Q(ᾱ) can be expressed as a functional of
Brownian motion. Define W (·) to be standard Brownian motion and define
Wc(·) to be the Ornstein–Uhlenbeck process Wc(t) = ∫ t

0 exp{c(t − s)} dW (s).
Under the null that α = ᾱ, the limiting form of the OLS-based statistic[
X ′M X

]1/2
(̂αls − ᾱ) is σ ε DF (c̄), where

DF (c̄) ≡
∫ 1

0 Dc̄(r ) dW (r )√∫ 1
0 D2

c̄ (r ) dr

and c̄ = "−1 (1) ᾱ. The process Dc(r ) is defined to be Wc(r )− ∫ 1
0 Wc(s) ds in

the intercept only model (e.g., µ2 = 0 and there is no time trend in the design
matrix Z ), and Dc(r ) equals Wc(r )− 2

∫ 1
0 (2− 3s − r (3− 6s))Wc(s) ds in the

model with a linear time trend. We have the following result, which is proven
in the Appendix.

Theorem 3.1. Under Assumptions 1–4, σ̂−1
q Q("̂(1)c̄ ) converges weakly to

Q(c, ρ)+ λ(c − c̄)
√∫

D2
c (r ) dr, where

Q (c, ρ) ≡ ρDF (c)+
√

1− ρ2 N (0, 1) .

N (0, 1) denotes a standard normal variable, independent of DF(c̄ ). ρ and λ

are nuisance parameters. σ̂−1
q and "̂(1) are consistent estimates of the nuisance

parameters σ q and "(1).

For the M tests ρ = Corr[ε1, ψ(ε1 − η)], where η solves Eφ(ε1 − η) = 0.
For the rank tests ρ = Corr[ε1, ϕ(F(ε1))], where F(x) is the distribution func-
tion Pr[ε1 ≤ x]. σ 2

q is Var[ψ(ε1 − η)] for the M tests and Var[ϕ(F(ε1))] for the
rank tests. Notice that for the rank tests, F(ε1) has a uniform [0, 1] distribution
and σ q is known. λ is defined to be ωσε/σ q , where ω is

∫
R

f (x) dψ(x − η) for
the M tests and

∫
R

f (x) dϕ(F(x)) for the rank tests.
In large samples ρ and λ determine the null distribution and power function

of each test. Under each null, c̄ = c and λ disappears from the asymptotic
representation. Thus, ρ controls the null distribution of the test, while ρ and λ

together affect power.
The limiting distributions in the theorem are identical to the distributions

derived by Hasan and Koenker (1997) for their rank tests. Thus, for each
of Hasan and Koenker’s (1997) rank tests, there is a corresponding aligned
rank test with the same large sample null distribution and power function as
the original, no matter what the choice for φ. Thompson (2004b) derived the
asymptotic properties of the robust M tests; comparison of his results with the
theorem reveal that the choice of φ affects the value of the nuisance parameters.
Thompson (2004b) obtains the same limiting theory given here, except that η
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Table 16.2. Values of ρ and λ

ρ λ

N (0, 1) DE Log norm Mix N (0, 1) DE Log norm Mix

Least squares 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LAD .80 .71 .63 .47 .80 1.42 .99 1.86
Huber’s M .97 .94 .82 .78 .97 1.13 1.59 1.98
Student’s t3 .95 .89 .72 .61 .95 1.21 1.70 2.19
Wilcoxon .98 .92 .68 .64 .98 1.22 2.72 2.17
Normal ranks 1.00 .98 .76 .77 1.00 1.28 3.55 2.06
Sign ranks .80 .71 .52 .47 .80 1.42 1.73 1.86

Notes: Expectations were computed as empirical averages of 1,000,000 simulated draws
from the error distribution. N (0, 1) indicates standard normal draws, DE indicates double
exponential, log norm is log normal, and mixture is mixture normal. The random draws
are normalized to have zero mean and unit variance. For each test φ (x) = x .

solves Eψ (ε1 − η) = 0. Thus, the aligned M tests are asymptotically equiva-
lent to the traditional M tests when φ = ψ , as well as when φ, ψ , and the error
density are all symmetric (in which case η = 0 for both tests).

It is worth noting that the asymptotic representation for Q(ᾱ) does not depend
on the trend parameteres µ1 and µ2. In large samples Q(ᾱ) is invariant to
the trend parameters, and under normality will be dominated by the optimal
invariant tests described by Elliott et al. (1996). A Q(ᾱ) test can only be more
powerful than Elliott et al.’s (1996) tests in nonnormal data.

3.1. Obtaining Rejection Regions

Obtaining a rejection region for Q(ᾱ) requires us to calculate the quantiles
of Q(c̄, ρ) and to consistently estimate the nuisance parameters. Let kl(c̄, ρ)
and ku(c̄, ρ) denote the quantiles of Q(c̄, ρ) that solve Pr[kl(c̄, ρ) ≤ Q(c̄, ρ) ≤
ku(c̄, ρ)] = a. Let ρ̂, σ̂−1

q , and "̂(1) denote consistent estimates of the nuisance
parameters. The null hypothesis c = c̄ is rejected in favor of the two-sided al-
ternative c �= c̄ when σ̂−1

q Q("̂−1(1)c̄) is either below kl(c̄, ρ̂) or above ku(c̄, ρ̂).
In large samples this test has size equal to a.

In most cases ρ depends on both the test and the error density. An excep-
tion to this is Stock’s (1991) OLS-based test, where ψ(x) = x and ρ = 1 no
matter what the error density. For other tests ρ differs from 1 and the limiting
null representation becomes a linear combination of the “Dickey–Fuller” term
DF(c̄) and a standard normal variable. For the M tests σ q depends on both ψ

and the error density, and for the rank tests σ q is known and does not need to
be estimated.

Table 16.2 lists values for ρ for various tests and error densities. It includes
the aligned M tests based on least squares, LAD, Huber’s function, and the
Student’s t density with three degrees of freedom (denoted t3).2 It also includes

2 Following Lucas (1995), the scale parameter k in Huber’s function is set to 1.345σε .
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Figure 16.1. First, second, and third moments of DF(c), intercept only model.

the three rank tests considered in Hasan and Koenker (1997): the tests based on
Wilcoxon, Normal, and Sign ranks. The error distributions considered are the
standard normal as well as the thicker-tailed double exponential, log normal,
and mixture normal distributions. For the mixture distribution a standard normal
variable is drawn with probability .95 and a N (0, 100) variable is drawn with
probability .05.

The values of ρ fall as the errors become thicker-tailed. For normal errors
the parameter is close to 1, except for the LAD and Sign rank tests. Under
normality the null distributions of the other tests are similar to the null for the
least-squares-based tests. When the errors have thick tails the null distributions
are different from the least-squares distribution and from each other.

The quantiles ofQ(c̄, ρ) are not known in closed form. A number of methods
have been proposed for approximating quantiles of statistics similar to Q(c̄, ρ).
Stock (1991) calculated quantiles ofQ(c̄, 1). Lucas (1995), Herce (1996), Hasan
and Koenker (1997), Seo (1999), and Thompson (2004b) all proposed methods
to handle null distributions of the form Q(0, ρ). All of these methods could be
extended to the general statistic Q(c̄, ρ).

We adopt a method proposed by Rothenberg and Stock (1997), who en-
countered a statistic similar to Q(c̄, ρ). It turns out that, no matter what the
trend specification or the value for c̄, the “Dickey–Fuller” term DF(c̄) is
approximately normally distributed. Thus, Q(c̄, ρ) is approximately a lin-
ear combination of two normal variables and is approximately normal. The
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Figure 16.2. First, second, and third moments of DF(c), intercept and trend
case.

Cornish–Fisher expansion provides good approximations to the quantiles of
distributions with approximately Gaussian shapes.

The Cornish–Fisher expansion for the a quantile of a statistic u is

E(u)+ [Var(u)]1/2
[
qa + K3(u)

(
q2

a − 1
)
/6
]

where K3(u) = E[u − Eu]3/(Var(u))3/2 and qa is the a-percentile of the stan-
dard normal distribution. The first three moments of Q(c̄, ρ) are3

E(Q (c̄, ρ)) = ρE (DF (c̄)) ,

Var(Q (c̄, ρ)) = ρ2Var (DF (c̄))+ (1− ρ2
)

,

E (Q (c̄, ρ)− EQ (c̄, ρ))3 = ρ3E (DF (c̄)− EDF (c̄))3 .

Figures 16.1 and 16.2 provide Monte Carlo estimates of the first three moments
of DF(c̄).4 Tables 16.3 and 16.4 give numerical approximations to the moments
which can be easily inputted into a computer.

3 Rothenberg and Stock (1997) made an algebraic mistake when calculating the moments. The
formulas given here correct their mistake.

4 Unless stated otherwise, the simulations which appear in this paper were performed by com-
puting stochastic integrals as normalized sums of 500 successive draws from a discrete time
Gaussian AR(1) process with autoregressive parameter 1+ c/T . There are 25, 000 Monte Carlo
replications.
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Table 16.3. Moments of DF(c), model includes an intercept only

c E DF(c) Var(DF(c)) E(DF(c)− E DF(c))3

c < −60 −8.065/ (c − 50) 1 0
−60 ≤ c ≤ 1 −.148− 8.058

5.7−c 1.056+ .865
1000 c − 1.562

3.3−c
.380
100 + .0311

−.5−c
0 −1.524 .709 .126
1 −1.589 .794 .164
2 −1.428 .886 .123
3 −1.116 .947 −.029
4 −.808 .963 −.145
5 −.576 .969 −.169
6 −.417 .961 −.099
7 −.317 .964 −.061
8 −.253 .971 −.026
9 −.212 .972 −.009
10 −.182 .976 .014

11 ≤ c ≤ 30 −2.83+ .0144c − .227
1000 c2 .950+ .390

100 c − .701
1002 c2 .0432− .896

1000 c
c > 30 1.641/c 1 0

Table 16.4. Moments of DF(c), model includes a linear time trend

c EDF(c) Var(DF(c)) E(DF(c)− EDF(c))3

c < −60 −20 (62− c)−.8 1 0
−60 ≤ c ≤ 1 −2.013− 15.809

8.1−c 1.112+ .123
100 c − 3.635

6.7−c .0136+ .203
1000 c

2 −2.253 .772 .288
3 −1.348 1.594 .188
4 −.602 1.658 −.621
5 −.176 1.411 −.737
6 .051 1.169 −.417
7 .154 1.056 −.231
8 .202 .991 −.106
9 .216 .968 −.056

10 .215 .961 −.042
11 ≤ c ≤ 30 .347− .0147c + .209

1000 c2 .913+ .524
100 c − .870

1002 c2 −.0213+ .591
1000 c

c > 30 400/ (35+ c)2 1 0

3.2. Asymptotic Interval Length

Asymptotic power is the probability in large samples that the test rejects the null.
Simulation results suggest that power increases with λ. This may occur because

λ magnifies the shift term λ (c − c̄)
√∫

D2
c (r ) dr appearing in the asymptotic

distribution. Power also depends on ρ, which changes the shape of the distri-
bution. Simulation results in Thompson (2004b) suggest that for the unit root
hypothesis c = 0, asymptotic power is much more sensitive to λ than to ρ.
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Table 16.2 lists values of λ for various tests and error densities. λ increases
as the errors become thicker tailed, suggesting that thicker tailed errors lead
to increased power. Under normal errors the parameter for the LAD and Sign-
median rank tests are far below 1, so we expect these tests to have poor power
relative to the least-squares-based tests when errors are normal. For the rest of
the tests λ is close to 1 with normal errors, implying that these tests have power
almost as good as least squares when errors are normal and better than least
squares when errors are thick tailed. In this sense they are robust to different
error densities.

Thompson (2004b) showed that for a given error density, λ is maximized
by choosing −ψ or −ϕ(F(x)) equal to the log density of the errors. For the
aligned rank tests this result holds for any choice of φ, and for the aligned M
tests it is true if φ = ψ . The result is not surprising, since it corresponds to
testing under correct specification of the error distribution. Thus, to maximize
λ with Gaussian errors use the least squares or Normal ranks tests, and with
double exponential errors use the LAD or Sign ranks tests.

In Figure 16.3 we compare the large sample properties of the various
confidence sets. Six data generating processes are considered: c = 0 with
i.i.d. innovations vt drawn from the standard normal, log normal, and mix-
ture normal distributions, and c = −30 with i.i.d. innovations drawn from
the same three distributions. We ignore the possibility of serially correlated
innovations because they do not affect the asymptotic representations. The
figure includes confidence sets based on seven t tests as well as Elliott and
Stock’s (2000) PT test.5 The PT test efficiently handles trend coefficients and
is point optimal in a Gaussian model. For the robust tests φ(x) = x so that
preliminary estimation is by OLS. The model includes an intercept and time
trend.

Figure 16.3 displays measures of the area covered by the simulated confi-
dence sets. Area is a standard optimality criterion for confidence sets. Sets with
smaller areas are generally considered superior. For each test and data generat-
ing process, a confidence set was constructed from the sequence of ninety-one
hypothesis tests of the nulls c = −60,−59, . . . , 30. The area of each confi-
dence set was approximated by the number of null hypotheses which were not
rejected. For example, if the confidence set contains only the two values −10
and −11, the area is 2. The figure displays the 25%, 50%, and 75% empirical
quantiles of the areas of 25,000 simulated intervals.

In large samples the robust confidence sets are useful alternatives to the PT -
based sets. Predictably, the PT sets perform slightly better for Gaussian errors.
When c = 0 half of the simulated PT -based areas fall between 11 and 20, while
half of the sets based on the Wilcoxon and Normal ranks tests fall between 13
and 23. However, with thick tailed error distributions the robust sets dominate

5 The asymptotic representation for PT is given in Elliott and Stock (2000). We use the represen-
tation for the the “fixed initial case.”
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Figure 16.3. Asymptotic 25th, 50th, and 75th quantiles of the area covered
by each confidence set. The model includes an intercept and time trend, with
(µ1, µ2) = (1, 1). (Key to tests: 1 = PT , 2 = least squares, 3 = LAD, 4 =
Huber, 5 = t3, 6 = Wilcoxon ranks, 7 = Normal ranks, 8 = Sign ranks.).
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PT -based sets. When c = −30 and the errors are log normal, half of the PT -
based areas range from 32 to 36, compared with areas from 11 to 13 for the
Wilcoxon ranks test and 9 to 10 for the Normal ranks test.

The performance of the robust sets is surprising. Thompson (2004a) showed
that when testing the unit root hypothesis, the efficiency loss due to using a
point optimal test (thus ignoring thick-tailed errors) is often less than the loss
from using a robust t test (and inefficiently modeling the trend coefficients).
For example, the point-optimal Gaussian unit root test is more powerful than
many traditional robust unit root tests when the errors are drawn from a Stu-
dent’s t distribution with five or more degrees of freedom. The results in Fig-
ure 16.3 suggest that the large power improvements translate into small im-
provements in confidence set area. Even the least-squares-based t test, which
is everywhere dominated by the PT test, performs only slightly worse in terms
of area.

The case for using robust sets is weaker in the intercept only model. In
Figure 16.4, which depicts the intercept only case, the PT -based sets are so
short at c = 0 that there is little room for improvement. At normal errors half of
the simulated PT -based areas fall between 6 and 11, while half of the sets based
on the Wilcoxon and Normal ranks tests fall between 8 and 16. At the alternative
c = −30 the robust sets lead to larger gains with thick-tailed distributions. While
half of the PT areas are from 29 to 34 at log normal errors, the numbers for the
Wilcoxon and Normal ranks sets are 11 to 13 and 8 to 10.

Figures 16.3 and 16.4 provide a number of additional interesting results.
All of the sets are larger at c = −30 than at c = 0. The Wilcoxon and Normal
ranks tests have good properties for all the error distributions. In contrast to the
other robust sets, the LAD-based sets perform poorly with the thick-tailed log
normal distribution. The performance of the LAD-based set can be improved
by choosing φ(x) equal to sign(x) instead of x . The formulas for the nuisance
parameters lead immediately to the result that picking ψ(x) = φ(x) = sign(x)
is asymptotically equivalent to constructing intervals from the Sign ranks test.
Thus, the much improved large sample results for the LAD-based set appear in
the figures.

4. MONTE CARLO EVIDENCE

We conducted a Monte Carlo study to investigate the small sample properties of
the various confidence sets. In all of the simulations that follow we chose φ (x)
equal to x so that estimation is by least squares. Our algorithm for constructing
a confidence region for c follows:

1. Choose a finite list of points {c̄i }ri=1. We pick c̄i = −60+ i for i =
0, . . . , 90.

2. For each c̄i , compute the hypothesis test of the null c = c̄i against the
two-sided alternative c �= c̄i :
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Figure 16.4. Asymptotic 25th, 50th, and 75th quantiles of the area covered
by each confidence set. The model includes an intercept only, with µ1 = 1.
(Key to tests: 1 = PT , 2 = least squares, 3 = LAD, 4 = Huber, 5 = t3, 6 =
Wilcoxon ranks, 7 = Normal ranks, 8 = Sign ranks.).
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(a) Compute the estimates ρ̂, σ̂−1
q , and "̂(1). For the PT test,

we compute the various nuisance parameters by Elliott and
Stock’s (2000) method of GLS detrending. For the aligned M
tests, σ̂ ε = ε̂ ′̂ε/T , σ̂ q = ψ( ε̂ )′ψ( ε̂ )/T − (1′ψ( ε̂ )/T )2, and ρ̂ =
ε̂′ψ( ε̂ )/(T σ̂ εσ̂

−1
q ), where ε̂ are the residuals from an ordinary

least-squares regression of �Y on [X, Z ]. For the rank tests the
same formulas hold with ψ( ε̂ ) replaced by ϕ(R̂), where R̂ are the
ranks of ε̂. Taking β̂ i to be the i th element of β̂, "̂(1) is estimated
by 1−∑p

i=1 β̂ i+3 for the model with a time trend and 1−∑p
i=1 β̂ i+2 for the model with an intercept only. The lag length

p is chosen by Ng and Perron’s (2001) MAIC procedure with the
number of lags restricted to between 0 and 4.

(b) Calculate β̂R(c̄i "̂(1)) by regressing Y − c̄i "̂(1)X on Z . Calculate
the residuals M X from a regression of X on Z .

(c) Choose a ψ or ϕ function and compute the test statistic Q(c̄i "̂(1)).
(d) Use the method in Section 3.1 to calculate the al-th and ah-th

quantiles of Q(c̄, ρ). In the Monte Carlo study we use the
2.5 percent and 97.5 percent quantiles. The null is rejected when
σ̂−1

q Q(c̄i "̂(1)) is greater than the ah-th quantile or less than the
al-th quantile.

3. The 100 (ah − al)-percent confidence region consists of all c̄i which
the hypothesis tests fail to reject.

Figure 16.5 provides encouraging results about the small sample coverage
probabilities of the robust intervals. The four graphs depict empirical coverage
probabilities from 2,000 Monte Carlo replications of sample size 100 from the
model with i.i.d. errors vt drawn from the standard normal, double exponential,
log normal, and mixture normal distributions. The true value for 1− γ ranges
from 0 to 1.2. We make the unrealistic assumption that the researcher knows
that the errors are i.i.d. and includes no lagged �yt terms in the design matrix.
The model includes an intercept and time trend.

In this simple setup the small sample coverage probabilities of the robust sets
are quite close to the nominal probabilities of .95. This holds for each robust test
and error distribution, even for values of γ far from the integrated case γ = 0.
The PT test exhibits large size distortions with stationary data. For 1− γ < .5,
the coverage probability of the PT is zero for each error distribution. It appears
that the local to zero asymptotics provide good small sample approximations for
the t ratios in both integrated and stationary data. This occurs because under the
null the test statistic Q (ᾱ) is stochastically bounded for both the integrated and
stationary cases. In the stationary case Q(ᾱ) has a limiting standard normal null
distribution and as c decreases the local to zero, asymptotics lead to complicated
representations of standard normal variables.

The small sample coverage probabilities are much less accurate when the
researcher estimates the dependence structure of the errors. Table 16.5 gives
empirical coverage probabilities of the various confidence sets for several types
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Figure 16.5. Empirical coverage probabilities when the researcher knows that
vt are i.i.d.
Notes: The model includes an intercept and time trend, with (µ1, µ2) = (1, 1).
There are 2,000 Monte Carlo replications. Sample size is n = 100.

of serial correlation:

IID: vt = ζ t

AR: vt = .3vt−1 + ζ t

MA: vt = ζ t − .3ζ t−1

GARCH MA: vt = ϑ t − .3ϑ t−1, ϑ t = h1/2
t ζ t

ht = 1+ .65ht−1 + .25ϑ2
t−1, h0 = 0.

The fundamental innovations ζ t have initial condition ζ 0 = 0. The empirical
coverage rates are reasonably close to the nominal rate of .95 so long as the true
value of c is 0. For c = −30, the coverage rates are strongly biased downward.
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Table 16.5. Empirical coverage probablities

N(0,1) errors Log Norm errors Mixture errors

Test IID AR MA GM IID AR MA GM IID AR MA GM

True c = 0
PT .94 .92 .93 .91 .95 .93 .94 .90 .95 .94 .95 .92
Least squares .94 .93 .93 .93 .95 .94 .93 .91 .94 .92 .92 .91
LAD .96 .95 .95 .95 .96 .96 .97 .95 .97 .96 .96 .95
Huber’s M .95 .94 .94 .94 .96 .96 .94 .83 .97 .95 .94 .91
Student’s t3 .95 .93 .94 .95 .96 .95 .94 .92 .97 .96 .94 .93
Wilcoxon .96 .95 .95 .95 .96 .95 .92 .79 .96 .95 .95 .92
Normal ranks .96 .95 .95 .95 .96 .95 .90 .75 .96 .95 .94 .91
Sign ranks .96 .96 .95 .95 .95 .95 .95 .90 .96 .96 .95 .94

True c = −30
PT .61 .31 .56 .56 .65 .26 .59 .62 .71 .28 .64 .58
Least squares .81 .59 .69 .66 .81 .57 .69 .63 .87 .55 .76 .67
LAD .84 .71 .77 .77 .80 .44 .73 .78 .85 .45 .69 .69
Huber’s M .81 .62 .70 .70 .77 .30 .56 .54 .83 .29 .57 .55
Student’s t3 .81 .63 .71 .80 .77 .29 .58 .71 .82 .28 .56 .62
Wilcoxon .81 .62 .71 .71 .75 .23 .50 .52 .82 .32 .57 .59
Normal ranks .81 .61 .70 .69 .75 .23 .45 .46 .83 .32 .57 .58
Sign ranks .84 .71 .78 .78 .78 .34 .64 .70 .85 .46 .69 .72

Notes: The model includes an intercept and time trend, with (µ1, µ2) = (1, 1). There
are 2,000 Monte Carlo replications. Sample size is n = 100. GM indicates GARCH MA
errors.

This is true of all the tests and the effect is strongest for the PT test. IID errors
lead to the best coverage rates, with probabilities close to .9 in many cases.
A possible explanation for these results is that the estimator for "(1) performs
poorly at alternatives far from c = 0. Another explanation is that the asymptotic
approximations work only when the largest root of the autoregressive polyno-
mial for ut dominates the other roots. As the alternative moves from c = 0 to
c = −30, the largest root shrinks relative to the other roots.

A simulation experiment suggests that an accurate estimate for "(1) can
dramatically improve the coverage probabilities. We simulated 2,000 draws
of 100 observations from the model at c = −30 with Gaussian, AR(1) errors:
vt = ρvt−1 + εt . We constructed confidence sets by the algorithm described
earlier, except that the number of lags p was set to 1 and the estimate "̂(1) was
replaced by the true value 1− ρ. The empirical coverage rates were close to
the nominal rates for ρ varying from −1 to .75. Only for ρ close to 1 did the
empirical rates drop below .90 percent.

We also conducted a Monte Carlo experiment to evaluate interval area in
small samples. In Figure 16.6 we plot the 25 percent, 50 percent and 75 percent
quantiles of 2,000 intervals obtained from 100 observations from the model
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with trend. The simulation design is the same as in Figure 16.3, so Figure 16.6
provides the small sample counterpart to the asymptotic results in Figure 16.3.
To obtain accurate coverage probabilities, we make the unrealistic assumption
that the errors vt are known to be i.i.d.

The Monte Carlo results weaken the case for using a robust set. As the
asymptotics predicted, the robust sets are almost as short as the PT -based sets
at normal errors and are shorter with thick-tailed distributions. However, the
gains from using a robust set with nonnormal errors are smaller than in the
asymptotic experiment. At c = 0 with mixture normal errors, asymptotic me-
dian area decreases by a factor of 3 when the Wilcoxon ranks-based set replaces
the PT -based set. In small samples the median decreases by a factor of 2. At
c = −30, the robust intervals lead to larger declines in area relative to the least-
squares-based set. We do not evaluate the PT sets at c = −30 because of the
inaccurate coverage probabilities exhibited in Figure 16.5.
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APPENDIX A

Here we prove Theorem 3.1 for M functions ψ and rank functions ϕ. We will
discuss the model with a linear time trend. All of the results may be extended to
the model with an intercept only (e.g., µ2 = 0). Throughout the Appendix ‖ · ‖
denotes the usual Euclidean norm: ‖bi j‖ = (

∑
i, j b2

i j )
1/2.

It will prove convenient to adopt a reparametrization. Define a = ᾱ − "(1)c,
and define θ to be the (p + 2)-dimensional vector with elements,

θ1 =
[

(ᾱ − c"(1))(µ1 − µ2)/T + µ2

p∑
i=3

(β̄ i − β i )+ (β̄1 − β1)− η

]
θ2 = T

[
(ᾱ − c"(1))µ2/T + (β̄2 − β2)

]
θ2+i = (β̄ i − β i )

for i = 1, . . . , p. There is a one-to-one mapping from (a, θ ) to (ᾱ, β̄).

Proof of Theorem 3.1 for M Functions

A reparametrization leads to an expression for Q(ᾱ) which is more suitable for
deriving asymptotic results. Let zt = (1, t,�yt−1, . . . , �yt−p)′ and let wt =
(1, t/T, �ut−1, . . . , �ut−p)′. The vector of residuals �Y − X ᾱ − Z β̄ has
elements �yt − ᾱyt−1/T − zt β̄ equal to εt − η − aut−1/T − w′

tθ . The test
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Figure 16.6. Empirical 25th, 50th, and 75th quantiles of the area covered
by each confidence set. There are 2,000 Monte Carlo simulations of 100
observations from the model with an intercept and time trend, with (µ1, µ2) =
(1, 1). The researcher knows that the errors vt are i.i.d. (Key to tests: 1 =
PT , 2 = least squares, 3 = LAD, 4 = Huber, 5 = t3, 6 = Wilcoxon ranks,
7 = Normal ranks, 8 = Sign ranks.).
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statistic may be written

Q(ᾱ) =
[
T−2

∑
(yt−1 − ŷt−1)2

]−1/2
Sψ

(
T−1/2a, θ̂ ᾱ

)
,

Sψ (x, θ ) = T−1
∑

(yt−1 − ŷt−1)ψ
(
εt − η − xut−1/T 1/2 − w′

tθ
)

where θ̂ ᾱ is equal to θ evaluated at β̄ = β̂R (ᾱ)), and ŷt−1 is the fitted value from
a least-squares regression of yt−1 on zt . Straightforward algebraic manipulations
lead to the result that T−1 (yt−1 − ŷt−1) = rt , where rt is the residual from a
least-squares regression of ut−1/T on T−1/2wt . So we may write

Sψ (x, θ ) =
∑

rtψ
(
εt − η − xut−1/T 1/2 − w′

tθ
)

.

We will establish a limiting representation for Sψ using the bracketing meth-
ods described in Andrews (1994). Existing bracketing proofs require weakly
dependent data. I cannot use those results since yt is a strongly dependent,
nearly integrated process. The following lemma uses bracketing arguments to
establish the stochastic equicontinuity of an empirical process based on Sψ .
The proof is long and is omitted. The proof is available from the author upon
request. It very closely follows the proof of the theorem in Section 11.2 of
Pollard (2004).

Lemma A.1. Under Assumptions 3.1 and 3.3, the process Sψ (a, θ )− S∗ψ (a, θ )
is stochastically equicontinuous in (x, θ ), where

S∗ψ (x, θ ) =
∑

rt Et−1ψ
(
εt − η − xut−1/T 1/2 − w′

tθ
)

.

The next two lemmas use this result to establish an asymptotically linear
representation for Sψ .

Lemma A.2. Under Assumptions 3.1–3.3, R
(
T−1/2a, θ̂ ᾱ

) p→ 0, where

R (x, θ ) = Sψ (x, θ )− S∗ψ (x, θ )− Sψ (0, 0)+ S∗ψ (0, 0) .

Since T−1/2a → 0 and θ̂ ᾱ

p→ 0 by Assumption 3.2, this result follows im-
mediately from the previous lemma.

Lemma A.3. Under Assumptions 3.1–3.3,

S∗ψ
(
T−1/2a, θ̂ ᾱ

)− S∗ψ (0, 0) = −ωT−1
∑

rt ut−1a + op(1).

Define I (u) = Eψ(εt − u). By the change of variables y = εt − u we obtain

I (u) =
∫

ψ (y) f (y + u) dy.

Assumptions 3.1 and 3.3 imply that the derivative I ′(u) = ∫ ψ(y) f ′(y + u)dy
exists. Integration by parts leads to the expression I ′(u) = − ∫ f (y + u)dψ(y),
which is uniformly continuous in u since f is uniformly continuous.
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By the mean value theorem,

S∗ψ
(
T−1/2a, θ̂ ᾱ

) =∑ rt I
(
η + aut−1/T + w′

t θ̂ ᾱ

)
= I (η)

∑
rt + I (η)

∑
rt
(
aut−1/T + w′

t θ̂ ᾱ

)+ RT ,

with RT = T−1
∑

T 1/2rt
(
I ′
(
u∗t
)− I ′ (η)

)
× (aut−1/T 1/2 + w′

t θ̂ ᾱT 1/2
)

,

where
∣∣u∗t − η

∣∣ ≤ |aut−1/T + w′
t θ̂ ᾱ|. By the usual asymptotic results for nearly

integrated processes, u[sT ]/T 1/2, w[sT ], and T 1/2r[sT ] all converge weakly to
Gaussian processes in s and for each process the maximum over s is a stochas-
tically bounded random variable (see Phillips (1988) lemma 3.1). This result,
combined with the uniform continuity of I ′, leads to the result

|RT | ≤ Op(1)T−1
∑∣∣I ′ (u∗t )− I (η)

∣∣ = op(1),

so RT is asymptotically negligible. Since rt is the residual from regressing
ut−1/T on wt ,

∑
rt =

∑
rtw

′
t = 0 and we obtain

S∗ψ
(
T−1/2a, θ̂ ᾱ

) = I (η) T−1
∑

rt ut−1a + op(1).

Since I ′ (η) = −ω and S∗ψ (0, 0) = I (0)
∑

rt = 0, the lemma follows.

Proof of Theorem 3.1 for M functions

By Lemmas A.2 and A.3, and since
∑

rt = 0,

Sψ

(
T−1/2a, θ̂ ᾱ

) =∑ rtψφ (εt )− ωT−1

×
∑

rt ut−1 (ᾱ − " (1) c)+ op(1),

where ψφ (εt ) = ψ (εt − η)− Eψ (εt − η). By the usual asymptotic results for
nearly integrated processes, rt and ψφ (εt ) satisfy the bivariate weak conver-
gence result(

u[sT ]

T 1/2
,
∑

t≤[sT ]

ψφ (εt )

T 1/2

)′
⇒
(

σ ε

" (1)
Wc(s), σ q

[
ρW (s)+

√
1− ρ2W̃ (s)

])′
,

where W̃ is standard Brownian motion, independent of W . See Phillips (1988)
Lemma 3.1 for details. This implies that∑

rtψφ (εt ) ⇒ σ qσ ε" (1)

[
ρ

∫
Dc(s) dW (s)

+ σ q

√
1− ρ2

∫
Dc(s) dW̃ (s)

]
,

T−2
∑

(yt−1 − ŷt−1)2 ⇒
(

σ ε

" (1)

)2 ∫
D2

c (s) ds.
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Since rt is the residual from regressing ut−1/T on wt , T−1∑ rt ut−1 =
T−2∑(yt−1 − ŷt−1)2. By the continuous mapping theorem,

Q (ᾱ) ⇒ σ qρDF (c)+ σ q

√
1− ρ2

[∫
D2

c (s) ds

]−1/2 [∫
Dc(s) dW̃ (s)

]
+ σ qλω" (1) (c − c̄)

[∫
D2

c (s) ds

]1/2

.

Since
[∫

D2
c (s) ds

]−1/2 [∫
Dc(s) dW̃ (s)

]
is a standard normal variable, inde-

pendent of DF (c̄), the result follows.

Proof of Theorem 3.1 for Rank Functions

It will prove convenient to reparametrize the test statistic. Let Rt denote the
rank of residual et among e1, . . . , eN with N = T − p − 1. The rank function
may be expressed as an integral:

ϕ ((Rt − .5) /N ) = −
∫ 1

0
ψ(τ ) d1 (τ ≤ (Rt − .5) /N ) .

Since 1(τ ≤ (Rt − .5)/N ) is continuous in τ from the left and ψ(τ ) is continu-
ous from the right, this Reimann–Steiljies integral exists and through integration
by parts we obtain

ϕ ((Rt − .5) /N ) = ϕ(0)+
∫ 1

0
1 (τ ≤ (Rt − .5) /N ) dϕ(τ ). (A.6)

Since the ranks of the residuals do not change when we add a constant, Ri is
the rank of et + η among e1 + η, . . . , eT−p−1 + η. The indicator function can
be reexpressed in terms of the inverse empirical c.d.f. of the residuals plus the
constant η:

1 (τ ≤ (Rt − .5) /N ) = 1 (τ − .5/N ≤ (Rt − 1) /N )

= 1
(
F−1

T (τ − 1/N ) ≤ et + η
)

,

F−1
T (τ ) = inf {x : FT (x) ≥ τ } ,

FT (x) = N−1
∑

1 (et + η ≤ x) .

Now return to the test statistic. Let zt = (1, t,�yt−1, . . . , �yt−p)′ and
let wt = (1, t/T,�ut−1, . . . , �ut−p)′. The vector of residuals �Y − X ᾱ −
Z β̄ has elements �yt − ᾱyt−1/T − zt β̄ equal to εt − η − aut−1/T − w′

tθ ≡
T−1/2rt . Define b̂τ = F−1

T (τ − 1/N ) and bτ = F−1(τ ). Since
∑

rt = 0, the
test statistic may be written

Q (ᾱ) =
[∑

r2
t

]−1/2
∫ 1

0
S
(
T−1/2a, θ̂ ᾱ, b̂τ

)
dϕ(τ ),

S (x, θ, b) =
∑

rt 1
(
b ≤ εt − xut−1/T 1/2 − w′

tθ
)

,
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where θ̂ ᾱ is equal to θ evaluated at β̄ = β̂R (ᾱ)). Straightforward algebraic
manipulations lead to the result that rt is the residual from a least-squares
regression of ut−1/T on T−1/2wt .

The following lemma establishes the stochastic equicontinuity of empiri-
cal processes based on S and F−1

T (τ ). The proof uses the bracketing methods
described in Andrews (1994). The proof is long and is omitted. The proof is
available from the author upon request. It very closely follows the proof of the
theorem in Section 11.2 of Pollard (2004).

Lemma A.4. Under Assumptions 3.1–3.4, S (x, θ, b)− S∗ (x, θ, b) is stochas-
tically equicontinuous in (x, θ, b), where

S∗ (x, θ, b) =
∑

rt Et−11
(
b ≤ εt − xut−1/T 1/2 − w′

tθ
)

.

Furthermore, the process T 1/2
(
F−1

T (τ )− F−1(τ )
)

has a limiting distribution
and is stochastically equicontinuous in τ for τ 0 ≤ τ ≤ 1− τ 0.

The next two lemmas use this result to establish an asymptotically linear
representation for S.

Lemma A.5. Under Assumptions 3.1–3.4,

sup
τ 0≤τ≤1−τ 0

∣∣R (T−1/2a, θ̂ ᾱ, b̂τ

)∣∣ p→ 0

where R(x, θ, b) = S(x, θ, b)− S∗(x, θ, b)− S(0, 0, bτ )+ S∗(0, 0, bτ ).

Since T−1/2a → 0, θ̂ ᾱ

p→ 0 by Assumption 3.2, and b̂τ

p→ b̂τ by Lemma
A.5, this result follows immediately from the previous lemma (A.5).

Lemma A.6. Under Assumptions 3.1–3.4,

S∗
(
T−1/2a, θ̂ ᾱ, b̂τ

)− S∗ (0, 0, bτ )

= − f (bτ ) T−1
∑

rt ut−1a + op(1).

Define I (u) = 1− Pr[ε1 < u]. The derivative I ′(u) = − f (u) exists and is
uniformly continuous in u by Assumption 3.1. By the mean value theorem we
obtain

S∗
(
T−1/2a, θ̂ ᾱ, b̂τ

) =∑ rt I
(̂
bτ + aut−1/T + w′

t θ̂ ᾱ

)
=
∑

rt I (bτ )− f (bτ )

×
∑

rt
(̂
bτ − bτ + aut−1/T + w′

t θ̂ ᾱ

)+ RT ,

with RT =
∑

rt
(

f (bτ )− f
(
u∗t
))

× (̂bτ − bτ + aut−1/T + w′
t θ̂ ᾱ

)
,
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where
∣∣u∗t − bτ

∣∣ ≤ |̂bτ − bτ + aut−1/T + w′
t θ̂ ᾱ|. By the usual asymptotic re-

sults for nearly integrated processes, u[sT ]/T 1/2, w[sT ], and T 1/2r[sT ] all con-
verge weakly to Gaussian processes in s and for each process the maximum over
s is a stochastically bounded random variable (see Phillips, 1988, Lemma 3.1).
This result, combined with the uniform continuity of f and Lemma A.4, leads
to the result

|RT | ≤ Op(1)T−1
∑

| f (bτ )− f (u∗t )| = op(1),

so RT is asymptotically negligible. Since rt is the residual from regressing
ut−1/T on wt ,

∑
rt =

∑
rtw

′
t = 0 and we obtain

S∗
(
T−1/2a, θ̂ ᾱ, b̂τ

) =∑ rt I (bτ )− f (bτ ) T−1
∑

rt ut−1a + op(1).

Since S∗ (0, 0, bτ ) = I (bτ )
∑

rt = 0, the lemma follows.

Proof of Theorem 3.1 for rank functions

By Lemmas A.5 and A.6,

S
(
T−1/2a, θ̂ ᾱ, b̂τ

) =∑ rt 1
(
F−1(τ ) ≤ εt

)
− f

(
F−1(τ )

)
T−1

∑
rt ut−1a + op(1),

Notice that, by Equation (A.6) and Assumption A.4,∫ 1

0
1
(
F−1(τ ) ≤ εt

)
dϕ (τ ) =

∫ 1−τ 0

τ 0

1 (τ ≤ F(εt )) dϕ (τ )

= ϕ (F(εt ))− ϕ (0) .

Also notice that, through integration by parts,
∫ 1

0 f (F−1(τ )) dϕ(τ ) = ω. There-
fore, since

∑
ri = 0,∫ 1

0
S
(
T−1/2a, θ̂ ᾱ, b̂τ

)
dϕ(τ )

=
∑

rt ϕ̃ (F(εt ))− ωT−1
∑

rt ut−1a + op(1),

where ϕ̃ (F(εt )) = ϕ (F(εt ))− Eϕ (F(εt )).
By the usual asymptotic results for nearly integrated processes, rt and

ϕ (F(εt )) satisfy the bivariate weak convergence result(
u[sT ]

T 1/2
,
∑

t≤[sT ]

ϕ̃ (F(εt ))

T 1/2

)′
⇒
(

σ ε

" (1)
Wc(s), σ q

[
ρW (s)+

√
1− ρ2W̃ (s)

])′
,

where W̃ is standard Brownian motion, independent of W . See Phillips (1988)
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Lemma 3.1 for details. This implies that∑
rt ϕ̃ (F(εt )) ⇒ σ qσ ε" (1)

[
ρ

∫
Dc(s) dW (s)

+ σ q

√
1− ρ2

∫
Dc(s) dW̃ (s)

]
,

T−2
∑

(yt−1 − ŷt−1)2 ⇒
(

σ ε

" (1)

)2 ∫
D2

c (s) ds.

Since rt is the residual from regressing ut−1/T on wt , T−1∑ rt ut−1 =
T−2∑(yt−1 − ŷt−1)2. By the continuous mapping theorem,

Q(ᾱ) ⇒ σ qρDF (c)+ σ q

√
1− ρ2

[∫
D2

c (s) ds

]−1/2 [∫
Dc(s) dW̃ (s)

]
+ σ qλω"(1)(c − c̄)

[∫
D2

c (s) ds

]1/2

.

Since
[∫

D2
c (s) ds

]−1/2 [∫
Dc(s) dW̃ (s)

]
is a standard normal variable, inde-

pendent of DF(c̄), the result follows.
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CHAPTER 17

A Unified Approach to Testing for
Stationarity and Unit Roots
Andrew C. Harvey

ABSTRACT

Lagrange multiplier tests against nonstationary unobserved components such as stochastic trends
and seasonals are based on statistics which, under the null hypothesis, have asymptotic distributions
belonging to the class of generalized Cramér-von Mises distributions. Conversely, unit root tests
can be formulated, again using the Lagrange multiplier principle, so as to yield test statistics which
also have Cramér-von Mises distributions under the null hypothesis. These ideas may be extended
to multivariate models and to models with structural breaks thereby providing a simple unified
approach to testing in nonstationary time series.

1. INTRODUCTION

In a unit root test, the null hypothesis is that a process contains a unit root,
while the alternative is that it is stationary. Stationarity tests operate in the
opposite direction. The null hypothesis is that the series is stationary, while
the alternative is that a nonstationary component is present; see Nyblom and
Mäkeläinen (1983) and Kwiatkowski et al. (1992). Used in the context of testing
the validity of a prespecified cointegrating vector, the null hypothesis is that the
cointegrating relationship is true. The asymptotic distribution of the stationarity
test statistic under the null hypothesis is the Cramér–von Mises distribution.
When a time trend is present the distribution is different but can still be regarded
as belonging to the same family. Furthermore, the test statistic against the
presence of a multivariate random walk and the seasonality test of Canova and
Hansen (1995) both have asymptotic distributions under the null hypothesis
that belong to a class of generalised Cramér–von Mises distributions, indexed
by a degree of freedom parameter.

The most widely used unit root test is the (augmented) Dickey–Fuller (ADF)
test; see Fuller (1996, Chapter 10) and the references therein. However, the au-
toregressive formulation adopted means that the roles of the constant and time
trend are different under the null and the alternative hypotheses. This problem
may be avoided by working with models set up in terms of components. This
is the approach taken in Elliott, Rothenberg, and Stock (1996); see also the
discussion in Maddala and Kim (1998, pp. 37–9) and the papers by Bhargava
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(1986), Nabeya and Tanaka (1990), and Schmidt and Phillips (1992), amongst
others. As with stationarity tests, the components framework leads naturally to
unit root tests, which derive from the Lagrange multiplier (LM) principle rather
than being Wald tests. It is possible to formulate these “LM-type” unit root tests
in such a way that under the null hypothesis the test statistics have asymptotic
distributions belonging to the Cramér–von Mises family. This extends to mul-
tivariate and seasonality tests. Thus unit root and stationarity tests display an
appealing symmetry, or perhaps asymmetry, in that the critical values for the
unit root tests are in the lower tail of the Cramér–von Mises distributions, while
those for the stationarity tests are in the upper tails.

The plan of the paper is as follows. Sections 2 defines the family of Cramér–
von Mises distributions, and Section 3 follows Harvey (2001) in stressing the
unification provided by these distributions in the theory of stationarity tests. The
relative merits of dealing with serial correlation by parametric and nonparamet-
ric approaches are discussed, and the extensions to testing against nonstationary
seasonal components and stochastic slopes are set out.

Section 4 shows how unit root tests can be set up so that the test statistics
have asymptotic distributions that belong to the Cramér–von Mises family under
the null hypothesis. For general unobserved components (UC) models, the test
statistics can be constructed using standardized innovations – one step-ahead
prediction errors – produced by the Kalman filter. We might refer to such
parametric tests as “unobserved components unit root tests.” Subsection 4.3
looks at seasonal unit root tests, suggesting an alternative to the procedure of
Hylleberg et al. (1990). A test of the null hypothesis that there is a unit root in
the slope of a trend is derived in subsection 4.4.

Section 5 extends the ideas of Section 4 to multivariate models. In particular,
a multivariate unit root test based on a statistic with the Cramér–von Mises
distribution is presented.

Section 6 follows Busetti and Harvey (2001) in showing how the stationarity
tests are affected by the inclusion of dummy variables designed to pick up
structural breaks. Although the form of the test statistics is unchanged, their
asymptotic distributions are altered. However, the additive properties of the
Cramér–von Mises distribution suggest a simplified test that is much easier
to implement. The effect on LM type unit root tests is then examined. These
remain the same unless there are breaks in the slope, in which case a modification
along the lines proposed for stationarity tests leads to simplified statistics with
Cramér–von Mises distributions under the null hypothesis. Similar results hold
for seasonality tests when breaks in the seasonal pattern are modeled by dummy
variables. All of these tests extend to multivariate models.

2. THE FAMILY OF CRAMÉR–VON MISES
DISTRIBUTIONS

The unifying feature of the test statistics presented in this article is the family of
Cramér–von Mises distributions. Following Harvey (2001), these distributions
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will be denoted as CvMp+1(k), where k is a degrees of freedom parameter and
p denotes the order of the polynomial used in detrending. The most common
cases are the first-level distribution (p = 0), often simply denoted as CvM,

where only a constant is fitted and the second-level distribution (p = 1), where
a time trend is fitted. The distribution when there is no deterministic component
(p = −1) is CvM0(k). MacNeill (1978, p. 431) tabulates critical values of
CvMp+1(1) for p = −1, 0, 1, . . . , 5.

The first-level Cramér–von Mises distribution has the following representa-
tion:

CvM(k) =
∫ 1

0
B(r )′B(r )dr (2.1)

where B(r) is an N -dimensional Brownian bridge defined as B(r ) = W (r )−
r W (1),with W (r ) being a standard N -dimensional Wiener process or Brownian
motion. In the CvM0(k) distribution, W (r ) replaces B(r ), while for p = 1 a
second-level Brownian bridge is used.

The CvM(k) distribution may be expanded as

CvM(k) =
∞∑
j=1

(π j)−2χ2
j (k). (2.2)

There are similar series expansions for other members of the family. In particular
for CvM0(k) the weights are π−2( j − 1/2)−2, while for CvM2(k) the weights
are obtained by changing (π j)−2 to λ−2

j ,where λ2 j−1 = 2 jπ and λ2 j is the root
of tan(λ/2) = λ/2 on (2 jπ, 2( j + 1)π ), j = 1, 2, . . . . An important corollary
is that, because of the additive property of chi-square distributions, the sum of
two independent random variables with distributions CvM(k1) and CvM(k2) is
CvM(k1 + k2).

3. STATIONARITY TESTS

This section reviews the literature on testing against the presence of nonsta-
tionary unobserved components. The leading case, testing against a random
walk in an otherwise stationary series, is sometimes called a stationarity test.
In adopting this terminology more widely, it must be realized that the model
may contain other nonstationary components, such as seasonals, which remain
present under the null hypothesis.

3.1. Testing against the Presence of a Random Walk Component

Consider a univariate unobserved components model consisting of a random
walk plus noise for a set of observations, yt :

yt = µt + εt , µt = µt−1 + ηt , t = 1, . . . , T, (3.1)
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where the η′t s and ε′t s are mutually and serially independent Gaussian dis-
turbances with variances σ 2

η and σ 2
ε , respectively. When σ 2

η = 0 the random
walk becomes a constant level. Nyblom and Mäkeläinen (1983) showed that
the locally best invariant (LBI) test of the null hypothesis σ 2

η = 0, against the
alternative σ 2

η > 0, can be formulated as

η = T−2
T∑

i=1

[
i∑

t=1

et

]2/
s2 > c, (3.2)

where et = yt − y, s2 = T−1∑T
t=1(yt − y)2, and c is a critical value. In fact,

one initially obtains a form of the statistic with the summations running in
reverse, that is, from t = i to T, but it is easily seen that the two statistics are
identical. The test can also be interpreted as a one-sided LM test.

The asymptotic distribution of the η statistic under the null hypothesis is the
(first-level) Cramér–von Mises distribution. The normality assumption is not
necessary. It is sufficient for the observations to be martingale differences (with
finite variance) to yield this asymptotic distribution; see, for example, Stock
(1994, p. 2745). The result follows because the partial sum of deviations from
the mean converges weakly to a standard Brownian bridge, that is,

σ−1T− 1
2

[T r ]∑
s=1

es ⇒ B(r ), r ∈ [0, 1] (3.3)

where [T r ] is the largest integer less than or equal to T r , while s2 p→ σ 2. If
a linear time trend is included in (3.1) the resulting test statistic, η2, has a
CvM2 distribution under the null hypothesis. When there is no deterministic
component, the distribution of the test statistic, η0, is CvM0.

An analysis of local asymptotic power of the above tests can be found in
Stock and Watson (1998).

3.2. Serial Correlation

Now suppose that the model is extended so that εt is any indeterministic sta-
tionary process. In this case the asymptotic distribution of the η test statistic
remains the same if s2 is replaced by a consistent estimator of the long-run
variance (the spectrum at frequency zero). Kwiatkowski et al. (1992) – KPSS –
construct such an estimator nonparametrically as

s2
L (�) = T−1

T∑
t=1

e2
t + 2T−1

�∑
τ=1

w (τ , �)
T∑

t=τ+1

et et−τ

= γ̂ (0)+ 2
�∑

τ=1

w (τ , �) γ̂ (τ ) (3.4)

where w (τ , �) is a weighting function, such as w (τ , �) = 1− τ/ (�+ 1) , τ =
1, . . . , �, and � is the lag length. A test constructed in this way will be denoted
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KPSS(�). Other weighting functions, such as the Parzen or Tukey windows,
may also be used.

Leybourne and McCabe (1994) attack the problem of serial correlation by in-
troducing lagged dependent variables into the model. The test statistic obtained
after removing the effect of the lagged dependent variables is then of the same
form as (3.2). The practical implication, as demonstrated in their Monte Carlo
results, is a gain in power. However, more calculation is involved since the co-
efficients of the lagged dependent variables are estimated under the alternative
hypothesis, and this requires numerical optimization.

Since we are testing for the presence of an unobserved component, it seems
natural to work with structural time series models. If the process generating
the stationary part of the model were known, the LBI test for the presence of
a random walk component could be constructed. Harvey and Streibel (1997)
derive such a test and show how it is formed from a set of “smoothing errors.”
A general algorithm for calculating these statistics is the Kalman filter and the
associated smoother. The smoothing errors are, in general, serially correlated,
but the form of this serial correlation may be deduced from the specification
of the model. Hence a (parametric) estimator of the long-run variance may be
constructed and used to form a statistic that has a Cramér–von Mises distri-
bution, asymptotically, under the null hypothesis. An alternative possibility is
to use the standardized one-step-ahead prediction errors ( innovations), calcu-
lated assuming that µ0 is fixed.1 No correction is then needed and, although the
test is not strictly LBI, its asymptotic distribution is the same and the evidence
presented in Harvey and Streibel (1997) suggests that, in small samples, it is
more reliable in terms of size. As in the Leybourne–McCabe test, the nuisance
parameters need to be estimated, and this is best done under the alternative
hypothesis. This has the compensating advantage that, since there will often be
some doubt about a suitable model specification, estimation of the unrestricted
model affords the opportunity to check its suitability by the usual diagnostics
and goodness-of-fit tests. Once the nuisance parameters have been estimated,
the test statistic is calculated from the innovations or the smoothing errors with
σ 2

η set to zero.

3.3. Testing against Nonstationary Seasonality

Consider a Gaussian model with a trigonometric seasonal component

yt = µ+ γ t + εt , t = 1, . . . , T (3.5)

where µ is a constant and

γ t =
[s/2]∑
j=1

γ j,t , (3.6)

1 Note that backward smoothing recursions may be avoided simply by reversing the order of the
observations and calculating the innovations starting from the filtered estimator of the final state.
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where s is the number of seasons and each γ j,t is generated by⎡⎣γ j,t

γ ∗j,t

⎤⎦ =
⎡⎣ cos λ j sin λ j

− sin λ j cos λ j

⎤⎦⎡⎣γ j,t−1

γ ∗j,t−1

⎤⎦

+
⎡⎣ω j,t

ω∗j,t

⎤⎦ ,
j = 1, . . . , [s/2],

t = 1, . . . , T,

(3.7)

where λ j = 2π j/s is frequency, in radians, and ω j,t and ω∗j,t are two mutually
uncorrelated white noise disturbances with zero means and common variance
σ 2

j . For s even, [s/2] = s/2, while for s odd, [s/2] = (s − 1)/2. For s even,
the component at j = s/2 collapses to

γ j,t = γ j,t−1 cos λ j + ω j,t = γ j,t−1(−1)t + ω j,t , j = s/2.

(3.8)

If εt is white noise, the LBI test against the presence of a stochastic trigono-
metric component at any one of the seasonal frequencies, λ j , apart from the
one at π, is

ω j = 2T−2s−2
T∑

i=1

⎡⎣( i∑
t=1

et cos λ j t

)2

+
(

i∑
t=1

et sin λ j t

)2
⎤⎦ ,

j = 1, . . . , [(s − 1)/2], (3.9)

where s2 is the sample variance of the OLS residuals from a regression on sines
and cosines. Canova and Hansen (1995) show that the asymptotic distribution
of this statistic is Cramér–von Mises with two degrees of freedom,2 that is,
CvM1(2). The component at π gives rise to a test statistic

ωs/2 = T−2s−2
T∑

i=1

(
i∑

t=1

et cos λs/2t

)2

, (3.10)

which has only one degree of freedom. A joint test against the presence of
stochastic trigonometric components at all seasonal frequencies is based on a
statistic,ω, obtained by summing the individual test statistics.3 This statistic has
an asymptotic distribution, which is CvM1(s − 1). If desired it can be combined
with a test against a random walk to give a test statistic that is CvM1(s) when
both level and seasonal are deterministic.

2 Actually, Canova and Hansen derive the above statistic from a slightly different form of the
stochastic cycle model in which the coefficients of a sine–cosine wave are taken to be random
walks. However, it is not difficult to show that the model as defined above leads to the same test
statistic.

3 This is the LM test if σ 2
j = σ 2

ω for all j except j = s/2 when σ 2
s/2 = σ 2

ω/2; see Busetti and
Harvey (2003).
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Canova and Hansen show how the above tests can be generalized to handle
serial correlation and heteroscedasticity by making a correction similar to that
in KPSS. If the model contains a stochastic trend, then the test must be carried
out on differenced observations. A parametric test may be carried out by fitting
an unobserved components model. If there is a trend it may be a deterministic
trend, a random walk, with or without drift, or a trend with a stochastic slope.
Busetti and Harvey (2003) compare the two types of test.

Busetti and Harvey (2003) propose a test for any kind of seasonality, de-
terministic or stochastic. No seasonal dummies are fitted and the asymptotic
distribution of the test statistic ω0 is CvM0(s − 1). On the other hand, if sea-
sonal slopes are included, as in Smith and Taylor (1998), the test statistic is
CvM2(s − 1).

3.4. Testing against a Stochastic Slope

Generalizing the trend in (3.1) to include a stochastic slope gives

µt = µt−1 + β t−1 + ηt , ηt ∼ NID(0, σ 2
η),

β t = β t−1 + ζ t , ζ t ∼ NID(0, σ 2
ζ ),

(3.11)

where NID(0, σ 2
η) denotes normally and independently distributed distur-

bances, and the level and slope disturbances,ηt and ζ t , respectively, are mutually
independent. If σ 2

η is assumed to be zero, the trend µt is an integrated random
walk, or a “smooth trend.” Nyblom and Harvey (2001) derive the asymptotic
distribution of the LBI test of H0 : σ 2

ζ = 0 against H1 : σ 2
ζ > 0. However, a

Monte Carlo study of the test seems to show that it offers little gain in power
over η2.

If σ 2
η > 0, then, when σ 2

ζ = 0, the trend reduces to a random walk plus drift.
Differencing yields

�yt = β t−1 + ηt +�εt , t = 2, . . . , T (3.12)

with ηt +�εt being invertible. The test statistic, denoted as ζ , for testing
whether β t−1 is a random walk can be constructed as in Subsection 3.1, but its
asymptotic distribution is CvM1 rather than CvM2.

4. UNIT ROOT TESTS

This section shows how the Lagrange multiplier principle leads to test statis-
tics with Cramér–von Mises distributions under the null hypothesis. After dis-
cussing the treatment of serial correlation, the ideas are extended to seasonal
unit root tests and tests on the slope.
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4.1. Test Statistics with a Cramér–von Mises Distribution

The Dickey–Fuller test is based on the model

yt = α + βt + φyt−1 + ξ t , ξ t ∼ NID(0, σ 2), t = 1, . . . , T, (4.1)

with variations in which the trend and both the constant and the trend are
omitted. The null is that φ is unity, and so the model is nonstationary, while the
alternative is that it is less than unity, and so the model is (trend) stationary. If
the model is reformulated with �yt as the dependent variable, the parameter
associated with yt−1, and denoted here as ρ, is equal to φ − 1 and hence is zero
under the null hypothesis. The test statistic is based on the regression coefficient
of the lagged dependent variable or its “t statistic.” Lagged differences can be
added to the right-hand side without affecting the asymptotic distribution of the
t statistic.

Formulating the unit root test in an autoregressive framework is computa-
tionally convenient. However, as Schmidt and Phillips (1992, p. 258) observe,
the parameterizations of (4.1) are “not convenient” because “they handle level
and trend in a clumsy and potentially confusing way.” Specifically the meanings
ofα andβ differ under the null and alternative hypotheses. These difficulties can
be avoided by following Bhargava (1986), Nabeya and Tanaka (1990), Schmidt
and Phillips (1992) and Elliott et al. (1996) and setting up the unit root test of
H0 : φ = 1 against H0 : φ < 1 within the components framework

yt = α + βt + µt , µt = φµt−1 + ηt , t = 1, . . . , T, (4.2)

with µ0 fixed but unknown. The interpretation of α and β is now the same under
both the null and alternative hypotheses.

The test with critical region

T−1
T∑

t=1

µ̃2
t

/ T∑
t=1

(µ̃t − µ̃t−1)2 = ζ < c (4.3)

is constructed from residuals µ̃t , obtained by estimating α and β under the null
hypothesis. Since

�yt = β + ηt , t = 2, . . . , T (4.4)

under the null hypothesis, these residuals are defined by

µ̃t = yt − α̃0 − β̃t, t = 1, . . . , T,

where β̃ = �y =∑�yt/(T − 1) = (yT − y1)/(T − 1) and α̃0 = y1 − β̃,
where α0 = α + µ0. Note that µ̃1 = 0 as a consequence of fitting the constant,
while µ̃T = 0 provided a slope, β, is estimated; µ̃0 is taken to be zero in
all cases. The test statistic corresponds to the N2 test suggested by Bhargava
(1986), except insofar as his test statistic, being of the von Neumann ratio form,
is equal to 1/T ζ . The test statistic in Schmidt and Lee (1991), given as T times
the coefficient obtained by regressing �µ̃t on µ̃t−1 without a constant term, is
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equal to−1/2ζ ; the test is an LM test as noted4 by Schmidt and Phillips (1992).
The ζ statistic is the same as R4 in Nabeya and Tanaka (1990), who argue that
the test is locally best invariant and unbiased (LBIU). If it is written in first
differences, it becomes

ζ = T−1
T∑

i=1

[
i∑

t=1

�µ̃t

]2/ T∑
t=1

(�µ̃t )
2 (4.5)

This is of the same form as the η test statistic, (3.2), except that it applies
to observations in first differences. Provided the slope is estimated so that
�µ̃t = �yt −�y for t = 2, . . . , T, it is immediately apparent that the statistic
has a CvM1 distribution under the null hypothesis. However, while the value
of the stationarity statistic η increases under the alternative, the value of ζ

decreases as it is T ζ , which has a limiting distribution under the alternative.
Thus the appropriate critical values are those in the lower (left-hand) tail of the
CvM distribution.

If there is no time trend in the model,5 µ̃T is no longer constrained to be zero,
and the asymptotic distribution of the statistic is CvM0. In this case it is useful
to label the statistic ζ 1, and to denote the time trend statistic as ζ 2 when there is
any ambiguity. If there is neither constant nor time trend, so that the statistic ζ 0 is
constructed by setting µ̃t = yt for all t = 1, . . . , T , the asymptotic distribution
is again CvM0 ( although a nonzero initial value can have a marked effect on the
small sample distribution). The statistics ζ 0 and ζ 1 are transformations of the
statistics proposed by Sargan and Bhargava (1983); indeed Stock (1994) refers
to all tests based on ζ 0, ζ 1, and ζ 2 as Sargan–Bhargava tests. From Tanaka
(1996, Table 9.1), the critical values at the 5% and 1% levels of significance are
0.0565 and 0.0345, respectively, if no time trend is included, and 0.0366 and
0.025, respectively, if one is included.

The statistic in which the µ̃′t s in the numerator are in terms of deviations
from their mean is a transformation of the test statistic in Schmidt and Phillips
(1992) and the R2 statistic in Bhargava (1986). It corresponds directly to R3 in
Nabeya and Tanaka (1990). Under the null, the asymptotic distribution is one
in which the B(r ) in (2.1) is replaced by a de-meaned Brownian bridge, and so
it does not belong to the CvM family. Using Monte Carlo simulations, Schmidt
and Lee (1991) compare the test based on this statistic with the one based on ζ

and seem to come down in its favor, though the evidence is by no means clear-
cut. Nabeya and Tanaka (1990), using an analysis based on limiting powers,
find that there is no dominance of one test over the other for the time trend

4 Schmidt and Phillips (1992) formulate their test in terms of a regression analogous to the one
used in the Dickey–Fuller test, with yt−1 replaced by µ̃t−1 and a constant, but no time trend
included. The tests are based on the regression coefficient of µ̃t−1 or its t statistic. The variant
of the test studied in Schmidt and Lee (1991) excludes the constant.

5 The test is no longer the LM test when there is no time trend; see the discussion in Tanaka (1996,
Chapter 9) and the Appendix.
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model considered by Schmidt and Lee (1991). Furthermore, if a time trend is
not present, then ζ is better. Further discussion can be found in Tanaka (1996,
p. 348), where ζ is labeled R2.

Figures 1, 2, and 3 in Stock (1994, p. 2774–5) and Elliott et al. (1996,
p. 822–4) analyze local power and show that the ζ tests compare favorably with
the Dickey–Fuller tests; see also Tanaka (1996). The same figures give some
indication of the potential gain for modifications along the lines suggested by
Elliott et al. (1996) or Hwang and Schmidt (1996). However, the asymptotic
distributions under the null are no longer of the CvM form.

The distribution theory surrounding ζ can be generalised by letting the de-
terministic part of (4.2) be a pth-order polynomial. The residuals in (4.5) are
then obtained by regressing �yt on a polynomial of order p − 1, with the result
that the test statistic ζ p+1 is asymptotically CvMp under the null hypothesis.

The right-hand tail of ζ can be used to test against explosive processes, that is,
φ > 1; see Bhargava (1986) and Nabeya and Tanaka (1990). However, another
interpretation of the alternative, which fits more nicely into the stochastic trends
framework, is that the test is against a stochastic slope. In other words, it is the
test motivated by (3.12); hence the ζ notation.

4.2. Serial Correlation and Unobserved Components

Nabeya and Tanaka (1990) consider methods of adjusting (4.5) so that the
same asymptotic distribution is obtained under the null hypothesis when ηt is
serially correlated. They suggest using a nonparametric estimator of the long-
run variance, constructed in a way similar to (3.4) with �µ̃t replacing et . This
corresponds to the KPSS statistic computed from first differences. However,
under the alternative, the spectrum of first differences is zero at the origin.
Schmidt and Phillips (1992, p. 267) make a similar proposal but note that
a consistent test requires the use of residuals obtained (under the alternative
hypothesis) from a regression of µ̃t on µ̃t−1; see Stock (1994, p. 2770, footnote
10) for further explanation.6 Another option would be to base a test on the
coefficient of µ̃t−1 from an augmented Dickey–Fuller regression, as in Oya and
Toda (1998).

If a fully parameterized UC model is set up, an LM-type test may be carried
out by estimating the model under the null hypothesis and then forming a test
statistic from the standardized innovations, ν̃ t . These are calculated starting
with the smoothed estimator of µ0 so they run from t = 1 to T . Assuming the
innovations have been standardized so as to have unit variance, the unobserved
components unit root test statistic is simply

ζ = T−2
T∑

i=1

[
i∑

t=1

ν̃ t

]2

. (4.6)

6 Tanaka (1996, p. 362–7) argues that local power is not affected.
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Note that backward smoothing recursions may be avoided simply by reversing
the order of the observations and calculating the innovations starting from the
filtered estimator of the final state.

The case for a parametric UC approach can be illustrated simply by adding
white noise to (4.2) to give

yt = α + βt + µt + εt , t = 1, . . . , T . (4.7)

This model is easily estimated when φ = 1, and so forming the test statistic
from the innovations, as in (4.6), is straightforward. (Note that if σ 2

ε is zero,
so that the model reduces to (4.2), then ν̃1 = 0). Applying the Dickey–Fuller
test when the data are best approximated by (4.7) is likely to result in too many
rejections under the null hypothesis if the ratio of σ 2

η to σ 2
ε is low. The reduced

form is an ARIMA(0,1,1) model with MA parameter close to−1, and the poor
performance of the augmented Dickey–Fuller test is well documented in this
situation; see, for example, Pantula (1991). Nonparametric corrections based on
the estimation of the long-run variance, as in Schmidt and Phillips (1992), are
also likely to be poor for this kind of model for the reasons given in Perron and
Mallet (1996). Further evidence on these matters may be gleaned from Tables 1
and 2 in Stock (1994) and Tanaka (1996, p. 364–5).

There is a slight problem with LM tests for UC models such as (4.7): they are
inconsistent. The reason is that under the alternative hypothesis there is a posi-
tive probability that q is estimated to be zero, and this persists as T approaches
infinity; see the analysis of the ARMA(1,1) model in Saikkonen (1993). How
important this is in practice is something that needs to be investigated. Note
that local power is unaffected; compare Tanaka (1996, p. 363–4). Of course,
a way out of the difficulty is to estimate the nuisance parameters under the
alternative.

The model in (4.7) may be generalized by including other components such
as seasonals and cycles. Such models are easily estimated with φ set to 1. The
η statistic is computed from the innovations obtained from the Kalman filter
by setting σ 2

η to zero. Its aim is to determine whether a restriction should be
placed on the model, while the aim of the ζ test is to find out if it should be
more general.

The use of unit root tests in UC models is illustrated by the following
examples.

Stochastic Volatility

The discrete time Gaussian SV model may be written as

rt = σ tεt = σεt e
0.5ht , εt ∼ NID(0, 1), t = 1, . . . , T,

where rt is a return on an exchange rate or stock price, σ is a scale parameter,
and ht is a stationary first-order autoregressive process:

ht = φht−1 + ηt , ηt ∼ NID
(
0, σ 2

η

)
. (4.8)
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Table 17.1. Tests of stochastic volatility of daily exchange rates

Currency η KPSS(9) ζ ADF(9) φ̃

Pound 1.319 0.853 0.228 −6.44 0.988
DM 0.423 0.256 0.371 −7.50 0.967
Yen 5.122 2.999 0.439 −7.63 0.998
Swiss Fr 0.774 0.465 0.466 −7.44 0.980

Squaring the observations and taking logarithms gives

yt = log r2
t = log σ 2 + ht + log ε2

t , t = 1, . . . , T . (4.9)

Ignoring the time trend, the model is as in (4.7), except that log ε2
t is far from

being Gaussian, being heavily skewed with a long tail. However, this makes no
difference to the asymptotic distribution of the test statistics we are about to
consider.

In the application in Harvey, Ruiz, and Shephard (1994), rt is the differ-
ence of 946 logged daily exchange rates of the dollar against another currency
starting on November 1, 1981; the data are provided with the STAMP package
(Koopman et al. 2000). Various tests were applied to the observations trans-
formed with a modification made to log r2

t to avoid distortion from inliers; see
Fuller (1996, p. 496). The same transformation was used when the estimates
of the φ parameters were obtained by quasi-ML using STAMP. The results
are shown in Table 17.1. Apart from the Deutschmark, all the values of the
Nyblom–Mäkeläinen statistic, η, are significant7 at the 1% level indicating the
presence of a random walk or, perhaps, a very persistent AR(1) component in
volatility. Note the reduction in power if a KPSS correction is (unnecessarily)
made. Higher lag length leads to even smaller statistics. For example, KPSS(25)
for the pound is 0.515. The unobserved components unit root test statistics (4.6)
are also shown in the table. None of these ζ statistics leads to a rejection at any
conventional level of significance. Indeed their values are comfortably located
near the median of the null hypothesis asymptotic distribution. The fact that
the ADF t statistics (with constant included) all lie way beyond the 1% asymp-
totic critical value of −3.42 is a reflection of the fact that the autoregressive
approximation is very poor because σ 2

η is dominated by the variance of log ε2
t .

However, if the lag length is increased to 25, the ADF statistic for the pound is
−3.37, and so just fails to reject. The poor autoregressive approximation has a
similar effect on the Oya–Toda version of the LM-type test.8

7 The 1%, 5%, and 10% upper-tail critical values for CvM1 are 0.743, 0.461, and 0.347, respec-
tively.

8 Having subtracted the first observation (and removed the constant), the ADF(9) t-statistic is found
to be −6.44, while the estimate of φ is 0.501.
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Quarterly Consumption

Harvey and Scott (1994) showed that a model consisting of a random walk
with drift and a stochastic seasonal component gives a good fit to quarterly
UK nondurable consumption.9 The ζ statistic calculated from the innovations
from this model is 0.165. This is well away from the lower-tail 10% critical
value for the CvM1 distribution, which is 0.025, and so we cannot reject the
hypothesis that the stochastic trend component is a random walk against the
alternative that it is a stationary AR(1) process. The same statistic10 can be used
to test the null hypothesis that the slope β is constant against the alternative
that it is a random walk; see Subsection 2.4. It is the upper tail of the CvM1

distribution that is now relevant, but the 10% point is 0.347; so again the null
is clearly not rejected.

4.3. Seasonal Unit Root Tests

The test of Hylleberg et al. (1990) – HEGY – is testing the null of a nonsta-
tionary seasonal against the alternative of a stationary seasonal. Its relationship
to the Canova–Hansen (CH) test of Subsection 3.3 is analogous to that of the
relationship between the (augmented) Dickey–Fuller test and KPSS.

The UC seasonal unit root test can be set up by introducing a damping factor
into (3.7) so that each trigonometric term in the seasonal component is modeled
by

⎡⎣γ j,t

γ ∗j,t

⎤⎦ = φ j

⎡⎣ cos λ j sin λ j

− sin λ j cos λ j

⎤⎦⎡⎣γ j,t−1

γ ∗j,t−1

⎤⎦
+
⎡⎣ω j,t

ω∗j,t

⎤⎦ , j = 1, . . . , [s/2], t = 1, . . . , T . (4.10)

with γ ∗s/2,t dropping out for s even. The seasonal component, obtained by
summing the γ ′j,t s is then embedded in a general UC model that contains deter-
ministic seasonal trigonometric terms. A parametric test11 of the null hypoth-
esis that the component at a particular frequency is nonstationary against the

9 The data are given in the STAMP package. As in Harvey and Scott, the sample period is
57q3 to 92q2. The estimates of the level and seasonal variances, σ 2

η and σ 2
ω, are found to

be 8.908× 10−5 and 1.012× 10−6, respectively; these differ slightly from those reported in
Harvey and Scott because of small revisions in the data. When an AR(1) component replaces the
random walk, there is little change in the estimates of σ 2

η and σ 2
ω , which are now 8.817× 10−5

and 1.010× 10−6, respectively. The estimate of φ is 0.986.
10 The nuisance parameters are normally estimated under the alternative for a “stationarity” test.

In this context it makes little difference, since the seasonal variance is not sensitive to the
specification of the trend.

11 If seasonal slopes are included, this is the LM test.
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alternative that it is stationary, that is, H0 : φ j = 1 against H1 : φ j < 1, can be
constructed from the null hypothesis innovations12 as

ω j = 2T−2
T∑

i=1

⎡⎣( i∑
t=1

ν̃ t cos λ j t

)2

+
(

i∑
t=1

ν̃ t sin λ j t

)2
⎤⎦ < c,

j = 1, . . . , [(s − 1)/2]. (4.11)

Under the null hypothesis the asymptotic distribution is CvM0(2), since if
the nonstationary seasonal operator, 1− 2cosλ j L + L2, were to be applied, it
would remove the corresponding deterministic seasonal. For j = s/2,

ωs/2 = T−2
T∑

i=1

(
i∑

t=1

ν̃ t cosπ t

)2

= T−2
T∑

i=1

(
i∑

t=1

(−1)t ν̃ t

)2

,

and this has a CvM0(1) asymptotic distribution under the null. The full seasonal
test statistic is formed by summing theω′j s, and its asymptotic distribution under
the null is CvM0(s − 1). With seasonal slopes the asymptotic distributions are
CvM1(.); compare Smith and Taylor (1998).

Seasonality tests based on an autoregressive model will tend to perform
poorly in situations where an unobserved components model is appropriate.
The simulation evidence in Hylleberg (1995) illustrates this point by looking
at the results of using the HEGY test for moving average models, which, as
Harvey and Scott (1994) note, typically arise as the reduced form of unobserved
components models.

A rejection of the null hypothesis in a seasonal unit root test may be an indi-
cation of a deterministic seasonal component rather than a stationary seasonal
component of the form (4.10); see the evidence in Canova and Hansen (1995,
p. 244). The appropriate test of the null of deterministic seasonality against the
alternative of near-persistent stationary seasonality, that is, (4.10) with the φ j

close to 1, is, perhaps surprisingly, the same as the CH test against nonstation-
ary seasonality; this follows from results in Harvey and Streibel (1998). This
should be borne in mind when interpreting the results of seasonal stationarity
and unit root tests.

4.4. Slope Unit Root Test

The stochastic trend of (3.11) may be modified so as to give what is sometimes
called a damped trend, that is,

µt = µt−1 + β t−1 + ηt , ηt ∼ NID(0, σ 2
η),

β t = φβ t−1 + ζ t , ζ t ∼ NID(0, σ 2
ζ ).

12 As in the unit root test, there is the issue of consistency because there is presumably a finite
probability that the variance of the seasonal disturbance is zero under the alternative.
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If it is this component which appears in (4.2), a test of H0 : φ = 1 against
H1 : φ < 1 is a unit root test on the slope. In the special case of the smooth
trend model when σ 2

η = 0, the test statistic is simply

ξ = T−1
T∑

i=3

[
i∑

t=3

�2 yt

]2/ T∑
t=3

(�2 yt )
2.

The asymptotic distribution of this statistic is CvM0. If (4.2) is generalized so
as to contain a deterministic pth-order polynomial trend, the residuals from a
regression of �2 yt on a polynomial of order p − 2 are used to form the test
statistic, which is then asymptotically CvMp−1.

The stochastic trend component will not generally have σ 2
η set to zero, and

it will usually appear in a model of the form (4.7), possibly with other compo-
nents such as stochastic cycles and seasonals. A parametric test statistic may
then be constructed from the innovations from the model fitted under the null
hypothesis. The test statistic is actually (4.6), but renamed ξ because what is
now being tested is the null hypothesis of a second unit root.

5. MULTIVARIATE TESTS

5.1. Testing against a Multivariate Random Walk

If yt is a vector containing N time series, the Gaussian multivariate local level
model is

yt = µt+εt , εt ∼ NID(0, �ε),

µt = µt−1 + ηt , ηt ∼ NID(0, �η), t = 1, . . . , T, (5.1)

where �ε is an N × N positive definite (p.d.) matrix. Nyblom and Harvey
(2000) show that an LBI test of the null hypothesis �η= 0 can be constructed
against the homogeneous alternative�η=q�ε . The test has the rejection region

η(N ) = tr
[
S−1C

]
> c, (5.2)

where

C = T−2
T∑

i=1

[
i∑

t=1

et

][
i∑

t=1

et

]′
and S =T−1

T∑
t=1

et et
′, (5.3)

where et = yt − y. Under the null hypothesis, the limiting distribution of (5.2)
is Cramér–von Mises with N degrees of freedom, CvM(N ). The distribution
is CvM2(N ) if the model contains a vector of time trends. Although the test
maximizes the power against homogeneous alternatives, it is consistent against
all nonnull �′

ηs, since T−1η(N ) has a nondegenerate limiting distribution. This
limiting distribution depends only on the rank of �η.

The η(N ) test can be generalized along the lines of the KPSS test quite
straightforwardly, as in Nyblom and Harvey (2000). Parametric adjustments
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can also be made by the procedure outlined for univariate models. This requires
estimation under the alternative hypothesis, but is likely to lead to an increase in
power. If there are no constraints across parameters, it may be more convenient
to construct the test statistic (5.2) using the innovations from fitted univariate
models. Kuo and Mikkola (2001) use the lagged dependent variable method
of Leybourne and McCabe (1994) in their study of purchasing power parity.
They conclude that dealing with serial correlation in this way leads to tests with
higher power than those formed using the nonparametric correction.

5.2. Multivariate Unit Root Tests

The model in (4.2) generalizes to

yt = α+ βt + µt , µt= φµt−1+ ηt , t = 1, . . . , T, (5.4)

with Var(ηt ) = �η.As in the univariate case, residuals are formed by estimating
the level and the slope coefficients under the null hypothesis. Generalizing the
test statistic (4.3) on the basis of detrended observations yields

ζ (N ) = tr

⎧⎨⎩ 1

T

[
T∑

t=1

�µ̃t�µ̃′t

]−1 T∑
t=1

µ̃t µ̃
′
t

⎫⎬⎭ (5.5)

where µ̃t = yt − α̃0 − β̃t for t = 1, . . . , T and µ̃0 = 0 with β̃ = (yT − y1)/
(T − 1) and α̃0 = y1 − β̃. Writing ζ (N ) in a form analogous to (5.2) makes it
apparent that its asymptotic distribution under the null hypothesis is CvM1(N ),
with the lower tail defining the critical region. If there is no time trend, the critical
values are taken from the CvM0(N ) distribution. The ζ (N ) test is consistent
but only against alternatives in which all the series are stationary. Like η(N ),
the ζ (N ) statistic is invariant to affine transformations of the data.

Now suppose that, as in Abuaf and Jorion (1990), φ = φIN , where φ is
a scalar. The GLS estimator of φ − 1, constructed from the observations de-
trended by setting φ equal to 1 and weighted by an estimator of �η formed
from first differences, is

φ̃ − 1 =
T∑

t=2

µ̃′t−1�̂
−1
η �µ̃t

/ T∑
t=2

µ̃′t−1�̂
−1
η µ̃t−1. (5.6)

Provided the slope is included, a little algebraic manipulation, given in the
Appendix, shows that the numerator is constant and, as a result, ζ (N ) is equal
to −N/{2T (̃φ − 1)}. The LM test of the null hypothesis φ = 1 is based on the
statistic

LM =
(

T∑
t=1

�µ̃′t�̂
−1
η µ̃t−1

)2/ T∑
t=1

µ̃′t−1�̂
−1
η µ̃t−1,
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and this is also a monotonic transformation of ζ (N ) being equal to N 2/4 ζ (N ).
As in the univariate case, a one-sided test based on the lower tail of the distri-
bution of ζ (N ) means that the alternative is φ < 1.

If the model is generalized to include more components, a parametric test
statistic can be constructed from the vector of standardized innovations. Corre-
sponding to (4.6), this statistic is

ζ (N ) = tr

{
T−2

T∑
i=1

[
i∑

t=1

ν̃ t

][
i∑

t=1

ν̃ ′t

]}

= T−2
T∑

i=1

[
i∑

t=1

ν̃ ′t

][
i∑

t=1

ν̃ t

]
. (5.7)

If the innovations from fitted univariate models are used, the test statistic is of
the form (5.2) so as to allow for cross-correlation.

Application to Stochastic Volatility

The multivariate stationarity and unit root test statistics for all four daily ex-
change rate series considered at the end of Section 3 are η(4) = 8.325 and
ζ (4) = 0.790. Thus the stationarity test rejects the null hypothesis that there
are no random walk components in the series, while the unit root test just rejects
the null that all four series have unit roots at the 10% level of significance.13

This is not inconsistent with the conclusions in Harvey et al. (1994) and Nyblom
and Harvey (2000) that the series have just two common trends.

5.3. Seasonal Unit Root Tests

The seasonality tests can be generalized to multivariate series. For example,
the multivariate test against nonstationary seasonality in N series will have a
CvM1(Ns − N ) distribution under the null hypothesis, while the seasonal unit
test will be based on CvM0(Ns − N ).

6. TESTS WHEN BREAKS ARE PRESENT

Suppose there is a structural break in the trend at a known time τ + 1, and let
λ = τ/T denote the fraction of the sample before the break occurs. Consider
the following models:

1 : yt = µt + δwt + εt ,

2 : yt = µt + βt + δwt + δβ(wt t)+ εt ,

2a : yt = µt + βt + δwt + εt ,

2b : yt = µt + βt + δβ zt + εt , (6.1)

13 The 5% and 10% lower-tail critical values for CvM0(4) are 0.641 and 0.796, respectively.
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where µt is a random walk, εt is white noise, δ and δβ are parameters, and

wt =
{

0 for t ≤ τ

1 for t > τ
and zt =

{
0 for t ≤ τ

t − τ for t > τ.

There is no slope in model 1, and so the only break is in the level. The other
models all contain a time trend. In model 2, there is a structural change in both
the level and the slope. Model 2a, contains a break in the level only, while model
2b, corresponds to a piecewise linear trend.

6.1. Stationarity Tests

Under Gaussianity, the LBI (and one-sided LM) test statistics for H0 : σ 2
η = 0

against H1 : σ 2
η > 0 in the models 1, 2, 2a, and 2b are of the form (3.2), but have

asymptotic distributions under the null hypothesis that depend on λ. Bearing
in mind the additivity property of the Cramér–von Mises distribution noted in
Subsection 2.5, Busetti and Harvey (2001) propose the following simplified test
statistics for models 1 and 2:

η∗i =
∑τ

t=1

(∑t
s=1 es

)2
τ 2s2

+
∑T

t=τ+1

(∑t
s=τ+1 es

)2
(T − τ )2s2

, i = 1, 2, (6.2)

where s2 is as in (2.2). The LBI statistics differ only insofar as the two parts of
(6.2) receive weights of λ2 and (1− λ)2, respectively. The simplified statistics
still depend on the location of the break point, but their asymptotic distributions
do not, since

η∗i ⇒
{

CvM1(2) for i = 1
CvM2(2) for i = 2.

(6.3)

Not having to consult a table giving the distribution of the test statistic for all
the possible values of λ is a big advantage. Furthermore, the tests immediately
generalize to cases where there are several structural breaks. If there are k
breaks, the distribution of the simplified statistic converges to a (second-level)
generalized Cramér–von Mises distribution with k + 1 degrees of freedom, that
is, CvMi (k + 1), i = 1, 2. The Monte Carlo evidence presented in Busetti and
Harvey (2001) indicates that the LBI test is clearly superior only in the region
close to the null hypothesis and for break points near the beginning or end of
the sample.

6.2. Unit Root Tests

The effects of breaks on LM-type unit root tests can be analyzed by taking
first differences in (6.1). For level breaks 1 and 2a, differencing creates a single
outlier at time τ + 1. This may be removed by a “pulse” dummy variable
that takes the value 1 at τ + 1 and is zero otherwise. If the test statistics are
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constructed as in (4.3), their asymptotic distributions are unaffected – in terms
of (4.5) all that happens is that �µ̃τ+1 is zero.14 Thus,

ζ i ⇒
{

CvM0(1) for i = 1

CvM1(1) for i = 2a.
(6.4)

The breaks in trend, on the other hand, do affect the distributions of the test
statistics. Taking first differences of a piecewise linear trend, model 2b, results
in a level dummy variable being fitted from τ + 1 onward. In model 2, a pulse
at τ + 1 is also needed. However, in both cases the additivity property of the
Cramér–von Mises distribution can be exploited so that statistics constructed
in a similar way to those in (6.2) have CvM1(2) asymptotic distributions under
the null. Thus,

ζ ∗i =
∑τ

t=1 µ̃
2
t

τ 2s2
+
∑T

t=τ+1 µ̃
2
t

(T − τ )2s2
, i = 2, 2b, (6.5)

where s2 =∑T
t=2(�µ̃t )

2/(T − 2), and

ζ ∗i ⇒ CvM1(2) for i = 2, 2b. (6.6)

If the models are more general and parametric test statistics are constructed
from innovations, estimation is carried out with the dummy variables in their
original undifferenced form. The inclusion of the random walk component has
the same effect as differencing.

6.3. Multivariate Series and Seasonality

Busetti and Harvey (2003) extend the Canova–Hansen test to allow for dummy
variables modeling breaks in the seasonal pattern. A simplified test, constructed
on the same basis as (6.2), has a CvM1(2s − 2) asymptotic distribution when
there is one such break. The asymptotic distributions of seasonal unit root tests,
on the other hand, are not affected by the inclusion of seasonal break dummies,
since these become pulse variables under the null hypothesis.

Busetti (2002) extends the multivariate tests of Subsections 4.1 and 4.2 to
deal with situations where there are breaks in some or all of a set of N time
series. He shows that a simplified version of the test against a multivariate
random walk can be constructed by allowing for a break in all the series at the
same point in time. This statistic, denoted as η∗i (N ), generalizes (6.2) and has
the CvM(2N ) asymptotic distribution. The modification of multivariate unit
root tests follows along similar lines to yield a generalization of (6.5).

14 Amsler and Lee (1995) give a formal proof of this result for the Schmidt–Phillips test and
go on to show that an omitted or misplaced level break will have no effect on the asymptotic
distribution.
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7. CONCLUSIONS

Unit root tests can be set up using the LM principle so as to give statistics
which, under the null hypothesis, have Cramér–von Mises distributions in large
samples. Stationarity test statistics have asymptotic distributions belonging to
the same family. This provides a remarkable unification and simplification of
test procedures for nonstationary time series. The distributions are easily tab-
ulated and have nice properties, such as additivity. For the simpler models,
exact distributions of the test statistics can be obtained, but once the nuisance
parameters are estimated, the case for just using the asymptotic distributions
becomes stronger. In any case, it seems that the asymptotic critical values pro-
vide a good approximation even for relatively small sample sizes. The additivity
property of the Cramér–von Mises distribution means that it is easy to set up tests
with an allowance made for any intervention variables used to model structural
breaks.

The tests are obtained by working within an unobserved components frame-
work. There is a good case for estimating the nuisance parameters in such
models and constructing parametric tests, since autoregressive approximations
and nonparametric estimates of the long-run variance can sometimes lead to
tests with unreliable size and/or low power.

Modifications could be made to the various unit root tests along the lines
suggested by Elliott et al. (1996), but this would be at the cost of losing the
simplicity and generality of the test statistics and their asymptotic distributions.
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APPENDIX

To show the relationship between the ζ statistic in the multivariate model and
φ̃ in (5.6), write the inverted matrix in (5.5) as

T∑
t=1

�µ̃′t�
−1
η �µ̃t = −2

T∑
t=1

�µ̃′t�
−1
η µ̃t−1 + µ̃′T�

−1
η µ̃T . (A.1)



Testing for Stationarity and Unit Roots 423

Since µ̃0 = 0, the summation on the right-hand side can start at t = 2. With
a constant, µ̃1 = 0, and with a time trend, µ̃T = 0 as well. If �η is estimated
by T−1∑T

t=1 �µ̃t�µ̃′t , the left-hand side of the expression (A.1) reduces to
TN because

∑T
t=1 �µ̃′t�̂

−1
η �µ̃t = tr[�̂−1

η

∑T
t=1 �µ̃t�µ̃′t ], and so, provided

the slope is estimated, it follows that ζ (N ) = −N/{2T (̃φ − 1)}. As regards the
LM test, evaluating the first derivative of the log-likelihood function at φ = 1
yields

∂ log L

∂φ
=

T∑
t=1

(µ̃′t − φµ̃t−1)′�̂−1
η µ̃t−1 =

T∑
t=1

�µ̃′t�̂
−1
η µ̃t−1 = −1/2N T .

On evaluating the second derivative, we find that ζ (N ) = N 2/4LM.
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CHAPTER 18

A New Look at Panel Testing of Stationarity
and the PPP Hypothesis
Jushan Bai and Serena Ng

ABSTRACT

This paper uses a decomposition of the data into common and idiosyncratic components to develop
procedures that test if these components satisfy the null hypothesis of stationarity. The decomposi-
tion also allows us to construct pooled tests that satisfy the cross-section independence assumption.
In simulations, tests on the components separately generally have better properties than tests on
the observed series. However, the results are less than satisfactory, especially in comparison with
similar procedures developed for unit root tests. The problem can be traced to the properties of
the stationarity test, and is not due to the weakness of the common-idiosyncratic decomposition.
We apply both panel stationarity and unit root tests to real exchange rates. We find evidence in
support of a large stationary common factor. Rejections of PPP are likely due to nonstationarity of
country-specific variations.

1. INTRODUCTION

A notable result of Rothenberg (2000) and Elliott, Rothenberg and Stock (1996),
is that for data with sample sizes frequently encountered, the maximal achiev-
able power of unit root tests is rather low. There is now a growing interest
in using panel data to perform unit root and stationarity analysis. One of the
major motivations for using panel data for hypothesis testing is the enhanced
power relative to a single time series. But most of the panel tests in the literature
assume cross-sectional independence, which is difficult to satisfy for macroe-
conomic data. As discussed in O’Connell (1998), panel unit root tests tend to
be oversized, while stationarity tests have low power. Moreover, whether or not
we use panel data, testing if an observed series is stationary in finite samples
can be extremely difficult if the data are driven by a mixture of I(1) and I(0)
(unobserved) components. The issue was analyzed by Engel (2000) within the
context of testing the PPP hypothesis, and more generally under the heading
of negative moving-average errors in the unit roots literature, see, for example,
Schwert (1989).

In Bai and Ng (2004), we proposed a new approach to testing the unit
root hypothesis that not only alleviates the size problem arising from the mix-
ture component problem, but is also effective in controlling for cross-section
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correlation in panel testing. The latter feature is attractive as it enables us to
construct valid and powerful panel tests. In the present paper, the approach is
extended to testing the null hypothesis of stationarity. The approach consists
of three ingredients. First, the data are assumed to obey a factor structure. This
allows us to model cross-section correlation and comovement of economic time
series. Second, the analysis is based on a panel of data with a large number of
time series observations and cross-section units. This permits us to consistently
estimate the common factors and the idiosyncratic components. Third, infer-
ence is made on the common factors and the idiosyncratic components, rather
than the observed series. This allows us to disentangle the I(1) and I(0) mixture
and to identity the source of nonstationarity.

More specifically, the observed data Xit , i = 1, 2, . . . , N , t = 1, 2, . . . , T
are represented by

Xit = Dit + λ′i Ft + eit , (1.1)

where Dit is the deterministic component, Ft is a k × 1 vector of unobserv-
able common factors, λi is the vector of loadings, and eit is a unit-specific
stochastic term. The loadings represent the exposure of cross-section i to the
common factors. Some cross-sections may not be influenced by the common
factors, but enough loadings must be nonzero such that Ft represents correla-
tions that are pervasive. The specific component eit can be weakly correlated
cross-sectionally. Formal conditions imposed on the factor model for unit root
testing are given in Bai and Ng (2004), and we will continue to use those
assumptions.

The factor model makes the revealing point that stationarity of an observed
series Xit requires stationarity of Ft and eit . Nonstationarity, on the other hand,
can arise because of a unit root in any one of the k factors, or in eit . When one
component is I(0) and the other is I(1), Xit becomes the sum of two components
with different orders of integration. Univariate stationarity tests will have low
power while unit root tests will have distorted sizes when the I(0) component
is much larger than the I(1) component, even though Xit is fundamentally
I(1). Our proposed methodology is to test Ft and eit instead of the observed
series, Xit . The hope is that more precise inference can be made by testing the
components, if indeed size distortion arises because an observed series is driven
by components with different orders of integration.

Panel testing of unit root and stationarity is not new. Quah (1994), Levin, Lin,
and Chu (2002), Im, Pesaran, and Shin (2003), Hadri (2000), Pedroni (1995),
Maddala and Wu (1999), and Choi (2001), among others, have developed panel
unit root, cointegration, and stationarity tests under various assumptions about
fixed effects and heterogeneous time trends. What makes our approach different
is that we pool statistics that test the idiosyncratic errors, not the observed data.
This distinction is important because imposing cross-section independence on
the observed data is much more restrictive than imposing the assumption on the
idiosyncratic errors. In cross-country and sectoral analysis, the independence
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assumption will rule out common shocks in the data, since such shocks will
induce strong cross-section correlation that cannot be aggregated away. Cross-
section correlations can also arise in a mechanical way. For example, real ex-
change rates are often defined using the same base country. O’Connell (1998)
showed that the pooled tests will overreject the null hypothesis when the in-
dependence assumption is violated, whether the null hypothesis is unit root
or stationarity. Size distortions could be misread as higher power. Banerjee,
Marcellino, and Osbat (2001) argued against use of panel unit root test be-
cause of this potential problem. A factor structure provides a parsimonious way
of capturing strong cross-section correlation. Once this is controlled for, the
idiosyncratic errors should at most be weakly correlated. Thus, whereas the
independence assumption is unlikely to be true for observed macroeconomic
time series, the assumption that the idiosyncratic errors are independent across
i is more likely to hold. For this reason, we consider pooled tests of the idiosyn-
cratic errors. This has important power implications because pooled tests are,
in general, more powerful than univariate tests.

As in Stock and Watson (2002), Bai and Ng (2002, 2004), we estimate λi

and Ft by the method of principal components. The key to the present analysis
lies in consistent estimation of the common and the idiosyncratic components
without a priori knowledge whether they are I(1) or I(0). The trick is to apply
the method of principal components to the first differenced data. The estimates
are then recumulated to obtain estimates in level form, and stationarity tests
are applied to these estimates. Such an analysis is possible because we work
with large panels (i.e., when N and T are both large). Loosely speaking, the
large N is necessary to identify variations that are common in the cross-section,
while a large T is necessary to consistently estimate terms that are idiosyncratic.
Section 2 proposes a suite of tests for stationarity. As will become clear, the
limiting distribution of the stationarity test being considered bears relation to
a specific unit root test. Accordingly, Section 3 offers results for the particular
panel unit root test. Simulations are presented in Section 4, and tests are applied
to real exchange rates in Section 5.

In the analysis to follow, we assume Dit is a polynomial in time of order
p and present results for p = 0 (in which case Dit = ci ) and p = 1 (in which
case Dit = ci + β i t). We assume the invariance principle holds so that for a
series xt (t = 1, . . . T ) satisfying mixing conditions,

1√
Tσ x

[T r ]∑
s=1

xs ⇒ B(r ),

where B(r ) is a standard Brownian motion and σ 2
x is the spectral density of xt

at frequency zero. If x̃t = xt − x̄ , where x̄ = 1
T

∑T
t=1 xt , then

1√
Tσ x

[T r ]∑
s=1

x̃t ⇒ B(r )− r B(1) ≡ V (r )
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is a Brownian bridge. Furthermore, if x̌t is the residual from a regression of xt

on a constant and a time trend,

1√
Tσ x

[T r ]∑
s=1

x̌t ⇒ B(r )− r B(1)− 6(r2 − r )
∫ 1

0

(
s − 1

2

)
d B(s) ≡ U (r )

is a second level Brownian bridge.

2. PANEL STATIONARITY TESTS

Our analysis permits some, none, or all of the factors to be nonstationary. We
assume

Fmt = αm Fmt−1 + umt m = 1, . . . k (2.2)

eit = ρi ei t−1 + εi t i = 1, . . . N , (2.3)

where εi t and umt are i.i.d. and mutually independent. The results hold even
when these errors are weakly dependent. Factor m is nonstationary if αm = 1.
The idiosyncratic component is stationary ifρi < 1 and has a unit root ifρi = 1.
We consider the KPSS test developed in Kwiatkowski, Phillips, Schmidt, and
Shin (1992), the most commonly used test for stationarity. If x is the series to
be tested, the KPSS test is

KPSSx =
1
T

∑T
j=1

(
1√
T

∑t
j=1 x j

)2

ω2
x

,

where ω2
x is a consistent estimate of σ 2

x . As our objective is not to obtain
better stationarity tests, we take the properties of the univariate KPSS test as
given. The proofs in the Appendix can be amended to accommodate other
consistent stationarity tests of choice, such as Leybourne and McCabe (1994)
and Jansson (2001).

Since the objective is to test if the level of Ft and eit are stationary, it would
seem natural to obtain principal component estimates of Ft and eit from (1.1).
These estimates would, however, be consistent only when ρi < 1. When the
idiosyncratic errors are nonstationary, the principal components estimator ap-
plied to the nondifferenced data cannot guarantee consistent estimation of Ft . In
consequence, the estimated common factors will be nonstationary even though
the true factors are stationary. We therefore consider applying the principal
components method to the data in first differenced form. As formally analyzed
in Bai and Ng (2004), this guarantees consistent estimation of the common
factors (upto a location shift and a scale transformation) under both the null and
the alternative hypothesis.

Estimation of the differenced model yields estimates of �eit and �Ft . Our
interest is in testing stationarity of eit and Ft in level form. The construction of
the test depends on whether or not there is a linear time trend.
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2.1. The Intercept Only Case: p = 0

When p = 0, Xit = ci + λ′i Ft + eit . The model in differenced form is:

�Xit = λ′i�Ft +�eit . (2.4)

Let �X be the (T − 1)× N data matrix in differences such that the
i th column is (�Xi2,�Xi3, . . . , �XiT )′ (i = 1, 2, . . . , N ). Let �F =
(�F2,�F3, . . . , �FT )′ and � = (λ1, . . . , λN )′. The estimated factors (in
differences), �̂F1t , . . . �̂Fkt , are the k eigenvectors corresponding to the
first k largest eigenvalues of the (T − 1)× (T − 1) matrix �X ·�X ′.
The estimated loading matrix, �̂, is equal to �̂ = �X ′ · �̂F . Finally, let
�̂eit = �Xit − λ̂

′
i�̂Ft (t = 2, . . . , T, i = 1, 2, . . . , N ).

The steps to test stationarity of the common factors and the idiosyncratic
components can be summarized as follows:

1. Estimate �Ft and λi by the method of principal components, as de-
scribed previously.

2. Given �̂Ft , construct the following partial sum process for each m =
1, . . . k,

F̂mt =
t∑

s=2

�̂Fms .

Test the null hypothesis that F̂mt is stationary for each m = 1, . . . k
using the KPSS test with demeaning. Denote this test by Sc

F (m).
3. For each i , construct the partial sum ẽi t =

∑t
s=2 �̂eis , t = 2, . . . T .

(a) If Fmt is I(0) for every m = 1, . . . k, for each i = 1, . . . N , apply
the KPSS test to {̂e 0

i t }T
t=1, where ê 0

i t is ẽi t after demeaning.1 Denote
the test statistic by Sc

e0(i).
(b) If k̄ of the Ft s are I(1), let ê1

i t be the residuals from a projection
of ẽi t on 1 and F̂1t , . . . F̂k̄t . For each i , apply the test to {̂e1

i t }T
t=1 to

give Sc
e1(i).

Theorem 2.1. (p = 0) Suppose the KPSS statistic developed in Kwiatkowski
et al. (1992) is used to test stationarity and assume that N , T →∞. Let Vum and
Vεi (i = 1, . . . N ), which are N + k mutually independent Brownian bridges.

1. Under the null hypothesis that αm < 1(m = 1, . . . k),

Sc
F (m) ⇒

∫ 1

0
Vum(r )2dr.

2. Suppose Fmt is I (0) for every m. Then under the null hypothesis that
ρi < 1(i = 1, . . . N ),

Sc
e0(i) ⇒

∫ 1

0
Vεi (r )2dr.

1 That is, ẽi t − ẽi with ẽi being the sample mean of ẽi t .
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3. Suppose k̄ of the factors are I (1), then under the null hypothesis
that ρi < 1, Sc

e1(i) has the same limiting distribution as the statistic
developed in Shin (1994) for testing the null hypothesis of cointegra-
tion with k̄ integrated regressors and a constant.

Bai and Ng (2004) showed that the average squared deviations between F̂t

and Ft vanish as N and T tend to infinity. Stationarity tests can treat the estimated
factors as though they were known. The Sc

F test has the same distributions as
derived in Kwiatkowski et al. (1992) for the constant only case. At the 5 percent
level, the critical value is 0.463.

The limiting distribution for testing êi t depends on whether Ft is I(1) or I(0).
If all the factors are stationary, the stationarity test for êi t has the same limit as
the KPSS test. At the 5 percent level, the critical value is also 0.463. If some k̄
factors are I(1), stationarity of eit implies cointegration between Xi and a subset
of F of dimension k̄. Then test of the estimated idiosyncratic components has
the same limiting distribution as reported in Shin (1994) developed for testing
the null hypothesis of cointegration. At the 5 percent level, the critical values are
0.324 and 0.225 for k̄ = 1 and 2, respectively. In each case, the null hypothesis
is rejected when the test statistic exceeds the critical value.

Remarks: Step 3 can be simplified by not making the distinction as to whether
Ft is I(0) or I(1) so that the statistic Sc

e1(i) is always used. The limiting
distribution of Sc

e1(i) still depends on whether Ft is I(0) or I(1). That is,
Theorem 2.1 part 2 holds by replacing Sc

e0(i) with Sc
e1(i).

Step 3 assumes that k̄ is the true number of I(1) factors. Since we can only
estimate the space spanned by the factors, and linear combinations of stationary
and nonstationary variables are nonstationary, k̄ may be overestimated if it
is determined by testing the estimated factors one by one. The methodology
developed in Bai and Ng (2004) should be used to determine the true k̄.

2.2. The Case with a Linear Trend: p = 1

When p = 1, Xit = ci + β i t + λ′i Ft + eit . The model in differenced form is:

�Xit = β i + λ′i�Ft +�eit . (2.5)

Let �̃X be the (T − 1)× N matrix such that the i th column is the i th
cross-section series (in differences) with demeaning. That is, the i th column
of �̃X is (�Xi2 −�Xi , . . . , �XiT −�Xi )′, where �Xi = 1

T−1

∑T
t=2 �Xit

(i = 1, 2, . . . , N ). Let �̂F be the k eigenvectors corresponding to the k largest
eigenvalues of the (T − 1)× (T − 1) matrix �̃X · �̃X

′
and �̂ = �̃X · �̂F .

Finally, define �̂eit = �Xit −�Xi − λ̂
′
i�̂Ft .

The steps to test stationarity of the common factors and the idiosyncratic
components are as follows:

1. Estimate �Ft and λi by the method of principal components, as de-
scribed previously.
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2. Given �̂Ft , construct the following partial sum process for each
m = 1, . . . k,

F̂mt =
t∑

s=2

�̂Fms .

Test the null hypothesis that F̂mt is stationary for each m = 1, . . . k
using the KPSS test with demeaning and detrending. Denote this test
by Sτ

F (m).
3. For each i , construct the partial sum ẽi t =

∑t
s=2 �̂eis , t = 2, . . . T .

(a) If Fjt is I(0) for every j = 1, . . . k, then for each i = 1, . . . N ,
apply the KPSS test to {ê0

i t }T
t=1, where ê0

i t are the residuals from a
projection of ẽi t on a constant and a time trend. Denote the test by
Sτ

e0(i).
(b) If k̄ of the Ft s are I(1), let ê1

i t be the residuals from a projection of
ẽi t on a constant, a time trend, and F̂1t , . . . F̂k̄t . The test statistic
for the series {ê1

i t }T
t=1 is denoted by Sτ

e1(i).

The remark following Theorem 2.1 is also applicable here.

Theorem 2.2. (p = 1) Suppose the KPSS statistic developed in Kwiatkowski
et al. (1992) is used to test stationarity and assume that N and T both approach
infinity. Let Uum(m = 1, . . . k) and Uεi be N + k mutually independent second
level Brownian bridges.

1. Under the null hypothesis that αm < 1(m = 1, . . . k),

Sτ
F (m) ⇒

∫ 1

0
Uum(r )2dr.

2. Suppose Fmt is I (0) for every m = 1, . . . r . Then under the null hy-
pothesis that ρi < 1 (i = 1, . . . N ),

Sτ
e0(i) ⇒

∫ 1

0
Uεi (r )2dr.

3. If k̄ of the factors are I (1), then Sτ
e1(i) has the same limiting distribution

as the statistic developed in Shin (1994) for testing the null hypothesis
of cointegration in an equation with k̄ integrated regressors and a time
trend.

The limiting distribution of Sτ
F (m) coincides with that of the KPSS test derived

for the linear trend case. At the 5 percent level, the critical value is 0.149. The
tests are invariant to coefficients on the intercepts and the linear trends. That is,
if Ft = µ+ π t + ξ t , where µ and π are k × 1 vector of coefficients, and ξ t is a
vector (k × 1) of zero mean stationary processes (under the null) or a vector of
nondrifting I(1) processes (under the alternative), we can simply treat ξ t as our
Ft . This follows because the data are differenced and then demeaned. As in the
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case when p = 0, the properties of Sτ
e (i) depends on whether Ft is I(1) or I(0).

Under stationarity, the limiting distribution is identical to that of Sτ
F (m) and

thus also has a 5 percent critical value of 0.149. When k̄ of the common factors
are I(1), testing stationarity of eit is the same as testing the null hypothesis of
cointegration. As shown in Shin (1994), the limiting distribution depends on
functionals of the I(1) regressors. The critical values thus depend on the rank
of these regressors. For k̄ = 1 and 2, these are 0.122 and 0.100, respectively.

Pooling is valid when the limiting distribution of the test on unit i does not
contain terms that are common across i . If the data admit a factor structure, tests
on Xit will not satisfy this condition. However, Theorems 2.1 and 2.2 show that
stationarity tests of the idiosyncratic components have limiting distributions
that do not depend on the common innovations. Thus, if eit is independent
across i , statistics that test ê0 are asymptotically independent over i . Using the
same argument as in Maddala and Wu (1999) and Choi (2001), we have the
following result:

Corollary 2.1. Let q(i) be the p-value associated with the Sc
e0(i) test (or Sτ

e0(i)
test). Suppose eit is independent across i . Consider pooled tests defined by
Q = −2

∑N
i=1 log q(i). If Fmt is I (0) for every m = 1, . . . k, then

Q − 2N√
4N

⇒ N (0, 1).

The independence of eit is sufficient for pooling to be valid, though the as-
sumption can be relaxed so that the number of units with correlated errors is
negligible as N , T →∞. Note, however, that the independence assumption
is not required for the univariate tests in Theorems 2.1 and 2.2 to be valid.
Note also that even if eit was independent across i , pooling will not be valid
if some of the factors are I(1). Integrated factors have nonvanishing effects on
the projection residuals, ê1

i t . In consequence, statistics for testing ê1
i t have limit-

ing distributions that depend on the I(1) common factors, thus making pooling
invalid.

3. A PANEL UNIT ROOT TEST

In Bai and Ng (2004), we proposed a suite of test procedures which we referred
to as PANIC: panel analysis of nonstationarity of the idiosyncratic and common
components. Results were derived assuming that the Dickey–Fuller test was
used to test the null hypothesis of a unit root. But the key to PANIC is consistent
estimation of Ft and λi , and applicability of the results is not limited to the
Dickey–Fuller test. In this section, we present results for another unit root test.
Specifically, consider testing for a unit root in the series {xt } using the statistic:

MSBx =
T−2∑T

t=1 x2
t−1

s2
w

, (3.6)
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where s2
w is an autoregressive estimate of σ 2

w, the spectrum at frequency zero
of {�xt }.2 The MSB (modified Sargan–Bhargava) test is the square of the SB
statistic developed in Sargan and Bhargava (1983) for i.i.d. errors. It is extended
to the case of weakly dependent errors by Stock (1990), leading to the MSB
test as defined above.

Under the null hypothesis that ρi = 1 for every i , we estimate the factor
model using the first-differenced data when p = 0, and the demeaned first-
differenced data when p = 1. This yields �̂eit and �̂Ft . Cumulating these series
leads to ẽi t and F̂1t . . . F̂mt as defined in Section 2. Now for each i = 1, . . . N
and m = 1, . . . k, apply the MSB test to ẽi t and F̂mt . Denote these tests by Mc

e (i)
and Mc

F (m) when p = 0, and by Mτ
e (i) and Mτ

F (m) when p = 1.

Theorem 3.3. Suppose the MSB statistic is used to test the unit root null hy-
pothesis. Let Bum and Bεi be N + k mutually independent Brownian motions,
and let Vum and Vεi be N + k mutually independent Brownian bridges. Suppose
also that N , T →∞.

1. When p = 0,

Mc
F (m) ⇒

∫ 1

0
Bum(r )2dr (3.7)

Mc
e (i) ⇒

∫ 1

0
B2
εi (r )dr. (3.8)

2. When p = 1,

Mτ
F (m) ⇒

∫ 1

0
Vum(r )2dr (3.9)

Mτ
e (i) ⇒

∫ 1

0
V 2
εi (r )dr. (3.10)

Examination of the results reveals that the limiting distribution of Mτ
e (i) (cor-

responding to p = 1) is the same as Sc
e0(i) (corresponding to p = 0). All the

distributions presented so far belong to the family of generalized Cramér-von
Mises distributions. As Harvey (2001) pointed out, unit root and stationarity
tests with such limiting distributions can be studied in a unified framework.
Whereas inference about a unit root is based on the lower tail of a Cramér-von
Mises distribution, stationarity tests are based on the upper tail.

2 The autoregressive estimate of the spectrum is s2
w = σ̂ 2

wk/(1−∑k
j=1 b̂ j )2, where b̂ j and σ̂ 2

wk
are obtained from the regression

�xt = b0xt−1 + b1�xt−1 + · · · + bk�xt−k + wtk

with σ̂ 2
wk = 1

T

∑T
t=k+1 ŵ

2
tk . The estimator s2

ω is consistent for σ 2
ω under the null hypothesis of

a unit root and bounded under the alternative. As discussed in Perron and Ng (1998), this is
required for the class of MSB to be consistent. The test is a member of a class of tests analyzed
in Perron and Ng (1996).
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As with the KPSS tests on the estimated idiosyncratic errors, the MSB tests
can also be pooled because the limiting distributions do not depend on the com-
mon factors. Nonetheless, the KPSS and MSB tests are fundamentally different
in the present context in three ways. First, stationarity tests for eit depend on
whether the common factors are I(1) or I(0), and in practice, pretesting of Ft will
be necessary. However, a unit root test on the idiosyncratic errors is invariant
to the properties of Ft and is thus immuned to inference problems that might
arise in pretests. Second, the stationarity test is based on explicit detrending of
ẽi t according to whether p is 0 or 1. In contrast, the unit root test is based on
ẽi t detrended according to the first-differenced model. The deterministic terms
will likely have a larger effect on the stationarity than the unit root test. Third,
the stationarity test is based on the partial sum of the series, while the unit root
test is based on the level of the series itself. Errors from estimation of the factors
can be expected to have a larger impact on the stationarity test.

The results stated in (3.8) and (3.10) hold whether Ft is I(0) or I(1) and
the limiting distributions are asymptotically independent of F . In contrast,
consider testing the residuals from a regression of Xit on F̂t and the deterministic
regressors. That is, consider the regression

Xit = Dit + F̂ ′
t δi + e∗i t

and let ê ∗i t be the least-squares residuals. Suppose that there are k̄ I(1) common
factors. Then testing the null hypothesis that e∗i t has a unit root is equivalent to
testing the null hypothesis of no cointegration between Xit and Ft . The idea is
similar to the residual based cointegration tests of Phillips and Ouliaris (1990).
In fact, if we were to use the Dickey–Fuller test, the limiting distribution would
be the same as that of Phillips and Ouliaris (1990) with k̄ I(1) regressors plus
an intercept (if Dit = ci ) and a time trend (if Dit = ci + β i t), see Bai and
Ng (2004). Even if we use the MSB, the limiting distribution is given by (3.8),
but the Brownian motion in that functional is formed by projecting Bεi onto
a vector of k̄ Brownian motions that form the factors, F . Since F is common
across i , such cointegration type tests are asymptotically dependent across i ,
and thus cannot be pooled. This will be the case whether we use the MSB or
those developed in Phillips and Ouliaris (1990), since the limiting distribution
of a residuals based cointegration test depends on the I(1) regressors.

3.1. Monte Carlo Simulations

Data are generated according to (1.1)–(2.3) with a single common factor (k =
1). In addition, λi are i.i.d. N (1, 1), εi t are i.i.d. N (0, 1), and ut ∼ N (0, σ 2

F ).
Let α be the autoregressive parameter in the common factor process Ft and let ρ
be the (common) autoregressive parameter in the idiosyncratic error processes
eit . The following parameters are considered:

� σ 2
F = 10, 1, and 0.5.

� (ρ, α) ={(.5,.8),(.8,.5),(0,.9),(.9,0),(1,0),(1,.5),(1,.8),(1,.9),(1,.95),
(0,1),(.5,1),(.8,1),(.9,1),(.95,1)}.
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Because the factor model is estimated with differenced data, the tests are in-
variant to the value of ci in (1.1) and thus is set to zero. Similarly, when the
differenced data are demeaned when p = 1, the tests are also invariant to β i

in (1.1) and thus also set to zero. We report results for T = 200 and N = 20.3

Asymptotic critical values at the 5 percent significance level are used. These
are obtained by first approximating the standard Brownian motion as the par-
tial sum of 500 N(0,1) errors. The critical values for the individual tests are
the percentiles from 10,000 simulations of the limiting distributions reported
in Theorems 3.1 and 3.2. The pooled tests depend on the p values associated
with either the stationarity or the unit root test. Approximate p-values are ob-
tained by creating a look-up table that contains 300 percentage points of the
asymptotic distributions simulated earlier. In particular, 100 points is used to
approximate the upper tail, 100 to approximate the lower tail, and 100 points
for the middle part of the asymptotic distributions. The p values match up very
well with Table 3 of MacKinnon (1994), whenever they are available. These
look-up tables are available from the authors. Tables 18.1 and 18.2 report the
rejection rates of the unit root hypothesis over 1,000 replications. The column
labeled F̂ is the rejection rate of the tests applied to the estimated common
factor. The columns labeled X and ê are the average rejection rates applied to
X and ê, where the average is taken across N units over 1,000 trials. Results
for a particular i are similar.

We first report in Table 18.1a results for the modified Sargan–Bhargava
(MSB) unit root test. These rejection rates represent size in one of three cases:
(i) when F̂ t is tested and α = 1, (ii) when êt is tested and ρ = 1, or (iii) when
X is tested and either α = 1 or ρ = 1. Other entries represent power.4 The
first thing to note is that the results for p = 0 are similar to those for p = 1.
When both F and e are stationary, the MSB test has more power when applied
to the data X directly, as indicated by the first five rows of Table 18.1a. But
when F is nonstationary (implying X is nonstationary but its first difference
has a negative moving average component), the MSB test on X is oversized.
However, separate tests on F and e are much more accurate. As shown in rows
with α = 1, the rejection rates on F are close to the nominal size of 5 percent,
while the test also has power in rejecting a unit root in F . Similarly, when only
e is I(1), the test also has good size and power. The results thus show that testing
the components separately is more precise than testing the sum of two series,
even when the components have to be estimated from cross-sections with only
twenty units.

Table 18.1b reports the rejection rates for the pooled unit root test. The entries
are given size and power interpretation as described in the previous paragraph.

3 The results change little for larger N . As expected, power is higher when T is large.
4 The MSB test necessitates the choice of the lag length for the autoregressive spectrum. This is

set to six for X and two for ê. This is based on analysis in Ng and Perron (2001) that a longer
lag is necessary when there is a negative moving component, and a shorter lag should be used to
preserve power otherwise.
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Table 18.1a. Rejection rates for the null hypothesis of a unit root

σ F = √
10 σ F = 1 σ F = √

0.5

T N ρ α X F̂ ê 0 X F̂ ê 0 X F̂ ê 0

p = 0
200 20 0.00 0.00 0.99 0.80 0.79 0.99 0.81 0.80 0.99 0.78 0.79
200 20 0.50 0.80 0.99 0.92 0.90 1.00 0.91 0.90 1.00 0.92 0.90
200 20 0.80 0.50 1.00 0.90 0.92 0.99 0.89 0.92 1.00 0.91 0.92
200 20 0.00 0.90 0.94 0.85 0.79 0.92 0.85 0.79 0.92 0.87 0.79
200 20 0.90 0.00 0.90 0.78 0.85 0.92 0.78 0.85 0.92 0.78 0.85
200 20 1.00 0.00 0.07 0.75 0.06 0.06 0.47 0.06 0.06 0.34 0.06
200 20 1.00 0.50 0.21 0.88 0.06 0.08 0.67 0.06 0.07 0.55 0.06
200 20 1.00 0.80 0.38 0.90 0.05 0.13 0.75 0.06 0.10 0.61 0.06
200 20 1.00 0.90 0.43 0.86 0.06 0.16 0.72 0.06 0.12 0.61 0.06
200 20 1.00 0.95 0.34 0.55 0.06 0.15 0.46 0.06 0.12 0.42 0.06
200 20 0.00 1.00 0.09 0.06 0.66 0.08 0.04 0.65 0.10 0.05 0.64
200 20 0.50 1.00 0.08 0.05 0.84 0.13 0.05 0.84 0.16 0.07 0.83
200 20 0.80 1.00 0.12 0.06 0.88 0.20 0.06 0.88 0.24 0.06 0.87
200 20 0.90 1.00 0.11 0.06 0.82 0.22 0.06 0.82 0.27 0.06 0.82
200 20 0.95 1.00 0.12 0.08 0.57 0.19 0.06 0.57 0.24 0.06 0.57
200 20 1.00 1.00 0.07 0.06 0.06 0.07 0.06 0.06 0.07 0.05 0.06

p = 1
200 20 0.00 0.00 0.96 0.74 0.74 0.95 0.76 0.74 0.96 0.73 0.75
200 20 0.50 0.80 0.95 0.85 0.90 0.96 0.85 0.90 0.97 0.86 0.89
200 20 0.80 0.50 0.98 0.90 0.85 0.96 0.89 0.85 0.96 0.90 0.85
200 20 0.00 0.90 0.77 0.61 0.73 0.73 0.60 0.73 0.73 0.62 0.73
200 20 0.90 0.00 0.70 0.77 0.61 0.72 0.71 0.61 0.74 0.69 0.62
200 20 1.00 0.00 0.03 0.69 0.06 0.02 0.49 0.06 0.03 0.34 0.06
200 20 1.00 0.50 0.12 0.87 0.06 0.03 0.74 0.06 0.03 0.62 0.06
200 20 1.00 0.80 0.26 0.84 0.06 0.06 0.75 0.06 0.05 0.65 0.06
200 20 1.00 0.90 0.28 0.63 0.06 0.08 0.55 0.06 0.05 0.51 0.06
200 20 1.00 0.95 0.18 0.27 0.06 0.07 0.26 0.06 0.06 0.26 0.06
200 20 0.00 1.00 0.03 0.06 0.64 0.04 0.06 0.63 0.06 0.06 0.63
200 20 0.50 1.00 0.04 0.06 0.85 0.08 0.06 0.86 0.10 0.06 0.85
200 20 0.80 1.00 0.05 0.05 0.83 0.13 0.05 0.83 0.16 0.06 0.82
200 20 0.90 1.00 0.05 0.05 0.60 0.14 0.06 0.60 0.17 0.06 0.60
200 20 0.95 1.00 0.06 0.06 0.29 0.10 0.07 0.29 0.13 0.05 0.28
200 20 1.00 1.00 0.03 0.07 0.06 0.03 0.05 0.06 0.03 0.06 0.06

Pooled tests based on X are invalid because of cross-sectional dependence. Only
pooling on ê is permitted by our theory. This is confirmed by the simulations.
Consistent with the findings of O’Connell (1998), the pooled test applied to
X rejects the unit root hypothesis too often. Size distortions are significantly
smaller when tests based on ê are pooled. Higher power is a motivation for
considering pooled tests. Indeed, the power of the pooled tests on ê is remarkably
higher than the univariate tests reported in Table 18.1a. When a linear trend is
in the model, the size of the pooled tests is somewhat inflated, but have good
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Table 18.1b. Pooled tests: rejection rates for the null hypothesis of a unit root

σ F = √
10 σ F = 1 σ F = √

.5

T N ρ α X ê 0 X ê 0 X ê 0

p = 0
200 20 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.50 0.80 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.80 0.50 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.90 0.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.00 0.28 0.08 0.13 0.09 0.13 0.10
200 20 1.00 0.50 0.86 0.09 0.23 0.09 0.18 0.09
200 20 1.00 0.80 0.99 0.08 0.56 0.09 0.37 0.10
200 20 1.00 0.90 0.99 0.10 0.70 0.08 0.49 0.08
200 20 1.00 0.95 0.95 0.07 0.68 0.09 0.54 0.08
200 20 0.00 1.00 0.29 1.00 0.33 1.00 0.37 1.00
200 20 0.50 1.00 0.33 1.00 0.44 1.00 0.51 1.00
200 20 0.80 1.00 0.36 1.00 0.58 1.00 0.66 1.00
200 20 0.90 1.00 0.39 1.00 0.62 1.00 0.72 1.00
200 20 0.95 1.00 0.39 1.00 0.58 1.00 0.72 1.00
200 20 1.00 1.00 0.30 0.10 0.24 0.09 0.22 0.09

p = 1
200 20 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.50 0.80 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.80 0.50 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.00 0.90 0.98 1.00 1.00 1.00 0.99 1.00
200 20 0.90 0.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.00 0.02 0.11 0.00 0.13 0.00 0.13
200 20 1.00 0.50 0.38 0.11 0.01 0.13 0.00 0.11
200 20 1.00 0.80 0.81 0.12 0.08 0.13 0.02 0.12
200 20 1.00 0.90 0.80 0.12 0.17 0.11 0.05 0.13
200 20 1.00 0.95 0.56 0.13 0.15 0.11 0.06 0.13
200 20 0.00 1.00 0.13 1.00 0.14 1.00 0.16 1.00
200 20 0.50 1.00 0.13 1.00 0.22 1.00 0.26 1.00
200 20 0.80 1.00 0.17 1.00 0.33 1.00 0.44 1.00
200 20 0.90 1.00 0.15 1.00 0.36 1.00 0.46 1.00
200 20 0.95 1.00 0.17 1.00 0.30 1.00 0.39 1.00
200 20 1.00 1.00 0.09 0.12 0.03 0.13 0.01 0.12

properties overall. In all, Tables 18.1a and 18.1b show that the idiosyncratic
common decomposition is effective. More accurate univariate and powerful
pooled tests can be obtained.

We now turn to the stationarity tests. Table 18.2a reports results for testing
{Xit }, {F̂t }, and {êi t } using the quadratic spectral kernel to estimate σ 2

x with
int[12(T/100)1/4] lags. These rejection rates represent power in one of three
cases: (i) when F̂t is tested and α = 1, (ii) when êt is tested and ρ = 1, or (iii)
when X is tested and either α = 1 or ρ = 1. All other entries represent size. Our
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Table 18.2a. Rejection rates for the null hypothesis of stationarity, quadratic
spectral kernel

σ F = √
10 σ F = 1 σ F = √

0.5

T N ρ α X F̂ ê 0 ê1 X F̂ ê 0 ê1 X F̂ ê 0 ê1

p = 0
200 20 0.00 0.00 0.05 0.06 0.04 0.13 0.04 0.04 0.04 0.13 0.04 0.03 0.05 0.13
200 20 0.50 0.80 0.07 0.07 0.05 0.13 0.06 0.06 0.05 0.13 0.05 0.07 0.04 0.13
200 20 0.80 0.50 0.05 0.05 0.06 0.16 0.06 0.05 0.06 0.16 0.06 0.04 0.06 0.16
200 20 0.00 0.90 0.12 0.12 0.06 0.12 0.10 0.11 0.06 0.12 0.10 0.11 0.06 0.12
200 20 0.90 0.00 0.10 0.04 0.12 0.25 0.11 0.08 0.12 0.25 0.11 0.08 0.12 0.25
200 20 1.00 0.00 0.64 0.44 0.66 0.76 0.65 0.64 0.66 0.69 0.65 0.65 0.66 0.64
200 20 1.00 0.50 0.60 0.22 0.66 0.76 0.65 0.57 0.66 0.70 0.66 0.60 0.66 0.67
200 20 1.00 0.80 0.50 0.11 0.66 0.77 0.63 0.35 0.66 0.72 0.64 0.45 0.65 0.69
200 20 1.00 0.90 0.43 0.14 0.66 0.75 0.60 0.27 0.66 0.73 0.62 0.33 0.66 0.71
200 20 1.00 0.95 0.42 0.23 0.66 0.73 0.58 0.30 0.66 0.72 0.60 0.33 0.66 0.70
200 20 0.00 1.00 0.65 0.66 0.44 0.06 0.64 0.65 0.44 0.06 0.62 0.64 0.44 0.06
200 20 0.50 1.00 0.65 0.66 0.27 0.06 0.64 0.67 0.28 0.05 0.59 0.64 0.27 0.06
200 20 0.80 1.00 0.65 0.67 0.14 0.07 0.59 0.66 0.14 0.07 0.57 0.67 0.15 0.07
200 20 0.90 1.00 0.64 0.67 0.15 0.11 0.56 0.65 0.15 0.12 0.52 0.65 0.15 0.12
200 20 0.95 1.00 0.60 0.63 0.24 0.20 0.53 0.65 0.24 0.20 0.50 0.65 0.24 0.20
200 20 1.00 1.00 0.65 0.64 0.65 0.53 0.67 0.67 0.66 0.50 0.66 0.68 0.66 0.50

p = 1
200 20 0.00 0.00 0.05 0.04 0.04 0.11 0.05 0.06 0.04 0.11 0.05 0.04 0.05 0.12
200 20 0.50 0.80 0.05 0.05 0.04 0.10 0.05 0.06 0.04 0.10 0.04 0.05 0.04 0.10
200 20 0.80 0.50 0.05 0.04 0.06 0.13 0.06 0.04 0.06 0.13 0.06 0.04 0.06 0.13
200 20 0.00 0.90 0.11 0.11 0.06 0.11 0.11 0.11 0.06 0.11 0.11 0.12 0.07 0.11
200 20 0.90 0.00 0.09 0.05 0.11 0.22 0.11 0.08 0.12 0.22 0.11 0.08 0.11 0.22
200 20 1.00 0.00 0.46 0.20 0.49 0.65 0.49 0.39 0.50 0.61 0.50 0.45 0.50 0.59
200 20 1.00 0.50 0.40 0.11 0.50 0.65 0.47 0.30 0.49 0.62 0.49 0.37 0.49 0.60
200 20 1.00 0.80 0.29 0.07 0.49 0.64 0.43 0.15 0.49 0.62 0.47 0.22 0.49 0.61
200 20 1.00 0.90 0.26 0.11 0.49 0.62 0.40 0.15 0.49 0.61 0.44 0.19 0.49 0.60
200 20 1.00 0.95 0.32 0.23 0.50 0.58 0.41 0.26 0.49 0.57 0.43 0.26 0.50 0.58
200 20 0.00 1.00 0.47 0.48 0.25 0.08 0.48 0.50 0.26 0.07 0.44 0.47 0.25 0.08
200 20 0.50 1.00 0.49 0.51 0.13 0.06 0.44 0.48 0.12 0.07 0.45 0.51 0.14 0.07
200 20 0.80 1.00 0.45 0.48 0.08 0.08 0.40 0.48 0.08 0.08 0.39 0.51 0.08 0.08
200 20 0.90 1.00 0.44 0.47 0.12 0.14 0.38 0.47 0.12 0.13 0.34 0.47 0.12 0.14
200 20 0.95 1.00 0.46 0.49 0.23 0.25 0.38 0.47 0.23 0.25 0.36 0.48 0.22 0.25
200 20 1.00 1.00 0.50 0.50 0.49 0.48 0.50 0.50 0.49 0.48 0.50 0.49 0.50 0.49

theory predicts that when α = 1, a test on the stationarity of the idiosyncratic
errors eit should be based on ê1, while testing ê0 would be invalid. Indeed, by
examining the rows of Table 18.2a with α = 1, the tests based on ê1 have less
size distortion than those based on ê0. Similarly, when α < 1, theory suggests
that ê0 should be used. The first five rows in Table 18.2a show less size distortion
when using ê0 than using ê1. However, when ρ = 1 and α < 1, using ê0 has less
power than using ê1. These results suggest that it would be useful in practice to
pretest F , and then decide whether to use ê0 or ê1. It is conceivable that better
size and power can be achieved.

When (ρ, α) = (0, 0.9), the stationarity test on ê0 has a rejection rate of
0.06. When (ρ, α) = (0.9, 0), the rejection rate on F̂ is 0.04. At face value,
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Table 18.2b. Pooled tests: rejection rates for the null hypothesis of
stationarity, quadratic spectral kernel

σ F = √
10 σ F = 1 σ F = √

0.5

T N ρ α X ê 0 ê1 X ê 0 ê1 X ê 0 ê1

p = 0
200 20 0.00 0.00 0.28 0.09 0.83 0.20 0.07 0.84 0.17 0.08 0.83
200 20 0.50 0.80 0.34 0.09 0.81 0.28 0.10 0.79 0.26 0.07 0.78
200 20 0.80 0.50 0.24 0.19 0.92 0.21 0.21 0.92 0.20 0.20 0.93
200 20 0.00 0.90 0.43 0.25 0.78 0.43 0.24 0.80 0.44 0.25 0.79
200 20 0.90 0.00 0.53 0.68 1.00 0.67 0.69 1.00 0.66 0.69 1.00
200 20 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.95 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.00 1.00 0.90 0.85 0.33 0.90 0.84 0.32 0.88 0.84 0.32
200 20 0.50 1.00 0.90 0.72 0.30 0.89 0.73 0.30 0.88 0.71 0.31
200 20 0.80 1.00 0.90 0.58 0.38 0.89 0.57 0.39 0.90 0.59 0.39
200 20 0.90 1.00 0.90 0.80 0.57 0.88 0.80 0.58 0.90 0.81 0.59
200 20 0.95 1.00 0.91 0.99 0.77 0.96 0.99 0.79 0.97 0.98 0.80
200 20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.99

p = 1
200 20 0.00 0.00 0.39 0.33 0.95 0.36 0.32 0.94 0.35 0.34 0.96
200 20 0.50 0.80 0.36 0.21 0.89 0.36 0.21 0.86 0.34 0.20 0.88
200 20 0.80 0.50 0.31 0.38 0.94 0.35 0.34 0.94 0.33 0.36 0.93
200 20 0.00 0.90 0.48 0.44 0.91 0.52 0.47 0.94 0.51 0.47 0.91
200 20 0.90 0.00 0.71 0.87 1.00 0.85 0.87 1.00 0.87 0.87 1.00
200 20 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.80 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.90 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.95 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.00 1.00 0.85 0.82 0.69 0.85 0.82 0.72 0.84 0.81 0.72
200 20 0.50 1.00 0.86 0.65 0.54 0.85 0.66 0.55 0.88 0.70 0.55
200 20 0.80 1.00 0.86 0.53 0.58 0.87 0.54 0.59 0.85 0.55 0.57
200 20 0.90 1.00 0.87 0.87 0.82 0.89 0.86 0.80 0.91 0.90 0.83
200 20 0.95 1.00 0.88 1.00 0.97 0.97 1.00 0.96 0.98 1.00 0.97
200 20 1.00 1.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

the stationary test has reasonably good properties. However, these results are
obtained after a good deal of time was spent choosing the kernel and the band-
width. To illustrate, Table 18.3 reports results using the Parzen kernel. Evi-
dently, the KPSS test with the Parzen kernel is substantially oversized except
in the uninteresting case when the common factors or idiosyncratic errors are
very weakly serially correlated. Even though power appears high when one of
the components indeed has a unit root, they are inflated by the size problem.
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Table 18.3a. Rejection rates for the null hypothesis of stationarity, Parzen
kernel

σ F = √
10 σ F = 1 σ F = √

0.5

T N ρ α X F̂ ê 0 ê1 X F̂ ê 0 ê1 X F̂ ê 0 ê1

p = 0
200 20 0.00 0.00 0.05 0.06 0.05 0.12 0.05 0.05 0.04 0.12 0.04 0.03 0.05 0.12
200 20 0.50 0.80 0.12 0.13 0.06 0.14 0.10 0.11 0.06 0.13 0.09 0.12 0.05 0.13
200 20 0.80 0.50 0.08 0.06 0.11 0.23 0.10 0.06 0.11 0.23 0.10 0.06 0.11 0.23
200 20 0.00 0.90 0.22 0.23 0.08 0.11 0.20 0.22 0.08 0.11 0.20 0.23 0.09 0.11
200 20 0.90 0.00 0.18 0.05 0.23 0.38 0.22 0.14 0.24 0.39 0.23 0.15 0.23 0.38
200 20 1.00 0.00 0.76 0.51 0.79 0.89 0.79 0.75 0.79 0.84 0.79 0.77 0.79 0.81
200 20 1.00 0.50 0.71 0.26 0.79 0.89 0.78 0.65 0.79 0.85 0.79 0.71 0.79 0.83
200 20 1.00 0.80 0.61 0.18 0.80 0.89 0.75 0.47 0.79 0.86 0.77 0.57 0.79 0.84
200 20 1.00 0.90 0.57 0.28 0.79 0.88 0.74 0.41 0.79 0.87 0.76 0.48 0.79 0.85
200 20 1.00 0.95 0.58 0.42 0.80 0.86 0.72 0.47 0.79 0.85 0.75 0.52 0.79 0.84
200 20 0.00 1.00 0.79 0.80 0.51 0.05 0.77 0.80 0.52 0.05 0.76 0.80 0.52 0.05
200 20 0.50 1.00 0.78 0.79 0.33 0.06 0.76 0.81 0.33 0.06 0.72 0.78 0.32 0.06
200 20 0.80 1.00 0.79 0.81 0.22 0.10 0.72 0.81 0.22 0.11 0.69 0.80 0.23 0.11
200 20 0.90 1.00 0.77 0.80 0.28 0.20 0.68 0.78 0.27 0.21 0.66 0.79 0.28 0.21
200 20 0.95 1.00 0.74 0.77 0.41 0.35 0.69 0.78 0.41 0.35 0.66 0.78 0.41 0.36
200 20 1.00 1.00 0.78 0.79 0.79 0.72 0.80 0.80 0.79 0.70 0.80 0.79 0.80 0.70

p = 1
200 20 0.00 0.00 0.04 0.04 0.04 0.10 0.05 0.06 0.04 0.10 0.04 0.04 0.04 0.10
200 20 0.50 0.80 0.13 0.14 0.05 0.11 0.10 0.11 0.05 0.10 0.08 0.11 0.05 0.10
200 20 0.80 0.50 0.08 0.05 0.13 0.23 0.11 0.06 0.13 0.22 0.11 0.06 0.13 0.22
200 20 0.00 0.90 0.27 0.28 0.08 0.09 0.26 0.29 0.09 0.09 0.25 0.29 0.09 0.09
200 20 0.90 0.00 0.21 0.05 0.28 0.43 0.27 0.13 0.29 0.43 0.28 0.17 0.29 0.43
200 20 1.00 0.00 0.70 0.25 0.77 0.85 0.76 0.61 0.77 0.83 0.76 0.69 0.77 0.82
200 20 1.00 0.50 0.61 0.14 0.77 0.85 0.74 0.46 0.77 0.84 0.75 0.55 0.76 0.82
200 20 1.00 0.80 0.48 0.16 0.77 0.85 0.68 0.30 0.76 0.83 0.72 0.39 0.77 0.83
200 20 1.00 0.90 0.49 0.28 0.76 0.83 0.66 0.35 0.76 0.82 0.70 0.41 0.77 0.82
200 20 1.00 0.95 0.60 0.53 0.77 0.81 0.69 0.53 0.76 0.79 0.72 0.55 0.77 0.80
200 20 0.00 1.00 0.73 0.75 0.35 0.06 0.72 0.77 0.36 0.05 0.69 0.75 0.36 0.06
200 20 0.50 1.00 0.75 0.77 0.18 0.06 0.68 0.76 0.18 0.06 0.69 0.79 0.19 0.06
200 20 0.80 1.00 0.72 0.76 0.16 0.14 0.66 0.78 0.17 0.15 0.61 0.78 0.17 0.14
200 20 0.90 1.00 0.71 0.76 0.29 0.29 0.63 0.77 0.29 0.29 0.58 0.76 0.30 0.30
200 20 0.95 1.00 0.72 0.76 0.50 0.49 0.66 0.75 0.50 0.48 0.64 0.77 0.50 0.49
200 20 1.00 1.00 0.76 0.75 0.77 0.73 0.77 0.78 0.77 0.73 0.77 0.76 0.76 0.74

Because of size distortion in the individual tests, the pooled tests become dif-
ficult to interpret. The prewhitening and recoloring procedure of Andrews and
Monahan (1992) actually aggravates the size problem, as does use of the au-
toregressive spectral density estimator proposed by Berk (1974). The more
persistent is the series to be tested the more severe the problem, even though
in theory, these are precisely the situations when prewhitening should improve
the estimates of the spectrum.

At the moment, it is somewhat of a black box why the choice of the kernel
has such a significant impact on the KPSS, as in theory this should not be
the case. It is possible that the errors from estimation of the factors create
problems unique to our proposed methodology. But problems with the KPSS
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Table 18.3b. Pooled tests: rejection rates for the null hypothesis of
stationarity, Parzen kernel

σ F = √
10 σ F = 1 σ F = √

0.5

T N ρ α X ê 0 ê1 X ê 0 ê1 X ê 0 ê1

p = 0
200 20 0.00 0.00 0.26 0.07 0.75 0.19 0.05 0.75 0.16 0.07 0.77
200 20 0.50 0.80 0.43 0.16 0.80 0.37 0.15 0.78 0.37 0.13 0.77
200 20 0.80 0.50 0.30 0.61 0.99 0.48 0.65 0.99 0.55 0.65 0.99
200 20 0.00 0.90 0.60 0.32 0.65 0.59 0.33 0.69 0.60 0.33 0.67
200 20 0.90 0.00 0.90 0.98 1.00 0.98 0.99 1.00 0.99 0.99 1.00
200 20 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.00 1.00 0.96 0.91 0.24 0.96 0.91 0.23 0.95 0.92 0.24
200 20 0.50 1.00 0.96 0.81 0.29 0.96 0.82 0.28 0.95 0.82 0.29
200 20 0.80 1.00 0.96 0.88 0.57 0.96 0.87 0.58 0.97 0.89 0.57
200 20 0.90 1.00 0.96 1.00 0.87 0.98 0.99 0.87 0.99 1.00 0.88
200 20 0.95 1.00 0.97 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99
200 20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

p = 1
200 20 0.00 0.00 0.29 0.12 0.71 0.24 0.12 0.71 0.20 0.13 0.73
200 20 0.50 0.80 0.48 0.21 0.75 0.47 0.20 0.72 0.44 0.19 0.71
200 20 0.80 0.50 0.40 0.87 0.99 0.67 0.85 1.00 0.75 0.85 1.00
200 20 0.00 0.90 0.70 0.44 0.61 0.69 0.46 0.61 0.70 0.47 0.61
200 20 0.90 0.00 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.80 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.90 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 0.95 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 0.00 1.00 0.95 0.88 0.33 0.95 0.88 0.31 0.95 0.88 0.35
200 20 0.50 1.00 0.96 0.75 0.38 0.95 0.72 0.36 0.96 0.77 0.38
200 20 0.80 1.00 0.96 0.93 0.83 0.97 0.94 0.84 0.97 0.93 0.83
200 20 0.90 1.00 0.98 1.00 1.00 0.99 1.00 0.99 1.00 1.00 1.00
200 20 0.95 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
200 20 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

test have also been reported by Caner and Kilian (2001), Hobijn, Franses,
and Ooms (1998), among others.5 The present analysis evidently provides no
solution to the problems inherent in the KPSS. However, our analysis is useful
in understanding size distortion arising from pooling, vis-á-vis size distortion

5 The Leybourne and McCabe (1994) statistic is also used to test stationarity but has problems
similar to the KPSS test, as pointed out by Caner and Kilian (2001).
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due to the univariate test itself. As we have shown, even when the problem of
cross-section dependence is solved, the panel stationarity test will still tend to
overreject stationarity.

We wrap up this section by reiterating the most compelling reason for testing
the idiosyncratic errors for a unit root instead of stationarity. As shown in
Theorems 3.1 and 3.2, the large sample properties of stationarity tests depend
on whether Ft is I(1) or I(0). This is not the case with unit root tests, a property
that is appealing both in theory and in practice.

4. APPLICATION TO PPP

Under PPP, real exchange rates should be mean reverting and thus stationary.
Because real exchange rates are often defined using the same base country,
cross-section correlation arises almost by construction, even in the absence of
global shocks. Strong cross-section correlation amounts to a common factor that
cannot be aggregated away. As O’Connell (1998) found, standard panel unit
root tests are biased toward the alternative hypothesis and thus also suffer from
size distortions. O’Connell suggests removing the cross-section correlation by
a GLS transformation of the data. This requires that the common component be
stationary, which need not be the case. Also, constructing a consistent N × N
covariance matrix estimator is not easy when N is allowed to go to infinity. The
decomposition approach of this paper offers a useful alternative. It also allows
us to discern the source of nonstationarity.

Quarterly data for nominal exchange rates and the consumer price indices are
obtained from the International Finance Statistics. We use data from 1974:1–
1997:4 for twenty-one countries: Canada, Australia, New Zealand, Austria,
Belgium, Denmark, Finland, France, Germany, Ireland, Italy, Netherlands,
Norway, Spain, Sweden, Switzerland, UK, Japan, Korea, Singapore, and
Thailand. The U.S. is used as the numeraire country. Since the nominal ex-
change rates are expressed as the national currency per US dollar, an increase
in the real currency means a real depreciation for the home country vis á vis the
US dollar. To proceed with statistical analysis, we take logarithms of the data,
which are then demeaned and standardized to have unit variance.

The results are reported in Table 18.4. We tag a series with a ‘−’ if the KPSS
test rejects stationarity. A ‘+’ is used for a series that cannot reject a unit root.
Thus, a series with no tagged symbol is judged stationary by both tests, and
a series with a ‘−’ and corresponding ‘+’ are judged nonstationary by both
tests. According to the column labeled X , the KPSS statistic rejects the null
hypothesis of stationarity in two of the twenty-one observed series: Japan and
Thailand. The MSB rejects the unit root null for all series but Ireland and Japan.

We then estimate the factors and the loadings using the method of principal
components. The number of factors k is unknown. Bai and Ng (2002) proposed
an information based procedure that can consistently estimate k. Using the
penalty (N + T ) log(N + T )/N T , the criterion selects one factor. The factor
associated with the largest eigenvalue explains 58 percent of the variation in
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Table 18.4. Application to real exchange rates, p = 0

KPSS MSB

Country var(�̂e)
var(�X )

σ (̂λ
′
i F̂t )

σ (̂e0)
X ê 0 X ê 0

Canada 0.995 0.044 0.316 0.317 0.030 0.141+

Australia 0.891 0.357 0.403 0.533− 0.041 0.181+

New Zealand 0.724 0.844 0.172 0.185 0.007 0.037
Austria 0.081 3.378 0.210 0.479− 0.038 0.213+

Belgium 0.093 2.330 0.105 0.411 0.033 0.131+

Denmark 0.092 5.001 0.129 0.126 0.030 0.057
Finland 0.316 1.364 0.072 0.114 0.018 0.107+

France 0.113 3.920 0.098 0.480− 0.037 0.566+

Germany 0.086 2.972 0.115 0.412 0.035 0.275+

Ireland 0.158 1.761 0.366 0.336 0.061+ 0.119+

Italy 0.337 1.614 0.197 0.249 0.039 0.173+

Netherlands 0.076 2.871 0.099 0.480− 0.029 0.054
Norway 0.173 3.438 0.083 0.340 0.047 0.015
Spain 0.385 1.264 0.201 0.335 0.031 0.165+

Sweden 0.347 1.387 0.137 0.496− 0.036 0.267+

Switzerland 0.219 2.142 0.287 0.499− 0.031 0.511+

UK 0.415 1.312 0.177 0.187 0.024 0.029
Japan 0.560 0.594 0.548− 0.649− 0.089+ 0.567+

Korea 0.988 0.187 0.083 0.074 0.001 0.000
Singapore 0.548 0.618 0.183 0.175 0.035 0.038
Thailand 0.938 0.278 0.522− 0.580− 0.021 0.037

5% CV 0.463 0.463 0.057 0.057
10% CV 0.343 0.343 0.076 0.076
Pooled 3.129 3.129 4.259 0.341

The stationarity tests are based on twelve lags of the quadratic spectral kernel. The unit
root test is based on four lags in estimation of the autoregressive spectral density.
A ‘−’ denotes rejection of stationarity, and a ‘+’ indicates nonrejection of the unit root
hypothesis.

the data, while the second factor explains only 14 percent of the variation. We
proceed with the estimation assuming there is one common factor. The MSB
test on the common factor is 0.053, very close to the critical value of 0.057 at
the 5 percent level, but nonetheless rejects a unit root. The KPSS test for the
common factor is 0.119. In light of the fact that the KPSS tends to overreject
stationarity, this nonrejection is rather a strong evidence for a stationary common
component.

We then apply the tests to the idiosyncratic errors. Since both the MSB and
the KPSS suggest that the common factor is stationary, the relevant column is
thus ê0. A formal test rejects stationarity for eight of the twenty-one series. The
MSB test, on the other hand, cannot reject the unit root null for thirteen series.
At the 5 percent level, the KPSS and MSB are in agreement with over thirteen
of the idiosyncratic series. Six series (New Zealand, Denmark, Norway, UK,
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Korea, and Singapore) are stationary, while seven series (Australia, Austria,
Germany, Sweden, Switzerland, and Japan) are nonstationary. As the common
factor is stationary, this suggests that six of the observed real exchange rate
series are stationary, while seven are nonstationary because of nonstationary
country specific factors. Direct testing of the data would have found eighteen
series to be stationary. Pooling the stationarity tests on ê0

i t gives a statistic of
5.897, which rejects the null hypothesis that all series are stationary. Pooling
the MSB tests gives 7.591, which rejects the null hypothesis that every series
has a unit root. In light of the finding from univariate tests that some series are
stationary while others are not, this result is not surprising. In fact, this should
be the case.

We have used a “differencing and recumulating” approach to yield consis-
tent estimates of the factors. A by-product of this methodology is that we can
analyze the relative importance of the common and idiosyncratic components.
Columns 1 and 2 of Table 18.3 report the ratio of the standard deviation of the
idiosyncratic component (based on one factor) to the standard deviation of the
differenced data, as well as the standard deviation of the common to the idiosyn-
cratic component. If all variations are idiosyncratic, the first statistic should be
close to one and the second should be small. The Asian countries and Canada
have real exchange rate variations dominated by the idiosyncratic components,
as var(�̂e)

var�X exceeds 0.9 for all these countries. But real exchange rate variations
of the fourteen European countries are apparently dominated by the common
components. In light of these differences in the relative importance of the com-
mon component, a model that explains the European real exchange rate will
likely not be able to explain the dynamics of non-European real exchange rates.
It would be useful to develop a formal analysis in which common and specific
shocks have explicit roles. Since nonstationarity seems to depend heavily on
the properties of the idiosyncratic component, it would also be useful to see if
the variations in this component result from differentials in productivity, fiscal,
and monetary policies.

5. CONCLUSION

When a series is the sum of two components with possibly different dynamic
properties, testing whether the components are I(1) or I(0) should be more accu-
rate than testing the series itself. The motivation of this paper is to exploit the fact
that common and idiosyncratic components can be consistently estimated from a
factor model. We develop procedures to test if these components satisfy the null
hypothesis of stationarity. The decomposition into common and idiosyncratic
components also allows us to develop pooled tests that satisfy the cross-section
independence assumption. In simulations, tests on the components are indeed
more accurate than testing the summed series. However, the results are less
than satisfactory, especially in comparison with similar procedures developed
for unit root tests. The problem can be traced to the properties of the univariate
stationarity test, and is not due to the weakness of the common idiosyncratic
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decomposition. We look forward to the development of new stationary tests
with more robust properties.6

A primary interest in stationarity tests is the PPP hypothesis. We take our
procedures to the data. Evidence from both panel unit root and stationarity
tests suggest the presence of one common, stationarity factor. In view of the
tendency of the KPSS test to overreject the null hypothesis, this nonrejec-
tion can be seen as strong evidence for stationarity. However, the results also
find that a large number of real exchange rates have nonstationary idiosyn-
cratic components. Understanding the structural source of this nonstationarity
seems to be a promising way to understand why the evidence tends to pile up
against PPP.

APPENDIX

We first explain why the estimated F̂ t can be treated as the true Ft process. In the
literature on large dimensional factor analysis, as in Stock and Watson (1998),
Bai and Ng (2002), and Bai (2003, 2004), it is shown that F̂t is consistent for
HFt , where H is a k × k matrix of full rank. It is clear that Ft is stationary
if and only if H Ft is stationary. That is, an invertible matrix transformation
does not alter its stationarity property. Furthermore, a transformation of the
regressors will not alter the regression residuals. Thus, whether one uses Ft

or HFt (t = 1, 2, . . . , T ) as regressors, the same residuals will be obtained.
Of course, F̂t is not exactly equal to HFt because of estimation errors. But
the estimation errors are negligible if N is large. This is due to the following
lemma:

Lemma A.1. Consistency of F̂t (from Bai, 2003)

� Suppose Ft is I (0) and Assumptions A to G of Bai (2003) hold. Then
F̂t is

√
N consistent if

√
N/T → 0. If

√
N/T → τ > 0, F̂t is T

consistent.
� Suppose Ft is I (1) and Assumptions A to F of Bai (2004) hold. Then F̂t

is
√

N consistent if N/T 3 → 0. If N/T 3 → τ > 0, F̂t is consistent
at rate T 3/2.

It is possible to give a rigorous proof for Theorems 3.1 and 3.2 that explicitly
allows for estimation errors in Ft . We provide such an analysis in Bai and
Ng (2004). Here, we simply appeal to Lemma A.1 and assume Ft is known.

Proof of Theorem 3.1. When p = 0, the model in level and first differenced
forms are

Xit = ci + λ′i Ft + eit

�Xit = λ′i�Ft +�eit .

6 Jansson (2001) suggests using covariates to improve the power of stationarity tests. This will not
resolve the size problem.
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By Lemma A.1, the method of principal components applied to �Xit will
give consistent estimates of �Ft . For large N , �Ft can be treated as known.
Furthermore, λ̂i will be

√
T consistent. Thus, we have

�Xit = λ̂i�Ft + �̂eit .

From �̂eit = �eit − (λ̂i − λi )�Ft , the partial sum of this series is

ẽi t =
t∑

j=2

�̂ei j

= eit − ei1 − (λ̂i − λi )
′(Ft − F1),

which depends on ei1 and (λ̂i − λi )′(Ft − F1). Removal of these effects depend
on whether Ft is I(0) or I(1). If Ft is I(0), we demean ẽi t . Let ēi = 1

T

∑T
t=2 eit ,

F̄ = 1
T

∑T
t=2 Ft . Then

ẽi = 1

T

T∑
t=2

ẽi t = ēi − ei1 − (λ̂i − λi )
′(F̄ − F1),

from which it follows that

ê0
i t = ẽi t − ẽi t = eit − ēi − (λ̂i − λi )

′(Ft − F̄).

Consider now the scaled partial sum of ê0
i t . We have

1√
T

t∑
s=1

ê0
is =

1√
T

t∑
s=1

(eis − ēi )−
√

T (λ̂i − λi )
′ 1

T

t∑
k=1

(Fs − F̄)

= 1√
T

t∑
s=1

(eis − ēi )+ Op

(
1√
T

)
.

Thus if Ft is I(0),

1√
T

[T r ]∑
k=1

ê0
ik ⇒ σ i [Bε,i (r )− r Bε,i (1)] ≡ Vεi (r )

1

T 2

T∑
t=1

(
t∑

k=1

ê0
i t

)2

⇒ σ 2
i

∫ 1

0
Vεi (r )2dr,

where σ 2
i is the long-run variance of eit . The limiting distribution is independent

across i and can thus be pooled.
If Ft is I(1), demeaning alone is not sufficient to purge the effect of

ei1 + (λ̂i − λi )′(Ft − F1). We must project ẽi t on [1 Ft ] to obtain new residuals
ê1

i t . Because ẽi t = eit − ei1 − (λ̂i − λi )′(Ft − F1), êi t are equivalent to those
obtained by projecting eit on the regressors. The KPSS test on such a residual
process is studied in Shin (1994), where the limiting distributions are also de-
rived. Thus the details are omitted. Finally, because the limiting distributions
across i depend on the common stochastic trends Ft , they are not independent
across i . This implies that these statistics cannot be pooled.
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Proof of Theorem 3.2. For p = 1, �Xit = β i + λ′i�Ft +�eit , and �Xi =
1

T−1

∑T
t=2 �Xit = β i + λ′i�F +�ei , where �F = 1

T−1

∑T
t=1 �Ft = FT−F1

T−1

and �ei = eiT−ei1
T−1 . Thus,

�Xit −�Xi = λ′i (�Ft −�F)+�eit −�ei . (A.11)

The principal components estimator based on the data �Xit −�Xi (i =
1, 2, . . . , N , t = 2, . . . , T ) will provide estimates of λi and �Ft −�F , re-
spectively. Because �̂Ft is root-N consistent for �Ft −�F , when N is large
relative to T , the estimation error is negligible and we can simply assume
�̂Ft = �Ft −�F . This implies that

F̂t =
t∑

s=2

�̂Fs =
t∑

s=2

(�Fs −�F) = Ft − F1 − FT − F1

T − 1
(t − 1).

The residual from projecting F̂t on [1, t] will remove F1 + FT−F1
T−1 (t − 1). This

projection residual is asymptotically equivalent to the residual by projecting
the true process Ft on [1, t]. Thus, the KPSS test based on such residuals
has a second-level Brownian bridge as its limiting distribution, as shown in
Kwiatkowski et al. (1992). This proves part 1 of Theorem 3.2.

By the definition of �̂eit ,

�Xit −�Xi = λ̂
′
i�̂Ft + �̂eit . (A.12)

Subtracting (A.12) from (A.11) and noting �̂Ft = �Ft −�F , we have

�̂eit = �eit −�ei − (λ̂i − λi )(�Ft −�F).

Then ẽi t =
∑t

s=2
ˆ�eis is given by

ẽi t = eit − ei1 − (eiT − ei1)

T
(t − 1)

− (λ̂i − λi )

[
Ft − F1 − (FT − F1)

T
(t − 1)

]
. (A.13)

Because λ̂i − λi = Op(T−1/2), the last term of (A.13) is negligible if Ft is I(0).
By projecting ẽi t on [1, t], the projection residual will further remove the effects
due to ei1 + (eiT−ei1)

T (t − 1). Thus, the KPSS test based on the demeaned and
detrended ê0

i t is asymptotically equivalent to the one based on the residual from
a projection of eit on [1, t]. Thus, the limiting distribution is a second-level
Brownian bridge. This proves part 2 of Theorem 3.2.

If Ft is I(1), the last term of (A.13) is no longer negligible. We need to
project ẽi t on [1, t ; F1t , . . . Fk̄t ]. The projection will purge the effect of Ft , the
linear trends, the term ei1, and (λ̂i − λi )′F1 in (A.13). The resulting residual
is asymptotically equal to the residual by projecting the true process eit on
[1, t ; F1t , . . . Fk̄t ]. The limiting distribution of the KPSS test on such residuals
is derived in Shin (1994). This proves part 3 of Theorem 3.2.
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Proof of Theorem 3.3. Part 1 is easier than part 2. We thus consider part 2.
The MSB test is based on ẽi t in Equation (A.13) (no further demeaning and
detrending). Because (λ̂i − λi ) = Op(T−1/2), the last term of (A.13) is Op(1)
whether Ft is I(1) or I(0). Thus,

ẽi t = eit − eiT
t − 1

T
+ Op(1).

Under the null hypothesis that eit is I(1), for t = [T r ],

ẽi t√
T
= eit√

T
− eiT√

T

( t − 1

T

)
+ 1√

T
Op(1) ⇒ σ i,ε[Bi (r )− r Bi (1)],

where σ 2
i,ε is the long-run variance of�eit = εi t and Bi (r ) is a Brownian motion

process. It follows that

1

T 2

T∑
t=1

ẽ2
i t =

1

T

T∑
t=1

( ẽi t√
T

)2
⇒ σ 2

i,ε

∫ 1

0
Vi (r )2dr,

where Vi (r ) = Bi (r )− r Bi (1). Dividing the preceding equation by a consistent
estimator of σ 2

i,ε leads to the desired result.
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CHAPTER 19

Testing for Unit Roots in Panel Data: An
Exploration Using Real and Simulated Data
Bronwyn H. Hall and Jacques Mairesse

ABSTRACT

This paper presents the results of a Monte Carlo study that compares the small sample performance
of various unit root tests in short panels using simulated data that mimic the time series and cross
sectional properties of commonly used firm level variables. Our conclusion is that in the presence of
firm-level heteroskedasticity two methods are preferred, depending on the nature of the preferred
alternative: the simplest method based on the ordinary least squares regression of the variable
under consideration on its own lag and a version with a more complex alternative hypothesis
suggested by Im, Pesaran, and Shin. The paper also reports the results of using these tests for sales,
employment, investment, R&D, and cash-flow in three panels of large French, Japanese and US
manufacturing firms. In most cases our data reject the presence of a unit root in favor of a first order
autoregressive model with a very high autoregressive coefficient, so high that fixed effects are of
negligible additional importance in the model.

1. INTRODUCTION

In this paper, we investigate the properties of several unit root tests in short panel
data models using simulated data that look like the data typically encountered in
studies on firm behavior. This investigation arose from a previous exploration of
a simple question – could we find a simple parsimonious model that accounts
for the time series properties of key observable variables characterizing the
behavior of individual firms: sales, employment, investment, R&D, and cash
flow or profits in France, Japan and the United States.1 We started from a fairly
general autoregressive model in the spirit of Holtz-Eakin, Newey, and Rosen
(1988) where the heterogeneity across firms is accounted by an individual-
specific intercept or firm fixed effect and a firm-specific variance of the random
disturbance. We proceeded in estimation by using the GMM methodology. Our
estimates, however, were both imprecise and suggestive of the presence of finite
sample bias.2 We therefore investigated the properties of our estimator using
two very simple but quite different data generating processes that approximated

1 This exploration (see Hall and Mairesse, 2001) was itself a follow up on Hall, Mairesse,
Branstetter, and Crepon (1999).

2 These estimates are documented in Hall and Mairesse (2001).
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our data fairly well (random walk vs. fixed effect with no autoregression) and
concluded that the first step in constructing a parsimonious univariate model
for such data should probably be a test for stationarity, because the presence of
a unit root will invalidate the commonly used GMM specification.3

Testing for stationarity in panel data models is also per se a matter of interest
and it can be more directly motivated. It seems fairly intuitive that, within
the general class of models where heterogeneity is restricted to an individual
fixed effect, the times series behavior of an individual variable should often
be well approximated either as an autoregressive process with a small positive
coefficient and large fixed effects or as an autoregressive process with a near-
unit root and negligible individual fixed effects. Both alternatives can be nested
in a single model, in which the test of the former against the latter is a panel
data unit root test. One expects, however, that such test might not perform
well in a short panel, owing in particular to the problem of unobserved initial
conditions and incidental parameter estimation. Trying to assess the properties
of the available tests in a realistic setting is therefore of practical importance.

In recent years the econometrics literature has proposed a number of tests for
unit roots in panel data. We confine our attention to the six of them that are valid
when the number T of time periods (years in our case) is small and the number
N of individuals (firms in our case) is large, that is those that are consistent
when T is fixed and N →∞.4 We describe these six tests in detail in Section 2
of the paper. They vary in several dimensions: (1) the degree of heterogeneity
across individuals that is allowed for; (2) serial correlation, heteroskedasticity,
and robustness to nonnormality; and (3) whether they follow the Wald, like-
lihood ratio, or Lagrange Multiplier (LM) testing principles (see Table 19.1).
All of them treat the presence of a unit root, implying nonstationarity, as the
null hypothesis; and the absence of unit root, or stationarity, as the alternative
hypothesis.

The first test we will consider is based on CMLE (conditional maximum
likelihood estimation) and is the most restrictive in terms of the assumptions
necessary for validity. Then comes the HT (Harris–Tzavalis) test, which is
based on bias-adjusted least-squares dummy variable (LSDV) or within esti-
mation and therefore allows nonnormality but not heteroskedasticity.5 We also
consider a version of CMLE suggested by Kruiniger (1999b) which allows for
heteroskedasticity across units and time separately and is slightly more general

3 For a more complete discussion of the problems with GMM estimation when the data are nearly
nonstationary, see Blundell and Bond (1998).

4 We have omitted all the tests that rely on the T →∞ assumption for validity, because such tests
are inappropriate for the usual data on firms. See Quah (1994) and Levin and Lin (1993) for
examples of these kinds of tests. The six tests we consider are those that are appropriate for the
fixed T , large N case, and were known to us as of the time of writing (2001).

5 In fact, if we interpret the CMLE as a quasi-likelihood method, using it to construct a test is no
more or less restrictive than the HT test. Both require homoskedasticity but not normality, and
in principle, either one could be modified to yield a test robust to heteroskedasticity, as we do in
the case of CML estimation.
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than HT. The next test, which we will label OLS, allows for heteroskedasticity
and nonnormality, and takes a very different approach by viewing the panel data
regression as a system of T year regressions. It is based on the fact that ordinary
least squares is a consistent estimator for the model with a lagged dependent
variable and no fixed effects.6 The IPS (Im–Pesaran–Shin) test is the last one we
consider. It also takes a different approach from the foregoing, in that it views
the panel data regression as a system of N individual regressions and is based
on the combination of independent Dickey–Fuller tests for these N regressions.
Besides allowing heteroskedasticity, serial correlation, and nonnormality, this
test also allows for heterogeneity of trends and of the lag coefficient under the
alternative hypothesis of no unit root.

In the paper, we present the results of a Monte Carlo study that compares
the small sample performance of these tests using simulated data mimicking
the time series and cross sectional properties of the firm sales, employment, in-
vestment, R&D, and cash flow variables in three panel data samples for French,
Japanese, and US manufacturing firms. The design and calibration of the sim-
ulations, which are based on the most persistent of these series, the R&D in the
US, is explained in Section 3. The results of the eight different Monte Carlo
experiments are presented in Section 4. Our tentative conclusion is that the sim-
plest method, the OLS test based on the ordinary least-squares regression of the
variable considered on its own lag, may actually be the best for microdata pan-
els similar to ours. The OLS estimator is unbiased under the null of a unit root
(when the fixed effect vanishes) and its estimated standard error can easily be
corrected for both serial correlation and heteroskedasticity of the disturbances.

In Section 5, we also report the results of using all six tests for the five
variables in our three samples. In most cases our data reject nonstationarity in
favor of stationarity, but with a very high autoregressive coefficient, so high
that it is not necessary to include fixed effects in the model. We very briefly
conclude in Section 6.

2. TESTING FOR UNIT ROOTS IN PANEL DATA:
AN OVERVIEW

The most general form of the model considered in this paper can be written as
follows:

yit = αi + δt + uit t = 1, . . . , T ; i = 1, . . . , N

uit = ρui,t−1 + εi t εi t ∼ [0, σ 2
t σ

2
ε(i)]

⇒ yit = (1− ρ)αi + (1− ρ)δt + ρyi,t−1 + εi t |ρ| < 1

or yit = yi,t−1 + δ + εi t εi t ∼ [0, σ 2
t σ

2
ε(i)] ρ = 1 (2.1)

6 This test is implicit in early work by Macurdy (1985). It was suggested to us by Steve Bond
(see Bond, Nauges, and Windmeijer, 2002).
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That is, we consider the possibility of either an autoregressive model with a
fixed effect or a random walk with drift. In both cases, we allow for individual
and time-varying heteroskedasticity of a proportional form in addition. In some
cases, the various tests described below are valid only for more restrictive
versions of the model in Equation (2.1).

Table 19.1 provides a schematic view of the various unit root tests we con-
sider and the assumptions under which they are valid. All the tests assume
conditional independence across the units, and all except the OLS test allow for
individual-specific means in estimation. The CMLE, IPS, and OLS tests can po-
tentially accommodate a flexible correlation structure among the disturbances,
as long as it is the same for all units. However, in this paper we have assumed
throughout that the disturbances are serially uncorrelated (in the presence of
the lagged dependent variable) and constructed our tests accordingly. With the
possible exception of the investment and cash flow series, this assumption is
satisfied by our real data series.7 In the text that follows, we indicate how to
modify the tests to accommodate serial correlation.

The estimators associated with these tests allow for various degrees of het-
erogeneity in addition to the individual-specific means. In particular, all of them
except the Harris–Tzavalis test and the homoskedastic version of the CMLE
test allow the variance of the disturbances to be different for each unit.8 The
IPS tests, which are based on N individual regressions, allow both the trend
and the serial correlation coefficient to vary across the units under the alterna-
tive, in addition to the mean and variance. We now describe the tests in more
detail.

2.1. Maximum Likelihood Methods with Homoskedastic Errors

Lancaster and Lindenhovius (1996), Kruiniger (1999b), and Binder, Hsiao, and
Pesaran (2000) have independently pointed out that the conditional maximum
likelihood estimate of the linear model with individual effects and a lagged
dependent variable is well-identified and consistent even when there is a unit
root, that is, even when the coefficient is one, although this value is on the
boundary of the parameter space. This fact can be used to construct a likelihood
ratio test of ρ = 1 versus ρ < 1.9

7 The autocorrelograms of the level and first-differenced series are shown in Figures 19.1 and 19.2
of Appendix B. The autocorrelation of the first differences at lag one is less than 0.25 for most
of the series. For our “model” series, US log R&D, the autocorrelation is −0.04.

8 The HT test could probably be modified to accommodate heteroskedasticity also, but the version
we use here does not.

9 The consistency result is of considerable interest in its own right because the corresponding
least-squares (LSDV) estimator is neither consistent (as N →∞, T fixed) nor unbiased when
ρ = 1. Appendix C contains a table of results for the OLS levels, LSDV, and first-differenced
OLS and IV for our simulated data. Except for level estimates of the models with no effects, the
estimates are very far away from the true values.
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The model to be estimated is the one given in Equation (2.1), but with
homoskedastic disturbances and without the time trend:10

yit = αi + uit uit = ρui,t−1 + εi t |ρ| < 1
yit = yi,t−1 + εi t ρ = 1
εi t ∼ N [0, σ 2

ε]
(2.2)

The null hypothesis is ρ = 1 and therefore no fixed effects. If we denote
the vector of T observations for an individual as yi = (yi1, yi2, . . . , yiT ) and
similarly for ui and yi,−1, we can write this model in vector form as

yi = αi ι+ ui

E[ui u′i ] = σ 2
εVρ = σ 2

ε

1−ρ2

⎡⎢⎢⎣
1 ρ · · · ρT−1

ρ 1 · · · ·
· · · · · ·

ρT−1 ρT−2 · · · 1

⎤⎥⎥⎦ (2.3)

or, in differenced form,

Dyi = Dui (2.4)

Given normal disturbances, Dyi has the joint normal distribution with mean
zero and variance–covariance matrix � = σ 2

εDVρD’ = σ 2
ε� and the joint log

likelihood for this model is the following:11

log L(ρ, σ 2′{yit }) = −N (T − 1)

2
log(2π )− N

2
log |�| − 1

2

N∑
i=1

(Dy)′�−1 Dyi

= −N (T − 1)

2
log(2π )− N (T − 1)

2
log σ 2 − N

2
log |�|

− 1

2σ 2

N∑
i=1

(Dyi )
′�−1 Dyi (2.5)

Kruiniger (1999b) gives conditions under which maximizing this likelihood
over the parameter space (ρ, σ 2

ε) ∈ (−1, 1]× (0,∞) will yield consistent esti-
mates.12 Under those conditions, a conventional t test for ρ = 1 is a test for a
unit root. Alternatively, one could construct a likelihood ratio test by compar-
ing the likelihood evaluated at its unconstrained maximum with the likelihood
evaluated at ρ = 1.13

10 For simplicity of presentation, we omit the overall time trend in the presentation that follows.
In practice, we removed year-specific means from the data before estimation.

11 Higher-order serial correlation of the disturbances can be allowed for by assuming that uit follows
an autoregressive model with a unit root and an order p < T and deriving the appropriate Vρ

matrix that corresponds to this model.
12 Basically, he requires stationarity if ρ < 1 and boundedness of the initial condition if ρ = 1.

Also note that one cannot evaluate this likelihood as written if ρ = 1. See Kruiniger (1999b)
for details of the form of the likelihood when there is a unit root; that version collapses to the
random walk model under that condition.

13 Lancaster and Lindenhovius (1996) took a slightly different approach, using the same model and
likelihood, but considering the Bayesian estimator with a flat prior on the effects (which drops
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2.2. Maximum Likelihood Methods with Heteroskedastic Errors

A common feature of data on firms, even in logarithms, is that the variances
of the errors vary across firms, which implies that estimation using methods
assuming homoskedasticity is likely to produce wrong standard errors, at the
least.14 Consider the following variation of (2.2), which omits the trend:

yit = αi + uit i = 1, . . . , N ; t = 1, . . . , T (2.6)

uit = ρui,t−1 + εi t εi t ∼ i.i.d. N
(
0, σ 2

i σ
2
t

)
At first glance, it might appear that estimation of such a model using maximum
likelihood methods would lead to an incidental parameter problem due to the
fact that the number of firm level parameters σ 2

i grows with the sample size
N . However, Kruiniger (1999b) shows that maximum likelihood estimation of
the structural parameters (ρ, σ 2

t , t = 1, . . . , T ) of this model is consistent. The
likelihood function for this model is given by

log L(ρ, {σ 2
t }; {yit }) = − (T − 1)

2
log(2π )− (T − 1)

2

N∑
i=1

log(σ 2
i )

− N

2
log |�| −

N∑
i=1

1

2σ 2
i

(Dyi )
′�−1 Dyi (2.7)

where

� = D PVp P D′ and P = diag(σ t ) (2.8)

Thus, � depends only on the structural parameters ρ and {σ 2
t }. Given the values

for these parameters, it is clear that the maximum likelihood estimate of the
individual-specific variances has the usual form

σ̂ 2
i =

1

T − 1
tr (�−1 Zi ) where Zi = Dyi (Dyi )

′ (2.9)

We use this fact to concentrate the σ̂ 2
i , i = 1, . . . , N out of the likelihood func-

tion, which greatly simplifies estimation. See Appendix A for details of the
estimation procedure.

out due to the differencing) and a prior of 1/σ for σ . This yields the joint marginal posterior
density

p(ρ, σ 2|{yit }) = − N (T − 1)

2
log(2π )− log σ − N

2
log |�| − 1

2

N∑
i=1

(Dyi )
′�−1 Dyi

The mode of this density is consistent for ρ and σ as N →∞. They do not consider the case
ρ = 1. In practice, we found that evaluating the mode of this posterior gave essentially the same
answer as the CMLE for samples of our size, so we do not report simulation results for this test.

14 In fact, this is one of the several reasons why researchers often prefer methods based on the
GMM methodology.
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2.3. Harris–Tzavalis Test

The test for unit roots in panel data proposed by Harris and Tzavalis (1999)
begins with the observation that the “Nickell” bias in the estimated coefficient
of the lagged endogenous variable using LSDV (within) estimation is of known
magnitude under some simple assumptions about the data generating process.
Using this fact, one can compute bias adjustments to both the estimated co-
efficient and its standard error analytically and use the corrected estimates to
construct a test of known size for a unit root.

HT consider the model in Equation (2.2) and show that under the null hy-
pothesis that ρ = 1, the least-squares dummy variable estimator has a limiting
normal distribution of the following form:

√
N (ρ − 1− B2) → N (0,C2) (2.10)

where B2 = −3/(T + 1) and C2 = 3(17T 2 − 20T + 17)/[5(T − 1)(T + 1)3].
Using this fact, it is straightforward to base a t test on the estimated ρ, stan-
dardized by its mean and variance. Like the CMLE test, this test requires ho-
moskedasticity and no serial correlation in the disturbances, although because
it is based on a least-squares estimator, it does not require normality.15

2.4. OLS-pooled estimation under the null

Bond, Nauges, and Windmeijer (2002) suggest that a test based on the model
estimated under the null of a unit root (that is, where OLS can be used because
there are no “fixed effects”) may have more power when the true ρ is near unity.
The advantage of such a test is that it does not require bias adjustment and it is
easy to allow for heteroskedasticity by using a seemingly unrelated regression
framework with each year being an equation.16 Because there are no incidental
parameters under the null, asymptotics in the N dimension are straightforward
and the test relies on those.

We base our OLS test on the following model:

yit = δt + ρyi,t−1 + εi t i = 1, . . . , N ; t = 1, . . . , T

E[εiε
′
i ] = � (2.11)

where εi = (εi1εi2, . . . , εiT ). The method of estimation is seemingly unrelated
regression with a weighting matrix based on the first stage estimate of �.17

15 Neither normality nor homoskedasticity are required for the test based on the CMLE to be
consistent either, although if these assumptions fail the conventional standard error estimates
will be inconsistent and a “sandwich” estimator should be used.

16 As in the well-known Dickey–Fuller test, if the disturbances are serially correlated, it will be
necessary to include enough lagged values of the differenced y in the regression to render the
disturbances uncorrelated in order to achieve consistency of the estimator.

17 As discussed earlier, we have assumed a diagonal form for �. If the εs are serially correlated
within individuals, lagged values of the differenced y’s should be added to the model until the
residuals are approximately uncorrelated, as in the augmented Dickey–Fuller test.
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Although the estimation method assumes homoskedasticity, we report standard
errors that are robust to heteroskedasticity across the firms.

2.5. The IPS Method

Recent work by Im, Pesaran, and Shin (1997, hereafter IPS) suggests another
approach of testing for unit roots, one that allows for more heterogeneity of
behavior than that allowed for by the conditional maximum likelihood or least-
squares dummy variable approach. They assume a heterogeneous version of
the model in Equation (2.1):

yit = (1− ρi )αi + ρi yi,t−1 + εi t (2.12)

i = 1, . . . , N ; t = 1, . . . , T

where initial values yi0 are given, and they test for the null hypothesis that ρi is
unity for all observations versus an alternative that some of the ρi s are less than
one. Under the null there is no fixed effect, while under the alternative each fixed
effect is equal to (1− ρi )αi. They propose tests based on the average over the in-
dividual units of a Lagrange multiplier test of the hypothesis that ρi = 1 as well
as tests based on the average of the augmented Dickey–Fuller statistics, which
they find to have somewhat better finite sample properties than the LM test.

As in Dickey and Fuller’s original work, IPS also propose tests based on a
model with a deterministic trend:

yit = (1− ρi )αi + (1− ρi )δi t + ρi yi,t−1 + εi t (2.13)

i = 1, . . . , N ; t = 1, . . . , T

We will use both these tests for our data, since there is reason to believe that
trends do exist in the real series. Note that an important difference between
these models and the models considered in the previous sections is that both
the lag coefficient and the trend coefficient are allowed to differ across firms
under the alternative hypothesis of stationarity.

When we applied these tests to our simulated data, we found that allowing
the data to choose the length of augmenting lag p invariably yielded a p of
either 2 or 3, even though the data were in all cases generated from models
where p = 0 was appropriate.18 Because of this fact and the fact that the table
of critical values supplied by IPS breaks down for the case where the number
of observations is around ten and the length of the augmenting lag is greater
than zero, we chose to focus on the tests where p = 0 is imposed. This makes
our IPS test comparable to the others reported in this paper, which do not allow
for serial correlation in the disturbances.

18 Previous versions of this paper reported the results of tests using p = 2 and/or p = 3 on our
simulated data and concluded that they had low power and were inaccurate even when we
increased the number of time series observations per firm to twenty, especially when p = 3 was
the “optimal” choice of augmenting lag.
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3. DESIGN AND CALIBRATION OF SIMULATIONS

In Section 5 of the paper we apply the panel data unit root tests to five firm-
level variables drawn from three countries: employment, sales, cash flow, in-
vestment, and R&D in France, Japan, and the United States. In our previous
explorations using these data, we found that the process which describes each
of the variables is more similar across countries than across variables, and that
the variables can be clearly ranked by their long run “persistence”: sales, em-
ployment, and R&D on the one hand versus cash flow and investment on the
other. The behavior of the latter variables most resembled that of a stationary
process.

Figures 19.1 and 19.2 in Appendix B display the autocorrelograms of the
levels and first differences of our series for the three countries. These confirm
the high autocorrelation in levels and the low autocorrelation in differences that
characterize these data. They also show that the series most likely to exhibit the
properties of a random walk is the log R&D series for all three countries, which
has essentially zero autocorrelation at all lags in first differences. Therefore, we
chose to investigate the performance of these tests on simulated data calibrated
to match the time series and cross-sectional characteristics of the log R&D
series for the United States.19

The general form of model or data generation process (DGP) that we
use in our simulations is the model in Equation (2.1) with and without
heteroskedasticity across individuals and no heteroskedasticity over time.20

We considered eight cases: the two extreme cases of a random walk with
drift (yit = yit−1 + δ + εi t ⇒ �yit = δ + εi t ) and a pure fixed effects process
(yit = αi + δt + εi t ⇒ δ +�yit = δ +�εi t ), and the six intermediate cases
of a dynamic panel with or without fixed effects, taking ρ = 0.3, 0.9, and 0.99
and allowing αi to vary across all individual units or imposing it to be the same
for all of them. For each of these eight DGPs, we also consider both a ho-
moskedastic version with σ 2

ε(i) constant across the units, and a heteroskedastic
one with σ 2

ε(i) varying across the units.
Except for the random walk case, when constructing the DGPs we ensured

that the resulting process satisfied covariance stationarity, in order to guarantee
the consistency of the maximum likelihood estimators.21 The exact calibration
of the DGPs we used was derived from the first and second moments of the
log R&D series and its first differences, as described here. The values of these

19 The details of the construction of our datasets and the results of GMM estimation using these
data are given in Hall et al. (1999) and Hall and Mairesse (2001).

20 In estimation, we removed year means before performing any of the tests. For fixed T , this
makes no difference to the asymptotic properties of the tests. As shown by Binder et al. (2000),
when T is fixed, allowing for time-specific effects in estimation has no effect on the estimates
of the other parameters so that these effects may be removed from the observed series before
estimation.

21 This stationary version of the dynamic panel model with fixed effects is denoted as Model I by
Nickell (1981) and Lancaster (2002).
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moments were the following:

E[y] = 2.50 E[�y] = 0.085
V [y] = 4.599 V [�y] = 0.0672

(3.1)

The necessary parameters are δ, ρ, µα, σ
2
ε , and σ 2

α . Conditional on αi (or
unconditional, because it is differenced out), we have the following two equa-
tions:

E(�y) = δ

V (�y) = 2σ 2
ε/(1+ ρ)

(3.2)

Given a value for ρ and the moments of our data, these equations give values of
δ and σ 2

ε . Once we have values for δ, ρ, and σ 2
ε, to obtain the mean and variance

of the distribution of the αi s, we use the moments of the series in levels:

E(y) = µα + δ(T + 1)/2

V (y) = σ 2
α + σ 2

ε

1−ρ2

(3.3)

Values of the parameters derived from the moment estimators specified by
equations (3.2) and (3.3) are used to generate the simulated data as follows:[

αi

yi0

]
∼ N

[(
µα

E(y)

)
,

(
σ 2

α σ 2
α

σ 2
α V (y)

)]
εi t ∼ N [0, σ 2

ε]

yit = (1− ρ)αi + (1− ρ)δt + ρyi,t−1 + εi t ,

(3.4)

where N(µ,σ 2) denotes the normal distribution with mean µ and variance σ 2.
It is straightforward to show that the processes generated according to these
DGPs are mean and covariance stationary as long as |ρ| < 1.22 The AR(1)
models without individual-specific effects are generated simply by assuming
that σ 2

α = 0.23

For the nonstationary random walk case, we used the following four equa-
tions to determine the parameters δ, σ 2

ε, µ0, and σ 2
0:

E(�y) = δ

V (�y) = σ 2
ε

E(y) = µo + δ(T + 1)/2 (3.5)

V (y) = σ 2
0 + σ 2

ε(T + 1)/2

22 For the “fixed effect” model, covariance stationarity is ensured by requiring the covariance of
the initial condition yi0 and the individual-specific effect αi to be σ 2

α .
23 In this case it was not possible to reproduce the first two moments of the level and differenced

series exactly, due to the fact that we were simulating a process that did not match our real data
series that well. In all the other cases, the first two moments exactly identified the parameters
needed.
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and generated the process using this model:

yi0 ∼ N (µ0, σ
2
0) i = 1, . . . , N

εi t ∼ N (0, σ 2
ε) t = 1, . . . , T (3.6)

yit = δ + yi,t−1 + εi t

In the heteroskedastic case, we allowed the variance of the shock ε to vary
across firms. Inspection of the data revealed that a lognormal distribution of
this variance was appropriate and the DGP we used was the following:

σ 2
ε(i) = (1− ρ2)σ 2

ω(i)
log σ 2

ω(i) ∼ N [−2.05, 1.33]
(3.7)

4. RESULTS OF SIMULATIONS

Table 19.2(a) reports the results of simulations designed to explore the behavior
of the t test and likelihood ratio test based on CML estimates.24 The likelihood
function used is given in Equation (2.5) and the null hypothesis is that ρ = 1. As
described earlier, the data used for the simulation were generated by processes
whose first and second moments were chosen to match those of the log of real
R&D for the United States. The table has two panels, one for data generated
with homoskedastic disturbances and one for data generated with firm-specific
variances as described in Equation (3.7).

The first column of each panel gives the average value of ρ and its standard
deviation that was estimated by CMLE. In both cases (homoskedastic and
heteroskedastic), these are fairly close to the true value, with a hint of downward
bias for very large values of ρ. The next two columns give the average t statistic
for the hypothesis that ρ = 1, its standard deviation, and the size or power
of the test as measured by the number of rejections at the 5 percent level
of significance. The following two columns give the average likelihood ratio
statistic for the same hypothesis and its size or power. It is clear from the table
that both tests have approximately the correct size and considerable power
when applied to homoskedastic data, except when the autoregressive coefficient
is near unity (equal to 0.99). Note that when the true ρ is at or near unity,
occasionally estimation using the simulated data will converge to the boundary
of the parameter space, that is, ρ = 1. In this case, we consider the hypothesis to
be accepted, but we record the probability that this happens in the table (about
25 percent of the time for the random walk, and about 10 percent of the time
for ρ = 0.99).

24 Estimating this model by maximum likelihood requires computation using the T−1 by T−1
variance–covariance matrix, which is perhaps why the CMLE method has not been used much
in the literature. We implemented the estimator as an MLPROC in TSP 4.5 and found it to be
fairly well-behaved, converging in five or six iterations if a good estimate of σ 2 (one based on
the actual data) was used as a starting value along with a positive ρ. The TSP code is available
as an example at http://www.tspintl.com.
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The final four columns of the table repeat the same exercise, but this time
using data that were simulated to have the heteroskedasticity visible in our
empirical series. The results are similar, with the following two exceptions:
The sizes of the tests are slightly too large and the power against the alternative
with fixed effects and ρ = 0.99 is actually slightly greater (note that this test is
not size-adjusted). Both results are presumably due to the same fact: introducing
some heterogeneity into the process reduces the probability of accepting the
very restrictive null model if we impose homoskedasticity where it does not
exist.

Table 19.2b reports the results of testing the hypothesis ρ = 1 using the
CML estimator that allows for heteroskedasticity on data generated by the
same homoskedastic and heteroskedastic processes as were used for Table 2a.
The results are similar, except that the size of the test is now much too large and
its corresponding power against large ρ alternatives much greater. Also, the t
test on ρ now gives a result that is quite different from the likelihood ratio test
in the large ρ case. It appears that estimating the individual variances leads to
results that bias the estimated ρ downwards in samples of our size, in spite of
the consistency result of Kruiniger (1999a, b).

The first panel of Table 19.3 shows the results of applying the HT test for
a unit root to our simulated data. Not surprisingly, the results are very similar
to those for the homoskedastic CMLE, with good power except when ρ is near
unity, and too large a size when applied to heteroskedastic data. Thus, when
N is large and T small, it makes little difference to the result whether we use
the inconsistent LSDV estimator and bias-adjust the answer, or the consistent
CMLE estimator, which does not require bias adjusting. The underlying model
was the same in both cases, and both require homogeneity of the coefficients
and variances under the null and the alternative.

The next test considered is the pooled OLS test, which relaxes the assump-
tions of constant variance across time and individuals. The results of this test
conducted on our simulated data are shown in the final columns of Table 19.3.
The size of the test is approximately correct for both homoskedastic and het-
eroskedastic data, and the power is considerably better than for the Harris–
Tzavalis or CMLE tests when ρ is near one. In spite of this fact, but not sur-
prisingly, the estimates of ρ are severely biased toward one when the data are
generated under an alternative with a fixed firm effect. This test does almost as
well on heteroskedastic data as on homoskedastic, reflecting the fact that both
the estimator and the standard error estimates are consistent under the null in
both cases.

The results of conducting the IPS test with and without individual-specific
trends, but with a zero augmenting lag imposed are shown in Table 19.4. The
statistic shown is the average of an augmented Dickey–Fuller statistic for the N
unit root tests on the individual series, together with empirical size or power of
the test, based on critical values given in the tables of the IPS paper. We present
results for a model both with and without a firm-specific time trend; all results
are for data with a single cross-sectional mean removed in each year (that is, a
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full set of time dummies), as suggested by IPS and as was done for the other
tests considered in this paper. Because our simulated data have no time trend,
we expect that removal of these means will make the two tests (with and without
allowing for a time trend) equivalent. However, due to the small sample of time
periods available, requiring estimation of another parameter (the trend) could
be somewhat costly in terms of degrees of freedom and may reduce the power
of the test for samples of our size.

The results using the simulated data confirm this: the test without a trend
has more power to discriminate between a random walk and a fixed effect plus
AR(1) model than that with a trend. In the latter case, the size is too large and
the power against an alternative with ρ = 0.9 considerably weaker, whether or
not there are also fixed effects in the model. Not surprisingly, the results are
similar for the simulated heteroskedastic data. Because the IPS test is based
on individual-level Dickey–Fuller tests, it allows for firm-level heterogeneity
in variances, so adding this feature to the data generating process has only a
limited effect on the results of the tests.

In Table 19.5 we present a summary of our results from these various tests.
The first three columns contain results from the tests that are invalid when
there is firm-level heteroskedasticity and last five columns results from those
tests that remain valid in that case. We note first that the size of the former
group of tests is larger than the theoretical value in the presence of the kind
of heteroskedasticity displayed by our data, implying that these tests for a unit
root will reject the null too often. In addition, all the tests have very low power
against a near-unit root autoregressive model with fixed effects; recall that in
this case, the fixed effect itself is multiplied by (1− ρ) and therefore very small,
so this result is not that surprising.

Most of the other tests have good size properties, with the exception of
the conditional maximum likelihood estimates that allow for firm-specific het-
eroskedasticity. The most likely reason for the problems with the t test based
on the CML–HS estimates is that our standard error estimates are conventional
and it is necessary to use a “sandwich” estimator here; see Kruiniger (1999b).
The empirical standard error for the results in Table 19.2b was approximately
25–50 percent greater than the estimated standard error. However, we note also
that our estimate of ρ does seem to be slightly downward biased in this case
(see Table 19.2b), in spite of the fact that it is consistent, which implies that the
rate of asymptotic convergence may be slow.

Restricting attention to the tests with the correct size that are robust to het-
eroskedasticity, we are left with the OLS and IPS tests without a trend. The
results of these tests differ significantly, in that the OLS test has by far the
greater power against near-unit root alternatives, whether or not there is a fixed
effect. The difference in power is doubtless due to the difference in alternative
hypotheses, in that the OLS test considers ρ = 1 versus a single value of ρ < 1
for all individuals, whereas the IPS test considers ρ = 1 for all individuals ver-
sus ρ < 1 for at least one individual. Our simulated alternatives were all closer
to the former model than the latter, so it is not surprising that the test does better
in this case.
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5. RESULTS OF UNIT ROOT TESTS FOR
OBSERVED DATA

We now turn to our results for the observed data; details on the construction
of these datasets and their characteristics are given in Hall et al. (1999).25

Table 19.6 reports the results of the tests for unit roots on the real data, high-
lighting the tests which reject nonstationarity at the 5 percent level in bold.
The HT test, which assumes homogenous time series processes that have no
residual serial correlation beyond the first lag give essentially the same result
as the IPS test without a trend: sales and employment are nonstationary and
the remaining series are stationary, except for R&D in the United States. The
IPS test with a trend is somewhat more likely to find a unit root, but as we
have seen, the power of this test is low when the first order serial correlation
is high.

The final two columns show one of our preferred tests for these data, the OLS
test. Unlike the others, this test, which has more power against the alternative of
stationarity with a very high autocorrelation coefficient, rejects nonstationarity
in all cases except sales and employment in Japan. The estimated AR(1) coeffi-
cients are very high, so it is not surprising that we encountered difficulties with
the tests that allow for the presence of fixed effects. Using the estimated values
of ρ − 1, we conducted a small analysis of variance on these fifteen numbers
which showed that the coefficients for US and Japan could not be distinguished,
while those for France were slightly more negative (implying lower serial cor-
relation). The most significant differences were between investment and cash
flow on the one hand and sales, employment, and R&D on the other, with the
latter having a differenced coefficient of almost zero, as we saw in Figures 19.1
and 19.2.

Table 19.7 shows the results for the tests based on the two different CML
estimates. Those based on the homoskedastic estimator give results very similar
to the HT test, as they should, since they rely on the same set of assumptions
about the DGP. As in the earlier table, these results clearly reject nonstationarity
for investment and cash flow, and for R&D in France and Japan. However, almost
all of the real series reject the presence of a unit root when the heteroskedastic
version of the CMLE is used. We suspect that some of the rejection may be
due to the fact that both the coefficient and the standard error estimates seem
to be systematically biased downward for samples of our size. Finally, we
note that a likelihood ratio test for constancy of variances clearly rejects in
all cases.26

25 A description may also be found in an unpublished appendix to this paper, available at
http://emlab.berkeley.edu/users/bhhall/index.html.

26 Strictly speaking, this test is not valid asymptotically, since it is a test based on a number of
parameters that grows at the same rate as the sample. Nevertheless, we report it as a heuristic
indicator of the large difference allowing for heteroskedasticity makes to the likelihood.
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6. CONCLUSIONS

We began this investigation with the question of whether it was possible to
distinguish between a model with a unit root, or a model with a fixed effect and
low order serial correlation when describing univariate time series data. Our
principal conclusion is that the preferred model for our data is neither; rather it
is a model with an extremely high serial correlation coefficient, but one that is
less than one.

With respect to the menu of unit root tests for fixed T samples, we have
learned several things. The first conclusion from our simulation study of unit
root tests is that the pooled OLS test and the IPS test have good power against
most alternatives, although results from these tests differ when the alternative
includes a coefficient near unity, primarily because they consider two quite
different alternatives. Second, CML estimation is surprisingly easy to perform,
even in the presence of heteroskedasticity, and may be a useful addition to the
panel data arsenal, even if it is not as robust as simple OLS for the very particular
problem of unit root testing. Further investigation should explore the reasons
for finite sample bias in the heteroskedastic version of the CML estimator.

Substantively, we concluded that a very simple autoregressive model with a
coefficient on the lag dependent variable that is near unity is a more parsimo-
nious description of our data than a model with fixed effects. In Table 19.5, we
observed that the only test with power against the ρ = 0.99 alternative was the
OLS test, and in Table 19.6, this is the only test that rejects nonstationarity in
favor of stationarity with a very large auto-regressive coefficient for almost all
the real series. An alternative interpretation of this result is possible: the OLS
test may be inappropriate because the proper alternative is heterogeneous serial
correlation across the firms, implying that the IPS test is more appropriate. We
have favored the former conclusion, not because we do not believe in hetero-
geneity of this kind, but because the more parsimonious model seems to describe
the data fairly well, and because when serial correlation is this high, whether
homogeneous or heterogeneous, the presence or absence of fixed effects is of
little import, since they are necessarily quite small.

This fact leads us to a somewhat more controversial view that short panels
of firm data are better described as having highly varied and persistent initial
conditions rather than permanent unobserved firm effects. This feature of the
data has been described by some as “not-so-fixed” firm effects. We would prefer
to shift the emphasis in our modeling toward the idea that firm level differences
are better captured by the initial condition, with the apparent “permanence” of
differences being ascribed to very high serial correlation rather than to some
left-out unobserved and permanent difference. We believe that this view of the
firm is closer to the reality of firm evolution.

With our results in mind, some future research questions suggest themselves.
First is the possibility of testing for the presence of firm-specific drifts or trends.
It is certainly feasible to construct a CMLE of the doubly-differenced model
in order to test for these, although the data may not have enough power for
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estimation. Second, given the near unit root behavior of the series, it may be of
interest to examine their cointegrating properties. Mairesse, Hall, and Mulkay
(1999) have already shown that a well-behaved error-correcting version of an
investment equation can be constructed using data to ours, which implies that
sales and capital stock are cointegrated and move together in the “long run.”
The possible interpretive significance of such a result is to unify the commonly
observed differences between cross-sectional and time series estimates based
on panel data into a single model.

APPENDIX A: CML ESTIMATION WITH
HETEROSKEDASTICITY

In this Appendix we describe the computational implementation of the condi-
tional maximum likelihood estimation with heteroskedasticity.27 The likelihood
function we wish to maximize is the following:

log L(ρ, {σ 2
i }, {σ 2

t }; {yit }) = − (T − 1)

2
log(2π )− (T − 1)

2

N∑
i=1

log(σ 2
i )

− N

2
log |�| −

N∑
i=1

1

2σ 2
i

(Dyi )
′�−1 Dyi

where� is a T − 1 by T − 1 matrix that contains powers ofρ and the parameters
given by σ 2

t , t = 2, . . . , T :28

� = D PVρ P D′ and P = diag(σ t )

Thus evaluating the likelihood involves manipulation of matrices of order of
the number of time periods. To do this easily, we make use of the MLPROC
procedure in TSP version 4.5. MLPROC takes a procedure that defines a log
likelihood function as the output of a sequence of commands and maximizes
the value returned by the procedure with respect to the chosen parameters, via
repeated calling of the procedure to evaluate the function and its derivatives
(numerically).

To simplify the computation of the likelihood as much as possible, we make
use of the fact that estimators for σ 2

i , i = 1, . . . , N can be obtained from the
first-order condition given values for ρ and the σ 2

t and concentrate these pa-
rameters out of the likelihood function:

σ 2
i =

1

N (T − 1)

N∑
i=1

(Dyi )
′�−1 Dyi = 1

N (T − 1)
trace

[
�−1 Zi

]
27 The homoskedastic version is an obvious simplification of the algorithm described here.
28 Note that the parametrization requires one normalization on the σ 2

i or σ 2
t in much the same

way that including a second set of dummies in an equation requires an additional exclusion
restriction. Our normalization is σ 2

t = 1 for t = 1.
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where

Zi = (Dyi )
′Dyi and Z =

N∑
i=1

Zi = (Dy)′Dy

is the covariance matrix of the first differenced ys. As is well known, when it
is possible to concentrate the likelihood, the standard error estimates for the
remaining parameters (ρ and σ 2

t , t = 2, . . . , T in this case) are not affected by
this procedure.

The algorithm is therefore the following:

1. Given values for ρ and σ 2
t , t = 1, . . . , T , compute estimates of σ 2

i .
2. Use these estimates to compute the value of the likelihood using the

following expression:

log L
(
ρ,
{
σ 2

t

}
; {yit }

) = − N (T − 1)

2
log(2π + 1)

− (T − 1)

2

N∑
i=1

log
(
σ 2

i

[
ρ,
{
σ 2

t

}])
−N

2
log
∣∣� [ρ, {σ 2

t

}]∣∣
3. Iterate on 1 and 2 in the usual way, using a gradient method to maximize

the likelihood with respect to ρ and σ 2
t .
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APPENDIX B: AUTOCORRELOGRAMS
OF THE DATA
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Figure B.1. Autocorrelation functions for logs of real variables.
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Figure B.2. Autocorrelation functions for differenced logs of real variables.
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CHAPTER 20

Forecasting in the Presence of Structural
Breaks and Policy Regime Shifts
David F. Hendry and Grayham E. Mizon

ABSTRACT

When no model coincides with a nonconstant data generation process, forecast failure occurs, and
noncausal statistical devices may provide the best available forecasts: examples include intercept
corrections and differenced-data VARs. However, such models are not a reliable basis for economic
policy analyses and may even have no policy implications. Indeed, a “paradox” can result if their
forecasts induce policy changes, which in turn alter the data outcome. This suggests correcting
statistical forecasts by using the econometric model’s estimate of the “scenario” change, and doing
so is shown to yield reduced forecast-error biases.

1. INTRODUCTION

As the title of this volume indicates, the majority of Tom Rothenberg’s con-
tributions to econometrics and statistics were in the fields of identification and
inference. However, we know that Tom has an interest in all areas of econo-
metrics, even though his awareness of the numerous difficulties to be overcome
in undertaking applied work has so far led him to concentrate on theoretical
research topics. Therefore, we are delighted to offer our chapter on the use of
econometric models in forecasting and economic policy analysis as an indica-
tion of some more problems – as well as an analysis of how several of these
might be overcome.

A personal anecdote will explain our interest. When the first author reported
in Hendry (1981) to the UK Parliamentary Select Committee on the Treasury
and Civil Service Enquiry into Monetary Policy, he complained about the pro-
liferation of theoretical models of money and the dearth of reliable empirical
evidence; a decade later in Hendry (1991), he complained to the same commit-
tee (now on Official Economic Forecasting) about the abundance of empirical
evidence on forecasting – and the absence of theoretical models thereof! We
hope to fill a part of that second gap.

In Hendry and Mizon (2000), we investigated three aspects of the rela-
tionship between statistical forecasting devices and econometric models in the
context of economic policy analysis. First, whether there were grounds for bas-
ing economic policy analysis on the “best” forecasting system. Second, whether
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forecast failure in an econometric model precluded its use for economic policy
analysis. Finally, whether in the presence of policy change, improved forecasts
could be obtained by using “scenario” changes derived from the econometric
model, to modify an initial statistical forecast. To resolve these issues, we an-
alyzed the problems arising when forecasting took place immediately after a
structural break (i.e., a change in the parameters of the econometric system),
but before a regime shift (i.e., a change in the behavior of nonmodeled, often
policy, variables), perhaps in response to the break (Hendry and Mizon (1998)
for discussion of this distinction). No forecasting system can be immune to
unmodeled breaks that occur after forecasts are announced, whereas some de-
vices are robust to breaks that occur prior to forecasting. Such robust devices
are particularly relevant in real time when a structural break has occurred but,
perhaps, is not yet known to have occurred. These three dichotomies, between
econometric and statistical models, structural breaks and regime shifts, and
pre- and post-forecasting events, remain central to our present results. Further
particular concerns in the present chapter are working with open models and
considering the effects of structural breaks in cointegrating vectors.

Statistical forecasting devices are taken to have no basis of economic theory
(in contrast to econometric models for which this is central); so even when
combined into a system, such devices will rarely have implications for eco-
nomic policy analysis – and may not even entail links between target variables
and policy instruments. This feature will be true of the forecasting devices we
consider. Consequently, being the “best” available forecasting device is insuffi-
cient to ensure any value for policy analysis. Some “forecasting models,” such
as vector autoregressions (VARs), may also have policy implications, and we
comment on such VARs later, but that does not vitiate the previous statement.1

The converse is more relevant: Does the existence of a dominating fore-
casting procedure invalidate the use of an econometric model for policy? In
Hendry and Mizon (2000), our answer was almost the opposite of the Lucas
(1976) critique: when forecast failure results from factors unrelated to policy
changes – as Stock and Watson (1996) and Clements and Hendry (2001) show
often occurs – an econometric model can continue to accurately characterize the
responses of the economy to the policy, despite its forecast of those variables
being inaccurate. However, forecast failure could also derive from incorrectly
modeled policy reactions. Conversely, when forecast failure results from an
in-sample structural break, forecasts from a statistical model that is robust to
that structural break may be improved by combining them with the predicted
response from an econometric model of a known out-of-sample policy change.

The structure of the chapter is as follows. In the next section, we summa-
rize the relevant forecasting and economic policy concepts and issues to mo-
tivate the analysis, illustrated in Section 2.2 by an example of forecasting and
policy in the presence of regime shifts. Section 3 formalizes the data generation

1 Sims (1986) regards both classes of model distinguished here as “forecasting” models, but argues
that nevertheless both can have policy implications.
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process, namely a vector equilibrium-correction mechanism, and the forecast-
ing model used as a comparator. Section 4 considers the impact of structural
breaks in an open submodel. Then, Section 5 investigates the effects of these
changes on forecasts from the statistical device, before Section 6 describes the
policy-scenario changes. Section 7 presents the case for combining the forecasts
from robust statistical devices with policy-scenario changes and contrasts these
with forecast pooling and with intercept corrections. We present conclusions in
Section 8.

2. BACKGROUND

The literature on economic policy is vast, even restricting attention to its imple-
mentation using econometric models: related analyses include Bryant, Hooper,
and Mann (1993) on evaluating policy regimes; Budd (1998) on conducting
economic policy with and without forecasts; Britton (1989) on the more gen-
eral topic of policy making with macroeconomic models; Sims (1982), Turner,
Wallis, and Whitley (1989), and Banerjee, Hendry, and Mizon (1996) on the
econometric analysis of economic policy; and Burns (2001) on the costs of
forecast errors in an economic policy context. However, the present focus on
combining forecasts from models in the face of both structural breaks (specif-
ically, ones which take the form of location shifts) and regime shifts is not
prominent in that literature.

The specific rationale for our analysis is as follows. Using the taxonomy of
forecast errors in Clements and Hendry (1995), Hendry and Doornik (1997)
establish that shifts in the coefficients of deterministic variables (inducing loca-
tion shifts) are the primary source of systematic forecast failure in econometric
models. Deterministic variables include intercepts and linear trends – variables
whose future values are known with certainty, but the parameters of which could
change. Location shifts are viewed as any change in the unconditional expec-
tation of the nonintegrated transformations of the variables. In the simplest
location model of a variable yt ,

yt = α × 1+ ut , (2.1)

with α �= 0 where {ut } is I(0), a location shift to α∗ from T onwards induces:

yT+h = α∗ × 1+ uT+h ≡ α × µ+ uT+h, (2.2)

where µ = α∗/α �= 1 is the shifted intercept for h > 0. Thus, shifts in pa-
rameters of deterministic terms are equivalent to location shifts, as are other
factors that mimic deterministic shifts, such as misestimating or misspecify-
ing deterministic components in models. The simulation evidence in Hendry
(2000) confirms their pernicious effects on forecasts, as well as highlights the
difficulty of detecting other forms of break (i.e., those associated with mean
zero changes, namely those that have no effect on unconditional means). More-
over, Barrell (2001) illustrates the frequency of such breaks by considering six
major episodes of change during the 1990s alone.
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Despite location shifts being easier to detect than mean zero changes in
general, they too may be overlooked if they occur at, or very near, the end of
the sample period. However, there exist devices which can robustify forecast-
ing models against breaks that have occurred prior to forecasting (see, e.g.,
Clements and Hendry 1996, and Hendry and Clements 2000): examples in-
clude imposing an additional unit root, or adding a specific form of intercept
correction. Such “tricks” can help mitigate forecast failures, but they do not
change a model’s policy implications. This result nullifies the argument for us-
ing a forecast-based criterion to choose models in order to predict the effects of
known policy changes: whether or not a given model forecasts well after a break
may depend on its robustness to location shifts as much as on its “closeness”
to the data generation process.

Importantly, no methods are robust to unanticipated breaks that occur after
forecasts are announced, and Clements and Hendry (1999b) show that those
same “robustifying” devices do not offset post-forecasting breaks. But location-
shift policy changes that occur after forecasting will induce breaks in all models
that do not embody the appropriate policy links: such models, even if unaffected
by an earlier structural break, lose their robustness to post-forecasting regime
shifts. Thus, the existence of a procedure that, in the presence of in-sample
structural breaks, systematically produces better forecasts need not invalidate
basing policy on another model. Indeed, despite possibly experiencing forecast
failures from pre-forecasting breaks, econometric systems that do embody the
relevant policy effects need not experience a post-forecasting break induced
by an out-of-sample policy regime shift. Consequently, when both in-sample
structural breaks and forecast-period regime shifts occur, neither class of model
alone is adequate: this suggests investigating whether, and if so how, they should
be combined.

Given the limited knowledge about the data generation process (DGP) that
is available to empirical investigators, we adopt a framework in which the DGP
is unknown and nonstationary (due to both unit roots and structural breaks),
and the econometric model is misspecified for that DGP, if only by failing to
correctly model breaks at the forecast origin. These features seem descriptive
of operational economic forecasting and provide a rationale for using “intercept
corrections” and differencing transformations. A key consequence of these re-
sults is that the best available forecasting model need not be based on the “causal
determinants” of the actual economic process, and as the example in Section 2.2
shows, may be based on “noncausal” variables, that is, variables which do not
enter the DGP.

The fact that a purely statistical device may provide the best available fore-
casts induces an apparent paradox when policy change is feasible. In a world
characterized by the framework we adopt, when forecasting after a structural
break, forecasts based on the currently best econometric model may be beaten
by statistical devices. Assume for the moment that the statistical forecasting
model does not depend on any policy variables and, hence, neither has policy
implications nor produces any revisions to its forecasts following any policy
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changes. These “best” forecasts for some future period are presented to the
finance minister of a given country, who thereupon decides that a major policy
initiative is essential, and implements it. That the statistical forecasts are not
then revised would be greeted with incredulity. More pertinently, providing the
policy model did not fall foul of the critique in Granger and Deutsch (1992), so
that changes to policy instruments in fact correctly altered target variables; then
a better forecast seems likely by adding the policy change effects predicted by
the econometric model to the previous forecasts. But this contradicts any claim
to the effect that the statistical device produced the best forecasts in a world of
structural change and policy regime shifts.

The resolution depends on distinguishing between unknown, or unantic-
ipated, breaks that have occurred – where, for example, differenced models
may deliver the best achievable forecast – and subsequent known changes, the
consequences of which are partly measurable. An implication is that combin-
ing robustified statistical forecasts with the scenario changes from econometric
systems subject to policy interventions may provide improved forecasts. This
is the subject of Section 7. First, we establish our terminology and notation to
clarify the analysis later.

2.1. Terminology

Consider the following illustrative static bivariate system:

yt = α + βzt + vt

zt = µz + εz,t
with

(
vt

εz,t

)
∼ IN2

[(
0
0

)
,

(
σ 2

v 0
0 σ 2

z

)]
,

(2.3)

where
(
α, β, µz, σ

2
v, σ

2
z

) ∈ R
3 × R

2
+. The first equation relating yt to zt is

deemed to be causal here:

∂yt

∂zt
= β,

with zt strongly exogenous for
(
α, β, σ 2

v

)
; whereas the second equation for zt

is a policy process. However, the specification in (2.3) does not directly entail
how changes in any subset of parameters might affect the remainder, and so
additional assumptions are required. Note that (2.3) can be solved to yield

yt = µy + εy,t

zt = µz + εz,t
with

(
εy,t

εz,t

)
∼ IN2

[(
0
0

)
,

(
σ 2

y ρ

ρ σ 2
z

)]
,

(2.4)

where µy = α + βµz , ρ = βσ 2
z , and σ 2

y = σ 2
v + βρ.

A structural break occurs when the parameters of the causal model change
(here either∇β �= 0 or∇α �= 0, or both, using∇ to denote a parameter change).
A policy regime shift occurs when the parameters of the policy process change
(here either ∇µz �= 0 or ∇σ 2

z �= 0, or both). Structural invariance occurs when
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∇µz �= 0 or ∇σ 2
z �= 0 does not result in changes to α, β, or σ 2

v , and so ∇α =
0, ∇β = 0, and ∇σ 2

v = 0. A location shift is a change in an unconditional
mean (e.g., ∇µy �= 0 or ∇µz �= 0), so that a regime shift with ∇µz �= 0 is a
special case of a location shift. A mean zero change is one that has no effect on
unconditional means, such as a change in the coefficient of a variable that has a
zero mean (e.g., ∇β �= 0 in yt = µy + β(zt − µz)+ vt when µy is invariant to
β). Contemporaneous mean co-breaking (Clements and Hendry 1999a; Hendry
and Mizon 1998) occurs when α is invariant to changes in µz so2:

∇µy = β∇µz . (2.5)

A change where ∇µy �= 0 is called a target shift and is assumed to be the result
of a regime shift as in (2.5). Finally, since

yt − µy = β
(
zt − µz

)+ vt ,

a zero mean change in β requires that µy = α + βµz stays constant, and so α

must change in response to β:∇α = −µz∇β, partly offsetting the slope change
by an intercept shift.

2.2. Forecasting and Policy Analysis across Regime Shifts

Hendry (1997) illustrates the potential role for statistical forecasting methods
when an economy is subject to structural breaks and the econometric model
is misspecified for the DGP. He considers an artificial economy where gross
national product (GNP, denoted by y) is “caused” solely by the exchange rate
(et ) over a sample prior to forecasting, then the DGP changes to one in which
y is only caused by the interest rate (rt ); but this switch is not known by
the forecaster. The DGP is nondynamic, and, in particular, the lagged value
of y does not affect its behavior (i.e., yt−1 is noncausal). Nevertheless, when
forecasting after the regime change, on the criterion of forecast unbiasedness,
a forecasting procedure that ignores the information on both causal variables
and only uses yt−1 (namely predicting zero change in y by E[yt |yt−1] = yt−1)
can have smaller bias than forecasts from models that include the previously
correct causal variable. Here, neither the statistical model nor the econometric
model based on past causal links is useful for policy.

Since policy analysis conducted on an incorrect model is rarely useful, we
now consider what can be concluded in general settings. The paradigmatic ex-
ample we have in mind is an econometric model of (say) the tax and benefits
system that accurately portrays the relevant links and yields a good approxima-
tion to the changes in revenues and expenditures resulting from changes in the
basic rates. Thus, its conditional predictions are accurate. However, it would
not necessarily provide good time-series forecasts in an economy subject to

2 In general,∇α = ∇µy − β∇µz − µz∇β, so that if a regime shift is exactly offset by a structural
break (i.e., β∇µz + µz∇β = 0), there need be no shift in the mean of yt (∇µy = 0).
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structural breaks that affected macroeconomic variables such as total con-
sumers’ expenditure and inflation.

The policy implications of any given model in use may or may not change
with a particular regime shift. For the situation just considered, if the exchange
rate did not alter when the interest rate was changed in the first regime, so
that rt had no direct or indirect effect on y in that regime, then the policy
implications of the first-regime model would be useless in the second regime.
That seems unlikely here, but could happen in practice. If et is altered by changes
in rt , so will be yt in both regimes. Policy analysis involves estimation of the
target-instrument responses, which in this case means ∂yt+h/∂rt when yt is the
target variable and rt the policy instrument changed at time t when the focus
is the effect h periods later. For the particular statistical model �yt = ς t , this
response is zero at all forecast horizons h, and so despite its robust forecasting
abilities, such a model is uninformative for policy analysis. The first-regime
econometric model, on the other hand, does provide an estimate of ∂yt+h/∂rt

via, for example,

̂∂yt+h

∂rt
=

̂h∑
i=0

∂yt+h

∂et+i

∂et+i

∂rt
. (2.6)

In regime 2, the actual policy response is ∂yt+h/∂rt , and so the regime 1 econo-
metric model policy responses in (2.6) will be valuable when the model-based
policy responses have the same sign and do not overestimate the actual response
by more than double, whereas the statistical model is always uninformative in
that it suggests a zero policy response.

The next section formalizes a more general DGP, before establishing results
for forecasting in the face of both structural breaks and regime shifts, when
the DGP is a cointegrated system dependent on policy-determined variables.
In Section 7, we explore the possibility that some combination of statistical
forecasts and estimated policy responses could dominate either alone.

3. THE DATA GENERATION PROCESS

The context for our analysis is an unknown in-sample DGP for the n = n1 + n2

I(1) variables x′t =
(
y′t , z′t

)
, where yt includes target variables and zt policy

instruments. That DGP is subject to both structural breaks and regime shifts,
as in Hendry and Mizon (2000). We concentrate on forecasting �yT+h+1 from
time T + h when an unknown structural break occurred at time T , with a known
policy regime shift effective at T + h + 1.

The class of DGP used in our analysis is an I(1) vector equilibrium–correction
model (VEqCM):

�xt = τ + Γ�xt−1 +αβ′xt−1 + εt where εt ∼ INn [0,Σ] ,

(3.1)

xt is n × 1, andα andβ are n × r of rank r < n, and all the eigenvalues of " lie
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inside the unit circle. For t < T , the I(0) variables �xt and β′xt are stationary
in sample, so let

E [�xt ] = γ and E
[
β′xt

] = µ ∀ t < T . (3.2)

Taking expectations in (3.1) yields

E [�xt ] = τ + ΓE [�xt ]+αE
[
β′xt

]
,

so that

τ = (In − Γ)γ −αµ, (3.3)

where E
[
�β′xt

] = β′γ = 0. Substituting from (3.3) into (3.1),

�xt − γ = Γ (�xt−1 − γ)+α
(
β′xt−1 − µ

)+ εt .

Factorizing (3.1) gives the in-sample open VEqCM for the I(1) variables yt ,
conditional on zt , representing the behavior of the private sector, which we take
to be a causal relation:

�yt − γ y = Π
(
�zt − γz

)+Λ (�xt−1 − γ)

+ λ
(
β′xt−1 − µ

)+ ut , (3.4)

where Π = ΣyzΣ−1
zz , Λ = (Γy −ΠΓz

)
, λ = (αy −Παz

)
, with

Σ =
(

Σyy Σyz

Σzy Σzz

)
, Γ =

(
Γy

Γz

)
=
(

Γyy Γyz

Γzy Γzz

)
,

α =
(
αy

αz

)
, γ =

(
γ y

γz

)
, (3.5)

and (
ut

εz,t

)
∼ INn

[(
0
0

)
,

(
Ω 0
0 Σzz

)]
, (3.6)

in which Ω = (Σyy −ΠΣzzΠ′). The in-sample marginal model of the policy
variables zt is

�zt − γz = Γz (�xt−1 − γ)+αz
(
β′xt−1 − µ

)+ εz,t . (3.7)

The relevant policy instruments (e.g., interest rates and tax rates) are elements of
zt that are assumed to be under the control of the policy agency (e.g., a central
bank, or Treasury). The fact that in modeling zt it is treated as I(1) neither
implies that it is intrinsically I(1) nor that it cannot be controlled by the policy
agency. Further, although (3.7) is the representation in the econometric model
of the evolution of zt , the marginal process may differ for particular policy rules
in operation from time to time (i.e., because of regime shifts); see, for example,
Johansen and Juselius (2000).

In a policy setting, zt is unlikely to be weakly exogenous for the parameters
of the conditional model, as policy reactions are often based on private sector
disequilibria such as

(
β′xt−1 − µ

)
, so that αz is usually nonzero. Moreover,
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the growth rates are linked by the cointegration vectors as β′γ = 0, even when
αz = 0. The key to understanding the impact of policy changes in such for-
mulations depends on the remaining (implicit) parameter links and invariances,
particularly co-breaking relations: we deal with that case here and return briefly
to the absence of appropriate co-breaking (a variant of the Lucas critique) in
Section 7.3. As discussed by Hendry and Mizon (2000), if all the parameters
in (3.4) and (3.7) were unconnected, the system would manifest “policy inef-
fectiveness,” in that only deviations of �zt from γz would have an impact, so
that only impulse responses would be of interest. However, shifts in γz must
alter γ y through the feedback relations (unless r = 0), and so the impact and
long-run responses differ.

3.1. Forecasting Models

To establish the likely effects of structural breaks and policy regime shifts on
alternative forecasting methods, a wide range of models could be considered.
To illustrate the algebra, we first analyze the properties of the open VEqCM,
which is also the in-sample DGP, and so correctly embodies policy responses
over that period. Then we contrast those findings with the outcomes when
using a diagonal VAR in second differences (denoted as DDV), where every
forecasting equation has the form

�̂yi,t = �yi,t−1,

which therefore does not have any policy implications. Clements and Hendry
(1999b) show that these predictors have the same forecast biases for breaks that
occur after forecasts are announced, but that the DDV is more robust to breaks
in deterministic terms that have occurred before forecasting: importantly, that
robustness does not require knowledge that breaks have occurred. Section 4
draws on their approach, extending it to open models and to forecasts of growth
rates (rather than levels). In terms of the example in Section 7.4, forecasts are
made after a regime shift resulting in a change in the appropriate measurement
of the opportunity cost of holding money – which induces a structural break
in models not incorporating that change – but before a further known policy
regime shift. Since the open VEqCM has some response to the new policy, but
the DDV does not, such comparisons yield insights into the effects of using
robustified forecasting methods and then exploiting policy change information
via an econometric system.

In the present context, a VAR is simply the unrestricted version of the
econometric model and so is subject to the same drawbacks, namely, a lack
of robustness to location shifts, exacerbated by the ill-determination of the
estimated intercepts, which compound (small) growth rates with (potentially
large) equilibrium means; see Equation (3.3). A VAR in first differences is mis-
specified by omitting the cointegration relations, often of central concern in
policy, but thereby gains robustness to previous equilibrium mean shifts (see,
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e.g., Clements and Hendry 1999a). Although both these models are sometimes
viewed as “statistical forecasting devices” with possible policy implications,
they lie intermediate between the econometric system in (3.1) and the DDV, and
so introducing them adds little to the understanding of the analysis; Clements
and Hendry (1999a) analyze their susceptibility to location shifts before and
after forecasting.

4. THE IMPACTS OF BREAKS ON THE VEqCM

Economic policy analysis, including forecasting after a structural break, is un-
dertaken using the open model in (4.1), which is assumed to be congruent
and encompassing for t < T (see Hendry 1995, Mizon 1995, and Bontemps
and Mizon 2003, for discussion of these concepts). Thus, we consider a struc-
tural break affecting the system at time T and for t = T, T + 1, T + 2, . . . . The
change altersγ toγ∗ andβ toβ∗, with a new equilibrium mean E

[
β∗′x∗t

] = µ∗,
whereβ∗′γ∗ = 0 for t ≥ T . Other than possible concomitant changes inλnoted
below, we leave the other parameters unchanged, since shifts in mean zero I(0)
combinations of variables do not seem to be of primary importance for forecast
failure. However, the precise timing of shifts in each type of parameter affects
the results that eventuate; hence we consider a period T + h, where h ≥ 1, so
all parameters have then shifted: an equivalent effect is achieved by assuming
that they all shifted at T .

In response to the structural break, we then consider a policy regime shift
in Section 6 that alters the instruments z∗t to zp

t , by shifting γ∗z to γ
p
z . Such

a policy regime shift in the DGP could also result in a structural break in
(3.4) unless the parameters of the latter were invariant, an issue addressed in
Section 7.3.

In this section, we consider the impacts of these parameter changes in the
VEqCM DGP over the forecast period on the preexisting forecasting model,
written as

�yt = γ0 +Π�zt +Λz�zt−1 +Λy�yt−1 + λ
(
β′xt−1 − µ

)+ ut ,

(4.1)

where

γ0 =
(
In1 −Λy

)
γ y − (Π+Λz)γz .

Following the parameter changes noted, (4.1) for h ≥ 1 becomes

�y∗T+h = γ∗y +Π
(
�z∗T+h − γ∗z

)+Λz
(
�z∗T+h−1 − γ∗z

)
+ Λy

(
�y∗T+h−1 − γ∗y

)+ λ∗
(
β∗′x∗T+h−1 − µ∗

)+ uT+h . (4.2)

It is assumed that the forecaster, though aware of the possibility of parameter
changes, does not know that they have actually changed. As a result, the open
VEqCM (4.1) estimated using data up to t = T , and indeed for t = T + h for
h/T small, will suffer forecast failure because of the shift in µ to µ∗ and any
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additional nonzero components deriving from the unmodeled changes in the
cointegration vectors.

4.1. Breaks in Cointegration Relations

The introduction of breaks in the cointegration relations raises a number of new
considerations, depending on whether their impact induces I(0) or I(1) effects.
We consider these in turn.

I(0) Cases

This case includes the change fromβ toβ∗ simply being a linear transformation
(rotation), so that there exists an r × r matrix D of rank r , such that β∗′ = Dβ′

with a corresponding change in the equilibrium mean to µ∗ = Dµ. Such a
situation is essentially one of no change, merely a reparameterization as

λ∗
(
β∗′x∗T+h−1 − µ∗

) = λ∗
(
Dβ′x∗T+h−1 − Dµ

)
= λ

(
β′x∗T+h−1 − µ

)
(4.3)

as λ∗D = λ.
A second class of changes in β that have only I(0) effects is when new

cointegration relations are added. Here r changes to r∗ (say), and so both λ and
β are changed in dimension, and the outcome is the addition of a mean zero
term, which has minimal effects on forecasts. Since r∗ > r , let λ∗ = (λ,λ†) ,
β∗ = (β,β†), and µ∗′ = (µ,µ†), so that the new and the old cointegration
vectors are linked by

λ∗
(
β∗′x∗T+h−1 − µ∗

) = λ
(
β′x∗T+h−1 − µ

)+ λ† (β†′x∗T+h−1 − µ†) ,
and the model error over the forecast period becomes

u∗T+h = uT+h + λ† (β†′x∗T+h−1 − µ†) ,
which remains I(0) with a zero mean, albeit perhaps autocorrelated. Potentially,
however, there is an “initial conditions” problem, since the relevant variables
that enterβ†′x∗T+h−1 were not previously cointegrated, and so could have drifted
apart such that at T + 1,

(
β†′x∗T − µ†) is sufficiently “large” to induce one-step

forecast failure in models that exclude it (see, e.g., Hendry 2000).
In the third case, when fewer cointegration relations occur over the forecast

period, the outcome is less clear, as some existing elements of β are eliminated.
This is the case r∗ < r , and so partitioning λ∗, β, and µ into (λ∗a,λ

∗
b) =

(λa, 0),
(
βa,βb

)
, and

(
µa,µb

)
, respectively, the new and the old cointegration

vectors are linked by

λ∗
(
β′x∗T+h−1 − µ

) = λ∗a
(
β′ax∗T+h−1 − µa

)
= λ

(
β′x∗T+h−1 − µ

)− λb
(
β′bx∗T+h−1 − µb

)
,

and so the model error over the forecast period becomes

u∗T+h = uT+h − λb
(
β′bx∗T+h−1 − µb

)
.
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This is only I(0) provided that (β′bx∗T+h−1 − µb) remains I(0), in which case,
u∗T+h is still an I(0) error with a zero mean. However, such an outcome seems
unlikely: rather, although λb has become zero in the DGP, the forecasting
model retains linear combinations of I(1) variables that are now I(1), and µb

has no meaning. Nevertheless, the simulation results in Hendry 2000 suggest
that such changes are difficult to detect empirically from moderate sample
sizes.

A final case is when there is a set of k additional I(1) variables, say wt , that are
self-cointegrated within the DGP but have not been included in the forecasting
model in any way, and so the I(0) combinations

(
β+′wT+h−1 − δ

)
have been

omitted from the model when E[β+′wT+h] = δ for h > 0. None of these types
of I(0) changes in β is liable to induce systematic forecast failure, and so they
are not considered here.

I(1) Cases

An important type of break in the cointegration relations that induces I(1) ef-
fects arises in the last case when β′x∗T+h and β+′wT+h cease to be I(0) individ-
ually. Now a system that excludes wT+h will be seriously misspecified: both(
β′xT+h − µ

)
and u∗T+h will be I(1). As a result,

(
β′xT+h − µ

)
could become

large, in which case forecast failure should manifest itself, forcing a revision
to the model specification. This case comes close to the situation considered in
the example in Section 7.4, in which the additional I(1) variable is Ro, the then
newly legalized own interest rate on retail sight deposits.

The last case arises when the rank remains the same, but now cointe-
gration becomes defined by new coefficients β∗, so that the error in (4.3)
becomes

u∗T+h = uT+h + λ
(∇β∗′x∗T+h−1 − ∇µ∗) ,

with ∇β∗ = (β∗ − β
)

and ∇µ∗ = (µ∗ − µ). Although (β∗′x∗T+h−1 − µ∗) is
I(0),

(
β′x∗T+h−1 − µ

)
will be I(1) after time T , and so the unmodified system

will suffer consequences similar to the I(1) mistake case just noted. Even if
the equilibrium mean did not change, so that ∇µ∗ = 0, the same problems
would arise since u∗T+h must be I(1) via the non-cointegrating combinations
∇β∗′x∗T+h−1. However, we note that even in the most favorable case for avoid-
ing forecast failure (i.e., when µ = µ∗ = 0), the simulation results in Hendry
(2000) show quite high power in detecting changes in β, at least in moderately
large samples. Conversely, the situation where β∗ = β but µ∗ �= µ is a pure
location shift, adding−λ∇µ∗ to the forecast error, and is readily detected when
breaks exceed the equation error standard deviations.

4.2. Postbreak Forecasts

We consider forecasting �yT+h+1 using information available at T + h for
h ≥ 0, so that the structural break is an in-sample one – albeit unknown to
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the forecasters. Ignoring estimator variances, and assuming accurate data, an
economist using the open VEqCM with z∗T+h+1 known would produce the
following one-step-ahead forecast of �y∗T+h+1:

�̂y∗T+h+1|T+h = γ0 + Π�z∗T+h+1 +Λy�y∗T+h

+ Λz�z∗T+h + λ
(
β′x∗T+h − µ

)
, (4.4)

which has a forecast error (when λ∗ = λ and letting γ∗0 =
(
In1 −Λy

)
γ∗y −

(�+Λz)γ∗z )

ûT+h+1|T+h

= �y∗T+h+1 − �̂y∗T+h+1|T+h

= γ∗0 +��z∗T+h+1 +�y�y∗T+h +�z�z∗T+h

+ λ
(
β∗′x∗T+h − µ∗

)+ uT+h+1 − γ0 −Π�z∗T+h+1

− Λy�y∗T+h −Λz�z∗T+h − λ
(
β′x∗T+h − µ

)
= ∇γ∗0 + λ∇β∗′x∗T+h − λ∇µ∗ + uT+h+1, (4.5)

when ∇γ∗0 = (γ∗0 − γ0). Hence, the conditional means and variances of the
open VEqCM forecast errors are

E
[̂
uT+h+1|T+h | x∗T+h, z∗T+h+1

] = ∇γ∗0 − λ∇µ∗ + λ∇β∗′x∗T+h,

(4.6)

and
V
[̂
uT+h+1|T+h | x∗T+h, z∗T+h+1

] = E
[
uT+h+1|T+hu′T+h+1|T+h

] = �.

(4.7)

Note that the bias of the VEqCM forecast is primarily due to the changes in the
parameters of the deterministic variables, but can also become large as a result
of ∇β∗′x∗T+h being I(1) after the structural break. However, in the absence of
the structural breaks, the economist’s forecast would be unbiased.

5. THE IMPACTS OF BREAKS ON THE
FORECASTING MODEL

We now establish the likely effects of structural breaks and policy regime shifts
on the restricted vector autoregression in second-differenced variables (denoted
as DDV), our statistical forecasting device. It is shown that the DDV can have a
smaller forecast bias than the open VEqCM, because it is robust to forecasting
after the equilibrium-mean shift, though it will usually have a larger forecast
error variance.

The one-step-ahead statistical model forecast from T + h for h ≥ 0 using
the DDV is

�̃y∗T+h+1|T+h = �y∗T+h, (5.1)
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which has a forecast error

ũT+h+1|T+h

= �y∗T+h+1 −�y∗T+h

= γ∗0 +Π�z∗T+h+1 +Λy�y∗T+h +Λz�z∗T+h

+ λ
(
β∗′x∗T+h − µ∗

)+ uT+h+1 − γ∗0 −Π�z∗T+h

− Λy�y∗T+h−1 −Λz�z∗T+h−1 − λ
(
β∗′x∗T+h−1 − µ∗

)− uT+h

= �uT+h+1 +Π�2z∗T+h+1 +Λ�2x∗T+h + λβ∗′�x∗T+h . (5.2)

Thus, the conditional mean of the DDV forecast error is given by

E
[̃
uT+h+1|T+h | x∗T+h, z∗T+h+1

]
= Π�2z∗T+h+1 +Λ�2x∗T+h + λβ∗′�x∗T+h, (5.3)

and the unconditional bias is

E
[̃
uT+h+1|T+h

]
= ΠE

[
�2z∗T+h+1

]+ΛE
[
�2x∗T+h

]+ λE
[
β∗′�x∗T+h

] = 0.

(5.4)

Thus the average bias of the DDV forecast is zero, whereas the conditional
mean of the open VEqCM is (4.6), which may be large. However, as the elapsed
time, h, between the structural break and making the forecast increases, it is
more likely that the economist will become aware of the break. Nevertheless,
it is possible for the DDV to have a much smaller forecast bias than the open
VEqCM, though it will always have a higher variance, since (5.2) and (5.3)
imply that the conditional variance of the DDV forecast error is3

V
[̃
uT+h+1|T+h | x∗T+h, z∗T+h+1

] = 2Ω. (5.5)

Under the assumption that the DGP and the econometric model given in (3.4)
and (3.7) coincide, it is possible to derive forecast error means and variances
for a wider range of forecasting methods than the open VEqCM and the DDV
considered here. This was done in Hendry and Mizon (2000) for a similar class
of models, and so is not repeated here. However, their results emphasized the
different susceptibilities of econometric models and robust statistical forecast-
ing devices to the unknown structural breaks and known regime shifts, thereby
indicating possibilities for using each to “correct” the other.

6. POLICY REGIME CHANGES

We next consider forecasting�yT+h+1 in the presence of a policy change where
an announced policy shift of γ∗z to γ

p
z takes place at T + h + 1, which induces

3 This assumes that the VEqCM is the DGP. If there are omitted variables from the former, then
the error variance can actually decrease on differencing (Hendry 2004).
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a further shift in the equilibrium mean from µ∗ to µp and the growth rates to
γ p, but does not affect the cointegration vectors, so that β∗′γ p = 0. After the
policy regime shift, the zt process takes the form (considering the special case
that αz = 0 for simplicity)

�zp
T+h+1 = γ p

z + Γz
(
�x∗T+h − γ∗

)+ εz,T+h+1

�zp
T+h+ j = γ p

z + Γz

(
�xp

T+h+ j−1 − γ p
)
+ εz,T+h+ j for j > 1,

(6.1)

and results in (γ p
0 =

(
In1 −Λy

)
γ

p
y − (Π+Λz)γ

p
z ):

�yp
T+h+1 =

(
γ

p
y −Λyγ

∗
y −Πγ p

z −Λzγ
∗
z

)+Π�zp
T+h+1

+Λy�y∗T+h +Λz�z∗T+h

+λ
(
β∗′x∗T+h − µ∗

)+ uT+h+1

�yp
T+h+ j = γ

p
0 +Π�zp

T+h+ j +Λy�yp
T+h+ j−1

+Λz�zp
T+h+ j−1 + λ

(
β∗′xp

T+h+ j−1 − µp
)

+uT+h+ j for j > 1.

(6.2)

In our formulation, there is a one-period transition during which the lagged
growth rates are unchanged: this represents the notion in (6.1) that the policy
agency only changes the current value of γ p

z carried over to (6.2) for consis-
tency. An alternative would have been to shift the intercepts in both equations,
replacing all values ofγ∗ byγ p, in which case the remaining bias in (7.7) would
vanish.

The forecasting performance of the open VEqCM and the DDV are now
compared with that of a “scenario-adjusted” DDV forecast that combines in-
formation from each.

7. POLICY CHANGE CORRECTIONS
TO ROBUST FORECASTS

Any need to combine two disparate models on the same information set is evi-
dence that both are incomplete (Clements and Hendry 1998). The encompassing
principle argues for finding the congruent representation that can explain the
failures of both models, but in the short run, doing so may prove infeasible.
When the two models are differently susceptible to the causes of predictive
failure, some combinations could be beneficial; however, the relevant combi-
nation must reflect the motivation for pooling (namely, to take account of the
effects of known breaks), rather than the usual grounds as discussed in (say)
Bates and Granger (1969).

The case of interest is when the robust forecast is made from the DDV, and
that prompts a policy response to change the provisional setting z∗T+h+1 to the
actual outcome zp

T+h+1 associated with γ
p
z (e.g., reducing the rate of income

tax to increase total final expenditure in the example in Section 7.4). However,
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from (5.1) it follows that

�̃yp
T+h+1|T+h = �̃yT+h+1|T+h = �y∗T+h,

and so the DDV forecast is unaltered, implying that its forecast error changes
one for one with the impact of the policy change. Thus, the forecast error is
ũp

T+h+1|T+h = �yp
T+h+1 −�y∗T+h , and so denoting by

γ
p
h = γ p

y −Λyγ
∗
y −Πγ p

z −Λzγ
∗
z ,

then

ũp
T+h+1|T+h

= γ
p
h +Π�zp

T+h+1 +Λy�y∗T+h +Λz�z∗T+h

+ λ
(
β∗′x∗T+h − µ∗

)+ uT+h+1 − γ∗0 −Π�z∗T+h

− Λy�y∗T+h−1 −Λz�z∗T+h−1 − λ
(
β∗′x∗T+h−1 − µ∗

)− uT+h

= �uT+h+1 +
(
γ

p
h − γ∗0

)+Π
(
�zp

T+h+1 −�z∗T+h

)
+ ��2x∗T+h + λβ∗′�x∗T+h .

Consequently, the expected DDV unconditional forecast error is

E
[̃
up

T+h+1|T+h

]
= (γ p

h − γ∗0
)+Π

(
E
[
�zp

T+h+1

]− E
[
�z∗T+h

])
= (γ p

h − γ∗0
)+Π

(
γ p

z − γ∗z
) = (γ p

y − γ∗y
)
. (7.1)

As anticipated, a forecast bias results because the policy shift occurs after the
DDV forecast is announced.

Forecasts from the open VEqCM, on the other hand, are now

�̂yp
T+h+1|T+h = γ0 +Π�zp

T+h+1 +Λ�x∗T+h + λ
(
β′x∗T+h − µ

)
.

(7.2)

Hence, the VEqCM has a forecast error of ûp
T+h+1|T+h = �yp

T+h+1 −
�̂yp

T+h+1|T+h :

ûp
T+h+1|T+h

= γ
p
h +Π�zp

T+h+1 +Λy�y∗T+h +Λz�z∗T+h

+ λ
(
β∗′x∗T+h − µ∗

)+ uT+h+1

− [γ0 +Π�zp
T+h+1 +Λ�x∗T+h + λ

(
β′x∗T+h − µ

)]
= (γ p

h − γ0

)+ λ∇β∗′x∗T+h − λ∇µ∗ + uT+h+1, (7.3)

with a conditional expectation of

E
[
�yp

T+h+1 − �̂y
p
T+h+1|T+h | x∗T+h

]
= (γ p

h − γ0

)+ λ∇β∗′x∗T+h − λ∇µ∗. (7.4)

It is easy to envisage conditions where (7.4) is much larger than (7.1).



496 Hendry and Mizon

Nevertheless, comparing (4.4) and (7.2), the VEqCM forecasts are revised
from their pre–policy change values by the difference[

�̂y
p
T+h+1|T+h − �̂y

∗
T+h+1|T+h

]
= Π

(
�zp

T+h+1 −�z∗T+h+1

)
.

(7.5)

Consequently, if the policy regime shift at t = T + h + 1 does not lead to
a structural break in Π, the econometric model would correctly predict this
aspect of the impact of the regime shift, despite the structural break at t = T
in deterministic terms. This opens up the possibility of a combined forecast
improving over either the DDV or VEqCM alone. In particular, consider adding
the scenario effect from (7.5) to the structural break–robust DDV forecast to
give a combined forecast of the form

�yT+h+1|T+h = �̃y
p
T+h+1|T+h +

[
�̂y

p
T+h+1|T+h − �̂y

∗
T+h+1|T+h

]
,

(7.6)

which might avoid much of the structural break, yet capture some, and possibly
all, of the policy effect.

The unconditional bias of �yT+h+1|T+h from (7.6) is

E
[
�yp

T+h+1−�yT+h+1|T+h

]
= E

[
�yp

T+h+1−�̃y
p
T+h+1|T+h

]
− E
[
�̂y

p
T+h+1|T+h−�̂y

∗
T+h+1|T+h

]
= (γ p

y −γ∗y
)−Π

(
γ p

z − γ∗z
)
. (7.7)

Because the growth rates are linked by the cointegration relationships, co-
breaking of the formγ

p
y = Πγ p

z andγ∗y = Πγ∗z cannot hold, but there will nev-
ertheless usually be considerable offset between the two components in (7.7).
Thus, in the absence of additional model misspecifications (and abstracting
from sampling variability), the scenario-corrected forecasts should be less bi-
ased than those from each model alone after the post-forecasting policy changes.

7.1. Pooling Forecasts

There is widespread evidence of benefits deriving from combining forecasts;
see, inter alia, Makridakis and Hibon (2000) and Stock and Watson (1999).
However, the outcome in Section 7 can differ considerably from what would
happen in such “forecast pooling.” We illustrate using the average of the two
forecasts (based on the justification in Hendry and Clements 2004):

�yT+h+1|T+h =
1

2

(
�̂y

p
T+h+1|T+h + �̃y

p
T+h+1|T+h

)
, (7.8)
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while recognizing that other choices of weighting factors are also used. The un-
conditional bias (where it exists) in the post–policy VEqCM forecast is given by

E
[̂
up

T+h+1|T+h

]
= (γ p

h − γ0

)+ λE
[∇β∗′x∗T+h

]− λ∇µ∗ (7.9)

so the unconditional bias of �yT+h+1|T+h from (7.8) is

E
[
�yp

T+h+1 −�yT+h+1|T+h

]
= 1

2
E
[
�yp

T+h+1 − �̃y
p
T+h+1|T+h

]
+ 1

2
E
[
�yp

T+h+1 − �̂y
p
T+h+1|T+h

]
= 1

2

[(
γ p

y − γ∗y
)+ (γ p

h − γ0

)+ λE
[∇β∗′x∗T+h − ∇µ∗]] .

Not only is this bias nonzero in general, it could be large as a result of β′x∗T+h
being I(1) after the structural break in the cointegration relations. Moreover,
both forecasting devices are likely to misforecast in the same direction after the
policy change. Hence, there is little to be gained from pooling using positive
weights here, since the requirement of offsetting both the structural break and
the regime shift involves all three models, with the pre–regime change forecast
entering negatively.

7.2. Intercept Corrections

The intercept correction we have in mind is simply “setting the model back on
track” immediately prior to the forecast calculation and maintained as a per-
manent shift, corresponding to an indicator equal to unity from time T + h on.
This adds the last estimation sample error to the forecast, which at time T + h is

�y∗T+h − �̂y∗T+h|T+h =
(
γ∗0 − γ0

)+ λ
(∇β∗′x∗T+h−1 − ∇µ∗)+ uT+h .

Consequently, the forecast error of the intercept-corrected VEqCM forecast is
given by

ûpIC

T+h+1|T+h =
(
�yp

T+h+1 − �̂y
p
T+h+1|T+h

)
−
(
�y∗T+h − �̂y

∗
T+h|T+h

)
= �uT+h+1 +

(
γ

p
h − γ∗0

)+ λ∇β∗′�x∗T+h

= �uT+h+1 +
(
γ p

y − γ∗y
)−�

(
γ p

z − γ∗z
)

+ λ∇β∗′�x∗T+h . (7.10)

Hence, most of the break will be corrected, just as with the scenario correction in
(7.7). The only additional component unconditionally is λβ∗′γ, which will be
small on average (e.g., if β∗ = β, it would be precisely zero). Again, there are
variance consequences (the forecast error variance is doubled for innovation
errors), but these have been small relative to the sizes of structural breaks
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experienced historically – as manifest in the record of forecast failure – and
seem likely to remain so. The greater practical difficulty is to correctly judge
the need for an intercept correction, its form, and its timing.

7.3. Additional “Lucas Critique” Effects

If the parameters of the conditional model are not invariant to the policy changes,
then additional departures from the above corrections will occur (Lucas 1976).
In general, these will worsen the outcome of using scenario adjustments. In
particular, changes in (say) Π entail that policy need not have the anticipated
impact. The relevant extra errors would involve terms like

(
Π∗ −Π

)
, whose

main adverse impact would be from interacting with γ∗z − γz . If all coefficients
of deterministic terms were constant, only mean zero additional errors would
occur, so that no forecast biases would be generated. However, policy changes
would not have the anticipated effects.

7.4. Example

A potential example is one in which yt includes real money holdings (m − p)
(M1), inflation �p, and real total final expenditure f, whereas zt includes the
variables determining the opportunity cost of holding money. The effect of the
UK Banking Act of 1984, which made the payment of interest on checking
accounts legal, is represented in this framework by a change in the opportunity
cost of holding money from Ra , the return from an alternative asset to money
(e.g., the three-month local authority interest rate) to Rn = Ra − Ro, where Ro

is the own interest rate paid on checking accounts (zero till 1984 3rd quarter).
Money demand equations based on Ra experienced major forecast failure post
1985 as (m − p) increased dramatically, although identical equations using Rn

remained constant. Models of this aspect of the UK economy have been ex-
tensively analyzed by, inter alia, Hendry and Ericsson (1991), Boswijk (1992),
Johansen (1992), Hendry and Mizon (1993), Harris (1995), Paruolo (1996),
Rahbek, Kongsted, and Jørgensen (1999), and Doornik, Hendry, and Nielsen
(1998).

Forecasting models of the DDV form, such aŝ� (m − p)T+1 = � (m − p)T ,

did not suffer forecast failure from 1985 onwards; equally intercept correc-
tions worked well from that date. A government that was concerned about the
inflationary consequences of the resulting large increase in M1 might have re-
sponded by raising interest rates or income taxes, creating the combined event
of interest in our analysis.

Some representative orders of magnitude may help to indicate when, and
why, the DDV might dominate the VEqCM in forecasting when shifts occur
in deterministic and related terms. In many estimated econometric equations,
residual standard deviations lie between 0.5% and 1.5% of the levels of the
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dependent variables (albeit that some fall outside this region). Any deterministic
shift in excess of 2% will, therefore, favor the DDV in short-term forecasts. The
example of the 1984 Banking Act introducing interest-bearing sight deposits
led to a more than 40% increase in holdings of M1 over a couple of years; the
1986 Building Societies Act (the UK analog of Savings and Loans Associations
in the United States), which permitted borrowing on wholesale as well as retail
money markets, induced a doubling in mortgage lending over four years. Such
massive shifts swamp any uncertainty effects.

The UK M1 example also highlights the key practical problems confronting
policy makers, namely, whether a structural break has occurred, and if so
whether it necessitates a policy shift. With hindsight, the fact that the VEqCM
is unaltered once the correct measure of opportunity cost is used shows that the
increase in M1 was primarily a portfolio response (shifting into an asset with a
greatly increased own yield). A policy response would have been counterpro-
ductive and, if based on raising interest rates, probably ineffective in changing
M1 demands as these were based on the differential Rn . At the time, the Bank
of England acted exactly that way and did not seek to intervene: inflation in fact
fell considerably over the next few years, corroborating their judgement. In an
important sense, however, there was a major policy change: instead of raising
Ra as a policy response to M1 growing rapidly, the bank did not do so, in effect
lowering their reaction parameter.

A similar situation more recently was the continued fall in inflation despite
much lower unemployment rates, either occasioned by a structural shift in the
NAIRU or a drop in the impact of any given departure from the NAIRU on
inflation. Such settings correspond to those modeled above.

8. CONCLUSION

We consider the problem of forecasting when models are misspecified for a
nonstationary data generation process, and policy may react to forecast changes.
In such a setting, shifts in the coefficients of deterministic terms in the process
relative to any models thereof (location shifts) induce forecast failure. Moreover,
noncausal statistical devices that are robust to such location shifts – usually by
imposing unnecessary additional unit roots – may provide the best available
forecasts, but need have no policy implications. Since intercept corrections act
like differencing and improve forecasts without altering policy conclusions,
the best forecasting model is not necessarily a good basis for economic policy
analysis.

Conversely, forecast failure in an econometric model need not preclude its
use in policy analysis, since location shifts need not alter policy reactions. If so,
such a model’s implications from changes in policy regimes may be a useful
guide to the outturn. Unfortunately, such “scenario changes” are not helpful in
practice when the model is misforecasting badly.

Consequently, we analyze the impacts of a range of structural breaks and
policy regime shifts on both econometric models and robustified forecasting
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devices. The results reveal that neither is immune to both changes: the econo-
metric model fails for location shifts that occurred prior to forecasting, whereas
the robust device does not; the robust device produces biased forecasts when the
policy change then occurs, whereas the econometric model is no worse. Thus,
we investigate correcting the statistical forecast using the econometric model’s
estimate of the “scenario” change resulting from the regime shift. The outcome
is potentially an improvement over either forecast alone, and perhaps even over
intercept correction, and dominates pooling the two forecasts by averaging.

The analysis also highlights the importance of the assumed links between
the parameters of the policy equations and those of the private sector when the
latter are subject to breaks, as well as the role of timing of breaks. Further,
the assumptions that the econometric model coincides with the in-sample DGP
and that the structural break is known are strong, and so practical applications
will not attain the precise offsets found here. For example, an empirical policy
model may be invalid because it embodies the wrong causal attributions; its
target-instrument links are not autonomous; or its parameters are not invariant
to the policy changes under analysis. While some of these problems may not
be revealed in sample, the failure of a policy to produce the anticipated re-
sults would certainly do so – at a cost to society only partly mitigated by the
benefits of improved knowledge of the economy. Nevertheless, even allowing
for in-sample misspecification, the outcome seems likely to be worse than us-
ing either model alone only if the responses to policy are exceptionally poorly
modeled.

Finally, although the timing and form of structural breaks are rarely known,
and hence the appropriate policy reaction is unclear in real time, the components
of our analysis indicate how to proceed, that is, combining econometric with
robust forecasts and calculated scenario effects.
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CHAPTER 21

Nonparametric Testing
of an Exclusion Restriction
Peter J. Bickel, Ya’acov Ritov,

and Thomas M. Stoker

ABSTRACT

Following a framework proposed in Bickel, Ritov, and Stoker (2001) we propose and analyze the
behavior of a broad family of tests for H : E(Y | U,V) = E(Y | U) when we observe (Ui ,Vi , Yi ) ∈
Rdu+dv+1 i.i.d., i = 1, . . . , n.

1. INTRODUCTION

The practice of statistical testing plays several roles in empirical research. These
roles range from the careful assessment of the evidence against specific scientific
hypotheses to the judgment of whether an estimated model displays decent
goodness of fit to the empirical data. The paradigmatic situation we consider
is one where the investigator views some departures from the hypothesized
model as being of primary importance with others of interest if sufficiently
gross but otherwise secondary. For instance consider a signal hypothesized to be
constant. Low frequency departures from a constant value might be considered
of interest, even if of low amplitude, and high-frequency departures as less
important, unless they are of high amplitude.

Bickel, Ritov, and Stoker (2001) follow this point of view by proposing a
general approach to testing semiparametric hypotheses within a nonparametric
model in the context of observing n i.i.d. observations. They proposed that tests
should be tailored in such a way that on the n−1/2 scale, power can be concen-
trated in a few selected directions with some power reserved at the same scale in
all other directions. In that paper this methodology was applied to two classical
problems: testing goodness-of-fit to a parametric model and testing indepen-
dence. In this paper we show how this approach can be applied rigorously to
generate tests for one of the simplest classical econometric hypotheses – that the
conditional expectation of a response given a number of explanatory variables
is in fact dependent only on a known subset of these. Such exclusion-model
hypotheses have been widely discussed in the econometric literature. A recent
review and a more standard type of test may be found in Ait Sahalia, Bickel,
and Stoker (2001).
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Formally we consider the following problem. We observe Zi , i.i.d. i =
1, . . . , n where Z = (X, Y ) where X = (U,V), U ∈ Rdu , V ∈ Rdv and Y ∈ R.
Assume that the joint probability density function (with respect to Lebesgue
measure) of X and Y is given by p (x, y; f, ν) = f (x, y − ν (x)). Let P be the
collection of all distribution functions with such a density (i.e., for all possi-
ble f and ν satisfying the regularity assumption specified below). Finally, let
H0 be the hypothesis that ν (U,V) = ν (U) almost surely, where the ν on the
left-hand side maps Rdu+dv to R while that on the right maps Rdu to R. That is
E (Y | X) = E (Y | U). These models contain the special case E(Y | X) = 0.
The extension of this last model where E(Y | X) follows a parametric model
was treated by Härdle and Mammen (1993).

In the general framework of Bickel et al. (2001), we test P0, a proper set of
probability functions, against “everything,” P =M ≡ {All probabilities dom-
inated by µ} or at least P such that the tangent space is saturated,

•
P (P) = L0

2(P) = {h ∈ L2(P) : P(h) = 0}.
See Bickel et al. (1993) for a general discussion of semiparametric models and
tangent spaces.

If
•
P0 (P) is the tangent space at P0 ∈ P0, we can write the efficient score

function at P0 in a direction a(·) ∈ L0
2(P), corresponding to a submodel of P

containing P0 as

Zn(a, P0) = 1√
n

n∑
i=1

(a − P0(a)−�(a, P0))(Zi )

= 1√
n

n∑
i=1

�⊥(a, P0)(Zi )

(1.1)

for a in the tangent space, or at least in a subset A spanning the tangent space.
Here, �(a, P0) is the projection operator from L2(P0) to the subspace

•
P0 (P0)

of L0
2(P0), and �⊥ is the projection to the orthocomplement of

•
P0 (P0) within

L0
2(P0). The identity uses �⊥(h, P0) = �⊥(h + c, P0) for all c.

Call Zn(·, P0), the score process. In general, Zn(a, P0) is not computable
given the data, but if P̂ ∈ P0 is an estimate of P0 we can consider

Ẑn(a) ≡ Zn(a, P̂) (1.2)

defined on A.
Typically we consider a parametric subfamily {aγ , γ ∈ "} ⊂ A. Having the

score process, we can construct tailor-made tests by considering any functional
T (Ẑn). For example, two standard methods for constructing tests are

1. Cramér–von Mises type (or χ2 goodness-of-fit) tests:
∫
ω(γ )

Ẑ2
n(aγ ) dµ(γ ) for some weight function ω and measure µ.

2. Kolmogorov–Smirnov type (or union-intersection) tests: supγ∈"
ω(γ )|Ẑn(aγ )|.
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This paper discusses the construction of Ẑn(·) in Section 2 and establishes
the properties needed for its use, in Section 3. The definition of the actual test
is left to the user although Section 4 discusses setting of critical values and
gives the results of a small simulation on some natural candidate tests. A brief
discussion in Section 5 and an Appendix complete the paper.

2. PRELIMINARIES

The tangent spaces are easy to characterize as shown in Bierens and Ploberger
(1997) among others. The following lemma is proved for completeness.

Lemma 2.1. We have

•
P = {a(X, Y ) : EP [a2(X, Y )] <∞, EP [a(X, Y )] = 0}
•
P0 = {a(X, Y ) = h(X, Y − ν(U ))+ �

′
Y |X(Y − ν(U ))g(U ) :

a, h ∈ •
P,
∫

yh(X, y)dy = 0, a.s.}
•
P
⊥
0 = {a(X, Y ) = [b(X)− E(b(X) | U)](Y − E(Y | U)) : a, b ∈ •

P}.

where �
′
Y |X (y | w) is the derivative of the conditional log-likelihood of Y given

X at (y, w).

Proof. Since the “large” space is unrestricted,
•
P is “everything,” but with the

moment conditions. The structure of
•
P0 is obtained by considering the deriva-

tive of the general one-dimensional submodel pt (x, y) = ft (x, y − ν(u)+
tg(u)), where h = f

′
t / ft |t=0. Finally,

•
P⊥

0 is the orthocomplement of
•
P0 in

•
P .

But a (X, Y ) is orthonormal to{
h (X, Y − ν (U)) ,

∫
yh (X, y) dy = 0 a.s.

}
if and only if a (X, Y ) = b (X) (Y − ν (U)), a.s. This latter object is orthog-
onal to all functions in

•
P of the form �

′
y (X, Y − ν (U)) g (U) if and only if

E (b (X) | U) = 0 a.s., which follows from the fact that for any p.d.f. q (with
mean 0), we have

∫
xq

′
(x) dx = −1.

Therefore, our score process is defined by

Ẑn (a) ≡ 1√
n

n∑
i=1

[a(Xi )− EP̂ (a(X) | Ui )]
(
Yi − EP̂ (Y | Ui )

)
(2.1)

where the estimator P̂ is yet to be defined.
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3. MAIN RESULT

We consider the case that A does not depend on P0, the joint distribution
of (X, Y − E(Y | X)+ E(Y | U )). We will consider the standard Nadaraya–
Watson estimates of EP (Y | U = u), EP (a(X) | U = u). Let K be a symmetric
kernel with bounded support on R and α vanishing moments, that is,

K : R → R

(a) K = 0 outside [−1, 1]
(b)
∫

K (u)du = 1
(c)
∫

u j K (u)du = 0, for 1 ≤ j ≤ α.

Let Kd : Rd → R be the product kernel

Kd (x1, . . . , xd ) =
d∏

j=1

K (x j )

and Kd (x; σ ) ≡ σ−d
Kd (x/σ ). We abuse notation writing p̂(x, y) for the esti-

mated joint density of (X, Y ), p̂(u, y) for the marginal estimated joint density
of (U, Y ) and dropping the subscript d in Kd when it is implicit. Then,

p̂(x, y) ≡
∫

K(x− x′, y − y′, σ )d Pn(x′, y′)

p̂(u, y) =
∫

K(u− u′, y − y′; σ )d Pn(u′, y′)

where we also use the convention that Pn(x, y) refers to the joint empirical
distribution of (X, Y ) etc. Finally,

Ê(Y | U = u) ≡
∫

y p̂(u, y)dy

/∫
p̂(u, y)dy

=
∫

yK(u− u′; σ )d Pn(u′, y)/ p̂(u)

where p̂(u) ≡ ∫ K(u− u′; σ )d Pn(u′). Here we use∫
y p̂(u, y)dy =

∫
y
∫

K(u− u′; σ )K (y − y′; σ )d Pn(u′, y′)dy

(3.1)

and ∫
yK (y − y′; σ )dy = y′.

We define Ê(a(X) | U = u) similarly. We introduce the following assumptions.

I0:
∫

y f (X, y) dy = 0 a.s.,
∫

(|x|2 + y2) f (x, y) dy dx <∞, and
∫
ν2 (x)

f (x, y) dy dx <∞.
I1: The support of the distribution of U is a fixed compact, say [−1, 1]du ,

for all P ∈ P .
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I2: All P ∈ P are absolutely continuous with respect to Lebesgue measure
and
(a) the density p(u) has bounded derivatives of order greater than 3

2 du.
(b) Y ∈ L2(P) and u → E(Y | U = u) is continuous.

Moreover

I3: There exists ε(P) > 0 such that ε ≤ p(u) ≤ 1/ε for all u ∈ [−1, 1]du .
I4: sup{‖a‖∞ : a ∈ A} <∞ and A∗ ≡ {a(u)− Ea(X | U = u)} is a VC

class of functions in the sense of the definition on p. 141 of van der
Vaart and Wellner (1996).

Discussion of I1–I4
1. Conditions (I1) and (I3) are very restrictive. Our argument suggests

that compact support can be replaced by tail conditions on p(u) but at
the cost of a great deal of technical labor. What is essentially involved
is a truncation argument – letting εn → 0 depending on n and show-
ing that the probability of data leading to density estimates violating
these restrictions is negligible. Alternatively test statistics that pay no
attention to regions where U has low density, i.e., such that a(X) = 0
for such U can be used.

2. Condition (I2) unfortunately seems necessary. It becomes more and
more stringent as the dimension of U increases.

3. Condition (I4) is somewhat more restrictive than, say, universal
Donsker. But all the usual classes, indicators of rectangles, etc., satisfy
it given the smoothness conditions on p(x,u).

Then, defining a = �(b) iff both
∣∣ a

b

∣∣ and
∣∣ b

a

∣∣ are bounded, we state

Theorem 3.1. Under I1–I4, if σ = �(n−
1

2d+du ) and K has α vanishing moments
where α > 3

2 du then,

sup
A
{|Ẑn(a)− Zn(a, P0)|} = op(n−1/2).

Proof. Write

Ẑn(a)− Zn(a, P0)

=
∫

(Ê(Y | U = u)− E(Y | U = u)(a(x)− E(a(X) | U = u)d Pn(x)

+
∫

(Ê(a(X) | U = u)− E(a(X) | U = u))(Y − E(Y | U = u))d Pn(x)

+
∫

(Ê(a(X) | U = u)− E(a(X) | U = u))(Ê(Y | U = u)

− E(Y | U = u))d Pn(u)

= I + I I + I I I, say.
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We argue now that under our conditions supA|I |, supA|I I |, and supA|I I I | are
all op(n−1/2).

To do so we require a lengthy argument some of which will be given in the
appendix.

Let

p̄(u, y) =
∫

K(u− u′; σ )p(u′, y)du′

and

a∗(x) ≡ a(x)− E(a(X) | U = u).

Then define

�(1)
n (a) ≡

∫ {∫
y p̂(u, y)dy

p̄(u)
−
∫

y p̄(u, y)dy

p̄(u)

}
a∗(x)d Pn(x)

=
∫

p̄−1(u)
∫

yK(u− u′; σ )d(Pn(u′, y)− P(u′, y))a∗(x)d Pn(x).

(3.2)

Similarly define

�(2)
n (a) = −

∫ ∫
y p̄(u, y)dy

p̄2(u)
( p̂(u)− p̄(u))a∗(x)d Pn(x) (3.3)

�(3)
n (a) = −

∫ ∫
y(p(u, y)− p̄(u, y))dy

p̄(u)
a∗(x)d Pn(x)

�(4)
n (a) = −

∫ ∫
yp(u, y)dy

p̄(u)p(u)
( p̄(u)− p(u))a∗(x)d Pn(x)

�(5)
n (a) = −

∫ ∫
y( p̂(u, y)− p̄(u, y))

p̂ p̄(u)
( p̂(u)− p̄(u))a∗(x)d Pn(x)

(3.4)

�(6)
n (a) =

∫ (∫
y p̄(u, y)dy

)
p̄2(u) p̂(u)

( p̂(u)− p̄(u))2a∗(x)d Pn(x). (3.5)

Some algebra shows

I =
6∑

j=1

�( j)
n (·).

For g : A→ R let ‖g‖A = supA|g(a)|. We shall show that ‖�( j)
n ‖A =

op(n−1/2) for j = 1, . . . , 6 and hence ‖I‖A = op(n−1/2). We can similarly es-
tablish ‖I I‖A = op(n−1/2) and then argue in detail that ‖I I I‖A = op(n−1/2),
establishing the theorem.
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We proceed with �(1)
n and note that

�(1)
n (a) =

∫
p̄−1(u)yK(u− u′; σ )a∗(x)d(Pn − P)(u′, y)d(Pn − P)(x) (3.6)

since for all u∫
a∗(u, v)p(v | u)dv = 0. (3.7)

In the Appendix we show that

‖�(1)
n (·)− �̃(1)

n (·)‖A = op(n−1/2) (3.8)

where

�̃(1)
n (a) = 2

n2

∑
i< j

C((Xi , Yi ), (X j , Y j ), a∗; σ )

with

C((x, y), (x′, y′), a∗; σ )

≡ 1

2

{
p(u)

p̄(u)
(yK (u− u′; σ )− E(Y K (u− U; σ )))a∗(x)

+ p(u′)
p̄(u)

(y′K (u− u′; σ )− EY K (u′ − U; σ ))a∗(x′)
}

(3.9)

is a degenerate U statistic process and that by Theorem 2.5(b) of Arcones and
Gine (1995), ‖�̃(1)

n ‖A = op(n−1/2) under our conditions and hence ‖�(1)
n ‖A =

op(n−1/2). We now turn to �(2)
n . Again, by (3.7),

�(2)
n (a) = −

∫ ∫
y p̄(u, y)dy

p̄2(u)
( p̂(u)− p̄(u))a∗(x)d(Pn − P)(x)

= −
∫ ∫ (∫

y p̄(u, y)dy

p̄2(u)

)
a∗(x)

×K(u− u′; σ ) d(Pn − P)(u′)d(Pn − P)(x). (3.10)

This has the same structure as �(1)
n and it can be similarly shown that

‖�(2)
n ‖A = op(n−1/2). On the other hand,�(3)

n and�(4)
n can both be written in the

form
∫

Q(a∗; σ )(x)d(Pn − P)(x), where {Q(a∗; σ ) : a ∈ A, 0 ≤ σ ≤ 1} (with
Q(a∗, 0) ≡ 0) is a universal Donsker class in view of (I4). Since in both cases∫

Q2(a∗; σ )(x)p(x)dx → 0

as σ → 0 we can conclude from the theorem of van der Vaart and Wellner
(1996) that ‖�( j)

n ‖A = op(n−1/2) for j = 3, 4. Next,

|�(5)
n (a)| ≤

∥∥∥∥a∗

2

∥∥∥∥
∞

(∫ (∫
y( p̂(u, y)− p̄(u, y))dy

)2
p̄2(u)

d Pn(u)

+
∫

( p̂(u)− p̄(u))2

p̂2(u)
d Pn(u)

)
. (3.11)
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By (I2) and (3.13) below, ‖ p̂(u)− p̄(u)‖∞ = op(1). Hence, by (I3) the denomi-
nators of both terms in (3.11) are bounded away from 0 with probability tending
to 1. Write

�
(5)
n1 ≡

∫ (∫
y( p̂(u, y)− p̄(u, y))dy

)2

d Pn(u) (3.12)

= 1

n3

∑
i, j,k

Ai j Ak j

where

Ai j ≡ (YiK(U j − Ui ; σ )− E(YiK(U j − Ui ; σ ) | U j )).

Note that E Ai j Ak j = 0 unless i = k. Thus

E�(5)
n ≤ n−2 K 2(0; σ )EY 2

1 + n−1 EY 2
1 K(U1 − U2; σ )

= O(n−2σ−2du )+ O(n−1σ−du ) = o
(
n−1/2

)
by the assumption σ = �(n−1/2α+du ),

∫
( p̂(u)− p̄(u))2d Pn(u) is bounded sim-

ilarly and ‖�(5)
n ‖A = op(n−1/2) follows. Similarly,

|�(6)
n (a)| ≤ ‖a∗‖∞ sup

u
( p̂(u)

− p̄(u))2 sup
u

p̄−2(u) sup
u

p̂−2(u)
1

n2

∑
i, j

YiK(ui − u j ; σ ).

Again by (I2) and (7.1) of Härdle and Mammen (1993),

‖ p̂(u)− p̄(u)‖∞ = Op
(
n−

α
2α+du log n

)
. (3.13)

By (I3) the second two sups are Op(1), the first sup is Op(n−2α(2α+du)−1
y2n).

Finally, the last term is Op(1). Thus we conclude since α > 3
2 du that ‖�(6)

n ‖A =
op(n−1/2) and supA I = op(n−1/2).

For I I we proceed similarly. Here

I I (a) =
6∑

j=1

�̃( j)
n (a) (3.14)

�̃(1)
n (a) =

∫
p̄−1(u)

∫
a(x)K(u− u′; σ )d(Pn − P)(u′, v)e(y,u)d Pn(y,u)

where e(y,u) ≡ y − E(Y | U = u) and this is dealt with just as �(1)
n was.

The same kind of argument applies to the terms corresponding to �̃(2)
n − �̃(6)

n .
We finally turn to I I I .

|I I I (a)| ≤ 1

2

(∫
(Ê(a(X) | U = u)− E(a(X) | U = u)

)2

d Pn(u)

+
∫

(Ê(Y | U = u)− E(Y | U = u))2d Pn(u).
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Decompose as for I and I I . For instance,∫
(Ê(a(X) | U = u)− E(a(X) | U = u))2d Pn(u)

≤ C

(∫ (∫
a(x)

p̄(u)
K(u− u′; σ )d(Pn − P)(u′, v)

)2

d Pn(u)

+
∫ (∫

a(x)( p̂(u)− p̄(u))
p̄(x)

p̄2(u)
dv
)2

d Pn(u)

+
∫ (∫

a(x)
(p − p̄)

p̄(u)
(x)dv

)2

d Pn(u)

+
∫ (∫

a(x)
p(x)

p̄ p(u)
( p̄(u)− p(u))dv

)2

d Pn(u)

+
∫ (∫

a(x)
( p̂(x)− p̄(x))( p̂(u)− p̄(u))

p̂ p̄(u)
dv
)2

d Pn(u)

+
∫ (∫

a(x)p(x)

p̂2 p̄2(u)
dv( p̂(u)− p(u)2dv

)2

d Pn(u)

)
(3.15)

In the appendix we show that

sup
A,u

(∫
a(x)

p̄(u)
K(u− u′; σ )d(Pn − P)(u′, v)

)2

= op
(
n−1/2

)
(3.16)

by using large deviation bounds on the empirical process applied to
{a(u, ·)K(u− ·; σ ) : a ∈ A,u ∈ K }.

The remaining terms are more straightforward. We can pull out the inf
of p̂ and p̄ as well as the L∞ norm of a and then argue as we did for
�(5)

n . The argument for the term that involves Ê(Y | ·) is easy. The theorem
follows.

A problem we have not yet tackled is how to set critical values for our
tests. As the discussion in Bickel et al. (2001) indicates, two bootstraps are in
principle possible. In the current model the “wild” bootstrap (see Härdle and
Mammen, 1993) is also possible. We chose to implement the version proposed
by Bickel and Ren (2001), i.e., simulate the distribution of

√
n(Ẑ∗

n (·)− Ẑn(·))
where Ẑ∗

n is the Ẑn process defined for the bootstrap sample Z∗
1 , . . . , Z∗

n from
the empirical of Z1, . . . , Zn where Z j = (V j , Y j ). Unfortunately the conditions
of Theorems 1 and 2 of Bickel and Ren are not satisfied. We give a more special
argument. Note that

Ẑ∗
n (a)=

∫
(y− Ê∗(Y | U = u))(a(x)− Ê∗(a(X) | U = u))d P∗

n (x, y).
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Let

Z̃n(a) =
∫

(y − Ê∗(Y | U = u))(a(x)− E∗(a(x) | U = u))d Pn(x, y).

Showing that

Z̃n(a)− Zn(a, P0) = op(n−1/2)

can be done by essentially the same argument as that used for Theorem 3.1.
For instance, define �̃(1)

n corresponding to �(1)
n by simply replacing Pn by P∗

n
in the inner differential. We are left with showing that∫

(E(Y | U = u)− Ê∗(Y | U = u))(a(x)− E(a(X) | U = u))

× d(P∗
n − Pn)(x) = op(n−1/2)∫

(y − E(Y | U = u))(Ea(X) | U = u)− Ê∗(a(X) | U = u))

× d(P∗
n − Pn)(u, y) = op(n−1/2)

and ∫
(E(Y | U = u) − Ê∗(Y | U = u))(E(a(X) | U = u)

− Ê∗(a(X) | U = u))d(P∗
n − Pn)(X) = op(n−1/2).

These terms can all be approximated by quantities of the form appearing on the
right in �(1)

n −�(5)
n and the validity of the bootstrap approximation established.

4. CRITICAL VALUES AND SIMULATIONS

We checked the behavior of different estimators using a small Monte Carlo
experiment. We consider a sample of 500 independent observations from
(U, V, Y ) where Y = νλ(U, V )+ ε, and where U , V , and ε are indepen-
dent, U, V ∼ U (0, 1), ε ∼ N (0, 1), and νλ(u, v) = 0.8 sin(λu) sin(λv), where
λ = 0, π/2, π, 6π . Of course, λ = 0 is the null assumption. The three regres-
sion surfaces are shown in Figure 21.1.

The three test statistics we examined were all based on partition of the unit
square to 10× 5 blocks with the support of U divided into 10 blocks. The
discretization of the range of U introduces a bias, since if it is not fine enough,
a distribution in which Y and X are conditionally independent given U may
not be conditionally independent given the blocks. Condition (I2) is necessary
to ensure that the test will be asymptotically unbiased. On the other hand the
wideness of the blocks on the V dimension is secondary and enters only through
efficiency considerations and the behavior of the bootstrap.

With the division into blocks, one simple test is a standard ANOVA test
for only the U effect (i.e., no V effect and no interaction). This is our first
test statistic. The second is a Kolmogorov–Smirnov-like test with the quadrates
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Figure 21.1. Different alternatives for the regression function.

{1(u ≥ γ 1, v ≥ γ 2)}. The third is another Kolmogorov–Smirnov statistic with
rectangles: {1(γ < u ≤ γ 2, γ 3 < v ≤ γ 4)}.

The tests are defined formally as follows. With some abuse of notation
let Yklm , k = 1, . . . , K , l = 1, . . . , L , m = 1, . . . , nkl be the the Y value of
the mth observation in the kl block. Denote as usual Ȳkl· = n−1

kl

∑
m Yklm and

Ȳk·· = n−1
k·
∑

lm Yklm . Note that

n∑
i=1

(a(Xi )− EP̂ (X | Ui ))(Yi − EP̂ (Y | Ui )) =
n∑

i=1

a(Xi )(Yi − EP̂ (Y | Ui ))

Then the three test statistics are

F =
∑

kl Ȳ 2
kl·nkl −

∑
k Ȳ 2

k··nk·∑
klm Y 2

klm −
∑

k Ȳ 2
k··nk·

K S1 = max
kl

∣∣∣∣∣ K∑
k ′=k

L∑
l ′=l

nk′l′∑
m=1

(Yk ′l ′m − Ȳk··)

∣∣∣∣∣
K S2 = max

k1l1k2l2

∣∣∣∣∣ l2∑
k ′=l1

k2∑
l ′=k1

nk′l′∑
m=1

(Yk ′l ′m − Ȳk··)

∣∣∣∣∣
The three deviations were supposed to check the strengths and weaknesses

of these tests. The first KS test was expected to be more powerful for deviations
like the one with λ = π/2, in which the corners are different from the average.
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Table 21.1.

λ

Test statistic 0 π/2 π 6π

α = 0.1
F 0.072 0.492 0.443 0.453
K S1 0.115 0.970 0.565 0.122
K S2 0.095 0.838 0.887 0.113

α = .05
F 0.025 0.355 0.290 0.307
K S1 0.052 0.922 0.395 0.072
K S2 0.050 0.728 0.818 0.060

The second KS was expected to be more powerful against deviations that are
concentrated in the center as in the case of λ = π . Finally, the F test disperses
its strength among 40 degrees of freedom. Hence we expect it to be weak against
particular deviations, but unlike the two KS tests, is relatively strong against
more complicated deviations like the one with λ = 6π . (This paragraph was
written before any simulation was done.)

The bootstrap was done essentially as described above. There were, however,
two modifications. Theoretically the number of observations in a cell should
increase to ∞, but in practice is finite, and may be quite small. (In our simula-
tion there were, on the average, 10 observations in a cell.) Since we center the
observations in a cell (so that we sample under H ), this decreases the variance
of the distribution from which the bootstrap samples are taken and, as a result,
the spread of the test statistics is reduced. To correct that, we multiplied each
observation in the kl cell by

√
nkl/(nkl − 1). See Silverman (1981) for a sim-

ilar correction. The KS-type tests were not conservative without the inflation.
Of course the F test is invariant for this correction. The second modification
was that the bootstrap was used only for the Y values (hence we conducted a
conditional test on the Xs).

Rejection was defined if the test statistics was one of the 100(1− α)% larger
values among 200 observations whereα is the declared level. The randomization
(both the sampling and the bootstrapping) were common to the twenty-four
combinations of test statistics and values of λ and α.

The powers at level α = .1 and .05 of the various statistics are given in
Table 21.1.

5. DISCUSSION

The simulation results show that it is possible to tailor tests against expected
departures. The minimax F test does indeed perform far better than the other two
for the λ = 6π case but the relevance of this least favorable departure is unclear.
This test also appears conservative for reasons not apparent to us. Unfortunately
though, in these limited simulations not much power was conserved against
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alternatives quite different from the ones envisaged. For the cases we have
considered one might be able to handle both types of situations by combining
test statistics. But presumably then other directions would suffer. All we can
hope for is good power in interesting directions when the signal-to-noise ratio is
moderate and in uninteresting directions when the signal-to-noise ratio is really
high. Much more extensive simulations would need to be done to go further.

Technical though our discussion is, it does not cover the more important case
where the index is unknown, i.e., U = XTθ with θ unknown. At the scale we are
working with, the distribution of θ will have an effect but again we expect to be
able to tailor though formulating and checking regulatory conditions becomes
even more tedious.

A new class of so-called adaptive tests for which minimax power is demanded
over a range of scales (see Spokoiny 1996; Ingster 1992; and Horowitz and
Spokoiny 2000) has recently gained popularity. We have not made explicit
comparison with these procedures either theoretically or practically. We would
expect that they have greater robustness of power but do not do as well in the
directions we tailor (since our tests are essentially designed against parametric
models while the minimax tests aim in all directions simultaneously). Of course,
as e.g. Horowitz and Spokoiny (2000) point out, no tests such as ours can
have behavior that is uniformly good – guarding against we believe unrealistic
alternatives is the price of minimaxity.

APPENDIX

Proof of Theorem 6.1.

Proof of (3.8) and ‖�(1)
n ‖A = op(n−1/2).

�(1)
n (a) = n−2

∑
i, j

p(Ui )

p̄(Ui )
(Y jK(Ui − U j ; σ )

− E(Y jK(Ui − U j ; σ ) | Ui )a
∗(Xi )

= �̃(1)
n (a)− n−2

K(0; σ )
n∑

i=1

p(Ui )

p̄(Ui )
(Yi − E(Yi | Ui ))a

∗(Xi ).

(A.1)

The second term here is evidently Op(n−1σ−du ) = op(n−1/2) by (I3).
Note that

‖C(x, x′, a∗; σ )‖A
≤ 1

2
supA‖a∗‖∞

∥∥∥∥ p(u)

p̄(u)
(yK(u− u′; σ ) − E(Y K (u− U; σ ))

+ p(u′)
p̄(u′)

(y′K(u− u′; σ − E(Y K (u− u′; σ ))

∥∥∥∥
≤ supA‖a∗‖∞

(
p(u)

p̄(u)
+ p(u′)

p̄(u′)

)
(|y| + E |Y |)σ−du . (A.2)
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By Theorem 2.5(b) of Arcones and Gine (1995)

n(log log n)2 E‖�̃(1)
n ‖p

A ≤ σ−pdu 2E |Y |ε−2(P)supA‖a∗‖∞
for 0 < p < 2 where ε(P) is the lower bound on p(u). Hence,

‖�̃(1)
n ‖A = Op(n−1σ−du (log log n)2) = op(n−1/2).

Proof of (3.16). Let A have metric entropy for Q given by

N (A, L2(Q)).

Let Ãn =
{ a(u,·)

p̄(u) K(u− ·; σ ) : a ∈ A,u ∈ Rdu
}
. Given ε > 0 by the smoothness

of K we can find u(ε)
1 , . . . ,u(ε)

n " for some j(u), ‖K(u− ·; σ )−K(u j (ε)−
·; σ )‖∞ ≤ ε and M = �((εσ )−du ). Therefore

N (τ , Ã, L2(Q)) = �(N (τ ,A, L2(Q)) ·�((τσ )−du )

where an = �(bn) iff an = O(bn), bn = O(an) and we can conclude from The-
orem 2.14.9 of van der Vaart and Wellner (1996) that if Gn is the empirical
process

√
n(Pn − P) then,

‖Gn‖Ã = Op(σ−du ). (A.3)

Now (A.3) implies 3.16 since the left-hand side is Op(n−1σ−2du ).
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CHAPTER 22

Pairwise Difference Estimators for
Nonlinear Models
Bo E. Honoré and James L. Powell

ABSTRACT

This paper uses insights from the literature on estimation of nonlinear panel data models to construct
estimators of a number of semiparametric models with a partially linear index, including the partially
linear logit model, the partially linear censored regression model, and the censored regression model
with selection. We develop the relevant asymptotic theory for these estimators and we apply the
theory to derive the asymptotic distribution of the estimator for the partially linear logit model. We
evaluate the finite sample behavior of this estimator using a Monte Carlo study.

1. INTRODUCTION

For the linear panel data regression model with fixed effects,

yit = αi + xitβ + εi t , (1.1)

in which the individual-specific intercept (“fixed effect”) αi can be arbitrarily
related to the regressors xit , a standard estimation approach is based upon
“pairwise differencing” of the dependent variable yit across time for a given
individual to eliminate the fixed effect:

yit − yis = (xit − xis)β + (εi t − εis), (1.2)

a form which eliminates the nuisance parameters {αi } and is amenable to the
usual estimation methods for linear regression models under suitable conditions
on the error terms {εi t }. For nonlinear models – that is, models which are not
additively separable in the fixed effect αi – this pairwise differencing approach
is generally not applicable, and identification and consistent estimation of the
β coefficients is problematic at best. Still, for certain nonlinear panel data
models, variations of the “pairwise comparison” or “matching” approach can
be used to construct estimators which circumvent the incidental-parameters
problem caused by the presence of fixed effects; such models include the binary
logit model (Rasch 1960, Chamberlain 1984), the censored regression model
(Honoré 1992), and the Poisson regression model (Hausman, Hall, and Griliches
1984).
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Powell (1987, 2001) and Ahn and Powell (1993) exploited an analogy be-
tween the linear panel data model (1.1) and semiparametric linear selection
models for cross-section data to derive consistent estimators for the latter. These
estimators treat the additive “selection correction term” as analogous to the fixed
effect in the linear panel data model, and eliminate selectivity bias by differ-
encing observations with approximately equal selection correction terms. The
aim of this chapter is to extend this analogy between linear panel data models
and linear selection models to those nonlinear panel data models, cited above,
for which pairwise comparisons can be used to eliminate the fixed effects. This
extension will yield consistent and asymptotically normal estimators for the
linear regression coefficients in binary logit, censored regression, and Poisson
regression models with additively separable nonparametric components – that
is, nonlinear extensions of the “semiparametric regression model” proposed by
Engle et al. (1986) – and also for the censored regression model with sample
selection.

In the next section, more details of the analogy between linear panel data
models and semiparametric regression and selection models are provided, and
the resulting pairwise difference estimators for the various nonlinear models are
precisely defined. These estimators are all defined as minimizers of “kernel-
weighted U-statistics”; some general results for consistency and asymptotic
normality of such estimators are provided in Section 3. One novel feature of the
general asymptotic theory is a “generalized jackknife” method for direct bias
reduction for the estimator, which is a computationally-convenient alternative to
the usual requirement that the kernel weights be of “higher-order bias-reducing”
form. The paper then specializes these general results to the pairwise-difference
estimator for the partially linear logit model, and presents the results of a Monte
Carlo study to evaluate the finite-sample performance of this estimator.

2. MOTIVATION FOR THE PROPOSED
ESTIMATORS

In order to motivate the estimation approach proposed here, it is useful to first
consider the partially linear model1

yi = xiβ + g(wi )+ εi , i = 1, . . . , n, (2.1)

where (yi , xi , wi ) are observed (and randomly sampled over i), β is the pa-
rameter of interest and g(·) is an unknown function which is assumed to be

1 This model is also called the “semiparametric regression model” and the “semilinear regression
model,” and has been considered by Engle et al. (1986) and Robinson (1988), among others.

Estimation of both linear and nonlinear versions of this model, including the partially linear
logit model discussed in the next section, is also considered by van de Geer (2000, Chapter 11,
Section 1), who proposes penalized least-squares or maximum likelihood estimators, respectively,
with smoothness penalty proportional to the Sobolev norm of g (i.e., integrated squared value of
g and its derivatives), and derives root-n consistency, asymptotic normality, and semiparametric
efficiency of the estimators of β0 under somewhat different conditions than those imposed here.
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“sufficiently smooth.” The term g(wi ) in (2.1) can represent “true nonlinearity”
or may be the result of sample selection. For example, in the sample selection
model (Type 2 Tobit model, in the terminology of Amemiya (1985)), the data
is generated from

y&
i = xiβ + εi , (2.2)

di = 1{wiγ + ηi > 0}, (2.3)

and the data consists of yi = di y&
i , di , xi , and wi . If it is assumed that (εi , ηi ) is

independent of (xi , wi ), then we can write

yi = xiβ + g(wiγ )+ νi , E[νi |xi , wi , di = 1] = 0,

where g(wiγ ) = E[εi |wiγ + ηi > 0] and νi = εi − g(wiγ ).
Powell (1987, 2001) proposed estimation of (2.2) (and implicitly also of

(2.1)) using the idea that if wiγ equals w jγ then for observations i and j the
terms g(wiγ ) and g(wiγ ) are analogous to the fixed effect αi in (1.1), which
can be differenced away as in (1.2). Since γ is typically unknown, and wiγ

typically continuously distributed, a feasible version of this idea uses all pairs
of observations and gives bigger weight to pairs for which wi γ̂ is close to
w j γ̂ , where γ̂ is an estimator of γ . The weights are chosen in such a way that
only pairs with wiγ−w jγ in a shrinking neighborhood of zero will matter
asymptotically.

The insight in this chapter is to observe that this pairwise difference idea
can be applied to any model for which it is possible to “difference out” a fixed
effect. We outline some examples of models in which the idea can be used.

2.1. Partially Linear Logit Model

The logit model with fixed effects is given by

yit = 1{αi + xitβ + εi t ≥ 0} t = 1, 2, i = 1, . . . , n,

where {εi t : t = 1, 2; i = 1, . . . , n} are i.i.d. logistically distributed random
variables. In this model, Rasch (1960) observed that β can be estimated by max-
imizing the conditional log-likelihood (see also Chamberlain (1984), p. 1274)

Ln(b) ≡
∑

i :yi1 �=yi2

−yi1 ln (1+ exp((xi2 − xi1)b))

−yi2 ln (1+ exp((xi1 − xi2)b)) .

Now consider the partially linear logit model

yi = {xiβ + g(wi )+ εi ≥ 0} i = 1, . . . , n. (2.4)

For observations with wi close to w j , the terms g (wi ) and g(w j ) are almost
like fixed effects, provided that g is smooth. This suggests estimating β by
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maximizing

Ln(b) =
(

n

2

)−1 1

hL
n

∑
i< j

yi �=y j

−K

(
wi − w j

hn

)
(yi ln(1+ exp((x j − xi )b))

+ y j ln(1+ exp((xi − x j )b))), (2.5)

where K (·) is a kernel which gives the appropriate weight to the pair (i, j),
and hn is a bandwidth which shrinks as n increases. Here L denotes the di-
mensionality of wi and the term

(n
2

)−1 1
hL

n
will ensure that the objective function

converges to a nondegenerate function under appropriate regularity conditions.
The asymptotic theory will require that K (·) is chosen so that a number of
regularity conditions, such as K (u) → 0 as |u| → ∞, are satisfied. The effect
of the term K

(wi−w j

hn

)
is to give more weight to comparisons of observations

(i, j) for which zi is close to z j .

2.2. Partially Linear Tobit Models

The fixed-effect censored regression model is given by

yit = max{0, αi + xitβ + εi t }.
Honoré (1992) showed that with two observations for each individual, and

with the error terms being i.i.d. for a given individual,2

β = arg min
b

E[q(yi1, yi2, (xi1 − xi2b)], (2.6)

where

q(y1, y2, δ) =
⎧⎨⎩
'(y1)− (y2 + δ)ξ (y1) if δ ≤ −y2;
'(y1 − y2 − δ) if −y2 < δ < y1;
'(−y2)− (δ − y1)ξ (−y2) if y1 ≤ δ;

and '(d) is given by3 either '(d) = |d| or '(d) = d2. The estimators for the
fixed-effect censored regression model presented in Honoré (1992) are defined
as minimizers of the sample analog of the minimand in (2.6),

Sn(b) ≡ 1

n

∑
i

q(yi1, yi2, (xi1 − xi2)b).

Applying the same logic, this suggests estimating β in the partially linear cen-
sored regression model

yi = max{0, xiβ + g(wi )+ εi },

2 The assumption on the error terms made in Honoré (1992) allowed for very general serial
correlation. However, for the discussion in this paper we will restrict ourselves to the i.i.d.
assumption.

3 Other convex loss functions, ' (), could be used as well.
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by minimization of

Sn(b) =
(

n

2

)−1 1

hL
n

∑
i< j

K

(
wi − w j

hn

)
q(yi , y j , (xi − x j )b).

Honoré (1992) also proposed estimators of the truncated regression model
with fixed effects. In the simplest version of the truncated regression model,
(y, x) is observed only when y > 0, where y = xβ + ε.

The idea in Honoré (1992) is that if yit = αi + xitβ + εi t and if εi t satisfies
certain regularity conditions, then

E[r (yi1, yi2, (xi1 − xi2)b)|yi1 > 0, yi2 > 0] (2.7)

is uniquely minimized at b = β, where

r (y1, y2, δ) =
⎧⎨⎩'(y1) if δ ≤ −y2;
'(y1 − y2 − δ) if −y2 < δ < y1;
'(−y2) if y1 ≤ δ;

and ' () is as above.
This suggests that the partially linear truncated regression model, yi = xiβ +

g(wi )+ εi with (yi , xi , wi ) observed only when yi > 0, can be estimated by
minimizing

Tn(b) =
(

n

2

)−1 1

hL
n

∑
i< j

K

(
wi − w j

hn

)
t(yi , y j , (xi − x j )b). (2.8)

2.3. Partially Linear Poisson Regression Models

As a third example, consider the Poisson regression model with fixed effects:

yit ∼ po (exp(αi + xitβ)) t = 1, 2, i = 1, . . . , n.

The coefficients β for this model can be estimated by maximizing (see, for
example, Hausman et al., 1984):

Ln(b) =
∑

i

−yi1 ln (1+ exp((xi2 − xi1)b))

−yi2 ln (1+ exp((xi1 − xi2)b)) .

Following the same logic as before, the coefficients for a partially linear Poisson
regression model

yi ∼ po (exp(xiβ + g(wi ))) t = 1, 2, i = 1, . . . , n,
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can then be estimated by maximizing4

Ln(b) =
(

n

2

)−1 1

hL
n

∑
i< j

K

(
wi − w j

hn

)
(−yi ln

(
1+ exp((x j − xi )b)

)
− y j ln

(
1+ exp((xi − x j )b))

)
.

2.4. Partially Linear Duration Models

Finally, Chamberlain (1985) has shown how to estimate a variety of dura-
tion models with fixed effects. Using the objective functions that he sug-
gested, one can derive objective functions, the minimization of which will
result in estimators of the linear part of partially linear versions of the same
models.

2.5. Tobit Models with Selection

As mentioned earlier, the nonlinear term can sometimes result from sample
selection. Consider for example a modification of the model defined by (2.2)
and (2.3), in which y&

i is both censored (as for the partially linear Tobit model)
and subject to selectivity of the type described at the beginning of this section.
One example of this would be a model of earnings, where the variable of interest
is often censored from above by topcoding at some observable constant ci , as
well as subject to sample selection, because not everybody works. This model
can be written as

y&
i = min{xiβ + εi , ci }, (2.9)

di = 1{wiγ + ηi > 0}, (2.10)

where (εi , ηi ) is independent of (xi , wi ) and the data consists of yi = di y&
i , di ,

xi , and wi . As usual, we can translate this model, which has right-censoring at
ci , to the Tobit framework with left-censoring at zero by taking ỹi ≡ di ci − yi

as the dependent variable and x̃i ≡ −xi as the regressor.
For the observations for which di = 1, the distribution of εi is conditional on

ηi > −wiγ . For two observations, i and j with wiγ = w jγ and di = d j = 1,
εi and ε j will be independent and identically distributed (conditionally on
(xi , x j , wi , w j )). Therefore,

β = arg min
b

E[q(ỹi , ỹ j , (x̃i − x̃ j )b)|di = d j = 1, wiγ = w jγ ].

4 While this maximand is derived assuming a Poisson distribution for the dependent variable,
the resulting estimator is likely to be robust to misspecification of the exact distribution of yi ,

provided the conditional expectation is correctly specified. In the panel data context, Wooldridge
(1999a) showed the consistency of the fixed-effect Poisson quasi-maximum likelihood estimator,
and this argument should carry over to partially linear Poisson regression.
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This suggests estimating β by minimization of

Qn(b) =
(

n

2

)−1 1

hL
n

∑
i< j

di=d j=1

K

(
wi γ̂ − w j γ̂

hn

)
q(ỹi , ỹ j , (x̃i − x̃ j )b),

(2.11)

where γ̂ is a root-n-consistent preliminary estimator of γ in (2.10),5 and L
denotes the dimensionality of wiγ . If there is no censoring, and if quadratic
loss ('(d) = d2) is used, then the minimizer of (2.11) is the estimator suggested
by Powell (1987, 2001).

Consistency of the estimator for the truncated regression model defined in
(2.8) would require that the error, εi has a log-concave density. Whether it is
possible to define an estimator for the truncated regression model with selection
by

Rn(b) =
(

n

2

)−1 1

hL
n

∑
i< j

di=d j=1

K

(
wi γ̂ − w j γ̂

hn

)
r (ỹi , ỹ j , (x̃i − x̃ j )b),

(2.12)

depends on one’s willingness to assume that the conditional density of εi given
ηi > k is log-concave for all k. The estimators for the partially linear logit and
partially linear Poisson regression models do not generalize in a straightforward
manner to the case of selection, because the error-terms after selection will have
non-logistic and non-Poisson distributions.

3. ASYMPTOTIC PROPERTIES OF ESTIMATORS
DEFINED BY MINIMIZING KERNEL-WEIGHTED
U–STATISTICS

The estimators defined in the previous section are all defined by minimizing
objective functions of the form

Qn (γ̂ , b) =
(

n

2

)−1∑
i< j

qn
(
zi , z j ; γ̂ , b

)
, (3.1)

with

qn
(
zi , z j ; γ , b

) = 1

hL
n

K

((
wi − w j

)
γ

hn

)
s
(
vi , v j ; b

)
, (3.2)

zi = (yi , xi , wi ), and vi = (yi , xi ). Note that, for the estimators of the partially
linear models, γ = I (the identity matrix). Let θ = (γ ′, β ′)′ and L = dim(wγ ).
In the next two subsections we give conditions under which such estimators
are consistent, and asymptotically normal around some pseudo–true value. The

5 Numerous root-n-consistent semiparametric estimators for γ have been proposed, some of which
are described in Powell (1994, Section 3.1).
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third subsection will then show how to “jackknife” the estimator to recenter its
asymptotically normal distribution around the true parameter value.

Throughout, we define #wi j = wi − w j .

3.1. Consistency

We will present two sets of assumptions under which the estimators defined
by minimization of (3.1) are consistent. One set of assumptions will require
a compact parameter space, whereas the other will assume a convex objective
function. In both cases we will use the theorems found in Newey and McFadden
(1994) to prove consistency.

Let m be a function of zi , z j , and b. It is useful to define two function km

and �m by

km (a1, a2, b) = E
[

m
(
zi , z j ; b

)∣∣ zi = a1, w jγ 0 = a2
]

and

�m (a1, a2, b) = E
[

m
(
zi , z j ; b

)∣∣ zi = a1, w jγ 0 = a2
]

fwiγ 0
(a2) ,

where fwiγ 0
is the density function of wiγ 0 (assumed continuously distributed).

When m depends only on vi , v j , and b, we will write

km (a1, a2, b) = E
[

m
(
vi , v j ; b

)∣∣ vi = a1, w jγ 0 = a2
]

and

�m (a1, a2, b) = E
[

m
(
vi , v j ; b

)∣∣ vi = a1, w jγ 0 = a2
]

fwiγ 0
(a2) .

Assumption 3.1. All of the following assumptions are made on the distribution
of the data

1. E[s(vi , v j ; b)2] <∞;
2. E[‖#wi j‖2] <∞;
3. wiγ 0 is continuously distributed with bounded density, fwiγ 0

(·), and
ks (·) defined earlier exists and is a continuous function of each of its
arguments;

4. for all b, |�s (a1, a2, b)| ≤ c1 (a1, b) with E [c1 (vi , b)] <∞; and
5. {zi , i = 1, . . . , n} is an i.i.d. sample.

Assumption 3.2. One of the following assumptions is made on the nonrandom
bandwidth sequence hn:

1. hn > 0, hn = o(1) and h−1
n = o(n1/L ); or

2. hn > 0, hn = o(1) and h−2
n = o

(
n1/(L+1)

)
.

Assumption 3.3. K is bounded, differentiable with bounded derivative K ′,
and of bounded variation. Furthermore,

∫
K (u) du = 1,

∫ |K (u)| du <∞
and

∫ |K (η)| ‖η‖ dη <∞.
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The assumptions made on the kernel are satisfied for many commonly used
kernels.

In some of the applications (to selection models) the argument γ of Qn(·)
will be replaced by a “first-stage” estimator γ̂ , which is assumed to converge
at a parametric (root-n rate).

Assumption 3.4. One of the following assumptions is made on γ̂ :

1. γ̂ = γ 0; or
2. γ̂ = γ 0 + Op

(
1√
n

)
.

The following Lipschitz continuity assumption is imposed when the objec-
tive function Qn is not convex in b.

Assumption 3.5.
∣∣s (vi , v j ; b1

)− s
(
vi , v j ; b2

)∣∣ ≤ Bi j |b1 − b2|α for someα >

0, where E
[

B2
i j

]
<∞.

3.1.1. Limiting Objective Function

Consistency of extremum estimators is usually proved by studying the limit-
ing objective function and the exact manner in which the objective function
approaches its limit. For this problem, the limiting objective function will be

Q(γ 0, b) = E
[
�s
(
vi , wiγ 0, b

)]
,

which is well-defined under Assumption 3.1.

3.1.2. Pointwise Convergence to Limiting Objective Function

In this section we will state conditions under which the objective function
converges pointwise to its limit. It is useful to distinguish between the case
with and without a preliminary estimator (i.e., between Assumptions 3.4(1)
and 3.4(2)).

In the case of no preliminary estimator (i.e., γ̂ = γ 0 is known), we have

E
[
Qn
(
γ 0, b

)]
= E

[
1

hL
n

K

(
wiγ 0 − w jγ 0

hn

)
s
(
vi , v j ; b

)]
= E

[
E

[
1

hL
n

K

(
wiγ 0 − w jγ 0

hn

)
ks
(
vi , w jγ 0, b

)∣∣∣∣wi , vi

]]
=
∫ ∫

K (η) �s
(
vi , wiγ 0 − hnη, b

)
dη d F (wi , ui )

−→ Q(γ 0, b) (3.3)

by dominated convergence. Note that the first expectation exists because of
Assumptions 3.1(1) and 3.3.
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Imposing Assumptions 3.1, 3.2(1), and 3.3,

E

[{
1

hL
n

K

(#wi jγ 0

hn

)
s
(
vi , v j ; b

)}2
]
= o(n),

and therefore (Powell, Stock, and Stoker, 1989, Lemma 3.1)

Qn
(
γ 0, b

)− E
[
Qn
(
γ 0, b

)] = op (1) .

Combining these results,

Qn
(
γ 0, b

) −→p Q(γ 0, b)

when γ 0 is known.

In the case where γ̂ = γ 0 + Op

(
1√
n

)
is estimated, we have

Qn (γ̂ , b) = (Qn (γ̂ , b)− Qn
(
γ 0, b

))+ Qn
(
γ 0, b

)
.

Pointwise convergence of Qn (γ̂ , b) to Q(γ 0, b) then follows from

Qn (γ̂ , b)− Qn
(
γ 0, b

)
=
∣∣∣∣∣
(

n

2

)−1∑
i< j

1

hL
n

(
K

(#wi j γ̂

hn

)
− K

(#wi jγ 0

hn

))
s
(
vi , v j ; b

)∣∣∣∣∣
=
∣∣∣∣∣
(

n

2

)−1∑
i< j

1

hL
n

K ′ (c∗i j

) #wi j
(
γ̂ − γ 0

)
hn

s
(
vi , v j ; b

)∣∣∣∣∣
≤
(

n

2

)−1∑
i< j

1

hL
n

∣∣K ′ (c∗i j

)∣∣ ∥∥#wi j

∥∥ ∥∥γ̂ − γ 0

∥∥
hn

∣∣s (vi , v j ; b
)∣∣

≤ ∥∥γ̂ − γ 0

∥∥ 1

hL+1
n

C

(
n

2

)−1∑
i< j

∥∥#wi j

∥∥ ∣∣s (vi , v j ; b
)∣∣

= Op

(
1

n1/2hL+1
n

)
= op (1) ,

where the last equality follows from imposing the stronger Assumption 3.2(2).

3.1.3. Uniform Convergence to Limiting Objective Function

With an objective function that is convex in b, the pointwise convergence
suffices to establish consistency of β̂, regardless of whether γ is estimated.
Without a convex objective function, uniform convergence of the minimand is
the key ingredient in the proof of consistency of extremum estimators. Invoking
Assumption 3.1(1) and imposing compactness of the parameter space forβ, uni-
form convergence will follow from Lemma 2.9 of Newey and McFadden (1994).
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With no preliminary estimation of γ and the objective function is not convex,
imposition of Assumption 3.5 yields

|Qn (γ̂ , b1)− Qn (γ̂ , b2)|
= ∣∣Qn

(
γ 0, b1

)− Qn
(
γ 0, b2

)∣∣
=
∣∣∣∣∣
(

n

2

)−1∑
i< j

1

hL
n

K

(#wi jγ 0

hn

) (
s
(
vi , v j ; b1

)− s
(
vi , v j ; b2

))∣∣∣∣∣
≤
(

n

2

)−1∑
i< j

1

hL
n

∣∣∣∣K (#wi jγ 0

hn

)∣∣∣∣ Bi j |b1 − b2|α

= Op (1) |b1 − b2|α

When γ is estimated,

|Qn (γ̂ , b1)− Qn (γ̂ , b2)|
≤ |Qn(γ 0, b1)− Qn(γ 0, b2)| + |(Qn(γ̂ , b1)− Qn(γ̂ , b2))

− (Qn(γ 0, b1)− Qn(γ 0, b2))|
and ∣∣(Qn (γ̂ , b1)− Qn (γ̂ , b2))− (Qn

(
γ 0, b1

)− Qn
(
γ 0, b2

))∣∣
=
∣∣∣∣∣
(

n

2

)−1∑
i< j

1

hL
n

(
K

(#wi j γ̂

hn

)
− K

(#wi jγ 0

hn

)) (
s
(
vi , v j ; b1

)
− s

(
vi , v j ; b2

))∣∣∣∣∣
=
(

n

2

)−1∑
i< j

1

hL
n

∣∣K ′ (c∗i j

)∣∣ ∥∥#wi j

∥∥ ∥∥γ̂ − γ 0

∥∥
hn

× (s (vi , v j ; b1
)− s

(
vi , v j ; b2

))
≤ 1

hL+1
n

∥∥γ̂ − γ 0

∥∥(n

2

)−1∑
i< j

∣∣K ′ (c∗i j

)∣∣ ∥∥#wi j

∥∥ Bi j |b1 − b2|α

= Op

(
1

hL+1
n n1/2

)
|b1 − b2|α .

3.1.4. Identification

The limiting objective function is uniquely minimized at β0 provided that the
following condition holds:

Assumption 3.6. E
[
s
(
vi , v j ; b

) | (wi − w j
)
γ 0 = 0

]
is uniquely minimized at

b = β0.
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3.1.5. Consistency Theorem

Combining the foregoing results, and referring to Newey and McFadden (1994)
Theorem 2.7 and to Theorem 2.1 and Lemma 2.9, respectively, we have

Theorem 3.1. If K
(

(wi−w j )γ
hn

)
s
(
vi , v j ; b

)
is a continuous and convex function

of b and the parameter space for β is a convex set with the true value, β0, in
its interior, then the minimizer β̂ of (3.1) over the parameter space is (weakly)
consistent under random sampling and Assumptions 3.1, 3.3, 3.6, and either
3.2(1) and 3.4(1) or 3.2(2) and 3.4(2).

Theorem 3.2. If K
(

(wi−w j )γ
hn

)
s
(
vi , v j ; b

)
is a continuous function of b and

the parameter space for β is compact and includes the true value, β0, then
the minimizer β̂ of (3.1) over the parameter space is (weakly) consistent under
random sampling and Assumptions 3.1, 3.3, 3.5, 3.6 and either 3.2(1) and 3.4(1)
or 3.2(2) and 3.4(2).

3.2. Asymptotic Normality

In this section we derive the asymptotic distribution of the estimator defined
by minimizing (3.1). That is, we derive the limiting distribution of

√
n(̂β −

βh) where βh is the minimizer of E[ 1
hL K ( (wi−w j )γ 0

h )s(vi , v j ;β)]. Note that
the argument that leads to consistency of β̂ implies that βh → β0; also note
that βh is nonstochastic. In Section 3.3 we discuss conditions under which

βh = β0 +
p∑

l=1

blh
l + o(h p).

Here the estimator will have an asymptotic bias term, which we eliminate via a

jackknife approach. The advantage of the this approach is that it is not necessary
to employ a bias-reducing kernel, but instead can assume that the kernel K is
nonnegative. This means that if s in equation (3.1) is convex, then the objective
function Qn in (3.2) will also be convex, simplifying both the conditions for
consistency and the computation of the estimator β̂. A disadvantage is that it
may be necessary to calculate the estimator a number of times using several
bandwidths; however, as we will see in Section 3.3, it is often possible to do
the optimization only once, since estimators that are asymptotically equivalent
to the remaining estimators can then be defined as the result of performing a
finite number of Newton–Raphson steps from the original estimator.

The following assumption is standard.

Assumption 3.7. The true parameter, β0, is an interior point of the parameter
space.
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In all the applications considered here, the objective function will be left and
right differentiable. We therefore define

Gn (γ̂ , β) =
(

n

2

)−1∑
i< j

pn
(
zi , z j ; γ̂ , β

)
,

where

pn
(
zi , z j ; γ , β

) = 1

hL
n

K

((
wi − w j

)
γ

hn

)
t
(
vi , v j ;β

)
and t

(
vi , v j ;β

)
is a convex combination of the left and right derivatives of

s
(
vi , v j ;β

)
with respect to β.

It is useful to define the “projection functions”

p1n (zi ; γ , β) = E
[

pn
(
zi , z j ; γ , β

) |zi
]− E

[
pn
(
zi , z j ; γ , β

)]
,

p0n (γ , β) = E
[

pn
(
zi , z j ; γ , β

)]
,

where Assumption 3.8 guarantees that these expectations exist. We can then
write (

n

2

)−1∑
i< j

pn
(
zi , z j ; γ , β

)
= p0n (γ , β)+ 2

n

n∑
i=1

p1n (zi ; γ , β)

+
(

n

2

)−1∑
i< j

p2n
(
zi , z j ; γ , β

)
, (3.4)

where p1n and p2n are P-degenerate (with P denoting the distribution of zi ).
The function p2n is defined implicitly by (3.4).

To justify these calculations, we assume

Assumption 3.8. The derivative function {t (·, ·;β) : β ∈ B} is Euclidean for
an envelope F, i.e.,

sup
n,β

∣∣t (zi , z j ;β
)∣∣ ≤ F

(
zi , z j

)
,

satisfying E
[
F2
]
<∞. The set B need not be the whole parameter space, but

could be some other set with β0 in its interior.

Assumption 3.8 is satisfied for all of the examples considered in Section 2.
Assumptions 3 and 8 imply that hL

n pn is Euclidean (for some envelope C F
with E[(C F)2] <∞). This, in turn, implies that hL

n p2n is Euclidean for an
envelope with finite second moments (see Sherman, 1994b, Lemma 6). This
will be important for the derivation here, because it allows us to ignore the
“error” when we approximate the U -statistic,

(n
2

)−1∑
i< j pn

(
zi , z j ; γ , β

)
, by

its projection, p0n (γ , β)+ 2
n

∑n
i=1 p1n (zi ; γ , β).
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We also define

p̃n (zi , γ , β) = p0n (γ , β)+ 2p1n (zi ; γ , β) .

Note that this implies that p̃n
(
zi , γ 0, βh

) = 2p1n
(
zi , γ 0, βh

)
. It is convenient

to impose:

Assumption 3.9.

1. The function p̃n
(
zi , γ 0, β

)
is continuously differentiable in β with

a derivative p̃β
n
(
zi , γ 0, β

)
with the property that for any sequence

β∗ that converges in probability to β0, p̃β
n
(
zi , γ 0, β

∗) converges to a

matrix p̃β

0

(
γ 0, β0

)
which is nonsingular;

2. If γ is estimated (i.e., the distribution of γ̂−γ 0 is nondegenerate), then
p̃n (zi , γ , β) is continuously differentiable in (γ , β) with a derivative
� p̃n (zi , γ , β) with the property that for any sequence (γ ∗, β∗) that
converges in probability to

(
γ 0, β0

)
, � p̃n (zi , γ

∗, β∗) converges to

a matrix � p̃0
(
γ 0, β0

)
, the lower part � p̃β

0

(
γ 0, β0

)
(i.e., the part

that corresponds to differentiation with respect to β) of which is non-
singular; and

3. for some function p1
(
zi ; γ 0, β0

)
with E

[ ∥∥p1
(
zi ; γ 0, β0

)∥∥2 ]
<∞,

1√
n

n∑
i=1

p̃n
(
zi ; γ 0, βh

)− 1√
n

n∑
i=1

p1
(
zi ; γ 0, β0

) = op (1) .

In the next subsection, we give results that are useful for verifying
Assumption 3.9.

We can write

Gn (γ , β) =
(

n

2

)−1∑
i< j

pn
(
zi , z j ; γ , β

)
= p0n (γ , β)+ 2

n

∑
i

p1n (zi ; γ , β)

+
(

n

2

)−1∑
i< j

p2n
(
zi , z j ; γ , β

)
= 1

n

∑
i

p̃n (zi ; γ , β)+
(

n

2

)−1∑
i< j

p2n
(
zi , z j ; γ , β

)
=
(

1

n

∑
i

� p̃n
(
zi ; θ

∗))(γ − γ 0
β − βh

)
+ 1

n

∑
i

p̃n
(
zi ; γ 0, βh

)
+
(

n

2

)−1∑
i< j

p2n
(
zi , z j ; γ , β

)
,
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where, as usual, � p̃n (zi ; θ∗) should be interpreted as the derivative of p̃n (zi ; ·)
evaluated at a point (which may be different for different rows of � p̃n) between
(γ , β) and

(
γ 0, βh

)
.

Since
{

p2n
(
zi , z j ; γ , β

)}
is Euclidean, Sherman’s (1994a) Theorem 3 can

be applied to the function hL p2n
(
zi , z j ; g, b

)
with �n = {θ : ‖θ − θ0‖ ≤ c}

for some constant c (with γ n = 1 and k = 2 in Sherman’s notation) to get

sup
�n

(
n

2

)−1∑
i< j

hL p2n
(
zi , z j ; g, b

) = Op

(
1

n

)
or

sup
�n

(
n

2

)−1∑
i< j

p2n
(
zi , z j ; g, b

) = Op

(
1

hLn

)
,

where the assumption on the envelope guarantee that E[sup�n
p2n(zi , z j ;

γ , β)2] <∞.6

This yields

√
n
(
β̂ − βh

) = (−1

n

∑
i

� p̃β
n

(
zi ; θ

∗))−1 [(
1

n

∑
i

� p̃γ
n

(
zi ; θ

∗))
√

n
(
γ̂−γ 0

)+ 2√
n

∑
i

p1n
(
zi , γ 0, βh

)
+ Op

(
1

hL
√

n

)
−√

nGn (γ , β)

]
.

We therefore have

Theorem 3.3. If β̂ is a consistent estimator of β, Gn
(
γ̂ , β̂

) = op
(
n−1/2

)
,

1/hn = o
(
n1/(2L)

)
,
√

n
(
γ̂ − γ 0

) = 1√
n

∑n
i=1 ωi + op (1) and Assumptions

3.7, 3.8, and 3.9 are satisfied, then

√
n
(
β̂ − βh

) = 1√
n

n∑
i=1

ψ i + op (1) ,

where

ψ i = −� p̃β

0

(
γ 0, β0

)−1
� p̃γ

0

(
γ 0, β0

)
ωi − 2� p̃β

0

(
γ 0, β0

)−1
p1
(
zi ; γ 0, β0

)
.

Furthermore, assuming ωi and p1
(
zi ; γ 0, β0

)
are jointly i.i.d. with E[ωi ] = 0

and E[‖ωi‖2] <∞,

√
n
(
β̂ − βh

)→d N (0, E[ψ iψ
′
i ]).

6 This is condition (ii) for Sherman’s (1994a) Theorem 3.
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3.2.1. Verifying some of the conditions

Theorem 3.3 makes some high-level assumptions. In this section, we will
present some results which will be useful in verifying these assumptions.

The following lemma, which follows immediately from Lemma 3.1 in
Honoré and Powell (1994), is useful for verifying that Gn

(
γ̂ , β̂

) = op
(

1√
n

)
.

Lemma 3.4. If the true parameter value, β0, is an interior point in the param-
eter space, and

1. s
(
vi , v j ;β

)
is left and right differentiable in each component of β in

some open neighborhood of the true parameter β0;
2. in an open neighborhood B0 of β0,

sup
β∈B0

∑
i< j

1

{
∂−s

(
vi , v j ;β

)
∂β�

�= ∂+s
(
vi , v j ;β

)
∂β�

}
= Op (1) ;

3. in an open neighborhood of β0,∣∣∣∣∣∂−s
(
vi , v j ;β

)
∂β�

− ∂+s
(
vi , v j ;β

)
∂β�

∣∣∣∣∣ ≤ h
(
vi , v j

)
for some function h with E

[
h
(
vi , v j

)1+δ
]
<∞ for some δ, and

4. K is bounded,
then

Gn
(
γ̂ , β̂

) = op
(
n−2+2/(1+δ)h−L

n

)
.

We next turn to some assumptions under which the conditions of Assump-
tion 3.9 are satisfied. Recall that by definition of km and �m ,

kt (zi , a, b) = E
[

t
(
vi , v j , b

)∣∣ zi , w jγ 0 = a
]
,

�t (zi , a, b) = E
[

t
(
vi , v j , b

)∣∣ zi , w jγ 0 = a
]

fw jγ 0
(a) .

In addition, define

t1
(
zi , z j , β

) = (wi − w j
)

t
(
vi , v j , β

)
;

then kt1 and �t1 , evaluated at β = β0, become

kt1

(
zi , a2, β0

) = E
[ (
wi−w j

)
t
(
vi , v j , β0

)∣∣ zi , w jγ 0=a2
]
,

�t1

(
zi , a2, β0

)= E
[ (
wi−w j

)
t
(
vi , v j , β0

)∣∣ zi , w jγ 0=a2
]

fwiγ 0
(a2).

Defining �
( j)
t (·) as the derivative of �t (·) with respect to its j th argument, the

following restrictions will be imposed on the derivatives of �t .

Assumption 3.10.

1. The function �t is differentiable with respect to its third argu-
ment, and there is a function g with E [g (zi )] <∞, such that∣∣�(3)

t

(
vi , wiγ 0 − hη, β0

) ∣∣ ≤ g (zi ).
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2. The function �t1 is differentiable with respect to its second argu-
ment, and there is a function g with E

[
g (zi )2

]
<∞, such that∣∣�(2)

t1

(
zi , wiγ 0 − hη, β0

) ∣∣ ≤ g (zi ). Furthermore,

K (η) �(2)
t1

(
zi , wiγ 0 − hη, β0

)→ 0 as η →±∞.

Finally, E
[(
wi − w j

)
t
(
vi , v j , β

)]
<∞.

3. The function �t is differentiable with respect to its second argu-
ment, and there is a function g with E [g (zi )] <∞, such that∣∣∣�(2)

t

(
vi , wiγ 0 − hη, β0

)∣∣∣ ≤ g (zi ).

A number of results can be used to verify the convergence in Assump-
tions 3.9(1) and 3.9(2). For example, Amemiya’s (1985) Theorem 4.1.4 gives
conditions that can be used to verify that p̃′n (zi , γ

∗, β∗) converges to lim
p̃′n
(
zi , γ 0, β0

)
. The following two lemmata give the expressions for p̃′1 that

appear in Assumptions 3.9(1) and 3.9(2) and in Theorem 3.3.

Lemma 3.5. Let

pβ

0

(
γ 0, β0

) = E
[
�

(3)
t

(
vi , wiγ 0, β0

)]
.

Then under Assumptions 3.3 and 3.10(1)

pβ

0n

(
γ 0, β0

)→ pβ

0

(
γ 0, β0

)
.

Lemma 3.6. Let

pγ

0

(
γ 0, β0

) = −E
[
�

(2)
t1

(
zi , wiγ 0, β0

)]
.

Then under Assumptions 3.3 and 3.10(2)

pγ

0n

(
γ 0, β0

)→ pγ

0

(
γ 0, β0

)
.

Combining, the next two lemmata will give conditions under which Assump-
tion 3.9(3) is satisfied.

Lemma 3.7. Suppose that p1n
(
zi ; γ 0, ·

)
is continuously differentiable in

a neighborhood N
(
β0

)
of β0, and that there is a function h (zi ) with

E
[‖h (zi )‖2

]
<∞, such that

∥∥p1n
(
zi ; γ 0, b

)∥∥ ≤ h (zi ) for all b in N
(
β0

)
.

Then

1√
n

∑[
p1n
(
zi ; γ 0, βh

)− p1n
(
zi ; γ 0, β0

) ] = op(1).

Lemma 3.8. If

p1
(
zi ; γ 0, β0

) = E
[

t
(
vi , v j ;β

)∣∣ vi , wi , wiγ 0 = w jγ 0

]
fw jγ 0

(
wiγ 0

)
= �t

(
zi , wiγ 0, β0

)
,
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then under Assumptions 3.3 and 3.10(3)

1√
n

n∑
i=1

p1n
(
zi ; γ 0, β0

)− 1√
n

n∑
i=1

p1
(
zi ; γ 0, β0

) = op (1) .

3.3. Bias Reduction

The asymptotic normality result for β̂ in Theorem 3.3 centers the asymptotic
distribution of β̂ at the pseudo–true value βh ; however, if the bandwidth se-
quence h = hn declines to zero slowly with n, as required by Assumption 3.2,
the asymptotic bias term βh − β0 need not be o(n−1/2), and β̂ will not be
root-n-consistent. Although semiparametric methods typically ensure asymp-
totically negligible bias by assuming the relevant kernel function (here, K (·))
is of “higher-order bias-reducing” form, such a requirement would be unattrac-
tive for many of the estimators proposed here, because the resulting negativity
of the kernel function for some data points could compromise the convex-
ity of the corresponding minimand, complicating both the asymptotic theory
(through an additional compactness restriction) and computation of the esti-
mator. As an alternative to use of higher-order kernels, we instead obtain a
root-n-consistent estimator by using the familiar jackknife approach – that
is, assuming the pseudo–true value βh is a sufficiently smooth function of
the bandwidth h, we construct a linear combination ̂̂β of different estimators
of β0 (involving different bandwidth choices) for which

√
n(̂̂β − β0) has the

same asymptotic distribution as
√

n(̂β − βh) and will thus be root-n-consistent.7

For this jackknife approach to be applicable, we require existence of a Taylor
series expansion ofβh aroundβ0 as a function of h (in a neighborhood of h = 0).
That is, we assume that

βh = β0 +
p∑

l=1

blh
l + o(h p),

= β0 +
p∑

l=1

blh
l + o(n−1/2), (3.5)

where the last line presumes p can be chosen large enough so that

h p = O
(
n−1/2

)
,

while preserving the conditions of Theorem 3.3. Such a series approximation
will exist if the differentiability conditions of Assumption 3.10 are strengthened
to require (p + 2)-order differentiability of the �t term, with similar dominance
conditions as in Assumption 3.10(2). To see why this would suffice, note that

7 Were the estimator β̂ linear in the kernel weight h−1 K (u/h) – as is the objective function Qn

and its derivatives, or the “weighted average derivative” estimator of Powell et al. (1989) – then
applying the jackknife to the estimator would be identical to use of a high-order kernel. In general,
though, the minimizer of Qn(b, γ̂ ) will be nonlinear in the kernel weight terms, and the two bias
reduction approaches differ.
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βh is defined by the relationship

0 = E[Qn
(
γ 0, βh

)
] ≡ p0n

(
γ 0, βh

)
,

= E

[∫
K (η) �t

(
vi , wiγ 0 − hη, β

)
dη

]
,

≡ F(h, βh),

where the definition of F exploits the fact that p0n depends on n only through
h. Viewing the pseudo–true value βh as an implicit function of the bandwidth
h, it will have (p + 1) derivatives with respect to h in a neighborhood of zero
if Assumption 3.9(1) holds and the function F(h, β) has (p + 2) derivatives in
both arguments in a neighborhood of h = 0 and β = β0, by a higher-order ver-
sion of the implicit function theorem (Magnus and Neudecker 1988, Chapter 7,
Theorem A.3). This, in turn, would follow from (p + 2)-order differentiability
of �t in its second and third components, plus conditions permitting interchange
of differentiation and integration (over η). In fact, if the kernel function K (η)
is chosen to be symmetric (K (u) = K (−u)), then it is straightforward to show
that the coefficient b1 of the first-order term in (3.5) is identically zero, so that
we can derive the stronger condition

βh = β0 +
p∑

l=2

blh
l + o(n−1/2). (3.6)

Assuming this condition is satisfied, consider p estimators β̂c1h, . . . , β̂cph

based on the bandwidths c1 · h, . . . , cp · h, where c1, c2, . . . , cp is any sequence
of distinct positive numbers with c1 ≡ 1. These estimators will have corre-
sponding pseudo–true values βc1h, βc2h, . . . , βcp+1h, each of which will satisfy
the condition (3.6) for h sufficiently close to zero.Then, defining the jackknifed
estimator ̂̂β as

̂̂β ≡ p∑
k=1

ak β̂ck h, (3.7)

where the coefficients a1, . . . , ap are defined as the solution to the linear
equations⎛⎜⎜⎜⎝

1 1 · · · 1
c2

1 c2
2 · · · c2

p
...

...
. . .

...
cp

1 cp
2 · · · cp

p

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

a1

a2
...
ap

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎠ ,

the corresponding linear combination of pseudo–true values is easily shown to
satisfy

p∑
k=1

akβck h = β0 + o
(
n−1/2

)
(3.8)
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when (3.6) applies. Since the coefficients a1, ..., ap must sum to one, and the
asymptotic linearity expression for

√
n
(
β̂ − βh

)
in Theorem 3.3 does not de-

pend explicitly on the bandwidth parameter h, the jackknifed estimator ̂̂β is
asymptotically normal when centered at the true value β0, as the following
theorem states.

Theorem 3.9. Under the conditions of Theorem 3.3, if condition (3.6) also
holds, then

√
n
(̂̂β − β0

)
= 1√

n

n∑
i=1

ψ i + op (1) ,

where ψ i is defined in the statement of that theorem, and
√

n
(̂̂β − β0

)
→d N (0, E[ψ iψ

′
i ]).

3.3.1. Estimation of the Asymptotic Variance

In order to construct asymptotically valid test statistics and confidence regions
using the results of Theorem 3.9, a consistent estimator of the asymptotic covari-

ance matrix C ≡ E[ψ iψ
′
i ] of the jackknifed estimator ̂̂β is needed. Assuming

the influence function ωi of the preliminary estimator γ̂ of γ 0 has a consistent
estimator ω̂i , which satisfies

1

n

n∑
i=1

‖ω̂i − ωi‖2 = op (1) , (3.9)

a consistent estimator of C can be constructed if the remaining components
of ψι – namely, � p̃β

0

(
γ 0, β0

)
, � p̃γ

0

(
γ 0, β0

)
, and p1

(
zi ; γ 0, β0

) ≡ p1i – can
similarly be consistently estimated. Of these three terms, estimation of the latter
two are most straightforward; defining

p̂1i ≡ 1

(n − 1)

∑
j �=i

1

hL
n

K

((
wi − w j

)
γ̂

hn

)
t
(
vi , v j ;

̂̂β)
and

"̂γ ≡ 2

n (n − 1) hn

∑
i< j

1

hL+1
n

t
(
vi , v j ;

̂̂β) ∂K
(

(wi−w j )γ̂
hn

)
∂u′

(
wi − w j

)
,

the same argument as for Lemma 6.2 of Powell (1987, 2001) yields

1

n

n∑
i=1

‖ p̂1i − p1i‖2 = op (1) (3.10)

and

"̂γ →p � p̃γ

0

(
γ 0, β0

)
(3.11)
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when the conditions of Theorem 3.3 are satisfied. Estimation of the derivative
� p̃β

0 (γ 0, β0) is also straightforward if the function t(vi , v j , β) is differentiable
in β (as for the partially linear logit estimator). In this case

"̂β ≡ 2

n (n − 1) hn

∑
i< j

1

hL
n

K

((
wi − w j

)
γ̂

hn

)
∂t
(
vi , v j ;

̂̂β)
∂β ′

will have

"̂β →p � p̃β

0

(
γ 0, β0

)
, (3.12)

as for "̂γ . If the function t
(
vi , v j , β

)
is not differentiable in β, the derivative

matrix � p̃β

0 must be estimated using some “smoothing” method, such as the
numerical derivative approach described in Newey and McFadden (1994, Sec-
tion 7.3). In either case, the resulting consistent estimator of the asymptotic
covariance matrix C would be

Ĉ ≡ ["̂β]−1V̂ ["̂β]−1,

where V̂ is the joint sample covariance matrix of "̂γ ω̂i and p̂1i . Consistency of
this estimator follows directly from (3.9) through (3.12).

3.4. Asymptotic Properties of Partially Linear Logit Estimator

In this section we discuss how the general results of Section 3 might be used
to derive the asymptotic properties of one of the estimators defined in Section
2, the partially linear logit model. For this model, the terms in the objective
function (2.5) are convex if K is positive. We can therefore use Theorem 3.1
to prove consistency. With the notation in Section 3, and with � (η) = exp(η)

1+exp(η) ,
we have

s
(
(yi , xi ), (y j , x j ); b

) = −1
{

yi �= y j
} (

yi ln�
(
(xi − x j )b

)
+ y j ln�

(−(xi − x j )b
))

and γ̂ = γ 0 = I . Also

t
(
(yi , xi ), (y j , x j ); b

) = 1
{

yi �= y j
} (

yi�
(−(xi − x j )b

)
− y j�

(
(xi − x j )b

))
(xi − x j )

′.

Theorem 3.10. Assume a random sample {(yi , xi , wi )}nı̄=1 from (2.4) εi logis-
tically distributed. The estimator defined by minimizing (2.5) where hn satisfies
Assumption 3.2(2) and K satisfies Assumption 3.3, is consistent and asymptot-
ically normal with

√
n
(
β̂ − βh

) −→d N
(
0, 4"−1V"−1

)
with

V = V
[
r
(
yi , xi , wi ;β0

)]
,
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where

r (yi , xi , wi ;β) = E

[
1
{

yi �= y j
}(

yi − exp((xi − x j )β)

1+ exp((xi − x j )β)

)
× (xi − x j )

′
∣∣∣∣ yi , xi , wi , w j = wi

]
fw (wi )

and

" = E

[
E

[
1
{

yi �= y j
} exp

(
(xi − x j )β

)(
1+ exp

(
(xi − x j )β

))2 (xi − x j )
′(xi − x j )

∣∣∣∣∣
× yi , xi , wi , w j = wi

]
fw (wi )

]

provided that

1. E
[‖xi‖2

]
<∞;

2. wi is continuously distributed with a bounded density, fwi . Also
E
[‖wi‖2

]
<∞;

3. E [‖xi‖ |wi = a] fwi (a) is a bounded function of a;
4. (xi − x j ) has full rank conditional on wi = w j ; and
5. the function r

(
yi , xi , wi ;β0

)
is differentiable in wi , with derivative

r (3) satisfying ‖r (3)
(
yi , xi , wi ;β0

) ‖ ≤ g(yi , xi , wi ) for some g(·) with
E[g(yi , xi , wi )] <∞.

Proof. First note that | log�(η)| ≤ log(2)+ |η|. Therefore, |s((yi , xi ),
(y j , x j ); b)| ≤ log(2)+ |(xi − x j )′b| ≤ log(2)+ (t‖xi‖ + ‖x j‖)‖b‖. Assump-
tions 3.1(1), 3.1(2) and 3.1(3) are therefore satisfied. To verify As-
sumption 3.1(4), let a1 = (ay1, a′x1, aw1)′, partitioned in the same way as
zi ≡ (yi , x ′i )

′. Then |E[s(a1, v j , b)|w j = a2]| ≤ E[|s(a1, v j , b)||w j = a2] ≤
E[log(2)+ (‖ax1‖ + ‖x j‖)‖b‖|w j = a2], from which Assumption 3.1(4) fol-
lows. Assumption 3.4 holds with γ̂ = γ 0 = I, and Assumption 3.6 follows
from consistency of the maximizer of the conditional likelihood for logit mod-
els with fixed effects. Thus all the conditions in Theorem 3.1 hold, and β̂ is
consistent.

To verify asymptotic normality, first note that Assumption 3.7 is automat-
ically satisfied (with the parameter space for β0 being Euclidean space), as
are the conditions for Lemma 3.4 (by the convexity and differentiability of
the conditional likelihood). Assumption 3.8 follows from condition 1 and the
fact that ||t((yi , xi ), (y j , x j ); b)|| ≤ 2[||xi || + ||x j ||], while Assumption 3.10(1)
follows from conditions 1 through 3 and the fact that t ||rβ(yi , xi , wi ;β0)|| ≤
[||xi || + E[‖x j‖|w j = wi ]] fw(wi ), which in turn implies Assumption 3.9(1)
by Lemma 3.5 Finally, Assumption 3.10(3) follows directly from condition 5
on the joint distribution of xi and wi .
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If condition 5 of Theorem 3.10 is strengthened to require L + 2 derivatives
of r (yi , xi , wi ;β) with respect to β at β = β0 with a corresponding moment
dominance condition on the highest derivative, then condition (3.6) holds and
the jackknifed estimator will be root-n-consistent as well as asymptotically
normal.

Corollary 3.11. Under the assumptions of Theorem 3.10, if condition (3.6)
holds for p = L + 2, the corresponding jackknifed estimator is root-n-
consistent and asymptotically normal,

√
n
(
β̂ − β0

) −→d N
(
0, 4"−1V"−1

)
,

with V and " defined as in Theorem 3.10.

4. MONTE CARLO RESULTS

To get a sense of the small sample properties of the estimators of the partially
linear models described earlier, we have performed a Monte Carlo investigation
for the partially linear logit model for a particular design. The design is chosen
to illustrate the method and is not meant to mimic a design that one would
expect in a particular data set. The model is

yi = 1{x1iβ1 + x2iβ2 + g(zi )+ εi }, i = 1, 2, . . . , n, (4.1)

where (β1, β2) = (1, 1), g(z) = z2 − 2, x2i has a discrete distribution with
P(x2i = −1) = P(x2i = 1) = 1

2 , distributed independently of zi ∼ N (0, 1),
and xi1 = vi + z2

i where vi ∼ N (0, 1), independent of x2i and zi . With this
design, P(yi = 1) � 0.44. For the design used here, ignoring the nonlinearity
of g(z) is expected to result in a bias in the estimators of bothβ1andβ2, although
we expect the bias to be bigger for β1, because g(zi ) is independent of x2i .

For each replication of the model, we calculate a number of estimators. First,
we calculate the logit maximum likelihood estimator using a constant, x1i , x2i ,
and g(zi ) as regressors. This estimator would be asymptotically efficient if one
knew g (·); comparing the estimators proposed here to maximum likelihood will
therefore give a measure of the cost of not knowing g (and using the estimators
proposed here). Second, we calculate three estimators, β̂1, β̂2, and β̂3, based on
(2.5) with K being the biweight (quartic)8 kernel and hn = c ∗ std(z) ∗ n−1/5

where c takes the values 0.3, 0.9, and 2.7, respectively. These bandwidths are
somewhat arbitrary. The middle one is motivated to the rule of thumb suggested
by Silverman (1986, p. 48) for estimation of densities (using normal kernel).
That bandwidth is supposed to illustrate what happens if one uses a “reasonable”
bandwidth. The two other bandwidths are supposed to be “small” and “big”.
We also calculate four jackknifed estimators. The first, β̂123 combines the three
estimators according to (3.7). This ignores the fact that

∫
uK (u) du = 0, and we

therefore also consider the three jackknifed estimators based on combining two

8 Throughout, the kernel was normalized to have mean 0 and variance 1.
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Table 22.1. Monte Carlo results, sample size= 100

Value Bias Standard RMSE Median MAD MAE
deviation bias

Logit MLE using constant, x1i , x2i , and g(zi ) as regressors

β1 1.000 0.138 0.406 0.428 0.083 0.253 0.245
β2 1.000 0.107 0.376 0.390 0.063 0.222 0.213

Semiparmetric estimator β̂1 (small bandwidth)

β1 1.000 0.175 0.450 0.482 0.103 0.279 0.271
β2 1.000 0.117 0.500 0.513 0.047 0.241 0.246

Semiparmetric estimator β̂2 (medium bandwidth)

β1 1.000 0.249 0.402 0.473 0.198 0.248 0.251
β2 1.000 0.065 0.372 0.377 0.026 0.228 0.223

Semiparmetric estimator β̂3 (large bandwidth)

β1 1.000 0.427 0.370 0.565 0.373 0.233 0.373
β2 1.000 0.010 0.333 0.333 −0.021 0.202 0.206

Jackknife using β̂1, β̂2, and β̂2

β1 1.000 0.136 0.504 0.521 0.057 0.309 0.307
β2 1.000 0.150 0.621 0.638 0.071 0.265 0.271

Jackknife using β̂1 and β̂2

β1 1.000 0.166 0.459 0.488 0.091 0.283 0.275
β2 1.000 0.124 0.521 0.535 0.049 0.247 0.251

Jackknife using β̂1 and β̂3

β1 1.000 0.172 0.451 0.483 0.099 0.281 0.272
β2 1.000 0.119 0.503 0.516 0.049 0.243 0.246

Jackknife using β̂2 and β̂3

β1 1.000 0.227 0.408 0.466 0.172 0.255 0.247
β2 1.000 0.072 0.379 0.385 0.033 0.227 0.226

of the three estimators according to (3.7). These three estimators are denoted
β̂12, β̂13, and β̂23.

The results from 1000 replications with sample sizes 100, 400, and 1600
are given in Tables 22.1 through 22.3. In addition to the true parameter values,
each table also reports bias, standard deviation, and root-mean-square error of
the estimator, as well as the corresponding robust measures, the median bias,
the median absolute deviation from the median, and the median absolute error.
Since all the estimators discussed here are likely to have fat tails (they are not
even finite with probability 1), the discussion here will focus on these robust
measures. The sample sizes are not chosen because we think that they are re-
alistic given the small number of explanatory variables, but rather because we
want to confirm that for large samples the estimator behaves as predicted by
the asymptotic theory. As expected, the (correctly specified) maximum like-
lihood estimator that uses x1i , x2i , and g(zi ) as regressors outperforms the
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Table 22.2. Monte Carlo results, sample size= 400

Value Bias Standard RMSE Median MAD MAE
deviation bias

Logit MLE using constant, x1i , x2i , and g(zi ) as regressors

β1 1.000 0.018 0.164 0.165 0.012 0.115 0.110
β2 1.000 0.020 0.158 0.159 0.015 0.101 0.102

Semiparmetric estimator β̂1 (small bandwidth)

β1 1.000 0.030 0.181 0.184 0.024 0.123 0.122
β2 1.000 0.017 0.170 0.170 0.005 0.109 0.110

Semiparmetric estimator β̂2 (small bandwidth)

β1 1.000 0.090 0.172 0.194 0.078 0.115 0.126
β2 1.000 0.000 0.162 0.162 −0.008 0.106 0.107

Semiparmetric estimator β̂3 (large bandwidth)

β1 1.000 0.279 0.156 0.319 0.265 0.104 0.265
β2 1.000 −0.041 0.151 0.157 −0.043 0.097 0.105

Jackknife using β̂1, β̂2, and β̂2

β1 1.000 0.001 0.190 0.189 −0.006 0.129 0.130
β2 1.000 0.026 0.176 0.178 0.017 0.112 0.117

Jackknife using β̂1 and β̂2

β1 1.000 0.023 0.183 0.184 0.016 0.125 0.124
β2 1.000 0.019 0.171 0.172 0.006 0.110 0.111

Jackknife using β̂1 and β̂3

β1 1.000 0.027 0.182 0.184 0.022 0.123 0.123
β2 1.000 0.018 0.170 0.171 0.006 0.109 0.110

Jackknife using β̂2 and β̂3

β1 1.000 0.066 0.175 0.187 0.058 0.118 0.120
β2 1.000 0.006 0.164 0.164 −0.002 0.106 0.107

semiparametric estimators. However, the jackknifed estimators perform almost
as well. For example, the median absolute error of the estimator based on jack-
knifing using β̂2 and β̂3 is within 10% of the median absolute error of the
maximum likelihood estimator (and often closer).

The patterns of the bias and the dispersion of the three estimators based on
(2.5) are expected – lower values of the bandwidth, h, give less bias but higher
dispersion.

The proposed jackknife procedure generally succeeds in removing the bias
of the proposed estimators. For example, focusing on the coefficient on x1i

(which has the bigger bias), the estimator that removes bias by comparing β̂2
and β̂3 has lower bias than either β̂2 or β̂3 for all sample sizes. Finally, for the
largest sample sizes, there is almost no difference between the four bias-reduced
estimators, which corresponds to the predictions of the asymptotic theory.
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Table 22.3. Monte Carlo results, sample size= 1600

Value Bias Standard RMSE Median MAD MAE
deviation bias

Logit MLE using constant, x1i , x2i , and g(zi ) as regressors

β1 1.000 0.004 0.078 0.079 0.005 0.053 0.053
β2 1.000 0.006 0.079 0.079 0.009 0.052 0.053

Semiparmetric estimator β̂1 (small bandwidth)

β1 1.000 0.010 0.085 0.085 0.009 0.056 0.058
β2 1.000 0.005 0.083 0.084 0.007 0.054 0.054

Semiparmetric estimator β̂2 (medium bandwidth)

β1 1.000 0.048 0.082 0.095 0.047 0.055 0.067
β2 1.000 −0.004 0.081 0.081 −0.003 0.053 0.053

Semiparmetric estimator β̂3 (large bandwidth)

β1 1.000 0.213 0.076 0.226 0.214 0.051 0.214
β2 1.000 −0.040 0.077 0.087 −0.038 0.051 0.057

Jackknife using β̂1, β̂2, and β̂2

β1 1.000 −0.005 0.086 0.086 −0.006 0.057 0.057
β2 1.000 0.009 0.085 0.085 0.010 0.055 0.056

Jackknife using β̂1 and β̂2

β1 1.000 0.006 0.085 0.085 0.005 0.056 0.057
β2 1.000 0.006 0.084 0.084 0.008 0.053 0.054

Jackknife using β̂1 and β̂3

β1 1.000 0.008 0.085 0.085 0.007 0.056 0.057
β2 1.000 0.006 0.084 0.084 0.007 0.054 0.054

Jackknife using β̂2 and β̂3

β1 1.000 0.027 0.084 0.088 0.027 0.056 0.060
β2 1.000 0.001 0.082 0.082 0.001 0.053 0.053

Table 22.4 presents evidence for the effect of the bias term (as the bias re-
duction) on the performance of the test-statistics calculated on the basis of the
estimators discussed here. For various sample sizes and for each of the semi-
parametric estimators, we calculated 90 and 95 percent confidence intervals. In
order to do this, we estimated the (asymptotic variance) of the three non-bias-
reduced estimators by 4"̂−1

k V̂k"̂
−1
k where k = 1, 2, 3 denotes the estimator and

"̂k is the sample variance of rk
i defined by

rk
i =

1

(n − 1) hn

∑
j �=i

1
{

yi �= y j
} · K

(
wi − w j

hh

)

×
(

yi −
exp
(
(xi − x j )′β̂

)
1+ exp

(
(xi − x j )′β̂

)) (xi − x j )
′
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Table 22.4. Coverage probabilities for various sample sizes

n = 100 n = 200 n = 400 n = 800 n = 1600 n = 3200

90% Confidence interval

β̂1 0.894 0.888 0.907 0.885 0.915 0.898
β̂2 0.849 0.850 0.864 0.841 0.866 0.856
β̂3 0.684 0.624 0.465 0.290 0.123 0.044
β̂123 0.925 0.897 0.918 0.897 0.909 0.892
β̂12 0.903 0.889 0.908 0.885 0.914 0.899
β̂13 0.896 0.887 0.906 0.886 0.913 0.901
β̂23 0.860 0.866 0.884 0.866 0.903 0.885

95% Confidence interval

β̂1 0.948 0.938 0.962 0.933 0.958 0.940
β̂2 0.905 0.927 0.927 0.917 0.931 0.912
β̂3 0.801 0.726 0.573 0.391 0.202 0.080
β̂123 0.968 0.943 0.957 0.931 0.960 0.940
β̂12 0.950 0.937 0.965 0.934 0.961 0.940
β̂13 0.948 0.938 0.963 0.933 0.961 0.941
β̂23 0.910 0.932 0.945 0.929 0.948 0.940

and

V̂k = 2

n (n − 1) hn

∑
i< j

1
{

yi �= y j
} · K

(
wi − w j

hh

)

× exp
(
(xi − x j )̂β

)(
1+ exp

(
(xi − x j )̂β

))2 (xi − x j )
′(xi − x j ).

The estimated variance of any of the three estimators could be used to esti-
mate the asymptotic variance of the jackknifed estimators. However, in order to
avoid arbitrarily choosing one variance estimator over an other, we estimated
the joint asymptotic distribution of

(
β̂
′
1, β̂

′
2, β̂

′
3

)′
by 4"̂−1V̂ "̂−1 where "̂ is the

sample variance of
(
r1′

i , r2′
i , r3′

i

)′
and

"̂ =
⎛⎝"̂1 0 0

0 "̂2 0
0 0 "̂3

⎞⎠ .

Table 22.4 gives the fraction of the replications for which these confidence
intervals covered the true parameter. Because the biases are more dramatic for
β1, we only present the results for that parameter. For all three sample sizes
we see that the confidence interval that is based on the estimator, β̂1, which is
based on a very small bandwidth, has coverage probabilities that are close to
90 and 95 percent, whereas the coverage probabilities are smaller for the two
other non-bias-reduced estimators, β̂2 and β̂3. Although the discrepancies are
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not enormous (except for β̂3 in large samples), it is interesting to note that all
the bias-corrected estimators perform better than β̂2 and β̂3 for all sample sizes.

The sample sizes discussed so far are unrealistically large relative to the
number of parameters, and there is little reason to think that the design mimics
designs that one might encounter in applications. In order to investigate whether
the good performance of the proposed estimators is an artifact of the very simple
Monte Carlo design, we performed an additional experiment using the labor
force participation data given in Berndt (1991, from Mroz, 1987). Using a
constant, log hourly earnings,9 number of children below 6, number of children
between 6 and 18, age, age-squared, age-cubed, education, local unemployment
rate, a dummy variable for whether the person lived in a large city, and other
family income as explanatory variables, we estimated a logit for whether a
woman worked in 1975. The sample size was 753 (of whom 428 worked).
Using the original 753 vectors of explanatory variables, we generated 1000
datasets from this model. We then estimated the parameters using the correctly
specified logit maximum likelihood estimator and the semiparametric estimator
that treats the functional form for the effect of age as unknown, and calculates
the bandwidths as described for the original design.

The results for this empirically based simulation are presented in Table 22.5.
Apart from the nonbias-reduced estimator with the largest bandwidth, β̂3, the
precision of the proposed estimators is quite close to that of correctly spec-
ified maximum likelihood, with median absolute errors typically around 5%
larger than for the MLE. Similarly, coverage rates for the nominal 90% and
95% confidence intervals are quite close to the nominal levels (again with the
exception of β̂3). Perhaps even more than for the original Monte Carlo design,
these results are reassuring that the proposed estimators are relatively precise
for realistic sample sizes and data configurations, and that inference based upon
the asymptotic normal theory can be reasonably accurate in finite samples.

5. POSSIBLE EXTENSIONS

Ahn and Powell (1993) extended the model given in (2.2) and (2.3) by allowing
the nonparametric component to depend upon an unknown function p(wi ),
which itself must be estimated via nonparametric regression, rather than the
parametric (linear) form w′

iγ , as assumed earlier. Making the same extension
in (2.9) and (2.10) would lead to an estimator that minimizes a function of the
form

Qn(b) =
(

n

2

)−1 1

hn

∑
i< j

di=d j=1

K

(
p̂(wi )− p̂(w j )

hn

)
s(yi , y j , (xi − x j )b).

(5.1)

9 This variable was imputed for the individuals who did not work.
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Table 22.5. Monte Carlo results for empirically based design

β̂1 β̂2 β̂3 β̂123 β̂12 β̂13 β̂23

Median absolute error relative to MLE

Wage rate 1.0229 1.0161 0.9796 1.0531 1.0228 1.0260 1.0206
Children below 6 1.0342 0.9860 1.1623 1.0443 1.0273 1.0352 1.0065
Children between 1.0372 0.9928 1.7117 1.0560 1.0358 1.0416 1.0346

6 and 18
Education 1.0648 1.0303 1.0156 1.0711 1.0625 1.0640 1.0354
Local unemployment 1.0511 1.0439 1.0386 1.0876 1.0643 1.0518 1.0467
City 1.0454 1.0016 0.9609 1.0371 1.0336 1.0439 0.9909
Other income 1.0423 1.0181 1.0243 1.0207 1.0395 1.0432 1.0149

Coverage rates for 90% confidence interval

Wage rate 0.889 0.886 0.883 0.893 0.889 0.889 0.887
Children below 6 0.900 0.904 0.832 0.909 0.908 0.901 0.900
Children between 0.885 0.877 0.624 0.897 0.887 0.885 0.885

6 and 18
Education 0.889 0.890 0.883 0.890 0.891 0.890 0.890
Local unemployment 0.894 0.895 0.889 0.900 0.896 0.894 0.893
City 0.912 0.912 0.909 0.918 0.916 0.913 0.911
Other income 0.899 0.905 0.899 0.903 0.898 0.898 0.901

Coverage rates for 95% confidence interval

Wage rate 0.947 0.946 0.943 0.946 0.948 0.947 0.946
Children below 6 0.960 0.956 0.902 0.959 0.959 0.960 0.959
Children between 0.942 0.934 0.740 0.950 0.944 0.943 0.944

6 and 18
Education 0.944 0.936 0.935 0.945 0.943 0.944 0.942
Local unemployment 0.941 0.938 0.943 0.943 0.942 0.941 0.937
City 0.963 0.962 0.954 0.963 0.964 0.964 0.964
Other income 0.953 0.955 0.958 0.959 0.954 0.952 0.954

The estimator proposed by Ahn and Powell (1993) minimizes Qn in (5.1),
if there is no censoring and if quadratic loss ('(d) = d2) is used. Similar min-
imization problems arise in the estimation of semiparametric models with en-
dogenous regressors (as discussed by, e.g., Blundell and Powell, 2003); in such
applications p̂(wi ) might represent residuals from a first-stage nonparametric
regression, used as “control variates” to account for endogeneity of some com-
ponents of xi . Investigation of the properties of the estimator defined by (5.1)
is an interesting avenue for further research.

It would also be useful to extend the estimation method to permit inverse
probability weighting for stratified sampling, as considered by Wooldridge
(1999b), and to extend the asymptotic theory to discontinuous (in β) objective
functions, so that that rank-based estimators for binary response and single-
index models proposed by Han (1987) and Cavanagh and Sherman (1998) might
be extended to permit partially linear and selection models. Finally, it would
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be useful to combine the proposed coefficient estimators with nonparametric
estimation techniques to more fully characterize the conditional distribution of
the dependent variable yi (or perhaps the latent dependent variable y∗i ) given xi

and/orwi ,which in turn could be used to average derivatives or treatment effects
for target populations. At a minimum, such an extension would likely involve
explicit nonparametric estimation of the partially linear component function
g(wi ) or g(w′

iγ 0), and perhaps of the distribution of error terms for some of
the nonlinear models, problems which have been sidestepped in our focus on
estimation of the β coefficients.
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APPENDIX: THE MOST DULL DERIVATIONS

Proof of Lemma 5. By the definitions of t(·) and �t (·),

p0n
(
γ 0, β

) = E

[
1

hL
K

(
wiγ 0 − w jγ 0

h

)
t
(
vi , v j , β

)]
= E

[
1

hL
K

(
wiγ 0 − w jγ 0

h

)
E
[

t
(
vi , v j , β

)∣∣ (vi , wi ) , w
′
jγ 0

]]
= E

[
1

hL
K

(
wiγ 0 − w jγ 0

h

)
kt
(
vi , w
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jγ 0, β

)]
= E
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1

hL
K

(
wiγ 0 − ω

h

)
kt (vi , ω, β) fwiγ 0

(ω) dω

]
= E

[∫
K (η) �t

(
vi , wiγ 0 − hη, β

)
dη

]
.

By Assumption 3.10(1), we can differentiate under the expectation and integral:

pβ

0n

(
γ 0, β0

) = E

[∫
K (η) �(3)

t

(
vi , wiγ 0 − hη, β0

)
dη

]
→ E

[
�

(3)
t

(
vi , wiγ 0, β0

)]
,

where the limit follows from dominated convergence.
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Proof of Lemma 6. Recall that

p0n (γ , β) = E

[
1

hL
K

(
wiγ − w jγ

h

)
t
(
vi , v j , β

)]
.

By Assumptions 3.3 and 3.10 (2), we can differentiate under the expectation:

pγ

0n (γ , β) = E

[
1

hL
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(
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h

)
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i − w′
j

h
t
(
vi , v j , β

)]
.

Evaluating this at
(
γ 0, β0

)
, we get
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1
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.

With the definitions of kt1 and �t1 , and using integration by parts, we have

pγ

0n

(
γ 0, β0

)
= E

[∫
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,

where the limit follows from dominated convergence.

Proof of Lemma 8. Write

p1n
(
zi ; γ 0, β0

) = rn (zi )− E [rn (zi )]

and

p1 (zi ) = �t
(
zi , w

′
iγ 0, β0

)− E
[
�t
(
zi , wiγ 0, β0

)]
,
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where

rn (zi ) = E
[
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The right-hand side has mean 0 and variance
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where g is the function in Assumption 3.10 (3).

Proof of Lemma 7. For the duration of this proof, let p1n denote one of the
elements of p1n . By definition of p1n and by random sampling, the mean of the
left-hand side is 0, while the variance is

E
[(

p1n
(
zi ; γ 0, βh

)− p1n
(
zi ; γ 0, β0

))2]
≤ E

[∥∥∥pβ

1n

(
zi ; γ 0, β

∗
i

)∥∥∥2
] ∥∥βh − β0

∥∥2
,
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where β∗i is between βh and β0, but may depend on zi (hence the subscript i).
The result now follows from βh → β0.
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CHAPTER 23

Density Weighted Linear Least Squares
Whitney K. Newey and Paul A. Ruud

ABSTRACT

This paper considers inverse density weighted least-squares estimation for slope coefficients of in-
dex models. The estimator permits discontinuities in the index function while imposing smoothness
in the density of the regressors. We show consistency and asymptotic normality of the estimator
and give a consistent estimator of the asymptotic variance. We also consider asymptotic efficiency
and report results from a Monte Carlo study of the performance of the estimators.

1. INTRODUCTION

Several semiparametric methods for index models have been developed. In a
single index model, the conditional expectation of a dependent variable y given
a r × 1 vector of explanatory variables x is

E[y | x] = τ (x ′β0) (1.1)

for an unknown vector of parameters β0 and an unknown univariate func-
tion τ (·). This model is implied by many important limited dependent vari-
able and regression models, as discussed in Ruud (1986) and Stoker (1986).
Consistent estimators for β0, up to an unknown scale factor, are given by
Ruud (1986), Stoker (1986), Powell, Stock, and Stoker (1989), Ichimura (1993),
and others.

In this paper, we return to a type of estimator developed by Ruud (1986).
He proposed an inverse density weighted quasi–maximum likelihood estimator.
We consider least-squares estimation that is weighted by the ratio of a density
with a linear conditional expectation (LCE) property and compact support to a
kernel estimator of the true density. The LCE is that the conditional expectation
given any linear combination is a linear function of the linear combination. We
give conditions for

√
n consistency and asymptotic normality of the estimator,

and derive a consistent estimator for the asymptotic variance. We also show
that the first-order conditions for the scaled least-squares coefficients have a

This paper was presented at the 2001 Symposium on Identification and Inference in Econometrics,
University of California, Berkeley. The NSF supported the research for this paper.
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form analogous to the efficient score for an index model. This form is used to
suggest ways to choose weights that have high efficiency.

Among the semiparametric index estimators, the inverse density weighted
least-squares (DWLS) estimator is unique because it permits discontinuities in
the transformation τ . Discontinuities in the conditional expectation of depen-
dent variables arise in such economic problems as optimization over nonlinear
budget sets and production frontiers. In labor supply, for example, nonconvex-
ities in the budget frontier caused by welfare programs imply discontinuities
in the desired hours of work. If there is no unobserved heterogeneity, these
discontinuities translate into discontinuities in the conditional expectation of
hours given socioeconomic covariates that control for observable heterogene-
ity. The estimators that we consider in this paper accommodate such breaks
when the index model is linear. In contrast, the average derivative estimators
of Stoker (1986) and Powell et al. (1989) and the kernel regression estimators
of Ichimura (1993) all require that τ be differentiable. Thus, the results of this
paper provide a way of estimating index parameters in nonsmooth cases that
have previously been ruled out.

2. THE ESTIMATOR

Our estimator is based on the idea of Ruud (1986). Suppose that the density of
x has LCE (that the conditional expectation of x given any linear combination
of x is linear in that combination). Ruud (1986) shows that in this case quasi–
maximum likelihood estimation (QMLE) is consistent for β0, up to scale. He
exploits this property by multiplying the quasi-likelihood function by the ratio
of a LCE density to a nonparametric estimator of the true density of x . The
resulting QMLE is consistent for slope coefficients, because the “reweighting”
has the effect of making the limit the same as if the regressor density were the
LCE density.

In this paper we focus on weighted least-squares estimators, because they
are particularly simple to compute. To describe the estimator, let θ denote a
parameter vector and f (x, θ ) a density with LCE for all θ and with compact
support (that can depend on θ ). In particular, f (x, θ ) could be an elliptically
symmetric density, which is known to have the LCE. Let θ̂ denote an estimator
of some value θ0 of the parameter vector. For a kernel K (u), satisyfing properties
to be specified later, and a bandwidth parameter λ, let

ĥ(x) = 1

n

n∑
i=1

Kλ(x − xi ), Kλ(u) = λ−r K (u/λ),

where r is the dimension of x . This ĥ(x) is a kernel density estimator. For
X = (1, x ′)′, a DWLS estimator is obtained as

γ̂ =
(

n∑
i=1

ŵi Xi X ′
i

)−1 n∑
i=1

ŵi Xi yi , ŵi = ĥ(xi )
−1 f (xi , θ̂ ),

where the data observations are indexed by i = 1, . . . , n.
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The limit of this estimator behaves as if x had density f (x, θ0). Thus, by
Ruud (1986), we know that the coefficients of x in γ̂ are consistent for β0,
up to a common scale factor. The density f (x, θ ) is required to have com-
pact support in order to deal with the technical problem that ĥ(x)−1 could be
large for outlying values of x . Also, the parameter estimates θ̂ are present
in order to allow for centering the location and scale of the density. Fur-
thermore, allowing for θ̂ can be important for efficiency, as discussed in
Section 5.

The kernel K (u) will be assumed to satisfy
∫

K (u)du = 1, have a com-
pact support, and satisfy other regularity conditions given below. In prac-
tice the kernel should generally include a scale normalization, where K (u) =
det(�̂)−1/2 p(�̂−1/2u) for a kernel p(u) and �̂ equal to the sample variance of
xi . For simplicity we restrict K (u) to be nonrandom in the theory.

We explicitly allow for twicing kernels, which take the form

K (u) = 2k(u)−
∫

k(u − v)k(v) dv,

where k(u) is a kernel with
∫

k(u)du = 1. Such a K (u) has the small bias
property (SBP) considered by Newey, Hsieh, and Robins (2000). The SBP
means that the bias of DWLS is asymptotically smaller than the bias of a kernel
estimator based on k(u), without any additional smoothness conditions on the
density h(x).

To explain why twicing kernels have the SBP, we consider a dominating bias
term in an asymptotic expansion of the estimator. As discussed in Newey and
McFadden (1994) and Newey et al. (2000), after a linearization and centering
at expectations, a dominating bias term is given by

Bλ = E

[∫
v(x){ĥ(x)− h0(x)} dx

]
=
∫

v(x)

{∫
K (u)[h0(x − λu)− h0(x)

}
du dx,

where v(x) is some function of x that is here given by v(x) =
−X f (x, θ0)E[y|x]/h0(x). Define vλ(x) = ∫ k(u)v(x − λu) du and hλ(x) =∫

k(u)h0(x − λu) du. Assuming that the kernel k(u) is symmetric, so that
k(u) = k(−u), changing variables gives∫ ∫ ∫

v(x)k(u − t)k(t)h0(x − λu) dt du dx

=
∫ ∫ ∫

v(x)k(v)k(t)h0(x − λt − λv) dt dv dx

=
∫

vλ(x)hλ(x) dx,∫ ∫
v(x)hλ(x) dx =

∫ ∫
vλ(x)h0(x) du dx .
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Then by the form of the twicing kernel,

Bλ = −
∫

v(x)h0(x) dx +
∫

vλ(x)h0(x) dx

+
∫

v(x)hλ(x) dx −
∫

vλ(x)hλ(x) dx

= −
∫

[vλ(x)− v(x)][hλ(x)− h0(x)] dx .

Now, each of vλ(x)− v(x) and hλ(x)− h0(x) are pointwise biases from kernel
estimation using k(u). Thus we see that Bλ is minus the integral of the prod-
uct of pointwise biases for v(x) and h0(x) corresponding to k(u). Since these
pointwise biases will go to zero as λ shrinks to zero, for small λ we have Bλ

smaller in magnitude than the pointwise density bias hλ(x)− h0(x). This is
the SBP mentioned earlier. The SBP even holds when v(x) is not continuous,
although the bias reduction is smaller in that case. These theoretical properties
are consistent with our Monte Carlo results reported in Section 6.

The estimator that will be consistent for β0 up to scale is the vector of
coefficients of x that appear in γ̂ . A convenient way to normalize the scale is
to suppose that the first coefficient in β0 is 1 (which is just a normalization
as long as it is nonzero). Partition γ = (γ 1, δ

′) and γ̂ = (γ̂ 1, δ̂
′
)′ conformably,

where γ 1 is a scalar (coefficient of the constant) and δ is an r × 1 vector (the
coefficients of x). Also, partition β = (β1, β

′
2)′ and δ = (δ1, δ

′
2)′ conformably,

where β1 is a scalar, so that the dimension of β2 is r − 1. The true value of
β1 is 1, by our scale normalization. An estimator of β2 that includes this scale
normalization is then

β̂2 = δ̂2/δ̂1.

That is, β̂2 is the ratio of the coefficients in γ̂ of all the regressors except the
first one to the first regressor coefficient.

An important practical problem is the choice of bandwidth λ. For standard
kernels the regularity conditions for

√
n consistency will require thatλbe chosen

to be smaller than the value that would minimize the asymptotic mean square
error of ĥ, a feature that is often referred to as “undersmoothing.” Thus, for
standard kernels, choosing the bandwidth from cross-validation, or any other
method that minimizes the asymptotic mean square error (MSE), will not lead
to
√

n consistency of γ̂ . For twicing kernels, undersmoothing is not needed,
because of the SBP. Thus, a bandwidth that minimizes the MSE for a kernel
estimator based on k(u) can lead to

√
n consistency. However, even with twicing

kernels, such a bandwidth may not be optimal for the weighted least-squares
estimator. One could derive a bandwidth that minimizes the MSE of DWLS,
but it is beyond the scope of this paper to do so. A practical choice would be to
use cross-validation and check the sensitivity of DWLS to bandwidth, focusing
on smaller bandwidth values in the case of a standard kernel.
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3. ASYMPTOTIC VARIANCE ESTIMATION

The estimator is a weighted least-squares estimator with an estimated weight.
In our case, where the conditional expectation (1.1) is not linear, estimation
of the weights will affect the limiting distribution, complicating asymptotic
variance estimation. There are two sources of variability in the weights, the
nonparametric density estimator in the denominator and the θ̂ estimator in the
numerator. Both sources will affect the asymptotic variance of γ̂ , but the asymp-
totic variance of β̂2 will only be affected by estimation of the denominator (the
true density). This simplification follows from Newey and McFadden (1993,
Theorem 6.2), which says that the asymptotic variance of β̂2 is not affected by
estimation of θ if the limit of θ̂ does not affect the limit of β̂2. Here, β̂2 will
be consistent no matter what the limit of θ̂ is, because of LCE of f (x, θ ) for
all θ .

In most cases the parameters of interest are β2, so that estimation of θ̂ can be
ignored in the asymptotic variance. To avoid additional complication, we will
focus on this case and derive an estimator of the asymptotic variance of β̂2. We
prove its consistency below.

An estimator of the asymptotic variance of β̂2 can be constructed as follows.
Let

ĝ(x) =
n∑

i=1

yi Kλ(x − xi )

ĥ(x)

be a kernel estimator of E[y | x]. Define

Ĵ ≡ δ̂
−1
1 [0r−1,−β̂2, Ir−1]

Q̂ ≡ 1

n

n∑
i=1

ŵi Xi X ′
i

�̂ ≡ 1

n

n∑
i=1

ŵ2
i Xi X ′

i [yi − ĝ(xi )]
2,

where 0r−1 is an (r − 1)-dimensional column vector of zeros and Ir−1 is an
(r − 1)-dimensional identity matrix. Then a consistent estimator of the asymp-
totic variance of

√
n(β̂2 − β20) will be

V̂ = Ĵ ′ Q̂−1�̂ Q̂−1 Ĵ . (3.1)

This estimator can be interpreted as being obtained by combining the delta
method with an asymptotic variance estimator for γ̂ . Here Ĵ is the Jacobian
of the transformation from γ̂ to β̂2, while Q̂−1�̂ Q̂−1 is an estimator for the
asymptotic variance of γ̂ that ignores estimation of θ0. Consistency of this
estimator of the asymptotic variance will be shown in Section 4.

The form of this estimator can be motivated by deriving the asymp-
totic variance of γ̂ , assuming that θ̂ = θ0. Let h0(x) denote the density of
x , w(x) = f (x, θ0)/h0(x), and γ 0 = Q−1 E[w(x)X y] be the limit of γ̂ , for
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Q = E[w(x)X X ′]. Then, for u = y − X ′γ 0,

√
n(γ̂ − γ 0) = 1√

n
Q̂−1

n∑
i=1

ŵi Xi ui . (3.2)

Under appropriate regularity conditions, the first term will have limit Q−1, and
so the asymptotic variance of γ̂ will be Q−1�Q−1, where � is the asymptotic
variance of

∑n
i=1 ŵi Xi ui/

√
n. To derive � we need to account for the presence

of the nonparametric density ĥ. This can be done by using the general results of
Newey (1994a, Proposition 5) on the effect of nonparametric density estimation.
There it is shown that for a function m(z, h) of a random variable z and a
scalar h, any nonparametric density estimator ĥ(x) satisfying certain regularity
conditions, and the true density h0(x),

n∑
i=1

m(zi , ĥ(xi ))/
√

n =
n∑

i=1

{m(zi , h0(xi ))

+ D(xi )h0(xi )−E[D(x)h0(x)]}/√n + op(1),

D(x) = E[∂m(z, h)/∂h|h=h0(x)|x].

To apply this result let m(z, h) = f (x, θ0)Xu/h, so that

D(x) = E
[

f (x, θ0)Xu∂h−1/∂h|h=h0(x)|x
]

= −E
[

f (x, θ0)Xu/h0(x)2|x]
= −h0(x)−1w(x)X E[u|x]

= −h0(x)−1w(x)X{E[y|x]− X ′γ 0}.
Also, by the population least-squares first-order conditions, E[D(x)h0(x)] =
−E[w(x)Xu] = 0. Therefore,

n∑
i=1

ŵi Xi ui/
√

n =
n∑

i=1

{w(xi )Xi ui + D(xi )h0(xi )}/
√

n + op(1)

= 1√
n

n∑
i=1

w(xi )Xi {yi − E[yi | xi ]} + op(1). (3.3)

This equation is given precise justification in Lemma 4.1. From this equation and
the central limit theorem, the asymptotic variance of the term

∑n
i=1 ŵi Xi ui/

√
n

will be � = E[w(x)2 X X ′{y − τ (x ′β0)}2] when θ̂ = θ0. The estimator �̂ that
appears in V̂ is simply a sample analog of �, where w(x) and E[y | x] have
been replaced by estimators.

It is interesting to note that estimation of the density has the effect of low-
ering the asymptotic variance of the estimator. If the estimated density in the
denominator were replaced by the true density, then � in the asymptotic vari-
ance would be replaced by the variance of w(x)Xu. Because � is the variance
of w(x)Xu − E[w(x)Xu | x], it is smaller in the positive semidefinite sense
than the variance of w(x)Xu. An analogous result is known to hold in other
settings.
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4. ASYMPTOTIC THEORY

This section presents regularity conditions for asymptotic normality and consis-
tency of the asymptotic variance estimator. We first derive a useful intermediate
result, on the asymptotic distribution of a sample average that is weighted by
the inverse of a kernel density estimator. This result justifies the asymptotic
variance calculation given in Section 3.

To obtain results it is useful to impose certain conditions on the kernel, the
density, and the bandwidth.

Assumption 4.1. K (v) is Lipschitz, zero outside a bounded set,
∫

K (v) dv = 1,
and there is a positive integer s such that for all r-tuples of nonnegative integers
( j1, . . . , jr ) with

∑r
�=1 j� < s,∫ (

v
j1
1 v

j2
2 · · · v jr

r

)
K (v)dv = 0.

The bounded support condition for the kernel is imposed here to keep the
conditions relatively simple. The last condition requires that the kernel be a
higher-order (bias-reducing) kernel of order s. It helps ensure that the bias of
the kernel estimator is small relative to variance. We will give some conditions
on s. These will require that K (v) be a higher-order kernel (with s ≥ 2). The
next condition imposes smoothness on the density h0(x).

Assumption 4.2. There is a nonnegative integer d ≥ s and a version of the
density h0(x) of x that is continuously differentiable to order d with bounded
derivatives on Rr .

This condition is used in conjunction with Assumption 4.1 to control the
bias of the estimator. It rules out cases where the density of x and its deriva-
tives are nonzero on the boundary of the support by requiring smoothness
everywhere.

An important intermediate result concerns the effect of density estimation
on the asymptotic variance. We will show that for any function a(z) satisfying
certain regularity conditions,

1√
n

n∑
i=1

[
ĥ(xi )

−1 − h0(xi )
−1
]

a(zi )

= − 1√
n

n∑
i=1

{
E[a(z)|xi ]

h0(xi )
− E

[
a(z)

h0(x)

]}
+ op(1). (4.1)

The term following the equality is a “correction term” for the estimation of the
density. Equation (3.3) is a special case with a(z) = f (x, θ0)Xu. The validity
of this result depends on certain smoothness conditions being satisfied. With a
twicing kernel some tradeoff between smoothness of h0(x) and smoothness of
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E[a(z)|x] is allowed, whereas with other kernels the density h0(x) must bear
all the smoothness requirements. The next two assumptions correspond to these
cases.

Assumption 4.3. E[a(z)|x] is bounded on X and continuous in x on a set
of full Lebesgue measure. Also, λ = λ(n) such that

√
nλr/ ln(n) →∞ and√

nλs → 0.

This condition implies that s > r , so that the order of the kernel and the
degree of differentiability of the density must be larger than the dimension of
x . With a twicing kernel it is possible to weaken this smoothness requirement
at the expense of imposing another smoothness condition.

Assumption 4.4. K (u) = 2k(u)− ∫ k(u − v)k(v) dv for k(u) satisfying As-
sumption 4.1, E[a(z)|x] is continuously differentiable of order t ≤ s, and
λ = λ(n) such that

√
nλr/ ln(n) →∞ and

√
nλs+t → 0.

Here only the sum s + t of the number of derivatives of h0(x) and E[a(z)|x]
that exist must be greater than the dimension. With either one of these assump-
tions, we obtain the expansion in Equation (4.1).

Lemma 4.1. If Assumptions 4.1, 4.2, and either 4.3 or 4.4 are satisfied, a(z) = 0
except on a compact set X , where h0(x) is bounded away from zero, and
E[‖a(z)‖4] <∞, then equation (4.1) is satisfied.

For a(z) = f (x, θ0)Xu, the conclusion of this result implies the limiting
distribution result sketched in Section 3. Also, this result may be useful for
other semiparametric estimators that depend on averages that are weighted by
an inverse kernel density.

Some additional conditions are useful for showing asymptotic normality of
the estimator from Section 2. The next condition imposes some requirements
on the LCE density f (x, θ ). Let C(θ ) denote the closure of { f (x, θ ) �= 0} and
θ0 the probability limit of θ̂ .

Assumption 4.5. C(θ0) is bounded, h0(x) > 0 for x ∈ C(θ0), C(θ ) is a contin-
uous correspondence for θ in a neighborhood � of θ0, f (x, θ ) is twice differ-
entiable in θ with derivatives continuous in (x, θ ), and

√
n(θ̂ − θ0) = Op(1).

This assumption, which restricts the density h0(x) to be bounded away from
zero where f (x, θ0) is positive (the set C(θ0)), is extremely useful. It negates the
“denominator problem” that would be present if the density of x were allowed
to approach zero. This is a type of fixed trimming that is theoretically more
convenient than trimming that is relaxed as the sample size grows. Also, it may
have the practical advantage of reducing outlier problems.

The final condition imposes conditions on y and X .
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Assumption 4.6. E[y4] <∞ and Q = E[w(x)X X ′] is nonsingular.

These conditions lead to the following asymptotic representation for γ̂ .

Theorem 4.1. If Assumptions 4.1, 4.2, 4.5, 4.6, and either 4.3 or 4.4 are satisfied
for a(z) = f (x, θ0)Xu, then

√
n(γ̂ − γ 0) = 1√

n
Q−1

n∑
i=1

w(xi )Xi {yi − E[yi | xi ]}

+ Q−1 E

[
Xu

h0(x)

∂ f (x, θ0)

∂θ ′

]√
n(θ̂ − θ0)+ op(1).

The asymptotic distribution of β̂2 now follows in a straightforward way.

Theorem 4.2. If Assumptions 4.1, 4.2, 4.5, 4.6, and either 4.3 or 4.4 are satisfied
for f (x, θ0)Xu, δ10 �= 0, and f (x, θ ) has the LCE for all θ in a neighborhood
of θ0, then

√
n(β̂2 − β20)

d−→ N (0, J ′Q−1�Q−1 J ).

The last result that remains to be proved is the consistency of the asymptotic
variance estimator.

Theorem 4.3. If Assumptions 4.1, 4.2, 4.5, 4.6, and either 4.3 or 4.4 with
a(z) = f (x, θ0)Xu are satisfied and δ10 �= 0, then

Ĵ ′ Q̂−1�̂ Q̂−1 Ĵ
p−→ J ′Q−1�Q−1 J.

5. ASYMPTOTIC EFFICIENCY

The asymptotic efficiency of the estimator can be evaluated by comparing
its asymptotic variance with the semiparametric variance bound for the index
model of Equation (1.1). It follows from the analysis of Section 4 that the asymp-
totic variance of

√
n(β̂2 − β20) is V = J ′Q−1�Q−1 J for J = δ−1

10 [0,−β20, I ].
It is straightforward to derive a more convenient expression, as in V = E[ψψ ′],
where v = x ′β0,

ψ = δ−1
10 {Ew[Varw(x2 | v)]}−1w(x) [x2 − Ew(x2 | v)] [y − τ (v)],

(5.1)

δ10 = Cov(τ (v), v)/Var(v). (5.2)

and Ew[·] ≡ E[w(x)(·)]. Details of this derivation are given in Lemma A.2 in
the Appendix. By way of comparison, the semiparametric variance bound for
estimators of β̂2, as given by Newey and Stoker (1993), is V ∗ = E[ψ∗ψ∗′],
where

ψ∗ = {Eσ [Varσ (τ vx2 | v)]}−1 σ (x)−2τ v(v) [x2 − Eσ (x2 | v)] [y − τ (v)]

(5.3)
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and σ 2(x) = Var(y | x),

Eσ [·] ≡ E
[
(·)/σ 2(x)

]
E
[
1/σ 2(x)

] ,
and τ v(v) = dτ (v)/dv (assuming differentiability holds).

The formulas (5.1) and (5.3) are analogous but fundamentally different.
First of all, the weight w(x) in Ew[·] is replaced by 1/σ 2(x). The weighting
by 1/σ 2(x) in the variance bound accounts for heteroskedasticity, while the
weighting by w(x) is necessary for consistency of the DWLS estimator. In
addition, the efficiency bound contains the Jacobian term τ v(x ′β0), which is
not present in the DWLS case, effectively replacing x2 with τ vx2, while the
DWLS estimator also depends on δ10.

Some of the differences in the influence function can be accounted for by
extending this analysis to nonlinear least squares. A nonlinear version of DWLS
could be obtained as

γ̂ = arg min
γ

n∑
i=1

ŵi [yi − t(X ′
iγ )]2,

for some known function t(r ). It will then follow, as in Ruud (1986), that γ̂ con-
verges in probability to (γ 10, δ10(1, β ′0))′, (γ 10, δ10) = arg minγ ,δ E[w(x){y −
t(γ + δv)}2]. If t(γ 10 + δ10v) = τ (v), then ψ would be the same as ψ∗ except
that w(x) replaces σ (x)−2 in the influence function of DWLS.

Accounting for the differences betweenψ and the efficient influence function
due to the presence of w(x) rather than 1/σ 2(x) is more problematic. For
example, when σ 2(x) is constant, then choosing w(x) = 1 would eliminate this
difference between the influence functions, but this is not possible when h0(x)
does not have the LCE. These comparisons do indicate that efficiency might be
improved by choosing f (x, θ̂ ) so that w(x) is close to 1/σ 2(x). In particular,
if σ 2(x) does not vary too much, it seems wise to choose f (x, θ̂ ) so that its
location and scale match those of xi , as can be done by including location and
scale parameters in θ̂ .

6. MONTE CARLO EXPERIMENTS

Ruud (1986) performed a simple Monte Carlo experiment to illustrate the use
of density DWLS. We repeat that experiment here to consider the small sample
properties of the estimators. The data were generated as follows. Two explana-
tory variables were drawn from a mixture of normal distributions:

h(x1, x2) = φ(x1 − 1/2)φ(2x2)+ φ(x2 + 1/2)φ(2x1),

where φ is the standard normal pdf. In this way, positive x1 tend to coincide
with small x2 and negative x2 tend to coincide with small x1. The dependent
variable was generated by

y = exp(x1 + x2 + u), (6.1)
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x

x

Figure 23.1. Contour plot of joint density of x1 and x2.

where u had a uniform distribution on [−1/2, 1/2]. Because the exponential
function is convex, the OLS estimator for the linear regression of y on x1, x2, and
a constant will overstate the relative effect of x1 compared to the effect of x2.

Level sets for the joint pdf for x1 and x2 are pictured in Figure 23.1. Despite
the mixture of two normals, the joint density remains unimodal and does not
appear to be strangely idiosyncratic. The conditional expectation of x2 given
x1 + x2 is pictured in Figure 23.2. This function has a slight convexity, but not
a dramatic one. This convexity will cause the OLS estimator to be inconsistent
for the ratio of the slope parameters. Figure 23.3 gives a plot of the pdf for
x ′β = x1 + x2 and the bounds on y conditional on x ′β from the data-generating
process. There is substantial heteroskedasticity, with the variance increasing in
the most informative region of the x ′β domain.

Table 23.1 holds the results of a Monte Carlo experiment for this data-
generating process. The rows of this table contain the sample statistics of four
different estimators: the ordinary least-squares fit (OLS) of y on a constant, x1,
and x2; the weighted least-squares estimator (WLS) using infeasible weights
containing the exact population density h; a feasible density weighted least-
squares estimator (twicing) that uses a twicing kernel where k(u) is the density
of N (0, 1) to estimate h; and a feasible density weighted least-squares estimator
(kernel) that uses a standard kernel density estimator, with Gaussian kernel,
for ĥ.

We used two pdf’s for the elliptically symmetric pdf f (x, θ̂ ). In both cases,
we centered and rescaled the xi to have sample means equal to zero and a sample
variance–covariance matrix equal to the identity matrix. Thus, θ̂ contains the
sample mean vector x̄ and variance–covariance matrix �̂ of x . The first pdf was
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Figure 23.2. Conditional expectation of x2 given x1 + x2.

xβ x x

x
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×
β

Figure 23.3. y versus x ′β = x1 + x2.

a bivariate, standard normal, trimmed at a standard deviation from the mean
of
√

6:

f (x, θ̂ ) = 1

2π
exp

(
− (x − x̄)′ �̂−1 (x − x̄)

2

)
· 1{(x − x̄)′ �̂−1 (x − x̄) ≤ 6}.

(6.2)
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Table 23.1. Monte Carlo experiment results (smooth case)

Method Mean SD 10% Median 90%

Truncated Normal Density
n = 100, λ = 0.40
OLS 0.6113 0.1927 0.3953 0.5907 0.8409
WLS 0.9873 0.1597 0.7929 0.9744 1.1976
Twicing 0.8853 0.1190 0.7375 0.8809 1.0387
Kernel 0.8603 0.1170 0.7154 0.8564 1.0127

n = 200, λ = 0.35
OLS 0.5874 0.1405 0.4251 0.5773 0.7585
WLS 0.9922 0.1140 0.8498 0.9872 1.1409
Twicing 0.9070 0.0845 0.8009 0.9045 1.0158
Kernel 0.8767 0.0815 0.7741 0.8751 0.9814

n = 400, λ = 0.30
OLS 0.5767 0.1013 0.4552 0.5713 0.7001
WLS 0.9973 0.0818 0.8963 0.9922 1.1044
Twicing 0.9287 0.0610 0.8522 0.9267 1.0089
Kernel 0.8973 0.0585 0.8226 0.8960 0.9745

Quartic Density
n = 100, λ = 0.40
OLS 0.6113 0.1927 0.3953 0.5907 0.8409
WLS 0.9940 0.1397 0.8219 0.9873 1.1741
Twicing 0.9123 0.1136 0.7712 0.9079 1.0579
Kernel 0.8861 0.1107 0.7483 0.8827 1.0288

n = 200, λ = 0.35
OLS 0.5874 0.1405 0.4251 0.5773 0.7585
WLS 0.9963 0.0982 0.8713 0.9938 1.1236
Twicing 0.9334 0.0785 0.8348 0.9324 1.0351
Kernel 0.9011 0.0755 0.8060 0.9004 0.9979

n = 400, λ = 0.30
OLS 0.5767 0.1013 0.4552 0.5713 0.7001
WLS 0.9991 0.0691 0.9136 0.9965 1.0902
Twicing 0.9532 0.0542 0.8850 0.9522 1.0233
Kernel 0.9193 0.0518 0.8534 0.9181 0.9858

The second pdf was proportional to a quartic function:

f (x, θ̂ ) ∝
(

1− (x − x̄)′ �̂−1 (x − x̄)

6

)2

· 1{(x − x̄)′ �̂−1 (x − x̄) ≤ 6}.

(6.3)

This pdf has the same support as the trimmed normal but approaches zero at
the boundary of the support.
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We report the results using various bandwidth parameters λ and sample sizes
n. The bandwidth parameters were chosen as the approximate values that give
the smallest bias in our estimators for each sample size. In these experiments,
these bandwidth values are roughly the same for comparable estimators. For
brevity we report only the outcomes for three bandwidth and sample size pairs.
The columns of the table contain the sample mean, the sample standard devi-
ation (SD), the first decile (10%), the median, and the last decile (90%) of the
simulated estimators.

The extent of the inconsistency of OLS is shown in the first row of Table 23.1.
For 100 observations, and 10,000 Monte Carlo replications, the average ratio
of β2/β1 is 0.61. As expected, the relative importance of x2 is diminished by
its association with small values of x ′β. The prediction of asymptotic approxi-
mation that a feasible DWLS estimator has smaller dispersion holds, but there
is some bias in the feasible estimators. The kernel estimator exhibits more bias
than the twicing estimator, showing that the anticipated bias-reduction holds in
this example.

The first panel of results, corresponding to sample sizes of 100, 200, and
400, confirm that the bias in the feasible DWLS estimators falls as the sam-
ple size increases. The best bandwidth also falls as the sample grows. The
second panel of results differs from the first in the numerator density em-
ployed. A comparison of the two panels shows that the quartic pdf (6.3) yields
a smaller bias than the truncated normal pdf (6.2). This may be due to the
smooth way in which the quartic pdf approaches zero on the boundary of its
support.

The DWLS estimators apply to discontinuous τ functions, whereas most
estimators do not. We ran a second experiment to investigate the success of
DWLS with such functions. Using the same explanatory variables as in the first
experiment, we changed (6.1) to

y = 1 {x1 + x2 > 1} + u,

where u is normally distributed with a mean of zero and standard deviation
of 0.2. In words, the data-generating process of y is a mixture of N (0, 0.04)
and N (1, 0.04) distributions, with the mean determined discretely by x1 +
x2. The Monte Carlo results from 10,000 replications of data sets appear in
Table 23.2.

In this experiment, the OLS estimator (regressing y on a consant and the two
xs) averaged 0.64 compared to the true ratio β2/β1 = 1, with a standard devi-
ation of 0.20. The results for the DWLS estimators are qualitatively similar to
the previous experiment: the infeasible DWLS estimator appears to be unbiased
and its sampling variance is greater than its feasiable counterparts; the twicing
estimator has less bias than the standard kernel estimator; the bias falls with
sample size; and the quartic pdf yields a smaller bias than the truncated normal
pdf. However, the bias in these estimators is larger than for the continuous case,
and the sampling variances are larger.
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Table 23.2. Monte Carlo experiment results (discontinuous case)

Method Mean SD 10% Median 90%

Truncated Normal Density
n = 100, λ = 0.40
OLS 0.6445 0.2022 0.4046 0.6277 0.9063
WLS 1.0268 0.4127 0.6288 0.9678 1.4698
Twicing 0.8719 0.2518 0.5820 0.8466 1.1873
Kernel 0.8273 0.2424 0.5472 0.8057 1.1254

n = 200, λ = 0.35
OLS 0.6394 0.1353 0.4736 0.6325 0.8127
WLS 1.0120 0.2393 0.7330 0.9869 1.3188
Twicing 0.8984 0.1634 0.7018 0.8873 1.1090
Kernel 0.8470 0.1553 0.6588 0.8369 1.0465

n = 400, λ = 0.30
OLS 0.6328 0.0941 0.5150 0.6301 0.7545
WLS 1.0030 0.1637 0.8068 0.9884 1.2145
Twicing 0.9230 0.1125 0.7846 0.9157 1.0698
Kernel 0.8705 0.1067 0.7390 0.8652 1.0090

Quartic Density
n = 100, λ = 0.40
OLS 0.6490 0.1980 0.4143 0.6313 0.9027
WLS 1.0346 0.3755 0.6392 0.9812 1.4880
Twicing 0.8990 0.2750 0.5920 0.8706 1.2347
Kernel 0.8508 0.2633 0.5539 0.8230 1.1751

n = 200, λ = 0.35
OLS 0.6380 0.1358 0.4716 0.6294 0.8155
WLS 1.0166 0.2390 0.7401 0.9906 1.3251
Twicing 0.9160 0.1737 0.7102 0.9023 1.1339
Kernel 0.8603 0.1659 0.6630 0.8481 1.0729

n = 400, λ = 0.30
OLS 0.6344 0.0949 0.5157 0.6309 0.7571
WLS 1.0064 0.1626 0.8096 0.9939 1.2205
Twicing 0.9390 0.1171 0.7966 0.9319 1.0917
Kernel 0.8824 0.1121 0.7438 0.8762 1.0277

APPENDIX: PROOFS

We first give a result showing that the LCE holds for a spherically symmetric
density.

Lemma A.1. Let x ∼ f [(x − µ)′A−1(x − µ)] be a random variable with
an elliptically symmetric (about µ) pdf. If E [‖x‖] exists, then E(x | δ′x) =
α0 + α1δ

′x.
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Proof. Let B = δ(δ′Aδ)−1δ′ and b = δ′x . According to the orthogonal decom-
position,

A−1 = (I − B A)(A − AB A)−(I − AB)+ B,

where (A − AB A)− denotes a generalized inverse of A − AB A. We can write

(x − µ)′A−1(x − µ) = (b − δ′µ)′(δ′Aδ)−1(b − δ′µ)

+ (x − γ )′(A − AB A)−(x − γ ),

where

γ ≡ µ+ Aδ(δ′Aδ)−1(b − δ′µ).

Therefore the conditional distribution of x given δ′x = b is symmetric around
the point µ+ Aδ(δ′Aδ)−1(b − δ′µ). Under existence of E[‖x‖], implying ex-
istence of the conditional expectation, the result follows with α0 = µ− ABµ

and α1 = Aδ(δ′Aδ).

Lemma A.2. If Assumptions 4.1, 4.2, 4.5, 4.6, and either 4.3 or 4.4 are satisfied
for a(z) = f (x, θ0)Xu, then the asymptotic variance of β̂2 is V = E[ψψ ′] for
ψ in Equation (5.1).

Proof. Note that X ′γ = γ 1 + vδ1 + δ10x ′2π2, where v = x ′β0 and π2 = (δ2 −
β20δ1)/δ10. Let π̂2 be the coefficient of δ10x2 in the inverse density weighted
least-squares regression of y on (1, v, δ10x ′2). By the usual least squares prop-
erty, π̂2 = (δ̂2 − β20δ̂1)/δ10. Noting that π̂2 is just a linearization of β̂2, the
delta method implies that the asymptotic variance of β̂2 is the same as ν̂2.
Let Ew[·] = E[w(x)(·)] denote the expectation when the pdf of x is f (x, θ0).
Then by elliptical symmetry of f (x, θ0), the projection of δ10x2 on (1, v) equals
δ10 Ew[x2 | v]. Then Equation (5.1) follows by the the usual partial least-squares
formula.

Throughout the rest of the Appendix, C will denote a generic positive
constant (not depending on N ) that may be different in different uses, and∑

i =
∑n

i=1. The outline of the Appendix is that some useful lemmas will first
be given, and then the results in the body of the paper proven.

Proof of Lemma 4.1. Under Assumption 4.3 the proof proceeds by verifying the
conditions of Lemmas 5.2 and 5.4 of Newey (1994a). Let X denote a compact
set where h0(x) is bounded away from zero and a(z) = 0 for x not in X , and
let ‖h‖ = supx /∈X |h(x)|. Also, let

m(z, h) = a(z)

h(x)
, D(z, h) = −a(z)h(x)

h0(x)2
,

A(x) = E[a(z) | x], m(h) = E[D(z, h)].
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Note that m(h) = ∫ ν(x)h(x) dx for ν(x) = −E[a(z) | x]/h0(x). Note that ν(x)
is continuous almost everywhere (with respect to Lebesgue measure), zero
outside the compact set X , and bounded. Therefore, by Assumptions 4.1
and 4.2, the conditions of Lemma 5.2 of Newey (1994a) are satisfied, so that
by its conclusion,

√
n[m(ĥ)− m(h0)] = 1√

n

∑
i

{ν(xi )− E[ν(xi )]} + op(1). (A.1)

To show that this equation also holds under Assumption 4.4, we note that
by the Fubini theorem, for vλ(x) = ∫ v(x + λu) k(u) du and hλ(x) = ∫ h(x −
λu) k(u) du,

E[m(ĥ)]− m(h0)

=
∫

v(x)
∫

Kλ(x − w) h0(w) dw dx −
∫

v(x) h0(x) dx

=
∫

v(x)
∫

K (u) h0(x − λu) du dx −
∫

v(x) h0(x) dx

= 2
∫ ∫

v(x) h0(x − λu) k(u) du dx

−
∫ ∫ ∫

v(x) h0(x−λu) k(v) k(u − v) du dx−
∫

v(x) h0(x) dx

= −
∫

[vλ(x)− v(x)][hλ(x)− h(x)] dx .

By standard arguments, there is a compact set X̃ such that vλ(x)− v(x) and
hλ(x)− h(x) are zero outside X̃ , and for all x ∈ X̃ , |vλ(x)− v(x)| ≤ Cλt and
|hλ(x)− h(x)| ≤ Cλs . It then follows that |E[m(ĥ)]− m(h0)| ≤ Cλs+t . The
rest of Equation (A.1) then follows precisely as in the proof of Lemma 5.2 of
Newey (1994a).

To check the hypotheses of Lemma 5.4 of Newey (1994a), let � = �1 =
�2 = 0, so that the norm ‖h‖� of that result is ‖h‖ = supx∈X |h(x)|. Note
that D(z, h) is linear in h on the set where ‖h‖ <∞; for b(z) = ‖a(z)‖ and
‖h − h0‖ ≤ ε for ε small enough,

‖m(z, h)− m(z, h0)− D(z, h − h0)‖

≤ ‖a(z)‖
∣∣∣∣ 1

h(x)
− 1

h0(x)
+ h(x)

h0(x)2
− 1

h0(x)

∣∣∣∣
= b(z)

∣∣∣∣ 1

h0(x)2h(x)

∣∣∣∣ ∣∣h0(x)2 − 2h(x)h0(x)+ h(x)2
∣∣

≤ Cb(z) |h0(x)− h(x)|2
≤ Cb(z) ‖h0 − h‖2 ;

‖D(z, h)‖ ≤ C ‖a(z)‖ ‖h‖ and E[‖a(z)‖4] <∞; for ηn = [ln(n)/(nλr )]1/2 +
λs ,

√
nη2

n ≤ C[ln(n)/
√

n λr ]+√
nλ2s → 0, and

√
nλr → 0 by r > s. Then
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by the conclusion of Lemma 5.4 of Newey (1994a),

1√
n

∑
i

[m(zi , ĥ)− m(zi , h0)] = √
n[m(ĥ)− m(h0)]+ op(1).

The conclusion then follows by the triangle inequality.

The following Lemma is useful for proving Theorem 4.1.

Lemma A.3. If h0(x) is continuous and Assumption 4.5 is satisfied, then
there is ε > 0 and a compact set X such that h0(x) > 0 for all x /∈ X and
f (x, θ ) = 0, ∂ f (x, θ )/∂θ = 0, and ∂2 f (x, θ )/∂θ∂θ ′ = 0 for all x /∈ X and
‖θ − θ0‖ < ε.

Proof. By continuity of C(θ ) and h0(x), there is ε small enough that h0(x) > 0
for all x /∈ X , where X is the closure of ∪‖θ−θ0‖<εC(θ ). By continuity of
C(θ ), the set X is compact. Also, for any x /∈ X , f (x, θ ) = 0 for all θ

with ‖θ − θ0‖ < ε, so differentiating this identity at any such θ implies
∂ f (x, θ )/∂θ = 0 and ∂2 f (x, θ )/∂θ∂θ ′ = 0.

Proof of Theorem 4.1. For the compact set X of Lemma A.3.

sup
x∈X

∣∣ĥ(x)− h0(x)
∣∣ p
−→ 0

by Lemma B.3 of Newey (1994a). Then by h0(x) bounded away from zero
on X , ĥ(x) is bounded away from zero on X with probability approaching 1.
Also, for the ε of Lemma A.3,

∥∥θ̂ − θ0

∥∥ < ε with probability approaching 1,
so that for all x /∈ X , f (x, θ̄ ) = 0, ∂ f (x, θ̄ )/∂θ = 0, and ∂2 f (x, θ̄ )/∂θ∂θ ′, for
any θ̄ on the line joining θ̂ and θ0 (e.g., for θ̄ = θ̂ ). It then follows that with
probability approaching 1, by X bounded on X and f (x, θ ) Lipschitz in θ ,

max
i
|ŵi − wi | ≤ C sup

x∈X

[∣∣ f (x, θ̂ )
∣∣ ∣∣∣∣ 1

ĥ(x)
− 1

h0(x)

∣∣∣∣
+ 1

h0(x)

∣∣ f (x, θ̂ )− f (x, θ )
∣∣] p→ 0.

Then ‖Q̂ −∑i wi Xi X ′
i/n‖ ≤ C

∑
i |ŵi − wi | /n

p→ 0. Also, by the law of

large numbers,
∑

i wi Xi X ′
i/n

p−→ Q, and so by the triangle inequality,

Q̂
p→ Q.

Next, by a mean value expansion, for w̃i = f (xi , θ0)/ĥ(xi ),

1√
n

∑
i

ŵi Xi ui

= 1√
n

∑
i

w̃i Xi ui +
[

1

n

∑
i

Xi ui

ĥ(xi )

∂ f (xi , θ̄ )

∂θ ′

]
√

n(θ̂ − θ0).
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It follows similarly to the argument for Q̂
p−→ Q that the matrix in the square

brackets converges in probability to E[X u/h0(x) ∂ f (x, θ0)/∂θ ′]. It also fol-
lows by Lemma 4.1 that

1√
n

∑
i

w̃i Xi ui = 1√
n

∑
i

wi Xi ui − 1√
n

∑
i

wi Xi {E[yi | xi ]

− X ′
iγ 0} + op(1).

The conclusion then follows by the triangle inequality.

Proof of Theorem 4.2. By Theorem 4.1, the delta method, and the central
limit theorem, it sufficies to show that J ′Q−1 E[X u/h0(x) ∂ f (x, θ0)/∂θ ′] =
0. Let Q(θ ) = ∫ X X ′ f (x, θ ) dx and m(θ ) = ∫ X · E[y | x] f (x, θ) dx . By
boundedness of X , E[y | x], and f (x, θ ) on the set X of the proof of
Theorem 4.1, both Q(θ ) and m(θ ) are differentiable, and ∂m(θ0)/∂θ =
E[Xu/h0(x) ∂ f (x, θ0)/∂θ ′]. It follows by Q(θ0) = Q nonsingular that Q(θ )
is nonsingular for θ in a neighborhood of θ0. On this neighborhood of Q(θ),
let γ (θ ) = (γ 1(θ ), δ(θ )′)′ = Q(θ )−1m(θ ). Note that δ(θ ) is a continuous func-
tion of θ and δ(θ0) = δ0. Then by δ10 �= 0, there is an even smaller neigh-
borhood where δ1(θ ) �= 0. Let β2(θ ) = δ2(θ )/δ1(θ ). By spherical symmetry
of f (x, θ ), it follows, as in Ruud (1986), that β2(θ ) = β20. Differentiating
this identity gives 0 = J ′∂γ (θ0)/∂θ . Furthermore, differentiating the identity∫

X{E[y | x]− X ′γ (θ )} f (x, θ ) dx = 0 with respect to θ gives ∂γ (θ0)/∂θ =
Q−1 E[X u/h0(x) ∂ f (x, θ0)/∂θ ′].

Proof of Theorem 4.3. Ĵ
p−→ J follows by γ̂

p−→ γ 0 and δ10 �= 0. Also

Q̂
p−→ Q follows as in the proof of Theorem 4.1. Therefore, by continuity of

matrix inversion and multiplication, it only remains to show that �̂
p−→ �. Let

d̂(x) =∑n
i=1 Kλ(x − xi )yi and d(x) = h0(x)E[y | x]. By a change of variables,

E[d̂(x)] = ∫ K (u) d(x + uλ) du = d̄(x), which is bounded on any bounded
set by K (u) having bounded support and d(x) bounded on any bounded
set. Furthermore, at each x where d(x) is continuous, d(x + uλ) → d(x) as
λ→ 0, and so by the dominated convergence theorem, d̄(x) → d(x) at each
such x . Since the set of such x values has full Lebesgue measure, the dom-
inated convergence theorem implies that

∫
X [d̄(x)− d(x)]2h0(x) dx → 0. By

Lemma B.1 of Newey (1994a), supx∈X |d̂(x)− d̄(x)| p−→ 0. Let 1i = 1(xi ∈
X ). Then

∑
i 1i

∣∣d̄(xi )− d(xi )
∣∣2/ n

p−→0 by the Markov inequality. Also, by
ĥ(x) bounded away from zero uniformly on X , with probability approaching 1,

1

n

∑
i

1i |ĝ(xi )− g(xi )|2 ≤ C

n

∑
i

1i

∣∣d̂(xi )− d̄(xi )
∣∣2

+ 1

n

∑
i

1i

∣∣d̄(xi )− d(xi )
∣∣2
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+ 1

n

∑
i

1i |d(xi )|2
∣∣∣∣ 1

ĥ(xi )
− 1

h0(xi )

∣∣∣∣2
≤ C sup

x∈X

∣∣d̂(x)− d̄(x)
∣∣+ op(1)

+ sup
x∈X

∣∣ĥ(x)− h0(x)
∣∣ p→ 0.

Let �̃ =∑i ŵ
2
i Xi X ′

i [yi − g(xi )]/n. Then arguing as in the proof of Theo-
rem 4.1, using Lemma A.3, it follows by the Cauchy–Schwartz inequality that
for 1i = 1(xi ∈ X ),∥∥�̂ − �̃

∥∥ ≤ C

n

∑
i

1i
[
2 |yi | |ĝ(xi )− g(xi )| +

∣∣ĝ(xi )
2 − g(xi )

2
∣∣]

≤ C

n

∑
i

1i {[ĝ(xi )− g(xi )]
2 + (|yi | + |g(xi )|)|ĝ(xi )− g(xi )|}

= op(1)+ Op(1)

[
1

n

∑
i

1i |ĝ(xi )− g(xi )|2
]1/2

p→ 0.

It also follows similarly to the proof that Q̂
p→ Q that �̃

p→ �. The conclusion

that �̂
p→ � then follows by the triangle inequality.
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