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Preface 

This book results from many years of research and teaching collaboration between the 
authors at the Laboratoire des Signaux et Systemes, a laboratory common to the Centre 
National de la Recherche Sciemijique (CNRS) and the Ecole Sllperieure d'Electricite 
(SUPELEC). It has evolved from notes for a graduate course at Paris-Sud University and 
a continuing education course for engineers at SUPELEC. It is thus aimed at two groups 
of readers. 

The first consists of students wishing to familiarize themselves with the basic 
methods for system identification and parameter or slale estimation. We have taken great 
pains to present methods in the most accessible way possible, and this book can be seen 
as an introduction to marc sophisticated material. Exposition always moves from the 
simple to the more sophisticated, and many simple examples are discussed in detail. 
Numerous illustrations also facilitate understanding. The practical importance of the 
ideas is always stressed, and the limitations of the methods are explained. 

The second possible readership consists of researchers or engineers who have to 
squeeze parameters out of experimental data. We should like to emphasise the 
interdisciplinary nature of this book, which should be of interest to people outside the 
Communications and Control Engineering communities proper. Practioners will gel 
from it tools to analyze the quality of the estimates they produce, explanations of why 
their favourite software does not always yield the results they hope for, possible 
remedies for numerical difficulties and advice as to how to organize data collection. 
Within such a broad domain, researchers tend to specialize, so some may find the book 
useful for its breadth of coverage of techniques that may be of help in their future 
research. In this respect, they may find the large bibliography especially useful. Rather 
than providing detailed proofs of a limited number of technical results, we have chosen 
to introduce as many relevant notions and techniques as we could, explain why we are 
convinced of their importance, and indicate further reading. 

Topics covered include choice of the structure of the mathematical model, choice of 
a performance criterion to compare models, optimization of this perfonnance criterion, 
evaluation of the uncertainty in the estimated parameters, design of experiments and 
critical analysis of the results. Many recent methods are presented, some for the first 
time in a book on identification. Among the distinctive features of this volume are 

- a presentation of the methodology for testing linear and nonlinear models for 
identifiability and distinguishability: 

- an emphasis on other criteria than least squares (although the least-squares criterion 
is, of course, considered), and the importance of robustness; 

- a detailed treatment of parametric optimization, induding much more consideration 
of numerical aspects than usual (evaluation of the effect of rounding errors, 
generation of derivalives of the cost function with respect to the parameters by exact 
numerical methods, global optimization ... ); recursive and non-recursive methods are 
both considered, for models linear or nonlinear in their parameters; 

- a description of deterministic and statistical methods of characterizing the uncertainty 
in the parameters resulting from that in the data; 
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- a much more detailed presentation of experiment design than usual. 

We hope the many cross-references will help the reader navigate through the 
material, should he or she choose not to follow the order of the chapters. 

Writing this book was made possible by the freedom and time given to us by CNRS 
and we are grateful to Pierre Bertrand, Head of the Laboraroire des Signaux et 
Syslemes, who provided us with particularly favourable working conditions. 

Many ideas and references result from discussions we have had with our colleagues 
and students. May they forgive us for not always acknowledging it. We would 
especially like to thank John Happel, Luc Jaulin, Caroline Kulesar, Gilles Le Cardinal, 
Yves Lecourtier, Helene Piet-Lahanier, Alain Venol and AnatoH Zhigljavsky. This book 
would have been the poorer without their contributions. 

We look the opportunity of the preparation of this English version to revise, update 
and expand the manuscript, so this is a second edition rather than merely a translation. 
Special thanks are due to John Norton who did much more than just improve our 
English. As could be feared, we were unable to refrain from introducing some la5t­
minute corrections after his checking. Any remaining clumsiness should therefore be 
laid at our door. 
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Notation 

Typography 

Italic 
Bold lower case 

Bold upper case 
Outlined upper case 
M(s), v(s) and v(s) 
M-I 
MT and vT 

IIvll 
IIvll2 

scalar. 
column vector (row veclors are written as trnnsposed column 
vectors). 
matrix. 
set (e.g., §). 

Laplace transforms of MU), vU) and v(l). 

inverse of M. 
transposed of M and v. 
norm of v. 
Euclidean norm of v, equal to (vTv) 1/2. 

Common symbols and acronyms 

A 
A(q, p) 

AR 
ARARMAX 
ARARX 
arg max)(p) 
arg min )(p) 
ARMA 
ARMAX 
ARX 
n 
B(q, p) 
C 
C(q, p) 
card S 
c.d.f. 
cc(p) 

~c(k) 
Ci(p) 

conv(3) 

state matrix (/Ix x /Ix). 
polynomial in {ri, parnmetrized by p = (c1] • ... , alla)T. 

autoregressive. 
autoregressive with exogenous variable and ARMA noise. 
aUloregressive with exogenous varinble and AR noise. 
value of p that maximizes j. 
value or p that minimizes). 
autoregressive with moving-average noise. 
autoregressive with exogenous variable and MA noise. 
autoregressive with exogenous variable. 
control matrix (Tlx X Nu). 

polynomial in q-I, parametrized by p = (h I, ... , bnh)'l'. 
observation matrix (ll y x llx). 
polynomial in q-I, parametrized by p = (Cf, ... , cu,)T. 
number of elements of set :5L 
cumulative distribution function. 
vector of cquaJilY constraints to be satisfied by p (wriUcn as 
cc(p) 0). 
empirical Hutocorrelation of signal c. 
vector of inequality constraints 10 be satisfied by p (\vriHen as 
Cj(p) ~ 0). 
convex hull of sel :1. 



hi v 

d 
D 

d x 
D(q, p) 

detM 
diag w 
dim v 
aj(p) 
e or e 
JE(p, M) 
E{ .} or Ed. } 
x 
eg 

ep 
Cr 
eu 
Cy 
f 

F(p) or F(p, E) 
F(q, p) 
FB(P, E) 
FF 

FIR 
Fps(p) 
F a!1l1 , 112) 

g(p) 

G(q, p) 
Ii 
H(p) 

H(s, p) 
h(r) 

H(t) 

Ha(P) 
i.i.d. 
11/ 
j 
j 

search direction in parameter space. 
matrix describing the direct effect of the inputs on the outputs 
(Ily x 12u). 
dual variable of x. 
polynomial in crl, parametrized by p = (dl, ... , dl/d)T. 
detenninant of M. 
diagonal matrix, the ith diagonal entry of which is Wi. 

dimension of v. 
subdifferential of j at p. 
error. 
ellipsoid defined by (p E lEt"p I (p p)TM-'(p p):::; I J. 
mathematical expectation with respect to x. 

generalized error. 
prediction error. 
regressor error. 
input error. 
output error. 
inclusion function associated with function f. 
average Fisher infonnation matrix per unit of time. 
Fisher-Snedecor distribution, with 12 I and 112 degrees of 
freedom. 
Fisher information matrix. 
filter in the Box-Jenkins model. 
Bayesian information matrix. 
Fisher information matrix associated with the parameters of 
F(q, p) in the Box-Jenkins model. 
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Convention for derivatives (Vetter, 1970, 1973) 
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db 
dA 
dB 

derivative of matrix A with respect to scalar b (matrix with the 
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derivative of matrix A (possibly a vector or a scalar) with 
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HAnB x mAlnB matrix, obtained by putting CJAldbi,j in (i,}) 
position. Some important examples follow. 
gradient of the cost function with respect to the parameters 
(column vector with lip entries). 
transposed of the gradient of the cost function with respect to 
the parameters (row vector with 111' entries). 
Hessian of the cost function (np X IIp). 



1 Introduction 

1.1 Aims of modelling 

Model and modelling are catchwords with many different interpretations. In oncology, 
for instance, a model of a cancer is an animal in which this cancer can be triggered. In 
this book, a model will be a mathematical descriptioll of a real process, built with a 
definite aim in mind. This aim may be: 

- analysing phenomena to deepen understanding of them (models in physics, 
chemistry ... ); 

- estimating quantities for which no sensor is available, from indirect measurements; 
- testing hypotheses (medicru or fault diagnosis, on-line quality control...); 
- teaching (simulators for aircrafls, nuclear power plants, patients in critical 

condition ... ); 
- predicting shorHerm behaviour (adaptive control of time-varying processes) or 

long-term behaviour (economic forecasting for governmental planning); 
- controlling processes (regulation around some nominal set-point, trajectory 

following with large transients, optimal controL. .); 
- processing signals (noise cancellation, data compression. filtering, interpolation ... ). 

The implementation of a Kalman filter, for instance, requires a model of the process 
generating the data. 

Whatever this aim may be, it should always be made explicit, because it should very 
strongly influence the modelling procedure. Models used to tune the coefficients of a 
PID controller, for instance, are quite different from those employed to study chemical 
reactions in detail. As a result, the problems raised by the building of these models will 
have little in common. Since modelling is most often an interdisciplinary activity, it is of 
paramount importance that the aim(s) of the exercise be clear for all those involved. 
Ultimately, the model obtained should be judged according to whether these aims have 
been satisfactorily attained. It may happen that model building, by the questions that it 
raises, allows one to solve problems that had not been formulated at the start. Of 
course. this should not serve as an excuse for not precisely stating the objectives to be 
achieved. 

1.2 System 

A system (or process) is a part of the universe, which we have chosen, more or less 
arbitrarily. to consider as an entity with which we interact (Figure 1.1). 



- We observe some characteristic quantities of the system, and the resulLs of these 
observations form the oulpllt vector y. These quantities may depend on a vector ~ of 
independent variables, which often reduces to the time t at which the measurements 
are made. What will then be avaiJable is the value of y for specific (and known) 
values of ~, which we shall indifferently denote by Y; or y(~). In what follows, ~ 
will often be replaced by f when it corresponds to a single independent variable, 
even if this variable has nothing to do with time. 

- We are illterested ill some characteristic quantities of the system, which we shall 
denote by z and which may depend on ~ or t. The vector z may include some 
unmeasurable quantities, and thus differ from y. 

- We act on the system by means of some quantities, the evolution of which is known 
and more or less under our contro1. These quantities are the illPuts. which we shall 
denote by u. 

- We elldure the action on the system (or on the measurements taken from the system) 
of quantities that are not under control and are more or less unknown. These 
quantities arc the perturbatio1ls, or noises, which we shall denote by n. 

n 

:1 : y 

s 
u z 

Figure 1.1. System S 

Consider for instance a system consisting of a chemical reactor within which a 
mixture of gases is circulated over a solid catalyst. The components of the output vector 
y may be the partial pressures of various gases at the outlet, the pressure inside the 
reactor and the temperature at various locations. The vector z of the quantities of interest 
may include surface concentrations on the catalyst that cannot be measured directly. The 
components of the input vector u may be the controls of the heating, of the pump used 
to circulate the gaseous mixture and the partial pressures of the various gases at the 
inlet. Perturbations may correspond to uncertainties about the value of u and y, to 
catalyst poisoning, and so on. 

Deciding what will be considered as a system is often far from obvious. After 
Descartes, we have become used to the idea of splitting a problem into as many 
subproblems as necessary to make them tractable. Unfortunately, such a procedure 
often does not apply. In biology, for instance, it is impossible to isolate part of a living 
organism without modifying its behaviour. Similarly, there are unstable systems which 
cannot be studied safely in open loop. Moreover, it is often difficult, in a complex 
system with feedback, to distinguish causes (inputs) from effects (outputs). One may 
then pool all measurable signals into a single vector without classifying them II priori as 
input or output (Willems, 1986a; 1986b; (987). Throughout this book, however, we 
shall question neither the definition of the system to be studied nor the classification of 
the measured signals as inputs or outputs (with the exception of Section 4.1.7). 
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1.3 Model 

The model M of the system is a rule to compute, from quantities known a priori or 
measured from the system, other quantities that we are interested in and which we hope 
will resemble their actual values in the system. Frequently, the model computes, from 
the input u of the system, an output Ym which should resemble Y as closely as possible. 
If z differs from y, the model may also compute a vector Zm which may, under 
identifiability conditions to be considered later, resemble z. Since the model and system 
have the same input, the model is said to be parallel (Figure 1.2). 

Figure 1.2. Parallel model 

Less traditional configurations can also be considered, such as a model which, from the 
output Y of the system, computes a vector Urn which should resemble the input u as 
closely as possible. This is a series or inverse model (Figure 1.3). 

Y ----II ... ~I __ A_1 ___ !------\l ....... urn 

Figure 1.3. Series or inverse model 

Models combining series and parallel parts can also be constructed. Whatever the 
structure chosen for the model, it will in general involve unknown quantities, usually 
assumed to be constant but sometimes liable to vary, to be estimated from available 
prior knowledge and data. These quantities are the parameters p. One then speaks of a 
parametric model. the main type of model to be considered in what follows. We shall 
distinguish the model structure M from the specific model M(p) obtained by setting its 
parameters to some specific numerical value p. 

The choice of M. also called characterizatio1l, is a critical step in modelling. 
Chapter 2 wi]) give some indications of the choices to be made at this stage and the 
tools that can be used to study properties of model structures. 

Once the model structure has been selected, its parameters must be chosen according 
to a specified criterion. usually the optimization of some cost function. If several model 
structures compete for the description of the same data, their performance will also be 
compared with the help of a criterion. 



1.4 Criterion 

Suppose, to fix ideas, that the model is of parallel type, i.c. subjected to (he same inputs 
and initial conditions as the system, if the lalter are known. (Otherwise, the unknown 
initial conditions will be incorporated into the parameter vector p, or taken as zero if the 
system is stable enough for their transient effect to be neglected.) The difference 
between the system and model outputs 

Cy(t, p) = y(J) - Ym(t, p) 

is then caned output error (Figure 1.4). 

s 

u(t), __ ~~ 

M(p) 

Figure 1.4. Output error for 11 parallel model 

Most often, one wishes this output error to be as close to 0 as possible, which raises 
the difficult question of the definition of the scale of values to compare the pel'fonnance 
of competing models. This scale will take the form of a scalar function j of the 
parameters and possibly of the structure, called the costfwiction. Assume that the cost 
is to be minimized. (If a cost function is to be maximized, changing its sign transforms 
it into a cost to be minimized.) M! (p I) is then better than M2(P2) ill the sense of the 
criterion associated witflj if 

The choice of the criterion should reflect why the model is buill. In fact, this purpose 
will then be momentarily forgotten and replaced by another one, easier to achieve, 
namely optimization of the cost functionj with respect to the parameters (and possibly 
the model structure). Chapter 3 will be devoted to various types of criteria and their 
properties. 

Once the cost function has been chosen, the next step is its optimization. 



1.5 Optimizatio,D 

The optimization algorithm uses the available information to evaluate the best value p of 
the parameters (and possibly the best model structure t1) in the sense of minimizing the 
costj. The flow of information may, for instance, be as indicated in Figure 1.5. 

u(t 

net) 

s 
yet) 

Ym(t, p) 

1---1........ zm(t, p) 

Cost 
evaluation 

Figure 1.5. Possible flow of infonnalion for optimization 

j(P) 

When the cost is quadratic in an error that is affine in the parameters, explicit 
formulas can be derived for p, in the celebrated least-squares method. When such 
explicit formulas are unavailable, optimization is usually performed iteratively. Starting 
from pk, the estimate of p at iteration k, which makes the value of the cost j(pk), the 
algorithm computes pk+ I such that j(pk+ I) < j(pk). This raises two critical issues, 
illitializalioll (choice of pO) and teJ7l1illatioll of the iterating process. Sometimes, the data 
are to be processed successively (possibly in real time). One then speaks of Oil-line 
algorithms, as opposed to off-line algorithms. where all data are processed in a single 
batch. Local algorithms, which may get trapped in some neighbourhood of pO and thus 
only reach a local optimum of the cost, should be distinguished from global algorithms, 
which aim to find arguments corresponding to the global optimum of the cost over the 
prior feasible domain for the parameters. 

A selection of algorithms will be presented in Chapter 4. 

1.6 Parameter uncertainty 

lL would be naive to consider that p resulting from the optimization procedure 
corresponds to the only model worthy of consideration. Even assuming that the 
structure of the process is M, which is never exactly true, there is a set of acceptable 
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models, given the uncertainties in the measurements. Chapter 5 will present various 
techniques to characterize this set. 

The set of all acceptable models depends on the experiments perfonued to collect the 
data, i.e. on the choices made as regards the input shape, location and type of sensors 
and actuators, measurement schedule, data processing, and so on. One should therefore 
design experiments so as to collect the most pertinent infonnation. Some tools for this 
purpose will be presented in Chapter 6. 

1.7 Critical analysis of the results 

Finally, some critical analysis of the results obtained is essentiaL Modelling abounds 
with provisional choices about the experimental set-up, the model structure, the cost 
function, the optimization algorithm, and so on, which should be challenged. The 
model should therefore be submitted to tests attempting to invalidate (or JaIstfy) it. If 
serious defects of the model are revealed, the choices made so far should be questioned. 
Chapter 7 will describe various techniques to prove that a model is inadequate. 
Unfortunately, none exists to prove that a model is the best that could be obtained! 

1.8 In summary 

Building a parametric model from experimental data consists of six basic steps: 

- collecting data (Chapter 6), 
- choosing the model structure(s) (Chapter 2), 

defining a quality criterion (Chapter 3), 
- optimizing the associated cost function to get an optimal numerical value for the 

parameters, and possibly select the most suitable model structure (Chapter 4), 
- evaluating the uncertainty in the estimated parameters (Chapter 5), 
- questioning the results (Chapter 7). 

One should not deduce from this enumeration that these steps are performed 
successively and in this order. Nothing, for instance, requires that the data be collected 
before some reflection takes place about the type of model to be employed. Similarly, 
critical analysis of the results should constantly be in the mind of the model builder. 
Realizing the arbitrary nature of some of our choices, we should be ready to modify 
them when confrontation with reality demonstrates their inadequacy. 



2 Structures 

The choice of a structure for the mathematical model is called model-structure selection, 
or more concisely characterization. One might, for instance, choose the structure 
described by the first-order linear differential equation: 

with positive PI and P2' One thus defines a class of possible behaviour and a prior 
feasible set to which the parameter vector p must belong for the model to be considered 
acceptable. Let M and M(p) respectively denote the model structure and the model with 
structure fyJ and parameters p. The prior feasible set for p will be denoted by lP. In what 
follows. JP will usually be either k~."p or a subset of R.t'p defined by a finite set of 
inequality constraints. 

Characterization is critical, because intuition plays an important parL It is of 
paramount importance, since it defines the choice available for the selection of the "best 
model". Only models with a finite number of parameters will be considered, described 
by algebraic, differential or finite-difference equations. 

Various classes of models will be distinguished in this chapter. It will be necessary 
to choose among these classes, taking into account 

- the aim of the modelling (Chapter 1), 
- the conditions under which the model is going to be employed (operating ranges, 

nature of inputs, communication with other elements of a control system ... ), 
- the cost of building the model, 
- the information available (there is no point in conceiving a very complex model with 

many parameters if data are scarce and imprecise). 

REMARK 2.1 

Most models to be considered will implicitly assume that if the system initiaHy at rest 
receives an input u == 0, its output Ym will be zero in the absence of any perturbation. 
Inputs and outputs must then be expressed in a coordinate system that satisfies this 
assumption (using deviations from equilibrium conditions). 0 

2.1 Phenomenological and behavioural models 

This distinction is rather schematic, but brings out two types of modelling that translate 
into differing requirements. 



Phenomenological (or knowledge-based) models are familiar to anyone who has 
attended physics or chemistry courses; see, e.g., the survey paper by Box and Hunter 
(1965). They are built from basic principles by writing down conservation or balance 
equations (for mass, momentum, energy ... ). The fact that this type of model is built 
from physical considerations facilitates incorporation of prior information and a 
posteriori checking of the orders of magnitude of the estimated parameters. Consider, 
for instance, the chemical reaction described by Figure 2.1. 

A B 

Figure 2.1. Chemical reaclion 

Under the hypotheses that all elementary reactions obey first-order kinetics and that the 
reactor is isothermal and well stirred, it can be associated with the set of equations 

The model structure is thus imposed by the prior knowledge (or hypotheses) about the 
system studied, which does, as we shall see, sometimes raise specific problems. The 
parameters Pi are the kinetic constants of the elementary reactions, and the state 
variables [A], [BJ and [C] are the concentrations of the reacting entities. All of them 
therefore have a precise concrete meaning. As soon as the process to be studied 
becomes somewhat complex, the model state may be of very high dimension (resulting 
for instance from the discretization of partial differential equations). The model may 
thus consist of many equations, often nonlinear. The simulation of such models 
generally takes a lot of time on powerful computers, and they are therefore seldom used 
directly to compute a control law. On the other hand, they are well suited to detailed 
simulation for the prediction of long-term behaviour or for gaining further insight into 
the internal working of the process. Some computer codes for the simulation of nuclear 
power plants, for example, are so complex that they cannot be run in real time for the 
training of operators. One must then resort to simplified models. 

At the other end of the spectrum, one finds behaviollral models, which merely 
approximate observed behaviour without requiring any prior knowledge of the process 
that generated the data. It is not even necessary to know what the inputs and outputs 
stand for or in what units they are expressed. The model structure does not claim to 
correspond in any more fundamental way to that of the process, and the parameters 
have no physical meaning. If, for example, an experimental curve is described by the 
polynomial 

it is possible to reproduce with arbitrary precision any finite set of experimental data 
y(ti), j = 1, ... , Ill! provided that the degree of the polynomial is large enough. This is 
a particularly simplistic example of a behavioural model, with very poor predictive 
capabiHty. There are, of course, more sophisticated methods of building models, the 
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aim of which is still to reproduce input-output behaviour independently of any 
knowledge of the underlying process (Sections 2.4 and 3.3.5). One class deserving 
particular mention is that of methods aimed at building a state-space representation 
associated with i.l given input~output behaviour (so-called realization methods). 
Realization methods are available for linear systems (Ho and Kalman, 1966~ Dang Van 
Mien, 1973; Van Overschee and De Moor, 1994, 1996; De Moor and Van Overschee, 
1995) and for some classes of nonlinear systems, such as bilinear systems (Fliess, 
1978). For nonlinear systems which can be approximated by linear models around 
operating points characterized by a measurable mode, a unique model with a state-affine 
structure can be built from a family of linear realizations associated with a set of 
operating points (Dang Van Mien and Normand-Cyrot, 1984). Note that the hope of 
having some day at onc's disposal a general method applicable to any nonlinear system 
is vain, as demonstrated by the existence of universal differential equations (Rubel, 
1981), capable of approaching with arbitrary precision any continuous behaviour with a 
model that depends on five parameters only. The sensitivity of such a solution to 
variation of these parameters is of course extreme, and the model obtained has no 
predictive power. Neural networks are also capable, in principle, of approximating any 
continuous behaviour with arbitrary precision (Hornik, Stinchcombe and White, 1989), 
and one should be cautious as regards their predictive abilities for the same reasons. 

Behavioural models are in general simpler to simulate and more suited to the 
computation of controls than phenomenological models. Table 2.1 summarizes the 
usual properties of these two types of model (although exceptions can easily be found). 

Phenomenological models Behavioural models 
Parameters have a concrete meaning have no concrete meaning 
Simulation long and difficult quick and easy 

Prior information taken into account neglected 
Validity domain large Cif structure is correct!) restricted 

Table 2.1. Pbcnomcnoiogical and behilvioural models 

The choice between phenomeno\ogical and behavioural models is not always as 
simple as this table might suggest. Estimating the few parameters of a 
phenomenological model (for instance a suitably discretized partial differential equation) 
may turn out to be simpler than estimating the many parameters of a multi-input multi­
output behavioural model which would not exploit the physical laws governing the 
process studied. 

2.2 Linear and nonlinear models 

Two types of linearity must be distinguished. Let Ym(t, p. u) be the output at time t of 
the model with parameters p when the input u( r), 0 $; r::; t, has been applied from a 
zero initial condition. A model structure will be said to be linear il/ its inputs (Ll) if its 
outputs satisfy the superposition principle with respect to its inputs, i.e. if 
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When control engineers speak of linear models, they usuaJly refer to this type of 
linearity. Moreover, they often assume implicitly that the model is time-invariant, i.e. 
that its behaviour is invariant under a translation of the origin of time. 

A model structure will be said to be linear in its parameters (LP) if its outputs satisfy 
the superposition principle with respect to its parameters, i.e. if 

When statisticians speak of linear models, they usually refer to this type of linearity; 
see, e.g., the survey by Jennrich and Ralston (1979). 

A model structure will be said to be affine ill its parameters (AP) if its output 
satisfies 

Ym(t, p, u) ;;:; Ym I (1, u) + Ym2U, p, u), 

where Ym2(t, p, u) is LP. AP structures only differ from LP structures by the addition 
of a term independent of the parameters, so the methods available for the study of LP 
structures extend without difficulty to AP structures. 

It is useful to know whether the structure considered is LP or not, and LIar not, 
because this will have important consequences on the algorithms to be used. 

EXAMPLE 2.1 

Ym(t+l. p) = pu(t) is LP and LI, 

Ym(t+l, p);;:; PYmU, p) + a(t) is non-LP and LI, 

Ym( 1+ 1, p) = pu2( t) is LP and non-LI, 

Ym(J+ I, p) = py~(t, p) + u(t) 

Ym(t+ I, p) = py(1) + 11(1) 

is non-LP and non-LT, 

is AP. o 

Whenever possible, LP and LI structures will be preferred. LI structures benefit 
from the existence of very powerful mathematical results that facilitate their theoretical 
study (stability conditions, optimal control, effect of perturbations ... ). Estimating the 
parameters of LP structures is easy, and it is often possible to use explicit formulas that 
avoid any iterative procedure (Section 4.1). The evaluation of the uncertainty in the 
parameters and the design of experiments are also simpli fied (Chapters 5 and 6). 

On the other hand, LI models often have a limited domain of validi ty, for most real 
processes become nonlinear when the amplitude of the inputs gets large enough. In 
such cases, an LI model may only approximate the behaviour of the system correctly 
around some operating point. As regards LP structures, their parameters often have no 
concrete meaning. 

It is sometimes possible to transform a non-LP structure into an LP one by a change 
of variables (Box and Cox, 1964; Atkinson, 1985, 1995). Thus, for instance, the non­
LP structure described by Ym(tk, p) = PI exp(-P2tk) becomes LP if written as 
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Such a procedure, however, is not without consequences for the value of the estimates 
obtained. In the presence of noise, one will not get the same results estimating p directly 
or via the estimation of q. This point will be considered again in Example 4.6. 

2.3 Continuous- and discrete-time models 

2.3.1 Continuous-time models 

The processes studied are generaHy assumed lo evolve in a continuous time. Hence the 
traditional tendency is to employ models described by differential equations, and 
especially differential state-space models such as 

d 
dt x(t) = f(x, p, U, 1), x(O) = xo(p), 

Ym(l) = hex, p, U, t), 

which in the time-invariant LT case becomes 

d dt x(t) = A(p)x(t) + B(p)u(t) , x(O) = xo(p)~ 
Ym(t) = C(p)x(t) + D(p)u(t). 

One may pass from this last type of representation to a tran~rer matrix representation 

Ym(S, p) = HI(S, p)u(s) + H2(.'i', p)XO(p), 
with 

HI(S, p) = C(p)[sI - A(p)]-IB(p) + D(p) 
and 

H2(S,P) = C(p)[sI - A(p)]-l, 

where s is the Lap/ace operator and I the identity matrix. Finally, by returning to the 
lime domain, one gets a set of inplll-output dffferential equations 

For L[ models, it is thus easy to pass from one type of representation lo another. For 
non-LI models, even passing from a state-space representation to an input-output 
differential equation might become impossible. 

REMARK 2.2 

In addition to the usual stale equations, one may have to consider algebraic constraints 
between slate variables. Such will be the case, for instance, in chemical kinetics, when 
some reaction steps are so fast compared to others that they can be considered as at 
equilibrium. The resulting algebraic-differential set of equations can then be written as 



d 
M(x, p) at xU) = f(x, p, u, t), x(O) = xo(p) 

Usual state-space representations correspond to M = I, and purely algebraic systems to 
M = O. Numerical methods are available to solve such algebraic-differential systems 
for x (Hindmarsh, 1980; Bilardello et 01., 1993). 0 

2.3.2 Discrete .. time models 

The ever-increasing availability of computers has in many domains dealt a fala] blow to 
the supremacy of continuous-time models. The numerical simulation of discrete-time 
models is much simpler and quicker, which makes them wel) suited to real-lime process 
control. Their use, however, may entail some loss of information on the behaviour of 
the underlying continuous-time system. 

As in the continuous-time cac;e, one may employ a discrete·time stale-space model 

x(t+ 1) = f[xU), p. uCt), tJ, xeD) = xo(p), 
Ym(t) = h[x(t), p, net), 1], 

where t is now an integer time index, which corresponds to actual lime IT if the 
underlying continuous-time system is sampled with period T. When this model is LI 
and time-invariant, it can be written as 

x(t+l) = A(p)x(t) + B(p)n(1), xeD) = xo(p), 
Yrn(t) = C(p)x(t) + D(p)u(t). 

From this last type of representation, one may pass to a transfer-matrix representation 

with 

and 

Yrn(Z, p) = HI(Z, p)u(z) + H2(Z, p)XO(p), 

Hl(Z, p) = C(p)[zI - A(p)]-IB(p) + D(p) 

H2(Z, p) = C(p )[zI - A(p) ]-1 Z, 

where z = exp(T.~) is the Laplace transform of the forward-shift operator. This transfer­
matrix representation easily translates into a recurrence equation 

11-1 m-l 

Ym(t+l):;:;: L Pi(P)Ym(t-i) + L Qk(p)u(t-k). 
i=O k=O 

To write recurrence equations in a more condensed way, it is convenient to use the 
delay operator q-i, such that q-1x(t) = x(t-l), This operator could also have been 
denoted by rl, but the usual notation q-l emphasizes that what is meant is merely a 
condensed notation for a time-domain equation. Thus, for instance, the recurrence 
equation 

Ym(t+ 1) = -a IYm(t) - a2Ym(t-I) + b IU(t) + b2U(t-I), 
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can also be written as 

where 

Since discrete-time models are much easier to simulate numerically than continuous­
time ones, it is possible to push the experimental study of their properties much further. 
On the other hand, they impose constraints on the measurement times, which must 
correspond to discrete times at which the model output is computed. Moreover, they 
may hide oscillations of the associated continuous-time system. Finally, their 
parameters generally do not have any clear physical meaning. In particular, the values of 
the parameters of a model obtained by discretizing a continuous-time model depend on 
the sampling period chosen. 

The properties of discrete- and continuous-time models are not always analogous. 
One can, for example, create oscillating first-order LI discrete-time models, such as 
Ym(t+ 1) == -P1J'm(t) + u(t), with 0 < PI ~ I, whereas first-order LI differential equations 
do not oscillate. As a consequence, building a continuous-time model through the 
construction of an intermediary discrete-time model may turn out to be difficult. One 
may indeed gel a discrete-time model with no continuous-time counterpart, and specific 
methods for continuous-time systems are still of interest (Unbehauen and Rao, 1987). 
Table 2.2 summarizes the properties of these two types of models. 

Continuous time Discrete lime 
Parameters independent of depend on 

measurement times sampling period 
ComjJuter simulation requires discretization easy 

Prior information can be incorporated mostly not taken into account 
readily (steady-slate gain an exception) 

Measurement times individually chosen dictated by choice 
of sampling period 

Table 2.2. Continuous- nnd discrete-time models 

2.3.3 Sampling 

When a discrete-time model is built from data collected from a continuous-time 
process every T seconds, it is essential to make sure that the signal thus sampled 
satisfies the ShmmoJl condition (no components at frequencies higher than 1/(2T)). 
Otherwise, the jl'equellcy folding effect (or aliasing) may render the data useless, 
because all components of the continuous signal at frequencies higher than 1/(21) will 
get superimposed on the useful frequency band. When in doubt as to the frequency 
content of the continuous signal to be sampled, one should insert a continuous-time 
(analogue) low-pass filter before sampling, in order to eliminate all components of the 
signal at frequencies higher than 1/(2T). This point will be considered again in 
Section 6.3.3. 

To describe accurately the evolution of a continuous-time process with a discrete­
time model, one may be led to adopt a small sampling period T compared to the time 
constants of the model. This may raise critical numerical difficulties when the model is 



implemented on a computer. Consider, for example, a single-input single-output LI 
continuous-time model. The poles and zeros of the transfer function associated with its 
discrete-time counterpart tend to cluster around the point (l + jO) when T tends to 
zero, because consecutive input and output samples get more and more similar. On a 
finite-precision computer, this results in a more Hnd more marked deterioration of the 
quality of the simulation. The use of the operator 8 = (q - I )ITsuch that 

!;: () x(t+ 1) - xU) ux t = - T • 

where the instant indexed by t for the discrete-time model corresponds to the instant tT 
for the continuous-time model, makes it possible to Hvoid these problems (Middleton 
and Goodwin, 1990). This operator approximates a first-order derivative by a finite 
difference. A discrete-time model using the operator 8 wiII therefore tend to its 
continuous-time counterpart when T tends to zero. If T is small, this will ensure relative 
independence of the parameters of the discrete-time model with respect to T. A possible 
way to obtain a model in 8 is: 

- build a classical recurrence equation, 
- write this model in condensed fonn using the q-l operator, 
- replace q by 1 + or, 
- express the ratio of the output to the input as a S transfer function, 
- deduce a computing scheme involving elementary blocks 8-1, the input e(t+ I) and 

output s(t+ I ) of whic11 satisfy 

T 
s(l+l) = 8- l eU+I) = 

q -

Tq-i 
e(t+l) = e(t+l), 

1 - q-l 

so s(t+ 1) = s(t) + Te(t). The 8-1 operator is therefore a discrete-time integrator. 

EXAMPLE 2.2 

Let LIS apply this procedure to the recurrence equation 

Ym(t+ I) = -a lYm(t) - Q2Ym(t-l) + b FlU) + b2U(t-l }. 

We get 
(q2 + Q I q + Q2))'m(t+ 1 ) = (b 1 q + b2)u(t+ 1), 

[(1 + 20r + 8212) + QI(l + 8I) + Q2b'm(t+l) = [b}(l + 8I) + b2]U(t+l), 

[1282 + (2 T + ClJ T)8 + (l + Q I + Q2)]Ym(t+ 1) = [(bl T)8 + (hi + b2)]U(t+ I), 

which can also be written as the second-order 8 transfer function 

)'m(t+l) f318 + f32 
u(l+I) = 82 + al8 + a2' 

The recurrence equation associated with this transfer function can be implemented with 
the scheme derived from Figure 2.2. 
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Ym(t+ I) 

Il(t+ I) 

Figure 2.2. Discrete simulation scheme for a second-order 0 transfer function 

This scheme translates into 

xl(t+1) = 0-1 [-alxl(t+l) - (12X2(t+1) + 1l(t+l)J. x2(t+l) = O-i[xl(t+l)). 

Ym(t+ 1) = ,81 X l (1+ 1) + ,82X2(t+ 1). 

i.e. 
xl(t+l) = Xl(t) +-T[-ap:I(t) - (12X 2(t) + u(t)J. x2(t+l) = X2(t) + Tx\(t). 

Ym(t+ 1) = ,81 x l (t+ 1) + ,82-'\:2(t+ 1). 0 

This procedure extends without difficulty to higher orders. Numerically more robust 
results are however obtained by decomposing the 8 transfer function into a product (or a 
sum) of first- and second-order terms and connecting the corresponding state-space 
submodels in series (or in parallel). 

2.4 Deterministic and stochastic models 

The models described in Section 2.3 are deterministic and describe the outputs as if they 
were uniquely detennined by the inputs. This is often unrealistic, because of the various 
pertllrbaliolls that act on the system or corrupt measurements. It is then necessary to 
find ways of describing the influence of these perturbations. A statistical description is 
usually used, where perturbations are described as stochastic processes (sequences of 
random variables), To simplify, we shall only consider systems with one detenninistic 
input ll(t), one output y(t) and one perturbation Il(t), described by recurrence equations. 
Depending on how the perturbation is assumed to act, many model structures can be 
obtained. We shall only mention the most commonly used (for more details, see, e.g., 
(Ljung. 1987)). Assume that the data satisfy 

* * * y(t) + a1Y(t-l) + ... + allay(t-l1a) 

autoregressive part = exo gen OilS part + noise 

where the successive values of the noise n(t) (t = 1, 2 .... ) are realizations of a 
sequence of independent random variables [e(t)]. The star is used to indicate "true" 



values of the parameters and l1r is the input-output delay (Ilr ~ I for a discretized 
continuous-time physical system, and we shall often assume in what follows that IIr = I 
to simplify notation). This corresponds to an AutoRegressive with eXogenolls variable 
structure (or ARK). Once na, Ilb and Ilr have been chosen, the unknown parameters to 
be estimated are 

For models obtained by discretization of an Ilth-order continuous-time LI model, the 
inputs of which are maintained constant between sampling times (by a zero-order hold), 
lIa and lib are equal to 12, which simplifies characterization. 

This very simple structure may turn out not be l1exiblc enough to describe the 
properties of the perturbation. This may be remedied by using as the noise n(t) a linear 
combination of the successive realizations of £(1), called a Moving A \Jerage (or MA). 
giving 

i.e. 

y(t) + (/~y(1-I) + ... + a~uYU-n::) = b~ 11(1-11;) + ... + b~bll(t-llb-Il;+ I) 
* * * + £(t) + c]£(t-l) + ... + cllcE(t-nd, 

autoregressive part = exogenous part 
+ moving-average parl. 

Once 12,h lib, lie and llr have been chosen, the unknown parameters arc 

Such a structure is called AR1I1AX (AutoRegressive-Movillg Average with eXogel/ous 
variable) or CARMA (Colltrolled AutoRegressive Moving Average). It extends the 
ARMA structure to the case where controlled inputs are present (Box and Jenkins, 
1976). Removing the autoregressive part of an ARMAX structure, one gels a Fillite 
Impulse Response (FIR) structure. Sometimes, replacing y(t) by ily(t) = y(t) - y(t-I) 
and 11(1) by L1u(t) = u(t) - u(l-l) allows one to get rid of very slowly varying 
perturbations, such as offsets, by working on increments. This gives the ARIMAX or 
CARIMA structures. There are also non-LI variants of ARMAX structures, called 
NARMAX (Leontaridis and Billings, 1985a, 1985b; Chen and Billings, 1989), which 
assume that 

y(t) ;:;j[y(t-l), ... ,y(t-I/a), u(t-l), ... ,U(t-llb), £(1-1), ... , £(t-lIc), p*] + £(1), 

where f is a nonlinear function, for example a polynomial or rational function. 
Instead of a moving average, one may usc an autoregressive noise: 

y(t) + ([7y(t-1) + ... + a~;JI(t-Il~) = brll(t-n;) + ... + b~bll(t-lIb-II;+1) + lI(t), 

1I(t) + dill(t-I) + ... + d~dl1(t-Il;;) = E(t). 

Once lin, lib, Ild and Ilr are chosen. the unknown parameters arc 
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This corresponds to an ARARX structure. 
One may also use an autoregressive moving average (ARMA) noise: 

* * * * * * ** y(t) + a LVU-l) + ... + allay(t-llu) ;::; biLl (t-l1 r ) + ... + bllb"(t-l1b-lI r+ 1) + n(t), 

* * * * * * n(t) + dlll(t-l) + ... + dlldll(t-l1d) ;::; £(1) + Cl £(t-1) + ... + cl/eEC/-ne). 

Once lla• J1b, /le, l1d and llr have been chosen, the unknown parameters are 

Such a structure is called ARARMAX. 
Let 

A(q, p) 
B(q, p) 
C(q, p) 
D(q, p) 

1 + G,q-I + ... + (lllaq-lIa, 

ql-lIr (blq-l + ... + b"bq-IIb), 
1 + Cl 1l1 + + ca-lie '1 ••• lie J ' 

I + d]{r 1 + ... + d/ldq- lId. 

ARARMAX structures can then be written in the condensed form 

A(q, p*)y(t);::; B(q, P*)Il(t) + DC«q, P:) £(I), 
q, P ) 

17 

where p* is the true value of the parameters. ARARMAX structures contain ARX, 
ARARX and ARMAX structures as special cases (Figure 2.3), When A(q, p) 1, 
one gets FIR structures. When D(q);::; 1 - q-], ARIMAX structures are obtained, which 
shows the integration of the moving average responsible for the I in ARIMAX. 

Note that these structures force the transfer functions relating the noise and input to 
the output to have part of their denominators in common, since 

B(q, p*) C(q, p*) 
yet) A *) u(t) + A( * D * £(I). (q, p q, p) (q. p ) 

One may prefer to parametrize these two transfer functions independently and set 

y(l) F(q. P*)ll(t) + G(q, p*)£(t), 

where F = NF/DF and G = Ne/Dc, with NF, Dr:, Ne and DC polynomials in q-I, One 
thus gets a Bnx-Jellkills structure, which may be regarded as the "most natural" 
parametrization of the output of a discrete-time LI system under the combined influence 
of deterministic and random inputs. Since the system is assumed to be Lt one can 
indeed easily propagate the effect of any perturbation to make it additive at the output. 
Moreover, the spectral factorisation theorem indicates that any rational spectrum can be 
obtained by passing a sequence of independent random variables £(1) identically 
distributed with zero mean and variance a2 through a filler G(q) that is rational in q. 
stable and with a stable inverse. Insofar as the information available on the perturbations 
is very often of a spectral nature only, it will be possible to reproduce this type of 
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characteristic. By suitably choosing (J', one can always require that the first element of 
the impulse responses of G and G-I be equal to one, which will be useful for the 
treatments in Section 3.3.2. 

£(1) --------...., 

,,(t) --.....-t y(l) 
A(q, p) 

(a): ARX 

£(t)--~ C(q, p) 

u(t) B(q, p) 1 
yet) 

A(q, p) 

(b): ARMAX 

£(f) 
1 

D(q, p) 

·1 ~ u(t) B(q, p} 1 
yet) 

A(q, p) 

(c): ARARX 

£(J) 
C(q, p) ... 
D(q, p) 

li(f) B(qt p) yet) 
A(q, p) 

(d): ARARMAX 

Figure 2.3. ARX. ARMAX. ARARX and ARARMAX structures 
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REMARKS 2.3 

- The power spectrum of a stochastic process depends only on its second-order 
properties (mean and covariance). Signals with identical power spectra may thus 
differ widely in their temporal behaviour. 

- The Box-Jenkins structure may look more general than the ARARMAX structure 
and a fortiori the ARMAX structure. It is however trivial to obtain an equivalent 
ARMAX structure by setting A = DFDO' B = NFDO and C = NoDF. 

- Some perturbations have a strong deterministic component and cannot be 
represented satisfactorily as filtered sequences of independent random variables. It 
may then be interesting to modify the model structure so as to incorporate this 
detenninistic component, possibly in a parametrized form. 0 

2.5 Choice of comp1exity 

Consider two model structures M I and M2, such that with any model of structure 1111 
one can associate a more complex model of structure Ivl? with the same behaviour. Ah. 
then includes A1l, and possesses more degrees of freedom. M I may [or example 
correspond to a first-order transfer function 

H ( ) - PI In>'J 
I S, P - 1 + P2 S ' P E ;,,,-, 

and M2 to a second-order transfer function 

M I and A12 may also correspond to ARMAX structures of increasing complexity such 
that the first is a special case of the second. 

The set of all input-output behaviour that can be generated by IIh. then contains all 
input-output behaviour that can be generated by MI. Because of its additional degrees of 
freedom, M2 can reproduce any given set of experimental data better than IvI (. Onc 
might therefore think that the larger the number of degrees of freedom of the structure. 
the better the model will perform, and that the only problem to solve is a compromise 
between model complexity and performance. Actually, the problem is not so simple. 
Assume that the structure of the process is !vI 1 but that the experimental data are very 
noisy, so that the behaviour of the best model wi th structure NI I fits these data very 
approximately. Thanks to its additional degrees or freedom, the structure fl-h may then 
seem to yield better results. Provided it is complicated enough, it may even yield a 
model that fits the data perfectly. However, the additional degrees of freedom in 1112 arc 
only used here to model a particular realization of the noise corrupting the data. Should 
the experiment which generated the data be repeated, a different realization of this noise 
would result, and the best model with structure !vI2 obtained from the I1rst set of data 
may actually provide a much worse prediction of the behaviour of the process than the 
best model with structure !vI I. 

As will be seen in Chapter 3, criteria based on statistical considerations can be used 
to decide at what point increase in complexity is no longer justified. Note, however, that 



these criteria do not take into account the aim of the modelling, which may lead one to 
choose a much simpler or more complex structure than they recommend. For adaptive 
control, for example, one usually uses outrageously simple model structures. One may 
also be interested in the parameters of an LI model to describe the behaviour of a 
process only in a limited frequency range (e.g., around some critical frequency). 
Filtering the input and output data with the same bandpass filter then permits elimination 
of irrelevant information and errors induced by offsets and high-frequency noise. (For 
the practical importance of such prefiHering when the model is identified for control 
purposes, see, e.g., (Gevers, 1993),) When prior knowledge dictates a more complex 
phenomenological model than statistical criteria would allow, simplification of the 
model structure may lead to widely off-the-mark values for the phenomenological 
parameters, with an unrealistically optimistic evaluation of their uncertainty (Carrillo Le 
Raux, 1995). 

Section 6.6.3 will provide tools to design experiments facilitating the choice of 
model structure. 

2.6 Structural properties of models 

Once a model structure has been chosen (or a set of structures among which a choice is 
to be made), its properties should be studied as independently as possible of the values 
taken by its parameters. As a matter of fact, this study should if possible take place 
before estimation of the parameters, to detect potential problems before collecting data. 
A properly will be said to be structllral (or generic) if it is (rue for almost allY value of 
the parameters, and possibly false on a subspace of the parametric space with zero 
measure. Thus, a property that is true for any value of p not on some atypical 
hypersurface will be considered as structural, because the probability of randomly 
picking an atypical value of p is zero. Two structural properties are of special 
importance in model building, namely identifiability and distinguishability. 

2.6.1 Identifiability 

Consider a process and in parallel with it a model structure, the parameters of which are 
to be estimated according to the scheme described by Figure 1.5. Before starting data 
collection and parameter estimation, it seems natural to ask oneself whether one stands 
any chance of success, i.e. whether the planned measurements will contain enough 
information for the estimation of p. Formulated in such vague terms, the question has 
no answer, so we shall consider an idealized framework (Figure 2.4) where 

- the process and model have identical structure (no characterization error), 
- the data are noise-free (n(l) =:: 0), 
- the input u and measurement times can be chosen at will. 

Under these conditions, it is always possible (e.g., by choosing p = p*) to tune the 
parameters of the model so as to make its input-output behaviour identical to that of the 
process for any time and input, which will be denoted by M(p*) = M(p). 
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I---~ Zm(l, p*, u) 

M(p*) 

u(t) --------i Same structure 
of 

Figure 2.4. Idealized framework of structural identifiability studies 

We wish to know whether this identical input-output behaviour implies that the 
parameters p of the model equal those of the process p*. More precisely, parameter Pi 
will be structurally globally (or ulliquely) idelltifiable (s.g.i.) if for almost any p* in F, 

A * A * 
M(p) = NI(p ) ~ Pi = Pi· 

We shall see below (Remarks 2.5) on a concrete example why this restriction to almost 
any p* is necessary. The structure M will be s.g.i. if all its parameters are s.g.i. 

When one cannot prove that the structure considered is globally identifiable, one 
may try to establish that it is at least locally. The parameter Pi will be structurally locally 
identifiable (s.l.i.) if for almost any p* in lP, there exists a neighbourhood \f(p*) such 
that 

A * A * A * pE V(p ) and N/(p) = M(p ) ~ Pi =Pi. 

Local identifiability is therefore a necessary condition for global identifiability. The 
structure M will be s.l.i. if all its parameters are s.l.i. 

The parameter Pi will be structurally ul/identifiable (s.li.i.) if for almost any p* in IF, 
there is no neighbourhood \f(p*) such that 

A * J\ '" A * P E V(p ) and M(p) = A1(p ) ~ PF:; Pi 

The structure NI will be s.u.i. if one at least of its parameters is s.uj. 

REMARKS 2.4 

- Some parameters of a s.u.i. model may very well be s.1.i. or even s.g.i. 
- Identifiability may depend on the numerical value taken by the parameters without 

the atypical region being of zero measure. It is then impossible to reach a structural 
conclusion (a model may be neither s.l.i. nor s.uj.). Unless otherwise stated, for 
instance, JP = Rllp. The number of real solutions for p of A1(p) = M(p*) may then 
depend on the value of p*, so the number of possible values for the parameters may 
not be a structural result. If all possible values ofp but one turn out to be complex, a 
s.l.i. structure may thus yield a unique model. See also Remark 2.9. 

- The previous definitions of identifiability can readily be adapted to situations where 
the shape of the input u and the measurement times ti (i = 1, ... , Ill) are fixed a 



priori. It suffices to replace M(p) = M(p *) in these definitions by ym(p) = Y m (p *), 
where ym(p) stands for the vector obtained by concatenation of all available output 
vectors Ym(ti. P, u), i = I, ... , nt. 0 

There are many methods for testing models for structural identifiability (see, c.g., 
(Walter, 1982, 1987; Walter and Pronzato, 1995) and the references therein). Those 
presented In Sections 2.6.1.1 and 2.6.1.2 apply to time-invariant LI state-space 
structures M described by 

d 
(jfx = A(p)x + R(p)u • x(O) = xo(p), 

Ym = C(p)x + D(p)u. 

Non-LI structures will be considered afterwards. 

2.6.1 .1 Laplace transform approach 

This approach was initially proposed by Bellman and Astrom (1970). in the context of 
biological modelling. After eliminating the state from the Laplace transform of the 
previous equations, one gets 

Ym(S, p) = HI(S, p)u(s) + H2(S, p)xo(p), 
with 

H,(s, p) = C(p)[sI - A(p)]-lB(p) + D(p) 
and 

H2(S, p) = C(p)[sI A(p)]-I. 

M(p) = M(p *) if and only if 

1\ '" Ym(s, p) - Ym(s, P ) == 0 \::j s, u(s). 

This results in a set of equations binding p and p*. If for almost any p* this set of 
equations has a unique solution for p, M is s.g.i. If for almost any p'" the set of 
solutions is finite or denumerable, Mis s.U. If for almost any p* the set of solutions is 
undenumerable, M is s.u.i. Any parameter that takes the same value in all solutions is 
s.gJ. Any parameter that takes its values in a finite or denumerable set is s.lj. 

Writing the transfer matrices HI and H2 in canonicaljonn, i.e. a form which can be 
written in only one way, may simplify computation considerably, because then 
M(p) = M(p*) if and only if the coefficients of H, and H2 have the same value for 
p = p and p = p*. A canonical form is, for instance, obtained by writing down each 
entry of the transfer matrix as the ratio of two polynomials ordered in s, provided that 
the numerator and denominator are simplified by their greatest common divisor and that 
the coefficient of the denominator monomial with highest (or lowest) degree in s is set 
equal to one. Note that this simplification means that one is only dealing with the 
controllable and observable part of the model, a situation that will be met again in 
Sections 2.6.1.2 and 2.6.1.4. 



EXAMPLE 2.3 

Consider the CLl, non-LP) model structure defined by 

d 
Cit.tl ;;; -(PI + P2)Xl + P3X2 + ll, Xl(O) = 0, 

d dt X2;;; P1 X l - P3X2, X2(0) ;;; 0, 

Ym ;;;X2· 

The Laplace transfonn of these equations can be written as 

(s + PI + P2)Xt (s) ;;; P3X2(S) + ties), 

Ym(S) ;;; X2(S). 

Eliminating Xl and X2, one gets 

(s + PI + P2)(.<; + P3)Ym(S) PtP3)'m(S) + P1 U(S); 

hence the transfer function in canonical fonn is 

HI (s, p) ;;; ---::------'--'-----

M(p) ;;; A1(p*) is therefore equivalent to the set of equations 

A * 
PI PI, 

A 1\ '" * 
P2 + P3 ;;; P2 + P3, 

A /\ '" * P2P3 = P2P3, 

which has two solutions for p, namely 

The first parameter, which takes the same value in the two solutions, is s.g. i. The other 
two, which each can take two values, are only s.l.i. From noise-free data, one will 
therefore be able lo compute the true value for PI, whereas two possible values will be 
obtained for P2 and P3. Choosing between them will be impossible without resorting to 
other types of measuremenls or other prior knowledge than assumed during the 
identifiability study. () 



REMARKS 2.5 

- Had we estimated the parameters of such a model with the help of one of the 
iterative algorithms of Section 4.3.3, we would have found either of the two 
possible solutions, depending on the initial value chosen. The other solution, which 
yields exactly the same input-output behaviour, might have been overlooked. 
Knowing either of them. we can now generate the other. 

- Example 2.3 illustrates the necessity of including "for almost any value of p*" in 
the definitions of structural identifiability. It is clear from the expression for the 
transfer function that if p * is in the plane of the prior feasible parameter space 
defined by PI:::: 0, the process output will be identically zero whatever the input, so 
P2 and P3 become unidentifiable. These parameters are nevertheless s.l.i., for the 
plane PI:::: 0 can be considered atypical. 

- The fact that this model is not s.g.i. entails that it will not be possible to reconstruct 
its state x uniquely, solely from the knowledge of its input-output behaviour. 
Depending on the model selected, two possible values for Xl wiII be obtained. If the 
vector z of the quantities of interest introduced in Chapter 1 depends on state 
variables that are not directly measured, it is therefore important to make sure that 
the model is s.g.i., or at least that 

1\ '" 1\ '" 1\1(11) :::: 1\1(p ) => zm(t, p, u) == zm(t, P ,u). 

- The existence of a true value of the parameters need not be assumed; p* may be seen 
as the parameter vector of a model generating input-output behaviour that has been 
deemed satisfactory. The question is whether there arc other models with the same 
structure and the same input-output behaviour. 

- If the model is only to be used for the prediction or control of the process Olltput, 
without any constraint on quantities that cannot be measured directly, then a 
structure that is only locally identifiable may be perfectly satisfactory (or even an 
unidentifiable structure, if this raises no difficulties with the estimation algorithm), 0 

2.6.1. 2 Similarity transformation approach 

The model generating the data is assumed to be M(p"'). described by 

d ' dt x* :::: A(p*)x* + B(p*)u, x*(O)::: xo(p*), 

Ym :::: C(p*)x* + D(p*)u. 

1\ 

Let x::: Tx*, where T is the invertible matrix of a state-space similarity transformation. 
Then the transformed equations 

ft ~ TA(p*)T-I~ + TB(p*)u, ~(O) = Txo(P*), 

Ym :::: C(p*)T-l~ + D(p*)u, 

will obviously have the same input-output behaviour as M(p*), They will correspond to 
a model A1(p) if and only if 
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A(p) = TA(p*)T-I, 

B(p) = TB(p *), 

C(p) = C(p*)T-I, 

DCp) = D(p*), 

1\ '" xo(p) ;::; TxoCP ), 

which is a sufficient set of conditions for Al(p) = M(p"'). From Kalman's algebraic 
equivalence theorem, this set of conditions is also llecesscu}" provided that M(p*) be 
observable and controllable. The structural identifiability of M can then bc tcsted by 
looldng for all solutions for (p, T) of these equations (Berman and Schoenfeld, 1956; 
Glover and Willems, 1974; WaIler and Lecourtier, 1981). If for almost any p* the only 
solution is (p, T) = (p*, I), M is s.g.i. If for almost any p* the set of solutions for p is 
finite or denumerable, M is s.l.i. 

EXAMPLE 2.3 (continued) 

The state and observation equations correspond to 

[ 
-(p I + P2) P3] [ I] 

A(p) = . n (p) = . 
PI -P3 0 

x(O) .:= 0, 

C(p)=[O 11. D(p)=O. 

and NI is structurally controllable and observable, so the similarity transformation 
approach applies. Zero initial conditions bring no information on T. Exploit Hrst the 
structures of the observation and control matrices, with the notation li/;' = rT]i/;': 

CCp)T = C(p*) ~ 121 0,122 = l, 
B(p) ;::; TB(p*) => tll = 1, 

so T can be written as 

T(a)=[~ ~l 
The set of all possible matrices A satisfies 

A(p) T(a)A(p*)T-I(a) 

=[ * * '" -(PI + P 2) + ap 1 
* PI 

a(p7 + p;) + P3 - a2p~ - ap~ 
* '" -apI - P3 J. 
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A 
]n A (p), the sum of the terms of the second column must be equal to zero, so 

This equation has two solutions for a, namely 

ex = 0 ~ T I, P == p* 

and 

The same conclusion is reached as with the Laplace transform approach. M is s.l.i.; 
only P I is s.g.i., P2 and P3 can be exchanged without modifying the input-output 
behaviour. Even from noise-free data, it is impossible to estimate p* and x* uniquely, 
but all their possible values can now be computed. 0 

REMARK 2.6 

Although the conclusion does not depend on the method used, the required 
computations do. Depending on the example considered, one or the other approach may 
turn out to be much simpler. The same holds true for methods for non-LI structures 
(Chappell, Godfrey and Vajda, 1990). 0 

2.6. 1 .3 Taylor series approach 

Consider the (possibly non-LI) structure defined by 

d cit xU) == f[xU), U(I), t. p], x(O) = xo(p), 

Ym(t, p) = h[x(t), pl, 

where f and h are assumed to be infinitely continuously differentiable. Let 

M(p) == M(p*) implies 

A sufficient condition for Ivl to be s.g.i. is therefore (Pohjanpalo, 1978) 

0, I, ... ,kmax • ~ J\ '" p=p, 

where kmax is some positive integer, small enough for the computation to remain 
tractable. 



EXAMPLE 2.4 

Consider the matrix of all impulse responses of a LI state~space model (with D = 0) 

Y mU, p) = C(p)exp[A(p)/]B(p). 
Since 

dk 
Iim d k Y mU, p) = C{p)Ak(p)B(p), 

1---.;0+ t 

the Taylor series approach amounts to testing identifiability from identity of the ltlarkol' 
parameters (Fisher, 1966; Grewal and Glover, 1976) 

a method that usually turns out to be more complicated than the LapJace transfOlm and 
similarity transformation approaches. 0 

EXAMPLE 2.5 

Consider now the unforced non-LT structure !vI defined by 

The successive derivatives of Ym at t 0+ satisfy 

QO(p) = 1, 

al(p) = -(PI + P2), 
'1 ? 

Q2(P) (PJ + P2)~ + P2P3. 
3 2 2 2 

Q3(P) = -P2P3 - 4 P2P3(pJ + P2) - P2P3P4 - (PI + P2)3, 

and it is easy to show that 

M is therefore s.g.i. 

REMARK 2.7 

o 

If P3 is set to zero in Example 2.5, the model becomes LI and s.u.i. This illustrates the 
frequently reco!.'ded fact that LI models lend to be less identifiable than their non-LI 
counterparts. 0 



2.6.1 .4 IJocal state isomorphism approach 

This method applies to structures M described by 

d di xU) == f[xU), p] + It(t)g[x(t), pJ, xeD) = xo(p), 

Ym(t, p) == h[x(t), p], 

where f, g and h are analytic, It is a measurable bounded function and M(p) is locally 
reduced at xo(p) for almost any p (which corresponds La a notion of structural 
observability and structural controllability (Hermann and Krener, 1977; Sussman, 
1977»). Let x* be the state of M(p*) and ~ that of M(p). M(p'*) and Atl(p) will have the 
same input-output behaviour fo!, any II up to some time t I > D if and only if there exists 

I I . I . .t.. n/~' - '* II m.( *. h I f' ... I a oca state lsom~rp lIsm 'f: Ii. 0 -7 JrU', X -7 X = 'I' X ) sue L 1Ul . or allY x In t le 
neighbourhood V~ of xa(p*) the following conditions are met: 

- $ is a diffeomorphism: 

a$(x) 
rank ax T Ix=x* == 11, ( i) 

initial states correspond: 
'" II 

$(xo) = XQ, (ii) 

- drift terms correspond: 

r II II frn..* II a$(x) f * * (x, p) = 'f(x), p] == axT Ix=x* (x ,p ), (iii) 

control terms correspond: 

II 1\ * II a$(x) * * 
g(x, p) = g[tj>(x ), p] = ax T Ix=x* g(x , P ), (iv) 

- observations correspond: 

h(t p) = h[${x"'), pJ = h(x"', p*). (v) 

After checking that M(p) is locally reduced at xo(p), one can look for all solutions for p 
and q, of 0) - (v). If for almost any p* the only possible solution is p = p'" and 
q,(x*) = x"', then M is s.g.i. (Vajda and Rabitz, 1989; Vadja, Godfrey and Rabitz, 
1989), 

The method may involve fairly complicated computation first to check that A1(p) is 
locally reduced and then to solve 0) (v) for p and tj>. The two following results are 
therefore of interest. 



- If there exists a value Po of the parameters sllch that M(po) is LI and controllable 
and observable (which is trivial to test), then NI(p) is locally reduced at x(O) = 0 for 
all p except at most for parameter vectors in a set of zero measure (Vajda, Godfrey 
and Rabitz, 1989). 

- For polynomial models with linear observations, i.e. when the components of f and 
g are polynomials in x parametrized by p and h[x(t, p), p] = C(p)x(t, p), q, can 
directly be written as a linear transformation ~ = Tx*, which drastically simplifies 
the calculations (Chappell, Godfrey and Vajda, 1990) and makes the transformation 
global, so that the positive time t} can be chosen arbitrarily large. Conditions 0) -
(v) then become 

det T -:F 0, (i') 

(ii ') 

f(Tx*, p) = Tf(x*, p*), (iii ') 

g(Tx*, p) = Tg(x*, p*), (iv') 

C(p)T = C(p*). (v') 

Vajda et al. (1989) have applied this approach to a nonlinear model of methane 
pyrolysis. 

For LT models also, the local isomorphism is a linear transformation. and the 
method reduces to the similarity transformation approach. 

EXAMPLE 2.6 

Consider the non-LT structure M defined by 

x(O) = 0, 

Ym(t, p) = X2 = [0 I] x. 

It is trivial to check that when P3 = ° the structure becomes Ll and structurally 
controllable and observable, so that A1 is structurally locally reduced and the local state 
isomorphism approach applies. Since M is polynomial, q,(x) = Tx, and Conditions 0') 
- (v') express that M(p*) == Nl(p) .. Condition Oi') brings no information on T. 
Conditions (iv') and (v') imply that it can be written as 

T(a)=[ ~ ~ 1 
Condition (iii ') then translates into 



:::; Tf(x*, p*) 

The second row of this equation is equivalent to 

* * " * I\. * It must hold true for any x around 0 and almost any p ,so P2 == P2, P3 == R3, a == 0 
d l\. * . h fl' h" * . an P4 = P4. Processmg t e ust row In the same manner proves t at Pl = PI, so M IS 

s.g.i. 0 

2.6.1.5 Use of elimination theory 

Computer algebra software (Davenport, Siret and Tournier, 1987, 1993) such as 
AXIOM, MACSYMA, MAPLE or REDUCE can be used to obtain equations 
expressing M(p) = j\1(p*) and solve them. These equations can often be put into the 
form of sets of polynomial equations in several unknowns, which can be transfonned 
into triangular ones with the help of elimination theory (Buchberger, 1970; Raksanyi et 
al., 1985; Lecourtier and Raksanyi, 1987). These sets of triangular equations can then 
be solved by considering a sequence of single-variable polynomials. 

REMARK 2.8 

Since p is assumed to belong to lRllp, one should only consider real solutions to these 
equations, which complicates the matter. 0 

Differential algebra (Ritt, 1950; Fliess, 1989). in which differentiation is added to 
the classical axioms of algebra, makes it possible to use a similar approach to eliminate 
state variables. When differential input-output relations can be obtained that only 
involve known variables, their derivatives and the parameters to be estimated, these 
equations can be used to study identifiability (Ollivier, 1990; Diop and Fliess, 1991). 

EXAMPLE 2.7 

The following model corresponds to the Volmer-Heyrovski mechanism, used in 
electrochemistry to describe the production of gas or the dissolution of metals (Berthier 
et al., 1995, 1996): 

x(1)] k2(t)x(t), x(O) 

kl (1) = P I exp[pzu(t)], k2(t) = P3 exp[P4 11(t)], 
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Differentiating the observation equation with respect to time, one obtains 

Replacing d-r/dt by its value as given by the state equation and multiplying the result by 
(k2 - kl) so as to use the observation equation to eliminate x gives the input-output 
equation 

dv dkl dk2 ?.1 dkl dk2 (b - kJ)~ + [- - - + k- - k ]}' = -k; - kl- + 2kJ k;(k; - k I) - dt dt d! 2 I m d! - d! - - , 

with the initial condition 

Exchanging k, and k2 (i.e. (PI, P2) and (P3, P4)) leaves y(O) unchanged and multiplies 
both sides of the input-output equation by (-I). The model is therefore not s.g.i. 0 

Finally, consider a model defined by a set of relations 

rk(Ym. u, x, p) = 0, k = 1, ... ,l1r, 

where the rk'5 are polynomial functions of U, Ym and x and their derivatives with 
respect to time and polynomial functions of p. In the idealized context of identiflability 
studies, any uniquely identi fiable parameter Pk can be computed (Ljung and Glad, 
1994) as the solution of a linear equation akPk = bh where ak and bk are polynomial 
functions of the inputs. outputs and their derivatives with 10 time. Computing Cl", 

and bk can therefore be used to prove the global identifiability of Pk. 

2.6.1.6 Numerical local approach 

The computations required by algebraic approaches are sometimes too complex 10 be 
execuled even by the most powerful computers. The following melhod can then be uscd 
to check whether IvI is (at least locally) identifiable. 

Choose some nominal value PO for the parameters (by randomly picking it in JF'). 
Simulate A1(po) with a high precision to get many fictitious data yr. 
Estimate p from yf by minimizing a quadratic cost in the output error (Chapter 3) 
with a second-order method such as those of Newton or Gauss-Newton 
(Chapter 4) initialized at pO = PO. If pk remains stablc at Po. then M is s.l.i. If, on 
the other hand. the estimator is unslable. this may mean that M is s.u.i., or that PO 
was close enough to an atypical hypcrsurfacc for thc matrices invertcd during the 
computation of pk to become numerically singular, or that thc simulalion was 
incorrect. Other nominal values Po should then be picked beforc rcaching a 
conclusion. Note that the Levenberg-Marquardt method (Section 4.3.3.5) cannot be 
used because it incorporates a regularization procedure. 



More sophisticated local numerical approaches, which can be used to study the local 
dependencies between unidentifiabJe parameters, are described in (Waller, 1982, 
Chapter 3). 

2.6.2 Distinguishability 

One often hesitates between several model structures for the description of the same 
data. It is then natural to ask whether the measurements to be performed on the process 
will make it possible to decide which one is best. This question is that of the 
distinguishability of structures, which receives a partial answer in the same idealized 
framework as structural identifiability. One thus assumes (Figure 2.5) that the 
"process" is a model with structure M while its "model" has the structure tJ, which now 
differs from M. The parameter vector associated with AI will be denoted by p, and that 
associated with M by p. The vectors p and p are not necessarily of the same dimension. 
Since the process and its model no longer have the same structure, it may become 
impossible to tune the parameters p of the model so as to obtain the same input-output 
behaviour as that of the process. It is this impossibility that may permit the elimination 
of structure !VI in favour of structure M. 

Al(p) Ym(t, p. u) 

u(t) -----I Differing structures 

Figure 2.5. Idealized framework or structural distinguishability studies 

More precisely,!VI will be structurally distingllishable (s.d.) from AI if, for almost 
any feasible value p of the parameters of M, there is no feasible value p of the 
parameters of tJ such that !VI(p) ::: M(p). 

Note the asymmetry of the previous definition. The fact that t! is s.d. from M does 
not imply that the converse is true. One class of models may include the other (without 
this being obvious at first sight). Whenever !VI is s.d. from M and M is s.d. from tt, M 
and !VI are said to be s.d. 

The techniques to test pairs of model structures for distinguishability are quite 
similar to those used for identifiability testing (Walter et al .• 1985). Note, however, that 
one now hopes to prove the non-existence of a solution for p, whereas in identifiability 
studies one hoped to prove the uniqueness of this solution. 



EXAMPLE 2.8 

A first model structure M is defined by 

d at xl -(p 1 +P2)·'\:i + P3x2 + fI, :q (0) = 0, 

d 
dt X2 = P2X l - P3.t2, X2(0);:::; 0, 

Ytn .\"!. 

It competes with a second structure tr defined by 

d 1\ 1\ 1\ 1\ 1\ 1\ dt XI -P2·'Q + P3x2 + 11, Xl (0) ;:::; 0, 

f, = P2~1 - <PI + P3)12 , .~2(0) = 0, 
1\ 1\ 

Ym Xl· 

The assoc'iated transfer functions, when put in the same canonical form, can 
respectively be written as 

H(s, p) = -----~----

and 
1\ 1\ 

1\ 1\ S + PI + P3 
H(s, p) = 2 1\ 1\ 1\ - 1\ 1\ • 

S +s(Pl +P2+P3)+PIP2 

The identity of input-output behaviour therefore translates into 

For any p, it is possible to find p such that these equations are satisfied, and vice versa. 
M and NI are therefore structurally indistinguishable. It will be impossible to know 
whether the structure chosen was right. A possible way of removing this ambiguity 
would be to monitor X2. 0 

REMARK 2.9 

As for identifiability, there are cases where no structural conclusion can he drawn. 
Consider for instance two model structures, with transfer functions 

1\ 1\ I 
H(s, p) = 2 1\ 1\ 

S + PIS + P2 

and 
1 

H(s, p) = (s + Pl)(S + P2) , 



with p and p belong)ng to ]R2. ]f l1(s, p) has two real poles. H(s, p) is 
indistinguishable from 'R(s, p); otherwise, H(s, p) is distinguishable from if(s, p), 
because of the restriction of p to real values. None of these situations can a priori be 
considered atypical. 0 

2.6.3 Relationship between 
identifiability and distinguishability 

It is easy to prove (Walter, Lecourtier and Happel, 1984) that the identifiability of two 
structures is neither necessary nor sufficient for their distinguishability. It suffices to 
show structures that are distinguishable when none is identifiable and identifiable 
structures that are indistinguishable. As already noled, the techniques lo test structures 
for these two types of properties are nevertheless quite similar. 

2.6.4 Chemical engineering example 

The experimental set-up described by 2.6 is used at Columbia UniversilY to 
study, with the help of transient isotopic tracing, the reaction that produces methane 
from carbon monoxide and hydrogen according to 

Vector gas (helium) 
!II' 

100 ml/min 

Syringe 
I t=;l::}-
L:- Of - -0- _I 

Trolley 
Reactor 

6000 rnl/min 

To mass 
spectrometer 

Figure 2.6. Experimental set-up in helerogeneous catalysis 

Before time t = 0, a gaseous mixture containing carbon monoxide, methane, 
hydrogen and water is circulated at high speed over a nickel-based solid catalyst. The 
consumed carbon monoxide and hydrogen are continuously replaced with the help of a 
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iyringe, while pressure and temperature are regulated. The composition of the gaseous 
nixture collected at the outlet of the reaclor is analysed with a mass spectrometer. When 
:he reactor reaches a stationary state, the composition of the gaseous mixture becomes 
~onstant. This corresponds to a dynamic equilibrium. where each molecule leaving the 
~eactor is replaced by an identical one. Then, at time 1 = 0, the syringe containing el20 
:arbon monoxide is replaced by one containing e13o. The evolution with time of the 
?crcentage of marked carbon atoms in carbon monoxide and methane leaving the reactor 
ls then recorded. Assuming that the reactor is stationary and that there is no isotopic 
~ffect (i.e. that CI3 and e l2 behave identically with respect to the reaction), the 
~volution of the tracer is linear with respect to the input, and time-invariant, even if the 
reaction kinetics are highly nonlinear (Happel. 1986). 

Chemical prior considerations suggest two possible model structures for the 
jescription of the data. The first one M is defined by 

d Cl'cfi XI = -(V + ve)'-\:] + VeX2 + Vu. 

d 
C2dt X2 = VeX) VcX 2. 

d 
C3at -'"3 == VXI - VX3. 

d 
C4di X4 == VX3 - V.q, 

Ym == .t4, 

where the parameters to be estimated are p = (Cl, C2, C3, vc)T, and where V and C4 
flIe known from independent measurements. 

The second model structure tJ is described by 

d A .. .,A 
C1dt XI = -VX) + Vu, 

d A A A 

C2dt X2 = "l x 1 VIX2, 

C3~ ~3 = (V VI )~l + v 112 ~3, 

C4~ 14 = v13 - ~4, 
A A 
Ym =X4, 

where the parameters to be estimated are p= (Cl. C2, C3, VI)T, 
The state variables Xi and ~i U = 1, ... , 4) are specific activities (percentages of 

labelled atoms), the Ci (i == 1, ... , 3) are surface concentrations and Vc and V) are flow 
rates of carbon atoms between adsorbed species. All parameters and state variables 
therefore have a concrete meaning. The aim of the modelling is to determine which 
model structure is more adequate (discrimination or hypothesis testing) and to eSLimate 
lhe numerical value of the associated parameter vector. One thus hopes to detect the 
:::haracteristics of the slow step of the reaction and to use this information to improve the 
:::atalyst. Before attempting to process the data, one should test whelher these objectives 
:::ould be met within the idealized framework of structural identifiability and 
:listinguishability studies. With the help of the Laplace transform approach, the 
following conclusions can be reached (WaIter et al., 1986): 
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- M and t1 are structurally indistinguishable; 
- Mis s.l.i. but not s.gj. (there are three different parameter vectors that correspond 

to exactly the same input-output behaviour); 
- At is s.l.i. but not s.g.i. (there are six different parameter vectors that correspond to 

exactly the same input-output behaviour). 

One thus knows before any measurement that it will not be possible to reach the 
objectives that had been initially defined. Such model structures may nevertheless be of 
interest~ provided that their ambiguous nature is recognized and taken into account. 

2.7 Conclusions 

Choosing a suitable model structure is not an exact science. It involves more or less 
arbitrary decisions, with important consequences. Indeed, one cannot expect to do more 
than find the best possible model in the class thus defined. If this class is nol adequate, 
the most sophisticated data processing will never produce a satisfactory model. One 
should therefore not consider characterization as an initial step to be perfonned once and 
for all. but rather as a temporary choice. bound to be questioned. The first of these 
questionings can take place before any actual measurement. Testing structural 
properties, one can detect possible defects of the model structures considered even 
before data are available. The qualitative notion of structural identifiability naturally 
leads to a quantitative question: given that the model structure under investigation is (at 
least 10calJy) identifiable, what experiment should one perform to identify its parameters 
as precisely as possible? Similarly, when competing model structures have been proved 
to be distinguishable, the problem remains of effective discrimination between these 
structures on the basis of actual data. In both cases, the quality of the data collected is of 
paramount importance. The choice of optimal experimental conditions is the subject of 
Chapter 6. 

Tn the next chapter, the model structure is considered as given, and we shall address 
the choice of the criterion to be optimized in order to find the best model in the class 
thus defined. When there are several possible model structures, they wiJI be considered 
in turn, so as to select the simplest satisfactory one. 



3 Criteria 

Once the characterization has been perfonned, one should select the best possible model 
in the class thus defined, keeping in mind the final aim of the modelling. The criterion 
for this selection is the optimization of a scalar cost function j(p) with respect to the 
model parameters p. The optimal value of p (kept as the parameter estimate) will of 
course depend on the cost chosen, which should therefore always be specified, and 
justified as far as possible. Various approaches that can be employed lo buHd criteria 
will be considered in this chapter. The presentation goes from the simplest and most 
intuitive methods to more sophisticated ones, which are more demanding in terms of 
prior information. When this information is unavailable (or unreliable), one may turn to 
the robust methods presented in Section 3.7. 

Let yS be the vector of all experimental results to be used to estimate p, and ym(p) 
. the vector of the corresponding quantities computed by the model J}l(p). For a parallel 

model, the parameters of which are to be estimated from measurements of an output 
veclor yet) (t = 'I, ... , Ill,)' these vectors can be written as 

[

YI11(tI, P)] 
Ym(h, p) 

ym(p)= - , 

YmUllt , p) 

where the influence of the inputs is nol made explicit lo simplify notation. Due to the 
various perturbations llcting on the system, one will usually not obtain exactly the same 
results when the same experiment is repeated; Ys is therefore a random vector. By abuse 
of notation, we shall denote this random vector Hnd its realization (vector of known 
numbers correspondin~ to actual measurements) in the same manner: We shall call any 
oplimizer of j, i.e. any p that corresponds to an optimal value of the cost function J, an 
estimate of p in the sense of j. 

3.1 Least squares 

Quadratic cost functions are by far the most commonly used, since Gauss and Legendre 
(Stigler, ] 981), because of their intuitive appeal and relatively easy optimization (for LP 
models, the best estimate in the sense of a quadratic cost function can be obtained 
analytically, as will be seen in Chapler 4). These cost functions can be written as 



iJs(p) = CT(p)QC(p), 

where Q is a nonnegative definite symmetric weighting matrix, and e is a vector 
characterizing the error between the system and its model. The estimate of p in the sense 
of jls is given by 

Pis = arg min jls(p). 

Such an estimator is usually called a (weighted) least-squares estimator, or L2 estimator. 
It can be arrived at independently of any statistical consideration, even if, as will be seen 
later, its use can be motivated by information (or hypotheses) on the nature of the noise 
acting on the system. Very often, 

e(p) = yS _ ym(p), 

and Q is chosen diagonal, so the cost can be written (after normalizing) as 

where N is the total number of experimental data. Division by N permits the comparison 
of values of the cost obtained with different numbers of data points. The weighting 
coefficients wik are positive or zero and fixed a priori. They correspond to the diagonal 
entries of Q and may be chosen empirically. The larger Wik is, and the more it will cost 
the model to deviate from the experimental result YkUik)' The choice of the Wik'S will 
therefore express the relative confidence in the various experimental data and the 
consequent imporlance attached to the model performance with regard to each 
component of y and associated measurement time. Thus for example 

- H'ik = 0 eliminates a datum deemed insignificant, 
- H'ik = [Yk(tik)]-2 (provided Yk(tik) '* 0) makes the error relative and improves the fit 

of the small output values, which is of interest for example when outputs with very 
different amplitudes are to be fitted simultaneously. 

If the data correspond to the response of the system to a step input, then 

- Wif.; tik favours the fitting of the steady state, 
Wi/.; lItik (provided tili. '* 0) favours that of the transient. 

The weighting factors could be chosen iteratively. Assume, for instance, that by 
minimizing some initial quadratic cost, one has obtained a model with unsatisfactory 
behaviour in some region. By increasing the weighting factors associated \\'ith the 
errors in this zone. it will be possible to improve the behaviour of the model there (at the 
cost of its behaviour deteriorating elsewhere). By trial and error, one may then be able 
to correct the model response in order to reach a satisfactory compromise. 

REMARK 3.1 

When the data consist of repeated measurements at ilL times (or more generally III 
experimental conditions indexed by t), all data obtained at the same value of 1 can be 
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replaced by their arithmetic mean without modifying Pl5, provided that the model output 
Ym(t. p) be independent of the previous measurements (which in particular does not 
allow consideration of models including an autoregressive parl) and that the weighting 
matrix be suitably modified. Indeed, if nj(t) measurements are taken under lhe 
experimental conditions indexed by t, the cost can be written as 

III Ili( t) 

jis(P) = L L [Yi(r) - Ym(t, p)]TQz[y;(t) Ym(t, p)]. 
1=1 ;=1 

and the stationarity conditions become 

or 

with 

lit nj(t) T 

aj " '" aYm(t, p) Q [) (A] 0 dPlA = 2 £..J L..J (Jp lA t Yi(t - Ym I, Pis) = , 
PIs 1=1 i=1 PIs 

nt T 
" aYm(t, p), A £..J (Jp lA Qt[y(t) - Ym(t, Pis)] = 0, 
1=1 PIs 

llj(t) 

yet) = lr~t) L y;(t) and Q ~ = IIj(t)Qt· 
I ;=1 

3.2 Least modulus 

o 

One should not deduce from the almost ubiquitous use of quadratic costs that they are 
always to be recommended. One may, for example, prefer to minimize a weighted sum 
of absolute values of errors, given by 

Such cost functions, which can be traced back to the work of Galileo (in 1632!), 
Boscovitch and Laplace (Farebrother, 1987), penalize very large errors less than 
quadratic costs. The associated estimators are called (weighted) least-modulus 
estimators, or L] estimators. The choice of the weighting factors is inspired by the same 
type of consideration as for quadratic costs. For example, to work with a relative error, 
it suffices to set Wik = 1IIYk(tik)I. 

Ll estimators have interesting robustness properties, as will be seen in Section 3.7. 
Note, however, that the estimate obtained may not be unique, even when a least-squares 
estimate would be. For instance, j(P) = Ipl + Ip - 31 is at its minimum over [0, 3]. 
Moreover, the non-differentiable nature of jlm does not allow the use of optimization 
techniques based on a series expansion of the cost, such as described in Section 4.3.3. 
For a detailed presentation of the statistical properties of Lt estimators and of techniques 
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to compute them, one may consult (Bloomfield and Steiger. 1983; Dodge, 1987; Gonin 
and Money, 1989). See also Section 4.3.5.4. 

3.3 Maximum likelihood 

The vector Pml will be a maximum-likelihood estimate if it maximizes the cm\l function 

If p were fixed, JI'y(ySlp) would be the probability density of the random vector yS 
being generated by a model with parameters p. Here, to the contrary, yS is fixed and 
corresponds to the observations. Considered as a function of p, iTy(ySlp) is then called 
the likelihood of ys. The maximum-likelihood method looks for the value of the 
parameter vector p that gives the highest likelihood to the observed data. This approach 
allows one to take into account in the design of the cost the available information on the 
nature of the noise acting on the system. 

In practice, it is often easier to look for Pml by maximizing the log-likelihood 
function 

which yields the same estimate since the logarithm function is monotonically increasing. 

EXAMPLE 3.1: repeated observations of a Gaussian variable 

Consider a system with an experimentally observed scalar output y(ti) (i = I, '" , Ill)' 
Assume that it has been possible to repeat observations at each time '; to estimate the 
characteristics of the measurement noise, and that the observations at time 'i are 
independently identically distributed (i.i.d.) according to a Gaussian law with mean Pi 
and variance df. We wish to estimate Pi and df in the maximum-likelihood sense. The 
set of all available data for the ith time is 

where Yk(ti) is the result of the kth measurement at time Ii. Since y(ti) is assumed to be 
distributed I}.{(p;, 07), the probability density of Yk(ti) is given by 

Since the Il observations at lime Ii are assumed to be independent. their joint probability 
density is the product of the probability density of each of them, i.e. 

The log-likelihood is therefore 
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12 

jm!(P) = In 1ry[ys(ti)lp] ;;;; - i In(2Jr07) - 1 I, [Yk(ti) - /1i]2. 
20; k=l 

The maximum-likelihood estimate Pm! will be obtained by maximizing this cost function 
with respect to p. In general, it is not possible to solve this optimization problem 
explicitly, and one must resort to iterative algorithms such as those described in 
Chapter 4. Here, however, Pml can be obtained in explicit fonn. At the optimum of this 
unconstrained problem, the partial derivative of the cost function with respect to each of 
the parameters is zero (necessary first-order optimaIity condition), so 

a . 
-.,-lrnq" 
d(CTj) Pml 

1l 

",,1~ + ~ I, [Yk(1i) - PimlJ2 ;;;; O. 
-CTjml -aiml k=l 

The first of these equations implies 
11 

1\ 1 ~ 
Pi I = ~Yk(ti). 

rn 11 k= I 

The estimator of the mean in the maximum-likelihood sense is therefore the arithmetic 
mean of the observations. The second equation implies 

AlLhough presentation of the properties of maximum-likelihood estimators is deferred to 
Section 3.3.3, let us mention some properties of the estimators of mean and variance 
just derived. To simplify notation, the index i will be dropped, and the 11 data points wiII 
be assumed to be LLd. !JfiP*, (a*)2). Then (Korn and Korn, 1968) the estimator of the 
mean is unbiased (no syslematic error): 

1\ * E{Pml} = P " 

and its variance tends to zero as 11 tends to infinity: 

On the other hand. the estimator of the variance is biased (although the bias tends to 
zero as 11 tends to infinity): 
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It is easy to compensate for this bias by using the estimator 

which also has a variance that tends to zero as 1Z tends La infinity: 

Note that the number of repetitions must be fairly large for the estimation of )1* and 
(a*)2 to become accurate. With 11 = 9, for example, the standard deviations of the 
estimation errors are a*/3 for the mean)1* and (c/)2/2 for the variance (a*)2. 0 

The maximum-likelihood method is the basis of a large number of estimation 
techniques and possesses attractive theoretical properties (Section 3.3.3). This is why 
its implementation will now be detailed on various examples, which illustrate the 
diversity of the criteria that can be produced. 

3.3.1 Output-additive independent random variables 

Assume that the observed outputs satisfy 

where the vector Ym(ti. p*) is the output of a deterministic model, p* is the true value of 
the parameter vector and ei belongs to a sequence of independent random variables with 
probability density 1lf:;(ej). Since the ej'S are independent 

Consider the output error 

III 

]te(el. e2 •... , e"l) = n H£j(£i). 
;=1 

Cy(ti. p) ;;;; yeti) - Ym(ti, p). 

For the true value of the parameters, it satisfies CyUi. p *) = ei. and, since Y m is 
deterministic, 1ry;[Y(ti)lp] = 1tEi[cy(ti, p)). The likelihood of the Ilt observations can 
therefore be written as 

III nt 

]ty(ySlp) = n 1tE;ECy(t;, p)] = n Jl'£i[Y(tj) - Ym(tj, p)]. 
i=1 ;=1 



The log-likelihood is then expressed as a sum of terms, each of which is associated with 
the output error for a given value of t;, 

Ilt 

In Jry(ySlp) == L In JrEj[y(ti) - Ym(ti, p)]. 
;=1 

The type of probability density for the noise £; will dictate the type of function of the 
output error to be employed. Among the broad families of distributions that can be 
considered, Gaussian (or normal) distributions are of special imporlance. One 
justification for this phenomenon lies in the celltral limit theorem, which states that £j 

tends to be normally distributed if it results from the summation of a large number of 
i.i.d. errors with finite variance. A more prosaic explanation is the weight of tradilion. 
Let us stress that other hypotheses on the noise may also be considered. 

EXAMPLE 3.2: Gaussian noise with known or constant (homoscedastic) variance 

Assume that the data satisfy 

y(ti) == Ym(ti, p*) + Cif i == I, ... , Ill, 

where the C;' s are independent :iVlO, 07) random variables. Assume further that the 
variance 07 of the noise is either constant (i.e. independent of i) or known for all i's. 1t 
may, for instance, have been estimated beforehand by repeated experimentation as 
explained in ExampJe 3.1. One wishes to estimate p by maximum likelihood. 
According to the hypotheses on the noise, 

? 1/'" r I (£i)'l] JrEj(ci) = (2TCa-O- - exp -" - ~ . 
- (Ji 

The likelihood of the III observations of the output is therefore given by 

which amounts to saying that the y(tj)'s are independently distributed according to the 
normal law 9t/1Ym(ti' p), cif). The log-likelihood can be written as 

In TCy(ySlp) == (term independent of p) 

A maximum-likelihood estimate Pml(YS) of p is therefore a maximizer of 
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'( ) _ 1. ~ [y(ti) - Ym(ti, p)J2 
JP--2~ , 

i=1 ai 

i.e. a minimizer of the quadratic cost 

lit 

.ils(p) = L Wi [YUi) Ym(ti, p)]2, 
;=1 

L.mena 

with the weights Wi = 1107. One thus obtains a weighted least-squares estimator. The 
error at a given ti is weighted by the inverse of the variance of the associated noise; the 
more a measurement is corrupted by noise, the less it will influence the optimal value of 
the cost. Weighting thus gets a rational basis. Note that the random variables 
[y(1i) -Ym(1i, p*)]/aj (i= 1, ... , Ill) are i.i.d. !N(O, I). The weighting has therefore 
equalized the variances of the errors. This estimator can be used even jf the noise does 
not follow a nonnallaw, provided that its variance ci7 is known. It is then called the 
Gauss-Markov estimator. For an LP model structure, it is the Best Linear Unbiased 
Estimator. or BLUE, in the sense of the variance of the estimates; see, e.g., (Goodwin 
and Payne, 1977). 

If all aI's are equal (the stationary or homoscedastic case), unweighted least-squares 
should be used (Wi = 1). The noise variance then need not be known a priori, and can 
be estimated a posteriori from the residuals (Example 3.4 below). 0 

EXAMPLE 3.3: Gaussian noise with unknown varying variance 

Assume now that the a/s are unknown and may depend on i (heteroscedasticity). One 
may think of creating an extended parameter vector Pc = (p T, a), ... , alll)T, and 
estimating Pc by maximum likelihood. Such a strategy is however bound to fail, for Pc 
is unidentifiable since the number of extended parameters to be estimated is III + dim p 
when there are only 111 data points. If, on the other hand, (J'j is parametrized, e.g., as 
(Box and Hill, 1974) 

where a > 0 and 0 ~ b ~ 2, then it becomes possible to estimate Pc = (pT, a, b)T in the 
maximum-likelihood sense. Note that b ;:;; 0 corresponds to a constant variance 
(homoscedasticity), while b = 2 corresponds to a standard deviation proportional to the 
output. The likelihood of y5 satisfies 

III 

1r (y51p a b) = n (21l'a Iy (t- p)lb)-1I2 exp {_ .!.!V{ti) - Vm(ti. p)]2} 
Y " m /l 2 1 (t. p)lb ' i=l a )1m I. 

and the log-likelihood of yS is 



111 
, III 111 b ~ 

]n ny(ySlp, a, b) = - "fIn 21C- "fIn a £.J 1n IYm(ti. p)1 
;=1 

111 
..L ~ [y(ti) - Ym(ti, p)]2 
2a /-I Iv (1' p)lh . 1=1 - m /, 

We must therefore minimize the cost 

nl nt 

j(p, a, b) == llt1n a + b L In IYm(tj, p)1 +! L [y(ti) - )'mCtj, r)]2 
i=l a i=1 IYm(ti, p)1 

with respect to p, a and b. The extended parameter a can be eliminated by noticing that 

Ilt 

21 = ~ __ 1_ ~ [y(ti) - Ym(ti, PmI)]2 = 0 
da I A 1\ .r- " " 2 ~ ,,(\ , 

Pm), amI. Oml amI ami i=1 IYm(ti, Pml)l1Jrn l 

so 
lIt 

"(" .r-) 1 '" [V(ti) - "mUi. Pml)]2 
(lml Pm), Oml = - ..t..J "f,' 

Ilt ;=1 IYm(ti. Pm))1 }rnl 

Substituting 8ml(p. b) for a in the cost, and eliminating a term that does not depend on 
the parameters to be estimated, one gets 

III Ilt 

jrnl(P, b) = llt1n { 1 L [y(ti) - Vm(ti, p)]2 } + b L In IYm(t;. p)1. 
Ilt i=1 IYm(ti, p)lb i=1 

Although the noise is Gaussian, the cost to be minimized is not the intuitive quadratic 
cost 

j(p, b) 

lit 
1 L [y(tj) - )'m(ti, p)]2 
Ilt i=l IYm(ti, p)lb ' 

where the errors are weighted by the inverse of the corresponding noise variance. 0 

EXAMPLE 3.4: multidimensional Gaussian noise with unknown constant covariance 

Assume that several outputs of the same process are simultaneously observed, 
described by 

y(tj) = Ym(ti, p*) + fi, i == I, ... , lilt 



where y, Yrn and Ej are Ilrdimensional vectors and the £;'5 are independent Gaussian 
vectors with zero mean and unknown covariance .1: (which does not depend on i). We 
wish to compute maximum-likelihood estimates of p and .1:. Since £i is distributed 
9£(0, .1:), 

Taking into account the independence of the £/s, one can therefore write the likelihood 
of yS as 

where 

III 

Jry(ySlp,.1:) II [(21r)lly del :t]-1I2 exp [- t ey(ti' p)Tr.-1ey(ti. p)], 
;=1 

eyUi. p) = y(tj) - Ym(ti. p). 

The log-likelihood of yS satisfies 

Ilyn t III 
In i'l'y(ySlp, r.) = 2 In 2Jr - yin det .1: 

rlt 

- ~ L [y(ti) - Yrn(ti, p)]Tr.-1 [y(ti) - YmOi. p)] . 
.... ;=1 

If r. were known, the maximum-likelihood estimate of p could be obtained as Pis which 
minimizes the quadratic cost 

IlL 

jls(p) = L [y(t;) - Ym(t;, p)]T:E- 1 [y(t;) - Ym(ti, p)] 
i=1 

(the Gauss-Markov estimator). Since r. is unknown, the log-likelihood must be 
maximized with respect to p and :to Taking advantage of the first-order optimality 
conditions 

and 

and using the standard results 

~ In det r. = :t-1 and ~ Ar.-1n = -r.-lnAr.-1 
d:t dr. 1 

one can show (see, e.g .• Goodwin and Payne, 1977) that Pm! is obtained by 
minimizing the cost 



Ilt 

iml(P) = In det (L [y(lj) - Ym(ti. p)][y(ti) - Ym(tj, p)]T}. 
i=l 

A A 
The estimate Pml can then be used to computel:ml as 

III 

:Eml = ~ L [y(ti) - Ym(ti. Pml)][Y(ti) - Ym(ti, Pml)]T. 
l i=l 

Although I: is unknown, it is thus possible to estimate p in the maximum-likelihood 
sense by optimizing a cost that does not depend on I:. This approach may be used to 
solve the problem of the relative weighting of several experimental curves without 
introducing more or less arbitrary weighting coefficients. It does, however. require I: 
not to be singular. 

When the output is scalar and ei is distributed !N(:O, (12), the previous result implies 
that Pml is obtained by minimizing the unweighted quadratic cost 

and that 

III 

iml(P) = L [yeti) - Ym(ti, p)]2, 
i=1 

Ilt 

A'J I"" A ") crml = - .L.... [y(ti) - Ym(ti. Pml)]-· 
lIt i==l 

o 

In the vector case, the approach of Example 3.4 requires all components of y to be 
measured synchronously. Otherwise (if, e.g., measurements are missing), one can 
easily show that if L is diagonal, Pml is obtained by minimizing the cost 

lly 

• "" 11 Jml(P) == .L.... 
k=l 

Illt 

In L [Yk(tik) - Ymk(tik. p)]2 . 
i=l 

EXAMPLE 3.5: scalar Laplacian noise with known or constant standard deviation 

Consider Example 3.2 again, but assume now that ej belongs to a sequence of 
independent random variables with a Laplace distribution with zero mean and known 
(or constant) standard deviation ai. so 

1 {2le;1 
1!€;(ei) = .r;:; exp (---). 

,,2 cri <1i 

After derivations similar to those of Example 3.2. the log-likelihood of Ilt observations 
is obtained as 



III 

In JCy(ySI p);::: (term independent ofp) -{2 I,IY(ti) - Vm(ti, p)1 . 
;=1 cri 

The maximum-likelihood estimate of p is therefore obtained by minimizing a weighted 
L) cost (weighted least-modulus estimation) 

III 

jlm(P);::: I, Wi Iy(ti) - Ym(ti. p)l, 
;=1 

with Wi ;::: l/crj. Such a weighting makes wi[y(ti) - Ym(t;, p*)] (i ;::: 1, ... , Ilt) Li.d. 
according to a Laplace law with zero mean and unit standard deviation. When all a"j's 
are identical, an unweighted least-modulus estimator should be used (l-1'i;::: 1). 0 

EXAMPLE 3.6: stationary uniform scalar noise 

Assume that the output satisfies 

where £j belongs to a sequence of independent random variables, uniformly distributed 
over the interval [-a, a], i.e. 

{ 
1/(2a) if leil ::::; a, 

a otherwise. 

The likelihood of the observations yS is then 

{ 
1/(2a)lI[ if Iy(li) 

1[. (ySlp) ;::: . 
Y a otherwise. 

Ym(tj, p)1 ::; a, i;::: 1. ... ,Il[, 

Any p such that Iy(ti) - YmCti, p)l::; a (i;::: 1, ... ,lll) is therefore a maximum-likelihood 
eSlimate of p"'. Even is lhe model slructure is globally identifiable

A 
the sel of all 

maximum-likelihood estimates of its parameters is no longer a singleton Pm). It is now a 
nondenumerable set of vectors, possibly empty if the hypotheses on the noise are not 
satisfied. Such set estimators will be considered in more detail in Section 5.4. 

Should one wish to pick an element oul of this set, one could use the rule 

Pmm;::: arg min max Iy(ti) - Ym(ti, p)1. 
p 19::;lIl 

This is lhe minimax or L(Xj estimator, introduced by Laplace in 1786. It makes it possible 
to avoid fixing the value of the error bound a priori. The smallest value of a consistent 
with the data and model structure is given by 
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This approach trivially extends to the vector case. One Ciln also consider a weighted Loo 
cost, 

A • 1 
Pmm = arg mm m.ax Hli )'(li) 

P IS1SIlt 
YmCri, p)1. 

Computing Pmm corresponds to a constrained optimization problem, since 

under the constraints 

A . 
Prnm == arg nun x. 

p 

x + \IIi [y(ti) - )'m(tj, p)] ~ 0 and x - lI'j [y(tj) - YmU;, p)] ~ o. 

When the model structure is LP, this is 11 linear-programming problem. and Pmm 
can be obtained recursively as the data arc collected (Sections 4.3.4.1 and 5.4.1.3). 0 

3.3.2 Output-additive dependent random variables 

So far, the output was assumed to be additively corrupted by a sequence of independent 
random variables. Now we have seen in Section 2.4 a family of discrete-time models. 
commonly used in practice, for which the output noise results from passing a sequence 
of independent random variables through a filter that destroys independence. For such 
models, a prediction error can be defined that con'csponds to a sequence of independent 
random variables when the model parameters arc equal to p*. This will allow the 
application of the results of Section 3.3.1. Consider the Box-Jenkins parametrization 

y(t) = F(q. p*)u(t) + 11(t), 

where 

1](1) = G(q, p*)£(t). 

F and G are rational functions of q-l, G is stable and wilh a stable im'crsc, the first 
entry of the impulse response of G and G-I is equal to one and £(1) belongs to a 
sequence of zero-mean independent random variables. The results for ARX and 
ARMAX models and their variants will be obtained by specializing F and G. 

Since £(t), given by 

£(t) = G-l(q, p*)fy(t) - F(q, p*)u(1)J, 

belongs to a sequence of independent random variables. wc choose 

ep(t, p) y(t) -)(1lt-l, p) = G-'(q, p)[v(1) F(q, p)u(t)] 

as the prediction error, so that 

The one-step-ahead prediction of the output is given by 
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y(tlt-I, p) = G-'(q, p)F(q, p)II(t) + [I - G-I(q, p)Jy(t). 

Since the first entry in the impulse response of G-I is equal to one, this is indeed a 
prediction of y at time I from its past values. 

REMARKS 3.2 

- Computing prediction errors with the help of the previous formula would in 
principle require knowledge of the input and output prior to the initial time. These 
initial conditions are usually assumed to be zero, which is appropriate for most 
practical applications, provided that the fillers F, G and G-1 are sufficiently stable. 
To recall the approximation made, one then speaks of conditional maximum 
likelihood (conditional on the assumptions about the initial conditions). 

- Section 3.3.1 corresponds to the particular case where the prediction error is the 
output error, which belongs to a sequence of independent random variables if 
p = p*. 0 

Since ep(t, p*) belongs to a sequence of independent random variables, a 
(conditional) maximum-likelihood estimator of p will be obtained by substituting the 
prediction error for the output error in the approach described in Section 3.3.1. 
Depending on the distribution considered, various criteria will again be obtained (least 
squares, least modulus, minimax ... ). 

EXAMPLE 3.7 

Consider the system described by Figure 3.1, where F(q, p*) is assumed to be stable 
with a stable inverse. 

Eft) 

lI(t) -Jr-Ir-" -F-'(-q-, p-*-)---.r----........... yet) 

Figure 3.1. Ll system. with an input-additive random perturbation 

Since the system is LI, the effect of the noise can be propagated to the output to gel the 
equivalent scheme of Figure 3.2. The one-step-ahead predictor is therefore obtained by 
replacing G(q, p*) by F(q, p*) in the previous general formula: 

y(tlt-l, p*) = F-I(q, p*)F(q, p*)u(t) + [1 - F-J(q, p*)]y(t), 
= u(t) + y(t) - F-I(q, p*)y(t). 

The associated prediction error does satisfy 

ep(t, p"') == y(t) }\tlt-l, p*);:;; p-I(q, p*)y(t) li(t) = E(t), 
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as it should. Since F-l(q, p*)y(t) is the noise-corrupted system input, ep may be called 
the input error (Figure 3.3). 0 

e(1) -----III~ F(q, p*) 

u(t) F(q, p*) y(/) 

Figure 3.2. LI systcm equivalcnl LO Lhal of Figure 3.1. with an output-additive perturbation 

REMARKS 3.3 

- Transient errors due to ignoring nonzero initial conditions have again been 
neglected. 

- The maximum-likelihood approach led us to take as the error a signal that would 
become a sequence of independent random variables if p ::::; p*. This could be 
extended to more complex models (e.g., non-LT). 0 

e(/) 

u(t) F(q, P *) y(t) 

+ 

l?p(/, P *) ::::; £(1) 

Figure 3.3. Input crror 

3.3.3 Properties of maximum-li1<elihood estimators 

Assume the following hypotheses are satisfied: 

Hl: the data are generated by a model At!(p*) (no characterization error); 
H2: M is globally identifiable under the experimental conditions considered; 
H3: the perturbations and noise influencing the data can be modelled as i.i.d. random 

variables, possibly passed through all or part of model M'(p*); 
H4: the set (yS I 7ry(ySlp) > D} does not depend on p; the second derivative of the log­

likelihood In 7ry(ySlp) with respect to p exists, and is continuous in p, uniformly 
in yS (series expansion up to second order about p* is possible); 
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H5: 

E {I a In Jry(ySlp) I} < 00 and E {I a2 
In Jry(ySlp) I} < 00 'vip. 

ySlp* 0Pi yslp* dPi OPk 

Maximum-likelihood estimators then have the following attractive properties (see 
(Fourgeaud and Fuchs, 1967, chap. 14; Kendall and Stuart, 1967; Goodwin and 
Payne, 1977; Sorenson, J 980) for more details), 

PMLJ: They are consistent: 

V 8> 0, prob(IIPml - p*11 ~ 8) -7 0 as III -7 00, 

Pl\1L2: They are asymptotically efficie11t, i.e. there is no consistent estimator with a 
smaller covariance as III -7 00. 

PM L3: They are asymptotically Gaussia11 and ullbiased, i.e. the distribution of Pml 
tends to 9{{p"', F-l(p*)) as lIt tends to infinity, where F is the Fisher illformatioll 
matrix, to be considered again in Chapter 5, given by 

E {; In Jry(ySlp) "I a Tin 7ry(ySlp) } I 
yslp P ap p=p* 

{ a2 } 
= E :\ -. Tin 7ry(yS lp) I ' . 

yslp apap p=p* 

REMARK 3.4 

H5 can be replaced by the following more restrictive condition (Goodwin and Payne, 
1977; Sorenson, 1980): 

H5 ': F{p) is positive-definite for any p. o 

All previous properties are asymptotic, i.e. true when the number of measurements 
tends to infinity (by repetition of sets of measurements such that H5 or H5' is satisfied). 
In practice, this is never the case, and the main interest of these results is to show that 
maximum-likelihood estimators have satisfactory behaviour under idealized conditions. 
Except when the model structure is LP and the noise Gaussian (Sections 5.3.].2 
and 5.3.1.3), there are few theoretical results on the properties of maximum-likelihood 
estimators when data are scarce (Section 5.3.3). 

A last property of maximum-likelihood estimators is of very great practical interest. 

PML4: If g is a function of p only (which may correspond, e.g., to a reparamet­
rization), with dim g ~ dim p, then a maximum-likelihood estimate of g is given by 
gml = g(Pml) (invariallce principle). 0 

To compute a maximum-likelihood estimate of any quantity that can be deduced 
from the knowledge of the value of P. no other specific estimator is therefore needed. A 
maximum-likelihood estimate associated with a new parametrization may thus be 
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computed from Pml. To simplify computation, it is therefore legitimate to use another 
parametrization than that corresponding to the actual parameters of interest. 

3.3.4 Estimation of parameter distribution in a population 

Consider observations y(i) = [Y1 (i), ... , Y1lj(i)]T performed on various systems (or 
individuals) Si (i = 1, ... , 11s) which only differ by the value of their parameters, 
respectively p(1), ... , pens)' The distribution Tt'p(p) of p within this population of 
systems is to be estimated from the observations y(l), ... , y(lls)' Estimating such 
mixture distributions has received much attention, because such an approach can be 
used in a number of situations via a Bayesian formulation e.g., (Chernov, 
Ososkov and Pronzato, 1992) for an application to the estimation of the disintegration 
points of nuclear particles from noisy observations of their lrajectories). It is of special 
interest in biology, where knowledge of the distribution of parameters in a population of 
individuals makes it possible to 

- estimate the parameters of each new individual in a Bayesian way, which requires 
few measurements since the number of dala points l1y can then be lower than dim p 
(Thomson and Whiting, 1992). 

- regulate drug concentration with the help of stochastic control methods (Jelliffe and 
Schumitzky, 1990; Bayard, Milman and Schumitzky. 1994; Kulcsar, Pronzato and 
Waiter, 1994), 

- optimaIly design data collection on the next individual in the sense of the mean over 
the popUlation; sce Section 6.4.2 and CPronzalo, WaIler and Kulcsar, 1993), 

The remainder of this section is relatively technical and could be skipped during a 
first reading. The likelihood of the observations y(i) for a distribution Tt'p of the 
parameters is given by 

Tt'yCy(i)ITt'p) = J Tt'y(y(i)lp ) Tt'p(p )dp. 
P 

Assuming that the measurements are performed independelltly on the various 
individuals, one can also write the likelihood of the observations 

as 
I1s 

II,tTt'p) = Tt'y(YITt'p) = TI J Tt'y(y(i)lp )JCp(p )dp. 
i=l JP 

Define the atomic likelihood vector v(p) as the vector of the likelihoods of the 
observations on each individual for the value p of the parameters: 

and consider the function defined by p ~ v(p). Its graph G corresponds to all possible 
values of the atomic likelihood veclors. By an abuse of nOlation, define the mixture 
likelihood vector v(np) as 



V(Jl'p) is therefore a linear combination of vectors v(p) and belongs to conv(Gi), the 
convex hull of G. Then 

with l'i(Jl'p) the ith component of v(7rp)' A maximum-likelihood estimate ~p of Jl'R is a 
maximizer of 'l{7rp)' The convergence of ~p towards the true distribution of the 
individual parameters p(i) will not be considered here (Kiefer and Wolfowitz, 1956; 
Leroux, 1992). 

Uniqueness of v(~ ) is achieved jf G is compact (Lindsay, 1983). It therefore 
suffices that all y(y(i)lp) belong to a closed and bounded set, which will usually be 
true in practice. From Caratheodory's theorem (Berger, 1979, 1987), any point on the 
boundary of conv(Gi), where V(~p) lies, can be written as a linear combination of at 
most lIs vectors of G. A discrete optimal distribution can therefore be found. with at 
most lIs support points. The uniqueness of V(~p) does not imply that of ~P' which is 
obtained if V(~p) belongs to a support hyperplane of conv(G) that intersects G in a set 
of affinely independent vectors (Lindsay, 1983). Another condition will be given in 
Remark 3.5. 

EXAMPLE 3.8 

Consider two individuals with respective (scalar) parameter pel) = I and p(2) = 1.2. 
Eight measurements are performed on each individual, according to 

YkCi) = 10 exp(-p(i)lt) + eik' i = 1,2, k = 1, ... , 8, 

where the Cit'S are Li.d. ~O, 1) and It = 0.5k (k = 1, ... , 8). Figure 3.4 presents 
the graph G of the likelihood curve (solid line) and the boundary of its convex hull 
(dashed-dot). v(~) is indicated by a cross. The locus of all v' s such that 
\! I 1'2 = l' 1 (~p)"2(1I'p) is indicated by a dotted line, which shows the optimality of 1i:p. 
The discrete distribution ~p has two support points p 1 = 0.83 and p2 ;::: L 19, with 
respective weights 0.4928 and 0.5072. 0 

The algorithms of Chapter 4 do not apply to such infinite-dimensional ~roblems, 
and we shall now indicate specific algorithms for optimizing the distribution Jl'P' which 
amounts to maximizing the concave function In 'itt'.!P) over a convex set. This problem 
is quite similar to approximate experiment design (Section 6.2.2). 

The deri vative of In Hnp) at 7rJ in the direction ~ can be written as 

If 7r~ is the discrete distribution 8(p - Po) that assigns a unit weight to the point Po. then 
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Figure 3.4. IlIustmtion of Ihe oplinmlity of 1rp (Example 3.8) 

It has been shown CLindsay, 1983) that .1tp iR a maximum-likelihood estimate of 7rp if 
and only if 

max d(9rp' p) = l1s p . . 

(compare with the Kiefer and Wolfowitz equivalence theorem, to be presented in 
Section 6.2.2.3). 

A classical algorithm that cOl1verges global';", (i.e. from any initial distribution) relies 
on the sequential determination of potential support points of .1tp. It is similar to the 
Fedorov-Wynn algorithm presented in Section 6.2.2.4. 

Step J: Choose a positive tolerance e« 1, and some discrete initial distribution 
Il 11 

7rbCp)::::: L lli8(P - pi), with L Jli ::::: I and Jli ~ 0, i = I, ... , 11. 

;=1 i=1 

Set k = 1. 
Step 2: Compute p+ = arg max d(~, p). 

P 
Step 3: If d(7r~, p+) -lls < e, then SlOp. Else set 

nfj+(P, a) Cl a)nfj(p) + a8(p - p+), 

and find 



.JlJ 

a+ = arg max IJ{~+). 
ae[O,I] 

Set ~+ J (p) = nf;+(P. a+), increment k by one and go to Step 2. 

lAlItc/IU 

This procedure has the disadvantage of introducing a very large number of support 
points at Steps 2 and 3, whereas the optimum can be obtained with at most 115 points. 
Mallet (1986) suggests an algorithm that makes it possible to limit the number of 
support points of the generated distributions ~. Note that the weight allocated to each 
new point p+ is removed from all support points of ~. Exchange algorithms are 
usually more effective, which remove weight from a single support point of nfi and may 
therefore replace some support point of n!f. by p+. A comparative study of these 
approaches can be found in (Bohning, 1985). See (Bohning, 1989) for monotonically 
convergent exchange algorithms. A detailed proof of the convergence of an exchange 
algorithm in the context of experiment design is given in (Huang, 1991), Finally, a 
particularly efficient modification is to replace the optimization with respect to a at 
Step 3 by a multivariab1e optimization of the weights Pi allocated to the support points 
of ~+ (i.e. to those of ~ and to the point p+), under the constraints J.1i ~ 0, 2:i J.1i = 1. 
This amounts to the maximization of a concave function over a convex set. Analytical 
expressions for the first and second derivative of the cost are easily obtained (Bohning, 
1989), which permits the use of a constrained Newton algorithm (Section 4.3.4.5). 

REMARK 3.5 

A sufficient condition for the uniqueness of the distribution $! can be deduced 
from the necessary and sufficient condition for the optimality of ~p (Mallet, 1986). Let 
Kp be another possibly oetimal distribution. It can be shown that its support points pi 
~ 1 = ,I, ... , 11) sat~fy d(~p, pi) ~ " 5, Let Pi be the weig~t allocated to pi. Since V(~p) 
IS umque, 1ry[y(k)llfpJ = lfy[Y(k)llfp]' (k = I, ... , Il s), I.e. 

11 

~ jIi 1ry [y(k)l pi] = lfy[y(k)l~p], k = 1, ... , 11 s. 
1=1 

It is trivial to check that the solutions of this set of equations for J!i satisfy 

17 

I iIi = 1. 
i=1 

A necessary and sufficient uniqueness condition is therefore that the previous set of 
equations has a unique solution for the )1i'5, under the constraints j1 i ~ 0 
(i = I, ... , n). A sufficient condition for uniqueness is thus that this system has a 
unique solution even when the sign constraints are not taken into account. 0 

Another family of algorithms aimed at building ~p derives from the Expectatioll­
Maximization (EM) algorithm (Dempster, Laird and Rubin, 1977). We shall only give 
an outline of the method; more details can be found in (Laird, 1978; Redner and 
Walker, 1984; Schumitzky, 1991). 

Consider a discrete distribution 71iJ allocating weights Pi to 11 supporl points pi (with 
11 ~ 1ls to ensure the reachability of the optimal distribution). A transformation Tis 
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defined, such that '1(1rp) = 1rp with support points p'i and associated weights pi given 
by 

where 

Ils 

p'i = arg max L 7t'[p i ly(k). 1rpJ In 7t'y[y(k)lp J, 
P k=l 

lIs 
, 1 ~ . 

III == 11. ..L., 7t'[p'ly(k), 7t'pL 
5 k==l 

Il;1ry [y(k)lpi] 

7t'y [y(k) l1rpl 

It can be shown (Schumitzky, 1991) that Ir/t7t';') > '1/t7t'p), so repeatedly applying the 
transformation ¥Tmonotonieally increases the likelihood. A stopping criterion [or the 
resulting optimization algorithm may be a test on the increase of the likelihood between 
two iterations. 

REMARKS 3.6 

- The major difficulty of this approach is the determination of the support points p'i at 
each iteration. This difficulty disappears if these support points are imposed {l priori, 
so that the transformation IJ"only operates on the weights fli. 

- The same type of algorithm applies for continuous distributions np (more precisely 
for distributions such that their measure is absolutely continuous with respect to the 
Lebesgue measure). The transformation IJ"is then defined by IJtnp) = 7t'p. with 

115 

7t'p(p) = ,; L Kp[ply(k), 7t'pJ. 
S k=l 

where 

Again. this transformation ensures a monotonic increase of the likelihood 
(Sehumitzky, 1991). This procedure can be initialized by some marginally 
informative prior law, such as a uniform distribution. Computing 7t'y[Y(k)l7t'pl 
requires a multidimensional numerical integration. Although the distribution 
obtained at each iteration is continuous, it converges towards a discrete distribution. 

- No general global convergence property is known for this type of algorithm 
(Boyles. 1983; Wu, 1983). One is thus advised to check that the necessary and 
sufficient condilion for the optimaJity of;rp 

is approximately satisfied when the algorithm stops. 
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- The same type of algorithm has been suggested (Silvey, Titterington and Torsney, 
1978; Torsney, 1988) for experiment design (Section 6.2.2.4). 

- A method for the estimation of laws relying on the Gibbs sampler has also been 
proposed. Its presentation exceeds the scope of this book and can be found, e.g .. in 
(Gelfand el ai., 1990). 0 

The approaches described in this section are Ilmrparametric. They do not assume any 
particular structure for the distribution to be estimated. Various parametric approaches 
have also been proposed to estimate distributions in the context of biology (especially of 
pharmacokinetics), where interindividual variability is usually very high; sec, e.g., 
(Steimer el aI., 1984), and the NONMEM method, for NONlinear Mixed E:.ffecl Model, 
(Sheiner and Beal, 1980). These approaches estimate the mean and covariance of the 
distribution (which describe it completely only if it is Gaussian). Some of them can be 
implemented recursively, unlike the previous nonparametric approaches. The data 
collected on a new individual can then be used to enrich the description of the 
population. without having to proceed to a new estimation based on the data collected 
on all individuals (Mentre, 1984; Mentre, Mallet and Steimer, 1988). 

3.3.5 Nonparametric description of structural errors 

So far, the data were implicitly assumed to have been generated by a model M(p*). The 
robustness of parameter estimation with respect to errors in the model structure M 
(which amounts to considering the presence of deterministic errors in the observations) 
is taken into account by the parameter-bounding approach of Section 5.4, and also 
considered in Section 6.6. We shall nevertheless first present a non parametric approach 
that describes deviations from the assumed model as realizations of a stocha~tic process. 
The maximum-likelihood method will be used to estimate the characteristics of this 
process. 

Assume that 

where ~i is a vector characterizing the experimental conditions under which the ilh 
datum y(~i) has been collected (including. e.g., the time Ii), r(~i) is the corresponding 
regressor vector of an LP model (Section 4.1.1), and the £(~i)' s (i I, ... , Ill) are 
i.i.d. :J{(O, cr~). The variable ro denotes a scalar Gaussian process, assumed to be 
independent of the £(~i)' s. with zero mean and covariance defined by 

The delemrillistic deviation from the LP model (considered as an approximation of 
reality) is described as a realization of the process OJ. This approach is known as 
krigillg, after the work of D.G. Krige (1951) on the gold deposit of the Rand, in South 
Africa (Matheron. 1963). Detailed presentations of the method can be found in (Sacks, 
Schiller and Welch. 1989; Sacks et at., 1989). See also (Blight and Ott, 1975; Currin et 
al., 1991) for a Bayesian formulation. 

Various correlation structures can be used for the process ro. The deterministic 
nature of the structural error translates into cQ)(~' ~) = 1 for any ~, so that two 
independent measurements under the same operating condition ~ have the Same 
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deyiation m(~). It seems natural to choose c(O(~i, ~k) as a decreasing function of 
II~I - ~kIl2, such as 

or 

which corresponds to a smoother process. 
A linear prediction of the mean response Edy(~) J to operating conditions ~ which 

have not yet been used can be written as 

Denote mathematical expectation with respect to (0 and E by E { . }. The mean-square 
error of the linear predictor is given by 

where 

MSE(p*, c,~) = [cTyS -Edy(~)}]2} = E{[cTyS - rT(~)p* - m(~)]2} 

= [cTR(E)p* -rT(~)p*]2 + E{[cT(00(8) + £(8» - m(~)]2}, 

00(8) = [m(~ I), ... , m(~II()]T, 
£(8) ::;; [E(~ I), ... , c(~lIt)]T, 

~ _ (J: I J:1I1)T 
..... - ~ l .*. t ":t t 

and R(8) is the matrix with ith row equal to rT(~i). In what follows, the dependence on 
8 will be omitted, and 00 and £ will stand for the vectors 00(8) and £(8), whereas m(~) 
and E(~) will be scalars. One can easily show that 

with 

where Cw is n matrix the (i, k) entry of which is c(O(~i, ~k). For the prediction 10 be 
unbiased, the following condition will be imposed 

The same condition could be obtained from a minimax-type argument: the maximum of 
MSE(p, c, ~) over p is infinite if it is not satisfied. The minimization of MSE(p, C, ~) 
with respect to c under the constraint cTR = r T(~) leads, via the use of the Lagrangian, 
to 

where p is a least-squares estimate with the weighting matrix <;;1 
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Note that EO} { m(li)mT } can be computed as an additional row of the matrix ~Cro. The 
mean-square error of this prediction is given by 

which can be used to derive a confidence interval for the prediction. 
This method can for instance be used, in the context of computer experiments, to 

predict the response of a deterministic model that can only be evaluated by executing a 
complex computer code (Sacks et al., 1989; Currin et al., 1991; Welch et al., 1992)). 
It is then possible to predict the code output under operating conditions (input variables) 
li from runs performed under conditions lii (i = 1, ... , lit). The interest of this 
approach is clear when one run requires several hours of supercomputer time. If the 
model is deterministic, then ~ = 0, and M~E(~i) = 0 (i ::: 1, ... , Ill)' The prediction 
is then an interpolation of the data. 

EXAMPLE 3.9 

Consider a deterministic system that produces the data 

( ) 
'J 30 

Y t = t + - + (l + 1)2' t ::: 1, ... 1 10, 

to be described using the simpler LP model 

Ym(t, p) = PIt + P2· 

Assume that the covariance for the systematic error between y and Ym can be written as 

Figures 3.5 and 3.6 respectively illustrate the behaviour of the prediction for e::: 0.5, 
when q = 1 and q = 2. Since there is no measurement noise, the interpolation of the 
data is perfect. The uncertainty on the prediction increases rapidly as soon as the data 
are extrapolated (t < 1 or t > 10). The higher q is, the more regular the process 
becomes, and the prediction is smoother in Figure 3.6 (differentiable everywhere) than 
in Figure 3.5 (nondifferentiable at observation points). Finally, the confidence intervals 
(dashed lines) are obtained here for an arbitrary choice of the parameters 8 and q of the 
correlation function em' As indicated below, these parameters can be estimated in the 
maximum-likelihood sense. 0 
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ut 

The parameters p, ~, ~ as well as those of the covariance matrix Cm (8 and q in 
Example 3.9) can be estimated by maximum likelihood. since 

( SI ., ") C ) 1 [ 1 (S R )TC-I (S R)] TCy Y p, Of, aw, re = 12 exp - ') y. - p y y. - p . 
[(2n;)11( del Cy ] I -

When de = 0, following the same procedure as in Example 3.4, one gets 
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and Coo is obtained by minimizing In det [~~(Coo)Coo]. Specific aJgorithms for this 
problem can be found in (Welch et al., 1992). 

EXAMPLE 3.9 (continued) 

A numerical optimization of In det (2r~(Coo)Coo) with lespecl to 8 and q, using the 
Powell algorithm presented in Section 4.3.2.6, yielded 8:= 0.108 and q == 1.99. The 
constraints 8> 0 and C m positive definite were introduced through exact penaJty 
functions (Section 3.6.2). Figure 3.7 illustrates the behaviour of the corresponding 
prediction. 0 
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Figure 3.7. Prediction with (J and q estimated by maximum likelihood: 

(-) prediction. (-.) true response, 

(- - ~ ) three-standard-deviation interval. (*) observations 

REMARK 3.7 

Provided that the covariance matrix C m is fixed a priori, the measurement (or 
simulation) points that define::: can be chosen so as to obtain the best possible 
prediction, for instance in the sense of one of the following costs 

the mean-square error integrated over the feasible domain 1; for ~ (Sacks and 
Schiller, 1988; Sacks et al., 1989): 



A J A <MSE> = M SE(~) d~. 
~ 

- the maximum mean-square error over ~ (Sacks and SchiIIer. 1988; Sacks et al., 
1989): 

A A 
MSEmax = max MSE(~), 

~ 

- entropy (Shewry and Wynn. 1987, 1988), 

This is a problem of experiment design, similar to those considered in Chapter 6. Note 
that the design criterion depends on the parameters of the matrix Cm' actually unknown 
before the measurements have taken place. See Section 6.4 for possible approaches to 
overcome this contradiction partly. 0 

3.4 Complexity 

Let M be a set of model structures that compete for the description of a given 
phenomenon, 

M= {Mi.i= 1, ... ,llm}. 

It may correspond, for example, to structures of the same type with increasing 
complexity. With each of these structures is associated a parameter vector pi belonging 
to some prior feasible set Pi. Akaike's ATC i~ the most well known of the criteria that 
can be employed to select the model structure M and estimate its parameters on the basis 
of statistical considerations; see, e.g., (Ljung. 1987). It suggests choosing 

A A ' 
(M, p) = arg min min jair:.(Mj, pI), 

MiE lVl[ piE Pi 
where 

, 1 ' . 
iair:.(Mi. pI} = - [- In [1l'y(ySlp/)J + dim pI] . 

III 

When the model structure is fixed, it corresponds to maximum-likelihood estimation 
of its parameters. Conversely, if one hesitates between several structures, the most 
complex ones (in the sense of the number of parameters to be estimated and thereby the 
number of degrees of freedom of the model) are penalized by the term dim p. Many 
other criteria for choosing the model complexity rely on this type of penalty function 
and only differ by the way in which dim p is introduced. One may quote the FPE 
(Final Prediction Error) criterion, which amounts to minimizing 

. (M i) I {I [ (SI i)]} I 1 + (dimpi)hzl 
Jrpc j, P = n - n 1l'y y P + n 1 (d' i)/ ' 

- Im p III 

and the BIC (Bayesianlnfo1711atiol1 Criterion), which corresponds to minimizing 



Hypothesis testing can also be used. For a synoptic presentation of various available 
criteria, see, e.g., (Soderstrom, 1977; Veres, 1991). 

EXAMPLE 3.10 

Assume that the data satisfy 

y(ti) = Ym*(tj, p*) + Ej, i = J, ... , Ill. 

where Ym* is the output of the model with the correct structure, for the true value p* of 
its parameters, and the E;'8 are LLd. ~O, :E). with 1: unknown. The vectors y, Ym and 
Sj are lly-dimensional. As in Example 3.4, the log-likelihood can then be written as 

llylll 11 t 
In 7ty(ySlpc) = - 2 In 27t - "2 In det 1.: 

lit 

- ~ L [y(ti) - Ym(ti, p)]T1.:-1 [y(tj) - Ym(ti. p)], 
i=1 

where Pc is an extended vector of unknown parameters consisting of P and the entries 
of the upper triangular part of 1.:. The AlC cost function can therefore be written as 

. lly 1 
Jajc{M, Pc) = 2: In 2n + 21n det 1.: 

III 

+ -2
1 ~ [y(ti) - Ym(ti, p)]T1.:- i [y(ti) - Ym(ti, p)] + l dim Pc. 
I1t !--l I1t 

1= 

Assume first that the model structure is fixed. The dimension of Pc is then constant, 
and Pe is given by the maximum-likelihood estimator (Pm}, t ml), already obtained. The 
AlC cost function becomes 

• 1\ lIy 1 ~ 
Jaic(M, PCml) == 21n 2n + "2 In det .Lornl 

Ilt 

+ 2;1 L [y(ti) - Ym(tj, Pml)]T t~l [y(ti) - Ym(tj, Pml)] + ,! dim Pc. 
L i=l l 

to be minimized with respect to the structure M. The third term on the right-hand side 
can be computed as 
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nt 
1 ~ [ A TA-l 1\ 2il "-' yeti) - YmCti, Pml)] ~ml[y(ti) - YmCti, Pml)] 

t i=] 

III 

:::; 2;' trace {L [y(ti) - Ym(tj, Pml)][Y(li) - Ym(ti, Pmj)]Tt~\ } 
l i=1 

1 ~ A-I 1 lIy 
= '2 trace (Lml~ml) :::; '2 trace IlIy = 2 . 

It is thus independent of the structure considered. During the structure selection phase, 
it therefore suffices to find NI that minimizes 

where 

REMARKS 3.8 

III 

tmI :::; ~ L [y(ti) - Ym(tj, Pml)][y(t;) - Ym(ti, Pml)]T, 
t i=l 

o 

As already noted in Example 3.4, Pm] can be obtained in Example 3.10 by 
minimizing 

Ilt 

Jml(P) :::; In det L [yeti) Ym(ti, p)][y(ti) - Ym(ti, p)]T, 
i=1 

independentJy of L. The choice of M can therefore be made by minimizing 

. (M A ) 1. (A ) I d' 
laic ,PCml = 2:}ml Pml + Ilt lm Pc· 

It is therefore not necessary to consider L explicitly, Moreover, the number of 
unknown parameters in L does not depend on the structure, so dim Pc may be 
replaced by dim p. When the output is scalar, the cost becomes 

Ilt 

jaic(M, PCml) = ~ In L ly(ti) 
- i=l 

Criteria based on statistical considerations are not the only ones that can be 
employed to select the model structure to be used. An especiaIJy telling test is to 
compare the performances of the best models obtained for each structure on 
validation data not used to estimate the model parameters. Chapter 7 will present 
other methods that can be employed to eliminate model structures by revealing their 
defects. 



Data quality is an essential ingredient for the selection of a suitable model structure. 
Section 6.6.3 presents tools to design an optimal experiment to collect data to 
discriminate between competing model structures. 0 

3.5 Bayesian criteria 

Maximum-likelihood estimation considers p as unknown but with a single actual value. 
Bayesian approaches instead consider a distribution of possible values for p. Before the 
observations are made, p is assumed to have a known prior probability density JrpCp). 
The joint probability density of yS and p satisfies 

The posterior probability density for p (taking the data yS into account) is therefore 
given by 

Jry(ySlp ) Jrp(p ) 

1!y(YS) 

This is Bayes' rule, which gives its name to this class of estimators and quantifies what 
has been learnt by collecting data. Since yS is a vector of known numbers, Jry(YS) is just 
a normalization constant ensuring that Jrp(plyS) is a probability density, 

1!yCYS) = f Jry(ySlp )Jrp(p)dp. 
p 

To compute the probability density of p conditional on the data y\ one therefore 
only need know how to express Jry(ySlp) by taking advantage of the information or 
hypotheses on the noise (as was done in Section 3.3) and to have Jrp(p) at one's 
disposal, which expresses prior knowledge on the parameters. This knowledge may 
result from previous measurements on the same process or on similar processes 
(Section 3.3.4). The maximum-entropy approach (see, e.g., (Mohammad-Djafari and 
Demoment, 1988, 1993)) makes it possible to choose a distribution 1rp(p) that is 
consistent with prior knowledge but does not introduce extraneous information. It 
suggests choosing the prior probability density Jrp by maximizing the (Shannon) 
entropy 

fi(Jrp) = - J 1rp(p) In [Jrp(p)] dp, 
I? 

under the constraints expressing the available prior information. The optimal density is 
obtained by a Lagrange-multiplier technique. If, for instance, only the prior mean PO 
and prior variance n of p are known, the maximum-entropy principle leads to a 
Gaussian prior 5\{po, n). If the only prior information on the parameters is that 

Pmin S; P S; Pmax. 

the optimal prior density 1!p will be uniform on the box thus defined. See also (Box and 
Tiao, 1973) for the notion of uninformative prior. 
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Taking advantage of the posterior probability density np(plyS) is not always easy. 
and it is often desirable to obtain a point estimate of the parameters, i.e. a unique 
numerical value p. The next two sections present rules lhat may be used for this 
purpose. 

REMARK 3.9 

When the prior distribution is discrete, applying Bayes' rule becomes parlicularly 
simple, because only the weights (discrete probabilities) associated with the support 
points need be updated. The computation of expected values is also drastically 
simplified. since integrals are replaced by discrete sums. This is an additional advantage 
of the nonparametric methods for estimating the distribution of parameters in a 
popUlation presented in Section 3.3.4, which lead to discrete distributions. 0 

3.5.1 Maximum a posteriori 

Maximum a posteriori (or MAP) estimation searches for Pmap that maximizes 

. () _ (I 5) _ Hy(yslp )Hp(p} 
)map P - Hp P Y -

Hy(YS} 

As 1ry(YS) does not depend on p, this is equivalent to maximizing Hy(ySlp)1Tp(p). or 

jmap(P) = In 1Ty(ySlp) + In 1rp(p), 

since logarithm is a monotonically increasing function. The first term of this sum is 
nothing but the log-likelihood, and the second one expresses the prior information on 
the parameters. It is thus easy to incorporate some (objective or subjective) infonnation 
on the possible values for p. 

Under the hypotheses HI-H5 (or HI-BS') of Section 3.3.3 and the additional 
condition 

H6: 1fp(p) is continuous and nonzero in a neighbourhood of p*, 

the MAP estimator shares the asymptotic consistency and efficiency properties of the 
maximum-likelihood estimator. It is also invariant under reparamelriz:ltion. An 
approximation for its non-asymptotic density when the measurement noise is Gaussian 
can be found in Section 6.4.1. 

EXAMPLE 3.11 

Assume that the prior distribution of p is uniform on the box JP! defined by 

Pimin ~Pi~ Pimux ' i = 1, ... , lip. 

For any p that does not satisfy these inequalities, Hp(p) = 0 and In Hp(p) = _00. One is 
thus sure that Pmap will satisfy the constraints that define lP. For any p in p • .7rp(p) and 
In Hp(p) have a constant finite value. Hence, if Pml belongs to lP. Pmap = Pml. 0 



REMARK 3.10 

This example does not provide any practical method to impose inequality constraints 
upon p. Using the MAP criterion for that purpose would introduce discontinuities that 
would strongly complicate its optimization. Methods to impose constraints upon p will 
be presented in Section 3.6. 0 

EXAMPLE 3.12 

Assume that the prior distribution for the parameters is ~po, a), with PO and n 
known. The prior mean PO may for example be a maximum-likelihood estimate of P 
obtained from preliminary measurements, and the prior covariance n, which 
characterizes the uncertainty in PO, may have been obtained by one of the methods 
described in Chapter 5. 

The prior probability density for the parameters satisfies 

I 
[(21l")lIp det 0]-112 exp [-"2 (p - PO)Tn-l(p - po)}. 

Up to a constant term, the MAP cost function can therefore be written as 

Prior information is here incorporated by subtracting a quadratic penalty to the log­
likelihood. Regulariz.ation techniques, used, e.g., in image processing, also lead to 
quadratic penalty functions, which can be given a Bayesian interpretation (Demoment, 
1989). When 

yS = Rp* + n, 

where n is distributed ~O, :E) (with :E known), Pmap is given by 

o 

A feature of MAP estimators is that the number of data points need not exceed the 
number of parameters in order to ensure uniqueness of the estimate. Thus, for instance, 
the number of measurements can be limited in clinical medicine for cost and patient 
comfort, provided that reliable information is available on the possible values of the 
parameters in the population which the patient belongs to. 

3.5.2 Minimum rislc 

Assume that one can evaluate the cost j(plp*) of believing that the value of the 
parameters is p when it is actuaUy p*. Since p* is unknown, one can search for Pmr that 
minimizes the risk, defined as the mean of this cost over all possible values of p *, 
conditioned on the observations ys. Provided that the integral exists, the risk is then 
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irnr(P) = J i(plp*)7l'p(p*lyS)dp*. 
p 

This risk must now be expressed as a function of the quantities that are assumed to 
be available. From Bayes' rule 

Since 7l'y(yS) does not depend on p, one can equivalently minimize 

jrnrCP) = J j(plp*)7l'y(yslp*)1l'pCp*)dp*. 
p 

In this expression, j(pJp*) expresses what is known about the aim of the modelling. 
1l'y(ySlp *) expresses the information on the noise acting on the system and 1l'p(p *) 
expresses prior information on the parameters. 

REMARKS 3.11 

- Minimum-risk estimation may lead to very complex computation, which are 
drastically simplified if the prior distribution of the parameters is discrete, for the 
computation of jrnr(P) reduces to a discrete summation. Such will be the case, for 
example, if the prior distribution has been obtained by nonparametric maximum~ 
likelihood estimation of the distribution of the parameters in a population 
(Section 3.3.4). 

- When the prior distribution is not discrete, evaluating jrnr(P) requires multiple 
integration (see, e.g., (Genz and Malik, 1980) for an integration algorithm), which 
raises critical numerical problems. Stochastic approximation (Sections 4.3.8 
and 6.4.3.2), however, makes it possible to compute ~rnr without ever evaluating 
jmr(P)· 

- Prnr may be very sensitive to the tails of the distribution 1l'p(p) (Bard, 1974). 
- Contrary to maximum-likelihood and MAP estimators, Pmr is not invariant to 

reparametrization. 0 

EXAMPLE 3.13 

Assume thatj(plp*) is quadratic in p 

j(pJp*) = (p - p*)TQ(p - p*), 

with Q a symmetric positive-definite weighting matrix. The risk is then 

imr(P) = J (p - p*)TQ(p - P*)1l'p(p*lyS)dp*. 
p 

The minimum-risk estimator must therefore satisfy 



Dr. since Q is invertible, 

Pmr J .7rp(plyS)dp = Pmr= J p.7rp(plyS)dp = E{plySj. 
p p 

Thus Pmr is the posterior mean of p whatever the non-singular weighting matrix Q. 
From Bayes' rule, it is given by 

The computation of Pmr therefore requires no optimization, unlike that of most 
estimates. It can nevertheless be performed analytically in simple cases only. Assume, 
for instance, that 

yS=Rp*+n, 

where n is distributed wrO, L) (with L known) and p is a priori distributed ~PO, n) 
(with PO and n known). The estimator Pmf then coincides with the MAP estimator 
(Example 3.12). 0 

EXAMPLE 3.14 

Assume that the aim of the modelling is optimal control of a process, in the sense of 
minimizing the cost function 

l1j 

jcontrol(U. p) = Lx TQIXj+ ulQ2u i, 
;=1 

where Q I and Q2 are predefined weighting matrices. 
To minimize this cost with respect to the sequence u of controls Uj, one needs to 

know the parameters p of the model so as to predict the successive states Xi 

(i = 1 ..... IIi) of the system. If the optimal control sequence UOpl(P) computed for a 
model with parameter values p is applied to a system with parameter values p *, the 
resulting deterioration of the control cost can be used as the identification cost 

o 
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3.6 Constraints on parameters 

If the prior feasible space JP for the parameters is not all of JRIlP. it may become 
necessary to force the vector of estimates to stay within JP. Many approaches are 
available, and we shall only consider here those that transform the problem into an 
unconstrained one by modifying the cost function. Their advantage is compatibility with 
the unconstrained optimization techniques that fonn the core of Chapter 4. Constrained 
optimization will be considered in Section 4.3.4. 

Note that when there are equality constraints (or active inequality constraints) 
restricting the parameters to a subset of parameter space, the Fisher infonnation matrix 
used to characterize the uncertainty in the parameters (Section 3.3.3 and Chapter 5) 
should be replaced by a rank-reduced Fisher information matrix (Gonnan and Hero, 
1990). 

3.6.1 Equality constraints 

Equality constraints can be written as 

Ce(p) = 0, 

where Cc may be a vector. They force the parameters to belong to a hypersurface of jRllp 
and express that they are dependent. Whenever possible, one should then reparametrize 
the problem by expressing some parameters as functions of others so as to make alJ 
remaining parameters independent. This usually simplifies optimization noticeably by 
removing constraints and decreasing the dimension of parameter space to be explored. 

When this approach is unfeasible, one can add a penalty jllnction to the initial cost 
functionj(p) (assumed to be minimized). This penalty function will be zero as long as 
ce(p) = 0, bul will increase with violation of the constraints. One may, for instance. 
minimize 

where j1 > O. If j and Cc are continuous in p, any unconstrained global minimizer Pp of 
jp will converge to a global minimizer of j under the constraints Cc as /llends to infinity 
(Polyak, 1987). Theoretically. convergence is thus achieved under very general 
conditions. In practice. however. the larger j1 is the more ill-conditioned the 
unconstrained optimization problem becomes. Under some conditions (Bonnans. 1987; 
Hiriarl-Urruty and Lemarechal, 1993). a so-called exact pellalty technique 

jp(p) ::; j(p) + j1llcc(p)lb 

can be employed instead, which makes the constrained minimization of j possible by 
unconstrained minimization ofjp. provided Lhatj1 is large enough (but finite). 

Augmented Lagrallgiall techniques also permit the requirement that j1 should tend to 
infinity to be dropped (Minoux. 1983; Polyak, 1987). The Lagrangian of the initial 
optimization problem can be written as 



L(p, d) =j(p) + dTcc(p), 

where d is the dual vector of p. The Lagrangian fonnulation allows the elimination of 
the constraints in the study of the theoretical optimality conditions. At the optimum. 

aL 
dp = 0, 

dL 
ad =0, 

and this point corresponds to a minimum with respect to p and a maximum with respect 
to d. L(p. d) should therefore be minimized with respect to p and maximized with 
respect to d. More rapidly convergent methods use an augmented Lagrangian that is the 
sum of the Lagrangian and a penalty function 

A possible technique consists at iteration of performing one unconstrained 
minimization with to p 

arg min La(p, d i- I , /1), 
pE JRlfp 

followed by olle step of maximization with respect to d by the gradient method 
(Section 4.3.3.1) 

If the second derivatives of the cost functionj and constraints Cc are Lipschitzian and if 
/1 is large enough (but finite), then convergence will occur whatever the initial value of 
d. In principle. the larger /1 is the faster the convergence should be, but in practice ill­
conditioning limits the value that can be given to /1. 

3.6.2 Inequality constraints 

Inequality constraints will be written as 

Cj(p) ~ 0, 

where the inequality is to be taken componentwise. The approaches to transfonn the 
problem into unconstrained optimization are similar to those for equality constraints. 
One may for example minimize 

where the entries of Cj(p)+ are equal to the positive parts of those of Cj(p). Such a 
penalty function is said to be exterior, because it only acts when the constraints are 
violated. Here too, the theoretical requirement that f.1 should tend to infinity results in 
practical problems of ill conditioning. 
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Such problems can be avoided by using an augmented Lagrangian and the algorithm 
mentioned for equality constraints. For more details on the restrictions and advantages 
of this very powerful method, see (Polyak, 1987). Exact penalty functions 

or interior penalty junctions, which act before the constraints are violated, may also be 
used. 

Reparametrization techniques can also be employed. To impose for example 
Pi 2:! 0, one may replace Pi by (exp qi) with lJj E ]_00, +00[, which guarantees the 
inviolability of the constraint. Similarly, replacing Pi by (tanh qi)(b - a)/2 + (a + b)/2, 
with qi E ]_00, +00[, guarantees that a < Pi < b. 

REMARK 3.12 

Incorporating the inequality constraints defining the prior feasible space for the 
parameters into the optimization problem may be inadvisable. In the context of 
parameter estimation, it excludes any better optimizer that might exist outside JP' and 
might lead one to reconsider one's model structure, data or prior feasible space. It 
therefore seems reasonable to try unconstrained optimization first. If the resulting 
oplimizer p is in lP, the problem is solved. Otherwise, constrained optimization may be 
tried, but often yields an optimizer p on alleast one of the constraints. The associated 
model M(p) is at the boundary of what is acceptable, so the structure AtI is probably 
unsuitable. The constrained optimizer p is more easily accepted if no constraint is active 
at p (Figure 3.8), Conversely, in optimal cOlllrol or experiment desig1/ (Chapter 6). it 
is essential to take inequality constraints into account, because usually some of them are 
active at the optimum. 0 

j 

Pmin 
A 

P Pmax 
v 
p 

p 

Figure 3.B. Constraints may lead to a local minimizer I~ strictly inside the feasible domain whcrcns 
the global minimizer I~ is unfcasiblc 



3.7 Robustness 

An estimator is said to be robust if its performance does not deteriorate too much when 
the hypotheses on which it is based are not satisfied. One may, for instance, have 
assumed that the noise was :?X{O, 0'2) when its actual probability density has heavier tails 
than a Gaussian distribution. The data may also have been contamInated by outliers 
resulting from errors in data collection or faulty sensors. 

Some of the estimators considered so far show very little robustness. The definition 
of robust estimators has given rise to many theoretical contributions (Launer and 
Wilkinson, 1979; Huber, 1981; Rousseeuw and Leroy, 1987), but we shall only 
mention some practical tools. 

3.7.1 Robustness to uncertainty on the noise distribution 

We have seen that if the observations satisfy 

where the sequence of £(ti) is Li.d. with the probability density function lfE' the log­
likelihood function can be written as 

lit 

In lfy(yslp)::::; L In lfdy(ti) - Ym(ti. p)]. 

;=1 

When 1fE is reliably known. maximum-likelihood estimation asymptotically achieves 

as the number of data points tends to infinity. The Fisher information matrix can be 
written as 

III 

F(p*, lfE)::::; [(lfE) L ;p [Ym(ti, p)]1 * ad T [Ym(ti, P)]I *' 
i=1 P P P 

where the scalar /(1l£) is the Fisher illfomwtioll 

with D = {£ IlCeCe) > OJ. It must, of course, be assumed that this integral exists. 
Information matrices computed for various densities lC£ only differ in [(lfF). For 
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instance, for ~O, 0"2), [(ll'£.) = llcP. Asymptotically, the uncertainty in the parameters 
will increase if the Fisher information decreases. 

Assume now that 1fE is only known to belong to some family iF. A minimax 
approach may then be adopted (Huber, 1981; Polyak and Tsypkin, 1980; Tsypkin, 
1983). It defines the robust estimator Pr as the maximum-likelihood estimalor associated 
with the worst possible noise distribution ~E in the sense of minimum Fisher 
information: 

i.e. as the best eSlimator in the worst case, Under some regularity conditions, Pr is 
consistent, and the asymptotic covariance of the estimation error satisfies 

Equality is reached when 1fE = 'ire, the worst case. 

EXAMPLE 3.15 

If JF is the family of distributions for which the Fisher information is defined and 
ll'dO) ~ 1/(2a) > 0, then 1re is the Laplace distribution with zero mean and standard 
deviation afl. The robust estimator obtained by this minimax approach is therefore the 
(unweighted) least-modulus estimator 

III 

Pr= arg min LIY(ti) - Ym(ti, p)1. 
;=1 

Note that it is not necessary to know the value of a. 
This very simple estimator also proves to be much more robust to outliers than least 

squares, as evidenced, e.g., in (Venot et al., 1986). Two hundred data points were 
generated according to 

y(t) = 1000 exp(-0.012/) + £(t), t= I, ...• 200, 

with £(t) belonging to a sequence of LLd. 9{(0, 20) random variables. Thirty five 
outliers were then introduced, replacing some data points by zero, namely y(t) = 0, 
t E [10, 29] U [50, 64]. The resulting data set was used to estimate the parameters of 
the model Ym(t, p) = PI exp(-P2t). The unweighted least-modulus estimate is 
Pr = (964, 0.0117)T, reasonably close to p* compared to the unweighted least­
squares estimate PIs = (450,0.0063)T. 0 

EXAMPLE 3.16 

If iF is the family of distributions for which the Fisher information is defined and the 
variance is finite, 



+00 

J z2nE(z)dz ~ (f2, 
-00 

then the worst distribution is Gaussian, with zero mean and constant variance, which 
suggests using unweighted least squares. 0 

REMARK 3.13 

This approach to robustness still assumes that the noise can be described as a sequence 
of Li.d. random variables. Possible correlations and nonstationarities are therefore not 
explicitly laken into account. 0 

3.7.2 Breakdown point 

A point estimator is a rule that associates an estimated value p(yS) with any given data 
set ys. Assume that the prior feasible domain for the parameters is JR.llp. Let yO be the 
data set obtained by replacing a percentage a of the data points in yS by outliers. The 
maximum bias of the estimator that can be induced by these outliers can be characterized 
by 

The breakdown point of the estimator p(.) is the smallest value of a such that 
bins( a, p(.), ys) = 00, For LP model structures, theoretical results can be established 
(Rousseeuw and Leroy, 1987). A single outlier tending to infinity is enough to break 
down least-squares, least-modulus and minimax estimators. Their breakdown points 
therefore tend to zero as the number of data points tends to infinity. Now, under 
suitable experimental conditions, estimators exist with a breakdown point that tends to 
50% as the number of data points tends to infinity. Such estimators are thus much more 
robust to totally aberrant data points. This is the best achievable result. No reasonable 
estimator (see (Rousseeuw and Leroy, 1987) for more details) can have a larger 
breakdown point than 50%, because one could always arrange a majority of outliers in 
such a way that they could be described by a model with the structure chosen, and these 
outliers would then be preferred to the minority of regular data points. 

One may, for example, employ the least-mediall-of-squares estimator 

Ii = arg min m~d e2(tj, p), 
p I 

where the residual e(l;. p) is for instance an output error 

e(tj, p) = y(li) Ym(ti, p). 

This estimator systematically rejects the 50% data points that correspond to the largest 
residuals (Figure 3.9), which makes it very robust to severe outliers, at the cost of 
possibly rejecting significant data. Another possibility, with better asymptotic 
efficiency. is to use the least-trimmed-squares estimator 
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It = arg min L e2(ti, p), 
P iEI 

17 

where li is the set of all· indexes i such that e2( t i, p) is smaller than or equal to the 
median of the squares of all residuals. 

Minimized by Jeasl-median-of-squares estimator 

0 l Ignored .I e2(tj, p) 
I ~, 'U' .: ,~ I" '':.I 

Sum minimized by 
least -trimmed-squares estimator 

Figure 3.9. Lcasl-median-of-squarcs and IcasHrimmcd-squares estimators 

One drawback of the least-median-of-squares and least-trimmed-squares estimators 
is that they may reject data points in such a way that a large part of the response of the 
system is entirely ignored, which may result in a loss of identifiability. A bounded-error 
approach will be presented in Section 5.4.2.2 that escapes this problem while keeping a 
breakdown point that tends to 50%. This approach can even treat data sets with a 
majority of outliers, provided that these outliers are not describable by a model with the 
structure chosen. 

REMARK 3.14 

When it is not known whether outHers are present, one could compare the results 
obtained by least trimmed squares and least squares. If they turn oul to be close, the 
least-squares estimate is probably more accurate. as it is based on twice as many 
samples. 0 

3.7.3 M-Estimators 

An M-estimator (Huber, 1981) Pm minimizes the cost 

III 

jm(P) = L p[e(tj, p)]. 
;=1 

The least-squares and least-modulus estimators are M-estimators, with p(e) = and 
peel = lel respectively. Many other functions with a minimum at e = 0 can be 
considered. One may thus use Huber's cost function (Figure 3.10): 

{~ e 2 if I e I ::; 8, 
p(e) -;;;; 1 

8 lel - '282 otherwise, 
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where 8 is a threshold to be chosen. The resuHing M-estimator therefore behaves as a 
least-squares estimator for smaJl errors and as a least-modulus estimator when the 
errors get larger. Ljung (1987) suggests 8 = It&, with 1 ~ A ~ 1.8 and 2r an estimate of 
the standard deviation of the error that is robust to outliers: 

{Ie(ti, p) - [e(ti, p)]I) 

" a=~--------~~~---------

pee) 

8 .-------

-8 o 8 

e 

Figure 3.10. Huber's p and 'I' (non-redesccnding M-eslimator) 

One may also use Tukey's cost function (Figure 3.11): 

{l e4 e6 
-(e2 -+-) if lel~8, 
2 62 3~ 

pee) = 52

6 
otherwise. 

REMARK 3.15 

In the absence of constraints on p, the optimizer Pm satisfies the stationarity conditions 

If 1fI= ~~, these conditions become the H0I711al equations 

I1t 

~ "] de(ti, p) 0 £...i '!'[e(ti. Pm) dp I" = . 
i=l Pm 
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An M-estimator may be defined by specifying 1I1or p; see Figures 3.10 and 3.11. The 
shape of V'explains why Huber's M-estimator is said to be Ilon-redescending whereas 
Tukey's is said to be redescendillg. 0 

p(e) 
02/6 I----~ 

e o L-__ ~ __ ~ ____ ~ __ ~ __ ~ ____ ~ ______ ~~ 

-/5 o /5 

Figure 3.11. Tukcy's p anti V' (reoescending M-estimator) 

3.7.4 Image processing example 

There are many fields (medicine. satellite remoLe sensing, industrial inspecLion, 
astronomy ... ) where significant differences between images have lo be detected. 
Figure 3.12 provides an example of two such images. 

Image A Image [j 

Figure 3.12. Images to be compared 

In addition to significant differences, the two images usually have insigniilcanL 
changes, due for instance to movement of the subjecL or retuning of the imaging device. 



Pixel-by-pixel computation of the difference between the two images then of len yields a 
useless image. This is why a calibration step is required, during which one of the 
images (say. Image B) is transformed with respect to a vector p of parameters, e.g., 

p= 

rotation 
x translation 
}' translation 

contrast 
brightness 

enlargement 

Let 8(p) be Image B after the transfonmllion. The vector p is estimated so as to make 
8(p) fit the reference image A best as measured by a cost function j(p). The resulting 
scheme, Figure 3.13, is similar to Figure 1.5. The situation is rather unusual, because 
the significant differences play the role of outliers that hinder estimation of p (which is 
of no interest, but has to be used), The presence of oulliers is therefore unavoidable, so 
H robust estimator is needed (Herbin et al., 1989), such as the least-median-of-squares 
or leasHrimmed-squares estimator or the outlier minimal number estimator presented in 
Section 5.4.2.2. Another possible estimator (Venot el ai., 1986) maximizes the number 
of sign changes in the image A - B(p) scanned line by line. Such scanning transforms 
images into one-dimensional signals. The larger the number of sign changes is, the 
closer the signals associated with A and B(p) arc. Robustness comes from the fact that 
only the sign of the error is taken into consideration, not its magnitude. Very large 
errors corresponding to significant differences therefore have no more influence than the 
others. 

Image A 

Cost 
evaluation 

Figure 3.13. Principle of robust calibration 

j(P) 

F~gure 3.14 presents the image B(p) thus obtained, and Figure 3.l5.the pixe~-b~-pixel 
dIfference of Images A and B(p). As can be seen, the detectIOn of SIgnIficant 
differences is now much easier! This technique sometimes makes it possible to reveal 
differences which could not be detected by direct inspection of the original images. A 
study of the properties of this type of estimator can be found in (Walter, Pronzato and 
Venot, 1989). 
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Figure 3.14. Image B(I1) after robust calibration 

Figure 3.15. Difference A - B(p) after robust calibration 

3.8 Tuning of hyperparameters 

The cost to be optimized may involve, besides p, some tuning parameters (I, called 
hyperparameters. Such is the case, for example, with ridge estimators (Remarks 4.10 
and 5.3). Similarly. when the estimation problem is ill posed, i.e. when the estimate is 
too sensitive to small modifications of the data, one may use a regularized cost (see, 
e.g., (Demoment, 1989; Thompson et al., 1991)) 

wherejl is the cost associated with the initial ill-posed problem and the regularization 
function j2 penalizes erratic variations of the signals computed by the model. for 
instance through the sum of the squares of their first or higher differences. 

Such hyperparameters may be estimated by cross-validation (Golub, Heath and 
Wahba, 1979). Eliminating one datum yU) of y\ one can predict its value using the 
parameters P-i(q) estimated from the remaining data by minirnizingjr(P, q) with respect 
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to p. The hyperparameters are then tuned to the value of q that provides the best average 
prediction over a11 possible eliminations, i.e. that minimizes 

3.9 Conclusions 

III 

~ L [y(i) - Ym[i, P_i(q)]}2. 
t ;=1 

Any criterion is legitimate, insofar as it contributes to the fulfilment of the aims of the 
modelling, and many different criteria may be considered (see, e.g., (Keating, Mason 
and Sen, 1993) for an interesting discussion on performance comparison for 
estimators). However, one should always state the options that have been taken, and 
justify them as far as possible. The use of sophisticated criteria based on specific 
hypotheses should be restricted to situations where these hypotheses can be relied upon 
or checked a posteriori. Otherwise, robust approaches should be preferred. Once the 
cost function j has been defined, it must be optimized. Note that oplimization may be 
facilitated by the successive use of several cost functions. Sometimes, for example, the 
cost function derived by the maximum-likelihood approach has many local optimizers, 
at which local optimization techniques such as those presented in Section 4.3.3 may get 
trapped. A transient use of a quadratic cost may then lead to an estimate that can serve as 
a good starting point for a local optimization of a more sophisticated cost. 



4 Optimization 

The performance of a model structure, or of porameter estimates for a given model 
structure, is usually rated via a cost function j (Chapter 3). Finding the best possible 
model then corresponds to oplimizing this cost. The resulting optimization problems 
oftell have the following characteristics: 

- the number of parameters to be optimized is small, typically less than ten; 
- the cost function is smooth, its first and second derivatives are relatively easy to 

compute;. 
- optimization is unconstrained (although p might belong to some simple-shaped prior 

feasible set such as a box); 
the effects of the various parameters on the value of the cost are very unequal, i.e. 
the problem is ill conditioned; 
the problem is not convex and local optimizers may exist that do not correspond to 
the best possible value of the cost; we shaJ1, however. see in Section 4.3.9.1 that 
suitable experimental conditions can sometimes eliminate such parasitic local 
optimlzers. 

The optimization may be centred OH the llrgumelll. The cost function is then merely 
an intennediate in the search for p. This will be the case, for example, when estimating 
the parameters of a phenomenological model. All values of these parameters that lead Lo 
an acceptable value of the cost should then be searched for. Any possible singularity of 
the cost function in the neighbourhood of the optimum, or the possible existence of 
several global optirnizers, should be taken into account. 

The optimization may, on the other hand, be cell1red Oil the cost. All feasible global 
optimizers will then be equally acceptable. Such wiJI often be the case, for instance, 
when estimating the parameters of a behavioural model. 

Section 4.1 deals with cost functions that are quadratic with respect to an error 
affine in p. Such affine errors occur for instance when an output error is used with an 
LP model structure (i.e. a structure such that the model output is linear in p). It is then 
possible to derive explicit formulas for computing the global optimizer p, which 
correspond to the celebrated least-squares method. 

The case where the cost is still quadratic in the error but the error is no longer affine 
in p is considered in Section 4.2. Various approaches involving an iterative application 
of the least-squares method are presented, and their limitations described. 

Section 4.3 presents nonlinear programming techniques that can be used even when 
the cost function is not quadratic. In particular, constrained, non-differentiable, 
recursive and global optimization problems are considered. 

Specific difficulties raised by the optimization of a process response are addressed in 
Section 4.4. 
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To simplify notation, the process output will most often be assumed to be scalar. but 
the methods described extend without difficulty to the vector case. 

4.1 LP structures and quadratic cost functions 

4.1.1 LP structures 

The models considered can be written as 

Ym(t+ 1, p) r T(t)p, 

where r(t) is a vector of known quantities (therefore independent of p), called the 
regressor vector. The independent variable t here takes integer values, and serves to 
index the various points where the model output must be computed. This does nol 
imply that the measurement times are integer, or even that the independent variable 
corresponds to lime. Static systems can therefore also be considered in this framework. 
Note that the fact of indexing y by t + 1 and r by t is in no way mandatory, but proves 
useful in the context of adaptive control. 

The set of all outputs of the model A1(p), for t varying from one to 1/(, can be written 
as 

EXAMPLE 4.1 

The parameters p = (a ( .... , alia' boo ... , bllb)T of the model 

YmCt, p) 

lla lib 
~ di ~ di 

- £.J lli di y(t) + L..J bi d i u(t), 
;=1 t i=O t 

with llb S Ila, are to be estimated from input-output data recorded between t = 0 and 
t = fe, with a much smaller sampling period than the shortest time constant of the 
process, so they can be considered as recorded continuously. The model structure is 
LP, but trying lo estimate its parameters through the computation of a regressor vector 
consisting of successive derivatives with respect to time of y(t) and u(t) is not to be 
recommended, because high-frequency noise will be dramatically amplified by repeated 
differentiation. The modulatillg jUllctiollS approach can be used instead. The idea is to 
replace y and Ym by their scalar products with suitably chosen test functions ¢k 

1~ llb 

<Yml¢k> = - L lli <y(i)I~fJk> + L bi <1l(i}I¢k>, 
i=1 i=O 

with 
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Ir 

f ') di -
l = -:f(t) 

d/I 
and <f11f2> = f fl(,r)/2(r) dr. 

o 

Provided that tPk is chosen sufficiently differentiable, with f/J~\o) = f/J~)(tr) = 0, 
i = 0, ... , nil - 1, integration by parts can be used to carry differentiation over to the 
(analytically known) test functions 

I Ilb 
;+1 (I) ~ i (i) 

(-1) OJ<yll/lk>+ £...J (-1) bi<ulq,k>. 
;=1 ;=0 

The quantity <Ymll/lt> is LP. One should use at least as many linearly independent test 
functions as there are parameters. The choice of these test functions is nol trivial and 
obviously impacts on the estimate of p obtained (Richalet, Rault and Pouliquen. 1971). 
Provided that the model is LP, the method extends lo equations involving pure deJays, 
to multi-input-multi-output, non-LI or time-varying systems, and to partial differential 
equations (Loeb, 1967). It remains sensitive lo Iow-frequency perturbations such as 
offsets, the influence of which is increased by integration. A partial solution is to 
introduce offset as an additional parameter. 0 

EXAMPLE 4.2 

If the output of an LI model is computed by convolution of its impulse response h with 
its input Ut discretized with period T: 

IIp 

Ym(t+ 1, p) = T L hU)II(1+ I-i) , 
i=1 

the parameters Pi might be the successive values of the discrete-time impulse response 
/z(i) (i = 1, ... , IIp). The regressor vector then satisfies 

r(t) = [Tll(t), Tll(t-1), ... , TlI(l+l-ll p)]T. o 

REMARKS 4.1 

- The system must be such that h(i) can be neglected for any i > I1p (Fillite Impulse 
Respo1ise, or FIR, models). 

- Knowledge of the impulse response of an LI model makes it possible to simulate or 
control it just as well as any other representation. This approach, however. leads 
most often to overparametrization (about thirty parameters would typically be 
needed to describe the scalar impulse response of a third-order transfer functjon, 
which could be expressed with at most six parameters). As a result, a slight 
modification of the data may lead to a large change in the parameter estimates. This 
is the price paid for an LP model stmcture. Various regularizatioll techniques can be 
implemented to give an acceptable solution to such ill-posed problems. They can be 
viewed as the introduction of additional prior information aimed at removing the 
ambiguHy resulting from overparametrization. One may thus relate them to 
maximum 0 posleriori estimation; see Section 3.5.1 and (Demoment, 1989). 0 



EXAMPLE 4.2 (continued) 

To obtain a smooth impulse response h(!), one may characterize it as a linear 
combination of Laguerre functions (Wahlberg, 1991) 

where 

IIp-l 

It(t. p, a) = L PiLi(l, a), 
i=O 

i 
. _ -r;- ~ i! (-2at)k 

L/(t, a) - ,,1.a exp (-at) to (i _ k)! (k!)2 . 

These functions are orthonormal on [0, 00], i.e. 

J Li(7:, a)Lj(7:, a)d7: = Djj. 
a 

For any given a, the output J'm becomes linear in p. The resulting model may 
satisfactorily reproduce the behaviour of stable and non~oscil1atory systems. Kautz 
functions, which include Laguerre functions as H special case, can be used to deal with 
oscillatory systems (Wahlberg, 1994). Generalizations of Laguerre and Kautz functions 
are considered in (Heuberger, Van den Hof and Bosgra, 1995). 

The method extends to model impulse responses depending on some measurable 
external signal x, with the dependency on x incorporated in p (Velev, 1988). 

I1p-1 

h(t, p(x), a) = L Pi(x)Lj(t, a). 
i=O 

Expanding each component of p in series, one defines a new set of parameters Pi} such 
that 

Pi(X) = PiO + Pil X + Pi2X2 + ... 

and the model output remains linear in these new parameters. The model obtained 
remains stable for any value of x. 0 

EXAMPLE 4.3 

Assume that the model satisfies the recurrence equation 

J'm(t+ J. p) = -a D'm(t, p) - a2Ym(t-] , p) - '" - (/lIaJ'm(t+ I-lIn. p) 

+ b Jll(t) + ... + bllhu(1+ 1-llb), 

where the parameters are the ai's (i = 1, ... , flu) and bi's (i = 1, ... , Ilb). This model 
structure is non-LP, since the right-hand side involves the product of parameters by 
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model outputs that depend on p. If, on the other hand, the past values of the model 
output are replaced by the corresponding values of the output of the system studied, 
another structure is obtained (ARX jf the noise is additive in the equation and 
corresponds to a sequence of LLd. random variables): 

Ymlp(t+l. p);:; -Gly(t) a2)'(1-1) - ... - G llay(t+l-lln) 

+ bJllCt) + ... + bllhu(t+l-Jlb). 

This structure is LP, provided that the inputs and outputs of the system do not depend 
on p. Its output Ymlp(t+ I, p) can then be written as the scalar product of 

with 
r(t) = [-yet), -y(t-l), ... , -y(t+l-na), /l(O, u{l-I), ...• u(t+l-llb)]T. 0 

EXAMPLE 4.4 

If the system considered can be described by a static nonlinearity followed by an LT 
dynamic part (Figure 4.1), a Ha11111le1'slein model structure may be employed. 

~ f 
L ..... ... ... y 

Figure 4.1. Static nonlincarity followed by a linear dynamic part 

Approximating the nonlinearity by a polynomial in the scalar input Il, one can write 

110 

A(q, P)Ym(t) = L Bj(q. p)ui(t) 
i=l 

where A(q, p) and Bj(q, p) are polynomials in the unit delay operator q-I 

and where 

Substituting, as in Example 4.3, past values of the measured output y for the 
corresponding values of Ym, one obtains an LP (although non-LI) model structure, with 
a regressor vector given by 



r(t) = [-y(J) , ... , -)'(1+ I-na), 11(1), ... , Il(t+ 1-llb), u2(t) • ... , 
u2(t+1-llb), .... UIlB(t), ... , 1II1B{I+l-1Ib)]T. 0 

EXAMPLE 4.5 

Another LP non-LI model structure corresponds to bilinear models, such as 

II Il 11 Il 

Ym(l, p) = LPill(t-i) + LPtI+iY(t-i) + L LPi,kll(t-i)y(t-k). 
~l ~1 ~1~1 

More generally, any model the output of which can be written as a polynomial in the 
past values of the inputs and measured process outputs could also be considered. 0 

4.1.2 Quadratic cost functions 

The cost function to be minimized is assumed to satisfy 

j(p) = eT(p)Qe(p), 

where e is some error, e.g. output error 

e(p) = yS _ ym(p). 

The weighting matrix Q is symmetrical and non-negative definite. It may have been 
chosen from hypotheses or knowledge about the measurement noise (Chapter 3). If, 
for instance, the data are assumed to have been generated by 

where n is a realization of a Gaussian random vector with zero mean and known 
covariance :E , the maximum-likeHhood method suggests Q = :E-1• Q may also be 
chosen in a more heuristic manner. In the absence of any specific information, Q is 
often taken as the identity matrix. 

4.1.3 Least-squares estimator 

The least~sqllares estimator Pis. developed by Gauss and Legendre at the beginning of 
the 19th century I minimises the quadratic cost 

j(p) = eT(p)Qe(p), 

under the constraint that the error is affine in the parameters, which will be true for an 
output error with an LP model structure 

c(p) = yS Rp. 
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The first derivative of the cast with respect to p is zero at the optimum. Since Q is 
symmetrical, this implies that 

~; I 1\ = -2RTQ(ys - Rpls) = o. 
up P=Pis .. 

Provided that RTQR is invertible, the least-squares estimate is therefore given by 

4.1.3.1 Properties of the least-squares cstim:ltor 

P LS 1: The vector ihs of the parameter estimates is obtained a1lalytically from the 
data y\ matrix of regressors R and weighting matrix Q. 

PLS2: It is trivial to check that CT(Pls)Qym((lls) == O. If Q = I, this implies that the 
error at the optimum is orthogonal to the model output; ym(PI!;) is thus the 
orthogona) projection of yS onto the locus of all possible model responses, i.e .. onto 
the expectation sll1face S\~xp = (ym(p), p E JRllpj (Figure 4.2). Since the model 
structure considered here is LP, the expectation surface is a hyperplane, but this is 
not always so, as will be seen in Chaplers 5 and 6. The ort.hogonal projection 
operator is given here by IT == R(RTR)-lRT. 

o~~ ________________________ -/ 

Figure 4.2. At the 0plilllum. t.he error and model outpul £Ire orthogonal 

P LS3: The matrix R TQ R to be inverted is symmetrical and lip X lip (with 
lip ::::; dim p). Its dimensions do not, therefore, depend on the number of data 
points. Except for pathological cases where the information content of the inputs is 
too poor or the model is unidentifiable, it is positive-definite and therefore invertible. 
If not, one might use a model with fewer parameters. 

PLS4: Even if PIs turns out not to be the best possible estimate of p given the aim of 
the modelling. it may serve to initialize some iterative search with another cost 
function and/or another model better suited to the original problem. 

PLS5: The matrix (RTQR)-I contains important information on the performance of the 
estimator (Section 5.3). It is therefore useful to examine it, or at least its diagonal 



entries. The smaller these entries are, the better the precision of the estimated 
parameters is, which suggests criteria for choice of the regressor vectors 
(Chapter 6), 

EXAMPLE 4.6 

The following data have been obtained by sampling a process output at t;::; I, 2, 3: 

y(1) == 270, y(2) = 36, y(3) :::: 5. 

The process output is to be described by 

YmU, p) ;:;; PI exp (-P21). 

As it stands, this model structure is not LP, so the least-squares method does nOl apply. 
An LP model structure can however be obtained by performing a logarithmic 
transformation on the data and model output: 

i(t) = In y(t), 

yti.U, q);:;; In YmU, p) ;::; In PI - P2/, 

and taking the parameters to be estimated as 

ql ;::; In PI and q2 ;::; P'l· 

The vectors of all transformed process and model outputs can be written as 

[
In 270] [5.6] 

ysY;:::; In 36 = 3.6 and 
In 5 1.6 

[1 -1] 
ym'(q):::: 1 -2 q;:;; Rq. 

1 -3 

The 1east-squares estimate of q is therefore 

A T 1 T 0' [7.6J qIs;::; (R R)- R yS == 2 ' 

which corresponds to 

PI ;::; exp ql == 1970 and q2 = P2 = 2. 

Running the corresponding model, one gets 

[268] [270] ym:;: 3~.5 J compared with yS;::; 3
5
6 . 

Note that p is not the best estimate of p in the least-squares sense, since the definition of 
the error has been changed to make it affine in the parameters. One may hope, however, 
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that p is close enough to this best estimate to provide a good starting point for an 
iterative search. More general transformations are considered, e.g., in (Box and Cox, 
1964; Allcinson, 1985, 1995). 0 

4.1.3.2 Numerical considerations 

Except when treating small academic problems. one should avoid using the above 
explicit formula for PIs, which turns out to be numerically disastrous. For iIJ­
conditioned problems. i.e. when RTQR is almost singular, much more accurate results 
are obtained by singulm-·wlllle decomposition; see, e.g., (Klema and Laub, 1980). In 
this approach, R is factorized as R = UWVT, where W is a diagonall1p x lip matrix 
and UTU = VTV = I llp ' The diagonal entries of Ware the singular values wi.i of R 
(It'i.l ~ 0). All decent scientific software libraries include a subroutine performing this 
factorization, and one should refrain from attempting to code it again! RTQR will be 
singular if and only if R has at least one zero singular value. Most often, however, no 
singular value is strictly zero, and the conditioll IIll1llber of R is defined as the raUo p of 
its largest singular value to its smallest. R will be said to be ill-conditioned as soon as 
lip is smaller than the accuracy of the floating-point representation used (about 10-16 in 
double precision according to the ANSllIEEE 754-1985 norm. which most present-day 
computers comply with). If Q = I, the matrix to be inverted to compute Pis can be 
written as 

This implies that the condition number of RTR is equal to the square of that of R, and 
explains the danger involved in the computation of Plfi by the analytical formula. 

Once singular-value decomposition of R has been performed, it must be used to 
compute Pis. Assume first that Q = I. If R is square and invertible, 

If the dimension of yS is larger than that of p and no singular value is zero, Pis is 
unique, and also given by 

PIs V (diag(~)} UT ys. 
1,1 

If some columns of R are linearly dependent, then at least one of its singular values \l'ij 
is zero and there exist an infinity of estimates Pis that are equivalent in the sense of the 
least-squares criterion. Among these, the smallest in Euclidean norm is again obtained 
with the formula above, provided that all terms lhvi.i associated with 11';.; = 0 arc 
replaced by O. Similarly, jf some Wi/8 are very small, the estimator tends to drag Pis 
very far along directions that "almost" belong to the kernel of R. Surprising as it may 
seem, one then gets better values of the cost by replacing the terms lJwi.i corresponding 
to these very small ""U's by zero (Press et al., 1986). A threshold remains to be set to 
decide which singular values will be considered very small. 

If Q:;:. I, the same equation can be used for the computation of PIs. provided that Q 
is factorized as Q = M''M and e(p) is replaced by Me(p), which amounts to replacing 
yS by MyS and R by MR. 



92 V/IUIIU{..UtJUIt 

REMARK 4.2 

There is a Vllst literature llbout the least-squares method and the connected problem of 
computing a pseudo-inverse of the matrix R (Albert, 1972). Equality or inequality 
constraints in particular can be taken into account. For more details, see (Lawson and 
Hanson, 1974) and Section 4.3.4.2. 0 

4.1.4 Data-recursive least squares 

Whereas the algorithm presented in the previous section processes all data collected on 
the system as a batch (ofl-line), its recursive counterpart processes them one after the 
other (Oil-line). This approach may be preferred for either of two reasons, which lead to 
different policies. 

- There may be too many data for them La be stored simultaneously in the computer. 
One then wishes to memorize a limited amount of information, independent of the 
number of data points, rather than having to manage a large data base. In this case, 
p* is considered fixed, and one wishes to obtain the same result as with the non­
recursive algorithm. 
One may wish to usc the results of the identification to take immediate decisions 
from the measurements performed so far, without having to wait until all data have 
been collected. One may, for instance. wish to track the parameters of a system to 
make sure that they remain in their normal operating range (fault detection and 
diag1l0sis), or compute a control law based on the most recent estimates of lhe 
parameters available (adaptive control). It is then assumed that p* may vary with t. 

4.1.4.1 p* assumed to be constant 

Let Pls(t) be the estimate of p* obtained by non~recursive least squares from aU data 
available up to lime 1. If we assume thal Q ;:: I to simplify notation, we can write 

where 

rT(O) l [Y(l)] rT(l) y(2) 
R(t-l) = and ySCt) ::: 

rT(t-l) J y(t) 

At Lime t + I, a new measurement y(H 1) is collected. so 

[
R(t-l)] [ yS(I) ] 

R(t)= and ys(t+1)= . 
rT(t) y(1+1) 



We wish to update Pis to lake this new information into account, bul without having to 
store Rand yS of ever-increasing size in the computer. Let us write Pis as a function of 
the sequence of regressor vectors r and output measurements y: 

Pis(t)::: [± r(i-l)r T(i-l )]-I[± rU-l)Y(il]. 
1=1 1=1 

Define the matrix M(t) and vector v(t) by 

t I 

M(t)= L rU-I)rT(i-I) and vU) = L r(i-l)y(i). 
~1 ~1 

Then 

which can be put into a recursive fonn without any approximation, since 

M(1+1) = MU) + r(t)rT(t), 

v(t+ 1) = vet) + r(t)y(t+ 1) 
and 

PI5(1+1) = M-i(1+1)V(1+1). 

It therefore suffices to store the present values of M and v. which obviously requires 
much less memory than storing Rand yS. Now express Pls(t+ 1) as a function of Pls(t): 

A A 
PIs(t+ 1) = M-l(t+ l)[v(t) + r(t)y(t+ 1)] = M-I (1+ l)[M(t)Pls(t) + r(t)y(t+ 1 )]. 

Replace M(t) by its expression as a function of M(1+ 1), 

PIs(t+l) = M-I(Hl){[M(t+l) - r(t)rT(t)]Pls(t) + r(t)y(t+l)}. 

After expansion and simplification, we gel 

A A 1 T A Pls(t+ 1) ::: Pls(t) + M- (t+ l)r(l) [ye 1+ 1 ) - r (t)Pls(t)], 

where one can recognize: 

- a one-step-ahead prediction of y( t+ 1) by Ym( 1+ 1) r T (t)Pls( t), 
the prediction error ep(t+ 1, Pls(t)) ::: y(t+ 1) - rT(t)PIs(t), 

- a vector correction gain k(t+l) = M-I(t+l)r(t), often called the Ka]man gain for 
reasons to become apparent in Section 4.1.6. 

Therefore 
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Pls(t+ 1) = Pls(t) + (vector correction gain) x (prediction error), 

which implies that the parameters do not change when the prediction error is zero. As it 
now stands, the algorithm still requires the inversion of M(1+ 1) to take y(t+ 1) into 
account. This can be avoided with the help of the matrix: il1version lemma 

where all matrices inverted are assumed to be invertible. Define P(t+ 1) as 

P(t+l) = M-I(t+l) = [M(t) + r(t)rT(t)]-I, 

and set A = M(t) = p-I(t), B = r(1), C = 1 and D = rT(t). The lemma then implies that 

P{I+ I) = P(t) - P(t)r(1)[ 1 + r T(t)P(t)r(t)]-1 r T(t)P(t). 

At each step, the inversion of a matrix has thus been replaced by a division by the scalar 
[1 + rT(t)P(t)r(t)]. The correction gain can now be written as 

[ 
r T(t)P(t)r(t) J 

k(l+l) = M-'(t+l)r(t) = P(t+l)r(t) = P(t)r(t) 1 - 1 + rT(t)P(t)r(t) 

P(t)r(t) = ----:='-'----'-'---

1 + r T (t)P(t)r(t)' 

Iteratioll. In summary, one iteration of rccursive least squares consists of the following 
steps. Before y( t+ 1) is collected: 

- compute the correction gain 

k 1+ I;:::: P(t)r(t) ; 
( ) 1 + rT(t)P(t)r(t) 

- update P, which can also be written as 

P(t+l) = P(t) - k(t+l)rTU)P(1); 

- predict the output 

After y(1+ 1) has been collected: 

- update the parameter estimates according to 

PI5(/+1) = Pls(t) + kU+l)[y(t+l) - Ym(t+l)]. 

This shortens the delay betwcen the measurement of y(1+ I) and the updating of the 
estimates. 



Initialization. In principle, ,one should wait until enough data have been collected for 
M(t) to become invertible, and initialize the algorithm by P(t) = M-I(t) and 
Pls(t) == P(t)v(t). Recursive least-squares estimation is then strictly equivalent to ils 
off-line counterpart, up to numerical errors introduced by finite-precision arithmetic. No 
information has been lost, although past data have been dropped. 

In practice, however, one often chooses PI5(0) arbitrarily, e.g. PIs(O) ;;:;; 0, and P(O) 
as an identity matrix multiplied by some large positive number, e.g. P(O);;:;; 10 12 I lIp. 

This amounts to saying that no confidence is bestowed on this initial estimate for the 
parameters, because P corresponds to [RTR]-I of the off-line least-squares method, 
which characterizes the uncertainty in the estimated parameters (Chapter 5). P then 
decreases very quickly in the initial phase, so the values of I>ls(O) and P(O) are not 
critical. 

Properties o/the data-recursive least-squares estimator 

PRLS1: The off-line method required the invertibility of RTQR, i.e. the identifiability 
of the model from the actual data collected. Since recursive least-squares estimation 
no longer involves matrix inversion, it will not be able to detect unidentifiability and 
will converge to a particular solution that depends on the initialization. 

P RLS2: Since 
T P(t+ 1) - P(t) ;;; _ P(t)r(t)r (t)P(t) , 

I + r T(t)P(t)r(t) 

the difference between two successive values of P is negative semi-definite. In this 
sense, P can therefore only decrease (or stay constant if r(r) ;;:;; 0, which means that 
y(t+ 1) brings no information on p). The information available about the system 
studied increases with time, so the uncertainty in the parameters decreases. For a 
given value of the regressor vector, this implies that the correction gain k(1+1) 
decreases. The prediction errors are thus less and less taken into account to adjust the 
model, because they are more and more attributed to noise. 

PRLS3: The previous equation implies that if P(t) becomes singular for numerical 
reasons, it will stay so forever. To overcome this difficulty, one may add eI llp 10 
P(t), where £ is some small positive number. This idea, due to Levenberg and 
Marquardt, will be encountered again in Section 4.3.3.5. Another possible approach 
is to take advantage of the fact that P(t) should be symmetric and positive-definite to 
compute it in a factorized form. Bierman's U-D factorization algorithm uses a 
normalized Cholesky decomposition P(t) = U(t)D(t)UT(t), where U(t) is an upper 
triangular matrix, with all diagonal entries equal to one, and D(t) is a diagonal 
matrix. The computation is only marginally more complicated than in the initial 
algorithm. For more details, see (Bierman. 1977; Ljung and Soderstrom, 1983). 

PRLS4: Since P characterizes the uncertainty in the estimated parameters, it is 
interesting to monitor its evolution, or at least that of its diagonal lerms. This may 
help in choosing the later regressor vectors (Section 6.3.2.2). 

PRLS5: If the sequence of regressor vectors is known a priori, the associated 
sequences (P(t)} and {k(t)} can be computed off-line, before any measurement 
takes place. The actual sequence of prediction errors has therefore no influence on 
the correction gains, and one is strongly advised to monitor it in order to detect any 
possible divergence of the algorithm. 



4.1.4.2 p* may drift 

If the parameters p* may slowly vary, e.g. because an LI model is used to describe a 
non-LI process around some changing operating point, one wishes Pis to track these 
variations "in real time". This requires forgetting measurements that are too old, because 
they correspond to an out-of-date situation and would distort estimation. A particularly 
simple technique for this purpose is expo1le1ltial forgetting, which weights prediction 
errors in the cost function exponentially, decreasing with time elapsed: 

- present time t + 1 receives unit weight, 
- past time t + 1 - 12 is weighted by An, 

with A the forgetting factor, such that 0 < A:S; I. If A = I, no forgetting takes place, and 
the smaller A is, the more quickly the past is forgotten. To implement this policy, it 
suffices to update M and v according to 

M(l+l) = AM(t) + r(t)rT(t) and v(t+l) = AV(t) + r(t)y(t+l), 

which amounts to multiplying the past values by A before adding the present 
contribution. By the same procedure as when A = 1, one gets 

k(HI)= P(t)r(t) , 
A + r T (t)P(t)r(t) 

P(t+I) = 1 [pet) - k(t+l)rT(t)P(t)], 
A 

Ym(t+ 1) = r T(t)Pls(t), 

Pls(t+ 1) = Pls(t) + k(t+ 1) [y(t+ 1) - Ym(t+ 1)]. 

Computation is therefore no more complicated than without forgetting. 

Properties of recursive least squares with expollelltialjorgetting 

PRLSEF1: It is trivial to check that when A = 1 the equations become those obtained 
without forgetting. 

PRLSEF2: As when no forgetting takes place, if P becomes singular, it will stay so. 
Forgetting will just make this event more likely. It is therefore necessary to modify 
the algorithm to prevent this. One may again either add EIlIp to P, with E a small 
positive number, or use U-D factorization. 

PRLSEF3: If A < 1, P may increase with time, contrary to what happened without 
forgetting. If, in particular, r(t) = 0 then P(t+ 1) = P(t)1 A> pet). When this situation 
persists, it entails a definite risk of explosion. A possible way out is to use a variable 
forgetting factor AU), such that the trace of P(t+ I) remains below some given bound. 

PRLSEF4: When A < 1, P(t+l) and h:(t+I) no longer tend to O. The unavoidable 
prediction errors therefore always cause a modification of the estimates, so Pis no 
longer converges to a constant value. As a result, small meaningless prediction 
errors, corresponding for instance to a system almost at equilibrium, may in practice 
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cause a drift of the parameter estimates. It is therefore necessary to freeze the 
algorithm when the prediction error becomes small enough. 

PRLSEF5: The smaller A is, the larger the correction gain remains, which increases the 
tracking capability of the algorithm, at the cost of amplifying the random fluctuations 
of the parameter estimates. A compromise must therefore be drawn, most often 
empirically, which is relatively easy since A is a scalar (typically, A:> 0.95). 

4.1.4.3 p* may jump 

When the parameters to be estimated are known to vary by jumps, exponential 
forgetting becomes unsuitable, because it combines erratic moves of the estimated 
parameters (due to the fact that the correction gain does not tend to zero) and slow 
adaptation when jumps occur (due to the facllhat A. must be taken close to one to ensure 
stability). Better results should then be obtained by using recursive least squares 
without forgetting, monitoring the prediction error and increasing P as soon as this 
error becomes too unlikely. This amounts to admitting that the uncertainty in the 
estimated parameters has increased. 

To decide whether the prediction error on y(H I) is likely, one may use the fact that 
its variance is given by (}"2[1 + rT(t)P(t)r(t)] when the parameters are adapted, where (}"1 

is the variance of the noise in the observations. 

4.1. 4.4 Application to adaptive control 

Consider the scheme of Figure 4.3, which involves two models and two oplimization 
algorithms. The reference model generates the reference trajectory Yr. expressing how 
the process should behave. It should not be confused with the model of tlte process, 
which generates the model output Ym, expressing how the process is believed lo behave 
in reality. The first optimization algorithm estimates the parameters of the process, 
whereas the second one computes the control law to be applied. Assume that we known 
how to adapt the parameters of the process model so as to ensure that Ym(t) -t y(t). If 
the input u is chosen to impose Ym(t) -t Yr(l), this will entail that y(t) -t Yr(t). A key 
point is to guarantee the stability of the resulting complex nonlinear feedback system. 

REMARKS 4.3 

- What is controlled is the output of the model of the process, and not that of lhe 
process itself. It is only because the model output is constrained to resemble thut of 
the process that the process output will resemble the reference trajectory. 

- Even if the structure of the process and its model are identic"al and y and Yrn both 
converge to Yr. this does not imply that p converges to p*, because the input signal 
may be too poor to make the parameters identifiable in practice. 

- Provided that the variation of p* is slow enough, the parameter estimates obtained, 
e.g. by recursive least squares with exponential forgetting, are close to the best 
estimate ofp* in the least-squares sensejor the input aClllally applied to the system. 
If this input is rich enough for the output to contain much information on p*, this 
may be considered an advantage, because the model is always an approximation of 
reality and the best approximation depends on the type of input considered. The 
model obtained is thus suited to the operating conditions of the system. If, on the 
other hand, the information content of the process output is very small, for instance 
because the input is almost constant, then the parameters may become completely 



erroneous although the prediction error remains negligible. This may result in very 
bad transient behaviour following the next change of operating point. 

- When intermittent perturbations act within the passband of the process, the 
algorithm will modify the model parameters to try Lo reduce the prediction error, 
although p* has not changed. This may result in erratic behaviour of the control 
system. It therefore seems advisable to test the performance of adaptive control 
systems in realistic simulation conditions, including perturbations, before 
implementation is considered. This implementation may require the combining of 
ideas from adaptive and robust control theories; see, e.g., (Irving, Daoudi and 
Bourlcs, 1991). 0 

u 

Reference model 

Process 
(state unknown) 

Optimization 1 

Optimization 2 

Figure 4.3. Example of madel-reference adaptive control 

Figure 4.3 illustrates a possible model-reference adaptive control scheme. Il 
involves a parallel model of the process, but series or series-parallel models could be 
used as well. Moreover, many alternative criteria and algorithms could be employed to 
estimate the parameters and compute the control law. It is thus possible to create a very 
large number of adaptive control schemes (Chulam (1987) quotes more than 1200 
references!). More information can be found. e.g., in (Landau, 1979; Goodwin and 
Sin, 1984; AstrOID and Wittenmark, 1984; Kumar and Varaiya, 1986; Bitmead, Gevers 
and Wertz, 1990; Isermann, Lachmann and Matko, 1992; Kaufman, Bar-Kana and 
Sobel, 1994) and in the countless papers devoted to the subject in international journals 
and conferences. Here, we shall only mention one of the existing approaches. because 
of its direct links with recursive least squares. This approach was proposed by Astrom 
and Wittenmark (1973) under the name of Self TUning REgulator (STURE), and has 
been implemented on many industrial processes (Astrom et al., 1977). 
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STURE. The process is described by an LP prediction model (here one step ahead) 

Ym(t+l, p) = -aty(t) a2y(t-J) - ... - allay(t+l-na) 

+ b I u(t) + ... + bllbu(t+ 1-llb). 
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Optimization algorithm 1 estimates the parameters p of the process model by 
recursive least squares with exponential forgetting. Optimization algorithm 2. which 
computes the control law. may implement various policies. One may, for instance, 
compute an optimal control sequence if this can be performed in real time. At each step, 
one will then apply the first entry of this sequence to the process (sliding-horizon 
optimal control). This is the basic idea of generalized predictive control (Clarke, 
Mohtadi and Tuffs, 1987; Clarke, 1988; Bitmead, Gevers and Wertz, 1990). A cruder 
policy is to compute the controlll(t) so as to make the predicted output Ym(t+ 1, p) equal 
to the corresponding value of the reference trajectory Yr(t+ 1), i. e. to ensure 

where aj and ~i are entries of p, as estimated by recursive least squares with exponential 
forgetting. The control to be applied at time t is then given by 

1 A A 
u(l) = ~1 (Yr(t+1) + Qly(t) + a2y(t-I) + ... 

+ 8/1ay(t+ I-Tla) - ~211(t-l ) ... - SlIbu(t+ I-nb)]. 

Such a simplistic control raises three problems. 

- The estimated parameter ~l must differ sufficiently from zero for the computed 
controls to remain feasible. If bl is zero, the control to be computed has no 
predictable influence on the output to be controlled, possibly because the delay 
between the input and output is larger than one time unit. One should then try a 
k-step-ahead predictor (k > 1). 

- The output y(t) is used to compute the controlu(t). The required computation must 
therefore be performed in a negligible time compared with the time constants of the 
process. Otherwise, the delay introduced should be taken into account during the 
analysis of the problem. and the prediction of the output at time t + 1 should not 
depend on y(t) but satisfy 

Ymp(t+l, p) =f(u(t), u(t-l), ... , y(t-l), y(t-2), ... , p). 

The control u(t) can then be computed as a function of past measurements and the 
estimated parameters. 
This short~sighted policy amounts to approximately cancelling the zeros of the 
process by the poles of the controller. This will result in a loss of stability if the 
zeros of the process are outside the unit circle. which corresponds to the system 
having a non-minimal phase. Generalized predictive control avoids this difficulty. 

To make the time between the measurement of y(t+ 1) and the application of u(t+ I) 
as short as possible, one should compute, before time t + 1, 
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- the correction gain k(1+ J), 
- the matrix P(t+ I) characterizing the uncertainty in the estimates, 
- the prediction of the outputYm[t+1, PIs(t)], 
- the next value Yr(l+ 2) of the reference trajectory. 

Starting at t + 1, one should 

- measure )'(t+1) from the process, 
- update the estimated parameters Pls(l+ I), 
- compute the input u(t+ 1), 
- apply it to the process. 

The past is thus used to estimate the parameters, and the future to compute the 
control law. When there are no constraints on the input, Ym[i+2, Pls(t+ 1)] will be equal 
to Yr(J+2) since the control u(t+ 1) has been computed for precisely that purpose. 
Otherwise, the actual control applied to the process must be used to predict its output. 

REMARK 4.4 

Updating P at each iteration may tum out to take more time than is available. At the cost 
of the loss of the infonnation contained in P and deterioration of the performance of the 
estimator, one may then employ parameter-updating algorithms with the same basic 
structure but simplified correction gains. One may, for instance, use 

1\ 1\ r{t) T 1\ 
p(H1) = p(t) + c T [y(t+I) - r (r)p(t)], 

r (t)r(l) 

with 0 < c < 2 (Richalet, RauJt and PouJiquen, 1971; Richalet, 1991). As for recursi ve 
least squares with exponential forgetting, the correction gain of this algorithm never 
tends to zero. When the regressor vector r(t) is zero, the associated measurement 
contains no information on the parameters. which should not be updated. This can be 
implemented by adding a positive constant to the denominator of the correction gain 
(Kaczmarz, 1937). 

One may alternatively use a stochastic gradient algorithm. to be considered again in 
Section 4.3.8), 

p(t+1) = pet) + c(t)r(t)[y(Hl) - rT(l)p(t)], 

where c(t) is such that 
00 

c(t) > 0, L c(t) = DO 

1=0 

00 

and L c2(t) < 00, 

t=0 

One may choose. e.g., c(t) = qlla, where 0.5 < a $ 1. One then gets a decreasing-gain 
algorithm (as in recursive least squares without forgetting) and the value of c(t) must be 
increased when the prediction error exceeds a given threshold. In practice, the value of 
q required for salisfactory performance is very much problem-dependent. Suitable 
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gain-nonnalizalion techniques can eliminate this drawback (Section 6.4.3.2), See also 
the averaging technique described in Section 4.3.8. 0 

The use of data-recursive least squares to estimate the state of a system and possibly 
the parameters of its model leads naturally to the Kalman filter (Section 4.1.6), 

To describe the behaviour of a given process, one sometimes hesitates between 
several LP model structures nested in the sense that the regressor vectors of the more 
complex structures incorporate those of the simpler ones. Comparing the perfonnances 
of these structures may involve least-squares estimation of the parameters of each 
(Section 3.4). The technique described in the next paragraph makes it possible to 
compute these estimates recursively with respect to the number of parameters, 

4.1.5 Parameter-recursive least squares 

When the model structure is not imposed by prior considerations, one may wish to 
increase the number of parameters progressively until a satisfactory result is obtained. 
This can be done recursively, somewhat similarly to data-recursive least squares. Let 
Pi,k be the vector consisting of the first i entries of P when P comprises k entries. Let 
Rk be the matrix of all the regressor vectors for the model with k parameters. The 
unweighted least-squares estimates for the models with k and k + 1 parameters can 
then be written as 

1\ (RTR )-IRT s Pk,k = k k kY , 
and 

u ] 1\ T -I T s Pk.k+ 1 
Pk+l.k+1 = (Rk+IRk+l) Rk+1Y' = 1\ • 

+l.k+ I 

It is assumed that the regressor matrix has a nested structure 

Note that the dimension of the vector r + 1 equals the number of data points, whereas the 
dimension of the regressor vector equals the number of parameters. The estimate with 
k + 1 parameters satisfies 

or equivalently 

T 1\ T 1\ T 
r+IRkPk,k+1 + r+lr+IP+l.k+l = r + IYS. 

Subtracting rIIRkPk,k from both sides of the last equation, one can write 



where 6Pk,k+ I is the variation of the first k parameters due to adjoining the (k+ 1 )th 
parameter, i.e. 

s::" " uPk,k+l = Pk,k+1 " Pk,k· 

This linear system of equations can be solved with the help of the relation 

[
A B ]-1 =[ A-I[I + B(D - CA-IB}-ICA-I] -A-lB(D CA-IB)-i], 

C D -(D - CA-iB)-ICA-l (D - CA-IB)-l 

which holds true provided that all matrices to be inverted are invertible. By setting 

one gets 

which implies 

T T 
P PkRkr+lr+1RkPk 

k + T T T 
r+t r +l- r+1RkPkRkr+l 

T 
r+1RkPk 

As in data recursion, matrix inversion has been replaced by division by a scalar. If the 
counterpart (yS - RkPk,k) to the prediction error is zero, then the newly introduced 
parameter takes the value zero, and the first k parameters remain unchanged. For least­
squares algorithms that are both data- and parameter-recursive, see Strobach (1991) and 
Orfanidis (1988), who provides the code of subroutines implementing them in an 
appendix. 

4.1.5 I(alman filter 

Consider a process described by 

x(t+ 1) = A *x(t) + n*u(l), 
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y(t) :::; C*x(t), 

the state x of which is to be estimated from knowledge of its input-output behaviour. 
When A *, n* and C* are assumed known, the first idea that comes to mind is to build a 
mathematical model of the process driven by u and use the state of th·is model as an 
estimate for x (Figure 4.4). 

Process yet) 

u(t 

Ym(l) 

l"1li-__ 1--_ ...... Estimated state 

Figure 4.4. Naive observer 

If this model were exact and stable, one could thus accurately estimate the state of 
the process, possibly after a transient period during which the effect of erroneous initial 
conditions might be felt. Such an open-loop solution might actually perform rather 
badly, because the model used is certainly not perfect. The basic idea of Kalman­
Luenberger observers is to feed back the deviation Y - Ym to correct the state of the 
model, after passing it through a matrix gain K (Figure 4.5). The value of K dictates 
the dynamics of the observer, i.e. the speed with which its st.ate will approach that of 
the process, provided that the model is correct and there is no noise. 

Process y(t) 

+ 
u(1) 

Y m(f) 

f-cII.--.l..---....... Estimated state 

Figure 4.5. Kalman-Luenbcrgcr observer 

The Kalman filler follows an analogous scheme, bUl explicitly takes inlo account the 
perturbations acting on the process and measurement noise. It extends without difficulty 
to time-varying systems, so assume that the system is described by 



The objective is to estimate the present state XI of this system from the available 
infonnation, which includes knowledge of the past values of the input u and output y. 
The matrices AI, Bl and C, are assumed to be known for aliI. The process noise v[ 
corresponds to non-deterministic inputs, such as modelling errors, imperfections of 
actuators and external disturbances. The measurement noise W, expresses the limitations 
of the sensors. These two noises are assumed to be zero-mean (E (v t) = 0 and 
E (w d = 0) and to correspond to uncorrelated random vectors, such that 

where V! and W tare knowll positive-definite symmetric matrices and 81k is one if 
t = k and zero otherwise. The larger these matrices are, the more erratic the behaviour 
of the system becomes; V t attributes this to process noise, whereas WI attributes it to 
errors in measurements. The initial state xo of the system is taken as random, with 
kllol-vn mean rna and covariance Xo. Moreover, xo and v are assumed to be 
uncorrelated. 

With no pretension to mathematical rigour (as can be found, e.g., in (Anderson and 
Moore, 1979; Caines, 1988», this section will show how the equations of the Kalman 
filter can be derived very simply from those of recursive least squares. It win proceed in 
three steps: 

the extension of recursive least squares to vector outputs, 
the study of a static system with no process noise, 
the study of a dynamic system with process noise. 

The problems raised by implementation of the Kalman filter and its extension to 
parameter estimation and stochastic identification will then be considered. 

REMARK 4.5 

Some of the assumptions above can easily be replaced by less restrictive ones. It is 
possible to consider 

- non-zero-mean v or lV, 

- mutually correlated v and w, 
- measurement noise with a singular covariance matrix Wf, 
- coloured (autocorrelated) v and w. 

Sec, e.g., (Borrie, 1992~ Jazwinski, 1970). o 

4.1.6.1 Vector data-recursive least squares 

Consider a system for which the vector YI+1 consists of lly scalar outputs. With this 
system is associated an LP model structure described by 

T 
Ym(t+l, p) = RIP, 
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where the regressor Rc is now an IIp x Ily matrix. The weighted least-squares estimate 
PIs minimizes the cost . 

III 

ilsCp);;:; I (Yt - R ;_IP)T Qr(Yt - Ri-lP)' 
1;::; 1 

where Qr is some symmetric weighting matrix, assumed here to be positive-definite. It 
can be computed recursively by the following algorithm, similar lo that established in 
the scalar case: 

T 
Pr+1 ;::; Pt - Kt+l R rPr. 

" T" Ym[t+ 1, Pls(t)] ;;:; RI Pls(t), 

"" " Pls(t+l) == Pls(t) + KI+l [Yt+l - Ym[t+l. Pls(t)]]. 

Even when Qf~ 1 is available a priori, each iteration requires the inversion of an 
lly X Ily matrix. Pt can be interpreted as the covariance matrix of the estimation error 
E [[p - Pls(t)][P - PI5(1)]T}. provided that Qr is the inverse of the covariance of the 
measurement noise in Yt (Chapter 5). 

4.1. 6.2 Static system without process noise 

When the state of the system is assumed to be constant, the state and observation 
equations reduce to 

Given the assumptions on w, it seems natural to estimate x by minimizing a cost 
quadratic in the output error, weighted by the inverse of the covariance of the 
measurement noise. This corresponds to a Gauss-Markov estimator, which would 
become a maximum-likelihood estimator if w were additionally assumed to be 
Gaussian. 

T A direct application of the least·squarcs algorithm with Pls(t) ;;:; ~/' Q I = W t I and 
RI ;::; CHI then leads to 

~t+l =~r+Kt+l[Yt+I-Ym(t+l, ~t)]. 

These equations arc those of the Ka)man filter. P l is the covariance matrix 
E{ (Xt - ~/)(xr - ~t)T) of the estimation error. 
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4.1.6.3 Dynamic system with process noise 

Consider now the initial system 

Yt;;:: CrXt + Wt· 

Its state evolves between measurement times, because of its dynamics, and the process 
noise v makes this evolution uncertain. This leads us to distinguish: 

- the predictions of~ and P at time t + 1 given the information available at time t, 
denoted by ~H lit and PH lit and called prior values; 

- the updated values of~ and P at lime I + I obtained by taking the measurements 
collected at time f + 1 into account, denoted by ~Hlll+l and P c+lIl+i and called 
posterior values. 

Predicting ~ a1ld P. The process noise v belongs to a sequence of independent random 
vectors. The past observations therefore bring no information on its present value. By 
replacing Vt by its mean value. which is zero, one gets the predictor 

This prediction corresRonds to the noise-free evolution that the system would have if its 
initial condition were XIII' The prediction crror is then 

If the prediction is unbiased, i.e. if E{xI+I - ~l+lIrl ::::; 0 (which will hold true if 
E {xJ - ~rltl ::::; 0), then the covariance of the prediction crror is given by 

All other terms are zero, for VI and Xt - ~tlt are mutually uncorrelated. 

Updating ~ and P. DurinR this phase, the knowledge of XI+ I and PHI is improved by 
substituting ~I+ 111+ I for xl+ lit and P 1+ 111+ I for P t+ I1h so as to take the results of 
measurements at time t + 1 into account. This corresponds to one step of a static 
problem, since the actual value of Xt+ I does not change during the updating of its 
estimate. The equations of the static case can therefore be employed, provided that the 
following notation changes are made, to distinguish the prior and posterior values of 
~t+] and Pt+l: 
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1\ 1\ 
X t+ 1 -4 X t+ 111+ I , 

1\ 1\ 
Xt -4 X 1+ 111, 

Pt+i -4 P t+lIl+l. 

Pt -4 P r+llt. 

Assume that ~tll and Ptll are available (initialization will be considered later), An 
iteration of the algorithm corresponds to getting ~f+ 111+ 1 and PI+ 111+ 1, i.c. to 

- predicting the state and the covariance of the prediction error 

- computing the gain of the filter 

updating the state estimate 

- updating the covariance estimate 

As with recursive least squares without forgetting, it can be checked that 

The information provided by Yt+l can therefore only decrease the uncertainty in the 
state. " 

REMARKS 4.6 

Computing K,+1 requires inverting (Wl+l + CI+IPt+lltCT+I), always possible if 
W t+ J is invertible. It is paradoxically when there is no measuremenl noise that 
difficulties requiring specific treatment appear. 

- This is an estimating filter, which computes ~I+ 111+ 1 from ~tll' It can be transformed 
inlo a predicting jilter. computing il+ III from ~tlt-l' Since 

this predicting filter is given by 



with Kt = ArKt . 

- The special case of a static system with process noise, which corresponds to At == I 
and Ht == 0, provides an alternative method for traclcing time-varying parameters to 
the exponential forgetting of Section 4. ] .4.2. The parameters then play the role of 
the state and the process noise is made responsible for their fluctuations. CI consists 
of regressors and may depend on measurements up to time t - 1. This approach is 
of special interest when information is available on the possible variations of each 
parameter. The choice of the matrix V, gives more degrees of freedom than that of 
the scalar forgetting factor A.. One may, for instance, take into account the fact that 
some components of p* are assumed to be constant. 0 

A most important feature of the Kalman filter is its recursive nature, which makes its 
on-line implementation particularly easy. To reduce reai-time computation, one may 
compute off-line all quantities that do not depend on the measurements. 

4.1.6.4 Off-line computation 

Initialization. If the mean mo and covariance Xo of the initial state Xo are known, one 
should choose ~OIO = mC).. and POlO = XO. By analogy with recursive least squares, one 
might otherwise choose XOIO = 0 and POlO = eI, with c a large positive scalar, to express 
one's lack of confidence in the estimate of the initial state. 

Iteration. Unless part of the model is not known in advance (as would be so, for 
instance, if the filter were used to estimate parameters and Ct incorporated observations, 
see the last point of Remarks 4.6), all correction gains and prior and posterior 
covariance matrices of the slate estimation error can be computed off-line. Before any 
measurement, it is thus possible to assess what confidence can be placed in future slate 
estimates, provided, of course, that the assumptions on which the Kalman filter relies 
are satisfied. This is both an advantage and a drawback: 

- an advantage, for onMJine computation will be much reduced, 
- a drawback, for the filter operates in open loop. If the information used to compute 

it, i.e. the equations of the model and noise characteristics, is too inaccurate, it may 
then diverge, with the discrepancy between the observed and predicted outputs 
inl;reasing aberrantly. As with recursive least squares, a layer external to the 
algorithm proper should therefore be introduced to monitor the behaviour of the 
filter through the evolution of the output~prediction error (Section 4.1.6.7), 

4.1.6.5 On-line computation 

If the sequence of correction gains K t has been computed beforehand, on-line 
computation reduces to predicting ~t+ 111 and updating it to ~t+ J It+ \. 

4.J .6.6 InOuence of the covariances 
of the process and measurement noise 

The fonnula used to compute Kt+] implies that 
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After right multiplication by"W~ b one gets 

so 

Taking the expression for Pt+llt+! into account, one can therefore write 

For any given Wt+], the gain of the filter increases with P'+lit+l' Now Pt+lIt+l will 
be large if POlO is (but this initial effect quickly disappears), and more importantly if the 
process noise is large. i.e. ifV t is large. 

The larger the correction gain is, the more jittery the behaviour of the filter will be, 
i.e. the more drastically the state estimate will be modified to take new measurements 
into account. This behaviour expresses a lack of confidence in the predicted state 
estimate. 

Conversely, for any given Pt+I/t+l. the larger the covariance of the measurement 
noise Wt+ 1 is, the smaller the correction gain will be and the less the new measuremenls 
will be taken into account to update the state estimate. This expresses a lack of 
confidence in the new measurements. 

4.1.6.7 Detection of divergence 

One can test whether the filter is operating correctly by computing the covariance of the 
deviation between the measured and predicted outputs, so as to detect any very 
improbable deviations. Let Y/+l be the output-prediction error 

If E{Yt+ I} = 0, which holds true if the initial state estimate is unbiased, then the 
covariance of the output-prediction eri"or is 

and the standard deviation associated with each output is the square rool of the 
corresponding diagonal entry. Any deviation between the predicted and measured 
outputs that exceeds three standard deviations can be considered very unlikely. Unless 
this is just a fleeting phenomenon, it indicates that the filter is diverging. Divergence 
may be due. for instance, to 

- erroneous modelling of the dynamics of the process (badly chosen A" B t and Cl' 
violation of the hypothesis of linearity); 

- underestimation of the process noise, with Vt too small: 
- incorrect initialization, with POlO too small. 



An ad hoc way to avoid divergence is to increase the covariance V, of the process noise. 
Another approach is to try to estimate a parameter vector p consisting of all unknown 
elements of the model (At. Bt , C I • V, and WI) from the available experimental data. 
One may, for instance, estimate p in the maximum-likelihood sense (see also 
Sections 4.1.6.10 and 4.1.6.11). If the state variables are meant to have a concrete 
meaning, one should make sure to select an input-output configuration and a 
parametrization that ensure global identifiability of the model structure. 

REMARK 4.7 

As with least squares, the details of the numerical implementation of the filter affect 
greatly the precision and stability of the results. We shall mention only two points. 

- Bierman's U-D factorization algorithm (1977) can be used to keep the covariance 
matrices symmetric and positive-definite, which is crucia1 to ensure satisfactory 
operation. 

- When the discrete-time model is associated with a continuous-time process and the 
sampling period is short compared with the time constants of the system, 
implementation using the 8 operator is recommended (Middleton and Goodwin. 
1990) 0 

4.1.6.8 Stationary filter 

An important special case is when 

- the system studied is time-invariant (A, Band C are constant), 
- the statistics of the process and measurement noises are stationary (V and Ware 

constant). 
If the pair (C, A) is detectable, i. e. if any mode of A that is not observable via C is 
asymptotically stable, PI It tends to a constant value as t tends to infinity (Anderson and 
Moore, 1979). Let 

P = lim Ptl/, and p+ = lim Pt+llt· 
t~co t~(XJ 

From the equalion for Pr+llt, one gets 

p+= APAT + V. 

Taking the expressions [or 1{1+\ and Pr+llr+1 into account, one can write 

Multiplying this last equation by A on the left and by AT on the right and replacing 
APAT in the result by p+ - V gives the discrete Riccati equation 

The matrix p+ can be computed in two ways: 
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- as the positivewdefinite solution of this Riccati equation, 
- by iterating the equations for the evolution of the covariance until Pt+llt becomes 

constant. 

The gain of the stationary Kalman filter is then simply given by 

It depends on A, C, V and W, but not on POlO or B. The implementation of the 
stationary filter is particularly simple. since the prediction of the slate and updating of its 
estimate can be combined into 

= (A - KCA)~III + (B - KCB)Ut + KYt+!. 

Note the similarity to the Kalman·Luenberger observer. 

4.1.6.9 Use for the choice of sensors 

To instrument a system in order to estimate its state, one should be able to answer the 
following questions. 

- What are the critical quantities to be measured, i.e. what should the vector y consist 
of? 

- What quality of measurements is required to ensure a given quality of slate estimate? 
How should the sensors be selected, given their costs and precisions? 

These questions can be addressed in the framework of experiment design 
(Chapter 6). The Kalman filter is a basic tool to answer them, since it computes the 
sequences of covariance matrices Pt+lIi+l and Pt+Jlf. To compare the performance of 
two configurations of sensors, one just has to solve the equations describing the 
evolution of the covariances of the corresponding estimation errors. The smaller the 
diagonal entries of the covariance matrices are, the more precise the state estimation will 
be, provided that the models describe the system and sensors correctly ... These 
covariances can be computed off-line, without making any measurements on the 
system, which therefore need not be built. 

4.1.6.10 Extended Kalman filter: real-time parameter estimation 

Now consider a system described by the following possibly non-LI discrete-lime model 

xo = xo(PO), 



This model depends on a vector of unknown parameters Pl. possibly time-varying. It 
may result from discretization of a continuous-time model. One wishes to estimate Xl 

and PI simultaneously, hence the idea of defining an extended stale vector 

c _ [Xt] 
Xt - • 

PI 

Provided that an evolution equation is chosen for the parameters, such as 

PHI = PI + v~, 

the evolution of the extended state can be written as 

The observation equation becomes 
c c 

Yt= h (x,) + w(_ 

Even when the initial model is LI, such is no longer the case for the extended model, so 
the Kalman filter does not apply directly. We shall only present here the first-order 
extended Kalman filter, and the reader may refer, e.g., to (Bar-Shalom and Fortmann, 
1988) for further details, including the second-order filter. 

Replace r(x~t Uf) by its first-order expansion around ~~II: 

with 

and replace h\x~) by its first-order expansion around ~~If-]: 

with 

The non-LI state and observation equations are then approximated by 
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Since this approximation is linear in x~, the Kalman filtering equations can be used, 
provided that the statistics of v7 and \Vt are specified. Unless information is available to 
the contrary, it is usually assumed that 

with 

[
V 0 ] vc= 
o VP 

The matrices V, VP and Ware most often chosen to be diagonal. The larger the ith 
diagonal entry of VP (respectively V) is, the more quickly the filler will modify the 
estimate of the iih component of PI (respectively XI) in the light of the measurements. 
Conversely, the larger the ith diagonal entry of W is, the less the filter will take the 
measurements from the ith sensor into account. The designer of an extended Kalman 
filter will thus be able to play with these tuning parameters to search for a satisfactory 
compromise. In particular, it is possible to indicate that some parameter must tend 
towards a constant value by setting the corresponding diagonal entry of VP to zero. If 
the ith component of x or p is assumed to be liable to vary very quickly and 
unpredictably, this can be taken into account by setting the ith entry of V or VP to a 
large value. 

Assume that ~~It and Ptl l are available. An iteration then consists of computing 
~~+ lIH 1 and PH lIH 1. To predict the future state, the nonlinear state equation 

can be used, rather than its linearized version. PH lit. KH ] and PH IIHI arc given by the 
usual formulas 

To update the stute estimate, the actual prediction en'or, as computed from the nonlinear 
observation equation, can be used rather than its linearized counterpart: 

Provided that the filter converges, which is not guaranteed, one thus gets an estimate 
of x7 + I which includes an estimate of the parameters. Heuristics are often introduced to 
force the linearized modello remain stable. 
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REMARK 4.8 

The extended Kalman filter has been used in a Jarge number of practical applications. Its 
popularity derives from its remarkable simplicity of implementation. It nevertheless 
presents some hard-to-comprehend divergence phenomena. In the special cnse of 
stationary LI models, a detailed analysis of the limitations of this approach has been 
proposed (Ljung, 1979). The introduction of a corrective term involving the sensitivity 
of the correction gain Kr to the parameters makes the convergence properties of the filter 
identical to those of the estimator obtained with a maximum-likelihood approach. 0 

4.1.6.11 Stochastic identification 

Implementing a Kalman filter requires knowledge of (At. Dr. Cr. Vt, W,) for alIt. If 
this information is not readily available, it should be derived from the knowledge of the 
inputs and outputs, which is a stochastic identification problem. Consider the simple 
case where the system and noise are stationary and where a stationary Kalman filter is 
sought. A possible approach would then be to 

find a model (A, B, C, v. W). by some method to be defined, 
solve the corresponding discrete Riccati equation to get the correction gain K, 

- implement the stationary Kalman filter thus obtained. 

One may. however, drastically simplify the procedure by replacing the estimating filter 
by a predicting filter (Remarks 4.6), which can be written as 

with K = AK. Let Yt be the output~prediction error at time I (the innovation) 

The last two equations can be rewritten as 

A A -_ 
Xt+llt == AXtlt-1 + BUt + KYr, 

Yt C~Jlt-l + Yr. 

One may even forget that~t+llt is a state predictor, set Xt = ~rlt-l and model the process 
directly as 

Xt+l = Ax, + BUt + IlYt, 

Yt = CXt + Yr. 

which is called the innovations representation. This form involves a single noise Yr. 
with the same dimension as the output, instead of two noises VI and \VI, with the 
dimensions of the state and output respectively. This presents two advantages (Ljung 
and Soderstrom, 1983): 
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- since the number of noise parameters is drastically reduced, modeling the stochastic 
process becomes much simpler; 

- the model of the process includes it explicitly. The correction gain of the stationary 
Kalman filter is therefore obtained directly, without having to solve any Riccati 
equation. 

EXAMPLE 4.7 

Consider the following canonical state-space representation, called the companion/onn 
or observer j0111t, of a single-input-single-output time-invariant LI process: 

-al 0 0 bl k\ 

-a2 0 0 b2 k2 
Xt+l= -a3 0 0 Xt+ llt+ YI, 

-an 0 0 b" kll 

Yr;:: [ 0 0 0 ] Xt + Yr· 

The 3n + I parameters of this model are the Cli. bi, ki (i = 1, ... , 1l) and the variance 
of the innovation Yr. The vector of the ]Cl s is the gain k of the stationary Kalman filter. 
Define Ci as 

Ci = k; + Cl;, i = 1, ... ,11. 

The recurrence equation that corresponds to this canonical representation can then be 
written as 

)'r + atYt-1 + ... + all)'r-lI = blUt_1 + ... + b/lllr- II + )'r + CI)'I_I + ... + Cn)'I-II' 

It is therefore an ARMAX model (Section 2.4). Various techniques to estimate its 
parameters will be considered in the remainder of this chapter. This being done, the gain 
of the stationary Kalman filter is computed as k,. = Cj - (li. 0 

4.1.7 Errors-in-variables approach 

As seen in Chapter 3, un weighted least squares correspond to maximum-likelihood 
estimation if the observations can be written as 

y(t) rT(t-l )p* + £(1), t ;:: 1, ... , "l> 

where the E(t)'s are Li.d. 9VlO, 0'2), or equivalently jf 

y!;;:; Rp'" + e, 
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where E is distributed ~O, a2I"I)' Only the output is then assumed to be noisy, 
whereas all variables involved in the computation of the regressor vector are assumed to 
be known exactly, This hypothesis (which Kalman (1982) calls prejudice) is often 
rather unrealistic, and one may prefer to assume that all variables involved in the 
estimation problem, i.e. y(t) and all components of r(t-l), are noisy. This corresponds 
to the so-called errors-ill-variables approach; sec, e.g., (Anderson, 1985), The output 
then loses its particular status of being the single noisy variable, and can be pooled with 
the regressor vector into a single vector 

If the vector x"'(t) of the corresponding !loise-Fee variables satisfies a linear relation 
x*T p* = 0, where the dimension of p* has been increased by one to account for the 
incorporation of y in x, then the matrix X* obtained by piling up the vectors x*T(t) 
(t = 0, .. , , Ill) satisfies 

The tme value p * for the parameters of the linear relation therefore belongs to the kernel 
of the noise-free empirical covariance matrix 

At best (provided that dim ker l:* = I), p* is thus only identifiable up to a nonnalization 
coefficient. In the least-squares method, for instance, the chosen nonnalization policy 
associates a parameter equal to minus one with y(t). 

Unfortunately, one has no access to l:*, but only to l:, such that l: = L* + f, 
where f is the error in the covariance due to the noise. This usually makes L 
nonsingular. Various approaches have been developed to estimate p from such noisy 
data. 

The algorithm proposed by Guidorzi (1991) makes it possible to avoid any 
hypothesis about ~t provided that the system studied is station?fY and two independent 
experiments can be performed with the same covariance error ~. Let L 1 and l:2 be the 
noisy empirical covaria~ce matrices comQ..uted from the results_of these experiments. 
They satisfy l: I ;:;; l:i + l: and l:2 = l:i + l:, so the noise term l: can be eliminated by 
subtraction, The vector p* must satisfy 

If the experiments arc designed so as to ensure that dim ker (l:j - L2) = I, one can thus 
estimate p* uniquely, up to the normalization, by computing ker Cr., - I.2). In practice, 
I., - L2 will often be of full rank, because the noise will only partially be eliminated. 
One may then proceed by singular-value decomposition and select the direction 
associated with the smallest singular value. 

When the effect of the noise cannot be eliminated by subtraction, various techniques 
can be used to estimate p. They differ in their hypotheses about ~, which one might 
prefer to those underlying the least-squares method. 
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The total-least-squares method (WiIJems, 1986a, 1986b, 1987; Van Huffel, 
1987; De Moor, 1988) assumes that aJl entries of x(t) are independently additively 
corrupted by noises 1-pith tlte same variance (52, so 

This variance is then estimated by the smaIJest singular value of :E. the estimate p of p * 
then being obtained by normalizing the associated eigenvector. 

As in total least squares, the Frisch method (1934) assumes that all components of 
x(t) are independently additively conupled, but allows the noise variance to depend on 
the component considered. so 

.~. J. 
o;;p 

Let qj (of dimension IIp - 1) be the unweighted least-squares solution obtained when 
only the ith component of x is assumed to be noisy (i = 1, ... , IIp). The role of y(t) is 
then taken up by -Xj(l) , whereas the regressor vector consists of the remaining 
components of x. Transform qi into an IIp-dimensional vector by inserting an ith entry 
equal to one. The resulting vector is then a feasible solution for p*, defined up to a 
normalization coefficient. Choose this normalization coefficient to give a unit value to 
some com~onent of the vector chosen independently of i, for example the last one. 
Denote by Pi the (lip 1 )-dimensional vector of the remaining components. 

If 1:-1 can be transformed into a matrix with positive entries by changing the sign of 
components of X, i.e. by the transformation L:E-iL, where the signature matrix L is a 
diagonal matrix wi th nonzero entries equal to ± I, the vectors Pi (i = 1, ... • Il p) all 
belong to the same orthant of an (up - 1 )-dimensional space. The set of all feasible 
nonnalized solutions then corresponds to the simplex with these vectors as vertices. A 
more general case has been considered by De Moor and Vandewalle (1986a. 1986b). 
The technique extends to dynamical systems described by recurrence equations, and 
then usually yields a point estimate, contrary to the static case (Beghelli. Guidorzi and 
Soverini, 1990). 

The errors-in-variables approach will be considered again in Section 5.4.2.1, in a 
bounded-error context. 

4.2 Least-squares based methods 

When the error is not affine in P, the least-squares method described in Section 4.1 no 
longer appJies. Still assuming that the cost function is quadratic in the error, various 
approaches can compute a parameter estimate through iterative use of recursive or 
nonrecursive least squares. Depending on the type of model studied, many methods are 
obtained, which have received various names in the literature but proceed from the same 
philosophy. As will be mentioned, some of these methods have rather severe limitations 
and cannot compete with the general methods of Section 4.3. It nevertheless seems 
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interesting to present them, because they are classically used, simple to implement and 
correspond to natural ideas, the limitations of which should be made clear. 

4.2.1 Pseudolinear regression 

Assume that the model output can be written as 

Ym(t+l, p) = rT(t. p)p. 

If an estimate pet) of p is available at lime I, then r(t, p) can be approximated by a 
vector r (I) that does not depend on p 

One thus gets an LP model structure 

Ymlp(t+I, p) = ;T(t)p, 

and p(t+ 1) can be computed by recursive least squares. One may hope that this 
approach converges to the estimate of p lhat would have been obtained had Ym not been 
replaced by Ymlp. This approach can be applied to various systems. 

4.2.1.1 Extended least squares 

Assume that the process studied is ARMAX, described by 

A(q, p*)Y(l+l) = B(q, p*)u(l+l) + C(q. p*)E(t+l), 

where 

and where the E'S are Li.d. NCO, ( 2 ). This amounts to saying that the following 
recurrence equation is satisfied: 

y(1+ 1) = -ajy(t) aiy(t-l) - ... - af~ay(t+ 1-11a) + hi u(t) + ... 

+ bf~bu(t+l-l1b) + C~E(t) + ... + c,tcE(1+1-nc) + £(1+1). 

The vector of the parameters to be estimated is p = (a I .... , aI/a' bI • ... , bl/b' 
ct .... , cnc)T. If the regressor vector is defined by 

rUt p*) = [-yet), -y(t-l), ... , -y(1+ 1-lla), fl(t), ... , 

u(t+l-Ilb), E(1), ... , E(t+l-lIc)]T, 



the equation describing the process may be written as 

y(t+ 1) == rT(t, p*)p* + e(t+ l). 

One should indeed know the true value p* of the parameters to be able to compute the 
past values of e that appear in r from the past values of the input and output. If r(t, p*) 
were known, it would suffice to employ recursive least squares to estimate p* in the 
maximum-likelihood sense, since the e's are independent, stationary and Gaussian. 
This suggests using the approximate model 

Ymlp(t+l, p) = fT(t)p, 

where the approximation r(t) of r(t, p*) is obtained by replacing the past innovations by 
the corresponding residuals 

r(t) = [-y(t), -y(t-1), ... , -yCt+l-lla), u(t), ... , 

U(t+1-11b), e(t), ... , eU+I-1Ic)]T, 

where e(t) = y(t) - Ymlp[t, p(t)]. All quantities appearing in f(t) can be computed at 
time t. so recursive least squares apply. The resulting estimator p is known as the 
extended-least-squares estimator (Young, 1968: Panuska, 1968). 

4.2.1 .2 Properties of extended least squares 

Few pseudoJinear algorithms have had their convergence properties studied as 
exhaustively as extended least squares. 

P ELS 1: Convergence to p * is not guaranteed. A sufficient condition is that 
Re[1/C(eiw, p*)] ~ 112 for all real ill (Ljung, 1987). Since this condition depends on 
the true value p'" of the parameters, obviously unknown, it cannot be checked 
a priori. It is even possible to produce exampJe~ of ARMAX systems such that the 
extended-least-squares estimator willllever converge to p* (Ljung and S5derstr5m, 
1983). 

PELS2: When it occurs, convergence is often rather slow anyway. Some forgetting 
should be introduced in the recursive algorithm, in order not to penalize the final 
estimate with the initial errors. If the data are too scarce, they could be circulated 
several times in the algorithm. 

PELS3: The method can also be implemented off-line. 

4.2.2 Multilinear regression 

Assume that the parameter vector can be partitioned into classes Ph Pl ... such that the 
error is affine with respect to the parameters of any of these classes when the parameters 
of all others are fixed. It is then possible to search for p by applying the least-squares 
method to estimate the parameters of each class in turn 
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1\ . '( 11\" ) P2 = arg mm) P2 PI, P3, ... , 

and so forth, with a cyclic exploration of all classes. At each step, the value of j(p) 
decreases towards some constant value. Nothing guarantees, however, as will be seen 
for generalized least squares, that the estimate of P thus obtained corresponds to a 
global (or even local) minimizer of the cost. 

4.2.2.1 Generalized least squares 

Consider an ARARX process described by 

* >I: 1 A(q, P )y(l+1) = B(q, P )u(t+l) + D( *) £(t+l), 
q,p 

where A, Band e are defined as previously and 

This condensed notation corresponds to the recurrence equations 

y(t+ 1) = -aiy(t) - aiy(t-l) - ... a ':ay(t+ I-nu) 

+ btu(t) + ... + bl:bll(t+ )-llb) + 17(1+ I), 

Partition the vector P of the parameters to be estimated into 

The equation of the process becomes 

* * I A(q, Pab)y(t+l) = B(q, Pab)U(t+l) + * E(t+l). 
D(q, Pd) 

To estimate P in the (conditional) maximum-likelihood sense, one may use the results of 
Section 3.3.2. The prediction error satisfies ep(t+ I, P *) = E(t+ 1), and is thus given by 

ep(t+I, p) = D(q, Pd)[A(q, Pab)y(t+l) - B(q, Pab)U(t+ 1)]. 

Since, by hypothesis, the E'S are Li.d. :?Ii.{O, 0"2), the (conditional) maximum-likelihood 
estimate minimizes 

Ilt 

j(p) = L e~(1, p). 
1=1 
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The ~rediction error ep is not affine in p, so the least-squares method cannot be used to 
find p. When D(q, Pd) is fixed, however, it is affine in Pab- Similarly, when A(q. Pub) 
and B(q. Pab) are fixed. it is affine in Pd. This suggests the following algorithm: 

Step 1: Set k == 0, p~ == 0, i.e. D(q. p~) == I. 
Step 2: Minimize 

III 

j(Pab) == L [A(q, Pab))'f(t, p~) - B(q, Pab)llf(t, p~)]2 
1==1 

with respect to Pab. where the fi llered input ilf and output Yf are obtained by passing 
II and y through the filter D(q, p~). which corresponds to 

The cost j is now a sum of squares of affine terms in Pab. Nonrecursive least 
squares can therefore be used to compute the global minimizer P;b' 

Step 3: Minimize 

with respect to Pd. Again, this cost must be evaluated by using the recurrence 
equations associated with this condensed nOlation. It consists of a sum of squares of 
terms affine in Pd, so the global minimizer Pd can be ,computed by nonrecursive least 
squares. 

"k " Step 4: Increment k by one, set Pd equal to Pd and go to Slep 2. 

This method has been developed by Clarke (1967), under the name of gCl1crali-:.ed 
least squares. It alternates estimating the parameters of the deterministic part of the 
model (Step 2) and those of the autoregressive model of lhe noise (Step 3). 

4.2.2.2 Properties of generalized least squares 

PGLS1: Since each step decreases a quantity j(p) bounded from below by zero, 
convergence of the cost to a constant value is ensured. 

PGLS2: Nothing guarantees, however. that p will converge lo a global (or even local) 
optimizer of the cost. Alternating optimizations with respect lo Pab and Pd actually 
result in a deadlock. or exceedingly slow convergence, if the minimization of j 
requires simultaneous action on these two classes of parameters. This is a general 
difficulty with all algorithms that freeze some parameters while others are optimized. 
See also Section 4.3.2.6 and Figure 4.12. 

PGLS3: A recursive version of generalized least squares is available, with exponential 
forgetting of past data (Hasting~James and Sage, 1969). 



VI'IlIfHi.UlllJfI 

4.2.3 Filtering 

As for generalized least squares, many algorithms alternate filtering and use of the least­
squares method. 

4.2.3.1 Steiglitz and McBride's method 

Consider a process described by 

y(t+ 1) = Ym(t+ 1, p*) + E(t+ 1), 

where the E'S are i.i.d. 9\10, 0'2) and 

Beq, p) 
vm(t+l, p) =:; i( ) li(H1). 
- Ii q,p 

with the polynomials A(q, p) and B(q, p) defined as previously, This last equation is 
just a condensed notation for the recurrence equation 

where 

)'m(l+I,p) -aIYm(t,p)-a2YI1l(l-I,p) ... -a llaYm(t+l-ll a,p) 

+ b J/l(t)+ ... + blll,u(t+ I-lib), 

The maximum-likelihood estimate is obtained (Chapter 3) by minimizing the cost 

I1t 

j(p):; L [y(t) - Ym(t, p)]2, 
/=1 

which is quadratic in the outPllt error 

ey(t, p):; y(t) - Ym(t, p). 

Unfortunately, Yrn(t, p) is not LP, and to use the least-squares method, one is led 
(Example 4.3) to change the model structure to 

Yrnlp(t+ 1, p) :; -a 1)'(1) - 02y(1-l) - ... 0lllly(t+ l-11a) 

+ b 1 u(t) + , .. + bllt,u(t+ I-11b), 

in order to minimize 
lit 

j(p) :; L [y(t) - YmlpU, p)]2, 
1=1 



This amounts to replacing the initial output error by a generalized error 

egU, p) ;;; y(t) - YmJpU. p). 

Because of this substitution, the resulting estimator Pis is not a maximum-likelihood 
estimator of p"'. Steiglitz alld McBride's method (1965) is intended to transform the 
generalized error egU, p) iteratively into the output error eyCt, p). The generalized error 
satisfies 

eg{t+l, p) = y(t+l) - Ymlp{t+l, p) = A(q, p)y(t+l) - B(q, p)u(l+l). 

The difference between generalized and output errors is illustrated by Figure 4.6. 

u(t+ 1 )-+------~ 

Parallel model 

B(q, p) 

A(q. p) 

Process 

B(q, p*) 

A(q, p*) 

Series~paraIlel model 

yJl+l. p) 

Figure 4.6. Generalized and output errors 

Whereas the model producing the output error is parallel and non-LP, the one 
producing the generalized error is LP, with a part in series and a part in parallel. To 
replace the generalized error by an output error, one should filter the two inputs of the 
series-parallel model by l/A(q, p*). Since p* is unknown, the procedure is iterative 
(Figure 4.7). Let P~ be the estimate of p* at iteration k. The next estimate P~+ 1 is 
computed by nonrecursive least squares using input and output data filtered by 
lIA(q. p~). This means that u(t) and y(t) are respectively replaced by urCt) and yrC/). 
with 

yrCl+l) = ~Iyr(t) - ... - BllaYrCl+1-lla) + y(l+l), 
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1\ 1\ 
u[(t+l) =-ll)IlC(t) - ... - (l"a'/r(t+I-lla) + 11(1+1), 

where the !ii's are the first lla components of p~. The procedure is initialized by 
estimating p~ by least squares [rom the original ·unfiltered data. Provided that the 
estimated parameters converge to a constant value, 

so the filtered generalized error does tend to the output error. 

£(1+ 1) 

U(1+ I )-----.---/il~ Process I----.---P~ y(t+ 1 ) 

Ilf{1+ I) 

~ Known filter ~ 
at iteration k 

pk+ I estimated by 
least squares from 

filtered inputs and outputs 

+ 

A( 1\ k) q, Ps 

YC(I+ 1) 

Figure 4.7. Principle DC Steiglitz and McBride's method 

Properties of Steiglitz alld McBride's method 

PSM1: The model structure is ARMAX, with the constraint C(q, p) :;; A(q, p). 
PSM2: The system studied must be stable. One must also make sure that lIA(q, p~) is 

a stable filter. Otherwise, any unstable pole must be dragged back inside the unit 
circle to avoid explosion. 

PSM3: Provided that 

- IIA(q, p*) is stable, 
- A(q, p*) and B(q. p*) are relatively prime, 
- the input is persistently exciting, 
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- the input and noise are independent, and the addditive output noise corresponds 
to a sequence of independent random variables, 

the method converges locally to the true value p* of the parameters as the number of 
data points tends to infinity. The convergence becomes global if the signal-to-noise 
ratio is large enough (Stoica and Soderstrom, 1981). 

PSM4: The method usually converges very quickly (typically 3 to 4 iterations). The 
volume of computation is much smaller than with the nonlinear programming 
methods to be presented in Section 4.3. A very large number of data is not 
mandatory. 

PSM5: This approach can also be imp]emenled recursively (Ljung and Soderstrom, 
1983). 

REMARK 4.9 

At each iteration, one should filter the initial input and output data (not the previously 
filtered data) to get llf and Yf. 0 

4.2.3.2 Extended matrix method 

All systems considered so far in Section 4.2 are special cases of ARARMAX 
(Figure 4.8). 

C'ft) C(q, p*) 
~t ----__ ~~l ~----~ 

D(q, p j 
1](1) 

u(t) 
I __ --.--J

L 
yU) _ A(q. p*) I ~ 

Figure 4.8, ARARMAX structure that contains all examples of Section 4.2 as special cases 

Assume, as previously, that the E'S are LLd. ~O, 0"2). If the input-output delay llr is 
assumed to be one, this scheme corresponds to 

If { 1](/)} and (E(t)) were known, the maximum-likelihood estimate of 

could be obtained by minimizing 

j(p) t e~(t, p), 
1=1 



where 

with 
eg(t+l, p) = y(t+1) - rT(t)p, 

r(t) == [-y(t), ... , -),(1+ I-lIn), li(t), ... , u(t+ l-llb). e(l), ... , 

£(1+ 1-l1c), -11(1) • ...• -11(1+ 1-lld)]T. 

One would indeed have eg(t+l, p*) = £(1+1). Unfortunately, r(t) would only be known 
if p* were. As in extended least squares, estimates are substituted for unknown 
quantities in ret). From Figure 4.8, these estimates can be taken as 

and 

~(1+ 1) D(q. ~) ry(t+ 1), 
Ceq, p) 

where p is the best available estimate. One can then apply recursive least squares with 
forgetting or nonrecursive least squares to estimate p* iteratively. This technique has 
been developed by Talmon and van den Boom (1973) and is known under the 
(admittedly not too explicit) name of the exte1lded matrix method (Eykhoff. 1974). 

Properties o/tlle extended matrix method 

PEM1: To avoid explosion, aU zeros of C(q, p) must be forced to stay inside the unit 
circle. 

PEM2: Characterization becomes very complicated, since lIn. Ilb, Ilc and I1d must be 
chosen. 

PEM3: A large number of data points is necessary. 
PEAf4: The convergence of the method is not guaranteed (Ljung, Soderstrom and 

Gustavsson, 1975), and a more general method with better convergence properties 
will be presented in Section 4.3.8. 

PEM5: In the special case of ARMAX structures (D(q, p) = I), this method differs 
from extended least squares by a more sophisticated substitution for e in the 
regressor vector. 

4.2.4 First-order expansion of the error 

Since, by hypothesis, 

j(p) = !eT(p)Qe(p), 

another method of transforming the problem into one that can be solved by least squares 
is to perform a first-order expansion of the error e around the last estimate pk: 
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This approximation of the error is affine in pk+ I - pk. The least-squares method can 
therefore be used to compute the increment to be given to It at iteration k, which yields 

This is the Gauss-Newton algorithm. When Q is diagonal, with nonzero entries Wt 

(t = 1, ... , Ut), it becomes 

Ak+1 _ Ak _ "" (Je(t, p) de(t, p) "". ( Ak) ae(t, p) [ 
llt ]-1 lIt 

p -p ~Wt dp IAk apT IAk ~\Vtel,p (Jp lAc 
1=1 P P 1=1 P 

In this form, the Gauss-Newton algorithm is not even guaranteed to converge to a local 
minimizer of the cost. This defect will be eliminated in Section 4.3.3.4. 

4.2.5 Instrumental-variable method 

Let yS be a vector of data generated by a system with parameters p*: 

yS =: Rp* + n. 

The unweighted least-squares estimator of p* satisfies 

This estimator is unbiased, i.e. its mean over all data that could be collected from the 
system with parameters p* is equal to the true value, 

if and only if 

This will hold true if n is zero-mean and uncolTclated with R. The following example 
illustrates a situation where this hypothesis of uncorrelatedness is nol satisfied. 

EXAMPLE 4.8 

Consider the data generated by the system 

Ym(1+1, p*) =-ajYm(t, p*) - ... 1l/~IYm(t+I-Il11' p*) + b~Il(t) + ... + b/~bll(1+1-ltb), 
y(t) = Ym(t, p*) + £(1), 

where £(t) belongs to a sequence of independent random variables and 



The data satisfy 
y(t+J) = rT(t)p* + 1l(t+1), 

with 

r(t) = [-y(t), ... , -y(t+l-lla), u(t), ... , u(f+l-llb)]T 
and 

However, since the regressor vector can also be written 

ret) = [-Ym(t, p*) - £(1), ... , -Ym(t+I-lla, p*) - e(t+l-lla), u(t), ... , u(t+l-nb)]T, 

R is correlated with n, so the least-squares estimator is biased. o 

Note that the unweighted least-squares estimator is obtained by left-multiplying 

by RT then imposing RT~ls = O. The basic idea of the instrumental-variable method is 
to obtain Piv by left-multiplying 

s R" 1\ Y = Piv + niv 

by VT then imposing VT~iv = O. Assuming that VTR is invertible, one then gets 

The entries of V are the i1lstrumental variables, or i1lstruments. The estimator Piv 
satisfies 

It will be unbiased if n is zerokmean and uncorrelated with V. 
The quality of the results depends on that of the instruments, and various methods 

have been proposed to generate them (Soderstrom and Stoica, 1983), The simplest 
solution is to obtain V by replacing all entries in R that may be correlated with n by the 
output of a run of the model at the previous iteration. One thus gets an iterative 
procedure 

which may be initialized by least squares. 

EXAMPLE 4.8 (continued) 

To obtain V from R, one may replace each row rT(t) of R by the instruments 
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where Ym is obtained by simulating the recurrence equation 

The instrumental-variable method can also be implemented recursively, similarly to 
least squares. Its main interest is that it allows the bias of the least-squares method to be 
avoided, without being too specific about the nature of the process generating the noise 
(contrary to generalized or extended least squares, for example). 

REMARK 4.10 

Being unbiased is not necessarily a good property of an estimator. It is sometimes better 
to accept some bias, jf this leads to an important reduction of the variance of the 
estimation error. This is the aim of the ridge estimator. 

where the matrix K is symmetrical and chosen so as to reduce the estimation rnean­
square error; see, e.g., (Goldstein and Smith, 1974). 0 

4.2.6 Least squares on correlations 

Consider a process described by 

where the noise TJ is assumed to be uncorrelated with the input tL The input 
autocorrelation and input-output crosscorrelalion, respectively defined by 

n n 

cuu(t) = Hm +11 L ll(k)u(k-t) and Cyu(t) = lim +11 L y(k)ll(k-t) , 
ll~OO 11 k=O n~oo 11 k=O 

satisfy 
'" * cyu(t+ 1) = -a 1 cyu(t) - ... - aJlacyu(t+ 1-lla) 

+ b i cuu(t) + ... + b~bCUU(t+ I-nb) + cllu(t+ 1). 

where the crosscorrelation cllu between 11 and 17 is zero. The influence of the noise can 
therefore be eliminated by applying least squares to the LP model structure 

with the quadratic cost 

j(p) = L [Cyu(t) - Cyum(t, p)]2. 
t 
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Large values of 11 are required to get accurate empirical correlations from experimental 
data (provided that the process generating the data is sufficiently stationary). This makes 
this technique rather inefficient. It can be implemented recursively or nonrecursively 
(lsermann, 1974). 

4.3 General methods 

Many optimization methods do not require the cost to be quadratic or the error to be 
affine in the parameters; see, e.g., Polak (197)), Luenberger (1973), Powell (1981), 
Gill, Murray and Wright (1981), Minoux (1983), Press el al. (1986), Polyak (1987) 
and Lemarechal (1989). We shall only present a few of them. The techniques selected 
fall into three categories. The first corresponds to basic tools, such as the gradient 
method or one-dimensional search methods, that are the core of more sophisticaled 
algorithms. The second corresponds to reference algorithms that have a proven record 
on a number of applications. Some of them, such as conjugate-gradient or quasi­
Newton methods, are implemented in most major libraries of scientific subroutines. 
Others. such as Levenberg and Marquardt's method, are used in commercially available 
estimation software. The third group of algorithms consists of methods still under 
development but very promising. such as global optimization methods. 

The initial problem is generally decomposed into a sequence of more elementary 
problems. For instance, a multivariable optimization problem is considered as a 
sequence of one-dimensional optimizations. or optimization on a convex set is treated as 
a sequence of optimizations under linear constraints. Most of these subproblems cannot 
be solved exactly, in the sense that the algorithms include some stopping rules such as 
"ifJtp) is lower than some threshold, stop". The problem of how to choose thresholds 
in imbricated algorithms so as to ensure convergence of the whole procedure will not be 
considered here. For a rigorous exposition. see (Polak, 1971). Similarly, the numerical 
implementation of the algorithms will not be described, and the reader is invited to 
consult the many references mentioned. 

Except for Section 4.3.4, all techniques to be considered deal with basically 
unconstrained optimization, even if the prior feasible domain f is sometimes assumed 
to be an axis-aligned orthotope (or box). To simplify exposition. the cost functionj will 
be assumed to be minimized with respect to p. This is not restrictive, since changing the 
sign of a function to be maximized makes it a cost to be minimized. A (possibly local) 
minimizer of j will be denoted by P. whereas a global minimizer wi)) be denoted by p. 
Whenever the derivative of a function with respect to its arguments is to be computed, it 
wilJ be implicitly assumed to exist. Non-differentiable costs, such as those involving 
absolute values, will be considered in Section 4.3.5. 

At each iteration k, most algorithms compute pk+ I from pk to ensure that j(pk+ 1) is 
lower thanj(J>k). This raises the questions of where to start (choice of pO) and when to 
stop the iterative procedure. They will be addressed in Sections 4.3.6 and 4.3.7. 
Section 4.3.8 will deal with recursive techniques, by which data can be taken into 
account as they arrive. Section 4.3.9 wiJl be devoted to global optimization. 

Before presenting these methods. Jet us consider a common special case where the 
least-squares method can still be used to simplify the optimization problem 
considerably. 
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4.3.1 Quadratic cost and partially LP structure 

Consider a model structure, the output of which depends linearly on Ilt parameters 
forming a vector pi and nonlinearly on Ilnl parameters forming a vector pnl. The vector 
of all model outputs can be written as 

Assume that the quadratic cost 

where Q ?:: 0, is to be minimized. For any fixed value of pnl, the value of pI that 
minimizes j(., pnl) is given by the least-squares method as a function of pnl: 

RepJacing pi by pl(pnl) in the cost, one gets a cost that depends only on the nonlinear 
parameters (Lawton and Sy lvestre, 1971) 

This makes it possible to reduce the dimension of the search space from III + llnl to TInl. 
which simplifies the task considerably. We need now only provide an initial value for 
the nonlinear parameters. Moreover, exploring a reduced-dimension space is quicker 
and raises fewer numerical difficulties. 

This method should be preferred to alternating minimizations with respect to pi and 
pot, because it avoids the deadlocks encountered in that case. For practical advice on the 
minimization method to compute pnt, see (Barham and Drane, 1972; Golub and 
Pereyra, 1973). 

EXAMPLE 4.9 

Consider the model 
3 

Ym(t, p) = L (If exp(-Ai1), 
i=] 

where the parameters are the ai's and A;'s. The model output is linear in the ai's and 
nonlinear in the A/s. If the cost to be minimized is quadratic in output error, this 
method makes it possible to search for the optimal value of the parameters in a three­
dimensional space. 0 

4.3.2 One-dimensional optimization 

Minimizing a univariate cost forms an essential component of many multidimensional 
search methods. Let p be the scalar parameter with respect to which j is to be 



minimized. It may, for instance, be associated with some direction of parameter space, 
spanned by some vector d, to be explored from the estimate pk obtained at iteration k. It 
will thus be assumed that 

pCp) ::: pk + pd. 

REMARK 4.11 

For some of the multidimensional optimization methods to be presented in 
Section 4.3.3, it is more efficient to perform rather inaccurate one-dimensional 
searches, only intended to provide a significant decrease of the cost in as few iterations 
as possible. See Wolfe's method, to be presented in Section 4.3.3.9, which is 
incapable of locating the optimizer precisely and thus not considered as a one­
dimensional optimization method. 0 

4.3.2.1 Definition of a search interval 

The first task to be performed is to define some initial interval1i.0 ;::: [a, b] within which 
the search for p is to take place. For tIlls purpose, one may for instance evaluate j and its 
first derivative with respect to the scalar p at pO = O. (If this derivative is not available, it 
could be replaced by a finite difference.) Three cases may then arise, depending on the 
sign of this derivative. 

- When the derivative is negative, the cost can be reduced by increasing p from 
a::: pO. The cost is then evaluated at pI ::: pO + !J.p, where !J.p > O. Ifj(pl) ;?j(p0). 
then b = p 1, and j possesses at least one (possibly local) minimizer between a and b. 
Else, one should move further away from pO, e.g. by doubling !J.p, until the cost 
starts increasing. The last and last-but-two values of p for which the cost has been 
evaluated can then be taken as b and a respectively. The search interval can be 
further reduced if the sign of the derivative of j at the last-but-one value of p is 
known (this value of p can then be taken as Q or b). 

- When the derivative is positive, the cost can be decreased by reducing p from 
b = pO. The cost is then evaluated at pI = pO - !J.p, where !J.p > O. If j(pl) ~j(pO), 
then a = pI. Else, one should move further away from pO until the cost starts 
increasing. The last and last-but-two values of p for which the cost has been 
evaluated can then be taken as Q and b respectively. Again, the search interval can be 
further reduced if the sign of the derivative of j at the last but one value of p is 
known. 

- When the derivative is zero, the cost is stationary at pO, which may be a minimizer. 
The cost may then be evaluated at two neighbouring points to get more information 
on the nature of this stationary point. If it turns out not to correspond to a minimum, 
it suffices to move slightly away from pO to get into one of the two previous cases. 

REMARK 4.12 

This policy leads to moving in the opposite direction to that of the gradient of the cost 
with respect to p. The gradient algorithm will use the same idea in a multidimensional 
setting. 0 



Uellcral metiJod') 133 

Once a search interval has been defined, various policies can be used to reduce its 
size. They can be compared by the volume of computation required to locate the 
minimizer wilh a given precision, which should be kept as small as possible. 

4.3.2.2 Dichotomy 

This method evaluates the derivative of the cost (or an approximation of this derivative 
by a finite difference) in the middle fl of the interval [a, b]. If this derivative is positive, 
b is replaced by fl. Else, a is replaced by fl (Figure 4.9). Each iteration therefore 
divides the search interval by two. so after N evaluations of the derivative of the cost 
one has 

j 

dj 
Gp 

F' I . t b t 1\ initial uncertainty 
ma uncertam y a ou p = 2N 

j 

d' .l 
dp 

Figure 4.9. Dichotomous search 

Even when the initial search interval is very large, only a few iterations are needed to 
locate a minimizer with high accuracy. If the function is inverse unimodal over [a. b], 
i,e. if it possesses a single minimizer in [a, b]. this global minimizer is guaranteed to 
belong to the final interval. Unfortunately, j is seldom known to be inverse unimodal 
over [a, b], so the minimizer guaranteed to be enclosed in the final interval may only be 
locaL It may even correspond to a value of the cost larger than j(pk) (Figure 4.10). 

4.3.2.3 Fibonacci's and golden-section methods 

If the cost function is not differentiable. or if evaluating its derivative with respect to pis 
too costly or too inaccurate, dichotomy can no longer be used. The Fibonacci and 
golden-section methods (Kiefer, 1953, 1956) replace evaluating the derivative in the 
middle of the search intervallik = [ak, bkl by comparing the values of the cost at two 
points p1 and p~ in this interval, with pi > pt. Rk is thus divided into three parts. 
Assuming that j is inverse unimodal over, [a, b], one can lhen use the folJowing 
algorithm: 

This procedure is illustrated by Figure 4.11. 
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Figure 4.10. Failure or a dichotomous search due to inverse multimodnlity 

j j 

a PI 
b P 

Figure 4.11. Principle or the Fibonacci and golden-section methods 

The interval I[k+ 1 therefore still contains either It or p~. This suggests one additional 
evaluation of the cost per iteration, to be used together with the value at this remaining 
point. We shaH limit ourselves here to a classical description of these optimization 
methods, which relies on minimax optimality. The final length of the search interval is 
minimized in the worst case, asymptotically with the golden-section method and for a 
given finite number N of evaluations of the cost with the Fibonacci method. More recent 
approaches based on average optimality seem promising; see (Wynn and Zhigljavsky, 
1993) for the asymptotic case and (Pronzato and Zhigljavsky, 1993) when Nis finite. 

Assume first that N is finite. Let Lk be the length of the search interval JIk obtained 
after k evaluations of the cost in JIO:::: [aO, bO]. Since a single evaluation does not allow 
any part of the interval to be eliminated. LI = La :::: bO - aD, A strategy is defined by the 
choice of pk+ I as a function of JIk and the point pk of JIk where the cost has already been 
evaluated. Finding the optimal strategy can be viewed as a dynamic-programming 
problem, with a terminal cost given by SUPje J LN, where J is the class of all cost 
functions inverse unimodal over JIo, The direct problem is to find the sequence [pkJ. 
with k increasing from 1 to N, but the optimal solution is obtained backwards, with k 
decreasing from N to 1. 
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Let JIN-l == [aN-I, bN-1]. The optimal locations of the last two points can be taken as 

so that 

with e chosen as small as possible, limited by the imprecision with which the cost is 
evaluated. In what follows, it will be assumed that £ == O. The search interval can be 
normalized by transforming nk to [0. 1], so that pk becomes 

The optimal strategy for N == 2 is then defined by z I * == z2* == 112. Decreasing k. one 
shows that the optimal strategy satisfies 

i.e. L'/;-l == 2LN• LN-2 == 3L,/;. L'/;_3 == 5L,/;. LN-4 = BLN ... which is continued up 
to L 1. In the renormalized interval [0, I], the cost must then be evaluated at zk* or 
1 - z '*, with 

k* _ Lt - L k+ 2 _ Lk+ I k > 1 
Z - L* - L*' - , 

k k 
i.e. 

* 1 2* 'j 3 5 
zN* == zN-I == 2' zN- == 3' zN-3* == S' zN-4 * = '8 ... 

up to zl *. Note that this is a symmetrical algorithm, for in each interval rrk the two 
evaluations are performed symmetrically with respect to the centre (ak + bk)/2. The 
resulting method has Fibonacci's name because 

with lfk) the sequence of Fibonacci numbers. 

10 = 0, It = 1, Ik == ik-l + Ik-2. k ~ 2. 

For fixed N and liD, this method minimizes the length LN of the final interval for the 
worst possible cost function. 

To facilitate comparison with the other methods, it is useful to get an approximate 
expression for the ratio LoILN == IN+ 1- The recurrence equation A = A-I + Ik-2 can 
also be written in state-space form as "k+ 1 == AXh with 

Xk = [ 
fk ] 

fk+I' A=[~~J and XO == [~l 
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The eigenvalues of A are I + a and -a, with a:= (..J5 - 1)12 the golden number. 
When k gets large enough, the contribution of the stable mode can be neglected, so 

1.6 J 80N+ I 

..J5 

The Fibonacci method requires the number N of evaluations of the cost to be fixed 
in advance. This is not the case for the golden-section method, which corresponds to 
the asymptotic limit of the Fibonacci method when N tends to infinity. It can easily be 
checked that 

lim k I '* {' L'k 1 z- = 1m -*-=--=a. 
k~oo k~oo Lk- I 1 + a 

The successive points where the cost is evaluated are therefore located within a fraction 
a of the extremities of the interval, i.e. 

which is why the method is called the golden-section algorithm. After N evaluations of 
the cost, one gets 

4.3.2.4 Parabolic interpolation 

In the neighbourhood of a minimizer p, the cost can often be approximated by a 
parabola. Given the values taken by the cost at three points PI, P2 and P3 of the search 
interval [a, b]. one can compute the parabola P(P) that takes exactly the same values at 
these three points by the Lagrange interpolation formula: 

then the value of p that corresponds to the stationary point of lrus parabola: 

1\ 
ppj can then be used as an approximation to the minimizer of the cost (after checking 
that it does not correspond to a maximum of the parabola!) 

If the cost function is sufficiently uncooperative, this may lead to absurd results. 
When, on the other hand, a quadratic approximation is suitable, this method converges 
much more quickly than the previous ones. 
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4.3.2.5 Which method? 

All these methods rely on the hypothesis that the cost j(P) is inverse unimodal over 
[Cl, b]. If the evaluation of dj/dp is of the same order of complexity as that of the cost, 
dichotomy is much more efficiellt than the Fibonacci and golden-section methods. If, on 
the other hand, dj/dp is evaluated by finite difference via two evaluations of the cost, the 
Fibonacci and golden-section methods become more efficient than dichotomy. 

The Fibonacci method is always more efficient than the golden-section method, 
unless the total number of evaluations of the cost is changed during the search. 

As an illustration, Table 4.1 gives the factor by which the length of the initial search 
interval is divided after 10 evaluations of the cost (N = 10). 

Dichotomy, with Dichotomy, with Fibonacci Golden section 

evaluation ~~ - that of j evaluation ~ - 2 x Lhat of j 

89 :;; 76 

Table 4.1. Comparison of performance of onc-dimensional search methods 

Whatever the method selected, one should not ask for more accuracy than 
necessary, Lo avoid needless evaluations of the cost. 

Parabolic interpolation may accelerate search drastically, but is not sufficiently 
reliable to be employed alone. It should rather be used in conjunction with some type of 
interval elimination. This may be done with or without using the derivative of the cost 
with respect to p (Brent, 1973; Press et al., 1986), 

4.3.2.6 Combining one-dimensional optimizations 

To minimize a cost j with respect to a vector p comprising lip scalar parameters, one 
may consider a sequence of one-dimensional minimizations with respeclto each of the 
entries of p. The first idea that comes to mind is to explore all parameters cyclically: 

A 1\ 

Pi == arg min j(p;, {Pk I k * i}), i = 1, ... , lip_ 
Pi 

However, if the cost has a valley not oriented along a parameter axis, this technique 
will take tinier and tinier steps, resulting in a very slow exploration of the valley 
(Figure 4.12). 

In such a case, the direction of the onc-dimensional search should be modified to 
allow explorations along the valley. This is the purpose of Powell's method (1981) 
which, in its simplest version, proceeds as follows: 

Step 1: Starting from pk, find pk+ by performing lip == dim pone-dimensional 
minimizations in linearly independent directions di (i == I, "_ . lip). 

Step 2: Find pk+l by pcrfonning an (l1p + l)th minimization in the direction 
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Step 3: Let a be the direction d; associated with the largest decrease of the cost in 
Step 1. Rep] ace a by dllp+ I. Increment k by one and go to Step 1. 

For the first iteration, the dj's correspond to the axes of parameter space. 

Valley 

Figure 4.12. Limitations of cyclical one-dimensional searches 

The minimization in Step 2 is carried out in the average direction of the steps in 
Step 1. It therefore allows steps that are better oriented with respect to the valley 
(Figure 4.13). When the cost is quadratic in p, the method converges in one iteration, 
i.e. 1tp + lone-dimensional minimizations. 

Eliminating, at Step 3. the direction that yielded the best results may seem 
surprising at first sight. The purpose of this policy is to escape the tendency of the di ' s 
to become linearly dependent as the iterations proceed. As a matter of fact, the best 
direction is often very close to that introduced at Step 2. Another solution is to 
reinitialize the directions di periodically. 

"0 ,." 
p " 

" " " 

Figure 4.13. Simplesl version of Powell's melhod 

PI 
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A more sophisticated implementation, generating mUlually conjugate search 
directions (see Section 4.3.3.8 for a definition) when applied to a quadratic function, is 
as follows (Minoux, 1983; Press et al., 1986): 

Step 1: Starting from PO == pk, compute pk+ by performing ,tp = dim P one­
dimensional minimizations in linearly independent directions d; (i == 1, ... , IIp): 

Step 2: Let 

If 

Pi == Pi-I + Aidj, with Ai == arg min U(Pi-1 + Adi)], 
A 

"k+ P =Pllp' 

L1 == max U(Pi-J) - j(Pi)]. 
i=I. ...• II (1 

. > . (j 2' ')(j . A)" > 1 A(j . )"} Jk++ -Jk or k - Jk+ + Jk++ k - Jk+ -.u - - '2.u k - Jk++ -, 

then pk+ I = pk+, increment k by one and go to Step 1. Else, find pk+ I by an 
(Ilp + 1 )th minimization in the direction 

Step 3: Let 
i'==arg max U(Pi-l)-j(Pi)]. 

i=1. .... tip 

Remove the direction indexed by i' from the list of search directions, and add d"p+ I 
at the end of the list. (The order in which the directions are considered is important.) 
Increment k by one and go to Step 1. 

Again, the initial directions di can be chosen parallel to the axes of parameter space. 
When j is continuously differentiable, Powell's method converges towards a local 

optimizer. The asymptotic behaviour of this version is similar to that of the conjugate­
gradient algorithms to be presented in Section 4.3.3.8. 

In general, the one-dimensional search technique employed in Powell's method does 
not use the derivative of the cost with respect to the parameters (Brent, 1973; Press et 
al., 1986), which does not, however, necessarily mean that it is appropriate for a non­
differentiable cost; see Section 4.3.5. When this derivative is available, it is often 
preferable to analyse the local properties of the cost so as to decide in which direction 
the one-dimensional search should be performed. 

To illustrate the behaviour of various algorithms on the same problems. we shall 
consider two cost functions. Example 4.10 employs the well known Rosenbrock 
function. The cost function of Example 4.11 is associated with a least-squares problem 
to be presented in more detail in Section 4.3.9.1 (Example 4.21). In this problem, the 
parameters are only locally identifiable, and there are two global minimizers (giving the 
same value of the cost). 
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EXAMPLE 4.10 

Consider the Rosenbrock cost function 

with P = (PI, P2)T. Although it looks trivial, it is actually a rather difficult test case 
because of its non-convexity, evidenced bX the shape of the cost contours plotted in 
Figure 4.14. The value of the minimizer p = (1, l)T is indicated by a cross. All 
algorithms will be started from pO = (-1, 2.5)T, indicated on Figure 4.14 by a circle, 
which corresponds to j(pO) = 229. 

Figure 4.14 shows the trajectory followed by the second version of Powell's 
algorithm, with one-dimensional search by Brent's (derivative-free) algorithm (Press el 
al., 1986). Optimization is first carried out along the P I axis, then proceeds along the 
valley. After 1168 evaluations of the cost and none of its gradient, the value of the cost 
is equal to 1.78 x 10-29. 0 

Figure 4.14. Behaviour of Powell's method on Rosenbrock's test function; 

the initial value of p is indicated by a circle, and the minimizer by a cross 

EXAMPLE 4.11 

Assume now that 

is to he minimized. All algorithms will be started from pO = (-4, 4.9)T, which 
corresponds to j(pO) ::;;; 236.12. Figure 4.15 presents the trajectory followed by the 
same version of Powell's method as in Example 4.10. The first search direction is 
again along the PI axis, so the cost is decreased by moving away from the minimizers. 
The P2 axis turns out to be associated with the smallest decrease of the cost, and is 
therefore frequently used. The minimum at p = (1, 2)T is reached with four significant 
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digits in 159 evaluations of the cost and none of its gradient. For other values of pO, the 
method would converge to the other minimizer p = (4, -1) T. 0 

·2 ·1 

Figure 4.15, Behaviour of Powell's method on Example 4.11; 

the initinl value of p is indicated by a circle, and the two global minimizers by crosses 

REMARK 4.13 

The simplex method (Nelder and Mead, 1965), not to be confused with its well known 
namesake in linear programming (Dantzig, 1963), also makes it possible to minimize a 
function of several variables without using derivatives. It consists of iterative 
transformations of a simplex in parameter space, i.e. of a poly lope with dim p + 1 
vertices. The transformations are designed to move the vertices towards a minimizer 
while maintaining a nonzero volume for the simplex. The basic step replaces the vertex 
associated with the worst value of the cost by its reflection with respect to the mean of 
all other vertices. If the cost at the new vertex turns out to be better than at any other, 
further extrapolation in the same direction is attempted. Otherwise, various contractions 
of the simplex are perfonned. depending on simple decision rules. 

Since the simplex method does not take the 10caJ properties of the cost into account, 
it can be used to optimize a noisy cost, for example when the operating conditions of a 
system have to be tuned from direct measurements on it, without the use of a 
mathematical model. See Section 4.4.1 for a short presentation of methods available in 
this context. 

As regards parameter estimation, the simplex method is no match for the methods 
presented here that use local properties of the cost. It forms, however, an interesting 
alternati ve to PoweU' 5 method. On Example 4.10, it reaches j(p) = 3.3 1 x 10- 10 in 
187 evaluations of the cost and none of its gradient. On Example 4.11, it finds the 
minimum at p = (1, 2)T with four significant digits in 96 evaluations of the cost and 
none of its gradient. 
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4.3.3 Limited expansions of the cost 

If the cost is sufficiently differentiable with respect to p, a limited expansion about the 
last estimate pk can be used to compute a search direction in parameter space. A one­
dimensional search jn this direCtion will then be perfolTI1ed. The (in)efficiency of an 
algorithm will be measured by the volume of computation needed to get a given 
reduction in the value of the cost. The computational effort should be balanced between 
the choice of the search direction and the one-dimensional scrarch; see, in particular, 
Wolfe's method, described In Section 4.3.3.9. For theoretical analysis of convergence 
speeds, see, e.g., (Polak, 1971; Minoux, 1983; Polyak, 1987). Let us start with the 
simplest method. 

4.3.3. 1 Gradient method 

The gradient method, which can be traced back to Fermat at the beginning of the 17th 
century. is seldom to be recommended. It seems nevertheless worth presenting, because 
the problems raised by its implementation are shared by many useful methods, and 
because many more powerful algorithms use it as a building block. It relies on a first­
order expansion of the cost about pt: 

where 

"k - EL h g(p ) - dplp=pk 

is the gradient at f>k of the cost, a column vector. 
When the displacement Lip is small enough, the resulting variation Lij of the cost 

satisfies 

It is therefore approximately equal to the scalar product of the gradient of the cost by 
Lip. Since j is to be minimized. Lij should be minimized. For any given lIi1pll. this leads 
to choosing i1p colinear with the gradient but in the opposite direction, i.e. 

i1p::.:;- Ag(pk), with A > O. 

The gradient algorithm is thus given by 

Whenever IIg(pk+l)1I is considered close enough to zero (Section 4.3.7). the algorithm 
is stopped. 

Think of a climber left alone blindfold on top of a mountain. To return to the valley. 
he must minimize his altitude by changing his position. The gradient policy amounts to 
sensing the shape of the ground about his feet to find the direction of steepest rise. then 
starting in the opposite direction. Needless to say, such a short-sighted policy may let 
the climber down badly! 
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Choice of j·tep length. In this simple fonn, the algorithm indicates the direction in which 
the step should be taken, but not the distance to be covered, since the choice of A has 
yet to be made. Three policies can be considered. The first is to fix A at a constant 
value. The following theorem (Polyak, 1987) then gives an indication how A should be 
chosen. 

THEOREM 

If the cost j is bounded below U(p) '2:.jopt > -00 for any p) and if its gradient with 
respect to p is Lipschitz, with LipschilZ constant L: 

IIg(x) - g(y)1I2 ::; Lllx - y1l2, 

then if 0 < A < 2/L , the gradient algorithm with constant A will converge to a stationary 
point (g(pOO) = 0) and the cost will decrease monotonically. If, moreover, j satisfies 

L I < ('j2i(p) < L I . I L 0 
m lip - apapT - M lip' Wltl m > , 

for any p, then IIpk - pooll2::; IIpo - pDOII2 qk, with q = maxl11 - ALml, 11 - ALMI}. 
The rate of convergence is therefore that of a geometric progression, with common 
ratio q. The optimal common ratio q* = (LM - Lm)/(LM + Lm) is obtained for 
A* = 2/(Lm + LM)' 0 

Unfortunately, even when the gradient of the cost is Lipschitz, the constants Lm and 
LM are generally unknown. If A is too small, the displacements L\p will also be too 
small, which will slow down convergence. Conversely, if A gets too large, the first­
order approximation will no longer be valid, which may cause divergence of the 
algorithm. Most often, the value of A to ensure a decent convergence rate depends on 
the location of pk. The policy of assigning a constant value to Il is therefore 
unacceptable. 

A second possible policy is to take A at iteration k as the kth element of a series 
satisfying (Polyak, 1966) 

00 

Ak -7 0 as k -7 00 and L Ak = 00. 

k=O 

This method will be considered again in Section 4.3.5.1 for the optimization of 
functions that are not differentiable everywhere. It often exhibits extremely slow 
convergence (Minoux, 1983). 

A third possible policy is to detennine A at each iteration by one-dimensional search, 
usually via a quadratic approximation. In steepest-descent methods, A is chosen 
optimally at each step. Let 

and approximate ju(A) by a second-order polynomial 



q(A) = aA2 + bll + c. 

Taking advantage of the fact that the gradient of the cost is available at pk, one may 
compute coefficients a, band c very simply with a single additional evaluation of the 
cost. It is enough to require that the polynomial has 

the same value as the cost at the current point pk: 

- the same derivative at (,k in the search direction: 

- the same value at a point AI to be chosen. 

When the minimum value of the cost is close to zero, one may for instance take 
Al = - 2c/b, which amounts to choosing twice the value of A that would make ju(il) 
zero if the first -order approximation ju( A) = bA + C were exact. One then gets 

Once the approximating polynomial has thus been determined, the step size 1 is chosen 
by minimizing q(A). The values of the parameters at the next iteration are then given by 

A fourth option, efficient and very simple lo implement, is to adapt A depending on 
the present performance. The algorithm is then written as 

and Ak is modified at each iteration depending on how the cost evolves. Three cases 
may arise: 

- If j(pk+ 1) < j(pk), everything is going fine, and one altempts to accelerate 
convergence by increasing A (e.g .• Ak+1 = 1.5Ak). 
If j(pk+ l) == jdik), this most often means that ~p has got so small that the variation 
of the cost is no longer visible given the accuracy with which the computation is 
performed, Here too, A should be increased. 

- Finally, if j(pk+ I) > .i(pk), the algorithm has gone too far, and the first-order 
approximation is no longer valid. The step size A should be reduced (e.g., 
Ak+ 1 = o. 5 Ilk), and pk+ I should be replaced by pk. 
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Properties of the gradient algorithm 

PG J: It is simple to implement and has a large convergence domain. 
PG2: Usually, the closer pk is to an optimizer, the slower the convergence, quickly 

becoming unacceptable (see Figure 4.19)! 
PG3: PG 1 and PG2 make it well suited to the initial phase of search, when iV is far 

from an optimizer. 
PG4: At iteration k, the search direction is orthogonal to the hyperplane tangent at r;: to 

the cost contour at levelj(pk) (locus of all p's with the same costj«(lk». 
PG5: The path followed by the algorithm is not invariant under a reparametrization, 

corresponding for instance ·to a change in the units, as illustrated by the next 
example. 

EXAMPLE 4.12 

Assume that the cost to be minimized is 

The cost contours are therefore circles centred on the origin. The search direction, given 
by 

is locally orthogonal to the cost contour passing through the current point. It therefore 
goes through the origin, and a one-dimensional search leads directly to the minimizer 
(Figure 4.l6a). Suppose now that the parametrization is modified, by a mere change of 
unit, into 

The cost then becomes 
.~ 1 2 lOO 2 J~q) = 2 (l/I + Q2)· 

The cost contours are now ellipses centred on the origin. The search direction, given by 

remains perpendicular to the cost contour, but no longer goes through the origin. 
Convergence to q will be by the valley, and thus not by the shortest roule. The 
trajectory followed will oscillate (Figure 4.16b). Even with an efficient one­
dimensional search, infinitely many iterations will be needed to reach q. 0 

PG6: Progression towards a minimizer is thus best when the cost contours are made 
spherical, i.e. the parameters have comparable influences. A suitable choice of scale 
for the parameters is therefore crucial. Unfortunately. the parameters often have a 
very unbalanced influence on the cost. For instance, if 
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Ym(t, p) = I (Ii exp(-Ait ), 
i=l 

the influence of the Ai'S on the cost will be much more important than that of the a/so 
This is an additional argument in favour of the method described in Seclion 4.3.1 
(Example 4.9) if a cost quadratic in the output error is to be minimized. 

( a) (h) 

Figure 4.16. Influence of parametrizalion on the gradient algorithm 

PG 7: Provided that the one-dimensional search accurately locates minimizers, 
successive search directions are orthogonal. 

PGS: The angle ¢ between the successive search directions is indicative of how the 
gradient algorithm is behaving, as for many algorithms described in the remainder of 
this chapter. Good one-dimensional optimization should make cos ¢ close to zero. If 
cos ¢ > 0, the angle between consecutive search directions is acute; no oscillation is 
taking place, and the gradient method leads to consistent decisions. Conversely, if 
cos ¢ < 0 the successive search directions become antagonistic. One can then 
drastically improve the algorithm by taking the bisector of tP as the one-dimensional 
search direction, as illustrated by Figure 4.17 (Vlgnes, 1969; Vignes, Alt and 
Pic hat, 1980). Another solution to avoid oscillating around a valley is to perform a 
one-dimensional search in the direction pk - {ik-llp every lip iterations (Forsythe, 
]968; Luenberger, 1973), which is similar to the basic idea of Powell's method. 

PG9: If the cost is inverse multimodal. i.c. if it has several minimizers, the gradient 
method will converge to a local or global minimizer from almost any initial point pO, 
(If pO is picked at random in lP, the probability of converging to a maximizer or a 
saddle point is zero, because the initial value must be right on it.) The minimizer 
towards which convergence occurs depends on the value of pO, The set of all values 
of pO from which the algorithm converges to a given minimizer is called the basin oj 
altraction of this minimizer. 

PGJO: If some parameters of the model are unidentifiable, the algorithm will not detect 
it. It will still converge to an element (depending on pO) of the set of all local and 
global minimizers. 
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Valley 

Figure 4.17. Improved search direction when the gradient is oscillating 

PG11: Let 1ftbe the angle between the actual search direction and that suggested by the 
gradient. Provided that cos VI> 0, a one-dimensional search can lead to a decrease in 
the value of the cost, since the gradient is always locally orthogonaJ to the cost 
contour (Figure 4.18). 

Cost contour 

Figure 4.18. Set or nil scnrch dircclions that can }ocally lead to a decrease in the cost 

PG 12: The influence of the past is summarized in the state (A .. k> pt) of the algorithm. At 
each iteration, previous numerical errors only influence the initial point of the rest of 
the search. There is therefore no accumulation of errors. 

PG13: PG 11 and PG 12 imply that the gradient may be computed rather approximately. 
As long as the error in the search direction does not exceed lf/2. it remains possible 
to decrease the cost by one-dimensional search. 

PGJ4: If the cost were to be maximized, the sign of Lip would have to be changed. 
PG15: Assume that j is twice continuously differentiable, and that the matrix of its 

second derivatives with respect to p is positive definite at P. with smallest eigenvalue 
Lm and largest eigenvalue LM. The asymptotic convergence (as k -1 (0) of the 
gradient algorithm with one-dimensional optimization (steepest descent algorithm) is 
then linear, and satisfies (Minollx, 1983), 



· .j(pk+ 1) - i(ji) < (LM - Lm )2 
11m 1\ 1\ - • 

k-7oo j(pk) j(p) LM + Lm 

The larger LM is compared with Lm, the worse the conditioning is and the slower 
this convergence becomes. Given a starting point pO, the exact asymptotic behaviour 
of the algorithm (in particular its exact asymptotic rate of convergence) is extremely 
difficult to predict, even for a quadratic function (Pronzato, Wynn and Zhigljavsky, 
1995). 

EXAMPLE 4.10 (continued) 

Consider again Rosenbrock's Lest function. Figure 4.19 illustrates the behaviour of the 
steepest-descent algorithm, for which the step length Il is optimized at each step by 
Brent's method with derivatives (Press et al., 1986). After a few fast steps, progress 
along the valley becomes extremely slow; 2095 evaluations of the cost and 1598 
evaluations of its gradient painfully lead to a value of the cost equal to 4.44. 0 

Figure 4.19. Behaviour of the steepest-descent algorithm on Rosenbrock's function: 

the initial value of p is indicated hy a circle, and the minimizer by II cross 

EXAMPLE 4.11 (continued) 

Consider again the cost function 

The trajectory of the same version of the steepest-descent algorithm as in Example 4.10 
is illustrated by Figure 4.20. The successive search directions are approximately 
orthogonal, which indicates that the one~dimensional minimizations were effective. 
Each line search is stopped tangentially to a cost contour. After 209 evaluations of the 
cost, and 156 evaluations of its gradient, the minimum at p :; (1, 2)T is located with 
an accuracy of four digits. 0 
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Figure 4.20. Behaviour of the steepest· descent algorithm on Example 4.11; 

the initial value ofp is indicated by H circle, and the two global minimizers by crosses 

4.3.3.2 Computation of the gradient 

The gradient algorithm requires a very large number of evaluations of g, which 
represents a major part of the computation. This is true of aB algorithms based on a 
limited expansion of the cost around the current point pk, as well as some global 
optimization algorithms, such as the deterministic approach described in 
Section 4.3.9.3. It may therefore be crucial to make computation of the gradient as fast 
as possible. The goal of this section is to present some of the techniques that can be 
used. 

Finite differences. Consider the following approximation of the gradient 

~;(~) = _1- U(p + Api) - )(p)]. i = I, ... , "p, 
apt APi 

where Api is a vector all entries of which arc zero except the llh, equal to Api. This 
approximation requires IIp + 1 computations of the cost and therefore flp + 1 trial steps. 

The choice of APi is tricky. If it is too small, the difference of two very similar 
values of j is evaluated, which may be numerically disastrous since the result may have 
no significant digit. Conversely, if Api is too large, the quantity evaluated has little 
resemblance to the derivative, which is less serious since we have seen that a very 
approximate gradient is often good enough. Section 4.3.7 will present a technique that 
can be used to estimate the accuracy with which a gradient is evaluated. 

Whereas the finite-difference approach always leads to an approximate result, the 
following techniques make 110 approximation, in principle (although subject to rounding 
error). 

Sensitivity jUllctions. The vector of (first-order) sensitivity fllllctions of a scalar error 
e(t, p) with respect to the parameters is defined as 
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(1 ) - de(tr p) _ [de(t, p) de(t, p)JT 
Sc ,p - dP - d'P' ''',:l . I UPllp 

It is usually possible to express the gradient of the cost as a functional of such 
sensitivity functions. Thus, for instance, 

III Ilt 

j(P);;;;} L Wi[e(ti, p)J2::=:} d; ;;;; L WjSc(tj, p)e(tj, p). 
-. 1 dp . 1 

1= I;;;; 

When the error is a vector, its sensitivity functions also enter into the expression for the 
gradient of the cost Example 3.4. for instance, suggested using the cost 

where 
j(p) In det M(p), 

"t 

M(p)::: l L eUi, p)eT(tj, p). 
lit ;;;;; 1 

The kth entry of g(p) is then given (Goodwin and Payne, 1977) by 

One possible approach for evaluating the gradient of the cost is therefore to compute the 
sensitivity functions of the error with respect to each of the parameters. When e(t, p) is 
an output error, 

e(t, p) ::: y(t) - Ym{t, p), 

provided that y(t) does not depend on p, the error sensitivity is related to that of the 
model o~tput by 

For an LI model described by an 11th-order differential equation with known or 
negligible initial conditions, the sensitivity functions of the model output with respect to 
the parameters are easy to obtain together with the model output by simulating a 
differential equation of order 2n. This will be demonstrated on the following second­
order example. Extension to order Il and transposition to discrete time are trivial. 

EXAMPLE 4.13 

Consider the LI model described by 

d 2Ym dYm du 
dt2 + PI dt + P2Ym =P3 dt + P4 U , YmCO)::: 0, 

dYm 
Ttlr=o;;;; 0. 
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Let Si be the sensitivity of the model output with respect to Pi, and assume that the input 
II does not depend on the model parameters. Differentiating the previous differential 
equation and initial conditions with respect to Pl. P2, P3 and P4 in turn and changing the 
order of differentiation gives 

d2S1 d.\,] dVm 
dt2 + P I Tt + P2S 1 ;; - d/' 
d2s2 ds') 
dt2 + PI d! + P2S 2 ;; -Ym, 

d2s3 dS3 dll 
dt2 + PI Tt + P2S 3;; rlt' 

d2S4 dS4 
d/2 + PI Tt + P2s4 ;; 11, 

.q(O) ;; 0, 

.\'3(0);; 0, 

S4(0) = 0, 

dSl 
Ttlt:.::o 0, 

dS2 
TtI/:'::o=O, 

dS3 
Ttll:'::O 0, 

dS4 
dTlt=o O. 

The computation of Ym and the four associated sensitivity functions therefore seems to 
require use of a 10th~order model, since each equation is of second order. Actually. all 
these equations have the same homogeneous part, and by using linearity with respect to 
inputs one can considerably simplify the computation and arrive at the scheme of 
Figure 4.21, where 

11 

Figure 4.21. Computation of Ihe sensilivity functions of an LT model 

Subroutines for simulating continuous-time differential equations usually require 
that they are provided in form, as 

d dt x f(x, p, u, I), x(O);; XO(p), 

Ye ;; h(x, p, 11, t). 

Here, the vector Ye of the outputs to be computed consists of the output proper Ym and 
its sensitivity functions, so Ye;; (Ym, SJ, S2, S3, S4)T. Since the model is LI and has 
zero initial conditions, the state and observation equations can be wrilten as 
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d 
dt X = A(p)x + R(p)u, x(O) = 0, 

Yc = C(p)x. 

A, Rand C may take various forms, since the stale-space representation is not unique. 
SeJecting the outputs of the four integrators as state variables, we can write 

A(p) = [-~1 -~2 ~ ~], R(p) = [~] and C(p) = 
-P3 -P4 -PI -P2 0 

o 0 1 0 0 

P3 P4 0 0 

000 

o 0 0 

o 0 0 

000 

o 

For singJe-input-single-output time-invariant LI models, it is therefore possible to 
simplify the computation of sensitivity functions drastically. These results can be 
extended to multivariable models (Wilkie and Perkins, 1969; Neuman and Soad, 1971) 
and to time~varying LI models (Neuman and Sood. 1972). 

REMARK4.14 

If the effect of unknown initial conditions could not be neglected, less simplification 
would be possible. 0 

EXAMPLE 4. t 4 

Consider now an ARARMAX model, in the condensed notation introduced in 
Section 2.4, 

A{q. p*)y(t) = B(q, p*)u(1) + ~i;: ::~ E(t), 

which contains ARX. ARMAX and ARARX as special cases. The prediction error can 
be written as 

CpU. p) = y(t) - )(tlt-l, p) = ~ig: ~j [A(q, p)y{t) - B(q, p)ll(t)]. 

It satisfies 

ep(t, p*) = E(t), 

and is therefore the error that will appear in the cost obtained by the (conditional) 
maximum-likelihood method. To compute the gradient of this cost with respect to p, 
one can use the sensitivity of this error with respect to each of the parameters Qi, hi, Ci 

and eli. Assume that the system output y and input Ii do not depend on the model 
parameters p and that the input-output delay Ilr is one. Then 



iL ,( ) _ D(q, p) ( ') ab, ep 1, p - - C(q. p) li 1-1 , 

~d , epU, p) == _ C( 1 ) cp(t-i, p), U0 q,p 

a~j ep(/; p) = C(~, p) [A{q, p)y(t-i) - B(q, p)u(t-i)]. 

I,,),,) 

The sensitivity of the prediction error with respect to p will be computed by 
implementing the associated recurrence equations. As in the continuous-time case, these 
equations have a common autoregressive part. Linearity can therefore again be put to 
work to simplify computation. If the initial conditions are unknown but the system is 
stable enough, their effect can be neglected. 0 

REMARK 4.15 

The approximate regressor introduced in some methods described in Section 4.2 can be 
viewed (Ljung and Soderstrom, 1983) as an approximation of 

o 

Sensitivity functions can also be computed for non~LI models; see the interesting 
review by Rabitz, Kramer and Dacol (1983). As previously, one should differentiate the 
equations defining the model and its initial conditions with respect to each of the Hp 
parameters in turn. One thus gets IIp sets of differential or difference equations with 
their initial conditions. 

Consider. for instance, a state-space equation 

d 
dix = fCx, p), x(D) == xo(p), 

where possible dependency on some input u and time t is omitted to simplify notation, 
Assume that the model outputs are linear in x: 

Ym(t) = C(p)x(t). 

The sensitivity of Ym with respect to parameter Pi is then given by 

It can therefore be computed from the sensitivity of x. Differentiating the equations for 
x with respect to each parameter in turn, we get: 
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where 

d df(x, P.L df(x, p) s '(0) = d.2'O(P) di S;= dxT Si+ dPi-' 1 dPi' i=I, ... ,l1 p , 

dx 
Si = dp( 

The equations satisfied by the state sensitivities Si have the following very important 
properties: 

- they are indepelldent, so each can be computed in turn, once the state trajectory has 
been obtained, 

- they are linear (albeit time-varying since they depend on x as given by the state 
equations ), 

- only the driving term changes with the parameter considered. 

This can be exploited to simulate x and all state sensitivities Si more quickly than with 
the finite-difference approach (Valko and Vajda, 1984; Bilardello el 01., 1993), even if 
computation of the output and np sensitivity functions requires IIp + I simulations of 
non-LI equations, i.e. the same number as with the finite-difference approach. 

REMARK 4.16 

The same type of procedure applies to algebraic-differential systems as considered in 
Remark 2.2 (BilardelJo et 01.,1993; Carrillo Le Roux, 1995), Model outputs nonlinear 
in x such as 

YmU) = h[x(t), p] 

can also be considered in this framework, by appending to x a variable xux+ I that 
satisfies the algebraic equation 

X l1x+I(t) -Ir[x(t), p] = 0, 
so 

Ym(t, p) = Xl1X+ I (t) o 

Adjoill l"state. For models described by state-space equations, which may be LI or not, 
adjoint-state techniques borrowed from optimal-control theory make it possible to 
simplify computation considerably. 

Consider a (possibly non-LI) state-space model described by 

x(t+l) = f[x(t), p], x(o) = xo(p), 

Ym(t, p) =:; h[x(t, p). p]. 

This model may of course also depend on some input u and time t, but this dependency 
is again omitted to simplify notation. Assume that the cost to be optimized is additive, 
i.e. can be written as 

III 

j(p) = L, rt[xU), p], 
/=0 



which is true for most cost functions considered in this book. For a cost quadratic in 
output error, for instance, 

1'r[x(t). p] = [y(t) YmCt, p)]TQ(t)[y(t) - Ym(t, p)] 

= (y(t) - h[x(t), p]} TQ(t)(y(t) - h[x(t), p]}. 

The additive cost can be transformed into a terminal cost by introducing an additional 
state variable 

so that 

Define the extended state as 

Tt satisfies 

and 

[

XO(I) + rr[x(t), PJ] 
xe(t+l) = f[X(~. p] = I'c[xc(t)]. 

The cost can now be written as 

j(p) = [1 0 ... 0] xc(llt+1), 
which impJies that 

dj dxI(ll[+l) dj 
dP = dP dXc(llt+ 1)' 

with 

Moreover, since xIu+ 1) = fI[xc(t)], the chain rule for the differentiation of composite 
functions implies that 



J)O 

Globally, one thus gets 

d f I [Xc(llt-I)] afI [Xe(1l1)] oj 
aXe(7't-1) dXc(llt) 

The computation associated with this chain-rule differentiation can obviously be carried 
out from left to right (direct mode) or from right to left (reverse mode). The reverse 
mode drastically reduces the number of operations, especially if dim p is large. because 
a (dim xc) vector, the so-called adjoi11t state to the extended state, is propagated instead 
of a (dim p x dim xc) matrix. As will become apparent later, this will however be at 
the cost of increased memory requirements. Denote the adjoint state by dxc' It satisfies 
the temlinal condition 

Propagating the computation from right to left translates into the backward-bl·time 
recurrence equation 

which allows dxe(O) to be computed. Note that this requires storage of the trajectories of 
all extended state variables which deI/axe depends upon, i.e. those that appear 
nonlinearly in fe. The gradient of the cost is then given by 

where 

REMARKS 4.17 

- Forward in time, the evolution equation for the adjoint state becomes 



DJ 

while linearization of the state equation around the nominal trajectory yields 

Ox (1+1) = drI[xc(t)J Ox (1). 
C dxc(t) C 

The scalar product of the linearized and adjoint extended states therefore remains 
constant along the trajectory (duality property) 

This duality can be used to check the computation. 
- The method can be implemented without explicitly defining an extended staLe. As a 

matter of fact 

OT OT 

drI[xe(t)] 
drr[x(t), p] drT[x(t), ~ 1 

0 
dX(t) dX(t) 

dxc(l) 

drt[x(t), p] drT[X(t), p J 
IlIp ap dp 

The first component of dxc therefore satisfies 

The components associated with x are given by 

d (1-1) = d(f[X(t), p] d (r) + drt[x(t), p J . d 0 
x dX(t) x dX(l) , with x(ll t+l) =:: , 

and those corresponding to p by 

d ( -1) - d () afT[x(t), p] d () drr[x(t), p] . h d ( 1) 0 
p t - P t + dp x t + Clp ,W I t p 11 t + =:: • 

The gradient of the cost with respect to the parameters is finally obtained as 

o 

In reverse mode, the computation of the gradient proceeds in two phases. The 
extended state equation is first simulated jonvard ill time for the value p at which the 
gradient is to be evaluated, which yields the sequence of extended states. The adjoint 
extended stale equation is then simulated bCIl:h:1wlrd in time, which provides the value of 



15H 

dx:e(O) to be used to evaluate the gradient. The gradient is thus computed exactly in two 
simulations, up to rounding errors due to finite-precision arithmetic, whatever the 
number of parameters and even when the state equations are non-LI. 

This idea can be transposed to continuous-time models. Simulation of these models 
usually involves some approximations, and other approximations will take place when 
the equations describing the evolution of the adjoint state are simulated. Now the 
computation of gradients by adjoint-state techniques turns out to be rather sensitive to 
numerical errors, and seemingly small approximations may ruin the final result. It is 
therefore advisable to make sure, by using a discretized model, that the equations used 
in the forward and backward directions are subjected to the same approximations. The 
method presented next pushes this logic even further. 

Adjoint code. This Lype of technique applies to lilly cost j that is computed by 11 

program, provided of course that j as comptlted is differentiable with respect to the 
parameters p at the point considered. If, for example, the cost j(p) = p2 was 
implemenled as 

if p:f:. 1, thenj(p) = p2, elsej(p) == 1, 

this implementation would not be differentiable at p = 1, although the mathematical cost 
function is. 

The sequence of instructions of the program computing the cost forms what will be 
called the direct code, which evaluates j(p) from independent variables (p, ys, ... ), 
possibly with the use of some intermediate variables, the values of which depend on 
those of the independent variables. 

The adjoint-code approach is especially interesting when the dimension of p is large, 
a situation where the use of finite differences or sensitivity functions leads to heavy 
computation. The basic idea (Gilbert, Le Vey and Masse, 1991; Griewank and Corliss, 
1991) is very close to that of the adjoint-state method, and adjoint-code techniques also 
alternate forward and backward computation. The method to be presented is systematic 
but usually does not lead Lo the most concise adjoint code. 

Let v be a vector containing all the variables in the direct code. Any assignment 
statement of the direct code modifies one component of v, which can be written as 

where )i(k) is the index of the component of v that is modified by the kth assignment 
statement executed, and 1tk is the set of the indices of the components of v which tPk 
depends on. The basic idea (Speelpenning, 1980) is to view this instruction as a 
transformation ~k of all variables v of the direct code that leaves all components of v 
unchanged but VJ1(k): 

[~k(V)]i = Vi, 'V i :f:. p(k), 

[fbk(V)]J1(k) = tPk({Vj liE lid). 

To distinguish its successive values, v will be indexed. The initial state of v will be 
denoted by v(O), and its final value by v(j). The direct code can then be viewed as 
specifying the evolution of the state of a discrete-time dynamical system, according to 

v(k) = ~k[v(k-1)]. k = l, ... ,f. 



Note that the statement associated with the index k depends on the order in which the 
statements are executed. Any branching instruction in the direct code therefore requires 
specific treatment, to be considered later. 

In v, the Il independent variables will by convention be stored first, starting with the 
components of p, The dependent variables will then follow, the last component of v 
taking the value of the cost j(p) at the end of execution of the direct code. The first 11 

components of the initial state v(O) are therefore equal to the values of the independent 
variables for which the cost should be evaluated. All other components of v(O) may be 
taken as zero, because the values to be given to the dependent variables result from the 
execution of the direct code. Once execution has been completed, the value of the cost is 
the last component of v, i.e. 

j(p) = [0 ... 0 1] v(j). 

The simulation of a discrete~time state equation is thus used to compute a terminal cost, 
so the adjoint~state method applies. Using the chain rule for differentiation, one can 
write the gradient of the cost with respect to p as 

Again, direct and reverse modes can be considered, and reverse mode requires less 
computation, especially if dim p is large. The adjoint state d associated with v will 
therefore be initialized with the terminal condition 

e)' 
d(j) = ~ = [0 ... 0 l]T, 

and computed backward according to the formula 

T 
acI>k 

d(k-l)=av(k_l)d(k), k =J . ...• I, 

where acI>I/av(k-l) is an identity matrix, the /1(k)th column of which has been replaced 
by i:)(/Jkli:)v(k-l). Given this specific structure, this recurrence equation translates into 

diCk-I) di(k) + i:)v~t~l) d J1 (k)(k) if i:;t /1(k), 

acfJk 
dj.J(k)(k-l) = dVj.J(k)(k-l) dJl(k)(k). 

It makes it possible to compute the initial value d(O) of the adjoint state. Since 

El= i:)vT(O) d(O) wl'th avT(o) - [I 0] 
dp dp , ap - 11 P • 



the first IIp components of d(O) contain the value of the gradient g(p). Note that the 
fol1owing Il - np components of d(O) contain the values of the partial derivatives of the 
cost with respect to all other independent variables, such as the data ys. These 
derivatives are therefore available witholll allY additional computation. It is not 
necessary to store all the values taken by d(k) when k varies fromfto 0, since we are 
only interested in the first Il components of d(O). 

The statement 

will thus translate into the fonowing adjoint instructions. ill this order: 

.. d¢k 
for alii E llh 1'* p(k), do (d; = d; + dVi d P(k)} ; 

dtPk 
dp(k) = d-- dp(k). 

"J1.(k) 

When the direct variable VP(k) is initialized, tPk does not depend on VJ1.(k). so the last 
equation reduces to 

dp(k) = O. 

When the variable Vp(k) is incremented, by 

Vp(k) :;:: l'p(k) + '''k(V), 

with lJIk independent of "p(k), it becomes 

dp(k) = dp(k). 

EXAMPLE 4.15 

Assume that the kth assignment statement is 

cost = cost + [y(t) - Ym(t)]2, 

which sets the dependent variable cost to the value 

¢deost, y(t)i Ym(t)] = cost + [y(t) Ym(t)]2. 

Let deost, dy(t) and dYm(t) be the dual (adjoint) variables respectively associated with 
cost, y(t) and Ym(t). Applying the previous formulas, one gets for the adjoint code 

d¢k 
dy(t) = dy(t) + dy(t) deosl. 

d¢k 
dYm(t) = dYm(t) + dYm(t) deost, 

d¢k 
deost = d-I deost t cos 



IV) 

i.e. 

dy(t)::: dy(t) + 2[y(t) - YmU)]dcost, 

dYm(t) = dYm(t) - 2[y(t) - Ym(t)]dcost, 

dcost::: dcost. 

The last of these instructions is of course superfluous. o 

The direct code most often contains branching instructions which must also be 
dualized. Dualizing an iteration loop (do, for, while ... ) results in another iteration loop, 
where the dual instructions are executed in reverse order to the corresponding direct 
instructions in the direct code. When there are conditional branching instructions, the 
actual path followed during execution o[ the direct code must be memorized, so that the 
duaIization of 

if (condition C) then {code A} else {code B} 
results in 

if (condition C) then {adjoint code of A} else {adjoint code of B }. 

In the adjoint-state method, the evolution of the state was computed forward before 
computing the evolution of the adjoint state backward. The situation here is analogous: 
the instructions of the direct code are executed first, then those of the adjoint code, in 
reverse order. In both cases, one must store the values of those direct variables that 
appear in nonlinear expressions, in order to allow for the execution of the adjoint 
computation. These storage requirements are a limiting factor in the complexity of the 
problems that can be handled in reverse mode: in some cases, the direct mode may turn 
out to be more feasible. 

The procedure can be summarized as [o]]ows: 

define v, with the variables corresponding to p first and the variable corresponding 
to j(p) last: 
associate an adjoint variable with each component of v; 
initialize all adjoint variables to zero, except for the last one, associated with the 
value of the cost, which is initialized to one; 
dualize the instructions in reverse order of execution, which requires reversing 
loops; 
execute the direct code, storing the values taken by the direct variables that appear in 
nonlinear expressions as well as the path followed at conditional branchings; 
execute the adjoint code; 

- collect the value of the gradient in the first Il components of d. The first dim p 
components correspond to the gradient with respect to the parameters, the following 
ones to the gradient with respect to all other independent variables. 

One should be very exacting in these operations. for seemingly minor errors may 
make the adjoint code useless. Good practice (Talagrand, 1991) is to: 

develop the adjoint code from the direct code. and not from the mathematical adjoint 
of the direct mathematical equations; 



- create an adjoint subroutine for each subroutine of the direct code; 
- choose names clearly related to those of the direct variables, labels and subroutines 

for their adjoint counterparts; 
- never modify direct code without propagating the changes in its adjoint. 

REMARKS 4.18 

- Let oV(k) be the linearized state in the neighbourhood of the nominal trajectory. Its 
scalar product with the adjoint state remains constant along the trajectory: 

Advantage can be taken of this duality property to check the validity of an adjoint 
code, provided that a linearized direct code has been developed to generate the 
sequence {ov}. 

- Adjoint-code techniques can be extended to the evaluation of higher~order 
derivatives, such as those needed to evaluate the Hessian of a cost function 
(Section 4.3.3.3). 

- Redundant instructions generated by this systematic approach can be eliminated by 
using an optimizing compiler. 0 

Summarizing example. Consider a scalar-state model described by 

x(t+l) = P1X(t), x(O) ;;;; P2, 

Ym(t, p) ;:: x(t). 

This is a discrete-time model, but the same type of idea applies to continuous-time 
models. The parameter vector p is to be estimated from data y(t) (t = 1, ... , Ilt), by 
minimizing 

nl 

j(p) = L [y(t) - Ym(t, p)]2. 
t=1 

Let us compute the gradient of this cost at pk by those methods that provide an exact 
result. For numerical applications, we shall use 

pk=[~'~l"t = 3, yO) ;;;; 0.5, y(2) ;;;; 0.25, y(3) = 0.125. 

The output of the model satisfies Ym(t, p) = PiP2' It is therefore easy to get an 
analytical expression for the gradient 

III 

-ELaa· (p) =-2L ly(t) - Ym(t. p)] aYa(t, p) 
PI 1=1 PI 



For the numerical values chosen, 

EL "'k _[ 9.331 ] 
(Jp (p ) - 0.09677 . 

The components of the gradient of j also satisfy 

III 

a' '" ~p) = - 2 L...J L-v(t) - )'m(t, p)J.\'( (I, p), 
PI t=l 

"l 
(J' ~ 

cfCP) -2,,-, [y(t) - Ym(t, P)]S2(t, p), 
P2 1=1 

where SI and S2 are the sensitivity functions of the model output with respect to the two 
parameters: 

s (t p) _ dYm(t, p) S.,(t p):::; dYm(t, p) 
I • (Jp 1 ' -' dP2 

The equations satisfied by SI and S2 are obtained by differentiating the equations that 
define the model with respect to p. One gets 

sl(t+l, p) PISl(t, p) + YmU, p), .q(O, p):::; 0, 

For the proposed numerical values, this implies that 

and the corresponding value of the gradient is identical to that obtained by analytical 
differentiation of the cost. 

The cost can also be written as 

III 

j(p) = L rt[x(t), p], with rt[x(t), pJ = b'(t) - Ym(t, p)12. 
1;;;;1 



This formulation differs slightly from that considered in the presentation of the adjoint­
stale method, for the sum starts at t = 1 instead of t = O. One could go back to the 
standard problem by setting '-0 =. 0, but it is simpler to define the variable xO by the 
recurrence relation 

XO(r+ 1) = x°(t) + Lv(t+ I) - Ym(t+] • p)]2, xO(O) = o. 

which amounts to setting 

As a consequence, j(p) will be given by xO(llt} instead of XO(l1t+ 1). Define the extended 
stale as xc(1) [xOU), xU), PI, P2JT. It satisfies 

and 

[

XO{t) + [y(t+ 1) - P IX(t)]2] 
pp:(t) 

xcU+l) = = fe[xc(t)], 
PI 

P2 

Xc(O) = [:2]. 
PI 

P2 

j(p) = [1 0 0 0] xc(Il(). 

The adjoint to the extended state 

is given by the backward equation 

[ 

1 

-2p 1 [y(t) - p )x(1-I)] 

= -2x(t-J )[)'(tb - PIX(t-I)] 

with the tenninal condition 
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Taking the last two equations into account, one gets 

and the gradient of the cost is 

Evaluating the gradient ofj at f>k thus consists of 

- a forward phase from t :::: 0 to t :::: Ilt. during which the evolution equation for Xc. x 
in practice, is simulated at p :::: pk, storing the values of x needed for the backward 
phase; 

- a backward phase from t :::: Ilt to t :::: 0, during which the evolution equations for dx 
and dp1 are simulated at p pk, using the values of x stored during the forward 
phase. 

The components of the gradient at p :::: pk are then given by dP1 (0) and dx(O). Applying 
this procedure with the proposed numerical values gives 

x(O) ;;; 1, x(l) ;;; 1, x(2) ;;; 0.1, x(3) ;;; 0.01, 

d x(3) = 0, d x(2);;; -0.023, dx(l);;; -0.0323, dx(O);;; 0.09677, 

dp)(3) ;;; 0, d p)(2);;; -0.023, dp1(l);;; -0.346, dpl(O):::: 9.331. 

The numerical values found for the gradient are therefore the same as previously. 
The direct code can be written as 

cost = 0; 
Ym(O);;; P2; 
% forward loop 
for k = I to Ilt do { 

Ym(k) = PIYm(k-l); 
cost:::: cost + (y(k) - Ym(k)]2; 

} . 



The technique presented gives the following adjoint code: 

% initializing adjoint state variables 
dcosl = I; 
for k = I to Ilt do ( 

dy(k) 0; 
dYm(k) = 0; 

} 

dPl = 0; 
dP2 = 0; 
% backward loop 
for k = ilL down to 1 do { 

% dualization of the second instruction of the direclloop 
dy(k) = dy(k) + 2[y(k) Ym(k)Jdcost; 
dYm(k) = dYm(k) - 2fy(k) - Ym(k)]dcoSI; 
dcost = dcosr; 
% dualization of the first instruction of Lhe direct loop 
dYmek-I) = dYmek-I) + PldYm(k); 
dpi = dpl + Ym(k-1)dYm(k); 
dYm(k) = 0; 

% dualization of the instruction that precedes lhe direct loop 
dP2 dP2 + dYm(O); 
dYm(O) = 0; 
% the gradient is now given by 
if 

rdI=dpl; 

iJ' .,JL = dp2. 
OP2 

VI"·IIU,,",UllVII 

This adjoint code is unnecessarily long, but obtained in a systematic manner that can 
easily be implemented on a computer, contrary to the more conci.se code that follows 

dYm(llt+ 1) = 0; 
for k = Ilt down to 1 do ( 

dYm(k) = -2fy(k) - Ym(k)] + p,dYm(k+l); 

III 

-f- = L Ym(i-l)dYm(i); 
'PI i=l 
c}' .,JL = PldYm(1). 

OP2 

Both provide exact values of the gradient. up to rounding errors introduced by the 
computer. 
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Conclusions. A number of methods are available to compute the gradient of a cost with 
respect to its parameters. The finite-difference method provides an approximate result at 
a high computational cost. Its simplicity of implementation, however, may lead one to 
retain it when the optimization algorithm is not too sensitive to errors in the computation 
of the gradient. When the performance of the optimization algorithm depends critically 
on the quality of computation of the gradient, as in the conjugate gradient and quasi­
Newton algorithms presented below, exact techniques should be preferred. These 
methods do not imply more complex computation than the finite-difference approach. in 
fact quite the reverse. The techniques based on sensitivity functions only involve 
forward computation, in contrast to inverse-mode methods based on adjoint state or 
code, which alternate forward and backward phases. For optimization problems with a 
large number of parameters, adjoint-code techniques lead to a drastic reduction in 
computation, at the expense of an implementation that remains complicated. The 
continuing development of software automating dualization should remove this 
difficulty. It should be noted, however, that the storage requirements for the values of 
all direct variables involved in nonlinear expressions may be very high in large-scale 
problems. 

4.3.3.3 Newton method 

This method relies on a second-order expansion of the cost about J>k: 

where g(pk) is the gradient at pk of the cost and H(pk) is its Hessian at pk, a symmetric 
IIp X np matrix: 

Ak_~ 
H(p ) -:.. "' 1'1 -"k' apap p-p 

Let 6j = j(pk+ 1) - j(pk). The value of 6p that leads to the largest decrease of the 
cost, i.e. that minimizes /).j, satisfies the necessary optimalily condition 

a/).j "J.:," "k -I = 0 ;:;: H(p )6p + g(p ), 
(J/).p A{~ 

which suggests the step 

provided lhat the Hessian is invertibJe. which is assumed. The Newton algorithm can 
then be written as 

compared with the gradienl algorithm pk+ I = pk - Akg(pk). 



Properties of the Newton algorithm 

PN1: The computation required at each step is much heavier that with the gradient 
method. 

PN2: Direction and step size are specified simultaneously, contrary to the gradient 
method, where the step size remains to be chosen. 

PN3: When the cost is quadratic in p and the Hessian invertible, the method converges 
to the stationary point of the cost in one step, whatever the initial point pO. Assume 
for instance that 

j(p)=!eT(p)Qe(p) and e(p)=yS-Rp. 

The gradient and Hessian of the cost are then given by 

and 

so 

The Newton algorithm therefore becomes the least-squares algorithm. 
PN4: Even when the cost is not quadratic in p, convergence is usually very quick when 

it takes place. Typically, five iterations yield a much better result than a thousand 
iterations of a gradient algorithm. The improvement gets clearer the more ill­
conditioned the problem becomes, with non-spherical cost contours. Unfortunately. 
this is also when errors in the value of the Hessian may have the worst 
consequences. If H is Lipschitz around p*, convergence of the Newton method is 
locally quadratic, compared with linear convergence of the gradient method (Minoux, 
1983). Asymptotically, the number of significant digits in pk is doubled at each 
iteration. This, however, is only valid when pk is close enough to a local optimizer. 
Far from this optimizer. the performance may turn out to be worse than that of a 
gradient method. 

PN5: The convergence domain is usually much smaller than with a gradient method. 
As a matter of fact, nothing guarantees that the size of the step LlP given by the 
Newton method will be small enough for a second-order expansion to remain valid. 

PN6: When the method converges, it does so to any point in parameter space where the 
cost function is stationary, which may be a maximizer, a minimizer or a saddle point. 
The fact that the cost is to be minimized has never been taken into account. Werej to 
be maximized, the sign of Llp would not have to be changed (compare with PO 14). 
Initialization is therefore especialJy critical, as illustrated by Figure 4.22. 

PN7: If the Hessian is positive definite at pk, which nothing guarantees but which is 
easily checked, the inverse of the Hessian is positive definite too. The absolute value 
of the angle between the vectors Ap given by a gradient method and the Newton 
method is then less than 1d2. According to PO 11, one can then reduce the cost by a 
sufficiently small step in the direction 
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The Newton algorithm can therefore be modified by introducing a relaxation 
coefficie1lf Ak: 

This coefficient Ak ~ 1 is saturated at one when pk gets close to a minimizer. A 
simple policy is to reject pk+ 1 and di vide At by two as long as the cost does not 
decrease. One should first make sure that H(pk) is positive definite, e.g. by checking 
that all its eigenvalues are positive. so that one does move towards a (possibly local) 
minimizer. 

j 

~------------------------~----~----------~p 
11. 

P pO 

Figure 4.22. From pA(). the Newton method converges 10 the locally worst point 

PN8: As with the gradient method, the stale of the algorithm is summarized by 
(pk, Ak). Numerical errors therefore do not accumulate. With the relaxed algorithm, 
computation of the Hessian may be rather approximate, provided that the result 
remains positive definite. 

PN9: The inverse of the Hessian at the value p of the parameters to which the algorithm 
converges gives useful infonnation on the uncertainty with which the parameters are 
estimated (Chapter 5). It is therefore interesting to make the program indicate the 
value of H-t(~}, or at least of its diagonal entries. 

Implemelllatioll oJ tile Newton method. Rather than using the previous formula, which 
requires inverting a matrix, it is more economical to solve the following equivalent set 
of linear equations for Ap: 

The adjoint-code technique for the computation of gradients can also be employed to 
compute Hessians exactly. The Hessian is Lhen viewed as the lacobian matrix 
associated with the gradient 



Let jw(p) :::: w T g(p). where w is a vector that does not depend on p. The value of the 
scalar jw(p) can be computed by a "direct code", which will actually consist of a direct 
code evaluating j(p) and an adjoint code evalualing g(p). The "adjoint code" associated 
with tllis "direct code" will make it possible to evaluate 

By selling wi:::: Dik' one thus gets the kth row of R(p). The computation of H(p) 
therefore requires l1p executions of the "adjoint code". Most of the computation of the 
"direct code" is to evaluate g(p), and will be performed only once. Only the last 
assignment instructionjwCp):::: wTg(p) will be executed IIp times. 

Special case of quadratic cost [linctions. Assume that the cost is 

Its gradient satisfies 

III 

j(P)::::~ L wi[e(ti, p)]2. 
i::::l 

III 

() '"" de(ti, el ) g p :::: ~ HI i dp e(t i, p , 
;=1 

and its Hessian can therefore be written as 

~ de(ti, p) de(ti. p) ~ d2e(ti, p) 
H(p) = ~ Wi dp apT + £...J wi dpdpT e(ti, p). 

i=1 i= I 

In addition to the first-order sensitivity functions already introduced, second-order 
sensitivity functions now appear: 

To compute them, one may use similar techniques to those presented for first-order 
sensitivity functions. One may, for instance, differentiate the equations defining the 
error with respect to Pi and Pk to get the equations to be solved for sCik' For an 
IIp-parameter model, it suffices to compute the IIp(llp + 1 )/2 entries associated with the 
upper triangular part of the Hessian, the remainder being obtained by symmetry. One 
may also use a finite-difference approximation. In both cases, it is easy to see that the 
computation is much heavier than for the lip first-order sensitivity functions. Nothing 
even guarantees that the results will be useful, since the Hessian may not be positive 
definite. Applying adjoint-code techniques also becomes relatively heavy and has the 
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same drawback. This makes the simplification presented in the next section especially 
interesting. 

4.3.3.4 GaussMNewton method 

The Gauss-Newton method, already mentioned in Section 4.2.4, applies when the cost 
can be expressed as the sum of at least lip terms quadratic in some errOf. In this method, 
the Hessian H(p) is replaced by a matrix Ha(p), obtained by neglecting the term in 
H(p) that depends on the second-order sensitivity functions, so that 

where 
Ilt 

H ) '" ae(t;, p) ae(tj, p) 
a(P ;:;; £..J \Vi dp apT 

i;:;;1 

The computation of Ha can therefore be based solely on knowledge of the first-order 
sensitivity functions, which may already have been used to compute the gradient. 
Compared with the gradient algorithm, the need to invert a matrix, or rather to solve a 
linear system of equations, is usually more than compensated by the speeding up of 
convergence. Approximating the Hessian by Ha will be all the more warranted when 

- the errors e(t i. p) are small, 
- these errors are little correlated with the second-order sensitivity functions, 
- the secondMorder derivatives of the errors with respect to the parameters remain 

small, i.e. the influence of the parameters on the errors is approximately affine. 

Even when these conditions are not satisfied. and provided that the model is locally 
identifiable under the experimental conditions chosen. the approximate Hessian Ha is 
positive definite, although the Hessian H is not necessarily so. The matrix Ha l is then 
positive definite too, so the absolute value of the angle between the search directions 
suggested by the gradient and Gauss-Newton methods is less than rc/2. It will therefore 
always be possible to find some positive ilk that ensures a decrease in the cost. 
Remember that this was not so for the Newton algorithm. 

Since the search direction forms an acute angle with that suggested by the gradient 
method, the Gauss-Newton algorithm can also be applied to non-quadratric cost 
functions, provided that a quadratic approximation of the cost is used to compute Ha. 

EXAMPLE 4.1 0 (continued) 

Figure 4.23 illustrates the minimization of Rosenbrock' s test function using the Gauss­
Newton algorithm. Line searches are performed with the Wolfe method, to be presented 
in Section 4.3.3.9. The search directions differ from those of a gradient aJgorithm and 
no longer start orthogonally to cost contours. After only 19 evaluations of the cost and 
of its gradient, the cost is down to 1.97 x 10-31 . 0 

EXAMPLE 4.11 (continued) 

Consider again the cost function 
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The trajectory of the same version of the Gauss-Newton algorithm as in Example 4.10 
is illustrated by Figure 4.24. The minimum at p = (1. 2)T is found with four 
significant digits after only 9 evaluations of the cost, and 13 evaluations of its gradient.O 

Figure 4.23. Behaviour of the Gauss-Newton algorithm on Rosenbrock's lest function: 

the initial value of p is indicated by a circle, and the minimizer by a cross 

Figure 4.24. Behaviour of the Gauss-Newton algorithm on Example 4.11; 
the initial value of p is indicated by a circle. and the two global minimizers by crosses 
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4.3.3.5 Levenberg-Marquardt method 

The non-relaxed Newton and Gauss-Newton methods require solution for Ap of the 
linear system of equations 

where H is either the Hessian or some approximation of it. The Levenberg (1944) and 
Marquardt (1963) method replaces this equation by 

which amounts lo adding a quadratic penalty function (IlLJ2)lIp - pk,,~ to the costj(p). 
When Pk = O. one gets a non-relaxed Newton or Gauss-Newton iteration. When, on 

the other hand, Ilk tends to infinity. the iteration tends to a gradient iteration with a step 
size Ak = l/Pk that tends to zero. At each iteration, one can therefore perform a one­
dimensional search on Ilk. Most often, Pk is merely adapted, with a policy similar to 
that presented for the gradient method, e.g. 

- if j(pk+ 1) ~ j(pk). then divide Pk by 10, (everything is going well, move towards 
non-relaxed Newton or Gauss-Newton); 

- else reject pk+l and multiply Ilk by 10 (the method is diverging, move towards 
gradient and shorten step size). 

Whatever the policy chosen. Pk should not be allowed to tend to zero, to guard against 
numerical singularity of H. The Levenberg-Marquardt method then regularizes ill-posed 
problems. 

Figure 4.25 illustrates the behaviour of the Levenberg-Marquardl method far from 
the optimum. Here, the choice Ilk = 0 would be very bad. Conversely, close lo the 
optimum, the cost tends to become quadratic in the parameters, so Ilk = 0 becomes a 
much better choice. 

, , 

Cost contour, as 
approximated 

by the Newton method 

. 
\ 

\ 

\ . 
\ 

Actual cost contour 

Figure 4.25. Lcvenbcrg-Marquardt method far from (he optimum 
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For any value of 11k, the computation of ~p requires solution of a set of IIp 
equations in IIp unknowns. A preliminary diagonalization of H(pk), however, makes It 
possible to write 

so 

It is thus possible to replace each new solution of a linear system by a mere matrix 
multiplication. 

4.3.3.6 Quasi-Newton methods 

The aim of this family of algorithms is to combine the advantages of the gradient and 
Newton methods. The idea is to generate, at each iteration, a matrix Mk that tends to the 
inverse of the Hessian. without ever inverting a matrix (Fletcher and Powell, 1963), 

The cost is taken to be a quadratic function of p, so 

where g(pk) and H (assumed symmetric and positive definite) are the gradient and 
Hessian evaluated at pk. Since the cost is assumed to be quadratic in p, the Hessian 
does not depend on pk, The gradient satisfies 

( l\k+J) _ Cl\k) H(l\k+1 I\k) gp -gp + p -p. 

Its variation between two iterations is therefore related to the variation of the parameters 
by 

where 

Slarting from some initial point pk and some initial (sxmmetric) approximation Mk of 
the in verse of the Hessian, let us see how to compute pk+ ( and Mk+ I. To calculate the 
step in parameter space, a relaxed Newton method is used, where Mk is substituted for 
the inverse of the Hessian: 

The relaxation parameter Ak is chosen by one-dimensional optimization, usually by 
polynomial interpolation. 

The approximation of the inverse of the Hessian is updated by 



where Ck is a symmetric correction matrix. We shall calculate here a rank-one 
correction, before describing more efficient rank-two corrections. 1f Mk+ 1 were the 
inverse of H. one would have 

i.e. 

This implies that 

Identifying the coefficients of ~gk gives 

which is symmetric and rank -one. 
The method is initialized by setting Mo = I, so the first iteration is a gradient step. 

As the iterations proceed, Mk resembles the inverse of the Hessian more and more, and 
the method behaves more and more as a relaxed Newton method. This is appropriate. 
given the properties of these two algorithms. 

In practice, a rank-two correction is usually preferred. Variolls correction formulas 
are available~ see, e.g., Minoux (] 983) or Po\yak ( 1987). The Dovidoll-Flelcher-Pol\'l!!} 
(DFP) method has 

and the Broydell-Fletcher-Goldjarb-SlwllIlO (BFGS) method has 

BFGS seems to be less sensitive than DFP to errors incurred during onc-dimensional 
searches. 

Properties (~f'qlfasi-Nell'loll algorithms 

PQN1: Each iteration only uses values of the cost and ils gradiclll. The computation is 
simple. not requiring solution of a set of linear equations in lip unknowns. 

PQN2: If the cost is quadratic in p, all matrices lVlk are positive def1nite and the 
algorithm converges to the optimum in lip iterations. Under the smne conditions. the 
Newton algorithm would converge in a single iteration, but would require solution of 
a linear set of equations in IIp unknowns. 

PQN3: Because of numerical rounding, Mk may become singular; it is then reset to T. 
which returns the search momentarily to a gradient algorithm. This restarting 
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procedure may even be imposed every IIp iterations. to avoid having to check that Mk 
is positive definite. 

PQN4: Since the final value of Mk approxitmlles the Hessian at the optimum, it 
provides useful information on the uncertainty in the estimated parameters 
(Section 5.3), 

PQN5: Mk is obtained by accumulating information gathered in nil previous iterations, 
which makes the method more sensitive (0 numerical errors than the Gauss-Newton 
method. The gradient should therefore be evaluated with particuiar care. 

PQN6: Whatever the initial value of p. the method converges to a (possibly local) 
minimizer of the cost. 

PQN7: Convergence is slow at first, then speeds up when pk gets close enough to the 
local optimizer for the quadratic approximation to become valid and for Mk to 
resemble II-I, Asymptotically, provided that the cost is twice continuously 
differentiable and the Hessian is positive definite at the optimum, most quasi-Newton 
methods have superlinear convergence, i.e. quicker than that of the gradient method. 
If, moreover, the Hessian satisfies a Lipschitz condition in the neighbourhood of the 
optimum, convergence becomes quadratic, as with the Newton method (Minoux, 
1983). 

PQN8: This class of methods can be seen as gradient methods in a metric iteratively 
transformed to try and make the cost contours spherical. This is why quasi-Newton 
methods are also called variable-metric methods. 

Quasi-Newton methods are implemented in all major scientific software libraries. 
Refrain from attempting to code them once more! The simplest way to see whether they 
are useful for a given problem is to try them. The only items of information needed are 
the rules for evaluatingj and its gradient with respect to the parameters, i.e. what would 
be needed to apply the gradient method. Variants are also available where the gradient is 
evaluated by finite differences, so that the user need only provide the subroutine that 
computes the cost. For reasons alluded to in PQN5, better performance will however be 
obtained when the gradient is evaluated exactly. 

EXAMPLE 4.10 (continued) 

Figure 4.26 illustrates the optimization of Rosenbrock's test function by a quasi­
Newton method (BFOS). Line searches are performed with Wolfe's method, to be 
presented in Section 4.3.3.9. After 88 eV41luations of the cost and 102 evaluations of its 
gradient; the cost reaches the value 2.46 x 10-12, 0 

EXAMPLE 4.11 (continued) 

Consider again the cost function 

The trajectory of the same version of BFOS as in Example 4.10 is illustrated by 
Figure 4.27. 

The first line search corresponds to a gradient step, orthogonal to the cost contour 
from which it originates. As the iterations proceed, the approximation of the inverse of 
the Hessian improves and so do the search directions, which get markedly different 
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from those of a gradient search. The minimum at p = (1, 2)T is reached with four 
significant digits after 28 evaluations of the cost. and 39 evaluations of its gradient. 0 

Figure 4.26. Behaviour of a quasi-Newton method (BFGS) on Roscnbrock's lest function; 

the initial value for p is indicated by a circle, nod the minimizer by a cross 

Figure 4.27. Behaviour of BFGS on Example 4.] I; 

the initial value of p is indicated by a circle, and the two global minimizers by crosses 
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4.3.3.7 Heavy-ball method 

Except for the quasi~Newton, Powell and Vignes methods, the only information on 
previous iterations used by the local methods presenled so far is the estimate pk of the 
parameters, and they are called olle~slep methods. Belter use of this information should 
of course yieJd a more effective method. Consider, for example, the two-step method 
known as the hcavy~ball method (Polyak, 1987), 

which reduces to the gradient method for 13k = O. It can be viewed as a difference 
equation describing the motion of a ball in a gravitational field corresponding to the cost 
in the presence of viscous friction. The loss of energy due to the friction drives the ball 
to an equilibrium point, which is a local minimizer of). The term f3k{pk - (ik-I) may 
accelerate convergence by damping oscillations perpendicular to the steepest direction. It 
may also decrease the probability that the algorithm will get trapped in a shallow local 
minimum. As with the gradient method, the optimal choice of the tuning parameters, 
here ex and 13, depends on the cost function and cannot be found II priori. To make this 
approach practicable, the optimal values of ex and 13 should therefore be computed at 
each iteration, i.e. 

This can be done analytically for quadratic costs, and the heavy~balJ method then 
becomes equivalent to a conjugate~gradient method. 

4.3.3.8 Conjugate-gradient methods 

As quasi-Newton methods, this family of methods (Fletcher and Reeves, 1964) takes 
the cost to be a quadratic function of p 

which may also be written as 

j(p) = c + bTp + ~ pTHp, 

with H assumed symmetric and positive definite. Let 

If pk+ J has been obtained from pk by one-dimensional minimization along dh then 
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If the next search direction were given by the Newton method, it would satisfy 

that is 

This suggests choosing successive search directions that satisfy 

Such directions are said lo be c01ljugate with respect to the Hessian H (Figure 4.28). 

These search directions are conjugate with respect to H 
/ , 

, 
" , 

" ~ 
dk+1 -H-lgk+1 

Search direction 
suggested by the 
Newton method 

Search direction suggested by 
the gradient method 

Figure 4.28. Conjugate search directions 

The conjugate-gradient method aims at simple generation of IIp mutually conjugate 
search directions (see also Powell's method in Section 4.3.2.6), If the Hessian H were 
known, for any do, for instance 

do =: -go. 
the algorithm 



would ensure mutual conjugation, i.e. 

The proof of this resul t is by induction (Polak, 1971). 
If the cost function is quadratic in p. IIp one-dimensional minimizations along the 

dj's (i = 0, ... , lip - I) suffice to reach its minimum. Since H is unknown, the 
following result is used: 

THEOREM 

If phI is obtained by minimizingj along dk from pk, i.e. if 

with 

A* = arg minj(pk + Adk), 
A 

then g(pk+ I) is identical to gk+ I as would be obtained by the formula requiring 
knowledge of fl. 0 

PROOF 

From the second expression of the cost function, one gets 

Now at the minimum of j along dk, the scalar product of dk and the gradient is zero: 

Therefore 

i.e. the same expression as obtained for Ak when fl is known. o 

Successive search directions can therefore be computed without knowing H or even 
trying to approximate its inverse as in the quasi-Newton methods. In summary, the 
Polak-Ribiere algoritlzm (Polak, 1971) is given by 
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Step 0: Choose pO and evaluate go = g(pO). If gO 0 stop. 
Step 1: Set k = 0 and do = -go. 
Step 2: Compute 

Step 3: Set pk+1 = pk + A *dk. 
Step 4: Evaluate gk+ 1 = g(pk+ I). 
Step 5: If gk+ 1 0 stop, else set 

dk+ I = -gk+ I + "':'=":-'-'-'-----,=""='----"=''-'--'- dk. 

increment k by one and go to Step 2. 

Properties of conjugate-gradient algorithms. The first four properties are very close to 
those of quasi-Newton algorithms, in contrast to the others. 

PCG 1: Each iteration only requires the ev;:liualion of the cost and its gradient. The 
computation is simple, with no set of linear equations in lip unknowns to be solved. 

PCG2: When the cost function is quadratic in p. the algorithm converges to the 
minjmum in I1p iterations. 

PCG3: The initial search direction do may be the negative gradient direction. Since the 
cost is usually not quadratic in p far from the optimum, convergence to a local 
minimum is guaranteed only if the procedure is periodically restarted, say every "p 
iterations, e.g. with a search from the current value ofp in the direction suggested by 
the gradient method. 

PCG4: The method is more sensitive to errors in the evaluation of the gradient than the 
Gauss-Newton method. 

PCG5: In contrast to quasi-Newton methods, conjugate-gradient algorithms do not 
update any approximation of the inverse of the Hessian. Each iteration is therefore 
even simpler. The simplificalion becomes more and more significant as the number 
of parameters increases. Conjugate-gradient methods have thus been successfully 
used to minimize cost functions depending on several thousands of parameters, e.g. 
in image processing. The price to be paid for this simplifieaLion is that Lhe 
approximation of the inverse of the Hessian, which would be useful Lo characterize 
the uncertainty in the parameters, is no longer available. 

PCG6: Conjugate-gradient methods require about lip times as many onc-dimensional 
minimizutions as quasi-Newton methods for the same asymptotic behaviour 
(sllperlinear or quadratic convergence, depending on the hypotheses abouL the cost 
function) (Minoux, 1983). Note however that each iLeration is much simpler. 

EXAMPLE 4.10 (continued) 

Figure 4.29 illustrates the minimization of Rosenbrock's function using the Polak­
Ribiere conjugate-gradient algorithm. The firsL step is taken in the direction opposite to 
the gradient. The line searches are performed with Brenl's method llsing the derivative 
of the cost (Press et al., 1986). After 289 evaluations of the cost function and 233 
evaluations of its gradient, the value of the cosL is 3.8 x 10- 1°. 0 
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Figure 4.29. Behaviour of a conjugate-gradient method on Roscnhrock's function; 

the initial value of p is indicated by a circle, and the minimizer by a cross 

EXAMPLE 4.] 1 (continued) 

Consider again the cost function 

The trajectory of the same version of the Polak-Ribicrc algorithm as in Examplc 4.10 is 
illustrated by Figure 4.30. The minimum at p = (I, 2)T is found with four significant 
digits after 55 evaluntions of the cost, and 43 evaluations of its gradient. The one­
dimensional searches wcre conducted much more carefully than in the quasi-Newton 
method (Brent's method with derivatives was used instead of Wolfe's algorithm), but 
performance was nevertheless poorer. 0 

As the quasi-Newton methods, conjugate-gradient methods are available in all 
seriolls libraries of scientific subroutines. It is therefore very simple to test whether they 
perrOlm satisfactorily in the specific application at hamL 

4.3.3.9 Choice or step size 

After choosing a search direction dk from the current point pk in parameter space, for 
example by Newton's method or the Gauss-Newton or quasi-Newton method. one 
must find a minimizer (or at1east an acceptable value of the parameters) in this direclion. 
Some of the methods presented in Section 4.3.2 do not use the local properties of the 
cost function. \Vhen the derivative of the cost is available, which is the cnse in the 
Newton, Gauss-Newton or quasi-Newton algorithms. it is more efficient to use it also 
during the one-dimensional searches. 

One could of course search along dk with the help of a one-dimensional gradient or 
Newton algorithm, but this approach turns out to yield rather slow convergence. As a 
matter of fact, what really matters is to ensure a s;gflijicalll decrease of Lhe value of Lhe 



cost in as few iterations as possible, so as not to dissipate effort in solving a purely local 
problem (Leman!chal, 1989). When the cost has been evaluated at pk + Aidk, one 
must therefore decide whether the step size Ai is acceptable, and if not suggest another 
Ai+l· 

Figure 4.30. Behaviour or a conjugate-gradient algorithm on Example 4.11: 

the initial value of p is indicated by a circle. and the two global minimizers by crosses 

REMARK 4.19 

An initial step size Al must also be chosen. For Newtonwlike algorithms using the 
Hessian (or an approximation of its inverse), the search direction is given by 
dk = _H-I(pk)g(pk), and AI 1 is a reasonable choice. For the conjugate-gradient 
algorithm, one could normalize IIdk1b to one and choose Al from prior knowledge of the 
feasible domain for the parameters. 0 

Wo~fe 's method is commonly used (Wolfe. 1969; Powell, 1976): 

Step 0: Choose Al > 0, aI, a2, with 0 < a, < a2 < 1 (e.g., al ::: O.t, a2 = 0.5). Set 
Amin = Amux = 0, i = 1. 

Step J: If j(pk + Aidk) > j(pk) + atAig T(pk)dk (A; is too large), set Amax = Ai and go 
to Step 4; 

Step 2: If gT(pk + Aidk)dk ~ a2gTdik)dk, set pk+I = pk + Aidk: else (Ai is too small), 
set Amin = Ai· 

Step 3: If Amax 0, {set Ai+ I = 2A;, increment i by one and go to Step l}. 
Step 4: Set Ai+1 == (itmin + Amax)l2, increment i by one and go lo Step 1. 

The principle of the algorithm is illustrated by Figure 4.31. Step 1 makes il 
possible to reject the values of A > b, such that the decrease ofthe cost is insufficient. 
Step 2 allows rejection of the values of A < Cl, for which pk+ 1 could be too close to pk 
and thus j(pk+ 1) too close to j()lk) . 
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, 
A too large 

.... 
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Figure 4.31. Principle of Wolfe's procedure 

Uptimi:;atio1! 

This procedure terminates in a finite number of iterations for any cost function that can 
be bounded from below (such as a positive cost function). 

REMARKS 4.20 

- This one-dimensional search procedure is not necessarily very efficient for 
conjugate-gradient algorithms, for which careful minimization of the cost along dk is 
advisable. 
The procedure extends without difficulty to the Levenberg-Marquardt method. Note, 
however, that the one-dimensional search on J1 is no longer performed in a fixed 
direction in parameter space. 0 

4.3.4 Constrained optimization 

As already mentioned in Remark 3.12, incorporating constraints on the feasible 
parameters into an estimaLion problem is not always to be recommended but may turn 
out to be necessary. Moreover, constraints arc essential to many optimization problems, 
such as those encountered in experiment design (Chapter 6), Constrained optimization, 
however, is much more complicated than unconstrained optimization. Section 3.6 has 
shown how a constrained optimization problem can be transformed into an 
unconstrained one by modification of the cost function. Many other approaches may be 
considered, especially for inequality constraints (Polak, 1971 ~ Luenberger, 1973; Gill 
and Murray, 1974; Minoux, 1983; Polyak, 1987; Hiriart-Urruty and Lemarechal, 
1993), In particular, the theoretical properties of the so-caHed illterior-poillt methods 
have motivated a renewal of interest in convex programming (Ncsterov and 
Nemirovskii, 1994; den Hertog. 1994). We shall only consider here primal methods, 
i.e. methods that search directly through the feasible domain for the optimal solution. 
They present the advantage of generating a sequence of feasible points. with decreasing 
values of the cost. The terminal point is thus always an improvement over the initial 
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one, even when iterations are terminated too early. However, primal methods often 
exhibit slower convergence than primal-dual methods (Minoux, 1983), and the 
necessity of remaining in the feasible domain may produce computational difficulties 
(Luenberger, 1973; Minoux, 1983). Only the genera) ideas of the methods will be 
described. mainly in geometrical terms. Once again, we stress that many algorithms are 
readily available in scientific subroutine libraries, and can therefore be used at little or no 
programming cost 

Denote the set of all inequality constraints to be satisfied by Ci(P) ::;; 0, lo be 
understood componentwise, and let P be the corresponding prior feasible set for the 
parameters 

iP = {p I Cj(p) ::;; 0 I. 

Whenever necessary. j and Cj will be assumed lo be continuously differentiable. Some 
methods require JP to have a nonempty interior ITp, the closure of which coincide with 

because the optimizer will be searched for in Rp; see, e.g., the method of centres. In 
some other methods, equality constraints can be taken into account simply by 
considering them as active inequality constraints. This is the case, e.g., for the gradienl­
projection and feasible-directions methods. 

The simplest constrained problem is when the cost and constraints arc linear in the 
parameters. This corresponds to linear programming, considered in Section 4.3.4.1. 
The case where the cost is quadratic in the parameters corresponds to quadratic 
programming, treated in Section 4.3.4.2. Wben none of these approaches applies, but 
the shape of JP is simple enough (e.g" when iF' is an orthotope~ which is quite frequent 
in parameter-estimation problems), direct extensions of unconstrained approaches such 
as those of Sections 4.3.4.3 to 4.3.4.5 can be considered. More general constrained 
optimization methods are finally presented in Sections 4.3.4.6 and 4.3.4.7. 

4.3.4.1 Linear programming 

Minimizing a linear cost function 
j(p) = cTp 

under linear constraints 

aT ps bi (i = \, ... , 111) 

is a linear-programming problem, with countless practical applications. Famous 
methods, such as Dantzig's simplex (1963) and Karmarkar's algorithm (1984), are 
available but will not be described here. The latter belongs to the class of path-following 
methods; see the survey by Gonzaga (1992). We shall only present two simple 
approaches, particular cases of methods used in Section 5.4.1 to characterize parameter 
uncertainty in a bounded-error context. These approaches can be used in parameter 
estimation, where the number of variables is usuaUy quite low compared to other types 
of applications. The first is recursive and based on polyhedra, the second non-recursive 
and based on eJlipsoids. 

The first method uses an exact description of a set defined by linear inequaHties. The 
constraints aT p ::;; hi (i = L .... Ill) define a polyhedron Qm in iP:.'lp, assumed to be 
compact (i.e. a polytope). This polytope can be built recursively, by introducing the 
constraints one by one, with the help of the method described in Section 5.4.1.3. The 
minima are either at the vertex associated with the smallest value of cTp or in the convex 
hull of such vertices. 



This recursive method is limited to low-dimensional problems. When recursive 
operation is not essential, the following approach may be preferred. 

Step 0: Choose pO, set k = O. 
Step i: Compute pk+l such that 

Step 2: Increment k by one and go to Step 1. 

In Step I, phI is obtained by an ellipsoidal algorithm, such as that to be presented 
in Section 4.3.5.3, with the subgradient g(pk) replaced by c or by the vector aj 
associated with the constraint most violated at pk. Successive cuts in the ellipsoids are 
then central, i.e. the previous ellipsoid is cut through its centre. Shallower or deeper 
cuts may also be employed (Bland, Goldfarb and Todd, 1981; Grotschel, Lovasz and 
Schrijver, 1988). The ellipsoid obtained is given by 

and contains the constrained minimizer. A lower bound for the value of the cost c T P is 
therefore 

j k+1 = maxlh.:. cTpk+1 _~cTMk+lC J::; min cTp, 
- - peQm 

with Lo chosen so that 
.io::; min cTp. 

PEQiIll 

The optimal value of the cost is thus bracketed by 

j k+ 1::; min cT p ::; c Tfjk+ I, 
- peQm 

which ca,n be used to stop the procedure when the precision reached is sufficient. Note 
that taking an extra constraint into account would require treating the problem again 
from scratch, unless fjk+ I satisfied this constraint. 

This method has been the starling point for important theoretical work in 
optimization. It was used to prove that linear programs could be solved by algorithms 
with polynomial complexity (Khachiyan, 1979), whereas, in the worst case, the 
computational time of Dantzig's simplex algorithm grows exponentially with the 
dimension of the problem. Note, however, that Kannarkar's algorithm has less 
complexity than this ellipsoidal algorithm. 

Application to Ltx:J estimation. The L,,, (or minimax) estimator has been introduced in 
Section 3.3.1, Example 3.6. It is given by 

Prnrn = arg min max lyUi) - -"mUi, p)l, 
pe k'tllp 1 ::;i::;ll l 
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for an output error, but prediction errors could be considered instead. Consider an LP 
model structure defined by 

Let 

and consider the set of all par,uneter vectors p that satisfy 

If {l ~ ttmin, this set is non-empty, and corresponds to the poslerior/easibh' set JP"I for 
errors bounded by II (Section 5.4). Assume that the r;'s span Rtlp, an identifiability 
condition for the parameters. Pili is then a polytope (bounded polyhedron) of RI/p. 

Consider the extended parameter vector Pc = (pT, a)T of lftllp+'. If a (possibly very 
large) upper bound llmax is available for (I, the set of all Pc that satisfy 

Iy(lj) - rT pI S; a, i = 1, ... ,lit and a S; {lmax 

is a polytope of lRllp+ 1, which can be built recursively as the data are collected. The 
estimate Pmm corresponds either (0 the vertex of this polylope at which Cl = iimill • the 
smallest value over all vertices, or to the convex hull of all vertices associated with 
~min' It can therefore be obtained recursively (Waiter and Piet-Lahanier, 199 I). 

Since minimax or Loo estimation corresponds to minimizing (f under the previous 
constraints, the ellipsoidal approach presented above may replace the polyhedral one 
when recursive operation is not essential. 

EXAMPLE 4. 16 

Consider the AR structure described by 

y(k) = -OAy(k-l) - O.85y(k-~) + E(k), 

with y( I) = EC 1) and y(2) £(2). Figure 4.32 presents the evolution of {imin with k 
when {ECk)} is a sequence of independent n:lI1dom variables, dislributed either ~O. 1) 
or I[J(-l, 1). When the errors are indeed bounded, {imin is seen to approach the actual 
bound quickly. 0 

4.3.4.2 Quadratic programming 

Quadratic programs are involved, for instance, in least-squares estimation under linear 
constrainls (Section 4.1.3) or in the implementation of the constrained Newton method 
to be presented in Section 4.3.4.5. 

Assume that lhe cost to be minimized is 

I T '>1' j(p) = 2 p Cp - d p, 
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with C positive definite (so thatj is convex), under the same constraints as in the linear­
programming case, i.e. Ap ::;; b, which define a feasible set QII/. Let pk be a feasible 
parameter vector, and ]k be the set of all active constraints at ~k: 

1~_"_" ~ 5· . "liD, I) . • ..•......................... 
- " 

J., "'""'-,;---------------: 

1 ' - , 

._ ~. - ~. I 

1\ 
ilmin 1.5-

'l1(-1 ,I) 

1 j ~~--_-----__ -------------~t----------~ 
( 

0.5 r 

f 
u.u-~~~------~--~--~--~--~--~--~ 

(1 ~o ,]0 60 RO 100 120 140 160 180 100 

k 

Figure 4.32. Evolution of li'ruin with lht! number of data points 

A classical algorithm searches for pk+ that minimizesj(p) under all active constraints 
considered as equality constraints. If Ak and hk consist of those rows of A and b 
associated with active constraints, the Lagrangian of this problem can be written as: 

Stationarity with respect to p and z of L(p, z) at the optimum yields a set of linear 
equatio~s to be satisfied by pk+ and ~: 

If Apk+ ::;; b and ~ ~ 0, pk+ is a solution of the quadratic programming problem. Ifpk+ 
violates some constraints, a search is performed on the line segment joining pk to pk+ to 
get a new feasible point (lk+ 1. Any new active constraint is then incorporated in ITk+ I. If 
some components of ~ turn out to be negative, the associated constraints are dropped 
from TIk before restarting from pk. The resulting algorithm finds a solution in a finite 
number of steps (Polyak, 1987): 
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Step 0: Choose a feasible pO (ApO ::; b), set k = O. 
Step 1: Find the set ITk of aB active constraints at pk 
Step 2: CompuLe pk+ and ~. The nth component of ~ is associated with an element i 

of ITk, which will be denoted by n(i). If Apk+ ::; b, go to Step 4. 
Step 3: Set 

with 

Set JIk+ 1 = Hk U {11 III e: lib aJpk+ I = bll }, increment k by onc and go to Step 2. 
Step 4: If £ nU) ~ 0 for all i in TIk then p = pk+, stop. Else set pk+ I = pk, 

lik+ 1 = (i E Kk I 2//(i) > O}, increment k by one and go lo Step 2. 

More general convex-programming algorithms can, of course, also be used for 
convex quadratic programming; see Section 4.3.4.6 and the references on interior-point 
methods therein. 

4 .3.4.3 Constrained gradient 

The gradient algorithm is described by 

with Ak chosen so as to minimizej(pk+l). Under constraints, _g(pk) might point in an 
unfeasible direction that would entail leaving lP. It then seems natural to repJace _g(pk) 
in the previous equation by the direction dk given by 

with pk+ obtained by minimizing the linear cost function gT(f>k)(p - pk), i.e. 

pk+ = arg min g T (pk)(p _ pk). 
PEP 

This method is, however, not recommended, for it may converge very slowly, as 
iHustrated by the following simple example (Polyak, 1987). 

EXAMPLE 4.17 

Consider the cost function 

The vectors "k+ alternate between vertices (-1, 0) T and (1, 0) T of the box JP, whereas 
the vectors pI.:, located inside JP, converge very slowly to (0, O)T (Figure 4.33). The 
same type of behaviour takes place whenever JP is a polytope with the minimum of j on 
one of its faces. 0 
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j(P) = 1 

Figure 4.33. Very slow convergence of the constrained-gradient method 

4.3.4.4 Gradient-projection method 

Optimizatioll 

In this method (Rosen, 1960, 1961), the new parameter vector suggested by the 
gradient method, i.e. &k - A.g(pk), is projected onto P, according to 

&k+ 1 (A) = O.L[&k Ag(pk)] = arg min II p - [pk - Ag(pk)] 1I~1 
PEjp 

where O.L is the orthogonal projector onto P. The cost j[pk+ leA)] is then minimized 
with respect to the scalar A. This policy is illustrated by Figure 4.34. 

Implementing the method involves solving the problem of projecting onlo P. Note 
that the optimal step size Ak obtained by minimizing j[pk+ 1 (A)] may be infinite. In 
Figure 4.34, for example, j(p2) decreases as the point A moves away from p 1 in the 
direction -g(p 1). Choosing A I optimally would lead to taking p2 as close as possible 
to poo. i.e. to building p2 by projection along a direction almost parallel to g(pl), 
which would mean taking A.I extremely large. A suboptimal step size. must then be 
used, as in Figure 4.34. 

This method is much more efficient than the constrained-gradient method, as 
illustrated on Example 4.17 by Figure 4.35. Convergence is now obtained in one 
iteration (compare with Figure 4.33). 

In practice, the method is easy to use only when JP' has a simple geometrical shape. 
If, for example, JP is defined by the constraints 

0i ~Pi ~ bit i E li, card IT ~ lip. 
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the components ofpk+I(A) can be chosen as 

p~+I(Il)=p1-Agi(pk), if ai~p~-Ilg;(pk) ~bi or ill TI 

p1+ 1(1l) = bi, if p1-llgi(pk) > bi, 

p~+ 1 (Il) = a i, if P1-llgi(pk) < ai. 

j(p) = jcf)3) 

Figure 4.34. Gradient-projection method (with suboptimal step size Ak) 

191 

The search direction is lhus modified only when constraints are active. This 
corresponds to the following algorithm, where the active or inactive character of the 
constraints is used to choose the direction dk. 

Step 0: Choose pO e P, set k = O. 
Step J: Compute g(pk), Find the set Hk of all constraints which would be violated after 

any displacement along _g(pk), i.e. 

Step 2: Take the constraints in lIk into account lo define the search direction dk 

If IIdkll = 0, stor, 
Step 3: Compute pk+I(llk) = pk + Ilkdk, with 

Ilk = arg min j[pk+ I (Il) ] . 
Illpk+ 1 (Il)e P 
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Increment k by one and go to Step 1. 

-1 

j(P) = 1 

Figure 4.35. Behaviour of the srndient-projection algorithm 

The stopping rule in Step 2 should be augmented by a test on the decrease of j(pk) 
between two consecutive iterations. See also Section 4.3.7 for stopping rules taking 
computer accuracy into account. This algorithm proceeds from the method of feasible 
directions, to be presented in Section 4.3.4.7 (without requiring solution of a linear 
program at each step). It can be generalized (Polak, 1971; Luenberger, 1973; Minoux, 
1983), to constraints affine in p as well as to nonlinear constraints, although these raise 
specific difficulties. Surprisingly. neither a proof of convergence towards a local 
optimum nor a counterexample seems to be available (Luenberger, 1973~ Minoux, 
1983). 

Note, finally, that a projected Newlon method may not converge, as illustrated by 
Figure 4.36. This will hold true for any method based upon the recurrence 

with H -:f:. Ill
p 

positive-definite (Polyak, 1987). 

4.3.4.5 Constrained Newton and quasi-Newton 

These approaches are based on quadratic approximations of the cost. and compute 
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pk+l :: arg r:tin [(p - f\k)Tg(pk) + ~ (p - pk)TH(p _ pk)]. 
pelP -

The constrained Newton method is obtained when H is the Hessian at pk. A Gauss­
Newton approximation of the Hessian can also be considered, or an approximation of 
its inverse built recursively as in the quasi-Newton methods of Section 4.3.3.6. 

Cost contour 

Figure 4.36. Failure of the projected Newton method 

REMARK 4.21 

When H :: (l/Ak)Illp' pk+l is given by 

pk+l :: arg min [2itk(P - pk)T g(pk) + (p _ pk)T(p _ pk)] 
pe JP' 

:; arg min lip pk + Akg(pk)II~. 
pelF 

so the method boils down to gradient projection. provided that Ak is chosen to minimize 
j(pk+l). 0 

A possible variant computes 

pk+:: arg min [(p pk)T g(pk) +! (p _ pk)TH(p _ pk)]. 
pelF 
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and searches for pk+ I along pk+ - {ik. Note that choosing H = 0 then leads to the 
constrained-gradient method, found in Section 4.3.4.3 to be unsatisfactory. 

Convergence is guaranteed only if lP is convex. The search for pk+ may not be 
trivial; see (Lawson and Hanson, 1974) for the solution of constrained least-squares 
problems. When the constraints are linear inequalities, the problem is quadratic 
programming, for which finite algorithms are available (Section 4.3.4.2). The 
constrained Newton method is then called sequential quadratic programmil1g. 

A constrained variant of the conjugate-gmdient method is also available (Polyak, 
1987) for problems where the constraints are 

ai 5: Pi ~ bi, i E card J[ 5: dim p. 

More general methods, which can be used when IF' is still convex but may have a more 
complicated shape, will now be presented. 

4.3.4.6 Method of centres 

Assume that there exists a vector pO such that the subset of P' defined as 

is compact with a nonempty interior. Assume moreover that Cj(p) < 0 for any p inside 
C. A point pi is generated at the Chebyshev centre ofC(pO), i.e. at a maximal distance 
from its boundary. A possible distance function is 

d(p', p) = - max (j(p') - j(p), Ci
ll
(P'), 11 1. ... , dim ql. 

The principle of the method is then: 

Step 1: Choose pO such that C(pO) is compact, with a non empty interior. Set k = O. 
Step 2: Compute 

Step 3: If d(pk+, (ik) 0 stop; else set pk+ 1 pk+, increment k by one and go to 
Step 2. 

In practice, the computation of pk+ is perfonned by one-dimensional maximization of 
d(p, pk) in a privileged direction dk. This direction must be such that for sufficiently 
small A 

A suitable direction (Polak, 1971) is given by the argument of the minimum over d of 
the cost 



under the constraints Id;l::; 1 (i = 1, ... , dim p), wiLh 

It is obtained (Topkis and Veinnot, 1967; Minoux. 1983) by solving the following 
]inear-programming problem (Section 4.3.4.1): 

minimize a with respect to d under the constraints 

Id;1 ::; 1, i = 1, ... , dim p. 

When the optimal value of a is negative, the cost decreases in the direction d, which 
is therefore feasible in the sense that a small displacement along d keeps p feasible. 
When j and Cj are convex, d(., pk) is convex too (but not differentiable everywhere), so 
minimization along dk can be performed with the techniques proposed in 
Section 4.3.2. 

When the constraints Cj are linear and j is convex, C([Jk) is contained in the polytope 

One can then show (Levin, 1965) that setting pk+1 at the centre of gravity ofIFt (which 
is necessarily feasible) ensures 

and thus, 

This provides the fastest convergence, in terms of number of iterations, among all 
procedures using gradients only. However, computing the centre of gravity of a 
polytope is a heavy task, so the meLhod is of no practical interest as it stands. This 
motivates taking as pk+l the centre of the maximal-volume ellipsoid inscribed in lFk 
(Tarasov, Khachiyan and ErJikh, 1988), the determination of which is of polynomial 
complexity. See also (Khachiyan and Todd, 1993), A similar method can be used on 
cost functions not differentiable everywhere, simply by replacing g by a subgradient g 
(Section 4.3.5.1). When the constraints Cj are nonlinear but convex, they can be 
linearized. If pk+ I as determined from Pk+ 1 does not satisfy a constraint Ci,,(P) ::; 0, 
the set 

is substituted for lP'k+l and a new vector pk+l is determined. 
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The attractive complexity properties of such interior-point methods have stimulated 
intense activity (den Hertog, 1994; Nesterov and Nemirovskii, 1994). Other methods 
can be considered for generating points interior to IPk, sllch as the ellipsoidal method of 
Section 4.3.5.3. 

4.3.4.7 Method of feasible directions 

Although developed inde~endently (Zoutendijk, 1960), this method is very close to the 
previous one. The vector ph at Step 2 is now defined by 

The search direction dk should satisfy Idk.1 ::; [, i = 1, ... , II p' to normalize it with 
linear constraints. It should be feasible, i.e. sbch that 

g Te" (pk)dk::; 0 for all active constraints Ci /' 
III 1 

Thus, the cost can be decreased with Cill(P) ::; 0 for small enough displacements along 
dk· 

This suggests that dk should be chosen as the solution of the following linear­
programming problem: 

with the constraints 

dk = arg min g T(pk)d, 
d 

g~. (pk)d ~ 0 for all active constraints ci
ll 

and Idil ::; I, i = 1, ... , II p. 
III 

However, the nonlinearity of the active constraints and the fact that only active 
constraints are taken into account raise convergence difficulties. These difficulties can 
be avoided by taking all constraints into account and forcing dk to point towards the 
interior of the feasible set P when constraints are active at pk (Luenberger, 1973; 
Minoux, 1983). The feasible direction dk is then computed as in Section 4.3.4.6, and 

where 

Ak = arg min j(pk + Adk), 
AEA 

The stopping rule at Step 3 is now based on the value obtained for ct when solving the 
linear program involved in the computation of dk, i.e. 

Step 3 ': If a = 0 then stop; else (ct < 0) set pk+ 1 = pk+, increment k by one and go to 
Step 2. 

Various modifications of the algorithm have been suggested to facilitate the 
determination of dk. The basic idea is not to take into account those constraints that are 
far enough from being saturated. 
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The method also applies when equality constraints cc(p) = 0 are present. When 
cc(p) is affine in p, i.e. cc(p) = Ap + b, it suffices to take the additional constraint 
Ad = 0 into account when computing dk. When ce(p) is not affine, a penalty function 
may be used (Polak, 197]). 

So far, only the first derivatives of j and Cj have been considered. Incorporation of 
second derivatives leads to second-order methods a/feasible directions (Polak, 1971). 
The computation of dk is then performed by minimization of a quadratic function under 
quadratic constraints (Lawson and Hanson, 1974). 

4.3.5 Non-differentiable cost functions 

Except for one-dimensional search, the methods considered so far have dealt with cost 
functions differentiable with respect to p. Non-differentiable cost functions, such as the 
LJ norm used in least-modulus estimation or the Loo nonn used in minimax estimation, 
require specific methods; see also Section 4.3.9.2. 

As a motivating example, consider the following cost function (Polyak, 1987) 

If the initial point pO is taken as (1, I )T, the cost increases in the directions of both 
coordinate axes, so PowelI's method does not apply, even if it does not use the gradient 
of the cost. 

The three methods to be presented assume the cost function to be convex. The first 
extends the gradient algorithm to non-differentiable costs via the notion of subgradient. 
The second relies on iterative construction of a piecewise linear approximation of the 
cost. In contrast to the first, it provides monotone convergence. The third relies on an 
ellipsoidal algorithm, of the same type as that suggested for linear progranuning above. 
It has been successfully applied even to some non-convex problems 

4.3.5.1 Sub gradient method 

A slIbgratiient (Shor, ] 985) at p of a convex function j is a vector .a that satisfies for 
any r 

j(p + r) ~.i(p) + aTr. 

When j is differentiable at p, the subgradienl g(p) = g(p) is unique. Otherwise, the 
slibdijJerclItial of j at P, i.e. the set of all its subgradients g(p), will be denoted by 
dj(p); see Figure 4.37. Any subgradient has the [ollowing properties (Polyak, 1987): 

- if j is convex, the set of all its subgradients is bounded over any set defined by 
{p E J1(lIp Ij(p):::;; a}; 

- if j is convex, [g(P2) - fHpl)]T(P2 - pt} ~ 0 (the subgradient is a monotone 
operator); 

- p is a minimizer of the unconstrained convex cost function j if and only if 
o E dj(p). 

- if g(PI, P2) is the directional derivative of j at p I towards P2, 



(also called the Frechet derivative). then 

j(p+r) 

j(P) 

g(Pl. P2) = max aTp2. 
aeoj(PI) 

p p +r 

Figure 4.37. Subdiffcrcntial aj{p) of a convex function 
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The following elementary rules allow a simple computation of a subgradient of a 
convex functionj. 

- Letjj (i = 1, ... ) m) be convex functions, with respective subgradients gj. If j is 
defined by 

then 

III 

j(p) L aJi(p), 
;=1 

m 
g(p) = l: ajgj(p) 

;=1 

is a subgradient of j at p. If j is defined by 

j(p) = max ji(P), 
I$.i$.m 
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then aj(p) is the convex hull of 

u (ajj(p)]. with Ir(p) = {i E {I, ... , m] lji(P) =j(p)}. 
iE R(p) 

- Let A be an 111 x 1lp matrix, and f a function over lR.1II such that j(p) = f(Ap); then 
a subgradient ofj at p is A"Pgr(p), with gr a subgradient off 

The subgradient method derives from the gradient algorithm, and corresponds to 

It is not always possible to make the cost decrease in the direcUon -g suggested by the 
subgradicnt. Consider again, for example, the cost function 

with a subgradient at pO = (1. l)T given by iHpO) (1.2, -O.8)T. It is easy to check 
that j increases along _g(po). It is therefore meaningless to look for any optimal step 
size At. It is equaJly impossible to keep A constant. Consider for example the one­
parameter cost functionj(P2 = Ipl. Since Ig(p)1 = 1 for any nonzero p, a constant step 
size A would imply 1/:1+ I - jJkl = il for any k. The sequence ilk must be chosen a priori, 
and it can be shown that, for a convex cost function, Cl sequence satisfying 

00 

ilk ~ 0 as k ~ 00 and I ilk = 00, 

k=1 

ensures convergence of pk towards the optimum. The second condition, however. 
imposes slow convergence, so the method is not recommended in practice (Polyak, 
1987). 

REMARK 4.22 

An approximate subgradient, easier to compute than a subgradient, may also be 
employed (Polyak, 1987). 0 

4.3.5.2 Cutting-plane method 

For any convex cost function j, from the definition of the subgradicnt., we have 

so any minimizer p of j over some prior polyLope lP' is in 

If the value of j(p) is unknown, this set can be replaced by 
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1lJ> -f ID!r-T(l\i)( 1\;)<0 '-1 kJ "'k- pEr g p p-p - ,1- , ... , . 

In both cases, is also a polytope in R:."P. The next point pk+1 must be chosen so as 
to reduce the size of JP'k+ I as much as possible. In the cutting-plane method (Kelley, 
1960), pk+ I minimizes a linear approximation of j built on the basis of the previous 
observations. It is obtained by solving the linear-programming problem: 

under the constraints 

pk+1 = nrg min LX(p), 
p 

C~nsider .tl:e e~tended "vector Pc = (pT, LX)'I' in jf;Jt~+"I. From th~ Rrior pOI.yt.ope 
!Po == i'" contammg po and p and bounds on ex. (ex.min <j(p), ex.max ~.I(po)), an tIlltlal 
polytope can be built that contains p2. The updating of the polytope after each ncw 
evaluation of the cost corresponds to one iteration of the algorithm for exact polyhedral 
description in Section 5.4.1.3. Let Pt == (p+T, ex.+)T be a vertex of the updated 
polytope such that a+ is the minimal value taken by LX over all vertices. The point pk+ I 
is chosen as p+. 

The method is guaranteed to converge for a convex cost function. When j is not 
convex, it can stili be applied iteratively, initializing each iteration with a reduced-size 
polytope (which may not contain p) centred on the best value of p obtained ,.It the 
previous iteration. 

REMARK 4.23 

Another polyhedral approach, operating now in lR.l/p, is to choose an interior point of 
the polytope Pk as pk+ I, for instance the barycentre of its vertices or the centre of the 
minimum-volume axis-aligned orthotope containing IPk. This method is very close to 
the method of centres presented in Section 4.3.4.6. 0 

4.3.5.3 Ellipsoidal method 

The previous approach requires solution of a linear-programming problem, for which 
an eJJipsoidal algorithm can be employed (Sections 4.3.4.1 and 5.4.1.1). Consider the 
case where the value of j(p) is unknown. The minimizer p is in 

Provided that this domain is bounded, it is possible Lo construct, recursively, an 
ellipsoid Ek guaranteed Lo contain it: 

The point pk+ I is then chosen as the centre of the smallest-volume ellipsoid that 
contains lEk n {p E Rllp I gT(pk)(p - pk) ~ 0 I (Bland, Goldfarb and Todd, ] 981). The 
algorithm is: 
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Step 0: Choose pO, Mo = pIllp' P » 1, such that IBo contains the minimizer p. Set 
k = O. . 

Step 1: If gT(pk)MdHpk) = 0 (or < 0 because of numerical problems), stop. Else set 

with 

Step 2: Increment k by one and go to Step 1. 

112 
and 8 - --p­-., l' }/p -

A stopping rule based on the decrease of j(pk) between two iterations could be 
introduced, in addition to the numerical stability test of Step 1. This method may be 
considered a space-dilation method (one might also say a variable-metric method, see 
Section 4.3.3.6), because it corresponds to a subgradient method with a change of 
metric in the direction ofg(pk). 

REMARKS 4.24 

- If the problem involves linear inequality constraints on P. 

P E QIII = {p E iFtllp I aT p ::; biT i = 1, ... , m}, 

a point pk+ 1 E Q/II can be chosen by the same type of ellipsoidal aJgorithm 
(Section 4.3.4.1), If at iteration k some of these constraints are violated by pk, the 
subgradient 1Hpk) is replaced by the vector aj associated with one of them, for 
instance the most violated. 

- If the inequality constraints are nonlinear, the same aRProach can still be used, with 
the at's replaced by the gradients of the constraints at pk. For a comparison between 
this ellipsoidal approach and more classical methods of nonlinear programming on 
both convex and nonconvex problems, see (Ecker and Kupferschmid, 1985), The 
ellipsoidal method turns out to be relatively insensitive to a lack of precision in the 
evaluation of the cost and to the choice of the initial value for the parameters, and 
very efficient during the initial phase of the optimization. 0 

4.3.5.4 Application to L} estimation 

This section il1ustrates a possible application of the previous algorithms. For other 
specific methods, see (Dodge, 1987~ Gonin and Money, 1989), Note that replacing an 
Lt estimator by a Huber non-redescending M-estimator (Section 3.7.3), with a small 
threshold 8, would make the optimization problem differentiable, so the local methods 
of Section 4.3.3 would apply, 

The cost function to be minimized can be written as 
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"
t 

j(p)::: L wi Iy(ti) - Ym(tjt p)1. 
i=1 

The algorithm proposed by Osborne and Watson (197 I) is based on the sequential 
solution of convex problems obtained by linearizing Ym(t, p). 

Step 0: Choose pO, set k = O. 
Step 1: Compute 

III 

opk = arg min L Wj 1)'(1;) Ym(tj, pk) 
op i=l 

Step 2: Compute 
Ilt 

Ak = arg min L Wj Iy(lj) - ym(ti' pk + AOpk)1. 
..1.>0 i=l 

Slep 3: Set pk+l = pk + AkOpk, increment k by one and go to Step 1. 

The computation of opk (Step 1) can be performed by the cutting-plane method of 
Section 4.3.5.2 or the ellipsoidal method of Section 4.3.5.3. The computation of Ak 
(Step 2) corresponds to a one~dimensional minimization (Section 4.3.2). A slopping 
rule (based, e.g. t on [j(pk+ 1) - j(pk)l) must be introduced at Step 3. 

EXAMPLE 4.18 

Consider the model response described by 

where the vector ~ characterizes the experimental conditions. Assume that the 
experimental conditions are 

The parameters are to be estimated in the sense of the (unweighted) least-modulus 
criterion, so the cost function to be minimized is 

., 
j(P)=IPI +P2-),1 1+ IPI +P2-Y21+lpl +P2-Y31. 

The Osborne and Watson algorithm was used, using the ellipsoidal approach of 
Section 4.3.5.3 at Step 1 and Brent's derivative-free one-dimensional optimization 
method at Step 2. Figure 4.38 presents the cost contours when the measurements on 
the process are yS ::: (5, 2, 4)T. 
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Figure 4.38. Cost contours for the LI optimization problem of Example 4.18 

All values of p such that PI + p~ = 5 and 2 ~ PI + P2 ~ 4 (dashed line) are 
minimizers, so there is no local uniqueness of the estimate (compare with 
Example 4.21, where the same model structure will be considered in the context of 
least squares). Starling from pO (-4, 4.9)T, which corresponds to j(pO) = 19.21, 
after 50 evaluations of the cost, 4 optimizations of the approximate cost corresponding 
to Step I (at pO, indicated by a circle, then at the ~oints indicated by stars), and 42 
evaluations of subgradients, the algorithm finds p = (-0.0706, 2.2518)T, which 
corresponds to j(p) = 2. All classical melhods for local optimization that are not 
designed to handle nondifferentiability just rush to a point where the cost is not 
differentiable and fail piteously. 0 

4.3.6 Initialization 

Most methods considered so far take advantage of the local properties of the cost 
function j. Thus al best they converge to a local optimum. Nothing guarantees, in 
general, lhat there are no other feasible values of p yielding lower j(p). It is therefore 
important to choose an initial value pO as close as possible to a global optimizer IS of j. 
We have seen, for instance, that it is often possible to make the model output linear in 
the parameters so as to find pO by the lema-squares method (Examples 4.3, 4.4 
and 4.6), 

It is of course also advisable to start other local optimizations from points picked at 
random in the prior feasible space jp, to see whether the algorithm always converges 
towards a similar value of p. Otherwise, one should rank the various candidate 
optimizers according to the value of the cost, and keep the best. One may then realize 
that quite different vaJues of p yield an optimal or quasi-optimal value of the cost The 
uncertainly in the estimated parameters will then obviously be very large. 

A possible method is as follows: 

- choose a minimization technique that guarantees convergence to the local minimum 
located in the same basin of attraction as pO, 
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- perform a large number of local minimizations, picking pO at random in lP according 
to a uniform distribution. 

Provided that the basins of attraction of the global minimizers are not too small, one will 
thus locate all global minimizers. This is a first example of a global optimization 
method, with the ability to escape local minima. Others, which also aim to solve, alleast 
partially, the problems raised by initialization, will be presented in Section 4.3.9. 

4.3.7 Termination 

Whenever an iterative minimization technique is used, one has to decide when to stop 
the process. The most commonly used stopping conditions are 

k = kmax . 

By itself, none of these conditions is usually satisfactory. One is often at a loss how to 
choose the threshold 8 in the first three. The last condition requires advance knowledge 
of how many iterations will be required, which is seldom realistic. Even if this type of 
condition is always introduced as a safety measure to avoid infinite loops, kmax is then 
only an indication of the maximum effort one is prepared to allocate to this local 
minimization. 

If the cost function is differentiable, any minimizer p which is neither at infinity nor 
on a constraint corresponds to a stationary point and satisfies 

if ...L 0 '\ I II = . ap p=p 

From a mathematical stalld~point, one would like to stop iterating when this equation is 
satisfied. In practice, however, only an approximate computer representation of the 
gradient is available. A more realistic course is to Slop when the gradient no longer 
differs significantly from zero, i.e. when its mantissa no longer contains any significant 
digit. 

Three types of error are introduced by numerical computation, affecting the accuracy 
of the results: 

- truncation errors (or rounding errors, depending on the computer), resulting from 
finite word length~ truncation error arises because a computer number x sLands for 
all numbers between x and x plus one least significant bit (LSB); 

- computation errors, mainly introduced when two very dose numbers are subtracted; 
- methodological errors, not considered here. 
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To estimate the number of significant digits in a result obtained by computer, the 
CEST AC method (Controle et Estimation STochastique des Arrolldis de CafcHf) 
(Vignes, 1978, 1988; Pichat and Vignes, 1993) may be used. The idea is to study the 
statistics of all computer results that may equally well represent the mathematical result 
sought. here the gradient of the cost function at ~. 

To take truncation or rounding errors into account, the computations are perfonned 
several times, randomly adding or subtracting LSB's in the mantissas of the results of 
all numerical operations on reals. If prob(i) denotes the probability of adding i LSB' s to 
any result, then 

prob(O) = probe 1) = 0.5 

when dealing with truncation errors, and 

prob(O) = 0.5, probe-I) prob(J) 0.25 

for rounding errors. 
To take computation errors into account, early versions of CEST AC also randomly 

permuted the order of additions in sums of products (Vignes, 1978), which led to a 
much more complicated implementation. 

Consider one component of the gradient thus evaluated. If the population of the 
results obtained is distributed as in Figure 4.39, the gradient will be considered as 
differing significantly from zero, and further iterations will be authorized. If, on the 
other hand, all components of the gradient are distributed as in Figure 4.40, one cannot 
conclude that the gradient differs from zero, so no information is available on the 
direction to be foHowed. and iteration should be terminated. 

o o' 
-----::t:'------I--I----f-.....:II-*-------\li!I"1li!Joo- ./ + dPi 

Figure 4.39. The ilh component of Ihe gradient can be considered 10 di rfcr rrom zero 

o 

Figure 4.40. II is unclear whether thc ith component of' Ihe gradient dirrers rrom zero. 

To quantify these ideas, assume that the set of the results rh i = 1, ... , 11, obtained 
when computing an actual quantity r consists of samples from a Gaussian population. 
Then 

prober E [J1 0" 
P + Jal2;']) = I tan a, 

11 

where 

1 11 
Il 

P=lI Iri . 0"2 = I (ri p) 2. 
1/ -

i=1 i=l 
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and laJ2 is the (tabulated) value with probability a of being exceeded by the absolute 
value of a random variable having a Student t-distribution with 12 - 1 degrees of 
freedom. The number of significant digits of any of the resulls rj is then estimated by 

and the number of significant digits of their mean /1 by 

A Ittl t a./2 
11sd = 10gl0 - - loglo ( J~.)' 

III a 'JII 

Perturbed computations are usually performed only three times (11 = 3). 
Then, for a = 0.05, 

" 1/11 
llsdm = 10glO - - 0.4. 

a 
If 0Sdm is less than one for all components of the gradient, iterative local minimization is 
terminated. 

REMARKS 4.25 

- The LSB depends on the computer and the precision used. The number of the 
iterations actually performed will also depend on these factors. The more accurate 
the computation, the longer iterative procedures can proceed significantly. In 
contrast to the stopping conditions at the beginning of this section, this condition has 
a rational basis. 

- Contrary to what is assumed here, the population of possible results may be far 
from Gaussian, especially if condilional branching is involved and the decision 
taken differs between realizations. A way to mitigate this difficulty is to use a 
synchronous implementation of CEST AC to detect any intermediate result, such as 
the result of a numerical test, that becomes insignificant. 

- Although the gradient must be evaluated several times at each iteration, the 
computational load may tum Ollt to be lighter than with a traditional test, because 
CEST AC often terminates iterations much earlier. 

- Various software tools are available to implement CESTAC in FORTRAN or ADA 
code automatically (Pichat and Vigncs, 1993). 0 

4.3.8 Recursive techniques 

As with least squares, one may wish to treat data one by one. indexed by an integer 
variable i, instead of considering aU of them as a batch. Assume that there exists a 
predicUon error epU;, p) (possibly an output error) that becomes a sequence of 
independent random variables e(ti) with probability density 1rE[ep(tj, p*)] when the 
parameters take their true value. Note that 1;+ I - Ij may depend on i. Moreover, Ii does 
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not necessarily refer to time, and may simply correspond to the ith observation of the 
process. The maximum-likelihood approach minimizes the cost 

III 

jrnl(P) = - ~ L In 1rdepUi, p}]. 
1;=1 

Under the hypothesis of ergodicity I jrnl(P) can be seen as an approximation of the cost 

j(p) = - E (In 1rdepCp)]]. 
epCp) 

With the help of stocltaslic-approximatioll techniques, (Robbins and Monro, 1951; 
Dvoretzky, 1956; Polyak and Tsypkin, 1973; Saridis, 1974; Ermoliev and Wets, 
1988), it is possible to minimize j without ever evaluating any mathematical expectation. 
As a fringe benefit, one gets a recursive algorithm, even when the model output 
depends nonlinearly on the parameters. One may, for example, use a stoclwstic gradiellt 
algorithm, derived from the gradient algorithm for the cost functionj, i.e. 

by replacing evaluation of the mathematical expectation by random picking of a 
prediction error from the set of all those that could have been obtained. For this 
purpose, the prediction error associated with the measurement yUk+J) is used, to get 

that is 
a 

1r,JepUk+ I, p)] 

1rdepCtk+1. p)] 

The gain Ak must satisfy three conditions: 

Ak > 0 (lhe steps are in the right direction), 

00 

I Ak = 00 (all feasible parameter vectors can be reached), 
k=O 
00 

- L Ai < 00 (the influence of the noise disappears asymptotically). 
k=O 

A possible gain is therefore Ak = AoI(k+ I). See also the notion of averaging below, and 
Section 6.4.3,2 for strategies with performance less sensitive to the choice of .4.0. 

As with the recursive least-squares algorithm without forgetting, the correction gain 
tends to zero as the number of iterations tends to inn nity. The associated estimator is 



consistent, like the maximum~1ikelihood estimator, but unlike it is not asymptotically 
efficient. For a general study of the convergence properties of this type of algorithm, 
see (Benveniste, Metivier and Priourel, 1987, 1990). 

A stochastic Newtoll algorithm can also be used (Ljung and Soderstrom, 1983; 
Tsypkin, 1983; Tsypkin and Lototsky, 1985), dell ned as 

pk+! pk + Fk~l(pk) aa In ndepUk+l, p)] /\' 
P Ip=pk 

where F k is the Fisher information matrix for the first k data points, which can be 
written. as will be seen in Chapter 5. 

with 

Provided that the hypotheses made in Section 3.3.3 when presenting the properties of 
maximum-likelihood estimators are satisfied. this algorithm is asymptotically efficient. 
Note that it still involves the evaluation of a mathematical expectation, in contrast to the 
stochastic gradient algorithm. We shall, however, see in Chapter 5 how to obtain an 
analytical expression for Fk(p), which makes the complexity of one iteration of the 
stochastic Newton algorithm equivalent to that of one iteratioll of a conventional 
Newton algorithm. If we define the average Fisher infonnation matrix per sample as 

the stochastic Newton algorithm can be written as 

which has a decreasing gain Ak = l/(k + I). 
\Vhen the random variables e(t} are Ll.d. ~O, 0"2), this algorithm is a stochastic 

version of the Gauss-Newton algorithm of Sections 4.2.4 and 4.3.3.4. 
Since the stochastic Newton algorithm is asymptotically efficient, it provides a 

recursive estimator with the same asymptotic optimality properties as the maximum­
likelihood estimator, which does not mean that the properties on a small set of data 
points will be similar. 

Assume now that time-varying parameters are to be tracked. It is no longer possible 
to let the adaptation gain tend to zero without any precautions, as already mentioned for 
recursive least-squares. Most often, Ak is made to tend to some constant value, allowing 
the algorithm to continue to take prediction errors into account. One may prefer to let Ak 
tend to zero and pk converge, but the prediction error should then be monitored to check 
whether the adaptation gain needs to be increased. The choice will be guided by the type 
of parameter variation that is assumed to be possible. If the parameters vary slowly and 
continuously, a technique thaL makes Ak tend to a nonzero constant seems preferable. If, 
on the other hand, the parameters jump between constant values, one should rather let 
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Ak tend to zero and monitor the prediction error to detect when the gain should be 
inflated, see Sections 4.1.4.2 and 4.1.4.3 .. 

EXAMPLE 4.19 

Assume that for the true value of the parameters, the prediction errors become LLd. 
!ALtO, 0-2). As will be seen in Chapter 5, the Fisher information matrix associated with 
the first k data points is then given by 

k 

F (pl\k)--L '" ~e (/. p)le (/. p) k -;) L..J dP p,. :-. T P I' I 1\ k . 
0-- i= 1 up p=p 

In the special case where the prediction error is affine in the parameters, F k does not 
depend on pk but only on k, so it can be computed recursively. One can indeed write 

and 

so 
1 

Fk+! = Fk + - r(k)rT(k). 
0-2 

The matrix-inversion lemma can then be used to compute F'kll without inverting a 
matrix at each iteration. The resulting algorithm corresponds to recursive least squares. 
A stochastic-gradient algorithm would in this case lead to 

which is called the Least A1ewz Sqllares algorithm, widely lIsed in signal processing 
(Widrow and Steams, 1985; Macchi, 1995). See also Remark 4.4. 

Assume now that the prediction error is no longer afHne in p. Defining an 
approximation Ft of Fk(pk) recursively by 

a a 1 [d - d ] 
Fk+1=Fk +- S- e pUk+I'P):-. TepUk+I'P) I 1\.' 

0-2 up up p=pk 

one can use the results of the affine case. Taking advantage once again of the matrix­
inversion lemma gives 

with 
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The algorithm 

Ak+l Ak (Fa )-1 d I [( )] p = P + l k+ 1 do n HE ep f k+ 1 ,p I A' 
P p=pk 

is then equivalent to 

and thus to 

This corresponds to the approximate-maximum-likelihood method (Goodwin and 
Payne, 1977), similar to the recursive least-squares algorithm of Section 4.1.4 (since 
de pUk+1' p)ldp = -r(k) for LP model structures), and to the Gauss-Newton algorithm 
introduced in Section 4.2.4. Evidence of the superiority of this method over the 
extended-matrix approach presented in Section 4.2.3.2 can be found in (Ljung, 
Soderstrom and Gustavsson, 1975) . 0 

Averaging is a very promising and fascinating technique to bypass the choice of a 
suitable step size in the stochastic-gradient algorithm or the computation of the Fisher 
information matrix in the stochastic-Newton algorithm. Under some technical 
conditions, a stochastic-gradient-like algorithm, with the requirements on Ak replaced 
by 

which amounts to slo'willg down the algorithm, makes it possible to achieve an optimal 
asymptotic rate of convergence for the average of the past estimates 

k 
pk:= I pi, 

;=0 

whatever the actual sequence (Ad chosen (Polyak and Juditzky, 1992). The choice of 
this sequence becomes therefore much less critical than with the original stochastic­
gradient algorithm. One may for instance use 

In practice, averaging should not start from the very beginning, where the 
approximation might be very bad, and a constant A should be used until the 
neighbourhood of the solution is reached. Since Ak tends to zero more slowly, the 
estimates pk move more erratically than with the usual stochastic-gradient algorilhm. 
This is compensated for by the averaging. Kushner and Yang (1993) have proven that 
the approach is much more general than originally thought. The case where A. is sma}] 



and constant (e.g. to track time-varying parameters) is considered in (Kushner and 
Yang, 1995). 

4.3.9 Global optimization 
v 

Global optimization techniques aim to find the best possible value j for the cost and the 
associated optimizer(s) p, such that for any feasible p 

j(p) ~j(p) = r 
Insofar as they succeed, they bypass the initialization problems raised by local methods. 
Many global optimization methods are available; see, e.g., the books by Dixon and 
Szego (1975, 1978), Hansen (1992), Horst and Tuy (1990). Mockus (l989). Ratschek 
and Rokne (1988), and Zhigljavsky (1991). Some are already very complex for two­
parameter problems. and seem hardly generalizable [0 higher-dimensional problems. 
We shall limit ourselves to two algorithms: the first, based on random search, is 
extremely simple to implement but may fail to locate any global optimizer; the second, 
deterministic in nature, guarantees its results, at the cost of a much more complex 
implementation. 

Note that suitable experimental conditions may eliminate parasitic local minima from 
parameter estimation problems, and thus make it possible to find p = p by local 
methods, as shown in the next section. 

4.3.9.1 Eliminating parasitic local optima 

The cost functionj is inverse unimodal over IF if and only if for every pO E IP, po :;C p, 
there exists a path in JP> from pO to p along whichj(p) decreases. The global oplimizer 
of the cost is then p. In this section. the minimization algorilhm is assumed to be sllch 
that pk will never leave JP> and y1TI(p) is assumed to be continuous in p. 

In the observation space to which yS belongs, the locus of all feasible model 
responses is a hypersurface §exp = [ym(p) I p E lP], called the expectation surface 
(Sections 5. L l.1 and 6.4. t). Consider the case where the experiment consists of 
repeating only 1lp = dim p distinct exp~riments, that is I'j observations are performed 
with the same experimental conditions ~1, with 

Hp 

Ll'i 
i=] 

(see also Section 6.2.2.1). Then ym(p) has only I1p distinct components, and Scxp is 
therefore included in t~e hyperplane 1HIcxp containing the origin and defined by Yi =)'j 
for all (i,j) such that ~1 =;J. Since any norm ILlI in Rill is convex, i.e. 

the level sets of lIy - ySII are convex (balls centred at yS). The intersections of these sets 
with IHIcxp are thus convex, and all of them contain 
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y = arg min lIy - ySIl. 
yE 

For a~ yO in I8fcxp, IIy ySllthcn decreases monotonically along the line segment from 
yO to y. 

When Scxp covers llilcxp, anel when the model structure is globally identifiable under 
the experimental conditions considered, there exists a unique p such that y = yTTl(p), 
and to any y along the segment from yll1(po) to y corresponds a p in Rllp such that 
ym(p) = y, soj(p) is inverse unimodal (although not necessarily convex). When §exp 

docs not cover lHicxp, a sl~[fici£jlll condition for the inverse unimodality of j over IP is 
that Scxr be convex. Note that whereas checking the convexity of Scxp may turn out to 
be difficult for a constrained JP, the task is generally much easier when lP = lR~nr. When 
Gcxp is not convex, the answer depends on its shape, as illustrated by Figures 4.41 
Hnd 4.42 in the case IIp = 2 for the Leo norm. 

In Figure 4.41, if Gcxp is the set limited by the solid line, j(p) is inverse unimodal 
over P. Indeed, any yTTl(p) in 8 cxp can be connected to y by a path contained in Scxp 
along whichj(p) decreases monotonically. 

Boundary of &exp = (yTTl(p) I P E 

Figure 4.41. Level sets of lIy - ySII"" on (doshed lines) 

and boundary ofSexp (solid line); the cost is inverse unimodal 

By contrast, in Figure 4.42 the cost is inverse mullimodal, because any p such that 
ym(p) is in the dashed region belongs to a basin of attraction that differs from that ofp. 
Indeed, j(p) increases along any path contained in §exp and connecting yTTl(p) in the 
dashed area to y. 

The following two examples illustrate the case of least-squares estimation. We have 
seen in Section 3.1 (Remark 3.1) that replicated measurements can then be replaced by 
lheir mean (provided that the weights are suitably adjusted). When only IIp experimental 
conditions are used, it is therefore possible to work in an IIp-dimensional space, i.e. 
directly on JHfexp' 



Boundary of §exp = {ym(p) I p E 

Figure 4.42. Level sets of lIy - ySII"" on (dashed lines) 

and boundary of Sexp (solid line); the cost is inverse mullimodal 

EXAMPLE 4.20 

Consider the model response 

YmU, p) = p2 + pO - p)t. 

Assume that two measurements are performed, at I] ° and 12 1. When 
yS (2.5, I)T, the least-squares criterion has a local optimum at Pis = -1.2488, and a 
global one at PIs 1.5356. F~ure 4.43 shows the expectation surface Scxp and the 
locations of the responses ymOits) and ymcPls)' Assume now that the two observations 
yS = (1.5, 1.1)1' are taken at the same time I = 1. The two components of ym(p) 
then become identical, so all model responses are on the line bisecting the first 
'luadravnt of the observation space (Figure 4.44), and the local minimum disappears 
CPis=Pls =1.3). 0 

EXAMPLE 4.21 

Consider the model response described by 

where the vector ~ characterizes the experimental conditions. Assume first that three 
observations are taken under the experimental conditions 

~l =(1,O)T, ~2=(l.l)T and ~3 (O,l)T, 

Figure 4.45 presents the expectation surface Sexp for TP = [-5, 5J x [-2, 5], and 
Figure 4.46 the corresponding least-squares cost contours when 
y5 = (5, -10, 8)T. One can easily check that the model parameters are globally 
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identifiable under these experimental conditions (i.e. ym(p I) = ym(p2) => PI = P2 
almost everywhere), so that the inverse multimodality is not due to a lack of 
identifiability. 

(l,S 1.5 

Figure 4.43. Expectation surface for Example 4.20; 

experimcnt:tl conditions differ and there is a parasitic local minimum 

m(A )_ m(v) Y Pis -y Pis 

Figure 4.44. Expectation surrace for Example 4.20; 

a single experiment is duplicilted and the parasitic local minimum disappears 
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Figure 4.45. EXpCclation surface for Example 4.21 with three different experiments 

--------~--------~ ----------------------

'~2 ·1.5 -, -0.5 1.5 2.5 

Figure 4.46. Cost conlours for Example 4.21 with three difCerent experiments; 

the eosl is inverse multi modal. and two minimizers arc local 

Assume now that the experimental conditions are 

The expectation surface becomes Oat, but the parameters then Lurn out to be only locally 
identifiable, because 



give the same point ym(Pl) = ym(p2) on the expectation surface. and thus the same 
value of the cost. Figure 4.47 presents the least-squares cost contours when 
yS = (5. 2. 4)T. The two global minimizers are PI = (I. 2)T and {h == (4, I)T. 
Using a local optimization method of Section 4.3.3, either of them can be obtained. 
from which the other is easily calculated. Compare with Example 4.18, where the same 
model structure was considered in the context of least modulus. 0 

Figure 4.47. Cost contours for Example 4.21 with repetition of only two different experiments; the 
cost remains inverse multimodal, but bath minimizers are now global 

4.3.9.2 Random search 

A basic algorithm for random~search minimization is as folJows: 

Step J: Choose pO, set k = O. 
Step 2: Compute a trial point pk+ E lP according to the rule 

where rk is a realization of a suitably distributed random vector. 
Step 3: If j(pk+) <j(pk) then phl = ri+, else pk+1 = pk. 
Step 4: Increment k by one and go to Step 2. 

Let p be a global minimizer to be located. When pk is far from p, rk should have a 
large variance to allow large displacements that might be necessary to escape the 
attraction of local minimizers. Conversely, when pk is near p, rk should have a small 
variance to allow finer exploration of parameter space. The idea of adaptive random 
scarch (Bekcy and Masri, 1983; Pronzato et al., 1984) is to alternatc variance-selection 
phases and variance-exploitation phases, during which the selected variance is used. 

In the version that we have implemented. lhe user must only provide 
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- the prior feasible domain for the parameters, assumed to be the box 

JP = {p Ipimin '5:: Pi '5::Pimax ' i = 1, ... , Hp}, 

a subroutine computingj(p) for any p in F', 
- the maximum number of evaluations of the cost allowed. 

Unless otherwise specified, search is initialized at the centre of jp 

Aa Pimin + Pimax . I 
Pi 2 ,I = /lp. 

The displacement rk is randomly generated according to an QV{O, :£(0'» distribution with 

:£(0') = diag {o7, i = I, ... , IIp J, 

truncated so that pk+ belongs to iP. (A uniform distribution could also be used.) 

\ll1riallce~selectioll phase. Several succe~sive values of a are tried for a given number of 
iterations of the basic algorithm. One may, for instance, choose 

I a = Prnax - Pmin, 

which promotes large displacements in IF. and 

ia i- l a/10, i = 2, ... , 5, 

for finer and finer explorations. The competing ta's are rated by their performance in 
the basic algorithm in terms of cost reduction starling ji'om tire same illitial POillf, 
namely the best pk available at the start of the comparison. Each ia may for example be 
allowed ] DOli iterations to give more trials to larger vadances. The best ia in terms of 
the final value of the cost, denoted by tJ, is selected for the variance-exploitation phase. 

Variallce-exploitatioll phase. Starting from the best pk obtained during the vi.uiance­
selection phase, the basic algorithm is used with the covariance :£(tJ) for, typically, onc 
hundred iterations before resuming a variance-selection phase. 

Local optimization. Since the smallest a corresponds to very small dispJilcements in 
parameter space, one may switch to local optimization whenever 50' is selected 
(Section 4.3.3). In order to avoid uselessly duplicating local optimizations, these will 
be performed only if 50' is selected for the first time or jf 50' was not the previous tJ. 

Termination. The algorithm is terminated when the maximum number of cost 
evaluations aJlowed is reached, or when 50' has been selected a given number of times 
consecutively, which indicates that the algorithm has failed to escape the basin of 
attraction of the best local minimizer so fm', 



Properties oj adaptive random search 

PARS J: Except for pathological cost functions such that any global minimizer has a 
basin of attraction with zero measure, if the number of evaluations of the cost tends 
to infinity, pk will tend to a global minimizer ofj over lP. Of course, this does not 
guarantee that any global minimizer will be reached, since the actual number of 
iterations is always llnite. 

PARS2: This very simple method is not aimed at finding all global minimizers, but 
merely one of them. 

PARS3: The treatment of a dozen test problems from the literature (Pronzato et al., 
1984) has shown that adaptive random search located global optimizers at least as 
efficiently as the global optimization methods advocated in the papers describing 
these test problems. Although limited in scope, this comparison indicates that 
adaptive random search can handle varied problems with several local minimizers, 
without any modification to the algorithm or adaptation of its internal parameters. 

PAR S 4: The time spent selecting the variance is usually profitable. (See 
Example 4.22.) 

PARS5: Provided that the cost functjon is twice continuously differentiable, switching 
to a local method when 50' is selected in general much improves the performance. 

PARS6: The method applies to non-differentiable and discontinuous cost functions, 
such as the number of sign changes menlioned in Section 3.7.4 or the percentage of 
data considered as outliers to be presented in Section 5.4.2.2. 

EXAMPLE 4.22 

Consider the experiment design problem (Chapter 6) defined by Bohachevsky, 
Johnson and Stein (1986). The system studied is described by 

yUi. Ii-I) =Ym(ti. ti-I, p) + £(li), i = I .... , II, 

with cUi) belonging to a sequence of i.i.d. random variables. 

)'m(1i. ti-I, p) = PI [exp(-P3 ti-l) - exp(-P31i)) + P2(ti - lj_I), 

and to = O. The vector t = (t I .... , tId T should be chosen so as to optimize a cost 
quantifying the precision with which the parameters p will be estimated. The criterion 
chosen is D-optimulity (Section 6.1), which corresponds to maximizing 

'(t) - d t [aym T(p) aym(p)] 
J - e ap apT' 

The prior feasible set 1[' for t is defined by 

'"'f = {t E ITt II I 11 ~ 1 , Ii 1 i-I ;::: 1, i = 2 •... , 11 , til ~ 30 }, 

and P3 is taken Lo be 0.25. (The value of t that maximizes j(t) does nol depend on PI 
and P2.) After about 5000 evaluations of the cost, adaptive random search implemented 



as above (with projection onto T of any trial point tk+ violating the constraints) 
suggests 

t == (3.2. 11.2. 1 13.2, 14.2, 15.2, 16.2, 17.2, 18.2, 19.2. 30)T, 

i.e. the solution obtained by Bohachevsky, lohnson and Stein (1986) using simulated 
annealing, after several thousand evaluations of the cost. Figure 4.48 shows a typical 
evolution of jetk+) with k. The alternating variance-selection and exploitation phases 
are easily recognized. 

100 
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k 

Figure 4.48. Typical evolution or j(tk+) with k 

For comparison, Figure 4.49 presents a typical evolution of j(tk+) when the basic 
algorithm is used with 0' cyclically taking the values 10', 20', ... , 50', each for one 
hundred iterations, instead of alternating variance-selection and exploitation phases. The 
result is not nearly as good as with adaptive random search. Restarting at the same tk to 
compare the various iO"s during the variance-selection phase penalizes adaptive random 
search, resulting in a quicker initial increase of j(tk+) in Figure 4.49 than in 
Figure 4.48. This, however, is more than cancelled by the gain in efficiency resulting 
from the use of a suitable variance (here 30') for a large number of iterations. 0 

4.3.9.3 Deterministic search 

Many experts in optimization thought (some even wrote) that it was impossible to 
develop techniques guaranteed to deliver all global optimizers of a multimodal cost 
function. Intcl1 Jal analysis, a very active research field for the past twenty years (Adams 
and KuJisch, 1993; Kearfott and Kreinovich, 1996, Moore, 1979), provided a 
spectacular refutation, even if the techniques derived from this approach are limited in 
the complexity of the problems that they can solve. 

Interval analysis. An interval [x] of R (or scalar interval) is a connected closed and 
bounded set of real numbers 
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Interval arithmetic extends computation on rea) numbers to intervals in a natural and 
intuitive way. The product of an interval by a real scalar Il is, for instance, given by 

if A ~ 0. then A[X] = fA..r, A..t+], else A[xJ = [AX+, A..r], 

Similarly 
[x] + [y] = [x- + Y-, x+ + y+], 

[xl - Lv] = [.r - y+, x+ - y-], 

1/[x1 = [1/x+, 1/.r], provided that O,z [xl. 

exp([x]) = [exp(.r). exp(x+)], 

and simple algorithms can be provided to compute sinCLx]), cos([x]) ... To allow 
division by intervals containing zero, extended intervals with possibly infinite bounds 
must be considered. 
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Figure 4.49. Typicnl evolution of j(tk+) for a cyclic change of the variances 

It is important to note that the intervals [x] and Lv] have implicitly been assumed to 
be independent. If, for example, it is known that x = y. then using the above fonnulus 
to evaluate [x] - Lv] or [x][y] may yield a very pessimistic interval, nevertheless 
guaranteed to contain the actual set of possible values for the result. The square of [xj 
should therefore not be computed as [x][x]. but as follows: 



-if 0 < ~r, then [x]2 = [(.r)2, (x+)2], 

if x+ < 0, then [x]2 = ((x+)2, (.r)2], 

if 0 E [x], then [x]2 = [0, (max(-.r. x+))2]. 

12.1 

Extensions of FORTRAN (IBM, 1986), C (Klattc et al., 1993) and PASCAL 
(Klatle et al., J992) handle computation on intervals as well as on reals. A shareware 
version of the C-XSC library is available in several machine-readable formats (Hammer 
et al., 1995). To lake the errors due to finite word length into account, olltward 
rOllnding is performed, which makes it possible to produce intervals guaranteed to 
contain the exact results. The lengths of these intervals indicate the uncertainty in these 
results, possibly very pessimistically. 

A box [p] in 1[tf1p (or vector interval) is the Cartesian product of I1p scalar intervals, 
which will be indifferently denoted by 

- + -
[p] = [PI, pJl x [P2. 

Any box is therefore characterized by two extreme vectors p~ and p+. Any vector p can 
also be considered as a box, such that p+ = p- = p. The set of all boxes of RlIp will be 
denoted by JIR"P. 

When boxes are used instead of veCLors, point values of p are replaced by 
uncountable subsets of parameter space. This makes it possible to perform a global 
analysis with a/mite number of operations. 

Extending functions to the interval type allows concepts of vector arithmetic to be 
extended to boxes. IdeaHy, for any function f: JF~tlfl -1 Ellr and any box [p] of 
one would like to get a function rtl: lOP~lIp -11[B~lIr that would compute the smallest box 
of JORIIf that contains the set f([p]). Unfortunately, this is only possible for elementary 
functions such as sin or cos. When [f]([pJ) cannot be evaluated. it can usually be 
approximated by using an inclusio1l jUllction f: j[JR"p -1 mR~lIf, i.e. a function f that 
satisfies 

"If [p] E IDtl.lIp, f([p]) C f([p]) E Jf]p~"r. 

As illustrated by Figure 4.50, f([p]) C [fJ([p]) C f([p]). The inclusion function f 
therefore makes it possible to approximate the set f([p]) we are interested in, but cannol 
usually compute, by a computable box f([pJ) guaranteed to contain it. 

This box may however be too pessimistic to be of any practical use. One would 
therefore like the option of getting better approximations by considering smaller boxes 
ofJORllp, for instance by splitting large boxes into sub-boxes. This is why the following 
two properties are highly desirable. An inclusion function f: lDR"p -1 lDRllf is inclusion 
l1lollotonic if 

It is cOllvergent if 

'\I [pl, w([p D -1 0 ~ w(f(fpJ)) -t 0, 
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where the width w([p]) of a box [pJ is defined as the length of its largest side(s). When 
the box [pJ tends to a vector p, its image by a convergent inclusion function therefore 
tends to the vector f(p). If the effect of rounding is neglected, it is very simple to derive 
an inclusion-monotonic and convergent inclusion function f for any continuous function 
f defined by an explicit formal expression (or program). It suffices to replace all 
elementary operators and functions such as +, -, *. I, sin, cos, exp ... by their interval 
counterpart as defined above. Note that there are infinitely many indusion functions 
associated with a given function f, so accuracy might be improved by intersecting all the 
boxes Jfz{[p]) associated with various inclusion functions ifj. 

WI 
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D 

EXAMPLE 4.23 

Box [P] and its image by f 

Smallest box containing ftfp]) 

Image of [p] by the inclusion function f 

Figure 4.50. Inclusion functions 

Consider the function f: lR -) R defined by f(x) = x 2 - 2x + 1. A first possible 
inclusion function for f is defined by f\ ([x]) = [x]2 - 2[x] + 1. We have, for instance, 

f)([3, 4]) = [3,4]2 - 2[3, 4] + [I, 1] = [9, 16] + [-8, -6] + [1, 1] = [2,11], 

In performing lhese computations, we have neglected the fact that [x]2 and 2[x] are 
obviously not independent inlervals. As a result, fl yields a pessimistic interval. To get 
more accurate results, one should try to minimize the number of occurrences of each 
variable in the formal definition of the function. In this example, iL is possible for x to 
appear only once, since }tx) = (x - I )2, A much better inclusion function will therefore 
be defined by f2([X]) = ([x] - 1)2, such that 



f2([3, 4]) = ([3,4] - [1, ]])2 = [2, 3]2 = [4, 9]. 

The result is no longer pessimistic, and [2([X]) =f([x]). More generally, if r is a vector 
function, exact intervals will be obtained for each component of f([x)) provided that 
each interval variable appears at most once in the formal expression of each component 
of f. 

Assume now that /(2) has been evaluated, f(2) I. Since /(2) is smaller than the 
lower bound for 1([3,4]) as obtained from f2([3, 4]), we have numerically proved that 
the interval [3, 4] contains no unconstrained global minimizer ofl This possibility of 
eliminating subsets of parameter space that cannot contain optimizers is at the core of the 
algorithm to be described. 0 

As illustrated by the previous example, inclusion functions generated by automated 
replacement of all elementary operators and functions by their interval counterparts are 
usually very pessimistic, because the relationships existing between the results of 
intermediary computations are neglected, which results in the so-caJled H'rapping ejfect. 
The approximation can be improved by splitting boxes into sub-boxes to take advantage 
of inclusion monotonicity and convergence, but it is clear that using good inclusion 
functions can tremendously improve the performance of the algorithm presented next. 

Algorithm. This algorithm is a simplified version of that described in (Hansen, 1992), 
which we consider mandatory reading for anyone interested. To present it, we shall 
assume that the cost functionj is twice continuously differentiable over the whole prior 
feasible domain. We shall moreover assume that the global minimum of the cost 
corresponds to a stationary point (unconstrained optimization). 

Let 

- lLl be the list of all boxes still 10 be treated by the algorithm, 
- lLs be the list of all boxes (and associated characteristics) that may contain feasible 

global minimizers of the cost upon completion of the algorithm, 
- c([pD be the centre of the box [p], _ v 

j be an upper bound forJhe global minimum j. 
- .L be a lower bound for j . 

The user must provide 

- an initial list lLj, specifying the box or set of (possibly disconnected) boxes within 
which the search is to be perfonned, 

- the rule for evaluating the cost functionj and an tl-ssociated inclusion functionj, 
- the accuracy ~ required for the delenninalion of.i . 

If possible, the user should also provide 

- an inclusion function g for the gradient g of the cost function, 
inclusion functions hu for the diagonal entries Iln of the Hessian H of the cost 
function (i = ), ... , II p). 

Else. the steps that become impossible (Step 4 or 5) will be omitted, at the cost of 
decreased efficiency. 
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The lists lLj and lLs wiII contain the location of each box [p] that belongs to them 
(i.c. p- and p+) and, as soon as computed, a lower bound j- for the value of the cost 
function over [p]. 

Step 1: Evaluate an upper bound for 1 as 

Step 2: For each box [p] in 

] = min j(c([p])). 
[plE1L.i 

compute 

U-,j+] = j([p]). 

lfj- > ], discard [p] from (for it contains no global minimizer p). Else, store j-
as one of the characteristics of [p] that can be retrieved from lLj. 

Step 3: If is empty (which cannoL happen during the first iteration), go to Step 8. 
Else, select a box [p] oril,i associated with the smallest value of j-. 

Step 4: If 0 ~ g([p]), discard [p] from lLj (for it contains no stationary point of j), and 
go to Step 3. 

Step 5: If there exists i such that h'1lji([p]) < 0, discard [p] from lLi (for j is not convex 
in the neighbourhood of any stationary point in [p], which therefore contains no 
unconstrained minimizer), and go to Step 3. 

Step 6: Remove [p] from lLj and split it into 2k boxes by k bisections perpendicular to 
the axes of parameter space along which the length of [p] is largest Typically, 
k = min(3, dim p). 

Step 7: For each of the boxes [p] created at Step 6, 
!update] as) = min (],j(c([p])); 
compute U-,j+] = j([p]); 
ifj-> j, discard [p]; else 

{sLorej- as one of the characteristics of [p]; 
ifw(j([p])) <~, store [p] in else store [p] inlLj}}. 

When the 2k boxes created at Step 6 have been processed, go to Step 3. 
Step 8: lLj is empty. Discard from lLs any [p] such thatj-([p]) >}. Stop. 

The remaining boxes in are the only ones that may contain a global minimizer. All of 
them satisfy 

jeEp]) -1 < 8j. 

A lower bound for the global minimum 1 is given by 

j min j-([p]). 
- Ip]ElLs 

Upon completion of the algorithm, 1 is known to belong to u, JJ and all unconstrained 
global minimizers in the domain of interest are known to Delong to the union of all 
boxes of 
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REMARKS 4.26 

- The policy used for selecting [p] at Step 3 is particularly efficient, and constitutes 
an essential ingredient of the algorithm. 

- A necessary condition for a stationary point p to be an unconstrained minimizer is 
that R(p) be nonnegative definite, i.e. that all its eigenvalues be positive or zero. A 
simpler-to-test necessary condition is that all diagonal entries of R(p) be positive or 
zero. This is the condition exploited at Step 5. More complicated tests could be 
considered, but a compromise must be struck between complexity and added 
efficiency in terms of box elimination. 

- If the list lLs turns out to be empty on completion of the algorithm, this has only two 
possible explanations. The first is that the global minimum of the cost functionj in 
the boxes of the initial list does not correspond to a stationary point, which 
amounts to saying that the global optimum is reached on the border of the prior 
feasible domain. One should then either enlarge this prior domain or turn to 
constrained optimization. Variants are available to deal with equality or inequality 
constraints (Hansen, 1992). The second explanation would be that an error has been 
committed when implementing the algorithm, e.g. in specifying the inclusion 
functions! 

- We have assumed here that it is always possible to improve the accuracy of the 
results provided by the inclusion functions by reducing the size of the boxes 
considered. In practice. to get guaranteed results one must take into account the 
numerical errors induced by finite word length in the machine representation of 
numbers. Inclusion functions must therefore be evaluated with outward rounding. 
As a result, the inclusion functions are no longer convergent, the image of a vector 
being already a box with nonzero width. This limits the accuracy that can be 
achieved. This is why the bisections at Step 6 will only be performed if the width of 
the box [p] to be bisected is larger than a given threshold Bp. Else, [p] will be put in 
1Ls without attempting to analyse it in any more detail. 
Exact methods for evaluating the gradient g (and possibly the Hessian H) of the cost 
function will form the basis for working out the corresponding inclusion functions. 

- Whenever the algorithm decreases 1. one might try to improve the resulting bound 
further by starting a local optimization from the corresponding value of c([p D. 

- A better bisection policy at Step 6 is to spl it [p] perpendicular to axes i of parameter 
space associated with the largest values of d; ::;: 't1l(gi([p]))W([P]i), where gi([p]) 
and [P]i are the scalar intervals corresponding to the ith components of g([p]) and 
[plo It is thus possible to take into account the speed of variation of the cost in the 
various possible directions. 

- The smaller ~ is, the more intensive the computation becomes. One should therefore 
limit the required precision to what is necessary. So long as the representation of 
numbers in the computer is precise enough, one might always restart from a result 
that is deemed too coarse and make it more accurate by reducing ~ and taking the 
list lLs just obtained as the new initial list lLi. 0 

A description of the performance of a variant of this algorithm will be found in 
(Hansen, 1992). The test problems treated have up to 50 parameters, up to 10 10 local 
minimizers and up to a continuum of global minimizers. The variant used includes an 
interval Newton method for solving g(p) ::;: 0, which makes it possible to locate the 
stationary points within the boxes considered much more rapidly. 
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4.4 Optimization of a measured response 

The probJem considered now is optimization of the response y of a system with respect 
to 11 f independent factors, or operating conditiolls. The vector ~ of these operating 
conditions musl belong to some prior feasible space G. This problem, of obvious 
practical importance (e.g. in quaJity control), has received considerable attention in the 
literature. Its solution is tricky, because the exact dependence of y on ~ is usually 
unknown, and because y is measured and therefore subject to random variability. 
Knowledge about the process is deduced from measurements under operating 
conditions ~i (i = I, ... , l1l). This knowledge will be used to predict the deterministic 
part of y(~), denoted by ym(~)' then to infer the value ~* that optimizes (maximizes in 
what follows) Ym(~)' In this context, an efficient method is therefore one that yields an 
accurate estimate of ~* from few measurements y(~i). The available methods differ 
mainly in their choice of the ~i's (experiment design, see Chapter 6) and the estimator 
used for ~*. The model Ym(~) is merely a step in the computation of ~*, and some 
methods, as we shall see in the next section, do not even use an explicit model. When 
sueh a model is employed, it is usually a simple LP behavioural model, and the issue of 
robustness of the solution with regard to model structure is therefore important (see 
Section 6.6.2 for a brief survey of the methods proposed in the literature). 

4.4.1 Model .. free optimization 

The most intuitive approach is to use a derivative-free optimization method, such as the 
simplex algorithm (NeIder and Mead, 1965); see Remark 4.13. Each evaluation of the 
cost is performed by a measure on the process, and at each step, given the past 
observations, new operating conditions are suggested. This approach is therefore 
model-free, and interesting when nothing is known about the dependence of Y on ~. 
Should the deterministic part ym(~) of the response be accessible to measurement, the 
simplex method would generally lead to a local maximum of )1m' The variability of y(~) 
due to noise is, however, not taken into account, so the suggested operating conditions 
do not converge to ~* but fluctuate randomly. 

The random variability of y(~) can be taken into account with the help of stochastic 
approximation (Kiefer and Wolfowitz, 1952). A variant of the stochastic gradient 
algorithm presented in Section 4.3.8 can be used when the gradient of the cost function 
is not measurabJe: 

where ~j, is the 11th component of ~i and e" is the unit vector giving axis n in ]R1lf. The 
scalars ai and 11 must satisfy 

00 00 

.lim n= .lim ai=O, L n=oo, L (Yi]2 < 00. 

1---1ooo 1---10 00 i=1 i= 1 aj) 
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The directions in which the operating conditions are varied again become more and 
more arbitrary when the search gels closer to l; "', but the decrease of the step length 
ensures convergence to a local maximum (Dvoretzky, 1956; Polyak and Tsypkin, 
1973; Saridis, 1974). The method is quite general and simple (no model structure need 
be assumed), but the number of measurements required is usually high (as convergence 
is slow and each iteration requires Ilf + 1 measurements). much larger than with a 
model-based approach such as described in the next section. Accelerated variants are 
presented in (Span. 1992, 1995). 

4.4.2 Response-surface methodo]ogy 

Response-surface methodology is a set of mathematical and statistical tools aimed at 
locating l; * (Box and Wilson, 1951: Hill and Hunter, 1966; Mead and Pike, 
1975; Myers, 1976; Box and Draper, 1987), and based upon sequential construction of 
a suitable measurement scheme. At each step, a small domain ~ centred on the current 
estimate of l;* is considered. 

The response surface (not to be confused with the expectation surface of 
Sections 4.3.9.1 and 5.1.1.1) is defined as 

During the initial steps, when; is far from the optimum, the curvature of Srcsp can 
be neglected, and a linear function of; can be used (first-degree model): 

"r 
Ym(l;) = qo + I qll~1I' 

12=1 

Since the objective is to reach ;* as quickly as possible, a natural approach is steepest 
ascent (Section 4.3.3.1), based on an evaluation of the gradient of YmCl;), i.e. of q" 
(11 = 1, ... , Ilr) (Montgomery, 1976). The step sizes are fixed a priori, and steps are 
performed in the same estimated gradient direction as long as Ym keeps increasing. A 
new region is then considered to compute a new estimate of the gradient. The choice of 
the l;i's for this estimation is a classical experiment-design problem, and a first-order 
orthogonal array can be used (Box and Wilson, 1951). The choice of levels of the 
operating conditions to be used, which specifies the size of the region ~, is considered 
by Steinberg (1985) following a Bayesian approach, with robustness with respect to the 
model structure in mind. The accuracy with which the gradient, and therefore the 
direction to be followed, are estimated increases with the number of measurements. A 
compromise must therefore be struck between precision and cost. For a fixed-length 
sequence of steps, Brooks and Mickey (I 961) show that the ratio of the increase in the 
response to the number of measurements is a maximum when the number of 
measurements used to estimate the gradient is a minimum, "r + 1. The stochastic­
approximation sequence of the previous section estimates the gradient with a design 
defined by (0, el, ... , e ll f}. Other designs with 11 r + 1 support points, such as 
simplex designs, are more suitable, however. They should not be confused with the 
simplex designs used to choose the optimal composition of a product, where the factors 
must satisfy 
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(Scheffe, 1958; IGefer, 1961; Galil and Kiefer, 1977). 
When the estimate of ~* gets closer to its actual value, the curvature of §resp can no 

longer be neglected, and the degree of tbe model should (at least) be two. (See 
(Montgomery, 1976) for tests on the vaJidity of first-degree models.) Most often, the 
model used is quadratic in ~: 

llf 11 f 

Ym(~) = qo + I, qll~1l + ~ I, QllIl~~ + I, Qill~i~II' 
1l= 1 ~ 1/= 1 i<1I 

or equivalently 

with Q symmetric and q = (qt, ... , Qllf)T. A stationary point ~* then satisfies 

QJ:.* 
~ -q, 

and estimating q and Q from observations y(~i) makes it possible to estimate ~*. The 
type of the stationary point obtained depends on the sign of the eigenvalues of Q. If aJ) 
of them are negative, which we shall assume, ~* = -Q-I(I is the (global) maximizer of 
Ym(l;). Note that this choice amounts to performing one step of the Newton method 
(Section 4.3.3.3). The operating conditions are often normalized so as to put the centre 
of ~ at 0 and each factor ~II between -I and 1. The experiments used for a second­
degree model should have at least three levels for each factor. A central-composite 
design is often used (Box and Wilson, 1951; Montgomery, 1976). It is obtained from a 
two-Jevel factorial design by adding central points (in 0) and axial points in the 
directions of the unit vectors ±ell (11 = 1, ... , I1t-). These designs have the advantage 
of being built from those used during the steepest ascent. (See also (Box and Hunter, 
1957) for rotatable designs, with constant variance of the prediction of Ym(~) on 
spheres centred at 0.) 

In contrast to the model-free approaches of the previous section, the response­
surface methodology provides information on the way the factors inHuence the response 
of the system (comparison of the effects of factors, quantification of interactions ... ). 
The experimental conditions are, however, specified a priori, and one should note that: 

- the experiment is designed withoullaking the objective into account; all parameters 
receive the same attention, irrespective of their influence on Ym(~)' 

- prior knowledge gained from previous studies, if any; is not taken advantage of, 
- the approach is intrinsically local; possible constraints on ~ (other than bounds on its 

components) are not taken into account, 
- the model structure is assumed to be linear or quadratic in ~. which may not be true 

over the whole region of interest, 
- non-Bayesian estimation of the parameters requires a large number of measurements 

(at least equal to the number of parameters). 
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The definition of a cost function, such as 

with 

makes it possible to 

. /\ I 1:* J:* l\ ] J(p p) = Ym['" (p), p] - Ym[", (p), P , 

~*(p) arg max Ym(~' p), 
~E~ 
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take the objective (maximization of Ym(~)) into account when estimating the 
parameter vector p and designing the experiments ~i to collect the data for this 
estimation, 
consider model structures Ym(~' p) that may not be polynomial in ~. 

- incorporate prior knowledge through a Baycsian formulation of the problem. Such a 
Bayesian formulation seems to have been used first by Lindley (1968) and Brooks 
(1977), in the case where the objective is to reach a given target level Ym(~) c. 

If p is estimated by maximum likelihood, a possible criterion for experiment design 
is L-optimality; see Section 6.1, (Pronzato and Waiter. 1992a), as well as (Challerjee 
and Mandal, 1981, 1985; MandaJ, 1989) for cost functions quadratic in ~. If the 
estimator of p is the minimum-risk estimator (Section 3.5.2), few measurements are 
necessary, and the choice of the experimental conditions can be performed according to 
an LB-opLimality criterion; see Section 6.5 and (Pronzalo and Wailer, 1991c, 1992a, 
1992b). 

REMARK 4.27 

Since the structure of the models employed is usuaJIy LP (see, e.g., the previous 
quadratic models in ~), their parameters can be estimated by recursive least squares 
(Section 4.1.4). One may then, after each estimation, design the experiment associated 
with the next observation, which defines the corresponding regressor vector. This is a 
sequential-design problem, for which one may refer to the real-time control problem of 
Section 6.3.2.2. A naive approach (corresponding to forced certainly equivalence 
control) would be to choose 

with p(k) the estimate of the parameters from the first k observations. This procedure 
usually does not converge, and a detailed analysis or its behaviour in (he scalar case 
where Ym(~' p) :::::; PI + P2~ + P3(2, as well as a modification that ensures convergence 
can be found in (Bozin and Zarrop, 1991). A dual-control approach is suggested in 
(KuIcsar, 1995). 0 

4.5 Conclusions 

There are hundreds of optimization methods, and it was out of the question lo present 
all of them. It is not fortuitous that the relaxed Gauss-Newlon, Levenberg-Marquardt, 
quasi-Newton and conjugate-gradient methods are among the best known [or 



unconstrained optimization. Many users have applied them, and most efficient 
algorithms rely on the same basic principles. 

The results largely depend on how the algorithms have been coded, and on the care 
with which numerical problems have been handled. Big software libraries (IMSL, 
HARWELL, NAG ... ) include sophisticated implementation of most methods presented. 
One should therefore resist the temptation to reinvent the wheel, and use existing 
subroutines. This will leave more time to think about fundamental questions (which 
structure to choose for the model, what criterion to optimize, how to collect the data ... ). 
It will also make it possible to try a variety of algorithms to find the one that performs 
best. Only when the results are unsatisfactory is one justified in developing a specific 
code or modifying an existing one. The information in this chapter should help the 
reader select algorithms worth trying, and find out possible reasons (and remedies) for 
any failure. 

Note, finally, that the core of most optimization-based parameter-estimation 
algorithms is a simulator computing the model output (or the prediction error), and 
possibly sensitivity functions or the evolution of adjoint variables. Very often, the time 
spent in these simulations makes up most of the computer time required by the 
optimization. The simulation algorithm should therefore be carefully selected, possibly 
by comparing the performance of various simulators, and the precision of the 
computation should be no higher than necessary. For simulation of a fourth-order set of 
ordinary differential equations, we have, for example, found that the simulator 
described in (Valko and Vajda, 1984), which also computes the first-order sensitivity 
functions of the output with respect to the parameters, was about 200 times quicker than 
a commercial simulator for similar precision, which resulted in the same gain in overall 
optimization time. 



5 Uncertainty 

It is not enough, in general, merely to find the best value of the parameters with respect 
to the criterion chosen. It is also important to evaluate the uncertainty attached to this 
result, taking into account the uncertainty in the data and the numerical errors. Several 
methods can be used (and possibly combined) for this purpose. None is without 
drawbacks, and the problem is unlikely ever to allow any totally satisfactory solution. 
Here again, the method used should be clearly specified. 

5.1 Cost contours in parameter space 

Remember that the cost contour at leveljl is the set of points satisfying 

j(p) = jl. 

where we assume that the costj is to be minimized. Techniques for characterizing cost 
contours can also be used with functions of the parameters other than the cost itself. 
Indeed. the characterization of a level set (or confidence region) by its boundary 
f(p) = fa obviously corresponds to a cost contour for the function! A cost contour is 
generally a hypersurface, which may possibly extend to infinity (for example when 
some parameters are not identifiable). As Section 5.4 will show, a cost contour may 
also be a hypervolume (i.e. a set of positive measure), when the estimator associated 
with the criterion is not a point estimator. When dim p = 2, the cost contours are similar 
to contours on a geographical map; see, e.g., Figures 4.46 and 4.47. 

In the vicinity of a local minimum, a second-order Taylor series expansion of the 
cost can be used (provided that the derivatives exist). If the Hessian of the cost is 
positive-definite, the cost contours may then be approximated by ellipsoids. 
Section 5.3.104 will present a method for characterizing parameter uncertainty based on 
this property. For the time being, however, we shall not force an ellipsoidal shape on 
the cost contours. 

5.1.1 NormaJ noise: cost contours, confidence regions 

The method used to build confidence regions depends on whether the noise variance is 
known a priori, unknown or estimated from independent measurements. 
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5.1.1.1 Noise with known variance 

Assume that the prediction error satisfies 

where the £(ti)'S are independent random variables normally distributed 9i0, 0-2), with 
a2 known. Maximum-likelihood estimation then corresponds to minimizing 

'It 
j(p) 2: [ep(tj, p )]2, 

i=1 

When p is the true value p* of the parameter vector, the value of the cost becomes 

lit 

j(p*) 2: [£(1;)]2 ::: Ilta2. 
i=l 

It is thus pointless to try to reduce the cost below j I = 11 t 0-2• The larger the noise 
variance 0-2, the higher the level of the cost contour one should be content with. The 
effect of the noise is thus to raise the highest acceptable value of the cost, thereby 
expanding the set of acceptable models. 

The error e(p) lies in an lit-dimensional space, and e T(p*)e(p*)/u1 has n chi-s~are 
distribution with lIt degrees of freedom, denoted by X2(llt) in what follows. Let Xir(llt) 
be the value with probability a of being exceeded by a random variable having the 
distribution X2(1l1)' It is tabulated and can also be computed (Press et al., 1986). The set 

defines a 100(1 - a)% confidence region for the parameters. The boundary of this 
region can be characterized through techniques such as those presented in 
Section 5.1.2. If the hypotheses on the noise are correct, and if the same experiment is 
repeated a large number of times, this confidence region will contain the true value p* of 
the parameters in 100(1 - a)% of cases. This is a reminder that p* may happen to lie 
outside the confidence region. The smaller a is, the less probable this event becomes 
(but the larger the region). A common choice is a = 0.05. 

Assume that the prediction error is in fact an output error, that is 

The vector yS containing all available measurements is a point in the space of 
observalions, as is the vector yffi(p) of associated model outputs. When p varies, 
yffi(p) describes a hypersurfnce 8exp in this space, the expeclatioll sillface or solution 
loclls. For LP model structures, it is a hyperplane (i.e. an lip-dimensional plane), 
whereas for non-LP model structures it is generally a curved hypersurface; see, e.g., 
Figure 4.45. Two factors may contribute 10 making a model structure non-LP (Bates 
and Watts, 1980, 1988; Ratkowsky, 1983; Seber and Wild, 1989). The first is 
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curvature of §cxp, which corresponds to the intrinsic nonlillearity. The second 
expresses how a uniform grid in parameter space maps into a non-uniform grid on Scxp 
and corresponds to the parametric nonlinearity. Thus, for instance, the nonJinearity in p 
of the scalar model structure 

is only due lo the parametrization, and is not intrinsic. Modification of the 
parametdzation may sometimes reduce nonlinearity of the model slructure in its 
parameters to intrinsic nonlinearity, although the situation is generally far more 
complicated than in the simple example above (Bates and Watts, 1981 ~ Hamilton, Watts 
and Bates, 1982). 

Let the matrix I1(p) be the orlhogonal projector onto the tangent plane to Scxp al 
ym(p) (Figure 5.1), given by 

_ dym(p) { [dym(elJT[Qym(p)] } _I [dym(~]T 
I1(p) - :I T d T cl T :I T . up pp' up 

Tangent plane to Scxp at ym(p) 

/ 

Figure 5.1. Expectation surface Scxp for a non-LP model structure 

U 111 = dim yS, lip = dim p, e(p) = yS - ym(p) and p* is the true value of the 
parameters, then 

- eT(p*)e(p*)/cr2 has a X2(lft) distribution, as already mentioned; 
- eT(p*)I1(p*)e(p*)/cr2 has ax2{llp) distribution, as the projection of the error onto an 

!lp-dimensional hypelplane; 
- e T(p*)[IIII - I1(p*)]e{p*)/a2 has a X2(l1t -Hp) distribution, for it complements the 

projection above. 

If §cxp is flat (i.e. its intrinsic curvature is zero), eT (p*)[llIl - II(p*)]e(p*) is constant 
(and thus cannot be used to define a confidence region). The confidence regions JR.f and 
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are then both defined by least-squares cost contours. 

EXAMPLE 5.1 

Consider the model 

and data generated by computing Ym(~, p*) at p* = (1, 2)T and adding realizations of 
independent errors distributed 9i.O, I). Assume first that three data points 

yS = (5.673, 3.362, 3.043)T 

have been collected under the experimental conditions defined by 

~I = (1,O)T and ~2::: ~3 

Figure 5.2 presents the confidence regions R?·05 (solid line) and lR.~.05 (dashed line) 
for the model parameters, computed for 0"2 = 1. We have already noticed in 
Section 4.3.9.1 (Example 4.21) that p is only locally identifiable under these 
experimental conditions. We have also seen that they make Sexp flat. The true value p* 
of the parameter vector is indicated by a cross. 

o 

QM UM. 
Figure 5.2. Confidence regions R I (solid line) and R2 (dashed Ime) 

for Example 5.1 (a2 known), when Scxp is flat 

Assume next that the experimental conditions are 
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~1 ::: (1, O)T, ~2::: (1, ])T and ~3 == (O,1)T, 

so the parameter vector p becomes globally identifiable. With the same noise 
realizations as previously, the observations are identical to the previous case: 

yS (5.673, 3.362, 3.043)T. 

Figure 5.3 presents the associated confidence regions m: . .?·05 (solid line) and IRg·05 

(dashed line), computed for 0'2 == 1, and illustrates the fact that these regions may be 
disconnected when Sexp is curved (see Figures 4.45 and 4.46). The true value p* of 
the parameter vector is indicated by a cross. 0 

-j 

0.5 

PI 

, 
\ 

\ I , \ 

1.5 2.5 

0.05 0.05 
Figure 5.3. Confidence regions Et I (snlid line) and R2 (dashed linc) 

for Example 5.1 {(J2 known) when Sex!, is not flat 

5.1.1.2 Noise with unknown variance 

In this section, we assume that 0'2 is unknown and cannot be estimated independently 
from replicated measurements. (The case where 0-2 is estimated independently will be 
considered in Section 5.1.1.3.) JR~.05 and R~·05 can therefore no longer be used. 
However, eT(p*) [1111 - TI(p*)]e(p*) and eT(p*)TI(p*)e(p*) are independent, so 

e T(p*)TI(p*)e(p*) III - 11 P 

eT(p*)[I/It - IJ(p*)]e(p*) lip 

which does not depend on 0 2 , has a Fisher-Snedecor distribution with IIp and (Ilt-l1p) 

degrees of freedom, denoted in what follows by J\llp, Ilt - IIp}. The value having the 
probability Cl. of being exceeded by a random variable distributed J\ll p' lit - lip) will be 
denoted by Fdllp. III - I1p). It is tabulaled and also easily computed (Press et al., 1986). 

The set 
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a eT(p)IT(p)e(p) nt- 1l p 
1R 3 = {p E jf(lIp I --- 5: Fa(ll p• Ilt IIp) I 

eT(p)[IlIt - IT(p)]e(p) IIp 

thus defines a 100(1 a}% confidence region for the parameters. We can also write 

e T(p*}ITCp*)e(p*) 

eT(p*)e(p*) 

=-----------
1 + eT(p*)[If/l - ITCp*)]e(p*) , 

e T(p*)IT(p*)e(p*) 

so the set of parameter vectors p such that 

IIp r;o ( ) 
_--.1.'--- ra /lp, 111 - np 

f(p) = eT(p)I1(p)e(p) :::;; _11_t_----'-_____ _ 

eT(p)e(p) + IIp Fa(llp, Ilt np) 
III np 

coincides with IFt~ (Halperin, 1963; Hamilton, Watts and Bates, 1982). R~ could 
equivalently be defined as 

or 

REMARKS 5.1 

- The left-hand side of any of the inequalities used to define IFt~ does not correspond 
to the cost) minimized in a maximum-likelihood approach. The boundary of the 
associated confidence region is therefore not a cost contour for j. 

- Compared to techniques based on asymptotic properties of the J ikelihood ratio 
(Eadie et (Ii., 1971), this approach has the advantage of yielding a nonasymptotic 
region, valid even when TTl is small. 

- I DOC 1 - a)% confidence regions are not unique. For instance, 

""a eT(p)[IlIt - IT(p)]e(p) 
11"''-4 = (p E JRl1p I :::;; F(I-a)(llt -llp, IIp)} 

Ilt - np eT(p)I1(p)e(p) 

is also a 1 OO( 1 - a)% confidence region for the parameters. (However, this region 
is unbounded and does not contain the least-squares estimate of the parameters.) 
One may also choose a priori the shape of the region, e.g. an ellipsoid centred at p, 
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or a strip of parameter space bounded by two parallel hyperplanes. See, e.g., 
(Dasgupta, 1991) for a discussion on minimum-volume confidence regions. 0 

EXAMPLE 5.1 (continued) 

Consider again the model 

with 

~l = (1, O)T, ~2 =;3 = (1. I)T, yS = (5.673,3.362, 3.043)T. 

Figure 5.4 shows 1R~.05, together with F,.?,Q5 as in Figure 5.2. 
At the scale of this picture, ID'.?05 and lR~·05 are indistinguishable. m:.~.05 is larger 

than R?'os, a price to be paid for not knowing rr2. 

:1 

]' +1::"" 

P2 0 

·2 R.~,05 /l 

-I 

PI 

Figure 5.4. Confidence regions R ~.05 and R~,05 for Example 5.1 with Scxp flat 

Curvature of Sexp may produce regions with complicated shapes. Figure 5.5 
presents R~'oS when yS = (5.673,3.362, 3.043)T,;1 = (1, O)T, ~2 = (1, I)T and 
~3 = (0, ()T. 0 

5.1.1.3 Noise with independently estimated variance 

If the value of rr2 is unknown but can be estimated independenlly by ne repelitions of 
the same experiment at I; (Example 3.]), its estimate ~2 given by 

A~ rr-

lIe 

L [y(l ;k) - 1I/i]2, 
k=l 

with 

ne 

111 • = ~ ~ )' (/'1;,) 
I l1e L.J. I • 

k=l 

is such that (ne - 1 )~2/a2 has a X2 distribution with (ne 1) degrees of freedom. 
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F ' 5 5 C I1d . r.:i 0.05 . 'lgurc ,. on 1 cnce regIOns ~{3 lor Example 5.1 when Sexp is not 11il! 

The random variable 

then has an J{l1p. Ilc - J) distribution, which can be used to define a confidence region 
(Hamilton, Watts and Bates, 1982) 

5.1.2 Determination of points on a cost contour 

Many methods can be employed to draw cost contours in a two-dimensional space. One 
may. for instance, compute the cost at each node of a grid covering the region of 
interest, then use some standard graphic routine to transform the result into a series of 
approximate cost contours. This is the procedure followed for Figures 5.2 to 5.5. One 
may also try to avoid gridding and attempt to fan ow a cost contour with a step size that 
is varied according (0 the boundary curvature (Norton and Veres, 1991). These two 
approaches easily extend to three-dimensional problems by considering series of two­
dimensional cross sections that can be drawn in perspective. A third possible approach 
is by random scanning. Assume that a vector p withj(p) <jl has been obtained as a 
result of the optimization stage. Leaving p along d, we find a vector PI such that 
i(Pi) = j}. A set of points on the contour for costJI wiII then be obtained by varying the 
direction d. 

First stage. Find P2 along d, i.e. P2 = P + A.d, such that j(P2) > it, by increasing the 
scalar step length A. until i(P2) > j 1. Provided the cost is continuous, there exists at least 
one point Plan the line segment between p and P2 such thatj(PI) = i1-
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Second stage. Define p()1) = tip + (l ti)P2. Since PI is on the line segment joining p 
and P2, finding PI amounts to finding /1 with 0 < P < I such that the function 

j{J1) = j[p(J1)] -.h 

is zero (Figure 5.6). A particularly efficient method is dichotomy (Section 4.3.2,2). At 
each iteration, f is evaluated at the middle of the remaining feasible interval for)1. If 
f> 0 the left half of the interval is deleted, iff = 0 a point on the cost contour has been 
found, and iff < 0 the right half is deleted. The interval containing p is thus halved at 
each iteration. Its length therefore decreases very rapidly, and it is recommended that the 
number of iterations required (for a given precision and a given initial interval) be 
calculated in advance, to avoid unnecessary iterations. Remember that evaluation offat 
a given )1 requires simulation of the associated model so as to compule ylll[p(J1}l and 
thenj[p()1)]. 

I 

J1 
P(p) 

Figure 5.6. Determination of a point on a cost contour by dichotomy 

If the cost contour cuts the line segment considered several times, dichotomy will 
only locate one of the intersections. 

By varying the direction d, one a cloud of points [Pcc J on the cost contour at 
level ,h. This is like H speleologist exploring a cave Wilh a torch. If the exploration is 
always from p, i.e. if the speleologist does not move, some parts of a non-convex cost 
contour (the cave wall) may remain in the shade, giving all over-optimistic view of 
parameter uncertainty. The origin of the exploration must therefore be moved (Richalet. 
Rault and Pouliquen, 1971). A possible policy is to use as successive origins for 
exploration the points in the cloud with the largest or smallest ith components of p 
(i = I, ... , dim p). This policy favours the extreme points of the cost contour in each 
axis direction, which is important when accurate uncerlainty intervals for the parameters 
are sought. 



5.1.3 Characterization of non-connected domains 

The set of vectors p such that j(p) < i 1 may not be connected. This may result from lack 
of identifiability of the structure, in which case the problem can often be solved by 
characterizing the set of all parameter vectors giving the model the same input~output 
behaviour. With any point of the cloud obtained as above, one can then associate others 
on the same cost contour (Figure 5.7). See Example 4.21 and Section 5.4.2.2. 

Figure 5.7. Characterization of non-connected cost contours I'ia identifiability studies; 
each parameter value p2 gives the same input-output behaviour ns the corresponding pI 

Sometimes, however, the non-connectedness of the uncertainty set cannot be 
detected by an identifiability analysis. If the cost contour corresponds to the cost 
function j, the problem relates to inverse multi modality of i and may be avoided by a 
suitable choice of experimental conditions (Section 4.3.9.1). Another approach 
consists in charncterizing the uncertainty domain obtained so far by a simple outer set 
(e.g., a union 1U of orthotopes), and performing a new optimization of i in the 
complement of 1U in P. The global optimization algorithm of Section 4.3.9.2 may be 
used for that purpose. If a new value p is found, such that )(p) < it, a local 
characterization of the cost contour al level j J is pcrfonned starting at p, and used to 
update 10. If no such p can be found, the search is terminated. Interval analysis can also 
be employed to characterize cost contours approximately but in a global and guaranteed 
way (Didrit, Jaulin and Walter, 1995). 

5.1.4 Representation of cost contours 

As long as the number of parameters is less than four, direct depiction of a cloud of 
points {Peel on the cost contour can be used. (The same kind of technique can also be 
used in the context of bounded-error parameter estimation considered in Section 5.4 



Lost colltallrs m parameter space 241 

(Norton, 1986b).) When the number of parameters is larger than three, several policies 
can be used. 

- The cloud of points may be projected onto sub-spaces (Richalet, 1991). One may, 
for instance, project it onto the axes of parameter space, and thus get parameter 
ullcertainty intclllals (PUr's) 

Pimin = min Pi 
{Pcc} 

and Pimnx ::::;: max Pi, 
{Pcc} 

i = 1, ... , /lp. 

Note that when the cloud of poinls {Pcel is for a 95% confidence region, the 
parameter uncertainty intervals thus obtained are not the smallest 95% confidence 
intervals obtainable (Figure 5.8). 

- The cloud of points may be approximated by a quadratic surface, the equation of 
which has to be determined (Richalcl, Rault and POllliqllen, 1971). See also the 
robust estimation of correll.ltion coefficients through ellipsoidal trimming 
(Titterington, 1978). 

- Principal component analysis may be used to study the properties of the cloud 
(Jackson, 1991), and indicate possible correlations between parameters. 

Projection of the 
95% confidence 

region for P I and P2 

--+--1f-+----::;.-L-----------.lr---------II- PI 

Figure 5.S. The. projection of a 95q.~) confidence region for P I and 1'2 onto the 1'2 (lxis 
is nollhe smallest 9Y;iJ contldcncc intervnl for P2 

Whatever approach is laken, the determination of cost contours will require a lurge 
number of model runs (simulations) if a realistic view of parameter uncertainty is 10 be 
provided (and the larger dim p, the larger this number). 



5.2 Monte .. Carlo methods 

5.2.1 Principle 

Parameter estimation using data collected from a system can be summarized as follows: 

Experiment EstimaLion 
System .... Dat.a ys ..... Estimate p. 

Repetition of identical experiments \vill generally not yield the same results, because of 
the perturbations acting on the system and noise corrupting the measurements. Before 
the data are collected, yS is thus a random vector, and so is the associated estimat.or 
p(yS): 

Estimation 1\ 
Random vector yS _________ ............ Estimator p(ys). 

The measurements make up a particular realization of the random vector ys, with which 
a particular estimate p(yS) is associated. Monte-Carlo methods aim La determine 
statistical characteristics of the population of estimates yielded by the set of alJ possible 
realizations of yS (i.e. all possible experimental results). Fictitiolls data vectors ysf are 
generated for this purpose, by running the model for the estimated value of the 
parameters, incorporating realizations of random variables La represent the influence of 
perturbations and noise: 

Perturbations 1\ 
Run of model .M(p) -------.... 1II'lII-- Fictitious data ySf. 

Each vector of fictitious data gives a lictitious estimate pf = p(ysf), calculated as for 
real data. A set of fictitious estimates can thus be constructed, 

{ysf) 
Estimation 1\ 

-------l1li ......... (pf), 

the statistical properties of which can be studied. Most often, pf is taken to be a normal 
mndom vector, and its distribution is simply characterized by the empirical mean and 
covariance matrix of the fictitious estimates. This method thus requires a large number 
of estimations (and a jortiori of model runs). Various techniques have been suggested to 
reduce the volume of computation required; see, e.g., (Grant and Solberg, 1983). 

The generation of credible fictitious data requires a realistic model for the 
perturbations. Assume for instance the overall model under study to be an ARARMAX, 
as shown in Figure 5.9, where the e's are i.i.d . .1{(O, 0-2), with 0-2 unknown. The 
Monte-Carlo method then leads to the following procedure, which can easily be adapted 
to other model structures incorporating a description of the perturbations acting on the 
system or noise corrupting the measurements. 

- From the actual data, compute an estimate p of the vector of unknown coefficients in 
the polynomials A, B, C and D and an estimate &2 for the variance of £(1) (e.g., 



MOIlCe-LorLO memoas 243 

using the conditional maximum-likelihood method, based on the prediction error 
cp(t, p); see Section 3.3.2). 

- Check that the resulting prediction errors epU, p) do not blatantly contradict the 
hypotheses on the noise (Chapter 7). 

- Generate vectors of fictitious data by running the model with parameters p for 
various realizations of Li.d. ~O, 2r2) variables ~(t). 

- Estimate the parameters of the polynomials A, B, C and D from each of these 
vectors of fictitious data, using the same method as for the actual data. 

- Estimate the mean and covariance matrix of the fictitious parameter estimates thus 
obtained (or, more simply t estimate the standard deviation for each component 
of p). 

C(q, p*) 
~fI----~~1 r----~ 

D(q, p*) 

uCt) ----II""'i B(q, p*) 
A(q, p*) 

1--....... y(t) 

Figure 5.9. ARARMAX, with the c's LLd. !?{('O, (12) 

5.2.2 Number of significant digits of the estimate: 
the CEST A C method 

The CESTAC method, already mentioned in connection with stopping rules for iterative 
algorithms (Section 4.3.7), can also be used to evaluate the combined effect of 
uncertainty in the data and numerical elTors on the number of significant digits of the 
estimate. The procedure can be summarized as: 

- Obtain vectors ysf of fictitious data by a classical Monte-Carlo method. 
- For each of them, apply the CEST AC method to perturb the computation of the 

corresponding fictitious estimate of the parameter vector, by random addition of 
least significant bits to intermediate results. (Note that the effect of perturbation by 
noise on the data is usually much stronger.) 

-- For each parameter, use the empirical mean and variance of the fictitious estimates to 
evaluate its number of significant digits. , 

This number of significant digits is a rather coarse characterization of precision, 
which can be obtained with only a small number of fictitious data sets (typically three), 

5.2.3 Generating fictitious data 
by jack-knife and bootstrap 

One difficulty with Monte-Carlo methods lies in the choice of the distribution used to 
generate the fictitious data ysf. Thejack-knife (Quenouille, 1949) and bootstrap (Erron, 
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1982) methods make it possible to avoid estimating the distribution of the noise from 
the residuals. 

5. 2 . 3 . 1 J a cle -k n i f e 

Let p be the estimate obtained from all the data yS and let P-i (i = I, ... , lit) be the 
estimate obtained from all the data but the ith. To compensate for the vectors used to 
estimate p and P-i having (Ill - I) common elements, which makes p and P-i artificially 
close, one defines III pseudo-estimates by 

1\ 1\ 1\ II. 

PCi) = P + (Ill - 1 )(P-i p), i = I, ... , n (, 

and computes the mean and covariance matrix of the population of the pm's, from 
which confidence intervals cnn be obtained (Seber and Wild, 1989; Wonnacott and 
Wonnacott. 1984). The main advantage of lhis approach lies in its simplicity. lL seems, 
however, less flexible and reliable than the bootslrap method (Diaconis and Efron, 
1983). 

5.2.3.2 Bootstrap 

The bootstrap method (see (DiCiccio and Romano, 1988; Hinkley, 1988) for more 
details) uses only the dala yS and model .M(p). The errors are assumed to be 
independent random variables, with identical but otherwise unspecified distribution. 
Assume for instance that 

y(ti) = )'m(ti, P *) + bj. i = I, ... , Ill. 

where the bi's correspond to i.i.d. random variables. An estimate of hi is provided by 
the ith residual: 

II. 1\ 

bj=y(ti)-Ym(ri,P), i = I, ...• Ill> 

where P is the estimate of p*. A vector ySr of fictitious data l(ti) is then obtained as 

1\ 1\ 

Ym(ti, p) + b, I, ... , II b 

where, for each tit t is randomly chosen among the residuals ~k (k = 1, ... , II l) 

considered as equiprobable. This amounts to substituting the empirical distribution of 
the residuals for the true distribution of the bi s, which seems the more acceptable the 
closer p is to p*. Repeating this operation, one obtains a population of vectors of 
fictitious data, from which a population of parameter estimates can be derived. The 
characteristics of this population (mean, covariance matrix ... ) can then be studied. 

When P is obtained by minimizing a cost based on a prediction error, the residuals 
~i are simply replaced by the prediction errors computed at p. 
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5.3 Methods based on the density of the estimator 

First, we shall use a bound on the covariancc matrix of the parameter estimates to 
characterize their uncertainty. Two caseg will be considered. In Section 5.3.1, no prior 
information on the parameters is available. and they arc regarded as unknown but 
deterministic quantities. This corresponds to the use of non-Bayesian estimators, such 
as those presented in Sections 3.1 to 3.3. In Section 5.3.2, the prior distribution of the 
parameters, regarded as random variables, is assumed to be known. This situation 
allows use of the Bayesian estimators presented in Section 3.5. 

Such a characterization, based on a normal approximation for the density of lhe 
estimator, may prove very approximate for a non-LP model oblained from a small 
number of observations. A more precise (sometimes exact) characterization of density 
will thus be considered in Section 5.3.3. 

5.3.1 Non-Bayesian estimators 

Let pO be an (absoluteJy) Ilnbiased estimator ofp*, i.e. such that 

which amounts to saying that if it were possible to replicate the same experiment and 
estimate p an infinite number of times, the mean of the estimates would coincide with 
the true value. 

Let P be the covariance matrix of this estimator. Since p(.) is unbiased, P can be 
written as 

which quantifies how the estimates are spread around the true value p*. One would like 
the estimates to be as concentrated as possible around this true value, of course. An 
estimator 1>1 (.) with covariance matrix P I is said to be more efficient lhan an estimalor 
ih(.) with covariance matrix P2 if PI < P2, that is if P2 - PI is positive-definite (i.e. 
if all the eigenvalues of P2 PI arc strictly positive). Since estimators with high 
efficiency are desirable, a natural request is to make P as small as possible. The 
Cramcr-Rao inequality provides a lower bound to what can be achieved. 

REMARK 5.2 

The maximum-likelihood estimator is asymptotically unbiased (Section 3.3.3), but 
generaUy biased for a finite number of data points. For normal additive noise at the 
output, an approximation to the bias can be found in (Box, ] 971). Several methods 
have been suggested to reduce this bias (Picard and Prum, 1992; Firth, 1993: Pronzalo 
and Puzman, 1994a). 0 



5.3.1.1 Cramer-Rao inequality 

Under the hypotheses that: 

lhe set of all data vectors yS with 7ry(ySlp) > 0 does not depend on p, 
- iJ In 7ry(y Slp)/dp; (i = I, ... , IIp) is absolutely integrable, 
- Eyslp {[iJ In 7ry(y Slp)/dp][d In 7ry(yslp)/dp]T] exists and is invertible, 

the covariance of any absolutely unbiased eSlimator satisfies (Fourgeaud and Fuchs, 
1967; Goodwin and Payne, 1977; Sorenson, 1980) 

where F is the Fisher infonnation matrix, already introduced in Section 3.3.3, given by 

Remember that In 7ry(ySlp) is the log-likelihood of the data yS (Section 3.3), so the 
gradient of the log-likelihood with respect to the parameters (or its Hessian) is a basic 
ingredient in the calculation of F(p). 

An estimator that reaches the Cramer-Rao lower bound is said to be efficient. Under 
conditions stated in Section 3.3.3, the maximum-likelihood estimator is asymptotically 
efficient. In some special cases, this property is also valid for a finite set of data, as wil1 
be seen in the next section. 

5.3.1 .2 LP model structure and normal noise 
with known covariance 

Assume that the data satisfy 
yS = Rp* + E, 

where E is normally distributed, with zero mean and know11 covariance :r.. The 
likelihood of the observations can then be written as 

The gradient of the log-likelihood is therefore 

and the Hessian is 
d2 

--In Jr (ySlp) = -RT:E-1R. 
dPdpT Y 

Since the Hessian does not depend on ySt the Fisher informalion matrix is given by 
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F therefore does not depend on the value of the parameters. 
Let us show that, under the same hypotheses, the least-squares estimator, weighted 

by the inverse of the noise covariance (i.e. Q = :t-1), 

is unbiased and efficient. Since 

E {Pls{yS)J= E {(RTL-IR)-IRTL-l(Rp*+E)} 
yslp* ySlp* 

= p* + {RT:t- i R)-IRT1.:- 1 E lE} p"', 
ySlp* 

PIs is unbiased. Its covariance matrix is 

= E {[(RT:t-1R)-IRT:t-I(Rp*+E) - p*][(RTL-IR)-IRT:t-I(Rp*+E) p*r"} 
yslp* 

= (RT:t-1R)-IRTL-I E {EET1:t-1R(RT:t-JR)-I. 
yslp* 

Since E {££T) = 1.:, this simplifies to 
yslp* 

PIs = {RT:t-1R)-1 = F-I, 

so PIs is efficient. Note thut when calculating Pis through the explicit formula derived in 
Section 4.1.3 

or through its recursive counterpart, one ohtains PIs without any additional effort, hence 
the remarks in Chapter 4 about the interest of knowing the value of 
(RTr.-1 R)-I, or, at least, of its diagonal terms. As mentioned in Section 4.1.3.2. it is 
numerically preferable to use singular-value decomposition for R, expressing it as 
R UWVT. 

Since the model structure is LP, the expectation surface is flat. Consider the 
projector 

which coincides with that indicated in Sec lion 5.1.1.1 when L = 11/[a2. A 'OO( I a)% 
confidence region for the parameters is now 
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A A A 
Since yS - Rp = yS - RPls + R(Pls - p) = (I"t - n)yS + R(Pls p), one can also write 

A Tr~ A J 
= {p E IR.'Ip I (p - Ph;) .1.1 (p - Ph;) ~ Xa(n p)}. 

which corresponds to a 100(1 - a)% confidence ellipsoid for p. For each parameter Pb 
a I OO( 1 a)% confidence interval can be defined from the distribution of (Pls)i' which 
is !i\i(p*);. (F-I )ii). For instance, a 95% confidence interval is 

with Pi the square root of the ith diagonal entry of F-l. It is also interesting to indicate 
the correlatiol1 coe.Dicie111 between the estimated parameters Pi and Pk (i, k = 1, ... , 
I1p), given by 

flf-I]ik 
-1 ~ c i k = 1/2 1/2 ~ I. 

[F-I] if [F-l]kk 

The results mjght conveniently be presented as a table where the ith line contains (Ph;);. 
the 95% confidence interval [(Pis); - 2Pi, (Pls)j + 2pi] and the correlation coefficients 
Clk (k 1, ...• J1 p)' 

REMARK 5.3 

The fact thalthe least-squares estimator weighted by the inverse of the noise covariance 
is unbiased and efficient does not imply that it minimizes the mean-square error in the 
parameters. It may sometimes be preferable to accept some bias to reduce the covariance 
of the estimator (see, e.g., (Norton, 1986a), pp. 109-1 1 l). For instance, one can use a 
ridge esti11l11le (Hoer! and Kennard, 1970; Marquardt, 1970; Goldstein and Smith, 
1974) 

the covariance matrix of which is 

Note the similarity to the Levenberg-Marquardt method for least-squares optimization 
(Section 4.3.3.5). 

The hyperparameter fl ? 0 must be tuned (Section 3.8) to ensure a satisfactory 
compromise. When fl tends to zero, the estimator is unbiased and efficient. When fl 
tends La +00, P{fl) tends to O. The ridge estimator thus tends to reduce the variance by 
favouring the origin of parameter space. 0 
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5.3.1.3 LP model structure and normal stationary noise 
with unknown variance 

Assuming that the data satisfy 

y(t) ;::; rT(l)p* + £(1). I = 1, ... , 1/[, 

where the £(trs are LLd. ~O, ( 2), with er2 unknown, amounts to assuming that 

yS=RP*+E. 
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where E is distributed 9{(O, L 2 with :E = (J2I. In this case, Pml is obtained by 
unweighted least squares (Q = I, Pml ;::; Pis), and 2r1~1 by 

1 III :L [1'(1) 
III 1=1 -

A first approach would then be to compute the inverse of the Fisher information 
matrix associated with the extended parameter vector 

However, it is often enough to act as if (J2 were known, which amounts to taking the 
covariance matrix of ~ls as 

and, since the value of a2 is unknown, replacing it by an estimate. As ~ful is biased (it 
is only asymptotically unbiased). the unbiased estimator 

is usually preferred. The confidence region then becomes 

Since 

can also be rewritten as 
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which permits construction of exact confidence ellipsoids (Section 5.1.1.2). Moreover, 

(p ~\ - (PIs); 

m(RTR)-I] I/l ' 
i = I, ... , flp, 

has a Student t-distribution with Ilt - IIp degrees of freedom, which can be used to 
derivc cxact 100(1 - a)% confidence intervals for the parameters. 

5.3.1.4 Other cases 

Undcr thc hypothescs mentioned in Section 3.3.3, the maximum-likelihood estimator is 
asymptotically normal and asymptotically efficient. The estimator Pml thus tends to be 
distributed 9Xl.p*, F-I(p*)) as the number of data points tends to infinity, hence the idea 
of characterizing the uncertainly in Pml by F-I UimJ}. This relics on a chain of 
approximations, and thc rcsull should be viewed with some scepticism. Assume, for 
instance, that the data satisfy 

where the E(ti)'S arc indepcndent random variables distributed 9.{{·O, 07.), with (J~ 
known. The associated log-likelihood can be written as r 

lit 
1"V lv(f")- V (t. p)]2 

In lry(ySlp) = (tcnn independent of p) -" L,; - I ~ /, . 

~ i=1 OJ; 

Its gradient is thus 

III 

a " 1 a op In lry(ySlp) = L,; , ry(tj) - Ym(ti, p)] dP Ym(ti, p). 
i=1 OJ,. 

The Fisher infonnation matrix can now be calculated as 

III 

{
"VI dYm(tb p) 

= E LJ _? dP [y(tk) - Ym(tk. p)] 
yslp k=l UJk 

TIt 
"V 1 dYm(ti, p)} 

x ..t...- [y(ti) - Ym{tj. p)] ~. _. aT· 
;=1 Of; P 

Since 
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one gets 
III 

F(p) = L -4 Cl.Vm(ti, p) aVm(t~ plo 
i=l Of

i 
ap ap 

F(p) is therefore the approximation of the Hessian used in the Gauss-Newton algorithm 
(Sections 4.2.4 and 4.3.3.4), hence the interest, already mentioned in Chapter 4, of 
inspecting the value of the inverse of the Hessian once the algorithm has converged. 

Using F-l (Pml) to characterize the uncertainty in the parameters relies on the 
following chain of approximations: 

Ai: F-I(p*) is substituted for Pml; however, the number of observations is always 
finite, and sometimes quite small, so Pml is generally biased. 

A2: F-i (flml) is substituted for F-I(p*). 
lit 
~ 1 av (t. p)av (t. p) 

A3: £..J ---" . rn al>· ma ~ is substituted for F(p), whereas the hypotheses 
i=l Of; p p 

on the noise which aJlow this expression are never totally satisfied. 

When compared to the approaches presented in Sections 5.] and 5.2, this has the 
advantage of requiring far less computation, since the estimate of Pml is obtained as a 
by-product of the optimization procedure. This explains why it is certainly the most 
commonly used, allhough one should be suspicious of its results, because of all the 
approximations involved. These results are more credible insofar as 

- the number of data points is large, 
- the nonlinearity of the model with respect to its parameters is mild, 
- the measurement errors are independently distributed and have small magnitudes. 

Generally it is thought enough to give, together with the estimaled value of the ith 
parameter Pi, the square root Pi of the ilh diagonal element of F-I(Pml), which forms an 
estimate of the associated standard deviation. One Hms obtains an approximate 95% 
confidence interval for the ith parameter in the form tPiml - 2Pit Piml + 2piJ. An 
approximate correlation coefficient between the ith and kth estimated parameters 
(i, k = 1, '" , l1p) is given by 

- J < C"k - [F-I (Pml)1L __ < 1 
- I' - ,,_ A 112 -1 A 1/2 - . 

fll I (Pm])] ii [F (Pml)lkk 

REMARKS 5.4 

- If the 07/5 were unknown, the approach advocated in Section 3.3.1, Example 3.3, 
would lead lo estimating the extended parameter vector 
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by maximum likelihood, with PO" the parameters of the noise variance, then 
calculating F-l(Peml)' In "Qractice, as in Section 5.3. I .3, one is often content to act 
as if each noise variance cT,i were equallo its estimate '(if;. which amounts to lalcing 
the Fisher infonnation matrix as 

III 

F(p) = ~ ~. d)lm (t i, p) d Y III (t i. p) 
.L...J II '1 dp -. T • 
i=l CTii up 

In the special case where all a7/s are equal, Pm! is estimated by unweighted least 
squares and (J2 by 

Ilt 

1\:') I "" II ., 
(J- = -ll--n- L.J [y(ti) - )'m(ti, Pml)]-. 

t p ;=1 

F(p*) is then approximated by 

I1t 

Fe" ) - 1.. 'V dYrn (ti, p) dYrn (ff. p) 
Pml - ":? .L...J dp d T I ' 

(J- i= t p p = ~rn I 

and the set 

defines an ap~roximale 100(1 - a)% confidence ellipsoid for p. As already 
mentioned, F(Pml) is equal. up to mulliplication by a scalar, to the approximate 
Hessian used in the Gauss-Newton algorithm. The ratio of the largest to the smallest 
eigenvalue of F(Pml) is thus clearly related to the numerical conditioning of the 
optimization problem. 

- For'each parameter Pi. an approximate confidence interval can be obtained by using 
the fact that 

approximately follows a Student t-distribution with 111 IIp degrees of freedom. 
- When the £(tj)'s correspond to independent random variables with non-Gaussian 

densities nc;(£, til, it is easy to show that the expression for the Fisher information 
matrix is similar to the Gaussian case, with lIcii'; simply replaced by the Fisher 
infonnation 
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I, - 1!e E, t, E, l( .) - f Cd In 1!E(E, t;))2 ( .) d 
de 

assumed to exist, with ID = (e I 1!E-(E, Ij) > 0) (see also Section 3.7.1). 
- If the output errors for the true value of the parameters do not correspond to 

independent random variables, prediction errors should be considered instead, as in 
Section 3.3.2 for maximum-Jikelihood estimation. In general, the Fisher 
information matrix can then no longer be written as a sum of rank-one matrices, 
each associated with a single observation; see Section 6.3.2.2. 0 

5.3.2 Bayesian estimators 

As already mentioned in Section 3.5.1, the maximum (1 posteriori estimator has the 
same asymptotic properties of consistency and efficiency as the maximum-likelihood 
estimator Pml(YS), provided 1!p(p) is continuous and non-zero at Pml(YS). The 
asymptotic uncertainty in Pmap(YS) can therefore also be characterized by the Fisher 
information matrix, since the prior information asymptotically vanishes. However. this 
prior information should still be taken into account when the number of observations is 
finite. 

The Cramer-Rao inequality can be extended to the Bayesian estimators considered in 
Section 3.5. In this context, an estimator p(yS) is said to be unbiased jf 

" E { E p(yS)} = E (p L 
p yslp p 

where p has a prior distribution 1!p(p). Under conditions similar to those required for 
the Cramer-Rao inequality to be valid. the covariance matrix of the estimation error 
p(yS) - P satisfies, for any unbiased estimator p(yS) (sec, e.g., (Sorenson, 1980)) 

E ( E ([p(yS) _ P ][P(yS) _ p]T}} ~ 
P yslp 

[ a () T ]-1 E { E ([d In 1!(Ys, p)][ap In 1!(YS. p)] }) 
p yslp P 

[ () a T ]-1 ;:;: E {F(p)} + E {[er In Jrp{P)][ap In 1!p(p)l} , 
p p p 

where F(p) is the Fisher information matrix. 
We have seen in Section 3.5.2 that the minimum-risk estimator for a quadratic cost 

coincides with the posterior mean of p, which is unbiased. The covariancc matrix or the 
associated estimation error thus satisfles lhe inequality above. However, this estimator 
is not absolutely unbiased. so the Cramer-Rno inequality of Section 5.3. 1.1 does not 
apply. Consider the special case or an LP model structure 

yS = Rp* +E, 
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with £ distributed ~O, :1:) and:1: known. We have already shown that 

Assume, moreover, that the prior density 1rp(p) is normal 9\1po. Q). One can then 
easily check that 

and that the bound of the inequality is reached for the maximum a posteriori estimator 
" Pillar, so 

E ( E ([Pmap(YS) - plfPmap(YS) - p]TI} = (RTL-1n. + 0-1)-1. 
p yslp 

REMARK 5.5 

The estimator Pmap(y5) also minimizes the risk 

where K is any maLrix with rank dim p (Section 3.5.2). The prior expectation of the 
minimum risk is then 

E Umr[Pmap(YS)]} = trace [K( RTI:- J R + 0-1)-1 I(T]. 
yS 

It can be chosen as a cost function to select the experimental conditions; see 
Section 6.S. The matrix (RTl:-l R + a-I )1111 is called the Bayesian information matrix 
(Pilz, 1983). 0 

5 . 3.3 Approximation of the probability density 
of the estimator 

The probability density of the estimator in a sense summarizes the information about the 
precision of the estimation. Let p* and E respectively denote the vectors of the true 
values of the parameters and of the experimental conditions used to obtain the III 

observations (Chapter 6), An approximation q=:((llslp*) of the density of the least­
squares estimator in the case or additive noise distributed 9\10, 0'2) has been obtained 
by Pazman (1984, 1990, 1993) as 



where the matrix Il;:(Pls) is the orthogonal projector onLo the tangent plane to Sexp at 
ym{:::, Pis) (Section 5.1.1), and 

[Q:::{Pls' P*)]i.k = [F(PIs' B)]i,k 

This expression has been obtained by Pilzman in 1984 in the non-asymptotic case 
(Il t finite) through a geometrical approach, and independently by Skovgaard (1985) and 
Hougaard (1985) as an asymptotic approximation, more precise than the classical 
nonna] density. The density q:::(Pls1p*) is exactly that of Pis when the intrinsic curvature 
of the mode] is zero, that is when the expectation surface Sexp is flat. This will be so, in 
particular, when the number of distinct experimental conditions in::: is up. The density 
is almost exact (in the sense that estimates associated with data yS located at a distance 
from Scxp larger than its radius of curvature are neglected) for flat models {i.e. those 
with a Riemannian curvature tensor equal to zero (Amari, J 985». All models which are 
functions of a single parameter, or depend nonlinearly on a single parameter, are flat. 
This is so, for instance, for the Hill model 

j:. Emax~ 
Ym(l:!, p) = j:. t' 

1:!50 + S 

wi th P (Emax , ;50) T and gso the val ue of ; such that Y m (;50, p) = Emaxl2. This is 
also called the Michaelis-Menten model when used to describe non linear effects in 
biology and pharmacokinetics. 

Note that the accuracy of q:::(PIslp*) depends on the intrinsic nonlinearity of the 
model (the curvature of Sexp), but not on its parametric nonlinearity. This density may 
turn out to be quite different from the classical nonnal approximation, as illustrated by 
the following example. 

EXAMPLE 5.2 

Consider the single-parameter model 

Figure 5.10 presents the exact density qScPls1p"') and its normal approximation for 
p* = 0, cr2 = 5 and a single observation at ~ = 1. 0 
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Figure 5.10, Exact density and normal approximation in Exnmple 5.2 

The construction of q=.(p)slp*) is via the definition of a density on §cxp' so 
constraints on p due to the structure of the model are automatically taken into account, 
as illustrated by the following example. 

EXAMPLE 5.3 

Consider the model 

Figure 5.11 shows the density q=.Wlslp*) and the normal asymptotic density when 
p* = 1. g = (l~ l)T and (J'2 = 0.25. §cxp, a straight line with unit slope in the plane 
[y( ~1), y( ~)], is totally described as p varies from zero to infinity, so there cannot be 
negative least-squares estimates. This is properly taken into account by qs</;slp*) but 
not by the nonnal approximation. Since Scxp is fiat, the density q=.</;slp*) is exact. 0 

When dim p ~ 2 (as in the previous examples), a plot of q=.(plp*) as a function of 
p, with the unknown true value p* replaced by its estimate ~ls(YS). allows visual 
assessment of the precision of the estimation. Since q:;:(plp*) depends on p* 1 one 
should, however, check how it behaves as p* varies in the neighbourhood of the 
estimate Pls(Y S), 

When dim p > 2, marginal densities can be computed. More generally. let 
l1Pls(YS)] be the function of interest. Its density can be approximated (pazman and 
Pronzato, 1994, 1995) by 

where 



and 

Py= arg min 11 ym(:s, p) - ym(s, p*) II~, 
peP 

ftp)=y 

T 
by b}' 

Py=--,) 
IIb~12 

The ith marginal density is then simply obtained for l1p) = Pi. More precise, but more 
complicated, approximations are suggested in (Piizman and Pronzato, 1994, 1995). The 
entropy of the density can also be used to quantify the precision of the estimate; see 
Section 6.4.1, and (Pronzato and Pazman, 1994b) for an approximation lo the entropy 
of the density q;:(plp*). 

n.? r------,-----....----------'-,------, 

n.5 

O.J 
normal approximation 

0.2 . 

0.1 p* 

3.5 

Figure 5.11. Exact density and normal approximation in Example 5.3 

An analytical approximation to the density of the Bayesian maximum a posteriori 
estimator will be given in Section 6.4.1, as a particular case of the density of a 
constrained least-squares estimator, where the constraint is introduced through a penalty 
function (Puzman and Pronzato, 1992a, 1992b). Its accuracy is the same as for 

'" I * q;:(Pls p ). 

5.4 Bounded-error set estimation 

Two kinds of error cannot be avoided when estimating parameters from 
experimental data. The first corresponds to measurement errors or other perturbalions 
which impose uncertainty on the data. The second corresponds to structural errors, due 
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to the fact that the model structure is at best an approximation of reality. This problem 
will be considered again in Section 6.6. When the parameters to be estimated have a 
concrete meaning (phenomenological models), or when decisions have to be based on 
their numerical values (prediction, diagnosis, control ... ) one should try to evaluate how 
these two types of error will affect the estimates. 

The usual statistical framework assumes, as we have just seen, that the data are 
corrupted by errors modelled as realizations of independent random variables, with a 
known or parametrized distribution. The estimator is then obtained by maximum­
likelihood techniques (if the hypotheses only concern the prior distribution of errors) or 
Bayesian techniques (if the hypotheses also concern the prior distribution of the 
parameters). Most often, the quality of the estimate is characterized by taking advantage 
of properties of the Fisher information matrix, since this is by far the easiest method 
computationally. To the limitations of this approach already mentioned, one may add 
that it is badly adapted to 

- strllctural deterministic errors, such as those encountered when a simple linear 
model is used to describe the behaviour of a complex deterministic nonlinear model; 
modelling such errors as realizations of random variables is then questionable, given 
the perfectly repeatable nature of the deviations; 

- errors for which the hypothesis of mutual independence is not tenable; 
- errors for which the only prior information is in the form of bounds~ this will be the 

case, for example, for data collected through an analogue-to-digital converter or for 
measurements perfonned with a sensor of a given type. 

The bou1lded-error approach presented in this section aims to characterize the set of 
all values of p that are feasible a posteriori, in the sense that the associated errors (which 
may be deterministic or random) lie between given prior bounds. This approach has 
received growing attention in the recent literature, as illustrated by special issues of 
!vlathematics and Computers ill Simulation (Walter, 1990) and the International Journal 
of Adaptive Control alld Signal Processing (Norton, 1994, 1995), and a recent research 
monograph (Milanese et at., 1996). An extensive list of references can be found in the 
surveys (Combettes, 1993; Deller, Nayeri and Odeh, 1993). See also (Kuntzevich and 
Lychak, 1992). The methodology extends to many problems where a set defined by 
inequalities is to be characterized (Walter and Pronzato, 1994). 

Of course, one may object that the knowledge of prior bounds on admissible errors 
can be taken into account through the use of uniform probability densities 
(Example 3.6), However, characterization of the set of all parameter vectors that are 
maximum-likelihood estimates will then rely on techniques similar to those presented 
below. so the distinction between the two approaches becomes pointless. 

Note that bounded but independent errors can still be treated with a more 
conventional approach, e.g. least squares, with a suitable choice of error variance. An 
important condition for the least-squares estimator to have nice asymptotic properties in 
a bounded-error context is that the sample cross-correlation between the inputs and 
disturbances tends to zero as Ilt increases (Hjalmarsson and Ljung, 1994). 

Consider an output error, defined as 

ey(k. p) = y(k) - Ym(k, p), k = ], ... , n{t 

where y(k) is the kth scalar measurement from the system, and Ym(k, p) is the 
corresponding model output. Other types of errors will be considered in 
Section 5.4.2.1. Assume p to be feasible if and only if 
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where the bounds e~(k) and e~(k) are known a priori and e~(k) :t e~ (k). These 
bounds may come from technical specifications provided by sensor manufacturers. 
empirical knowledge, or simply intuition. We aim to characterize the set of all values of 
p yielding feasible errors, and will denote the posterior!easible set associated with the 
first Ilt data by P"t' with lPo the prior feasible set. In what follows. we shall assume that 
Po is either JR.lIp or a convex polyhedron in lR"p, which can be defined by a finite 
number of linear ine~ualities. IPIII is also called the likelihood set (Example 3.6), Since 
ey(k) differs from ey (k), the inequalities associated with the kth measurement can be 
put in the standard form: 

-1 ::;; y( k) - Y m (k. p) ::;; I, 

with 

-y(k) -_ 2v(k) - e~ Ck) - e1pCk) d - (k ) 
M an Ym', P 

ey (k) - e~(k) 

For notational convenience, we shall assume that this transformation has been 
performed. but drop the upper bars on y(k) and Ym(k, p). The set of p values which 
satisfy the constraints associated with y(k) can then be written as: 

lI1[k = {p E lRllp 1-1 S; y(k) - Ym(k, p) S; I}, 

and the set JP" of all values of p consistent with the first 11 data points is given by the 
intersection of the sets lnlk (k = I •... , 11,11 S; Ill) with lPo. 

IPIII is generally not a singleton, so the associated estimator is not a point-estimator. 
IPllt may be empty if the hypotheses are wrong. On the other hand, if there exists some 
p* for which the bounds on the errors are satisfied. then certainly contains it. 

As in Chapler 4, the algorithms used lo characterize lP,,\ depend on whether the 
model structure is LP or not (more generally on whether or not the error is affine in the 
parameters). The LP case is trealed in the nexl section and the non-LP case will be 
discussed in Section 5.4.2. 

5.4.1 LP model structures 

Consider an LP model structure, defined by 

Ym(k+l, p) = rT(k)p 

and an output error (alLhough other situations involving errors affine in p could be 
considered as well). Since the regressor vector r(k) is assumed to be known. is a 
strip in parameter space, bounded by two parallel hyperplanes. When the inequalities 
associated with y(k) are in the standard form. these hyperplanes are defined by 

and 
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KSJ.-;::: {p E iR"r I y(k) - rT(k-l)p;::: -I}. 

When r(k-I) ;::: 0, y(k) conveys no information on p. We therefore only consider data 
points with non-zero regressors. As the intersection with of strips bounded by 
parallel hyperplanes, lP II [ is a convex polyhedron. Provided the r(k)'s (k ;::: 0, ... , 
III I) span lR.ltp (a condition for idenUfiability), is bounded, and thus a polytope, 
even if JPo is lFt"p. 

Conditions under which lPll{ will converge to p* as III tends to infinity are 
investigated in (Veres and Norton, 1991a).lfp* is such that the bounds on the error are 
satisfied, an important condition for excluding al1 p:;:: p* as III increases is that enough 
error samples are close to the bounds. 

]Pllt may become very complicated if III and especially flp are large. This will be 
particularly true when the error bounds are pessimistic, which is the rule in practice 
since an optimistic choice of bounds yields an empty set Jt'1I! after a finite number of 
observations. It is therefore of special interest to have at one's disposal methods for the 
construction of sets with simple shapes guaranteed to enclose ]p,,\. The most widely 
used are ellipsoids, orlhotopes (boxes), parallelotopes and polyhedra with limited 
complexity (e.g. simplexes). 

5.4.1.1 Recursive determination or outer ellipsoids 

In this approach, the data are taken into account one after the other to construct a 
succession of ellipsoids containing all values of p consistent with all previous 
measurements. This leads to a policy easily implemenlable on-line (possibly in real 
time). The algorithms obtained can be regarded as members of the wider family of dcad­
zone algorithms (Arruda and Favier, 1991). After the first k - I observations, P'k-l is 
characterized by the ellipsoid 

where pk-l is the centre of the ellipsoid, and Mk-l a positive-definite matrix which 
specifies its size and orientation. The volume of the uncertainty region for p 
characterized by this ellipsoid is given by 

where 'l'{llp) is the volume of the unit ball in Ifl'Jlp. 
The algorithms described below provide rules for computing pk and Mk in such a 

way that 

while minimizing the volume of IE(pk, Mk), which amounts to minimizing det Mk 
(Figure 5.12). The initiaJ values pO and Mo are chosen so as to ensure thal E(pO, Mo) 
is large enough to contain lPlII (e.g. pO;::: 0 and Mo = cIllp with c Jarge enough). 

We assume here that the parameters do not vary with k, so that lPk-l d Pk, but the 
ap~roach extends to the tracking of varying parameters, provided the ellipsoid 
IE(pk-l, Mk-I> is suitably expanded before being intersected with Jruk (Norton and Mo, 
1990). 



Figure S.12. Principle of the recursive delcrminalion of outer ellipsoids 

OBE (Outer-Boundi1lg Ellipsoid) algorithm. This algorithm. originating from the work 
of Schweppe (1968. 1973). Foge1 and Huang (1982) and Belforte. Bona and Cerone 
(1990). is the most widely used for the recursive ellipsoidal characterization of posterior 
feasible sets. We shall derive its equations and detail the tests required for its 
implementation. First note that 

if and only if 

Any p in JE(pk-l. Mk-l) n lI1lk therefore satisfies 

For any fixed A. this is only a necessary condition for p to belong to 
JE(~k-l, Mk-l) n lI1lk. This condition is quadratic in p and defines aJamUy of ellipsoids 
JE(pk~ Mk) parametrized by A. Various policies can be considered for choosing A. and 
several ellipsoidal algorithms with different values of it can even be run in parallel to 
characterize posterior feasible sets by the intersection of the ellipsoids thus obtained 
(Kurzhanski and Va1yi, 1991). To calculate the value of A that minimizes the volume of 
IB(pk, Mk), it is convenient to rewrite the equation that defines this ellipsoid in the 
standard form. Since 
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(p pk-l)TMk~I(P - pk-I) - 2t1.[V(k) - r T(k-1)pk-l]rT(k-1)(p _ pk-I) + 

t1.[y(k) rT(k-l)pk-I]2::::; I + A, 

with 

The matrix-inversion lemma implies: 

M - [1 Mk_IrCk-l)rT(k-I)] M 
k-l - II - k-l· 

P A-I + rT(k-1 )Mk-Ir(k-l) 

By completing the square in the quadratic form, one obtains: 

with 

{p - pk-I_ AMk_lr(k-l)lv(k) rT(k-l)pk-I]}TMk~1 

x (p pk-I - itMk-J r(k-I )[y(k) - rT(k-l)pk-l]} ::::; q (it), 

ct (it) = 1 + A - A[y(k) - rT(k-l)iik- 1 )]2[1 - Ar T(k-l )Mk-I r(k-I)] 

= 1 + t1.-A[y(k)-rT(k-l) pk-l]2[1 + ArT(k-1)Mk_lr(k-1)]-I. 

Define v=y(k)- rT(k-l)pk-1 and 8 = rT(k-1)Mk_lr(k-l) (g > 0 since the regressor 
vector is assumed nolto be zero). Then 

AV2 
q(A) = I + A----

1 + Ag 

Nonnalizing the quadratic fonn gives lE(pk, Mk) as a function of it. with 

and 

Minimizing the volume oflE«(.k. Mk) with respect to A is equivalent to minimizing 

det Mk(A) = [el (A)]np det Mk-l (A). 

Since del [I + vwT] = 1 + wTv, 

where 
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(1 + A _ AV2 

1 + 

1 + itg 

The minimum-volume ellipsoid in tlte family considered is thus obtained for 

For all IIp > 1, C2(A) tends to +00 with it, so A'" is either zero or the argument of a 
stationary point of C2(.A). These stationary points arc given by 

cl 
- c,(it);::: 0 
dit - , 

which is equivalent to q(A)q(it) ;::: 0, where 

C3(A);::: gA2 + (1 + g - v2)it + I, 

The equation C3(A) ;::: 0 has no positive real root, since v2 < 1 if pk-I E Jrh. The 
stationary points are thus the real roots of the equation q(it) ;::: 0, which can also be 
written as 

where 0:1 ;::: (Ilp - I )g2 > O. Define 

v- v + 

The discriminant of the equation q(A) ;::: 0 can then be written as 

fJ4 ., J ,,'1 ,,'1 
L1;::: '4 [4(1 - a:j:)( I - a:) + njj (Q+ -1I:)-]. 

The indicators a+ and G_ have several interesting properties, shown in Figure 5.13: 

- la+1 > 1 <=> iH[+ does not cut IE(pk-l, Mk-I); 
- laJ> I <=> lYI- does not cut IE(pk-l, Mk-I)~ 
- Q+ > 1 or lL > 1 <=> lECpk-l, Mk-d n IfiIk is empty => Pk is empty; (this lest 

should be used to stop the algorithm if required;) 
- dC2(it)/ditl A.=O ;::: g[lIpQ+Q- - 1]. 

A sufficienl condition for A* to be a stationary point is 



d 
- C2(A), = IIp(l V2) - g < 0, 
dA N=O 

which is thus equivalent to a+Q_ < I111p. 

Figure 5.13. IIIustnl1ion of (he properties or the indicators (1+ and 1I_: 

y(k) - I < rT(k-l)~k-1 - 'fit so l/+ < -I; 
rT(k-l)~k-1 - ~ < y(k) + ] < rT(k-l)pk-l +~. so -\ < (L < I 

ullcenal17ty 

When IE(pk-l. Mk-d n iIlIk is not empty. any hyperplane not intersecting 
E(iik-1, Mk-J) can obviously be replaced by a parallel one tangent to this ellipsoid 
without modifying the intersection between the ellipsoid and the feasible strip 
Belforte. Bona and Cerone (1990) have, however, found that this policy yields smaller 
ellipsoids than the original algorithm proposed by Fogel and Huang (1982), which is 
therefore suboptimal. The aBE algorithm considered below implements this heuristic 
modification, which will turn out to yield an optimal algorithm. It amounts to replacing 
Q_ by tl~ = max (eL, -1) and tl+ by a';' = max (a+. -1). Whenever {l+ or a_ have been 
modified thus, V must be updated to 

v' _ a:"" - {/-i­
-t4+a:' ' 
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yielding v' = {g - 1 if Q_ has been replaced by a: = -I or \I' = 1 - ~ if a+ has been 
replaced by (l.t = -1. In what follows, the primes are omitted for notational 
convenience. 

The discriminant L.\ is then always strictly positive, which implies that the equation 
c4(il) = 0 always has two real roots. Moreover, 

and 

Two cases must be distinguished. If a+~ ~ I/llp then a3 ~ 0 and a2 > 0, which 
implies that no root is strictly positive and thus that c2(il) has no stationary point 
in [0. +00[' so ;t* = O. Conversely. if G+(L < Ill/pI which implies that a3 < 0, then 
there is a single positive root 

;t* 

The new ellipsoid JE(pk, Mk) is obtained by substituting A'" for il in the expressions 
giving pk and Mk. Note that il* = ° corresponds to retaining the previous ellipsoid. 

EPC (Ellipso;d with Parallel Cuts) algorithm. EPC is one of the ellipsoidal algorithms 
arising from study of the theoretical complexity of linear-programming algorithms 
(Khachiyan. 1979; Bland, Goldfarb and Todd, 1981). It calculates the minimum­
volume ellipsoid containing JE(pk-l, Mk-I) n iflIk, where is the strip between two 
parallel hyperplanes jffi+ and lHl-, and applies when both ]HI+ and IHf- cul the ellipsoid 
JE(pk-J, Mk-I). It may thus be used for bounded-error estimation provided: 

- data with a regressor equal to zero are not considered, 
- a test is used to check that the intersection is not empty, 
- any hyperpJane not intersecting JE(pk-l. Mk-d is translated to become tangent to it. 

As for OBE, this amounts to performing the following preliminary operations; 

ifr(k-I) = 0, then lE(pk, Mk) = lE(pk-l, Mk-l); 
- if CL> 1 or Q+ > 1, then JE(pk, Mk) is empty; else replace (L by max(cL, -1) and a+ 

by max(a+, -I); 
- if u+a_ ~ Ihzp then JE(P!.:, Mk) lE(pk-l, Mk-I). 

When JE(pk, Mk) is not given by these preliminary operations, it is calculated. if 
u+:;t: a_. by 

a 
Mk-l rCk-l)r T(k-l )Mk-I] g 
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where 

and 

1 
U=---,-

IIp + 
with 

" ,., ") ? 2 ?-2 P = 4(J - 0+)(1 - (e) + IIp(a+ - a:.) . 

When (1+ == (L = a, a is no longer defined. The equations above then specialize into 
those of the ellipsoidal algorithm with parallel Cllts symmetric with respect 10 the centre, 
given by 

and 

EPC yields the minimumMvolume ellipsoid containing JE(pk-l, Mk-l) n (Konig 
and Pallaschke, 1981). It is thus recursively optimal. Now, although the equations of 
EPC and OBE look quite different, the two algorithms are mathematically equivalent 
(Pronzato, Walter and Piet-Lahanier, 1989), which establishes that OBE is also 
recursively optimal. OBE (and thus EPC) is surprisingly similar to the recursive least­
squares algorithm (RLS), considered in Section 4.1.4. However, OBE and EPC are 
not simple variants of RLS. As Schweppe (1973) puts it: "The models are 
fundamentally different both in terms of physical assumptions and interpretations and in 
terms of type of mathematical concepts required. However, when ellipsoidal sets are 
used, the unknown-but-bounded and stochastic model equations are very simi1ar in 
appearance". 

REMARKS 5.6 

- The convergence properties of are studied in (Liu, Nayeri and Deller, ) 994~ 
Nayeri. Liu and Deller, 1994). 

- The fact that OBE and EPC are mathematically equivalent does not imply that they 
are computationally so. No result seems available yet on their relative numerical 
efficiency (speed, robustness ... ). 
An optimal-volume-ellipsoid algorithm is suggested in (Cheung, Yurkovitch and 
Passino, 1993), presented in such a way that it might seem to differ from OBE and 
EPC. However, one can easily show (Pronzato and Walter, 1996b) that these three 
algorithms are mathematically equivalent and only differ in the way the computation 
is organized. 
Except in the degenerate case, the intersection of lEk-1 with IIlIk is not an ellipsoid. 
An approximation is thus incurred at each step, even with recursively optimal 
algorithms. The ellipsoid 1E{pllt j Mnt) obtained by processing all the data is therefore 
IIot the minimum-volume ellipsoid containing Pm. The volume of the ellipsoid can 
generally be decreased by circulating the data several times in the algorithm 
(Belforte, Bona and Cerone, 1990). Even in this case, the resulting ellipsoid 
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remains very pessimistic. and the parametric uncertainty intervals (PUI's) obtained 
by projecting the ellipsoid on the axes of the parametric space are very pessimistic 
too. Note that beller PUT's can be obtained by using the most interior bounds given 
by such projections during the course of all recursion steps so far (Obali, 1993). 

- Techniques inspired by experiment design (Chapter 6) permit computation of the 
minimum-volume ellipsoid containing lflllt (Pronzato and WaIter, 1994a, 1994b). 
The resulting algorithms are then globally optimal, sce Example 5.4 below, but no 
longer recursive. An intermediate approach consists in replacing lIlIk by the 
minimum-volume ellipsoid containing the paralleIotope associated with the last IIp 
data (Veres and Norton, 1991b). 

- The algorithm presented in (Norton, 1989) recursively determines a maximum­
volume ellipsoid contained in lP'k. However, this algorithm is not globally optimal, 
and the ellipsoid obtained tends to vanish quickly. Non-recursive globally optimal 
algorithms (in the sense of maximal volume) are presented, e.g., in (Khachiyan and 
Todd, 1993; Pronzato and Waiter, ]993, J996a). See also Example 5.4 below. 

- Minimizing the volume of an ellipsoid amounts to minimizing the product of the 
lengths of its axes, which may lead to a very thin ellipsoid and to large uncertainty in 
each parameter. One might then prefer to minimize the trace of Mk, which amounts 
to minimizing the sum of the squares of the lengths of the axes (Fogel and Huang, 
1982), or consider more general costs, using the eigenvalues of Mk (Kiselev and 
Polyak. 1991). 

- In the same way as the recursive least-squares algorithm forms a basic ingredient of 
Kalman filtering, ellipsoidal outer bounding can be used in bounded-error state 
estimation (Schweppe, 1968, 1973; Filippova el al .• 1996; Maksarov and Norton, 
J996a, 1996b; Durieu, Polyak and Waiter, 1996a, 1996b). 0 

EXAMPLE 5A 

Consider the AR system defined by 

y(k) = -O.4y(k-l) O.85y(k-2) + e(k). k ;;; 3, ... , 25, 

y(l) = e(1). y(2)::;;; e(2), 

with the e(k)'s independently uniformly distributed in [-1,1]. Figure 5.14 presents the 
outer ellipsoids obtained for the AR model 

y(k) Ply(k-l) + p2y(k-2) + e(k), 

-1 S e(k) -s; 1, k :::; 3, .... 25, 

with the EPC algorithm after 1 lo 10 circulations of the data. The true value 
p* :::; (-OA, -O.85)T of the parameters of the model is indicated by a star, and the exact 
poly tape lP'25 is in solid lines. The ellipsoid obtained after 100 circulations of the data in 
the EPe algorithm is shown in Figure 5.15, together with the minimum-volume outer 
ellipsoid enclosing lP'25, which illustrates the suboptimality of the former. Finally, 
Figure 5.16 presents the minimum-volume outer ellipsoid and maximum-volume inner 
ellipsoid for lP'25. Both are obtained using techniques inspired by the methodology of 
experiment design (Pronzato and WaIter, 1996a). 0 
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Figure 5.14. Ouler ellipsoids obtained in Example 5.4 by circulating the data I to 10 times 

in the EPC algorithm; thc exact feasible set l?25 is in solid lines 

·0.7 ·o,£! 

Figure 5.15. Minimum-volume outcr ellipsoid and outer ellipsoid obtained in Example 5.4 by 

circulating the dala 100 times in the EPC algorithm; the exact feasible set J?25 is in solid lines 

In summary. OBE and EPC 

- are mathematically equivalent, 
- are recursive and easy to implement in real time, 
- are recursively (but not globally) optimal, 

easily extend to the tracking of time-varying parameters, 
- require simple calculations (comparable to RLS), 
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- yield a pessimistic characterization oflPlft, 

- yield a pessimistic characterization of the PUl's. 
- do not always detect that PIIt is empty (because they are globally suboptimal). 

·0.1.----..------.------.----..----------, 

.0.75 

·O.B 

.1.1 

-1.15 '-----'------'------'----"'-------' 
·0.6 -0.5 -OA -0.3 ·0,2 ·0.1 0 

Pt 

Figure 5.16. Minimum-volume outer ellipsoid and maximum-volume inner ellipsoid 
for Example 5.4; the exact feasible set l?25 is in solid lines 

5.4.1.2 Non-recursive determination of outer boxes 
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Determination of the purs of p amounts to finding the smallest (volume) box with 
edges parallel to the axes enclosing Pm- The complexity of the resulting description of 
]Pm is moderate: 211p scalars for a box, versus IIp(llp + 3)/2 for an ellipsoid. To turn the 
problem of computing each PUI into an optimization, notice that the bounds of the ith 
PUl are given by the minimal and maximal values of the cost j(p) = Pi. when the 
feasible domain for p is Pm, which is defined by linear inequalities. The cost and 
constraints being linear. the extremaI values can be computed by linear programming. 
Determination of the box thus requires solution of 21lp linear-programming problems 
(Milanese and Belforte, 1982), with 2nl linear constraints each (in addition to the 
constraints defining PO, if any). Dantzig's (1963) simplex algorithm may be used, as 
well as more recent techniques; see (Gonzaga, 1992) and Section 4.3.4.1. 

111 summary. The resulting policy 

- is not recursive, 
- is ill suited to the tracking of time-varying parameters, 
- requires far heavier computation than OBE or EPe, 

yields exact PUI's, 
- yields a pessimistic characterization o[]P'11l 1 

- detects ifPllt is empty. 



REMARKS 5.7 

- Usually, only a few constraints are active on the boundalY ofIPI/t. Preprocessing of 
the data by aBE or EPC then pennits elimination of many redundant constraints, 
thereby considerably simplifying computation. 

- When ]Pili is thin and badly oriented, using a box with edges parallel to the axes of 
the parametric space yields a very poor characterization of lPlIl' Replacing these axes 
by those of an outer ellipsoid, determined by aBE or EPC, will much improve the 
situation. 

- Outer boxes can also be determined recursively by calculating, at each recursion step 
k, the minimum-volume box with edges parallel to the axes containing the 
intersection of lfITk with the previous box (Pshenichnyy and PokOlilo, 1983; 
Messaoud, Favier and Santos Mendes, 1992). This solution can easily be adapted to 
parameter tracking. Parallelotopes can also be determined recursively (Vicino nnd 
Zappa, 1992), as can polytopes with limited complexity (Piet-Lahanier and Walter, 
1993). As already noted for ellipsoids, recursively optimal algorithms are generally 
not globally optimal. 0 

5.4.1.3 Exact description 

Assume that Po is either [ttlp or defined by a finite number of Hnear inequalities. When 
the error is affine in p, Pm can then be written as 

lPlII [pIApzbj. 

Let aT denote the ith row of A. When not empty, PIIt is a convex polyhedron, which 
can be computed recursively (Walter and Piet-Lahanier, 1989; Broman and Shensa, 
1990; Mo and Norton. 1990; Kuntzevich and Lychak. 1992; Piet-Lahanicr and Walter, 
1994). The inequalities are taken into account one after the other, each observation 
providing two inequalities. We restrict ourselves to basic ideas of the algorithm in the 
case where the polyhedron is bounded, The general situation is treated in (Walter and 
Piet-Lahanier, 1989), 

Assume that the polyhedron Qk-l formed by the first (k - 1) inequalities is as in 
Figure 5.17, The non-trivial case is when only a part of the previous polyhedron is 
consis~ent with the kih inequality, as in Figure 5.18. Some vertices should then be kept 
(here 1, 4 and 5). whereas others should be removed (here 2 and 3). Moreover, a 
new vertex should be created on each edge connecting a retained vertex and an adjacent 
removed vertex (giving 2' and 3' here). (No vertex should be created between 5 
and 3 as they are not adjacent.) 

A representation of the polyhedron facilitating determination of adjacent vertices 
should thus be updated. Qk will be characterized as the convex hull of its vertices Vi 
(i 1 .... , h). With Qk we associate a matrix Sk, the columns of which contain the 
vertex coordinates of Q.:. With the ith vertex Vi are associated lists LA V i of its adjacent 
vertices and LSH i of its supporting hyperplanes. Each vertex is the intersection of at 
least IIp supporting hyperplanes. 
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5 

Figure 5.17. Polyhedron formed by the first (k-J) inequalities 

3 
5 

Figure 5.18. Polyhcdron fonned by Lhe first k incqualities 

Initialization. Qo may be chosen as a box with edges parallel to the axes, large enough 
to be sure to contain 'Gilt. This simplifies construction of the initial lists of adjacent 
vertices and supporting hyperplanes. 

Iteration. Assume that Qk has been determined. The (k+ I )th inequality defines a 
feasible half-space 

bounded by the hyperplane lHIk+l = {p I aI+IP bk+l = OJ. The updated polyhedron 
Qk+ 1 = Qk n lHIk+l is computed as follows. If no vertex of Qk is consistent with the 
new inequality, Qk+ 1 is empty and no parameter value is feasible a posteriori. If all 
vertices of IQk are consistent with the new inequality, this inequality is redundant, 
~+1 = Qh Sk+J = Sk and the lists are unchanged. Consider now the case where only 
some vertices are kept. 

Updating the vertex matrix. Copy into Sk+1 all vertices Vi of Qk that must be kept. i.e. 
with a1+ 1 Vi - bk+l ;::: O. For each, using its LA Vi determine all vertices V" of!l;h 
adjacent to Vi and such that 
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Create a new vertex Vi," at the intersection of edge (Vi, VlI ) with lHTk+11 given by 

Include v I,ll in Sk+ I. 

Updating the LSH's. The LSH's of the vertices of Qk kept in Qk+1 are not modified. 
The LSH of any new vertex v i.1I contains lHIk+ I and the hyperplanes common to LSHi 
and LSHn. 

Updating the LA V's. In the LA V of any vertex Vi kept in Qk+I, replace any vertex Vn 
removed from Qk by the corresponding new vertex Vi,lI' Create the LA V associated 
with each new vertex Vi,lt> by including the retained vertex Vi from which it was 
created. and all new vertices with which Vi.tI is adjacent. Each of these new vertices has 
at least l1p 1 supporting hyperplanes in common with vi,n. and no other vertex has an 
LSH containing the same IIp 1 hyperplanes. 

The exact description is often much simpler than one might fear, because many 
inequalities are redundant. The method can be extended to tracking time-varying 
parameters, provided the previous polyhedron is expanded at each iteration, to account 
for possible evolution of parameters, before intersecting it with the new feasible half­
space. Piet-Lahanier and Walter (1993, 1994) suggest an expansion that does not 
modify the lists LA V and LSH, which greatly simplifies the implementation. The 
complexity of the description obtained at each iteration can also be restricted. Finally, 
the extension of this method to polyhedral cones pennits recursive determination of a 
minimax estimator for p (i.e. the smallest bound on the errors such that Pili is not empty 
and the associated set lP"l' in general a singleton), together with all sets Pill associated 
with larger error bounds (Walter and Piet-Lahanier, 1991). This proves particularly 
useful when there is no prior information on the value of the bound (Example 4.16), 

REMARK 5.8 

A situation where P'k is empty (k::; ntJ, 

- will be detected with no delay by the exact description; 
- will be detected once all data have been processed by the non-recursive outer-box 

approach; 
- may go undetected by the recursive outer-box and outer-ellipsoid approaches. 0 

5.4.2 Non-LP model structures 

This situation is the rule for phenomenological models. The posterior feasible set Pm is 
no longer a polyhedron. It may be non-connected, even if the model structure is 
globally identifiable; see, e.g., (Pronzato and Walter, 1990). The phenomenon can be 
better understood in the space of observations. Depending on the relative positions of 



the expectation surface §cxp (the surface of possible model responses) and the box Y of 
responses admissible a priori. Pili may be connected or not. Consider, for instance a 
one~parameter model structure with two observations, so that the expectation surface 
Sexp is a curve. Assume that Scxp is as presented in Figure 5.19 and continuous in the 
parameter p, with each point of §exp conesponding to a single value of p (identifiability 
condition). If the observations are associ uted wi th the box Y 1, the posterior feasible set 
IP2 for p will be connected, whereas it will not be the case if the observations are 
associated with the box Y 2. This possibility for JP.'l not to be connected must be taken 
into account by the algorithm used for its characterization. 

REMARK 5.9 

Non~LP structures raise the same type of difficulty when a statistical approach is used to 
characterize confidence regions for the parameters (Section 5.1.3), or when a point 
estimate has to be determined (Section 4.3.9.1). 0 

Figure 5.19. Depending on the relative positions of Y and Sexp. Et::!. may be connected or not 

EXAMPLE 5.5 

Consider the model 

YmCt, p) = p I exp (-P21). 

with yet) YmCt, p*) + £(1), p* = (10, I)T, iF-a = jR2 and the £(t)'s independently 
uniformly distributed in [-0.75,0.75]. Figure 5.20 shows the set P71 obtained from 
the data collected at times t; = 0,45 + 0.05i (i = 1, ... , 71), when the errors are 
assumed to lie in [-I, 1]. Only six of the 142 inequalities contribute to the definition of 
P71, and thus correspond to actually useful data, but one cannot know beforehand 
which data will turn oul to be usefuL The minimum-volume outer ellipsoid for JP71, 
obtained by techniques inspired by experiment design, is also shown; see (Pronzato and 
Walter, 1996a) for details. 0 
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Figure 5.20. Posterior feasible sel and minimum-volume ellipsoid for Example 5.5 (non-LP model) 

5.4.2.1 Errors in variablcs 

This approach, already considered in a statistical context in Section 4.1.7, allows 
extension of the techniques developed for LP structures with deterministic regressors to 
uncertain regressors and/or non-LP structures (Norton, 1987; Clement and Gentil, 
1988, 1990; Merkuryev, 1989; Cerone, 1991; Veres and Norton, 1991c). It applies, 
[or instance, when r(k) contains noisy measurements of the process inputs and outputs. 

Define the regressor error as 

cr(k, p) = r(k) - rmCk, p), 

where r(k) is known and rm(k, p) is such that Ym(k+ 1, p) = r~(l(, p )p. The (pseudo) 
regressor vector rm may depend on p (non-LP structure), or merely consist of lip 

unspecified scalars. Assume that the ith component of the regressor error should satisfy 

where the bounds e'Nk) and e~\k) are known a priori. Pm then contains all values of p 
such that 

IIp 

ey(k) L crj{k-l, p)Pi ~ y(k) - rT(k-l)p 
;=1 
IIp 

~e~(k)- Ler.(k-l, P)Pi. k = 1 ..... Ilt. 
;=1 I 
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A necessary condition for p to belong to Pill is then 

where 

IIp 

e~(k) - L e~ .(k-l)Pi ~ y(k) - r T(k-l)p 
i=l I 

flp 

Le~.(k-l)Pi\ k == I, ... , Ill> 

i=l I 

{
[e~lk)' e~ /k)] if Pi;;::: 0, 

[e~/k). e~i(k)] if Pi < O. 
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For any given combination of the signs of the components of p, this corresponds to 
Ilt pairs of linear inequalities. A set containing IPIlI is thus obtained by taking the union 
of the sets defined by these inequalities for all orthants of parameter space. The 
bounding hyperplanes for a pair of inequalities in a given orthant are no longer parallel. 
so OBE and EPC do not apply directly. Specific algorithms, involving a single cut 
instead of two parallel cuts, may be used (Bland, Golfarb and Todd, 1981; Pronzato 
and Waiter, 1994a), as well as a heuristic modification of OBE based on creating 
fictitious hyperplanes tangent 10 the ellipsoid (Clement and Gentil, 1988, 1990). 
Algorithms computing boxes or polytopes (possibly with restricted complexity) may 
also be employed. 

REMARK 5.10 

When the successive errors in the components of the regressor arc mutually independent 
and independent of the output error (which does not hold for models with noisy 
autoregressive parts). this condition is also sllfficient (Cerone, J 991, 1993). It is then 
possible to determine Pllt exactly by considering linear inequalities. 0 

EXAMPLE 5.6 

Consider again the model of Example 4.3 

Ym(t+l, p) - 1I 1Ym(t, p) -a2Ym(t-1, p) - ... - 1I IlaYm{l+I-lla, p) 
+ b\lla(t) + ... + b llb lln(t+l-llb), t == 11£1, ... , III + na I, 

where the inputs /taU) actually applied arc now assumed to be known only 
approximately. The input errors satisfy 

where u(t) is the known target value of the input at time t. Similarly, the output errors 
must satisfy 

1)'(1) Ym(t, p)l ~ ey, t == 1, ... , lit + /la - 1. 



LIb Ullcenaillty 

The bounds eu and ey are assumed to be known. This structure with input-output errors 
is not LP. It may be approximated by an LP structure in the fonn 

Ymlp(l+l, p) = rT(I)p, 

where the parameters are ordered as 

and where the unknown regressor vector 

rm(t, p) = [-Ym(t, p), ... , -Ym(t+l-lla, p). lla(t), ...• lla(t+I-llb)]T 

is approximated by the known veclor 

r(t) = [-)'(t) , ... , -y(t+l-Ila), u(t), ... , u(1+1-llb)]T. 

The ith component of the regressor error 

er(t, p) = r(t) - rm(t, p), 
is then bounded by 

where 

{

ey (i 
e~ .(t) = 

I eu (i 1141 + I, ... ,Ua + l1b). 

The set ]Pill defined by the inequalities that can be constructed from the data y(1), ... , 
y(nt+lla-l) is thus in the set of solutions of 

Ila 

-ey - L [e y sign(pj)]Pi 
i=L 

l1n+llb 

L [e u sign(Pk)]Pk S; Y(T+ I) - rT(t)p 
k=11a+ l 

lin lla+llb 

::; ey + L [ey sign(pj)]Pi + L [eu sign(Pk)]pk> t = Il,}, ... , TIl + llu - 1. 
i=l k=lla+ 1 

In a given orthant in parameter space, every sign(pj) is constant and this is a set of linear 
inequalities. 0 

5.4.2.2 Outlier minimal number estimator 

Let parameter value p give a model response satisfying percentagej(p) of the l1l pairs of 
inequalities. The posterior feasible set is then 

]Pill = {p E Po Ij(p) = 100%]. 
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Maximizing j amounts to minimizing the percentage of inequalities not satisfied, i.e. 
considered as due to outliers, hence the name Outlier Minimal Number Estimator 
(OMNE) (Lahanier, Waiter and Gomeni, 1987; Waiter and Piet-Lahanier, 1988). 

Basic algorithm 

Step J: Find pE arg maxj(p) over 12'0. 
If j(p) < 100%, then PI/[ is empty (wrong hypotheses), else P E Pill' 

Step 2: Characterize the boundary of PI/[ by a cloud of points {Pb J. 

The cost function} is not continuous, and its gradient is zero wherever it is defined;} 
can therefore not be optimized by any of the local methods presented in Section 4.3.3. 

At Step 1, one proceeds to a global optimization over a prior box IPa, for instance 
using the adaptive-random-search algorithm described in Section 4.3.9.2. Step 2 is 
based on the techniques presented in Section 5.1.2 for exploring cost contours. Note 
that Pm is the cost contour at level 100%. One is looking for its boundary, which is a 
hypersurface in parameter space. 

REMARK 5.11 

By projecting (Pb} onto the axes of parameter space, one obtains an inner estimate of 
each pur, that is a lower bound on the uncertainty, as when the Cramer-Rao inequality 
is used in a statistical context. Note, however, that the Cramer-Rao lower bound is 
generally valid only when the number of data tends to infinity, whereas the PUI's 
obtained with OMNE are valid whatever the number of data. Their precision depends, 
of course, on the ability of the algorithm used to construct the cloud {Ph 1 to generate 
points p with extreme component values. 0 

COllseqllences of errors ill the boul/ds. When the bounds are pessimistic, 1PI1[ is too 
large, but still contains p* if the data have been generated by a model with parameters 
p*. Conversely, optimistic bounds create olltliers, i.e. data poims such that 

The presence of oulliers will be detected if J(p) < 100% for all p's in IFo. One can then 
either choose less optimistic bounds (for instance following a minimax estimation 
procedure), or make the estimator robust to outliers by reducing the number of data the 
estimate is required to be consistent with. For this purpose, the feasible set at level jo% 
is defined as 

JPdo = {p E Po Ij(p) ~jO}. 

OMNE can be used to estimate jpiio, with.io ~.i(p). Some outliers may not be detected, 
so p* may not belong to the feasible set at level J(p)%. Protection against 110 undetected 
outliers can be achieved, at the possible cost of an increase in the size of the feasible set, 
by choosing}o = UCp) - 1001lollltJ%. The performance of OMNE in situations with 
underestimated errors is described in (Waiter and Piet-Lahanier, 1988). 

The set-in.version technique presented in Section 5.4.2.3 can be extended to 
characterize LcrJO in a guaranteed way (J aulin, Waiter and Didrit, 1996). 



Injluence offal' olltliers. Recall that the breakdown point of an estimator p 
(Section 3.7.2) is the smallest value of a sLlch that 

where yS is a set of valid data, and yO is obtained from yS by replacing a% of the data 
by outliers. When the model is LP and the number of data points tends to infinity, it can 
be proved (Pronzato and Walter, 1991 a, 1996c) that the breakdown point of OMNE 
tends to 50%, which is the best achievable performance. This estimator has been used 
for the detection of significant changes between images (Herbin el al., 1989); see 
Section 3.7.4. 

REMARK 5.12 

OMNE may behave satisfactorily even in the presence of a large majority of outliers, 
provided they cannot be described by a model with the structure used. (Note that the 
least-median-of-squares and least-trimmed-squares estimators do not possess this 
advantage.) It is only when the outliers are chosen so as to fool the estimator that the 
50% upper bound applies. 0 

What to do when the posterior feasible set is 1101 c01l1lccted? If the problem is due to 
identifiability, it can be tackled as in Section 5. 1.3 by Ll theoretical study of the 
structuml properties of the model. 

EXAMPLE 5.7 

We have seen in Example 2.3 that the model structure 

[ 
-(PI+P2) 1'3 ] [1] x + II, 

PI -P3 0 
x(O) = 0, 

Ym = [0 1] x, 

is only <locally identifiable, since P2 and P3 can be permuted without modifying the 
input-output behaviour. For any value of p on the boundary of the posterior feasible 
set, we know how to generate another value producing the same behaviour, and once a 
cloud of points in a connected subset of the posterior feasible set is obtained, another 
can be deduced by symmetry. 

In the numerical example treated in (Waller and Piet-Lahanier, 1988), this produced 
the result shown in Figure 5.21. 0 

EXAMPLE 5.1 (Continued) 

Consider again the model 



An experiment with only two different experimental conditions ~ I and ~2 makes Sexp 
fiat, which eliminates parasitic local minimizers. However. identifiability problems may 
then be introduced, as already observed in Section 4.3.9.1. Assume that the 
experimental conditions used for three observations are: 

The two parameter vectors p;:::: (PI, P2)T and p' ;:::: (PI + - 1, I - P2)T then give the 
same responses ymCS, p). When the error bounds are large enough, a connected 
posterior feasible set is obtained. Conversely, two non-connected sets are obtained for 
small error bounds. Once a point on the boundary of either of these sets has been 
obtained, its counterpart on the boundary of the other can be calculated analytically. 0 

P3 ----

P2 

PI 

Figure 5.21. Exnmple of a posterior feasible set for a non-uniquely identil1able model 

Applying the same technique to the two model structures considered in the chemical 
engineering example of Section 2.6.4, nine non-connected subsets of the posterior 
feasible set are obtained (three for one structure, six for the other). PUI's can be 
estimated by projecting these subsets onto the axes (Waiter, Piet-Lahanier and Happel, 
1986), 

The reasons for the posterior feasible set being not connected may, however, be less 
easy to detect It may thus be interesting to use the algorithm mentioned in 
Section 5.1.3 for characterization of cost contours associated with non-connected 
domains. Piet-Lahanier and Waiter (1990) present a simulated example of a six­
parameter globally identifiable structure where four non-connected domains are found, 
one containing the true value p* of the parameters. 
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5.4.2.3 Set inversion 

This approach seems extremely promising, for it yields global results even in the case of 
non-LP model structures. It will only be presented briefly, and the reader is referred to 
(Moore, 1992; Jaulin and Walter, 1993a, 1993b) for more details. Assume that the 
posterior feasible set is defined by 

Pill;:::; (p E Po I e(p) E lE}, 

where Po is a prior box denoted by [p](O), e(p) = yS - yrn(p) and E is a given box in 
error space. Then 

where e-1 is the inverse function (in a set-lheoretic sense) of e. Determining lPl/l is thus 
a set-illversion problem, which can be solved by the interval-analysis techniques already 
mentioned in Section 4.3.9.3. The Set Inversion Via Interval Analysis (SIVIA) 
algorithm described below applies to any function e for which an inclusion function e 
can be calculated. It is not restricted to explicit functions, since inclusion functions can 
be constructed for differential equations. 

To present SIVIA, a few definitions are needed. A slibpaving of lft'."p is a set of non­
overlapping boxes with non-zero lengths. A box [pJ is said to be feasible if [pJ C ]2'111' 
w~reasible if [p] n ]Pili ;:::; 0 and ambiguolls otherwise. A pri1lcipal hyperplane of [p] is 
one of its hyperplanes of symmetry, orthogonal to an axis with maximal length. 

Interval analysis provides two conditions for testing feasibility of any box [p] in Po 
that will be exploited by the algorithm: 

- if e([pJ) C E, then [pJ C lPl/l ~ [pJ is feasible, 
- if e([p]) n E;:::; 0, then [p] n PilI;:::; 0 ~ [p] is unfeasible. 

In all other cases, [p] is indeterminate, which does not mean it is ambiguous. 
Figure 5.22 illustrates the various types of boxes considered, together with their 
images by e and e. 

To store the boxes still to be considered, SIVIA uses a stack, i.e. a dynamical 
structure on which only three operations are possible: 

- put an element on top, 
- remove the element located on top, 
- test whether the stack is empty. 

We distinguish: 

- the subpaving TICin of all boxes which have been proved to be feasible, 
- the subpaving liCj of all indeterminate boxes with length less than the required 

precision 8, 
- the box [p](k) considered at iteration k. 



[l]]]]] Sets JP lit and lE 

• Feasible box and its image by e 

• Unfeasible box and its image by e 

Ambiguous box and its image by e 

Indetenninate box and its image by e 

D Images of all these boxes by e 

Figure 5.22. Boxes and their images by e and its inclusion function e 

The basic structure of SIVIA can now be described. The user must supply lE, an 
inclusion function e for e, a prior box [p](O) in which the search will be performed. and 
the required precision O. A prior subpaving could also be used instead of a prior box. 
The program is initialized by setting: 

k = 0, slack = 0, liCin = 0, = 0, 

and the kth iteration is: 



Step 1: If e([p](k)) C lB, then {ITCin = Kin U [p](k). Go to Step 4}. 
Step 2: If e([p](k)) n lB = 0, go to Step 4. 

ullcenamty 

Step 3: If w([p](k)) 5 8, then llCi = Rei U [p](k). else split [p](k) along a principal 
hyperplane and put the two resulting boxes on the top of the stack. 

Step 4 : If the stack is not empty, remove the element located on top. cal1 it [p](k+l), 
increment k by one and go to Step 1. 

After running SIVIA. all indeterminate boxes are in llCi and thus have a length 
smaller than the precision required. SlVIA encloses between two subpavings: 

which tend to coincidence as Btends to zero (Jaulin and Walter. 1993b). The initial box 
[p ](0) has thus been partitioned into three subpavings Kin, Ki and ITCun • where ITeun 
consists of all boxes that have been proved unfeasible (Figure 5.23). 

• Subpaving IiCin of all boxes that have been proved feasible 

Subpaving IlCj of all boxes still indeterminate 

~ Subpaving liC un of all boxes that have been proved unfeasible 

Figure 5.23. InfonnaLion on Pllr provided by SlVIA 

The volume of nCj (and therefore of the part of [p](O) for which no conclusion has been 
reached) can be reduced, at the cost of a reduction in 8 that entails an increased number 
of boxes to be examined. The complexity of SIVIA is analysed in (JauIin and Walter, 
1993a). This algorithm can be extended to compute outlier minimum number estimates 
(Jaulin, Walter and Didrit, ] 996). 
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5.5 Conclusions 

A variety of techniques is available to characterize parameter uncertainty. The method 
based on the inverse of the Fisher information matrix is very simple to employ t bUl only 
justified asymptotically, except in very particular cases (e.g., an LP model structure 
with additive independent errors distributed !iY{O, (j2)). The other methods require more 
intensive computation, but permit characterization of the uncertainty associated with a 
finite number of data points. All these methods rely on hypotheses that are not 
necessarily satisfied in practice, so one should be careful in interpreting their results. 
Note finally that the experiment performed (location of sensors and actuators, shape of 
the inputs applied, measurement times ... ) affects the uncertainty in the parameters. It is 
thus important to choose the experiment well, taking into account its final purpose (for 
instance, precise estimation of some parameters, or discrimination between model 
structures), This is experiment design. 





6 Experiments 

The experimental procedure for the collection of the numerical data to be used to 
estimate the parameters of a given model depends on qualitative choices made at various 
steps of the modelling. In particular, the tools presented in the previous chapters allow 
one to choose: 

a set of model structures to be considered, 
location of sensors and actuators to guarantee identifiability (and distinguishability if 
several rival structures exist), 
an estimator and a characterization of parameter uncertainly. 

Once these choices have been made, the experimenter still has some freedom to 
specify the quantitative experimental conditions (such as temperature, pressure, 
sampling times, shape of inputs ... ). Experiment design aims at determining 
experimental conditions adapted to the final purpose of the modelling. It is a crucial 
step, for a badly designed experiment may ruin any attempt at analyzing the data 
collected from the system. 

We start the presentation with a classical example. which illustrates the benefits of 
careful experiment design. 

EXAMPLE 6.1 

Consider three objects 01, °2• 0 3 with respective weights wt, \Vi and \113 to be 
estimated. The spring balance used for this purpose produces random measurement 
errors £, assumed to correspond to independent variables with a Gaussian distribution 
!1\10, 0"2), together with an unknown systematic error wo. Four measurements are to be 
performed. 

The simplest approach that comes to mind is first to use the spring balance without 
any object to estimate the systematic error and then to weigh the three objects 
successively. Let y(O) be the result of the first measurement, y(O) = Wo + £(0). The 
other measurements give y(i);;; Wo + w, + £(0. i =1, 2, 3. It is then easy to show that 
the estimates ~}i = y(i) - y(O) of the weights w i (i = 1 t 2, 3) are unbiased and have 
variances var(fv;) = 20"2 and covariances COV(~}i' \-f, j) = 0"2, i =F j. 

Consider now another experiment, also with four measurements. It only differs 
from the previous one in the first weighing, during which the three objects are weighed 
simultaneously. This yields y(O) = Wo + w ~ + w i + w; + £(0), the last three 
observations being as previously. The estimates of the weights are then 

1\ y(O) + y(i) - yQ) - v(k) . _ 1 ') 3 . ...1- •• ...1- k . -J. k 
'W i = 2 • 1 - ,-, • 1 +- J. 1 +- , ) T"" • 



They are unbiased, with var(~'i) = a2 and covCfl'j. (j'j) = 0, i -:t j. 
Compared to the first intuitive approach, this second experiment thus yields more 

accurate estimation (with the variances of the estimates reduced by a factor of two) and 
independent estimates. 0 

The design of an optimal experiment usually consists of the following steps: 

define an optima1ity criterion related to the final purpose of the modelling, via a 
scalar cost function, 
take into account all constraints on feasible experiments, 
optimize the chosen cost function with respect to the experimental variables 
available to the experimenter. 

Here we shall mainly consider the case of a single model structure, where the purpose is 
accurate estimation of the parameters of this model. (Experiment design for model 
discrimination and for the maximization of a model response arc briefly considered in 
Sections 6.6.3 and 4.4.2 respectively.) The optimality criterion will thus be related to 
how uncertainty in the parameters is characterized, and will depend on the estimator to 
be used. We nolice already thaL prior knowledge (or hypotheses) about the process 
should be taken into account to adapt to the specific features of the problem. In a sense, 
this is unavoidable, since model structures arc prior assumptions. When no prior 
inf01mation on the process is available, there is no alternative to a heuristic distribution 
of experiments over the feasible experimental range. 

Assume that the ith scalar observation can be written as y(~i). where the 
I/~-dimensional vector ~i (the ith support poinL) describes the experimental conditions 
(e.g., measurement time, shape of input...) under which the ith observation is to be 
collected. When III slich observations are ti.~ken, the concatenation of the vectors ~i' s 
yields the I1tll~-dimensional vector 3 = (~I r, ~2T, ... ,L;IltT)T, which characterizes all 
experimental conditions to be optimized. To make experiment design realistic, it is 
necessary to take a number of constraints into account, e.g. on the duration of the 
experiments, the energy or amplitude of the inputs, the minimum time between 
samples ... Let ~~ be the set of all feasible values for 2. This set will often have the form 
=> (t.:T t!T)T H f' I . J:i' ( b .';~. = (" , ... , G, . owever, components a t le vanous ":! s may lappen not to e 
independent; see Section 6.3.2. 

The definition of a cost function} then permits optimal experiment design to be cast 
as a constrained optimization problem. where the optimal experiment S* is defined by 

Statisticians have been interested in optimal experiment design for parameter estimation 
for many years, and the subject is addressed in several books (Fcdorov, 1972; Zarrop, 
1979; Silvey, 1980; Penenko, 1981: Ermakov, 1983; Puzman, 1986; Ermakov and 
Zhigljavsky, 1987; Dodge, Fedorov and Wynn, 1988; Atkinson and Donev, 
1992; Pukelsheim, 1993; Schwabe, ) 996), A detailed bibliography can be found in 
(Steinberg and Hunter, 1984; Bandemer, N~lther and Pilz, 1987; Rash, 1988; Ford, 
Kitsos and Titterington, 1989; Walter and Pronzato, 1990). We shall most often 
assume that the uncertainty in the parameters is characterized by the inverse of the 
Fisher information matrix (Section 5.3.1). Problems raised by non-LP structures are 
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addressed in Section 6.4. Bayesian estimators are briefly treated in Section 6.5; see 
also (Chaloner and VerdinelIi, 1995). Bounded-errors estimators (Section 5.4) require 
a specific treatment; see, e.g., (Pronzato and Waiter, 1990). 

The next section describes various criteria that can be used to design optimal 
experiments. 

6.1 Criteria 

Evaluation of the cost function) must be simple enough to allow easy optimization. For 
that reason, classical oplimality criteria correspond to a scalar function of the Fisher 
information matrix F(p. 3) presented in Section 5.3.1, i.c . 

.i(3) = tfJ[F(p, 3)]. 

Under the hypotheses mentioned in Section 3.3.3, the distribution of the maximum­
likelihood estimator is asymptotically Gaussian g.,gp.j-., F-l (p~', E) when the number of 
measurements tends to infinity. Minimizing .i(E) then amounts to minimizing a scalar 
measure of the asymptotic covariance matrix of the parameters. Recall, however, that 
characterizing parameter uncertainty in a non-LP model by the inverse of the Fisher 
information matrix involves approximations (Section 5.3.1.4), to which few 
alternatives exist (Sections 5.3.3 and 6.4.1). 

A rather general class of optimality criteria employs the following family of cost 
functions (Kiefer, 1974) 

[ I . _] lIk 
tPk(F) = n- trace (QF-l Q r)k if det F ;t 0, 

p 

(h(F) = DO if det F = 0, 

where Q is a weighting matrix. 
The special case k = 1 corresponds to the L-opti1l1a/ity cost function, 

and choosing Q = I"p then corresponds to the A-optil1la/it}' cost function. An A-optimal 
experiment minimizes the sum of the squares of the lengths or the axes of asymptotic 
confidence ellipsoids. In the context of optimal input design for dynamic systems 
(Section 6.3.2), it has been suggested (Mehra, 1974a) that trace F(p, S) be 
maximized, which requires less calculation than using the A-optimulity cost function (or 
the D-optimality cost function presented below). However, such an approach may lead 
to a singular information matrix at the optimum (Grewal and Glover, 1975; Zarrop and 
Goodwin, 1975). which implies loss of local identifiability of the parameters of the 
model. Choosing Q diagonal, with [Q]ii = Ilpi corresponds to C-opfi1llality, which is 
connected with the relative precision of estimates. Taking Q to be a row vector leads to 
c-optil1lolity. Note that the choice of Q may be dictated by the final purpose of the 
identification (Goodwin and Payne, 1977). 

Taking Q = I" and k = 00 corresponds to E-optil1lality; E-optimal design maximizes 
the smallest eigen~allle of the Fisher information matrix and thus minimizes the length 
of the largest axis of the asymptotic confidence ellipsoids. 



The most widely used optimality criterion has k = 0, Q = III , requiring 
minimization of det F-I(p, E), or, equivalently, maximization of P 

jo(E) = det F(p, 5). 

An experiment ED that maximizesjD is called D-optimal (Box and Lucas. 1959). A D­
optimal experiment minimizes the volume of the asymptotic confidence ellipsoids for the 
parameters (Section 6.4.1). Moreover, it is invariant under any nonsingular 
reparametrization that does not depend on the experiment. Indeed, let p(p) be such a 
reparametrization (det dp/dpT:;:. 0). The D-optimality cost function becomes 

[ 
ap ]-2 

det F(p, E) = det [F(p, .5)] det apT . 

If the Jacobian det ap/dp T does not depend on the experiment, the maximization of 
det F(p, E) is equivalent to that of det F(p, S). Note, finally, that aD-optimal 
experiment generally consists of the repetition of a small number of distinct 
experimental conditions (i.e. some support points ~6's are equal) (Atkinson and 
Hunter, 1968; Box, 1968, 1970; Vila, 1988), As mentioned in Section 4.3.9.l, this 
may help remove parasitic local optimizers when estimating the parameters. 

With each of the criteria above can be associated an efficiency, which quantifies the 
suboptimality of an experiment. The D-efficiency of E, for instance, can be defined as 

. ';:::') _ [ det F(p, E) ]l/lIP JDE( .... - , 
det F(p, ED) 

with ED a D-optimal experiment. For any .5,joE(E) ~ 1. 
Sometimes, only some of the parameters are of interest. Such will be the case, for 

instance, when maximum-likelihood estimation of the parameters of a deterministic 
model requires parameters in the noise distribution to be estimated, as in Example 3.3. 
Parameters that must be estimated although we are not interested in their values are 
called nuisance parameters. Optimality criteria may then be defined for an accurate 
estimation of a suitable part of p. Partition P into (pI, p!)T, with PI the parameters 
of interest (dim PI = s) and P2 the nuisance parameters. Partition F(p. 3) accordingly 
into 

F-l (P. E), which approximates (sometimes is equal to, see Section 5.3.1) the 
covariance of the estimator, is then given by 

[ 

(F II - F 12F i1F 21)-1 -(F 11 - F 12F i1F21)-IF 12F 2:i ] 

-F2:iF 21(F 11 - F I2F2:1F 21)-1 F2~+F2:1F2I(Fll - F 12F i1F 21)-lF 12F2:i ' 



where F 22 is assumed not to be singular. Since only P I is of interest, we wish to 
minimize a scalar function of (F 11 FI2IS~F21)-1. D:;-optimal design then maximizes 

It is also used in experiment design for structure discrimination (Section 6.6.3.3). 
Atwood (1980), Silvey (1980) and Pazman (1986) detaillhe use of this cost function, 
in particular when F22 is singular. 

REMARK 6.1 

Independently of any statistical consideration, one may be interested in choosing an 
experiment S that makes the approximation Ha(P, 3) of the Hessian of the estimation 
cost well conditioned. Vandanjon (1995) has thus considered maximization with respect 
to S of the Frobenius condition number 

with an algorithm similar to the DETMAX algorithm of Section 6.2,1.2. o 

The initial step of optimal design consists in constructing the Fisher information 
matrix F(p, S). Assume first an additive measurement noise eel) from a sequence of 
Li.d. random variables with distribution independent of p*: 

y(~i) = Ym(~i, p*) + e(i), i = I, ... , Ht. 

Denote the probability density of e by JrE' Using the same development as in 
Sections 3.7.1 and 5.3.1.4, and under the same hypotheses, the matrix F(p,3) 
associated with the III observations can be written as 

llt 

F(p. 3) = * L Sy(~i, p)sJ(~i, p). 
i=1 

The weighting term w (inverse of the Fisher information) is 

with D == {e I 7r£(e) > D}. For a Gaussian density !NiD, (J2), W == (J2. Here Sy(~i, p) is 
the sensitivity of the model output with respect to p (Section 4.3.3.2). When the model 
structure is LP, Ym(~it p) is given by r(~i)Tp, and Sy(~i. p) is r(l;,i). The matrix 
F(p, 3) may also be written in the more condensed form 
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F(p, E) ::; l~' S(p, E)TS(p, E), 

where the ith row of the matrix S(p, E) is sJ(~i, p). Note that the optimal experiment 
does not depend on the value of 11', and thus on the actual density of the measurement 
noise, which can be assumed Gaussian without loss of generality. 

If the distribution of E(i) depends on the experimental conditions ~i, the weighting 
factor w depends on ~i, and F(p, E) can be written as 

III 

F(p, E) ~ 1 ~. T~' L..J --;-:- Sy(t./. p)Sy (1.:,1, p). 
i=1 W(I.:,') 

If the measurement noise does not correspond to a sequence of independent 
variables. instead of considering output errors one should consider the sequence of 
prediction errors, which is a sequence of independent variables at the true value of the 
model parameters (Section 3.3.2). The sensitivity of the model output Sy(~i, p) must 
then be replaced by the sensitivity of the prediction error. This will be considered in 
more detail in Section 6.3.2.2. 

EXAMPLE 6.1 (continued) 

Consider again the determination of the weights of three objects from four 
measurements. The vector yS of observations is 

yS = Rp* + £, 

. I '" ('" '" *' *)T d WIt 1 P = Wo, HI I' W2' Hl3 an 

rOJ 1"02 r03 

I'll rl2 1'J3 
R= 

1'21 /'22 r23 

1'31 1'32 1'33 

where rik::; 1 or 0 depending on whether the kth object is present on the spring balance 
for the ith weighing. (The first column of R only contains ones, since the systematic 
error w~ is always present.) For the two methods suggested above, J'ik = 0 for k,* i 
(i::; 1, 2, 3). They only differ in the first row of R: rOt;:: 0 for the first method, 
whereas rOk = 1 for the second (k = 1, 2, 3). The Fisher information matrix for the 
estimation of pis F::; RTR/a2. It does not depend on p as the structure is LP. Since 
we are only interested in the values of the parameters WI_ W2 and w3' Ds-optimality 
may be used, with wo considered a nuisance parameter. 0 

In the previous example, the entries of R can only take the values zero and one, and 
the design problem is thus combinatorial, a case which will not be considered in the rest 
of this chapter. The same kind of problem is met when the purpose of the experiment is 
comparison of responses to differelll treatments (Searle, 1971; Arnold, 1981; Pearce, 
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1983). This topic originated in agriculture (Fisher, 1926), hence the traditional 
vocabulary (blocs, treatments, effects ... ). A large body of literature is devoted to this 
subject (Fisher, 1925; Cochran and Cox, 1957; Cox, 1958; Finey, 1960; Box and 
Draper, 1987; Street, 1987 ... ). 

EXAMPLE 6.2 

Consider the system 

y(t) :::: pi exp( -pit) + E(/), 

where the E(l)' s are LLd. !N{O, cr2). Assume that two observations y(tl) and y(t2) are to 
be made. The problem is to choose measurement times I) and 12, with t2> /1 ~ 0, so as 
to estimate p :::: (p 1. P2)T as well as possible. We thus have::: :::: (t1, t2)T. The 
sensitivity of the model response to p can be written as 

which gives the D-optimality cost function 

The D-optimal experiment is 

o 

In the example above, Eo depends on P2. The optimal experiment therefore depends 
on the values of the parameters to be estimated. This problem is common to non-LP 
structures. The most classical (and simplest) approach then consists of using a nominal 
value pO for the parameters, and designing an optimal experiment for p = pO. This is 
called local design and considered in the next section. Approaches that allow uncertainty 
in pO to be taken into account will be presented in Section 6.4. 

6.2 LocaJ design 

In this section, no distinction will be made between LP and non-LP structures. For non­
LP structures, we simply assume that a nominal value pO for the parameters has been 
defined. In some cases, the optimal experiment can be determined analytically; see 
Example 6.2 above. However, optimization is most often iterative. The type of method 
to be used will then depend on the dimension of E. When this dimension is not too 
large, classical nonlinear programming methods. such as those presented in 
Section 4.3, may be used. Note, however, that the cost function j(E) = t;b[F(p, E)] 
generally has several local optimizers, so a global optimization method is recommended; 
see Section 4.3.9 and Example 4.22. 

When the dimension of E is large, it is preferable to use dedicated algorithms. Their 
principles are now presented for the case of D-optimal design. 



6.2.1 Exact design 

Exact means here that optimization is with respect to the variables defining thc 
experiment to be performed. (Compare with the notion of approximate design to be 
presented in Section 6.2.2.) The most classical algorithms from the literature are 
exchange algorithms (Fedorov, 1972; Mitchell, 1974). for which one of the vectors ~i 
(experimental conditions for the ith observation) is replaced at each iteration by a bettcr 
vector ~* (in the sense of the design criterion). The methods differ in the selection of ~i 
and in the construction of ~*. We limit ourselves to presenting their basic ideas. 

6.2.1.1 Fedorov's algorithm 

Let gk be the estimate of E at iteration k. Assume gk is not degenerate (i. e. 
det F(p, gk) ;;j:. 0). One of the support points ~i of gk is replaced in gk+ I by ~ *, with 
~j and ~* chosen so that det F(p, Sk+ J) > del F(p, Ek). Fedorov (1972) has shown that 

with 

where 

and 

The algorithm is then as follows: 

Step 1: Choose some non-degenerate E I, 8« I and set k = I. 
Step 2: Find 

where supp [g} denotes the set of support points of g, and ~ is the admissible set 
for ~. 

Step 3: If L1(1;i* t Sk, ~*) < 8, stop. Otherwise, replace ~i* by ~*, increment k by one 
and go to Step 2. 

REMARKS 6.2 

- At each step. computing L1(1;i, Sk, ~) requires evaluation of F-l(p. gk). Using the 
matrix-inversion lemma, one can show that 



with 

Sy(~*, p) ] 

~ w(~*) 

and; = -1. Updating F-l thus only requires inversion of a 2 x 2 matrix. 
A similar algorithm, with another function .d(~, E, ~*), can be used for 
L-optimal (exact) design (Fedorov, 1972). 0 

EXAMPLE 6.3 

Consider the system 

y(t) = pr exp(-P2t) + P3 exp(-p~t) + £(1), 

with the £urs LLd. !l\iO,a2). Assume that twelve observations are to be performed to 
estimate p = (Pl, P2, P3, P4)T, The problem is to determine the vector to of the twelve 
D-optimal sampling times. The parameters PI and P3 appear linearly in the model 
response, and thus have no influence on lo. Assume that the prior values for P2 and P4 
are P2 = 1 and P4 = 0.1. With an admissible set ~ obtained by discretization of the 
interval [0, 20] with step 0.1, i. e. 

~ = {O, 0.1, 0.2, ... ,19.9, 20}, 

Fedorov's algorithm initialized at 

El = t l = (0.1, 0.2, 0.3, 004, 0.5, 0.6, 0.7, 0.9~ 1., 1.2, 1.5, 10)T 

converges in 19 iterations to 

to (0, 0. 0, 0.9, 0.9, 0.9, 3.8, 3.8, 3.8, 1404, 1404, 14A)T, 

with det[F(p, to)]/del[F(p, t l )] = 54.58. 

At each iteration k, Fedorov's algorithm requires solution of 

max .d(~j, Ek, ~) 
~E~ 

o 

at each support point ~i of Et. These III maximizations of a possibly multimodal 
function make computation heavy. Moreover, only one support point is modified at 
Step 2, which may lead to a deadlock when only the simultaneous modification of 
several would permit improvement of the cost. The nexl algorithm aims at overcoming 
these two limitations. 



6.2.1.2 DETMAX algorithm 

Assume that Sk is not degenerate. Should an additional observation be allowed, 
characterized by ~Ill+ I, one would choose ~lIt+ 1 = ~:I:. with ~ '" such that 
det F(p, Ek+) be maximized. where 

-;:k+ - ..... 
[ 

-;:k ] 
..... - ~I!I+I . 

If ~lIl+ 1 were to replace one of the support points of Sk, one should obtain ;::k+ i from 
Ek+ by removing ~i* such that det F(p. Sk+l) remains as large as possible. This 
augmentation of the number of support points, followed by the removal of some of 
them so as to keep the number of observations equal to 11" is called an excursion. If lit 
is strictly larger than the number of parameters IIp• the ordering of the operations may be 
reversed, and a support point may be removed before the introduction of a new one. 
This ordering may also be chosen randomly at each iteration. 

When the number of support points of S only varies by one, the excursions are said 
to be of length one. The algorithm DETMAX is then as follows (Mitchell, 1974): 

Step 1: Choose some non-degenerate S I. and set k = 1. 
Step 2: Find 

Update F-I for the experiment 

according to 

F-'(p, E,k)sy(~*, ,p)F-I(p, Sk) 
F-I(p, E;k+) = F-i(p, Sk) - -.-.-------~--.---­

w(~*) + sJ(~*, p)F-I(p, Sk)Sy(~*, p) 

Step 3: Find 

Step 4: If ~i* = ~*, stop. 
Step 5: Remove ~i* from Sk+ to get Ek+ I, update F-I according to 

increment k by one and go to Step 2. 
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When excursions of length A ~ 2 are used, the algorithm can be summarized as 
follows. Addition of A support points is by performing Step 2 A times. Removing A 
support points corresponds to performing Steps 3 and 5 A times. The stopping test at 
Step 4 is replaced by a test on the increase of det F. With larger A, the increase in 
computing time may nol by compensated by the improvement in det 'F. Mitchell (1974) 
suggests use of a variable excursion length A, with A ~ 6 to keep the amount of 
computation reasonable. 

Convergence to the optimal experiment is not guaranteed by algorithms for exact 
design, allhough they can only increase the value ofjD(E). It is thus recommended that 
several optimizations be performed, with different initializations El at Step 1, for 
instance randomly generated in ~, If the computational time is not a limitation, a global 
optimization algorithm can also be used (Example 4.22), 

Various improvements of the algorithms above have been suggested (Atkinson and 
Donev, 1989; Cook and Nachtsheim, 1980; Gatil and Kiefer, 1980; 10hnson and 
Nachtsheim, 1983), The improvements, sometimes quite significant, generally result 
from intuitive ideas, However. convergence to the optimal experiment is still not 
guaranteed, and numerical examples are the only basis for a comparison between 
methods. 

In contrast to algorithms for exact design, the methods presented in the next section 
yield a global optimum, sometimes at the price of approximation to make the designed 
experiment implementable. 

6.2.2 Distribution of experimental effort 

6.2.2. 1 Continuous design 

Each observation y(~i) depends on experimenlal conditions ~i E ~. When some 
experiments are repeated, the number ne of dislinct ~;'s is less than the total number of 
observations Ill' The Fisher information matrix can then be written as 

with ri the number of repetitions of measurements under the experimental conditions ~i, 
so 

Let Fps(p, E) be the Fisher information matrix per sample; 
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The proportion Pi = r;ll1t of observations performed at ~i can be considered as the 
percentage of e.lperimelltal effort spent at ~i. The experiment 8 can thus be represented 
as a discrete distribution 1/lo, 

which is normalized, since 

J ~1 
7110 = l PJ 

~lIe }. 

Pile 

The Pi's are rational numbers (Pi = ri/lll' with III fixed). Removing this constraint. we 
can think of an experiment as a probability distribution on ~. 

Chernoff (1953) first expressed the Fisher information matrix per sample as a 
normalized linear combination of rank-one matrices of the type Sy(~i, p)sJ(~i, p)/\I'(~i). 
Kiefer and Wolfowitz (1959) showed that extending the notion of design to any 
nomlalized measure on G (design measlIre) drastically simplifies design. This idea is the 
basis for the algorithms to be presented in Section 6.2.2.4. 

Consider a normalized measure mon ~;, satisfying 

f 1/1(d~) ::; 1, 

f ,J 

with 111(d~) the measure of the elementary part d~ around ~. The notion of experimental 
design can be extended to measures on S absolutely continuous with respect to the 
Lebesgue measure, hence the name cOlltinllOllS design. The matrix F ps(p, TTl) then takes 
the form 

Fps(p, TTl)::; f _J_Sy(~, p)sJC~,p) 111(d~). 
II'C~) 

C: J 

As explained in the next section, any matrix of this form can also be obtained with a 
discrete measure. 

6.2.2.2 Approximate design 

F psCP, m) belongs to the convex hull of the rank-one matrices of the type 
Sy(~, p)sJ(~, p)/w(~). Moreover, Fps(p, m) is symmetric and thus belongs to a 
(ll pCnp + 1)/2]-dimensional space. Caratheodory's theorem (Berger. 1979, 1987), then 
inaicates that F psCP, TTl) can always be written as a linear combination of at most 
(llp(llp + 1)/2] + 1 rank-one matrices, i.e. 

with 
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Any continuous design measure is thus equivalent to a discrete design measure 111rJ with 
at most [l1p(np + 1 )I2J + 1 support points ~j with weights Pi. This is true, in particular, 
for the optimal design for any given cost function <b[Fps(p, m)]. For D-optimality, 11lD 
that maximizes det Fps(p, m) only needs lIpClIp + 1)/2 support points at most, because 
Fps(p, 1IlD) lies on the boundary of the convex hull of the set of rank-one matrices of 
the type Sy(~, p )s~ (~, p )/w(~) CSilvey, 1980). 

We can thus restrict our attention to discrete experiments, associated with 
normalized discrete measures on ~. However, a discrete experiment usually cannot be 
implemented exactly for a given number III of observations, since the weights must 
satisfy III = ri/nl' In most cases, the Pi'S must be approximated by rationals ri/Ill 
(Pukelsheim and Rieder, 1992). For that reason, this approach is called approximate 
design. 

REMARK 6.3 

A discrete experiment is sometimes implementable without any approximation. This will 
be the case for instance for the design of optimal inputs, when the input signal is 
characterized by its power spectral density considered as a density of experimental effort 
(Section 6.3.2.2). 0 

We shall now consider the main properties related to this formulation of the design 
problem. 

6.2.2.3 Properties of optimal experiments 

Kiefer· Wolfowitz equivalence theorem. The cost function ljJ is generally chosen to be 
convex or concave, depending on whether it must be minimized or maximized. For D­
optimality, det F-J has to be minimized, i.e. del F is maximized, or rather ]n del F, 
which is concave on the set of symmetric non-negative definite matrices: for any such 
matrices F 1, F 2. with F, =1= F 2, and any scalar a such that 0 < a < 1, 

In det [(I - a)F, + aF2] > (1- a) In det F, + a In det F2. 

The set of matrices F ps(P. 111) is convex, and the design problem amounts to 
minimization of a convex function tP over a convex set. The optimum is thus unique, in 
the sense that the matrix Fps(p, 111) associated with an optimal design measure is unique. 
This does not imply uniqueness of the optimal design measure. However, the set of 
optima) design measures is convex. The optimum can be characterized by first-order 
stationarity conditions. What follows concerns D-optimalily, but similar results exist for 
other criteria with suitable convexity properties (Kiefer, 1974). 

The design measure 11tl is D-oplimal jf and only if det F ps(p, 1ft,) is a maximum, or, 
equivalently. if and only if for any measure 1ft]. 

a In det F ps[P' (1 

I
$; O. 

a=O aa 
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Since 
o In det F (F 1 OF) ----=trace 1--

da oa ' 

a necessary and sufficient condition for D-optimality of 1111 is 

or equivalently 

In particular, this must be true when T1t2 is the discrete measure with unit weight at a 
single support point; E C;. A necessary condition for D-optimaIity of 11l) is thus 

with 

On the other hand, since Fps(p, 110.) can always be written as a linear combination of 
at most [llp(lIp + 1)/2] + 1 matrices of the type Sy(~, p)sJ(~, p)/w(~), one can easily 
check that this necessary condition is also sufficient. Now, using the fact that 

lie 

IIp;;; trace [Fp~(P, 11lt}FpsCP, 1ft))] = I J1id(;i, 1tt)), 
i=l 

where the J1i's and ;;'s are respectively the weights and support points of the D-optimal 
design measure 1tl), the following theorem is obtained. 

EQUIV ALENCE THEOREM (Kiefer and Wolfowitz, 1960) 

The following properties are equivalent: 

the design measure nto is D-optimal, 
maxl;el; de;. 1flo) = lip, 
11ID minimizes maxl;e~ d(;. 1ft). o 

If we;) is constant, for instance equal to (J2 for measurement errors Li.d. ~O, (J2), 
d(~, 1Il) is proportional to the variance of the predicted model response at ~ (obtained by 
linear approximation for a non-LP structure). A D-optimal design measure thus 
minimizes the maximum of the prediction variance with respect to ~ E ~, which 
corresponds to G-optimality. This equivalence between D- and G-optimality does not 
hold true for exact design. G-optimal design for heteroscedastic models (w(~) not 
constant) is considered in (Wong and Cook, 1993), where an optimization algorithm is 
suggested. 
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One can show (Sibson, 1972; Silvey, 1980) that the determination of an 
approximate D-optimal design is equivalent to finding the minimum-volume ellipsoid 
centred at the origin and containing the sensitivity set 

The support points of 11lD correspond to the contact points of this ellipsoid with S. 
When their number is IIp, the optimal weights are all 1I1l p• 0 

EXAMPLE 6.4 

Consider the system 
* 

y(t) = * PI * [exp(-pjf) exp(-P2t)] + E(1). 
PI - P2 

with the measurement errors E(l) assumed to be LLd. ?dO, 02 ), with 0-2 = L A D­
optimal experiment (choice of sampling times) is to be determined for nominal 
parameter values p = (0.7, 0.2)T. Figure 6.1 presents the sensitivity set 

§ [Sy(t, P )/cr It E [0, 3]) 

and the minimum-volume ellipsoid centred at 0 containing it. 

1=0 

1 = 0.3 

·0.1 0.05 0,1 O.tS 

Figure 6.1. Scnsilivily set (solid line) for t belween 0 and 3, 

nnd minimum-volume ellipsoid centred at () containing it for Example 6.4; 
the conlact points give the support points of 1/ID 

The contact points, indicated by crosses, correspond to 1\ == 0.3 and 12 == 1.35, which 
are the support points of the D-optimal design measure. Since IIp = 2, each point 
receives weight 112. 0 



EXAMPLE 6.5 

Consider the same system as in Example 4.21 

with e(~) assumed to correspond to an i.i.d. sequence 5\[(0, 0'2), with 0'2 = L The 
sensitivity Sy(~' p) is 

Assume a nominal value p = (1, 2)T, and an admissible design space defined by 

The sensitivity set § is then the orthotope [1.3] x [I, 4], The minimum-volume 
ellipsoid centred at the origin and containing § touches § at three vertices. namely 
(3, 4)T, (3, l)T. (1, 4)T, obtained respectively for l;i, = (0. O)T, ~5 = (0. l)T and 
l;6 = (1, O)T. Since there are three support points for only two parameters, the optimal 
weights are not 1/3. Their exact values, determined from the stationarity condition for 
det F ps(p, 1/l.D)' are III = 1211840, 112 = 4611 05 and 113 117/280. Figure 6.2 
presents the confidence regions IR~·05 when (J'2 = 0.25. 

Figure 6.2. Confidence regions for Example 6.5 

The dashed line corresponds to the experiment l; J :: (1, 1)T,l;2 = (0, 1)T and 
l;3;:; (1, O)T, with y(l;l) = 3.3354, y(l;2) 3.1818 and y(l;3) == 5.3303, simulated 
by adding random errors to the model response at p * = (1, 2) T. The solid line 
corresponds to three observations performed at the support points of the D-oplimal 
experiment. The same errors have been added to the model responses, yielding the 
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observed values Y(~6) = 5.3354, Y(~5) = 3.1818 and Y(~6) = 5.3303. Although the 
regions are not quite ellipsoidal (Section 6.4.1), choosing the support points of the D­
optima) experiment produces a smaller confidence region. The numerical evaluation of 
their volumes by triangulation gives the values 10.7 x 10-2 for the dashed-line region, 
and 9.2 x 10-2 for the solid-line region. The improvement might of course have been 
much greater for other choices of the initial experiment. Note that the initial experiment 
has two support points in common with the D-optimal experiment. 0 

EXAMPLE 6.2 (continued) 

Consider again the system 

y(t) = pi exp(-P2f ) + £(1), 

with the £(1)'8 LLd. ~O, 0'2). The number of observations to be made is not specified, 
and a D-optimal design measure is sought. with an admissible domain [0, oo[ for the 
measurement times. It can readily be checked that the design measure 

1110 = {O II
P2

} 

112 1/2 
is D-optimaL Indeed, 

and 

Figure 6.3 presents the evolution of d(l, 11lo) as t varies between 0 and 2. for P2 = 2. 
Since d(O, 11l0) = d(Ilp2' 1110) = 2, and d(t, Iflo) $; :1 [or all I 2! O. 111D is D-oplimal. 
Compare with Figure 6.4, which shows an example of the evolution of d(l, m) when 1Il 

is not D-optimal. 0 

D-optimality for slims and products o/models. The equivalence theorem above allows 
the following properties for D-optimal design to be proved. Consider two LP structures 
given by 

III 

Yml[~I' p(l)] = L p(:~li)(l;l), with /:)(~1) = 1, ~I E ~1 
i=l 

and 

and let 1ft( and Tlt2 be two design measures, D-optimal for )'1Il1 and Yn12 respeclively. 



";lJ...!. 

Figure 6.3. Evolution or d(t, f11D) in Example 6.2 as I varies between 0 "nd 2 

d(t. m) 

0,5 

Figure 6.4. Evolution of d(l, m) in Example 6.2 as 1 varies belween 0 and 2. 
\\'hcn 111 is not D-optimnl 

l:.xperl1l/{!/w. 

The product measure mlS1ll2 on ~I x is D-optimal for the .'111m ofst1'llctllres 

with dim p == 111 + 112 - 1, and for the product of structures 
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with dim p = "tIl2-
These properties may permit the design problem for a complicated model structure to 

be split into design problems for simpler structures. They are often useful for models 
polynomial in ~, such as those used with the response-surface methodology 
(Section 4.4.2). That a similar property may also be valid for the sum of non-LP model 
structures is even more interesting (Schwabe, 1995). 

EXAMPLE 6.6 

Consider the structure 

with ~ = (~l' ~2)T, ~IE [-1, 1], ~2 E [-I, 1], It corresponds to the sum of 
YmI[~], p(l)] and Ym2[~2' p(2)], with 

Yml [~l, p(l)] p(J) + P(P~I + pq)~ 
and 

The D-optima1 design measures for Ym I and Ym2 coincide and are given by 

{-I 0 I} 
111 =111 • 

01 D2 113 1/3 113 

The D-optimal design measure for the sum of structures Ym is thus 

tlfo ={[=~J [-~J [-~] [-~J [~J [~] [-~] [~J [~J}. 
1/9 119 119 1/9 1/9 119 1/9 1/9 119 

It is also D-optimal for the product structure 

Ymp(~' p) = Po + PI~l + P2~2 + P3~r + P4~~ + P5~1~2 
+ P6~r~2 + P7~I~~ + P8~re~. 

6.2.2.4 Algorithms 

o 

Fedorov- WY1l1l algorithm, Consider a non-degenerate design measure 11Ik. From the 
equivalence theorem above, 111' is D-optimal if and only if d(~, 111') ~ IIp for any ~ E ~. 
Choose ~* to maximize d(~, 11;'), i.e. 
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with 1!t~ the discrete measure with unit weight at ~. This amounts to choosing the 
direction of steepest ascent. The structure of the algorithm is then as follows. 

Step 1: Choose a discrete non-degenerate initial design measure ml (a normalized 
discrete distribution with at least IIp support points, such that det F ps(p, 1111) -:t:. 0). 
Choose some positive tolerance 8« 1. Set k. = 1. 

Step 2: Find ~* = arg max~EE d(~, mk ). If d(~*, mk) < IIp + 8, stop. 
Step 3: Set 11th J = (1 - ak) m~ + ak1l/~*, increment k by one and go to Step 2. 

The step size ak remains to be chosen. Fedorov's algorithm (1972) uses the optimal 
value 

'" d(~*.1flk)-
ak = arg max det l?pSc(p, mk+l) = ---* ----'--

akE ]0. I [ Ilrrd(~ , mk) 

Wynn's algorithm (1972) uses a predefined sequence (ad that satisfies 

00 

ak > 0, lim ak = 0, .L ak = 00, 

k-7 OO k= I 

for instance lXk lI(k + 1). 
The computation of d(~, 111k) requires inversion of F ps(p, mk). Using the malrix­

~nversion lemma to update Fj;~(P' mk- I ) to Fp~(p, mk) may be advantageous when 1lp 
JS large. 

Provided that a global maximizer ~* is computed at Step 2, the Fedorov-Wynn 
algorithm converges to a D-optimaI measure whatever the initial measure, a considerable 
improvement over the algorithms for exact design of Section 6.2.1. Note that 
optimization at Slep 2 may be facilitated if S is finite. L-optimal design measures can be 
determined with a similar algorithm (Fedorov, 1972). with another function d(~, m). 
Algorithms for various criteria mentioned in Section 6.1 can be found in (Atwood, 
1976, 1980; Pazman, 1986; Wu, 1978). 

This type of algorithm never removes any support point from the design measure, 
which slows down convergence. Several methods have been suggested to avoid this 
drawback (Atwood, 1973~ SUohn and Draper. 1975). Basic ideas for improvement are 
as follows. 

If the number of support points of 11lk is larger than IIp. it may be profitable La 
remove some of them to reduce quickly the consequences of a bad choice of the initial 
measure m', for instance with the following algorithm. 

- Find 

~i* = arg min d(~i, mk). 
~iE supp{ mk} 
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If d(~i*, 11t-,) is much smaller than IIp, remove ~i* from 111' and spread its weight J.1i 
over the most promising support points (those such that d(~i, 11t<) > IIp) to get a new 
measure 

-./'+ {~i . .} 
lw ;;:; J.1r I:;: 1* 

with weights 

{ 

* d(~i, mk) - I1p 
+ J.1i + J.1 i-if i E IT, 

J1i ;; 2)d(~II. mk) - Il pJ 
liEN 

J1j otherwise, 

where 

Compare det F ps(p, mk+) with det F ps(p, mk+ 1), where 1Izk+ 1 is obtained from mk 

by the Fedorov-Wynn algorithm. Carry forward the best measure to the next 
iteration. 

If at iteration k some weights J1i of the measure 111- are larger than Ihz p, the sum of 
the differences J1i - 1I1lp can also be spread over the other support points. 

If at Step 2 of the Fedorov-Wynn algorithm several equivalent support points ~* are 
obtained, the weight fXk (which corresponds to the step size) can be spread over them. 
Similarly. if the minimization of d(~i, nf.) yields several equivalent support points ~i*. 
all of them can be removed, and the sum of their weights can be spread over the 
remaining points. 

Algorithms from another family, exchange algorithms, remove the weight fXkJ1i at 
Step 3 from a single support point ~i of mk. When (Xk ;;:; 1, this support point is then 
replaced by ~*. Such algorithms have been used, e.g., for estimation of mixtures (see 
(Bohning, 1985, 1989) and Section 3.3.4), and for discrimination between model 
structures (Huang, 1991; Huang, Pronzato and Waiter, 1991). 

A particularly efficient method consists of replacing Step 3 by 

SI ep 3 J: Obtain mk+ 1 by optimizing the weights of the support points 
supp{ l1zkJ U {~*}. 

This corresponds to the maximization of a concave function over a convex set (the 
weights are positive and their sum is equal to one), and sequential quadratic 
programming can be used (Section 4.3.4.5). 

Algorithm for finite sets. When ~ is finite, say with cardinality N, its N points can be 
considered as possible support points. the weights of which have to be optimized. A 
constrained-optimization method (sequential quadratic programming for instance) can 
then be used for that purpose. 1t may, however, turn out lo be rather inefficient if N is 
large. 

Another approach may then be employed, close to the EM algorithm presented in 
Section 3.3.4. The presentation is here [or D-optimality, but it can be generalized to 
other optimization problems with normalized distributions (Titterington, 1976; Silvey, 
Titterington and Torsney, 1978; Torsney, 1983, 1988; Torsney and Alahmadi, 1992). 



jUb ExperimellfS 

Step 1: Choose a discrete non-degenerate initial design measure Tltl, with strictly 
positive weight 11} at each of the N points ~i, choose some positive tolerance 
8« ), set k = 1. 

Step 2: If d(~it mk) < IIp + 8 for each ~i, stop. 
Step 3: Update the weights according to 

k+l I1j 
k d(~i, 11lk) . _ 1 N 

11. ,1- , .... , 
I IIp 

increment k by one and go to Step 2. 

This algorithm converges monotonically towards a D-optimal design measure 
whatever Tltl (Pazman, 1986). Some weights associated with erroneous support points 
may nevertheless decrease very slowly. as with the Fedorov-Wynn algorithm. 
Convergence may then be accelerated by removing any support point whose weight is 
clearly tending to zero. Its weight is then spread over the remaining points. One must 
remember, however, that once a weight is set to zero, it will remain so for all 
subsequent iterations (which is why the initial weight of each ~i must be strictly 
positive). 

6.3 Applications 

6.3.1 Optimal measurement times 

When the number of observations to be made is small, the measurement times can be 
individually optimized, as was done, e.g., in Examples 6.2. 6.3 and 6.4. This is 
often the case in biology; see, e.g., (Landaw, 1980). The LI character of the structure, 
and the simple shape of the inputs (impulse or step functions) often permit the analytical 
expression for the model output at any time to be derived. The sensitivity of this output 
and the matrix F(p, E) can then be found without difficulty. 

On the other hand, engineering systems often involve experiments with a 
number of observations. The optimization of measurement times will then usually 
restricted to determination of an optimal sampling frequency. This problem will be 
considered in Section 6.3.3, simultaneously with the detenninalion of an optimal input 
sequence. 

6.3.2 Optimal inputs 

We shall only consider systems with one input and one output, but the results easily 
extend to systems with several inputs and outputs. Note that, for dynamical systems, 
the result of each observation generally depends on previous inputs. so the experimental 
conditions ~i for observation i depend on those for others. The search will be for the 
optimal input from a predefined class of admissible inputs, which may be parametric 
(e.g. weighted superposition of inputs with simple shapes) or not. 
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6.3.2.1 Parametric inputs 

The admissible inputs are defined as the superposition of basic signals with given 
shapes. For instance, one may consider the superposition of 

rectangular pulses ai[H(t - 1;) - HU - Ti li)], where H is the Heaviside step 
function, H(t) = 0 for I < 0, H(t) = 1 for I ;;::: 0, 
impulses bi8(1 - !i), where 8 is the Dirac distribution, 

- polynomials 2:.{::0 dktk. 

The parameters E that characterize an input 11 are then respectively 

the starting time 1;, amplitude {li and duration Ti of each rectangular pulse, 
the time if and area bi of each impulse (hj may correspond to the dose administered 
in biological experiments), 
the coefficients dk of the polynomials. 

The design problem then amounts to a non linear optimization problem wilh respect 
to E. One of the main interests of this approach is the possibility of taking any kind of 
constraint on the input into account. The basic signals can sometimes be chosen so that 
the analytic expression for the associated model response is easy to derive. If the model 
structure is LI and the initial conditions are zero, the response to the input given by the 
superposition of the basic signals is the superposition of the responses to these signals. 
The sensitivity functions used lo construct F(p, E) can then be derived analytically. 

EXAMPLE 6.7 

Consider the system given by 

d * * * 0 :I; dt Ym(t, P ) = -p Ym(t, P ) + u(t). )'m( -, P ) 0, 

y(t) = Ym(t, p*) + e(1), 

where p* is the parameter to be estimated, with {eU)} an LLd. sequence distributcd 
!NrO, (J2). We wish to determine an optimal input of unit area (i.e. a unit dose), in the 
family 

a , 
u{t) = (1 - a)8(t) + if [H(1) - HU T)], T> 0, 0::; a:::; 1. 

Assume that only one observation is to be made. We also wish to find the optimal 
measurement time t, with the constraint 1:::; T. The experiment 10 be performed is thus 
characterized by the vector E = (a, T, t)T. The response of the model Ym(t, p) for 
o ::; t ::; T is given by 

YmU, p) = aT- + exp(-pt) [1 - aC I + ~T)]. 
p P 

The Fisher information matrix, here a scalar, can be written as 



.... 1 { a 1 a }2 F(p,~) = - exp(-pt)[~T- t + at(l + -T)] --2-
(j2 p- P p T 

and the D-optimal experiment is 
.... IT 
~D = (0, T, p) , 

crperimellf.\' 

with T arbitrary. The optimal input in the family considered is thus the unit impulse. A 
generalization of this property is given in (Cobelli and Thomaseth, 1985); see also 
(Cobelli and Thomaseth, 1988a, 1988b). 0 

In contrast to biology, for which feasible inputs generally have simple shapes, 
engineering may allow very large classes of admissible inputs, so the restriction to 
parametric inputs must be relaxed. Note, however, that determining an optimal 
parametric input may serve to initialize input design in a larger class. Moreover, some 
particular constraints on the shapes of admissible inputs can easily be taken into account 
for parametric inputs, but raise more difficulties for nonparametric inputs. 

6.3.2.2 Nonparametric inputs 

The first difficulty lies in the calculation of the Fisher information matrix F(p, E). The 
most general approach computes the sensitivity functions by simulating differential or 
difference equations (Section 4.3.3.2). The optimization of a cost function tP[F(p, E)] 
may require a large number of simulations, which makes this approach rather heavy. 
However, an analytic expression of F(p, 8) can be obtained for LI stationary models, 
treated in what follows. An input signal may then be characterized by its evolution as a 
function of time or by its spectral representation, and the two approaches will be 
considered in turn. See also (Mehra, 1974b; Zarrop, 1979; Titterington, 1980; 
Krolikowski and Eykhoff, 1985). 

Time domaill. We consider here discrete-time models, and the entries of the vector E of 
"I" experimental conditions are the input sequence (u(1)} to be applied to the system. The 

dependence of F on E is omitted to simplify notation, 

EXAMPLE 6.8 

Consider the FIR structure 

y(t) = B(q, P*)ll(t) + f(t), 1 = 1, ... ,Ill> 

where the f(t)' s are Li.d. WI, 0, (j2), with 

The problem is to detennine the input sequence to estimate p = (bl, ... ,b"h)T. 
Consider first inputs with bounded average power 
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Pu ::= 1.. :I, U2(t - r), r = 1, ... , Ilb. 
Ilt 1= 1 

The model structure is LP, and the Fisher infonmltion matrix is 

with 

which implies 

1 
F(p) = ~ RTR, 

0'-

R 
[ 

lI(O) 

Ii( 1) 

U(:Z~~l) 

1/(-1 ) 

1l(0) 

F(p) = ;:l:I, ... III [ 

0'- 1=1 
u(t-l )lI(t-llb) 

lI(l-llb) ] 

U(2-11b) 

1I(1I'[~"b) , 

::: ::: 1I(t-l)II(t-n
b
)]. 

u(t-l1b)2 

Since the average power of the input signal is P u, the diagonal terms of F(p) are 
approximately equal to PUTll/a2. Consider the matrix F(p)a2/(PUlZl)' Its diagonal tenns 
are approximately equal to one, and it is positive-definite provided the input is 
rich enough. Its determinant is thus a maximum when it is equal to the identity matrix. 
The matrix F(p) then becomes approximately (Pu11l/o-2)I"b' the detenninant of which is 
a maximum for Pu = Pumax ' A necessary and sufficient condition for the input 
sequence liD to be D~optima1 is thus 

III 

l :I, llD (t-i)llD U-k) = Pu Oib i, k =1, ... , nb, 
Il[ 1=1 max 

where Oik is the Kronecker delta (Oik = 1 for i = k, 0 otherwise), When the number of 
observations tends to infinity, an LLd. sequence is thus optimal. For any finite lIb a 
binary sequence approaching this condition can be determined (Goodwin and Payne, 
1977). 

Consider now the case of inputs with bounded amplitllde, 

-1 $; !l (I) $; 1, \;J t . 

From the discussion above, the Fisher information matrix for a D-optimal input is 
proportional to the average power Pu of the input signal, which should be maximized. 
This is obtained for 

u(t)=±I, \;JI. 

In this case, an un correlated binary sequence (-1, + 1) is thus D-optimal. 
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For both types of constraint. the optimal input does not depend on the value of the 
parameters bi's since the model structure is LP. 0 

Consider now the more general case of a Box-Jenkins structure (Sections 2.4 
and 3.3.2): 

y(t) = F(q, p*)u(t) + G(q. p*)£(t), 

where the £(I)'s are i.i.d. ~O. (12) and G is a stable rational polynomial function in q-I 
with stable inverse. Assume that (12 is unknown, so that the extended parameter vector 

has to be estimated. Since (12 is unknown, the first element of the impulse response of 
G can be taken as one without any loss of generality. 

The prediction error is 

CpU, p) = G-I(q, p)[y(t} - F(q, p)ll(t)], 

and fonns an i.i.d. sequence when p p*. The log-likelihood of the III observations yS 
is 

The Fisher infonnation matrix is 

where 

is the sensitivity of the prediction error with respect to Pc. Note that 

dCp(t,p) [dG(a n) 'dF(q,n)] 
-ap=-G-I(q, p) ~-ep(t, p) + 'dp·.J::-u(t}, 

where dG(q, p)/dp and 'dF(q, p)/'dp are vector functions of the time-delay operator q-I. 
Since the first element of the impulse response of G is one, its derivative with respect to 
p is zero and ['dG(q. p)/op]ep(t, p) only depends on past prediction errors Cp(t-T. p) 
with T 2:: 1. We thus obtain 

E {Cp(t+T, p)scp(t, Pc)} = 0, 'if T2:: O. 
ySlpc 
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Since the E(t)'S are i.i.d. !i\lLO, (j'2), we also have 

E (ep(t+r, p)ep(t, p)} ::::: 0, 'r:j r> 0, 
ySlpc 

The calculation of F(pc) finally yields 
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Provided (j'2 does not depend on p, which is assumed in the following, this matrix can 
be written as 

[

F(P) 0 ] 
F(pc) ;;; OT ;~ , 

with 

The fact that (j'2 is unknown does nol modify the expression for F(p). In the rest of this 
section we shall only consider the estimation of lhe vector p and thus the matrix F(p). 
In particular, the expression for F(p) will be found when the input is obtained without 
feedback and the rational fractions F(q, p) and G(q, p) have no common parameters. 

REMARK 6.4 

A similar result is obtained when the EU)' s are non-Gaussian LLd. random variables. 
The expression for the matrix F(p) associated with a stationary probability density 
function nE independenl of p is simply obtained from the one above by substituting the 
weighting factor 

where ID::::: {E l1rr(£) > O}, for the cQvariance a2. 

Assume first that the input u is obtained without feedback. Then 

E {ep(t, p)II(t)} = 0 
ySlp 

o 



and thus, taking the expression for dep{t, p )ldp T into account, we get 

lit 

F(p) = ;,l L [G-I (q, p) dF~i; I!) ll(t)] [G-i(q, p) dF~~. p) u(t)]T+ Fc(p), 
(j- 1=1 

where the matrix Fe is independent of the input sequence u and can be written as 

III 

Fc(p) = E {~L [G-'(q, p) aG~~, p) CpU, p)] 
ySlp a-I=1 

x [G-l(q. p) dG~~. p) CpU, p)]T}. 

Assume, moreover, that F(q, p) and G(q. p) have no common parameter, and 
partition pinto 

where PF and Po are the parameter vectors in F and G respectively. F(p) can then be 
written as 

[ 
FF(p) 0 ] 

F(p) = , 
o Fo(p) 

where 

and 
Ilt 

Fo(p) = E { ~ L [G-'(q, p) dGa(q, p) cpU, p)] 
ySlp (j- t= 1 PO 

X [G-I(q. p) a~~~ p) epU, p)]T} 

= 1l~ E {[G-'(q, p) d~~/~ P2 ep(t, p)] [G-l(q, p) a~~~ p) cpU, p)]T}. 
a- ySlp 

The expected value in the last tenn is the autocorrelation at lag zero of the prediction 
error filtered by G-l(q, p)dG(q, p)/dpO. 

Fo(p) does not depend on the choice of the input sequence (so II cannot help us 
estimate PO accurately). and the optimization wi11 thus only involve a functional of the 
"PF x IlPF matrix Fp(p). The D-optimality criterion, for instance, leads to a search for 
the input sequence liD that maximizes 
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I1t 

jD(ll) = det.l I. [G-l(q, p) of(q. p) li(t)] [G-l(q. p) of(q, p) /I(t)]T. 
(J2 t= 1 dPF dPF 

Define 

jn(li) can then be written as 

vU) G-I(q, p) d~~~ p) u(t); 

1 11[ 

jD(U) = det -; L v(t)vT(t), 
(J- 1=1 
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where the components of the vU), s satisfy recurrence equations, as for the sensitivity 
functions calculated in Section 4.3.3.2 (Goodwin, Murdoch and Payne, 
1973; Goodwin and Payne, 1977). The determination of a D-optimal input sequence 
{u(t)} is a nonlinear optimal control problem, which can also rely on a slate-space 
model structure; see, e.g., (Mehra. 1 974a, 1974b, 1981; Kalaba and Spingarn, 1982, 
1984) and the comparative study (Krolikowski and Eykhoff, 1985). Applications in 
biology can be found in (Kalaba and Spingarn, 1974, 1981 ~ Cobelli and Thomaseth, 
1985, 1988a, 1988b; Cobelli, Rugged and Thomaselh. 1984). 

EXAMPLE 6.9 

Consider the ARX structure 

A(q, PA)y(t) = B(q, PB)ll(l) + £(t), 

where the £(I)'s are LLd. 9iO, ( 2), Let 

and 

One easily obtains 

BCq, Pn) ep(t-Il a, p) 

A( ) nU-llu) + ~(--p ) q,PA h q. A 

-11(1-1 ) 

which yields 



with 

where 

"l 1~ 

F(p) = -\-L VF(t)V~'(t) + E { I;, L voU)v6U)}. 
(j- 1=1 ySlp (J'- 1= I 

B(q,Pn) uCt-J) 
A(q, PA) 

Beq, PB) 
vF(t) = A(q, PAl U(t-ll a) 

-u(t-l ) 

-11(/-llb) 

and vo(t) = 

ep(t-l, p) 

A(q, PAl 

Cp(t-lla• p) 

A(q, PA) 

o 

o 

Since this is a special case of the Box-Jenkins model structure, with 
F(q, p) = B(q, PB)/A(q, PA) and C(q, p) IIA(q, PAl, the matrix F{p) can also be 
written as 

with 

111 

F(p) = \ L [C-I (q, p) aF~q, p) 1I(t)] [C-l(q, p) aF~q, p) u(t)]T + Fo(p), 
(j-1=1 p p 

Ilt 

Fo(p) = E { 1;, L [G-] (q, p) ac~~, p) ep(t, p)] 
ySlp (j- 1=1 

x [C-I(q, p) iJCja' p) ep(t, p)]T}. 

However, F and G now have common parameters, so Fo(p) affects the choice of the 
optimal input sequence. 

In the rest of lhe example, we consider the particular case lla = lib 1, i.e. 

y(t+ 1) = -ay(t) + bu{t) + £(1+ 1). 

We wish to find a sequence 1t(1), .. , • 1l(1l 1) that maximizes det F(p), with 
P = (a, b)T. Inputs have either bounded amplitude or bounded average power. The 
matrix F(p) can be wri lten as 

1 a21 
y~(I-l) + (J'2 1 _ l -11(1-1 )Ym(t-l) 



with A(q, o)Ym(t) == B(q. b)u(t), i.e. 

Ym(t-l) == -aYm(t-2) + bu(t-2) for 1 > 2, and Ym(t-l) == 0 for t ::;: 2. 

Let F(p, k) be the Fisher information matrix associated with the first k data points (so 
F(p, llt) ;;:; F(p)), and define the state vector 

It satisfies the nonlinear recurrence equation 

-OXI (k) + buCk) 
1., 1 - 1) 

x2(k) + x l(k) + -1--::--
d1 -

x(k+ 1) == f[x(k), u(k)] == 1 
x 3 ( k) - --; II ( k)x I (k) 

cr-
I 

x4(k) + -; u 2 (k) 
cr-

with x(k) = 0 for k S L The detenninant of the Fisher infonnation matrix F(p) is 

The Lagrangian to be minimized with respect to the input sequence is 

Ilt 

£ = -[x2(l1t+ 1 )x4(l1t+ 1) - xj(n1+ 1)] + LA T(k) [f[x{k), lI(k)] x(k+ 1)] , 
k=1 

with A(k) the adjoint state vector. 

Consider first the amplitude constraints, 

-1 S u{k)::;: I, k = 1, ... ,Il t • 

The gradient of the Lagrangian with respect to the input is 

and the adjoint state is such that 
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It thus satisfies the backward-in-time equation 

afT' 
A(k-I) =-, A(k). 

ax Ix(k), lI(k) 

or equivalently 

2.\1 (k) 
-it 

A(k-J) = 0 

o 
o 

o 
o 

o o A(k), k = 2, ... , Itt. 

o 
o 

with the terminal condition a£lax(l1t+l) = 0, i.e. 

We thus obtain for k = 1, .. , ,Ilt 

and 

l!xpCrlmcTII:!J 

with Al (nl) = O. The gradient of the Lagrangian with respect to the input is finally given 
by 

~-b' 1. 2X3(lIl+I)XI(k) _ 2X2(l1 t+l)1l(k) k = 
du(k)- 1\.1(/~)- a2 a2 ' 1 ••..• JIt. 

which can be computed for any sequence of inputs by simulation of the forward-in-time 
system x(k+ 1) = f[x(k), u(k)]. followed by simulation of the backward-in-time 
recurrence equation for AI (k). This corresponds to the adjoint-state method for the 
calculation of gradients, presented in a more general context in Section 4.3.3.2. The 
adjoint-code method of the same section could be used as well, with the direct code 
computing det F(p. Ill) by simulation of the recurrence equation x(k+ 1) = f[x(k). lI(k)]. 

An optimai input sequence can be determined by, e.g., a gradient-projection 
algorithm (Section 4.3.4.4), with easy implementation here due to the simple form of 
the admissible domain for the input. Goodwin, Murdoch and Payne (1973) suggest the 
simple rule 

u(k) :::; - sign [d~~J. 

Note that the cost function is not convex (which is common for exact design problems), 
and the solution may turn out to be only iocally optimal. Figure 6.5 presents the cost 
contours for det F(p. 3) in the plane defined by u(2) and u(3) when tiC 1) is set equal to 
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one (a = 0.1, b = I, c:r2 = 0.01). The sequence (1, I, -1) is locally optimal; the global 
optimum corresponds to (1, -1, -1). Optimization should therefore be repeated with 
various initial points. 

Figure 6.5. Non-convexity of (he design problem (II( J) = 1) 

Consider now a constraint on the average power of the input signal, 

A first possibility would be to use a constrained optimization method for the whole 
input sequence, with the gradient of the cost computed as previously. However, the 
dimension of the space can be reduced by taking advantage of the boundary conditions. 

With the same notation as previously, x4(ll l+ 1) = IltPUmu/c:r2, and the terminal 
condition on ..1.4 is thus removed. Onc obtains 

with AA free, and 

2, ... , "t, 

with ill (Ill) = O. The gradient of the Lagrangian with respect to the input is now given 
by 



From CJ.£Jdu(k) = 0, one obtains 

li(k) 

Substituting this expression for lI(k) into the backward-in-time equation for AI(k), and 
inverting the result gives the forward-in~time equation 

The problem is now to find initial conditions Al (1), A3 and A4 such that the terminal 
conditions AI (Ill) = 0, X3(111+1);;;; A3/2 and .\'4("1+1) = IlIPUma/cr2 are satisfied by the 
forward-in-time system 

{ 

u(k) = h[x(k), AI(k)], 

x(k+ 1) = f[x(k), u(k)], 

Al(k+1) = g[Xt(k+l), ;tl(k)]. 

With 00 = [A] (l), A3' ;t4]T, the condition to be satisfied can be written as '1'(00) = 0, 
where 

It can be solved for instance by the Newton-Raphson method; see, c.g., (Press et ai., 
1986). The Jacobian matrix d'PldroT must then be computed. Approximation by finite 
differences is often used. However, since 'I' is computed by a code that simulates the 
nonlinear system above, the adjoint-code technique (Section 4.3.3.2) permits 
computation of d'P loro T without any approximation. Note that again the solution 
obtained by the Newton-Raphson method may prove only locally optimaL 0 

The complexity of this approach can sometimes be avoided when the control law of 
the system can be determined and implemented on-line. A recursive characterization of 
the uncertainty in the parameters then allows, as we shall see, computation at each time 
instant t of the input u(t) to be applied (Keviczky, 1975). In general, however, this one­
step-ahead policy is not globally optimal. 

Sequemial design: Oil-line control. Consider again the ARX structure 

A(q, PA)y(t) ;;;; B(q, Pn)ll(t) + £(t), 

where the £(t)'s are Li.d. ~O, 0'2), This recurrence equation can be written as 



y(t+ 1) Ym(t+ 1, p*) + e(r+ 1), 

with 
Ym(t+ 1, p) ;;;; rT(t)p, 

r(t) ;;;; [u(t), u(t-l), ... , u(t+ l-llb), -)'(t). -y(l-1), ... , -),(1+ 1-11a)]T 

and 

The recursive least-squares algorithm may be used to estimate the parameters of this LP 
structure (Section 4.1.4). In particular, up to multiplication by (J2, the covariance 
matrix of the parameter estimates satisfies 

P(t+l);;;; P(t) _ P(t)r(t)rT(t)P(t) . 
I + rT(t)P(t)r(I) 

The problem considered here is to choose at each time instant t the input Il(t) that 
satisfies the constraints and minimizes a scalar function of P(t+ 1). Consider D-optimal 
design with amplitude constraints 

-1 :::; u(t) ~ 1. 
The cost is 

d d P() d t [I 
P(t)r(t)r T (I) ] 

et P(t+ I) et 1 e "11+tl b - 1 + r T(I)P(t)r(t) , 

or equivalently. since det (I + v I vi) = 1 + vi v I, 

1 
del P(t+ 1) ;::: T P del P(t). 

1 + r (I) (t)r(t) 

The (one-step-ahead) D-optimal input "DU) should thus maximize 

where 
r_I(t) [u(l-I), ... ,U(t+I-nb). -y(l), -y(t-O, ... ,-y(r+I-lla)]T, 

and 

The scalar function r T(t)P(t)r(t) is quadratic in u(t), and has its minimum al 

The D-optimal solution is thus 



and un(t) := ±l if ll*(t) := o. 

REMARKS 6.5 

J +1 if u*(1) < 0, 
UD(t):= l 

-1 if u*(I) > 0, 

- The same sequential approach may be employed with the OBE or EPC presented in 
Section 5.4.1.1 for parameter bounding (Pronzato and Walter, 1991 b). 
The characterization of uncertainty is exact, and much simpler than that in 
Example 6.9. which also concerned an ARX structure. The reason is that we use 
here the ob.'!en1ed information matrix o-2p-l, which is determined on-line and 
depends on past observations. whereas in Example 6.9 the uncertainty in p had to 
be evaluated before making any observation, through the expected information 
matrix F(p). 
The approach above is myopic (only one-slep-ahead optimal), and better 
performance may be obtained with an uncorrelated binary sequence (-1, + 1). 
When the model structure is not LP, the estimation is generally nol recursive. 
However, when the estimation is by the recursive techniques of Section 4.3.8 and 
parameter uncertainty is characterized by the Fisher information matrix, sequential 
design can be used as for an LP structure. 
The sequential design of a globally optimal input sequence is generaHy extremely 
difficult, as it is a stochastic dynamic programming problem. Only very simple 
examples have been treated; see (Zacks, ] 977; Pronzato, Walter and Ku1csar, 
1993: Kulcsar, Pronzato and Walter. 1994) for examples with 1l( := 2. Suboptimal 
solutions taking into account more than one step ahead can be determined, e.g., 
through approximation of [he posterior density of the parameters (Kulcsar, Pronzato 
and Walter, 1995; Pronzato, Kulcsar, and Walter, 1996). 0 

When no recursive characterization of the uncertainty in the parameters is available, 
Goodwin and Payne (1977) suggest recursively constructing a bounded signal ll(t) 
(e.g., a binary sequence) such that its power spectrum tends to that of the optimal input 
signal as Ilt tends to infinity. We shall now investigate the characterization of the optimal 
input sequence through its power spectrum. 

Frequency domain. Consider again the matrix FF(p) obtained for the general Box· 
Jenkins structure without feedback 

Assume that sampling is uniform, with period T, and let the number of observations 
tend to infinity. The matrix 
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is thus the average Fisher information matrix per uniltime. If 

vU) = G-I (q, p) d~(:~ p) fl(t), 

the term 
Tll 

lim ~ L [G-l(q, p) a~q, p) ll(t)] [G-l(q, p) dF(q. p) u(t)]T 
Ilt~CX) l t= 1 PF dpp 

corresponds to the correlation matrix of the signal v at lag zero. From Parseval's 
theorem, it is equallo the integral of the power spectral density PvC m) of this signal. 

Introduce the normalized angular frequency (JJ;;; Tm. The matrix FF(P) can then be 
written as 

1CIT re 
- 1 J 1 I -FF(P);;; -- Pv(m)dm = -- PvC m)dm 

2lCTa2 21l(j2 
-1CIT -re 

where Pu( m) is the power spectral density of the input signalu. In what follows, the 
normafized an~lar frequency will be denoted simply by aJ. Since tl is real, ru( m) is real 
and even, and FF(P) becomes 

1l 

- IJ-Fp(p);;; F pep, m)pu(m)dm. 
lC

O 
with 

- [dF(ejW p). . dF(e-jw P)] 
Fp(p, m);;; ;} Re dp' G-l(e}w, p)G-l(e-)w. p) T', 

~ P ~p 

where Re(x) is the real part of x. 
Consider now the case of inputs with unit average power, i.e. 

re 
Pu ;;;! J pu(m)dm = 1. 

1lo 

One can then show (Goodwin and Payne, 1977; Zarrop. 1979) that the set of matrices 
Fp(p) is the convex hull of the set of matrices obtained for sinusoidal inputs (each of 
which corresponds to a spectral line). From Caratheodmy's theorem, any matrix Fp(p) 
may thus be written as the sum of at most [ll pF(IlPF + 1)12] + 1 matrices, each obtained 
for a sinusoidal input. This holds true in particular for the matrix associated with the D­
optimal input signal. Taking the special structure of FF(P) into account (F and G are 



assumed to have no common parameters) the number of sinusoids required can still be 
reduced. Indeed, one can show that any matrix F pep) belongs to an afHne manifold 
with dimension IlpF' so IlPr distinct frequencies arc enough to construct an optimal input 
signal (Goodwin and Payne, 1977; Zarrop, 1979), Any matrix F F(P) can thus be 
written as 

1l{j} 

FF(P) = ~ L l1i Re[ V(jDJi)VT(-jDJ;)] , IlUl::; IlPF' 
a- ;=1 

with v(jm) given by 

The search for an optimal input can thus be performed in a 21lPF-dimensional space (the 
frequencies m/2rc and average powers Jli of the IIPF sinusoids). This corresponds lo the 
continuous-design approach presenled in Section 6.2.2.1. The distribution m(d~) of 
experimental effort is replaced by Pu(w)dw, with Pu(w) the power spectral density of the 
signal u(t). The optimal spectrum is discrete and characterized by 

1, ." , /I fi} }, 

which is a condensed notation for 

IlUl 11m 

pUD(w) = 1t L Jli [o(w + mi + Oew - Wi)], with L Jli = 1 I 
i=l i=1 

where 0 is the Dirac delta. Although this optimal experiment corresponds to 
approximate design theory (Section 6.2.2.2), it can be performed without 
approximation if the observations are continuous and the system is stable enough for the 
initial conditions to have no influence. The optimal input can be implemented in either of 
two ways: 

- by. application of a combination of lIm sinusoids characterized by {Wi. Jli}, 
- by successive application of Ilro sinusoids, with different frequencies mj/2Jrbut the 

same power, each for a duration proportional to Jli. 

The similarity to approximate design permits use of the oplimization algorithms 
presented in Section 6.2.2.4 to detennine optimal input spectra (Mehra 1974b, 1981; 
Zarrop. 1979). As already mentioned, these algorithms yield globally optimal design 
measures. 

REMARK 6.6 

The average power of a sinusoid with amplitude ;t and frequency wu12n is ;t212 if 
lOu ;t; 0 and ;t2 if lOu = O. Its power spectral density is 



Applications 

-2 [S(m + mu) + o(m - mu)] if mu =t. 0 
pu(m) = 

{ 

1l'A,2 

21l'A28(m) otherwise. 

EXAMPLE 6.9 (continued) 

Here the matrix F p(p) is 

1l' 

FF(P) = 1 f [ l+a2!:os(W) + 0'2 
1C(12 I a+cos( m) 

-7 
1+a2+2cos(m) 

o 

a+cos(m) 
-b--~~-

1 +a2+ 2cos( m) 
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1 pur w)dw, 

For a single sinusoid (which may suffice since only two parameters are to be estimated, 
see Remark 6.7 below) the D-optima\ angular frequency is 

o 

EXAMPLE 6.10 

Consider the same model structure as in Example 6.8, with Ilb = 3. For the general 
notation for a Box-Jenkins structure, this corresponds to 

The matrix Fr(p, m) corresponding to a sinusoid with angular frequency m can be 
written as 

or equivalently 

FF(P, m) =.l. Re{ [exp(-jm). exp(-2jm). exp(-3jm)]T 
(12 

x [exp(jm), exp(2jm), exp(3jm)]} 

[ 

1 cos( m) COS(2m)] 
FF(p, m) = -\ cos(m) 1 cos(m) . 

(1-
cos(2m) cos( m) 1 

When sampling at frequency lIT, the matrix FF(p) thus takes the form 

o 



FF(P) = 1..[ ~I XI :~ 1 
(J2 

X2 Xl 

with 

n n 
XI =! f cos( m) puC w)dw and X2 = L f cos(2(O)pu(m)dm. 

no no 

The maximum of det F F(P) is reached when F pep) is proportional to the identity 
matrix, i.e. when Xl = X2 = 0 (Goodwin and Payne, 1977). This corresponds to pu(w) 
constant on [0, n] (white noise), and confirms the result of Example 6.B. The D­
optimal input, however, is not unique. Identical performance is achieved for the input 
defined by the sum of two sinusoids, at normalized angular frequencies Td4 and 3Td4: 

or equivalently 

REMARK 6.7 

TC 3n 
11(1) = cos(4T t) + cos(4T t), 

{ 

2 if t 0 [modulo 8TL 

u(t) = -2 if t = 4T [modulo 8T], 

o otherwise. 

A condition for persistency of excitation can be derived from the expression 

Ilro 

FF(P) = ~ L.u; Re[v(j(Oi)VT(-jmi)] 
(J- ;=1 

for the Fisher information matrix (Goodwin and Payne, 1977). Indeed, each term 
Re[v(j~i)V TC-jmt)] has rank two if (Oi:;: 0 and rank one if {OJ = O. F pep) is thus singular 
if and only if the number Ilro of distinct frequencies in the input signal is such that 
21lro < "PF (the frequencies 0 or 1/2, i.e. (0 = 0 or n, count for 112). 0 

The results above extend straightforwardly to continuous-time systems by replacing 

q = exp(jm) by s = jm in all expressions involving frequency, 
n by 00 in the bounds of integrals. 

EXAMPLE 6.11 

Consider the LI system defined by 

*d (*) (*) r (ftYm t, r + Ym 1, r u(t), Ym(O, r*) ;:: 0, 

o 



y(t) = Ym(t, 1'*) + 17(1), 

where the noise 17(1) has a power spectral density lI( 1 + a2w2). The transfer function of 
the model is given by 

F(jW, r) = 1 
1 + jrw 

We wish to choose u, with unit average power, so as to estimate T as well as possible. 
From the results above, since " PF ::;; 1, one sinusoid is enough. For a sinusoid with 
frequency cd2n, 

Maximization of the (scalar) FF(P) yields the D-optimal input signal defined by 

otherwise. 

When a tends to 0, the noise becomes wide-band, and the D-optimal angular frequency 
is c.oo:;; 111'. This is intuitively appealing: for very low frequencies, the magnitude of the 
output does not depend on T, whereas for very high frequencies the signal is buried in 
the noise. 0 

REMARKS 6.8 

A sequence of independent random variables is necessarily white noise. In the 
continuous-time case, such a signal should have infinite variance, which has no 
physical meaning. A reasonable assumption is that the continuous-time signal £ is 
white (has a flat power spectral density) over a frequency range large enough for the 
correlation between the £(/)'S to have negligible effects on the measured outputs. 

- Throughout this section, u(1) has been assumed independent of £(1). This is no 
longer true if the input signal is obtained by feedback of the output. Another 
expression must then be calculated for the matrix F(p), which leads to the following 
results (Goodwin and Payne, 1977; Gustavsson, Ljung and Sodcrslrom, 1981; 
Gevers and Ljung, 1985, 1986): when F and G have no common parameters and 
the power constraint is on the input, the optimal input signal is obtained without 
feeding back the output; when the power constraint is on the output. feedback is 
generally useful (minimum-variance control). 
More recent results (I-Ijalmarsson. Gevers and De Bruyne, 1996) show that under 
rather general conditions, if the purpose of the identification is the design of a 
controller from the identified model, the experiment should preferably be performed 
in closed loop. 0 



6.3.3 Simultaneous choice of inputs and sampling times 

When the input is parametric, the components of the vector 3 that characterizes the 
experiment may consist of the llt sampling limes and the parameters defining the input 
signal, as in Section 6.3.2.1 (Example 6.7). 

When the input signal is nonparametric, the construction of an optimal non-uniform 
sampling schedule (i.e. with Tk = tk+1 - tk not constant), although theoretically feasible 
(Goodwin and Payne, 1977). is rather difficult, especially off-line. An extension of the 
sequential approach described in Section 6.3.2.2 for the determination of the input U(tk) 
makes it possible to choose U(tk) and Tk simultaneously on-line (Goodwin, Zarrop and 
Payne, 1974; Goodwin and Payne, 1977). 

Consider now the case of uniform sampling (Tk = T constant) for a Box-Jenkins 
structure. The whoJe matrix F(p) is now influenced by the choice of the sampling 
period. even if F and G have no common parameters (compare with Section 6.3.2.2). 
We shall. however, assume that the spectral characteristics of the measurement noise are 
known. Consider then a system with the state-space representation 

dx dt = Ax(t) + bu(t), 

y(t) = c T x(t) + duet) + 1](t), 

where xU) is the state vector, 11(1) the (scalar) input, y(t) the (scalar) measured output, 
and 1](t) a Gaussian stationary coloured noise, with known power spectral density 
V/(w). Note that 1](t) can be considered as the result of filtering a Gaussian white noise 
£(1) with unit spectral density by a filter with transfer function V/1l2(jm). In the frequency 
domain, the transfer function of the deterministic part of the model is 

The transfer function G(jw) associated with the random part does not depend on the 
parameters to be estimated. Let the number of measurements tend to infinity. The 
average Fisher information matrix per unit time is then 

00 

F(p) = JdF(jW,P) l( )dF(-jm,p) ()d 
21! dP Vr m dpT pu ro m. 

-00 

where pu(m) is the power spectral density of the input signaL Again. inputs with unit 
average power are considered: 

00 

If the bandwidth of the input signal is reslricted to mu, i.e. mE [-mu, mu], the matrix 
F(p) is given by 



Applicatiom 

- 1 
F(p)=-

2n: 

mu 

fdF(jOJ. p) Hrl(w) dF(-jOJ, p) P (OJ)dw 
dp 'I dpT U • 

-mu 
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Assume that the output is sampled at a frequency OJsl2n: larger than Nyquist's lower 
bound. i.e. 0Js > 2mu. Then the deterministic part of the signal (due to u) is not alLered. 
but aliasing occurs for the random part due to 17. The power spectral density of the 
sampled noise is given by 

00 

so V/s{cO) ~ 'PC m). The Fisher information matrix F s(p Lafter sampling is obtained by 
substituting "'5 ( OJ) for VI{ m) in F (p). The difference F (p) - F s(p) is non-negative 
definite, so sampling can only reduce the precision of the estimates. However, this 
effect can be avoided by introducing a suitable presa11lplillg filter, with a transfer 
function Fr(jm) such that I Fr(jm)I = 0 for we [-OJs/2, ros/2] and Fr(jro) is invertible 
elsewhere (Goodwin and Payne t 1977). Indeed, the power spectral density V'Frf.ro) of 
the filtered noise then satisfies 

and sampling does not produce aIiasing of this filtered noise. The Fisher infonnation 
matrix afterfilterillg and sampling is thus 

00 

F r(p) = 2" f aF~~, p) Fr(jm) [l/IFr<W)r l Fr(-jw) aF~~~, p) pu(w)dco, 
-00 

so F rep) = F (p). Sampling at the frequency ros/2:rr produces msl2:rr samples per 
second, and the average Fisher infonnation matrix per sample is 

2:rr­
Fps(p) = - F (p). 

Ws 

The optimal sampling frequency is thus the lowest satisfying Shannon's condition (i.e. 
the lowest frequency at which there is no aliasing of the input signalll), COs = 2mu. The 
matrix F ps(p) is then 

mu 

f [dF(jro, p) 1 a F( -;m, p )] 
Fps(p) = mu Re Jp V, (m) apT pu(ro)dOJ. 

o 

A method for detennining the optimal input spectrum is presented in (Zarrop, 1979). 



I!XpenmCIlf,\' 

REMARK 6.9 

Choosing the lowest feasible sampling frequency might seem surprlsmg. Notc, 
however, that the criterion relies on the average Fisher information matrix per sample. 
For a given number of samples, this policy thus yields the largest possible duration for 
the experiment. 0 

EXAMPLE 6. 12 

Consider again the system of Example 6.11, with lransf er function 

F(jm, r*) = ---. 
1 + jr*" w 

and measurement noise T](t) assumed to be wide-band, i.e. lfI( w) = I. We want to 
determine the D-optimal angular frequency ruD of a single sinusoid in order to 
estimate r. The average Fisher information matrix per unit of time is 

- oil 
F(p)=----

(1+ 

When the highest frequency in the input signal is tlJu/(2n), sampling must be such that 
lOs = 2tlJu and the presampling filter must removc all components at frequencies above 
UJu/(2rr). For a sinusoid at frequency tlJu/(2rc), the average Fisher information matrix per 
sample is 

The angular frequency of the D-optimal input is then roD = 1/( r{3), and the sampling 
period is TD = 21tI(lJsD = {3rcr. Recall that when sampling was not considered, the 
angular frequency of the D-optimal input was roo = l/r, By reducing the frequency of 
the input signal, one can increase the sampling period and thus the duration of the 
experiment. 0 

REMARK 6.10 

The experiment can also be decomposed into subexperimenls, each employing a 
sinusoid with unit power and frequency tlJu/(2lr), with sampling period Ti = WtlJuj. The 
average Fisher infonnation matrix per sample for the whole experiment is then 

~ Tr-
Fps(p) = .L..J J1i - F (p, (lJui)' 

i=l tlJui 

where F (p. (lJu;) is F (p) calculated for a sinusoidal input with unit power and 
frequency (lJu/21L. The scalar J1i indicates the fraction of the total number of 
observations taken in the ilh subexperiment (Goodwin and Payne, 1977). 0 
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6.4 Robust design 

6.4.1 Limitations of local design 

A non-LP model structure raises two important problems for experiment design. The 
first is that the determinant of the Fisher information matrix may be a very approximate 
measure of the size of the uncertainty region. The second is that this matrix now 
depends on the value assumed for the parameters. To illustrate these difficulties by 
comparing the LP and non-LP cases, we shaH consider least-squares estimation from 
data corrupted by additive LLd. ,9I({O, 02) random variables, with 02 known. 

Consider first an LP model structure. For given experimental conditions E. the 
expectation surface 

is an I1p-dimensional hyperplane. The least-squares estimate is obtained by projecting 
the vector of observations yS onlo §exp. which gives ymca, Pis), A confidence region 
at level a for the parameters is then (Section 5.1.1.1) 

lR ~ == {p E lR"p IlIytn(S, p) 

where X~(lll) has probability a of being smaller than a random variable with a X2 
distribution with III degrees of freedom. The set 

is a ball centred at yS. Its intersection with §cxp is an IIp-dimensionaJ ball. centred at 
ytn(E:, Pis). Since the parametrization is linear, W~~ is an ellipsoid centred at PIs, with 
volume proportional to deC 1l2 [RTCS)R(E)]. Maximizing det [RT(S)R(E)], i.e. 
designing a D-optimal experiment, thus minimizes the volume of confidence regions 
for p (at any level a). 

Consider now a non-LP model structure. The region lR~ is no longer an ellipsoid 
and may have any shape (see Figure 5.3). There are two reasons for this (Bates and 
Watts, 1980). First, §cxp is generally a curved surface (intrinsic curvature), so its 
intersection with B(y!» is no longer a ball. Second, the parametrization is nonlinear 
(parametric curvature). Moreover, the shape and volume ofR~ depend on the location 
of ytnCE, Pis) on Sexp, i.e. on the value of yS, and any experiment design based on the 
precision of the estimation will be laca/. 

Consider first the issue of assessment of the size of the confidence regions in least­
squares estimation. Approximating these confidence regions by ellipsoids amounts to 
linearizing the model (first-order expansion of ytn(E, p)), about some nominal value pO 
of the parameters during the design phase or about PIs when estimation has taken place. 
This is e:Vlivalent to a~proxim~ing the density of the least-squares estimator Pls(YS) by 
!N{po, F- (pO)) or !N{Pls' F-l(Pls))' 

Hamilton and Watts (1985) consider second-order approximation of the volume of 
(non-ellipsoidal) confidence regions for p. However, the accuracy of the resulting 
approximation seems hard to evaluate. Vila (1986, 1990) uses a series expansion of a 



non-centred Fisher-Snedecor distribution and numerical integration to design 
experiments that minimize the volume of exact confidence regions. 

We have seen in Section 5.3.3 how the (approximate) density q:::(Pls1p*) of the 
least-squares estimator. or its marginal densities, could be used to assess the precision 
of the estimation. This density may differ greatly from the asymptotic nonnal density; 
see Examples 5.2 and 5.3. In such a case, the D-optimality cost function may be a 
very crude measure of the precision of the estimation. The mean-square error 

f A * 112 A I * dA 
j('S) = IIPls P 2Q:::(Pls P ) PIs 

is used in (Pazman and Pronzato. 1992a. 1992b) as a generalization of the A-optimal 
design cost function. However, when the integral is evaluated over a bounded domain 
lP for Pis' the optimal experiment is degenerate, i.e. has 

J q:::(Pls1p*)dPls = O. 
p 

For that reason, a constrained estimator is used! given by 

p = arg min lIym('S, p) - ySIl~ + 2cr2w(p), 
P 

with w(p) a suitable penalty function constraining P to lie in a compact set ]P>. A 
possible choice when 1P is the orthotope 

is for instance 

where: 

IIp 

w(p) = L: wi(Pi) 
;=1 

{ 

w;(Pi) ::= 0 if Pi E [P'r + Lij. pl\( - Lid, 

i)2wj(pj)ldPi2 > 0 if Pi E: [ptp + Li j • Pl\( Li i ], 

limpi-?p'j Wi(Pi) :;:; limpi-7p~ wi(Pi) = 00, 

and Li; is small compared to Pl\( - ptp. The density q:::(plp*) of the estimator p is then 
given by (Pazman and Pronzato, 1992a, 1992b) 
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with 

_( ) _ dymC::, p) F-I ( '=') dW(p) 
u,::. p - apT P, ..... dP' 

and Q'.:'(p, p*) and II'.:'(p) as in Section 5.3.3. Note thatlhe density of the maximum a 
posteriori estimator (Section 3.5.1) for mensurement noise distributed 5\{{O, (j2) is 
obtained by taking w(p) = -In .1l'p(p). Evaluation of the mean-square error j(E) 
corresponds to integration with respect to p. However, a stochastic-approximation 
algorithm pennits optimization of lca) without evaluating any integraL 

Another design criterion based on the density qs(Pls1p *) has been suggested by the 
following arguments. Designing a D-optimal experiment for an LP model structure 
defined by ymca, p) = R(E)p corresponds to minimizing the (Shannon) entropy Ii of 
the density of the estimator, given by 

1 1. 11 11 
In del [- R f(E)R(E)] + ]' In 2.1l' + ,,P. 

~ ~-

D-optimal design for a non-LP model structure can thus be interpreted as minimization 
of a first-order approximation of the entropy of the density of the estimator. (The true 
density is approximated by the asymptotic normal density.) A second-order 
approximation based on q'::(Pls1p )'') is suggested in (Pronzato and pazman. 1994b). 

Although less approximate than those based on the Fisher information matrix, these 
approaches remain local. The optimal experiment sti1I depends on the value of the 
parameters to be estimated, which is unknown before the experiment. A first way of 
facing this problem is to design the experiments sequentially. 

6.4.2 Sequential design 

Experimentation and estimation steps are alternated (Chernoff, 1975), as indicated in 
Figure 6.6. Such an approach is natural when experimentation is thought of as on-line 
control of the system, with real-time estimation of the parameters and characterization of 
the precision achieved, as in Section 6.3.2.2. Even when estimation is off-line, and 
provided the observations from the experiment described by Ei make p identifiable, one 
may wish to estimate p in the following way: 

estimate p(n from observations y(E;), for i = 1, ...• k, 
estimate pk as the average of the pU)' s: 



jjL 

k 
1\ k -k 1 ~ 1\ ( .) p =p =I.L"P I. 
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Figure 6.6. Sequential design 

Experiments 

For non-LP model structures, each estimate p(i) is generally biased; see (Box, 1971) 
for an approximation of the bia3 of the least-squares estimator. Moreover, jik usually 
does not converge to p* as k tends to infinity. This approach should therefore not be 
used. To guarantee convergence of pk to P *, the estimation of pk should make use of 
all previous observations (i. e. y(E I), ... , y(Ek)). The designed experiment will then 
tend to the optimal experiment for p*. 

Often, however, the repetition of experiments on a single process is impossible 
(biology, destructive experiments ... ), but it is possible to experiment on a population of 
processes (or individuals), each experiment being performed on a new individual; see, 
e.g., (D' Argenio, 1981). No single true value p* then exists for p, and each individual 
may be considered as having its own true parameter value pi*. One may then wish to 
design experiments converging to the optimal experiment for the average value of the 
pi*'s in the population (or, see Section 6.4.3, to the average optimal experiment for the 
population). A characteristic of the population (the mean of the pi*'s or their 
distribution) should then be estimated (possibly on-line) from the observations. 
Methods suggested in Section 3.3.4 may be used for that purpose. 

REMARKS 6.11 

The study of the convergence properties of sequential design policies is often very 
complicated, and far beyond the scope of this book. One may refer for instance to 
(Ford and Silvey, 1980; Ford, Titterington and Wu, 1985; Wu, 1985; Muller and 
Pbtscher, 1992) to get an idea of the difficulties. 
One may wish to determine the optimal sequential design procedure for a given 
design criterion and with the number of experiment steps fixed a priori. This is a 
stochastic dynamic programming problem, very difficult to solve. Examples with 
two experiment steps are presented in (Zacks, 1977; Pronzato, Walter and 
Kulesar, 1993; Kulesar, Pronzato and Walter, 1994). A classification of sequential 
design policies, considered as control policies for dynamic systems, is given in 
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(Bayard and Schumitzky, 1990; Pronzato t WaIter and Kulcsar, 1993). A 
sUboptimal closed-loop approach (dual contro)), based on approximation of the 
posterior density of the parameters, is suggested in (Kulcsar, Pronzato and WaIter, 
1995, 1996). 0 

In many situations, repetition of ex.periments is impossible, even on several 
individuals or processes, and a single (one-shot) experiment must be designed. 
Moreover, even if design is sequential. each design step should make use of all 
information available. Non-sequential design approaches which determine a single 
experiment taking all the prior uncertainty in the parameters to be estimated into account 
are thus of special importance. Two types of robust design procedure will be 
considered. They differ in how the prior information is characterized, and by the 
importance attached to the risk of designing an experiment badly suited to some rare 
parameter values. Only robustness with respect to the parameters p of the deterministic 
model wiB be considered. Robustness with respect to nuisance parameters, e.g., those 
present in the distribution of the measurement noise, could be handled in the same way 
(Schulz and Endrenyi, 1983). In that case, a robust extension of Ds-optimaIity could 
also be used. 

6.4.3 Average optimality 

This approach relies on a probabilistic description of the prior uncertainty in P, 
characterized by a prior distribution 1Z'p(p). Note that if this distribution is reliable prior 
information, Bayesian estimators (Section 3.5) are more appropriate than the 
maximum-likelihood estimator. However, here we consider distributions which carry 
little information, and we are mainly concerned with quantifying the lack of reliability of 
the prior nominal value for p. In this context, it is natural to let the observations speak 
by themselves and use the maximum-likelihood estimator. The distribution trp(p) may 
have been inferred from previous observations collected on similar processes or 
individuals in a population (Section 3.3.4). 

6.4.3.1 Criteria 

Classical criteria lead to optimization of a scalar function of the Fisher information 
matrix. We shall only consider cost functions related to D~optimality, but other cost 
functions could be treated similarly. Using the prior distribution 1l'p(p) makes it possible 
to remove the dependence on p by considering the expectation of the original cost 
function. Note that whereas cost functions -det F(p, 3), -In det F(p, E) and 
I/det F(p, E) lead to identical designs, the introduction of expectations makes these 
approaches different (Fedorov, 1980; Fedorov and Atkinson, 1988; Atkinson, 1992). 

ED-optimal design (Pronzato and WaIter, 1985) maximizes 

jED(E) = E (det F(p. E)}. 
p 

- EID-optimal design (Waiter and Pronzato, 1987) minimizes 



jEID(S) :::: E {l/det F(p, S) ) . 
p 

ELD-optimal design (D' Argenio and Van Guilder, 1988; D' Argenio, 1990) 
maximizes 

jELD(S) = E (In det F(p, E) }. 
p 

Averaging D-efficiency cost functions also allows new cost functions to be defined: 

for ED-efficiency (or EDE-oplimality), maximize 

iEDE(3) :::: E UDE(p, 3) ] , 
p 

where iDE is defined in Section 6.1. 
for EID-efficiellcy (or EIDE-optimality), minimize 

iElDE(S) :::: E {lIiDE(P, 3) } . 
P 

The choice of a cost function may take account of the following facts. 

D-efficiency is relative: for each value of p, the performance of the experiment Sis 
scaled by the performance achievable if p were known. Approaches relying on jEDE 
andiElDE thus favour those parameters whose estimation is difficult. Depending on 
the circumstances, this may be an advantage or a drawback. 
When optimizing iEDE or jEJDE. each evaluation of the D-efficiency cost function 
for a given value p of the parameters requires the determination of aD-optimal 
experiment for p. This optimization thus requires much more computation than that 
of JED, jmD or iELD· 
ED-optimality does not seem a suitable measure to characterize the average 
uncertainty in the parameters (Waller and Pronzato, 1987), so EID-optimality 
should be preferred. 
ELD-optimality can be justified by information-theoretic arguments: an ELD-optimaI 
experiment maximizes the prior expectation of the information provided by the 
experiment, under the assumption that the prior information is negligible compared 
with that yielded by the experiment (D' Argenio, 1990). 
Finally, an EID-optimal experiment depends on the parametrization of the model 
structure, whereas an ELD-optimal experiment does not. Indeed, consider a non­
singular reparametrization pep) (i.e. with del ap/apT:;:. 0). independent of E. We 
have 

del F(p, S) :::: det F(p, S) (det fir )-2 

and Ep {lldet F(p, E)} generally differs from Ep {l/det F(p, S»). However, 
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E{In del F(p, E)} :::: E{ln det F(p, E)} - 2 E{ln det aa~ 1 
p p p p 

and the last term is independent of E. 

Pronzato et al. (1989) and Atkinson et al. (1993) compare these approaches on 
pharmacokinetic examples. A reasonable policy might be to determine the optimal 
experiments for various criteria, then choose an experiment which is optimal for one 
particular criterion and only slightly suboptimal for the others. 

EXAMPLE 6.2 (continued) 

Consider again the system: 

y(t) :::: pi exp(-P2t) + £(1), 

where the £U)'s are LLd. 9\!{0, 0"2). We are looking for two optimal sampling times, to 
estimate pi and P2' The model structure is nonlinear in P2. and the D-optimal 
experiment for a nominal value pg is 

Consider now a prior density JTp(P2) to characterize the uncertainty in pg. The EID­
oplimality cost function is 

When TfpUJ2) is uniform over [1, 10], the EID-optimal experiment is 

EElD :::: (0, 0. 139)T. 

When Tfp(P2) is normal ~5.5, 1.52), the EID-optimal experiment is 

EEID :::: (0, 0.161 )'1'. 

The ELD-optimality cost function is 

and, in this particular case, the ELD-optimal experiment coincides with the 
D-optimal experiment calculated for a nominal value equal to the prior mean Ep:! {P2}. 
For the two densities above, its numerical value is 

EELD :::: (0, O.182)T. o 



In the example above, the optimal experiment is independent of the value (or 
density) of parameter Pl. This result can be generalized, as indicated by the following 
property (Pronzato and Walter, 1985). If the model structure is such that 

Ym(t, p) = r T(t, pnl)pl, with p = [pI] , 
pnl 

where Tj(t, pnl) depends only on the ith component of pnl, if the measurement noise 
corresponds to an Li.d. sequence whose distribution is independent of p, and if the 
linear parameters pI are distributed independently of the nonlinear parameters pnl, then 
the optimal experiment for the criteria above (jED, JEID. jELD, jEDE and iEIDE) is 
independent of the distribution of the parameters pl. For instance, all entries of pI can 
be set equal to one. 

Except in some very simple situations, an optimal experiment cannot be found 
analytically. and numerical procedures are required. 

6.4.3.2 Algorithms 

Exact design. A first approach uses one of the local design methods presented in 
Section 6.2.1, with some general-purpose nonlinear-programming algorithm or a 
specific algorithm for exact design. At each iteration, an expected value of a local cost 
function has to be evaluated. Such an approach can be employed when the prior 
distribution for p is discrete (D'Argenio and Van Guilder, 1988; Pronzato et al., 1989), 
but is very slow when the prior distribution is a density. Stochastic approximation then 
allows a cost function like 

iE(8) = E U(p, 8) } 
p 

to be optimized without having to evaluate expectations (i.e. integrals); see 
Section 4.3.8. The simplest version is the stochastic gradient algorithm, which, for 
minimization, is 

er( k .... ) 
-:::k+l - ;k , Ij P , ~ 1- :: .. k. 
...... -.... - fL,k a::. ::.-

It is a gradient algorithm (Section 4.3.3.1) for the minimization ofj(p, ::.), modified in 
that, al each iteration k, a value pk is randomly generated according to i!p(p). The 
sequence of scalar steps itk must satisfy 

and the most popular choice is the harmonic sequence 



Convergence is accelerated if Ak is reduced only when the angle between two 
successive gradients is larger than re/2 (Saridis, 1974). The speed of convergence is 
very sensitive to the choice of the scalar a in the sequence Ak' Componentwise 
normalization of the gradient allows easier choice of a suitable value for a. The 
algorithm thus modified becomes 

where Ak is a diagonal matrix, the ith diagonal entry of which is 

Aku = ----::---='-'----'-'-'-'-'-'-----

[1 ~ (dj(Pfl, S) _ _ )2] 1/2 
k .£..J I.:. = .:.11 

12=1 dEi 

where E;max and Eimin are upper and lower bounds on the possible values of Ej. If 
Ak = a/(k + 1), this implies 

The scalar a is then the relative length of the first step. A typical choice is a = 0.1. 
Examples of application are presented in (Pronzato and Waiter, 1985; WaIter and 
Pronzalo, 1987). Note that convergence to a global optimum is not guaranteed. 

Approximate design. The equivalence theorem of Section 6.2.2.3 can be extended to 
average-optimal design; see (Atkinson, 1992) for theorems applying to various 
optimality criteria. For ELD~optimalily. for instance, the following theorem is available. 

EQUJV ALENCE THEOREM 

The following properties are equivalent: 

the design measure 111ELD is ELD-optimal, 
maxE;e~ Ep{d(~, 11lELD)} = IIp' 

WELD minimizes maxE;el; Ep {d(~, TIt)}, with 

o 

An algorithm similar to that of Fedorov and Wynn (Section 6.2.2.4) can thus be 
used, d(~, 1Il) simpJy being replaced by its expected value Ep{d(~. m)) (Chaloner and 
Larntz, 1986, 1988). Global convergence to an ELD~optimal design measure is 
guaranteed, but, here again, calculations will be extremely heavy if the prior dislribution 
for p is not discrete. 
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REMARK 6.12 

Average optimality can be used in sequential design too. Each experimentation step then 
makes density 1rp(p) in the next step more accurate. Two cases must be distinguished, 
depending on whether the observations are performed on a single process or on 
different processes (or individuals) drawn from a population; see, e.g., (Pronzato, 
Walter and Kulcsar, 1993). In the latter case, maximum-likelihood estimation of 1rp(p) 
can be performed with the methods of Section 3.3.4 (using all data obtained so far). 
The recursive approach presented in (Mentrc, 1984; MenU'c, Mallet and Steimer, 1988) 
is then particularly attractive. Note that optimal design for the estimation of 1rp(p) has 
received lillIe attention in spite of its importance (Mallet, 1983; Mallet and Mentrc, 
1988; Mentre et al., 1995). 0 

6.4.4 Minimax optimality 

Sometimes, the best experiment in the worst circumstances should be preferred to the 
best one on average. This depends on the importance attached to some (unlikely) 
parameter values whose estimation with an average-optimal experiment might be very 
inaccurate. Minimax optimal design requires the definition of a set lP' of prior admissible 
values for p. 

6 .4 .4.1 Cri teria 

We shall only consider criteria based on D-optimality (Section 6.1). A1!vID-optimlll 
design (Pronzato and Walter, 1988) maximizes 

jMMD(S) = min det F(p, S). 
pE1P 

MMDE-optimal design (Landaw, 1984; D'Argenio and Van Guilder, 1988) maximizes 

JMMDE(S) = min JDE(P, S), 
PEP 

where jDE(P, 8) is the D-efficiency cost function. An MMDE-optimal experiment does 
not depend on any regular reparametrization of the model structure (independent of 8), 
whereas an MMD-optimal experiment generally does. On the other hand, optimization 
ofjMMDE requires the determination of a D-optimal experiment associated with p for 
each evaluation of JDE(P, 8). This optimization will thus require more computation than 
that of jMMD. Normalization by det F(p, 5 D ) in the expression of D-efficiency 
favours those parameters whose estimation is difficult. This may prove to be an 
advantage or a drawback (Pronzato and Walter, 1988). 

EXAMPLE 6.2 (continued) 

Consider again the system: 

y(t) = pi exp(-P2l) + £(1), 



where the fU)'S are LLd . .9XtO. 0'2). We search for two sampling times to estimate the 
parameters pi and pi, when the prior admissible values for P2 belong to 

The MMD-optimal experiment then coincides with the D-optimal one for P2 == P2max: 

The MMDE-optimal experiment is 

o 

EXAMPLE 6.11 (continued) 

Consider again the transfer function 

F(jro, r*) == 1 
1 + jr* 

and assume the measurement noise is wide-band. We wish to determine the input to be 
applied to the system in order to estimate T as accurately as possible. A sinusoidal input, 
with angular frequency lOI) = I/T* which strongly depends on T*, is then D-optimaJ. If 
the admissible values for r are in the interval JP = [rmin, Tmllx], the MMD-optimality cost 
function for a single sinusoid is 

. . ail 
)MMD( co) = mm ?? ') , 

TEP (1 + T-CO-)" 

and the MMD-optimal angular frequency is I1Lmax, which coincides with the 
D-optimal angular frequency for T= 'rmax. The MMDE-optimality cost function is 

4'r2ail 
jMMDE(CO) = min :) ') 2 ' 

rE P (l + T-{j)-) 

and the MMDE-optimal angular frequency is ('rminLmax)-I12, i.e. the geometric mean of 
the DMoptimal angular frequencies for 'r= 'rmin and T= 'rmax. 0 

As for average optimal design, if the model structure is such that 

where n(t, pnt) depends only on the ith component of pnl, and if the measurement noise 
corresponds to an LLd. sequence with distribution independent of P. then the MMD­
and MMDE-optimal experiments are independent of the value of the linear 
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parameters pi, provided the admissible domain for pnl is independent of pI (Pronzato 
and Walter, 1988). In particular, one can then set all components of pi to one. 

In some situations, the minimax optimal experiment coincides with aD-optimal 
experiment for a particular value of the model parameters, which can be dctennined II 

priori. This greatly facilitates computation of the minimax optimal experiment. This is 
the case for structures defined by sums of exponentials when MMD-optimal design is 
used. Such structures play an important role, since they include the impulse responses 
of many systems. Consider a model structure defined by the response 

l1p/2 

f:' ~ I nlf:' Ym(';,'\ p) = .L.J P 11 exp(-PII ..,1) 
11=1 

and assume that the observations are corrupted by additive noise which corresponds to 
an Li.d. sequence distributed independently of p. The scalar ~i characterizes the 
experimental conditions for the iLh observation; it might, for instance, be the ith 
sampling time. Assume that the prior admissible set for the vector pol of nonlinear 
parameters is 

pnl - I n1 ip'lllp/21 n1 < nl 01 01 > 8· . - I (tJ) 1 } - lP Eft,>.. PI -Pmax,Pi -Pi+l - It 1- , ... , IIp - - • 

where P~ax and the 8/s are known. Then, from the property above, the MMD-optimal 
experiment is independent of the value of pi, and, from (Melas, 1978), it coincides with 
the D-optimal experiment calculated for 

(1lP/2)-1 

nl- r .. nl nl _ 8 nl _ (8 +~) 01 ~ 8]T 
P - LPmax ' P max I, Pm ax I U2 I ... I Pmax .L..J i . 

i=1 

When the minimax-optimal experiment cannot be found analytically and does not 
coincide with a particular D-optimal experiment, specific optimization algorithms must 
be used. 

6.4.4.~ Algorithms 

Exact design: relaxation algorithm. When the prior admissible set P for P is finite, the 
minimization with respect to p in jMMD and jMMDE may in principle be carried out by 
exhaustive search over aJl values of p in P. However, this is possible only if the 
number of elements in P is small enough. 

Consider the general case, finding SMM (from some feasible set to maximize 

jMM(S):;; min j(p, S), 
PEP 

with P a given compact set. The most straightforward approach uses brute force and 
maximizes jMM by a general-purpose nonlinear-programming algorithm, each 
evaluation of jMM(S) being the result of a minimization with respect to p using a second 
nonlinear programming algorithm. Obviously, this may require a huge amount of 



rWoltst aestgn 341 

:omputation. Shimizu and Aiyoshi (1980) use relaxation to transform the problem into 
:me where JP is finite. First, the problem is redefined as finding EMM in that 
maximizes the scalar a under the constraints 

j(p, E) ~ a, 'tj pEP. 

rhis optimization problem has an infinite number of constraints. The relaxation 
?rocedure amounts to introducing a finite number of them, one by one. 

~tep 1: Choose an initial value p I in lP, and define a first set of representative values 
!t(1 = {pt}. Set k = 1. 

~tep 2: Find 
Ek ;:: arg max min j(p, E). 

EELl: PE¥t 
)tep 3: Find 

phI = arg min j(p, Ek). 
PEi? 

')tep 4: If j(pk+ I, Ek) ~ minpE 9(k j(p, Ek) 8, where 8 is some positive tolerance, 
accept Ek as an approximate solution of the problem. Else include pk+l in Pt, 
increment k by one and go to Step 2. 

fhis algorithm stops after a finite number of 
lfe satisfied: 

provided the following conditions 

'::1: j(E, p) is continuous with respect to p and continuously differentiable with 
to E. 

'::2: 1s compact and such that g ;:: (E I C;(E) $; 0, ; = I, ... , r}, with constraints Cj 

continuously differentiable with respect to E. 
:3: JP is compact (and not empty), 

rhese conditions are generally fulfilled for optimal-design problems. Note that when the 
tlgorithm is Slopped before the stopping condition of Step 4 is satisfied, an 
lpproximate solution is obtained, satisfying a similar stopping condition with a larger 
olerance 8. Steps 2 and 3 are constrained optimization problems, which may have 
ocal extrema. A global optimization algorithm is therefore recommended 
Section 4.3.9). Examples of application are presented in (Pronzato and Waiter, 1988). 

1pproximate design. When JP is finite, the issue is to find a design measure 111MM that 
naximizes 

jMM(11l) = min j(p, 111). 
pE (pI, ... ,pili] 

rhis problem is closely connected to T -optimal design for discriminating among m 
node) structures, III > 2 (Section 6.6.3.1). The fact that the cost function may be not 
Hfferenliable at the optimum makes the determination of the optimal design measure 
lifficull. Specific algorithms (for T-optimal design) arc presented in (Atkinson and 
:;edorov, 1975b: Huang, 1991; Huang, Pronzato and Wailer, 1991). The results 
lescribed in (Wong, 1992) may be useful when JP is not finite. 
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6.5 Design for Bayesian estimation 

The Cramer-Rao inequality for an unbiased Bayesian estimator (Section 5.3.2) 
suggests replacing the average Fisher information matrix per sample by: 

1 [ a a ] FB = n;. E (F(p)} + E {[ap In 1rp(p)][ap In 1rp(p)]T} , 
P P 

where F(p) is the Fisher information matrix and 1rp(p) the prior density of the 
parameters. When the model structure is not LP, Ep (F(p)} cannot generally be 
calculated analytically. The optimization of any cost function if'k(FB), with l/lk defined as 
in Section 6.1 t then requires evaluation of the expected value of a matrix for each 
evaluation of the cost function. (Note that a stochastic approximation algorithm as in 
Section 6.4.3.2 cannot be used here.) For that reason, this approach seems to have 
been considered for LP-model structures only, i.e. when 

y5(E) = R(E)p* + n. 

In particular, when the noise n has a Gaussian density ~Ot,'E) with:E known, and the 
prior density is normal !N{PQ. a), we have 

which is called the Bayesian illjonlwtioll matrix (Pilz, 1983). If I: = O'2Im. then 

so a and 0'2 only affect the determination of the optimal experiment through their ratio. 
In Section 5.3.2, we showed that the prior expectation of the minimum quadratic risk 
associated with a weighting malrix 1(1)( is 

E Umr(Pmap[yS(E)]) 1 = trace (K[RT(8)I:-i R(E) + a-I rl I(T}, 
ys 

which defines an LB-optimality cost function 

More generally, for a non-LP model structure one can consider the cost function 

with 
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where 

6.5.1 

FB(P, 8) :=: ~ [F(p, 8) + a-I], 
"l 

III 

.... ~ 1 1:' TJ:.' F(p,~) = L... ~Sy(~J, p)SyC~I, p). 
;=1 W(~I) 

Exact design 

343 

The LB-optimality cost function can be minimized by the following algorithm (Pilz, 
1983), very similar to the DETMAX algorithm presented in Section 6.2.1.2. 

Step 1: Choose El (with III support points) and set k = 1. 
Step 2: Find 

Step 3: Find 

FB'l cp , Ek)SyC;*. p)sJ(~*, p)Fii'(p, Ek)] 

"tw(~*) + sJ(~*. p)Fii1cp. Sk)Sy(~*, p) . 

Step4:If~i* =1;*, stop. Else remove ;i* from Ek+ to get Sk+1 and update 
Fn I according to 

Fii'cp, Sk+l) = 

[
FBI(P, Sk+) + Fii

1
(p, Sk+)Sy~l;i:_~J)2~I(~i*. P)Fiil(p_,_"e:..~~]. 

(lll+1)w(l;i*) - srC1;i*. p)li'ai(p, Sk+)sy(1;i*, p) 

Increment k by one, and go to Step 2. 

Note that FB(P, E) is positive-definite for any non-negativc-definite matrix 
F(p, E), provided n is positive-definite. Il therefore does nol matter if the initial 
experiment is degenerate. A possible choice for El is obtained as follows. 

Step 1.1: Set 11 :=: 1, El:=: {0} and Fii I (p, SI) = a. 
Step 1.2: Perform Step 2 with III replaced by Il. 

Step 1.3: If 11 III stop. Else increment Il by one and go to Step 1.2. 
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As with the exact-design algorithms of Section 6.2.1, convergence to an 
LB-optimal experiment is not guaranteed. The choice of the initial experiment::;1 is thus 
especially critical, and it is recommended that the optimization be repeated, initialized at 
different experiments. As for the DETMAX aJgorithm, excursions with length A greater 
than one can be considered. Similar algorithms may be used (Pilz, 1983) to construct a 
DB-optimal experimel1t~ which maximizes 

6.5.2 Approximate design 

The approximate design theory presented in Section 6.2.2 also applies Lo Bayesian 
estimators. Consider the matrix 

(Note that the value of III must be specified.) Caratheodory's theorem can again be used 
to show that [lIp(llp + 1 )/2] + 1 support points are enough to construct any matrix 
FB(p, TTl). In the particular case of LB-optimality, one can show that p(211p - P - 1)/2 
support points are enough, with p = rank Q (Pilz, 1983; Chaloner~ 1984). One can 
also show that the matrix FB(p, TTl) associated with an La-optimal design measure, with 
Q = Inp' or with a DB-optimal design measure, is unique. Equivalence theorems, see 
Section 6.2.2.3, can be proved for cost functions with suitable convexity (or 
concavity) properties. 

EQUIVALENCE THEOREMS (Pilz, 1983; Chaloner, 1984) 

The design measure 111LB is LB-optimal if and only if 

max 1 sJ(~, p)F'B1(p, 11lLB)QFi3I(p, mLB)Sy(~, p):::;; 
~E~) w(~) 

trace [Fa 1 (p, 11lLB)QFn 1 (p, 111LB )Fm(p, 1TILB)]. 

The design measure 11l0B is DB-optimal if and only if 

Optimization algorithms similar to that of Fedorov and Wynn presented in 
Section 6.2.2.4 can be constructed from this theorem. Their convergence to the global 
optimum is guaranteed. The function d( 111, ~) is simply replaced by 



for LB-optimality, and by 

for DB-optimality. The stopping rule is obtained from the necessary and sufficient 
optimaJity condition of the corresponding equivalence theorem. The initial measure 111' 
is allowed to be degenerate. In particular, the measure with a single support point 

~ 1 = arg min trace {Q [_1_ Sy (~, p )sl (~, p) + 0_-_1]-1} 
~E~ w(~) l1t 

sl(~, p)nQnSy(~, p) 
= arg max ----..",,------=----

~E~ w(~) + lIlSl(~, p)OSy(;. p) 

can be used for LB-optimality, and the measure 

for DB-optimality. 

6.6 Influence of model structure 

This problem is extremely important, although it has not had much attention, in 
particular for applications. As indicated in Section 1.1, the model may serve several 
objectives. Its identification will be considered successful only if the model suitably 
reproduces the pertinent aspects of the behaviour of the system, in the operating range 
of interest. 

The structural properties of models, the choice of an estimator for the parameters of 
a model with given structure, and the numerical methods used for the computation of 
the estimates have been discussed in previous chapters. In choosing the structure. 
different situations must be distinguished. Assume that the data have already been 
collected. 

If the model structure is fixed, one should check its compatibility with the data, and 
some basic tools for that purpose will be indicated in Chapter 7. 
If a finite number of structures, for instance with increasing complexity, compete 
for the description of the data, the AIC criterion (Section 3.4), or any other 
criterion of the same type, can be used to select one of them. The validity of the 
structure chosen will then need to be tested. 

- If the structure is completely unknown, one can sometimes use a simple parametric 
structure (e.g., LP), for a very coarse description of the behaviour of the system, 
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complemented by a nonparametric structure; see, e.g., the kriging method of 
Section 3.3.5. Other approaches wiII be presented in Section 6.6.2. 

A key point is that attempts to falsify a given structure or to select one structure from 
several candidates will be meaningful only if the data collected are rich enough. For 
instance, if maximum-likelihood estimation is used, one needs at least as many separate 
observations (e.g. at different times) as there are parameters in the most complex 
structure. For that reason, the problem of structure selection cannot easily be dissociated 
from that of experiment design. 

The first approach to be considered merely aims, through Bayesian estimation, to 
design an experiment for a simple structure while being protected against the possible 
presence of neglected terms in the process response. Next, the statistical literature on 
robustness of estimation and design in the face of modelling errors will be briefly 
reviewed. Finally, we shall investigate an alternative approach, which consists of 
designing an experiment that allows us to choose the best model structure from a finite 
family. The experimental conditions must then be chosen to maximize the sensitivity of 
the response to modelling errors; this is a quantitative extension of the notion of 
structural distinguishability (Section 2.6.2). 

6.6.1 Robustness through Bayesian estimation 

As already indicated, a classical optimal experiment (D~optimal for instance) often 
consists of repeating observations under a small number of distinct experimental 
conditions (e.g. measurement times), sometimes equaJ to the number of parameters to 
be estimated. It is then impossible to estimate the larger number of parameters of a more 
complex structure from such an experiment. If hesitating between a simple and a 
complex structure, one should thus design the experiment for the complex one. 
However, the complex structure may be considered only as a precaution, and the 
experiment designed for it may prove far from optimal for the simple structure. A 
Bayesian approach may permit to bypass this difficulty, as illustrated by the following 
example. 

EXAMPLE 6.13 

Consider the model structures 

with ~ E [-1, 1]. Assume that the measurement errors are additive and correspond to 
i.i.d. ~O, a2) variables. The D~oplima1 design measure for )1m I is then 

{-II} mDI = 1/2 112 ' 

whereas for Ym2 it is 

11ID2 = {-I 0 I}. 
113 1/3 113 



mDl does not allow all parameters of )1m2 to be estimated, and 1flD2 has a D~efficiency of 
only 2/3 for estimation of the parameters of Ymt' The prior confidence in the model Ym., 
can be expressed as a prior density for its parameters (the more likely the first structure 
is, the more concentrated the marginal density of P3 will be around P3 = 0). Assume 
that p = (P\.P2,P3)T has a prior density !i\Llpo, Q), with Q = diag{illl, ill]., (tJ3}' It is 
easy to check that the DB-optimal design measure (Section 6.5) tends to 11lDl as ill3 
tends to 0 (another way of saying that when P3 is known it need not be estimated!). 0 

6.6.2 Robust estimation and design 

In contrast to Section 3.7, estimation is understood here to be robust with respect to 
errors in the model structure, or more precisely neglected terms in the response (e.g., 
when searching for the maximum of a measured response; see Section 4.4). 

The response of the process is written as 

with f(~) the deterministic part and the £(£;)'s assumed to be LLd. ~O, cr2 ). The 
influence of robustness on design seems first to have been considered by Box and 
Draper (1959), who studied the consequences of using a simple model 

(for instance an affine function of ~) when the true structure 1(£;) = z T(£;)q is more 
complex (for instance a quadratic function of £;), The error in the structure then 
produces a bias in the estimated parameters, and the integral of the mean-square error 
(called the J-crilerioll in the literature) 

is the sum of a bias term and a variance term. Box and Draper use the least-squares 
estimator Pls(YS) and consider only the bias term in choosing the experiment. Karson, 
Manson and Hader (1969) use a linear estimator and choose the experiment that 
minimizes the variance term under the constraint that the bias term is minimal. These 
two approaches are for exact design. IGefer (1973) considers minimization of 1(p, E, j} 
for approximate design when a linear estimator of p is used. He shows that the cost 
function corresponds to LB-optimaIity (Section 6.5) when a prior distribution is used 
for the parameters q. Stigler (1971) and Studden (1982) study D-optimal design for 
models polynomial in ~ with the constraint that the parameters of u higher-degree model 
can be estimated with a guaranteed degree of precision. 

In most practical situations, the structure of the detenninisLic part.f(£;) of the process 
response is partially unknown, and two classes of methods have been proposed to deal 
with this lack of information. 



6.6.2.1 Minimax approach 

The robust-design approaches above might not guard against small deviations from the 
assumed model when these deviations do not correspond to the terms (most often 
polynomials) arbitrarily selected. This is why Huber (1975) suggests minimizing the 
supremum of the integrated mean-square error 

with respeclloj: wherefbelongs to a given (infinite dimensional) family of functions. 
Although this approach is theoretically appealing, the results obtained only deal with the 
one-dimensional regression modeJ )'m(~' p) = Po + PI~' with a linear estimator for 
P = (PI,P2)T. Moreover, Markus and Sacks (1977) have stressed that the design 
measures obtained with this approach must be absolutely continuous with respect to the 
Lebesgue measure and are therefore generally not implementable. They suggest, for the 
same model structure, minimization of 

where a is fixed and f(~) = Po + P i ~ + Q)(~), with IQ)(~)I ::;;; m(~) and III a known 
function of ~. 

A more general situation, is when Ym(~. p) = rT(~)p. with 

f(~) = )'m(;' p) + W(~), 

where 1w(~)1 ::;;; m(~), with In a known function of~. This case is considered in the rest 
of this section. The linear estimator of a linear function of p (e.g., a predictor of the 
process output) minimizing the supremum of a quadratic error with respect to f is 
constructed in (Sacks and Ylvisaker, 1978). However, estimation of p (or prediction of 
several linear combinations of p) requires solution of a difficult optimization problem. 
Mathew and Nordstrom (1993) consider instead the minimax cost function 

j(p) = sup [yS - R(E)p - CO(E)]TW[ys - R(E)p - co(3)], 
f 

with E == (1;IT, ... ,~tlIT)T. co(E) [W(~I), ... , W(~lIt)]T and W a diagonal weighting 
matrix. They show thalthis cost function can be written as a linear combination of L2 
(least-squares) and LI (least-modulus) cost functions, and that it is convex with respect 
to p, which facilitates its optimization. 

The general design problem for estimation of a linear functional of a regression 
model belonging to a given class of functions is considered in (Sacks and Ylvisaker, 
1984), Pesotchinsky (1982) defines a mean-square error matrix for PIs (for an LP 
model structure linear with respect to ~) and constructs minimax extensions for design 
cost functions in the ¢k family; see (Kiefer, 1974) and Section 6.1. Welch (1983) 
considers a minimax cost function based on the integral of the mean-square error 



with f(~) = rT(~)p + (tJ(~), and 1CtJ(~)1 ::; (tJrnax. He suggests algorithms similar to the 
DETMAX algorithm for exact design (Section 6.2.1.2) or to the Fedorov-Wynn 
algorithm for approximate design (Section 6.2.2.4). 

6.6.2.2 Bayesian approach 

An alternative approach to account for prior uncertainty in the model structure relies on a 
Bayesian statistical model. O'Hagan (1978) introduces the notion of a localized 
regression model, for whichf(~) = rT(~)p{~) (with ~ scalar). Keeping p constant, one 
gets an LP structure approximating J, whereas a deviation from the LP restriction is 
obtained by letting p vary with ~, and assuming that the correlation between p(~I) and 
p(~2) increases as I~I - ~21 falls. Knowledge about p(~) is then introduced through a 
prior density such that 

with PO and M fixed, and p a monotononically decreasing function in R + with 
p(O) = 1. The joint density of the p(~)'s is assumed to be normal. The posterior mean 
Ep(~UYs{p(~)} is then obtained analytically, and can be used to predict the response at 
any ~, through 

y(~) = rT(~) E Ip(g)}. 
p(~)lyS 

The proposed design criterion is based on the mean-square predktion error. The 
flexibility of the approach aHows, in principle. realistic modelling in a variety of 
situations. A serious difficulty, however, is the choke of values for the prior 
parameters~ see the discussion of (O'Hagan. 1978). Strong similarities exist with the 
linear Bayes regression estimator of Goldstein (1980) and the Bayesian model used by 
Steinberg (1985) for response-surface problems. 

Finally, kriging (Section 3.3.5) can also be considered as an attempt to achieve 
robustness with respect to the model structure. lL describes (O(~) = j(~) - )'m{~' p) as 
a realization of a Gaussian process with known (or estimated) statistics. A Bayesian 
formulation is presented in (Blight and ou. J 975; Currin et al .• 1991). 

6.6.3 Structure discrimination 

Consider now the problem of determining experimental conditions that will allow the 
best possible discrimination between competing model structures. The literature devoted 
to this problem is almost as rich as that on experiment design for parameter cstimation. 
We restrict ourselves to prcsenting the main ideas, and recommend the survey papers of 
Atkinson and Cox (1974), and HilI (1978). Much of this section is derived from 
(Huang, 1991). Three approaches will be considered. based respectively on the notions 
of prediction discrepancy. entropy and Ds-optimaIity. To simplify the presentation, the 
additive measuremenl errors will be assumed to be scalar and LLd. 5'lf{O, 0"2). 



6.6.3.1 Discriminating by prediction discrepancy 

The use of prediction discrepancy, initially suggested by Fedorov and Pilzman (1968), 
resulted in the theoretical notion of T-optima!ity (where T stands for Testing), related to 
the power ofaX2 Lest (Atkinson and Fedorov, 1975a). Consider first the case of two 
rival structures. 

Discriminating between two structures. Assume first that the true structure is known 
and indexed by one, with pi the true value of its parameters. We shall see later how 
this hypothesis can be relaxed. The observations thus correspond to 

The cost function for an experiment S == (~lT, ... ,l;IIlT)T is 

III 

(I) - "{ J:'., [J:' 1\ - } ') L\2('::')=L,.; Yml(..,I,p\')-Ym2 ..,/,P2('::')] -, 
i=1 

where 1>2(S) is the least-squares estimator of the parameters P2 E P2 of the second 
structure, obtained from the fiCLitious (noise-free) dataYm,(l;i, pi) (i;::; I, ... ,lit), i.e. 

III 

1>2(S) = arg min L [YnlJ(~i. pj) - Ym2(~i. P2)]2. 
P2E J?2 i=l 

The cost function .d(il(S) is called 1l011-Ce11lrality parameter of the slructure )1m2 

(Atkinson and Fedorov, 1975a). When approximate design theory is used, with 1ft a 
normalized design measure on the set S of admissible experimental conditions 
(Section 6.2.2), the cost function becomes 

which is concave with respect to 11l. A design measure tnT is said to be T-optimal if it 
maximizes A<i)(tll). Atkinson and Fedorov (1975a) have proved the following result, 
which summarizes the properties ofT-optimal design measures. 

EQUJV ALENCE THEOREM 

A necessary and sufficient condition for tiEr to be T -optimaJ is 

for all ~ in r;. 



IIljtllt::IlLt: UJ IIIUUI:I ~II ULUlI c: 

- {Ymf (~. pi) - ym2[~' P2(l1fr)]}2 reaches its upper bound when; is a support point 
of l1fr. 

- The set ofT-optimal design measures is convex. 0 

From this theorem an optimization algorithm can be derived, similar to the 
Fedorov-Wynn algorithm of Section 6.2.2.4, but with d(~. Ill) replaced by 
(Yrnl (~, pi) - Ym2[;' P2(m)]}2. Its global convergence is guaranteed. However, the 
assumption of a known true structure with known parameters is not realistic, and a 
sequential approach must be used in practice. The aJgorithm is then as follows 
(Atkinson and Fedorov, 1975a): 

Step 1: After k observations (with the experimental conditions Ek). estimate the 
parameters P1(Ek) and P2(Ek) of both structures (in the least-squares sense). 

Step 2: Choose the (k+ 1 )th experimental conditions (support point) ~k+ I such that 

Step 3: Increment k by one and go to Step 1. 

When the algorithm converges to a design measure that is non-degenerate for both 
structures, this design measure is almost surely T-optimaI (Fedorov, 1975). 

Discriminating betweell more than two structures. The notion of T-optimality can be 
extended to m (m > 2) rival structures (Atkinson and Fedorov, 1975b). Assume again 
that the true structure is Yml with true parameters pi. The cost function then becomes 

The possible non-differentiability of L\(1) at the optimum makes the design of a T­
optimal experiment difficult (Atbnson and Fedorov, 1975b; Huang, 1991). A possible 
sequential policy is as follows: 

Step 1: After k observations with experimental conditions :sk, rank the m sums of 
squares of residuals, 

k k k 
Pi ~ Pi ~ ... ~ Pi ' I 2 III 

and construct the set niCEk) defined by 

(which contains i2 whatever the tolerance v> 0). 
Step 2: If E j(Sk) is a singleton, Ki(Ek) = {i2}. take 



....... ~·.I ~ .... f • rJ.""' ••• J 

else solve the minimax problem 

with 

A\::: {a E }R11I I ai ::: 0 if i ~ !tr(Ek), aj ~ 0 if i E Rr(Sk), L aj = 1 } . 

iE ]r(Sk) 

Step 3: Increment k by one and go to Step 1. 

The tolerance v can be taken as decreasing with k, bUlless rapidly than 1I{k (Atkinson 
and Fedorov, 1975b). The minimax problem at Step 2 may be solved by a relaxation 
algorithm similar to that in Section 6.4.4.2. 

6.6.3.2 Discriminating via entropy 

Let ,It I ••• , lC!, be the probabilities associated with the 111 rival structures after k 
observations. The corresponding Shannon entropy is 

m 

fi k ~ k k 
III ::: - L..J lC i In lCi· 

i=1 

It is a maximum when all structures have the same probability (.lC1 = 11m, 
i == 1, ... till). If a structure has probability one of being correcl, the entropy takes its 
minimal value zero, hence the intuitive idea of minimizing entropy, or, equivalently, of 
maximizing the decrease of entropy LlIi,~I+l due to the (k+ I)th observation, 

111 

Afik+1 - c.k + ~ lC k+1r"(k+l)] In n!-;+I[y'(k+l)] m -"'111 .I...J " U 11 I 

11=1 
with 

where lCll (ylyh denotes the probability density of y for the nlh structure after the k 
observations YI == [Y(1), ...• y(k)]T, with experimental conditions Sk. If Y is obtained 
with experimental conditions ~. one has 



with 0;;(;) the (approximated) variance of the prediction of the response of the nth 
structure at the support point ;, given by 

where sYIl[;' PIl(Ek)] and F ll [p,,(Ek), Ek] are respectively the sensitivity of the model 
response and the Fisher infonnation matrix for the nth structure at the estimate PIl(Ek) 
of its parameters, obtained after the k observaHons under experimental conditions ::;k. 
This expression is obtained by linearization of the model response at Pn(Ek). 

~fi#/ I depends on y(k+ 1) which is unknown. so we consider instead its prior 
expectation, 

with 

E[A~~I+I} cannot be obtained analytically, and Box and Hill (1967) suggest replacing it 
by an upper bound 8;;:=: E {~fi#, + I }, which can. This leads to the following cost function 
(to be maximized) 

The (k+ l)th observation is then taken at the support point ;k+ I that maximizes 8(~), 
and the probabilities of the different structures are updated according lo the expression 
above for n;,+ I [y(k+ 1)]. (Atkinson (1978) shows that, for structures with different 
complexities, this approach tends to favour those with fewer parameters.) If there is no 
clear indication that one of the structures should be preferred, the parameters of each are 
estimated and the procedure is iterated. 

Compared to that based on prediction discrepancy. this approach based on entropy 
has the advantages of having an intuitively appealing stopping criterion and of not 
requiring solution of a minimax problem when there are more than two rival structures. 
Reilly (1970) suggests replacing the calculation of a bound on the expected variation of 
entropy by its numerical evaluation (a modification of the Gauss-Hermite integration 
method)~ which does not seem to yield significantly different results (Huang, 1991). 
Note that if only two structures are considered. their probabilities do not take part in the 
detennination of ~k+ I, 

These approaches based on prediction discrepancy and entropy are both sequential, 
and a comparison on various simulated examples yielded c10seJy similar experiments 



(Huang. 1991). The approach presented in the next section permits consideration of 
non-sequential discrimination problems for LP structures. 

6.6.3.3 Discriminating Ilia Ds·optimality 

Consider first the simplest case where there are only two LP rival structures, 

If the true structure is the first, with parameters p]. a possible cost function is the non­
centrality parameter, already considered in Section 6.6.3.1: 

A (1)() . Ll2 1ft:::: mm 
P2E 

J [Yml(~' PI) - Ym2(~' p2)Fm(d~), 
~ 

which, when :::: ]R1J2, gives 

with 

and 

REMARK 6.13 

Fik(TIt):::: J ri(~)rr(~)11l(d~), i, k :::: 1, 2. 

~ 

When the two structures have a common Rart, it may be removed from the parameter 
vector PI and regressor vector rl to write .d(~)(TIt) in a more compact fonn. To simplify 
notation, we assume here that this is nOl so. 0 

The cost function .d(i)(1Il) degends on the unknown parameters PI- A possible 
approach is then to maximize del F(i)(11l). Consider a generic structure 

containing all linearly independent terms of the two structures. Fi)(m) then corresponds 
to F~(m). the inverse of the covariance matrix of the estimate of PI for the generic 
structure, and det F(~)( m) can be interpreted as a measure of the inadequacy of the 
second structure for data generated by Ym(~' p). An equivalence theorem can be 
proved, of the same lype as for D-oplimality (Section 6.2.2.3): provided F 22(11los) is 
invertible, the design measure INOs is Ds-optima] if and only if, for all ~, 
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with re;) the regressor vector of the generic structure. When F 22(TflDs) is singular, the 
cost function det F(~)(m) is not differentiable (and may be disconlinuous) at 111D5' An 
extension of this lheorem for that situation can be found in (Silvey, 1980~ puzman. 
1986), 

Since there is no reason to favour either structure, Atkinson and Cox (1974) suggest 
the cost function 

(and, for instance, ci = 1/" i to take the dimensions of the two matrices I1c m) Hnd F~( 111) 
into account). This approach easily extends to the case where there are more than two 
rival structures, by defining a generic structure for the whole set of rival structures, 
which yields the cost function (Atkinson and Cox, 1974) 

III 

.im(m) IT [del FI(11t)]lh1k. 
k=1 

An algorithm of the same type as those used for D- or Ds-optimal design is proposcd. 
Refer to Atwood (1980) and Pazman (1986) for convergence studies in the special case 
where the optimal experiment is degenerate (i.e. does not permit eSlimation of all 
parameters of the generic structure). 

6.6.3.4 Possi b I e extensions 

Joint estimation ami discrimination. The most intuHive approach is to address the 
problems successively, first designing an optimal experiment to choose between 
structures and then, once a structure has been selected. designing an optimal experiment 
to estimate its parameters. One may wish to link these two phases more smoolhly. to 
avoid premature selection of an inadequate structure and spend timely effort on 
estimating the parameters of a suitable slruclure. 

Hill. Hunter and Wichern (1968) suggest a sequential approach based on i.l linear 
combination of cost functions for discrimination and estimation. The weight or the 
former falls monotonically as the largest of the probabilities of the structures increases. 

Borth (1975) suggests a cost function based on the notion of total entropy. which 
includes the structural entropy, already used in the approach presenLed in 
Section 6.6.3.2, and the parametric entropy related to the uncertainty in the parameters 
of the different structures. This idea has been taken up by Huang (1991), who uses the 
upper bound of Box and Hill (1967) for the expected variation of the structural ent ropy. 
A numerical comparison on various simulated examples seems lO indicate that the 
method of Hill, Hunter and Wichern estimales belter but discriminatcs worse than that 
of Huang. 

Other cost .pmetiolls based Oil Ds-opti11lolity. A first modification (Huang, 1991) is 10 
replace the cost function of Atkinson and Cox (1974) 

III 

j",(1Il) = n ldel Fr(m)]l/lIk 
k=1 
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by the more intuitively appealing function 

j(lI!) = min [det Ff(m)] lI1lk, 

ke {I, ... , Ill} 

which yields an approach closely related to T-optimal design. 
A second modification (I-luang. 1991) consists of replacing the simultaneous 

comparison of III structures with a unique generic structure by pairwise comparison 
using simpler generic structures. This may have special interest when m is large, since 
the unique generic structure may then be rather complicated if the rival structures have 
few common parts. One thus obtains either a cost function written as a product of 
determinants (following the approach of Atkinson and Cox), or a maximin cost function 
(following the modification suggested above). 

Numerical examples seem to indicate that the maximin approach requires more 
computation (which is not surprising), but performs better. Pairwise comparison of 
structures seems to yield experiments with fewer support points than using a unique 
generic structure. 

Other algorifhms. New algorithms for approximate design have been suggested in the 
context of structure discrimination (Huang. 1991; Huang, Pronzato and Walter, 1991): 
an exchange algorithm, initially proposed in the literature for the estimation of mixtures 
(Bohning, 1985, 1989); a global-substitution algorithm (modifying all support points 
of the design measure at each iteration): an algorithm for the optimization of maximin 
cost functions (because the direction of steepest ascent no longer corresponds to the 
introduction of a unique support point into the design measure, contrary to what is 
indicated in (Atkinson and Fedorov, 197 5b»). 

An average-optimal approach for T-optimai design. Consider two rival structures. T­
optimal design relies on the unrealistic assumption that the true structure (witl). index i) 
and the value Pi of its parameters are known. The cost function is then Ll~)( tn, Pi), 
which depends on Pi' The average-optimal approach (Ponce de Leon and Atkinson, 
1991 a, 1991 b), relies on knowledge of the prior probability TC; that the ith structure is 
true, and the prior density TCp(Pt) of the parameters of this structure (conditional on it 
being true), The resulting cost function takes the fonn 

This non-sequential approach easily extends to more than two rival structures. An 
equivalence theorem can again be proved, and used to derive an optimization algorithm 
similar to those already presented. 

6.7 Conclusions 

Although experiment design is generally considered an important step of modelling, it is 
too often restricted to a qualitative study. This is mainly due to some skepticism about 
quantitative results often based on rather heuristic assumptions. However. although 



making assumptions is inescapable (any model structure already incorporates some). 
unrealistically precise prior information can be avoided. Some results deserve emphasis. 
First, whereas the Fisher information matrix depends on lhe distribution of the 
measurement noise, we have seen (in Section 6.)) that the optima) experiment does 
not, provided that the noise corresponds to a sequence of LLd. variables. (Correlated 
variables have been considered in Section 6.3.2.2.) Second, whereas local design 
assumes a known prior nominal value for the parameters (when the structure is not LP), 
the methods presenled in Sections 6.4.3 and 6.4.4 allow the uncertainty in this nominal 
value to be taken into account, and the dependence of the optimal experiment on any 
other quantity (e.g., a nuisance parameter) with an unreliable prior value could be 
treated in the same way. 

Finally, one should note the simplicity of the optimal experiments usually obtained: 
repetition of observations under the same experimental conditions, simple input 
sequences. Their implementation will thus often be easier than that of more conventional 
and less informative experiments. 





7 Falsification 

This step is of paramount importance. for it may cause some previous choices Lo be 
rejected. It is often called validation. which should not be misinterpreted as implying 
definitive confinnation of the model. In fact. the best one can do is to lest the model by 
trying to falsify (invalidate) it, looking for defects. The aim of this chapter is to describe 
some techniques for such testing. Even if the model successfully passes the tests, its 
validity remains in doubt, since future tests may lead to its rejection. Most of the 
techniques are based on analysis of residua)s; see, e.g. (Anscombe and Tukey. 1963; 
Draper and Smith. 1981, Cook and Weisberg, 1982). Testing residuals, e.g. for 
homogeneity, stationarity, independence or normality, is among the main topics of 
applied statistics, so this chapter only gives some guide-lines, and is by no means 
exhaustive on such a broad subject. 

7.1 Simple inspection 

First, when the parameters have a physical meaning, they must generally satisfy some 
inequality constraints (e.g. on their sign or order of magnitude). When p is obtained by 
unconstrained optimization, one can check a posteriori whether p is admissible. which 
may lead to the rejection of the associated model. In behavioural models. when a 
parameter uncertainty interval (Chapter 5) contains zero, a simplified model structure 
obtained by removing the associated parameter and the corresponding part of the 
regressor may be considered. 

Testing the predictive capability of the model is often very useful. It consists of 
comparing the system and model behaviour on a new data set, corrupted by random 
errors independent of those present when the model was constructed. Inputs (more 
generally experimental conditions) different from those used for the estimation of the 
model parameters can also be used (Ljung and Hjalmarsson, 1995). The model will 
pass the Lest if it delivers a suitable prediction of the system behaviour associated with 
these fresh data. This method is especially efficient for discriminating between simple 
and complex structures, the most complex ones often being unable to reproduce the 
system behaviour for another sequence of errors (for they model a particular realization 
of these errors in more detail; see Section 2.5). In structure selection, this procedure is 
the basis of cross-validation; see e.g. (Stone, 1974; Snee, 1977). It requires that not all 
the data be used to fit the models to the system behaviour. Optimal strategies for 
partitioning the data records into estimation and validation subsets are discussed in 
(Djuric and Kay, 1994). 

Testing the model for robustness should also be considered. When neglected 
phenomena may perturb initial conditions, inputs or state variables, or constants taken 
as known, it is important lo check that some smaI1 perturbation of these quantities does 



not drastically modify the behaviour of t1(p). If that were the case, the model would not 
be robust, and should be used with extreme caution. 

Finally, simple graphical analysis of the residuals is also very instructive. Assume, 
for instance, that 

where the e(ti)'s are independently distributed ~O, ol), with a~i known (or 
parametrized). The evolution of the nonnalized residuals 

1\ 

rn(t,') -_ y(ti) - Ym(ti, p), . 1 
I = , ...• Ilt, 

ati 

can then be plotted against time. If the number III of observations is large enough, and if 
the estimator is consistent, these normalized residuals should resemble the sequence 
e(ti)/Gti and thus approximately correspond to Li.d. ~O, 1) random variables. This plot 
may reveal the presence of outliers, a non-zero mean, correlations, non-stationarity (or 
more generally non-homogeneity, e.g., a sudden and unaccounted-for modification of 
the experimental conditions). This may in tum lead to rejecting some of the assumptions 
used in the identification. Plotting the normalized residuals against the inputs may be 
instructive too, for it may reveal dependence not taken into account by the model 
structure. Also, plotting histograms of normalized residuals gives a first indication of 
the validity of the Gaussian assumption; see Section 7.2.1. More sophisticated graphical 
tools from multivariate data analysis can also be used, see e.g. (Atkinson, 1985), and a 
wealth of software is available. 

Such inspection may precede more sophisticated statistical analysis. 

7.2 Statistical analysis of residuals 

Beyond simple graphical analysis, statistical tools allow the validity of some underlying 
assumptions to be tested. Outlier detection will not be detailed here. A technique to 
bypass the problem is to use robust estimation (Sections 3.7.2, 3.7.4 and 5.4.2.2), 
which yield parameter estimates relatively insensitive to outliers. Their presence may 
then be revealed by inspection of the residuals, making it possible to discard them. 
More efficient (but less robust) estimation techniques can be used with the data cleaned 
up in this way. 

We shall only consider the analysis of univariate data corresponding to regression 
residuals (or prediction errors) epU, p), with p the estimated value of the parameters 
(obtained, for instance, by maximum-likelihood estimation). We shall test these 
residuals against assumptions made about the sequence of perturbations E(l). Many test 
statistics can be used, see, e.g., (Kanji, 1993), with specific tabulated distributions. 
Only procedures that use classical statistical tables (for normal, Student's and Fisher­
Snedecor distributions) will be described, testing for normality, stationarity and 
independence. The validity of these three assumptions is a prerequisite [or many other 
statistical procedures. More details can be found, e.g., in (Madansky, ]988). When the 
values required for computing test statistics are not available in tables, they may be 
computed numerically (Press el al., 1986). 
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EXAMPLE 7.1 

The maximum-likelihood approach oiLen relies on the assumption that the prediction 
error satisfies 

CpU, p*) = £(1), t = 1, ... ,1lb 

where the £(I)'s are LLd. 5\10, (j2) random variables, with (52 not necessarily known. 
Under the assumption of ergodicity, the mean 111 c and variance Vc of the errors 
epU, Pm)) can be estimated by 

and 

1\ 
Vc = 

lI( 

III 

L [CpU, Pml) - n1c]2. 
1= 1 

If cpU, Pm)) is distributed 9I/Il1lc, ve), filc is distributed 9I/Imc. vclnl)' A classical test for 
zero mean is then the I-test, the test statistic being t = filc/(~'c1/I)1I2. The null hypothesis: 

I-la: {;lc = 0, 

is tested against the alternative hypothesis 

At significance level a (usually taken as 5%), Ho will be rejected if It I > la(1l1 - I), 
where teint - 1) has probability al2 of being exceeded by a random variable with 
Student's t-distribution with llt - 1 degrees of freedom. Critical values of la are 
tabulated in most statistical books. This means that the probability of rejecting Ho when 
it is in fact true is cx. When Il( is large, a simpler test may be used, rejecting Ho when 

1\ v. fi Imel > 2 .s. . 
lIt 

If Ho is rejected, the model may be augmented by introducing an additional parameter 
giving a constant term in the response. 

Note that whereas the Gaussian assumption for the distribution of errors is not 
important here, the assumption of independence is crucial. Indeed. if the central-limit 
theorem applies and III is large. then file is approximately distributed 9I/I11Ic, Ve/llt) even 
if the cpU, Pm!)' s are nOl Gaussian, provided they are LLd. (The assumption lhat the 
ep(t, Pml)'S are identically distributed is not essential (Renyi, 1966).) 0 
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7.2.1 Testing for normality 

Many procedures are available. A first consists of comparing the plot of the empirical 
cumulative distribution function (c.dJ.) Fe wilh that of a normal distribution. 

and 

The empirical mean ~'e and variance ~~ of the ep(t, pfs are 

lIt 

2: [ep(t, p) - fl1c]2. 
1=1 

The errors epCt, p) are then normalized according to 

1\ 1\ 
1\ er(t, p) - me 

epn(t, p) _~ , t = 1, .... Ilt. 
'Jvc 

and ordered by indexing time instants so that 

The empirical c.d.f. Fc(x) is then 

which may be plotted against the c.dJ. F(x) of a normal variable ~O, I). Fe(x) can 
also be plotted on normal paper, where, under the normality assumption, it should be 
close to a straight line. The use of such nomograms could be avoided by plotting 
F[epn(li, p)] as a function of flllt (pp-plot). Note that 

x 

f 112 
F(x) = _ r:- exp( - 2) dll 

-'1 27C _00 

can easily be obtained by numerical integration (Press et ai., 1986). 



EXAMPLE 7.2 

Consider the four following data sets: 

- Data Set 0) consists of a sequence of 100 LLd. ~O, 1) random variables; 
- Data Set (ii) consists of a sequence of 100 LLd. 'l1(-1, 1) random variables; 
- Data Set (Hi) consists of a sequence of 100 prediction errors ep(t, PIs), 

corresponding to residuals of linear regression, 

with 

where 
yS = Rp* + E, 

R 1 = diag(l, 2, .... 50), 

R2 = diag(51, 52, ... , 100), 

* . Pi = I, 1 = 1, ... , 50, 

and £ is distributed ~O, 1 100)~ 
- Data Set (iv) consists of a sequence of autocorrelated variables x(t). such that 

x(l) = eO); x(t+ 1) = -x(t) + e(t+ 1), t = 1, ... , 99, 

where the fUrS are LLd. ~O, I) random variables. 

Figure 7.1 presents a histogram for Data Set (0. The comparison between the 
cumulative distribution functions F(x) (theoretical) and Fe(x) (empirical) is given in 
Figure 7.2. The corresponding pp-plot is in Figure 7.3. The histogram does not help 
much in deciding whether to accept or reject the normality assumpLion. The decision is 
easier from Figures 7.2 and 7.3. The pp-plot for Data Set (H) is given in Figure 7.4. 
The decision to reject the normality assumption is now easier from the histogram 
presented in Figure 7.5. The case of Data Set (iii) is more difficult. The residuals 
ep(t. Pis) are the entries of 

and their covariance matrix is V = [1,,[- R(RTR)-lRT]. They are thus generally 
autocorrelated and non-stationary (heteroscedastic). Since rank V = Ilt - np, e(Pls) 
moves in an (nl - 1!p)-dimensional space when yS varies. When E is distributed 
~(O. 0'21111 ), as here. lIe(Pls)112/O'2 has a X2 dislribution with Ilt - IIp degrees of 
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freedom. Figures 7.6, 7.7 and 7.8 respectively present the histogram, the functions 
F(x) and Fe(x), and the pp-plot for this data sel. 

20 

15 

10 

·2 ·1.5 .\ ·O.S 0 o.S 1.5 2.5 

Figure 7.1. Histogram for Data Sel (i) 
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Figure 7.2. Comparison between F(x) (0) and Fe(x} (*) for Dala Sel (i) 

The lack of independence is so marked here as to make the normality assumption 
seem not to be valid! Caution is thus needed when using such simple graphical 
techniques if III is not very much larger than IIp (here, IIp :;;; 50 :;;; lll/2). 
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Figure 7.4. pp-plot for Data Set (ii) 
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When the model structure is LP and least-squares estimation is used, one can 
construct a sequence of lit IIp homoscedastic variables, with covariance matrix 
a2111 -n , by a linear transformation of the observations (provided the e(t)' s are LLd. 
with lze~o mean and variance a2) (Madansky, 1988, p, 69), This makes it possible lo 
test the £(t)'s for normality and homoscedasticity even when IIp is not negligible 
compared with lit. This procedure is now applied to Data set (iii), First Rand yS are 
partitioned into 
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[RO] [YO] 
R = RI and yS = YI ' 

where Ro is p x p and nonsingular. The matrix M = Ro(RTR)-lR6 is then computed. 
Denote the eigenvalues of M smaller than one by A.. J, ... , A.II and the associated 
eigenvectors by VI, ... , V". Let eO(Pls) and el(PbJ be the residuals associated with the 
partition of Rand ys, that is 

A) S R 1\ 
eO(Pls = Yo - OPls, 

and 

The l1l - lip variables to be considered are given by 

Jl 

c' = ej(Pls) RJRo'(L 
i=1 

They form Data Set (iii'), which will be tested for normality, stationarity and 
independence (with 1lp = 0). 

Figure 7.9 presents the distribution functions Fe(x) and F(x) for Data Set (iii') and 
Figure 7.10 the corresponding pp-ploL Comparison with Figures 7.7 and 7.8 shows 
that normality has been much improved by the transformation. 
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Figure 7.5. Histogram ror Duell Set (ii) 

For autocorrelated Data Set (iv), F(x) and Fe(x) are presented in Figure 7.11 and 
the pp-plot is in Figure 7.12. Note the similarity between Figures 7.7 and 7.1 I (or 7.8 
and 7.12). 0 
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Figure 7.6. Histogram for Data Set (iii) 
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Figure 7.7. Comparison between F(x) (0) and Fc(x) (*) for Data Set (iii) 

The graphical procedure above can be completed by statistical tests. For instance, 
the Kolmogorol'-Smimov lest uses the maximum difference between Fe(x) and F(x) as 
a test statistic. The values exceeded with probability a by 



under the normality assumption are tabulated for various values of Ill. Similarly, the 
Shapiro- Wilk, Filibell and D 'Agostino tcsts rely on the regression of F-I (Ull,) as a 
function of ep (ti, Ii). Again, comparisons of test statistics with tabulated values 
detelm.ine acceptance or rejection of the nonnalily assumption . 
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Figure 7.9. Comparison between F(x) and Fe(x) for Dala Set (iii') 
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Figure 7.11. Comparison between F(x) (0) and Fe(x) (*) for Data Set (iv) 

Empirical moments can also be used to test data for normality. Let X(t) 
(t ::;: 1. ... , Ill) be an LLd. sequence of random variables, with probability density 
functionJtx). The lest statistic for skewness 

E{(X 
YI ::;: 

is based on the third-order moment and that for kurlosis 
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E{(X - E{X})4} 
1'2= 
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on the fourth-order moment. 
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Figure 7.12. pp-plOl for DlIIa Set (iv) 

When the distribution is symmetric about the mean ElX\. YI = 0, and 

00 E(XJ 

YI > 0 if J j(x)dx > f j(x)dx, 

E(X] -00 

00 E{X} 

YI < 0 if J f(x)dx < J j(x)dx. 

E{X} _00 

For a normal distribution, YI = n. = O. If j{x) decreases more rapidly than the density of 
the normal distribution as x tends Lo ±OO , 1'2 < O. If f(x) decreases more slowly, 
n. > O. The lest statistics are then the empirical values 

and 

Ilt 
1 ~ A A 3 - £.J [epU, p) - me]-

III 1 
1\ t= 
YI = 



llt 
1 L 1\ 1\ 4 - [CpU, p) - m c] 

l1L 
1\ t=1 
'Y2 = - 3. 

Under the normality assumption, the means of Jrl and n are respectively 

6 
III 1 = 0 and 1112 =--+ l' III 

and their variances 

6(nL 2) 
VI = (Ill + 1 )(nl + 3) and 

Moreover, the asymptotic distributions (as III ---1- DO) of Jrl and 12 are normal. The 
normality assumption will thus be rejected (at significance level 5%) if 

Tl 

or 

since prob(Tl < 1) = prob(T2 < 1) = 95% for normal variates. 
Another method relies on the comparison between the sample range \V of the errors 

epU, p) and standard deviation 'l'b I/2. The test statistic is wJ(tc)l/2, the critical values of 
which are tabulated (Kanji, 1993). 

EXAMPLE 7.2 (continued) 

The values of the test statistics Tl and 
Table 7.1. 

Data Set 
(i) 
(ii) 

(iii) 
(iii') 
(iv) 

Tl 
0.944 
0.172 
1.019 
0.815 
0.057 

for the five data sets are indicated in 

T2 
0.083 
1.197 
2.286 
0.296 
0.389 

Table 7.1. Tesl statislics for normality 

Data Set (i) passes tests Tl and T2. For the uniformly distributed Data Set (ii), T} 
confirms that the distribution is symmetric, but the normality assumption is rejected 
by T2. The residuals of Data Set (iii) are too correlated to obtain a correct decision from 
these tests. The condition Ill» np is again seen lo be essential for normality testing by 



this approach. The corrected residuals of Data Set (iii') pass the tests. The decisions 
concerning Data Set (iv) are correct. 0 

7.2.2 Testing for stationarity 

Although stationarity is generally taken as with respect to time, it can also cover 
homogeneity with respect to other independent variables. We shall only consider 
secondMorder stationarity. that is constancy of the variance (52 (or homoscedasticity). 
Many procedures for statistical analysis rely on this assumption. Moreover. knowing 
that it should be rejected may suggest a change of the estimation criterion, for instance 
from unweighted to weighted least-squares. Again, we shall only present methods that 
do not require the use of very specific tables. 

The Goldfeld-QlIandt procedure relies on the intuitive idea of splitting the data set 
into three parts. The first k] and last k3 data points are kept, while the k2 intermediate 
data points are AeUminated. A rule of thumb is k\ ;;; k3 and k2 11t/4. The first kl and last 
k3 errors ep(t, p) are then used to compute the ratio 

k1 

L [ep(t, th - ,fz Cl]2 

t=1 
llt 

L [ep(t, p) '~C2]2 
t=lIt-k3+ 1 

where the means ~leI and ~le2 are computed for the first k\ and last k3 points. For an 
LP structure with unweighted least-squares estimation, and if we assume an LLd. 
normal measurement noise, r3 has a Fisher-Snedecor distribution with kl - IIp and 
k3 IIp degrees of freedom, which we denote by !/(kl - np. k3 - IIp). The critical values 
of r3 are tabulated in most statistical books. The null hypothesis Ho is that the variance 
is the same for the first k} and last k3 data points. If the alternative hypothesis HI is that 
the variance decreases with k, 

is computed, where Fo.os(kl IIp• k3 -llp) has probability 0.05 of being exceeded by a 
random variable distributed 1(kl - IIp, k3 - IIp), and Ho is rejected if T3 > 1. If the 
alternative hypothesis is that the variance increases with k. 

is computed. and Ho rejected if T3 < 1. If the alternative hypothesis does not specify 
which way the variance varies with k, a test (based of the lower and upper tails of the :F­
distribution) more accurate than successive use of T3 and T3 can be used (Madansky. 
1988). 

Another approach is based on regression of the squares of residuals on some 
explanatory exogenous variables Zi(t) (e.g. ZI (I) ::::; I, or, when the initial estimation 
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problem corresponds to linear regression with regressors r(t), z(t) = r(t)). Consider the 
normalized residuals 

and define vPn(t, p) = e~n(t, p). We use the linear regression model 

dim z 

l'po(t. p) = lX{) + r aizi(t) + £'(1). 
;=1 

Under the stationarity hypothesis, the ai's (i = 1, ... I dim z) should be zero. The 
vector 

can be estimated (by least-squares) as 

where 

and where the first column of Z contains only ones, and the (i + 1 )th column is 
[z;(1), zi(2), ... , Zi(lIt)]T. It is also instructive to plot vp (t, p) against the Zj(t)'s (see 
Figure 7.13). n 

The Lagrallge multiplier test relies on the computation of the sum of squares of 
residuals explained by the regression over the Zj(t) , s. The sum of squares of residuals 
corresponding to the regression model above is 

III 

11 vPnCp) - Z&. II~ = r vJn(t, p) - vJn(p)Z(ZTZ)-IZTVPn(p)· 
1=1 

When only lX{) is estimated, with ai = 0 for i '* 0, the residual sum of squares is 

The residual sum of squares explained by the Zi(t)' s is therefore 



It is to be compared to the total sum of squares 

The ratio 

should be much less than one when stationarity with respect to the Zj'S is satisfied. 
Breusch and Pagan (1979) have shown that s4/2 has a X2 distribution with dim z 
degrees of freedom. A test statistic is thus 

., 
with Xo.os(dim z) having probability 5% of being exceeded by a random variable 
distributed x2(dim z). The assumption of stationarity with respect to the Zi'S will be 
rejected when T4 > 1. 

Similar ideas lead to evaluating the correlation between the variables vp (t, p) and 
h 

. n 
Zi(t), t at IS 

where mv and J1lz. respectively denote the means of vp (t, p) and Zi(t). This ratio always 
satisfies -I S; cs(f) S; 1, and e5(i) is close to zero whe~ stationarity with respect to Zi is 
satisfied. This corresponds to Allscombe 's test (Anscombe, 1961): CS(i)(1l1 - IIp) 1/2 is 
approximately distributed 5\.{O, 1), so a lest statistic is 

The assumption of stationarity with respect to Zi will then be rejected when Ts(i) > 1. 

EXAMPLE 7.2 (continued) 

We consider now three additional data sets, residuals epU, PIs) of linear regression: 

with 

where 
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yS = Rp* + E, 

ri-In:) . 
Vii = cos \---gg-2 ,I = 1, ... , 100, 

. ri-In:). v2 i =sm \~2 ,1= 1, ... , lOO, 

p* = (1, I)T. 

These three data sets differ in the values of E. 

- In Data Set (v), the E(t)'S are a sequence of 100 i.Ld. 9X{0, I) random variables. 
- In Data Set (vi), E is distributed WiO, Cl), with Cl = diag(l, 22, ... , 1002), which 

makes the distribution of the E(t)'S (very) non-stationary. 
- In Data Set (vii), E is distributed 9{(O, C2), with C2 = {vIC IMT, and 

MU = Mi.i+1 = I, Mi,k = 0 \;;j k:F i, i+l, which makes the f(t)'S serially dependent 
and (very) non-stationary. 

Figure 7.13 gives vPn(l, Pis) and the response of the regression model 

2 
A A ~ A 

"m(t, a) = ao + L,; a iZj(t) 

;=1 

as functions of t, with zl (t) = \'11 and z2(1) = V2, for Data Set (vi). 

18~~--~----------~------~----~---, 
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Figure 7.13. I'pn Ct, p) and model response l'm(r, ~) for Dala Set (vi) 
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Non-stationarity is clear from this figure. The values of T3. T3, f4. T4. C5 and T5 for 
Data Sets (iii') and (v) to (vii) are given in Table 7.2. (T3 and T3 cannot be used for 
Data Set (iii), because IIp is too large compared with nt. whereas lip is taken equal to 
zero for Data Set OW),) For tests T4 and T5, the explanatory variables were Zl(t) t for 
Data Sets (iii) and (iii'), and ZI(f) = \1lt and Z2(t) = \12, for Data Sets (v) to (vii). 

Data Set T3 T3 1'4 T4 e5(1) T5( I) c5(2) T5(2) 
(v) 0.502 1.520 0.002 0.056 -0.058 0.287 0.051 0.254 
(vi) 0.036 0.110 0.151 7.144 -0.427 2.112 0.381 1.886 
(vii) 0.006 0.019 0.229 10.49 -0.523 2.587 0.449 2.223 
(iii) 0.065 4.150 -0.285 1.006 
(iii' ) 0.303 1.425 0.013 0.264 0.138 0.486 

Tuble 7.2. Tests statistics for stationarity 

The conclusions are correct for the three data sets (v), (vi) and (vii) and the four tests 
T3, T3, T4 and T5. Note that the variables zl (t) and Z2(t) for tests T4 and T5 arc 
oscillating functions. and non-stalionarity would be even more easily detected using 
time as the explanatory variable, as for Data Sets (iii) and (iii'). The residuals of Data 
Set (iii) does not pass T4 and whereas the corrected residuals of Data Set (iii') pass 
T3, T3, T4 and T5. 0 

7.2.3 Testing for independence 

The absence of correlation is a necessary condition for independence. and is also 
sufficient in the case of normal variables. The sample autocorrelation of the prediction 
errors is gi ven by 

and their normalized sample autocorrelation is 

~ (k) = ~c(k). 
n ~c(O) 

Under the hypothesis of independence (Ho), when III tends to infinity, the 
distribution of~n(k) should resemble the normal distribution !J\10, lInl) for any k"* O. 
One can thus plot en(k), which, for III large enough, should lie in the interval 
[-2/~, 2/~] with probability close to 95%. However, this does not take into account 
lhe facl that the number of data points used to evaluate t:n(k) varies with k. If the 
variance of ~n(k) is approximated by llt(1l1 + 2)-I(llt - k)-i instead of lint> ~n(k) should 
lie in the interval 

I(k) = [- -;==:::;:::::::=====;::" 2~ J 
-,J(1l1 + 2)(llt - k) 



J/I 

with probability close to 95%. Note that the size of K(k) increases with k. 

EXAMPLE 7.2 (continued) 

Figure 7.14 presents the normalized autocorrelation ~n(k) for Data Set (vii). together 
with the bounds of the interval n(k) defined above, as functions of k. These bounds are 
crossed several times, which raises some doubts about the validity of the hypothesis of 
independence (actually not satisfied), 0 
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Figure 7.14. Normalized sample autocorrehltion f:n(k) and bounds of the interval E(k) 

as functions of k for Data Set (vii). 

Moreover, when ilL is large, the variable 

Ilk 
l1l + 2 ~ III 

V6 = -.- .L.J (Ill - k)cTi(k) 
lit k:::: 1 

approximately has a X2 distribution with lIk - I1p degrees of freedom. One can thus use 
the ratio 

____ .. ~_6 __ 
'J 

X5.0S(lIk - IIp) 

as a test statistic, where XB.OS(l1k - IIp) has probability 0.05 of being exceeded by a 
random variable distributed X2(llk - lip). The hypothesis of independence will be 
rejected when T6> 1. 

Note that correlation between past inputs and residuals can also be used for model 
validation. The importance of this statistic is stressed in (Ljung and Hjalmarsson. 
1995), from an inductive point of view with strong intuitive appeaL 

Various non-parametric procedures also permit a sequence of random variables to be 
tested for independence. They generally rely on the intuitive idea that, when 



independence holds, each variable in the sequence has probability 1/2 of being larger (or 
smaller) than the median 111, and has probability 112 of being larger (or smaller) than the 
previous variable in the sequence. 

With each variable ep(t, p), we associate a new variable x(t): 

{

I if epU, p) > m , 
x(l)= 

o if epU, p) < m , 

(and x(t) = 0 or 1 with probability 112 if ep(l, p) = Ill). A first test statistic based on the 
sequence of xU)' s is the mil test. A run is a succession of elements with the same value. 
Let r denote the number of runs in the sequence. For instance, if the sequence of xU)' s 
is 0110001001110, r= 7. Let 110 denote the number of ones in the sequence x(t) (110 = 6 
in this example). When the observations in the original data set are independent of the 
order in the sequence, and when III is large, the distribution of r for a given value of 110 

is approximately normal, with mean 

and variance 

The test statistic will thus be 

and independence will be rejected if T7 > 1. 

REMARK 7.1 

This non-parametric test is used here a posteriori to check the validity of a model. One 
could also use maximization of the number of runs as a criterion to estimate p 
(Section 3.7.4). 0 

Another procedure considers the successive differences in the sequence of errors, 
that is 

(with xU) = 0 or 1 with probability 112 if cp(t+ 1, p) = cpU, p)). When the observations 
in the original data set are independent of the order in the sequence, and when III is 
large, the number r of runs in the sequence of x(t)'s is then approximately normal, with 
mean 

2Jll-
1Il8 = 3 

and variance 
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VB =---=:-c--

Note in particular that r = 1 corresponds to a mono tonic sequence of errors ep(t, p), 
whereas r = III - 1 corresponds to a sequence which oscillates in direction with period 
two. The test statistic is then 

Tg 11"- 11181 
2{Vg , 

and the hypothesis of independence will be rejected when Ta > 1. 
A last approach determines the ranking order r(t) of each error ep(t, p) (in 

increasing or decreasing order), and calculates lhe \!oll-Neu11lml1l ratio: 

lit 

12 L [1'(1) - rU-l)F 
1=2 

1'9 = --------
1 ) 

the statistics of which are tabulated. When lit is large, and under the hypothesis of 
independence, the distribution of r9 is approximately normal g..,{(2. 20/(511t + 7)), The 
test statistic will thus be 

and the hypothesis of independence will be rejected if T9 > 1. 

EXAMPLE 7.2 (continued) 

Consider again Data Sets (i-vii). The test statistics T6 to Tg are given in Table 7.3. 

Dala Set T6 Ts T9 
(i) 0.578 0 0.878 0.655 
(ii) 0.426 0.804 1.276 0.562 
(Hi) 1.056 0.804 2.792 0.560 
(Hi' ) 0.584 0.571 2.050 0.517 
(iv) 7.896 7.237 5.425 9.369 
(v) 0.738 0 0.878 0.655 
(vi) 0.923 0 0.878 0.593 
(vii) 2.056 2.814 2.952 3.074 

Table 7.3. Test statistics for independence 

All confirm that Dala Sets (iv) and (vii) are not independent. The lack of independence 
in the residuals of Data Set (iii) is detected by T6 and TH (which explains the poor 
performance of normality tests T\ and T2). The situation is improved for the corrected 



residuals of Data Set (iW). The non-stationarity of Data Set (vi) has no effect on the 
perfonnance of the four tests. 0 

7.3 Conclusions 

The statistical tests presented here do nol always give an unambiguous conclusion about 
the validity of the hypothesis tested. If doubt remains, fictitious data can be generated, 
by simulation of the model response using the estimated values of the parameters, 
corrupted by perturbations satisfying the tested hypothesis. The same testing procedure 
applied to these simulated data should then reveal the same ambiguity. If there is clear 
evidence that the hypothesis is true for the simulated data, it could mean that some 
important aspect of the behaviour of the actual system has been neglected, and that the 
hypothesis should be rejected. 

Quite often there are several competing model structures for a singJe process. 
Proving superiority of a given model is of course an effective way of eliminating the 
others. Defects which are significant for some applications may be of minor importance 
for others. Note, however, that defining a quantitative criterion related to the final 
purpose is not always easy (and a similar problem has been encountered in Chapter 3). 

Finally, if the available data do not permit selection of one of the rival models, one 
should try to coJIect more data (provided the structures considered are distinguishable). 
Experimental design for model discrimination should then be considered (as in 
Section 6.6.3), 
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inner ellipsoids 195, 267 
innovation 114 
input design 306, 326 

for ARX structures 313, 318 
for Box -Jenkins structures 310 
for continuous-time systems 324 
for FIR structures 308 
globally optimal 320 
sequential 318 

input error 51, 275 
input-additive perturbation 50 
input-output errors 276 
inputs 

globally optimal 320 
with bounded amplitude 309 
with bounded average power 308 

instrumental variables 127 
instruments 128 
interindividual variability 58 
interior-point methods 184, 196 
interpolation 60 
interval analysis 219. 280 
intrinsic nonlinearity 233, 255. 329 
invariance principle 52 
inverse model 3, 50 

J-criterion 347 
Jack-knife 244 
lacobian matrix 169 
joint estimation and discrimination 355 

Kalman filter 102 
extended 111 
stationary 110, 114 

Kalman gain 93 
Kalman-Luenberger observers 103 
Kautz functions 86 
knowledge-based models 8 
Kolmogorov-Smirnov test 367 
kriging 58 
kurtosis 

test statistic for 369 

L-optimality 229, 287, 293 

lack of independence in residuals 364, 
379 

Lagrange multiplier test 373 
Lagrangian formulation 59, 72, 188, 

315 
Laguerre functions 86 
Laplace operator 11 
Laplacian noise 47, 75 
Ln-optimality 229, 342. 347 
least mean squares 209 
least median of squares 76. 278 
least modulus 39, 48, 75, 76, 197 
least squares 37,44,76,88,115.127, 

130, 168,212,247,254.258 
data-recursive 92, 104 
extended 118, 126 
for constant parameters 92 
for drifting parameters 96 
for jumping parameters 97 
generalized 120 
initialization 95 
iteration 94 
numerical considerations 9 J 

on correlations 129 
parameter recursi ve 101 
vector data-recursive 104 

least trimmed squares 76, 278 
level set see cost contours 
Levenberg-Marquardt method 95, 173, 

248 
LI models 9 
likelihood 40 
likelihood set 259 
linearity 

in the inputs 9 
in the parameters 10, 84, 246, 249, 

259, 329 
linear parameters 131, 336, 339 
linear programming 49, 185, 269 

complexity of 265 
local optima 203 

elimination of 211 
localized regression model 349 
log-likelihood 40 
LP structures 10, 84, 246, 249, 259, 

329 
partially 131 

L I estimation 39 



algorithms for 201 
L2 estimation 38 
L"" estimation 48, 186 

M-estimator 77. 201 
MA 16 
MAP estimator 67, 70, 85, 253, 254 

density of the 331 
marginal densities 256 
Markov parameters 27 
matrix inversion lemma 94 
maximum {l posteriori estimator see 

MAP estimator 
maximum entropy 66 
maximum likelihood 40 

approximate 2 J 0 
conditional 120 
properties 51 

mean-square error 59, 62, 129, 248. 
330, 348 

method of centres 194, 200 
method of feasible directions 192, 196 
Michaelis-Menten model 255 
minimax approach to robustness 75, 

348 
minimax estimation 48. 76. 186, 197, 

277 
minimax optimality J 34 
minimum risk 68, 253. 342 

prior expectation of the 254 
mixture distributions 53 
ivlMD-optimality 338 
MMDE-optimality 338 
model-free optimization 226 
modulating functions 84 
Monle-Carlo methods 242 
multilinear regression J 19 
multimodality 146, 2J2, 240 
mUltiple integration 69 

NARMAX 16 
Newton method 167 
Newton-Raphson method 3] 8 
noise 15 
non-centrality parameter 350 
non-differentiable cost functions 197, 

218 
Non-LP model structures 272, 329 

non-minimal phase systems 99 
non-quadratric cost functions J 7 J 
non-redescending estimator 79 
NONMEM method 58 
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nonparametric approaches 58, 346, 377 
nonparametric inpuls 308 
nonnal equations 78 
nonnal noise see Gaussian noise 
nonnaJized autocorrelation 376 
nonnalizcd errors 362 
normalized residuals 360 
nuisance parameters 288,333 
number 

of repetitions 42 
of sign changes 80, 378 
of significant digits 205, 243 

numerical conditioning 91. 252 
Nyquist's lower bound 327 

aBE algorithm 261 
observability 25, 28 
observer fonn 115 
observers 103, 1 J 1 
OMNE 277, 282 
one-di mensional optimization 131 
one-shot experiments 333 
one-step-ahead prediction 49,93 
operating conditions 226 
optimal control 70, 313 
optimal inputs 306 

in frequency domain 320 
in time domain 308 

optimal measurement times 306 
optimal sampling frequency 327 
optimality conditions 

first-order 41 
second-order 225 

optimization 83 
of a measured response 226 

optimizer 37 
parasitic local 288 

orthogonal projection 89,233 1 255 
Osborne and Watson's algorithm 202 
outer boxes 269 
outer ellipsoids 261, 267. 299 
Outlier Minimal Number Estimator 277, 

282 
outliers 75. 76, 80, 277! 278. 360 
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output error 42, 88, 122,258, 275 
output-additive random variables 

dependent 49 
independent 42 

outward rounding 221 
overparametrization 85 

parabolic interpolation 136 
parallel models 3, 98, 123 
parameter distribution in a population 

53 
parameter drift 97 
parameter uncertainty 169 
parameter uncertainty intervals 239, 

241,267,269,277,279 
parametric inputs 307 
parametric nonlinearity 233, 255, 329 
Parseval's theorem 321 
path-following methods 185 
penalty functions 68, 71-73 
persistency of excitation 324 
perturbations 2, 15 
phenomenological models 8, 83 
Polak-Ribiere algorithm 180 
polyhedral cones 272 
polynomial models 29, 88, 303 
polytopes 185, 260 

exact description of 270 
with limited complexity 272 

popUlation 
of estimates 242 
of processes 332 
of results 205 

posterior feasible set 187 
posterior mean 70, 253 
posterior values 106 
Powell's method 137, 146. 197 
power spectral density 321 
pp-plot 362 
predicting filter 107, 114 
prediction 

confidence intervals for 60 
prediction discrepancy 350 
prediction error 49,93,310 

autocorrelation of 376 
prediction variance 298 
predictive capability 359 
prefiltering 20 

presampling filter 327 
primal methods 184 
principal component analysis 241 
principal hyperplane 280 
prior probability density 66 
prior values 106 
process noise 104 
projected Newton method 192 
pseudo-inverse 92 
pseudolinear regression 118 
PUI 239,241,267,269,277,279 

quadratic approximation 136, 143 
quadratic cost functions 37, 88, 170 
quadratic programming 187 
quasi-Newton methods 174 

random scanning 238 
random search 216 
random variables 

dependent 49 
independent 15,42 

real-time parameter estimation 11 I 
realization methods 9 
recurrence equation 12 
recursive bounding 270 

with ellipsoids 261 
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recursive least squares 92, 101, 104 
recursive minimax estimator 272 
recursive techniques 92, 101, 104. 206 
redescending estimator 79 
reference model 97 
regression 

linear 84 
localised 349 
multilinear 119 
of the squares of residuals 372 
pseudolinear 118 

regressor error 274, 276 
regressor vector 84 
regularization 68, 81,85,173 
relaxation algorithm 340, 352 
relaxation coefficient 169 
reparametrization 10, 52, 67. 69, 71, 

73. 145, 233, 288, 334, 338 
repetition of measurements 38, 40, 52, 

211, 237, 288. 295 
residuals 
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analysis of 360 
autocorrelation of 363 
lack of independence of 364, 379 
normalized 360 

response-surface methodology 227 
reverse mode 156, 159 
Riccati equation 1 10, 115 
ridge estimators 81, 129, 248 
risk 68 
robust control 98 
robust estimators 74, 359,360 
robust experiment design 329 
robustness to neglected terms 347 
Rosenbrock's test function 140, 148, 

171, 176,181 
run 378 

s.d. 32 
s.g.i. 21 
s.l.i. 21 
8.u.i. 21 
sampling 13, 320 

schedule 326 
search interval 132 
second-order expansion of the cost 167 
second-order optimality condition 225 
second-order stationarity 372 
Self TUning REgulator 98 
sensitivity functions 163 

first-order 149 
for algebraic-differential systems 

154 
for ARARMAX models] 52 
for LI models 150 
for non-LI models 153 
for state-space equations 153 
second-order 170 

sensitivity set 299 
sequential experiment design 229, 320, 

331,338 
sequential input design 318 
sequential quadratic programming 194, 

305 
series models 98 
series-parallel models 98, 123 
set estimation 48, 257 
set inversion 280 
Shannon's condition 13,327 
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Shapiro-Wilk test 368 
simplex algorithm 141, 226 
simulation scheme 15, 230 
single-parameter models 255 
singular-value decomposition 91, 1 J 6 
sinusoidal inputs 32 J 

skewness 
test statistic for 369 

solution locus see expectation surface 
space-dilation method 20 I 
spectral density of sampled noise 327 
spectral factorisation theorem 17 
standard deviation 

robust estimate of the 78 
state-affine structure 9 
state estimalion 103 

bounded-error 267 
static nonlinearity 87 
stationary Kalman filter 110, ) 14 
steepest ascent 227,304 
steepest descent 143 
Steiglitz and McBride's method J22 
stochastic approximation 69, 207, 226, 

331, 336 
stochastic dynamic programming 320, 

332 
stochastic gradient algorithm 100, 207, 

210, 336 
with averaging 210 

stochastic identification 114 
stochastic Newton algorithm 208 
stochastic processes 15 
structural distinguishability 32 
structural errors 257, 346, 347 

description of 58 
structural identifiability 21 
structural properties 20 
structure selection 7, 346, 356 
Student's t-distribution 206, 250, 361 
STURE 98 
subdifferential 197 
subgradient method 197,201 
subpaving 280 
support point 286 

T-optimal design 341, 350, 356 
Hest 361 
terminal condition 156 
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terminal cost 155 
termination 5, 204 
test 

for independence 376 
for normality 362, 365 
for stationarily 372 
for zero mean 361 

time-invariant models 10 
time-varying parameters 108, 208 
total least squares 117 
tracldng 96, 108, 208, 211, 260, 272 
transformation on data 90 
Tukey's cost function 78 

U-D factorization 95, 96, 110 
unbiased estimators 253 
uncertainty 231 

on the noise distribution 74 
on the regressors 274 

uncorrelated random vectors 104 
unidentifiable parameters 89 

local dependencies between 32 

uniform noise 48,258 
unimodality 133,211 
uninformative prior 66 
universal differential equations 9 

validation 65, 359 
variable-metric methods 176, 201 
variance 

estimate of the 41 
variance equalization 44 
vector interval 221 
Vignes' algorithm 146 
Von~Neumann ratio 379 

weighting coefficients 38 
white noise 325 
width of a box 222 
Wolfe's method 132, 183 
wrapping effect 223 
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