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Preface

This book results from many years of research and teaching collaboration between the
authors at the Laboratoire des Signaux et Systémes, a laboratory common to the Centre
National de la Recherche Scientifigue (CNRS) and the Ecole Supérieure d’Electricité
(SUPELEC). It has evolved from notes [or a graduate course at Paris-Sud University and
a continuing education course for engineers at SUPELEC. It is thus aimed at two groups
of readers.

The first consists of students wishing to familiarize themselves with the basic
methods for system identification and parameter or state estimation. We have taken great
pains to present methods in the most accessible way possible, and this book can be seen
as an introduction to more sophisticated material. Exposition always moves from the
simple to the more sophisticated, and many simple examples are discussed in detail.
Numerous illustrations also facilitate understanding. The practical importance of the
ideas is always stressed, and the limitations of the methods are explained.

The second possible readership consists of researchers or engineers who have to
squeeze parameters out of experimental data. We should like to emphasise the
interdisciplinary nature of this book, which should be of interest to people outside the
Communications and Control Engineering communities proper. Practioners will get
from it tools to analyze the quality of the estimates they produce, explanations of why
their favourite software does not always yield the results they hope for, possible
remedies for numerical difficulties and advice as to how to organize data collection,
Within such a broad domain, rescarchers tend to specialize, so some may find the book
useful for its breadth of coverage of techniques that may be of help in their future
research. In this respect, they may find the large bibliography especially useful. Rather
than providing detailed proofs of a limited number of technical results, we have chosen
to introduce as many relevant notions and techniques as we could, explain why we are
convinced of their importance, and indicate further reading.

Topics covered include choice of the structure of the mathematical model, choice of
a performance criterion to compare models, optimization of this performance criterion,
evaluation of the uncertainty in the estimated parameters, design of experiments and
critical analysis of the results. Many recent methods are presented, some for the first
time in a book on identification. Among the distinctive features of this volume are

— a presentation of the methodology for testing linear and nonlinear mddels for
identifiability and distinguishability;

— an emphasis on other criteria than least squares (although the least-squares criterion
is, of course, considered), and the importance of robustness;

— a detailed treatment of parameltric optimization, including much more consideration
of numerical aspects than usual (evaluation of the effect of rounding errors,
generation of derivatives of the cost function with respect (o the parameters by exact
numerical methods, global optimization...); recursive and non-recursive methods are
both considered, for models linear or nonlinear in their paramelers;

— adescription of deterministic and statistical methods of characterizing the uncertainty
in the parameters resulting from that in the data;
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— a much more detailed presentation of experiment design than usual.

We hope the many cross-references will help the reader navigate through the
material, should he or she choose not to follow the order of the chapters.

Writing this book was made possible by the freedom and time given to us by CNRS
and we are grateful to Pierre Bertrand, Head of the Laboratoire des Signaux et
Systémes, who provided us with particularly favourable working conditions.

Many ideas and references result from discussions we have had with our colleagues
and students. May they forgive us for not always acknowledging it. We would
especially like to thank John Happel, Luc Jaulin, Caroline Kulesar, Gilles Le Cardinal,
Yves Lecourtier, Héléne Piet-Lahanier, Alain Venot and Anatoli Zhigljavsky. This book
would have been the poorer without their contributions.

We took the opportunity of the preparation of this English version to revise, update
and expand the manuscript, so this is a second edition rather than merely a translation.
Special thanks are due to John Norton who did much more than just improve our
English. As could be feared, we were unable to refrain from introducing some last-
minute corrections after his checking. Any remaining clumsiness should therefore be
laid at our door.
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Notation

Typography

Italic scalar.

Bold lower case column vector (row vectors are written as transposed column
veclors).

Bold upper case matrix.

Outlined upper case set (e.g., B, 8).
M(s), v(s) and v(s) Laplace transforms of M(1), v(r) and v(1).

M- inverse of M.

MT and vT transposed of M and v.

vl norm of v.

livil, Euclidean norm of v, equal to (vTv)!/2,

Common symbols and acronyms

A state matrix (nyg X nx).

A(g, p) polynomial in ¢!, parametrized by p = (a1, ..., ay)T.

AR autoregressive.

ARARMAX autoregressive with exogenous variable and ARMA noisc.

ARARX autoregressive with exogenous variable and AR noise.

arg max j(p) value of p that maximizes j.

arg min j{p) value of p that minimizes j.

ARMA autoregressive with moving-average noise.

ARMAX autoregressive with exogenous variable and MA noise.

ARX autoregressive with exogenous variable.

B control matrix (nx X ny).

B(g, p) polynomial in ¢=!, parametrized by p = (b, ..., b))V

C observalion matrix (rry X ny).

C(q,p) polynomial in ¢!, parametrized by p = (¢q, ..., ey )T

card 8 number of elements of set =.

c.d.f. cumulative distribution function.

c(p) vector of equality constraints to be satisfied by p (writlen as

A ee(p)=0).

ce(R) empirical autocorrelation of signal e.

¢i(p) vector of inequality constraints to be satisfied by p (written as
¢i(p) = 0).

conv(3) convex hull of set 5.



dy

D(q, p)
detM

diag w

dim v

dj(p)

eore

E(p. M)

Ef.) or Ex[.}

=]

\
Koy, n2)

F(p) or F(p, &)
F(q, p)

Fp(p. £)

004

Ig

FIR

Fps(l’)
Fo(ny, na)

&(p)

search direction in parameter space.

matrix describing the direct effect of the inputs on the outputs
(ny X ny).

dual variable of x.

polynomial in ¢~!, parametrized by p = (d}, ..., dng)T.
determinant of M.

diagonal matrix, the ith diagonal entry of which is w.
dimension of v.

subdifferential of j at p.

error.

ellipsoid defined by [p e & | (p-p)TM-I(p-p) < 1].
mathematical expectation with respect to x.

generalized error.

prediction error.

TCEIesSOr CITOr.

input error.

output error.

inclusion function associated with function f.

average Fisher information matrix per unit of time.
Fisher-Snedecor distribution, with 2y and n2 degrees of
freedom.

Fisher information matrix.

filter in the Box-Jenkins model.

Bayesian information matrix.

Fisher information matrix associated with the parameters of
F(gq, p) in the Box-Jenkins model.

Fisher information matrix associated with the parameters of
G(q, p) in the Box-Jenkins model.

Finite Impulse Response.

average Fisher information matrix per sample.

numerical value with a probability o of being exceeded by a
random variable distributed FAny, n12).

aradient of the cost function with respect to the parameters,
evaluated at p.

subgradient of the cost function with respect to the parameters,
evaluated at p.

filter in the Box and Jenkins model.

entropy.

Hessian of the cost function with respect to the parameters,
evaluated at p.

transfer matrix of a model with parameters p.

impulse response.

Heaviside step (H(1)=0,1<0; H(t)=1,1=0).

approximate Hessian (for a quadratic cost), evaluated at p.
independently identically distributed.

identity matrix (n X n).

imaginary number such that £ =-1.

cost function (o be optimized.
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sampling period for a continuous-time system.

transposition operator, applies Lo the matrix or vector on its left,
sum of the diagonal entries of square matrix M.

vector of (controlled) inputs of the system (of dimension ny).
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volume of set §
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state vector (of dimension ny).
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vector of system outputs.

vector of system outputs observed at ¢ (of dimension ny).
prediction of system output at ¢, given the information available
at r— 1 for a value p of the model parameter vector.
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value p of the parameter vector.
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time.

z-transform variable.
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chi-square distribution with n degrees of freedom.

numerical value with a probability a of being exceeded by a
random variable distributed y2(n).

spectral density of noise 7.

angular frequency.

prior covariance of parameter vector p.



Convention for derivatives (Vetter, 1970, 1973)

A
b
2A
B

opopT =

derivative of matrix A with respect to scalar b (matrix with the
same dimensions as A, the (i, j) entry of which is da; j/0b).
derivative of matrix A (possibly a vector or a scalar) with
respect to matrix B (possibly a vector or a scalar). If
dim A = na X mp and dim B = ng X mp, then dA/dB is an
nang X mantg matrix, obtained by putting dA/db; ; in (i, j)
position. Some important examples follow.

gradient of the cost function with respect to the parameters
(column vector with np entries).

transposed of the gradient of the cost function with respect to
the parameters (row vector with 1 entries).

Hessian of the cost function (1 X np).



1 Imntroduction

1.1 Aims of modelling

Model and modelling are calchwords with many different interpretations. In oncology,
for instance, a model of a cancer is an animal in which this cancer can be triggered. In
this book, a model will be a mathematical description of a real process, built with a
definite aimn in mind. This aim may be:

— analysing phenomena to deepen understanding of them (models in physics,
chemistry...);

— estimating quantities for which no sensor is available, from indirect measurements;

— testing hypotheses (medical or fault diagnosis, on-line quality control...);

— teaching (simulators for aircrafts, nuclear power plants, patients in critical
condition...);

— predicting short-term behaviour (adaptive control of time-varying processes) or
long-term behaviour (economic forecasting for governmental planning);

— controlling processes (regulation around some nominal set-point, (rajectory
following with large transients, optimal control...);

— processing signals (noise cancellation, data compression, filtering, interpolation...).
The implementation of a Kalman filter, for instance, requires a model of the process
generating the data.

Whatever this aim may be, it should always be made explicit, because it should very
strongly influence the modelling procedure. Models used to tune the coefficients of a
PID controller, for instance, are quite different from those employed to study chemical
reactions in detail. As a result, the problems raised by the building of these models will
have little in common. Since modelling is most often an interdisciplinary activity, it is of
paramount importance that the aim(s) of the exercise be clear for all those involved.
Ultimately, the model oblained should be judged according to whether these aims have
been satisfactorily attained. It may happen that model building, by the questions that it
raises, allows one to solve problems that had not been formulated at the start. Of
course, this should not serve as an excuse for not precisely stating the objectives to be
achieved.

1.2 System

A system (or process) is a part of the universe, which we have chosen, more or less
arbitrarily, to consider as an entity with which we interact (Figure 1.1).



— We observe some characteristic quantities of the system, and the results of these
observations form the oufput vector y. These quantities may depend on a vector & of
independent variables, which often reduces to the time r at which the measurements
are made. What will then be available is the value of y for specific (and known)
values of €, which we shall indifferently denote by yg or y(§). In what follows, §
will often be replaced by r when it corresponds to a single independent variable,
even if this variable has nothing to do with time,

— We are interested in some characteristic quantities of the system, which we shall
denote by z and which may depend on & or ¢. The vector z may include some
unmeasurable quantities, and thus differ from y.

—— We act on the system by means of some quantities, the evolution of which is known
and more or less under our control. These quantities are the inputs, which we shall
denote by u.

— We endure the action on the system (or on the measurements taken from the systemn)
of quantities that are not under control and are more or less unknown. These
quanltilies are the perturbations, or noises, which we shall denote by n.

S
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Figure 1.1. System §

Consider for instance a system consisting of a chemical reactor within which a
mixture of gases is circulated over a solid catalyst. The components of the output vector
y may be the partial pressures of various gases at the outlet, the pressure inside the
reactor and the temperature at various locations. The vector z of the quantities of interest
may include surface concentrations on the catalyst that cannot be measured directly. The
components of the input vector u may be the controls of the heating, of the pump used
to circulate the gaseous mixture and the partial pressures of the various gases at the
inlet. Perturbations may correspond to uncertainties about the value of w and y, to
catalyst poisoning, and so on.

Deciding what will be considered as a system is often far from obvious. After
Descartes, we have become used to the idea of splitting a problem into as many
subproblems as necessary to make them tractable. Unfortunately, such a procedure
often does not apply. In biology, for instance, it is impossible to isolate part of a living
organism without modifying its behaviour. Similarly, there are unstable systems which
cannot be studied safely in open loop. Moreover, it is often difficult, in a complex
systemn with feedback, to distinguish causes (inputs) from effects (outputs). One may
then pool all measurable signals into a single vector without classifying them a priori as
input or output (Willems, 1986a; 1986b; 1987). Throughout this book, however, we
shall question neither the definition of the system to be studied nor the classification of
the measured signals as inputs or outputs (with the exception of Section 4.1.7).
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1.3 Model

The model M of the system is a rule to compute, from quantities known a priori or
measured from the sysiem, other quantities that we are interested in and which we hope
will resemble their actual values in the system. Frequently, the model computes, from
the input u of the system, an output yr, which should resemble y as closely as possible.
If z differs from y, the model may also compute a vector zy, which may, under
identifiability conditions to be considered later, resemble z. Since the model and system
have the same input, the model is said to be paralle! (Figure 1.2).

——— Yo

U ——p M

Figure 1.2. Paralle] model

Less traditional configurations can also be considered, such as a model which, from the
output y of the system, computes a vector upy, which should resemble the input u as
closely as possible. This is a series or inverse model (Figure 1.3).

y — M — U,

Figure 1.3. Series or inverse model

Models combining series and parallel parts can also be constructed. Whatever the
structure chosen for the model, it will in general involve unknown quantities, usually
assumed to be constant but sometimes liable to vary, to be estimated from available
prior knowledge and data. These quantities are the parameters p. One then speaks of a
parametric model, the main type of model to be considered in what follows. We shall
distinguish the model structure M from the specific model M(p) obtained by setting its
paramelers to some specific numerical value p.

The choice of M, also called characterization, is a critical step in modelling.
Chapter 2 will give some indications of the choices to be made at this stage and the
tools that can be used to study properties of model structures.

Once the model structure has been selected, its parameters must be chosen according
to a specified criterion, usually the optimization of some cost function. If several model
structures compete for the description of the same data, their performance will also be
compared with the help of a criterion.



1.4 Criterion

Suppose, to fix ideas, that the model is of parallel type, i.e. subjected Lo the same inputs
and initial conditions as the system, if the latter are known. (Otherwise, the unknown
initial conditions will be incorporated into the parameter vector p, or taken as zero if the
system is stable enough for their transient effect to be neglected.) The difference
between the system and model outputs

Cy(’, P) = y(’) - Ym(rv p)

is then called output error (Figure 1.4).

U
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Figure 1.4. Output error for a parallel model

Most often, one wishes this output error to be as close to 0 as possible, which raises
the difficult question of the definition of the scale of values to compare the performance
of competing models. This scale will take the form of a scalar function j of the
parameters and possibly of the structure, called the cost function. Assume that the cost
is to be minimized. (If a cost function is to be maximized, changing its sign transforms
it into a cost to be minimized.) M(py) is then better than Ma(p>) in the sense of the
criterion associated with j if

JMy(p1)) <j(MaAp2)).

The choice of the criterion should refiect why the model is built. In fact, this purpose
will then be momentarily forgotten and replaced by another one, easier to achieve,
namely optimization of the cost function j with respect to the parameters (and possibly
the model structure). Chapter 3 will be devoted to various types of criteria and their
properties.

Once the cost function has been chosen, the next step is its optimization.



1.5 Optimization

The optimization algorithm uses the available information to evaluate the best value p of
the parameters (and possibly the best model structure )01) in the sense of minimizing the
cost j. The flow of information may, for instance, be as indicated in Figure 1.5.

n(t)
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Optimization

Figure 1.5. Possible flow of information for optimization

When the cost is quadmtlc in an error that is affine in the parameters, explicit
formulas can be derived for P, in the celebrated least-squares method. When such
exphclt formulas are unavanldb]e optimization is usually performed iteratively. Stamng
from Pk, the estimate of P at iteration k, which makes the value of the cost](p’*) the
algorithm computes p‘~+I such that j(pF+1) < j(pk). This raises two critical issues,
mumhzauon (choice of PO) and rermination of the iterating process. Sometimes, the data
are to be processed successively (possibly in real time). One then speaks of on-line
algorithms, as opposed to off-line algorithms, where all data are processed in a single
batch. Local algorithms, which may get trapped in some neighbourhood of PO and thus
only reach a local optimum of the cost, should be distinguished from global algorithms,
which aim to find arguments corresponding to the global optimum of the cost over the
prior feasible domain for the parameters.

A selection of algorithms will be presented in Chapter 4.

1.6 Parameter uncertainty

It would be naive to consider that p resulting from the optimization procedure
corresponds to the only model worthy of consideration. Even assuming that the
structure of the process is M, which is never exactly true, there is a set of acceptable
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models, given the uncertainties in the measurements. Chapter 5 will present various
techniques to characterize this set.

The set of all acceptable models depends on the experiments performed to collect the
data, i.e. on the choices made as regards the input shape, location and type of sensors
and actuators, measurement schedule, data processing, and so on. One should therefore
design experiments so as to collect the most pertinent information. Some tools for this
purpose will be presented in Chapter 6.

1.7 Critical analysis of the results

Finally, some critical analysis of the results obtained is essential. Modelling abounds
with provisional choices about the experimental set-up, the model structure, the cost
function, the optimization algorithm, and so on, which should be challenged. The
model should therefore be submitted to tests attempting to invalidate (or falsify) it. If
serious defects of the model are revealed, the choices made so far should be questioned.
Chapter 7 will describe various techniques to prove that a model is inadequate.
Unfortunately, none exists to prove that a model is the best that could be obtained!

1.8 In summary

Building a parametric model from experimental data consists of six basic steps:

— collecting data (Chapter 6),

— choosing the model structure(s) (Chapter 2),

— defining a quality criterion (Chapter 3),

— optimizing the associated cost function to get an optimal numerical value for the
parameters, and possibly select the most suitable model structure (Chapter 4),

— evaluating the uncertainty in the estimated parameters (Chapter 5),

— questioning the resulls (Chapter 7).

One should not deduce from this enumeration that these steps are performed
successively and in this order. Nothing, for instance, requires that the data be collected
before some reflection takes place about the type of model to be employed. Similarly,
critical analysis of the results should constantly be in the mind of the mode! builder.
Realizing the arbitrary nature of some of our choices, we should be ready to modify
them when confrontation with reality demonstrates their inadequacy.



2 Structures

The choice of a structure for the mathematical model is called model-structure selection,
or more concisely characterization. One might, for instance, choose the structure
described by the first-order linear differential equation:

d
%,m= —P1ym + pat, ym(0) = 0,

with positive p; and p,. One thus defines a class of possible behaviour and a prior
feasible set to which the parameter vector p must belong for the model to be considered
acceptable. Let M and M(p) respectively denote the model structure and the model with
structure M and parameters p. The prior feasible set for p will be denoted by P. In what
follows, P will usually be either R”p or a subset of B/p defined by a finite set of
inequality constraints.

Characterization is critical, because intuition plays an important part. It is of
paramount importance, since it defines the choice available for the selection of the “best
mode!”. Only models with a finite number of parameters will be considered, described
by algebraic, differential or finite-difference equations.

Various classes of models will be distinguished in this chapter. It will be necessary
to choose among these classes, taking into account

— the aim of the modelling (Chapter 1),

— the conditions under which the mode! is going to be employed (operating ranges,
nature of inputs, communication with other elements of a control system...),

— the cost of building the model,

— the information available (there is no point in conceiving a very complex model with
many parameters if data are scarce and imprecise).

REMARK 2.1

Most models to be considered will implicitly assume that if the system initially at rest
receives an input u = @, its output y, will be zero in the absence of any perturbation.
Inputs and outputs must then be expressed in a coordinate system that satisfies this
assumption (using deviations from equilibrium conditions). 0

2.1 Phenomenological and behavioural meodels

This distinction is rather schematic, but brings out two types of modelling that translate
into differing requirements.



Phenomenological (or knowledge-based) models are familiar to anyone who has
attended physics or chemistry courses; see, e.g., the survey paper by Box and Hunter
(1965). They are built from basic principles by writing down conservation or balance
equations (for mass, momentum, energy...). The fact that this type of model is built
from physical considerations facilitates incorporation of prior information and a
posteriori checking of the orders of magnitude of the estimated parameters. Consider,
for instance, the chemical reaction described by Figure 2.1.
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Figure 2.1. Chemical reaction

Under the hypotheses that all elementary reactions obey first-order kinetics and that the
reactor is isothermal and well stirred, it can be associated with the set of equations

dAL_ (a1 + patB),
Mmm]— (o2 + pa)IBI.
d[C]

—@ = PalBl.

The model structure is thus imposed by the prior knowledge (or hypotheses) about the
system studied, which does, as we shall see, sometimes raise specific problems. The
parameters p; are the kinetic constants of the elementary reactions, and the state
variables [A], [B] and [C] are the concentrations of the reacting entities. All of them
therefore have a precise concrete meaning. As soon as the process to be studied
becomes somewhat complex, the model state may be of very high dimension (resulting
for instance from the discretization of partial differential equations). The model may
thus consist of many equations, often nonlinear. The simulation of such models
generally takes a lot of time on powerful computers, and they are therefore seldom used
directly to compute a control law. On the other hand, they are well suited to detailed
simulation for the prediction of long-term behaviour or for gaining further insight into
the internal working of the process. Some computer codes for the simulation of nuclear
power plants, for example, are so complex that they cannot be run in real time for the
training of operators. One must then resort to simplified models.

At the other end of the spectrum, one finds behavioural models, which merely
approximate observed behaviour without requiring any prior knowledge of the process
that generated the data. It is not even necessary Lo know what the inputs and outputs
stand for or in what units they are expressed. The model structure does not claim to
correspond in any more fundamental way to that of the process, and the parameters
have no physical meaning. If, for example, an experimental curve is described by the
polynomial

Ym(t, P) = pi +pat +par® + paB + ...

it is possible to reproduce with arbitrary precision any finite set of experimental data
¥(1;), i=1, ..., ny, provided that the degree of the polynomial is large enough. This is
a particularly simplistic example of a behavioural model, with very poor predictive
capability. There are, of course, more sophisticated methods of building models, the
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aim of which is still to reproduce input-output behaviour independently of any
knowledge of the underlying process (Sections 2.4 and 3.3.5). One class deserving
particular mention is that of methods aimed at building a state-space representation
associated with a given input-output behaviour (so-called realization methods).
Realization methods are available for linear systems (1o and Kalman, 1966; Dang Van
Mien, 1973; Van Overschee and De Moor, 1994, 1996; De Moor and Van Overschee,
1995) and for some classes of nonlinear systems, such as bilincar systems (Fliess,
1978). For nonlinear systems which can be approximated by linear models around
operating points characterized by a measurable mode, a unique model with a state-affine
structure can be built from a family of linear realizations associated with a set of
operating poinis (Dang Van Mien and Normand-Cyrot, 1984). Note that the hope of
having some day at one’s disposal a general method applicable to any nonlinear system
is vain, as demonstrated by the existence of universal differential equations (Rubel,
1981), capable of approaching with arbitrary precision any continuous behaviour with a
model that depends on five parameters only. The sensitivity of such a solution to
variation of these parameters is of course extreme, and the model obtained has no
predictive power. Neural networks are also capable, in principle, of approximating any
continuous behaviour with arbitrary precision (Hornik, Stinchcombe and White, 1989),
and one should be cautious as regards their predictive abilities for the same reasons.
Behavioural models are in general simpler to simulate and more suited to the
computation of controls than phenomenological models. Table 2.1 summarizes the
usual properties of these two types of model (although exceptions can easily be found).

Phenomenological models Behavioural models
Parameters have a concrete meaning have no concrete meaning
Simulation long and difficult quick and easy
Prior information taken into account neglected
Validity domain farge (if structure is correct!) restricted

Table 2.1. Phenomenological and behavioural models

The choice between phenomenological and behavioural models is not always as
simple as this table might suggest. Estimating the few parameters of a
phenomenological model (for instance a suitably discretized partial differential equation)
may tum out to be simpler than estimating the many parameters of a multi-input multi-
output behavioural model which would not exploit the physical laws governing the
process studied.

2.2 Linear and nonlinear models

Two types of linearity must be distinguished. Let yy(¢, p, u) be the output at time 7 of
the model with parameters p when the input u(7), 0 < <1, has been applied from a
zero initial condition. A model structure will be said to be linear in its inputs (LI) if its
outputs satisfy the superposition principle with respect to its inputs, i.e. if

V(A 1) € R2,V re RY, yp(s, p. Aug + pun) = Aym(t, p, up) + fym(1, p, up).
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When control engineers speak ol linear models, they usually refer to this type of
linearity. Moreover, they often assume implicitly that the model is time-invariant, i.¢.
that its behaviour is invariant under a translation of the origin of time.

A model structure will be said to be linear in its parameters (LP) if its outputs satis{y
the superposition principle with respect to its parameters, i.e. if

V (2'7 .u) € ]E?‘, V te ]F“H_' )'m(’v )'pl +lup?.! u) = )'ylll(’v p]s ll) + ,UYm(’v p?_v ll).

When statisticians speak of linear models, they usually refer to this type of linearity:;
see, e.g., the survey by Jennrich and Ralston (1979).
A model structure will be said to be affine in its parameters (AP) il its output
satisfies
Ym(Z, P, @) = ym {4, U} + ym, (4, p, u),

where ym,(#, p, u) is LP. AP structures only differ from LP structures by the addition
of a term independent of the parameters, so the methods available for the study of LP
structures extend without difficulty to AP structures.

It is useful to know whether the structure considered is LP or not, and LI or not,
because this will have important consequences on the algorithms to be used.

EXAMPLE 2.1

ym(r+1, p} = pu(t) is LP and LI,

Ym(t+1, p) = pym(t, p) + u(?)  is non-LP and LI,

ym(t+1, p) = pu(t) is LP and non-LI,

ym{f+1, p) = pyA(t, p) + u(t)  is non-LP and non-LI,

Ym(t+1, p) = py(0) + u(t) is AP. 0

Whenever possible, LP and LI structures will be preferred. LI structures benefit
from the existence of very powerful mathematical results that facilitate their theoretical
study (stability conditions, optimal control, eflfect of perturbations...). Estimating the
parameters of LP structures is easy, and il is often possible Lo use explicit formulas that
avoid any iterative procedure (Section 4.1). The evaluation of the uncertainty in the
parameters and the design of experiments are also simplified (Chapters 5 and 6).

On the other hand, LI models often have a limited domain of validity, for most real
processes become nonlinear when the amplitude of the inputs gets large enough. In
such cases, an LI model may only approximate the behaviour of the system correctly
around some operating point. As regards LP structures, their paramelters often have no
concrete meaning.

It is sometimes possible to transform a non-LP structure into an LP one by a change
of variables (Box and Cox, 1964; Atkinson, 1985, 1995). Thus, for instance, the non-
LP structure described by ym(tk, P) = p1 exp(-paty) becomes LP if written as

In ym(tk Q) = q1 = q24, where g1 =Inp; and q2 = pa.
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Such a procedure, however, is not without consequences for the value of the estimates
obtained. In the presence of noise, one will not get the same results estimating p directly
or via the estimation of q. This point will be considered again in Example 4.6.

2.3 Continuous- and discrete-time models

2.3.1 Continuous-time models

The processes studied are generally assumed Lo evolve in a continuous time. Hence the
traditional tendency is to employ models described by differential equations, and
especially differential state-space models such as

g;xu) = f(x, p, u, 1), x(0) = xo(p),
¥Ym() = h(x, p,u, n),

which in the time-invariant LI case becomes

4 x(1) = A + B(p)u(r) . x(0) = xo(p),
Ym(D) = C(p)x(1) + D(p)u().

One may pass from this [ast type of representation to a transfer matrix representation

¥Ym(s, ) = Hi(s, p)u(s) + Ha(s, p)xo(p),
with

H (s, p) = C(p)[sI — A(p)I"!B(p) + D(p)
and

Hy(s,p) = C(p)LsT - A(p)]-!,

where s is the Laplace operator and 1 the identity matrix. Finally, by returning to the
time domain, one gets a set of input-output differential equations

m

n
di df
Z Pi(p) i ¥m= 2 Qi(p) an
i=0 i=0

For LI models, it is thus easy (o pass from one type of representation to another. For
non-LI models, even passing from a state-space representation to an input-output
differential equation might become impossible.

REMARK 2.2

In addition to the usual state equations, one may have (o consider algebraic constraints
between state variables. Such will be the case, for instance, in chemical kinetics, when
some reaction steps are so fast compared to others that they can be considered as at
equilibrium. The resulting algebraic-differential set of equations can then be written as



M(x, p) (% x(f) = f(x, p, u, 1), x(0) = xg(p)

Usual state-space representations correspond to M = 1, and purely algebraic systems to
M = 0. Numerical methods are available to solve such algebraic-differential systems
for x (Hindmarsh, 1980; Bilardello ef al., 1993). ¢

2.3.2 Discrete-time models

The ever-increasing availability of computers has in many domains dealt a fatal blow to
the supremacy of continuous-time models. The numerical simulation of discrete-time
models is much simpler and quicker, which makes them well suited to real-time process
control. Their use, however, may entail some loss of information on the behaviour of
the underlying continuous-time system.

As in the continuous-time case, one may employ a discrete-time state-space model

x(1+1) = f[x(¥), p, u@®), 1], x(0) = xo(p),
Ym(l) = h[x(l)! p-l u(r)’ 1]1

where ¢ is now an integer time index, which corresponds to actual time (7 if the
underlying continuous-time system is sampled with period 7. When this model is L1
and time-invariant, it can be written as

x(1+1) = A(p)x(1) + B(p)u(r), x(0) = xo(p),
¥m(?) = C(P)x(1) + D(p)u(r).

From this last type of representation, one may pass to a transfer-matrix representation

Ym(z. p) = Hi(z, p)u(z) + Ha(z, p)xo(p),
with

Hi(z, p) = C(p)[zI - A(p)]-!B(p) + D(p)
and

Ha(z, p) = C(p)[zI - A(p)]-'z,

where z = exp(T’) is the Laplace transform of the forward-shift operator. This transfer-
matrix representation easily translates into a recurrence equation

n—1 m-1
V(D) == D, Pp)Ym(=) + D, Qu(p)B(r-).
i=0 k=0

To write recurrence equations in a more condensed way, it is convenient (o use the
delay operator g=!, such that g=1x(r) = x(+—1). This operator could also have been
denoted by z-1, but the usual notation g-! emphasizes that what is meant is merely a
condensed notation for a time-domain equation. Thus, for instance, the recurrence
equation

Ym(t+1) = —a1ym(1) — a2ym(t=1) + byu(r) + bau(t-1),
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can also be writlen as
Alg Dym(t+1) = B{g=Hu(t+1),
where
Alg Y= 1+ajg! +a2¢72 and B(q~') = b1g~! + bag2.

Since discrete-time models are much easier (o simulate numerically than continuous-
time ones, it is possible to push the experimental study of their properties much further.
On the other hand, they impose constraints on the measurement times, which must
correspond to discrete times at which the mode! output is computed. Moreover, they
may hide oscillations of the associated continuous-time system. Finally, their
paramelers generally do not have any clear physical meaning. In particular, the values of
the parameters of a model obtained by discretizing a continuous-time model depend on
the sampling period chosen.

The properties of discrete- and continuous-time models are not always analogous.
One can, for example, create oscillating first-order LI discrete-time models, such as
Ym(t+1) = =p1ym(?) + u(r), with 0 < p| < 1, whereas first-order LI differential equations
do not oscillate. As a consequence, building a continuous-time mode! through the
construction of an intermediary discrete-time model may turn out to be difficult. One
may indeed get a discrete-time model with no continuous-time counterpart, and specific
methods for continuous-time systems are still of interest (Unbehauen and Rao, 1987).
Table 2.2 summarizes the properties of these two types of models.

Continuous time Discrele time
Parameters independent of depend on
measurement {imes sampling period
Computer simulation requires discretization easy
Prior information can be incorporated mostly not taken into account
readily (steady-state gain an exception)

Measurement times individually chosen dictated by choice

of sampling period

Table 2.2. Continuous- and discrete-time models

2.3.3 Sampling

When a discrete-time model is built from data collected from a continuous-time
process every T seconds, it is essential to make sure that the signal thus sampled
satisfies the Shannon condition (no components at frequencies higher than 1/(27)).
Otherwise, the frequency folding effect (or aliasing) may render the data usecless,
because all components of the continuous signal at frequencies higher than 1/(27) will
get superimposed on the useful frequency band. When in doubt as to the frequency
content of the continuous signal to be sampled, one should insert a continuous-time
(analogue) low-pass filter before sampling, in order to eliminate all components of the
signal at frequencies higher than 1/(2T). This point will be considered again in
Section 6.3.3.

To describe accurately the evolution of a continuous-time process with a discrete-
time model, one may be led to adopt a small sampling period T compared to the time
constants of the model. This may raise critical numerical difficulties when the model is



implemented on a computer. Consider, for example, a single-input single-output LI
continuous-time model. The poles and zeros of the transfer function associated with its
discrete-time counterpart (end to cluster around the point (1 + j0) when 7 tends to
zero, because consecutive input and output samples get more and more similar. On a
finite-precision computer, this results in a more and more marked deterioration of the
quality of the simulation. The use of the operator 6= (¢ — 1)/T such that

Sx(1) = x(1+1 )T— x(!)’

where the instant indexed by ¢ for the discrete-time model corresponds to the instant (7'
for the continuous-time model, makes it possible Lo avoid these problems (Middleton
and Goodwin, 1990). This operator approximates a first-order derivative by a finite
difference. A discrete-time model using the operator § will therefore tend to its
continuous-lime counterpart when 7 tends to zero. If T is small, this will ensure relative
independence of the parameters of the discrete-time model with respect o 7. A possible
way to obtain a model in &is:

— build a classical recurrence equation,

— write this model in condensed form using the g~! operator,

— replace ¢ by 1 + 67,

— express the ratio of the output to the input as a § transfer function,

— deduce a computing scheme involving elementary blocks §-1, the input e(++1) and
output s(+1) of which satisfy

-1
s(t+1)y = §le(t+1) = e(t+1)=~II[L—~e(r+l),

q—1 — g~
s0 §(t+1) = s() + Te(s). The &' operator is therefore a discrete-time integrator.

EXAMPLE 2.2

Let us apply this procedure to the recurrence equation

Ym(+D) = —apym(f) ~ azym(t-1) + bpu() + bau(t-1).
We get
(g2 + ayg + a2)ym(1+1) = (byg + bu(t+1),
[(1 + 28T + 82T + ay(1 + 61) + azlym(t+1) = [b1(1 + 6T) + bplu(r+1),
[T282+ 2T+ a6+ (1 + ay + a)lym(+1) = [(FiDE + (b + bp)lu(1+1),

which can also be written as the second-order 8 transfer function

ym(+1) P16+ B
ll(H‘l) - 52 + a15 + az.

The recurrence equation associated with this transfer function can be implemented with
the scheme derived from Figure 2.2.
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1(t+1)

Figure 2.2, Discrete simulation scheme for a second-order 8 transfer function

This scheme translates into

x1(t+1) = Fl[—axi(1+1) — axa(t+1) + u(t+1)], xo(r+1) = & x (t+1)],

Ym(t+1) = Brx(i+1) + Baxp(1+1),
ie.
x1(t+1) = x1(8) + T[-o1x1(5) - oxa(t) + u(n)], xa(t+1) = x2(0) + Tx( (1),
Ym(t+1) = Bixy(#+1) + Boxa(e+1). 0

This procedure extends without difficulty to higher orders. Numerically more robust
results are however obtained by decomposing the & transfer function into a product (or a
sum) of first- and second-order terms and connecting the corresponding state-space
submodels in series (or in parallel).

2.4 Deterministic and stochastic models

The models described in Section 2.3 are delerministic and describe the outputs as if they
were uniquely determined by the inputs. This is oflen unrealistic, because of the various
perturbations that act on the system or corrupt measurements. It is then necessary to
find ways of describing the influence of these perturbations. A statistical description is
usually used, where perturbations are described as stochastic processes (sequences of
random variables). To simplify, we shall only consider systems with one deterministic
input u(¢), one output y(#) and one perturbation n(f), described by recurrence equations.
Depending on how the perturbation is assumed to act, many model structures can be
obtained. We shall only mention the most commonly used (for more details, see, e.g.,
(Ljung, 1987)). Assume that the data satisfy

y() + aTy(t—l) + ...+ a:ny(r—n:) = bTu(r—n’:) + ...+ b:bu(r—ng-—ntﬂ) + n(1),
autoregressive part = exogenous part + noise

where the successive values of the noise n(f) (t=1, 2, ...) are realizations of a
sequence of independent random variables [g(r)). The slar is used to indicale “true”



values of the parameters and n; is the input-output delay (s, 2 | for a discretized
continuous-time physical system, and we shall often assume in what follows that s, = 1
to simplify notation). This corresponds to an AutoRegressive with eXogenous variable
structure (or ARX). Once ny, ny, and 1, have been chosen, the unknown parameters to
be estimated are

p=A{al, ..., an, by, .., by)T.

For models obtained by discretization of an nth-order continuous-time L1 model, the
inputs of which are maintained constant between sampling times (by a zero-order hold),
n, and ny, are equal to n, which simplifies characterization.

This very simple structure may turn out not be {lexible enough to describe the
properties of the perturbation. This may be remedied by using as the noise n(r) a linear
combination of the successive realizations of &(t), called a Moving Average (or MA),
giving

* * * * *® & * &
() +ary(=1) + ... + ap y(t—1y) = bru(t=ng) + ... + by u(t=np=n+1)
* * *
+ &(1) + c1e(t=1) + ... + ¢y E(t-nc),
ie.
autoregressive part = exogenous part
+ moving-average parl.

Once 11y, 1y, 1 and np have been chosen, the unknown parameters arc

pP=(at, o van, by, o by, 1y, e )T

Such a structure is called ARMAX (AutoRegressive-Moving Average with eXogenous
variable) or CARMA (Controlled AutoRegressive Moving Average). It extends the
ARMA struciure to the case where controlled inputs are present (Box and Jenkins,
1976). Removing the autoregressive part of an ARMAX structure, one gets a Finire
Impulse Response (FIR) structure, Sometimes, replacing y(f) by Ay() = y(f) — y(t=1)
and 1(t) by Au(t) = u(t) — u{(+-1) allows one to get rid of very slowly varying
perturbations, such as offsets, by working on increments. This gives the ARIMAX or
CARIMA structures. There are also non-LI variants of ARMAX structures, called
NARMAX (Leontaridis and Billings, 1985a, 1985b; Chen and Billings, 1989), which
assume that

¥ =fIy(=1), ..., ¥(t-ny), 1(t=1), .., w{t-np), €(=1), ... , E(t-n), p*] + &(1),

where f is a nonlinear function, for example a polynomial or rational function.
Instead of a moving average, one may use an autoregressive noise:

w1 + uTy(l-l) T a:ﬂy(t—n:) = I)Tu(t—n:) +...+ b;bu(l—ng—n:H) + n(1),
n() + dTn(t—l) + ..+ d,*,dn(r-nj) = g(1).

Once 1y, iy, ng and ny are chosen, the unknown parameters are

p={ayn ....an, by, .. by, dys s d”d)T'
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This corresponds to an ARARX structure.
One may also use an autoregressive moving average (ARMA) noise:

y() + aTy(t—l) + .. a:ﬂy(t—n;) = bTu(l—nj) + ...+ b;hu(t—n;—ntﬂ) + n(1),
n(r) + d?n(f—l) +...+ d:dn(f—n;) =g(1) + cTE(t—l) + ...+ cf,ce(t—n:).

Once ny, 1y, n¢, ng and np have been chosen, the unknown parameters are
P=(al, ..y bt, oo by cn, s en dy, . dy )T

Such a structure is called ARARMAX.
Let
Alg,p)=1+aig~ + ... +a,q7",
B(q, p) = (]l—"" (blq_] +.o+ ban'”b)a
Clg,p)=1+c1g + ... +cp g7,
D(g,p)=1+dg ! + ... +dpq.

ARARMAX structures can then be written in the condensed form

*
A(q, p)y(1) = B(q, pru(t) + gfg:—l‘f;% £(1),

where p* is the true value of the parameters. ARARMAX structures contain ARX,
ARARX and ARMAX structures as special cases (Figure 2.3). When A(q, p) =1,
one gets FIR structures. When D(g) = 1 — ¢~!, ARIMAX structures are obtained, which
shows the integration of the moving average responsible for the I in ARIMAX.

Note thal these structures force the transfer functions relating the noise and input to
the output to have part of their denominators in common, since

B(q, p")
A(q.p")

C(q.p")
A(q, p")D(q. p")

() = u(t) + E(1).

One may prefer to parametrize these two transfer functions independently and set
¥(1) = F(g, p*)u(t) + Glg, p"e(),

where F = Np/Dg and G = Ng/Dg;, with N, Dz, Ng and D¢ polynomials in g=!. One
thus gets a Box-Jenkins structure, which may be regarded as the “most natural”
parametrization of the output of a discrete-time LI system under the combined influence
of delerministic and random inputs. Since the system is assumed to be LI, one can
indeed easily propagate the effect of any perturbation to make il additive at the output.
Moreover, the spectral factorisation theorem indicales that any rational spectrum can be
obtained by passing a sequence of independent random variables g(r) identically
distributed with zero mean and variance o2 through a filter G(g) that is rational in g,
stable and wilh a stable inverse. Insofar as the information available on the perturbations
is very oflen of a spectral nature only, it will be possible to reproduce this type of
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characteristic. By suitably choosing ¢, one can always require that the first element of
the impulse responses of G and G- be equal to one, which will be useful for the
treatments in Section 3.3.2.

()
u(t)y ——s= Blg, p) ! L= ()
Ag, p)
(a): ARX
g ——| C@g,p)
u{t) ———p B(g, p) + ! = ()
Alg. P
(b): ARMAX
&) ———| :
D@, p)
W) — = B@,p) — ! = ()
A, p)
(c): ARARX
Clg, p)
) | ————
0 D, p
) — | B, p) ! A—_T(}
A4, p

(d): ARARMAX

Figure 2.3. ARX, ARMAX, ARARX and ARARMAX structures
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REMARKS 2.3

— The power spectrum of a stochastic process depends only on its second-order
properties (mean and covariance). Signals with identical power spectra may thus
differ widely in their temporal behaviour.

— The Box-Jenkins structure may look more general than the ARARMAX structure
and a fortiori the ARMAX structure. It is however trivial (o obtain an equivalent
ARMAX structure by setting A = DpDg, B = NgDg and C = NgDg.

— Some perturbations have a strong deterministic component and cannot be
represented satisfactorily as filtered sequences of independent random variables. It
may then be interesting to modify the model structure so as to incorporate this
deterministic component, possibly in a parametrized form.

2.5 Choice of complexity

Consider two model structures M| and M>, such that with any model of structure M
one can associate a more complex model of structure M> with the same behaviour, M»
then includes M1, and possesses more degrees of freedom. M| may for example
correspond (o a first-order transfer function

H](S, P) =_L.

and M> to a second-order (ransfer function

Ho(s, _ p1+pas pe R4,
28 p) 1 + p3s + pys? P

M| and M, may also correspond to ARMAX structures of increasing complexity such
that the first is a special case of the second.

The set of all input-output behaviour that can be generated by M> then contains all
input-output behaviour that can be generated by M). Because of its additional degrecs of
freedom, M> can reproduce any given set of cxperimental data better than M. One
might therefore think that the larger the number of degrees of freedom of the structure.
the better the model will perform, and that the only problem to solve is a compromise
between model complexity and performance. Actually, the problem is not so simple.
Assume that the structure of the process is My but that the experimentat data are very
noisy, so that the behaviour of the best model with structure M| fits these data very
approximately. Thanks to its additional degrees of freedom, the structure Af> may then
seem to yield better results. Provided it is complicated enough, it may even yicld a
model that fits the data perfectly. However, the additional degrees of freedom in M> are
only used here to model a particular realization of the noise corrupting the data. Should
the experiment which generated the data be repeated, a different realization of this noise
would result, and the best model with structure M, obtained from the first set of data
may actually provide a much worse prediction of the behaviour of the process than the
best model with structure M.

As will be seen in Chapter 3, criteria based on statistical considerations can be used
to decide at what point increase in complexity is no longer justified. Note, however, that



these criteria do not take into account the aim of the modelling, which may lead one to
choose a much simpler or more complex structure than they recommend. For adaptive
control, for example, one usually uses outrageously simple model structures. One may
also be interested in the parameters of an LI model to describe the behaviour of a
process only in a limited frequency range (e.g., around some critical frequency).
Filtering the input and output data with the same bandpass filter then permits elimination
of irrelevant information and errors induced by offsets and high-frequency noise. (For
the practical importance of such prefiltering when the model is identified for control
purposes, see, e.g., (Gevers, 1993).) When prior knowledge dictates a more complex
phenomenological model than statistical criteria would allow, simplification of the
model structure may lead to widely off-the-mark values for the phenomenological
parameters, with an unrealistically oplimistic evaluation of their uncertainty (Carrillo Le
Roux, 1995).

Section 6.6.3 will provide tools to design experiments facilitating the choice of
model structure.

2.6 Structural properties of models

Once a model structure has been chosen (or a set of structures among which a choice is
to be made), its properties should be studied as independently as possible of the values
taken by ils parameters. As a matter of fact, this study should if possible take place
before estimation of the parameters, to detect potential problems before collecting data.
A property will be said to be structural (or generic) if it is true for almost any value of
the parameters, and possibly false on a subspace of the parametric space with zero
measure. Thus, a property that is true for any value of p not on some atypical
hypersurface will be considered as structural, because the probability of randomly
picking an atypical value of p is zero. Two structural properties are of special
importance in model building, namely identifiability and distinguishability.

2.6.1 Identifiability

Consider a process and in parallel with it a model structure, the parameters of which are
to be estimated according to the scheme described by Figure 1.5. Before starting data
collection and parameter estimation, it seems natural to ask oneself whether one stands
any chance of success, i.e. whether the planned measurements will contain enough
information for the estimation of p. Formulated in such vague terms, the question has
no answer, so we shall consider an idealized framework (Figure 2.4) where

— the process and model have identical structure (no characterization error),
— the data are noise-free (n(r) = 0),
—~— the input u and measurement times can be chosen at will.

Under these conditions, it is always possible (e.g., by choosing f) p*) to tune the
paramelers of the model so as to make its input-output behaviour 1denncal to that of the
process for any time and input, which will be denoted by M(p*) = M(D).
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— 21, P*, u)
B M(p*) .
p an(fv p*! u)
¥ +
u() Same structure B ey=0
ym(r' f)' ll)
— M)

Figure 2.4. Idealized framework of structural identiliability studics

We w1sh to know whether this identical input- outpul behaviour implies that the
parameters P of the model equal those of the process p*. More precisely, parameter p;
will be structurally globally (or uniquely) identifiable (s.g.i.) if for almost any p* in P,

A % A *
M(p)=M(p") = pi=pi.

We shall see below (Remarks 2.5) on a concrele example why this restriction to almost
any p* is necessary. The structure M will be s.g.i. if all its parameters are s.g.i.

When one cannot prove that the structure considered is globally identifiable, one
may (ry to establish that it is at least locally. The parameter p; will be structurally locally
identifiable (s.1.i.) if for almost any p* in P, there exists a neighbourhood V(p*) such
that

A * A * A *
pe Y(p") and M(p)=M(p") = pi=pi.

Local identifiability is therefore a necessary condition for global identifiability. The
structure M will be s.1.i. if all its parameters are s.1.i.

The parameter p; will be structurally unidentifiable (s.w.1.) if for almost any p* in P,
there is no neighbourhood V(p*) such that

A * A * A
pe V(p") and M(p)=M(p") = pi=p
The structure M will be s.u.i. if one at least of its parameters is s.u.i.

REMARKS 2.4

— Some parameters of a s.u.i. model may very well be s.1.i. or even s.g.i.

— Identifiability may depend on the numerical value taken by the parameters without
the atypical region being of zero measure. It is then impossible to reach a structural
conclusion (a model may be neither s.Li. nor s.u.i. ) Unless otherwise stated, for
instance, P = R”p. The number of real solutions for p of M(p) M(p*) may then
depend on the value of p*, so the number of p0551ble values for the paramelters may
not be a structural result. If all p0551b1e values of P but one turn out to be complex, a
s.Li. structure may thus yield a unique model. See also Remark 2.9.

— The previous definitions of identifiability can readily be adapted 1o situations where
the shape of the input u and the measurement times t; (i = 1, ..., ny) are fixed a



priori. Tt suffices to replace M(P) = M(p*) in these definitions by y™(P) = ym(p*),
where y™(p) stands for the vector obtained by concatenation of all available output
vectors ym(4, pou), 1 = 1, ..., ny. 0

There are many methods for testing models for structural identifiability (see, e.g.,
(Walter, 1982, 1987; Walter and Pronzato, 1995) and the references therein). Those
presented in Sections 2.6.1.1 and 2.6.1.2 apply (o time-invariant LI state-space
structures M described by

%x = A(p)x + B(p)u , x(0) = xo(p),
¥m = C(p)x + D(p)u.

Non-LI structures will be considered afterwards.

2.6.1.1 Laplace transform approach

This approach was initially proposed by Bellman and Astrom (1970), in the context of
biological modelling. After eliminating the state from the Laplace transform of the
previous equations, one gets

Ym(s, p) = Hj(s, p)u(s) + Ha(s, p)xo(p),
with
H)(s, p) = C(p)[sI - A(p)]"'B(p) + D(p)
and
Hs(s, p) = C(p)[sT - A(p)]~!

M(p) = M(p*) if and only if
A *
Ym($, P) = ¥Ym(s, p) =0 V s, u(s).

This results in a set of equations bmdmg p and p*. If for almost any p this set of
equations has a unique solution for p. M is s.g.i. If for almost any p* the set of
solulions is finite or denumerable, M is s.Li. If for almost any p* the set of solutions is
undenumerable, M is s.u.i. Any parameter that takes the same value in all solutions is
s.g.i. Any parameter that Lakes its values in a finite or denumerable set is s.Li.

Writing the transfer matrices H| and Hj in canonical form, i.e. a form which can be
wrmen in only one way, may simplify compulation considerably, because then
M(p) M(p*) 1f:1nd only if the wcfﬁczent.s of H| and Hy have the same value for
p = P and p = p*. A canonical form is, for instance, obtained by wnlmg down each
entry of the transfer matrix as the ratio of two polynomials ordered in s, provided that
the numerator and denominator are simplified by their greatest common divisor and that
the coefficient of the denominator monomial with highest (or lowest) degree in s is set
equal to one. Note that this simplification means that one is only dealing with the
controllable and observable part of the model, a situation that will be met again in
Sections 2.6.1.2 and 2.6.1.4.
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EXAMPLE 2.3

Consider the (LI, non-LP) model structure defined by

d
& 51 = 1+ p2)xr + paxa +u, x1(0) =0,

d
F2=r1x1—pixg, x20) =0,
Ym = X2.

The Laplace transform of these equations can be written as
(8 + p1+ p2)x1(s) = p3xa(s) + u(s),
(s + p3)xa(s) = prxi(s),
Ym(s) = x2(s).
Eliminating xj and x3, one gets
(s +p1+ p2)(s + p3)ym(s) = p1p3ym(s) + pru(s);

hence the transfer function in canonical form is

Hi(s, p) = - :
P = 2 S(p1 + pa+ p3) + papa

M(f)) = M(p*) is therefore equivalent to the set of equations

A *
P1=py,
A A * *
P2+ pia=p2+pa,
A *

A *
P23 = p2pa,

which has two solutions for p, namely

. * 3 *
B1=(i,p2.p)T and B2=(p1, p3. p)T.

The first parameter, which takes the same value in the two solutions, is s.g.i. The other
two, which each can take two values, are only s.1.i. From noise-free data, one will
therefore be able Lo compute the true value for p|, whereas two possible values will be
obtained for p> and p3. Choosing between them will be impossible without resorting to
other types of measurements or other prior knowledge than assumed during the
identifiability study. 0



REMARKS 2.5

— Had we estimated the parameters of such a model with the help of one of the
iterative algorithms of Section 4.3.3, we would have found either of the two
possible solutions, depending on the initial value chosen. The other solution, which
yields exactly the same input-output behaviour, might have been overlooked.
Knowing either of them, we can now generate the other,

— Example 2.3 illustrates the necessity of including “for almost any value of p*”' in
the definitions of structural identifiability. It is clear from the expression for the
transfer function that if p* is in the plane of the prior feasible parameter space
defined by p; = 0, the process output will be identically zero whatever the input, so
p2 and p3 become unidentifiable. These parameters are nevertheless s.1.i., for the
plane p| =0 can be considered atypical.

— The fact that this model is not s.g.i. entails that it will not be possible to reconstruct
its state x uniquely, solely from the knowledge of its input-output behaviour.
Depending on the model selected, two possible values for x| will be obtained. If the
vector z of the quantities of interest introduced in Chapter 1 depends on state
variables that are not directly measured, it is therefore imporiant to make sure that
the model is s.g.i., or at least that

A % A *
M(p) =M(p") = 2n(1, p, u} =2,(1, p°, u).

— The existence of a true value of the parameters need not be assumed; p* may be seen
as the parameter vector of 2 model generating input-output behaviour that has been
deemed satisfactory. The question is whether there are other models with the same
structure and the same input-output behaviour.

—- If the model is only to be used for the prediction or control of the process ontput,
without any constraint on quantities that cannot be measured directly, then a
structure that is only locally identifiable may be perfectly satisfactory (or even an
unidentifiable structure, if this raises no difficulties with the estimation algorithm). 0

2.6.1.2 Similarity transformation approach

The model generating the data is assumed to be M(p™), described by
&x* = A(px* +B(pu, x*(0) = xo(p"),
ym = C(p*)x" + D(p*u.

A . . .
Let x = Tx*, where T is the invertible matrix of a state-space similarity transformation.
Then the transformed equations

g; £ = TA(pH)T-1% + TB(p*)u, R(0) = Txo(p*),

¥m = C(p*T-'% + D(p*)u,

will obviously have the same input-output behaviour as M(p™). They will correspond to
a model M(p) if and only if



(A(p)=TA(PHT-!,
B(p) = TB(p").
C(p) = C(p"HT-I,
D(p)=D(p"),

A

A *
~ xo(p) = Txo(p),

which is a sufficient set of conditions for M(p) = M(p*). From Kalman's algebraic
equivalence theorem, this set of conditions is also necessary, provided that M(p*) be
observable and controllable. Thc structural identifiability of M can then be tested by
looking for all solutions for (p, T) of these equations (Berman and Schoenlcld 1956;
Glover and Wlllems 1974 Walter and Lecourtier, 1981). Il' for almost any p* the only
solution is (p, T) = (p*, ), M is s. g.i. If for almost any p” the set of solutions for pis
finite or denumerable, M is s.L.i.

EXAMPLE 2.3 (continued)

The state and observation equations correspond to

-(p1+p2) p3 l
A(p)= . B(p)= .ox(0) =
P -3 0

Cp=[0 1] D(p)=0,

and M is structurally controllable and observable, so the similarity transformation
approach applies. Zero initial conditions bring no information on T. Exploit first the
structures of the observation and control matrices, with the notation i = [T];:

COT=Cp)=11=0,10=1,
B(p)=TB(p") =t =1,

| o«
T(o) =[ il
0 1

The set of all possible matrices A satisfies

so T can be written as

A(D) = T(&)A(P*T- (o)

_[ —(pl +p) +apl  api +pr) +pi-alpl - ap3 ]
= * * * .
Pl =0py —P3



pAs]

In A(f)), the sum of the terms of the second column must be equal to zero, so

* 3 *
o2p) + a(p3—po) = 0.
This equation has two solutions for &, namely

a=0 = T:I,[’)\:p

and
*
* * p1
7 - 3
a=&'~73§ = TzI, f= p; .
Pt *
P2

SINCIures

The same conclusion is reached as with the Laplace transform approach. M is s.Li.;
only pj i$ s.g.i., p2 and p3 can be exchanged without modifying the input-output
behaviour. Even from noise-[ree data, it is impossible to estimate p* and x* uniquety,

but all their possible values can now be computed.

REMARK 2.6

Although the conclusion does not depend on the method used, the required
computations do. Depending on the example considered, one or the other approach may
turn out to be much simpler. The same holds true {or methods for non-LI structures

{Chappell, Godfrey and Vajda, 1990).

2.6.1.3 Taylor series approach

Consider the (possibly non-LI) structure defined by
d
a X0 =1x(0, u(), 1, pl,  x(0) = xo(p),
Ym(f, p) = h[x(}, p],
where f and h are assumed to be infinitely continuously differentiable. Let

N
ar(p) = lim = ym(, p).
=0+ dk

M(p) = M(p*) implies
) = ap(p™), k=01, ...

A sufficient condition for M to be s.g.1. is therefore (Pohjanpalo, 1978)

*

) = a(p™) k=0, 1, ..., kmax, = P =p",

0

where kmax i5 some positive integer, small enough for the computation to remain

tractable.
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EXAMPLE 2.4

Consider the matrix of all impulse responses of a LI state-space model (with D = )

Ym(t, p) = C(plexp[A(p)/]B(p).
Since
dk
— Yim(1, p) = C(mAK(p)B(p),

1i
m d[L

=0+

the Taylor series approach amounts to testing identifiability from identity of the Markov
parameters (Fisher, 1966; Grewal and Glover, 1976)

CAXDB(P) = C(p*)AKPB(p*), k=0, L, ..., kmax,

a method that usually turns out to be more complicated than the Laplace transform and
similarity transformation approaches. 0

EXAMPLE 2.5

Consider now the unforced non-LI structure M defined by

d ~p1x1 = p2(1 = p3x2)x) 1
TX= , x(0) = ,
pal — p3xg)x| — paxz 0

}'m(’, D) =Xy,

The successive derivatives of yy, at + = 07 satisfy

ag(p) =1,
ay(p) =~(p1 +p2),
ax(p) = (p1 + p2)? + pap3,
a3(p) = —pap3 — 4 pap3(p1 + p2) — papapa — (p1 + p2),

and it is easy to show that

*

a®) = ar(p*), k=1,2,...,5 = p=p~
M is therefore s.g.1. 0

REMARK 2.7

If p is set to zero in Example 2.5, the model becomes LI and s.u.i. This illustrates the
frequently recosded fact that LT models tend to be less identifiable than their non-LI
counterparts. 0



2.6.1.4 Local state isomorphism approach

This method applies to structures M described by

S x(0) = I1x(1), p1 + u(Dglx(1), pl. x(0) = xo(p).
Ym(t, p) = h[x(1), p],

where f, g and h are analytic, 1 is a measurable bounded function and M(p) is locally
reduced at xq(p) for almost any p (which corresponds to a notion of structural
observablhty and structural controllablllty (Herm.mn and Krener, 1977 Sussman,
1977)). Let x* be the state of M(p*) and % that of M(p) M(p*) and M(p) will have the
same input-output behaviour fqr any t up Lo some time f1> 0 if and only if there exists
a local state 1qomorphlsm ¢ Vo = B oxF o & = o(x*) such that for any x* in the
neighbourhood \/0 of xp(p*) the fol]owmg conditions are met:

— @ is a diffeomorphism:

do(x) .
ank aq)xT lx=x* = s (1)
— initial states correspond: .
d(x0) = Xo, (i)
— drift terms correspond:
A A Sy A 9¢(X) * %
f(x, p) ={[6(x"), p] =37 ey f(x™, p7), (1ii)
— control terms correspond:
A (x) .
g(X, p) = glo(x"), pl = LT Ix=x* g(x*, p*), (iv)
— observations correspond:
h(X, p) = h[p{x"), pI = h(x", p*). )

After checking that M(p) is locally reduced at xp(p), one can look for all qolutlons for p
and q> of (x) ~— (v). If for almost any p* the only possible solution is p=p* and
o(x™) = x*, then M is s.g.i. (Vajda and Rabitz, 1989; Vadja, Godfrey and Rabitz,
1589).

The method may involve fairly comphcatcd compulation first to check that M(p) is
locally reduced and then to solve (i) — (v) for p and ¢. The two following results are
therefore of interest.
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— If there exists a value pg of the parameters such that M(pg) is LI and controllable
and observable (which is trivial to test), then M(p) is locally reduced at x(0) = 0 for
all p except at most for parameter vectors in a set of zero measure (Vajda, Godfrey
and Rabitz, 1989).

— For polynomial models with linear observations, i.e. when the components of f and
g are polynomials in x parametrized by p and h[x(t p), pl = C(p)x(t, p), & can
directly be written as a linear transformation % = Tx*, which drastically simplifies
the calculations (Chappell, Godfrey and Vajda, 1990) and makes the transformation
global, so that the positive time ¢) can be chosen arbitrarily large. Conditions (i) —
(v) then become

det T # 0, @i
Txo(p™) = xo(p), (i")
f(Tx*, p) = Tf(x*, p*). (iii")
g(Tx*, p) = Tg(x*, p*), (iv")
CET = Cp"). ")

Vajda ef al. (1989) have applied this approach to a nonlinear model of methane

pyrolysis.
For LI models also, the local isomorphism is a linear transformation, and the
method reduces to the similarity transformation approach.

EXAMPLE 2.6
Consider the non-LI structure M defined by

d =p1x1 = pa(l = p3xa)xy 1

ax= + u, x0)=0,

p2(l = paxp)x| — paxp 0
ymt,p)=x2=00 1]x.

It is trivial to check that when p3 = 0 the structure becomes LI and structurally
controllable and observable, so that M is structurally locally reduced and the local state
isomorphism approach apphes Smce M is polynomial, ¢(x) = Tx, and Conditions (i")

— (v) express that M(p*) = M(p) Condition (ii’) brings no information on T.
Conditions (iv') and (v’) imply that it can be written as

| o
T() =[ ]
0 1

Condition (iii") then translates into



* * * ok
Pi(x] + ax2) - pa(1 - paxa)x] + oxd)

f(Tx*, p) =
pa(l - P3x(x] + axd) — Paxs
.. [1 a][-Pixd - pal - paednd
:Tf(x’p)= * * % ok x % |
0 1 1L pa(1 - paxa)xy — paxy

The second row of this equation is equivalent to

2 ok ® ok ¥k *
—apaP3xy + (pap3 — PaP3)XIN2 + (P2 — P2)X| + (P4 + 0P — pa)x2 = 0

It must hold true for any x* around 0 and almost any p*, so pz = pz p3 = p3, a=0
and p4 p4 Processing the first row in the same manner proves that py = p1,so M is

§.8.1.
2.6.1.5 Use of elimination theory

Computer algebra software (Davenport, Siret and Tournier, 1987, 1993) such as
AXIOM, MACSYMA MAPLE or REDUCE can be used to obtain equations
expressing M(p) M(p ) and solve them. These equations can often be put into the
form of sets of polynomial equations in several unknowns, which can be transformed
into triangular ones with the help of elimination theory (Buchberger, 1970; Raksanyi et
al., 1985; Lecourtier and Raksanyi, 1987). These sets of triangular equations can then
be solved by considering a sequence of single-variable polynomials.

REMARK 2.8

Since p is assumed to belong to B"p, one should only consider real solutions to these
equations, which complicates the matter. 0

Differential algebra (Ritt, 1950; Fliess, 1989), in which differentiation is added to
the classical axioms of algebra, makes it possible to use a similar approach to eliminate
state variables. When differential input-output relations can be obtained that only
involve known variables, their derivatives and the paramelers to be estimated, these
equations can be used to study identifiability (Ollivier, 1990; Diop and Fliess, 1991).

EXAMPLE 2.7

The following model corresponds to the Volmer-Heyrovski mechanism, used in
electrochemistry to describe the production of gas or the dissolution of metals (Berthier
et al., 1995, 1996):

%.\‘(1) = k(D[] ~ x(1)] = k2(Hx(1), x(0) = ﬁ(“j

k1(1) = p1 explpa(1)], ka(r) = p3 explpan(n],

Ym{t) = k(O[T = x(N] + ka(Dx(1).
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Differentiating the observation equation with respect to time, one obtains

Qyﬂ dk] dk»
ar (1= x)+ \+(ln I‘l)dt

Replacing dx/dt by its value as given by the state equation and multiplying the result by
(k2 ~ k1) so as to use the observation equation to eliminate x gives the input-output
equation

d dky dk dk dk
(k= kNG + g = G+ 18 = k) v = ko — kg2 + 2kakatka - k),
with the initial condition
k1(0)k2(0)

ym(0) = k1 (O)1 — x(0)] + ko(0)x(0) =2 T1(0) + k>(0Y

Exchanging k| and k2 (i.e. (p1, p2) and (p3, p4)) leaves y(0) unchanged and multiplies
both sides of the input-output equation by (-1). The model is therefore not s.g.i. 0

Finally, consider a model defined by a set of relations
(Ym0, X, p)=0, k=1, ..., np,

where the ry’s are polynomial functions of u, yn, and x and their derivatives with
respect to time and polynomial functions of p. In the idealized context of identifiability
studies, any uniquely identifiable parameter py can be computed (Ljung and Glad,
1994} as the solution of a linear equation app = by, where ay and by are polynomial
functions of the inputs, outputs and their derivatives with respect to time. Computing ay,
and by, can therefore be used to prove the global identifiability of py.

2.6.1.6 Numerieal local approach

The computations required by algebraic approaches are sometimes too complex to be
executed even by the most power{ul computers. The following method can then be used
to check whether M is (at least locally) identifiable.

— Choose some nominal value Po for the parameters (by mndomly picking it in ).
Simulate M(pg) with a high precision to get many fictitious data y.

— Estimate p from y' by minimizing a quadratic cost in the output error (Chapter 3)
with a second-order method such as those of Newton or Gauss-Newton
(Chapter 4) initialized at pO = pg. If p* remains stable at py, then M is s.Li. If, on
the other hand, the estimator is unstable, this may mean that M is s.u.i., or that py
was close enough to an atypical hypersurface for the matrices inverted during the
computation of Pk to become numerically singular, or that the simulation was
incorrect. Other nominal values pg should then be picked before reaching a
conclusion. Nole that the Levenberg-Marquardt method (Scction 4.3.3.5) cannot be
used because it incorporates a regularization procedure.
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More sophisticated local numerical approaches, which can be used to study the local
dependencies between unidentifiable parameters, are described in (Walter, 1982,
Chapter 3).

2.6.2 Distinguishability

One often hesitates between several model structures for the description of the same
data. Tt is then natural to ask whether the measurements to be performed on the process
will make it possible to decide which one is best. This question is that of the
distinguishability of structures, which receives a partial answer in the same idealized
framework as stroctural identifiability. One thus assumes (Figure 2.5) that the
“process” is a model with structure M while its “model’ has the structure M, which now
differs from M. The parameter vector associated with $1 will be denoted by P, and that
associated with M by p. The vectors P and p are not necessarily of the same dimension.
Since the process and its model no longer have the same structure, it may become
impossible to tune the parameters p of the model so as to obtain the same input-output
behaviour as that of the process. It is this impossibility that may permit the elimination
of structure A7 in favour of structure M.

B A{(p) ym(ta pP. U)
Differincﬁstmcmres
uy) —— 5 e
y y
M A
— () 9m(t’ 6’ u)

Figure 2.5. ldcalized framework of structural distinguishability studies

More precisely, £ will be structurally distinguishable (s.d.) from M if, f(;\r almost
any feasible value p of the parameters of M, there is no feasible value p of the
parameters of 1 such that M(ﬁ) = M(p).

Note the asymmetry of the previous definition. The fact that Mis s.d. from M does
not imply that the converse is true. One class of models may include the other (without
this being obvious at first sight). Whenever §7is s.d. from M and M is s.d. from M, M
and #1 are said to be s.d.

The techniques to test pairs of model structures for distinguishability are quite
similar to those used for identifiability testing (Walter et al., 1985). Note, however, that
one now hopes to prove the non-existence of a solution for P, whereas in identifiability
studies one hoped to prove the uniqueness of this solution.



T Y 2P Y TTVR VT RPNV Peor ey g0

EXAMPLE 2.8

A first model structure M is defined by

%M =—(p1tp2)xy + p3xa +u, x1(0) =0,

d
g V2= paxy —p3xa, x2(0) =0,

Ym = X1.

It competes with a second structure 1 defined by

d

aﬁl = —Az./\\'l +f)3./\\'g +u, x1(0)=0,
%f\\'z =Pod1 - (1 + P32, Da(0) =0,
?’m =/{l

The associated transfer functions, when put in the same canonical form, can
respectively be written as

s+ p3
H(s,p) =
P T s(p1 + pa+ p3) + pipa
and
A A
A A s + +
s, p) = Pl TP

524 8P| + Py + Pa)+ PiPy

The identity of input-output behaviour therefore translates into

A A
p +P3=p3,
N A N
py+patp3=py+pr+ps,
A A
P1py = p1p3.

For any p, it is possible to find P such that these equations are satisfied, and vice versa.
M and M are therefore structurally indistinguishable. It will be impossible to know
whether the structure chosen was right. A possible way of removing this ambiguity
would be to monitor x3. 0

REMARK 2.9

As for identifiability, there are cases where no structural conclusion can be drawn.
Consider for instance two model structures, with transfer functions

?I(S ")-%
PR his + b
and

1

A= e pnG+ )
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with p and p belonging to B2.If ﬁ(s, P) has two real poles, H{s, p) is
indistinguishable from H(s, 6); otherwise, H(s, p) is distinguishable from ﬁl(s, 6),
because of the restriction of p to real values. None of these situations can a priori be
considered atypical. 0

2.6.3 Relationship between
identifiability and distinguishability

It is easy to prove (Walter, Lecourtier and Happel, 1984} that the identifiability of two
structures is neither necessary nor sufficient for their distinguishability. It suffices to
show structures that are distinguishable when none is identifiable and identifiable
structures that are indistinguishable. As already noted, the techniques to test structures
for these two types of properties are nevertheless quite similar.

2.6.4 Chemical engineering example
The experimental set-up described by Figure 2.6 is used at Columbia University to

study, with the help of transient isotopic tracing, the reaction that produces methane
from carbon monoxide and hydrogen according to

CO + 3 Hy & CHy4 + HyO.

Vector gas (helium)

—_—
100 ml/min
Reactant feed To mass
Syringe | ml/min spectromeler
| prmrr -

Lﬂ?:—f‘r_ at==g

Trolley
Reaclor
Bellows [ 6000 mil/min
pump

Figure 2.6. Expcrimental set-up in heterogeneous catalysis

Before time ¢ = 0, a gaseous mixture containing carbon monoxide, methane,
hydrogen and water is circulated at high speed over a nickel-based solid catalyst. The
consuimed carbon monoxide and hydrogen are continuously replaced with the help of a
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yringe, while pressure and temperature are regulated. The composition of the gaseous
nixture collected at the outlet of the reaclor is analysed with a mass spectrometer. When
he reactor reaches a stationary state, the composition of the gaseous mixture becomes
onstant. This corresponds to a dynamic equilibrium, where each molecule leaving the
eactor is replaced by an identical one. Then, at time 7 = 0, the syringe containing C!20
arbon monoxide is replaced by one containing C!30. The evolution with time of the
sercentage of marked carbon atoms in carbon monoxide and methane leaving the reactor
s then recorded. Assuming that the reactor is stationary and that there is no isotopic
ffect (i.e. that C13 and C12 behave identically with respect to the reaction), the
volution of the tracer is linear with respect to the input, and time-invariant, even if the
eaction kinetics are highly nonlinear (Happel, 1986).

Chemical prior considerations suggest two possible model structures for the
Jescription of the data. The first one M is defined by

Clt%xl = —(V + ve)x| + vexa + Vo,
CZ% X7 = VX — VpX2,
C3g; x3= Vxp — Vas,
C4d% x4 = Vxz— Vg,

Ym = X4,

where the parameters (o be estimated are p = (Cy, C2, C3, v¢)T, and where V and Cy4
are known from independent measurements.
The second model structure # is described by

C]%ﬁ‘l = -VA| + Vn,

C2%32= V% - i,

C3d%5\\'3 =(V- v[)g‘[ +vt - Vﬁ}.
C4di,-"¥4= Vas ~ Vi,

A A

Ym = X4,

where the parameters to be estimated are fl = (Cy, Ca, C3, v)T.

The state variables x; and % (i = 1, ... , 4) are specific activities (percentages of
labelled atoms), the C; (i =1, ..., 3) are surface concentrations and v and vy are flow
rates of carbon aloms between adsorbed species. All parameters and state variables
therefore have a concrete meaning. The aim of the modelling is to determine which
model structure is more adequate (discrimination or hypothesis testing) and to estimate
the numerical value of the associated parameter vector. One thus hopes to detect the
characteristics of the slow step of the reaction and to use this information to improve the
catalyst. Before attempting to process the data, one should test whether these objectives
could be met within the idealized framework of structural identifiability and
distinguishability studies. With the help of the Laplace transform approach, the
following conclusions can be reached (Walter et al., 1986):
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— M and ff are structurally indistinguishable;

— M is s.L.i. but not s.g.i. (there are three different parameter vectors that correspond
to exactly the same input-output behaviour);

— M is s.Li. but not s.g.i. (there are six different parameter vectors that correspond to
exactly the same input-output behaviour).

One thus knows before any measurement that it will not be possible to reach the
objectives that had been initially defined. Such model structures may nevertheless be of
interest, provided that their ambiguous nature is recognized and taken into account.

2.7 Conclusions

Choosing a suitable model structure is not an exact science. It involves more or less
arbitrary decisions, with important consequences. Indeed, one cannot expect to do more
than find the best possible model in the class thus defined. If this class is not adequate,
the most sophisticated data processing will never produce a satisfactory model. One
should therefore not consider characterization as an initial step to be performed once and
for all, but rather as a temporary choice, bound to be questioned. The first of these
questionings can take place before any actual measurement. Testing structural
properties, one can detect possible defects of the model structures considered even
before data are available. The qualitative notion of structural identifiability naturally
leads to a quantitative question: given that the model structure under investigation is (at
least locally) identifiable, what experiment should one perform to identify its parameters
as precisely as possible? Similarly, when competing model structures have been proved
to be distinguishable, the problem remains of effective discrimination between these
structures on the basis of actual data. In both cases, the quality of the data collected is of
paramount importance. The choice of optimal experimental conditions is the subject of
Chapter 6.

In the next chapter, the model structure is considered as given, and we shall address
the choice of the criterion to be optimized in order to find the best model in the class
thus defined. When there are several possible model structures, they will be considered
in turn, so as to select the simplest satisfactory one.
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Once the characterization has been performed, one should select the best possible model!
in the class thus defined, keeping in mind the final aim of the modelling. The criterion
for this selection is the optimizalion of a scalar cost function j(p) with respect to the
model parameters p. The optimal value of p (kept as the parameter estimate) will of
course depend on the cost chosen, which should therefore always be specified, and
justified as far as possible. Various approaches that can be employed (o build criteria
will be considered in this chapter. The presentation goes from the simplest and most
intuitive methods to more sophisticated ones, which are more demanding in terms of
prior information. When this information is unavailable (or unreliable), one may turn to
the robust methods presented in Section 3.7.
Let ys be the vector of all experimental results to be used to estimate p, and y™(p)
- the vector of the corresponding quantities computed by the model M(p). For a parallel
model, the parameters of which are to be estimated from measurements of an output

vector y(1) (r =1y, ..., Im). these vectors can be written as
y(rp) Ym(y, p)
y(t2) and  y™(p) = Ym(iz, p) ,
y{ty,) Ym(fye )

where the influence of the inputs is not made explicit to simplify notation. Due to the
various perturbations acting on the system, one will usually not obtain exactly the same
results when the same experiment is repeated; y* is therefore a random vector. By abuse
of notation, we shall denote this random vector and its realization (vector of known
numbers corresponding to actual measurements) in the same manner. We shall call any
optimizer of j, i.e. any p that corresponds to an optimal value of the cost function j, an
estimate of p in the sense of j.

3.1 Least squares

Quadratic cost functions are by far the most commonly used, since Gauss and Legendre
(Stigler, 1981), because of their intuitive appeal and relatively easy optimization (for LP
models, the best estimate in the sense of a quadratic cost function can be obtained
analytically, as will be seen in Chapter 4). These cost functions can be written as
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J1s(p) = eT(p)Qe(p),

where Q is a nonnegative definite symmetric weighting matrix, and e is a vector
characterizing the error between the system and its model. The estimate of p in the sense
of jjs is given by

A - .

Pis = arg min ji5(p)-

Such an estimator is usually called a (weighted) least-squares estimator, or L, estimator.
It can be arrived at independently of any statistical consideration, even if, as will be seen
later, its use can be motivated by information (or hypotheses) on the nature of the noise
acting on the system. Very often,

e(p) =ys - y™(p),

and Q is chosen diagonal, so the cost can be written (after normalizing) as

. 1
Js(P) =5 2 Z witlyk(tip) = ymg(tip. P12,
k tik

where N is the total number of experimental data. Division by N permits the comparison
of values of the cost obtained with different numbers of data points. The weighting
coefficients wj, are positive or zero and fixed a priori. They correspond to the diagonal
entries of Q and may be chosen empirically. The larger w;; is, and the more it will cost
the model to deviate from the experimental result y(¢;). The choice of the w;.’s will
therefore express the relative confidence in the various experimental data and the
consequent importance attached to the model performance with regard to each
component of y and associated measurement time. Thus for example

— wi. = 0 eliminates a datum deemed insignificant,

— wi = [yr(tip)]~2 (provided yx(t;;,) # 0) makes the error relative and improves the fit
of the small output values, which is of interest for example when outputs with very
different amplitudes are to be fitted simultaneously.

If the data correspond to the response of the system to a step input, then

— wy;, = tj;, favours the fitting of the steady state,
-— wj, = 1/t;; (provided #;; # Q) favours that of the transient.

The weighting factors could be chosen iteratively. Assume, for instance, that by
minimizing some initial quadratic cost, one has obtained a model with unsatisfactory
behaviour in some region. By increasing the weighting factors associated with the
errors in this zone, it will be possible to improve the behaviour of the model there (at the
cost of its behaviour deteriorating elsewhere). By trial and error, one may then be able
to correct the model response in order to reach a satisfactory compromise.

REMARK 3.1

When the data consist of repeated measurements at g times (or more generally n,
experimental conditions indexed by f), all data obtained at the same value of 7 can be
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replaced by their arithmetic mean without modifying Pys, provided that the model output
¥m(?, p) be independent of the previous measurements (which in particular does not
allow consideration of models including an autoregressive part) and that the weighting
matrix be suitably modified. Indeed, if nj(r) measurements are taken under the
experimental conditions indexed by ¢, the cost can be written as

n ni(0

Jis(p) = [yi() — ym(, PITQuLyi(1) — ym(t, P)],
=1 i=1

-

and the stationarity conditions become

n ni()
g[l—) -——22 ZM“P"‘ Qlyi1) — ym(, Pls)]— ,
b =1 =1 Ip1s
or
ny
ay*“(’ P) Q;[y(n—ym(r, ol =0
=1
with
ni(1)
W0 =55 D yin) and Q) =mQs. 0

=1

3.2 =Least modulus

One should not deduce from the almost ubiquitous use of quadratic costs that they are
always to be recommended. One may, for example, prefer to minimize a weighted sum
of absolute values of errors, given by

. 1
Jim(p) = NE z Wir Wr(ti) — ymp(tigs PII.
kot

Such cost functions, which can be traced back to the work of Galileo (in 1632!),
Boscovitch and Laplace (Farebrother, 1987), penalize very large errors less than
quadratic costs. The associated estimators are called (weighted) least-modulus
estimators, or L; estimators. The choice of the weighting factors is inspired by the same
type of consideration as for quadratic costs. For example, to work with a relative error,
it suffices to set wyy, = Ulyp(t;)l.

L, estimators have interesting robustness properties, as will be seen in Section 3.7.
Note, however, that the estimate obtained may not be unique, even when a least-squares
estimate would be. For instance, j(p) = Ipl + [p — 31 is at its minimum over [0, 3].
Moreover, the non-differentiable nature of j,, does not allow the use of optimization
techniques based on a series expansion of the cost, such as described in Section 4.3.3.
For a detailed presentation of the statistical properties of L estimators and of techniques



qu criena

to compute them, onc may consult (Bloomfield and Steiger, 1983; Dodge, 1987; Gonin
and Money, 1989). See also Section 4.3.5.4.

3.3 Maximum likelihood

VaY . . . . . - . . .
The vector Pyt will be a maximum-likelihood estimate if it maximizes the cost function

Jml(p) = my(ysip).

If p were fixed, my(ySlp) would be the probability density of the random vector y*
being generated by a model with parameters p. Here, to the contrary, y$ is fixed and
corresponds to the observations, Considered as a function of p, my(y*Ip) is then called
the likelihiood of y5. The maximum-likelihood method looks for the value of the
parameter vector p that gives the highest likelihood to the observed data. This approach
allows one o take into account in the design of the cost the available information on the
nature of the noise acting on the system.

In practice, il is often casier to look for [’5,"| by maximizing the log-likelihood
function

Jml(p) = In my(ylp),
which yields the same estimate since the logarithm function is monotonically increasing.

EXAMPLE 3.1: repeated observations of a Gaussian variable

Consider a system with an experimentally observed scalar output y(r)) (i =1, ..., n)).
Assume that it has been possible to repeat observations at each time /; to estimate the
characteristics of the measurement noise, and that the observations at time f; are
independently identically distributed (i.i.d.) according to a Gaussian law with mean y;
and variance 07. We wish to estimate f; and o7 in the maximum-likelihood sense. The
set of all available data for the ith time is

yS(ti) = [yi(t), y201), ooy yu(t)IT,

where yr(1;) is the result of the kth measurement at time /;. Since y(#;) is assumed to be
distributed A{;, %), the probability density of y(#) is given by

% [y/\-(h')(— /Ji]z}‘

!

my kI, 071 = my[y(tplp)l = Qo2 exp { -

Since the n observations at time ¢#; are assumed to be independent, their joint probability
density is the product of the probability density of each of them, i.e.

n n
mylyS(t)lp] = H mylyr(t)lpl = H (2mo)~W2exp {- -é— [M]z}.
k=1 k=1

[

The log-likelihood is therefore
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jmi(P) = In Ty y3(1lp] =~ In2ma?) — L ;m(wﬂ,l’

s,

The maximum-likelihood estimate Py will be obtained by maximizing this cost function
with respect to p. In general, it is not possible to solve this optimization problem
explicitly, and one must resort to iterative algorithms such as those described in
Chapter 4. Here, however, P can be obtained in explicit form. At the optimum of this
unconstrained problem, the partial derivative of the cost function with respect to each of
the parameters is zero (necessary first-order optimality condition), so

[yr(t9) = iy )] = O,

+ A4 Z Dye(ti) - ll:m]]

. I
Jmll,\
ml 'ml k=1

Ao " Mp 207

The first of these equations implies

u:ml n Z)L(’ i)

k=1

The estimator of the mean in the maximum-likelihood sense is therefore the arithmetic
mean of the observations. The second equation implies

n

|
g%ml “n kz; Dkt = ‘ﬁiml]z‘

Although presentation of the properties of maximum-likelihood estimators is deferred to
Section 3.3.3, let us mention some properties of the estimators of mean and variance
just derived. To simplify notation, the index { will be dropped, and the n data points will
be assumed to be i.i.d. A{u*, (6%)2). Then (Korn and Korn, 1968) the estimator of the
mean is unbiased (no systematic error):

AN 3
E{tmi) = 1,
and its variance tends 1o zero as 1 tends to infinity:

(o")?
no

E{(Umi - 1?2} =

On the other hand, the estimator of the variance is biased (although the bias tends to
zero as 1 tends Lo infinity):
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E(62,) =" =1 (o"2.

m n

It is easy to compensate for this bias by using the estimator

A 1 A2
0211:/1 —1%mp

which also has a variance that tends to zero as n tends (o infinity:

2 l(o_*)4.

n -

E{[0? - (6")2%) =

Note that the number of repetitions must be fairly large for the estimation of z* and
(6™)2 to become accurate. With n = 9, for example, the standard deviations of the
estimation errors are ¢*/3 for the mean u™* and (6*)2/2 for the variance (c™)2. 0

The maximum-likelihood method is the basis of a large number of estimation
techniques and possesses attractive theoretical properties (Section 3.3.3). This is why
its implementation will now be detailed on various examples, which illustrate the
diversity of the criteria that can be produced.

3.3.1 Output-additive independent random variables

Assume that the observed outputs satisfy

y(’l) = Ym(fiv p*) + €j, i = la vy My,

where the veclor ym(f;, p*) is the output of a deterministic model, p* is the true value of
the parameter vector and €; belongs to a sequence of independent random variables with
probability density 7r,(g;). Since the g;'s are independent

n
”E(E'la 821 Ve y ell|) = i I KE'(E[)'
i=1
Consider the output error
ey(ti, P) =y - ym(ti, p).
For the true value of the parameters, it satisfies ey(#;, p’) = €, and, since y, is

deterministic, ﬂyf[y(ri)lp] = mg;ley(fi, p)]. The likelihood of the n; observations can
therefore be wrillen as

n n

myyip) = | | mestey(t o)1 = | [ 7yt - ymtii 1.

i=1 i=1



The log-likelihood is then expressed as a sum of terms, each of which is associated with
the output error for a given value of 1;,

1y
In 7y(ysip) = Z In e, [y (1) — ym(ti, P)1.

i=]

The type of probability density for the noise &; will dictate the type of function of the
output error to be employed. Among the broad families of distributions that can be
considered, Gaussian (or normal) distributions are of special importance. One
justification for this phenomenon lies in the central limit theorem, which states that €;
tends to be normally distributed if it results from the summation of a large number of
i.i.d. errors with finite variance. A more prosaic explanation is the weight of tradition.
Let us stress that other hypotheses on the noise may also be considered.

EXAMPLE 3.2: Gaussian noise with known or constant (homoscedastic) variance
Assume that the data satisfy

."(’I‘) = )’l'ﬂ(tl"l p*) + Elv l = I- sy ”lv
where the g;’s are independent A{0, 0%) random variables. Assume further that the
variance o7 of the noise is either constant (i.e. independent of i) or known for all i's. Tt
may, for instance, have been estimated beforehand by repeated experimentation as

explained in Example 3.1. One wishes to estimate p by maximum likelihood.
According to the hypotheses on the noise,

e &) = Qrony P exp [ - »,( )]

The likelihood of the i, observations of the output is therefore given by

Y
ny(ysm) - H (27[0%)-112 exp { - -5 ["(’_L‘_)Lﬂﬂ_’b_&] )

i=1 i

which amounts to saying that the y(t;)'s are independently distributed according to the
normal law A{y,n(f;. P), o‘) The log-likelihood can be written as

1y
In 7y (y$lp) = (term independent of p) — %‘2 v(’—‘:“v"—l(&"*p)] .

A maximum-likelihood estimate '[\)ml(ys) of p is therefore a maximizer of
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ny
j(p) = _% 2 [)’(fi) - }‘;m(fi, E)]Z‘
i=1 i

i.e. a minimizer of the quadratic cost

ny

Jis(p) = wi [y() = ym(ti, p)]z.

=1

with the weights w; = ]/o%. One thus obtains a weighted least-squares estimator. The
error at a given f; is weighted by the inverse of the variance of the associated noise; the
more a measurement is corrupted by noise, the less it will influence the optimal value of
the cost. Weighting thus gcts a rational basis. Note that the random variables
[y(15) = ym(t;, pHVoO; (i =1, ..., ny) are i.i.d. A(0, 1). The weighting has therefore
equalized the variances of the errors. This estimator can be used even if the noise does
not follow a normal law, provided that its variance o* is known. It is then called the
Gauss-Markov estimator. For an LP model qlruclure it is the Best Linear Unbiased
Estimator, or BLUE, in the sense of the variance of the estimales; see, e.g., (Goodwin
and Payne, 1977).

If all o;’s are equal (the stationary or homoscedastic case), unweighted least-squares
should be used (w; = 1). The noise variance then need not be known a priori, and can
be estimated a posteriori from the residuals (Example 3.4 below). 0

EXAMPLE 3.3: Gaussian noise with unknown varying variance

Assume now that the ¢;'s are unknown and may depend on i (heteroscedasticity). One
may think of creating an extended parameter vector pe = (pT, gy, ..., 6,,l)T, and
estimating pe by maximum likelihood. Such a strategy is however bound to fail, for p,
is unidentifiable since the number of extended parameters to be estimated is 7, + dim p
when there are only ny data points. If, on the other hand, o; is parametrized, e.g., as
(Box and Hill, 1974)

Of(a, b, p) = a lym(;, p)I°,

where a >0 and 0 < b <2, then it becomes possible to estimate pe = (pT, a, b)T in the
maximum-likelihood sense. Note that b = O corresponds to a constant variance
(homoscedasticity), while b = 2 corresponds to a standard deviation proportional to the
output. The likelihood of yS satisfies

ny

=172 1 fy(r:) — ym (i, P)]2
my(ySlp, a, b) = g(Zﬂa tym(ti, p-12 exp {- a b (i, pylb )

[}

and the log-likelihood of % is



1t
In 7, (ySlp, a, b)——;‘ 2n-311na-—2321n lym(t;, P!
i=1

14
_ z )’(f) - ¥m(ti, P)]“
i=1 lym(ti, P)Ib )

We must therefore niinimize the cost

m n

p.aby=nlna+b 2 In lym (¢, p)l + = 1 it ?y_ z;m(t')"l?)]“
i=1 1'"] r

with respect to p, a and b. The extended parameter a can be eliminated by noticing that

n

3/ — L [y(r ) = ym (i Bl _
i; — A - [\ >
| Pmls f’ml, ml 9ml ”m] i=1 [ym (8, l:)ml)I ’ml

S0
Nt

aml(pm]» ml) _—'z Ly(t) = ym (i, ?m])] .
[ym (4, pm1)l

Substituting 3m1(p, b) for a in the cost, and eliminating a term that does not depend on
the parameters to be estimated, one gets

n ny
. 1 (£ = Ve (¢, 2
Jmi(p, By = In { i 21' Ly l?ym()t:(p;Il’p)] J+b 2} In lym (17, P
= =

Although the noise is Gaussian, the cost to be minimized is nof the intuitive quadraltic

cost
ny

; _ 1IN () = ym(ti P12
j(Pv b= iy FZI lym(t;, p)lb ’

where the errors are weighted by the inverse of the corresponding noise variance. 0

EXAMPLE 3.4: multidimensional Gaussian noise with unknown constant covariance

Assume that several outputs of the same process are simultancously observed,
described by

YU =ym(ta pH) + &1 i=1, ..., 0



where y, ym and €; are ny-dimensional vectors and the €;’s are independent Gaussian
vectors with zero mean and unknown covariance X (which does not depend on i). We
wish to compute maximum-likelihood estimates of p and X. Since €; is distributed

A0, ),
me(€;) = [(2m)"y det Z]-112 exp (- %s’,ri‘.—‘s,-).

Taking into account the independence of the g;'s, one can therefore write the likelihood
of ys as

¢

s = n ~1/2 _l. . Ty -1 R
Ty(yslp, X) = [(2myty del X] exp [~ 3 ey(t, p) E-ley(t;, p)],

i=1

where
ey(t;, p) = y(ti) — ym(ti, p).

The log-likelihood of ys satisfies

nyn
In 7y(ySlp, Z) = - Myi_t In 2w -~ %’i IndetX

1

n
2 [y(1) = ymUi, PITEy(4) = ym(ti, P)].
i=1

[

If £ were known, the maximum-likelihood estimate of p could be obtained as fns which
minimizes the quadratic cost

g
Jis(p) = 2 y(t) = ym(ti, PITEy(1) - Yym(tis P)]

=1

(the Gauss-Markov estimator). Since X is unknown, the log-likelihood must be
maximized with respect to p and Z. Taking advantage of the first-order optimality
conditions

d
—1 Slp, X A =40,
oX g ”y(y ([J )lﬁmll zml

and

)
=1 SIp, ¥ A =9
dp n y(ySip )lﬁml' Zal

and using the standard results

] 1 9 Ay-IB = _3-IBAZ-
—Indet T =X and —— AZ-!B =-Z-IBAZ-,
z e)>

one can show (see, e.g., Goodwin and Payne, 1977) that Pm1 is obtained by
minimizing the cost



ny

Jmi() = In det [ D, [¥(1) - Yanltis DY) — ya(tis DI

i=1
A
The estimate Pryy can then be used to compute Ty as
p p!

Ny

A A A

Tl = %I Z Y (1) = Ym(tis PmDIIY(1) — Ym(tis PmD]T.
=1

Although X is unknown, it is thus possible to estimate p in the maximum-likelihood
sense by optimizing a cost that does not depend on X. This approach may be used to
solve the problem of the relative weighting of several experimental curves without
introducing more or less arbitrary weighting coefficients. It does, however, require £
not to be singular.

When the output is scalar and g is distributed A{0, 02), the previous result implies
that pm1 is obtained by minimizing the unweighted quadratic cost

1Ny
Jmil(p) = Z y(t) = ym(ti, mIZ,
=1
and that
n

'blml = ,1_[ Z (1) = Ym(ti, Pm)12. 0
i=1

In the vector case, the approach of Example 3.4 requires all components of y to be
measured synchronously. Olhcrwme (if, e.g., measurements are missing), one can
easily show that if X is diagonal, Pl is obtained by minimizing the cost

1y ny,

. nyy

Jmi(p) = Z %111 Z [ye(fi) = Ymeltips W12
k=1 i=1]

EXAMPLE 3.5: scalar Laplacian noise with known or constant standard deviation

Consider Example 3.2 again, but assume now that g belongs to a sequence of
independent random variables with a Laplace distribution with zero mean and known
(or constant) standard deviation gy, so

1 exp (_\Fé |E,‘|)
V2 o o

”E,‘(ei) =

After derivations similar to those of Example 3.2, the log-likelihood of 1, observations
is obtained as
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In 7y(ysl p) = (term independent of p) - V2 Z (1) = ym(ti. p)! )

=1 (o],

The maximum-likelihood estimate of p is therefore obtained by minimizing a weighted
Lj cost (weighted least-modulus estimation)

-~

It

Jim(p) = Z wily(rp) = ym(tis P)I,

i=1

with w; = 1/0;. Such a weighting makes w;[y(t;) — ym(t;, PO (=1, ..., ny) iid.
according to a Laplace law with zero mean and unit standard deviation. When all o;'s
are identical, an unweighted least-modulus estimator should be used (w; = 1). 0

EXAMPLE 3.6: stationary uniform scalar noise

Assume that the output satisfies
)’(fr) =)’m(fu P*) + Ejf, i= l, e, Ny,

where &; belongs to a sequence of independent random variables, uniformly distributed
over the interval [—a, al, i.e.

1/(2a) if lgjl < a,

0 otherwise.

Te(Ep) = {

The likelihood of the observations y5 is then

Ty(ySlp) —{1’(241)”1 ifly(t) —ymUi PN <Sa,i=1, ..., m,
’ =

0 otherwise.

Any ’[\) such that ly(#;) — ym(t, ﬁ)l a(i=1,...,n) is therefore a maximum-likelihood
estimate of p*. Even is the model structure ts globally identifiable, the sel of all
maximum-likelihood estimates of its parameters is no longer a singleton ppy). It is now a
nondenumerable set of vectors, possibly empty if the hypotheses on the noise are not
satisfied. Such set estimators will be considered in more detail in Section 5.4,

Should one wish to pick an element out of this set, one could use the rule

Pmm = arg min _max Iy(t;) = ym(ti, p)I
Pmm = arg b lSiSlll) i) — Ymlli, P

This is the minimax or L., estimator, introduced by Laplace in 1786. It makes it possible
to avoid fixing the value of the error bound a priori. The smallest value of a consistent
with the data and model structure is given by

A A
Amin = max  y(#) = ym(t, Pmm)l.
<i<imy
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This approach trivially extends (o the vector case. One can also consider a weighted L.,
cost,

Prmm = arg min _ max wi V(1) = ym(ri, P
Pmm gplSiSnllV' YmlZ, P)I.

P A . o . .
Computing Pmm corresponds to a constrained optimization problem, since

A .
Pmum = arg min x,
) p
under the constraints

X+ wi [y = Ym(ti P)] 2 0 and x —w; [y(1}) - ym (4, p)] 2 0.

When the model structure is LP, this is a linear-programming problem, and Prmm
can be obtained recursively as the data are collected (Sections 4.3.4.1 and 5.4.1.3). 0

3.3.2 Output-additive dependent random variables

So far, the output was assumed to be additively corrupted by a sequence of independent
random variables. Now we have seen in Section 2.4 a family of discrete-time models,
commonly used in practice, for which the output noise results from passing a sequence
of independent random variables through a filter that destroys independence. For such
models, a prediction error can be defined that corresponds to a sequence of independent
random variables when the model paramelers are equal to p*. This will allow the
application of the results of Section 3.3.1. Consider the Box-Jenkins parametrization

¥(0) = F(q, pHn@) + n(n),
where

0 = Gg, p")e().
F and G are rational functions of ¢g=1, G is stable and with a stable inverse, the first
entry of the impulse response of G and G-! is equal lo onc and £(1) belongs to a
sequence of zero-mean independent random variables. The results for ARX and

ARMAX models and their variants will be obtained by specializing F and G.
Since (1), given by

&) = G~ (q, P () - Flg. pHu(n],
belongs to a sequence of independent random variables, we choose
ep(t, ) = ¥(1) = Nlt=1, p) = G- (g, )1} = F(g, pIu(t)]

as the prediction error, so that
ep(t, p*) = £(1).

The one-step-ahead prediction of the output is given by
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Mtlt=1, p) = G-(q, p)F(g, pu(r) + [1 - G- (g, p)IV(D).

Since the first entry in the impulse response of G~! is equal (o one, this is indeed a
prediction of y at time ¢ from its past values.

REMARKS 3.2

— Computing prediction errors with the help of the previous formula would in
principle requirc knowledge of the input and output prior to the initial time. These
initial conditions are usually assumed to be zero, which is appropriate for most
practical applications, provided that the filters F, G and G-! are sufficiently stable.
To recall the approximation made, one then speaks of conditional maximum
likelihood (conditional on the assumptions aboul the initial conditions).

— Section 3.3.1 corresponds to the particular case where the prediction error is the
output error, which belongs to a sequence of independent random variables if

p=p" 0

Since eq(t, p*) belongs to a sequence of independent random variables, a
(conditional) maximum-likelihood estimator of p will be obtained by substituting the
prediction error for the output error in the approach described in Section 3.3.1.
Depending on the distribution considered, various criteria will again be obtained (least
squares, least modulus, minimax...).

EXAMPLE 3.7

Consider the system described by Figure 3.1, where F(q, p*) is assumed to be stable
with a stable inverse.

E(1)

Il(’) F(q’ p*) — y(f)

Figure 3.1. LI system, with an input-additive random perturbation
Since the system is LI, the effect of the noise can be propagated to the output lo get the
equivalent scheme of Figure 3.2. The one-step-ahead predictor is therefore obtained by
replacing G(q, p*) by F(g, p*) in the previous general formula:

Y(tl-1, p*) = F-Y(q, p*)F(g, pHu(n) + [1 - F-1(g, pHIy(),
= u(t) + y() - F-Ygq, p")y().

The associated prediction error does satisfy

ep(t, p*) = y(1) = =1, p*) = F-H(g, p)y(0) — u(t) = &(1),
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as it should. Since F-1(g, p*)y(1) is the noise-corrupted system input, ep may be called
the input error (Figure 3.3). 0

&) —| F(q,p")

ut) ——s  F(q, p") AL0))

Figure 3.2. LI sysiem equivalent to that of Figure 3.1, with an outpul-additive perturbation
REMARKS 3.3

— Transient errors due to ignoring nonzero initial conditions have again been
neglected.

— The maximum-likelihood approach led us to take as the error a signal that would
become a sequence of independent random variables if p = p*. This could be

extended to more complex models (e.g., non-LI). 0
E()‘)
u(r) Fig.p*) (1)
F-lg, p*) |
+
&t p*) = &)

Figure 3.3. Input error

3.3.3 Properties of maximum-likelihood estimators

Assume the following hypotheses are satisfied:

HI: the data are generated by a model M(p*) (no characterization error);

H2: M is globally identifiable under the experimental conditions considered;

H3: the perturbations and noise influencing the data can be modelled as i.i.d. random
variables, possibly passed through all or part of model M(p*);

H4: the set (y® | wy(ySIp) > 0} does not depend on p; the second derivative of the log-
likelihood In er(yslp) with respect to p exists, dnd is continuous in p, uniformly
in yS (series expansion up to second order about p* is possible);
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HS:

S 2 S
; {,mgyi_y_'_m”(mand g2 mOte) )y
ysip* Pi yslp* dpidpy

Maximum-likelihood estimators then have the following attractive properties (see
(Fourgeaud and Fuchs, 1967, chap. 14; Kendall and Stuart, 1967; Goodwin and
Payne, 1977; Sorenson, 1980) for more details).

PMLI: They are consistent:
¥ 6> 0, prob(Ilpmi — p*ll = 8) — 0 as ny— oo,

PML2: They are asymptotically efficient, i.e. there is no consistent estimator with a
smaller covariance as ng — oo,

PML3: They are asymptotically Gaussian and unbiased, i.e. the distribution of pm)
tends to A{p”, F-1(p™)) as n, tends to infinity, where F is the Fisher information
matrix, to be considered again in Chapter 5, given by

LAY i s _9_ 5
Fp™) = y{_llp { op M Ty(y*ip) pT In my(y ip)], p=p*

02
=— E {2 _in m(vsl ]
yslp {apapT n y(y p)}l p=p*

REMARK 3.4

HS5 can be replaced by the following more restrictive condition (Goodwin and Payne,
1977, Sorenson, 1980):

H5": F(p) is positive-definite for any p. 0

All previous properties are asymptotic, i.e. true when the number of measurements
tends to infinity (by repetition of sets of measurements such that HS or HS’ is satisfied).
In practice, this is never the case, and the main interest of these results is to show that
maximum-likelihood estimators have satisfactory behaviour under idealized conditions.
Except when the model structure is LP and the noise Gaussian (Sections 5.3.1.2
and 5.3.1.3), there are few theoretical results on the properties of maximum-likelihood
estimators when data are scarce (Section 5.3.3).

A last property of maximum-likelihood estimators is of very great practical interest.

PML4:If g 1s a function of p only (which may correspond, e.g., to a reparamet-
rization), \/{/ilh dim g £ dim p, then a maximum-likelihood estimate of g is given by
8m1 = g(Pm) (invariance principle). 0

To compute a maximum-likelihood estimate of any quantity that can be deduced
from the knowledge of the value of p, no other specific estimator is therefore needed. A
maximum-likelihood estimate associated with a new parametrization may thus be
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computed from Py). To simplify computation, it is therefore legitimate to use another
parametrization than that corresponding to the actual parameters of interest.

3.3.4 Estimation of parameter distribution in a population

Consider observations y(i) = [¥;(d), ..., y,,-l(i)]T performed on various systems (or
individuals) §; (i = 1, ..., ng) which only differ by the value of their parameters,
raspectively p(l), ..., p(ns) The distribution 7 (p) of p within this population of
systems is to be estimated from the obselvallons y(1), ..., y(ng). Estimating such
mixture distributions has received much attention, because such an approach can be
used in a number of situations via a Bayesian formulation (see, e.g., (Chernov,
Ososkov and Pronzato, 1992) for an application to the estimation of the disintegration
points of nuclear particles from noisy observations of their trajectories). It is of special
interest in biology, where knowledge of the distribution of parameters in a population of
individuals makes it possible Lo

— estimate the parameters of each new individual in a Bayesian way, which requires
few measurements since the number of data points 1, can then be lower than dim p
(Thomson and Whiling, 1992),

- regulate drug concentration with the help of stochastic control methods (Jelliffe and
Schumitzky, 1990; Bayard, Milman and Schumitzky, 1994; Kulcsar, Pronzato and
Walter, 1994), :

— optimally design data collection on the next individual in the sense of the mean over
the population; see Section 6.4.2 and (Pronzato, Walter and Kulcsar, 1993).

The remainder of this section is relatively technical and could be skipped during a
first readmg The likelihood of the observations y(i) for a distribution m, of the
parameters is given by

T, (y()Iy) = er (y()Ip),(p)dp.

Assuming that the measurements are performed independently on the various
individuals, one can also write the likelihood of the observations

y=[ly(DHT, ..., y(ny)TT
as
1

Nmy) = my(ylm,) = H J m(y()ip)my(p)dp.
=1 P

Define the atomic likelihood vector v(p) as the vector of the likelihoods of the
observations on each individual for the value p of the parameters:

v(p) = [y (y(DIp), ..., m (y(n)IPT,

and consider the function defined by p — v(p). Its graph @ corresponds to all possible
values of the atomic likelihood vectors. By an abuse of notation, define the niixture
likelilood vector v(7m,) as



V(1) = [my(y(DImy), ..., my(¥(mlm)IT;

v(7,) is therefore a linear combination of vectors v(p) and belongs to conv(G), the
convex hull of G. Then

Ty

q/tﬂ"p) = H l’,-(]tp),

i=1

with vl(n'p) the ith component of V(7). A max1mum likelihood estimate 7, of 7, is a
maximizer of Am,). The convergencc of 7, towards the true distribution of the
individual parameters p(i) will not be considered here (Kiefer and Wolfowitz, 1956;
Leroux, 1992).

Uniqueness of v(7,) is achieved if G is compact (Lindsay, 1983). It therefore
suffices that all =, (y(z)IIJp) belong to a closed and bounded set, which will usually be
true in practice. F¥orn Caralheodory s theorem (Berger, 1979, 1987), any point on the
boundary of conv(G), where V(ﬂ.'p) lies, can be written as a linear combination of at
most ng vectors of G. A discrete optimal dmmbut]on can therefore be found, with at
most ng support points. The uniqueness of v(7,) does not imply that of ﬁ'p which is
obtained if v(7,) belongs to a support hyperplane of conv(@) that intersects G in a set
of affinely independent vectors (Lindsay, 1983). Another condition will be given in
Remark 3.5.

EXAMPLE 3.8
Consider two individuals with respective (scalar) parameter p(1) = [ and p(2) = 1.2.
Eight measurements are performed on each individual, according to

yk(l) =10 CXP(*p(i)lk) + Eik’ i=1,2 k=1,..,8,

where the E;,’S are i. i.d. A40, 1) and 1, = 0.5k (k=1, ..., 8). Figure 3.4 presents
the graph G of thc likelihood curve (solid line) and lhe boundary of its convex hull
(dashed- dol) v(%,) is indicated by a cross. The locus of all v's such lhat

V Vg = vl(np)v (np) is ll’]dlCﬂ[Cd by a dotted line, which shows the optimality of 7rp
The discrete distribution 7, has two support points p! = 0.83 and p2 = 1.19, with
respective weights 0.4928 and 0.5072. 0

The algorithms of Chapter 4 do not apply to such infinite-dimensional Rrob]cmq
and we shall now indicate specific algorithms for optimizing the distribution 7;, which
amounts to maximizing the concave function In 'I/(mp) over a convex sel. This ploblem
is quite similar to approximate experiment design (Section 6.2.2).

The derivative of In ‘I«(Irp) at 7[,11 in the direction 7[1% can be wrilten as

ng

my[y(D)Im3]
m, mp) = i In (1 - )mh + ard] - In Umh)} = ), =——0-
P 0= s a{n 101 - oo+ o P 21‘ 7, [y()ll]

- ng.

If 7rl2) is the discrete distribution &(p — p,,) that assigns a unit weight to the point p,, then
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. 8(p - Po)] = d(mh, po) — 1,

N
A [y (Dipg)
d( P pn) = ~L—'—'—_———
,Zf [y (Himh)

with
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Figure 3.4. Illustration of the optimality of ﬁp (Example 3.8)

It has been shown (Lindsay, 1983) that er is a maximum-likelihood estimate of 7, if
and only if

max n'( . P) =g
p

(compare with the Kiefer and Wolfowitz equivalence theorem, to be presented in
Section 6.2.2.3).

A classical algorithm that converges globally (i.e. from any lmlldl distribution) relies
on the sequential determination of polential support points ofir It is similar 1o the
Fedorov-Wynn algorithm presented in Section 6.2.2.4.

Step 1. Choose a positive tolerance € << I, and some discrete initial distribution
n "

]T]]:)(p)zzllfs(p - pf), with Z Hi=1and g; 20,i=1,.., n
=] =]
Setk=1.
Step 2: Compute p* = arg max d(fcl’_;', p).
p

Step 3: 1f d(n: , p*) — ng < & then stop. Else set

TP, ) = (1 - &)mi(p) + ad(p ~ p*),
and find
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ot =arg max WUmEt).
gDde[(),]] 711"5

Set 77.]‘;*'(p) = 71’[(;*([’» at), increment k by one and go to Step 2.

This procedure has the disadvantage of introducing a very large number of support
points at Steps 2 and 3, whereas the optimum can be obtained with at most 2, points.
Mallet (1986) suggests an algorithm that makes it possible to limit the number of
support points of the generated distributions 7. Note that the weight allocated to each
new point p* is removed from all support points of 7:{\, Exchange algorithins are
usually more effective, which remove weight from a single support point of 7:# and may
therefore replace some support point of 7 by p*. A comparative study of these
approaches can be found in (Bohning, 1983). See (Bdhning, 1989) for monotonically
convergent exchange algorithms. A detailed proof of the convergence of an exchange
algorithm in the context of experiment design is given in (Huang, 1991). Finally, a
particularly efficient modification is to replace the optimization with respect to o at
Step 3 by a multivariable optimization of the weights y; allocated to the support points
of ﬂi‘:;"' (i.e. to those of rt‘r‘, and to the point p*), under the constraints g; >0, ¥,; i = 1.
This amounts to the maximization of a concave function over a convex set, Analytical
expressions for the first and second derivative of the cost are easily obtained (Bohning,
1989), which permits the use of a constrained Newton algorithm (Section 4.3.4.5).

REMARK 3.5

A sufficient condition for the uniqueness of the dislribulionA 7, can be deduced
from the necessary and sufficient condition for the optimality ofﬂrp FMallcl, 1986). Le@
7, be another possibly optimal distribution. It can be shown that its support points p’

(I=1, ..., n) satisfy d(7,, p') = 1. Let Ji; be the weight allocated to p'. Since v(?rp)
is unique, ﬂy[y(k)li'p] = ny[y(k)llrp], (k=1,..., ny,ie.

n

Zl i myly(I] = my[y(OiR,], k=1,.... n,

i=

It is trivial to check that the solutions of this set of equations for f; satisfy

A necessary and sufficient uniqueness condition is therefore that the previous set of
equations has a unique solution for the 7t;'s, under the constraints 7t; 2 0
(i=1, ..., n). A sufficient condition for uniqueness is thus that this system has a
unique solution even when the sign constraints are not taken into account. 0

Another family of algorithms aimed at building 7t derives from the Expectation-
Maximization (EM) algorithm (Dempster, Laird and Rubin, 1977). We shall only give
an outline of the method; more details can be found in (Laird, 1978; Redner and
Walker, 1984; Schumitzky, 1991).

Consider a discrete distribution 7z, allocating weights f; to n support points pf (with
n 2 n, to ensure the reachability of the optimal distribution). A transformation T'is
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defined, such that H(m,) = m, with support points p’f and associated weights i} given
by

g

pri= g max - alply(e), 7y In 7y (ol
k=1

g

1 ,
=g Z, x[p'ly(k), mp],

where

. pimy [y()lpi]

a[p'ly(k), mp] = e
myly ()l

It can be shown (Schumitzky, 1991) that {7, > 'V(irr,), so repeatedly applying the

transformation 7 monotonically increases the likelihood. A stopping criterion for the

resulting optimization algorithm may be a test on the increase of the likelihood between
two iterations.

REMARKS 3.6

— The major difficuity of this approach is the determination of the support points p'f at
each iteration. This difficulty disappears if these support points are imposed a priori,
so that the transformation Tonly operates on the weights p;.

— The same type of algorithm applies for continuous distributions 7, {more precisely
for distributions such that their measure is absolutely continuous with respect to the
Lebesgue measure). The transformation T'is then defined by X(m,) = 7, with

g
, !
m5(p) = ;;LZ{ mplply(k), m,],

where
[y (K)lplm,(p)

mplply(k), 7,1 =
P e Iy (i)
Again, this transformation ensures a monotonic increase of the likelihood
(Schumitzky, 1991). This procedure can be initialized by some marginally
informative prior law, such as a uniform distribution. Computing iry[y(k)lzrp]
requires a multidimensional numerical integration. Although the distribution
obtained at each iteration is continuous, it converges towards a discrete distribution.
— No general global convergence property is known for this type of algorithm
(Boyles, 1983; Wu, 1983). One is thus advised to check that the necessary and
sufficient condition for the optimality of ?rp

mpax d(?rp. P) = ng

is approximately satisfied when the algorithm stops.
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— The same type of algorithm has been suggested (Silvey, Titterington and Torsney,

— A method for the estimation of laws relying on the Gibbs sampler has also been
proposed. Its presentation exceeds the scope ol this book and can be found, ¢.g., in
(Gelfand et al., 1990). 0

The approaches described in this section are nonparametric. They do not assume any
particular structure for the distribution to be estimated. Various parametric approaches
have also been proposed to estimate distributions in the context of biology (especially of
pharmacokinetics), where interindividual variability is vusually very high; see, e.g.,
(Steimer et al., 1984), and the NONMEM method, for NONlinear Mixed Effect Model,
(Sheiner and Beal, 1980). These approaches estimate the mean and covariance of the
distribution (which describe it completely only if it is Gaussian). Some ol them can be
implemented recursively, unlike the previous nonparametric approaches. The data
collected on a new individual can then be used to enrich the description of the
population, without having to proceed to a new estimation based on the data collected
on all individuals (Mentré, 1984; Mentré, Mallet and Steimer, 1988).

3.3.5 Nonparametric description of structural errors

So far, the data were implicitly assumed to have been generated by a model M(p™). The
robustness of parameter estimation with respect to errors in the model structure M
(which amounts to considering the presence of deterministic errors in the observations)
is taken into account by the parameter-bounding approach of Section 5.4, and also
considered in Section 6.6. We shall nevertheless first present a nonparametric approach
that describes deviations from the assumed model as realizations of a stochastic process.
The maximum-likelihood method will be used to estimate the characteristics of this
process.
Assume that

&) =rTENp* + (&) + (&),

where &/ is a vector characterizing the experimental conditions under which the ith
datum y(&) has been collected (including, e.g., the time ¢;), r(E/) is the corresponding
regressor vector of an LP mode! (Section 4.1.1), and the &&fy's (i=1, ..., n)) are
i.i.d. A(0, o). The variable @ denotes a scalar Gaussian process, assumed to be
independent of the g(&/)’s, with zero mean and covariance defined by

cov[a(&D), a(EN)] = ofic (€L, EX).

The deterministic deviation from the LP model (considered as an approximation of
reality) is described as a realization of the process @. This approach is known as
kriging, after the work of D.G. Krige (1951) on the gold deposit of the Rand, in South
Africa (Matheron, 1963). Detailed presentations of the method can be found in (Sacks,
Schiller and Welch, 1989; Sacks ef al., 1989). See also (Blight and Ott, 1975; Currin ¢¢
al., 1991) for a Bayesian formulation.

Various correlation structures can be used for the process @. The deterministic
nature of the structural error translates into c(E, &) = 1 for any E, so that two
independent measurements under the same operating condition & have the same
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deviation @(E). It seems natural to choose cy(Ef, EF) as a decreasing function of
IE! ~ EFlla, such as

co(Ef, EF) = exp(-B lIEi - EFIL), 6> 0,
or

et ) =exp(—6ll§‘—§ki|%), 6 >0,

which corresponds to a smoother process.

A linear prediction of the mean response E¢{y(§)} to operating conditions & which
have not yet been used can be wrillen as

YE) =¢T(E)ys, with ys=[yEl), ..., pE)]T.

Denote mathematical expectation with respect to @ and € by E{.}. The mean-square
error of the linear predictor is given by

MSE(p*, ¢, §) = E{[cTys - E¢{y(E)} 12} = E{[cTys —rT(E)p* - a(§)]2)
=[cTRE)p* - rT(E)p"12 + E{[cT(0(E) + &E)) - a(§)12),
where
o(E) = [wEh), ..., a§]T,
EE) = (g€, ..., eEMIT,
E=( .., emT,

and R(E) is the matrix with ith row equal to rT(E/). In what follows, the dependence on
Z will be omitted, and ® and € will stand for the vectors @(Z) and &(2), whereas ax§)
and £&) will be scalars. One can easily show that

MSE(p*, ¢, E) = [[cTR ~ rT(E)Ip*]2 + cTCye + oGy ~ 2 Ep[@TeaxE)),

with
2
Cy = o2y + 0 Cop

where C,, is a matrix the (i, k) entry of which is ce(&f, F). For the prediction to be
unbiased, the following condition will be imposed

¢TR =rT(E).

The same condition could be obtained from a minimax-type argument: the maximum of
MSE(p, ¢, £) over p is infinite if it is not satisfied. The minimization of MSE(p, c, E)
with respect to ¢ under the constraint ¢TR = rT(E) leads, via the use of the Lagrangian,
to

ME) = eT(E)ys = rTE)D + Ewl w(E)T)C5(ys - RP),

where P is a least-squares estimate with the weighting matrix ;!
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p = (RTC;R)-IRC;ys.

Note that Eqy{ e{E)T} can be computed as an additional row of the matrix oﬁ)Cm. The
mean-square error of this prediction is given by

) 0 RT -1 r(&)
MSE®) = 0~ 7€) Eol@@T) ][R C } [E (a(E) 1}’
y ® ©

which can be used to derive a confidence interval for the prediction.

This method can for instance be used, in the context of computer experiments, to
predict the response of a deterministic model that can only be evaluated by executing a
complex computer code (Sacks et al., 1989; Currin et al., 1991; Welch ef al., 1992)).
It is then possible to predict the code output under operating conditions (input variables)
E from runs performed under conditions &/ (i= 1, ..., n,). The interest of this
approach is clear when one run requires several hours of supercomputer time. If the
model is deterministic, then 6% = 0, and MSE(E/)=0 (i = 1, ..., n)). The prediction
is then an interpolation of the data.

EXAMPLE 3.9

Consider a deterministic system that produces the data

30

—, =1, ..., 10,
(1 +n2 ’

yO=r+2+

to be described using the simpler LP model
Ym(t, P) = pit + pa.

Assume that the covariance for the systematic error between y and y can be written as
coltis 1) = exp(=6 lt; — 119).

Figures 3.5 and 3.6 respectively illustrate the behaviour of the prediction for 8 =0.5,
when ¢ = 1 and ¢ = 2. Since there is no measurement noise, the interpolation of the
data is perfect. The uncerlainty on the prediction increases rapidly as soon as the dala
are extrapolated (f < 1 or f > 10). The higher ¢ is, the more regular the process
becomes, and the prediction is smoother in Figure 3.6 (differentiable everywhere) than
in Figure 3.5 (nondifferentiable at observation points). Finally, the confidence intervals
(dashed lines) are obtained here for an arbitrary choice of the parameters & and g of the
correlation function ¢, As indicated below, these parameters can be estimated in the
maximumn-likelihood sense. 0
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Figure 3.5. Prediction for ¢ = 1: (—) prediction, (—. ) true response,
(- - -) three-standard-deviation interval, (*) observations
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Figure 3.6. Prediction for ¢ = 2: (—) prediction, (—. ) true response,
(- - -) three-standard-deviation interval, (*) observations

The parameters p, o% 012,) as well as those of the covariance matrix C, (@ and g in
Example 3.9) can be estimated by maximum likelihood, since

|
~ [(2mmdet C 112

| o _
my(y°lp, 0%, 6, Cyp) exp [- 5 (v5 - Rp)TCy(y* - Rp)].

When o% = (, following the same procedure as in Example 3.4, one gels
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P(Cy) = (RTC/R)-IRTC]ys,
)| !
3(Co) = - ¥ - RP(CITCHIy* ~ RB(C)),

A
and C, is obtained by minimizing In det [’c‘r&,(Cm)Cm]. Specific algorithms for this
problem can be found in (Welch er al., 1992).

EXAMPLE 3.9 (continued)

A numerical optimization of In det (crm(Cm)Cm) with respect to 8 and q, using the
Powell algorithm presented in Section 4.3.2.6, yiclded 8 = 0.108 and 4 = 1.99. The
constraints 8 > 0 and C, positive definite were introduced through exact penalty
functions (Section 3.6.2). Figure 3.7 illustrates the behaviour of the corresponding
prediction.

30

 (rue response
I'd

%% prediction

3-standard- dcvmtlon
interval .

Figure 3.7. Prediction with 8 and g estimated by maximum likelihood:
(—) prediction, (—. ) true response,
(- - -) three-standard-deviation inferval, (*) observations

REMARK 3.7

Provided that the covariance matrix C,; is fixed a priori , the measurement (or
simulation) points that define & can be chosen so as to obtain the best possible
prediction, for instance in the sense of one of the following costs

— the mean-square error integrated over the feasible domain  for & (Sacks and
Schiller, 1988; Sacks et al., 1989):



MSE> = [ M8EE®) at,
£

9

- the maximum mean-square error over ¥ (Sacks and Schiller, 1988; Sacks et al.,
1989):
A A
MSEmax = max MSE(&))
Eek

— entropy (Shewry and Wynn, 1987, 1988).

This is a problem of experiment design, similar to those considered in Chapter 6. Note
that the design criterion depends on the parameters of the matrix Cg,, actually unknown
before the measurements have taken place. See Section 6.4 for possible approaches 1o
overcome this contradiction partly.

3.4 Complexity

Let M be a set of model structures that compete for the description of a given
phenomenon,
M={M;,i=1,..,nn}.

It may correspond, for example, to structures of the same type with increasing
complexity. With each of these structures is associated a parameter vector p’ belonging
to some prior feasible set Fi. Akaike’s AIC is the most well known of the criteria that
can be employed to select the model structure M and estimate its parameters on the basis
of statistical considerations; see, e.g., (Ljung, 1987). It suggests choosing

(M, p)=arg min  min_juic(M;, p),
Mie M piePi
where

) 1 . .
Jaie(Mi, p) = n (= In [my(ySIp")] + dim p!].

When the model structure is fixed, it corresponds to maximum-likelihood estimation
of its parameters. Conversely, if one hesitates between several structures, the most
complex ones (in the sense of the number of parameters to be estimated and thereby the
number of degrees of freedom of the model) are penalized by the term dim p. Many
other criteria for choosing the model complexity rely on this type of penalty function
and only differ by the way in which dim p is introduced. One may quote the FPE
(Final Prediction Error) criterion, which amounts to minimizing

1 + (dim Ei)/rzl

; - piy=1n [— Sp! -
jrpc(M“ p) 11‘1 [ ln [ﬂy(y ]p )]} + ln] _ (dim pl)/’l[ '

and the BIC (Bayesian Information Criterion), which corresponds to minimizing



Jbic(Mi, p y=In{-In [ﬂy(yslp’)]] + dim pl ]n "l

Hypothesis testing can also be used. For a synoptic presentation of various available
criteria, see, e.g., (Soderstrom, 1977, Veres, 1991).

EXAMPLE 3.10

Assume that the data satisfy
y(t) = ym=(t}, p*) +€;, i=1,...,m,

where ym* is the output of the model with the correct structure, for the true value p* of
its parameters, and the g;'s are i.i.d. A{0, %), with X unknown. The vectors y, yy, and
&; are ny-dimensional. As in Example 3.4, the log-likelihood can then be wrilten as

In & ( Sl ) =—- 1 ”'l In 27[ - "Ll In det Z
y¥*IPe ) )
Un

= L 150 - ¥t PITEY(D - Y, DI
z—l

where pe is an extended vector of unknown paramelers consisting of p and the entries
of the upper triangular part of X. The AIC cost function can therefore be written as

JaicM, pe) = 5 ln 2n +5 ln det X
m
1 1,
o 2{ (1) - ym(ti, DITEHy (1) — ym(ti, P)1 + e dim pe.
i=

Assume first that the model structure is fixed. The dllTlE:llSlOI‘l of pe is then constant,
and pc is given by the maximum-likelihood estimator (pm;, f}m]) already obtained. The
AIC cost function becomes

. n 1
Jaic(M, ﬁcml) = ‘2l In2nx+ 5 In det ﬁml
n

1 - 1 ..
o zl, [y(1) — Ym(ti, Pm)]T ﬁmll [y(1) = ¥m(ti, Pmi)] + " dim pe,
=

to be minimized with respect to the structure M. The third term on the right-hand side
can be computed as
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n

Ql,ﬂ z [y(t) — ym(ti f’ml)]Tﬁﬁall[Y(ti) - Ym(tis Pml)]

l
i trace { 2 15(6) = Yt BradIYCE) - Yt Bro) T )
=1

1 n
5 trace (ﬁ'.m]ﬁm) = lracc I Ty

"y

It is thus independent of the structure considered. During the structure selection phase,
it therefore suffices to find M that minimizes

) 1 l .
Jaic(M, ,[\)le) =3 In det ﬁml +—dim pg,
= 1t

where
ny

l A A
R n Z [y(15) = Ym(ti, PmDIY(t) — Ym(ti PmD)]T. 0
i=1

REMARKS 3.8

— As already noted in Example 3.4, P can be obtained in Example 3.10 by
minimizing
ny

Jmi(p) = In det Z [y(t) = Ym(t, PIYD) = Ym(ti, PIT,
i=1

independently of Z. The choice of M can therefore be made by minimizing
. A 1. A I ..
Jaic(M, Peg) = EJmI(Pml) + n dim pe.

It is therefore not necessary to consider T explicitly. Moreover, the number of
unknown parameters in X does not depend on the structure, so dim p. may be
replaced by dim p. When the output is scalar, the cost becomes

n
. ! 1.
Jaic(M, ﬁcnﬂ § Z [Y(t1) = Yen(ti, Pm)]? + " dim p.
=1

— Criteria based on statistical considerations are not the only ones that can be
employed to select the model structure to be used. An especially telling test is to
compare the performances of the best models obtained for each structure on
validation data not used to estimate the model parameters. Chapter 7 will present
other methods that can be employed to eliminate model structures by revealing their
defects.
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— Data quality is an essential ingredient for the selection of a suitable mode] structure.
Section 6.6.3 presents tools to design an optimal experiment to collect data to
discriminate between competing model structures. 0

3.5 Bayesian criteria

Maximum-likelihood estimation considers p as unknown but with a single actval value.
Bayesian approaches instead consider a distribution of possible values for p. Before the
observations are made, p is assumed to have a known prior probability density mp(p).
The joint probability density of y5 and p satisfies

7(ys, p) = my(y*Ip) mp(p) = mp(ply®) my(y*).

The posterior probability density for p (taking the data y® into account) is therefore
given by

Tp(plys) = Ty (yIp)Tp(p)
my(y®)

This is Bayes' rule, which gives its name to this class of estimators and quantifies what
has been leamnt by collecting data. Since yS is a vector of known numbers, 7, (y$) is just
a normalization constant ensuring that 7m(ply®) is a probability density,

Ty (yS) = f Ty (y¥Ip) p(p)dp.

To compule the probabilitly density of p conditional on the data y5, one therefore
only need know how to express my(ySIp) by taking advantage of the information or
hypotheses on the noise (as was done in Section 3.3) and to have mp(p) at one’s
disposal, which expresses prior knowledge on the parameters. This knowledge may
result from previous measurements on the same process or on similar processes
(Section 3.3.4). The maximum-entropy approach (see, e.g., (Mohammad-Djafari and
Demoment, 1988, 1993)) makes it possible to choose a distribution 7p(p) that is
consistent with prior knowledge but does not introduce extraneous information. It
suggests choosing the prior probability density Tp by maximizing the (Shannon)
entropy

Ay = - [ p(p) In [mp(p)] dp,
P

under the constraints expressing the available prior information. The optimal density is
obtained by a Lagrange-multiplier technique. If, for instance, only the prior mean pg
and prior variance £ of p are known, the maximum-entropy principle leads to a
Gaussian prior A{pp, £2). If the only prior information on the parameters is that

Pmin < P < Pmax;

the optimal prior density 7, will be uniform on the box thus defined. See also (Box and
Tiao, 1973) for the notion of uninformative prior.
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Taking advantage of the posterior probability density m,(ply*) is not always easy,
and it is oﬂen desmlble to obtain a point estimate of the parameters, i.e. a unique
numerical value p. The next two sections present rules that may be used for this
purpose.

REMARK 3.9

When the prior distribution is discrete, applying Bayes’ rule becomes particularly
simple, because only the weights (discrete probabilities) associated with the support
points need be updated. The computation of expected values is also drastically
simplified, since integrals are replaced by discrete sums. This is an additional advantage
of the nonparametric methods for estimating the distribution of parameters in a
population presented in Section 3.3.4, which lead to discrete distributions. 0

3.5.1 Maximum a posteriori

Maximum a posteriori (or MAP) estimation searches for f)m;,p that maximizes

‘ Ty (Y5 Ip) mp(p)
(p) = my( |y5)=-—y—————.
Jmap p(P ,(5%)

As my(y¥) does not depend on p, this is equivalent to maximizing 1y(ySIp)m,(p), or

Jmap(p) = In my(ysIp) + In m5(p),

since logarithm is a monotonically increasing function. The first term of this sum is
nothing but the log-likelihood, and the second one expresses the prior information on
the parameters. It is thus easy to incorporate some (objective or subjective) information
on the possible values for p.

Under the hypotheses H1-HS (or HI-HS5") of Section 3.3.3 and the additional
condition

H6: my(p) is continuous and nonzero in a neighbourhood of p

the MAP estimator shares the asymptotic consistency and efficiency properties of the
maximum-likelihood estimator. It is also invariant under reparametrization. An
approximation for its non-asymptotic density when the measurement noise is Gaussian
can be found in Section 6.4.1.

EXAMPLE 3.11
Assume that the prior distribution of p is uniform on the box I? defined by
Pimin =pis Pimax: (=1, np.
For any p lhal does not satisfy these inequalities, mp(p) = 0 and In I[p(p) —oo, One is

thus sure that p,mlp will satisfy the constraints lhdl define P. For any p m P, mp(p) and
In 7p(p) have a constant finite value. Hence, if pm; belongs to P, p,mlp = pm1
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REMARK 3.10

This example does not provide any practical method to impose inequality constraints
upon p. Using the MAP criterion for that purpose would introduce discontinuities that
would strongly complicate its optimization. Methods to impose constraints upon p will
be presented in Section 3.6.

EXAMPLE 3.12

Assume that the prior distribution for the parameters is A{pg, ), with pgand Q
known. The prior mean pg may for example be a maximum-likelihood estimate of p
obtained from preliminary measurements, and the prior covariance £, which
characlerizes the uncertainty in pg, may have been obtained by one of the methods
described in Chapter 5.

The prior probability density {or the parameters satisfies

1
p(P) = [(2m)"e det Q)12 exp [- 5 (p ~ po)TQ~(p - po)}.
Up to a constant term, the MAP cost function can therefore be written as
. 1
Jmap(P) = In my(ysIp) - 5 (p — p0)TQ~1(p - po)-

Prior information is here incorporated by subtracting a quadratic penalty to the log-
likelihood. Regularization techniques, used, e.g., in image processing, also lead to
quadratic penalty functions, which can be given a Bayesian interpretation (Demoment,
1989). When

yS=Rp* +n,

where n is distributed A{0, X) (with £ known), ﬁmup is given by
Pmap = RTE-IR + Q-1)-HRTE-lys + Q-1pp). 0

A feature of MAP estimators is that the number of data points need not exceed the
number of parameters in order to ensure uniqueness of the estimate. Thus, for instance,
the number of measurements can be limited in clinical medicine for cost and patient
comfort, provided that reliable information is available on the possible values of the
parameters in the population which the patient belongs to.

3.5.2 Minimum risk

Assume that one can evaluate [he cost j(plp”) of believing that the va]ue of the
parameters is p when it is actually p*. Since p* is unknown, one can search for Pmr Lhat
minimizes the risk, defined as the mean of this cost over all possible values of p*,
conditioned on the observations y5. Provided that the integral exists, the risk is then
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Jm® = [ i(PIp*)my(p*lyS)dp*.
P

This risk must now be expressed as a function of the quantities that are assumed (o
be available. From Bayes’ rule

Jor(P) = [ itptp*)my(ysip*) mp(p*)dp*.

y( ) P
Since my(y®) does not depend on p, one can equivalently minimize

Jme®) = [ jpIp*)my(y5ip ) my(p*)dp*.
P

In this expression, j(plp*) expresses what is known about the aim of the modelling,
my(y¢lp*) expresses the information on the noise acting on the system and mp(p*)
expresses prior information on the paramelers.

REMARKS 3.11

— Minimume-risk estimation may lead to very complex computation, which are
drastically simplified if the prior distribution of the parameters is discrete, for the
computation of j(p) reduces to a discrete summation. Such will be the case, for
example, if the prior distribution has been obtained by nonparametric maximum-
likelihood estimation of the distribution of the parameters in a population
(Section 3.3.4).

— When the prior distribution is not discrete, evaluating jm(p) reqnires multiple
integralion (see, e.g., (Genz and Malik, 1980) for an integration algorithm), which
raises critical numerical problems. Stochastic approxxmatlon (Sections 4.3.8
and 6.4.3.2), however, makes it possible to compute Pmr without ever evaluating
Jmr(P)-

— Pmr may be very sensitive to the tails of the distribution 7m;(p) (Bard, 1974).

— Contrary to maximum-likelihood and MAP estimators, f)m, is not invariant to
reparametrization. 0

EXAMPLE 3.13

Assume that j(plp*) is quadratic in p
Jjelp®) = (p-pHTQ(P - "),

with Q a symmetric positive-definite weighting matrix. The risk is then
jme® = [ (0 - pHTQP - p*)mp(p*ly)dp*.
P

The minimum-risk estimator must therefore satisfy
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or, since Q is invertible,

Bre [ 7p(Ply*)dp = Pror= [ Prp(plys)dp = E{plys).
P P

Thus Py is the posterior mean of p whatever the non-singular weighting matrix Q.
From Bayes’ rule, it is given by

Ty(ysl
f)mr= Jp y(¥ D)T.fp([))d
Ty(y®)

The computation of Pmr therefore requires no optimization, unlike that of most
estimates. It can nevertheless be performed analytically in simple cases only. Assume,
for instance, that

ys=Rp* +n,

where n is distributed A{0, Z) (with known) and p is a priori distributed A{pg, 2)
(with pg and Q known). The estimator pmr then coincides with the MAP estimator
(Example 3.12). 0

EXAMPLE 3.14

Assume that the aim of the modelling is optimal control of a process, in the sense of
minimizing the cost function

1j

Jeontrol(U, P) = Z X TQ 1Xi+ l.l',ngll,’,
i=1

where Q1 and Q7 are predefined weighting matrices.

To minimize this cost with respect to the sequence u of controls v;, one needs to
know the parameters p of the model so as to predict the successive states x;
(i=1,..., nj) of the system. If the optimal control sequence ugp(p) compu(ed for a
model w1th parameter values p is applied to a system with parameter values p*, the
resulting deterioration of the control cost can be used as the identification cost

Jpip*) = jeontrol(Wopt(P), 1) “jconlrol(uopl(l’*), P Y
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3.6 Constraints on parameters

If the prior feasible space P for the paramelers is not all of R”p, it may become
necessary to force the vector of estimates to stay within P. Many approaches are
available, and we shall only consider here those that transform the problem into an
unconstrained one by modifying the cost function. Their advantage is compatibility with
the unconstrained optimization techniques that form the core of Chapter 4. Constrained
optimization will be considered in Section 4.3.4,

Note that when there are equality constraints (or active inequality constraints)
restricting the parameters to a subset of parameter space, the Fisher information matrix
used to characterize the uncertainty in the parameters (Section 3.3.3 and Chapter 5)

should be replaced by a rank-reduced Fisher information matrix (Gorman and Hero,
1990).

3.6.1 Equality constraints

Equality constraints can be written as
ce(P) = 0!

where ¢, may be a vector. They force the parameters to belong to a hypersurface of R"p
and express that they are dependent. Whenever possible, one should then reparametrize
the problem by expressing some parameters as functions of others so as to make all
remaining parameters independent. This usually simplifies optimization noticeably by
removing constraints and decreasing the dimension of parameter space to be explored.

When this approach is unfeasible, one can add a penalty function to the initial cost
function j(p) (assumed to be minimized). This penalty function will be zero as long as
ce(p) = 0, but will increase with violation of the constraints. One may, for instance,
minimize

Ju®) =)+ 1 eI,

where £ > 0. If j and ¢, are continuous in p, any unconstrained global minimizer \{),1 of
Jju will converge to a global minimizer of j under the constraints ¢; as 4 tends to infinity
(Polyak, 1987). Theoretically, convergence is thus achieved under very gencral
conditions. In practice, however, the larger p is the more ill-conditioned the
unconstrained optimization problem becomes. Under some conditions (Bonnans, 1987,
Hiriart-Urruty and Lemaréchal, 1993), a so-called exact penalty technique

Ju(P) = j(p) + i llee(p)il2

can be employed instead, which makes the constrained minimization of j possible by
unconstrained minimization of j,, provided that 4 is large enough (but finite).

Augmented Lagrangian techniques also permit the requirement that z should tend to
infinity to be dropped (Minoux, 1983; Polyak, 1987). The Lagrangian of the initial
oplimization problem can be written as



Lp, d) = j(p) + dTex(p),

where d is the dual vector of p. The Lagrangian formulation allows the elimination of
the constraints in the study of the theoretical optimality conditions. At the optimum,

oL
5—=0, 5a=9

and this point corresponds to a minimum with respect to p and a maximum with respect
to d. L(p, d) should therefore be minimized with respect to p and maximized with
respect to d. More rapidly convergent methods use an augmented Lagrangian that is the
sum of the Lagrangian and a penalty function

La(p. d, 1) = p) + dTee(p) + 5 o,

A possible technique consists at iteration i of performing one unconstrained
minimization with respect to p

i=arg min (p, di-1, ),
piwg min, L. dl g

followed by one step of maximization with respect to d by the gradient method
(Section 4.3.3.1)

di = di-1 + pee(p?).

If the second derivatives of the cost function j and constraints ¢, are Lipschitzian and if
1 is large enough (but finite), then convergence will occur whatever the initial value of
d. In principle, the larger i is the faster the convergence should be, but in practice ill-
conditioning limits the value that can be given to 1.

3.6.2 Inequality constraints
Inequality constraints will be written as
ci(p) <0,
where the ineguality is to be taken componentwise. The approaches to transform the

problem into unconstrained optimization are similar to those for equality constraints.
One may for example minimize

Ju®) = JP) + 5 1 i), I,

where the entries of c¢j(p)+ are equal to the positive parts of those of ¢ij(p). Such a
penalty function is said to be exrerior, because it only acts when the constraints are
violated. Here too, the theoretical requirement that u should tend to infinity results in
practical problems of ill conditioning.
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Such problems can be avoided by using an augmented Lagrangian and the algorithm
mentioned for equality constraints. For more details on the restrictions and advantages
of this very powerful method, see (Polyak, 1987). Exact penalty functions

Ju(p) = j(p) + ¢t llei(p)llz,

or interior penalty functions, which act before the constraints are violated, may also be
used.

Reparametrization techniques can also be employed. To impose for example
pi 2 0, one may replace p; by (exp ¢;) with g; & ]—oo, +eo[, which guarantees the
inviolability of the constraint. Similarly, replacing p; by (tanh g;}b — a)/2 + (a + b)/2,
with g; € ]—oo, +oo[, guarantees that a < p; < b.

REMARK 3.12

Incorporating the inequality constraints defining the prior feasible space for the
parameters into the optimization problem may be inadvisable. In the context of
parameter estimation, it excludes any better optimizer that might exist outside P and
might lead one to reconsider one’s model structure, data or prior feasible space. Tt
therefore seems reasonable to try unconstrained optimization first. If the resulting
optimizer P is in P, the problem is solvcd Otherwise, constrained optimization may be
tried, but oflen yields an optimizer P on at least one of the constraints. The associated
model M(P) is at the boundary of whal is acceptable, so the structure M is probdbly
unsuxlable The constrained opmmzcr P is more easily accepted if no constraint is active
at p (Figure 3.8). Conversely, in optimal control or experiment design (Chapter 6), it
is essential to take inequality constraints into account, because usually sorne of them are
active at the optimum. 0
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Figure 3.8. Constraints may lead to a local minimizer ﬁ strictly inside the feasible domain whereas
the global minimizer P is unfeasible



3.7 Robustness

An estimator is said to be robust if its performance does not deteriorate loo much when
the hypotheses on which it is based are not satisfied. One may, for instance, have
assumed that the noise was A{0, 62) when its actual probability density has heavier (ails
than a Gaussian distribution. The data may also have been conlaminated by outliers
resulting from errors in data collection or faulty sensors.

Some of the estimators considered so far show very liltle robustness. The definition
of robust estimators has given rise to many theoretical contributions (Launer and
Wilkinson, 1979; Huber, 1981; Roussecuw and Leroy, 1987), but we shall only
menlion some practical tools.

3.7.1 Robustness to uncertainty on the noise distribution

We have seen that if the observations satisfy
YD) = ym(ti, P + (1)), =1, ..., my,

where the sequence of £(1;) is i.i.d. with the probability density function 7, the log-
likelihood function can be written as

"

In my(yslp) = 2 In me[y(1;) — ym(tin P)1.
i=]

When 7 is reliably known, maximum-likelihood estimation asymptotically achieves

E_((Bmi =P )P - pHT) =F-1(p"),
yilp

as the number of data points tends to infinity. The Fisher information matrix can be
written as
M

+ ry= 9 P
F(p ) R-E) - I(T[E) ; ap [)m(’n p)]lp* ap’r Dm(tn p)]lp*a

where the scalar /() is the Fisher information

1 (dme(e)
I = —— | de,
(e} Jng(s) [ de ]2 £

D

with D = {g | me(€) > 0). It must, of course, be assumed that this integral exists.
Information matrices computed for various densities me only differ in I(zg). For
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instance, for {0, 02), I(1re) = 1/02. Asymptotically, the uncertainty in the parameters
will increase if the Fisher information decreases.

Assume now that ¢ is only known to belong to some family F. A minimax
approach may then be adopted (Huber 1981; Po]yak and Tsypkin, 1980; Tsypkin,
1983). It defines the robust estimator Py as the rpaxnmum -likelihood estimalor associated
with the worst possible noise distribution 7z in the sense of minimum Fisher
information:

A N
7e = arg min_ I(me),
meeF

i.e. as the best estimator in the worst case. Under some regularity conditions, ﬁr is
consistent, and the asymptotic covariance of the estimation error satisfies

E[(B; - pM)Y(Br— p)TI S F-1(p*, ).
Equality is reached when 7 = re, the worst case.

EXAMPLE 3.15

If F is the family of dlsmbutlons for which the Fisher information is defined and
me(0) = 1/(2a) > 0, then T[E is the Laplace distribution with zero mean and standard
deviation av2. The robust estimator obtained by this minimax approach is therefore the
(unweighted) least-modulus estimator

n

Pr = arg min z Iy(#;) = ym(ti» P)I.
i=1

Note that it is not necessary to know the value of a.

This very simple estimator also proves to be much more robust to outliers than least
squares, as evidenced, e.g., in (Venot et al., 1986). Two hundred data points were
generated according to

y(1) = 1000 exp(-0.012¢) + g(1), t=1, ..., 200,

with (#) belonging to a sequence of i.i.d. A{0, 20) random variables. Thirty five
outliers were then introduced, replacing some data points by zero, namely y(1) = 0
t € [10, 29] U [50, 64]. The resulting data set was used to estimate the parameters of
the model yp(t, p) = p1 exp(—pat). The unwcightcd least-modulus estimate is

= (964, 0.0l 17)T, reasonably close to p* compared to the unweighted least-
squarcq estimate Pis = (450, 0.0063)T. 0

EXAMPLE 3.16

If F is the family of distributions for which the Fisher information is defined and the
variance is finite,
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00
Jzzﬂg(Z)dZ < a2,

—00

then the worst distribution is Gaussian, with zero mean and constant variance, which
suggests using unweighted least squares. 0

REMARK 3.13

This approach to robustness still assumes that the noise can be described as a sequence
of i.i.d. random variables. Possible correlations and nonstationarities are therefore not
explicitly taken into account. 0

3.7.2 Breakdown point

A point estimator is a rule that associates an estimated value p(y®) with any given data
set y5. Assume that the prior feasible domain for the parameters is R”p. Let yo be the
data set obtained by replacing a percentage o of the data points in y$ by outliers. The
maximum bias of the estimator that can be induced by these outliers can be characterized
by

bias(a, P(.), y*) = max [H(ys) - p(yO)ll.
yO

The breakdown point of the estimator ﬁ(.) is the smallest value of « such that
bias(a, P(.), y5) = ==, For LP model structures, theoretical results can be established
(Rousseeuw and Leroy, 1987). A single outlier tending to infinity is enough to break
down least-squares, least-modulus and minimax estimators. Their breakdown points
therefore tend to zero as the number of data points tends to infinity. Now, under
sujtable experimental conditions, estimators exist with a breakdown point that tends to
50% as the number of data points tends to infinity. Such estimators are thus much more
robust to totally aberrant data points. This is the best achievable result. No reasonable
estimator (see (Rousseeuw and Leroy, 1987) for more details) can have a larger
breakdown point than 50%, because one could always arrange a majority of outliers in
such a way that they could be described by a model with the structure chosen, and these
outliers would then be preferred to the minority of regular data points.
One may, for example, employ the least-median-of-squares estimator

p = arg min med e2(t;, p),
P 1

where the residual e(z;, p) is for instance an output error
e(ti, p) = y(t)) — ym(ti, P).

This estimator systematically rejects the 50% data points that correspond to the largest
residuals (Figure 3.9), which makes it very robust to severe outliers, at the cost of
possibly rejecting significant data. Another possibility, with better asymptotic
efficiency, is to use the least-trimmed-squares estimator
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p=argmin Y, e2(1;, p),
iel

where I is the set of all-indexes i such that 2(t;, p) is smaller than or equal to the
median of the squares of all residuals.

Minimized by least-median-of-squares estimator

Ignored e2(t;, p)

lo
3
3
”
g
,

Sum minimized by
least-trimmed-squares estimator

Figure 3.9. Least-median-of-squares and least-trimmed-squares estimators

One drawback of the least-median-of-squares and least-trimmed-squares estimators
is that they may reject data points in such a way that a large part of the response of the
system is entirely ignored, which may result in a loss of identifiability. A bounded-error
approach will be presented in Section 5.4.2.2 that escapes this problem while keeping a
breakdown point that tends to 50%. This approach can even treat dala sets with a
majority of outliers, provided that these outliers are not describable by a model with the
structure chosen.

REMARK 3.14

When it is not known whether outliers are present, one could compare the results
obtained by least trimmed squares and least squares. If they turn out to be close, the
least-squares estimate is probably more accurate, as it is based on twice as many
samples. 0

3.7.3 M-Estimators
An M-estimator (Huber, 1981) '|5m minimizes the cost

ny

Jm(p) = Z ple(t;, p)).

i=1

The least-squares and least-modulus estimators are M-estimators, with p(e) = e2 and
ple) = lel respectively. Many other functions with a minimum at e = O can be
considered. One may thus use Huber’s cost function (Figure 3.10):

Le2 if lel < 6,
ple) = |
6 lel — 5 6% otherwise,
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where §is a threshold to be chosen. The resulting M-estimator therefore behaves as a
least-squares estimator for small errors and ,as a least-modulus cstlmator when the
errors get larger. Ljung (1987) suggests 6= A%, with 1 € 1 < 1.8 and & an estimate of
the standard deviation of the error that is robust to outliers:

mlf,:d {le(t;, p) ~ med [e(t;, p)]I ]
A 1
o= 0.7

We)

Figure 3.10. Huber's p and i (non-redescending M-estimator)

One may also use Tukey’s cost function (Figure 3.11):

4 6
%(ez_%g_ + 2) if lel < 8,
ple) =
& .
5 otherwise.

REMARK 3.15
In the absence of constraints on p, the optimizer Py, satisfies the stationarity conditions

alm
aplp ="

) - ,
Ify= 3?* these conditions become the normal equations

ny

Z wle(n, pm)] ae(t“ ‘I =0.

m
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An M-estimator may be defined by specifying yror p; see Figures 3.10 and 3.11. The
shape of yexplains why Huber’s M-estimator is said to be non-redescending whereas
Tukey’s is said to be redescending. 0

Figure 3.11. Tukey's p and y (redescending M-estimator)

3.7.4 Image processing example

There are many fields (medicine, satellite remote sensing, industrial inspection,
astronomy...) where significant differences between images have to be detected.
Figure 3.12 provides an example of two such images.

Image A Image B
Figure 3.12. Images to be compared

In addition to significant differences, the two images usually have insignificant
changes, due for instance to movement of the subject or retuning of the imaging device.



Pixel-by-pixel computation of the difference between the two images then often yields a
useless image. This is why a calibration step is required, during which one of the
images (say, Image B) is transformed with respect to a vector p of parameters, e.g.,

rotation
x translation
¥ translation
contrast
brightness
enlargement

Let B(p) be Image B after the transformation. The vector p is estimated so as to make
B(p) fit the reference image A best as measured by a cost function j(p). The resulting
scheme, Figure 3.13, is similar to Figure 1.5. The situation is rather unusual, because
the significant differences play the role of outliers that hinder estimation of p (which is
of no interest, but has to be used). The presence of outliers is therefore unavoidable, so
a robust estimator is needed (Herbin et al., 1989), such as the least-median-of-squares
or least-trimmed-squares estimator or the outlier minimal number estimator presented in
Section 5.4.2.2. Another possible estimator (Venot ef al., 1986) maximizes the number
of sign changes in the image A — B(p) scanned line by line. Such scanning transforms
images into one-dimensional signals. The larger the number of sign changes is, the
closer the signals associated with A and B(p) are. Robustness comes from the fact that
only the sign of the error is taken into consideration, not its magnitude. Very large
errors corresponding to significant differences therefore have no more influence than the
others.

Image A

Cost ,
Pl evaluation P

Image B(p)

[

Optimization |z

Figure 3.13. Principle of robust calibration

Figure 3.14 presents the image B(p) thus obtained, and Figure 3.15 the pixel-by-pixel
difference of Images A and B(p). As can be seen, the detection of significant
differences is now much easier! This technique sometimes makes it possible Lo reveal
differences which could not be detected by direct inspection of the original images. A
study of the properties of this type of estimator can be found in (Walter, Pronzato and
Venot, 1989).
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Figure 3.14. Image B() after robust calibration

Figure 3.15. Difference A — B(p) after robust calibration

3.8 Tuning of hyperparameters

The cost to be optimized may involve, besides p, some tuning parameters (, called
hyperparameters. Such is the case, for example, with ridge estimators (Remarks 4.10
and 5.3). Similarly, when the estimation problem is i/l posed, i.e. when the estimate is
too sensitive to small modifications of the data, one may use a regularized cost (see,
e.g., (Demoment, 1989; Thompson et al., 1991))

Ji(p, @) = j1(p) + gj2(p),

where j; is the cost associated with the initial ill-posed problem and the regularization
function jp penalizes erratic variations of the signals computed by the model, for
instance through the sum of the squares of their first or higher differences.

Such hyperparameters may be estimated by cross-validation (Golub, Heath and
Wahba, 1979). Eliminating one datum y(i) of y5, one can predict its value using the
parameters P_i(q) estimated from the remaining data by minimizing ji(p, q) with respect
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to p. The hyperparameters are then tuned to the value of q that provides the best average
prediction over all possible eliminations, i.e. that minimizes

ny

Jev(@) = ’:-l Z [»()) = ymli, ﬁ-i(Q)]}z-
i=1

3.9 Conclusions

Any criterion is legilimate, insofar as il contributes to the fulfifment of the aims of the
modelling, and many different criteria may be considered (see, e.g., (Keating, Mason
and Sen, 1993) for an interesting discussion on performance comparison for
estimators). However, one should always state the options that have been taken, and
justify them as far as possible. The use of sophisticated crileria based on specific
hypotheses should be restricted to situations where these hypotheses can be relied upon
or checked a posteriori. Otherwise, robust approaches should be preferred. Once the
cost function j has been defined, it must be optimized. Note that optimization may be
facilitated by the successive use of several cost functions. Sometimes, for example, the
cost function derived by the maximum-likelihood approach has many local optimizers,
at which local optimization techniques such as those presented in Section 4.3.3 may get
trapped. A transient use of a quadratic cost may then lead to an estimate that can serve as
a good starting point for a local optimization of a more sophisticated cost.



4 Optimization

The performance of a model structure, or of parameter estimates for a given model
structure, js usually rated via a cost function j (Chapter 3). Finding the best possible
model then corresponds to oplimizing this cost. The resulting optimization problems
often have the following characteristics:

— the number of parameters to be optimized is small, typically less than ten;

— the cost function is smooth, its first and second derivatives are relatively easy to
compute;.

— optimization is unconstrained (although p might belong (o some simple-shaped prior
feasible set such as a box);

— the effects of the various parameters on the value of the cost are very unequal, i.e.
the problem is ill conditioned;

— the problem is not convex and local optimizers may exist that do not correspond to
the best possible value of the cost; we shall, however, see in Section 4.3.9.1 that
suitable experimental conditions can sometimes eliminate such parasitic local
optimizers.

The optimization may be centy ‘ed on the argument. The cost function is then merely
an intermediate in the search for p. This will be the case, for example, when estimating
the parameters of a phenomenological model. All values of these parameters that lead to
an acceptable value of the cost should then be searched for. Any possible singularity of
the cost function in the neighbourhood of (he optimum, or the possible existence of
several global optimizers, should be taken into account.

The optimization may, on the other hand, be centred on the cost. All feasible global
optimizers will then be equally acceptable. Such will often be the case, for instance,
when estimating the parameters of a behavioural model.

Section 4.1 deals with cost functions that are quadratic with respect to an error
affine in p. Such affine errors occur for instance when an ouput error is used with an
LP model structure (i.e. a structure such that the model output is linear in p). IL is then
possible to derive explicit formulas for computing the global optimizer p. which
correspond to the celebrated least-squares method.

The case where the cost is still quadratic in the error but the error is no longer affine
in p is considered in Section 4.2. Various approaches involving an iterative application
of the least-squares method are presented, and their limitations described.

Section 4.3 presents nonlinear programming techniques that can be used even when
the cost function is not quadratic. In particular, constrained, non-differentiable,
recursive and global optimization problems are considered.

Specific difficulties raised by the optimization of a process response are addressed in
Scction 4.4,
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To simplify notation, the process output will most often be assumed to be scalar, but
the methods described extend without difficulty to the vector case.

4.1 LP structures and quadratic cost functions

4.1.1 LP structures

The models considered can be written as
ym(t+L, p) =rT(n)p,

where r(r) is a vector of known quantities (therefore independent of p), called the
regressor vector. The independent variable ¢ here takes integer values, and serves to
index the various points where the model output must be computed. This does not
imply that the measurement times are integer, or even that the independent variable
corresponds to time. Static systems can therefore also be considered in this framework.
Note that the fact of indexing y by t + | and r by ¢ is in no way mandatory, but proves
useful in the context of adaptive control.

The set of all outputs of the model M(p), for 1 varying from one to 1, can be written
as

Ym(l, P) rT(0)
y™(p) = = - p = Rp.
Ym{n, B) rT(n-1)

EXAMPLE 4.1

The parameters p = (ay, ... , ayy, bo, -.. , bp)T of the model
1y iy
di di
Ym(f, p)=- Z;f aj EW) + Z“O bi ar u(t),

with np < 1y, are to be estimated from input-output data recorded between ¢ = 0 and
f = g, with a much smaller sampling period than the shortest time constant of the
process, so they can be considered as recorded continuously. The model structure is
LP, but trying to estimate its parameters through the computation of a regressor vector
consisting of successive derivatives with respect to time of y(f) and u(f) is not to be
recommended, because high-frequency noise will be dramatically amplified by repeated
differentiation. The modulating functions approach can be used instead. The idea is to
replace y and yp, by their scalar products with suitably chosen test functions ¢

Hy 1y
<ymldp> = — Z a; <yOlgy> + z bi <ulDgy>,
i=1 =0
with
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f(l') =

Lo ana <ip> = [ Ao
0

Provided that ¢y is chosen sufficiently differentiable, with ‘PL 0) = qu(fr) =
i=0,..., ng— 1, inlegration by parts can be used to carry differentiation over Lo the
(analytically known) test functions

Ny ny
<ymldr> = z (- ]) a, <)!I¢J/L>+ Z (- 1) bi <ulq‘JL>
=1 =0

The quantity <yml@> is LP. One should use at least as many linearly independent test
functions as there are parameters. The choice of these test functions is not trivial and
obviously impacts on the estimate of p obtained (Richalet, Rault and Pouliquen, 1971).
Provided that the model is LP, the method exlends lo equations involving pure delays,
to multi-input-multi-output, non-LI or time-varying systems, and to partial differential
equations (Loeb, 1967). It remains sensitive to low-frequency perturbations such as
offsets, the influence of which is increased by integration. A partial solution is to
introduce offset as an additional parameter, 0

EXAMPLE 4.2

If the output of an LI model is computed by convolution of its impulse response /1 with
its input #, discretized with period T:
n
P

Ym(+1,p)=T 2 h(Du(t+1-i) ,

i=1

the parameters p; might be the successive values of the discrete-time impulse response
h(i) (i =1, ..., np). The regressor vector then satisfies

(1) = [Tu(r), Tu(t-1), ..., Tu(t+1-np)]T. 0

REMARKS 4.1

— The system must be such that h(i) can be neglected for any i > n, (Finite Impulse
Response, or FIR, models).

— Knowledge of the impulse response of an LI model makes it possible to simulate or
control it just as well as any other representation. This approach, however, leads
most often to overparametrization (about thirty parameters would typically be
needed (o describe the scalar impulse response of a third-order transfer function,
which could be expressed with at most six parameters). As a result, a slight
modification of the data may lead to a large change in the parameter estimates. This
is the price paid for an LP model structure. Various regudarization techniques can be
implemented to give an acceptable solution to such ill-posed problems. They can be
viewed as the introduction of additional prior information aimed at removing the
ambiguity resulting from overparametrization. One may thus relate them to
maximum a posteriori eslimation; see Scction 3.5.1 and (Demoment, 1989). )



EXAMPLE 4.2 (continued)

To oblain a smooth impulse response /i(1), one may characterize it as a linear
combination of Laguerre functions (Wahlberg, 1991)

npul
h(t, p, o) = Z piLi(t, o),
i=0
where

]
Lit, o) =\ 2 exp (~o1) & - kDT

These functions are orthonormal on [0, o<], i.e.

(=]

JL;(T, a)Li(t, a)dT = §jj.
0

For any given «, the output yy becomes linear in p. The resulting model may
satisfactorily reproduce the behaviour of stable and non-oscillatory systems. Kautz
functions, which include Laguerre functions as a special case, can be used to deal with
oscillatory systems (Wahlberg, 1994). Generalizations of Laguerre and Kautz functions
are considered in (Feuberger, Van den Hof and Bosgra, 1995).

The method extends to model impulse responses depending on some measurable
external signal x, with the dependency on x incorporated in p (Velev, 1988),

np—l
ht, p(x), o) = 2 pi()Lit, o).
=0

Expanding each component of p in series, one defines a new set of parameters pj; such
that -
Pix) = pio + pinx + pigx? + ..

and the model output remains linear in these new parameters. The mode! obtained
remains stable for any value of x. 0

EXAMPLE 4.3

Assume that the model satisfies the recurrence equation

ym(+1, p) = —aiym(s, p) ~ aaym(~~1, p) — ... — @ Ym{t+1-1, P)
+hu(t) + .+ byu(t+l-ny),

where the parameters are the a;’s (i= 1, ..., ny) and b;'s (i = 1, ... , ngp). This model
structure is non-LP, since the right-hand side involves the product of parameters by
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model outputs that depend on p. If, on the other hand, the past values of the model
output are replaced by the corresponding values of the output of the system studied,
another structure is obtained (ARX if the noise is additive in the equation and
corresponds to a sequence of i.i.d. random variables):

Ymip(t+1, p) = —a1y(t) — azy(1-1) — ... — ay, y(1+1-1y)
+biu(t) + ...+ by u(t+l-ny).

This structure is LP, provided that the inputs and outputs of the system do not depend
on p. Its output ymp(t+1, p) can then be written as the scalar product of

P= (ﬂ], az, ..., ﬂ”y b]s b2v ceey bnb)T
with
r(t) = [=y(f), —=y(+=1), ..., =y(t+1-ny), u(?), u(r-1), ..., u(t+1-np)]T. 0

EXAMPLE 4.4

If the system considered can be described by a static nonlinearity followed by an LI
dynamic part (Figure 4.1), a Hammerstein model structure may be employed.

fu)

H —— B> L —by

Figure 4.1. Static nonlinearity followed by a linear dynamic parl
Approximating the nonlinearity by a polynomial in the scalar input u, one can write
11p
A(g, P)ym(t) = Z Bi(q, p)ui(t)
i=1
where A(g, p) and Bj(g, p) are polynomials in the unit delay operator g~

Alg,p)=1l+ayg7! + ...+ apg™,

Bi(g,p) = bl,iq—l + ..t bnb.iq_"b»
and where

p=(ay ..., any bi.eoos bugts oo Dy gy oen s b”b"’B)T‘

Substituting, as in Example 4.3, past values of the measured output y for the
corresponding values of y, one obtains an LP (although non-LI) model structure, with
a regressor vector given by



r(t) = [-y(0), ..., =y(t+1=nyz), u(1), ..., u(t+1=np), ’(1), ...,
W2(t+1=np), ..., WB(1), ..., WBU+1-np)]T. 0

EXAMPLE 4.5

Another LP non-LI model structure corresponds to bilinear models, such as

i n

n n
ym(t, p) = Zp;u(t—i) + Z Puiy(t=1) + Z Zpi,k“( -0)y(1=k).
i=1 i=1 i=1 k=1

More generally, any model the output of which can be written as a polynomial in the
past values of the inputs and measured process outputs could also be considered. 0

4,1.2 Quadratic cost functions
The cost function to be minimized is assumed to satisfy
J(p) = eT(p)Qe(p),
where e is some error, e.g. output error
e(p) = y* - y™(p).
The weighting matrix Q is symmetrical and non-negative definite. It may have been

chosen from hypotheses or knowledge about the measurement noise (Chapter 3). If,
for instance, the data are assumed to have been generated by

yS=y™(p*) +n,
where n is a realization of a Gaussian random vector with zero mean and known
covariance ¥ , the maximum-likelihood method suggests Q = Z-1. Q may also be

chosen in a more heuristic manner. In the absence of any specific information, Q is
often taken as the identity matrix.

4.1.3 Least-squares estimator

The least-squares estimator Pys, developed by Gauss and Legendre at the beginning of
the 19th century, minimises the quadratic cost

J(p) = eT(p)Qe(p),

under the constraint that the error is affine in the parameters, which will be true for an
output error with an LP model structure

e(p) =y* - Rp.
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The first derivative of the cost with respect to p is zero at the optimum. Since Q is
symmetrical, this implies that

9 — _ORTO(YS — Rbi) =
ap | p=pis = 2R Q(Y* - Rpis) = 0.

Provided that RTQR is invertible, the least-squares estimate is therefore given by
Pis = (RTQR)~'RTQy".

4.1.3.1 Properties of the least-squares estimator

PLSI: The vector pis of the parameter estimates is obtained analytically from the
data y*, matrix of regressors R and weighting matrix Q.

PLS2: Tt is trivial to check that eT(P1s)Qy™(prs) = 0. If Q =1, this implies that the
error at the optimum is orthogonal to the model output; ym(ﬁls) is thus the
orthogonal projection of y* onto the locus of all possible model responses, i.e. onto
the expecration surface Sexp = [y™(p), p € 2/p] (Figure 4.2). Since the model
structure considered here is LP, the expectation surface is a hyperplane, but this is
not always so, as will be seen in Chapters 5 and 6. The orthogonal projection
operalor is given here by IT = R(RTR)-IRT,

e(f’ls)

Figure 4.2. At the optimum, the error and model output are orthogonal

PLS3:The matrix RTQR to be inverted is symmetrical and np X np (with
np = dim p). Its dimensions do not, therefore, depend on the number of data
points. Except for pathological cases where the information content of the inputs is
too poor or the model is unidentifiable, it is positive-definite and therefore invertible.
If not, one might use a model with fewer parameters.

PLS4: Even if Pjs turns out not to be the best possible estimate of p given the aim of
the modelling, it may serve to initialize some iterative search with another cost
function and/or another model better suited to the original problem.

PLS5: The matrix (RTQR)~! contains important information on the performance of the
estimator (Section 5.3). It is therefore useful to examine it, or at least its diagonal



entries. The smaller these entries are, the better the precision of the estimated
parameters is, which suggests criteria for choice of the regressor vectors
(Chapter 6).

EXAMPLE 4.6

The following data have been obtained by sampling a process output at t =1, 2, 3:
y(1) = 270, ¥(2) = 36, y(3) = 5.
The process output is to be described by
Ym(t, P) = p1 exp (=p2t).

As it stands, this model structure is not LP, so the least-squares method does not apply.
An LP model structure can however be obtained by performing a logarithmic
transformation on the data and model output:

y'(1) =1Iny(n),
ym(t, @) = In ym(t, p) = In py - pat,
and taking the parameters to be estimated as
gi=Inp; and g2 =p2.
The vectors of all transformed process and model outputs can be written as
In 2707 15.6 1 -1
ys =[ln 36}:[3.6] and ym'(q) = [ i ~'§]q =Rq.

In 5 1.6

The least-squares estimate of q is therefore
. [1.6
fis = RTRRTy =[]

which corresponds to
1'\71 = explt}l ~ 1970 and §r=py =2.

Running the corresponding model, one gets
268 270
ym = [36.5], compared with y§ = [ 36 }
5 5

Note that P is not the best estimate of p in the least-squares sense, since the definition of
the error has been changed to make it affine in the parameters. One may hope, however,
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thatf) is close enough to this best estimate lo provide a good starting point for an
iterative search. More general transformations are considered, e.g., in (Box and Cox,
1964, Atkinson, 1985, 1995). 0

4.1.3.2 Numerical considerations

Except when trcatmg small academic problems, one should avoid using the above
explicit formula for p[s, which turns out to be numerically disastrous. For ill-
conditioned problems, i.e. when RTQR is almost singular, much more accurate results
are obtained by singulm value decomposition; see, e.g., (Klema and Laub, 1980). In
this approach, R is factorized as R = UWVT, where W is a diagonal 1np X 11p matrix
and UTU = VTV =1,, . The diagonal entries of W are the singular values w;; of R
(w; ;= 0). All decent scientific software libraries include a subroutine performing this
factorization, and one should refrain from attempting to code it again! RTQR will be
singular if and only if R has at least one zero singular value. Most often, however, no
singular value is strictly zero, and the condition number of R is defined as the ratio p of
its largest singular value to its smallest. R will be said to be ill-conditioned as soon as
1/p is smaller than the accuracy of the floating-point representation used (about 10-16 in
double precision according to the ANSI/TEEE 754-1985 norm, which most present- day
computers comply with). If Q =1, the matrix to be inverted to compute Pis can be
written as
"RTR = VWUTUWVT = VW2VT,

This implies that the condition number of RTR is equal to the square of that of R, and
explains the danger involved in the computation of Pis by the analytical formula.

Once smgulur value decomposition of R has been performed, it must be used to
compute Prs. Assume first that Q = L If R is square and invertible,

big=R-1ys =V (diag ) UTys,

If the dimension of y$ is larger than that of p and no singular value is zero, Pys is
unique, and also given by

Bis =V (ding(- D) UTys.

Wi,

If some columns of R are linearly dependent, lhcn at least one of its singular values w;
is zero and there exist an infinity of estimates piq that are equivalent in [hc sense of the
least-squares criterion. Among these, the smallest in Euclidean norm is again obtained
with the formula above, provided that all terms 1/w;; associated wnh wi;=0 are
replaced by 0. Similarly, if some w; ;s are very small, the estimator tends to drag ph
very far along direclions that “almost” belong to the kernel of R. Surprising as it may
seem, one then gels better values of the cost by replacing the terms [/w;; corresponding
to these very small w;;’s by zero (Press ef al., 1986). A threshold remains to be set to
decide which singular values will be considered very small.

If Q # 1, the same equation can be used for the computation of Py, provided that Q
is factorized as Q = MTM and e(p) is replaced by Me(p), which amounts to replacing
ys by My$ and R by MR.
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REMARK 4.2

There is a vast literature about the least-squares method and the connected problem of
computing a psendo-inverse of the matrix R (Albert, 1972). Equality or inequality
constraints in particular can be taken into account. For more details, see (Lawson and
Hanson, 1974) and Section 4.3.4.2. ¢

4.1.4 Data-recursive least squares

Whercas the algorithm presented in the previous section processes all data collected on
the system as a batch (off-line), its recursive counterpart processes them one after the
other (on-line). This approach may be preferred [or either of two reasons, which lead to
different policies.

— There may be too many data for them to be stored simultaneously in the computer.
One then wishes to memorize a limited amount of information, independent of the
number of data points, rather than having to manage a large data base. In this case,
p* is considered fixed, and one wishes (o obtain the same result as with the non-
recursive algorithm.

— One may wish to use the results of the identification to take immediate decisions
from the measurements performed so far, without having to wait until all data have
been collected. One may, for instance, wish to track the parameters of a system to
make sure that they remain in their normal operating range (fault detection and
diagnosis), or compute a control law based on the most recent estimates of the
parameters available (adaptive control). 1t is then assumed that p* may vary with 1.

4.1.4.1 p* assumed to be constant

Let Prs(1) be the cstimate of p* obtained by non-recursive least squares from all data
available up to time 1. If we assume that Q = I to simplify notation, we can write

P1s(r) = [RT-DR(-DI-'RT (- Dys(n),

where
rT(0) y(1)
rT(1) ¥(2)
R(1-1) = and ys(1) =
rT(-1) —I ¥

At time f + 1, a new measurement y(t+1) is collected, so

R(t-1) ys()
R(1)=l: } and ys(s/+1) = [ ]
rT(n) y(r+1)



We wish to update f)ls to take this new information into account, but without having to
store R and y* of ever-increasing size in the computer. Let us write Pis as a function of

the sequence of regressor vectors r and output measurements y:

t [t

B =| X, e=DETG-D| | D w1y |
i=1 i=1

Define the matrix M(¢) and vector v(f) by

! !

M(r):Z r(i-1)rT(i-1) and v(z):Z r(i—1)y(i).
=1 =1

Then
pis(H) = M-1(1)v(1),

which can be put into a recursive form without any approximation, since
M(t+1) = M(1) + r()rT(e),
v(i+1) = v() + r(Dy(t+1)

and

Pis(r+1) = M-I (4 1)v(r+1).

It therefore suffices to store the present values of M and v, which obviously requlrcs
much less memory than storing R and y5. Now express p|5(t+1) as a function of ph,(t)

Pis(r+1) = ML e+ D)[V() + F(0)y(+1)] = M- (14 DIM(OP1s(t) + £(D)y(+ D]
Replace M(r) by its expression as a function of M(r+1),
Pis(t+1) = M1 1) ([M(r+1) = e(DrT(0]Pis(0) + r(n)y(t+1)).
After expansion and simplification, we get
Dis(r+1) = Prs(f) + M1+ Dr()[y(e+1) = rT(OPis(D)],

where one can recognize:

— a one-step-ahead predlcuon of y(t++1) by ym(t+1) = rT(t)pls(t),

— the prediction error ep(t+l Pre()) = y(r+1) = rT(OP1s(1),

— a vector correction gain k(r+l) = M~l(1+1)r(s), often called the Kalman gain for
reasons to become apparent in Section 4.1.6.

Therefore
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f)]s(1+l) = ﬁ)s(r) + (vector correclion gain) X (prediction error),

which implies that the parameters do not change when the prediction error is zero. As it
now stands, the algorithm still requires the inversion of M(1+1) to take y(+#+1) into
account. This can be avoided with the help of the matrix inversion lenuna

(A +BCD)"1 = A-1- A-IB(C-! + DA-IB)-1DA-!,
where all matrices inveried are assumed to be invertible. Define P(7+1) as

P(t+1) = M-1(1+1) = [M(1) + r()r T()1-1,

and set A = M(?) = P-1(9), B = r(t), C = 1 and D = rT(s). The lemma then implies that

P(1+1) = P(t) - P(Or(H]1 + rTY(OP(r(H]~IrT(HP(e).

At each step, the inversion of a matrix has thus been replaced by a division by the scalar
{1 + rT(1)P(r)r(r)]. The correction gain can now be writlen as

r (HP(Hr (1) }

k(t+1) = M-l (1+ Dr(r) = P+ D)r(r) = P(r)r(r)[l T3 TP

_ P(Or@)
T 1+ TP

Iteration. In summary, one iteration of recursive least squares consists of the following
steps. Before y(1+1) is collected:

— compule the correction gain

P(0r(1) .
1+ TP’

k(r+1) =
— update P, which can also be written as
P(+1) = P(1) - k(r+ )rT(nP();
— predict the output
ym(t+1) = FT)Pis(7).
After y(t+1) has been collected:
— update the parameter estimates according to

Prs(r+1) = Prs(0) + k(t+D[(r+1) = ym(+D].

This shortens the delay between the measurement of y(++1) and the updating of the
estimates.
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Initialization. In principle, one should wait until enough data have been collccled for
M(r) to become invertible, and initialize the algorlthm by P(1) = M~-1(y) and
pls(t) = P(#)v(t). Recursive least-squares estimation is then srrlctly equivalent to its
off-line counterpart, up to numerical errors introduced by finite-precision arithmeltic. No
information has been lost, although past data have been dropped.

In practice, however, one often chooses pl‘,(O) arb]trarlly, e.g. p|5(0) = 0, and P(0)
as an identity matrix multiplied by some large positive number, e.g. P(0) = 1012 | P
This amounts to saying that no confidence is bestowed on this initial estimate for lhe
parameters, because P corresponds to [RTR]-! of the off-line least-squares method,
which characterizes the uncertainty in the estimated parameters (Chapter 5). P then
decreases very quickly in the initial phase, so the values of p;s(O) and P(0) are not
critical.

Properties of the data-recursive least-squares estimator

PRLSI: The off-line method required the invertibility of RTQR, i.e. the identifiability
of the model from the actual data collected. Since recursive least-squares estimation
no longer involves matrix inversion, it will not be able to detect unidentifiability and
will converge to a particular solution that depends on the initialization.

PRLS2: Since

P(r+1) - P(1) = - P(Or()rI(nP@) ’

1+ rT(P(FQ)
the difference between two successive values of P is negative semi-definite. In this
sense, P can therefore only decrease (or stay constant if r(f) = 0, which means that
y(t+1) brings no information on p). The information available about the sysiem
studied increases with lime, so the uncertainty in the parameters decreases. For a
given value of the regressor vector, this implies that the correction gain k(r+1)
decreases. The prediction errors are thus less and less taken into account to adjust the
model, because they are more and more attributed to noise.

PRLS3: The previous equation implies that if P(r) becomes singular for numerical
reasons, it will stay so forever. To overcome this difficulty, one may add el to
P(1), where £ is some small posmve number. This idea, due to Levenberg and
Marquardt, will be encountered again in Section 4.3.3.5. Another possible approach
is to take advantage of the fact that P(7) should be symmetric and positive-definite to
compute it in a factorized form. Bierman’s U-D factorization algorithm uses a
normalized Cholesky decomposition P() = UnD(HUT(r), where U(r) is an upper
triangular matrix, with all diagonal entries equal to one, and D(?) is a diagonal
matrix. The computation is only marginally more complicated than in the initial
algorithm. For more details, see (Bierman, 1977; Ljung and Soderstrom, 1983).

PRLS4: Since P characlerizes the uncertainty in the estimated parameters, it is
interesting to monitor its evolution, or at Icast that of its diagonal terms. This may
help in choosing the later regressor vectors (Section 6.3.2.2).

PRLS5: If the sequence of regressor vectors is known a priori, the associated
sequences {P(s)} and {k(r)} can be computed off-line, before any measurement
takes place. The actual sequence of prediction errors has therefore no influence on
the correction gains, and one is strongly advised to monilor it in order to detect any
possible divergence of the algorithm.



4.1.4.2 p* may drift

If the parameters p* may slowly vary, e.g. because an LI model is used to describe a
non-LI process around some changmg operating point, one wishes Pys to track these
variations “in real time". This requires forgetting measurements that are too old, because
they correspond to an out-of-date situation and would distort estimation. A particularly
simple technique for this purpose is exponential forgetting, which weights prediction
errors in the cost function exponentially, decreasing with time elapsed:

— present time ¢ + 1 receives unit weight,
— past time ¢ + 1 — n is weighted by A~,

with A the forgetting factor, such that 0 < A< 1. If A= 1, no forgetting takes place, and
the smaller A is, the more quickly the past is forgotten. To implement this policy, it
suffices to update M and v according to

M(t+1) = AM(1) + r()rT(1) and v(1+1) = Av() + r(D)y(1+1),

which amounts to multiplying the past values by A before adding the present
contribution. By the same procedure as when A = 1, one gets

P(N)r(r)
A+ TP
P(t+1) = 1 [P(D) = k(r+ TP,

k(t+1) =

ym(t+1) = FT(OP1(1),
Prs(r+1) = Pis(e) + k(H+Dy(++1) - ym(++1)].
Computation is therefore no more complicated than without forgetting.
Properties of recursive least squares with exponential forgetting

PRLSEFI: It is trivial to check that when A = 1 the equations become those obtained
without forgetting.

PRLSEF2: As when no forgetting takes place, if P becomes singular, it will stay so.
Forgetting will just make this event more likcly It is therefore necessary to modify
the algorithm to prevent this. One may again either add €l to P, with £ a small
positive number, or use U-D factorization.

PRLSEF3: If A< I, P may increase with time, contrary to what happened without
forgetting. If, in particular, r(f) = 0 then P(r+1) = P(£)/A > P(r). When this situation
persists, it entails a definite risk of explosion. A possible way out is to use a variable
forgetting factor A(f), such that the trace of P(r+1) remains below some given bound.

PRLSEF4: When A < 1, P(t+1) and k(s+1) no longer tend to 0. The unavmdab]c
prediction errors therefore always cause a modification of the estimates, so Pis no
longer converges to a constant value. As a result, small meaningless prediction
errors, corresponding for instance to a system almost at equilibrium, may in practice
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cause a drift of the parameter estimates. It is therefore necessary to freeze the
algorithm when the prediction error becomes small enough,

PRLSEFS5: The smaller A is, the larger the correction gain remains, which increases the
tracking capability of the algorithm, at the cost of amplifying the random fluctuations
of the parameter estimates. A compromise must therefore be drawn, most often
empirically, which is relatively easy since 1 is a scalar (typically, A > 0.95).

4.1.4.3 p* may jump

When the parameters to be estimated are known to vary by jumps, exponential
forgetting becomes unsuitable, because it combines erratic moves of the estimated
paramelers (due to the fact that the correction gain does not tend to zero) and slow
adaptation when jumps occur (due to the fact that A must be taken close to one to ensure
stability). Better results should then be obtained by using recursive least sguares
without forgetting, monitoring the prediction error and increasing P as soon as this
error becomes too unlikely. This amounts to admitting that the uncertainty in the
estimated parameters has increased.

To decide whether the prediction error on y(r+1) is likely, one may use the fact that
its variance is given by 02[1 + rT()P()r(s)] when the parameters are adapled, where o2
is the variance of the noise in the observations.

4.1.4.4 Application to adaptive control

Consider the scheme of Figure 4.3, which involves two models and two optimization
algorithms. The reference model generates the reference trajectory yy, expressing how
the process should behave. It should not be confused with the model of the process,
which generates the model output yy,, expressing how the process is believed to behave
in reality. The first optimization algorithm estimates the parameters of the process,
whereas the second one computes the control faw to be applied. Assume that we known
how to adapt the parameters of the process model so as to ensure that y,(f) = y(0). If
the input u is chosen to impose yy(f) — y{(r), this will entail that y(£) = y(1). A key
point is to guarantee the stability of the resulting complex nonlinear feedback system.

REMARKS 4.3

— What is controlled is the output of the model of the process, and not that of the
process itself. It is only because the model output is constrained to resemble that of
the process that the process output will resemble the reference trajectory.

— Even if the structure of the process and its model are identical and y and yy, both
converge to yr, this does not imply that p converges to p*, because the input signal
may be too poor to make the parameters identifiable in practice.

— Provided that the variation of p* is slow enough, the parameter estimates obtained,
e.g. by recursive least squares with exponential forgetting, are close to the best
estimate of p* in the least-squares sense for the input actually applied to the system.
If this input is rich enough for the output to contain much information on p”, this
may be considered an advantage, because the model is always an approximation of
reality and the best approximation depends on the type of input considered. The
model obtained is thus suited to the operating conditions of the system. If, on the
other hand, the information content of the process output is very small, for instance
because the input is almost constant, then the paramelers may become completely



erroneous although the prediction error remains negligible. This may resull in very
bad transient behaviour following the next change of operating point.

— When intermittent perturbations act within the passband of the process, the
algorithm will modify the model parameters to try to reduce the prediction error,
although p* has not changed. This may result in erratic behaviour of the control
system. It therefore seems advisable to (est the performance of adaptive control
systems in realistic simulation conditions, including perturbations, before
implementation is considered. This implementation may require the combining of
ideas from adaptive and robust control theories; see, e.g., (Irving, Daoudi and

Bourles, 1991). 0
u, ———p| Reference model y
r
Process *
(state unknown) y _
u +

.4 -

= Mode! of the process | Ym
(state known)

™7
F» Optimization 1

Optimization 2 et

Figure 4.3. Example of model-refercnce adaptive control

Figure 4.3 illustrates a possible model-reference adaptive control scheme. Tt
involves a parallel model of the process, but series or series-paralle] models could be
used as well. Moreover, many alternative criteria and algorithms could be employed to
estimate the parameters and compute the control law. It is thus possible (o create a very
large number of adaptive control schemes (Chalam (1987) quotes more than 1200
references!). More information can be found, e.g., in (Landau, 1979; Goodwin and
Sin, 1984; Astrom and Wittenmark, 1984; Kumar zmd Varaiya, 1986; Bitmead, Gevers
and Wertz, 1990; Isermann, Lachmann and Matko, 1992; Kaufman, Bar-Kana and
Sobel, 1994) and in the countless papers devoted to the subject in international journals
and conferences. Here, we shall only mention one of the existing approaches, because
of its direct links with recursive least squares. This approach was proposed by Astrom
and Wittenmark (1973) under the name of Self TUning REgulator (STURE), and has
been implemented on many industrial processes (Astrdm et al., 1977).
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STURE. The process is described by an LP prediction model (here one step ahead)

ym(t+1, p) = —ary(t) — agy(t=1) — ... — a, y(1+1-ny)
+byu(t) + ... + by u(t+1-ny).

Optimization algorithm 1 estimates the parameters p of the process model by
recursive least squares with exponential forgetting. Optimization algorithm 2, which
computes the control law, may implement various policies. One may, for instance,
compute an optimal control sequence if this can be performed in real time. At each step,
one will then apply the first entry of this sequence to the process (sliding-horizon
optimal control). This is the basic idea of generalized predictive control (Clarke,
Mohtadi and Tuffs, 1987; Clarke, 1988; Bitmead, Gevers and Wertz, 1990). A cruder
policy is to compute the control 1(f) so as to make the predicted output yy,(f+1, f)) equal
to the corresponding value of the reference trajectory y(++1), i.e. to ensure

Ye(t+1) = = 81 9(1) = Bay(i=1) — ... = Ap y(t+ 1omg) + Brue() + ... + Byt 1-np),

where 4; and ﬁi are entries of P, as estimated by recursive least squares with exponential
forgetting. The control to be applied at time ¢ is then given by

u(t) = gi e(r+1) + 2yy(0) + a2y (1-1) + ...
|

+ 8y (14 1-my) = Byu(t=1) — ... = Byu(+1-np)].

Such a simplistic control raises three problems.

— The estimated parameter 31 must differ sufficiently from zero for the computed
controls to remain feasible. If §| is zero, the control to be computed has no
predictable influence on the output to be controlled, possibly because the delay
between the input and output is larger than one time unit. One should then try a
k-step-ahead predictor (k > 1).

— The output y(¢) is used to compute the control u(r). The required computation must
therefore be performed in a negligible time compared with the time constants of the
process. Otherwise, the delay introduced should be taken into account during the
analysis of the problem, and the prediction of the output at time 7 + 1 should not
depend on y(7) but satisfy

)’mp(H'lv P) =f(u(’)s "(’_1)7 vy y(t_l)v y(t"?-)s ey P)

The control () can then be computed as a function of past measurements and the
estimated parameters.

— This short-sighted policy amounts to approximately cancelling the zeros of the
process by the poles of the controller. This will result in a loss of stability if the
zeros of the process are outside the unit circle, which corresponds to the system
having a non-minimal phase. Generalized predictive control avoids this difficulty.

To make the time between the measurement of y(#+1) and the application of u(t+1)
as short as possible, one should compute, before time 7 + 1,
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— the correction gain k(r+1),

— the matrix P(#+1) characterizing the uncertainty in the estimates,
— the prediction of the output yp,[r+1, f);s(l)].

— the next value y(1+2) of the reference trajectory.

Starting at ¢ + 1, one should

— measure y(t+1) from the proccss

— update the estimated parameters p|5( 1),
— compute the input u(/+1),

— apply it to the process.

The past is thus used to estimate the parameters, and the fulurc lo compute the
control law. When there are no constraints on the input, ym[(+2, pls(t+1)J will be equal
to yp(4+2) since the control u(t+1) has been compuled for premscly that purpose.
Otherwise, the actual control applied lo the process must be used 1o predict ils output.

REMARK 4.4

Updating P at each iteration may turn out to take more time than is available. At the cost
of the loss of the information contained in P and deterioration of the performance of the
estimator, one may then employ parameter-updating algorithms with the same basic
structure but simplified correction gains. One may, for instance, use

P(+1) = P(1) + ¢ = [v(e+1) = rT(P(A)),

T( ) (l)

with 0 < ¢ < 2 (Richalet, Rault and Pouliquen, 1971; Richalet, 1991). As for recursive
least squares with exponential forgelting, the correction gain of this algorithm never
tends to zero. When the regressor vector r(f) is zero, the associated measurement
contains no information on the parameters, which should not be updated. This can be
implemented by adding a positive constant to the denominator of the correction gain
(Kaczmarz, 1937).

One may allernatively use a stochastic gradient algorithm, to be considered again in
Section 4.3.8),

P(r+1) = B() + c(OT(O[y(t+1) - FT(HOPD],

where ¢(f) is such that

c(r) >0, 2 c(t)=o0 and Z c2(F) < oo.
=0 =0

One may choose, e.g., c(f) = c1/1%, where 0.5 < @ < 1. One then gets a decreasing-gain
algorithm (as in recursive least squares without forgetting) and the value of ¢(f) must be
increased when the prediction error exceeds a given threshold. In practice, the value of
c) required for satisfactory performance is very much problem-dependent. Suitable
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gain-normalization techniques can eliminate this drawback (Section 6.4.3.2). See also
the averaging technique described in Section 4.3.8. 0

The use of data-recursive least squares to estimate the state of a system and possibly
the parameters of its model leads naturally to the Kalman filter (Section 4.1.6).

To describe the behaviour of a given process, one sometimes hesitates between
several LP model structures nested in the sense that the regressor vectors of the more
complex structures incorporate those of the simpler ones. Comparing the performances
of these structures may involve least-squares estimation of the parameters of each
(Section 3.4). The technique described in the next paragraph makes it possible to
compute these estimates recursively with respect to the number of parameters.

4.1.5 Parameter-recursive least squares

When the model structure is not imposed by prior considerations, one may wish to
increase the number of parameters progressively until a satisfdclory result is obtained.
Thns can be done recursively, somewhat similarly to data- rccurqlve least squares. Let
p, & be the vector consisting of the first i entries of p when p comprises k entries. Let
Ry be the matrix of all the regressor vectors for the model with & parameters. The
unweighted least-squares estimates for the models with k and & + 1 parameters can
then be written as

A T =1 T

Pri = (RERY T RLyS,
and

T T o { Prk
Pret kel = (Rep1Re1) leHY“'_L? +]]

+1,k+1
It is assumed that the regressor matrix has a nested structure
R =[Ry rygl

Note that the dimension of the vector ry| equals the number of data points, whereas the
dimension of the regressor vector equals the number of parameters. The estimate with
k + 1 parameters satisfies

T T T
Ry Prat ] |Ri| . | ReRiPrk
o | RE Teil] =l ¢ |¥= ,
| | P+1.k+1 Iy rilys

Ty A T A Th A
ReRyPrs+1 + Reryrper ke = ReRyprk

or equivalently

T . A T T o
Fr I REPE k1 + T 1T+ 1P| k] = T4 1YS.

Subtracting rI lef)k,k from both sides of the last equation, one can wrile
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T T
{ RiRi Rgry }[Sﬁk,m]_[ 0 ]
=l r )
l'Ile l'I]l'.H f’+l.k+l ry1(y% - Rkﬁk,k)

where af)k’k.H is the variation of the first & parameters due to adjoining the (k+1)th
parameter, Le.

A A A
Pk k+1 = Phk+1 — Pk k-

This linear system of equations can be solved with the help of the relation

[A B }—l _[A-‘[I +B(D - CA-IB)-1CA-!] -A-1B(D - CA-'B)-! }
cCpDJ] ~ —(D — CA-'B)-1CA-! (D - CA-'B)-1 [

which holds true provided that all matrices to be inverted are invertible. By setting

A-1 =Py = (RiRy-!, B =Rire;, C=ry R and D =rpiryy,

one gets
T T T
P, + — DEREro1Ts 1 RiPy : PiRiry
kTor T T T T T
) RIS ) 193 93 192 o8 ry 1t — rr IRiPER Ty
Pry1 = T y
ry 1 RiP 1
T T T T T T
Ti Ty — P REPLRET o] RIS ) (90 93 193

which implies
T T
_PiRyrr (yS - Reprg)
T T T
8i\)k.k+l 0 Fyil4 — 'y lePker+l
A =Ppy =
ryi(ys

—- RiPr)

T
re1(y® =~ Ribru)

T T T

rire] — re  RePrRiry

P+1k+1

As in data recursion, matrix inversion has been replaced by division by a scalar. If the
counterpart (yS— Rkﬁk,k) to the prediction error is zero, then the newly introduced
parameter takes the value zero, and the first k parameters remain unchanged. For least-
squares algorithms that are both data- and parameter-recursive, see Strobach (1991) and
Orfanidis (1988), who provides the code of subroutines implementing them in an
appendix.

4.1.5 Kalman filter

Consider a process described by

x(++1) = A*x(1) + B u(y),
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y(1) = C*x(1),

the state x of which is to be estimated from knowledge of its input-output behaviour.
When A*, B* and C* are assumed known, the first idea that comes to mind is to build a
mathematical model of the process driven by u and use the state of this model as an
estimate for x (Figure 4.4).

Process = Y()

u(t)—

)

X
Delay m% Ym®

L p Estimated state

+ Xm(t+1)

Figure 4.4. Naive observer

If this model were exact and stable, one could thus accurately estimate the state of
the process, possibly after a transient period during which the effect of erroneous initial
conditions might be felt. Such an open-loop solution might actually perform rather
badly, because the model used is certainly not perfect. The basic idea of Kalman-
Luenberger observers is to feed back the deviation y — yp, to correct the state of the
model, after passing it through a matrix gain K (Figure 4.5). The value of K diclates
the dynamics of the observer, i.e. the speed with which its state will approach that of
the process, provided that the model is correct and there is no noise.

Process & y(f)

el +

Eﬂ

u()—

Xm(t+1) Xm(f)

C Yl

L = Estimated state

Figure 4.5. Kalman-Luenberger observer
The Kalman filter follows an analogous scheme, but explicitly takes into account the
perturbations acting on the process and measurement noise. It extends without difficulty
to time-varying systems, so assume that the system is described by

X+l = A[X[ + B,u, + vy,

Y= C,X[ + Wy



The objective is to estimate the present state x, of this system from the available
information, which includes knowledge of the past values of the input v and output y.
The matrices A, B; and C; are assumed to be known for all 1. The process noise v,
corresponds to non-deterministic inputs, such as modelling errors, imperfections of
actuators and external disturbances. The measurement noise w, expresses the limitations
of the sensors. These two noises arc assumed to be zero-mean (E(v,} =0 and
E{w;) = 0) and to correspond to uncorrelated random vectors, such that

T T T
E{viwr] =0, E{vyvy)=Vioy, E{w,wi}=Wy,

where V; and W, are known positive-definite symmetric matrices and &y is one if
t = k and zero otherwise. The larger these matrices are, the more erratic the behaviour
of the system becomes; V, attributes this to process noise, whercas W, attributes it (o
errors in measurements. The initial state xp of the system is taken as random, with
known mean mgand covariance Xp. Moreover, Xg and v are assumed to be
uncorrelated.

With no pretension to mathematical rigour (as can be found, e.g., in (Anderson and
Moore, 1979; Caines, 1988)), this section will show how the equations of the Kalman
filter can be derived very simply from those of recursive least squares. It will proceed in
three steps:

— the extension of recursive least squares to vector outputs,
—— the study of a static system with no process noise,
— the study of a dynamic systemn with process noise.

The problems raised by implementation of the Kalman filter and its extension to
parameter estimation and stochastic identification will then be considered.

REMARK 4.5

Some of the assumptions above can easily be replaced by less restrictive ones. It is
possible to consider

— non-zero-mean v or w,
— mutually correlated v and w,

— measurement noise with a singular covariance matrix W,
— coloured (autocorrelated) v and w.

See, e.g., (Borrie, 1992; Jazwinski, 1970). 0

4.1.6.1 Vector data-recursive least squares

Consider a system for which the vector y..1 consists of 1y scalar outputs. With this
system is associated an LP model structure described by

T
Ym(t+1, p) = R,p,
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Awhcrc the regressor R; is now an np, % 11y matrix. The weighted least-squares estimate
Pls minimizes the cost
m

. T T T
Jis(P) = Z (ye—Riop) Qyi—Rio1p),
=1
where Qy is some symmetric weighting matrix, assumed here to be positive-definite. It

can be computed recursively by the following algorithm, similar to that established in
the scalar case:

-1 T -1
K =PR{(Qre1 +RPRy) -,
T
P =P - K R,Py,

T
Ymlt+1, Pis(0] = Ry prg(n),

Pis(r+1) = Pis() + Kppt [yrs1 - ymlt+1, Pis(0]).

Even when Q7 is available a priori, each iteration requires the inversion of an
ny X ny N matrix. P, can be interpreted as the covariance matrix of the estimation error
E(lp - pls(t)][p p]s(t)]T] provided that Qy is the inverse of the covariance of the
measurement noise in y; (Chapter 5).

4.1.6.2 Static system without process noise

When the state of the system is assumed to be constant, the state and observation
equations reduce to
X+l = Xp

yr=Cx+ w,.
Given the assumptions on w, it seems natural to estimate x by minimizing a cost
quadratic in the output error, weighted by the inverse of the covariance of the
measurement noise. This corresponds to a Gauss-Markov estimator, which would

become a maximum-likelihood estimator if w were additionally assumed to be
Gaussian.

A direct application of the least-squares algorithm with Ps(=%,Q,=W7 Uand
R, = Cy;1 then leads to

T T -1
K1 =PCr 1 (Wi) + Cr1PCr i)
P =P =K1 Gt Py
Ym(r+1, X)) = Crriks,

Qt+1 = 9‘1 + K1 [y —ym(r+1, /?\fr)]-

These equatlons arc those of the Kalman filter. P, is the covariance matrix
E{(x; - %)(x; — %)) T) of the estimation error.



106 uptmuzanon

4.1.6.3 Dynamic system with process noise

Consider now the initial system
Xi+1 = Axp + By + vy,
¥i=Cx +w,.

Its state evolves between measurement times, because of its dynamics, and the process
noise v makes this evolution uncertain. This leads us to distinguish:

— the predictions of X and P at time 1 + 1 given the information available at time ¢,
denoted by %1411 and Ppy1y and called prior values,

— the updated values of X and P at time ¢ + | obtained by taking the measurements
collected al time ¢ + 1 into account, denoted by X+ 11+1 and Ppypp41 and called
posterior values.

Predicting % and P. The process noise v belongs to a sequence of independent random
vectors. The past observations therefore bring no information on its present value. By
replacing v, by its mean value, which is zero, one gets the predictor

A A
X1l = AXqy + By,

This prediction correslPonds to the noise-free evolution that the system would have if its
initial condition were %g;. The prediction error is then

A A
Xept — X g = Ay(X = Xq) + Vr.

If the prediction is unbiased, i.e. if E{x] - 'f(,ﬂ“} = 0 (which will hold true if
E[x, - X4;) = 0), then the covariance of the prediction error is given by

Protir = E{(Xre1 = Xea 110 X1 — Rea11) T}
T, T T
= E{A((X; — %) (Xs — X)) As) +E{vv(]

T
= A[P(“A[ + Vr.
All other terms are zero, for v; and x; — % are mutually uncorrelated.

Updating % and P. During this phase, the knowledge of x4 and Py is improved by
substituting R+ 11041 for Xpe1yr and Pryyieeq for Priyyy, so as to take the results of
measurements at time ¢+ 1 into account. This corresponds to one step of a static
problem, since the actual value of x,4+1 does not change during the updating of its
estimate. The equations of the static case can therefore be employed, provided that the
following notation changes are made, to distinguish the prior and posterior values of
ﬁtﬂ and Py
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A A

Xt+1 = Xegllr+1
A A
Xt = Xypstln

Pt = Prtirs
Pr— Py

Assume that xm and Py, are available (mltlallzatlon will be considered later). An
iteration of the algorithm corresponds to getting x,+1|,+1 and P41, fe. to

— predicting the state and the covariance of the prediction error

A A
Xty = AX + By,

T
Pon=APyA, +Vg

— computing the gain of the filter

T T
K =PriyCra1(Wigt + Cre1Prr1:Cra1)h;

— updating the state estimate

Rivtie = Xexny + K1 (Vw1 = Cra Rew110):
— updating the covariance estimate
Prttes1 = Pratir = K1 Cre 1 Praire
As with recursive least squares without forgeltling, it can be checked that
Prtie1 < Prpir.

The information provided by ¥i+1 can therefore only decrease the uncertainty in the
state.

REMARKS 4.6

— Computing K, requires inverting (W,q + C,+1P,+1|,CT+1), always possible if
W41 is invertible. It is paradoxically when there is no measurement noise that
difficulties requiring specific treatment appear.

— This is an estimating filter, which computes X’X'”’“ from X.. It can be transformed
inlo a predicting filter, compuling x,+||, from Xy,_1. Since

A A A A A
Xplr = AXg + By and  Xgp =X + Ki(y — CXypip—1),

this predicting filter is given by

A A ol A
Xepllr = AXge + By + Ki(y, - CXq-1),



with KI‘ = A,K;.

— The special case of a static system with process noise, which corresponds to A, =1
and B, = 0, provides an alternative method for tracking time-varying parameters Lo
the exponential forgetting of Section 4.1.4.2. The parameters then play the role of
the state and the process noise is made responsible for their fluctuations. C; consists
of regressors and may depend on measurements up to time ¢ — 1. This approach is
of special interest when information is available on the possible variations of each
parameter. The choice of the matrix V; gives more degrees of freedom than that of
the scalar forgetting factor A. One may, for instance, take into account the fact that
some components of p* are assumed to be constant. 0

A most important feature of the Kalman filter is its recursive nature, which makes its
on-line implementation particularly easy. To reduce real-time computation, one may
compute off-line all quantities that do not depend on the measurements.

4.1.6.4 Off-line computation

Initialization. If the mean mg and covariance Xg of the initial state xg are known, one
should choose Xgjg = mq and Pgg = Xo. By analogy with recursive least squares, one
might otherwise choose Xgip = 0 and Pgjp = ¢I, with ¢ a large positive scalar, to express
one’s lack of confidence in the estimate of the initial state.

Iteration. Unless part of the model is not known in advance (as would be so, for
instance, if the filter were used to estimate parameters and C; incorporaled observations,
see the last point of Remarks 4.6), all correction gains and prior and posterior
covariance matrices of the state estimation error can be computed off-line. Before any
measurement, it is thus possible to assess what confidence can be placed in future state
estimates, provided, of course, that the assumplions on which the Kalman filter relics
are satisfied. This is both an advantage and a drawback:

— an advantage, for on-line compultation will be much reduced,

— adrawback, for the filter operates in open loop. If the information used to compute
it, i.e. the equations of the model and noise characteristics, is too inaccurate, it may
then diverge, with the discrepancy between the observed and predicted outputs
increasing aberrantly. As with recursive least squares, a layer external to the
algorithm proper should therefore be introduced to monitor the behaviour of the
filter through the evolution of the output-prediction error (Section 4.1.6.7).

4.1.6.5 On-line computation

If the sequence of correction gfi}ins K, has been corr}\putcd beforehand, on-line
computation reduces Lo predicting X411 and updating it Lo Xp4y1p+1-

4.1.6.6 Influence of the covariances
of the process and measurement noise

The formula used to compute K, implies that

T T
K i (Wet + Coot P 11:Cr 1) = Pyt Cr 41
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After right multiplication by'W,_: 1, one gets

T -1 T ~1
K1+ CrortPratsCratWer 1) = PritiCr et W1,
50

T ~1
Kert = ®re1tr = Kt 1 Co1 P10 Cr 1 Wi 1.
Taking the expression for Pyj+1 into account, one can therefore write
T ~1
Kir1 =P+ 1Cr 41 Wi 1.

For any given W1, the gain of the filter increases with Ppy 1. Now Py qypeq will
be large if Pojg is (but this initial effect quickly disappears), and more importantly if the
process noise is large, i.e. if V; is large.

The larger the correction gain is, the more jittery the behaviour of the filter will be,
i.e. the more drastically the state estimate will be modified to take new measurements
into account. This behaviour expresses a lack of confidence in the predicted state
estimate.

Conversely, for any given P.yy)41, the larger the covariance of the measurement
noise Wyy1 is, the smaller the correction gain will be and the less the new measurements
will be taken into account to update the state estimate. This expresses a lack of
confidence in the new measurements.

4.1.6.7 Detection of divergence

One can test whether the filter is operating correctly by computing the covariance of the
deviation between the measured and predicted outputs, so as to delect any very
improbable deviations. Let ¥,41 be the output-prediction error

- A A
Vel =¥l = Yor1r = Crrt (X1 = Xpae 1) + Wea1

If E{#,+1) =0, which holds true if the initial state estimate is unbiased, then the
covariance of the output-prediction error is

. T T
E{¥41¥:+1) = CtPr1sCr o1 + Wiy,

and the standard deviation associated with each output is the square root of the
corresponding diagonal entry. Any deviation between the predicted and measured
outputs that exceeds three standard deviations can be considered very unlikely. Unless
this is just a fleeting phenomenon, it indicates that the filter is diverging. Divergence
may be due, for instance, to

— erroneous modelling of the dynamics of the process (badly chosen A, B, and C,,
violation of the hypothesis of linearity);

— underestimation of the process noise, with V; too small;

- incorrect initialization, with Pgg too small.



An ad hoc way to avoid divergence is to increase the covariance V; of the process noise.
Another approach is to try to estimate a parameter vector p consisting of all unknown
elements of the model (A,, B,, C,, V, and W) from the available experimental data.
One may, for instance, estimate p in the maximum-likelihood sense (see also
Sections 4.1.6.10 and 4.1.6.11). If the slate variables are meant to have a concrete
meaning, one should make sure to select an input-output configuration and a
parametrization that ensure global identifiability of the model structure.

REMARK 4.7

As with least squares, the details of the numerical implementation of the filter affect
greatly the precision and stability of the results. We shall mention only two points.

— Bierman’s U-D factorization algorithm (1977) can be used to keep the covariance
matrices symmetric and positive-definite, which is crucial to ensure satisfactory
operation.

— When the discrete-time mode! is associated with a continuous-time process and the
sampling period is short compared with the time constants of the system,
implementation using the & operator is recommended (Middleton and Goodwin,
1990) 0

4.1.6.8 Stationary filter

An important special case is when

— the system studied is time-invariant (A, B and C are constant),

-— the statistics of the process and measurcment noises are stationary (V and W are
constant).

If the pair (C, A) is detectable, i.e. if any mode of A that is not observable via C is

asymptotically stable, Py, tends to a constant value as f tends to infinity (Anderson and
Moore, 1979). Let

P=1Im Py, and P* = lim Py
(=00 {3 oo

From the cquation for Pryyy,, one gets
P*= APAT + V.
Taking the expressions for Ky4y and Py into account, one can write
P =P* - P*CT(W + CP*CT)-ICP*.

Multiplying this last equation by A on the left and by AT on the right and replacing
APAT in the result by P* - V gives the discrete Riccati equation

Pt -V = APTAT - APYCT(W + CP*CT)-ICP*AT.

The matrix P* can be computed in two ways:
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— as the positive-definite solution of this Riccati equation,
— by ilerating the equations for the evolution of the covariance until P, |, becomes
constant,

The gain of the stationary Kalman filter is then simply given by
K =P*CT(W + CP*CT)-1,

It depends on A, C, V and W, but not on Pgjg or B. The implementation of the
stationary filter is particularly simple, since the prediction of the state and updating of its
estimate can be combined into

Revtieer = ARy + Bug + K[y - C(A%yy + Buy))
= (A - KCA)% + (B — KCB)u, + Ky, 1.
Note the similarity to the Kalman-Luenberger observer.

4.1.6.9 Use for the choice of sensors

To instrument a system in order to estimate its state, one should be able to answer the
following questions.

- Whal are the critical quantities to be measured, i.e. what should the vector y consist
of?

— What quality of measurements is required to ensure a given quality of state estimate?
How should the sensors be selected, given their costs and precisions?

These questions can be addressed in the framework of experiment design
(Chapter 6). The Kalman filter is a basic tool to answer them, since it computes the
sequences of covariance matrices Pyq(;+1 and Pyy). To compare the performance of
two configurations of sensors, one just has to solve the equations describing the
evolution of the covariances of the corfesponding estimation errors. The smaller the
diagonal entries of the covariance matrices are, the more precise the state estimation will
be, provided that the models describe the system and sensors correctly... These
covariances can be computed off-line, without making any measurements on the
system, which therefore need not be built.

4.1.6.10 Extended Kalman filter: real-time parameter estimation

Now consider a system described by the following possibly non-LI discrete-time model
Xr+1 = f(xp, up, pr) + vy,
X0 = Xo(P0),

yr=h(x,, p;) + w,.



This model depends on a vector of unknown parameters p;, possibly time-varying. It
may result from discretization of a continuous-time model. One wishes to estimate x;
and p; simultaneously, hence the idea of defining an extended stale vector

=[5
Xy = .
Pt
Provided that an evolution equation is chosen for the parameters, such as

P+l =pr t+ VIt).

the evolution of the extended state can be written as

f(xy, u,, V¢ X R
Xf+1=[( et p’)]+[ :l=IL(X?,uf)+V?,

P: v?

4

The observation equation becomes
c,c
yr=h'(x;) + w,.

Even when the initial model is LI, such is no longer the case for the extended model, so
the Kalman filter does not apply directly. We shall only present here the first-order
extended Kalman filter, and the reader may refer, e.g., to (Bar-Shalom and Fortmann,
1988) for further details, including the second-order filter.

Replace i (x‘,:, u,) by its first-order expansion around 9{?“:

e Ae e ae
fe(xt, uy = fc(xlln up) + A(X; = Xqlp),

with
Fod of(xy, uy, pp) Of(xy, uy, py)
of (x;, uy) T T
Ar= ( teT : [4€ = I op: %
ox; X1l 0 1 Xrle

and replace hc(xf) by its first-order expansion around %fl,_1:

h°(xy) = h°Kri-1) + Cox§ = K1),
with

2h°(x7) oh(x,, p) dh(x, p,)
Cl: = 'AC .
Xtl-1

- T T
xSl &7 X dp,

The non-LI state and observation equations are then approximated by
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e c At At c
Xrel = Axs + 1 el up) — Ary + vy,

M c AC AC
= Cpxp + h (X)-1) - CXy—t + Wy

Since this approximation is linear in x;, the Kalman filtering equations can be used,
provided that the statistics of v§ and wy are specified. Unless information is available to
the contrary, it is usually assumed that

E(v{) =0, E{w,] =0, E(viw}) = 0, E{viv} ') = Ve, E{ww} ] = Wéy,

VvV 0
ve=[ ]
0 Vvp

The matrices V, VP and W are most often chosen to be diagonal. The larger the ith
diagonal entry of VP (respectively V) is, the more quickly the filter will modify the
estimate of the ith component of p; (respectively x,) in the light of the measurements.
Conversely, the larger the ith diagonal entry of W is, the less the filter will take the
measurements from the ith sensor into account. The designer of an extended Kalman
filter will thus be able to play with these tuning parameters to search for a satisfactory
compromise. In particular, it is possible to indicate that some parameter must tend
towards a constant value by setting the corresponding diagonal entry of VP to zero. If
the ith component of x or p is assumed to be liable to vary very quickly and
unpredictably, this can be taken into account by setting the ith entry of Vor VP to a
large value.

Assume that x,', and Py, are available. An iteration then consists of computing
X ,+1;,+1 and Py )+1. To predict the future state, the nonlinear state equation

with

AC AL
Xexllt = [£(XI|I) uy)
can be used, rather than its linearized version. Py, IS4 and Pry 41 are given by the
usual formulas -
P =APu A, +VE,
T T
Kiv1 = PranCrat(W + Ct PronnCr ),

Pretier1 = Pratir = K1 Gt Praepir.

To update the state estimate, the actual prediction error, as computed from the nonlinear
observation equation, can be used rather than its lincarized counterpart:

AL AC c.acC
Xes i+t = Xt + Kee [yt = Xienil

Provided that the filter converges, which is not guaranteed, one thus gets an estimate
of x%,; which includes an estimate of the parameters. Heuristics are often introduced to
force the linearized model to remain stable.



DU wvpLnzuiion

REMARK 4.8

The extended Kalman filter has been used in a large number of practical applications. Its
popularity derives from its remarkable simplicity of implementation. It nevertheless
presents some hard-to-comprehend divergence phenomena. In the special case of
stationary LI models, a detailed analysis of the limitations of this approach has been
proposed (Ljung, 1979). The introduction of a corrective term involving the sensitivity
of the correction gain K, to the parameters makes the convergence properties of the filter
identical to those of the estimator obtained with a maximum-likelihood approach. ¢

4.1.6.11 Stochastic identification

Implementing a Kalman filter requires knowledge of (A,, By, C;, V,, W)) for all 1. If
this information is not readily available, it should be derived from the knowledge of the
inputs and outputs, which is a stochastic identification problem. Consider the simple
case where the system and noise are stationary and where a stationary Kalman filter is
sought. A possible approach would then be to

— find a model (A, B, C, V, W), by some method to be defined,
— solve the corresponding discrete Riccati equation to get the correction gain K,
— implement the stationary Kalman filter thus obtained.

One may, however, drastically simplify the procedure by replacing the estimating filter
by a predicting filter (Remarks 4.6), which can be written as

A A T A
Xr+11r = AXpp-1 + Buy + K(y; = Cxpry),
with K = AK. Let §, be the output-prediction error at time { (the innovation)
— A
V=¥ - CXp-1.
The last two equations can be rewritten as
A A e —
Xr+1lt = AXq-1 + Bu, + Ky,
A ~
Y= Cyp-1 + §1.
One may even forget that X+ 1) is a state predictor, set X, = %1-1 and model the process
directly as
Xyl = AX; + Bll( + Ki,,
yr=Cx + ¥y,

which is called the innovations representation. This form involves a single noise ¥,
with the same dimension as the output, instead of two noises v, and w,, with the
dimensions of the state and output respectively. This presents two advanlages (Ljung
and Soderstrom, 1983):
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~— since the number of noise parameters is drastically reduced, modeling the stochastic
process becomes much simpler;

— the model of the process includes K explicitly. The correction gain of the stationary
Kalman filter is therefore obtained directly, without having to solve any Riccati
equation.

EXAMPLE 4.7

Consider the following canonical state-space representation, called the companion formn
or observer form, of a single-input-single-output time-invariant LI process:

’_—al 1 0 ... 0] b7 -El-‘
-y 0 1 0 e b:)_ i\.:’)
1= a3 0 0 L .. [x;+| . |w+| . |70
_—, 0 ... ... 0 4 Lb,,— E,~
yw=[1 0 ... 0 0 ]1x+5¥.

The 3n + 1 parameters of this model are the a;, by, Ei(¢i=1,...,n)and the variance
of the innovation J,. The vector of the k;’s is the gain k of the stationary Kalman filter.
Define c; as

ci=ki+a;,i=1,..,n

The recurrence equation that corresponds to this canonical representation can then be
writlen as

Ve+ay g+t agye g =biug_y + o by V1V + o+ Y e

It is therefore an ARMAX model (Section 2.4). Various techniques to estimate its
parameters will be considered in the remainder of this chapter. This being done, the gain
of the stationary Kalman filter is computed as k; = ¢; — a;. \

4.1.7 Errors-in-variables approach

As seen in Chapter 3, unweighted least squares correspond to maximum-likelihood
estimation if the observations can be written as

yO =rT(-)p" + e, 1=1,...,n,
where the &(1)’s are i.i.d. {0, 62), or equivalently if

y$=Rp* +&,
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where € is distributed A{0, 621,,). Only the output is then assumed to be noisy,
whereas all variables involved in the computation of the regressor vector are assumed to
be known exactly. This hypothesis (which Kalman (1982) calls prejudice) is often
rather unrealistic, and one may prefer to assume that all variables involved in the
estimation problem, i.e. y(r) and all components of r(¢~1), are noisy. This corresponds
to the so-called errors-in-variables approach; see, e.g., (Anderson, 1985). The outpul
then loses its particular status of being the single noisy variable, and can be pooled with
the regressor vector into a single vector

x(1) = ), rT-DIT.

If the vector x*(#) of the corresponding noise-free variables satisfies a linear relation
x*Tp* = 0, where the dimension of p* has been increased by one (o account for the
incorporation of y in x, then the matrix X* obtained by piling up the vectors x*T(r)
(r=0, ..., n) satisfies

X*p* =0 = X*TX*p* = 0.

The true value p* for the parameters of the linear relation therefore belongs to the kernel
of the noise-free empirical covariance matrix

=Ly Ty
—-”lz .

At best (provided that dim ker £* = 1), p” is thus only identifiable up to a normalization
coefficient. In the least-squares method, for instance, the chosen normalization policy
associates a parameler equal (o minus one with y(z).

Unfortunately, one has no access to ¥, but only to Z, such that £ = X" + f,
where Z is the error in the covariance due (o the noise. This usually makes ¥
nonsingular. Various approaches have been developed to estimate p from such noisy
data.

The algorithm proposed by Guidorzi (1991) makes it possible to avoid any
hypothesis about X, provided that the system studied is stationary and two independent
experiments can be performed with the same covariance error . Let X1 and Zj be the
noisy empirical covariance matrices computed from the results of these experiments.
They satisfy Z; =Z] + Z and £» = £5 + X, so the noise lerm X can be eliminated by
subtraction. The vector p* must satisfy

p* € ker (£} - £3) = ker () - Z7).

If the experiments are desigred so as to ensure that dim ker (£} — £3) = 1, one can thus
estimate p* uniquely, up to the normalization, by computing ker (£ — X»). In practice,
Z) — Xy will often be of full rank, because the noise will only partially be eliminated.
One may then proceed by singular-value decomposition and select the direction
associated with the smallest singular value.

When the effect of the noise cannot be eliminated by subtraction, various techniques
can be used to estimate p. They differ in their hypotheses about X, which one might
prefer to those underlying the least-squares method.
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The total-least-squares method (Willems, 1986a, 1986b, 1987; Van Huffel,
1987; De Moor, 1988) assumes that all entries of x(f) are independently additively
corrupted by noises with the same variance 62, so

£=02 Lyp.-

This variance is then estimated by the smallest singular value of Z, the estimate p of p*
then being obtained by normalizing the associated eigenvector.

As in total least squares, the Frisch method (1934) assumes that all components of
x(1) are independently additively corrupted, but allows the noise variance to depend on
the component considered, so

o0 0 ... 0
}_:=00%.0
0 0 o

Let ﬁ,- (of dimension np — 1) be the unweighted least-squares solution obtained when
only the ith component of x is assumed to be noisy (i = I, ... , np). The role of y(7) is
then taken up by —x;(¢), whereas the regressor vector consists of the remaining
components of x. Transform q; into an np-dimensional vector by inserting an ith entry
equal to one. The resulting vector is then a feasible solution for p*, defined up to a
normalization coefficient. Choose this normalization coefficient to give a unit value to
some component of the vector chosen independently of i, for example the last one.
Denote by p; the (1p — 1)-dimensional vector of the remaining components.

If £-1 can be transformed into a matrix with positive entries by changing the sign of
components of x, i.e. by the transformation LE-!L, where the signature matrix L is a
diagonal matrix with nonzero entries equal to £1, the vectors p; (i = 1, ..., np) all
belong to the same orthant of an (np ~ 1)-dimensional space. The set of all feasible
normalized solutions then corresponds to the simplex with these vectors as vertices. A
more general case has been considered by De Moor and Vandewalle (1986a, 1986b).
The technique extends to dynamical systems described by recurrence equations, and
then usually yields a point estimate, contrary to the static case (Beghelli, Guidorzi and
Soverini, 1990).

The errors-in-variables approach will be considered again in Section 5.4.2.1, in a
bounded-error context.

4.2 Least-squares based methods

When the error is not affine in p, the least-squares method described in Section 4.1 no
longer applies. Still assumning that the cost function is quadratic in the error, various
approaches can compute a parameter estimate through iterative use of recursive or
nonrecursive least squares. Depending on the type of model studied, many methods are
obtained, which have received various names in the literature but proceed from the same
philosophy. As will be mentioned, some of these methods have rather severe limitations
and cannot compete with the general methods of Section 4.3. It nevertheless seems
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interesting to present them, because they are classically used, simple to implement, and
correspond to natural ideas, the limitations of which should be made clear.

4.2.1 Pseudolinear regression
Assume that the model output can be written as
Ym(t+1, p) = rT(z, p)p.

If an estimate ﬁ(l) of p is available at time 1, then r(¢, p) can be approximated by a
vector F(¢) that does not depend on p

ORI G)F
One thus gets an LP model structure
ymip(t+1, py =T T(0)p,
and p(r+1) can be computed by recursive least squares. One may /iope that this
approach converges to the estimate of p that would have been obtained had yr, not been

replaced by ymip. This approach can be applied to various systems.

4.2.1.1 Extended least squares
Assume that the process studied is ARMAX, described by

A(g, p)y(t+1) = B(g, pH)u(t+1) + C(g, ph)e(t+1),
where
Alg.p)=1+a1g™t + ... +ayg™,

B(g.p)=biq~! + ...+ by g,
Clg,p)=1+cig™l + ...+ cpg7e,

and where the £'s are i.i.d. A{0, 02). This amounts to saying that the following
recurrence equation is satisfied:

y(t+1) = —ajy(H) — ayy(t-1) — ... — ag,y(t+1-mg) + bju(r) + ...
+ by u(t+1-np) + cJE() + ... + i E(t+1-nc) + E(H+1).

The vector of the parameters to be estimated is p = (a1, ..., an, b1, ...y by,
Cly ove s c,,c)T. If the regressor vector is defined by

r(t, p*) = [-y(), —y(t=1), ..., =y(t+1=-ny), u(1), ...,
u(t+1-np), 1), ..., &(t+1-n)]7,



the equation describing the process may be written as
y(t+1) = rT(t, p*)p* + (1+1).

One should indeed know the true value p* of the parameters to be able to compute the
past values of £ that appear in r from the past values of the input and output. If r(t pH
were known, it would suffice to employ recursive least squares to estimate p* in the
maximum-likelihood sense, since the &'s are independent, stationary and Gaussian.
This suggests using the approximate model

Ymip(f+1, p) = rT(np,

where the approximation £(f) of r(t, p*) is obtained by replacing the past innovations by
the corresponding residuals

r(1) = [—p(1), —=y(=1), ..., =y(+1-ny), u(®), ...,
u(t+1-np), e, ..., e(t+1-nHT,

where e(1) = y(t) = ymlplt, p(r)] All quantities appearing in 1 (1) can be computed at
time 7, so recursive least squares apply. The resulting estimator pis known as the
extended-least-squares estimator (Young, 1968; Panuska, 1968).

4.2.1.2 Properties of extended least squares

Few pseudolinear algorithms have had their convergence properties studied as
exhaustively as extended least squares.

PELS!: Convergence to p* is not guaranteed. A sufficient condition is that
Re[1/C(e/®, p*)] = 172 for all real w (Ljung, 1987). Since this condition depends on
the true value p* of the parameters, obviously unknown, it cannot be checked
a priori. It is even possible to produce examples of ARMAX systems such that the
extended-least-squares estimator will never converge to p* (Ljung and Séderstrom,
1983).

PELS2: When it occurs, convergence is often rather slow anyway. Some forgetting
should be introduced in the recursive algorithm, in order not to penalize the final
estimate with the initial errors. If the data are too scarce, they could be circulated
several times in the algorithm.

PELS3: The method can also be implemented off-line.

4.2.2 Multilinear regression

Assume that the parameter vector can be partitioned into classes py, p3... such that the
error is affine with respect to the parameters of any of these classes when the parameters
of all others are fixed. It is then possible to search for p by applying the least-squares
method to estimate the parameters of each class in turn

A . . A A
pi =arg min j(p; | p2, P3, ...},
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A . . A A
p2 =arg min j(p21p1, p3. ...),
and so forth, with a cyclic exploration of all classes. At each step, the value ofj(ﬁ)
decreases towards some constant value. Nothing guarantees, however, as will be seen

for generalized least squares, that the estimate of p thus obtained corresponds to a
global (or even local) minimizer of the cost.

4.2.2.1 Generalized least squares

Consider an ARARX process described by

A(g, p*)y(t+1) = B(g, pHHu(t+1) + — E(t+1),

1
D(q,p")
where A, B and ¢ are defined as previously and

D(g.p)=1+dig7' + ... + dyqd.

This condensed notation corresponds to the recurrence equations

Y1) = —aly(1) — ady(1-1) — ... — a y(t+1-ny)
+bju(D) + ...+ by u(t+1-np) + N(1+1),

n(+1) = —d11(1) — ... — dygn(t+1-ng) + £(+1).
Partition the vector p of the parameters to be estimated into
Pab = (a1, ..., ay, by, ..., b,,h)T and pgq =y, ..., a',,d)T.

The equation of the process becomes

A(q, Pap)y(t+1) = B(g, papu(r+1) + —— g(r+1).
D(q, pd)

To estimate p in the (conditional) maximum-likelihood sense, one may use the results of
Section 3.3.2. The prediction error satisfies ep(r+1, p*) = e(1+1), and is thus given by

ep(t+1, p) = D(q, pa)lA(g, Pab)y(1+1) — B(q, pab)u(t+1)].

Since, by hypothesis, the £’s are i.i.d. A{0, 62), the (conditional) maximum-likelihood
estimate minimizes
ny

ip) = Z ed(t, p).
=1
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The prediction error ep is not affine in p, so the least-squares method cannot be used to
find p. When D(q, py) is fixed, however, it is affine in p,p. Similarly, when A(g, pab)
and B(q, pap) are fixed, it is affine in pg. This suggests the following algorithm:

Step I: Set k=0, p] =0, i.e. D(g, ) = 1.
Step 2: Minimize

m

JPab) = 2, [A@, pan)ye(t, BY) - B(g, panugtz, P12
1=1

with respect to pyp, where the ﬁllered input #y and output yr are obtained by passing
1 and y through the filter D(q, pd) which corresponds to

This f)k) =u(n + ?ifu(!—l) + ...+ ?l,';'du(l—nd),

Al AL
yi(r, pr) = y(£) + d‘l‘y(t—l) + ot (I,L,dy(r—nd).

The cost j is now a sum of squares of affine terms in Pab- Nonrecursive least
squares can therefore be used to compute the global minimizer /F\’]h

Step 3: Minimize

m

)= 2, (D, pOAG: B - Blg, BE D]
=1

with respect to p4. Again, this cost must be evaluated by using the recurrence
equations associated with this condensed nol..mon It consists of a sum of squares of
terms affine in pq, so the global minimizer pg can be computed by nonrecursive least
squares.

Step 4: Increment k by one, set pd equal to Pg and go to Step 2.

This method has been developed by Clarke (1967), under the name of generalized
least squares. 1t alternates estimating the parameters of the deterministic part of the
model (Step 2) and those of the autoregressive model of the noise (Step 3).

4.2.2.2 Properties of generalized least squares

PGLS1: Since each step decreases a quantity j(B) bounded from below by zero,
convergence of the cost to a constant value is ensured.

PGLS2: Nothing guarantees, however, that P will converge to a global (or even local)
optimizer of the cost. Alternating optimizations with respect to p,h and py actually
result in a deadlock, or exceedingly slow convergence, if the minimization of j
requires simultaneous action on these two classes of parameters. This is a general
difficulty with all algorithms that freeze some parameters while others are optimized.
See also Section 4.3.2.6 and Figure 4.12.

PGLS3: A recursive version of generalized least squares is available, with exponential
forgetting of past data (Hasting-James and Sage, 1969).
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4.2.3 Filtering

As for generalized least squares, many algorithms alternate filtering and vse of the least-
squares method.

4.2.3.1 Steiglitz and MeBride’s method

Consider a process described by
Y(1+1) = ym(e+1, ph) + (1),
where the €s are i.i.d. A{0, ¢2) and

B(q.p) u(r+1).

Im+1 ) = 4y p)

with the polynomials A(q, p) and B(g, p) defined as previously. This last equation is
just a condensed notation for the recurrence equation

Ym(t+1, p) = —ayym(t, p) — azym(=1, p) — ... —ap,ym(t+1-n,, p)
+ b+ ...+ bygu(t+1-ny),
where
p =(ay, ..., Aty by, ..., bnb)T~

The maximum-likelihood estimate is obtained (Chapter 3) by minimizing the cost

n

jm= (1) = ym(t, P)I?,

N
If
—_

which is quadratic in the oufput error
ey(t, p) = y(1) — ym(t, P).

Unfortunately, ym(t, p) is not LP, and to use the least-squares method, one is led
(Example 4.3) to change the model structure to

Ymlp(t+1, p) = —ayy(1) — azy(1-1) — ... — apy(t+1-ny)
+bu(t) + ...+ byu(t+1-mp),

in order to minimize
n

Jjp) = 2 () = ymip(t, p)12.
=]
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This amounits to replacing the initial output error by a generalized error

eg(t, P) = ¥(1) = ymip(t, P)-
Because of this substitution, the resulting estimator Pjs is not a maximum-likelihood
estimator of p*. Steiglitz and McBride's method (1963) is intended to transform the
generalized error ey(t, p) iteratively into the output error ey(#, p). The generalized error
satisfies

eg(t+1, p) = y(t+1) — ymip(z+1, p) = A(g, p)y(++1) — B(g, p)u(t+1).

The difference between generalized and output errors is illustrated by Figure 4.6.

Parallel mode]

y (i+1,p)

Alg. p)

ey()'+1, p)

1+
Process rtl) +f

B(g,p")
Alg,p")

u(r+1) G

Y

Series-parallel model

| B(g.p) —a— 4. p) |«

€ +1,p

Figure 4.6, Generalized and output errors

Whereas the model producing the output error is parallel and non-LP, the one
producing the generalized error is LP, with a part in series and a part in parallel. To
replace the generalized error by an output error, one should filter the two 1npuls of the
series-parallel model by 1/A(q, p¥). Since p is unknown, the procedure is iterative
(Figure 4.7). Let p " be the estimate of p* at iteration k. The next estimate p“] is
computed by nonrecursive least squares using input and output data ﬁltercd by
1/A(q, p ) This means that «(t) and y(t) are respectlvely replaced by u(r) and yg(1),
with

V(1) = =1 y((t) = ... = By ye(t+1-ng) + y(i+1),



up(t+1) :—ﬁ]ur(t) — = ('1\,,aur(t+l—nn) + u(r+1),

where the a ’s are the first 17; components of ps The procedure is initialized by
estimating pS by least squares from the original unfiltered data. Provided that the
estimated parameters converge (o a constant value,

A(g, P Ak+l B(q, AL+ B(q, ’\k+l
—-—(——1———————)—> | and (g p:k )—> ta EZH)’
A(l]-p ) A((]‘ pg) A(([, ps )

so the filtered generalized error does tend to the output error.

gr+1)
u(t+1) > Process ~>é.____.. ye+1)
——— e —— — — — — ——
1 Known fifter B 1
Alg, Db at iteration % Alg, PYH
/ pA*1 estimated by /
B, ph+! least squares from Al
@ P filtered inputs and outputs AGQ BT

M

eg(f+l, p)— ey(t+], p)

Figure 4.7. Principle of Steiglitz and McBride's method

Properties of Steiglitz and McBride’s method

PSM1: The model structure is ARMAX, with the constraint C(q, p) = A(q, p).

PSM2: The system studied must be stable. One must also make sure that 1/4(g, pg) is
a stable filter. Otherwise, any unstable pole must be dragged back inside the unit
circle to avoid explosion.

PSM3: Provided that

— 1/A(q, p") is stable,
— A(g, p*) and B(q, p*) are relatively prime,
— the input is persistently exciting,
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— the input and noise are independent, and the addditive output noise corresponds
to a sequence of independent random variables,

the method converges locally to the true value p* of the parameters as the number of
data points tends to infinity. The convergence becomes global if the signal-to-noise
ratio is large enough (Stoica and Séderstrém, 1981).

PSM4: The method usually converges very quickly (typically 3 to 4 iterations). The
volume of computation is much smaller than with the nonlinear programming
methods to be presented in Section 4.3. A very large number of data is not
mandatory.

PSM5: This approach can also be implemented recursively (Ljung and Séderstrom,
1983).

REMARK 4.9

At each iteration, one should filter the initial input and output data (not the previously
filtered data) to get ugand yr. 0

4.2.3.2 Extended matrix method

All systems considered so far in Section 4.2 are special cases of ARARMAX
(Figure 4.8).

a0 Clg.p"
D(g,p")
7w
wt) —=| Big,p") —I-T = (1)
Alg,pY)

Figure 4.8. ARARMAX structure that contains all cxamples of Section 4.2 as special cases

Assume, as previously, that the €'s are i.i.d. A{0, 6). If the input-output delay n; is
assumed to be one, this scheme corresponds to

Y+ = —aly(1) — ... — apy(t+1-my) + biu(r) + ... + by u(t+1-np) + n(t+1),
n(t+1) = =d{n(0) — ... — dyyn(+1-ng) + (t+1) + &) + ... + cp &(t+1-nc).
If {n(n) and { (1)} were known, the maximum-likelihood estimate of
P=(al, ..., np byy ooy bupe ooy Claees Cnn diy oy dygy)t

could be obtained by minimizing
m

jpy= 2, e}t p),
=1



where

eg(t+1, p) = y(t+1) - rT(Hp,
with

r() = [, ..., =y(t+1-ny), u(?), ..., u(t+1-np), &), ...,
e(t+1-n¢), -0, ... , —n+1-n)]T.

One would indeed have eg(r+1, p *) = g(t+1). Unfortunately, r(f) would only be known
if p* were. As in extended least squares, estimates are substituted for unknown
quantities in (7). From Figure 4.8, these estimates can be taken as

N(+1) = Alg, P)y(+1) = B(q, DIu(t+1),
and

a1y = 2@ Blaiiyy,

A

(g, P)

where P is the best available estimate. One can then apply recursive least squares with
forgetting or nonrecursive least squares to estimate p* iteratively. This technique has
been developed by Talmon and van den Boom (1973) and is known under the
(admittedly not too explicit) name of the extended matrix method (Eykhoff, 1974).

Properties of the extended matrix method

PEM1I: To avoid explosion, all zeros of C(g, P) must be forced to stay inside the unit
circle.

PEM?2: Characterization becomes very complicated, since ny, np, 1 and nq must be
chosen.

PEM3: A large number of data points is necessary.

PEM4: The convergence of the method is not guaranteed (Ljung, Soderstrom and
Gustavsson, 1975), and a more general method with better convergence properties
will be presented in Section 4.3.8.

PEMS5: In the special case of ARMAX structures (D(q, p) = 1), this method differs
from extended least squares by a more sophisticated substitution for £ in the
regressor vector.

4.2.4 First-order expansion of the error

Since, by hypothesis,
jm= eT(p)Qe(p)

another method of transforming the problem into one that can be solved by least squares
is to perform a first-order expansion of the error e around the last estimate pk:

e(p'~+1)—e(pk)+a Tl (Pr+! - ph).
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This approximation of the error is affine in phel — pk, The least-squares method can
therefore be used to compute the increment to be given to P at iteration k, which yields

Ape1 _ Ap [9€T(p) ae(p) I ae (p)
pi+! = pk [ A A ] QE(PI‘)

This is the Gauss-Newrton algoritlun. When Q is diagonal, with nonzero entries w,
(t=1,..., ny), it becomes

n —1 Tt

de(t, p) de(t, p) Ar Oe(t, p)
Akt] = p kyoel. p)
et =pt Z‘f YT gk opT Z‘ et P e g

In this form, the Gauss-Newton algorithm is not even guaranteed to converge to a local
minimizer of the cost. This defect will be eliminated in Section 4.3.3.4.

4.2.5 Instrumental-variable method
Let y* be a vector of data generated by a system with parameters p*:
y$=Rp* +n.
The unweighted least-squares estimator of p* satisfies
Pis = (RTR)-IRTys = p* + (RTR)-RTn.

This estimator is unbiased, i.e. its mean over all data that could be collected from the
system with parameters p* is equal to the true value,

[P1s} = p*,

s|p*
if and only if
E _((RTR)"1RTn} =0
y*lp

This will hold true if n is zero-mean and uncorrelated with R. The following example
illustrates a situation where this hypothesis of uncorrelatedness is not satisfied.
EXAMPLE 4.8

Consider the data generated by the system

Ym(r+1, p*) =—aTym(l, p*) - - a,:]_vm(Hl—nﬂ, p*) + b?u(t) +...+ l),fhu(l+l—n|_1).
)’(t) = }'m(’v p*) + E(’)?

where £(1) belongs to a sequence of independent random variables and



p=(ag, ..., an, by, ..., l),,h)T.
The data satisfy
y(t+1) = rT(Hp* + n(1+1),
with

r(1) = [-(1), ..., =y(t+1-mp), u(d), ..., u(t+1-mp)]T
and

n(t+1) = e(t+1) + a1 E(1) + ... + ap £(t+1-ny).
However, since the regressor vector can also be written
r() = [-ym(t, P7) — (1), ..., =ym(t+1-ny, p*) — E(t+1-1y), u(1), ... , u(t+1-np)]T,
R is correlated with n, so the least-squares estimator is biased. 0
Note that the unweighted least-squares estimator is obtained by left-multiplying
y® = Rpys + s

by RT then imposing RThjs = 0. The basic idea of the instrumental-variable method is
to obtain Pjy by left-multiplying

ys= R6iv + i'\11'\'
by VT then imposing VThjy = 0. Assuming that VTR is invertible, one then gets
Biv = (VIR)-IVTys,

The entries of V are the instrumental variables, or instruments. The estimator ﬁiv
satisfies
Piv=p* +(VIR)-1VTh.

It will be unbiased if n is zero-mean and uncorrelated with V.

The quality of the results depends on that of the instruments, and various methods
have been proposed to generate them (Soderstr6m and Stoica, 1983). The simplest
solution is to obtain V by replacing all entries in R that may be correlated with n by the
output of a run of the model at the previous iteration. One thus gets an iterative
procedure

Biv! = VTR RIFIVTRL)ye,

v
which may be initialized by least squares.
EXAMPLE 4.8 (continued)

To obtain V from R, one may replace each row rT(r) of R by the instruments

vT, f)li”'v) = {—ym(1, ﬁlkv) ey =Ym(t+ 1-ny, ]'5{”;,), u(n, ..., u(t+1-np)],
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where yp, is obtained by simulating the recurrence equation
Ym(t+1, p) = =a1ym(t, P) — ... = apym(t+1-ny, p) + bu(t) + ... + by u(t+1-np). 0

The instrumental-variable method can also be implemented recursively, similarly to
least squares. Its main interest is that it allows the bias of the least-squares method to be
avoided, without being too specific about the nature of the process generating the noise
(contrary to generalized or extended least squares, for example).

REMARK 4.10
Being unbiased is not necessarily a good property of an estimator. It is sometimes better
to accept some bias, if this leads to an important reduction of the variance of the
estimation error. This is the aim of the ridge estimator,

p=(RTR + K)-IRTys,
where the matrix K is symmetrical and chosen so as o reduce the estimation mean-
square error; see, e.g., (Goldstein and Smith, 1974). 0

4.2.6 Least squares on correlations

Consider a process described by
Y1) = —a)y(1) — ... — an y(t+1-ng) + Biu(t) + ... + bygu(t+1-np) + n(r+1),

where the noise 7 is assumed to be uncorrelated with the input «. The input
autocorrelation and input-output crosscorrelation, respectively defined by

n

n
. 1 . 1
cuu(®) = ,,lE)n Tl Z u(k)u(k—t) and cyy(?) = nhm 1 z y(k)ulk-t1),
k=0

SR = e

satisfy
Cyu(r+1) = —aTcyu(t) - a:acyu(1+1—na)
+ bleyu(D) + oo + by Cuy{t+1-np) + cnu(t+1),

where the crosscorrelation cny between « and 17 is zero. The influence of the noise can
therefore be eliminated by applying least squares to the LP model structure

Ccyu, (t+1, P) = [—cyu(D), .. s ~cyu(t+1-na), cuu(, ..., Cun(t+1-np)]p

with the quadratic cost

JB)= D [eguld - ey (1 DI
t



o

Large values of n are required to get accurate ecmpirical correlations from experimental
data (provided that the process generating the data is sufficiently stationary). This makes
this technique rather inefficient. It can be implemented recursively or nonrecursively
(Isermann, 1974).

4.3 General methods

Many optimization methods do not require the cost to be quadratic or the error to be
affine in the parameters; see, e.g., Polak (1971), Luenberger (1973), Powell (1981),
Gill, Murray and Wright (1981), Minoux (1983), Press et al. (1986), Polyak (1987)
and Lemaréchal (1989). We shall only present a few of them. The techniques selected
fall into three categories. The first corresponds to basic tools, such as the gradient
method or one-dimensional search methods, that are the core of more sophisticated
algorithms. The second corresponds to reference algorithms that have a proven record
on a number of applications. Some of them, such as conjugate-gradient or quasi-
Newton methods, are implemented in most major libraries of scientific subroutines.
Others, such as Levenberg and Marquardt’s method, are used in commercially available
estimation software. The third group of algorithms consists of methods still under
development but very promising, such as global optimization methods.

The initial problem is generally decomposed into a sequence of more elementary
problems. For instance, a multivariable optimization problem is considered as a
sequence of one-dimensional optimizations, or optimization on a convex set is treated as
a sequence of optimizations under linear constraints. Most of these subproblems cannot
be solved exaclly, in the sense that the algorithms include some stopping rules such as
“if f{p) is lower than some threshold, stop”. The problem of how to choose thresholds
in imbricated algorithms so as to ensure convergence of the whole procedure will not be
considered here. For a rigorous exposition, see (Polak, 1971). Similarly, the numerical
implementation of the algorithms will not be described, and the reader is invited to
consult the many references mentioned.

Except for Section 4.3.4, all techniques to be considered deal with basically
unconstrained optimization, even if the prior feasible domain P is sometimes assumed
to be an axis-aligned orthotope (or box). To simplify exposition, the cost function j will
be assumed to be minimized with respect to p. This is not restrictive, since changing the
51gn of a function to be maxnmxzcd makes it a cost to be minimized. A (possibly local)
minimizer of j will be denoted by p, whereas a global minimizer will be denoted by p.
Whenever the derivative of a function with respect to ils arguments is to be computed, it
will be implicitly assumed to exist. Non-differentiable costs, such as those involving
absolute values, will be considered in Section 4.3.5.

At each iteration &, most algorithms compute pA+! from P to ensure that j(Pk+1) is
lower than j(pX). This raises the questions of where to start (choice of p%) and when to
stop the iterative procedure. They will be addressed in Sections 4.3.6 and 4.3.7.
Section 4.3.8 will deal with recursive techniques, by which data can be taken into
account as they arrive. Section 4.3.9 will be devoted to global optimization.

Before presenting these methods, let us consider a common special case where the
least-squares method can still be used to simplify the optimization problem
considerably.
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4.3.1 Quadratic cost and partially LP structure

Consider a model structure, the output of which depends linearly on »; parameters
forming a vector p! and nonlinearly on ny parameters forming a vector p"l. The vector
of all model outputs can be written as

y™(p!, p") = R(p"pl.
Assume that the quadratic cost
J®' p™ = [ys — ym(pl, pPHITQIys - y™(p!, pnh],

where Q > 0, is to be minimized. For any fixed value of p"!, the value of p’ that
minimizes j(., p) is given by the least-squares method as a function of pnl:

plpnh = [RT(pPhQR(p™) - RT(p)Qys.

Replacing p! by f)l(p“') in the cost, one gets a cost that depends only on the nonlinear
parameters (Lawton and Sylvestre, 1971)

Jem) = [ys - R(p"P!(p"H]TQLy* - R(p™)p!(p"h].

This makes it possible to reduce the dimension of the search space from 1y + iy to ny),
which simplifies the task considerably. We need now only provide an initial value for
the nonlinear parameters. Moreover, exploring a reduced-dimension space is quicker
and raises fewer numerical difficulties.

This method should be preferred to alternating minimizations with respect to p! and
p, because it avoids the deadlocks encountered in that case. For practical advice on the
minimization method to compute ﬁ"‘, see (Barham and Drane, 1972; Golub and
Pereyra, 1973).

EXAMPLE 4.9

Consider the model
3

Ym(t, p) = Z a;j exp(-A;t),
i=1

where the parameters are the a;’s and A;’s. The model output is linear in the a;’s and
nonlinear in the A;'s. If the cost to be minimized is quadratic in output error, this
method makes it possible to search for the optimal value of the parameters in a three-
dimensional space. 0

4.3.2 One-dimensional optimization

Minimizing a univariate cost forms an essential component of many multidimensional
search methods. Let p be the scalar parameter with respect to which j is to be
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minimized. It may, for instance, be associated with some direction of parameter space,
spanned by some vector d, to be explored from the estimate PX obtained at iteration k. It
will thus be assumned that

p(p) = P + pd.
REMARK 4.11

For some of the multidimensional optimization methods to be presented in
Section 4.3.3, it is more efficient to perform rather inaccurate one-dimensional
searches, only intended to provide a significant decrease of the cost in as few iterations
as possible. See Wolfe’s method, to be presented in Section 4.3.3.9, which is
incapable of locating the optimizer precisely and thus not considered as a one-
dimensional optimization method. 0

4.3.2.1 Definition of a search interval

The first task 10 be performed is to define some initial interval I0 = [a, b] within which
the search for p pis to take place. For this purpose, one may for instance evaluate j and its
first derivative with respect to the scalar p at p0 = 0. (If this derivative is not available, it
could be replaced by a finite difference.) Three cases may then arise, depending on the
sign of this derivative.

— When the derivative is negative, the cost can be reduced by increasing p from
a = pY. The cost is then evaluated at p! = p0 + Ap, where Ap > 0. If j(p!) = j(p"),
then b = pl, and j possesses at least one (possibly local) minimizer between a and b.
Else, one should move further away from p0, e.g. by doubling Ap, until the cost
starts increasing. The last and last-but-two values of p for which the cost has been
evaluated can then be taken as b and a respectively. The search interval can be
further reduced if the sign of the derivative of j at the last-but-one value of p is
known (this value of p can then be taken as a or b).

— When the derivative is positive, the cost can be decreased by reducing p from
b = p0. The cost is then evaluated at p! = p0 - Ap, where Ap > 0. If j(p!) = j(p0),
then a = pl. Else, one should move further away from p® until the cost starts
increasing. The last and last-but-two values of p for which the cost has been
evaluated can then be taken as a and b respectively. Again, the search interval can be
further reduced if the sign of the derivative of j at the last but one value of p is
known.

— When the derivative is zero, the cost is stationary at po, which may be a minimizer.
The cost may then be evaluated at two neighbouring points to get more information
on the nature of this stationary point. If it turns out not to correspond to a minimum,
it suffices to move slightly away from p0 to get into one of the two previous cases.

REMARK 4.12

This policy leads to moving in the opposite direction to that of the gradient of the cost
with respect (o p. The gradient algorithm will use the same idea in a multidimensional
setting. 0
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Once a search interval has been defined, various policies can be used to reduce its
size. They can be compared by the volume of computation required to locate the
minimizer with a given precision, which should be kept as small as possible.

4.3.2.2 Dichotomy

This method evaluates the derivative of the cost (or an approximation of this derivative
by a finite difference) in the middle u of the interval [a, b]. If this derivative is positive,
b is replaced by pu. Else, a is replaced by y (Figure 4.9). Each iteration therefore
divides the search interval by two, so after N evaluations of the derivative of the cost
one has

. . _ initjal uncertainty
Final uncertainty about f) = N .

Figure 4.9. Dichotomous scarch

Even when the initial search interval is very large, only a few iterations are needed to
locate a minimizer with high accuracy. If the function is inverse unimodal over [a, b],
i.e. if it possesses a single minimizer in [a, b], this global minimizer is guaranteed to
belong to the final interval. Unfortunately, j is seldom known to be inverse unimodal
over [a, b], so the minimizer guaranteed to be enclosed in the final interval may only be
local. It may even correspond to a value of the cost larger than J(P*) (Figure 4.10).

4.3.2.3 Fibonacci’s and golden-section methods

If the cost function is not differentiable, or if evaluating its derivative with respect to p is
too costly or too inaccurate, dichotomy can no longer be used. The Fibonacci and
golden-section methods (Kiefer, 1953, 1958) replace evaluating the derivative in the
middle of the search interval It = [a¥, b’*l by comparmg the values of the cost at two
points p} and p§ in this interval, with p5 > ph. Ik is thus divided into three parts.
Assuming that j is inverse unimodal over [a, b], one can then use the following
algorithm:

If jph) >j(p§), then ak+! = ak and hA+! =pl2‘, else gkl = p’l‘ and bk+1 = bk,

This procedure is illustrated by Figure 4.11.
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Figure 4.10. Failure of a dichotomous search due to inverse multimodatity
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Figure 4.11. Principle of the Fibonacci and golden-section methods

The interval T+ therefore still contains either pﬁ or p’ﬁ'. This suggests one additional
evaluation of the cost per iteration, to be used together with the value at this remaining
point. We shall limit ourselves here to a classical description of these optimization
methods, which relies on minimax optimality. The final length of the search interval is
minimized in the worst case, asymptotically with the golden-section method and for a
given finite number N of evaluations of the cost with the Fibonacci method. More recent
approaches based on average optimality seem promising; see (Wynn and Zhigljavsky,
1993) for the asymptotic case and (Pronzato and Zhigljavsky, 1993) when N is finite.

Assume first that N is finite. Let L;, be the length of the search interval I* obtained
after & evaluations of the cost in I0 = [0, 0], Since a single evaluation does not allow
any part of the interval to be eliminated, Lj = Ly = b0 — a0. A strategy is defined by the
choice of p*+! as a function of I* and the point p* of I¥ where the cost has already been
evaluated. Finding the optimal strategy can be viewed as a dynamic -programming
problem, with a terminal cost given by supjey Ly, where J is the class of all cost
functions inverse unimodal over I0. The dircct problcm is to find the sequence [p*},
with & increasing from 1 to N, but the optimal solution is obtained backwards, with k
decreasing from N to 1.
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Let IN-1 = [gN=1 pN-11, The optimal locations of the last two points can be taken as

pN-1* ___%(aN—l £ bN-1), and pN* = pN-1" 4 ¢,
so that

with £ chosen as small as possible, limited by the imprecision with which the cost is
evaluated. In what follows, it will be assumed that £ = 0. The search interval can be
normalized by transforming I* to [0, 1], so that pk becomes

2k =Ek_—_aﬁ
bk — gk’

The optimal strategy for N = 2 is then defined by z!" = z2* = 1/2. Decreasing k, one
shows that the optimal strategy satisfies

* * *
Ljy=Lp+ Ly,

ie. LN 1=2L%, Ly_> =3LJ, Ly_3 = 5Ly, Lj_s = 8Ly... which is continued up
to L} In the renormalized interval [0, 1], the cost must then be evaluated at Z** or
1 -2, with
= L =L LL:I'L >1,
L Ly
i.e.
* * 2
N = N1 =%, N2t =3 N3t o 35 YL % .

up to z!*. Note that this is a symmetrical algorithm, for in each interval I¥ the two
evaluations are performed symmetrically with respect to the centre (af + b%)/2. The
resulting method has Fibonacci’s name because

Ly = franLn.
with {f;) the sequence of Fibonacci numbers,
fo=0f1 =1 fy =fyot +fp-2 k22
For fixed N and 10, this method minimizes the length LY of the final interval for the
worst possible cost function.
To facilitate comparison with the other methods, it is useful to get an approximate

expression for the ratio Lg/Ly = fy,. The recurrence equation fj. = fr_ + fr_2 can
also be written in state-space form as xz4.| = Axg, with

wo[f] A e wee])
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The eigenvalues of A are 1 + @ and —a, with a = (V5 — 1)/2 the golden number.
When £ gets Jarge enough, the contribution of the stable mode can be neglected, so

Ly (L+ )N+ 16180N+!

Ly V5 45

The Fibonacci method requires the number N of evaluations of the cost to be fixed
in advance. This is not the case for the golden-section method, which corresponds to
the asymptotic limit of the Fibonacci method when N tends to infinity. It can easily be
checked that

lim 1" = lim —&= =a
k—oo k—oo Li-t 1+

The successive points where the cost is evaluated are therefore located within a fraction
o of the extremities of the interval, i.e.

pk = ak + a(b* —ak) or p*=ak + (1 - a)(bk - a*),

which is why the method is called the golden-section algorithm. After N evaluations of
the cost, one gets

Ly _ 1 _ N-1
LN_aN—l_(l+a) .

4.3.2.4 Parabelic interpolation

In the neighbourhood of a minimizer [’5 the cost can often be approximated by a
parabola. Given the values taken by the cost at three points py, p2 and p3 of the search
interval [a, b], one can compute the parabola P(p) that takes exactly the same values at
these three points by the Lagrange interpolation formula:

. (p—p2)(p —p3)
POY=in) 4 = pa)(p1 = p)

(p—p1)(p - p3)
p3—-p1)(p3—p2)

(p-p0)(p-p3)
p2—p1)(p2 - p3)

+j(P2) ( +Jj(p3) (

then the value of p that corresponds to the stationary point of this parabola:

A 1(pa - pn)2Lip2) = jp3)] = (p2 = p3)2Li(p2) - i(p1)]
Poi=P273 (py —pLip2) —j(p)] = (p2 - p3)L(P2) —J(PD] °

Bp; can then be used as an approximation to the minimizer of the cost (after checking
that it does not correspond to a maximum of the parabola!)

If the cost function is sufficiently uncooperative, this may lead to absurd results.
When, on the other hand, a quadratic approximation is suitable, this method converges
much more quickly than the previous ones.
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4.3.2.5 Which method?

All these methods rely on the hypothesis that the cost j(p) is inverse unimodal over
[a, b]. If the evaluation of dj/dp is of the same order of complexity as that of the cost,
dichotomy is much more efficient than the Fibonacci and golden-section methods. If, on
the other hand, dj/dp is evaluated by finite difference via two evaluations of the cost, the
Fibonacci and golden-section methods become more efficient than dichotomy.

The Fibonacci method is always more efficient than the golden-section method,
unless the total number of evaluations of the cost is changed during the search.

As an illustration, Table 4.1 gives the factor by which the length of the initial search
interval is divided after 10 evaluations of the cost (N = 10).

Dichotomy, with Dichotomy, with Fibonacci | Golden section
' . .di -
evaluation dp~that of j | evaluation dp 2 x that of §
1024 (= 210 32 (= 29) | 8 | =76

Table 4.1. Comparison of performance of one-dimensional search methods

Whatever the method selected, one should not ask for more accuracy than
necessary, (o avoid needless evaluations of the cost.

Parabolic interpolation may accelerate search drastically, but is not sufficiently
reliable to be employed alone. It should rather be used in conjunction with some type of
interval elimination. This may be done with or without using the derivative of the cost
with respect to p (Brent, 1973, Press et al., 1986).

4.3.2.6 Combining one-dimensional optimizations

To minimize a cost j with respect (o a veclor p comprising np, scalar parameters, one
may consider a sequence of one-dimensional minimizations with respect (o each of the
entries of p. The first idea that comes to mind is to explore all parameters cyclically:

A .. A . .
pi = arg ”}'JIPJ(PL prlk=i)), i=1,...,np
]

However, if the cost has a valley not oriented along a parameter axis, this technique
will take tinier and tinier steps, resulting in a very slow exploration of the valley
(Figure 4.12).

In such a case, the direction of the one-dimensional search should be modified to
allow explorations along the valley. This is the purpose of Powell’s method (1981)
which, in its simplest version, proceeds as follows:

Step I: Starting from p#, find p*+ by performing np = dim p one-dimensional
minimizations in linearly independent directions d; (i =1, ... , np).

Step 2: Find pk+! by performing an (1p + 1)th minimization in the direction

dnp+l = i\)k+ - f’k~
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Step 3: Let d be the direction d; associated with the /argest decrease of the cost in
Step 1. Replace d by d,,p+|. Increment k by one and go to Step 1.

For the first iteration, the d;’s correspond to the axes of parameter space.
oy

p Valley

>Pl

Figure 4.12, Limitations of cyclical one-dimensional searches

The minimization in Step 2 is carried out in the average direction of the steps in
Step 1. It therefore allows steps that are better oriented with respect to the valley
(Figure 4.13). When the cost is quadratic in p, the method converges in one iteration,
i.e. ny+ 1 one-dimensional minimizations.

Eliminating, at Step 3, the direction that yielded the best results may seem
surprising at first sight. The purpose of this policy is to escape the tendency of the d;’s
to become linearly dependent as the iterations proceed. As a matter of fact, the best
direction is often very close to that introduced at Step 2. Another solution is to
reinitialize the directions d; periodically.

Prh

Figure 4.13. Simplest version of Powell’s method
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A more sophisticated implementation, generating mutually conjugate search
directions (see Section 4.3.3.8 for a definition) when applied to a quadratic function, is
as follows (Minoux, 1983; Press et al., 1986):

Step I: Starting from pg = p¥, compute pk+ by performing np = dim p one-
dimensional minimizations in linearly independent directions d; (i = 1, ... , np):

pPi = pi-1 + Aid;, with A; = arg m/{n [i(pi=1 +Adp),

ﬁk"‘ = p”pA
Step 2: Let
A= max [j(pi1) - j(P)],
i=1,...,l!r|
Je=J0%), ke =JBKY) and  jres = j2PE - Y.
If

Jhes 2Jk o (k= 2k+ + jre0)Uk = Jk+ — A2 2 jA(}k —Jk++)2,

then pk+!1 = P&+, increment k by one and go to Step . Else, find pk*! by an
(np+ 1)th minimization in the direction

dnp+1 = f)k+ - f)k'
Step 3: Let
f=arg  max  [j(pi-1) - /(p)].

i=1,..., np

Remove the direction indexed by 7 from the list of search directions, and add d,, 4
at the end of the list. (The order in which the directions are considered is important.)
Increment k by one and go to Step 1.

Again, the initial directions d; can be chosen parallel to the axes of parameter space.

When j is continuously differentiable, Powell’s method converges towards a local
optimizer. The asymptotic behaviour of this version is similar to that of the conjugate-
gradient algorithms lo be presented in Section 4.3.3.8.

In general, the one-dimensional search technique employed in Powell’s method does
not use the derivative of the cost with respect to the parameters (Brent, 1973; Press ef
al., 1986), which does not, however, necessarily mean that it is appropriate for a non-
differentiable cost; see Section 4.3.5. When this derivative is available, it is often
preferable to analyse the local properties of the cost so as to decide in which direction
the one-dimensional search should be performed.

To illustrate the behaviour of various algorithms on the same problems, we shall
consider two cost functions. Example 4.10 employs the well known Rosenbrock
function. The cost function of Example 4.11 is associated with a least-squares problem
to be presented in more detail in Section 4.3.9.1 (Example 4.21). In this problem, the
parameters are only locally identifiable, and there are two global minimizers (giving the
same value of the cost).
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EXAMPLE 4.10

Consider the Rosenbrock cost function

J(p) =100 (02 - pD% + (1 - p1)%,

with p = (p1, p2)T. Although it looks trivial, it is actually a rather difficult test case
because of its non-convexity, evidenced by the shape of the cost contours plotted in
Figure 4.14. The value of the minimizer p = (1, 1)T is indicated by a cross. All
algorithms will be started from p0 = (-1, 2.5)T, indicated on Figure 4.14 by a circle,
which corresponds to j(p0) = 229.

Figure 4.14 shows the trajectory followed by the second version of Powell’s
algorithm, with one-dimensional search by Brent’s (derivative-free) algorithm (Press er
al., 1986). Optimization is first carried out along the py axis, then proceeds along the
valley. After 1168 evaluations of the cost and none of its gradient, the value of the cost
is equal to 1.78 x 10-29. 0

]

B T2s 2 s 4 05 0 05 1 15 2
Py
- Figure 4.14. Behaviour of Powell's method on Rosenbrock’s test function;
the initial value of p is indicated by a circle, and the minimizer by a cross

EXAMPLE 4.11

Assume now that

i) = (p1 +p3— 9+ (o1 + p2— 27 + (p1 + p2— 4)°

is to be minimized. All algorithms will be started from p0 = (—4, 4.9)T, which
corresponds to j(p0) = 236.12. Flgure 4.15 presents the trajectory followed by the
same version of Powell’s method as in Example 4.10. The first search direction is
again along the p1 axis, so the cost is decreased by moving away from the minimizers.
The p» axis turns out to be associated wnth the smallest decrease of the cost, and is
therefore frequently used. The minimum at p = (1, 2)T is reached with four significant
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digits in 159 evaluations of the cost and none of its gradient. For other values of f0, the
method would converge to the other minimizer p 4, -DT, 0

Figure 4.15. Behaviour of Powell's method on Example 4.11;
the initial value of p is indicated by a circle, and the two global minimizers by crosses

REMARK 4.13

The simplex method (Nelder and Mead, 1965), not to be confused with its well known
namesake in linear programming (Dantzig, 1963), also makes it possible to minimize a
function of several variables without using derivatives. It consists of iterative
transformations of a simplex in parameter space, i.e. of a polytope with dimp + |
vertices. The transformations are designed to move the vertices towards a minimizer
while maintaining a nonzero volume for the simplex. The basic step replaces the vertex
associated with the worst value of the cost by its reflection with respect to the mean of
all other vertices. If the cost at the new vertex turns out to be better than at any other,
further extrapolation in the same direction is attempted. Otherwise, various contractions
of the simplex are performed, depending on simple decision rules.

Since the simplex method does not take the local properties of the cost into account,
it can be used to optimize a noisy cost, for example when the operating conditions of a
system have to be tuned from direct measurements on it, without the use of a
mathematical model. See Section 4.4.1 for a short presentation of methods available in
this context.

As regards parameter estimation, the simplex method is no match for the methods
presented here that use local properties of the cost. It forms, however an mtcreslmg
alternative to Powell’s method. On Example 4.10, it reaches j(P) =3.31 x 10-10 in
187 evaluatlons of the cost and none of its grad1ent On Example 4.11, it finds the
minimum at p = (1, 2)T with four significant digits in 96 evaluations of the cost and
none of its gradient.
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4.3.3 Limited expansions of the cost

If the cost is sufficiently differentiable with respect to p, a limited expansion about the
last estimate P¥ can be used to compute a search direction in parameler space. A one-
dimensional search in this direction will then be performed. The (in)efficiency of an
algorithm will be measured by the volume of computation needed to get a given
reduction in the value of the cost. The computational effort should be balanced between
the choice of the search direction and the one-dimensional search; see, in particular,
Wolfe’s method, described in Section 4.3.3.9. For theoretical analysis of convergence
speeds, see, e.g., (Polak, 1971; Minoux, 1983; Polyak, 1987). Let us start with the
simplest method.

4.3.3.1 Gradient method

The gradient method, which can be traced back to Fermat at the beginning of the 17th
century, is seldom to be recommended. It seems nevertheless worth presenting, because
the problems raised by its implementation are shared by many useful methods, and
because many more powerful algorithms use it as a building block. It relies on a first-
order expansion of the cost about pA:

JPRHY = j(pK + Ap) = j(BF) + gT(BHAP + o(lApll),
where

N
BBH = 551

is the gradient at f)‘ of the cost, a column vector.
When the displacement Ap is small enough, the resulting variation Aj of the cost
satisfies

Aj = j(pk + Ap) - j(pF) = gT(PH)Ap.

It is therefore approximately equal to the scalar product of the gradient of the cost by
Ap. Since j is to be minimized, Aj should be minimized. For any given lIApll, this leads
to choosing Ap colinear with the gradient but in the opposite direction, i.e.

Ap =-Ag(p¥), with 1 > 0.
The gradient algorithm is thus given by
ﬁk+l = ﬁk_ lg(f,k).

Whenever I|g(f)k+1)ll is considered close enough to zero (Section 4.3.7), the algorithm
is stopped.

Think of a climber left alone blindfold on top of a mountain. To return to the valley,
he must minimize his altitude by changing his position. The gradient policy amounts to
sensing the shape of the ground about his feet to find the direction of steepest rise, then
slarting in the opposite direction. Needless to say, such a short-sighted policy may let
the climber down badly!
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Choice of step length. In this simple form, the algorithm indicates the direction in which
the step should be taken, but not the distance to be covered, since the choice of A has
yet to be made. Three policies can be considered. The first is to fix A at a consrant
value. The following theorem (Polyak, 1987) then gives an indication how A should be
chosen.

THEOREM

If the cost j is bounded below (j(p) 2 jopt > ~o for any p) and if its gradient with
respect to p is Lipschitz, with Lipschitz constant L:

llg(x) — g(Wllz £ Llx - yll3,

then if 0 < A< 2/L , the gradient algorithm with constant A will converge to a stationary
point (g(p‘”) 0 and the cost will decrease monotonically. If, moreover, j satisfies

Linly _g—%ﬁ% < Ly, With Ly >0,

for any p, then Iipk — p=lly < 1IPP — p=llz g*, with g =max[ll = ALpl, 11 — ALpml).
The rate of convergence is therefore that of a geometric progression, with common
ratio g. The optimal common ratio ¢* = (Lpm — Lm)/(LM + L) is obtained for
A* = 2/(Lm + Lm). 0

Unfortunately, even when the gradient of the cost is Lipschitz, the constants Ly, and
Ly are generally unknown. If 1 is too small, the displacements Ap will also be too
small, which will slow down convergence. Conversely, if A gets too large, the first-
order approximation will no longer be valid, which may cause divergence of the
algorithm. Most often, the value of A to ensure a decent convergence rate depends on
the location of pk. The policy of assigning a constant value to A is thercfore
unacceptable.

A second possible policy is to take A at iteration £ as the kth element of a series
satisfying (Polyak, 1966)

Ar— 0ask - = and ZAL:OO.
k=0

This method will be considered again in Section 4.3.5.1 for the optimization of
functions that are not differentiable everywhere. It often exhibits extremely slow
convergence (Minoux, 1983).

A third possible policy is Lo determine 4 at each iteration by one-dimensional search,
usually via a quadratic approximation. In steepest-descent methods, A is chosen
optimally at each step. Let

Ju(A) = JIPF(AY] = DK — Ag(Bh)],

and approximate jy(A) by a second-order polynomial



q()=al?+bA+c.

Taking advantage of the fact that the gradient of the cost is available at pk, one may
compute coefficients a, b and ¢ very simply with a single additional evaluation of the
coslL. It is enough to require that the polynomial has
— the same value as the cost at the current point Pk

e =q(0) = ju(0) = j(B"),

— the same derivative at ';‘)k in the search direction:

_dg(d) diud)  _ai(p)  dpkt!
an 1107 ax la=0T apThe=pt " g3 aco™

= -gT(Phg(Bh= -lg@I2,

-— the same value at a point 4, to be chosen.

When the minimum value of the cost is close to zero, one may for instance lake
Ay = = 2¢/b, which amounts to choosing twice the value of A that would make jy(1)
zero if the first-order approximation j,(A) = b4 + ¢ were exact. One then gets

1 H " 3
=23 UIPF - 41g(BR)] - bA) - ¢ ).
1

Once the approximating polynomial has thus been determined, the step size Lis chosen
by minimizing g(A). The values of the parameters at the next iteration are then given by

Bhel = bk dg(pt), with A=-2.
A fourth option, efficient and very simple to implement, is to adapt A depending on
the present performance. The algorithm is then written as

pHHl = pF — Arg(PH),

and A is modified at each iteration depending on how the cost evolves. Three cases
may arise:

— If j(pk+1) < j(ph), everything is going fine, and one attempts to accelerate
convergence by increasing A (e.g., Ap+ = 1.54).

— If j(pk+1y = j(ph), this most often means that Ap has got so small that the variation
of the cost is no longer visible given the accuracy with which the computation is
performed. Here too, A should be increased.

— Finally, 1[J(pL+1) > j(p*), the algorithm has gone too far, and the first-order
approximation is no longer valid. The step size A should be reduced (e.g.,
Ars+1 = 0.5A4), and pA+! should be replaced by pt.
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Properties of the gradient algorithm

PGI: 1t is simple to implement and has a large convergence domain.

PG2: Usnally, the closer p* is to an oplimizer, the slower the convergence, quickly
becoming unacceptable (see Figure 4.19)!

PG3: PG1 and PG2 make it well suited to the initial phase of search, when p# is far
from an optimizer.

PG4: At iteration k, the search direction is orthogonal to the hyperplane tangent at p* to
the cost contour at level _)(pl‘) (locus of all p's thh the same cost j('fr‘))

PGS5: The path followed by the algorithm is not invariant under a reparametrization,
corresponding for instance to a change in the units, as illustrated by the next
example.

EXAMPLE 4.12

Assume that the cost to be minimized is
. I 2, 2
IP)=5(py+py).

The cost contours are therefore circles centred on the origin. The search direction, given
by

Py
"jé == p2T,

is locally orthogonal to the cost contour passing through the current point. It therefore
goes through the origin, and a one-dimensional search leads directly to the minimizer
(Figure 4.16a). Suppose now that the parametrization is modified, by a mere change of
unit, into

g1 =p1. g2=0.1py.
The cost then becomes

. 1, 2 2
J@) =75 (g1 + 100g2).
The cost contours are now ellipses centred on the origin. The search direction, given by
Ji
—3‘& =-(q1, 10097,

remains perpendlcular to the cost contour, but no longer goes through the origin.
Convergence to 4 will be by the valley, and thus not by the shortest route. The
trajectory followed will oscillate (Figure 4.16b). Even with an efficient one-
dimensional search, infinitely many iterations will be needed to reach Q. 0

PG6: Progression towards a minimizer is thus best when the cost contours are made
spherical, i.e. the parameters have comparable influences. A suitable choice of scale
for the parameters is therefore crucial. Unfortunately, the parameters often have a
very unbalanced influence on the cost. For instance, if

v
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m(t, P)= Y, a; exp(=Ait),
i=1

the influence of the A;’s on the cost will be mucli more important than that of the a;’s.

This is an additional argument in favour of the method described in Section 4.3.1
(Example 4.9) if a cost quadratic in the output error is to be minimized.

pp_é 924

Cost contours \
~

[

Vpl u — a4

o>

(a) (b)

Figure 4.16. Influence of parametrization on the gradient algorithm

PG7: Provided that the one-dimensional search accurately locates minimizers,

successive search directions are orthogonal.

PGS8: The angle ¢ between the successive search directions i$ indicative of how the

gradient algorithm is behaving, as for many algorithms described in the remainder of
this chapter. Good one-dimensional optimization should make cos ¢ close to zero. If
cos ¢ > 0, the angle between consecutive search directions is acute; no oscillation is
taking place, and the gradient method leads to consistent decisions. Conversely, if
cos ¢ <0 the successive search directions become antagonistic. One can then
drastically improve the algorithm by taking the bisector of ¢ as the one-dimensional
search direction, as illustrated by Figure 4.17 (Vignes, 1969; Vignes Alt and
Pichat, 1980). Another solution to avoid oscnllalmg around a valley is to perform a
one-dimensional scarch in the direction p* — pA-"p every np iterations (Forsythe,
1968; Luenberger, 1973), which is similar to the basic idea of Powell’s method.

PG9: If the cost is inverse multimodal, i.e. if it has several minimizers, the gmchcnt

method will converge to a local or global minimizer from almost any initial pomt po.
(If pOis plcl\ed at random in [P, the probability of converging to a maximizer or a
saddle point is zero, because the initial value must be nght on it.) The minimizer
lowards which convergence occurs depends on the value of 0. The set of all values
of p¥ from which the dlgorllhm converges (o a given minimizer is called the basin of
attraction of this minimizer.

PGI0: If some parameters of the model are unidentifiable, the algorithm will not detect

it. Tt will still converge to an element (depending on po) of the set of all local and
global minimizers.
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Figure 4.17. Improved search direction when the gradient is oscillating

PG11: Let ybe the angle between the actnal search direction and that suggested by the
gradient. Provided that cos y> 0, a one-dimensional search can lead to a decrease in
the value of the cost, since the gradient is always locally orthogonal to the cost
contour (Figure 4.18).

Jj Cost contour

C

Figure 4.18, Sct of all search directions that can locally lead (o a decrease in the cost

PG12: The influence of the past is summarized in the state (A, PY) of the algorithm. At
each iteration, previous numerical errors only influence the initial point of the rest of
the search. There is therefore no accumulation of errors.

PG13: PG11 and PGI12 imply that the gradient may be computed rather approximately.
As long as the error in the search direction does not exceed 7/2, it remains possible
to decrease the cost by one-dimensional search.

PG4 If the cost were to be maximized, the sign of Ap would have to be changed.

PG1S5: Assume that j is twice continuously differentiable, and that the matrix of its
second derivatives with respect to p is positive definite at P, with smallest eigenvalue
L, and largest eigenvalue Ly. The asymptotic convergence (as k — oo) of the
gradient algorithm with one-dimensional optimization (steepest descent algorithm) is
then linear, and satisfies (Minoux, 1983),



1(9“')—1 (B) . [LM Lmj
k—eo j(P*) - j(P) Lm + Ly

The larger Ly is compared with Ly, the worse the conditioning is and the slower
this convergence becomes. Given a starting point pY, the exact asymplouc behaviour
of the algorithm (in particular its exact asymptotic rate of convergence) is extremely
difficult to predict, even for a quadratic function (Pronzato, Wynn and Zhigljavsky,
1995).

EXAMPLE 4.10 (continued)

Consider again Rosenbrock’s test function. Figure 4.19 illustrates the behaviour of the
steepest-descent algorithm, for which the step length A is optimized at each step by
Brent’s method with derivatives (Press ef al., 1986). After a few fast steps, progress
along the valley becomes extremely slow; 2095 evaluations of the cost and 1598
evaluations of its gradient painfully lead to a value of the cost equal to 4.44. 0

Figure 4.19. Behaviour of the steepest-descent algorithm on Rosenbrock's function;
the initial value of p is indicated by a circle, and the minimizer by a cross

EXAMPLE 4.11 (conlinued)

Consider again the cost function

JP) = (p1+p3 -5 +(p1+p21-2%+(p1 +p2— 4%

The trajectory of the same version of the steepest-descent algorithm as in Example 4.10
is illustrated by Figure 4.20. The successive search directions are approximately
orthogonal, which indicates that the one-dimensional minimizations were effective.
Each line search is stopped tangentially to a cost contour. After 209 evaluations of the
cost, and 156 evaluations of its gradient, the minimum at p=(1,2)T is located with
an accuracy of four digits. 0



Figure 4.20. Behaviour of the stecpest-descent algorithm on Example 4.11;
the initial value of p is indicated by a circle, and the two global minimizers by crosses

4.3.3.2 Computation of the gradient

The gradient algorithm requires a very large number of evaluations of g, which
represents a major part of the computation. This is true of all algorithms based on a
limited expansion of the cost around the current point Pk, as well as some global
optimization algorithms, such as the deterministic approach described in
Section 4.3.9.3. It may therefore be crucial to make computation of the gradient as fast
as possible. The goal of this section is to present some of the techniques that can be
used.

Finite differences. Consider the following approximation of the gradient

dj(p)

| - . ,
Pi " Ap: Ulp +Apd) -1, i =1, ..., np,

where Ap; is a vector all entries of which are zero except the ith, equal to Ap;. This
approximation recuires np+ 1 computations of the cost and therefore np + 1 trial steps.

The choice of Ap; is tricky. I it is too small, the difference of two very similar
values of j is evaluated, which may be numerically disastrous since the result may have
no significant digit. Conversely, if Ap; is too large, the quantity evaluated has little
resemblance to the derivative, which is less serious since we have seen that a very
approximate gradient is often good enough. Section 4.3.7 will present a technique that
can be used to estimate the accuracy with which a gradient is evaluated.

Whiereas the finite-difference approach always leads to an approximate result, the
following techniques make no approximation, in principle (although subject to rounding
error).

Sensitivity functions. The vector of (first-order) sensitivity functions of a scalar error
e(t, p) with respect to the parameters is defined as



150 Optimization

de(t, p) _ rde(t, p) de(t, p)1T
S¢(1, p) = ap [ o Ep— .

It is wsually possible to express the gradient of the cost as a functional of such
sensitivity functions. Thus, for instance,

~

L 1
Jp) =%Z wile(ti, p)I? = ap = wise(ti, ple(ti, p).
]

i=]

When the error is a vector, its sensitivity functions also enter into the expression for the
gradient of the cost. Example 3.4, for instance, suggested using the cost

J(p) = In det M(p),

where
y
1 )
m, A el peT(;, p).
=1

M(p) =

The kth entry of g(p) is then given (Goodwin and Payne, 1977) by

1y

Eto

de(ti,
T, p)M'l(p)_e%);p—).

~

e i=1

One possible approach for evaluating the gradient of the cost is therefore to compute the
sensitivity functions of the error with respect to each of the parameters. When e(, p) is
an output error,

e(t, p) = y(1) — ym(1, P),

provided that y() does not depend on p, the error sensitivity is related to that of the
model output by
Sym(’s p) = —sg(t, p).

For an LI model described by an nth-order differential equation with known or
negligible initial conditions, the sensitivity functions of the model output with respect to
the parameters are easy to obtain together with the model output by simulating a
differential equation of order 2n. This will be demonstrated on the following second-
order example. Extension to order # and transposition to discrete time are trivial.

EXAMPLE 4.13

Consider the LI model described by

d2y dym du
a2 tPUTg tPm=ps gt s ym(0) =00 gt =0.
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Let s5; be the sensitivity of the model output with respect to p;, and assume that the input
1 does not depend on the model parameters. Differentiating the previous differential
equation and initial conditions with respect to py, p2, p3 and p4 in turn and changing the
order of differentiation gives

%+p1 %ﬂpzsl =“(%"“ 51(0) =0, ddstl[f*ozo'
gd% +p1 B2 4 pasy =y, 20=0, =0,
%;1 +pi '573‘ +pas3 = %_l;’ §3(0) =0, d‘3lr =0 =0
(112124 +p1 dl + pas4 = u, $4(0) =0, ci]SrL‘I’ =0 = 0-

The computation of yr, and the four associated sensitivity functions therefore seems Lo
require use of a 10th-order model, since each equation is of second order. Actually, all
these equations have the same homogeneous part, and by using linearity with respect to
inputs one can considerably simplify the computation and arrive at the scheme of
Figure 4.21, where

§1 = X3, §2 =x4, $3 =X| and s4 = x2.

Figure 4.21. Computation of the sensitivity functions ol an LT model

Subroutines for simulating continuous-time differential equations usually require
that they are provided in state-space form, as

d
3 X =[x, p, u, 0, x(0) = xo(p),
ye = h(x, p,u, 1.
Here, the vector y. of the outputs (o be computed consists of the output proper v, and

its sensitivity functions, 50 ye = (¥m, 51, 52, 53, $4)T. Since the model is LI and has
zero initial conditions, the stale and observation equations can be wrilten as
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d%x = A(p)x + B(p)u, x(0) =0,
ye = C(p)x.

A, B and C may take various forms, since the state-space representation is not unique.
Selecting the outputs of the four integrators as state variables, we can write

[~ p3 ps 0 07
-p1=p2 0 0 1
0 0 1 0
1 0 0 0 0
A(p) = ,B(p) = and C(p)=| 0 O 0 1 0
—P3 —p4 —piL P2 0
1 0 00
0 0 1 O 0 J
0 1 0 0

For single-input-single-output time-invariant LI models, it is therefore possible to
simplify the computation of sensitivity functions drastically. These results can be
extended to multivariable models (Wilkie and Perkins, 1969; Neuman and Sood, 1971)
and to time-varying LI models (Neuman and Sood, 1972).

REMARK 4.14

If the effect of unknown initial conditions could not be neglected, less simplification
would be possible.

EXAMPLE 4. 14

Consider now an ARARMAX model, in the condensed notation introduced in
Section 2.4,

Alg, pY)y(0) = B(g, pHyuln) + %ﬂq—% £,

which contains ARX, ARMAX and ARARX as special cases. The prediction error can
be written as

ept, ) =30 = 5111, B) = ZALRY LA (g, pIven) - Blg, pIur)].

It satisfies
ep(t, p°) = £(1),

and is therefore the error that will appear in the cost obtained by the (conditional)
maximum-likelihood method. To compute the gradient of this cost with respect to p,
one can use the sensitivity of this error with respect to each of the parameters a;, bj, ¢;
and d;. Assume that the system output y and input © do not depend on the model
parameters p and that the input-output delay n; is one. Then
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2 D.p) ., .
ot ) = BBy,

d .
b, epl» P) = - 'CDT(qq,'T[))'; (1),

d 1 ‘
3c; e P) = — Erg gy enlt=i P

307 eplt. P) = oo (A, YYD - B(g, P,

The sensitivity of the prediction error with respect to p will be computed by
implementing the associated recurrence equations. As in the continuous-time case, these
equations have a common autoregressive part. Linearity can therefore again be put to
work to simplify computation. If the initial conditions are unknown but the system is
stable enough, their effect can be neglected.

REMARK 4.15

The approximate regressor introduced in some methods described in Section 4.2 can be
viewed (Ljung and Soderstrom, 1983) as an approximation of

%ﬁ(zlt—l, p) = -aa—pep(t, p). 0

Sensitivily functions can also be computed for non-LI models; see the interesting
review by Rabitz, Kramer and Dacol (1983). As previously, one should differentiate the
equations defining the model and its initial conditions with respect to each of the ny,
parameters in turn. One thus gets ny sets of differential or difference equations with
their initial conditions.

Consider, for inslance, a state-space equation

%x =f(x, p), x(0) = xo(p),

where possible dependency on some input u and time ¢ is omitted to simplify notation.
Assume that the model outputs are linear in x:

Ym(8) = C(p)x(¥).

The sensitivity of yy, with respect to parameter p; is then given by

It can therefore be computed from the sensitivity of x. Differentiating the equations for
x with respect to each parameter in turn, we get:
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d of(x, of(x, d .
aisi= c'()iTp)Si+ (E));J,-p)’ si(0) = —xg[()?), i=1, .., np,
where
_o0x
5 = P

The equations satisfied by the state sensitivities s; have the following very important
properties:

— they are independent, so each can be computed in turn, once the state trajectory has
been oblained,

— they are /inear (albeit time-varying since they depend on x as given by the state
equations),

— only the driving term changes with the parameler considered.

This can be exploited to simulate x and all state sensitivities s; more quickly than with
the finite-difference approach (Valko and Vajda, 1984; Bilardello ef al., 1993), even if
computation of the output and n}, sensitivity functions requires np+ | simulations of
non-LI equations, i.e. the same number as with the finite-difference approach.

REMARK 4.16

The same type of procedure applies to algebraic-differential systems as considered in
Remark 2.2 (Bilardello et al., 1993; Carrillo Le Roux, 1995). Model outputs nonlinear
in x such as

ym() = h[x(1), p]

can also be considered in this framework, by appending to x a variable x,, | that
satisfies the algebraic equation

Xnx+1(8) = h[x(1), p1 = 0,
SO
Ym{Z, P) = Xny41(0) 0

Adjoint state. For models described by state-space equations, which may be LI or not,
adjoint-state techniques borrowed from optimal-control theory make it possible to
simplify computation considerably.

Consider a (possibly non-LI) state-space model described by

x(#+1) = f[x(1), p, x(0) = xp(p).
Ym(t, P) = hix(z, p). pl.

This model may of course also depend on some input u and time ¢, but this dependency
is again omitted to simplify notation. Assume that the cost to be optimized is additive,
i.e. can be written as
m
i)=Y rix(1).pl,
=0
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which is true for most cost functions considered in this book. For a cost quadratic in
output error, for instance,

rix(0), pl = [y(®) — ym(t, DITQMY(®) — ym(t, P))
= {y() = h[x(0), pl}TQ(H{y(r) - h[x(1), p]}.

The additive cost can be transformed into a terminal cost by introducing an additional
state variable

X0(z+1) = 200 + rylx(0), pl, with x0(0) = 0,
so that
J(p) = xO0np+1).

Define the extended state as
[x0(n)

xe(D) =| x(

L p

r 0

Tt satisfies

xe(0) =| xp(p) |,
L p

and
X0 + r[x(1), pl

Xg(t+1) = f[x(1), p] = fe[xe(D].
p

The cost can now be written as

Jp) =110... 0] xc(n+1),
which implies that

A _ Oxemuxl) 3

op Jp oXo(n+1)

with 5
j = T
aXc(Hﬁ'I)_[] 0... O]t

Moreover, since xE(t+]) = fZ[xc(l)], the chain rule for the differentiation of composite
functions implies that
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dxa(nr]) _ Axa(m) AfL[xe(n)]
op ~  dp ox.(n)
IxXL0n) _ Ax S(n=1) df T [xe(1-1)]
ap p ox.(m=1) °

IxL(1) _ 3x L(0) afT[x(0)]
op ~ dp 0%.(0) -

Globally, one thus gets

9 9xT(0) LT [xe(0)] OFE[xe(D)]  OFL[xe(n=D)] I[xe(n0] 9
dp -  dp 0x.(0) oxe(1) 7 oxe(m=1)  9xc(nm)  Oxe(n+l) *

The computation associated with this chain-rule differentiation can obviously be carried
out from left to right (direct mode) or from right to left (reverse mode). The reverse
mode drastically reduces the number of operations, especially if dim p is large, because
a (dim x,) veclor, the so-called adjoint state to the extended state, is propagated instead
of a (dim p X dim x,) matrix. As will become apparent later, this will however be at
the cost of increased memory requirements. Denote the adjoint state by dy,. It satisfies
the terminal condition

3i

dy (netl) = Oxe(n+1)

[1 0... 0]T.

Propagating the computation from right to left translates into the backward-in-time
recurrence equation

AfL[xe(=1)]

Beeli=D = "5 -1y

dy (0, t=n+1, ..., 1,

which allows dy,(0) to be computed. Note that this requires storage of the trajectories of
all extended state variables which afE/axc depcndc upon, i.e. those that appear
nonlinearly in fe. The gradient of the cost is then given by

_QL ax X c(0)
ap~  dp

ax—g(O) _ axg (p) }
Lo op L, |

dy, (0),

where

REMARKS 4.17

— Forward in time, the evolution equation for the adjoint state becomes
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T -1
dy(r+]) = {%‘;[—:(",()’—”] dy, (1),

while linearization of the state equation around the nominal trajectory yields

OF L% (1]

ch(t‘l']) = a)&g(t)

dx.(1).

The scalar product of the linearized and adjoint extended states therefore remains
constant along the trajectory (duality property)

EX L (1+D)dy (1+1) = Sx b (Ndy (1).

This duality can be used to check the computation.

— The method can be implemented without explicitly defining an extended state. As a
matter of fact

1 oT 0T
T ar[x(n), pl  ofT[x(n), p]
—a%gg)’)] = x(1) (1) 0
arl[x(t)’ p] afT{x(1)1 p] I
ap op np

The first component of dy, therefore satisfies
dxo(r=1) = dyo(t), with dyo(n+1) = 1.
The components associated with x are given by

d (-1) = at’l“g:;((g Hgnﬁ%, with d(n+1) = 0,

and those corresponding (o p by

or , .
dp([—]) = dp(t) + aﬂ[gg)' 1 d.(n+ -’—ix—a%)——gl with dp(nl+1) = 0.

The gradient of the cost with respect to the parameters is finally obtained as

.5 T
B‘%: —xa“;—p)dx(()) + dy(0). 0

In reverse mode, the computation of the gradient proceeds in two phases. The
extended state equation is first simulated forward in time for the value p at which the
gradient is to be evaluated, which yields the sequence of extended states. The adjoint
extended state equation is then simulated backward in time, which provides the value of
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dx.(0) to be used to evaluate the gradient. The gradient is thus computed exactly in two
simulations, up to rounding errors due to finite-precision arithmetic, whatever the
number of parameters and even when the state equations are non-LI.

This idea can be transposed to continuous-time models. Simulation of these models
usually involves some approximations, and other approximations will take place when
the equations describing the evolution of the adjoint state are simulated. Now the
computation of gradients by adjoint-state techniques turns out to be rather sensitive to
numerical errors, and seemingly small approximations may ruin the final result. It is
therefore advisable to make sure, by using a discretized model, that the equations used
in the forward and backward directions are subjected to the same approximations. The
method presented next pushes this logic even further.

Adjoint code. This type of technique applies to any cost j that is computed by a
program, provided of course that j as computed is differentiable with respect to the
paramelers p at the point considered. If, for example, the cost j(p) = p? was
implemented as

if p= 1, then j(p) = p2 else j(p) = 1,

this implementation would not be differentiable at p = 1, although the mathematical cost
function is.

The sequence of instructions of the program computing the cost forms what will be
called the direct code, which evaluates j(p) from independent variables (p, ¥5, ...),
possibly with the use of some intermediate variables, the values of which depend on
those of the independent variables.

The adjoint-code approach is especially interesting when the dimension of p is large,
a situation where the use of finite differences or sensitivity functions leads to heavy
computation. The basic idea (Gilbert, Le Vey and Masse, 1991; Griewank and Corliss,
1991) is very close to that of the adjoint-state method, and adjoint-code techniques also
alternate forward and backward computation. The method to be presented is systematic
but usnally does not lead to the most concise adjoint code.

Let v be a vector containing all the variables in the direct code. Any assignment
statement of the direct code modifies one component of v, which can be written as

vy = dr((viti e Ik},

where ti(k) is the index of the component of v that is modified by the kth assignment
statement executed, and ]l is the set of the indices of the components of v which ¢y,
depends on. The basic idea (Speelpenning, 1980) is to view this instruction as a
transformation @y of all variables v of the direct code that leaves all components of v
unchanged but vyy:

[Dr(M)]i=vi, Vizpk),
[Dr(V)]pry = Pe({vi i € Tx)).

To distinguish its successive values, v will be indexed. The initial state of v will be
denoted by v(0), and its final value by v(). The direct code can then be viewed as
specifying the evolution of the state of a discrete-time dynamical system, according to

vik) = ®[v(k=D], k=1,..., [



Note that the statement associated with the index k depends on the order in which the
statemnents are executed. Any branching instruction in the direct code therefore requires
specific treatment, to be considered later.

In v, the n independent variables will by convention be stored first, starting with the
components of p. The dependent variables will then follow, the last component of v
taking the value of the cost j(p) at the end of execution of the direct code. The first
components of the initial state v(0) are therefore equal to the values of the independent
variables for which the cost should be evaluated. All other components of v(Q) may be
taken as zero, because the values to be given to the dependent variables result from the
execution of the direct code. Once execution has been completed, the value of the cost is
the last component of v, i.e.

jp)=10... 01]v(H.
The simulation of a discrete-time state equation is thus used to compute a terminal cost,

so the adjoint-state method applies. Using the chain rule for differentiation, one can
write the gradient of the cost with respect to p as

3 _av'(0) 3B 3y B[y B
ap- op ov(Oyav(l) " Av(=2) ov(—T) av (P’

Again, direct and reverse modes can be considered, and reverse mode requires less
computation, especially if dim p is large. The adjoint state d associated with v will
therefore be initialized with the terminal condition

-9 T
d(f)—av(f) =[0... 0 1],
and computed backward according to the formula

acm
A=) = gyry A6, k=7, .

where Blbzlav(k—l) is an identity matrix, the p(k)th column of which has been replaced
by d¢r/dv(k—1). Given this specific structure, this recurrence equation translates into

L3 e
dik=1) = di(k) + m d#(/;)(k) if i=+uk)),
I
dp(k)(k»-]) = W d'u(k)(k).
It makes it possible to compute the initial value d(0) of the adjoint state. Since

g‘ll;‘ avalf")dm) ava‘o) [T, 01,



the first np components of d(0) contain the value of the gradient g(p). Note that the
following n ~ rp components of d(0) contain the values of the partial derivatives of the
cost with respect to all other independent variables, such as the data yS. These
derivatives are therefore available without any additional computation. It is not
necessary to store all the values taken by d(k) when k varies from fto 0, since we are
only interested in the first n components of d(0).

The statement

vuck) = Pr({vilie I}))

will thus translate into the following adjoint instructions, in this order:
. i g 9% :
or all i € Ty, i = pu(k), do {d;=d; + Iv; duiy)s
L
dygy =5—— duky.
HEY = By THE)

When the direct variable vy, is initialized, ¢y does nol depend on vyt), so the last
equation reduces to
dpqky = 0.

When the variable vy is incremented, by
Vu(k) = Yuk) + We(v),
with Y independent of vy ), it becomes
dpeky = dp(r)-

EXAMPLE 4.15

Assume that the kth assignment statement is
cost = cost + [Y(t) = ym(D1?,
which sets the dependent variable cost to the value
drlcost, y(1), ym(D)] = cost + [y(t) — ym(D)]%.

Let dcost, dy(t) and dym (1) be the dual (adjoint) variables respectively associated with
cost, (1) and y(7). Applying the previous formulas, one gets for the adjoint code

a0y
dy(r) = dy(t) + 3)% deost,

A
dym(f) = dym(1) + 3% deost,

ooy
dcost

dcost = dcost,



‘ dy(t) = dy(t) + 2[y(t) — ym(t)ldcost,
dym(f) = dym(1) = 2(1) - ym(H)]dcost,
dcost = dcost,
The last of these instructions is of course superfluous. 0

The direct code most often contains branching instructions which must also be
dualized. Dualizing an iteration loop (do, for, while...) results in another iteration loop,
where the dual instructions are executed in reverse order to the corresponding direct
instructions in the direct code. When there are conditional branching instructions, the
actual path followed during execution of the direct code must be memorized, so that the
dualization of

if (condition C) then {code A} else {code B}
results in

if (condition C) then {adjoint code of A} else {adjoint code of B},

In the adjoint-state method, the evolution of the state was computed forward before
computing the evolution of the adjoint state backward. The sitnation here is analogous:
the instructions of the direct code are executed first, then those of the adjoint code, in
reverse order. In both cases, one must store the values of those direct variables that
appear in nonlinear expressions, in order to allow for the execution of the adjoint
computation. These storage requirements are a limiting factor in the complexity of the
problems that can be handled in reverse mode; in some cases, the direct mode may turn
out to be more feasible.

The procedure can be summarized as follows:

— define v, with the variables corresponding to p first and the variable corresponding
to j(p) last;

— associate an adjoint variable with each component of v;

— initialize all adjoint variables to zero, except for the last one, associated with the
value of the cost, which is initialized to one;

— dualize the instructions in reverse order of execution, which requires reversing
loops;

— execute the direct code, storing the values laken by the direct variables that appear in
nonlinear expressions as well as the path followed at conditional branchings;

— execute the adjoint code;

—- collect the value of the gradient in the first n components of d. The first dim p
components correspond to the gradient with respect to the parameters, the following
ones to the gradient with respect to all other independent variables.

One should be very exacting in these operations, for seemingly minor errors may
make the adjoint code useless. Good practice (Talagrand, 1991) is to:

— develop the adjoint code from the direct code, and not from the mathematical adjoint
of the direct mathematical equations;



— create an adjoint subroutine for each subroutine of the direct code;

— choose names clearly related to those of the direct variables, labels and subroutines
for their adjoint counterparts;

— never modify direct code without propagating the changes in its adjoint.

REMARKS 4.18

— Let 8v(k) be the linearized state in the neighbourhood of the nominal trajectory. Its
scalar product with the adjoint state remains constant along the trajectory:

AT+ Ddv(k+1) = dT(k)Bv(k).

Advantage can be taken of this duality property to check the validity of an adjoint
code, provided that a linearized direct code has been developed to generate the
sequence {8v}.

— Adjoint-code techniques can be extended to the evaluation of higher-order
derivatives, such as those needed to evaluate the Hessian of a cost function
(Section 4.3.3.3).

— Redundant instructions generated by this systematic approach can be eliminated by
using an optimizing compiler. 0

Swummarizing example. Consider a scalar-state model described by
x(t+1) = p1x(n), x(0) = p2,
Ym(/, P) = x(2).

This is a discrete-time model, but the same type of idea applies to continuous-time
models. The parameter vector p is to be estimated from data y(r) (t = 1, ..., n(), by
minimizing

=

L

= 2 0 - ymlts P12,
=1

Let us compute the gradient of this cost at p* by those methods that provide an exact
result. For numerical applications, we shall use

0.1
p&—[lo} ne =3, y(1) = 0.5, y(2) = 025, y(3) = 0.125.
The output of the model satisfies ym(¢, p) =p{pg. It is therefore easy to get an
analytical expression for the gradient
ny 11

am(p) —22 () = ym(t, P)] V"E}I(,’l () - pipad 1pi~'pa
4
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m n
m{?,
) =22, DO -yt p 2L, 22, O = pipart

For the numerical values chosen,

9331]

(p )= [o 09677

The components of the gradient of j also satisfy

n
)= —22 [4(0) = ym(t, P11, ),

ng

(p =-2 Z D](l)~}'m(1v p)]SQ(t!p)y

ap2 =

where 51 and 57 are the sensitivity functions of the model output with respect to the two
parameters;

si(t, p) = —a?”—’éﬁm, .s‘z(t,p):a__y“ég;lj)‘

The equations satisfied by s| and s are obtained by differentiating the equations that
define the model with respect to p. One gets

sp(t+1, p) = p1si(t, p) + ym(4, P), s1(0, p) = 0,
s2(t+1, p) = prsa(s p), 5200, p) = L.
For the proposed numerical values, this implies that
si(l, PRy = 10, 51(2, ph) = 2, 5((3, pt) = 0.3,
. Aky = 2 Aky = . Ay =
s2(1, p*)y = 0.1, 5202, p*) = 0.01, 52(3, p*) = 0.001,
and the corresponding value of the gradient is identical to that obtained by analytical

differentiation of the cost.
The cost can also be writlen as

~

It

Jjp) = z rdx(0), pl. with r[x(), pl = () = ym(t, P12
=1
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This formulation differs slightly from that considered in the presentation of the adjoint-
stale method, for the sum starts at t = 1 instead of ¢ = 0. One could go back to the
standard problem by setting rg = 0, but it is simpler (o define the variable x0 by the
recurrence relation

XO0(r+1) = x0(r) + [v(1+1) — ym(r+1, p)12, x0(0) = 0,
which amounts to setting
rdx(n), pl = [y(r+1) = px(N]2.

As a consequence, j(p) will be given by x%(n) instead of x%(n+1). Define the extended
state as xp(f) = [¥O(0), x(1), p1, p217T. 1t satisfies

x0(n) + [y(1+1) - plx(t)]2
xe(1+1) = P = Felxe(0)],

Pl
p2

0

p2
KC(O) = ’

P1

P2

and
=01 0 0 0 ]xe(n).

The adjoint to the extended state
dxo(r)
d dx(1)
Xc(’) - dp](t) y

dpy(1)

is given by the backward equation

OfL[xe(1-1
aytr-1) =222 g,

1 0 0
=2p1[y(t) = prx(+=1)] pr 0
1
0

=2x(=Dy(1) = prx(=-D] x(+=1) dxe(1)

0 0

—_ O O ©

with the terminal condition
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3
dy () = m =

o o o -

Taking the last two equations into account, one gets
dyo(y= 1, dp,(1)=0
dx(1=1) = p1dx(1) ~ 2p1[y(1) — px(+=1)], dx(n) =0,
dpy (--1) = dp, (1) + X(1=1)dlx(1) = 2x(t=1) () = prx(=1)],  dpy () =0,

and the gradient of the cost is

9] a‘o(P)
-

0
dx(0) +dy(0) = [d"‘(o) ]

Evaluating the gradient of j at p* thus consists of

— a forward phase from ¢ = 0 to t = ny, during which the evolution equation for xg, x
in practice, is simulated at p = P, storing the values of x needed for the backward
phase;

— a backward phase from ¢ = nto f = 0, during which the evolution equations for dy
and dp, are simulated at p = pt, using the values of x stored during the forward
phase.

The components of the gradient at p = pt are then given by dp,(0) and dx(0). Applying
this procedure with the proposed numerical values gives

x(0) =1, x(1) =1, x(2) = 0.1, x(3) = 0.01,
dy(3) = 0, dy(2) = —0.023, dy(1) = —0.0323, dy(0) = 0.09677,
dp,(3) = 0, dp)(2) = —0.023, dp((1) = -0.346, dp,(0) = 9.331.

The numerical values found for the gradient are therefore the same as previously.
The direct code can be written as

cost =0,
ym(0) = pa;
% forward loop
fork=1tondo {
ym(k) = prym(k=1);
cost = cost + [y(k) = ym(k)1%
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The technique presented gives the following adjoint code:

% initializing adjoint state variables
dcost = 1;
for k=1 to n;do |
dy(k) = 0;
dym(k) = 0;
]
dp1=0;
dpy =0;
% backward loop
for k = n,down to 1 do {
% dualization of the second instruction of the direct loop
dy(k) = dy(k) + 2[y(k) - ym(k)]dcost,
dym(k) = dym(k) — 2[y(k} - ym(k)dcost;
dcost = dcost,
% dualization of the first instruction of the direct loop
dym(k—1) = dym(k-1) + p1dym(k);
dpy = dp) + ym(k-1)dym(k);
| dym(k) = 0;
% dualization of the instruction that precedes Lhe direct loop
dp> = dpy + dym(0);
dym(0) = 0;
% the gradient is now given by

g
3}‘,’7=dp1;

9 _
3p; = P2

This adjoint code is unnecessarily long, but obtained in a systematic manner that can
easily be implemented on a computer, contrary to the more concise code that follows

dym(ng+1) =0;
for k = n down to 1 do {
dym(k) = =2[y(k) -~ ym(K)] + p1dym(k+1);
)
dj

Erh e ym(i-Ddym(i);

YN

gapop]dym(l).

Both provide exact values of the gradient, up to rounding errors introduced by the
compulter.
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Conclusions. A number of methods are available to compute the gradient of a cost with
respect to its parameters. The finite-difference method provides an approximate result at
a high computational cost. Its simplicity of implementation, however, may lead one to
retain it when the optimization algorithm is not loo sensitive to errors in the computation
of the gradient. When the performance of the optimization algorithm depends critically
on the quality of computation of the gradient, as in the conjugate gradient and quasi-
Newton algorithms presented below, exact techniques should be preferred. These
methods do not imply more complex computation than the finite-difference approach, in
fact quite the reverse. The techniques based on sensitivity functions only involve
forward computation, in contrast to inverse-mode methods based on adjoint state or
code, which alternate forward and backward phases. For optimization problems with a
large number of parameters, adjoint-code techniques lead to a drastic reduction in
computation, at the expense of an implementation that remains complicated. The
continuing development of software automating dualization should remove this
difficulty. It should be noted, however, that the storage requirements for the values of
all direct variables involved in nonlinear expressions may be very high in large-scale
problems.

4.3.3.3 Newton method
This method relies on a second-order expansion of the cost about pr:

Ry = Bk + Ap) = j(BY) + T(BHAP + 5 APTH(BYAP + o(lApIP),

where g(pF) is the gradient at p* of the cost and H(PF) is its Hessian at p, a symmetric
np X np matrix:

H(A ky = _“__2’_, A
P = SpopTlp=pt:

Let Aj = j(pk+1) — j(p*). The value of Ap that leads to the largest decrease of the
cost, Le. that minimizes 4y, satisfies the necessary optimality condition

0Af

—1 = 0= H(PHAD + g(ph),
oAp'Ap

which suggests the step

Ap =-H-'(phg(ph).

provided that the Hessian is invertible, which is assumed. The Newron algorithm can
then be wrilten as

prel = Pk - B (Bhy(dh),

compared with the gradient algorithm P+ = pt — Aeg(ph).



Properties of the Newton algorithm

PNI: The computation required at each step is much heavier that with the gradient
method.

PN2: Direction and step size are specified simultaneously, contrary to the gradient
method, where the step size remains to be chosen.

PN3: When the cost is quadratic in p and the Hessian invertible, the method converges
to the stationary point of the cost in one step, whatever the initial point pP. Assume
for instance that

jp) = %— eT(p)Qe(p) and e(p) = ys - Rp.

The gradient and Hessian of the cost are then given by

9 _ _RTQ(ys-R ¢ =Li__RToR
op = oo Rp)and - Ggpr T QR

SO
pi+! = pk+ (RTQR)'RTQ(y* - RpH) = p¥ + (RTQR)"'RTQys — p = pis.

The Newton algorithm therefore becomes the least-squares algorithm.

PN4: Even when the cost is not quadratic in p, convergence is usually very quick when
it takes place. Typically, five iterations yield a much better result than a thousand
iterations of a gradient algorithm. The improvement gets clearer the more ill-
conditioned the problem becomes, with non-spherical cost contours. Unfortunately,
this is also when errors in the value of the Hessian may have the worst
consequences. If H is Lipschitz around p*, convergence of the Newton method is
locally quadratic, compared with linear convergence of the gradient method (Minoux,
1983). Asymptotically, the number of sngmﬁcant digits in Pk is doubled at each
iteration. This, however, is only valid when pF is close enough to a local optimizer.
Far from this optimizer, the performance may turn out to be worse than that of a
gradient method.

PN35: The convergence domain is usually much smaller than with a gradlem method.
As a matter of fact, nothing guarantees that the size of the step Ap glven by the
Newton method will be small enough for a second-order expansion to remain valid.

PN6: When the method converges, it does so to any point in parameter space where the
cost function is stationary, which may be a maximizer, a minimizer or a saddle point.
The fact that the cost is to be minimized has never been taken into account. Were j to
be maximized, the sign of Ap would not have to be changed (compare with PG14).
Initialization is therefore especially critical, as illustrated by Figure 4.22

PN7: If the Hessian is positive definite at pf, which nothing gnarantees but which is
casily checked, the inverse of the Hessian is positive definite too. The absolute value
of the angle between the vectors Ap given by a gradient method and the Newton
method is then less than 772, According to PG11, one can then reduce the cost by a
sufficiently small step in the direction

d = -H-{(pHg(p*)
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The Newton algorlthm can therefore be modified by introducing a relaxation
coefficient Ay

pit! = pk — LH-1(phyg(ph).

This coefficient Ax < 1 is saturated at one when p* gets close to a minimizer. A
simple policy is to reject pA*+! and divide Ay by two as long as the cost does not
decrease. One should first make sure that H(p*) is positive definite, e.g. by checking
that all its eigenvalues are positive, so thal one does move towards a (possibly local)
minimizer.
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Figure 4.22. From [90 the Newton method converges to the locally worst point

PN8&: As with the gradient method, the state of the algorithm is summarized by
(P*, Ar). Numerical errors therefore do not accumulate. With the relaxed algorithm,
computation of the Hessian may be rather approximate, provided that the result
remains positive definite.

PN9: The inverse of the Hessian at the value P of the parameters to which the algorithm
converges gives useful information on the uncertainty with which the parameters are
estimated (Chapter 5). It is therefore interesting to make the program indicate the
value of H-H(P), or at least of its diagonal entries.

Implementation of the Newton method. Rather than using the previous formula, which
requires inverting a matrix, it is more economical to solve the following equivalent sel
of linear equations for Ap:

H(®HAp = -A4g(ph).

The adjoint-code technique for the computation of gradients can also be employed (o
compute Hessians exactly. The Hessian is then viewed as the Jacobian matrix
associated with the gradient



Let j,(p) = wTg(p), where w is a vector that does not depend on p. The value of the
scalar jy,(p) can be computed by a “direct code”, which will actually consist of a direct
code evaluating j(p) and an adjoint code evaluating g(p). The “adjoint code” associated
with this “direct code’ will make it possible (o evaluate

a,aTTjw(p) = 5%; wTg(p)).

By setting w; = &, one thus gets the kth row of H(p). The computation of H(p)
therefore requires n, executions of the “adjoint code”. Most of the computation of the
“direct code” is to evaluate g(p), and will be performed only once. Only the last
assignment instruction j,(p) = wig(p) will be executed np times.

Special case of quadratic cost functions. Assume that the cost is

g
ip) = 2 wile(ti, p)12.
i=1

Its gradient satisfies
ny

g(p) =2 “’iai%%me(’!v P).

i=1

and its Hessian can therefore be wrilten as

ny

\ , 92e(ti,
H(p) =2] W,@_eﬂ;?l’_aeéng) N Z i aL(zg 22U ), p).
1=

In addition to the first-order sensitivity functions already introduced, second-order
sensitivity functions now appear:

Seir(1, P) = BT;%_[}:)’ i=1,...,npk=1..,n
To compute them, one may use similar techniques to those presented for first-order
sensilivity functions. One may, for instance, differentiate the equations defining the
error with respect to p; and py to get the equations to be solved for s¢j;. For an
np-parameter model, it suffices to compute the ny(11p + 1)/2 entries associated with the
upper trianguiar part of the Hessian, the remainder being oblained by symmetry. One
may also use a finite-difference approximation. In both cases, it is easy to see that the
computation is much heavier than for the np, first-order sensitivity functions. Nothing
even guarantees that the results will be useful, since the Hessian may not be positive
definite. Applying adjoint-code techniques also becomes relatively heavy and has the
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same drawback. This makes the simplification presented in the next section especially
interesting.

3.3.4 Gauss-Newton method

The Gauss-Newton method, already mentioned in Section 4.2.4, applies when the cost
can be expressed as the sum of at least 7, terms quadratic in some error. In this method,
the Hessian H(p) is replaced by a matrix H,(p), obtained by neglecting the term in
H(p) that depends on the second-order sensitivity functions, so that

A

pr+l = Pk — LHZ (Phg(ph),
where
ny
Ha(p) =Z W ’-’(ln f(th .

T
pa aD ap

The computation of Hy can therefore be based solely on knowledge of the first-order
sensitivity functions, which may already have been used to compulte the gradient.
Compared with the gradient algorithm, the need to invert a matrix, or rather to solve a
linear system of equations, is usually more than compensated by the speeding up of
convergence. Approximating the Hessian by H, will be all the more warranted when

~— the errors e(t;, p) are small,

— these errors are little correlated with the second-order sensitivity functions,

—- the second-order derivatives of the errors with respect to the parameters remain
small, i.e. the influence of the parameters on the errors is approximately affine.

Even when these conditions are not satisfied, and provided that the model is locally
identifiable under the experimental conditions chosen, the approximate Hessian H, is
positive definite, although the Hessian H is not necessarily so. The matrix Hz!is then
positive definite too, so the absolute value of the angle between the search directions
suggested by the gradient and Gauss-Newton methods is less than 772. It will therefore
always be possible to find some positive Aj that ensures a decrease in the cost.
Remember that this was not so for the Newton algorithm.

Since the search direction forms an acute angle with that suggested by the gradient
method, the Gauss-Newton algorithm can also be applied to non-quadratric cost
functions, provided that a quadratic approximation of the cost is used to compute Hj.

EXAMPLE 4.10 (continued)

Figure 4.23 illustrates the minimization of Rosenbrock’s test function using the Gauss-
Newton algorithm. Line searches are performed with the Wolfe method, to be presented
in Section 4.3.3.9. The search directions differ from those of a gradient algorithm and
no longer start orthogonally to cost contours. After only 19 evaluations of the cost and
of its gradient, the cost is down to 1.97 x 1031 0

EXAMPLE 4.11 (continued)

Consider again the cost function
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JP) = (p1+p5 =5 +(p1 +p2- 2"+ (01 +p2— 4%

The trajectory of the same version of the Gauss- Newton algorlthm as in Example 4.10
is illustrated by Figure 4.24. The minimum at p = (1,2)T is found with four
significant digits after only 9 evaluations of the cost, and 13 evaluations of its gradient.¢

Figure 4.23. Behaviour of the Gauss-Newton algorithm on Rosenbrock’s test function;
the initial value of p is indicated by a circle, and the minimizer by a cross

Fipure 4.24. Behaviour of the Gauss-Newton algorithm on Example 4.11;
the initial value of p is indicated by a circle, and the two global minimizers by crosses
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4.3.3.5 Levenberg-Marquardt method

The non-relaxed Newton and Gauss-Newton methods require solution for Ap of the
linear system of equations

H(p4)Ap = —g(pb),

where H is either the Hessian or some approximation of it. The Levenberg (1944) and
Marquardt (1963) method replaces this equation by

[H(ﬁk) + (0 I]Ap = ~g(ﬁk), with pgp 20,

which amounts to adding a quadratic penalty function (p/2)llp — ﬁkH% to the cost j(p).

When g = 0, one gets a non-relaxed Newton or Gauss-Newton iteration. When, on
the other hand, y4 tends to infinity, the iteration tends to a gradient iteration with a step
size Ay = 1/yy that tends to zero. At each iteration, one can therefore perform a one-
dimensional search on uy. Most often, fy is merely adapted, with a policy similar to
that presented for the gradient method, e.g.

— if j(pt+1) < j(P*), then divide py by 10, (everything is going well, move towards
non-relaxed Newton or Gauss-Newton);

— else reject pA+! and multiply g by 10 (the method is diverging, move towards
gradient and shorten step size).

Whatever the policy chosen, gy should not be allowed to tend to zero, to guard against
numerical singularity of H. The Levenberg-Marquardt method then regularizes ill-posed
problems.

Figure 4.25 illustrates the behaviour of the Levenberg-Marquardt method far from
the optimum. Here, the choice yy = 0 would be very bad. Conversely, close to the
optimum, the cost tends to become quadratic in the parameters, so y = 0 becomes a
much better choice.

Cost contour, as
approximated N _ A\
by the Newton method pk| Hk = oo Actual cost contour

2(ph)

Figure 4.25. Levenberg-Marquardt method far from the optimum
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For any value of ug, the computation of Ap requires s/r\;]ution of a set of n
equations in 11, unknowns. A preliminary diagonalization of H(p*), however, makes it
possible to write

H(p*) = TATT, with TTT = L, and A =diag {A;i=1, ..., np},
SO
Ap =T diag (4 +p)~", i=1, ..., ny) TTg(pk).

It is thus possible to replace each new solution of a linear system by a mere matrix
multiplication.

4.3.3.6 Quasi-Newton methods

The aim of this family of algorithms is to combine the advantages of the gradient and

Newton methods. The idea is to generate, at each iteration, a matrix My. that tends to the

inverse of the Hessian, without ever inverting a matrix (Fletcher and Powell, 1963).
The cost is taken to be a quadratic function of p, so

JP) = B0 + gTBRp - B4 + 5 (b - BHTH(p - B,

where g(ﬁk) and H (/z\lssumcd symmetric and positive definite) are the gradient and
Hessian evaluated at pf. Since the cost is assumed to be quadratic in p, the Hessian
does not depend on p*. The gradient satisfies

g(BA*1) = g(PF) + H(PHT - ph).

Its variation between two iterations is therefore related to the variation of the parameters
by
Agp = HApy,
where
Agk=g(B**") - g(Bk) and Apy = P+ - Bk,

Starting from some initial point p* and some initial (sl\(mmetric) approximation My of
the inverse of the Hessian, let us see how to compute pA+! and My, . To calculate the
step in parameter space, a relaxed Newton method is used, where M. is substituted for
the inverse of the Hessian:

pErl = pk— LMg(ph).
The relaxation parameter Ay is chosen by one-dimensional optimization, usually by
polynomial interpolation.

The approximation of the inverse of the Hessian is updated by

Mpy1 = Mg + Cy,
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where Cy is a symmetric correction matrix. We shall calculate here a rank-one
correction, before describing more efficient rank-two corrections. If M| were the
inverse of H, one would have

M.+ 1Ags = Apy,
ie.
(M + Cp) Agi = Apy.
This implies that

_ (Apx - MyAgp)(Apy - MAAgL)T
(Apr - MiAgp)TAgy

CrAgr = Apr - M Apy

Identifying the coefficients of Agy. gives

(Apr = MiAg)(Apr - MpAgp)T
(Apr - MpAg)TAg '

Cr =

which is symmetric and rank-one.

The method is initialized by setting Mp = I, so the first iteration is a gradient step.
As the iterations proceed, My resembles the inverse of the Hessian more and more, and
the method behaves more and more as a relaxed Newton method. This is appropriate.
given the properties of these two algorithms.

In practice, a rank-two correction is usually preferred. Various correction formulas
are available; see, e.g., Minoux (1983) or Polyak (1987). The Davidon-Fletcher-Powell
(DFP) method has

T
APLAPL MAgrAgr My

Cy= T
APL Agy Agi MAgy

and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method has

Ce=|1+ AgAMLAgA APLAPA ADLAL,AWIA+NIAA1:AAPL
APLAEL APLAF-’.A AmAm

BFGS seems to be less sensitive than DFP to errors incurred during one-dimensional
searches.

Properties of quasi-Newton algorithns

PQONI: Each iteration only uses values of the cost and its gradient. The computation is
simple, not requiring solution of a set of linear equations in 1, unknowns,

PQON?2: If the cost is quadratic in p, all matrices My are positive definite and the
algorithm converges to the optimum in #p, iterations. Under the same conditions. the
Newton algorithm would converge in a single iteration, but would require solution of
a linear set of equations in np unknowns.

PQN3: Because of numerical rounding, My may become singular; it is then reset to 1,
which returns the search momentarily to a gradient algorithm. This restarting
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procedure may even be imposed every #,, iterations, to avoid having to check that My
is positive definite.

PQON4: Since the final value of My approximaltes the Hessian at the optimum, it
provides useful information on the uncertainty in the estimated paramelers
(Section 5.3).

PONS5: My is obtained by accumulating information gathered in all previous iterations,
which makes the method more sensitive to numerical errors than the Gauss-Newton
method. The gradient should therefore be evaluated with particuiar care.

PONG6: Whatever the initial value of p, the method converges to a (possibly local)
minimizer of the cost.

PQON?7: Convergence is slow at first, then speeds up when p* gets close enough to the
local optimizer for the quadratic approximation to become valid and for My, Lo
resemble H-!. Asymptotically, provided that the cost is twice continuously
differentiable and the Hessian is positive definite at the optimum, most quasi-Newton
methods have superlinear convergence, i.e. quicker than that of the gradient method.
If, moreover, the Hessian satisfies a Lipschitz condition in the neighbourhood of the
oplimum, convergence becomes quadratic, as with the Newton method (Minoux,
1983).

PQNB8: This class of methods can be seen as gradient methods in a metric iteratively
transformed to try and make the cost contours spherical. This is why quasi-Newton
methods are also called variable-metric methods.

Quasi-Newton methods are implemented in alf major scientific software libraries.
Refrain from attempting to code them once more! The simplest way to see whether they
are useful for a given problem is to try them. The only items of information needed are
the rules for evaluating j and its gradient with respect to the parameters, i.e. what would
be needed to apply the gradient method. Variants are also available where the gradient is
evalualed by finite differences, so that the user need only provide the subroutine that
computes the cost. For reasons alluded to in PQNS, better performance will however be
obtained when the gradient is evaluated exactly.

EXAMPLE 4.10 (continued)

Figure 4.26 illustrates the optimization of Rosenbrock’s test function by a quasi-
Newton method (BFGS). Line searches are performed with Wolfe’s method, to be
presented in Section 4.3.3.9. After 88 evaluations of the cost and 102 evaluations of its
gradient, the cost reaches the value 2.46 x 10-12, 0

EXAMPLE 4.11 (continued)

Consider again the cost function

= +P%—5)2+(P1 +P2—2)2+(P1 +P2—4)2.

The trajectory of the same version of BFGS as in Example 4.10 is illustrated by
Figure 4.27.

The first line search corresponds lo a gradient step, orthogonal to the cost contour
from which it originales. As the iterations proceed, the approximation of the inverse of
the Hessian improves and so do the search directions, which get markedly different
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from those of a gradient search. The minimum at ﬁ = (1, 2)T is reached with four
significant digits after 28 evaluations of the cost, and 39 evaluations of its gradient. ¢

Figure 4.26. Behaviour of a quasi-Newton method (BFGS) on Rosenbrock's test function;
the initial value for p is indicated by a circle, and the minimizer by a cross

Figure 4.27. Behaviour of BFGS on Example 4.11;
the initial value of p is indicated by a circle, and the two global minimizers by crosses
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4.3.3.7 Heavy-ball method

Except for the quasi-Newton, Powell and Vignes methods, the only information on
previous iterations used by the local methods presented so far is the estimate pf of the
parameters, and they are called one-step methods. Better use of this information should
of course yield a more cffective method. Consider, for example, the nvo-step method
known as the heavy-ball method (Polyak, 1987),

PA! = Bk — opg(Ph) + Bk - pr1),

which reduces to the gradient method for §;, = 0. It can be viewed as a difference
equdlion describing the motion of a ball in a gravilational field corresponding to the cosl
in the presence of viscous friction. The loss of energy due to the friction drives the ball
to an equilibrium point, which is a local minimizer of j. The term SBi(pk — pk=1) may
accelerate convergence by damping oscillations perpendicular to the steepest direction. It
may also decrease the probability that the algorithm will gel trapped in a shallow local
minimum. As with the gradient method, the optimal choice of the tuning parameters,
here o and f3, depends on the cost function and cannot be found a priori. To make this
approach practicable, the optimal values of o and  should therefore be computed al
each ileration, i.e.

O Py = arg miBJ[ﬁ" - ap(dY + BBk - P,

v

This can be done analytically for quadratic costs, and the heavy-ball method then
becomes equivalent lo a conjugate-gradient method.

4.3.3.8 Conjugate-gradient methods

As quasi-Newton methods, this family of methods (Fletcher and Reeves, 1964) takes
the cost to be a quadratic function of p

J(p) = (k) + gT @M (P - BY + 5 Lp- pHTH(p ~ pr),
which ﬁay also be written as
P =c+bIp+5 pTHp,
with H assumed symmetric and positive definite. Let
Apg = pr+1 - p,

gr = g(ph).

Tf p&+1 has been obtained from Pk by one-dimensional minimization along dy, then
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App = Agdy,
T
Bk+1dg = 0.
If the next search direction were given by the Newton method, it would satisfy
dpyy = -H-lgpy,
that is
8ke1 = —Hdpy .
This suggests choosing successive search directions that satisfy

T

Such directions are said to be conjugate with respect to the Hessian H (Figure 4.28).

These search directions are conjugate with respect to H
7 N

- dpy =-H- gy

Search direction
suggested by the

Ei+1
Newton method

A Search direction suggested by
the gradient method

pk

Figure 4.28, Conjugale search directions
The conjugate-gradicnt method aims at simple generation of np mutually conjugate
search directions (see also Powell’s method in Section 4.3.2.6). If the Hessian H were

known, for any dy, for instance
do = —go,

the algorithm
= gzdk
dTad,’

Zr41 = gt + A Hdy,



(8ke1 — 20Tk ) a.

dis] = —Gre1 + T
818

would ensure mutual conjugation, f.e.
dTHd, =0 V ik
The proof of this result is by induction (Polak, 1971).

If the cost function is quadratic in p, np one-dimensional minimizations along the
di's (i=0,..., np~ 1) suffice to reach its minimum. Since H is unknown, the
following result is used:

THEOREM

If pk+1 is obtained by minimizing j along dy from Pk, i.e. if

Bl = Bk + A*dy,
with
A* = arg min j(PpF + Ady),
A

then g(ﬁk“) is identical to g4+ as would be obtained by the formula requiring
knowledge of H. 0

PROOF

From the second expression of the cost function, one gets
g(ph) = Hpk + b,
g(Pf*!) = HpE+! + b = H(PY + A7dp) + b = g(B) + A"Hdy.
Now al the minimum of j along dy, the scalar product of d; and the gradient is zero:

gk =0.

Therefore
PRS0
=,
d, Hd,
i.e. the same expression as obtained for A; when H is known. 0

Successive search directions can therefore be computed without knowing H or even
trying (o approximate its inverse as in the quasi-Newton methods. In summary, the
Polak-Ribiére algorithm (Polak, 1971) is given by
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Step 0: Choose p?and evaluate g = g(p®). If go = 0 stop.
Step 1: Set k=0 and dg = -
Step 2: Compute
A* = arg min j(pk + Ady).
A=0

Step 3: Set pk+! = pk + /'L*dL
Step 4: Evaluate g1 = g(P¥+1).
Step 5: If gr.1 = 0 stop, else set

(Zk+1 — H)TELH dy.
gA 81

div) = Bk +
increment & by one and go to Step 2.

Properties of conjugate-gradient algorithims. The first four properties are very close (o
those of quasi-Newton algorithms, in contrast to the others.

PCGI: Each iteration only requires the evaluation of the cost and its gradient. The
compulation is simple, with no set of linear equations in np unknowns to be solved.

PCG2: When the cost function is quadratic in p, the algorithm converges to the
minimum in s iterations.

PCG3: The initial search direction dp may be the negative gradient direction. Since the
cost is mually not quadratic in p far from the oplimum, convergence to a local
minimum is guaranteed only if the procedure is pcuodlcal]y restar lcd. say every ip
iterations, e.g. with a search from the current value of P in the direction suggested by
the gradient method.

PCGH4: The method is more sensitive ta errors in the evaluation of the gradient than the
Gauss-Newton method.

PCGS5: In conirast to quasi-Newton methods, conjugate-gradient algonlhms do not
update any approximation of the inverse of the Hessian. Each iteration is therefore
even simpler. The simplification becomes more and more significant as the number
of parameters increases. Conjugate-gradient methods have thus been successfully
used to minimize cost functions depending on several thousands of parameters, e.g.
in image processing. The price to be paid for this simplification is that the
approximation of the inverse of the Hessian, which would be useful to characterize
the uncertainty in the parameters, is no longer available.

PCG6: Conjugate-gradient methods require about n, times as many one-dimensional
minimizations as quasi-Newton methods for the same asymptotic behaviour
(superlinear or quadratic convergence, depending on the hypotheses about the cost
function) (Minoux, 1983). Note however that each iteration is much simpler.

EXAMPLE 4.10 (continued)

Figure 4.29 illustrates the minimization of Rosenbrock’s function using the Polak-
Ribigre conjugate-gradient algorithm. The first step is taken in the direction opposite (o
the gradient. The line searches are performed with Brent’s method using the derivative
of the cost (Press ef al., 1986). After 289 cvaluations of the cost function and 233
evaluations of its gradient, the value of the cost is 3.8 x 10-19, 0
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Figure 4.29, Behaviour of a conjugate-gradient method on Rosenbrock’s function;
the initial value of p is indicated by a circle, and the minimizer by a cross

EXAMPLE 4.11 (continued)

Consider again the cost function
. 2 2 2 2
JPY=M1+pr=-5Y+p+p2=-2)"+(p1+p2-4)

The trajectory of the same version of the Polak-Ribiére algorithm as in Example 4.10 is
illustrated by Figure 4.30. The minimum at p = (1, 2)T is found with four significant
digits after 55 evaluations of the cost, and 43 evaluations of its gradient. The one-
dimensional searches were conducted much more carefully than in the quasi-Newton
method (Brent's method with derivatives was used instead of Wolfe's algorithm), but
performance was nevertheless poorer. 0

As the quasi-Newton methods, conjugate-gradient methods are available in all
serious libraries of scientific subroutines. It is therefore very simple to test whether they
perform satisfactorily in the specific application at hand.

4.3.3.9 Choice of step size

After choosing a search direction d from the current point p* in parameter space, for
example by Newton’s method or the Gauss-Newton or quasi-Newton method, one
must find a minimizer (or at least an acceptable value of the parameters) in this direction.
Some of the methods presented in Section 4.3.2 do not use the local properties of the
cost function. When the derivative of the cost is available, which is the case in the
Newton, Gauss-Newlon or quasi-Newton algorithms, it is more efficient to use it also
during the one-dimensional searches.

One could of course search along dy with the help of a one-dimensional gradient or
Newton algorithm, but this approach turns out to yield rather slow convergence. As a
matter of fact, what really matters is to ensure a significant decrease of the value of the



cosL in as few iterations as possible, so as not to dissipate effort in solving a purely local
problem (Lemaréchal, 1989). When the cost has been evaluated at f)k + A;dg, one
must therefore decide whether the step size A; is acceptable, and if not suggest another

Aigl.

Figure 4.30. Behaviour of a conjugate-gradient algorithm on Example 4.11;
the initial value of p is indicated by a circle, and the two global minimizers by crosses

REMARK 4.19

An initial step size 1] must also be chosen. For Newton-like algorithms using the
Hessian (or an approximation of its inverse), the search direction is given by
di = -H-1(pK)g(p*), and A; = 1 is a reasonable choice. For the conjugate-gradient
algorithm, one could normalize lldg/l to one and choose 4| from prior knowledge of the
feasible domain for the parameters. 0

Wolfe’s method is commonly used (Wolfe, 1969; Powell, 1976):

Step 0: Choose A} >0, o, az, with 0 < o) < a2 < 1 (e.g., &) = 0.1, @2 = 0.5). Set
Amin = Amax =0, = 1.

Step 11 If j(pk + Aidp) > j(DF) + o 4igT(PMYdy (4; is too large), set Amax = A; and go
to Step 4;

Step 2: If gT(PF + Lidp)dy = cogT(Ph)dy, set pA+1 = B + Aidy; else (A; is too small),
set Amin = Ai.

Step 3: I Amax = 0, {set Aj4.1 = 24;, increment { by one and go to Step 1}.

Step 4: Set Ajy1 = (Amin + Amax)/2, Increment i by one and go to Step 1.

The principle of the algorithm is illustrated by Figure 4.31. Step 1 makes it
possible to reject the values of A > b, such that the decrease of the cost is insufficient.
Step 2 allows rejection of the values of A < a, for which p¥*! could be too close to p¥
and thus j(p4*1) too close to j(PF).
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NI JBF) + o AgT(Ph)dy

= j(pF) + o g T(ph)dy

A AL
JP*) + AgT(phydy
Figure 4.31. Principle of Wolfe's procedure

This procedure terminates in a finite number of iterations for any cost function that can
be bounded from below (such as a positive cost funclion).

REMARKS 4.20

— This one-dimensional search procedure is not necessarily very efficient for
conjugate-gradient algorithms, for which careful minimization of the cost along dy. is
advisable.

— The procedure extends without difficully (o the Levenberg-Marquardt method. Note,
however, that the one-dimensional search on 4 is no longer performed in a fixed
direction in parameler space. 0

4.3.4 Constrained optimization

As already mentioned in Remark 3.12, incorporating constraints on the feasible
parameters into an estimation problem is not always to be recommended but may turn
out to be necessary. Moreover, constrainis are essential to many optimization problems,
such as those encountered in experiment design (Chapter 6). Constrained optimization,
however, is much more complicated than unconstrained optimization. Section 3.6 has
shown how a constrained optimization problem can be transformed into an
unconstrained one by modification of the cost function. Many other approaches may be
considered, cspecially for inequality constraints (Polak, 1971; Luenberger, 1973; Gill
and Murray, 1974; Minoux, 1983; Polyak, 1987; Hiriart-Urruty and Lemaréchal,
1993). In particular, the theoretical properties of the so-called interior-point methods
have motivated a renewal of inlerest in convex programming (Nesterov and
Nemirovskii, 1994; den Hertog, 1994). We shall only consider here primal methods,
i.e. methods that search directly through the feasible domain for the optimal solution.
They present the advantage of generaling a sequence of feasible points, with decreasing
values of the cost. The terminal point is thus always an improvement over Lhe initial
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one, even when iterations are terminated too early. However, primal methods often
exhibit slower convergence than primal-dual methods (Minoux, 1983), and the
necessity of remaining in the feasible domain may produce computational difficulties
(Luenberger, 1973; Minoux, 1983). Only the general ideas of the methods will be
described, mainly in geometrical terms. Once again, we stress that many algorithms are
readily available in scientific subroutine libraries, and can therefore be used at liitle or no
programming cost.

Denote the set of all inequality constraints to be satisfied by c¢i(p) £ 0, to be
understood componentwise, and let ¥ be the corresponding prior feasible set for the
parameters

P={plcip)<0).

Whenever necessary, j and ¢; will be assumed to be continuously differentiable. Some
methods require [P to have a nonempty interior Ip, the closure of which coincide with
P, because the optimizer will be searched for in Ip; see, e.g., the method of centres. In
some other methods, equality constraints can be taken into account simply by
considering them as active inequality constraints. This is the case, e.g., for the gradient-
projection and feasible-directions methods.

The simplest constrained problem is when the cost and constraints are linear in the
parameters. This corresponds to linear programming, considered in Section 4.3.4.].
The case where the cost is quadratic in the paramelers corresponds to quadratic
programming, treated in Section 4.3.4.2. When none of these approaches applies, but
the shape of P is simple enough (e.g., when [P is an orthotope, which is quite frequent
in parameter-estimation problems), direct extensions of unconstrained approaches such
as those of Sections 4.3.4.3 10 4.3.4.5 can be considered. More general constrained
optimization methods are finally presented in Sections 4.3.4.6 and 4.3.4.7.

4.3.4.1 Linear programming

Minimizing a linear cost function
J@ =cTp
under lincar constraints
alps<b;Gi=1,..,m

is a linear-programming problem, with countless practical applications. Famous
methods, such as Dantzig’s simplex (1963) and Karmarkar’s algorithm (1984), are
available but will not be described here. The latter belongs to the class of path-following
methods; see the survey by Gonzaga (1992). We shall only present two simple
approaches, particular cases of methods used in Section 5.4.1 to characterize parameter
uncertainty in a bounded-error context. These approaches can be used in parameter
estimation, where the number of variables is usually quite low compared to other types
of applications. The first is recursive and based on polyhedra, the second non-recursive
and based on ellipsoids.

The first method uses an exact description of a sct defined by linear inequalities. The
constraints a',rp <bh; (i =1,..., m) define a polyhedron ©,, in B”p, assumed to be
compact (i.e. a polytope). This polylope can be built recursively, by introducing the
constraints one by one, with the help of the method described in Section 5.4.1.3. The
minima are either at the vertex associated with the smallest value of ¢Tp or in the convex
hull of such vertices.



This recursive method is limited to low-dimensional problems. When recursive
operation is not essential, the following approach may be preferred.

Step 0: Choose PO, set k = 0.
Step 1: Compute pr+! such that

Pl e Qu=(pe R"pla?p <b,i=1,..,m) and cTpk+l < cTpk,
Step 2: Increment k by one and go to Step 1.

In Step I, pk+! is obtained by an clllpsoxdal algorithm, such as that to be presented
in Section 4.3.5.3, with the subgradient g(pL) replaced by ¢ or by the vector a;
associated with the constraint most violated at pk. Successive cuts in the ellipsoids are
then central, i.e. the previous ellipsoid is cut through its centre. Shallower or deeper
cuts may also be employed (Bland, Goldfarb and Todd, 1981; Grétschel, Lovasz and
Schrijver, 1988). The ellipsoid obtained is given by

Bt = (P& B2 (p - PRV (p - P < 1),

and contains the constrained minimizer. A lower bound for the value of the cost ¢Tp is
therefore

Jrer =max{j, TpA+! —JeT™™M e ) < min T,
pe Qp
with j chosen so that
N Jjo< min cTp.
T peQy

The optimal value of the cost is thus bracketed by

Jre1 € min cTp< cTpk+t,
PEQn

which can be used to stop the procedure when the prccision reached is sufficient. Note
that taking an extra constraint into account would require treating the problem again
from scratch, unless p&+! satisfied this constraint.

This method has been the starting point for important theoretical work in
optimization. It was used to prove that linear programs could be solved by algorithms
with polynomial complexity (Khachiyan, 1979), whereas, in the worst case, the
computational time of Dantzig's simplex algorithm grows exponentially with the
dimension of the problem. Note, however, that Karmarkar’s algorithm has less
complexity than this ellipsoidal algorithm.

Application to Lo, estimarion. The Lo (or minimax) estimator has been introduced in
Section 3.3.1, Example 3.6. It is given by

A .
Pmm=2arg min  max ly(f;) - yi(t P,
pe RMp I<isn,
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for an output error, but prediction errors could be considered instead. Consider an LP
model structure defined by

Ymll;, P) = l‘TP, i=1,..,n.
Let

A A
Qmig = max () - v, Pam)h
1<i<n,

and consider the set of all parameter veclors p that satisfy
\’(I)—r pl<a,i=1,...,n.

Ifaz ﬁmiﬂ, this set is non-empty, and corresponds to the posrerior feasible set By, for
errors bounded by « (Section 5 4) Assume that the r;’s span B0, an identifiability
condition for the parameters. ¥, is then a polytope (bounded polyhedron) of E/p.
Consider the extended parameter vector p, = (pT, «)T of B#n*!. 1f a (possibly very
large) upper bound a,,,, is available for a, the set of all p,, that satisfy

Iy(l,-)—erl Sa,i=1..,n and a Sayg,y

is a po]y(ope of Tp*+! | which can be built recursively as the data are (_ollccled The
estimate Py, corresponds cither to the vertex of this polytope at which a = ayy;,,. the
:mallesl value over all vertices, or to the convex hull of all vertices associated with
yine 1t can therefore be obtained recursively (Walter and Piet-Lahanier, 1991).

Since minimax or Le estimation corresponds to minimizing « under the previous
constraints, the ellipsoidal approach presented above may replace the polyhedral one
when recursive operation is not essential.

EXAMPLE 4.16

Consider the AR structure described by
y(k) = ~0.4y(k=1) = 0.835y(k-2) + €(k),

with y(1) = (1) and y(2) = &2). Figure 4.32 presents the evolution of (’)mm with &
when (g(k)} is a sequence of independent random v.lrmhlcs distributed either A{0. 1)
or (-1, 1), When the errors are indeed bounded, amm is seen to approach the actual
bound quickly. 0

4.3.4.2 Quadratic programming

Quadratic programs are involved, for instance, in least-sguares estimation under linear
constraints (Section 4.1.3) or in the implementation of the constrained Newton method
to be presented in Section 4.3.4.5.

Assume that the cost to be minimized is

Jp) = § pTCp-d'p,
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with C posltrvc definite (so thatj is convex), under the same constraints as in the linear-
programming case, i.e. Ap <b, which define a feasible set Qu. Let Pp¥ be a feasible
parameter vector, and I be the set of all active constraints at p¥;

Ip = {ilaTpk=b;).

25 MO,]) """""""""""""""
2> -
A
Amin 5] Y1)
)
Wl S
[
0.5 |
f
0 2 40 60 8 (00 120 140 160 180 200

k
Figure 4.32. Evolution of &, with (he number of data points

A classical algorithm searches for p¥+ that minimizes j(p) under all active constraints
considered as equality constraints. If Ay and by consist of those rows of A and b
associated with active constraints, the Lagrangian of this problem can be written as:

{p.7) = % pTCp - dTp + 2T(Ag - bp).

Stationarity with respect to p and z of £(p, z) at the optimum yields a set of linear
equations to be satisfied by pr+ and Z:

N 6k+ I:d ]

IL2 ] ol

If ApK+ < b and Z 2 0, pA* is a solution of the quadratic programming problem. If pk+
violates some constraints, a search is performed on the line segment joining Pk to pF+ to
gel a new feasible point PE+1. Any new active constraint is then incorporated in Igey. If
some components of % turn out to be negative, the associated constraints are dropped
from I before restarting from pA. The resulting algorithm finds a solution in a finite
number of steps (Polyak, 1987):

{c Al

Ap 0
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Step 0: Choose a feasible p0 (AP < b), set k = 0.
Step I: Find the set [ of all active constraints at p¥
Step 2: Compute pk* and Z. The nth component of Z is associated with an element i
of I, which will be denoted by n(i). If Apk* <b, go to Step 4.
Step 3. Set
prHl = P+ Ap(pk+ - pH),
with
Ay =max {41k + AP - phy e Q).

Set Jk+l Ef8 U {ninela p“] b}, mcremcnl k by one and go to Step 2.
Step 4: If <,,( > 0 for all i in Ix then p = pk+, stop. Else set pr+! = pL
Iyi=1(ie % | z,,(,) > 0}, increment & by one and go to Step 2.

More general convex-programming algorithms can, of course, also be used for
convex quadratic programming; sce Section 4.3.4.6 and the references on interior-point
methods therein.

4.3.4.3 Constrained gradient
The gradient algorithm is described by

A

i+l = pF - Leg(B),

with A4 chosen so as to minimize j(pt*!). Under constraints, —g(pX) might point in an
unfeasible direction that would entail leaving P. It then seems natural to replace —g(p#)
in the previous equation by the direction dy, given by

di = f)k+ _ ’[‘,k’

with P4+ obtained by minimizing the /inear cost function gT(p*)(p — pk), i.e.

pk* = arg min gT(P*)(p - p).
peP

This method is, however, not recommended, for it may converge very slowly, as
illustrated by the following simple example (Polyak, 1987).

EXAMPLE 4.17

Consider the cost function

i) =p1 + (1 +p2) withp=(p1, p2)T,and P= {p 1 Ip|1 < 1,0< p2 < 1).

The vectors P4+ alternate between vertices (-1, 0)T and (1, 0)T of the box P, whereas
the vectors p*, located inside P, converge very slowly to (0, 0)T (Figure 4.33). The
same type of behaviour takes place whenever F is a polytope with the minimum of j on
one of its faces.
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Figure 4.33. Very slow convergence of the constrained-gradient method

4.3.4.4 Gradient-projection method

In this method (Rosen 1960, 1961), the new parameter vector suggested by the
gradient method, i.e. pk — Ag(ph), is projected onto P, according to

pE+I(A) = OL[P - Ag(Ph)) = arg min Il p — [k~ Ag(BH)] 13,
peP

where O+ is the orthogonal projector onto P. The cost j[pk+1(1)] is then minimized
with respect to the scalar A. This policy is illustrated by Figure 4.34.

Implementing the method involves solvmg the problem of projecting onto P. Note
that the optimal step size AL obtained by minimizing _)[p“l(/l)] may be infinite. In
Figure 4.34, for example, J(p2) decreases as the point A moves away from pl in the
dll‘eClIOI‘l g(pl) Choosmg A1 optimally would lead to taking P2 as close as possﬂ)le
to P, i.e. to building p2 by projection along a direction almost parallel to g(ph),
which would mean tdl\mg A1 extremely large. A suboptimal step size must then be
used, as in Figure 4.34.

This method is much more efficient than the constrained-gradient method, as
illustrated on Example 4.17 by Figuare 4.35. Convergence is now obtained in one
iteration (compare with Figure 4.33).

In praclice, the method is easy Lo use only when P has a simple geometrical shape.
If, for example, P is defined by the constraints

aj<pi<biiel, card [ <np,
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the components of pr+1(2) can be chosen as

AL AL R AL . .
P‘f”(;l) =P§A— Agi(®b), if a; S/\pf ~AgiP*) Sb;or ie 1
P = by, E P - Agi®h) > by
PN = aq, i ph - AgiPh) < ai.

e -2

i) =j(p3)

J(p) =j(?)

P =idh

Figure 4.34. Gradient-projection method (with suboptimal step size Ay)

The search direction is thus modified only when constraints are active. This
corresponds to the following algorithm, where the active or inactive character of the
constraints is used to choose the direction dy.

Step 0: Choose pO e P, set k = 0.
Step 1: Compute g(p*). Find the set I, of all constraints which would be violated after
any displacement along —g(pt), i.e.
Ik = {i1 (3% = a; and gi(PF) > 0) or (B = b; and gi(pk) < 0)).
Step 2: Take the constraints in I into account to define the search direction dy

if i € Ty, then di, = 0, else dy, = —gi(Bk).

If lidgll = 0, stop.
Step 3: Compute pr+1(Ay) = p* + Axdy, with

Mg=arg min - JBEIA).
Apt+1()e P
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Increment & by one and go to Step 1.

ip)=1

Figure 4.35. Behaviour of the gradient-projection algorithm

The stopping rule in Step 2 should be augmented by a test on the decrease of J(@h
between two consecutive iterations. See also Section 4.3.7 for stopping rules taking
computer accuracy into account. This algorithm proceeds from the method of feasible
directions, to be presented in Section 4.3.4.7 (without requiring solution of a linear
program at each step). It can be generalized (Polak, 1971; Luenberger, 1973; Minoux,
1983), to constraints affine in p as well as to nonlinear constraints, although these raise
specific difficulties. Surprisingly, neither a proof of convergence towards a local
optimum nor a counterexample seems to be available (Luenberger, 1973; Minoux,
1983). .

Note, finally, that a projected Newton method may not converge, as illustrated by
Figure 4.36. This will hold true for any method based upon the recurrence

pA+1(A) = OL[p* ~ AHg(ph)],

with H #1,,_positive-definite (Polyak, 1987).

llp
4.3.4.5 Constrained Newton and quasi-Newton

These approaches are based on quadratic approximations of the cost, and compute
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. . : | : .
P! = arg min [(p - PHTe(H) + 5 (p - BHTH(P - BH)].
peP

The constrained Newton method is obtained when H is the Hessian at p*. A Gauss-
Newton approximation of the Hessian can also be considered, or an approximation of
its inverse built recursively as in the quasi-Newton methods of Section 4.3.3.6.

Cost conlour

Search direction with
projected Newton

Search direction
with
projected gradient

\__y [/;k

Figure 4.36. Failure of the projected Newton method

REMARK 4.21
When H = (1/A)L,,, p*+! is given by

pH*!=arg min [2Ak(p - POTg(B) + (p - pHT(p - P)]
peP

— arg min llp — B* + Ag(PHI3,
peP

SO the method boils down to gradient projection, provided that A is chosen to minimize
JEF. 0

A possible variant computes

. . . ! . !
pi+ = arg min [(p - PHTE®Y + 5 (p - POTH(P - BY)],
peP
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and searches for p+! along pi+ — pk. Note that choosing H = 0 then leads to the
constrained-gradient method, found in Section 4.3.4.3 (o be unsatisfactory.

Convergence is guaranteed only if P is convex. The search for pA+ may not be
trivial; see (Lawson and Hanson, 1974) for the solution of constrained least-squares
problems. When the constraints are linear inequalities, the problem is quadratic
programming, for which finite algorithms are available (Section 4.3.4.2). The
constrained Newton method is then called sequential quadratic programming.

A constrained variant of the conjugate-gradient method is also available (Polyak,
1987) for problems where the constraints are

ai<pi<hiie !, card I < dim p.

More general methods, which can be used when F is still convex but may have a more
complicaled shape, will now be presented.

4.3.4.6 Method of centres

Assume that there exists a vector pO such that the subset of P defined as
~ /\0 = | . < A() . < 0
CPY) = {p 1j(P) < J(pY), ci(p) < 0}

is compact with a nonempty interior. Assume moreover that ¢j{(p) < 0 for any p inside
C. A pomt p! is generated at the Chebyshev centre of C(p0), i.e. at a maximal distance
from its boundary. A possible distance function is

d(p’, p) =-max (j(p’) = j(p), ¢i,,(p"), n = 1, ..., dim ¢i}.
The principle of the method is then:

Step 1: Choose PO such that C(p0) is compact, with a nonempty interior. Set k = 0.
Step 2: Compute
pH=arg max  d(p, pr).
pe R

Step 3: 1f d(pk+, p*) = O stop; else set pk+! = pA+ increment k by one and go to
Step 2.

In prdcuce the computation of P+ is performed by one-dimensional maximization of
d(p, pY) in a privileged direction dg. This direction must be such that for sufficiently
small A

JBF + Adp) <j(B*) and  cp, (PF + Adp) S 0f o5,(pF) = 0

A suitable direction (Polak, 1971) is given by the argument of the minimum over d of
the cost
J'(d) = max[gT(®hA, ci, (BF) + gf, (BHYA 0 = 1,..., dim i),
1



under the constraints ldj} < 1 (i = 1, ... , dim p), with

dc 1,,(P)
Jp ipt-

(p‘)

It is obtained (Topkis and Veinnot, 1967; Minoux, 1983) by solving the following
linear-programming problem (Section 4.3.4.1):

minimize o with respect to d under the constraints
gT(phyd < o,
a9+l Bd < e, n=1,... dimc,

d) <1, i=1,...,dim p.

When the optimal value of & is negative, the cost decreases in the direction d, which
is therefore feasible in the sense that a small displacement along d keeps p feasible.
When j and ¢ are convex, d(., p¥) is convex too (but not differentiable everywhere), so
minimization along dj can be performed with the techniques proposed in
Section 4.3.2.

When the constraints ¢; are linear and j is convex, C(P) is contained in the polytope
Pr={plep) <0, gT@(p-pN <0, n=1,.. k)

One can then show (Levin, 1965) that setting pA*+! at the centre of gravity of Py (which
is necessarily feasible) ensures

vol(Prap) < [1-(1 - ; 1)”"] vol(Py), with np = dim p,

and thus,
vol(Bre1) < (1 = 1) vol(By) = 0.632 vol(Fy).

This provides the fastest convergence, in terms of number of iterations, among all
procedures using gradients only. However, computing the centre of gravity of a
polytope is a heavy task, so the method is of no practical interest as it stands. This
motivates taking as pk+1 the centre of the maximal-volume ellipsoid inscribed in Py
(Tarasov, Khachiyan and Erlikh, 1988), the determination of which is of polynomial
complexity. See also (Khachiyan and Todd, 1993). A similar method can be used on
cost functions not differentiable everywhere, simply by replacing g by a subgradient g
(Section 4.3.3.1). When the constraints ¢; are nonlinear but convex, they can be
linearized. If pA+! as determined from Prs; does not satisfy a constraint ci(p) £ 0,
the set

Pt N p lgg; B4 (p- P <0)

is substituted for Py and a new vector pA*! is determined.
] p
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The attractive complexity properties of such interior-point methods have stimulated
intense activity (den Hertog, 1994; Nesterov and Nemirovskii, 1994). Other methods
can be considered for generating points interior lo ¥y, such as the ellipsoidal method of
Section 4.3.5.3.

4.3.4.7 Method of feasible directions

Allhough developed independently (Zoutcnduk 1960), this method is very close to the
previous one. The vector p*+ at Step 2 is now defined by

A

ph* = P + Apdy.

The search direction dy should sausfy IdL I<1,i=1,..., np, to normalize it with
linear constraints. It should be feasible, i.e. such that

eT(pH)d; < 0, and g’zi"(l’sk)dk < 0 for all active constraints cj,,,

Thus, the cost can be decreased with ¢j,(p) < 0 for small enough displacements along
d;.
This suggests that dj should be chosen as the solution of the following linear-
programming problem:
dy = arg min gT(ph)d,
d
with the constraints

g—gi”(f)")d < 0 for all active constraints ¢j, and I}l < 1, i=1, ..., np.

However, the nonlinearity of the active constraints and the fact that only active
constraints are taken into account raise convergence difficulties. These difficulties can
be avoided by taking all constraints into account and forcing dk to point towards the
interior of the fcasmle set P when constraints are active at p* (Luenberger, 1973;
Minoux, 1983). The feasible direction dy. is then computed as in Section 4.3.4.6, and

A= arg min j(pK + Ady),
Ae A
where
A=[A20]1ci(pr+ Ady) 0).

The stopping rule at Step 3 is now based on the value obtained for ¢ when solving the
linear program involved in the computation of dg, i.e.

Step 3" If & = 0 then stop; else (& < 0) set pr+! = pA+, increment & by one and go to
Step 2.

Various modifications of the algorithm have been suggested to facilitate the
determination of dy. The basic idea is not to take into account those constraints that are
far enough from being saturated.
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The method also applies when equality constraints c.(p) = @ are present. When
ce(p) is affine in p, i.e. ce(p) = Ap + b, it suffices (o take the additional constraint
Ad = 0 into account when computing d;. When ¢.(p) is not affine, a penalty function
may be used (Polak, 1971).

So far, only the first derivatives of j and ¢; have been considered. Incorporation of
second derivatives leads to second-order methods of feasible directions (Polak, 1971).
The computation of dy is then performed by minimization of a quadratic function under
quadratic constraints (Lawson and Hanson, 1974).

4.3.5 Non-differentiable cost functions

Except for one-dimensional search, the methods considered so far have dealt with cost
functions differentiable with respect to p. Non-differentiable cost functions, such as the
Ly norm used in least-modulus estimation or the Lo norm used in minimax estimation,
require specific methods; see also Section 4.3.9.2,

As a motivating example, consider the following cost function (Polyak, 1987)

Jp)=1py = pal + 02Ipy + pyl, p =(p, p)T.

If the initial point f)o is taken as (1, DT, the cost increases in the directions of both
coordinate axes, so Powell's method does not apply, even if it does not use the gradient
of the cost.

The three methods to be presented assume the cost function to be convex. The first
extends the gradient algorithm to non-differentiable costs via the notion of subgradient.
The second relies on iteralive construction of a piecewisc linear approximation of the
cost. In contrast to the first, it provides monotone convergence. The third relies on an
ellipsoidal algorithm, of the same Lype as that suggested for linear programming above.
It has been successfully applied even to some non-convex problems

4.3.5.1 Subgradient method

A subgradient (Shor, 1985) at p of 1 convex function j is a vector a that satisfies for
any r i
J(p+1)2j(p) +aTr.

When j is differentiable at p, the subgradient §(p) = g(p) is unique, Otherwise, the
subdifferential of j at p, i.e. the set of all its subgradients g(p), will be denoted by
dj(p); see Figure 4.37. Any subgradient has the following properties (Polyak, 1987):

— ifj is convex, the set of all its subgradients is bounded over any set defined by
{pe Elj(p) < a;

— if j is convex, [E(p2) — E(p1)]1T(P2 — p1) = 0 (the subgradient is a monotone
operator);

— p is a minimizer of the unconstrained convex cost function j if and only if
0 € Jj().

— il g(p1, p2) is the directional derivative of j at p; towards ps,
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Jj(p1 + €p2) - j(p1)

£(p1,p2) = lim
-0 £

(also called the Fréchet derivative), then

gp1.p2)= max aTpy.
acdj(p1)

Jjp+n

i) +

Figure 4.37. Subdifferential dj{p) of a convex function

The following elementary rules allow a simple computation of a subgradient of a
convex function j.

— Letj; (i=1, ..., m) be convex functions, with respeclive subgradients ;. If j is
defined by
m
j®)= 2, ojilp),

then

m
B(p) = 2, a;E(p)
i=1
is a subgradient of j at p. If j is defined by

i(p) = max j(p),
P IS'_SmJ,(p)
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then dj(p) is the convex hull of

U (@], with I(p) = 1{ie (1, ..., m} 1j(p) = j(p))-
iel(p)

— Let A be an m X ny matrix, and f a function over E™ such that j(p) = f(Ap); then
a subgradient of j at p is ATgg(p), with §; a subgradient of f.

The subgradient method derives from the gradient algorithm, and corresponds to
ph+l = p - (D).

It is not always possible to make the cost decrease in the direction —g suggested by the
subgradient. Consider again, for example, the cost function

JP) =1p; = pal +0.2lpy + pal,
with a subgradient at p9 = (1, 1)T given by (P = (1.2, -0.8)T. It is easy to check
that j increases along —g(p9). Tt is therefore meaningless to look for any optimal step
size Ay It is equally impossible to keep A constant. Consider for example the one-
parameter cost function j(p) = Ipl. Since lg(p)I = 1 for any nonzero p, a conslant step

size A would imply adi. pX = A for any k. The sequence A; must be chosen a priori,
and it can be shown that, for a convex cost function, a sequence satisfying

oo
Ap— 0Oask — oo and Z/lk=°°,
k=1

ensures convergence of Pt towards the optimum. The second condition, however,
imposes slow convergence, so the method is not recommended in practice (Polyak,
1987).

REMARK 4.22

An approximate subgradient, easier Lo compule than a subgradient, may also be
employed (Polyak, 1987). 0

4.3.5.2 Cutting-plane method

For any convex cost function j, from the definition of the subgradient, we have
JB) 2 (%) + BT - ph),
so any minimizer p of j over some prior polytope F is in
Pi={p e PIET®NP - P)<i®) -jB). i= 1, ..., k).

If the value of j(p) is unknown, this set can be replaced by
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Pr=(pe PIET®YNp-p)<0,i=1,.., k).

In both cases, Py is also a polytope in P, The next point p&+1 must be chosen so as
to reduce the size of Pr4+1 as much as possible. In the cutting-plane method (Kelley,
1960), p¥*! minimizes a linear approximation of j built on the basis of the previous
abservations. It is obtained by solving the lincar-programming problem:

pA+! = arg min a(p),
p
under the constraints

pe P and jP)+ET@)Np-p) < app)i=1,.., k

Consider the extended vector p, = (pT, a1 in B"r*!. From the prior polytope
Py =P containing f,O and f) and bounds on o (i, <j(f)), Ol > j(p%)), an initial
polytope can be built that contains Q. The updating of the polytope after each new
evaluation of the cost corresponds to one ileration of the algorithm for exact polyhedral
description in Section 5.4.1.3. Let pt = (p*T, a™*)T be a vertex of the updated
polytope such that or* is the minimal value taken by o over all vertices. The point pk+!
is chosen as p*.

The method is guaranteed to converge for a convex cost function. When j is not
conves, it can still be applied iteratively, initializing each iteration with a reduced-size
polytope (which may not contain P) centred on the best value of p obtained at the
previous itcration.

REMARK 4.23

Another polyhedral approach, operating now in E"P, is to choose an interior point of
the polytope P} as p&+1, for instance the barycentre of its vertices or the centre of the
minimum-volume axis-aligned orthotope containing P*. This method is very close to
the method of centres presenied in Section 4.3.4.6.

4.3.5.3 Ellipsoidal method

The previous approach requires solution of a linear-programming problem, for which
an ellipsoidal algorithm can be employed (Sections 4.3.4.1 and 5.4.1.1). Consider the
case where the value ofj(f)) is unknown. The minimizer P is in

Ppo1={pe RmlgTpiNp-p)<0,i=1,.., k-1}.

Provided that this domain is bounded, it is possible to construct, recursively, an
ellipsoid ;. guaranteed to contain it:

Ey={pe Bl (p-pHTME'(p- o) < 1).
The point p~+! is then chosen as the centre of the smallest-volume ellipsoid that

contains B N {p € B2 | gT(p4)(p - p*) < 0} (Bland, Goldfarb and Todd, 1981). The
algorithm is:
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Step 0: Choose PO, Mg = pl,p, p >> 1, such that B contains the minimizer p. Set
k=0. ’
Step I: 1If ET(p*)M,E(D*) = 0 (or < 0 because of numerical problems), stop. Else set

M E(PH)

VETPYHMEDH

ng(ﬁhgT(f»'f)M,.]
gT(PFM,EDF)

A Al
p]»'l‘l =pL-T

Mk+] =5[Mk— e}

with
I 2 5o 0
T_np+ I’U—np+ 1 and —,,g_ U

Step 2: Increment k by one and go to Step L.

A stopping rule based on the decrease of j(p*) between two iterations could be
introduced, in addition to the numerical stability test of Step I. This method may be
considered a space-dilation method (one might also say a variable-metric method, see
Section 4.3.3.6), because it corresponds o a subgradient method with a change of
metric in the direction of g(pk).

REMARKS 4.24

— If the problem involves linear inequality constraints on p,
pe Qu=I(peRmwialp<b,i=1, .., m},

a point pA*1 € @y, can be chosen by the same type of ellipsoidal algorithm
(Section 4.3.4.1). If at iteration k some of these constraints are violated by pf, the
subgradient §(pF) is replaced by the vector a; associated with one of them, for
instance the most violated.

— If the inequality constraints are nonlinear, the same agproach can sltill be used, with
the a;’s replaced by the gradients of the constraints at p*. For a comparison between
this ellipsoidal approach and more classical methods of nonlinear programming on
both convex and nonconvex problems, see (Ecker and Kupferschmid, 1985). The
ellipsoidal method turns out to be relatively insensitive to a lack of precision in the
evaluation of the cost and to the choice of the initial value for the parameters, and
very efficient during the initial phase of the optimization. 0

4.3.5.4 Application to L; estimation

This section illustrates a possible application of the previous algorithms. For other
specific methods, see (Dodge, 1987; Gonin and Money, 1989). Note that replacing an
L.y estimator by a Huber non-redescending M-estimator (Section 3.7.3), with a small
threshold 6, would make the optimization problem differentiable, so the local methods
of Section 4.3.3 would apply.

The cost function to be minimized can be written as
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ip)= z wily(1;) = ym (i P

i=|

The algorithm proposed by Osborne and Watson (1971) is based on the sequential
solution of convex problems obtained by lincarizing y, (¢, p).

Step 0: Choose P9, set k = 0.
Step 1: Compute
I‘Il

o Wm( D)
8p‘~—argm ;wi Iy(t;) = ym(tj P*) — ——%;%*l,\klipl.

Step 2: Compute
n

=t g S, 580
0 =1

Step 3: Set pk+1 = p* + 48P, increment k by one and go to Step 1.

The computation of 8pf (Step 1) can be performed by the cutting-plane method of
Section 4.3.5.2 or the ellipsoidal method of Section 4.3.5.3. The computation of A,
(Step 2) corresponds to a one-dimensional minimization (Section 4.3.2). A stopping

rule (based, e.g., on [j(P4+1) — j(p*)l) must be introduced at Step 3.

EXAMPLE 4.18

Consider the model response described by

ym&. p)=pi&1+ pabn +p?(1 — &) +pa(l - £,

where the vector € characterizes the experimental conditions. Assume that the
experimental conditions are

El=(1,00T, E2=E83=(1, DT

The parameters are to be estimated in the sense of the (unweighted) least-modulus
criterion, so the cost function to be minimized is

2
i@ =lpr+pr -yl +lp1 +p2 -yl +lpr +p2-y3l.

The Osborne and Watson algorithm was used, using the ellipsoidal approach of
Section 4.3.5.3 at Step 1 and Brent's derivative-free one-dimensional optimization
method at Step 2. Figure 4.38 presents the cost contours when the measurements on
the process are y* = (5, 2, H)T.
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Figure 4.38. Cost contours for the L oplimization problem of Example 4.18

All values of p such that p) +p% =5and 2 £ py + p2 £ 4 (dashed line) are
minimizers, so there is no local uniqueness of the estimate (compare with
Example 4.21, where the same model structure will be considered in the context of
least squares). Starting from PO = (-4, 4.9)T, which corresponds to j(P0) = 19.21,
after 50 evaluations of the cost, 4 optimizations of the approximate cost corresponding
to Step | (at pO, indicated by a circle, then at the Roints indicated by stars), and 42
evaluations of subgradients, the algorithm finds p = (-0.0706, 2.2518)T, which
corresponds to j(p) = 2. All classical methods for local optimization that are not
designed to handle nondifferentiability just rush to a point where the cost is not
differentiable and fail piteously. 0

4.3.6 Initialization

Most methods considered so far take advantage of the local properties of the cost
function j. Thus at best they converge to a local optimum. Nothing guarantees, in
general, that there are no other feasible values of p yielding lower j(p). It is therefore
important to choose an initial value PO as close as possible to a global optimizer { of j.
We have seen, for instance, that it is often possible to make the model output linear in
the parameters so as to find PO by the least-squares method (Examples 4.3, 4.4
and 4.6).

It is of course also advisable to start other local optimizations from points picked at
random in the prior feasible space P, to see whether the algorithm always converges
towards a similar value of p. Otherwise, one should rank the various candidate
optimizers according to the valuc of the cost, and keep the best. One may then realize
that quite different values of p yield an optimal or quasi-optimal value of the cost. The
uncertainty in the estimated paramelters will then obviously be very large.

A possible method is as follows:

— choose a minimization technique that guarantees convergence to the local minimum
. . « A
located in the same basin of attraction as pO,
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— perform a large number of local minimizations, picking pO at random in P according
to a uniform distribution.

Provided that the basins of attraction of the global minimizers are nol too small, one will
thus locate all global minimizers. This is a first example of a global optimization
method, with the ability to escape local minima. Others, which also aim to solve, at least
partially, the problems raised by initialization, will be presented in Section 4.3.9.

4.3.7 Termination

Whenever an iterative minimization technique is used, one has to decide when to stop
the process. The most commonly used stopping conditions are

Jjoh < 6,
lid*+) - jpol < 6,
Li@E+D) - JEOIIEH] < 6,
k = kmax-

By itself, none of these conditions is usually satisfactory. One is often at a loss how to
choose the threshold & in the first three. The last condition requires advance knowledge
of how many iterations will be required, which is seldom realistic. Even if this type of
condition is always introduced as a safety measure to avoid infinite loops, kmax is then
only an indication of the maximum effort one is prepared to allocate to this local
minimization.

If the cost function is differentiable, any mjnirnizer'[\J which is neither at infinity nor
on a constraint corresponds Lo a stationary point and satisfies

j
a0 o,
op lp=p

From a mathematical stand-point, one would like to stop iterating when this equation is
satisfied. In practice, however, only an approximate computer representation of the
gradient is available. A more realistic course is to stop when the gradient no longer
differs significantly from zero, i.e. when its mantissa no longer contains any significant
digit.

Three types of error are introduced by numerical computation, affecting the accuracy
of the results:

— truncation errors (or rounding errors, depending on the computer), resulting from
finite word length; truncation error arises because a computer number x stands for
all numbers between x and x plus one least significant bit (LSB);

— computation errors, mainly introduced when two very close numbers are subtracted;

— methodological errors, not considered here.
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To estimate the number of significant digits in a result obtained by computer, the
CESTAC method (Contréle et Estimation STochastique des Arrondis de Calcul)
(Vignes, 1978, 1988; Pichat and Vignes, 1993) may be used. The idea is to study the
statistics of all computer results that may equally well represent the mathematical result
sought, here the gradient of the cost function at pF.

To take truncation or rounding errors into account, the computations are performed
several times, randomly adding or subtracting LSB’s in the mantissas of the results of
all numerical operations on reals. If prob(i) denotes the probability of adding / LSB’s to
any result, then

prob(0) = prob(1) = 0.5

when dealing with truncation errors, and
prob(0) = 0.5, prob(-1) = prob(1) = 0.25

for rounding errors.

To take computation errors into account, early versions of CESTAC also randomly
permuted the order of additions in sums of products (Vignes, 1978), which led to a
much more complicated implementation.

Consider one component of the gradient thus evaluated. If the population of the
results obtained is distributed as in Figure 4.39, the gradient will be considered as
differing significantly from zero, and further iterations will be authorized. If, on the
other hand, all components of the gradient are distributed as in Figure 4.40, one cannot
conclude that the gradient differs from zero, so no information is available on the
direction to be followed, and iteration should be terminated.

Figure 4.39. The ith component of the gradient can be considered to differ from zero

9j
dpi

1 1 : 1 1 ] 1=

Figure 4.40. It is unclear whether the ith component of the gradient differs from zero.

To quantify these ideas, assume that the set of the results r;, i = 1, ..., n, obtained
when computing an actual quantity r consists of samples from a Gaussian population.
Then

o
prob(re [1—tapn ‘\%‘ﬂ + ’a/z‘\ﬁl]) =l-a

where
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and 145 is the (tabulated) value with probability & of being exceeded by the absolute
value of a random variable having a Student t-distribution with n — 1 degrees of
freedom. The number of significant digits of any of the results 1; is then estimated by

and

Per

A Tl It T2
gy =logjg——=log;g—~lo (22,
sdy 10 2’{7/,7_0') 10 o g0 \};
Vn
the number of significant digits of their mean u by

A lpdl %)

1y =log;o — = logyg (—=).

sd = 10810”10210 \/71)

turbed computations are usually performed only three times (n = 3).

Then, for o = 0.05,

jul
ﬁsdmzlogm%_ 0.4.

If 7gy, is less than one for all components of the gradient, iterative local minimization is
terminated.

REMARKS 4.25

The LSB depends on the computer and the precision used. The number of the
iterations actually performed will also depend on these factors. The more accurate
the computation, the longer iterative procedures can proceed significantly. In
contrast to the stopping conditions at the beginning of this section, this condition has
a rational basis.

Contrary to what is assumed here, the population of possible results may be far
from Gaussian, especially if conditional branching is involved and the decision
taken differs between rcalizations. A way to mitigate this difficulty is to use a
synchronous implementation of CESTAC to delect any intermediate result, such as
the result of a numerical test, that becomes insignificant.

‘Although the gradient must be evaluated several times at each iteration, the

computational load may turn out to be lighter than with a traditional test, because
CESTAC often terminates iterations much earlier.
Various software tools are available to implement CESTAC in FORTRAN or ADA

code automatically (Pichat and Vignes, 1993). 0

4.3.8 Recursive techniques

As
var

with least squares, one may wish to treat data one by one, indexed by an integer
table i, instead of considering all of them as a batch. Assume that there exists a

prediction error ep(f;, p) (possibly an output error) that becomes a sequence of
independent random variables £(t;) with probability density m[ep(;, p")] when the
parameters take their true value. Note that #;,] — f; may depend on i. Moreover, t; does
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not necessarily refer to time, and may simply correspond to the ith observation of the
process. The maximum-likelihood approach minimizes the cost

1

. !
Jmi(p) = -+~ 2 In melep(ti, P
=

Under the hypothesis of ergodicity, jymi(p) can be seen as an approximation of the cost

P =- E [Inmfepn(p)]].
ep(p) er

With the help of stachastic-approximation techniques, (Robbins and Monro, 1951,
Dvoretzky, 1956; Polyak and Tsypkin, 1973; Saridis, 1974; Ermoliev and Wets,
1988), it is possible to minimize j without ever evaluating any mathematical expectation.
As a fringe benefit, one gets a recursive algorithm, even when the model output
depends nonlinearly on the parameters. One may, for example, use a stochastic gradient
algorithm, derived from the gradient algorithm for the cost function j, i.e.

A Al a
k+1 — k L e = >
et =B dugy B mlepell o

by replacing evaluation of the mathematical expectation by random picking of a
prediction error from the set of all those that could have been obtained. For this
purpose, the prediction error associated with the measurement y(7441) is used, to get

Apal _ Ak J
prHl = ph+ ap 10 Telep(rie, p)]lpzﬁk'

that is ]
p ”ﬁ[(-’p(’l&l- p)]

Tlep(ti+1, PY]
The gain A; must satisfy three conditions:

— Ar >0 (the steps are in the right direction),

(o)
— Z A =oo (all feasible parameter vectors can be reached),
k=0

/1"1, < oo (the influence of the noise disappears asymptotically).

|
s

A possible gain is therefore A = Ap/(k+1). See also the notion of averaging below, and
Section 6.4.3.2 for strategies with performance less sensitive to the choice of Ag.

As with the recursive least-squares algorithm without forgetting, the correction gain
tends to zero as the number of iterations tends to infinity. The associated estimator is



consistent, like the maximum-likelihood estimator, but unlike it is not asymptotically
efficient. For a general study of the convergence properties of this type of algorithm,
see (Benveniste, Métivier and Priouret, 1987, 1990).

A stochastic Newton algorithm can also be used (Ljung and Séderstrém, 1983;
Tsypkin, 1983; Tsypkin and Lototsky, 1985), defined as

. d
i+ = BE 4 Frp (PR 3p M Zelep(iis1, p)]|p=f,k’

where ¥y is the Fisher information matrix for the first k£ data points, which can be
writlen, as will be seen in Chapter 5,

_ 9
Fr(p) = ~e[1]3|p ( IpapT In m[ep(p)l},

with
ep(p) = [ep(t1, p), ... v ep(ix, PIT.

Provided that the hypotheses made in Section 3.3.3 when presenting the properties of
maximum-likelihood estimators are satisfied, this algorithm is asymptotically efficient.
Note that it still involves the evaluation of a mathematical expectation, in contrast to the
stochastic gradient algorithm. We shall, however, see in Chapter 5 how to obtain an
analytical expression for Fy(p), which makes the complexity of one iteration of the
stochastic Newton algorithm equivalent to that of one iteration of a conventional
Newton algorithm. If we define the average Fisher information matrix per sample as

AL l AL
Fro () = £ Fr(ph),
the stochastic Newton algorithm can be written as
phtl = pk 4+ 7 Fi B & in mefepliier, p)]
p £ L+]p\ op elepltier, Ip f) .

which has a decreasing gain A = 1/(k + 1).

When the random variables &(f) are i.i.d. {0, 62), this algorithm is a stochastic
version of the Gauss-Newton algorithm of Sections 4.2.4 and 4.3.3.4.

Since the stochastic Newton algorithm is asymptotically efficient, it provides a
recursive estimator with the same asymptotic optimality properties as the maximum-
likelihood estimator, which does not mean that the properties on a small set of data
points will be similar.

Assume now that time-varying parameters are to be tracked. It is no longer possible
to let the adaptation gain tend to zero without any precautions, as already mentioned for
recursive least-squares. Most often, Ay is made to tend to some constant value, allowing
the algorithm to continue to take prediction errors into account. One may prefer to let A
tend to zero and P* converge, but the prediction error should then be monitored to check
whether the adaptation gain needs to be increased. The choice will be guided by the type
of parameler variation that is assumed to be possible. If the parameters vary slowly and
continuously, a technique that makes Ay tend to a nonzero constant seems preferable. If,
on the other hand, the parameters jump between constant values, one should rather let
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Ak tend to zero and monitor the prediction error to detect when the gain should be
inflated, see Sections 4.1.4.2 and 4.1.4.3..

EXAMPLE 4.19

Assume that for the true value of the parameters, the prediction errors become i.i.d.
MO, 62). As will be seen in Chapter 5, the Fisher information matrix associated with
the first £ data points is then given by

k
d d
¥, L - — p (. — s (! i

In the specml case where the prediction error is affine in the parameters, ;. does not
depend on PF but only on k, so it can be computed recursively. One can indeed write

ep(fis s P) = Y(tha1) = Ym(ths 1y P) = ¥tk ) = 7T ()P
and
k1 =Xk 2 apr k+1- P E)pTLP k10 P)y
S0
i =Fy+ = e(rT(k
kel = k+OQN)T()~

The matrix-inversion lemma can then be used to compute FZJIA without inverting a
matrix at each iteration. The resulting algorithm corresponds to recursive least squares.
A stochastic-gradient algorithm would in this case lead to

prHl = Bk 4 ur(B)ep(fre 1, PP,

which is called the Least Mean Squares algorithm, widely used in signal processing
{(Widrow and Stearns, 1985; Macchi, 1995). See also Remark 4.4.

Assume now that the prediction error is no longer alfine in p. Defining an
approximation F of F(p¥) recursively by

2 2
Pl = B+ g5 eptiet ) gurentiin | o

one can use the results of the affine case. Taking advantage once again of the matrix-
inversion lemma gives

: _ d _
(F'Ll'+l)*] T ] - ki p T‘p(lulvl’)] (F !,

with

_ a
I-ld ] —¢ (1 , ) A
(F ap ¢rlk+1 plp:pk

0 ae] O
02 + == ep(lpy), P) (FH™" 5= epltpey, P)
apT pUk+1: P |p=6k k ap ‘P b+ P |p=[/;’~'
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The algorithm

: : _1 0
Brt =+ (F)™ 5 In Telep(ton, DY o

is then equivalent to

]

. Ak
Ale] — O E(tk”.p ) (Fﬂ )_1 ie h
P P 2 k+1) gp ep m'p)lp:ﬁk
and thus to

AJ. AL b Ay 2
pr+l =pk - ki, ep(tr1s ph).

This corresponds to the approximate-maximum-likelihood method (Goodwin and
Payne, 1977), similar to the recursive least-squares algorithm of Section 4.1.4 (since
dep(fr41, PHOP = —r(k) for LP model structures), and to the Gauss-Newton algorithm
introduced in Section 4.2.4. Evidence of the superiority of this method over the
extended-matrix approach presented in Section 4.2.3.2 can be found in (Ljung,
Soderstrom and Gustavsson, 1975) .

Averaging is a very promising and fascinating technique to bypass the choice of a
sujtable step size in the stochastic-gradient algoritlim or the computation of the Fisher
information matrix in the stochastic-Newton algorithm. Under some technical
conditions, a stochastic-gradient-like algorithm, with the requirements on A; replaced
by
Ak = Ape1 _

Ar>0, A - 0, and
Ak

o(Ap),

which amounts to slowing down the algorithm, makes it possible to achieve an optimal
asymptolic rate of convergence for the average of the past estimates

b

— 1 A

k— i

pPt=7 P
k+1i0

i]

whatever the actual sequence {A;} chosen (Polyak and Juditzky, 1992). The choice of
this sequence becomes therefore much less critical than with the original stochastic-
gradient algorithm. One may for instance use

E= T

In practice, averaging should not start {from the very beginning, where the
approximation might be very bad, and a constant A should be used until the
neighbourhood of the solution is reached. Since A; tends to zero more slowly, the
estimates p* move more erratically than with the usual stochastic-gradient algorithm.
This is compensated for by the averaging. Kushner and Yang (1993) have proven that
the approach is much more general than originatly thought. The case where A is small



and constant (e.g. to track time-varying parameters) is considered in (Kushner and
Yang, 1995). -

4.3.9 Global optimization

Global optimization techmque% aim to find the best possible value j for the cost and the
associated optimizer(s) p, such that for any feasible p

P2 =7

Insofar as they succeed, they bypass the initialization problems raised by local methods.
Many global optimization methods are available; see, e.g., the books by Dixon and
Szeg6 (1975, 1978), Hansen (1992), Horst and Tuy (1990), Mockus (1989), Ratschek
and Rokne (1988), and Zhigljavsky (1991). Some are already very complex for two-
parameter problems, and seem hardly generalizable to higher-dimensional problems.
We shall limit ourselves to two algorithms: the first, based on random search, is
extremely simple to implement but may fail to locate any global optimizer; the second,
deterministic in nature, guarantees its results, at the cost ol a much more complex
implementation.

Note that suitable experimental conditions may eliminate parasitic loca] mlmma from
parameter estimation problems, and thus make it possible to find p = p by local
methods, as shown in the next section.

4.3.9.1 Eliminating parasitic local optima

The cost function j is inverse umrnodal over T if and only if for every p0 P, p0 2D,
there exists a palh in P from pO to p along which j(p) decreases. The global optimizer
of the cost is then P. In this section, the minimization algorithm is assumed to be such
that p* will never leave P and ym(p) is assumed to be continuous in p.

In the observation space to which y* belongs, the locus of all feasible model
responses is a hypersurface Sexp = (Y™(p) | p € F], called the expectation suiface
(Sections 5.1.1.1 and 6.4.1). Consider the case where the experiment consists of
repeating only np, = dim p distinct experiments, that is r; observations are performed
with the same expcrxmenlal conditions £/, with

(see also Section 6.2.2.1). Then y™(p) has only "y distinct components, and Sc\p is
therefore included in the hyperplane Hexp contammg the origin and defined by y;
for all (i, j) such that & = &/, Since any norm ILIl in R is convex, i.e.

YV (y1,y2) € RmxEm VYV Ae [0, 1], IAyy + (1 = D)yall < 4 Nyl + (1~ A) llyal,

the level sets of lly — ysll are convex (balls centred at y$). The intersections of these sets
with Hexp are thus convex, and all of them contain
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y=arg min ly—ysIl.
ye Hexp

For any y0 in Hexp, lly — y8il then decreases monotonically along the line segment from
yotoy.

When S Sexp COVETS Jh“,_xp, and when the model structure is globdlly idenliﬁablc undcr
the experimental conditions considered, there cxms a unique p such that y = ym(p),
and to any y along the segment {rom y'“(po) to ¥ corresponds a p in ®”p such that
y™M(p) =y, so j(p) is inverse unimodal (although not necessarily convex). When & uwmp
does not cover Hexp, a sufficient condition for the inverse unimodality of j over P is
that Ecxp be convex. Note that whereas checking the convexity of S¢xp may turn out to
be difficult for a constrained P, the task is generally much easier when P = R/p. When
Sexp is not convex, the answer depends on its shape, as illustrated by Figures 4.41
and 4.42 in the case np = 2 for the Lo, norm,

In Figure 4.41, if Seyp is the set limited by the solid line, j(p) is inverse unimodal
over P. Indeed, any y™M(p) in S¢xp can be connected to ¥ by a path contained in Sexp
along which j(p) decreases monotonically.

Boundary of Sexp = {y™(p) I p € P}

y =ym(p)

Figure 4.41. Level sets of lly - y$ll, on Hexp (dashed lines)
and houndary of & Sexp (solid line); the cost is inverse unimodal

By contrast, in Figure 4.42 the cost is inverse multimodal, because any p such that
y™(p) is in the dashed region belongs to a basin of attraction that differs from that of P.
Indeed, j(p) mcrcase<: along any path contained in S¢xp and connecting y™(p) in the
dashed area to y.

The following two examples illustrate the case of least-squares estimation. We have
seen in Section 3.1 (Remark 3.1) that replicated measurements can then be replaced by
their mean (provided that the weights are suitably adjusted). When only np experimental
conditions are used, it is therefore possible to work in an ny-dimensional space, i.e.
directly on Hexp.



Boundary of Sexp = {y™(p) I p € F}

¥ =ym(p)

Figure 4.42. Level sets of lly — y5lleo on Hexp (dashed lines)
and boundary of Sexp (solid line); the cost is inverse multimodal

EXAMPLE 4.20

Consider the model response
ym{t, p) =p*+ p(1 = p)t.

Assume that two measurements are performed, at ] = O and /2 = 1. When
ys = (2.5, I)T the least-squares criterion has a local optimum at Pis = —1.2488, and a
global one at pjg = 1.5356. Figure 4.43 shows the expectation surface Sexp and the
locations of the responses yM(p5) and y™(pys). Assume now that the two observations
yS = (1.5, 1.1)T are taken at the same time ¢ = 1. The two components of y™(p)
then become identical, so all model responses are on the line bisecting the first
uadrant of the observation space (Figure 4.44), and the Jocal minimum disappears
0

(s = P1s = 1.3).
EXAMPLE 4.21

Consider the model response described by

3., 2,
ym(E, P) =p1&1 + p2do + pi(1 = &) +pa(l - &),

where the vector & characterizes the experimental conditions. Assume first that three
observations are taken under the experimental conditions

El=(1,07, E2=(1, )T and &3 =(0, NT.
Figure 4.45 presents the expeclation surface Scxp for P = -5, 51 x [-2, 5], and

Figure 4.46 the corresponding least-squares cost contours when
= (5,-10, 8)T. One can easily check that the model parameters are globally
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identifiable under these experimental conditions (i.e. y™(p;) = y™(p2) = p| = P2
almost everywhere), so that the inverse multimodality is not due to a lack of
identifiability.

1o

Yy 0p

-0.5]

-
U'EXP

Figure 4.43. Expectation surface for Example 4.20;
experimental conditions differ and there is a parasitic local minimum
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Figure 4.44. Expectation surface for Example 4.20;
a single experiment is duplicated and the parasitic local minimum disappcars



Figure 4.46. Cost contours for Example 4.21 with three different experiments;

the cost is inverse multimodal, and two minimizers are local
Assume now that the experimental conditions are
E'=(1,0T, £2=83=(, T

The expectation surface becomes flat, but the parameters then turn out (o be only locally
identifiable, because

Pr=01.p)T and Pa=(Pr+2p2-1,1-p)T



give the same point ym(f)l) = ym(f)z) on the expectation surface, and thus the same
value of the cost. Figure 4.47 presents the Ieasl -squares_cost contours when
ys = (5, 2, H)T. The two global minimizers are py = (1, 2)T and P2 = (4, -1)T.
Using a local optimization method of Section 4.3.3, either of them can be obtained,
from which the other is easily calculated. Compare with Example 4.18, where the same
model structure was considered in the context of least modulus. 0

Figure 4.47. Cost contours for Example 4.21 with repetition of only two different experiments; the
cost remains inverse multimodal, but both minimizers are now global

4.3.9.2 Random search

A basic algorithm for random-search minimization is as follows:

Step I: Choose PO, set k = 0.
Step 2: Compute a trial point prte P according to the rule

f)k'i' = ,p\L + rk'

where rf is a realization of a suitably distributed random vector.
Step 3: If j(pk+) <j(P*) then PF+1 = P&+, else ph+! = pt.
Step 4: Increment k by one and go to Step 2.

Let P be a global minimizer to be located. When Pk is far from p, r¥ should have a
large variance to allow large displacements that might be - necessary lo escape the
attraction of local minimizers. Conversely, when p’~ is near p, r* should have a small
variance to allow finer exploration of parameter space. The idea of adaptive random
search (Bekey and Masri, 1983; Pronzato ef al., 1984) is to alternate variance-selection
phases and variance-exploitation phases, during which the selected variance is used.

In the version that we have implemented, the user must only provide
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- the prior feasible domain for the parameters, assumed 1o be the box
F =P Pinin SPi S Pigax 1= Loy mpl,

— a subroutine computing j(p) for any p in F,
— the maximum number of evaluations of the cost allowed.

Unless otherwise specified, search is initialized at the centre of P

AO_pfmin+Pinlzlx =
P= oy s =1 .

The displacement r* is randomly generated according to an A{0, X(6)) distribution with
(o) = diag [0‘77. i=1,..,np],
truncated so that p** belongs to ¥. (A uniform distribution could also be used.)

Variance-selection phase. Several successive values of ¢ are tried for a given number of
iterations of the basic algorithm. One may, for instance, choose

16 = pmax — Pmin:
which promotes large displacements in P, and
ic=11g/10,i=2,..., 5,

for finer and finer explorations. The competing 6’s are rated by their performance in
the basic algorithm in terms of cost reduction starting from the same initial point,
namely the best p* available at the start of the comparison. Each ‘o may for example be
allowed 100/i iterations to give more (rials to larger variances. The best /G in terms of
the final valuc of the cost, denoted by 8, is selected for the variance-exploitation phase.

Variance-exploitation phase. Starting from the best p* obtained during the variance-
selection phase, the basic algorithm is used with the covariance %(8) for, typically, one
hundred iterations before resuming a variance-selection phase.

Local optimization. Since the smallest 6 corresponds to very small displacements in
parameter space, one may switch to local optimization whenever 3@ is selected
(Section 4.3.3). In order to avoid uselessly duplicating local optimizations, these will
be performed only if 56 is selected for the first time or if G was not the previous 8.

Termination. The algorithm is (erminated when the maximum number of cost
evaluations allowed is reached, or when 30 has been selected a given number of times
consecutively, which indicates that the algorithm has failed to escape the basin of
attraction of the best local minimizer so far.



Properties of adaptive random search

PARSI: Excepl for pathological cost functions such that any global minimizer has a
basin of attraction with zero measure, if the number of evaluations of the cost tends
to infinity, p will tend to a global minimizer of j over . Of course, Lhis does not
guarantee that any global minimizer will be reached, since the actual number of
iterations is always finite.

PARS2: This very simple method is not aimed at finding all global minimizers, but
merely one of them.

PARS3: The treatmenl of a dozen test problems from the literature (Pronzato et al.,
1984) has shown that adaptive random search located global optimizers at least as
efficiently as the global optimization methods advocated in the papers describing
these test problems. Although limited in scope, this comparison indicates that
adaptive random search can handle varied problems with several local minimizers,
without any modification to the algorithm or adaptation of its internal parameters.

PARS4: The time spent selecting the variance is usually profitable. (See
Example 4.22.)

PARS5: Provided that the cost function is twice continuously differentiable, switching
1o a local method when 3 is selected in general much improves the performance.
PARSG: The method applies to non-differentiable and discontinuous cost functions,
such as the number of sign changes mentioned in Section 3.7.4 or the percentage of

data considered as outliers to be presented in Section 5.4.2.2.

EXAMPLE 4.22

Consider the experiment design problem (Chapler 6) defined by Bohachevsky,
Johnson and Stein (1986). The system studied is described by

y(tiy 1) = ymlti, ticy, PY+ () i= 1, ., L
with £(#;) belonging to a sequence of i.i.d. random variables,
¥ym(is ti-1, P) = pilexp(-pati-)) — exp(=p3t)} + p2(ti - ti-y),

and fp = 0. The vector t = (11, ..., 1 T should be chosen so as to optimize a cost
quantifying the precision with which the parameters p will be estimated. The criterion
chosen is D-optimality (Section 6.1), which corresponds to maximizing

A ymT(p) dy™(p
J(t)=det[ y ap( ) yap(T )}.

The prior feasible set T for t is defined by
T=(teR'MIn21,4-021,i=2,..,11, t1; <30},

and p3 is taken to be 0.25. (The value of t that maximizes j(t) does not depend on p
and p3.) After about 5000 evaluations of the cost, adaplive random search implemented



as above (with projection onto T of any trial point £+ violating the constraints)
suggests :

A

t = (3.2,11.2,12.2,13.2,14.2,15.2,16.2, 17.2, 18.2, 19.2, 30)T,

i.e. the solution obtained by Bohachevsky, Johnson and Stein (1986) using simulated
annealing, after several thousand evaluations of the cost. Figure 4.48 shows a typical
evolution of j(tk+) with k. The alternating variance-selection and exploitation phases
are easily recognized.

0 100 200 300 400 500 600 700 800 900 1000

k
Figure 4.48. Typical evolution of j(£5*) with &

For comparison, Figure 4.49 presents a typical evolution of j(tk*+) when the basic
algorithm is used with & cyclically taking the values 'e, 20, ..., 50, each for one
hundred iterations, instead of alternating variance-selection and explontatlon ph..lses The
result is not nea.rly as good as with addpuvc random search. Restarting at the same £ to
compare the various /6’s during the variance-selection phase penahzcs adaptive random
search, resulting in a qulcker initial increase of j(t%+) in Figure 4.49 than in
Figure 4.48. This, however, is more than cancelled by the gain in efficiency resulting
from the use of a suitable variance (here 36) for a large number of iterations. 0

4.3.9.3 Deterministic search

Many experts in optimization thought (some even wrote) that it was impossible to
develop techniques guaranteed to deliver all global optimizers of a multimodal cost
function. Interval analysis, a very active research field for the past twenty years (Adams
and Kulisch, 1993; Kearfott and Kreinovich, 1996, Moore, 1979), provided a
spectacular refutation, even if the techniques derived from this approach are limited in
the complexity of the problems that they can solve.

Interval analysis. An interval [x] of R (or scalar interval) is a connected closed and
bounded set of real numbers
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[x] =[xt = {xla-<a Lot

Interval arithmetic extends computation on real numbers to intervals in a natural and
intuitive way. The product of an interval by a real scalar A is, for instance, given by

if A 20, then A[x] = [Ax, Act], else Alx] = [Axt, A

Similarly
[x] + [yl =[x~ +y7, xt + y*],

] =l ==yt ot =],
[x][y] = [min(xy=, x7y*, xty=, xFy*), max (xy—, vy, xtym, atyhl,
Hx] = [1/x*, 1/x~], provided that 0 ¢ [x],
exp([x]) = [exp(x), exp(x*)],

and simple algorithms can be provided to compute sin([x]), cos([x])... To allow
division by intervals containing zero, exlended intervals with possibly infinite bounds
must be considered.

3

ls 6 %6 4% % s %6 Y% ‘5 S5

Figure 4.49. Typical evolution of j(t*+) for a cyclic change of the variances

it is important to note that the intervals [x] and [y] have implicitly been assumed to
be independent. If, for example, it is known that x = y, then using the above formulas
to evaluate [x] — [y] or [x][y] may yield a very pessimistic interval, nevertheless
guaranteed to contain the actual set of possible values for the result. The square of [x]
should therefore not be computed as [x][x], but as follows:
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if 0 < x-, then [x]2 = [(7)2, (+9)2],
if x* <0, then [+]2 = [(x*)2, ()2,
if 0 e [x], then [x]2 = [0, (max(=x—, x*))?].

Extensions of FORTRAN (IBM, 1986), C (Klatte ef al., 1993) and PASCAL
(Klatte et al., 1992) handle computation on intervals as well as on reals. A shareware
version of the C-XSC library is available in several machine-readable formats (Hammer
et al., 1995). To lake the errors due to finite word length into account, ounward
rounding is performed, which makes it possible to produce intervals guaranteed to
contain the exact results. The lengths of these intervals indicale the uncertainty in these
results, possibly very pessimistically.

A box [p] in P (or vector interval) is the Cartesian product of np scalar intervals,
which will be indifferently denoted by

[P1= (P71, P11X [P2. P31 X oo X [Py P = (P11 % [p2] X o X [pup] = [P, p*1.

Any box is therefore characterized by two extreme vectors p~ and p*. Any vector p can
also be considered as a box, such that pt = p~ = p. The set of all boxes of E”p will be
denoted by IR,

When boxes are used instead of vectors, point values of p are replaced by
uncountable subsels of parameter space. This makes it possible to perform a global
analysis with a finite number of operations.

Extending functions to the interval type allows concepts of vector arithmetic to be
extended to boxes. Ideally, for any function f: ."p — 127 and any box [p] of IR/,
one would like to get a function [f]: IE#p — [EM that would compute the smallest box
of IR"T that contains the set f([p]). Unfortunately, this is only possible for elementary
functions such as sin or cos. When [F]([p]) cannot be evaluated, it can usually be
approximated by using an inclusion function £ 1R"p — IR, i.e. a function f that
satisfies

V [p] e IE"p, f([p]) € &([p]) € IR,

As illustrated by Figure 4.50, £([p}) < [f]l([p]) € £([p]). The inclusion function £
therefore makes it possible to approximate the set f([p]) we are interested in, but cannot
usually compute, by a computable box f([p]) guaranteed to contain il.

This box may however be too pessimistic to be of any practical use. One would
therefore like the option of getting better approximations by considering smaller boxes
of "p, for instance by splitting large boxes into sub-boxes. This is why the following
two properties are highly desirable. An inclusion function f: IR#p — 1IRMM is inclusion
monotonic if

V [p1], [p2] € TR, [p1] C [p2] = &([p1]) C &(]p2]).

1t is convergent if

Y [pl, w(lp]) = 0= w(i{[p])) = 0,



227 Optimization

where the width w([p]) of a box [p] is defined as the length of its largest side(s). When
the box [p] tends to a vector p, its image by a convergent inclusion function therefore
tends to the vector f(p). If the effect of rounding is neglected, it is very simple to derive
an inclusion-monotonic and convergent inclusion function £ for any continuous function
f defined by an explicit formal expression (or progmm) It suffices to replace all
elementary operators and functions such as +, -, , /, sin, cos, exp... by their interval
counterpart as defined above. Note that there are infinitely many mc]usion functions
associated with a given function f, so accuracy might be nnproved by inlersecting all the
boxes f;([p]) associated with various inclusion functions f;.

f
1"
P2p r | ] RN -
T
%
] P,
£ ‘_—/ \fl

Box [p] and its image by f

Smallest box containing f{[p])

[NE

Image of [p] by the inclusion function £

Figure 4.50. Inclusion functions

EXAMPLE 4.23

Consider the function fi B = B defined by f(x) =x2 — 2x + 1. A first possible
inclusion function for fis defined by f([x]) = [x]2 - 2[x] + 1. We have, for instance,

£1([3, 4]) = [3, 412 = 2[3, 4] + [1, 1] = [9, 16] + [-8, -6} + [1, 1] =[2, 11].

In performing these computations, we have neglected the fact that [x]2 and 2{x] are
obviously not independent intervals. As a result, £ yields a pessimistic interval. To get
more accurate results, one should try to minimize the number of occurrences of each
variable in the formal definition of the function. In this example, it is possible for x to
appear only once, since f(x) = (x — 1)2. A much better inclusion function will therefore
be defined by f([x]) = ([x] — 1)2, such that



£2(13, 4D = ((3, 41 - [1, 12 = [2, 312 = [4, 9].

The result is no longer pessimistic, and £([x]) = f{[x]). More generally, if [ is a vector
function, exact intervals will be obtained for each component of f([x]) provided that
each interval variable appears at most once in the formal expression of each component
of f.

Assume now that f(2) has been evaluated, f(2) = 1. Since f(2) is smaller than the
lower bound for f([3, 4]) as obtained from £([3, 4]), we have numerically proved that
the interval [3, 4] contains no unconstrained global minimizer of f. This possibility of
eliminating subsets of parameter space that cannot conlain optimizers is at the core of the
algorithm to be described. 0

As illustrated by the previous example, inclusion functions generated by automated
replacement of all elementary operators and functions by their interval counterparts are
usually very pessimistic, because the relationships existing between the results of
intermediary computations are neglected, which results in the so-called wrapping effect.
The approximation can be improved by splitting boxes into sub-boxes lo take advantage
of inclusion monotonicity and convergence, but it is clear that using good inclusion
functions can tremendously improve the performance of the algorithm presented next.

Algorithm. This algorithm is a simplified version of that described in (Hansen, 1992),
which we consider mandatory reading for anyone interested. To present it, we shall
assume that the cost function j is twice continuously differentiable over the whole prior
feasible domain. We shall moreover assume that the global minimum of the cost
corresponds 1o a stationary point (unconstrained optimization).

Let

— L; be the list of all boxes still to be treated by the algorithm,

— lLg be the list of all boxes (and associated characteristics) that may contain feasible
global minimizers of the cost upon completion of the algorithm,

— ¢([p]) be the centre of the box [p],

— 7 be an upper bound forvlhc global minimum jv’,

— Jj be alower bound for j.

The user must provide

— an initial list Ij, specifying the box or set of (possibly disconnected) boxes within
which the search is to be performed,

- the rule for evaluating the cost function j and an \z}ssociatcd inclusion function §,

— the accuracy §; required for (he determination of ;.

If possible, the user should also provide

— an inclusion function g for the gradient g of the cost function,
— inclusion functions hy; for the diagonal entries /i;; of the Hessian H of the cost
function (i=1, ..., np).

Else, the sleps that become impossible (Step 4 or 5) will be omitled, at the cost of
decreased efficiency.
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The lists ILj and L¢ will contain the location of each box [p] that belongs to them
(i.e. p~ and p*) and, as soon as compuled, a lower bound j- for the value of the cost
function over [p].

Step I: Evaluate an upper bound forjY as

j= min j(e([p])).
[pleL;

Step 2: For each box [p] in L;, compute
U= 1 =idpD.

If j~ >, discard [p] from L (for it contains no global minimizer p). Else, store j~
as one of the characteristics of [p] that can be retrieved from ;.

Step 3: If Lj is empty (which cannot happen during the first iteration), go to Step 8.
Else, select a box [p] of L associated with the smallest value of j—.

Step 4: 1f 0 ¢ g([p]), discard [p] from L; (for it contains no stationary point of j), and
go to Step 3.

Step 5: If there exists 7 such that h;([p]) < 0, discard [p] from L; (forJ is not convex
in the neighbourhood of any stationary point in [p], which thereforc contains no
unconstrained minimizer), and go to Step 3.

Step 6: Remove [p] from LLj and split it into 2% boxes by k bisections perpendicular to
the axes of parameter space along which the length of [p] is largest. Typically,
k = min(3, dim p).

Step 7: For each of the boxes [p] created at Step 6,

{update j as j = min (j, j(e([p]));
compute [, j*] = j([p]);
if j=> j, discard [p]; else
{store j~ as one of the characteristics of [p];
if w(i([p])) < &;, store [p] in Lg; else store [p] in Li}}.
When the 2% boxes created at Step 6 have been processed, go to Step 3.
Step 8: i is emply. Discard from Ls any [p] such that j=([p]) > j. Stop.

The remaining boxes in Ly are the only ones that may conlain a global minimizer. All of
them satisfy

Mph -1 < 8.
A lower bound for the global minimum }/ is given by

j = min j=([pD.

[plels

Upon completion of the algorithm, )',is known to belong to [/, 7] and all unconstrained
global minimizers in the domain of interest are known to belong to the union of all
boxes of L.
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REMARKS 4.26

— The policy used for selecting [p] at Step 3 is particularly efficient, and constitutes
an essential ingredient of the algorithm.

— A necessary condition for a stationary point p to be an unconstrained minimizer is
that H(p) be nonnegative definite, i.e. that all its eigenvalues be positive or zero. A
simpler-to-test necessary condition is that all diagonal entries of H(p) be positive or
zero. This is the condition exploited at Step 5. More complicated tests could be
considered, but a compromise must be struck between complexity and added
efficiency in terms of box elimination.

- If the list Lg turns out to be empty on completion of the algorithm, this has only two
possible explanations. The first is that the global minimum of the cost function j in
the boxes of the initial list L; does not correspond to a stationary point, which
amounts to saying that the global optimum is reached on the border of the prior
feasible domain. One should then either enlarge this prior domain or turn to
constrained optimization. Variants are available to deal with equality or inequality
constraints (Hansen, 1992). The second explanation would be that an error has been
committed when implementing the algorithm, e.g. in specifying the inclusion
functions!

— We have assumed here that it is always possible to improve the accuracy of the
results provided by the inclusion functions by reducing the size of the boxes
considered. In practice, to get guaranteed results one must take into account the
numerical errors induced by finite word length in the machine representation of
numbers. Inclusion functions must therefore be evaluated with outward rounding.
As a result, the inclusion functions are no longer convergent, the image of a vector
being already a box with nonzero width. This limits the accuracy that can be
achieved. This is why the bisections at Step 6 will only be performed if the width of
the box [p] to be bisected is larger than a given threshold &,. Else, [p] will be put in
LLs without attemnpting to analyse it in any more detail.

— Exact methods for evaluating the gradient g (and possibly the Hessian H) of the cost
function will form the basis for working out the corresponding inclusion functions.

— Whenever the algorithm decreases j, one might try to improve the resulting bound
further by starting a local optimization from the corresponding value of ¢([p]).

— A better bisection policy at Step 6 is to split [p] perpendicular to axes { of parameter
space associated with the largest values of d; = w(gi{[p]))w([p];), where gi([p])
and [p}; are the scalar intervals corresponding to the ith components of g([p]) and
[p]. It is thus possible to take into account the speed of variation of the cost in the
various possible directions.

— The smaller §; is, the more intensive the computation becomes. One should therefore
limit the required precision to what is necessary. So long as the representation of
numbers in the computer is precise enough, one might always restart from a result
that is deemed too coarse and make it more accurate by reducing & and taking the
list L; just obtained as the new initial list L.

A description of the performance of a variant of this algorithm will be found in
(Hansen, 1692). The test problems treated have up to 50 parameters, up to 1010 Jocal
minimizers and up to a continuum of global minimizers. The variant used includes an
interval Newton method for solving g(p) = 0, which makes it possible to locate the
stationary points within the boxes considered much more rapidly.
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4.4 Optimization of a measured response

The problem considered now is optimization of the response y of a system with respect
to iy independent factors, or operating conditions. The veclor & of these operating
conditions musl belong to some prior feasible space &. This problem, of obvious
practical importance (e.g. in quality control), has received considerable attention in the
literature. Tts solution is tricky, because the exact dependence of y on § is usually
unknown, and because y is measured and therefore subject to random variability.
Knowledge about the process is deduced {rom measurements under operating
conditions &7 (i = 1, ..., m). This knowledge will be used to predict the deterministic
part of y(E), denoted by y,,(E), then to infer the value £* that optimizes (maximizes in
what follows) y,(E). In this context, an efficient method is therefore one that yields an
accurate estimate of £* from few measurements y(Ef). The available methods differ
mainly in their choice of the £"s (experiment design, sce Chapter 6) and the estimator
used for £”. The model y, () is merely a step in the computation of £*, and some
methods, as we shall see in the next section, do not even use an explicit model. When
such a model is employed, it is usually a simple LP behavioural model, and the issue of
robustness of the solution with regard to model structure is therefore important (see
Section 6.6.2 for a brief survey of the methods proposed in the literature).

4.4.1 Model-free optimization

The most intuitive approach is to use a derivative-free optimization method, such as the
simplex algorithm (Nelder and Mead, 1965); sce Remark 4.13. Each evaluation of the
cost is performed by a measure on the process, and at each step, given the past
observations, new operating conditions are suggested. This approach is therefore
model-free, and interesting when nothing is known about the dependence of y on .
Should the deterministic part ym(E_,) of the response be accessible lo measurement, the
simplex method would generally lead to a local maximum of y,,,. The variability of (&)
due to noise is, however, not taken into account, so the suggested operating conditions
do not converge to £* but fluctuate randomly.

The random variability of y(E) can be taken into account with the help of stochastic
approximation (Kiefer and Wolfowitz, 1952). A variant of the stochastic gradient
algorithm presented in Section 4.3.8 can be used when the gradient of the cost function
is not measurable:

n

i+1 'II +£b}(&i +oeny-yEHL, n=1,..,ng
(]

where ,’, is the nth component of Ef and e” is the unil vector giving axis n in R, The

scalars ¢; and ¥ must satisfy
oo

(= o]
lm p= lm o=0, O p=e. D, [ﬂ]z<oo.
= i=1

1—>0° i i=1 \%i
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The directions in which the operating conditions are varied again become more and
more arbitrary when the search gets closer to £, but the decrease of the step length
ensures convergence to a local maximum (Dvoretzky, 1956; Polyak and Tsypkin,
1973; Saridis, 1974). The method is quite general and simple (no model structure need
be assumed), but the number of measurements required is usually high (as convergence
is slow and each iteration requires ¢ + | measurements), much larger than with a
model-based approach such as described in the next section. Accelerated variants are
presented in (Spall, 1992, 1995).

4.4.2 Response-surface methodology

Response-surface methodology is a set of mathematical and statistical tools aimed at
locating £* (Box and Wilson, 1951; Hill and Hunter, 1966; Mead and Pike,
1975; Myers, 1976; Box and Draper, 1987), and based upon sequential construction of
a suitable measurement scheme. At each step, a small domain £ centred on the current
estimate of E* is considered.

The response surface (not to be confused with the expectation surface Sexp of
Sections 4.3.9.1 and 5.1.1.1) is defined as

er{l ) et )

During the initial steps, when & is far from the optimum, the curvature of Sppp can
be neglected, and a linear function of € can be used (first-degree model):

ny

ym(&) =qp+ z (Ingn'

n=1

Since the objective is to reach E* as quickly as possible, a natural approach is steepest
ascent (Section 4.3.3.1), based on an evaluation of the gradient of ym(ﬁ), i.e. of g,
(n=1, ..., ny) (Montgomery, 1976). The step sizes are fixed a priori, and steps are
performed in the same estimated gradient direction as long as y,,, keeps increasing. A
new region is then considered to compute a new estimate of the gradient. The choice of
the &'s for this estimation is a classical experiment-design problem, and a first-order
orthogonal array can be used (Box and Wilson, 1951). The choice of levels of the
operating conditions to be used, which specifies the size of the region , is considered
by Steinberg (1985) following a Bayesian approach, with robustness with respect (o the
model structure in mind. The accuracy with which the gradient, and therefore the
direction to be followed, are estimated increases with the number of measurements. A
compromise must therefore be struck between precision and cost. For a fixed-length
sequence of steps, Brooks and Mickey (1961) show that the ratio of the increase in the
response to the number of measurements is a maximum when the number of
measurements used to estimate the gradient is a minimum, ny+ 1. The stochastic-
approximation sequence of the previous section estimales the gradient with a design
defined by (0, el, ..., e"f}. Other designs with n; + 1 support points, such as
simplex designs, are more suitable, however. They should not be confused with the
simplex designs used to choose the optimal composition of a product, where the factors
must satisfy
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ny

gn = 0 2'511_

n=1

(Scheffé, 1958, Kiefer, 1961, Galil and Kiefer, 1977).

When the estimate of §* gets closer to its actual value, the curvature of &, can no
longer be neglected, and the degree of the model should (at least) be two. (See
(Montgomery, 1976) for tests on the validity of first-degree models.) Most often, the
model used is quadratic in &:

ny

ym(é) =qp+ Z (JnSn +35 2 2 angn + z Qm'f gm

n=1 n=1 i<n
or equivalently

1
Ym(®) = g9+ q7E + 5 ETQE,
with Q symmetric and q = (g, ... , ¢»)T. A stationary point £ then satisfies

Qf" =—q,

and estimating q and Q from observations y(E/) makes it possible to estimate £*. The
type of the stationary point obtained depends on the sign of the eigenvalues of Q. If all
of them are negative, which we shall assume, £* = -Q~!q is the (global) maximizer of
ym(E). Note that this choice amounts to performing one step of the Newton method
(Section 4.3.3.3). The operating conditions are often normalized so as to put the centre
of ¥ at 0 and each factor &, between —1 and 1. The experiments used for a second-
degree model should have at least three levels for each factor. A central-composite
design is often used (Box and Wilson, 1951; Montgomery, 1976). It is obtained from a
two-level factorial design by adding central points (in §) and axial points in the
directions of the unit vectors te” (n =1, ..., ng). These designs have the advantage
of being built from those used during the steepest ascent. (See also (Box and Hunter,
1957) for rotatable designs, with constant variance of the prediction of y,(&) on
spheres centred at 0.)

In contrast to the model-free approaches of the previous section, the response-
surface methodology provides information on the way the factors influence the response
of the system (comparison of the effects of factors, quantification of interactions...).
The experimental conditions are, however, specified a priori, and one should note that:

— the experiment is designed without taking the objective into account; all parameters
receive the same attention, irrespective of their influence on ym(ﬁ),

— prior knowledge gained from previous studies, if any, is not taken advantage of,

— the approach is intrinsically local; possible constraints on & (other than bounds on its
components) are not taken into account,

— the model structure is assumed to be linear or quadratic in &, which may not be true
over the whole region of interest,

— non-Bayesian estimation of the parameters requires a large number of measurements
(at least equal to the number of parameters).



Lonclusions 229

The definition of a cost function, such as

JOIP) = ymlE*(p), P - ymlE* (D), P,
with

5*([’) = arg gemé )'m(&v p),

makes it possible to

— take the objective (maximization of ym(ﬁ)) into account when estimating the
parameter vector p and designing the experiments & to collect the data for this
estimation,

— consider model structures yy,(§, p) that may not be polynomial in §,

— incorporate prior knowledge through a Bayesian formulation of the problem. Such a
Bayesian formulation seems to have been used first by Lindley (1968) and Brooks
(1977), in the case where the objective is to reach a given target level y,(§) = c.

If p is estimated by maximum likelihood, a possible criterion for experiment design
is L-optimality; see Section 6.1, (Pronzato and Walter, 1992a), as well as (Chatterjee
and Mandal, 1981, 1985; Mandal, 1989) for cost functions quadratic in E. If the
estimator of p is the minimum-risk estimator (Section 3.5.2), few measurements are
necessary, and the choice of the experimental conditions can be performed according to
an Lg-optimality criterion; see Section 6.5 and (Pronzalo and Walter, 1991c, 1992a,
1992b).

REMARK 4.27

Since the structure of the models employed is usually LP (see, e.g., the previous
quadratic models in &), their parameters can be estimated by recursive least squares
(Section 4.1.4). One may then, after each estimation, design the experiment associated
with the next observation, which defines the corresponding regressor vector, This is a
sequential-design problem, for which one may refer to the real-time control problem of
Section 6.3.2.2. A naive approach (corresponding to forced certainty equivalence
control) would be to choose

Eb+1 = arg gmz YmlE, PO,
i

gl

with f)(k) the estimate of the parameters {rom the first & observations. This procedure
usually does not converge, and a detailed analysis of its behaviour in the scalar case
where y(E, p) = p; + pa€ + pa&2, as well as a modification that ensures convergence
can be found in (Bozin and Zarrop, 1991). A dual-control approach is suggested in
(Kulcsar, 1995).

4.5 Conclusions

There are hundreds of optimization methods, and it was out of the question (o present
all of them. It is not fortuitous that the relaxed Gauss-Newton, Levenberg-Marquardt,
quasi-Newton and conjugate-gradient methods are among the best known for



unconstrained optimization. Many users have applied them, and most efficient
algorithms rely on the same basic principles.

The results largely depend on how the algorithms have been coded, and on the care
with which numerical problems have been handled. Big software libraries (IMSL,
HARWELL, NAG...) include sophisticated implementation of most methods presented.
One should therefore resist the temptation to reinvent the wheel, and use existing
subroutines. This will leave more time to think about fundamental questions (which
structure to choose for the model, what criterion to optimize, how to collect the data...).
It will also make it possible to try a variety of algorithms to find the one that performs
best. Only when the results are unsatisfactory is one justified in developing a specific
code or modifying an existing one. The information in this chapter should help the
reader select algorithms worth trying, and find out possible reasons (and remedies) for
any failure.

Note, finally, that the core of most optimization-based parameter-estimation
algorithms is a simulator computing the model output (or the prediction error), and
possibly sensitivity functions or the evolution of adjoint variables. Very often, the time
spent in these simulations makes up most of the computer time required by the
optimization. The simulation algorithm should therefore be carefully selected, possibly
by comparing the performance of various simulators, and the precision of the
computation should be no higher than necessary. For simulation of a fourth-order set of
ordinary differential equations, we have, for example, found that the simulator
described in (Valko and Vajda, 1984), which also computes the first-order sensitivity
functions of the output with respect to the parameters, was about 200 times quicker than
a commercial simulator for similar precision, which resulted in the same gain in overall
optimization time.



5 Uncertainty

It is not enough, in general, merely to find the best value of the parameters with respect
to the criterion chosen. It is also important to evaluate the uncertainty attached (o this
result, taking into account the uncertainty in the data and the numerical errors. Several
methods can be used (and possibly combined) for this purpose. None is without
drawbacks, and the problem is unlikely ever to allow any totally satisfactory solution.
Here again, the method used should be clearly specified.

5.1 Cost contours in parameter space
Remember that the cost contour at level jj is the set of points satisfying
Jp) =ji1,

where we assume that the cost j is to be minimized. Techniques for characterizing cost
contours can also be used with functions of the parameters other than the cost itself.
Indeed, the characterization of a level set (or confidence region) by its boundary
f(p) = fo obviously corresponds to a cost contour for the function f. A cost contour is
generally a hypersurface, which may possibly extend to infinity (for example when
some parameters are not identifiable). As Section 5.4 will show, a cost contour may
also be a hypervolume (i.e. a set of positive measure), when the estimator associated
with the criterion is not a point estimator. When dim p = 2, the cost contours are similar
to contours on a geographical map; see, e.g., Figures 4.46 and 4.47.

In the vicinity of a local minimum, a second-order Taylor series expansion of the
cost can be used (provided that the derivatives exist). If the Hessian of the cost is
positive-definite, the cost contours may then be approximated by ellipsoids.
Section 5.3.1.4 will present a method for characterizing parameter uncertainty based on
this property. For the time being, however, we shall not force an ellipsoidal shape on
the cost contours.

5.1.1 Normal noise: cost contours, confidence regions

The method used to build confidence regions depends on whether the noise variance is
known a priori, unknown or estimated from independent measurements.
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5.1.1.1 Noise with known variance

Assume that the prediction error satisfies
ep(ti, Y= €(1), i=1, ..., m,

where the £(¢;)’s are independent random variables normally distributed A{0, o2), with
@2 known. Maximum-likelihood estimation then corresponds to minimizing

”(
i)=Y, lep(ti, 12

=1
When p is the true value p* of the parameler vector, the value of the cost becomes

Hy

P =Y [en)? = mo?.
=1

It is thus pointless to try to reduce the cost below j; = ng2. The larger the noisc
variance o2, the higher the level of the cost contour one should be content with, The
effect of the noise is thus to raise the highest acceptable value of the cost, thereby
expanding the set of acceptable models.

The error e(p) lies in an n,-dimensional space, and eT(p*)e(p*)/0? has a chi-square
distribution with 1, degrees of freedom, denoted by ¥2(1) in what follows. Let y&(n,)
be the value with probability o of being exceeded by a random variable having the
distribution ¥2(n). It is tabulated and can also be computed (Press et al., 1986). The set

E{ = (pe BleT(ple(p)/o? < xin))

defines a 100(1 — )% confidence region for the parameters. The boundary of this
region can be characterized through techniques such as those presented in
Section 5.1.2. If the hypotheses on the noise are correct, and if the same experiment is
repeated a large number of times, this confidence region will contain the true value p* of
the parameters in 100(1 - )% of cases. This is a reminder that p* may happen to lie
outside the confidence region. The smaller ¢ is, the less probable this event becomes
(but the larger the region). A common choice is & = 0.05.
Assume that the prediction error is in fact an outpult error, that is

cp(tiv p) = )’(fi) _.\’m(tl\ P)’ i= 1’ ey I

The vector y$ containing all available measurements is a point in the space of
observations, as is the vector ym(p) of associated model outputs. When p varies,
y™(p) describes a hypersurface S¢xp in this space, the expectation surface or solution
locus. For LP model structures, it is a hyperplane (i.e. an np-dimensional planc),
whereas for non-LP model structures it is generally a curved hypersurface; see, e.g.,
Figure 4.45. Two factors may contribute to making a model strocture non-LP (Bales
and Watts, 1980, 1988; Ratkowsky, 1983; Seber and Wild, 1989). The first is
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curvature of Sgxp, which corresponds to the intrinsic nonlinearity. The second
expresses how a uniform grid in parameter space maps into a non-uniform grid on ucxp
and corresponds to the parametric nonlinearity. Thus, for instance, the nonlinearity in p
of the scalar model structure

Ymlt, p) = p2u(f)

is only due to the parametrization, and is not intrinsic. Modification of the
parametrization may sometimes reduce nonlinearity of the model structure in its
parameters to intrinsic nonlinearity, although the situation is generally far more
complicated than in the simple example above (Bates and Watts, 1981; Hamilton, Watts
and Bates, 1982).

Let the matrix IT(p) be the orthogonal projector onto the tangent plane to Sexp at
y™(p) (Figure 5.1), given by

m Jym rgym m(
Ti(p) = y (p){[ yapgp)]n[g (p)]} [y p)]

opT opl

,Y®
Tangent plane (o Sexp at y™(p)

Figure 5.1. Expcctation surface Eexp for a non-LP model structure

Il ny = dim y$, np = dim p, e(p) = y¥ - y™(p) and p”is the true value of the
parameters, then

— eT(p"e(p*)/o? has a y2(n) distribution, as already mentioned;
— eT(pMHII(p™e(p*)/0? has a y*(np) distribution, as the projection of the error onto an
J%—dlmcnsmn.ll hypelplanc
el(pHIL, - I(pH)]le(p*)/o? has a y2(n - np) distribution, for it complements the
projection above.

If Sexp is flat (i.e. its intrinsic curvature is zero), eT(p*)[L, — II(p*)]e(p®) is constant
{and thus cannot be used to define a confidence region). The confidence regions | and
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a
B2 = {pe Rl eT(p)I(ple(p)/o? < ya(np))
are then both defined by least-squares cost contours.

EXAMPLE 5.1

Consider the model

Yn(E, P) = p1&1 + paka + pi(l - &) +P§.(1 - &),

and data generated by computing ym(E, p*) at p* = (1, 2)T and adding realizations of
independent errors distributed A{0, 1). Assume first that three data points

ys = (5.673, 3.362, 3.043)T
have been collected under the experimental conditions defined by
El = (1,007 and E2=E&3 = (1, DT,
Figure 5.2 presents the confidence regions T{?OS (solid line) and Rg'OS (dashed line)
for the model parameters, computed for ¢2 = 1. We have already noticed in
Section 4.3.9.1 (Example 4.21) that p is only locally identifiable under these

experimental conditions. We have also seen that they make Seyp flat. The true value p*
of the parameter vector is indicated by a cross.

5 T
al
ak
2 .
p
P43
ok
k-
L R(I.OS - :_E(:,]-.OS A
-2
a . . N . . . . N
5 -4 3 -2 -1 [} 1 2 3 4 5
Py

0.05 N 0.05 ,
Figure 5.2. Confidence regions Ry~ (solid line) and Ra ~ (dashed line)
for Example 5.1 (62 known), when Sexp is flat

Assume next that the experimental conditions are
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E1=(1, 0T, & =(, DT and &; = (0, NT,

so the parameter vector p becomes globally identifiable. With the same noise
realizations as previously, the observations are identical to the previous case:

yS = (5.673,3.362, 3.043)T.

Figure 5.3 presents the associated confidence regions ];3?'05 (solid line) and 111‘2’-05

(dashed line), computed for 62 = 1, and illustrates the fact that these regions may be
disconnected when Sexp is curved (see Figures 4.45 and 4.46). The true value p’of
the parameter vector is indicated by a cross.

%)

-2 -15 -1 -0.5 0 0.5 1 1.5 2 2.8 3
Py

. ) 0.05 005 _
Figure 5.3. Confidence regions 1  (solid linc) and By (dashed line)
for Example 5.1 (o':2 known) when S‘cxp is not flat

5.1.1.2 Noise with unknown variance

In this section, we assume that 62 is unknown and cannot be estimated independently
from replicated measurements. (The case where g2 is estimated independently will be
considered in Section 5.1.1.3.) R}-"" and 12905 can therefore no longer be used.
However, eT(p*)[1,, — II(p*)le(p*) and eT(p*)II(p*)e(p*) are independent, so

el(PHOPe(p®)  ni—np
CT(p*)[In( - H(P*)]C(P*) p

which does not depend on o2, has a Fisher-Snedecor distribution with np and (ny—np)

degrees of freedom, denoted in what follows by Ftp, n—np). The value having the

probability o of being exceeded by a random variable distributed Fp, 1y — np) will be

denoted by Fo{np, ng — np). It is tabulated and also easily computed (Press et al., 1986).
The set
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eT(P)n(p)e(p) ng—ip -
< Fylng, ny -
eT(p)[I, - II(p)le(p) ' onp, 1y = np) |

RS ={pe REmwl

thus defines a 100(1 — @)% confidence region {or the parameters. We can also wrile

eT(p"(pe(p*) _ eT(p")I(p*)e(p*)

eT(pe(p®) eT(p*)IL(p*e(p*) + eT(p*) (L, - TI(p*)]e(p*)

1
4 €M@y = T(p")]e(p®) '
eT(p*II(p*e(p”)

so the set of parameter vectors p such that

”D
eT(p)I(ple(p) _ _ "t~ "p

= <
el(p)e(p) | + ”l—'iﬂTFa(np,nl»np)

Fa(np, ng = np)

flp) =

coincides with R3 (Halperin, 1963; Hamilton, Watts and Bates, 1982). T gcould
equivalently be defined as

ET(P)[Im - II(p)le(p) Iy
el(p)(pe(p) "t~ "p

R = {pe Ripr 2 Fo(ng—np, np)}

or
= eT(p)e(p) ~'p
R = 0 B > T )
REMARKS 5.1

— The left-hand side of any of the inequalities used to define Rg does not correspond
to the cost j minimized in a maximum-likelihood approach. The boundary of the
associated confidence region is therefore not a cost contour for j.

— Compared to techniques based on asymptotic properties of the Jikelihood ratio
(Eadie et al., 1971), this approach has the advantage of yielding a nonasymptotic
region, valid even when ny is small.,

— 100(1 — )% confidence regions are not unique. For instance,

np  eT(p)[1, - I(p)le(p)
e=1p eT(p)II(p)e(p)

Ri=(pe Rmwl < Fa-ey(m — np, 1ip))

is also a 100(1 — )% confidence region for the parameters. (However, this region
is unbounded and does not contain the least- -Squares estimate of the parameters. )
One may also choose a priori the shape of the region, e.g. an ellipsoid centred at D,
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or a strip of parameter space bounded by two parallel hyperplanes. See, e.g.,
(Dasgupta, 1991) for a discussion on minimum-volume confidence regions.

EXAMPLE 5.1 (continued)

Consider again the model

(& B) = pr&1 + paga + pi(l — 1) + pa(l — &),
with
El=(1,0T,E2=E3 = (1, )T, y¢ = (5.673, 3.362, 3.043)T.

Figure 5.4 shows ]RO 05 together wnh IF’l ns in Figure 5.2.
At the scale of thls picture, R S and R S are indistinguishable. ]Pl 3 is larger
than B 054 price to be paid for not knowmg o2,

KN 20 10 0 10 20

0.05 0.05 .
Figure 5.4. Confidence regions Ry~ and B3~ for Example 5.1 with S¢xp flat

Curvaturc of Sexp may produce regions with complicated shapes. Figure 5.5
presents E3-0% when y5 = (5.673, 3.362, 3.043)T, E!l = (1, )T, £2 = (1, )T and
g3 =(0, DT, 0
5.1.1.3 Noise with independently estimated variance

If the value of ¢2 is unknown but can be estimated mdcpendurtlv by n, repetitions of
the same experiment at f; (Example 3.1), its estimate o2 given by

Na U

. 1
- v{1i) - m;2, with m; = I ’;y(l;k),

e
0

is such that (ne — 1)6%/02 has a ¥2 distribution with (n, — 1) degrees of freedom.
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. . 0.05 . .
Figure 5.5. Confidence regions B3 for Example 5.1 when Sexp is not flat

The random variable
eT(p*)II( )H(p Je(p")
IIPU‘

then has an J{np, ne — 1) distribution, which can be used to define a confidence region
(Hamilton, Watts and Bates, 1982)

eT(p)II(p)e(p)

%)
IIPO"'

Rs={pe Bmwl < Falnp, ne = D).

5.1.2 Determination of points on a cost contour

Many methods can be employed to draw cost contours in a two-dimensional space. One
may, for instance, compute the cost at each node of a grid covering the region of
interest, then use some standard graphic routine to transform the result into a series of
approximate cost contours. This is the procedure followed for Figures 5.2 to 5.5. One
may also try to avoid gridding and attempt to follow a cost contour with a step size that
is varied according to the boundary curvature (Norton and Veres, 1991). These two
approaches easily extend to three-dimensional problems by considering series of two-
dimensional cross sections that can be drawn in pchchllVC A third possible approach
is by random scanning. Assume that a vector '[5 with j(p) < j| has been obtained as a
result of the optimization stage. Leaving p along d, we find a vector py such that
J(p1) =j1. A set of points on the contour for cost j| will then be obtained by varying the
direction d.

First stage. Find p; along d, i.e. p2 = p + Ad, such 1halj(p7) > ji. by increasing the
scalar step length A until j(p3) > ji. Prov1ded the cost is continuous, there exists at least
one point p; on the line segment between p and pa such that j(p;) = j.
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Second stage. Define p(i) = up + (1 —/.L)pn S]l‘lCB pi is on the line segment joining p
and py, finding p; amounts to finding % with 0 < 11 < 1 such that the function

S =jlpn] - i

is zero (Figure 5.6). A particularly efficient method is dichotomy (Section 4.3.2.2). At
each iteration, f is evaluated at the middle of the remaining feasible interval for f1. If
S>>0 the left half of the interval is deleted, if f=0 a point on the cost contour has been
found, and if f < O the right half is deleted. The interval containing f is thus halved at
each iteration. Its length therefore decreases very rapidly, and it is recommended that the
number of iterations required (for a given precision and a given initial interval) be
calculated in advance, to avoid unnecessary iterations. Remember that evaluation of f at
a given it requires simulation of the associated model so as to compute yM[p()] and
then j[p(u)].

fi

Y

Pl

Figure 5.6. Determination of a point on a cost contour by dichotomy

If the cost contour cuts the line segment considered several times, dichotomy will
only locate one of the intersections.

By varying the direction d, one gets a cloud of points {pec} on the cost contour at
level jy. Th]s is like a speleologist exploring a cave with a torch. If the exploration is
always from P, i.e. if (he spcleo]ogm docs not move, some parts of a non-convex cost
contour (the cave wall) may remain in the shade, giving an over-optimistic view of
parameter uncertainty. The origin of the exploration must therefore be moved (Richalet,
Rault and Pouliquen, 1971). A possible policy is to use as successive origins for
exploration the points in the cloud with the largest or smallest ith components of p
(i=1, ..., dim p). This policy favours the extreme points of the cost contour in cach
axis direction, which is important when accurate uncertainty intervals for the parameters
are sought.



5.1.3 Characterization of non-connected domains

The set of vectors p such that j(p) < j; may not be connected. This may result from lack
of identifiability of the structure, in which case the problem can often be solved by
characterizing the set of all parameter vectors giving the model the same input-output
behaviour. With any point of the cloud oblained as above, one can then associate others
on the same cost contour (Figure 5.7). See Example 4,21 and Section 5.4.2.2,

Py A

,-;—P]

Figure 5.7. Characterization of non-connected cost contours via identifiability studies;
A . . . - N
cach parameter value p2 gives the same input-output behaviour as the corresponding pl

Sometimes, however, the non-connectedness of the uncertainty set cannot be
detected by an identifiability analysis. If the cost contour corresponds to the cost
function j, the problem relates to inverse multimodality of j and may be avoided by a
suitable choice of experimental conditions (Section 4.3.9.1). Another approach
consists in characterizing the uncertainty domain obtained so far by a simple outer set
(e.g., a union U of orthotopes), and performing a new optimization of j in the
complement of U in P. The global opumnnuon algorithm of Sccllon 4.3.9.2 may be
used for that purpose. If a new value p is found, such that i(p) <_1|, a local
characterization of the cost contour at level jy is performed starting at p. and used (o
update U. If no such p can be found, the search is terminated. Interval analysis can also
be employed to characterize cost contours approximately but in a global and guaranteed
way (Didrit, Jaulin and Walter, 1995).

5.1.4 Representation of cost contours

As long as the number of parameters is less than four, direct depiction of a cloud of
points {pcc) on the cost contour can be used. (The same kind of technique can also be
used in the context of bounded-error parameter estimation considered in Section 5.4
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(Norton, 1986b).) When the number of parameters is larger than three, several policies
can be used. :

— The cloud of points may be projected onto sub-spaces (Richalet, 1991). One may,
for instance, project it onto the axes of parameter space, and thus get parameter
uncertainty intervals (PUT's)

Pimin = min  pj and pj o= max p;, i=1,.., np.
Peel {Pcc)

Note that when the cloud of points {pcc]} is for a 95% confidence region, the
parameter uncertainty intervals thus obtained are not the smallest 95% confidence
intervals obtainable (Figure 5.8).

— The cloud of points may be approximated by a quadratic surface, the equation of
which has to be determined (Richalet. Rault and Pouliquen, 1971). See also the
robust estimation of correlation coefficients through ellipsoidal trimming
(Titterington, 1978).

— Principal component analysis may be used to study the properties of the cloud
(Jackson, 1991), and indicate possible correlations between parameters.

P2y

Projection of the
95% confidence
region for pjand p,

95% confidence
interval for p,

Figure 5.8. The projection of a 95% confidence region for py and pa onto the pa axis
is not the smallest 95% confidence interval for pa

Whatever approach is taken, the determination of cost contours will require a large
number of model runs (sinudations) if a realistic view of parameler uncertainty is to be
provided (and the larger dim p, the larger this number).



5.2 Monte-Carlo methods

5.2.1 Principle
Parameler estimation using data collected from a system can be surmmarized as follows:

Experiment Estimation
System ——————— %= Daln y§ — b= [Estimate p.

Repetition of identical experiments will generally not yield the same results, because of
the perturbations acting on the system and noise corrupting the measurements. Before
lhc data are collected, y$ is thus a random vector, and so is the associated estimator
B(y®):
Estimation A
Random vector y* g Estimator p(y%).

The measurements mal\e up a particular realization of the random veclor y5, with which
a particular estimate P(y®) is associated. Monte-Carlo methods aim to determine
statistical characteristics of the population of estimates yielded by the set of all possible
realizalions of y$ (i.e. all possible experimental results). Fictitious data vectors yS' are
gencrated for this purpose, by running the model for the estimated value of the
parameters, incorporating realizations of random variables (o represent the influence of
perturbations and noise:

A Perturbations
Run of model M(p) = Fictitious data ysI.

Each vector of fictitious data gives a fictitious estimate pf = p(ysh, calculated as for
real data. A set of fictitious estimales can thus be constructed,

Estimation A
(ys) — (pf),

the statistical properties of which can be studied. Most often, P is taken to be a normal
random vector, and its distribution is simply characterized by the empirical mean and
covariance matrix of the fictitious estimates. This method (hus requires a large number
of estimations (and a fortiori of model runs). Various lechniques have been suggested to
reduce the volume of computation required; see, ¢.g., (Grant and Solberg, 1983).

The generation of credible fictitious data requires a realistic model for the
perturbations. Assume for instance the overall mode! under ﬂtudy to be an ARARMAX,
as shown in Figure 5.9, where the €’s are i.i.d. A{0, o2), with 02 unknown. The
Monte-Carlo method then leads Lo the following procedure, which can easily be adapted
to other model structures incorporating a description of the perturbations acting on the
system or noise corrupting the measurements.

—— From the actual data, compute an estimate P of the veclor of unknown coefficients in
the polynomials A, B, C and D and an estimate &2 for the variance of (1) (e.g.,
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using the conditional maximum-likelihood method, based on the prediction error
ep(t, p); see Section 3.3.2).

~- Check that the resultlng prediction errors ep(!, p) do not blatantly contradict the
hypotheses on the noise (Chapter 7).

- Generate vectors of fictitious data by running the model with parameters p for
various realizations of i.i.d. A{0, 62) variables 2(1).

— Estimate the parameters of the polynomials A, B, C and D from each of these
vectors of fictitious data, using the same method as for the actual data.

— Estimate the mean and covariance matrix of the fictitious parameter estimates thus
obtained (or, more simply, estimate the standard deviation for each component
of p).

Clg, p")

&(t)——»
D(g, p*)

. 1
u(f) ——e= B(g, p*) — — )

Aq,p")

Figure 5.9. ARARMAX, with the £'s i.i.d. a0, 02)

5.2.2 Number of significant digits of the estimate:
the CESTAC method

The CESTAC method, already mentioned in connection with stopping rules for iterative
algorithms (Section 4.3.7), can also be used to evaluate the combined effect of
uncertainty in the data and numerical errors on the number of significant digits of the
estimate, The procedure can be summarized as:

— Obtain vectors ysf of fictitious data by a classical Monte-Carlo method.

— For each of them, apply the CESTAC method to perturb the computation of the
corresponding fictitious estimate of the parameter vector, by random addition of
least significant bits to intermediate results. (Note that the effect of perturbation by
noise on the data is usually much stronger.)

— For each parameter, use the empirical mean and variance of the fictitious estimates to
evaluate its number of significant digits. .

This number of significant digits is a rather coarse characterization of precision,
which can be obtained with only a small number of fictitious data sets (typically three).

5.2.3 Generating fictitious data
by jack-knife and bootstrap

One difficulty with Monte-Carlo methods lies in the choice of the distribution used to
generate the fictitious data ysf, The jack-knife (Quenouille, 1949) and booistrap (Efron,
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1982) methods make it possible to avoid estimaling the distribution of the noise from
the residuals.

5.2.3.1 Jack-knife

Let P be the estimate obtained from all the data y$ and let p_; (i = 1, ..., 1) be the
estimate obtamed from all the data but the ith. To compensate 1or the vcctom used to
estimate p and P_; having (i1 — |) common elements, which makes p and p-, artificially
close, one defines iy pseudo-estimates by

A A A A R
piH=p+ (- D(pi-p), i =1,...,n,

and computes the mean and covariance matrix of the population of the f)(,-)’s, from
which confidence intervals can be obtained (Seber and Wild, 1989; Wonnacott and
Wonnacott, 1984). The main advantage of this approach lies in its simplicity. It seems,
however, less flexible and reliable than the bootstrap method (Diaconis and Efron,
1983).

5.2.3.2 Bootstrap

The bootstrap method (see (DiCiccio and Romano 1988; Hinkley, 1988) for more
details) uses only the data y5 and model M(p). The errors are assumed to be
independent random variables, with identical but otherwise unspecified distribution.
Assume for instance that

y) = ymt P + b =1, ny,

where the b;'s correspond {o i.i.d. random variables. An estimate of b; is provided by
the ith residual:

A
=yt =ym(ti,p)y i = 1,0, ny,

where P is the estimate of p*. A vector yS' of fictitious data y(#;) is then obtained as
f A A .
},(!i)=}lm(llﬂp)+b1 1 = l"--y ”[1

where, lor each #;, b is randomly chosen among the residuals I[Sk k =1,..., n)
considered as equiprobable. This amounts to substituting the empirical distribution of
the res1duals for the true distribution of the b;’s, which seems the more acceptable the
closer P is to p*. Repeating this operation, one obtains a population of vectors of
fictitious data, from which a population of parameter estimates can be derived. The
characteristics of this population (mean, covariance matrix...) can then be studied.

. When D is obtained by minimizing a cost based on a p[CdlCllOD error, the residuals
b; are simply replaced by the prediction errors computed at p.



Methods based on the density of the estimator 245

5.3 Methods based on the density of the estimator

First, we shall use a bound on (he covariance matrix of the parameter estimates to
characterize their uncertainty. Two cases will be considered. In Section 5.3.1, no prior
information on the parameters is available, and they are regarded as unknown but
deterministic quantities. This corresponds to the use of non-Bayesian estimators, such
as those presented in Sections 3.1 to 3.3. In Section 5.3.2, the prior distribution of the
parameters, regarded as random variables, is assumed to be known. This situation
allows use of the Bayesian estimators presented in Section 3.5.

Such a characterization, based on a normal approximation for the density of the
estimator, may prove very approximate for a non-LP model obtained from a small
number of observations. A more precise (sometimes exact) characterization of density
will thus be considered in Section 5.3.3.

5.3.1 Non-Bayesian estimators

Let f)(.) be an (absolutely) unbiased estimator of p*, i.e. such that

E p(y‘)—p ,
ysip”

which amounts to saying that if it were possible to replicate the same experiment and
estimate p an infinite number of times, the mean of the estimates would coincide with
the true value.

Let P be the covariance matrix of this estimator. Since f)(.) is unbiased, P can be
written as

P= E (Ip(y"-p lpG®) -p*17),
yslp*

which quantifies how the estimates are spread around the true value p*. One would like
the estlmales Lo be as concentrated as powblc around this true value, of course. An
csumator p]( ) with covariance matrix P is said to be more Lfﬁuenl than an estimator
pv( ) with covariance matrix P5 if Py < P2, that is if P2 — Py is positive-definite (i.e.
if all the eigenvalues of P3~ P are strictly positive). Since estimators with high
efficiency are desirable, a natural request is o make P as small as possible. The
Cramér-Rao inequality provides a lower bound to what can be achieved.

REMARK 5.2

The maximum-likelihood estimator is asymptotically unbiascd (Section 3.3.3), but
generally biased for a finite number of data points. For normal additive noise at the
output, an approximation to the bias can be found in (Box, 1971). Several methods
have been suggested Lo reduce this bias (Picard and Prum, 1992; Firth, 1993: Pronzato
and Pdazman, 1994a). 0



5.3.1.1 Cramér-Rao inequality

Under the hypotheses that:

— Lhe set of all data vectors y* with 7y(ysIp) > 0 does not depend on p,
— 0 In my(ysIp)/dp; (i = 1, ..., np) is absolutely integrable,
— Eysip {[d In my(y*Ip)/0p][0 In my(ysIp)/dp]T) exists and is invertible,

the covariance of any absolutely unbiased estimator satisfies (Fourgeaud and Fuchs,
1967; Goodwin and Payne, 1977; Sorenson, 1980)

P >T-1(p"),

where I is the Fisher information matrix, already introduced in Section 3.3.3, given by

02
) — Ty =_
F(p) y{i I[ap In fry(y‘lp)][a In 7y(ysIp)]*) {a 5pT " (IR

Remember that In 7y(y*Ip) is the log-likelihood of the data y* (Section 3.3), so the
gradient of the log-likelihood with respect to the parameters (or its Hessian) is a basic
ingredient in the calculation of F(p).

An estimator that reaches the Cramér-Rao lower bound is said to be efficient. Under
conditions stated in Section 3.3.3, the maximum-likelihood estimator is asymptotically
efficient. In some special cases, this property is also valid for a finite set of data, as will
be seen in the next section.

5.3.1.2 LP model structure and normal noise
with known covariance
Assume that the data satisfy
y$=Rp* +¢,

where € is normally distributed, with zero mean and known covariance X. The
likelihood of the observations can then be written as

my(ysip) = [(2m)"t det Z]-1/2 exp [- % (y$ - Rp)TE-I(ys - Rp)].
The gradient of the log-likelihood is therefore

55 In 7(y¥ip) = RTE"1(y - Rp),

and the Hessian is
9 In m,(y$lp) = -RTZ-IR,
opopT y

Since the Hessian does not depend on yS, the Fisher information matrix is given by



MITIIUUS DUSEU UIS LI UBIIILY D) INE esTunaror 247

F = RTZ-IR.

F therefore does not depend on the value of the parameters.
Let us show that, under the same hypotheses, the least-squares estimator, weighted
by the inverse of the noise covariance (i.e. Q = Z-1),

Pis = (RTE-IR)-IRTZ-1ys,
is unbiased and efficient. Since

E (ps(y)) = E [(RTEIR)-'RTE-I(Rp* +£)]
yqlp* ys|p*

=p”+(RTZ-IR)-'RTZ-! E {e}=p",
yslp*

A . . . P
PIs is unbiased. Its covariance matrix is

Pi= E ([Pisy®) - p*Ipisy® - p17)
yslp*

= E_{I(RTEIR)'RTE-I(Rp*+e) - p'][(RTE-'R)'RTE-!(Rp"+€) - p*]")
ysip*
=(RTZ-!IR)IRTZ-! E (eeT)T-IR(RTZ-IR)-I.
yslp*

Since E (e€T) =X, this simplifies to
yslp*
Pjs = (RTZ-IR)- 1 = F-1,

s0 s is efficient. Note that when calculating i through the explicit formula derived in
Section 4.1.3

Pis = (RTE-IR)IRTEys,

or through its recarsive counterpart, onc obtains Pj; without any additional effort, hence
the remarks in Chapter 4 about the interest of knowing the value of
(RTE-1R)-!, or, at least, of its diagonal terms. As mentioned in Section 4.1.3.2, it is
numerically preferable to use singular-value decomposition for R, expressing it as
R=UWVT,

Since the model structure is LP, the expectation surfacc is flat. Consider the
projector

Il = R(RTZ-IR)-IRTE-],

which coincides with that indicated in Section 5.1.1.1 when £ = lmo‘?‘ A 100(1 — )%
confidence region for the parameters is now
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R&=[pe Rl (ys - Rp)TE-I(ys - Rp) < ¥4(np)).
Since yS - Rp=ys - RB]S + R(ﬁlS ~p) =1, -IDys + R(f)l_.; - p), one can also write
72 nn A ATRTY-I A 2
Rg=(pe R'r|(p-pi) RTZ-TIR(p - p1s) < ¥(11p))
= wn S ATRTY- A 2
={pe B"I(p-p)'RZIR(p - p1s) < xal(mp)

A
= {pe Rl (p-pi)TF(p - pr) < lé(np)}.

which corresponds to a 100(1 — @)% confidence ellipsoid for p. For each parameter p;,
a 100(1 — @)% confidence interval can be defined from the distribution of (p|(,),, which
is AL(P");, (F~1);y). For instance, a 95% confidence interval is

[(P1s); - 2Pix (B1s); + 2P0,

with p; the square rool of the ith diagonal entry of F-1. It is also interesting to indicate
the correlation coefficient between the estimated parameters p;and py (i, k=1, ...,
np), given by .

-1 SC'kz%S f.

[F-1757 [F-10%

The results might convcmcntly be prcscmcd as a table where the ith line contains (pk)
the 95% confidence interval [(p.b) -2p;, (p]g)l + 2p;] and the correlation coefficients
cittk=1,..., np).

REMARK 5.3

The fact that the least-squares estimator weighted by the inverse of the noise covariance
is unbiased and efficient does not imply that it minimizes the mean-square error in the
parameters. It may sometimes be preferable to accept some bias to reduce the covariance
of the estimator (see, e.g., (Norton, 1986a), pp. 109-111). For instance, one can use a
ridge estimate (Hoer! and Kennard, 1970; Marquardt, 1970; Goldstein and Smith,
1974) .

p(y) = (RTZ-1R + }llnp)"RTE‘lys,

the covariance matrix of which is
(RTE-IR + pl,,)~'RTE-IR(RTEIR + ply )

Note the similarity to the Levenberg-Marquardt method for least-squares optimization
(Section 4.3.3.5).

The hyperparameter g 2 0 must be tuned (Section 3.8) to ensure a satisfactory
compromise. When g tends to zero, the estimator is unbiased and efficient. When p
tends to +oa, f)(,u) tends to 0. The ridge estimator thus tends to reduce the variance by
favouring the origin of parameter space. 0
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5.3.1.3 LP model structure and normal stationary noise
with unknown variance

Assuming that the data satisfy
yO =rT(op* + e, t=1,...,n,
where the &(1)'s are i.i.d. A{0, ¢?), with 62 unknown, amounts to assuming that
y$=Rp* +¢,
whcrfa € is distributed N(O0, E/)\ wilhAE = o’z;\AqIn this case, 6,“1 is obtained by
unweighted least squares (Q = I, py1 = p1g), and O by

(1 - eT(0pys]2.

A first approach would then be to compute the inverse of the Fisher information
matrix associated with the extended parameter vector

{3

However, it is often enough (o act as if o2 were known, which amounts to taking the
covariance matrix of s as
Pis = 62(RTR)-1,

and, since the value of ¢2 is unknown, replacing it by an estimate. As O2 is biased (it
is only asymptotically unbiased), the unbiased estimator

II[
a1 () — e T(NB 12
&=, ?_le(t) rT(0pis)

is usually preferred. The confidence region D_‘; then becomes

(ys - Rp)TII(y5 - Rp)
AD
IIPO"'

R% ={pe Rrpl < Felnp, = np)}.

Since
I = R(RTR)-IRT,
R% can also be rewritten as

)TRTR(p - pis)
AD
'lpG"’

A
RS =(pe Rl (-~ Pis < Falnp, ny—np)),
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which permits construction of exact confidence ellipsoids (Section 5.1.1.2). Moreover,

@Y= @
SRTR-11'? e

has a Student t-distribution with m — mp degrees of {reedom, which can be used to
derive exact 100(1 — &)% confidence intervals for the parameters.

5.3.1.4 Other cases

Under the hypotheses mentioned in Section 3.3.3, the maximum- llkellhood estimator is
asymptotically normal and asymptotically efficient. The estimator P thus tends to be
distributed A{p"*, F-1(p*)) as the numbcr ofl data poml& tends to infinity, hence the idea
of characterizing the uncertainty in Pmi by F- '(pm]) This relics on a chain of
approximations, and the result should be viewed with some scepticism. Assume, for
instance, that the data satisfy

() = ymUi, PO+ (), i=1, .., 0,

where the £(1;)'s are independent random variables distributed Af0, o—) wilh 0'-
known. The associated log-likelihood can be wrilten as

Hy

In 7y(ySip) = (term independent of p) ~% Z Ly(ri) = )’m(h» p)]h.
“ =l I,

Its gradient is thus

m
d I
a In my(yslp) = & ;: [y(t)) = ym(ti, P)] ap ym(ti, P).

The Fisher information matrix can now be calculated as

F@) = E ([ In 5y Ip)iz5 In 7 (pIT)

y§
n a
I dym(fk, P)
=E [y(te) = ym{tk, P)]
ysIp ie=1 02 B
Iy
1 m 1y

x 2, ) = vl )] 5 2 Dnfli P},

Since
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E {[y(te) ~ ym(tz, PYIY(E) = ym(tis Y1) = 07 8t
yslp '
one gets

_1_. _M,P__ ) dym (i, P)
bord apT

I'(p) is therefore the approximation of the Hessian used in the Gauss-Newton algorithm
(Sections 4.2.4 and 4.3.3.4), hence the interest, already mentioned in Chapter 4, of
inspecting the value of the inverse of the Hessian once the algorithm has converged.

Using F-1(Pm1) to characterize the uncertainty in the parameters relies on the
following chain of approximations:

Al: F-Y(p™) is substituted for Ppy; howevcr the number of observations is always
finite, and sometimes quite small, so Pt is generally biased.
A2: F-1(pp,) is substituted for F-1(p*).
1y
A3: Z J;a)’m([i’ P) 9¥m{%, P) is substituted for F(p), whereas the hypotheses
= Ipt
on the noise which allow this expression are never totally satisfied.

When compared to the approaches presented in Sections 5.1 and 5.2, this has the
advantage of requiring far less computation, since the estimate of Py, is obtained as a
by-product of the optimization procedure. This explains why it is certainly the most
commonly used, although one should be suspicious of its results, because of all the
approximations involved. These results are more credible insofar as

— the number of data points is large,
— the nonlincarity of the model with respect to its parameters is mild,
— the measurement errors are independently distributed and have small magnitudes.

Generally it is thought enough to give, together with the estimated value of the ith
parameter pj, the square root p; of the ith diagonal element of I~ 1(Bm1), which forms an
estimate of the associated standard deviation. One thus oblams an appr oximate 95%
confidence interval for the ith parameter in the form [p,m] - 2pi, p,m, +2pil. An
approximate correlation coefficient between the ith and kth estimated parameters
(i, k=1, ..., np) is given by

|l <e¢p = (F- ](Pml)]lk
1 O ](pml)] u-[F ](Pml)]

/\

REMARKS 5.4

— If the o%,-’s were unknown, the approach advocated in Section 3.3.1, Example 3.3,
would lead (o estimating the extended parameter vector
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by maximum likelihood, with pg the parameters of the noise variance, then
calculating F‘l(fJeml). In practice, as in Section 5.3.1.3, one is often content to act
as if each noise variance oy; were equal (o its estimate '677( which amounts to taking
the Fisher information matrix as

-~

It

1 dym(%i, P) dym(ti, P)
F(p) = A :
gf Or; aP a[]T

In the special case where all o%,-’s are equal, f)ml is estimated by unweighted least
squares and 62 by

Mt
A 1 A
o= ne— 1y Zi D(t) = ym(ti, pml)]z-

F(p*) is then approximated by

Un

el _ 1 9Ym{ti, P) a)’ln(tiy p)
E(pm1) _2)'2 ap E)pT

i=1 IP = ﬁm!

and the set

| p- l/;lnl)TF(?)ml)(P - Gml)
”p

{pe R"p < Folnp, n—np)}

defines an ap]lj\roximale 100(1 — )% confidence elipsoid for p. As already
mentioned, F(pm|) is equal, up to multiplication by a scalar, to the approximate
Hessian used in the Gauss-Newton algorithm. The ratio of the largest to the smallest
eigenvalue of F(Pmy) is thus clearly related to the numerical conditioning of the
optimization problem.

— Foreach parameter p;, an approximate confidence interval can be obtained by using
the fact that

)i = (Bml);

[F-1 (b 7

approximately follows a Student (-distribution with 1 — np degrees of freedom.

— When the g(#;)’s correspond to independent random variables with non-Gaussian
densities 7g(£, 1), it is easy to show that the expression for the Fisher information
matrix is similar to the Gaussian case, with l/o%,- simply replaced by the Fisher
information
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I(t) = J’(w) ne (€, 1;) de,
o€

D

assumed to exist, with D = {€] me(€, ¢;) > 0} (see also Section 3.7.1).

— If the output errors for the true value of the parameters do not correspond to
independent random variables, prediction errors should be considered instead, as in
Section 3.3.2 for maximum-likelihood estimation. In general, the Fisher
information matrix can then no longer be written as a sum of rank-one matrices,
each associated with a single observation; see Section 6.3.2.2. 0

5.3.2 Bayesian estimators

As already mentioned in Section 3.5.1, the maximurm a posferiori estimator has the
same asyn}\ptollc properties of con51slency and efficiency as the m.mmum likelihood
estimator pm1(ys), prov1c/1\cd 7Tp(p) is continuous and non-zero at Pmi(y). The
asymptolic uncertainty in Pmap(y®) can therefore also be characterized by the Fisher
information matrix, since the prior information asymptotically vanishes. However, this
prior information should still be taken into account when the number of observations is
finite.

The Cramér-Rao inequality can be extendcd to the Bayesian estimators considered in
Section 3.5. In this context, an estimator p(y“) is said to be unbiased if

E{ E pGy%}=E (p),
p yslp p

where p has a prior distribution 7p(p). Under conditions similar to those required for
the Cramér-Rao inequality to be valid, the covarmnce matrix of the estimation error
p(y*) p satisfies, for any unbiased estimator p(y“) (see, e.g., (Sorenson, 1980))

E{ E {[py®) - plp(ys) - pIT)} 2
p yslp

[E 1 B (135 m0y%, pyILgy In s, i) ]
P yslp

= [E (F@) +E (35 In meLg5 I mpeT) ]
P p

where F(p) is the Fisher information matrix.

We have seen in Section 3.5.2 that the minimum-risk estimator for a quadratic cost
coincides with the posterior mean of p, which is unbiased. The covariance matrix of the
associated estimation error thus satisfies the inequality above. However, this estimator
is not absolutely unbiased, so the Cramér-Rao inequality of Section 5.3.1.1 does not
apply. Consider the special case of an LP model structure

y*=Rp* +E,
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with € distributed A{0, X) and X known. We have already shown that
F(p) = RTZ-IR.

Assume, moreover, that the prior density m,(p) is normal A{pg, £). One can then
easily check that

E (F(p)] +E ([551n m(p)][35 In 7p(p)IT) = RTE-IR +.07,
P p

dnd that the bound of the inequality is reached for the maximum a posteriori estimator
Pmap. S0

E(E [[Bmapy®) - PUPmap(y®) - piT}} = (RTEIR + -1y
p yslp

REMARK 5.5

The estimator f)m;,r,( y%) also minimizes the risk
Jme(@) = J(p = pHTKTK(p — p*)mp(p"ly$)dp*,

where K is any matrix with rank dim p (Section 3.5.2). The prior expeclation of the
minimum risk is then

E {melPmap(y®)]] = trace [K(RTZ-IR + Q1) KT,
yH

It can be chosen as a cost function to select the experimental conditions; see
Section 6.5. The matrix (RTZ-1R + Q-1)/n, is called the Bayesian information matrix
(Pilz, 1983). 0

5.3.3 Approximation of the probability density
of the estimator

The probability density of the cstimator in a sense summarizes the information about the
precision of the estimation. Let p* and E respectively denote the vectors of the true
values of the parameters and of the exper 1menlal conditions used to obtain the n
observations (Chap(er 6). An .1pprox1m.1t10n q= (p[slp ) of the denstly of the least-
squares estimator in the case of additive noise distributed A{0, o2) has been obtained
by Pazman (1984, 1990, 1993) as
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|det Q=(B(, P
Qrye? det'2 F(p,,, E)

gz Jp") =

I — . )
x exp (- (P Y™E, Pyy) - y™(E, pH] 1I3),

where the matrix H—(pls) is the orthogonal projector onto the tangent plane to 8, exp at
Y™ (E, Pyy) (Section 5.1.1), and

[Qs(f)w P*)],',k = [F(ﬁlss E)],-,k

22ym(E, p)

PP Iy,

+ 5 1Y, By - y™(E P, - Tz(hy,)
This expression has been obtained by Pazman in 1984 in the non-asymptotic case
(n, finite) through a geometrical approach, and independently by Skovgaard (1985) and
Hougaard (1985) as an asymptollc approxnmatlon, more precise than the classical
normal densnly The density g= (plslp ) is exactly that of plg when the intrinsic curvature
of the model is zero, that is when the expectation surface § Sexp is flat. This will be so, in
particular, when the number of distinct experimental conditions in  is np. The density
is almost exact (in the sense that estimates associated with data y® located at a distance
from Sexp larger than its radius of curvature are neglected) for flat models (i.e. those
with a Riemannian curvature tensor equal to zero (Amari, 1985)). All models which are
functions of a single parameter, or depend nonlinearly on a single parameter, are flat.
This is so, for instance, for the Hill model

Emax‘:

Ym(6 P) =
" Esp + &

]

with p = (Emax, £50)T and &sg the value of & such that Ym(650, P) = Emax/2. This is
also called the Michaelis-Menten model when used to describe nonlinear effects in
biology and pharmacokinetics.

Note that the accuracy of qs(f)lslp*) depends on the intrinsic nonlinearity of the
model (the curvature of Sexp), but not on its parametric nonlinearity. This density may
turn out to be quite different from the classical normal approximation, as illustrated by
the following example.

EXAMPLE 5.2

Consider the single-parameter model

Ym(& p)=p +p?+ Ep3,

Fxgure 5. 10 presents the exact density gz (f) Ip*) and its normal approximation for

p*=0, 62 =5 and a single observation at §= 1. 0
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Figure 5.10. Exact density and normal approximation in Example 5.2

The construction of qE(f)]SIp*) is via the definition of a density on 8¢y, so
constraints on p due to the structure of the model are automatically taken into account,
as illustrated by the following example.

EXAMPLE 5.3

Consider the model

)’m(§» p) = Eexp (=) In (pd).

Figure 5.11 shows the density qg(ﬁlslp*) and the normal asymptotic density when
p*=1,E = (1, HT and 62 = 0.25. Scxp, a straight line with unit slope in the plane
[Y(EL), (£2)], is totally described as p varies from zero to infinity, so there cannot be
negative least-squares estimates. This is properly taken into account by qs(ﬁlslp*) but
not by the normal approximation. Since Sexp is flat, the density qE(j.\?]SUJ*) is exact. ¢

When dim p < 2 (as in the previous examples), a plot of g=(plp*) as a function of
p. with the unknown true value p* replaced by its estimate P, (y®), allows visual
assessment of the precision of the estimation. Since g=(plp*) depends on p*, one
should, however, check how it behaves as p* varies in the neighbourhood of the
estimate f)ls(ys).

When dim p > 2, marginal densities can be computed. More generally, let
Hﬁ,s(ys)] be the function of interest. Its density can be approximated (Pidzman and
Pronzato, 1994, 1995) by

expl- =15 I Py [y™(E, py) - y™(E, p)] 1)),

1
V27 1ib iy 20

q(Pp =

where



py=arg min Il y™(E, p) - ym(E, p*) I3,
- peP -

Nnp)=y
1 dy™(E, p) oI (p)
=— —7== Flpy, B) = |,
e opT 'Py (Py op |Py
and
T
p _byby
Y= 2
bl

The ith marginal density is then simply obtained for I{p) = p;. More precise, but more
complicated, approximations are suggested in (Pizman and Pronzato, 1994, 1995). The
entropy of the density can also be used to quantify the precision of the estimate; see
Section 6.4.1, and (Pronzato and Pazman, 1994b) for an approximation (o the entropy
of the density g=(plp®).

0.7

0.6)- \ exact density

05t \\

04 \\ 4

.. . normal approximation
,L

03r

s 1 1.5

Figure 5.11. Exact density and normal approximation in Example 5.3

An analytical approximation to the density of the Bayesian maximum a posteriori
estimator will be given in Section 6.4.1, as a particular case of the density of a
constrained least-squares estimator, where the constraint is introduced through a penalty
function (Pazman and Pronzato, 1992a, 1992b). Its accuracy is the same as for
g=(Bilp*).

5.4 Bounded-error set estimation

Two kinds of error cannot be avoided when estimating parameters from
experimental data. The first corresponds to measurement errors or other perturbations
which impose uncertainty on the data. The second corresponds to structural errors, due
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to the fact that the model structure is at best an approximation of reality. This problem
will be considered again in Section 6.6. When the parameters to be estimated have a
concrete meaning (phenomenological models), or when decisions have to be based on
their numerical values (prediction, diagnosis, control...) one should try to evaluate how
these two types of error will affect the estimates.

The usual statistical framework assumes, as we have just seen, that the data are
corrupted by errors modelled as realizations of independent random variables, with a
known or parametrized distribution. The estimator is then obtained by maximum-
likelihood techniques (if the hypotheses only concern the prior distribution of errors) or
Bayesian techniques (if the hypotheses also concern the prior distribution of the
parameters). Most ofien, the quality of the estimate is characterized by taking advantage
of properties of the Fisher information matrix, since this is by far the easiest method
computationally. To the limitations of this approach already mentioned, one may add
that it is badly adapted to

~— structural deterministic errors, such as those encountered when a simple linear
model is used to describe the behaviour of a complex deterministic nonlinear model,
modelling such errors as realizations of random variables is then questionable, given
the perfectly repeatable nature of the deviations;

— errors for which the hypothesis of mutual independence is not tenable;

— errors for which the only prior information is in the form of bounds; this will be the
case, for example, for data collected through an analogue-lo-digital converter or for
measurements performed with a sensor of a given type.

The bounded-error approach presented in this section aims to characterize the set of
all values of p that are feasible a posteriori, in the sense that the associated errors (which
may be deterministic or random) lie between given prior bounds. This approach has
received growing attention in the recent literature, as illustrated by special issues of
Mathematics and Computers i Simulation (Walter, 1990) and the International Journal
of Adaptive Control and Signal Processing (Norton, 1994, 1995), and a recent research
monograph (Milanese et al., 1996). An extensive list of references can be found in the
surveys (Combettes, 1993; Deller, Nayeri and Odeh, 1993). See also (Kuntzevich and
Lychak, 1992). The methodology extends to many problems where a set defined by
inequalities is to be characterized (Walter and Pronzato, 1994).

Of course, one may object that the knowledge of prior bounds on admissible errors
can be taken into account through the use of uniform probability densities
{Example 3.6). However, characterization of the set of all parameter vectors that are
maximum-likelihood estimates will then rely on techniques similar to those presented
below, so the distinction between the two approaches becomes pointless.

Note that bounded but independent errors can still be treated with a more
conventional approach, e.g. least squares, with a suitable choice of error variance. An
important condition for the least-squares estimator to have nice asymptotic properties in
a bounded-error context is that the sample cross-correlation between the inputs and
disturbances tends to zero as »y increases (Hjalmarsson and Ljung, 1994).

Consider an output error, defined as

Ey(kv P) = )’(k) - )’m(k, P). k = ]v cee s Ny
where y(k) is the kth scalar measurement from the system, and ym(k, p) is the

corresponding model output. Other types of errors will be considered in
Section 5.4.2.1. Assume p to be feasible if and only if
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eP(k) <eyk,p) < eM(k), k =1,..., n,

where the bounds eP(k) and erg,‘(k) are known a priori and e'j(k) # e“§‘(k). These
bounds may come from technical specifications provided by sensor manufacturers,
empirical knowledge, or simply intuition. We aim to characterize the set of all values of
p yielding feasible errors, and will denote the posterior feasible set associated with the
first iy data by Py, with [Pp the prior feasible set. In what follows, we shall assume that
Pp is either R”p or a convex polyhedron in [Rp, which can be defined by a finite
number of linear inequalities. Py, is also called the /ikeliood set (Example 3.6). Since
eY(k) differs from eV (k), the inequalities associated with the kth measurement can be
put in the standard form:

-1 €y(k) = yn(k, p) £ 1,

with
— o 2y(k) = eN(k) - eB(k) - 2 r
y(k) = Er)‘:[(k)—emy(k) and  vy(k, p)—er;',{(k)__g,?(k))m(k» p).

For notational convenience, we shall assume that this transformation has been
performed, but drop the upper bars on y(k) and yy, (&, p). The set of p values which
satisfy the constraints associated with y(k) can then be written as:

M= {pe R"I-1<y(k) —ymk. p) S 1),

and the set Fy, of all values of p consistent with the first 2 data points is given by the
intersection of the sets [y (k= 1, ..., n, 1 < n() with Fy.

[Py, is generally not a singleton, so the associated estimator is nol a point-estimator.
P,,, may be empty if the hypotheses are wrong. On the other hand, if there exists some
p* for which the bounds on the errors are satisfied, then ¥, certainly contains it.

As in Chapter 4, the algorithms used to characterize IF,,, depend on whether the
model structure is LP or not (more generally on whether or not the error is affine in the
parameters). The LP case is treated in the next section and the non-LP case will be
discussed in Section 5.4.2.

5.4.1 LP model structures

Consider an LP model structure, defined by
ym(k+1, p) =rT(k)p

and an output error (although other situations involving errors affine in p could be
considered as well). Since the regressor vector r(k) is assumed to be known, [T} is a
strip in parameter space, bounded by two parallel hyperplanes. When the inequalities
associated with y(k) are in the standard form, these hyperplanes are defined by

H*={p e v lyk) - rT(k-Dp = 1}
and
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H-={pe R" | y(k) - rT(k-1)p = -1}.

When r(k-1) = 0, y(k) conveys no information on p. We therefore only consider data
points with non-zero regressors. As the intersection with Fg of strips bounded by
parallel hyperplanes, I, is a convex polyhedron. Provided the r(k)'s (k = 0, .
n— 1) span I2"r (a condition for identifiability), ¥, is bounded, and thus a polytopc
even il Py is R

Conditions under which P, will converge to p* as n, tends to infinily are
investigated in (Veres and Norton, 1991a). If p* is such that the bounds on the crror are
satisfied, an important condition for excluding all p # p* as n increases is thal enough
crror samples are close to the bounds.

¥y, may become very complicated if 7 and especially n, are large. This will be
particularly true when the error bounds are pessimistic, which is the rule in practice
since an optimistic choice of bounds yields an empty set 7, after a finite number of
observations. It is therefore of special inlerest to have at one’s disposal methods for the
construction of sets with simple shapes guaranteed to enclose F,;,. The most widely
used are ellipsoids, orthotopes (boxes), parallelotopes and polyhedra with limited
complexity (e.g. simplexes).

5.4.1.1 Recursive determination of outer ellipsoids

In this approach, the data are taken into account one after the other to construct a
succession of ellipsoids containing all values of p consistent with all previous
measurements. This leads to a policy casily implementable on-line (possibly in real
time). The algorithms obtained can be regarded as members of the wider family of dead-
zone algorithns (Arruda and Favier, 1991). After the first A — 1 observations, Fy_ is
characterized by the ellipsoid

E(PF!, Myy) = {p € B | (p - pA-)IMEL (p - A1) < 1),

where PF-1 is the centre of the ellipsoid, and M_; a positive-definite matrix which
specifies its size and orientation. The volume of the uncertainty region for p
characterized by this ellipsoid is given by

vol IE(/]\)"", My_1) = Wnp) vdet My,

where Hutp) is the volume of the unit ball in Fe'p,
The algorithms described below provide rules for computing p* and My, in such a
way that
E(pk, My) 2 E(pA-1, My-p) N Ty,

while minimizing the volume of E(pk M), which amounts to mlmmlzmg det M
(Fxgurc 5.12). The initial values p0 and My are chosen so as to ensure that T"(p0 M)
is large enough to contain [P, (e.g. pD =0 and Mg = cI,, with ¢ large enough).

We assume here that the parameters do not vary wuh k, so that Py 2 Py, but the
apgroach extends to the tracking of varying parameters, provided the ellipsoid
E(pk-!, My_) is suitably expanded before being intersected with Il (Norton and Mo,
1990).



Figure 5.12. Principle of the recursive determination of outer ellipsoids

OBE (Outer-Bounding Ellipsoid) algorithm. This algorithm, originating from the work
of Schweppe (1968, 1973), Fogel and Huang (1982) and Belforte, Bona and Cerone
(1990), is the most widely used for the recursive ellipsoidal characterization of posterior
feasible sets. We shall derive its equations and detail the tests required for its
implementation. First note that

pe E@-1, My N T
if and only if

(P -pDTML (p-B41) < 1 and [y(k) - rT(-Dp)2 < 1.
Any p in ]E(f)k‘l, M;_1) N T therefore satisfies
(- BTV (p - 41 + Aly(k) - rT(k-1)p2 S 1+ 4, ¥V 120,

For any fixed A, this is only a necessary condition for p to belong to
E(ﬁk-l, M;._y) N I. This condition is quadratic in p and defines a family of ellipsoids
E(p*, M}) parametrized by A. Various policies can be considered for choosing A, and
several ellipsoidal algorithms with different values of A can even be run in parallel to
characterize posterior feasible sets by the intersection of the ellipsoids thus obtained
(Kurzhanski and Valyi, 1991). To calculate the value of A that minimizes the volume of
E(ﬁk, M), it is convenient to rewrite the equation that defines this ellipsoid in the
standard form. Since

rT(k-Dp = rT(k-1)pt-1 + rT(k-1)(p - PA-1),

E(p*, My) can be defined by
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(p - BA-DTMEL 1 (p - 1) = 22008 — T (k- 1)BE-1 Tk 1)(p - A1) +
ALy(k) - rT(=1)ph-112 < 1 + 2,
with

MLy = Mz + Ar(k-DrT(k=1).
The matrix-inversion lemma implies:

M r(k=DrT(k=1)
AN+ rT(=1)My_yr(k-1)

Mg = Myp - 1My

By completing the square in the quadratic form, one obtains:

(P - A1 — Ay (k= 1)L(k) — e T(k- 1)1 TMEL
x {p - pk-1- AMp_yr (k=1 (k) ~ rT(k-Dpr-1]} < e5(A),
with
c1(A) =1+ A= Ay(k) - eT(k=D)PE L1 = AT (k=M r(h=1)]
=1+ A - Aly(k) = FT(k=1) p=112[1 + ArT(k—-1)Mp_r(k=1)]-!

Define v = y(k) - rT(k~1)p*~! and g = rT(k-1)M;_ r(k—1) (¢ > O since the regressor
vector is assumed not (o be zero). Then

AV2

1+ Ag

aM)=1+1-

Normalizing the quadratic form gives E(pk, My) as a function of A, with

PR = PA1 4+ AM_ (Dr(k=1)v
and

M) = 1 (DM 1 (A).
Minimizing the volume of IE('f)k. My) with respect to A is equivalent to minimizing
det My(A) = [c(D)]" det Mg_ ().
Since det [T + vwT] =1 + wTy,

det My(A) = ¢o(A) det My,
where



Bounded-error set estimation 263

(142 - 2 yo
o = [ ()] _ | + Ag
1+ ArTUe-DM_qr(k-1) 1+ Ag

The minimum-volume ellipsoid in the family considered is thus obtained for

A* = arg min c2(A).
A0

For all np > 1, ¢2(A4) tends to +eo with 4, so A" is either zero or the argument of a
stationary point of c2(4). These stationary points are given by

d
—ca(A) =0,
d/lL'( )

which is equivalent to c3{A)cy(1) = 0, where
D) =g+ (1 +g-vD)A+ 1,
c4(A) = (np - D222 + g(2np—1~g+ VA + np(l ~ v —g.

The equation c3(A) = 0 has no positive real root, since V2 < | if pk=1 e . The
stationary points are thus the real roots of the equation c4(A) = 0, which can also be
written as

a2 + oo+ a3 =0,
where o = (15— 1)g? > 0. Define

v -1 v+ 1

and a_. =- .
Vs Vs

ay =

The discriminant of the equation c4(A) = 0 can then be written as
&4 2 2 9 7 7.0
A= 7 [4(1 —a)(1 —a2) + np (ax ~ aZ)7].

The indicators a, and a_ have several interesting properties, shown in Figure 5.13:

— la,l > 1 & H* does not cut E(f)k—l, M. 1);

— la_l > 1 < H- does not cut B(pé-!, My_);

—ay>1ora->1 & B!, M) N T is empty = Py is empty; (this test
should be used to stop the algorithm if required;)

— dea(D)/dA) 3=0 = glnpasa-—11.

A sufficient condition for A* to be a stationary point is
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— c;_(l) =np(1 - v2) - g <0,

|A=0

which is thus equivalent to a,a_ < 1/np.

rl=1)pA! +4/g

rT(k-1) p-t - g
H+

/-1

Figure 5.13. Nllustration of the properties of the indicators ¢y and a_:

Yk = 1 < rT(k-1)ph-1 ‘/E'aoa+< 1;
A=D1 =V <y@) + 1 < T=-Dpr-1 + Vg, s0 -1 <a_< 1

Uncertamty

When IE(pL I, Mr_1) N I} is not empty, any hyperplane not intersecting
E(pk-1, My_;) can obviously be replaced by a parallel one tangent to this ellipsoid
without modifying the intersection between the ellipsoid and Lhe feasible strip Ilj.
Belforte, Bona and Cerone (1990) have, however, found that this policy yields smaller
ellipsoids than the original algorithm proposed by Fogel and Huang (1982), which is
therefore suboptimal. The OBE algorithm considered below implements this heuristic
modification, which will turn out {o yield an optimal algorithm. It amounts to replacing
a_by al = max (a_, 1) and a4 by a; = max (a4, —1). Whenever a4 or a_ have been

modified thus, v must be updated to

_al —ag
Tap+al?
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yielding v’ = Vg — 1 if a_ has been replaced by a_ = -1 or ¥' = 1 — g if a4 has been
replaced by ai = -1. In what follows, the primes are omitted for notational
convenience.

The discriminant 4 is then always strictly positive, which implies that the equation
c4(A) = 0 always has two real roots. Moreover,

- . 242
as = g2 [ﬂp,)—1 (a2 +a°) + (npasa_— 1)+ z ],
and

2
dy + d_\*
o3 = gz(—+ 3 ) (npaga- - 1).

Two cases must be distinguished. Il aya_ 2 I/np then a3 2 0 and o2 > 0, which
implies that no root is strictly positive and thus that c2(A) has no stationary point
in [0, +oo[, so A* = 0. Conversely, if a,a_ < Unp, which implies that o3 < 0, then
there is a single positive root

-0 + '\/Z
2o '

A=

The new el]lpsmd E(p%, M) is obtained by substituting A* for A in the expressions
giving p* and My. Note that A* = 0 corresponds Lo retaining the previous ellipsoid.

EPC (Ellipsoid with Parallel Cuts) algorithm. EPC is one of the ellipsoidal algorithms
arising from study of the theoretical complexity of linear-programming algorithms
(Khachiyan, 1979; Bland, Goldfarb and Todd, 1981). It calculates the minimum-
volume ellipsoid containing E(pA=1, My_;) N TTy, where Il is the strip between (wo
parallel hyperplanes H* and H-, and applies when both H* and H~ cut the ellipsoid
lE.(p“] M;._p). It may thus be used for bounded-error estimation provided:

— data with a regressor equal to zero are not considered,
— atest is used to check that the intersection is not empty,
— any hyperplane not intersecting E(pk-1, My_) is translated to become tangent to it.

As for OBE, this amounts to performing the following preliminary operations:

— if r(k=1) = 0, then E(P¥, My) = E(PA-1, My_):

— ifa_>1ora,;>1,then lE(p‘L M) is empty; else replace a_ by max(a_, —1) and a4
by max(ay, —1);

— if aya_ = 1/np then B(p*, My) = E(pF-1, My_p).

When E(pk, My) is not given by these preliminary operations, it is calculated, if
ay #a_, by
f) f) a(a+ a_)
2Vg

o
M = My - s My (k- Dr T(=1D) My ]

M- x(k-1),
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where
"p a% + a2 - %
= [] - 3 . ]
np -1 <
and
__1 2 p
a= np+ |1 [”P + (ay—a_)? (-a,a _f)]’

with

= \/4(1 - a%)(l - ag) + n%,(a% - (12_)2.

When ay = a_ = a, o is no longer defined. The equations above then specialize into
those of the ellipsoidal algorithm with parallel cuts symmetric with respect to the centre,
given by

AL Ap_
pA = pk 1
and

2
M, = ’liﬁ—]l [Me; a—’%’”Tg My e (e-DrT (-1 My |-

EPC yields the minimum-volume ellipsoid containing B(pA-!, My_1) N I (Kénig
and Pallaschke, 1981). It is thus recursively optimal. Now, although the equations of
EPC and OBE look quite different, the two algorithms are mathematically equivalent
(Pronzato, Walter and Piet-Lahanier, 1989), which establishes that OBE is also
recursively optimal, OBE (and thus EPC) is surprisingly similar to the recursive least-
squares algorithm (RLS), considered in Section 4.1.4. However, OBE and EPC are
not simple variants of RLS. As Schweppe (1973) puts it: “The models are
fundamentally different both in terms of physical assumptions and interpretations and in
terms of type of mathematical concepts required. However, when ellipsoidal sets are
used, the unknown-but-bounded and stochastic model equations are very similar in
appearance”.

REMARKS 5.6

— The convergence properties of Ey are studied in (Liu, Nayeri and Deller, 1994,
Nayeri, Liu and Deller, 1994).

— The fact that OBE and EPC are mathematically equivalent does not imply that they
are computationally so. No result seems available yet on their relative numerical
efficiency (speed, robustness...).

— An optimal-volume-ellipsoid algorithm is suggested in (Cheung, Yurkovitch and
Passino, 1993), presented in such a way that it might seem to differ from OBE and
EPC. However, one can easily show (Pronzato and Walter, 1996b) that these three
algorithms are mathematically equivalent and only differ in the way the computation
is organized.

— Except in the degenerate case, the intersection of [Ep_j with Il is not an ellipsoid.
An approximation is thus 1ncurred at each step, even with recursively optimal
algorllhms The ellipsoid E(p™, M,,) obtained by processing all the data is therefore
not the minimum-volume ellipsoid containing P,,. The volume of the ellipsoid can
generally be decreased by circulating the data several times in the algorithm
(Belforte, Bona and Cerone, 1990). Even in this case, the resulting ellipsoid
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remains very pessimistic, and the paramelric uncertainty intervals (PUI's) obtained
by projecting the ellipsoid on the axes of the parametric space are very pessimistic
too. Note that better PUT’s can be obtained by using the most interior bounds given
by such projections during the course of all recursion steps so far (Obali, 1993).

— Techniques inspired by experiment design (Chapter 6) permit computation of the
minimum-volume ellipsoid containing P, (Pronzato and Walter, 1994a, 1994b).
The resulting algorithms are then globally optimal, see Example 5.4 below, but no
longer recursive. An intermediate approach consists in replacing Il by the
minimum-volume ellipsoid containing the parallelotope associated with the last 1,
data (Veres and Norton, 1991b).

— The algorithm presented in (Norton, 1989) recursively determines a maximum-
volume ellipsoid contained in P'r.. However, this algorithm is not globally optimal,
and the ellipsoid obtained tends to vanish quickly. Non-recursive globally optimal
algorithms (in the sense of maximal volume) are presented, e.g., in (Khachiyan and
Todd, 1993; Pronzato and Walter, 1993, 1996a). See also Example 5.4 below.

— Minimizing the volume of an ellipsoid amounts to minimizing the product of the
lengths of its axes, which may lead to a very thin ellipsoid and to large uncertainty in
each parameter. One might then prefer to minimize the trace of My, which amounts
to minimizing the sum of the squares of the lengths of the axes (Fogel and Huang,
1982), or consider more general costs, using the eigenvalues of My (Kiselev and
Polyak, 1991).

— In the same way as the recursive least-squares algorithm forms a basic ingredient of
Kalman filtering, ellipsoidal outer bounding can be used in bounded-error state
estimation (Schweppe, 1968, 1973; Filippova ef al., 1996; Maksarov and Norton,
1996a, 1996b; Durieu, Polyak and Walter, 1996a, 1996b). 0

EXAMPLE 5.4

Consider the AR system defined by
y(k) = -04y(k-1) — 0.85y(k=2) + e(k), k = 3, ..., 25,

y(1) =e(1), y(2) =e(2),

with the e(k)’'s independently uniformly distributed in [-1, 1]. Figure 5.14 presents the
outer ellipsoids obtained for the AR model

y(k) = piy(k=1) + pay(k-2) + e(k),
-1<ek)st, k=3,..,25,

with the EPC algorithm after 1 to 10 circulations of the data. The true value
p* = (-0.4, -0.85)7T of the parameters of the model is indicated by a star, and the exact
polytope Pss is in solid lines. The ellipsoid obtained after 100 circulations of the data in
the EPC algorithm is shown in Figure 5.15, together with the minimum-volume outer
ellipsoid enclosing P75, which illustrates the suboptimality of the former. Finally,
Figure 5.16 presents the minimum-volume outer ellipsoid and maximum-volume inner
ellipsoid for Pp5. Both are obtained using techniques inspired by the methodology of
experiment design (Pronzato and Walter, 1996a). 0



Zuo Uncertamty

-1 08 0.6 -04 -0.2 0 0.2 0.4
Py

Figure 5.14. Outer ellipsoids obtained in Example 5.4 by circulating the data 1 to 10 times
in the EPC algorithm; the exact feasible set Pps is in solid lines

T 07 06 05 04 03 02 01 0 0t

Py
Figure 5.15. Minimum-volume outer ellipsoid and outer ellipsoid obtained in Example 5.4 by
circulating the data 100 times in the EPC algorithm; the exact feasible set Pa5 is in solid lines

In summary. OBE and EPC

— are mathematically equivalent,

— are recursive and easy to implement in real time,

— are recursively (but not globally) optimal,

— easily extend to the tracking of time-varying parameters,
— require simple calculations (comparable to RLS),
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— yield a pessimistic characterization of P,
— yield a pessimistic characterization of the PUT’s,
— do not always detect that Py, is empty (because they are globally suboptimal).

<115
-0.6

Figure 5.16. Minimum-volume outer etlipsoid and maximum-volume inner cllipsoid
for Example 5.4; the exact feasible sct P25 is in solid lincs

5.4.1.2 Non-recursive determination of outer boxes

Determination of the PUI's of p amounts to finding the smallest (volume) box with
edges parallel to the axes enclosing IPy,. The complexity of the resulting description of
Py, is moderate: 2np, scalars for a box, versus rnp(ny, + 3)/2 for an ellipsoid. To turn the
problem of computing each PUI into an optimization, notice that the bounds of the ith
PUI are given by the minimal and maximal values of the cost j(p) = p;, when the
feasible domain for p is Py,, which is defined by linear inequalities. The cost and
constraints being linear, the extremal values can be computed by linear programming.
Determination of the box thus requires solution of 2np linear-programming problems
(Milanese and Belforte, 1982), with 2n( linear constraints each (in addition to the
constraints defining Py, if any). Dantzig’s (1963) simplex algorithm may be used, as
well as more recent techniques; see (Gonzaga, 1992) and Section 4.3.4.1.

In summary. The resulting policy

— is nol recursive,

— isill suited to the tracking of time-varying parameters,
— requires far heavier computation than OBE or EPC,
— yields exact PUT's,

— yields a pessimistic characterization of I,

— detects if Py, is empty.



REMARKS 5.7

— Usually, only a few constraints are active on the boundary of ¥,,,. Preprocessing of
the data by OBE or EPC then permils elimination of many redundant constraints,
thereby considerably simplifying computation.

— When Py, is thin and badly oriented, using a box with edges parallel to the axes of
the parametric space yields a very poor characterization of P,,,. Replacing these axes
by those of an outer ellipsoid, determined by OBE or EPC, will much improve the
situation.

— Outer boxes can also be determined recursively by calculating, at each recursion step
k, the minimum-volume box with edges parallel to the axes containing the
intersection of Il with the previous box (Pshenichnyy and Pokotilo, 1983;
Messaoud, Favier and Santos Mendes, 1992). This solution can easily be adapled to
parameter tracking. Parallelotopes can also be determined recursively (Vicino and
Zappa, 1992}, as can polytopes with limited complexity (Piet-Lahanier and Walter,
1993). As already noted for ellipsoids, recursively optimal algorithms are generally
not globally optimal. 0

5.4.1.3 Exact description

Assume that P is either R#p or defined by a finite number of linear inequalities. When
the error is affine in p, P, can then be written as

By = (plAp2b].

Let a;r denote the ith row of A. When not empty, P, is a convex polyhedron, which
can be computed recursively (Walter and Pict-Lahanier, 1989; Broman and Shensa,
1990; Mo and Norton, 1990; Kuntzevich and Lychak, 1992; Piet-Lahanier and Waller,
1994). The inequalities are taken into account one after the other, each observation
providing two inequalities. We restrict ourselves to basic ideas of the algorithm in the
case where the polyhedron is bounded. The general situation is treated in (Walter and
Piet-Lahanier, 1989).

Assume that the polyhedron Qt_; formed by the first (k — 1) inequalities is as in
Figure 5.17. The non-trivial case is when only a part of the previous polyhedron is
consistent with the kth inequality, as in Figure 5.18. Some vertices should then be kept
(here 1, 4 and 5), whereas others should be removed (here 2 and 3). Moreover, a
new verlex should be created on each edge connecting a retained vertex and an adjacent
removed vertex (giving 2’ and 3" here). (No vertex should be created between 5
and 3 as they are not adjacent.)

A representation of the polyhedron facilitating determination of adjacent vertices
should thus be updated. Q4 will be characterized as the convex hull of its vertices v;
(i=1, ..., I;). With (; we associate a matrix Sg, the columns of which contain the
veriex coordinates of Q. With the ith vertex v; are associated lists LAV; of its adjacent
vertices and LSH; of its supporting hyperplanes. Each vertex is the intersection of at
least np supporting hyperplanes.
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Figure 5.17. Polyhedron formed by the first (k-1) inequalitics

4

Figure 5.18, Polyhedron formed by the first & inequalitics

Initialization. Qp may be chosen as a box with edges parallel to the axes, large enough
to be sure to contain Q,,. This simplifies construction of the initial lists of adjacent
vertices and supporting hyperplanes.

Iteration. Assume that Q4 has been determined. The (k+1)th inequality defines a
feasible half-space

M1 = {plag, p bk 20},

bounded by the hyperplanc Hir1={p! ﬂL+1P bj+y = 0}. The updated polyhedron
Qr+1 =Qx N ]HIkH is computed as follows. If no vertex of Q, is consistent with the
new inequality, Q41 is emply and no parameler value is feasible a posteriori. If all
vertices of Qy are consistent with the new inequality, this inequality is redundant,
Qi+1 = Qx, St+1 = St and the lists are unchanged. Consider now the case where only
some vertices are kept.

Updating the vertex matrix. Copy into Sj4; all vertices v; of Q that must be kept, i.e.
wi_th azﬂv; — bpyy 2 0. For each, using its LAV, determine all vertices v, of Q.
adjacent to v; and such that
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T
ﬂkHV,, - [)k+l < 0.
Create a new vertex v; , at the intersection of edge (v}, v,,) with Hy.(, given by

T
1= Ay 1Vi—bry

Vin = (1 = A)v;+ Av,, with T .
a; q(vi—vy)

Include v; ,, in Sgq1.
Updating the LSH’s. The LSH’s of the vertices of Qy kept in Q41 are not modified.

The LSH of any new vertex v;,, contains Hy4; and the hyperplanes common to LSH;
and LSH,,.

Updating the LAV’s. In the LAV of any vertex v; kept in Q4, replace any vertex v,,
removed from Qg by the corresponding new vertex v;,. Create the LAV associated
with each new vertex v; ., by including the retained vertex v; from which it was
created, and all new vertices with which v;, is adjacent. Each of these new vertices has
at least np — 1 supporting hyperplanes in common with v; ,, and no other vertex has an
LSH containing the same np ~ 1 hyperplanes.

The exact description is often much simpler than one might fear, because many
inequalities are redundant. The method can be extended to tracking time-varying
parameters, provided the previous polyhedron is expanded at each iteration, to account
for possible evolution of parameters, before intersecting it with the new feasible half-
space. Piet-Lahanier and Walter (1993, 1994) sugpgest an expansion that does not
modify the lists LAV and I.SH, which greatly simplifics the implementation. The
complexity of the description obtained at each iteration can also be restricted. Finally,
the extension of this method to polyhedral cones permits recursive determination of a
minimax estimator for p (i.e. the smallest bound on the errors such that 2, is not empty
and the associated set [Py, in general a singleton), together with all sets JF,, associated
with larger error bounds (Walter and Piet-Lahanier, 1991). This proves particularly
usefu] when there is no prior information on the value of the bound (Example 4.16).

REMARK 5.8

A situation where Py is empty (k <)),

— will be detected with no delay by the exact description;

—— will be detected once all data have been processed by the non-recursive outer-box
approach;

— may go undetected by the recursive outer-box and outer-ellipsoid approaches. 0

5.4.2 Nen-LP model structures

This situation is the rule for phenomenological models. The posterior feasible set Py, is
no longer a polyhedron. It may be non-connected, even if the model structure is
globally identifiable; see, e.g., (Pronzato and Walter, 1990). The phenomenon can be
better understood in the space of observations. Depending on the relative positions of



the expectation surface Sexp (the surface of possible model responses) and the box ¥ of
responses admissible a priori, P, may be connected or not. Consider, for instance a
one-parameter model structure with two observations, so that the expectation surface
Sexp is a curve. Assume that Seyp is as presented in Figure 5.19 and continuous in the
parameter p, with each point of S¢xp corresponding to a single value of p (identifiability
condition). If the observations are associated with the box ¥, the posterior feasible set
P> for p will be connected, whereas it will not be the case if the observations are
associated with the box Y3. This possibility for P2 not to be connected must be taken
into account by the algorithm used for its characterization.

REMARK 5.9

Non-LP structures raise the same type of difficulty when a statistical approach is used to
characterize confidence regions for the parameters (Section 5.1.3), or when a point

estimate has to be determined (Section 4.3.9.1). 0
Ay
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Figure 5.19. Depending on the relative positions of ¥ and Eeyp, P2 may be connected or not

EXAMPLE 5.5

Consider the model
ym(t, P) = p1 exp (-p20),

with y(£) = ym(t, p*) + &0, p* = (10, DT, Fo = E2 and the &(1)’s independently
uniformly distributed in [-0.75, 0.75]. Figure 5.20 shows the set P7) obtained from
the data collected at times ¢; = 0.45 + 0.05/ (i = 1, ..., 71), when the errors are
assumed to lie in [~1, 1]. Only six of the 142 inequalities contribute to the definition of
P71, and thus correspond to actually useful data, but one cannot know beforehand
which data will turn out to be useful. The minimum-volume outer ellipsoid for Py,
obtained by techniques inspired by experiment design, is also shown; see (Pronzato and
Walter, 1996a) for details. 0
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Figure 5.20. Posterior feasible set and minimum-volume cflipsoid for Example 5.5 (non-LP model)

5.4.2.1 Errors in variables

This approach, already considered in a statistical context in Section 4.1.7, allows

extension of the techniques developed for LP structures with deterministic regressors to

uncertain regressors and/or non-LP structures {Norton, [987; Clément and Gentil,

1988, 1990; Merkuryev, 1989; Cerone, 1991; Veres and Norton, 1991c). It applies,

for instance, when r(k) contains noisy measurements of the process inputs and outputs.
Define the regressor error as

ek, p) = r(k) —rp(k, p),

where r(k) is known and ry(k, p) is such that y(k+1, p) = rg(k, p)p. The (pseudo)
regressor vector rp, may depend on p (non-LP structure), or merely consist of »
unspecified scalars. Assume that the ith component of the regressor error should satisfy

Yk Se kpselh), i=1,. 0 k=0, n-1,

where the bounds eT'(k) and er}i(k) are known a priori. ¥, then contains all values of p
such that

”P

(k) - 21 e (k-1, pypi < y(B) — rT(k=1)p
=

"
(k)—Zer’_(k—l, ppi, k=1,...,n.

i=]

<e

M
y
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A necessary condition for p to belong to P, is then

Ilp

eyl - 2 el (k=1)p; < y(k) - rT(k-1)p
=1

1=

~
~

P

<l DA k-Dps k= Lo,
=~

~

where
[ (), e (D)) if p; = 0,

[ef (k), e} (k)] =
R [eM(K), e™ (k)] if p; < 0.

For any given combination of the signs of the components of p, this corresponds to
ny pairs of linear inequalities. A set containing P, is thus obtained by taking the union
of the sets defined by these inequalities for all orthants of parameter space. The
bounding hyperplanes for a pair of inequalities in a given orthant are no longer parallel,
so OBE and EPC do not apply directly. Specific algorithms, involving a single cut
instead of two parallel cuts, may be used (Bland, Golfarb and Todd, 1981; Pronzato
and Walter, 1994a), as well as a heuristic modification of OBE based on creating
fictitious hyperplanes tangent to the ellipsoid (Clément and Gentil, 1988, 1990).
Algorithms computing boxes or polytopes (possibly with restricted complexity) may
also be employed.

REMARK 5.10

When the successive errors in the components of the regressor are mutually independent
and independent of the output error (which does not hold for models with noisy
autoregressive parts), this condition is also sufficient (Cerone, 1991, 1993). It is then
possible to determine Py, exactly by considering linear inequalities. 0

EXAMPLE 5.6

Consider again the model of Example 4.3

Ym(t+1, p) = ~ayym(f, P) — aoym(t=1, p) — ... — ap,ym(t+1-n3, p)
+ by + .+ by (t+l-np), t=mg, e, g - 1,

where the inputs u,(f) actually applied are now assumed to be known only
approximately. The input errors satisfy

he() —ug(<ey, t=1, o, ng+ny—-1,
where u(f) is the known target value of the input at time +. Similarly, the output errors

must satisfy
() =yt P <ey, r=1, 0, n+ny— 1.
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The bounds ey, and ey are assumed to be known. This structure with input-output errors
is not LP. It may be approximated by an LP structure in the form

ymip(++1, p) =rT(np,
where the parameters are ordered as
pP=(ap, ..., any, by, ..., byyT,
and where the unknown regressor vector
ro( P) = [-ym(t, P ..., =ym{t+1-ng, p), vab), ..., uz(t+1-np)]T
is approximated by the known vector
r(f) = [, ..., (t+1=np), u(d), ..., e(+1-np)]T.
The ith component of the regressor error

el'(’a p) = r(’) - rm(f' p)|
is then bounded by

ler(t, p)I Sel\r/'i(l), i=1,..,n+np,

where
ey (i=1,...,m)

M ()= {

eu (F=nya+ 1, ..., 14+ np).

The set P, defined by the inequalities that can be constructed from the data y(1), ...,
y(ni+ng—1) is thus in the set of solutions of

Ny g+
ey~ 2 [ey sign(pplp;— Z ey sign(pp)lpg < y(r+1) = rT(Np
i=1 k=ny+1
Ny nytnyg
Sey+ Z [ey sign(p))]pi + Z ey sign(pp)Ipps t=na, .o, 0+, — 1.
i=1 k=ny+1

In a given orthant in parameter space, every sign(p;) is constant and this is a set of linear
inequalities. 0

5.4.2.2 Outlier minimal number estimator

Let parameter value p give a model response satisfying percentage j(p) of the n, pairs of
inequalities. The posterior feasible set is then

Py = {p € Polj(p) = 100%].
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Maximizing j amounts to minimizing the percentage of inequalities not satisfied, i.e.
considered as due to outliers, hence the name Outlier Minimal Number Estimator
(OMNE) (Lahanier, Walter and Gomeni, 1987; Walter and Piet-Lahanier, 1988).

Basic algorithm

Step I: Find pe arg max j(p) over Fy.
Ifj(f)) < 100%, then Py, is empty (wrong hypotheses), clse pe P
Step 2: Characlerize the boundary of P, by a cloud of points {pp).

The cost function j is not continuous, and its gradient is zero wherever it is defined; j
can therefore not be optimized by any of the local methods presented in Section 4.3.3.

At Step 1, one proceeds to a global optimization over a prior box Py, for instance
using the adaptive-random-search algorithm described in Section 4.3.9.2. Step 2 is
based on the techniques presented in Section 5.1.2 for exploring cost contours. Note
that B, is the cost contour at level 100%. One is looking for its boundary, which is a
hypersurface in parameter space.

REMARK 5.11

By projecting {pp} onto the axes of parameter space, one oblains an inner estimate of
each PUI, that is a lower bound on the uncertainty, as when the Cramér-Rao inequality
is used in a statistical context. Note, however, that the Cramér-Rao lower bound is
generally valid only when the number of data tends to infinity, whereas the PUI's
obtained with OMNE are valid whatever the number ol data. Their precision depends,
of course, on the ability of the algorithm used to construct the cloud {pp) to generate
points p with extreme component values.

Consequences of errors in the bounds. When the bounds are pessimistic, Py, is too
large, but still contains p* if the data have been generated by a model with parameters
p*. Conversely, optimistic bounds create outliers, i.e. data points such that

Y00 = ym(k, P7) & [eD(K), ().

The presence of outliers will be detected if j(p) < 100% for all p’s in Pp. One can then
either choose less optimistic bounds (for instance following a minimax estimation
procedure), or make the estimator robust (o outliers by reducing the number of data the
estimate is required to be consistent with. For this purpose, the feasible set ar level jo%
is defined as

B0 = (p e Folj(p) 2o}

OMNE can be used to estimate /0, with jg Sj(f)). Some outliers may not be detected,
so p* may not belong to the feasible set at !evelj(f))%. Protection against 71g undetected
outliers can be achieved, at the possible cost of an increase in the size of the feasible set,
by choosing jg = [i(ﬁ) ~ 100ng/n(]%. The performance of OMNE in situations with
underestimated errors is described in (Waller and Piet-Lahanier, 1988).

The set-inversion technique presented in Section 5.4.2.3 can be extended to
characterize ™0 in a guaranteed way (Jaulin, Walter and Didrit, 1996).



Influence of far outliers. Recall that the breakdown point of an estimator p
(Section 3.7.2) is the smallest value of @ such that

max [t B(ys) — Py©) Il = oo,
y (8]

where ¥y 15 a set of valid data, and yY is obtained from y* by replacing a% of the data
by outliers. When the model is LP and the number of data points tends to infinity, it can
be proved (Pronzato and Walter, 1991a, 1996¢) that the breakdown point of OMNE
tends to 50%, which is the best achievable performance. This estimator has been used
for the detection of significant changes between images (Herbin et al., 1989); see
Section 3.7.4.

REMARK 5.12

OMNE may behave satisfactorily even in the presence of a large majority of outliers,
provided they cannot be described by a model with the structure used. (Note that the
least-median-of-squares and least-trimmed-squares estimators do not possess this
advantage.) It is only when the outliers are chosen so as to fool the estimator that the
50% upper bound applies. 0

What to do when the posterior feasible set is not connected? If the problem is duc to
identifiability, it can be tackled as in Section 5.1.3 by a theoretical study of the
structural properties of the model.

EXAMPLE 5.7

We have seen in Example 2.3 that the model structure

d [—(mwz) P } H
—X= X + u, x(0)=0,
d P -p3 0

ym = [0 1] x,

is only locally identifiable, since p; and p3 can be permuted without modifying the
input-output behaviour. For any value of p on the boundary of the posterior [easible
set, we know how to generate another value producing the same behaviour, and once a
cloud of points in a connected subset of the posterior feasible set is obtained, another
can be deduced by symmetry.

In the numerical example treated in (Walter and Piet-Lahanier, 1988), this produced
the result shown in Figure 5.21.

EXAMPLE 5.1 (Continued)

Consider again the model

ym(E, P) = 1€y + paka + picl — £+ pa(l - &),



An experiment with only two different experimental conditions &! and &2 makes Sexp,
flat, which eliminates parasitic local minimizers. However, identifiability problems may
then be introduced, as already observed in Section 4.3.9.1. Assume that the
experimental conditions used for three observations are:

oo o ev e[

The two parameter vectors p = (py, p2)T and p' = (pj + 2p2 — 1, | — p2)T then give the
same responses YM(E, p). When the error bounds are large enough, a connected
posterior feasible set is obtained. Conversely, two non-connected sets are obtained for
small error bounds. Once a point on the boundary of either of these sets has been
obtained, its counterpart on the boundary of the other can be calculated analytically. ¢

Pl

Figure 5.21. Example of a posterior feasible set for a non-uniquely identifiable model

Applying the same technique to the two model structures considered in the chemical
engineering example of Section 2.6.4, nine non-connected subsets of the posterior
feasible set are obtained (three for one structure, six for the other). PUI's can be
estimated by projecting these subsets onto the axes (Walter, Piet-Lahanier and Happel,
1986).

The reasons for the posterior feasible set being not connected may, however, be less
easy to detecl. It may thus be interesting to use the algorithm mentioned in
Section 5.1.3 for characlerization of cost contours associated with non-connected
domains. Piet-Lahanier and Walter (1990) present a simulated example of a six-
parameter globally identifiable structure where four non-connected domains are found,
one containing the true value p* of the parameters.
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5.4.2.3 Set inversion

This approach seems extremely promising, for it yields global results even in the case of
non-LP model structures. It will only be presented briefly, and the reader is referred to
(Moore, 1992; Jaulin and Walter, 1993a, 1993b) for more details. Assume that the
posterior feasible set is defined by

Fu=(pe Pole(p) € E},

where Py is a prior box denoted by [p](0), e(p) =y — y™(p) and E is a given box in
error space. Then
Py, = e~l(E) N Py,

where e-! is the inverse function (in a set-theoretic sense) of e. Determining P, is thus
a set-inversion problem, which can be solved by the interval-analysis techniques already
mentioned in Section 4.3.9.3. The Set Inversion Via Interval Analysis (SIVIA)
algorithm described below applies to any function e for which an inclusion function &
can be calculated. It is not restricted to explicit functions, since inclusion functions can
be constructed for differential equations.

To present SIVIA, a few definitions are needed. A subpaving of £ is a set of non-
overlapping boxes with non-zero lengths. A box [p] is said to be feasible if [p] C P,
unfeasible if [p] N Py, = @ and ambiguous otherwise. A principal hyperplane of [p] is
onc of its hyperplanes of symmetry, orthogonal to an axis with maximal length.

Interval analysis provides two conditions for testing feasibility of any box [p] in Py
that will be exploited by the algorithm:

— ife([p]) € E, then [p] C Py, = [p] is feasible,
— ife([ph) N E =G, then [p] N P, = D = [p] is unfeasible.

In all other cases, [p] is indeterminate, which does not mean it is ambiguous.
Figure 5.22 illustrates the various types of boxes considered, together with their
images by e and €.

To store the boxes still to be considered, SIVIA uses a stack, i.e. a dynamical
structure on which only three operations are possible:

— put an element on top,
— remove the element located on top,
— test whether the stack is empty.

We distinguish:

— the subpaving Kjp of all boxes which have been proved to be feasible,

— the subpaving ; of all indeterminate boxes with length less than the required
precision &,

— the box [p](k) considered at iteration £.
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Sets P, and E
Feasible box and its image by e
Unfeasible box and its image by e

Ambiguous box and its image by e

Indeterminate box and its image by e

LMIZNE |2

Images of all these boxes by &

Figure 5.22. Boxes and their images by e and its inclusion function e
The basic structure of SIVIA can now be described. The user must supply E, an
inclusion function ¢ for e, a prior box [p](0) in which the search will be performed, and
the required precision 8. A prior subpaving could also be used instead of a prior box.
The program is initialized by setting:

k=0, stack = @, Wi, =B, K; = J,

and the kth iteration is:
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Step 1: If e([p](k)) C E, then [Kiy = K, U [pl(k). Go to Step 4}.

Step 2: If e([pl(k)) N E = O, go to Step 4.

Step 3: If w([pl(k)) < 6, then K; = E; U [p](k), else split [p](k) along a principal
hyperplane and put the two resulting boxes on the top of the stack.

Step 4 : If the stack is not empty, remove the element located on top, call it [p](k+1),
increment k by one and go to Step 1.

After running SIVIA, all indeterminate boxes are in [ and thus have a length
smaller than the precision required. STVIA encloses P, between two subpavings:

Kin © ]Pn[ C Kou = Kin U I,

which tend to coincidence as dtends to zero (Jaulin and Walter, 1993b). The initial box
[p](0) has thus been partitioned into three subpavings Kj,, K and Eyy, where Kyy
consists of all boxes that have been proved unfeasible (Figure 5.23).

Pz}

By

/
//,///////,é

=
. = ]

% Subpaving iy of all boxes that have been proved feasible

E=J  subpaving K; of all boxes sill indeterminate

N aving & ; "
&\\\\ Subpaving K., of all boxes that have been proved unfeasible

Figure 5.23. Information on P, provided by SIVIA

N

;

\
il
.7//

\\

s,

%

The volume of [£; (and therefore of the part of [p](0) for which no conclusion has been
reached) can be reduced, at the cost of a reduction in & that entails an increased number
of boxes to be examined. The complexity of SIVIA is analysed in (Jaulin and Wallter,
1993a). This algorithm can be extended to compute outlier minimum number estimates
(Jaulin, Walter and Didrit, 1996).
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5.5 Conclusions

A variety of techniques is available to characterize parameter uncertainty. The method
based on the inverse of the Fisher information matrix is very simple to employ, but only
justified asymptotically, except in very particular cases (e.g., an LP model structure
with additive independent errors distributed A{0, 62)). The other methods require more
intensive computation, but permit characterization of the uncertainty associated with a
finite number of data points. All these methods rely on hypotheses that are not
necessarily satisfied in practice, so one should be careful in interpreting their results.
Note finally that the experiment performed (location of sensors and actuators, shape of
the inputs applied, measurement limes...) affects the uncertainty in the parameters. It is
thus important to choose the experiment well, taking into account its final purpose (for
instance, precise estimation of some paramelers, or discrimination between model
structures). This is experiment design.






6 Experiments

The experimental procedure for the collection of the numerical data to be used to
estimate the parameters of a given model depends on gualitative choices made at various
steps of the modelling. In particular, the tools presented in the previous chapters allow
one to choose:

— a set of model structures to be considered,

— location of sensors and actuators to guarantee identifiability (and distinguishability if
several rival structures exist),

~— an estimator and a characterization of parameter uncertainty.

Once these choices have been made, the experimenter still has some freedom to
specify the quantitative experimental conditions (such as temperature, pressure,
sampling times, shape of inputs...). Experiment design aims at determining
experimental conditions adapted to the final purpose of the modelling. It is a crucial
step, for a badly designed experiment may ruin any attempt al analyzing the data
collected from the system.

We start the presentation with a classical example, which illustrates the benefits of
careful experiment design,

EXAMPLE 6.1

Consider three objects Oy, Oy, O3 with respective weights wi, w5 and w3 to be
estimated. The spring balance used for this purpose produces random measurement
ETTOFS E assumed to correspond to independent varmblcs with a Gaussian distribution
A0, 62), together with an unknown systematic error W() Four measurements are to be
performed.

The simplest approach that comes to mind is first to use the spring balance without
any object to estimate the systematic error and then to weigh the three objects
successively. Let y(O) be the result of the first measurement, y(0) = WO + £(0). The
other mcasuremen(s give y(i) = wo + w + £(i), l =1, 2, 3. It is then easy to show that
the estimates w = y(i) — y(0) of the welghls w (i=1,2, 3) are unbiased and have
variances vzu'('x\v) =202 and covariances cov(ﬁl,, \1‘;1) = 02,1 #].

Consider now another experiment, also with four measurements. It only differs
from the previous one in the first wclghmg, durmg whxch the lhree objects are weighed
simultaneously. This yields y(0) = “’0 + “’1 + wo + w3 + £(0), the last three
observations being as previously. The estimates of the weights are then

&, = 2O+ ¥ = y() - y(k)

L i=1,2,3 i) i%k j2k
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They are unbiased, with var({\v,-) = o2 and cov(ﬁ'i, \/t\’j) =0,i%/.

Compared (o the first intuitive approach, this second experiment thus yields more
accurate estimation (with the variances of the estimates reduced by a factor of two) and
independent estimales. 0

The design of an optimal experiment usually consists of the following steps:

— define an optimality crilerion related to the final purpose of the modelling, via a
scalar cosl function,

— take into account all constraints on feasible cxperiments,

— optimize the chosen cost function with respect to the experimental variables
available to the experimenter.

Here we shall mainly consider the case of a single model structure, where the purpose is
accurate estimation of the parameters of this model. (Experiment design for modet
discrimination and for the maximization of a model response are briefly considered in
Sections 6.6.3 and 4.4.2 respectively.) The optimality criterion will thus be related to
how uncertainty in the parameters is characterized, and will depend on the estimator to
be used. We notice already that prior knowledge (or hypotheses) about the process
should be taken into account to adapt (o the specific {eatures of the problem. In a sense,
this is unavoidable, since model structures are prior assumptions. When no prior
information on the process is available, there is no alternative to a heuristic distribution
of experiments over the feasible experimental range.

Assume that the ith scalar observation can be wrillen as y(Ef), where the
ng-dimensional vector &f (the ith support point) describes the experimental conditions
(e.g., measurement time, shape of input...) under which the ith observation is to be
collected. When ny such observations are taken, the concatenation of the vectors &i's
yields the nyng-dimensional vector E = (E! Fgam . EmTyT which characterizes all
experimental conditions to be optimized. To make experiment design realistic, it is
necessary (o take a number of constraints into account, ¢.g. on the duration of the
experiments, the energy or amplitude of the inputs, the minimum time between
samples... Let & be the set of all feasible values for Z. This set will oflen have the form
T =(ET, ..., ETYT. However, components of the various s may happen not to be
independent; see Section 6.3.2.

The definition of a cost function j then permits optimal experiment design (o be casl
as a constrained optimization problem, where the optimal experiment Z* is defined by

(11

"= arg _opt_j(E).

Slatisticians have been interested in optimal experiment design for parameter estimation
for many years, and the subject is addressed in several books (Fedorov, 1972; Zarrop,
1979; Silvey, 1980; Penenko, 1981; Ermakov, 1983; Pizman, 1986; Ermakov and
Zhigljavsky, 1987; Dodge, Fedorov and Wynn, 1988; Atkinson and Donev,
1992; Pukelsheim, 1993; Schwabe, 1996). A detailed bibliography can be found in
(Steinberg and Hunter, 1984; Bandemer, Niather and Pilz, 1987; Rash, 1988; Ford,
Kitsos and Tilterington, 1989; Walter and Pronzato, 1990). We shall most often
assumne that the uncertainty in the parameters is characterized by the inverse of the
Fisher information matrix (Section 5.3.1). Problems raised by non-LP structures are
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addressed in Section 6.4, Bayesian estimators are briefly treated in Section 6.5; see
also (Chaloner and Verdinelli, 1995). Bounded-errors estimators (Section 5.4) require
a specific treatment; see, e.g., (Pronzato and Walter, 1990).

The next section describes various criteria that can be used to design optimal
experiments.

6.1 Criteria

Evaluation of the cost function j must be simple enough to allow easy optimization. For
that reason, classical optimality criteria correspond to a scalar function of the Fisher
information matrix F(p, E) presented in Section 5.3.1, /..

JH(E) = ¢[F(p, E)].

Under the hypotheses mentioned in Section 3.3.3, the distribution of the maximum-
likelihood estimator is asymptotically Gaussian A(p*, F-1(p”, £)) when the number of
measurements tends to infinity. Minimizing j(Z) then amounts to minimizing a scalar
measure of the asymplotic covariance matrix of the parameters. Recall, however, that
characterizing parameter uncertainty in a non-LP model by the inverse of the Fisher
information matrix involves approximations (Section 5.3.1.4), to which few
alternatives exist (Sections 5.3.3 and 6.4.1).

A rather general class of optimality criteria employs the following family of cost
functions (Kiefer, 1974)

on(F) = [71]; trace (QF-1QTY]'* if det F = 0,
6p(F) = 0o if det F =0,

where Q is a weighting matrix.
The special case k= 1 corresponds o the L-optimality cost [unction,

J1(E) = trace [QTQF-1(p, E)I;

and choosing Q = I,,p then corresponds 1o the A-optimality cost function. An A-optimal
experiment minimizes the sum of the squares of the lengths of the axes of asymptotic
confidence ellipsoids. In the context of optimal input design for dynamic systems
(Section 6.3.2), it has been suggested (Mehra, 1974a) that trace F(p, &) be
maximized, which requires less calculation than using the A-optimality cost function (or
the D-optimality cost function presented below). However, such an approach may lead
to a singular information matrix at the optimum (Grewal and Glover, 1975; Zarrop and
Goodwin, 1975), which implies loss of local identifiability of the parameters of the
model. Choosing Q diagonal, with [Q];; = 1/p; corresponds to C-optimality, which is
connected with the relative precision ol estimates. Taking Q to be a row vector leads to
c-optimality. Note that the choice of Q may be dictated by the final purpose of the
identification (Goodwin and Payne, 1977).

Taking Q =1,,_and k = oo corresponds to E-optimality; E-optimal design maximizes
the smallest eigenvalue of the Fisher information matrix and thus minimizes the length
of the largest axis of the asymptotic confidence ellipsoids.
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The most widely used optimality criterion has k=0, Q = I,, , requiring
minimization of det F-1(p, &), or, equivalently, maximization of

JD(E) = det F(p, E).

An experiment Ep that maximizes jp is called D-optimal (Box and Lucas, 1959). A D-
optimal experiment minimizes the volume of the asymptotic confidence ellipsoids for the
parameters (Section 6.4.1). Moreover, it is invariant under any nonsingular
reparametrization that does not depend on the experiment. Indeed, let p(p) be such a
reparametrization (det 9p/opT # 0). The D-optimality cost function becomes

- = = dp |2
det F(p, E) = det [F(p, E)] [dct -—}
ap!

If the Jacobian det 9p/dpT does not depend on the experiment, the maximization of
det F(p, E) is equivalent to that of det F(p, ). Note, finally, that a D-optimal
experiment generally consists of the repetition of a small number of distinct
experimental conditions (i.e. some support points éé s are equal) (Atkinson and
Hunter, 1968; Box, 1968, 1970; Vila, 1988). As mentioned in Section 4.3.9.1, this
may help remove parasitic local optimizers when estimating the parameters.

With each of the criteria above can be associated an efficiency, which quantifies the
suboptimality of an experiment. The D-efficiency of &, for instance, can be defined as

e | detF(p, E) [ty
JDE(=) [del F(p, ED):‘ ’
with Ep a D-optimal experiment. For any &, jpp(E) < 1.

Sometimes, only some of the parameters are of interest. Such will be the case, for
instance, when maximum-likelihood estimation of the parameters of a deterministic
model requires parameters in the noise distribution to be estimated, as in Example 3.3.
Parameters that must be estimated although we are not interested in their values are
called nuisance parameters. Optimality criteria may then be defined for an accurate
estimation of a suitable part of p. Partition p into (p]r, pg )T, with p| the parameters
of interest (dim p = ¢) and p, the nuisance parameters. Partition I(p, E) accordingly
into

Bo. = [ Fip Fip ]
'(p, &) = .
P =) 1 Ty
F-l(p, ), which approximates (sometimes is equal to, see Section 5.3.1) the
covariance of the estimator, is then given by

(Fy) - FjoF51F;))] ~(Fy; - FpF 73Ty F )F5)

~F3iF5 (Fy) - FpF5iFp) 1 Fol+F3iFy (F )| - F1pF54F;))1F o)
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where Fj; is assumcd not to be smgular Since only p, is of interest, we wish to
minimize a scalar function of (Fy; — F|2F;7F21) 1. D,-optimal design then maximizes

Jpy(B) = det (F | = F5F33Fy)).

It is also used in experiment design for structure discrimination (Section 6.6.3.3).
Atwood (1980), Silvey (1980) and Pazman (1986) detail the use of this cost function,
in particular when F55 is singular.

REMARK 6.1

Independently of any statistical consideration, one may be interested in choosing an
experiment E that makes the approximation Hy(p, £) of the Hessian of the estimation
cost well conditioned. Vandanjon (1995) has thus considered maximization with respect
to Z of the Frobenius condition number

Je(p, E) = \/lmcc [Hay(p, E)] trace [H7 (p, )],
with an algorithm similar to the DETMAX algorithm of Section 6.2.1.2. 0

The initial step of optimal design consists in constructing the Fisher information
matrix F(p, ). Assume first an additive measurement noise £(f) from a sequence of
i.i.d. random variables with distribution independent of p*:

YE) =ymEL pM) + &), i=1,...,n

Denote the probability density of £ by me. Using the same development as in
Sections 3.7.1 and 5.3.1.4, and under the same hypotheses, the matrix F(p, Z)
associated with the ng observations can be written as

n

F(p. 2) = ), sy(E" pIsT(EL p).
i=1

The weighting term w (inverse of the Fisher information) is

|

- dm(e)2 1 dE_,
w= de T(8)

with D = {1 7g(€) > 0}. For a Gaussian density A0, 62), w = o2. Here sy(&/, p) is
the sensitivity of the model output with respect to p (Section 4.3.3.2). When the model
structure is LP, ym(§i, p) is given by r(E)Tp, and sy(E/, p) is r(Ef). The matrix
F(p, £) may also be written in the more condensed form
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F(Pn ‘—‘) _;‘7 S(Ps '—')TS(P, '—‘)

where the ith row of the matrix S(p, E) is sT(ﬁ' p). Note that the optimal experiment
does not depend on the value of w, and lhus on the actual density of the measurement
noise, which can be assumed Gaussian without loss of generality,

If the distribution of &(i) depends on the experimental conditions &/, the weighting
factor w depends on &f, and F(p, ) can be written as

m

Fip, E) = 2

=1 W(E)

sy(EL, p)sy (&', p).

If the measurement noise does not correspond to a sequence of independent
variables, instead of considering output errors one should consider the sequence of
prediction errors, which is a sequence of independent variables at the true value of the
model parameters (Section 3.3.2). The sensitivity of the model output sy(&', p) must
then be replaced by the sensitivity of the prediction error. This will be considered in
more detail in Section 6.3.2.2.

EXAMPLE 6.1 (continued)

Consider again the determination of the weights of three objects from four
measurements. The vector yS of observations is

y$=Rp” +E&,
with p* = (wg, w1, w3, w3)T and
1L g 102 o3
Loy oo
R= ,

where ry. = 1 or 0 depending on whether the kth object is present on the spring balance
for the xth weighing. (The first column of R only contains ones, since the cystcm‘mc
error wo is always present.) For the two methods suggested above, ry =0 for k#i
(i=1, 2, 3). They only differ in the first row ol R: ro; = 0 for the first method,
whereas rg; = 1 for the second (k = 1, 2, 3). The Fisher information matrix for the
estimation of p is F = RTR/¢2. It does not depend on p as the structure is LP. Since
we are only interested in the values of the parameters wy, w5 and w3, Dg-oplimality
may be used, with wo considered a nuisance parameter.

In the previous example, the entries of R can only take the values zero and one, and
the design problem is thus combinatorial, a case which will not be considered in the rest
of this chapter. The same kind of problem is met when the purpose of the experiment is
comparison of responses to different treatnments (Searle, 1971; Arnold, 1981; Pearce,
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1983). This topic originated in agriculture (Fisher, 1926), hence the traditional
vocabulary (blocs, treatments, effects...). A large body of literature is devoted to this
subject (Fisher, 1925; Cochran and Cox, 1957; Cox, 1958; Finey, 1960; Box and
Draper, 1987; Street, 1987...).

EXAMPLE 6.2

Consider the system
(1) = pi exp(-p3t) + (1),

where the £(t)'s are i.i.d. A{0, 62). Assume that two observations y(f)) and y(r2) are to
be made. The problem is to choose measurement times ¢y and 79, with rp > 1] 20, so as
to estimate p = (pj, p2)T as well as possible. We thus have E = (¢, 12)T. The
sensitivity of the model response to p can be written as

sy(t, p) = [exp(=pas), ~tprexp(-p2n)]T,

which gives the D-optimality cost function

JDE) = ?‘1317%(12 - 11)2 exp[-2p2(1) + 1)).

The D-optimal experiment is
- I .1
Ep=(0,—)". 0
D=( pz)

In the example above, Ep depends on p2. The optimal experiment therefore depends
on the values of the parameters to be estimated. This problem is common to non-LP
structures. The most classical (and simplest) approach then consists of using a nominal
value p for the parameters, and designing an optimal experiment for p = p°. This is
called local design and considered in the next section. Approaches that allow uncertainty
in p@ to be taken into account will be presented in Section 6.4.

6.2 Local design

In this section, no distinction will be made between LP and non-LP structures. For non-
LP structures, we simply assume that a nominal value pO for the parameters has been
defined. In some cases, the optimal experiment can be determined analytically; see
Example 6.2 above. However, optimization is most often iterative. The type of method
to be used will then depend on the dimension of E. When this dimension is not too
large, classical nonlinear programming methods, such as those presented in
Section 4.3, may be used. Note, however, that the cost function j(E) = ¢[F(p, E)]
generally has several local optimizers, so a global optimization method is recommended;
see Section 4.3.9 and Example 4.22.

When the dimension of & is large, it is preferable to use dedicated algorithms. Their
principles are now presented for the case of D-oplimal design.
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6.2.1 Exact design

Exact means here that optimization is with respect to the variables defining the
experiment to be performed (Compare with the notion of approximate design to be

exchange algorithms (Fedorov, 1972; Mitchell, 1974), for which one of the vectors &/
(expenmcntal conditions for the ith observatlon) is replaced at each iteration by a better
vector £* (in the sense of the design criterion). The methods differ in the selection of Ei
and in the construction of £*. We limit ourselves to presenting their basic ideas.

6.2.1.1 Fedorov’s algorithm

Let £ be the estimate of Z at iteration k. Assume 2 is not degenerate (i.e.
det F(p, EK) 2 0). One of the support points &/ of E is replaced in EX+! by £*, with
Efand E* chosen so that det F(p, E¢*+1) > det F(p, E+). Fedorov (1972) has shown that

jD(Ek+l) P

= — =1+ A&, ELE),

JD(EF)
with

AE, Z, £ = di(E*, B) - dy(E, E) + di(E, B, E) - dy(&", E)dl\ (E, B),
where
di(§, 8) =— _—s](& p)F-1(p, E)sy(&, p),
(5)
and
dr(, E, &) = ———— sI(E, p)F-L(p, E)sy(E", p).

‘\/ W(&)W(é*)

The algorithm is then as follows:

Step 1: Choose some non-degenerate 2!, § << 1 and set k= 1.
Step 2: Find

(E™ EN= max max A(Ef, EF, &)
&’e supp(EX) Eek

where supp{Z) denotes the set of support points of Z, and & is (he admissible set
for E.

Step 3: If AT, Bk, E*) < §, stop. Otherwise, replace £ by E*, increment & by one
and go to Step 2.

REMARKS 6.2

— At each step, computing A(Ef, E*, ) requires evaluation of F-1(p, ). Using the
matrix-inversion lemma, one can show that

F-1(p, B6+1) = I, - F-(p, BMI[L, + MTF-1(p, EYMI-MT}F-(p, Z4),



with

M=

JENG SR ) }
V@™ e
and f = -1. Updating F-! thus only requires inversion of a 2 x 2 matrix.

— A similar algorithm, with another function A(E, E, £*), can be used for
L-optimal (exact) design (Fedorov, 1972). 0

EXAMPLE 6.3

Consider the system

¥ = pT exp(—pi{l) + pg cxp(—pj!) + &(1),
with the g(r)’s i.i.d. A{0,0%). Assume that twelve observations are to be performed to
estimate p = (p1, p2. p3, p4)T. The problem is to determine the vector tp of the twelve
D-optimal sampling times. The parameters p| and p3 appear linearly in the model
response, and thus have no influence on tp. Assume that the prior values for pz and py

are pp = 1 and ps = 0.1. With an admissible set & ob(ained by discretization of the
interval [0, 20] with step 0.1, i.e.

& =1{0,0.1,02, ..., 19.9, 20},
Fedorov's algorithm initialized at
El =l =(0.1,02, 0.3, 04,05, 0.6, 07,09, 1., 1.2, 1.5, 10)T
converges in 19 iterations to
tp =(0, 0,0, 09,09, 0.9, 3.8, 3.8, 3.8, 14.4, 14.4, 14.4HT,
with det[FF(p, tp)]/det[F(p, t!)] = 54.58. 0
At each iteration &, Fedorov’s algorithm requires solution of

max A(E!, Ek, §)
€

El

at each support point €/ of EX. These n( maximizations of a possibly multimodal
function make computation heavy. Moreover, only one support point is modified at
Step 2, which may lead to a deadlock when only the simultaneous modification of
several would permit improvement of the cost. The next algorithm aims at overcoming
these two limitations.
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6.2.1.2 DETMAX algorithm

Assume that Ef is not degenerate. Should an additional observation be allowed,
characterized by E"*! one would choose E"t*! = E* with £* such that
det F(p, Z%+) be maximized, where

=k
Ek+=|: gn +1:| :
t

If £ were to replace one of the support points of X, one should obtain Z%*! from
Ek+ by removing &7 such that det F(p, E4+1) remains as large as possible. This
augmentation of the number of support points, followed by the removal of some of
them so as to keep the number of observations equal to ny, is catled an excursion. If iy
is strictly larger than the number of parameters s, the ordering of the operations may be
reversed, and a support point may be removed before the introduction of a new one.
This ordering may also be chosen randomly at each iteration.

When the number of support points of Z only varies by one, the excursions are said
to be of length one. The algorithm DETMAX is then as follows (Mitchell, 1974):

Step I: Choose some non-degenerate 2!, and set & = 1.
Step 2: Find

£ =arg gmx ﬁ sy (&, PIF~1(p, ENsy (&, p).

Update ¥-! for the experiment

according Lo

F-l(p, EN)sy(&", p)sy (8", p)F-(p, EX)

F-1(p, 55) = F-1(p, Bh) - —— . S
b Ww(E") + sJ(E", PIF-1(p, Eosy(E", p)

Step 3: Find

gi*=arg§ min zt+) (1&) sy (&, p)F-1(p, Ek)sy(El, p).
e supp{E !

Step 4: 1f £ = E*, stop.
Step 5: Remove £ from E4+ to get E+), update F-! according to
F-Y(p, E)sy(§7, p)sf (&7, p)F-!(p, EF+)

F“‘(p, Ek+l) = F"(p, E’”) + - ~ — —
w(&i*) - sJ (&, p)F-1(p, E)sy(§, p)

increment & by one and go to Step 2.
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When excursions of length 1 > 2 are used, the algorithm can be summarized as
follows. Addition of A support points is by performing Step 2 A times. Removing A
support points corresponds to performing Steps 3 and 5 A times. The stopping test at
Step 4 is replaced by a test on the increase of det F. With larger A, the increase in
compulting time may not by compensated by the improvement in det F. Mitchell (1974)
suggests use of a variable excursion length A, with 4 < 6 to keep the amount of
computation reasonable.

Convergence o the optimal experiment is not guaranteed by algorithms for exact
design, although they can only increase the value of jp(E). It is thus recommended that
several optimizations be performed, with different initializations E! at Step 1, for
instance randomly generated in Z. If the computational time is not a limitation, a global
optimization algorithm can also be used (Example 4.22),

Various improvements of the algorithms above have been suggested (Atkinson and
Donev, 1989; Cook and Nachtsheim, 1980; Galil and Kiefer, 1980; Johnson and
Nachtsheim, 1983). The improvements, sometimes quile significant, generally result
from intuitive ideas. However, convergence to the optimal experiment is still not
guaranteed, and numerical examples are the only basis for a comparison between
methods.

In contrast to algorithms for exact design, the methods presented in the next section
yield a global optimum, sometimes at the price of approximation to make the designed
experiment implementable.

6.2.2 Distribution of experimental effort

6.2.2.1 Continuous design

Each observation y(Ef) depends on experimental conditions Eie E. When some
experiments are repeated, the number i, of distinct &”s is less than (he total number of
observations 7. The Fisher information matrix can then be written as

",
F(p, &)= z ri— - s,(& PST(EL p).
i1 w(Eh

with 7; the number of repetitions of measurements under the experimental conditions &,
s0

Let Fppi(p, E) be the Fisher information matrix per sample;

”C
] . .
r.(p B = i i p)sTE p).
ps(Py £) ;”tw(&i)sy(g P)Sy(& p)
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The proportion ;= rifn of observations performed at £f can be considered as the
percentage of experimental effort spent at E!. The experiment Z can thus be represented
as a discrete distribution 7,
1 ne
My = —J & - 6 }

ﬂ 1 - Hne
which is normalized, since

"C
ZH:‘ =1
i=1

The y;’s are rational numbers (g; = ri/n, with n| fixed). Removing this constraint, we
can think of an experiment as a probability distribution on &,

Chernoff (1953) first expressed the Fisher information matrix per sample as a
normalized linear combination of rank-one matrices of the type sy(f';' p)sy T(E!, pyw(ED.
Kiefer and Wolfowitz (1959) showed that extending the notion of demgn to any
normalized measure on &, (design measure) drastically simplifies design. This idea is the
basis for the algorithms to be presented in Section 6.2.2.4.

Consider a normalized measure mon £, satisfying

I m(dE) =1,
£

with m(dE) the measure of the elementary part d€ around €. The notion of experimental
design can be extended to measures on & absolutely continuous with respect to the
Lebesgue measure, hence the name continuous design. The matrix Fps(p, m) then takes
the form

I
Fps(p. 1) = j oy p)sy (&, p) m(dE).

J

As explained in the nex! section, any matrix of this form can also be obtained with a
discrete measure.

6.2.2.2 Approximate design

F,.(p, m) belongs to the convex hull of the rank-one matrices of the type
sy(E. p)s TE, pyw(E). Moreover, Fps(p, m) is symmetric and thus belongs to a
[n (np + ly)/’)] dimensional space. Caratheodory’s theorem (Berger, 1979, 1987), then
1nd1cates that Fp((p, m) can always be writlen as a linear combination of at most
[n (np+ 1)/2] + 1 rank-one matrices, i.e.

g,

S(pv ”l) - Z I’ll y(&‘v p)sg(gli p),
=1 (& )
with
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n
. np(np+ 1)
Zp;: I and n, £ ——5—+1

Any continuous design measure is thus equivalent to a discrele design measure 71y with
at most [np(np + 121+ 1 support points & with weights ;. This is true, in particular,
for the optlmal design for any given cost function ¢[F ps(P, 7)]. For D-optimality, 71p
that maximizes det Fo(p, ) only needs (11, + 1)/2 supporl points at most, because

Fos(p, mp) lies on the boundary of the convex hull of the set of rank-one matrices of
the type sy(&, p)sy TeE, pyw(E) (Silvey, 1980).

We can thus restrlct our atlention to discrete experiments, associated with
normalized discretc measures on E. However, a discrete experiment usually cannot be
implemented exactly for a given number 1, of observations, since the weights must
satisfy g; = ri/n;. In most cases, the y;’s must be approximated by rationals r;/n,
(Pukelsheim and Rieder, 1992). For that reason, this approach is called approximatre
design.

REMARK 6.3

A discrete experiment is sometimes implementable without any approximation. This will
be the case for instance for the design of optimal inputs, when the input signal is
characterized by its power spectral density considered as a density of experimental effort
(Section 6.3.2.2). )

We shall now consider the main properties related to this formulation of the design
problem.

6.2.2.3 Properties of optimal experiments

Kiefer-Wolfowitz equivalence theorem. The cost function ¢ is generally chosen to be
convex or concave, depending on whether it must be minimized or maximized. For D-
optimality, det F-! has to be minimized, i.e. det F is maximized, or rather In det I,
which is concave on the set of symmetric non-negative definite matrices: for any such
matrices Fy, F5, with F| # F,, and any scalar @ suchthat 0 < o < 1,

Indet [(1 - @)F| + oF9] > (1 — @) Indet Fj + o In det F.

The set of matrices Fps(p, 7) is convex, and the design problcm amounts to
minirnization of a convex function ¢ over a convex set. The optimum is thus umque in
the sense that the matrix F,4(p, m) associated with an optimal design measure is unique.
This does not imply umqueness of the optimal design measure. However, the set of
optimal design measures is convex. The optimum can be characterized by first-order
stationarity conditions. What follows concerns D-optimality, but similar results exist for
other criteria with suitable convexity properties (Kiefer, 1974).

The design measure 71 is D-optimal if and only if det Fp(p, 71;) is a maximum, or,
equivalently, if and only if for any measure 15,

d In det Fglp, (1 - a)ymy + i)
da |(X=0

<0.
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Since

dlindetF = trace (F—] @),
oo do

a necessary and sufficient condition for D-optimality of 1 is
trace { F'pl (p, ml)[Fps(p, y) — Fps(p, 1)1} <0, for any ),

or equivalently
trace [ngl‘(p, m )Fps(p, my)] <y, for any 1.

In particular, this must be true when 11 is the discrete measure with vnit weight at a
single support point § € E. A necessary condition for D-optimality of 1y is thus

d(&, my) < np, for any Eeck,
with

1 i}
d(E, m) = e sy (& PYFpe(p. 1)5,(E, D).

On the other hand, since F (p, 1) can always be written as a linear combination of
at most [n,(n, + 1)/2] + 1 matrices of the type sy(&, p)s}(&,, p)/w(E), one can easily
check that this necessary condition is also sufficient. Now, using the fact that

e

np = trace [ngl(p, m)Fpy(p, m)] = 2 wid (&L, my),

where the 4;’s and E’s are respectively the weights and support points of the D-optimal
design measure 1, the following theorem is obtained.

EQUIVALENCE THEOREM (Kiefer and Wolfowitz, 1960)

The following properties are equivalent:

— the design measure mp is D-optimal,

— maxgeg d(E, mp) = np,
— mp minimizes maxgeg d(E, 7). 0

If w(E) is constant, for instance equal to ¢® for measurement errors i.i.d. A{0, o2),
d(E, m) is proportional to the variance of the predicted model response at § (obtained by
linear approximation for a non-LP structure). A D-optimal design measure thus
minimizes the maximum of the prediction variance with respect to £ € E, which
corresponds to G-optimality. This equivalence between D- and G-optimality does not
hold true for exact design. G-optimal design for heteroscedastic models (w(E) not
constant) is considered in (Wong and Cook, 1993), where an optimization algorithm is
suggested.
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One can show (Sibson, 1972; Silvey, 1980) that the determination of an
approximate D-optimal design is equivalent to finding the minimum-volume ellipsoid
centred at the origin and containing the sensitivity set

8 = (sy(& PN w(E) 1E e E).

The support points of mp correspond to the contact points of this ellipsoid with S.
When their number is np,, the optimal weights are all 1/np. 0

EXAMPLE 6.4

Consider the system
*

0 = =P [exp(-pin - exp(-p3n] + &),
Py — P2

with the measurement errors £(r) assumed to be i.i.d. A{0, 62), with 62 = 1. A D-
optimal experiment (choice of sampling times) is to be determined for nominal
parameter values p = (0.7, 0.2)T. Figure 6.1 presents the sensitivity set

S = [sy(t, pYo lte [0, 3]}

and the minimum-volume ellipsoid centred at § containing it.

0.1F

01k

L&is rY)

Figure 6.1. Scnsitivily set (solid line) for r between ¢ and 3,
and minimum-volume ellipsoid centred at ¢ containing it for Example 6.4;
the conlact points give the support points of 7y

The contact points, indicated by crosses, correspond to 1] = 0.3 and #2 = 1.35, which
are the support points of the D-optimal design measure. Since np = 2, each point
receives weight 1/2. 0



EXAMPLE 6.5

Consider the same system as in Example 4.21

&) =pi &1 +p3 &+ pP3(1 - &)+ p32(1 - &) + 8(E),

with £(&) assumed to correspond to an i.i.d. sequence A{0, 62), with g2 = 1. The

sensitivity sy(€, p) is
2
Er+3p1(1 = &D) ]
sy(&. )=[
y's P §2 + 2pa(1 - &)

Assume a nominal value p = (1, 2)T, and an admissible design space defined by

==L, T e [0, 1], & e [0, 1]).

The sensitivity set S is then the orthotope [l 3] x [1, 4]. The minimum-volume
ellipsoid centred at the origin and containing S touches § at three vcrtlcex namely
(3 HT, 3, DT, (1, 4)T, obtained respectively for £} = (0, 0)T, £3 = (0, 1)T and
3 = (1, 0)T. Since there are three support points for only two parameters the optimal
weights are not 1/3. Their exact values, determined from the stationarity condition for
det F ps(P, 7p), are uy = 121/840, uy = 46/105 and u3 = 117/280. Figure 6.2
presents the confidence regions L‘?i(f S when 02 = 0.25.

2.25[-
2.2
2.15F
21

P2 55t

Figure 6.2. Confidence regions .qu 3 for Example 6.5

The dashed line corresponds (o the experiment E! = (1, )T, &2 = (0, )T and
E3 = (1, 0)T, with y(&!) = 3.3354, y(§2)=3.1818 and y(E3) = 5.3303, simulated
by adding random errors to the model response at p* = (1, 2)T. The solid line
corresponds to three observations performed at the support points of the D-optimal
experiment. The same errors have been added to the model responses, yielding the
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observed values y(E}) = 5.3354, y(E5) = 3.1818 and y(EQ) = 5.3303. Although the
regions are not quite ellipsoidal (Section 6.4.1), choosing the support points of the D-
optimal experiment produces a smaller confidence region. The numerical evaluation of
their volumes by triangulation gives the values 10.7 % 10-2 for the dashed-line region,
and 9.2 X 102 for the solid-line region. The improvement might of course have been
much greater for other choices of the initial experiment. Note that the initial experiment
has two support points in common with the D-optimal experiment. 0

EXAMPLE 6.2 (continued)

Consider again the system
¥(1) = p} exp(-p31) + £(1),
with the £(1)’s i.i.d. 400, 62). The number of observations to be made is not specified,

and a D-optimal design measure is sought, with an admissible domain {0, o[ for the
measurement times. It can readily be checked that the design measure

{ 0 Up }
MH =
PV e

[ 1+ 1/e? —pll(pzez)]

~p\l(p2eY)  pH(p3e?)

is D-optimal. Indeed,

Fps(p, mp) = Py

and
d(t, mp) =2 exp(=2pat) (1 = 2pat + p3e2e? + p3i2) .

Figure 6.3 presents the evolution of d(t, 1) as t varies between 0 and 2, for p, = 2.
Since d(0, mp) = d(1/py, mp) =2, and d(t, mp) <2 for all + 2 0, mp is D-optimal.
Compare with Figure 6.4, which shows an example of the evolution of d(s, 1) when m
is not D-optimal.

D-optimality for sums and products of models. The equivalence theorem above allows
the following properties for D-optimal design to be proved. Consider two LP structures
given by

n

yolEr M= 2 p P DE D, with D@ =1.8, €
i=1

and
ny

YmalE2 21 = 2, p PP B, with P& =185 £,

i=1

and let 7 and s, be two design measures, D-optimal for vy, and y;,, respectively.
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d{t, mp) 1+ \
onl AN

0.6 A

aar R :

0.2k \
0

Figure 6.3. Evolution of d(, mp) in Example 6.2 as 7 varies between 0 and 2

25 T ; g T T T T

N

1.6

dt, m)

[ AN

o . . L . s
0 0.2 0.4 0.6 08 1 1.2 1.4 1.6 1.8 2

Figore 6.4. Evolution of d{t, m) in Example 6.2 as 1 varies between 0 and 2,
when 1 is not D-optimal

The product measure n;®m, on ) x &, is D-optimal for the sum of structures

Y1, B2 2) = p1 + pof VED + oo+ N ED
+ P;x]+|f(§)(§2) + ... +Pn]+n2—L/§?2)(g2)v

with dim p = 1y + 1y — 1, and for the product of structures
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Ymp(E1, €2, 0) = ; il PEN P,

with dim p = nyn,.

These properties may permit the design problem for a complicated model structure to
be split into design problems for simpler structures. They are often useful for models
polynomial in &, such as those used with the response-surface methodology
(Section 4.4.2). That a similar property may also be valid for the sum of non-LP model
structures is even more interesting (Schwabe, 1995).

EXAMPLE 6.6

Consider the structure
Ym(&. P) =po + p1&) + paba + 3t + patl,

with & = (&1, €T, & e [-1, 1], & € [-1, 1]. It corresponds to the sum of
Ymil&1, p(V] and yp,,[&2, p@, with

Ymi[€L pO1=p) + pPE, + pDE
and

2
Ymal€2, p@)] = P%) +p(%)§2 +P(§.)'55'

The D-optimal design measures for yp,, and yp,, coincide and are given by

-1 0 1]}

D1 = by = { 1313 13

The D-optimal design measure for the sum of structures y, is thus

oA Ll DI LB el )

19 19 19 1/9 19 1/9 1/ 1/9 1/9

It is also D-optimal for the product structure

Ymp(&s B) = po + P1&1 +pada + pa&] + pall + pstifa
+peS1ts + pr&i63 + pe&is. 0

6.2.2.4 Algorithms

Fedorov-Wynn algorithm. Consider a non-degenerate design measure 7%, From the
equivalence theorem above, ## is D-optimal if and only if d(§, 7€) < ny, for any € e E,
Choose E* to maximize d(E, 1), i.e.
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d In det Fp [p, (1 - oymk + o]

* = arg max )
: gge}; oot la=0

with s the discrete measure with unit weight at &. This amounts to choosing the
direction of steepest ascent. The structure of the algorithm is then as follows.

Step I: Choose a discrete non-degenerate initial design measurc m! (a normalized
discrete distribution with at least iz, support points, such that det Fop, mly = 0).
Choose some positive tolerance §<< 1. Set k= 1.

Step 2: Find §" = arg maxgeg d(&, mb). Tf d(E*, m¥) < npy + 6, stop.

Step 3: Set mk+1 = (1 — ay)m* + oymg«, increment k by one and go to Step 2.

The step size oy remains to be chosen. Fedorov’s algorithm (1972) uses the optimal
value

d(E*, mky - n
or=arg max det Fo(p, mt+1) = F— g
e 0, 1] npld(E*, mty — 1]

Wynn’s algorithm (1972) uses a predefined sequence (0.} that satisfies

o >0, Im or=0, Zakzoo‘
k—yeo k=1

for instance ay. = 1/(k+ 1).

The computation of d(E, mf) requires inversion of Fps(p, mk). Using the matrix-
inversion lemma to update Fﬁg(p, mk=1 to Fljl (p, 11k may be advantageous when np
is large.

Provided that a global maximizer £* is computed at Step 2, the Fedorov-Wynn
algorithm converges to a D-optimal measure whatever the initial measure, a considerable
improvement over the algorithms for exact design of Section 6.2.1. Note that
optimization at Step 2 may be facilitated if £ is finite, L-optimal design measures can be
determined with a similar algorithm (Fedorov, 1972), with another function d(§, m).
Algorithms for various criteria mentioned in Section 6.1 can be found in (Atwood,
1976, 1980; Pazman, 1986; Wu, 1978).

This type of algorithm never removes any support point from the design measure,
which slows down convergence. Several methods have been suggested to avoid this
drawback (Atwood, 1973; StTohn and Draper, 1975). Basic ideas for improvement are
as follows.

If the number of support points of m# is larger than np, it may be profitable to
remove some of them to reduce quickly the consequences of a bad choice of the initial
measure !, for instance with the following algorithm.

— Find
E*=arg  min d(Ei, mt).
Eic supp{ mt)
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— If d(§™, ) is much smaller than np, remove &* from ## and spread its weight y}
over the most promising support points (those such that d(&f, &) > np) to get a new

measure
i
mk+={€+ i# i*}
Hi

y i mky =
wi+ ot d(&f, m*) - np
ut = 2.Ld(E", k) - np]
nel
H; otherwise,

with weights

ifie I,

where
I=(ild&, mky> np .

— Compare det Fp(p, 1A+ with det Fos(p, mk+1), where mf+! is obtained from m*
by the Fedorov-Wynn algorithm. Carry forward the best measure to the next
iteration.

If at iteration k some weights p; of the measure 7% are larger than 1/np, the sum of
the differences g — 1/np can also be spread over the other support points.

If at Step 2 of the Fedorov-Wynn algorithm several equivalent support points §* are
obtained, the weight oy (which corresponds to the step size) can be spread over them.
Similarly, if the minimization of d(&/, &) yields several equivalent support points &,
all of them can be removed, and the sum of their weights can be spread over the
remaining points.

Algorithms from another family, exchange algorithms, remove the weight oy; at
Step 3 from a single support point & of 7. When ¢ = 1, this support point is then
replaced by £*. Such algorithms have been used, e.g., for estimation of mixtures (see
(Bohning, 1985, 1989) and Section 3.3.4), and for discrimination between model
structures (Huang, 1991; Huang, Pronzato and Walter, 1991).

A particularly efficient method consists of replacing Step 3 by

Step 3’: Obtain mk+! by optimizing the weights of the supporl points
supp{m*) U (E*}.

This corresponds to the maximization of a concave function over a convex set (the
weights are positive and their sum is equal to one), and sequential quadratic
programming can be used (Section 4.3.4.5).

Algorithm for finite sets. When ¥, is finite, say with cardinality N, its N points can be
considered as possible support points, the weights of which have to be optimized. A
constrained-optimization method (sequential quadratic programming for instance) can
then be used for that purpose. It may, however, turn out to be rather inefficient if N is
large.

Another approach may then be employed, close to the EM algorithm presented in
Section 3.3.4. The presentation is here for D-optimality, but it can be generalized to
other optimization problems with normalized distributions (Titterington, 1976; Silvey,
Titterington and Torsney, 1978; Torsney, 1983, 1988; Torsney and Alahmadi, 1992).
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Step 1: Choose a dlSCI’BlC non-degenerate initial design measure m!, with strictly
positive weight ,u at each of the N points €/, choose some posilive {olerance
S<<l, setk=1

Step 2:1f d(EY, k) < np, + & for each &, stop.

;S(rep 3: Update the weights according to

d(é' m’»)
#I‘LH p
P

increment k by one and go to Step 2.

This algorithm converges monotonically towards a D-optimal design measure
whatever m! (Pizman, 1986). Some weights associated with erroneous support points
may nevertheless decrease very slowly, as with the Fedorov-Wynn algorithm.
Convergence may then be accelerated by removing any support point whose weight is
clearly tending to zero. Its weight is then spread over the remaining points. One must
remember, however, that once a weight is set to zero, it will remain so for all
subsequent iterations (which is why the initial weight of each & musl be strictly
positive).

6.3 Applications

6.3.1 Optimal measurement times

When the number of observations to be made is small, the measurement times can be
individually optimized, as was done, e.g., in Examples 6.2, 6.3 and 6.4. This is
often the case in biology; see, e.g., (Landaw, 1980). The LI character of the structure,
and the simple shape of the inputs (impulse or step functions) often permit the analytical
expression for the model output at any time to be derived. The sensitivity of this output
and the matrix F(p, E) can then be found without difficulty.

On the other hand, engineering systems often involve experiments with a large
number of observations. The optimization of measurement times will then usually be
restricted to determination of an optimal sampling frequency. This problem will be
considered in Section 6.3.3, simultaneously with the determination of an optimal input
sequence.

6.3.2 Optimal inputs

We shall only consider systems with one input and one output, but the results easily
exlend to systems with several inputs and outputs. Note that, for dynamical systems,
the result of each observation generally depends on previous inputs, so the experimental
conditions & for observation i depend on those for others. The search will be for the
optimal inpul from a predefined class of admissible inputs, which may be parametric
(e.g. weighted superposition of inputs with simple shapes) or not.
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6.3.2.1 Parametric inputs

The admissible inputs are defined as the superposition of basic signals with given
shapes. For instance, one may consider the superposition of

— rectangular pulses a;[H(t —1;) — H(t - T; - t;)], where H is the Heaviside step
function, H(t)=0forr <0, H(N) =1 for1 20,
— impulses b;(r — 1), where 6 is the Dirac distribution,
i e gk
— polynomials 3, & dit~.

The parameters Z that characterize an input i are then respectively

— the starting time f;, amplitude a; and duration T; of each rectangular pulse,

— the time 7; and area b; of each impulse (b; may correspond to the dose administered
in biological experiments),

— the coefficients d}. of the polynomials.

The design problem then amounls to a nonlinear optimization problem with respect
to . One of the main interests of this approach is the possibilily of taking any kind of
constraint on the input into account. The basic signals can sometimes be chosen so that
the analytic expression for the associated model response is easy to derive. If the model
structure is LI and the initial conditions are zero, the response to the input given by the
superposition of the basic signals is the superposition of the responses to these signals.
The sensitivity functions used to construct F(p, E) can then be derived analytically.

EXAMPLE 6.7

Consider the system given by

d * *
T Ym(t P =p ym(t, P9 + u(0). ym(0-, p*) =0,
Y0 = ym(t, p*) + (1),
where p* is lhe paramelter (o be estimated, with {£(r)} an i.i.d. sequence distributed

MO, 02). We wish to determine an optimal input of unit area (i.e. a unit dose), in the
family

o
u()=(1 —a)5(r)+T [Hh-Ht-T)], T>0,0< < 1.
Assume that only one observation is to be made. We also wish Lo find the optimal
measurement time 7, with the constraint r < T. The experiment to be performed is thus

characterized by the vector E = (&, T, )T. The response of the model yy(1, p) for
0 <r<Tis given by

ym(r,p)zl%: + expi-pn [ - a1 +PiT)]

The Fisher information matrix, here a scalar, can be written as
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=y L a 1, a3
F(p. 8)=— {exp(—pz)[pzT— t+0u(1 4 70)] - pzr}

and the D-optimal experiment is
_ I.T
Ep=(0,T7,7),
p=0.T1.7)

with T arbitrary. The optimal input in the family considered is thus the unit impulse. A
generalization of this property is given in (Cobelli and Thomaseth, 1985); see also
(Cobelli and Thomaseth, 1988a, 1988b). ¢

In contrast to biology, for which feasible inputs generally have simple shapes,
engineering may allow very large classes of admissible inputs, so the restriction to
parametric inputs must be relaxed. Note, however, that determining an optimal
parametric input may serve (o initialize input design in a larger class. Moreover, some
particular constraints on the shapes of admissible inputs can easily be taken into account
for parametric inputs, but raise more difficulties for nonparametric inputs.

6.3.2.2 Nonparametric inputs

The first difficulty lies in the calculation of the Fisher information matrix F(p, Z). The
most general approach computes the sensitivity functions by simulating differential or
difference equations (Section 4.3.3.2). The optimization of a cost function ¢(F(p, E)]
may require a large number of simulations, which makes this approach rather heavy.
However, an analytic expression of F(p, £) can be obtained for LI stationary models,
treated in what follows. An input signal may then be characterized by its evolution as a
function of time or by its spectral representation, and the two approaches will be
considered in turn. See also (Mehra, 1974b; Zarrop, 1979; Titterington, 1980;
Krolikowski and Eykhoff, 1985).

Time domain. We consider here discrete-time models, and the entries of the vector Z of
experimental conditions are the input sequence {(1)} to be applied to the system. The

dependence of F on E is omitted to simplify notation.

EXAMPLE 6.8

Consider the FIR structure
y(1) = B(q, pHu(ty + (), t=1, ..., ny,
where the &(1)'s are i.i.d. A0, 62), with
B(q,p)=big~' + ... + byq”"™.

The problem is to determine the input sequence to estimate p = (by, ..., b,,h)T.
Consider first inputs with bounded average power



Yy
1

7 w(t-1), t=1, ..., np.
I

=1

Py £ Pum“, with P, =

The model structure is LP, and the Fisher information matrix is

F(p) = - RTR,
o‘~

with
w(0) w(=1) ... ... u(l-np)
1(1) n0) ... ... u(2-np)
wim=1) ... ... ... u(n-ng)
which implies
n u(r-1)2 e e u(t=Du(t-ny)
1
I‘(p)~—z
O i=1
u(t=Du(t=np) ... ... u(t-1p)?

Since the average power of the input signal is P, the diagonal terms of F(p) are
approximately equal to Pyn/c2. Consider the matrix F(p)o2/(Pyn,). Its diagonal terms
are approximately equal to one, and it is positive-definite provided the input signal is
rich enough. Its determinant is thus a maximum when it is equal to the identity matrix.
The matrix F(p) then becomes approximately (Pyn/c? )Ly, the determinant of which is
a maximum for Py = PUmax A necessary and sufﬁcmnt condition for the input
sequence up to be D-optimal is thus

m
1

Py up(t=Hup(t=ky = Py _ Oik, L k=1,..., np,

=1

where 8. is the Kronecker delta (&t = 1 for i = k, O otherwise). When the number of
observations tends to infinity, an i.i.d. sequence is thus oplimal. For any finite ny, a
binary sequence approaching this condition can be determined (Goodwin and Payne,
1977).

Consider now the case of inputs with bounded amplitude,

-1<u(n<1l, Vi.
From the discussion above, the Fisher information matrix for a D-optimal input is
proportional to the average power Py of the input signal, which should be maximized.
This is obtained for
n(r) =1, vr.

In this case, an uncorrelated binary sequence (-1, +1) is thus D-optimal.
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For both types of constraint, the optimal input does not depend on the value of the
parameters b;’s since the model structure is LP. 0

Consider now the more general case of a Box-Jenkins structure (Sections 2.4
and 3.3.2):

y(1) = F(q, pHu(t) + G(q, pHe(r),

where the £()’s are i.i.d. A0, 62) and G is a slable rational polynomial function in 4!
with stable inverse. Assume that 2 is unknown, so that the extended parameter vector

pe = (pT. AT
has to be estimated. Since 62 is unknown, the first element of the impulse response of

G can be taken as one without any loss of generality.
The prediction error i3

ep(t, p) = G~ (g, P)y(1) - Flg, p)u(nl,
and forms an i.i.d. sequence when p = p*. The log-likelihood of the 1, observations ys
is
ng

In 7(yslpe) =~ 5 In(270° )—~— Zepu p).

The Fisher information matrix is

d In m(ySlp,) 9 In n(yslpc)}

Fpo)= E |
¢ ySlpe Ipe apt
with
1
2 In m(yslpe 1 g 9> 1 A2 & 2
api—l"—) > zep(r Pse,(t, Pe) - Z”L,W 354 3pe Zap(r P,
=1
where 3
_ e[](t! p)_ a(_’p(l, p) T
Scp(lo Pe) = BPc = [ apT ’ 0]
is the sensitivity of the prediction error with respect to pe. Note that
dep(t, p) 0G oF(q,
=6l m[ 5P IGGR) 411, py + 2 LR (),

where 9G(g, p)/dp and 9F (g, p)/dp are vector functions of the time-delay operator g~/
Since the first element of the impulse response of G is one, its derivative with respect to
p is zero and [0G(g, p)/dp]ep(t, p) only depends on past prediction errors ep(f—7, p)
with 72> 1. We thus obtain

E {ep(r+, p)scp(r, pe)} =0,V t20.
ySlpe
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Since the £(1)’s are i.i.d. A{0, 62), we also have

E {ep(t+7, plep(r, p)} =0, ¥V 7>0,
ySlpe

E {eg.p) =02 E {gu.m} =0 E {ept.p} =30
yélpe ySlpe yéipe

The calculation of F(p.) finally yields

Un

1 T n, (002002
Fpo)= E { = f, posa (1, T (e |
P ¥l pL{ o2 i ol Pl o) "0t \9Pe opk

Provided o2 does not depend on p, which is assumed in the following, this matrix can
be written as

F(p) 0
F(pe) = oT Ju |,
204

with

1 dep(t, p) dep(t, p)
F(p)= E .
(p) = y5|p{ 52 ’_2 op apT ]

The fact that 62 is unknown does not modify the expression for F(p). In the rest of this
section we shall only consider the estimation of the vector p and thus the matrix F(p).
In particular, the expression for F(p) will be found when the input is obtained without
feedback and the rational fractions F(gq, p) and G(q, p) have no common parameters.

REMARK 6.4

A similar result is obtained when the £(r)’s are non-Gaussian i.i.d. random variables.
The expression for the matrix F(p) associated with a stationary probability density
function 7 independent of p is simply obtained from the one above by subslituting the
weighting factor

1

W= J [%(—E—)T L (]E ,
de ()

where D = (g m(g) > 0}, for the covariance o2 0

Assume first that the input « is obtained without feedback. Then

E {ep(t, pu() =
ySlp



and thus, taking the expression for dep(r, p)/dpT into account, we get

ny

F(p) = 2 [671a. ) FELR o] [6-1g, ) 2EGLL 0]+ Fet,
T =1

where the matrix I; is independent of the input sequence 1 and can be written as

Uun
Fep) = E {1, [6-1(q, p)mep(r »]
yslp 0=
x [G-1(g, p)—-—g]l)‘—mep(t, T}

Assume, moreover, that F(gq, p) and G(g, p) have no common parameter, and
partition p into

=g, P

where pr and pg are the parameter vectors in F and G respectively. IF(p) can then be
written as

Fr(p) O ]

B )=[
P70 Fep

where
ny

, dF(q,
Fr(p) = 2} [6-1(g, 2 ELLB) ()] [ 61 g, )LL) ]
=
and
n

Fg(p) = yfp{ é ; [G-1(q, p Q“Ga%ép—) ep(t, p)]
x [G-(g, p)aia(u;) ep(t, )] T}

= E ([6-1(q. oS LR . iyl [G-1(a. p)m ep(t, T}

ad
o2 ys ySlp PG

The expected value in the last term is the autocorrelation at lag zero of the prediction
error filtered by G-1(g, p)dG(g, p)/dpG.

Fg(p) does not depend on the choice of the input sequence (so # cannot help us
estimate pg accurately), and the optimization will thus only involve a functional of the
Npe X 1pp matrix F(p). The D- optnmahly criterion, for instance, leads to a search for
thc mpul sequence rp that maximizes
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mn
jot = det L 3 [6-1(g. p) 2L (0] [G-1(q, ) PR ]
=1
Define

v( = G-(g, p)%%mzl(t)

Jp(i) can then be written as
m

jp) = det == Y v(nvT(,
0° 1=1

where the components of the v(r)’s satisfy recurrence equations, as for the sensitivity
functions calculated in Section 4.3.3.2 (Goodwin, Murdoch and Payne,
1973; Goodwin and Payne, 1977). The determination of a D-optimal input sequence
{u(#)} is a nonlinear optimal control problem, which can also rely on a state-space
model structure; see, e.g., (Mehra, 1974a, 1974b, 1981; Kalaba and Spingarn, 1982,
1984) and the comparative study (Krolikowski and Eykhoff, 1985). Applications in
biology can be found in (Kalaba and Spingarn, 1974, 1981; Cobelli and Thomaseth,
1985, 1988a, 1988b; Cobelli, Ruggeri and Thomaseth, 1984).

EXAMPLE 6.9

Consider the ARX structure
Alg, pAY() = B(g, pplu(r) + &(1),
where the £(f)’s are i.i.d. A0, 62). Let

p=(ay,az ...,an, by, ba, ..., b,,h)T
and
pe= (T, o)T.

One easily obtains

B(4. pR) ept=1, ) 7]
Aq.pp) "D AN
de.(t, p) B( ) e (t—1,, p)
p _ q. PR _ “pv M
b | Ag.pa) T AT |
—n(t-1)
L. —n(1-ny,) -

which yields



F(p) 0
F(pc):,: (’T —"LJ'

204
with
”l Ilt
F(p):% VF(’)VE(’)*‘ E {'%ZVG(I)VE(’)}’
(o 1=1 y\|p o- =1
where
B(a. ) ) epli-1. p)
A(q, pa) A(g,pa)
B(q, pp) eE(I—n . P)
VE =| A(q, pa) wit=ny) | and  vg(r) = A(q, SA)
—u(r=1) 0
L —u(t-ny) J — 0 -

Since this is a special case of the Box-Jenkins model structure, with
Fig, p) = B(q, pg)A(q, pp) and G(q, p) = I/A(q, pa), the matrix F(p) can also be

written as
LA

Fpy =% 2 [671a.

. a—fgfg—'ﬂ un][6-\(a, p)@F—é‘};"«) u(n)] "+ Fa(p),
=1

with

N
Fom = E { + 2, [6-1@, p)aig‘l%"’ep(n ]

yilp O =i
0G(q,
< [6-10. ) TGP epe. m]T}.
However, F and G now have common parameters, so Fi(p) affects the choice of the
optimal input sequence.
In the rest of the example, we consider the particular case n; = np =1, i.e.

Y(e+1) = —av(t) + bu(r) + g(1+1).

We wish to find a sequence u(1), ..., n(n) that maximizes det F(p), with
p = (a, b)T. Inputs have either bounded amplitude or bounded average power. The

matrix F(p) can be written as

+1 — a2t
K ya(-1) + o2 | a2 —u(1=1)y,(+-1)

F(p) = ﬁ > l-a ,
1=2 —u(t=1)y (1) 1w2(t-1)



with A(q, @)y, (1) = B(g, bu(1), i.e.

Ymlt=1) = —ay,(:=2) + bu(-2) for 1 > 2, and y,(+-1) =0 for 1 < 2.

Let F(p, k) be the Fisher information matrix associated with the first k data points (so
F(p, n,) = F(p)), and define the state vector

xX(k) = ym(k), F11(p, k), Fra(p, k), Foa(p, OIT.
It satisfies the nonlinear recurrence equation

B —ax(k) + bu(k) 7]
1 2 1 — g2(k+1)
Xo(k) + *C;z'xl k) + —l—:—;l—?-_

x(k+1) = f{x(k), u(k)] = vq(k) - % w(k)x (k) ,
k e

xa(k) + -l—ltz(k)
| o2

with x(k) = 0 for k < 1. The determinant of the Fisher information matrix F(p) is
det F(p, n) = xo(n+Dxyg(n+1) - .\‘g(nlﬂ ).

The Lagrangian to be minimized with respect to the input sequence is

"y

L=—[xs(n+1xg(n+1) — .1‘%()1[+l)] + z AT [E[x(K), u(k)] — x(k+1)],
k=1

with A(k) the adjoint state vector.
Consider first the amplitude constraints,

“1<uk) <1, k=1,...,n.

The gradient of the Lagrangian with respect to the input is

oL of
9L a1 G0 .
all(k) - ;\: (k) au |x(k)‘ [l(k)’ k= 1, ey Ny,

and the adjoint state is such that
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It thus satisfies the backward-in-time equation

o7

Alk=1) =5 Ak,
D=3 ey, iy
or equivalently
_ o
> ~\1£/~) J!(L)
o= o=
AMk-D)=| 0 | 0 0 |Ak), k=2,...,n,
0 0 1 0
L O 0 1

with the terminal condition d£/0x(n+1) = 0, i.c.
M) = [0, =x4(n+1), 2x3(n+1), =xo(n+1)]T.

We thus obtain for k=1, ... ,

A(k) = Ay = —xq(n#1), A3(k) = A3 = 2x3(n+1), Ay(k) = Ay = —x9(n+1),
and

Ay (k=1) = —ad (k) -

g+ Dx (k) 2x3(m+Du(k) b=0 "
5 - 3 =Ly sy e

o2

with A;(n)) = 0. The gradient of the Lagrangian with respect to the input is finally given
by

aL o 2 Dxg(k)  2xp(n+Duck)
au(k)'b'll(l‘)_ e B &2 o k=1

v eee sy N,
which can be computed for any sequence of inputs by simulation of the forward-in-time
system x(k+1) = f[x(k), u(k)], followed by simulation of the backward-in-time
recurrence equation for A,(k). This corresponds to the adjoint-state method for the
calenlation of gradients, presented in a more general context in Section 4.3.3.2. The
adjoint-code method of the same section could be used as well, with the direct code
computing det F(p, n)) by simulation of the recurrence equation x(k+1) = f[x(k), 1(k)].
An optimal input sequence can be determined by, e.g., a gradient-projection
algorithm (Section 4.3.4.4), with easy implementation here due to the simple form of
the admissible domain for the input, Goodwin, Murdoch and Payne (1973) suggest the
simple rule

. oL
u(k) = — sign [m]
Note that the cost function is not convex (which is common for exact design problems),

and the solution may turn out to be only locally optimal. Figure 6.5 presents the cost
contours for det F(p, 3) in the plane defined by #(2) and 1(3) when u(1) is set equal to
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one (a=0.1,b=1, 62 =0.01). The sequence (1, 1, -1) is locally optimal; the global
optimum corresponds to (1, ~1, —1). Optimization should therefore be repeated with
various initial points.

u(2) o

Figure 6.5. Non-convexily of the design problem (u(1) = 1)
Consider now a constraint on the average power of the input signal,

"y

|
;;; & “j(’t) Punmx'

A first possibility would be to use a constrained optimization method for the whole
input sequence, with the gradient of the cost compuled as previously. However, the
dimension of the space can be reduced by taking advantage of the boundary conditions.

With the same notation as previously, x4(n+1) = ”lP“mux/G and the terminal
condition on A4 is thus removed. One obtains

P
Aoy = Ay = — 2 I Aa(k) = A3 = 2ea(ngkl), Aa(k) = Agy k=1, ny,
o’—

with A4 free, and

:Z_’{,lpum:\x'\-l (1‘2 /1}1!(1\)
o =

Ay(k=1) = —ah (k) -

k=2, ..,n

with A)(n) = 0. The gradient of the Lagrangian with respect to the input is now given
by
/’Lq.\‘] (/{) 2).4{.((:’()

all(k) =bA (k) - .0_2 + 2 k=1, ..,n.




From 0.£/0u(k) = 0, one obtains

k)=—"o
u(k) 27

o~ [LIB‘L_(")_ b/ll(k)} = hxy(k), 41 ().

Substituting this expression for u(k) into the backward-in-time equation for A,(k), and
inverting the result gives the forward-in-time equation

-1 5
bA nP A

/1,’{:—3—_ lk_l 2% _3-k= 'k,l‘{k—l,

1(k) [2/14 a] { 1(k=1) + ( 2 + 4/14)\11( )} glxy(k), Ay (k-1)]

The problem is now to find initial conditions A;(1), A3 and A4 such that the terminal
conditions A;(n) =0, x3(n+1) = A3/2 and x4(n+1) = mPy_, /02 are satisfied by the
forward-in-time system

u(k) = hlx(k), A ()],
x(k+1) = f[x(k), u(k)],
A (k1) = glx (k+1), A1(0)].

With @ = [4;(1), A3, A44]T, the condition to be satisfied can be written as ¥(®) =0,
where

5

P T
Y(w) =[}Ll(nl), x3(m+1) ~ /%, xq(n+l) - ”l”&} .
< O‘-

It can be solved for instance by the Newton-Raphson method; see, e.g., (Press ef al.,
1986). The Jacobian matrix %¥/0®@T must then be computed. Approximation by finite
differences is often used. However, since ¥ is computed by a code that simulates the
nonlinear system above, the adjoint-code technique (Section 4.3.3.2) permits
computation of 9'¥/d®T without any approximation. Note that again the solution
obtained by the Newton-Raphson method may prove only locally optimal. 0

The complexity of this approach can sometimes be avoided when the contro] law of
the system can be determined and implemented on-line. A recursive characterization of
the uncertainty in the parameters then allows, as we shall see, compulation at each time
instant ¢ of the input «(f) to be applied (Keviczky, 1975). In general, however, this one-
step-ahead policy is not globally optimal.

Sequential design: on-line control. Consider again the ARX structure
Alg, Y1) = B(q, pp)u(1) + E(1),

where the £(¢)'s are i.i.d. {0, 62), This recurrence equation can be written as
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y(t+1) = ym(t+1, p*) + (1+1),
with
ym(t+1, p) = rT(1)p,

F(0) = [u(0), u(t=1), ..., w(t+1-np), =), =y(t=1), ... , =y(t+1-ny)]T
and
p=(1, b ..., b"h’ ai, az, ..., a,,u)T.

The recursive least-squares algorithm may be used to estimate the parameters of this LP
structure (Section 4.1.4). In particular, up to multiplication by 2, the covariance
matrix of the parameter estimates satisfies

= p(p) - POrOrTOP@).
P(r+1)=P(r) - L+ rT(OP(Or()

The problem considered here is to choose at each time instant r the input n(¢) that
satisfies the constraints and minimizes a scalar function of P(++1). Consider D-optimal
design with amplitude constraints

-1 sl
The cost is
T,
det P(+1) = det P(7) det [I,,ﬂ+,,b - M},

1 + rT(HP(Or(n)

or equivalently, since det (I + vlvg) =1+ v'grvl,

l

det P+ = B ior(n

det P(1).

The (one-step-ahead) D-optimal input up(f) should thus maximize

PPN = p11(Du(1) + 2p31 (-1 (D(r) + £ ((DP2a(Dr_ (1),
where
v () = [u(=1), ..., u(t+l=—np), =v(), =y(+=1), ... , =v(t+1-ny)]T,

T
P0) =[ pL® pai) } |
p21() Paa(n)

and

The scalar function rT()P(£)r(7) is quadratic in 1(f), and has its minimum at

_ Ell('m

win = p11(1)

The D-optimal solution is thus



f+1 if u™(0) <0,
)=
4ol l-1if n* () >0,

and up(f) = +1 if 1™(f) = 0.

REMARKS 6.5

The same sequential approach may be employed with the OBE or EPC presented in
Section 5.4.1.1 for parameter bounding (Pronzato and Walter, 1991b).

The characterization of uncertainty is exact, and much simpler than that in
Example 6.9, which also concerned an ARX structure. The reason is that we use
here the observed information matrix 6—2P-!, which is determined on-line and
depends on past observations, whereas in Example 6.9 the uncertainty in p had to
be evaluated before making any observation, through the expected information
matrix F(p).

The approach above is myopic (only one-step-ahead optimal), and better
performance may be obtained with an uncorrelated binary sequence (-1, +1).

When the model structure is not LP, the estimation is generally not recursive.
However, when the estimation is by the recursive techniques of Section 4.3.8 and
parameter uncertainty is characterized by the Fisher information matrix, sequential
design can be used as for an LP structure.

The sequential design of a globally optimal input sequence is generally extremely
difficult, as it is a stochastic dynamic programming problem. Only very simple
examples have been treated; see (Zacks, 1977; Pronzato, Walter and Kulcsar,
1993; Kulcsar, Pronzato and Walter, 1994) for examples with » = 2. Suboptimal
solutions taking into account more than one step ahead can be determined, e.g.,
through approximation of the posterior density of the parameters (Kulcsar, Pronzato
and Walter, 1995; Pronzato, Kulcsar, and Walter, 1996). 0

When no recursive characterization of the uncertainty in the parameters is available,

Goodwin and Payne (1977) suggest recursively constructing a bounded signal 1(z)
(e.g., a binary sequence) such that its power spectrum tends to that of the optimal input
signal as n tends to infinity. We shall now investigate the characterization of the optimal
input sequence through its power spectrum.

Frequency domain. Consider again the matrix Fp(p) obtained for the general Box-
Jenkins structure without feedback

ne

Fr(p) = ? Z, [G-1g, p) a—paig;ﬂ un][G-(q. p)ﬁga%,q;—f'—) un)] .

Assume that sampling is uniform, with period T, and let the number of observations
tend to infinity. The matrix

= . 1
Fp(p)= lim TEFF(P)

1 —e°
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is thus the average Fisher information matrix per unit time. If

V() = G-\(q, p)%";m u(t),

the term
e

1 2 [6-1(g. ) 2558 R) (0] [ 6 (g, py 252 o]

n[—)w M =1

corresponds to the correlation matrix of the signal v at lag zero. From Parseval’s
theorem, it is equal to the integral of the power spectral density P, (@) of this signal.

Introduce the normalized angular frequency @ = Te. The matrix F g(p) can then be
written as

n/T T
Trp) = = JTv(m)dm—— ii’v(a})da)
T
== Jap o) G-1(e/e, G-I p) (. p) = T @),
-

where lpu( ‘w) is the power spectral density of the input signal ». In what follows, the
normalized angular frequency will be denoted simply by . Since « is real, py(@) is real
and even, and F g(p) becomes

T
Trp) == | Frp, o)pu(w)do,
To
with
FF(P m)_“_ [MG ‘(eJ“’ p)G- l(c —jo )M[’_]

where Re(x) is the real part of x.
Consider now the case of inputs with unit average power, i.e.

T
|
= do=1.
”Oqu(w) o

One can then show (Goodwin and Payne, 1977; Zarrop, 1979) that the set of matrices
Fr(p) is the convex hull of the set of matrices obtained for sinusoidal inputs (each of
which corresponds to a spectral line). From Caratheodory’s theorem, any matrix I g(p)
may thus be written as the sum of at most [npp(npg + 1)/2] + 1 matrices, each obtained
for a sinusoidal input. This holds true in particular for the matrix associated with the D-
optimal input signal. Taking the special structure of F g(p) into account (F and G are



assumed to have no common parameters) the number of sinusoids required can still be
reduced. Indeed, one can show that any matrix I p(p) belongs to an affine manifold
with dimension 7, s0 npy: distinct frequencies are enough to construct an optimal input
signal (Goodwin and Payne, 1977; Zarrop, 1979). Any matrix F g(p) can thus be
written as
Ny
= ] . ,
Fg(p)=-= Zy,- Re[v(Jw,-)vT(—]a),»)], ny Sy,
0% i1 r
with v(jw) given by
. i oF (e, p)
= l(ejtn py——l 2P/
v(jw) = G~'(e/, p) opr
The search for an optimal input can thus be performed in a 2, -dimensional space (the
frequencies @;/2n and average powers Hi of the ny, ﬁmusmds) Thls corresponds to the
continuous-design approach presented in Section 6.2.2.1. The distribution m(d€) of
experimental effort is replaced by p,(w)dw, with py(@) the power spectral density of the
signal u(t). The optimal spectrum is discrete and characterized by

Ji=1, 0. ngrm
u

Ny Ly

Pup(®) = nz,u, 5(a)+ o; + 8o - o) ], with 2;1, =1,
i=1

Pip=

which is a condensed notation for

where & is the Dirac delta. Although this optimal experiment corresponds to
approximate design theory (Section 6.2.2.2), it can be performed without
approximation if the observations are continuous and the system is stable enough for the
initial conditions to have no influence. The optimal input can be implemented in either of
two ways:

— by application of a combination of 1, sinusoids characterized by { @, i},
— by successive application of ng, sinusoids, with different frequencies w;/27 but the
same power, each for a duration proportional to Y;.

The similarity to approximate design permits use of the optimization algorithms
presented in Section 6.2.2.4 to determine optimal input spectra (Mehra 1974b, 1981;
Zarrop, 1979). As already mentioned, these algorithms yield globally optimal design
measures.

REMARK 6.6

The average power of a sinusoid with amplitude A and frequency /27 is A2/2 if
ay # 0 and A2 if ay = 0. Its power spectral density is
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A2 )
o) = - [6(w + y) + 80— oy)] if @y 2 0

27A28(w) otherwise.

EXAMPLE 6.9 (continued)

Here the matrix F g(p) is

T
b2 N o2 a+cos(w)
-b
— 1 1+a2+2cos(w)  1-a* 1+a?+2cos{ W)
Frp) = —;5 a+-cos(w) pu(m)dw‘
7[ b —— 1
14+a2+2cos(w)
0

For a single sinusoid (which may suffice since only two parameters are to be estimated,
see Remark 6.7 below) the D-optimal angular frequency is

a)D=arccos|:~ 2a :I 0
I +a?

EXAMPLE 6.10

Consider the same model structure as in Example 6.8, with ny, = 3. For the general
notation for a Box-Jenkins structure, this corresponds to

F(q,p)=B(q.p)=b1g7! + bag™2 + b3q™3, G(g, p) =1,
p = pi = (b1, by, 1)3)T.

The matrix F‘F(p. w) corresponding to a sinusoid with angular frequency @ can be
written as

Fp(p, w) = ;15 Re([exp(—jw), exp(-2jw), exp(-3 ja))]T

x [exp(jw), exp(2jw), exp(3jw)]}
or equivalently

| 1 cos(w) cos(2w)
F71:(p, ) = ey cos(w) i cos( )
a cos(2m) cos(w) 1

When sampling at frequency 1/T, the matrix F g(p) thus takes the form



I x1 x
= 1
Frp)=—| x1 1 x|,
0“...
x x|
with
b3 3

si=1 [cos(@pu(@do and 1 =L [coso)p(@)de
To To

The maximum of det F g(p) is reached when F g(p) is proportional to the identity
matrix, i.e. when xj = x3 = 0 (Goodwin and Payne, 1977). This corresponds to py(w)
constant on [0, z] (white noise), and confirms the result of Example 6.8. The D-
optimal input, however, is not unique. Identical performance is achieved for the input
defined by the sum of two sinusoids, at normalized angular frequencies /4 and 3/4:

u(r) = cos(z% /) + cos(i—; N,

or equivalently
2 if t = 0 [modulo 877},

u(f)=< -2 if t = 4T [modulo 8T],

0 otherwise.

REMARK 6.7

A condition for persistency of excitation can be derived from the expression

LAY

Trp) = > i Re[v(juopvT(jeo)]
" =]

for the Fisher information matrix (Goodwin and Payne, 1977). Indeed, each term
Re[v(ja)_,-)vT(—ja),-)] has rank two if @; # 0 and rank one if @; = 0. F (p) is thus singular
if and only if the number 1, of distinct frequencies in the input signal is such that
2ngy < Npp (the frequencies 0 or 1/2, i.e. @ =0 or x, count for 1/2). 0

The results above extend straightforwardly to continuous-time systems by replacing

— g =exp(jw) by s = jwin all expressions involving frequency,
— m by oe in the bounds of integrals.

EXAMPLE 6.11

Consider the LI system defined by

d * 4e
T*a;)’m(ﬂ T) +ym(t, T7) = u(t), ym(0, T*) =0,



y() = ym(t, T + 1(D),

where the noise 7(f) has a power spectral density 1/(1 + a2a?). The transfer function of
the model is given by

FGiw, 1) = .
Ger 7 I +jre

We wish to choose u, with unit average power, so as to estimate 7 as well as possible.
From the results above, since np = 1, one sinusoid is enough. For a sinusoid with
frequency a2,

- —jt : ) j© w(1 + a?w?)
Iy ):—; 1 + jwa)1 - jow = .
F(P (1 +ja)7:)3( joa)1 - a)(l —-jo? (1 + 2w?)?

Maximization of the (scalar) F(p) yields the D-optimal input signal defined by

1 .
————  if2a2< 12
@p = \j 72 - 242
oo otherwise.

When a tends to 0, the noise becomes wide-band, and the D-optimal angular frequency
is wp = 1/7. This is intuitively appealing: for very low frequencies, the magnitude of the
output does not depend on 7, whereas for very high frequencies the signal is buried in
the noise. 0

REMARKS 6.8

— A sequence of independent random variables is necessarily white noise. In the
continuous-time case, such a signal should have infinite variance, which has no
physical meaning. A reasonable assumption is that the continuous-time signal £ is
white (has a flat power spectral density) over a frequency range large enough for the
correlation between the £(r)’s to have negligible effects on the measured outputs.

— Throughout this section, «(1) has been assumed independent of &(1). This is no
longer true if the input signal is obtained by feedback of the output. Another
expression must then be calculated for the matrix F(p), which leads to the following
results (Goodwin and Payne, 1977; Gustavsson, Ljung and Soderstrom, 1981
Gevers and Ljung, 1985, 1986): when F and G have no common parameters and
the power constraint is on the input, the optimal input signal is obtained without
feeding back the output; when the power constraint is on the output, feedback is
generally useful (minimum-variance control).

— More recent resuits (Hjalmarsson, Gevers and De Bruyne, [996) show that under
rather general conditions, if the purpose of the identification is the design of a
controller from the identified model, the experiment should preferably be performed
in closed loop.



6.3.3 Simultaneous choice of inputs and sampling times

When the input is parametric, the components of the vector & that characterizes the
experiment may consist of the n sampling times and the parameters defining the input
signal, as in Section 6.3.2.1 (Example 6.7).

When the input signal is nonparametric, the construction of an optimal non-uniform
sampling schedule (i.e. with T} = 1441 — 1t not constant), although theoretically feasible
{Goodwin and Payne, 1977), is rather difficult, especially off-line. An extension of the
sequential approach described in Section 6.3.2.2 for the determination of the input u(fy)
makes it possible to choose () and 7 simultaneously on-line (Goodwin, Zarrop and
Payne, 1974; Goodwin and Payne, 1977).

Consider now the case of uniform sampling (T} = T constant) for a Box-Jenkins
structure. The whole matrix I'(p) is now influenced by the choice of the sampling
period, even if F and G have no common parameters (compare with Section 6.3.2.2).
We shall, however, assume that the spectral characteristics of the measurement noise are
known. Consider then a system with the state-space representation

%;E = Ax(1) + bu(y),
y(1) = cTx(0) + du(t) + n1),

where x(f) is the state vector, u{) the (scalar) input, y(f) the (scalar) measured output,
and 7(f) a Gaussian stationary coloured noise, with known power spectral density
y(w). Note that 1(r) can be considered as the result of filtering a Gaussian white noise
£(f) with unit spectral density by a filter with transfer function y!/2(jw). In the frequency
domain, the transfer function of the deterministic part of the model is

F(joo, p) = eT(jol - A)~'b + d.

The transfer function G(jw) associated with the random part does not depend on the
parameters to be estimated. Let the number of measurements tend to infinity. The
average Fisher information matrix per unit time is then

- 1 oF (jo, p) dF (-jw, p)
F(p) =n J “'a,% v (w) —a'pTLPu(a))dco.

—00

where py(w) is the power spectral density of the input signal. Again, inputs with unit
average power are considered:
[~ )

Py :51; _[Pu(w)da)= L.

—00

If the bandwidth of the input signal is restricted to @y, i.e. @ € [-wy, @y], the matrix
F(p) is given by
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wy
=y L [dFGwo,p) _, - dF(-jo,p)
F(p)= 2nJ’ op V(@ pT Pul@)da.
—y

Assume that the output is sampled at a frequency @y/27x larger than Nyquist’s lower
bound, i.e. @s > 2@y. Then the deterministic part of the signal (due to u) is not altered,
but aliasing occurs for the random part due to 1. The power spectral density of the
sampled noise is given by

[0))

w(0) = W) + 2, yikos+ o) + ylkas - 0), o€ [- 5, %],

k=1

$0 Wy(®) > W ). The Fisher information matrix F 4(p) after sampling is obtained by
substituting ys(@) for y(w) in F (p). The difference F (p) — F s(p) is non-negative
definite, so sampling can only reduce the precision of the estimates. However, this
effect can be avoided by introducing a suitable presampling filter, with a transfer
function Fr(jw) such that IF(jw)l = 0 for w ¢ [-as/2, we/2] and Fe(jw) is invertible
elsewhere (Goodwin and Payne, 1977). Indeed, the power spectral density yr{@) of
the filtered noise then satisfies

VE{ ) = IF(jo)l? y(w),

and sampling does not produce aliasing of this filtered noise. The Fisher information
matrix after filtering and sampling is thus

oF(—jo, p)

- JF (jo, . - :
F r(p)=2—17-r J-(J;;—[’)Frow) [WEd )] Fi(~je) T Plwdao,

so T ((p) = F(p). Sampling at the frequency @¢/27 produces @y/27m samples per
second, and the average Fisher information matrix per sample is

2T —
Fps(p) = = F (p).
[0

The optimal sampling frequency is thus the lowest satisfying Shannon’s condition (i.e.
the lowest frequency at which there is no aliasing of the input signal «), @ = 2w,. The
matrix IF ps(P) is then

Wy
OF(jo, OF(~jo,
Fps(p) = IE JRe[—~(%122 yl(@) —(ap%"—)] pul@)da.

0

A method for determining the optimal input spectrum is presented in (Zarrop, 1979).
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REMARK 6.9

Choosing the lowest feasible sampling frequency might seem surprising. Nole,
however, that the criterion relies on the average Fisher information matrix per sample.
For a given number of samples, this policy thus yields the largest possible duration for
the experiment. 0

EXAMPLE 6.12

Consider again the system of Example 6.11, with transfer function

F(jo, 7)== ———,
/ 1 +jT'w

and measurement noise 7)(t) assumed Lo be wide-band, i.e. y(w) = 1. We want to
determine the D-optimal angular frequency wp of a single sinusoid in order to
estimate 7. The average Fisher information matrix per unit of time is

a?

Fe-—2
® (1 + 20?)?
When the highest frequency in the input signal is @,/(27), sampling must be such that
s = 2y and the presampling filter must remove all components at frequencies above
w,/(2m). For a sinusoid at frequency ay/(27), the average Fisher information matrix per
sample is
Ty
FpsP)=—"7 -

ps (1 + 12w,2)2
The angular frequency of the D-optimal input is then @wp = 1/(7V3), and the sampling
period is Tp = 2n/@sp = V37T. Recall that when sampling was not considered, the
angular frequency of the D-optimal input was wp = 1/7. By reducing the frequency of
the input signal, one can increase the sampling period and thus the duration of the
experiment. 0

REMARK 6.10

The experiment can also be decomposed into subexperiments, each employing a
sinusoid with unit power and frequency @y/(27), with sampling period T; = 7/@y;. The
average Fisher information matrix per sample for the whole experiment is then

N
” J—
Fps(p) = Z ui— ¥ (p, o),
=l @ui

where T (p, wy;) is F (p) calculated for a sinusoidal input with unit power and
frequency @y,/27. The scalar y; indicates the fraction of the total number of
observations taken in the ith subexperiment (Goodwin and Payne, 1977). 0
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6.4 Robust design

6.4.1 Limitations of local design

A non-LP mode] structure raises two important problems for experiment design. The
first is that the determinant of the Fisher information matrix may be a very approximate
measure of the size of the uncertainty region. The second is that this matrix now
depcnds on the value assumed for the parameters. To illustrate these difficulties by
comparing the LP and non-LP cases, we shall consider least-squarcs estimation from
data corrupted by additive i.i.d. A{0, 02) random variables, with % known.

Consider first an LP model structure. For given experimental conditions =, the
expectation surface

Sexp = [y™(E, p) =RE)p | p € E"p)

is an np-dimensional hyperplane The least- squares eStimate 1s obtained by prOJectmg
the vector of observations y* onto Sexp, which gives y™(&, ph) A confidence region
at level ¢ for the parameters is then (Section 5.1.1.1)

RS ={pe BMWIIynE, p) - yll3 < 2x2(n)),

where xé(m) has probability o of being smaller than a random variable with a xz
distribution with ny degrees of freedom. The set

S(y%) = {y e B 1 lly - ySiI3 < 022

isa bal] centred at y*. Its intersection with Sexp i3 an np-dimensional ball, cemred at
yn(=, pls) Since the parametrization is linear, By is an ellipsoid cemred at plh, with
volume proportional to det=1/2 [R1( YR(E)]. Maximizing det [R (BE)R(B)], i.e.
designing a D-optimal experiment, thus minimizes the volume of confidence regions
for p (at any level a).

Consider now a non-LP model structure. The region Y { is no longer an ellipsoid
and may have any shape (see Figure 5.3). There are two reasons for this (Bates and
Waltts, 1980). First, Sexp is generally a curved surface (intrinsic curvature), so its
intersection with S(y®) is no longer a ball. Second, the pam&netrizmion is nonlinear
(paramemc curvature) Moreover, the slmpe and volume of 2| depend on the location
of y™(Z, Prs) on L»c,‘p, i.e. on the value of y%, and any experiment design based on the
precision of the estimation will be local.

Consider first the issue of assessment of the size of the confidence regions in least-
squares estimation. Approximating these confidence regions by cllipsoids amounts to
linearizing the model] (first-order expansion of y'"(..., p)), about some nominal value p
of the parameters during the design phase or about p |s When estimation has taken place.
Thxs 18 eq]mvalem 1o aRproanalmg the density of the least-squares estimator pl,’(y") by
Alp®, P~ (p%) or APy, F1(B5)-

Hamilton and Watts (1985) consider second-order approximation of the volume of
(non-ellipsoidal) confidence regions for p. However, the accuracy of the resulting
approximation seems hard to evaluate. Vila (1986, 1990) uses a series expansion of a



non-centred Fisher-Snedecor distribution and numerical integration to design
experiments that minimize the volume of exact confidence regions.

We have seen in Section 5.3.3 how the (approximate) density qg(ﬁlslp*) of the
least-squares estimator, or its marginal densities, could be used to assess the precision
of the estimation. This density may differ greatly from the asymptotic normal density;
see Examples 5.2 and 5.3. In such a case, the D-optimality cost function may be a
very crude measure of the precision of the estimation. The mean-square error

. 2 *
i@ = | 1y, - p*Ba=bp )ch,

is used in (Pazman and Pronzato, 1992a, 1992b) as a generalization of the A-optimal
design cost function. However, when the integral is evaluated over a bounded domain
P for ﬁls' the optimal experiment is degenerate, i.e. has

[ 4= (Bilp")dpy, = 0.
P

For that reason, a constrained estimator is used, given by

p = arg min lly™(E, p) - ySII% + 20%w(p),
P

with w(p) a suitable penalty function constraining p to lie in a compacl set P. A
possible choice when P is the orthotope

P=[pT oY% x [, phTL

1s for instance
n

p
w(p) = Z “’i(Pi)
i=1
where:
wilp) =0 ifpje [pT + 4i Pl - A,
Awilp)/opi > 0 if pie [pT + 4, pY - 4,

liml,,_,pr;J wilp)) = limPi—W'}A wi(p;) = oo,

and 4; is small compared to pl\f - p77. The density qs(fllp*) of the estimalor f) is then
given by (Pazman and Pronzato, 1992a, 1992b)
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ny
A w 2ymELP) | 92w(p)
det QE(P' P ) '=1 “.’.‘.,‘( ) apap']‘ |i\] + apapTIf)

(27[)11p/2 det”z F(ﬁ, =)

g=(plp*) =

x exp] ~ —i; B y™(E, ) - ym(E, p™)] + uzB)3).
with
_OYTE,P) ., = Ow(p)
us(p) = L5 B p-1p, =) 251P)

and Q-(p' p*) and I'I--(p) as in Section 5.3.3. Note that the density of the maximum a
posteriori estimator (Secuon 3.5.1) for measurement noise distributed A{0, 62) is
obtained by taking w(p) = -In m,(p). Evalu.mon of the mean-square error j(E)
corresponds (o integration with respect to p. However, a stochastic-approximation
algorithm permits optimization of j(Z) without evaluating any integral.

Another design criterion based on the density gz (ﬁlglp*) has been suggested by the
following arguments. Designing a D-optimal cxpenmcnt for an LP model structure
defined by ym(Z, p) = R(...)p corresponds to minimizing the (Shannon) entropy A of
the density of the estimator, given by

| 1 o - n n
fi= =5 ndet [ RT@RE)] + 7 In 27+

D-optimal design for a non-LP model structure can thus be interpreted as minimization
of a first-order approximation of the entropy of the density of the estimator. (The true
density is approximated by the nsymplollc normal density.) A second-order
approximation based on gz (plglp ") is suggested in (Pronzato and Pazman, 1994b).

Although less approximate than those based on the Fisher information matrix, these
approaches remain local. The optimal experiment still depends on the value of the
parameters to be estimated, which is unknown before the experiment. A first way of
facing this problem is to design the experiments sequentially.

6.4.2 Sequential design

Experimentation and estimation steps are alternated (Chernoff, 1975), as indicated in
Figure 6.6. Such an approach is natural when experimentation is thought of as on-line
control of the system, with real-time estimation of the parameters and characterization of
the precision achieved, as in Section 6.3.2.2. Even when estimation is off-line, and
provided the observations from the experiment described by £ make p identifiable, one
may wish to estimate p in the following way:

— estimate P(i) from observations y( By, fori=1, ...,k
— estimate Pk as the average of the p(z) s
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Figure 6.6. Scquential design

For non-LP model structures, each estimate f)(i) is generally biased; see (Box, 1971)
for an approximation of the bias of the least-squares estimator. Moreover, p¥ usually
does not converge to p* as k tends to mﬁmty This approach should therefore not be
used. To guarantee convergence of Pk to p*, the estimation of p* should make use of
all previous observations (i.e. y(E!), ..., y(._.’-)) The designed experiment will then
tend to the optimal experiment for p*.

Often, however, the repetition of experiments on a single process is impossible
(biology, destructive experiments...), but it is possible to experiment on a population of
processes (or individuals), each experiment being performed on a new individual; see,
e.g., (D’ Argenio, 1981). No single true value p* then exists for p- and each individual
may be considered as having its own true parameter value p*. One may then wish to
design experiments converging to the optimal experiment for the average value of the
p’™’s in the population (or, see Section 6.4.3, to the average optimal experiment for the
population). A characteristic of the population (the mean of the p*’s or their
distribution) should then be estimated (possibly on-line) from the observations.
Methods suggested in Section 3.3.4 may be used for that purpose.

REMARKS 6.11

— The study of the convergence properties of sequential design policies is often very
complicated, and far beyond the scope of this book. One may refer for instance to
(Ford and Silvey, 1980; Ford, Titterington and Wu, 1985; Wu, 1985; Miiller and
Potscher, 1992) to get an idea of the difficulties.

— One may wish to determine the optimal sequential design procedure for a given
design criterion and with the number of experiment steps fixed a priori. This is a
stochastic dynamic programming problem, very difficult to solve. Examples with
two experiment steps are presented in (Zacks, 1977; Pronzato, Walter and
Kulcsar, 1993; Kulcsar, Pronzato and Walter, 1994). A classification of sequential
design policies, considered as control policies for dynamic systems, is given in
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(Bayard and Schumitzky, 1990; Pronzato, Walter and Kulesar, 1993). A
suboptimal closed-loop approach (dual control), based on approximation of the
posterior density of the parameters, is suggested in (Kulcsar, Pronzato and Walter,
1995, 1996). 0

In many situations, repetition of experiments is impossible, even on several
individuals or processes, and a single (one-shot) experiment must be designed.
Moreover, even if design is sequential, each design step should make use of all
information available. Non-sequential design approaches which determine a single
experiment taking all the prior uncertainty in the parameters to be estimated into account
are thus of special importance. Two types of robust design procedure will be
considered. They differ in how the prior information is characterized, and by the
importance attached to the risk of designing an experiment badly suited to some rare
parameter values. Only robustness with respect to the parameters p of the deterministic
model will be considered. Robustness with respect to nuisance parameters, e.g., those
present in the distribution of the measurement noise, could be handled in the same way
(Schulz and Endrenyi, 1983). In that case, a robust extension of Dg-optimality could
also be used.

6.4.3 Average optimality

This approach relies on a probabilistic description of the prior uncertainty in p,
characterized by a prior distribution 7p(p). Note that if this distribution is reliable prior
information, Bayesian estimators (Section 3.5) are more appropriate than the
maximum-likelithood estimator. However, here we consider distributions which carry
little information, and we are mainly concerned with quantifying the lack of reliability of
the prior nominal value for p. In this context, it is natural to let the observations speak
by themselves and use the maximum-likelihood estimator. The distribution 7,(p) may
have been inferred from previous observations collected on similar processes or
individuals in a population (Section 3.3.4).

6.4.3.1 Criteria

Classical criteria lead to optimization of a scalar function of the Fisher information
matrix. We shall only consider cost functions related to D-optimality, but other cost
functions could be treated similarly. Using the prior distribution 7,(p) makes it possible
to remove the dependence on p by considering the expectation of the original cost
function. Note that whereas cost functions ~det F(p, &), —In det F(p, E) and
1/det F(p, Z) lead to identical designs, the introduction of expectations makes these
approaches different (Fedorov, 1980; Fedorov and Atkinson, 1988; Atkinson, 1992).

— ED-optimal design (Pronzato and Walter, 1985) maximizes

JED(E) =E (det F(p, £)}.
p

— EID-optimal design (Walter and Pronzato, 1987) minimizes



JEID(E) =E {1/det F(p, E)}.
P

— ELD-optimal design (D'Argenio and Van Guilder, 1988; D’ Argenio, 1990)

maximizes
JELD(E) =E {In det F(p, E)).
p

Averaging D-efficiency cost functions also allows new cost functions to be defined:

— for ED-efficiency (or EDE-optimality), maximize

JEDE(E) =E [jpe(p. )],
P

where jpE is defined in Section 6.1,
for EID-efficiency (or EIDE-optimality), minimize

JeE(E) =E {1/jpe(p, B)}.
P

The choice of a cost function may take account of the following facts.

D-efficiency is relative: for each value of p, the performance of the experiment X is
scaled by the performance achievable if p were known. Approaches relying on jgpg
and jgipg thus favour those parameters whose estimation is difficult. Depending on
the circumstances, this may be an advantage or a drawback.

When optimizing jEpE or jEIDE. each evaluation of the D-efficiency cost function
for a given value p of the parameters requires the determination of a D-optimal
experiment for p. This optimization thus requires much more computation than that
of JED, JEID Of JELD-

ED-optimality does not seem a suitable measure to characterize the average
uncertainty in the parameters (Waller and Pronzato, 1987), so EID-optimality
should be preferred.

ELD-optimality can be justified by information-theoretic arguments: an ELD-optimal
experiment maximizes the prior expectation of the information provided by the
experiment, under the assumption that the prior information is negligible compared
with that yielded by the experiment (D’ Argenio, 1990).

Finally, an EID-optimal experiment depends on the parametrization of the model
structure, whereas an ELD-optimal experiment does not. Indeed, consider a non-
singular reparametrization p(p) (i.e. with det 9p/dpT # 0), independent of Z. We
have

"5 =) = Mp = _@_E =2
det F(p, E) = det F(p, E) (det 3T )

and E,(1/det F(p, Z)} generally differs from Ep[ 1/det F(p, Z)}. However,
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E{In det F(p, E)) = E{In det F(p, £)} - 2 E{In det 22 |
p p P Ip

and the last term is independent of E.

Pronzato er al. (1989) and Atkinson et al. (1993) compare these approaches on
pharmacokinetic examples. A reasonable policy might be to determine the optimal
experiments for various criteria, then choose an experiment which is optimal for one
particular criterion and only slightly suboptimal for the others.

EXAMPLE 6.2 (continued)

Consider again the system:
¥(1) = pi exp(=pyt) + £(1),

where the £(1)’s are i.i.d. A{0, 62). We are looking for two optimal sampling times, to
estimate p| and p5. The model structure is nonlinear in p2, and the D-optimal
experiment for a nominal value p; is

Ep = (0, 1/pDT.

Consider now a prior density 7p(p2) to characterize the uncertainty in pg. The EID-
optimality cost function is

— Jexp[2pa( + 12)] mp(p2)dpa.
Pty = 1)? _j P

JEID(E) =

When m,(p2) is uniform over [1, 10], the EID-optimal experiment is
ZEp = (0, 0.139)T.

When mp(p2) is normal A(5.5, 1.52), the EID-optimal experiment is

ZgIp = (0, 0.t161)T.

The ELD-optimality cost function is

2
P12 — 2
jELD(E) =-2E [PZ] (fn+mn)Int 1(1_2__1Q.
p2 o

and, in this particular case, the ELD-optimal experiment coincides with the
D-optimal experiment calculated for a nominal value equal (o the prior mean E,,,{p2}.
For the two densities above, its numerical value is

ZELD = (0, 0.182)T. 0



In the example above, the optimal experiment is independent of the value (or
density) of parameter p;. This result can be generalized, as indicated by the following
property (Pronzato and Walter, 1985). If the model structure is such that

pl
ym(t, P) = rT(, p"Hpl, with p= -| ,
p“]

where r;(t, p"!) depends only on the ith component of p"l, if the measurement noise
corresponds to an i.i.d. sequence whose distribution is independent of p, and if the
linear parameters p! are distributed independently of the nonlinear parameters p"l, then
the optimal experiment f{or the criteria above (Jep, JEID, JELD, JEDE and jEIDE) is
independent of the distribution of the parameters p!. For instance, all entries of p! can
be set equal to one.

Except in some very simple situations, an optimal experiment cannot be found
analytically, and numerical procedures are required.

6.4.3.2 Algorithms

Exact design. A first approach uses one of the local design methods presented in
Section 6.2.1, with some general-purpose nonlinear-programming algorithm or a
specific algorithm for exact design. At each iteration, an expected value of a local cost
function has to be evaluated. Such an approach can be employed when the prior
distribution for p is discrete (D’ Argenio and Van Guilder, 1988; Pronzato et al., 1989),
but is very slow when the prior distribution is a density. Stochastic approximation then
allows a cost function like
JEE)=E {j(p. B)}
P

to be optimized without having to evaluate expectations (i.e. integrals); see
Section 4.3.8. The simplest version is the stochastic gradient algorithm, which, for
minimization, is

[11

i(pk. =
k+1 =5k_lkaf(p—"‘|
o=

=k

It is a gradient algorithm (Section 4.3.3.1) for the minimization of j(p, E), modified in
that, at each iteration k, a value p* is randomly generated according to 7p(p). The
sequence of scalar steps A; must satisfy

220, D dp=ee, X Al<w,
k=0 k=0

and the most popular choice is the harmonic sequence

o
Ak:ﬁmf’ o > 0.



Convergence is accelerated if A, is reduced only when the angle between two
successive gradients is larger than n/2 (Saridis, 1974). The speed of convergence is
very sensitive to the choice of the scalar o in the sequence A;. Componentwise
normalization of the gradient allows easier choice of a suitable value for a. The
algorithm thus modified becomes

where Ay is a diagonal matrix, the ith diagonal entry of which is

— Eimﬂx - Eimin
A = k '
[1 di(p", &)  _ 2112
a (*‘a—:_fﬂ;=:.rx)
'}

where =;  and E;_; are upper and lower bounds on the possible values of =;. If
A= o/(k + 1), this implies

=l _ =0 _ = =,

Z-Ei=t a(""mux - _Imin)'
The scalar « is then the relative length of the first step. A typical choice is @ = 0.1.
Examples of application are presented in (Pronzato and Walter, 1985; Walter and
Pronzalo, 1987). Note that convergence Lo a global optimum is not guaranteed.

average-optimal design; see (Atkinson, 1992) for theorems applying to various
optimality criteria. For ELD-optimality, for instance, the following theorem is available.

EQUIVALENCE THEOREM

The following properties are equivalent:

— the design measure mg| 1 is ELD-optimal,

— maxgeg Ep{d(&, mgLp)) = np,
— g p minimizes maxge g Ep{d(E, m)), with

d(&, m) = ‘—”és'yr(&, P (p, misy(E, p). 0

used, d(&, m) simply being replaced by its expected value Ep{d(g, )} (Chaloner and
Larntz, 1986, 1988). Global convergence to an ELD-optimal design measure is
guaranteed, but, here again, calculations will be extremely heavy if the prior distribution
for p is not discrete.
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REMARK 6.12

Average optimality can be used in sequential design too. Each experimentation step then
makes density 7p(p) in the next step more accurate. Two cases must be distinguished,
depending on whether the observations are performed on a single process or on
different processes (or individuals) drawn {rom a population; see, e.g., (Pronzato,
Walter and Kulcsar, 1993). In the latter case, maximum-likelihood estimation of mh(p)
can be performed with the methods of Section 3.3.4 (using all data obtained so far).
The recursive approach presented in (Mentré, 1984; Mentré, Mallet and Steimer, 1988)
is then particularly attractive. Note that optimal design for the estimation of mp(p) has
received little attention in spite of its importance (Mallet, 1983; Mallet and Mentré,
1988; Mentré ef al., 1993). )

6.4.4 Minimax optimality

Sometimes, the best experiment in the worst circumstances should be preferred to the
best one on average. This depends on the importance attached to some (unlikely)
parameter values whose estimation with an average-optimal experiment might be very
inaccurate. Minimax optimal design requires the definition of a set P of prior admissible
values for p.

6.4.4.1 Criteria

We shall only consider criteria based on D-optimality (Section 6.1). MMD-optimal
design (Pronzato and Walter, 1988) maximizes

JMMD(E) = min det F(p, E).
pelP

MMDE-optimal design (Landaw, 1984; D’ Argenio and Van Guilder, 1988) maximizes

JMMDE(E) = min jpg(p, E),
peP

where jpg(p, E) is the D-efficiency cost function. An MMDE-optimal experiment does
not depend on any regular reparametrization of the model structure (independent of E),
whereas an MMD-optimal experiment generally does. On the other hand, optimization
of jJMMDE requires the determination of a D-optimal experiment associated with p for
each evaluation of jpr(p, £). This optimization will thus require more computation than
that of jmMp. Normalization by det F(p, Ep) in the expression of D-efficiency
favours those parameters whose estimation is difficult. This may prove to be an
advantage or a drawback (Pronzato and Walter, 1988).

EXAMPLE 6.2 (continued)

Consider again the system:
¥(1) = pi exp(=p31) + &(1),



where the £(1)'s are i.i.d. A{0, 62). We search for two sampling times to estimate the
parameters p} and p3, when the prior admissible values for p; belong to

Py = [P2mins P2max]-

The MMD-optimal experiment then coincides with the D-optimal one for p = pa.,:

= = 1yt
=MMD = (0’ p2max) '

The MMDE-optimal experiment is

In pamax = 10 paminyT 0
P2max ~ Pmin ’

EMMDE = (0,

EXAMPLE 6.11 (continued)

Consider again the transfer function

Fijo, )= ———,
l+jT0

and assume the measurement noise is wide-band. We wish to determine the input to be
applied to the system in order to estimate 7 as accurately as possible. A sinusoidal input,
with angular frequency @p = 1/7* which strongly depends on 7*, is then D-optimal. If
the admissible values for 7are in the interval P = [7yip, Tmax]. the MMD-optimality cost
function for a single sinusoid is

2

JMMD(®) = min ———— ,
1eP (1 + 202)?

and the MMD-optimal angular frequency is 1/Tpax, Which coincides with the
D-optimal angular frequency for 7= Tyax. The MMDE-optimality cost function is

i () = min 4P
MD = T A oA
JMMDE e P (1 + T20?)?

and the MMDE-optimal angular frequency is (TminTmax)~ /2, i.e. the geometric mean of
the D-optimal angular frequencies for 7= Ty and T= Tpax. 0

As for average optimal design, if the model structure is such that
ym(t, p) =rT(r, p) p!,

where ri(t, p™) depends only on the ith component of p?, and if the measurement noise
corresponds to an i.i.d. sequence with distribution independent of p, then the MMD-
and MMDE-optimal experiments are independent of the value of the linear
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parameters p!, provided the admissible domain for p" is independent of p! (Pronzato
and Walter, 1988). In particular, one can then set all components of p! to one.

In some situations, the minimax optimal experiment coincides with a D-optimal
experiment for a particular value of the model parameters, which can be determined a
priori. This greatly facilitates computation of the minimax optimal experiment. This is
the case for structures defined by sums of exponentials when MMD-optimal design is
used. Such structures play an important role, since they include the impulse responses
of many systems. Consider a model structure defined by the response

np/2

ym(&.p)= D, p expp e

n=1

and assume that the observations are corrupted by additive noise which corresponds to
an i.i.d. sequence distributed independently of p. The scalar & characterizes the
experimental conditions for the ith observation; it might, for instance, be the ith
sampling time. Assume that the prior admissible set for the vector p?! of nonlinear
parameters is

Pol = (pnl e B2 [ pll < p >8,i=1,..., 2 -1,

max' P 1+l -
where p“l and the &;'s are known. Then, from the properly above, the MMD-optimal
experlment is independent of the value of pl and, from (Melas, 1978), it coincides with
the D-optimal experiment calculated for

(np/2)-1

pil= [l M S P (81 + 8, P - ZﬁJT'
=

When the minimax-optimal experiment cannot be found analytically and does not
coincide with a particular D-optimal experiment, specific oplimization algorithms must
be used.

6.4.4.2 Algorithms

Exact design: relaxation algorithim. When the prior admissible set P for p is finite, the
minimization with respect to p in jiymp and jMMpE May in principle be carried out by
exhaustive search over all values of p in P. However, this is possible only if the
number of elements in P is small enough.

Consider the general case, finding Epqv (from some feasible set £) to maximize

JMM(E) = min j(p, E),
pelP

with P a given compact set. The most straightforward approach uses brute force and
maximizes jMM by a general-purpose nonlinear-programming algorithm, each
evaluation of jMM(E) being the result of a minimization with respect to p using a second
nonlinear programming algorithm. Obviously, this may require a huge amount of
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“omputation. Shimizu and Aiyoshi (1980) use relaxation to transform the problem into
e where PP is finite. First, the problem is redefined as finding Epp in 2 that
maximizes the scalar o under the constraints

Jp.E)zo,Vpe P.

This optimization problem has an infinite number of constraints. The relaxation
syrocedure amounts (o introducing a finite number of themn, one by one.

Step 1: Choose an initial value p! in P, and define a first set of representative values
%! = {pl}). Set k= 1.
Step 2: Find
Ef=arg max min j(p, E).
He X pe 7
Step 3: Find
pk+l = arg min j(p, EF).
peP

Step 4: If j(ptt!, EF) > ming,. g j(p, Zk) — 8, where & is some positive tolerance,
accept EF as an approx1male solution of the problem. Else include p*+! in %%,
increment & by one and go (o Step 2.

This algorithm stops after a finite number of steps, provided the following conditions
wre satisfied:

Z1: j(E, p) is continuous with respect to p and continuously differentiable with respect
to E.

C2: E is compact and such that 2 = (2 | ¢j(E) £0,i =1, ..., r}, with constraints ¢;
continuously differentiable with respect to .

Z3: P is compact (and not empty).

Chese conditions are generally fulfilled for optimal-design problems. Note that when the
ugorithm is stopped before the stopping condition of Step 4 is satisfied, an
ipproximate solution is obtained, satisfying a similar stopping condition with a larger
olerance 8. Steps 2 and 3 are constrained optimization problems, which may have
ocal extrema. A global optimization algorithm is therefore recommended
Section 4.3.9). Examples of application are presented in (Pronzato and Walter, 1988).

Approximate design. When P is finite, the issue is to find a design measure mig that
naximizes
Ivm(m) = min J(p, m).
pe (p', ..., p")

l'his problem is closely connected to T-optimal design for discriminating among mn
nodel structures, m > 2 (Section 6.6.3.1). The fact that the cost function may be not
fifferentiable at the optimum makes the determination of the optimal design measure
lifficult. Specific algorithms (for T-optimal design) are presented in (Atkinson and
“edorov, 1975b; Huang, 1991; Huang, Pronzato and Walter, 1991). The resulis
lescribed in (Wong, 1992) may be useful when F is not finite.
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6.5 Design for Bayesian estimation

The Cramér-Rao inequality for an unbiased Bayesian estimator (Section 5.3.2)
suggests replacing the average Fisher information matrix per sample by:

o= B T +E (g5 In T@ 55 In 7P},

where F(p) is the Fisher information matrix and 7zp(p) the prior density of the
parameters. When the model structure is not LP, E,(F(p)} cannot generally be
calculated analytically. The optimization of any cost function §ix(¥'r), with ¢y, defined as
in Section 6.1, then requires evaluation of the expected value of a matrix for each
evaluation of the cost function. (Nole that a stochastic approximation algorithm as in
Section 6.4.3.2 cannot be used here.) For that reason, this approach seems to have
been considered for LP-model structures only, i.e. when

y$(E) =R(E)p” +n.

In particular, when the noise n has a Gaussian density A{0, X) with £ known, and the
prior density is normal A{po, £2), we have

Fa(E) = [RT@EIRE) + Q1]

which is called the Bayesian information mnatrix (Pilz, 1983). { Z = 0'21,,[, then

QY
Fy(@) = —i—[RT(sm(a) . [;] ]

O‘"'nl

so Q and o2 only affect the determination of the optimal experiment through their ratio.
In Section 5.3.2, we showed that the prior expectation of the minimum quadratic risk
associated with a weighting matrix KTK is

E (m(Pmaplys(E)D] = trace (K[RTEZIRE) + Q-117'KT),
ys

which defines an Lg-optimality cost function
JLp(E) = trace [KTKTg ' ()],

More generally, for a non-LP model structure one can consider the cost function

JLB(E) = trace [QF (p, E))],
with
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- 1 -
Fp(p, &) = ™ [F(p, E) + Q-17,

where
ny

F(p, E)=
i=1

1 i o) (ki
w(E) Sy(é > P)Sy(§ D).

6.5.1 Exact design

The Lg-optimality cost function can be minimized by the following algorithm (Pilz,
1983), very similar to the DETMAX algorithm presented in Section 6.2.1.2.

Step 1: Choose E! (with r support points) and set & = 1.
Step 2: Find

£ = arg max L& PIFs (p, "‘)QFB (. ENsy (5, p)
EeE nuw(E) + sy (€, pIFE (p. ERsy(E, p)

-1 . P .
Update Fg- for the experiment 2k = (ZAT, £*T\T according to

-1 — ] * T, e+ -1 —
- =1, wp. FB (. EF , . P)FB (p, EF
FB (p L+) I[ + ‘B](p, a/\) _ B (P* )SI‘(E_,* P)Sy_(lE, Pﬁ) : B (P* ) )
nw(E*) + sy (8", p)Fp (p, E)sy(§", p)
Step 3: Find
. -1 = -1 =t .
E*—arg  min sy (E, p)Fp (p, 2+)QFp (p. EM)sy(El, p)

Eie supp [Ek+) (n+ Dw(Ei) — s (E, p)FR (p, EF)sy(EL, p)
Step 4;:1f E/* = £”, stop. Else remove E/* from E4* (0 get EX*+! and update
Fﬁl according to
I‘ﬁl(p Ek+1) =
LTI s F SO T3 (p, "‘“)sy(é' p)sy(ﬁ'* pF5' (p, EA*)
ot (ner Dw(E*) - sTE™, PTG (p, S5y (&1, p) |

Increment & by one, and go to Step 2.

Note that Fg(p, E) is positive-definite for any non-negative-definite matrix
F(p, ), provided Q is positive-definite. It thercfore does not matter if the initial
experiment is degenerate. A possible choice for E! is oblained as follows.

Step 1.1:Setn=1,E! = (@} and F§ (p, EN = Q
Step 1.2: Perform Step 2 with n; replaced by n.
Step 1.3: If n = iy stop. Else increment n by one and go to Step 1.2.
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As with the exact-design algorithms ol Section 6.2.1, convergence to an
Lp-optimal experiment is not guaranteed. The choice of the initial experiment E! is thus
especially critical, and it is recommended that the optimization be repeated, initialized at
different experiments. As for the DETMAX algorithm, excursions with length A greater
than one can be considered. Similar algorithms may be used (Pilz, 1983) to construct a
Dg-optimal experiment, which maximizes

Jpp(E) = det Fg(p, E).

6.5.2 Approximate design

The approximate design theory presented in Section 6.2.2 also applies to Bayesian
estimators. Consider the matrix

Q—l
Fp(p, m) = J—wsy(g p)sy (&, p)( dE_,)+ _rps P )+

(Note that the value of 1, must be specified.) Caratheodory’s theorem can again be used
to show that [np(np + 1)/2] + 1 support points are enough to construct any matrix
Fg(p, m). In the particular case of Lg-optimality, one can show that p(2np — p - 1)/2
support points are enough, with p =rank Q (Pilz, 1983; Chaloner, 1984). One can
also show that the matrix Fg(p, ) associated with an Ly-optimal design measure, with
Q =1, , or with a Dg-optimal design measure, is unique. Equivalence theorems, see
Section 6.2.2.3, can be proved for cost functions with suitable convexity (or
concavity) properties.

EQUIVALENCE THEOREMS (Pilz, 1983; Chaloner, 1984)

— The design measure 1y g is Lg-optimal if and only if

sy (E, pF3(p, my p)QFE (p, myp)sy(E, p) <
ﬁeEw(E,) Y B LP LBy

trace [I‘ﬁ'(p, mLB)QFﬁl(p, my p)F (P, 1 )]

— The design measure g is Dg-optimal if and only if

E; é“ (E;) F; P)F3 ' (p, mpp)sy(, p) < trace [F5'(p, mpp)F(p. mpp)]. O
e Y

Optimization algorithms similar to that of Fedorov and Wynn presented in
Section 6.2.2.4 can be constructed from this theorem. Their convergence to the global
optimum is guaranteed. The function d(1m, &) is simply replaced by

dip(m, &) = sy (&, pFE ' (p, mQFE' (p. m)sy(E. pYw(E)



for Lg-optimality, and by
dpp(m, E) = sy s (€, PFE' (p, nHsy (& p)w(E)

for Dg-optimalily. The stopping rule is obtained from the necessary and sufficient
optimality condition of the corresponding equivalence theorem. The initial measure 7!
is allowed to be degenerate. In particular, the measure with a single support point

-l
o 1 T Q-1
El=arg i lracc{Q [ 5> y(& prsy &, p) + n,] }

sy (£, p)R2QQs,(E, p)
=arg
&EF’ W(&) + 1Sy (g P)st(g p)

can be used for Lg-optimality, and the measure

- 1 T Q-1
g argéneagdct[ }g sy(E, p)sy (., p) + n

=arg maxis T, p)Qs, (&, p)
55 g y y

for Dy-optimality.

6.6 Influence of model structure

This problem is extremely important, although it has not had much attention, in
particular for applications. As indicated in Section 1.1, the model may serve several
objectives. Its identification will be considered successful only if the model suitably
reproduces the pertinent aspects of the behaviour of the system, in the operating range
of interest.

The structural properties of models, the choice of an estimator for the parameters of
a model with given structure, and the numerical methods used for the computation of
the estimates have been discussed in previous chapters. In choosing the structure,
different situations must be distinguished. Assume that the data have already been
collected.

— If the model structure is fixed, one should check its compatibility with the data, and
some basic tools for that purpose will be indicated in Chapter 7.

— If a finite number of structures, for instance with increasing complexity, compete
for the description of the data, the AIC criterion (Section 3.4), or any other
criterion of the same type, can be used to select one of them. The validity of the
structure chosen will then need to be tested.

— 1If the structure is completely unknown, one can sometimes use a simple parametric
structure (e.g., LP), for a very coarse description of the behaviour of the system,
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complemented by a nonparametric structure; see, ¢.g., the kriging method of
Section 3.3.5. Other approaches will be presented in Section 6.6.2.

A key point is that attempts to falsify a given structure or to select one structure from
several candidates will be meaningful only if the data collected are rich enough. For
instance, if maximum-likelihood estimation is used, one needs at least as many separate
observations (e.g. at different times) as there are paramelers in the most complex
structure. For that reason, the problem of structure selection cannot easily be dissociated
from that of experiment design.

The first approach to be considered merely aims, through Bayesian estimation, to
design an experiment for a simple structure while being protected against the possible
presence of neglected terms in the process response. Next, the statistical literature on
robustness of estimation and design in the face of modelling errors will be briefly
reviewed. Finally, we shall investigate an alternative approach, which consists of
designing an experiment that allows us to choose the best model structure from a finite
family. The experimental conditions must then be chosen to maximize the sensitivity of
the response to modelling errors; this is a quantitative extension of the notion of
structural distinguishability (Section 2.6.2).

6.6.1 Robustness through Bayesian estimation

As already indicated, a classical optimal experiment (D-optimal for instance) often
consists of repeating observations under a small number of distinct experimental
conditions (e.g. measurement times), sometimes equal to the number of parameters to
be estimated. It is then impossible to estimate the larger number of parameters of a more
complex structure from such an experiment. If hesitating between a simple and a
complex structure, one should thus design the experiment for the complex one.
However, the complex structure may be considered only as a precaution, and the
experiment designed for it may prove far from optimal for the simple structure. A
Bayesian approach may permit to bypass this difficulty, as illustrated by the following
example.

EXAMPLE 6.13

Consider the model structures

ymi(& ) =py +p26 and yyo(& p) = py +pab + p3&2,

with € € [-1, 1]. Assume that the measurement errors are additive and correspond to
i.i.d. A{0, ¢2) variables. The D-optimal design measure for yy,, is then

{1n )
My, = ,
AV IRY)

{—1 0 1 }
", = .
27113 13 13

whereas for yp, it is



1y, does not allow all parameters of y, to be estimated, and 11y, has a D-efficiency of
only 2/3 for estimation of the parameters of y,;,. The prior confidence in the model y,,

can be expressed as a prior density for its parameters (the more likely the first structurc
is, the more concentrated the margmal density of p3 will be around p3 = 0). Assume
that p = (p, pa, p3)T has a prior density A{pg, Q), with Q = diag{ @, @y, w3). It is
easy to check that the Dg- -optimal design measure (Section 6.5) tends to 11 as w3
tends to O (another way of saying that when p5 is known it need not be estimated!). 0

6.6.2 Robust estimation and design

In contrast to Section 3.7, estimation is understood here to be robust with respect to
errors in the model structure, or more precisely neglected terms in the response (e.g.,
when searching for the maximum of a measured response; see Section 4.4).

The response of the process is written as

(&) =f(E) + &),

with f(E) the deterministic part and the &&)’s assumed to be i.i.d. A{0, 62). The
influence of robustness on design seems first to have been considered by Box and
Draper (1959), who studied the consequences of using a simple model

ym& p) =rT(E)p

(for instance an affine funclion of &) when the true structure f(§) = zT(E)q is more
complex (for instance a quadratic function of &). The error in the structure then
produces a bias in the estimated parameters, and the integral of the mean-square error
(called the J-criterion in the literature)

—
=
y—

B.2p= E (][00 -rT@bev]ds)
:

is the sum of a bias term and a variance term. Box and Draper use the least-squares
estimator p|5(y5) and consider only the bias term in choosing the experiment. Karson,
Manson and Hader (1969) use a linear estimator and choose the experiment that
minimizes the variance term under the constraint that the bias term is minimal. These
two approaches are for exact design. Kiefer (1973) considers minimization of 2, N
for approximate design when a linear estimator of p is used. He shows that the cost
function corresponds to Lg-optimality (Section 6.5) when a prior distribution is used
for the parameters q. Stigler (1971) and Studden (1982) study D-optimal design for
models polynomial in & with the constraint that the parameters of a higher-degree model
can be estimated with a guaranteed degree of precision.

In most practical situations, the structure of the deterministic part f(E) of the process
response is partially unknown, and two classes of methods have been proposed o deal
with this lack of information.



6.6.2.1 Minimax approach

The robust-design approaches above might not guard against small deviations from the
assumed model when these deviations do not correspond to the terms (most often
polynomials) arbitrarily selected. This is why Huber (1975) suggests minimizing the
supremum of the integrated mean-square error

.8 pH= E_ 1J [AE) = ym[E, BHI]2 dE ),

ySlh.e

with respect to f, where f belongs to a given (infinite dimensional) family of functions.
Although this approach is theoretically appealing, the results obtained only deal with the
one-dimensional regression model y,(£, p) = pg + p &, with a linear estimator for

=(pq, pa)T Moreover, Markus and Sacks (1977) have stressed that the design
measurcs obtained with this approach must be absolutely continuous with respect to the
Lebesgue measure and are therefore generally not implementable. They suggest, for the
same model structure, minimization of

idom=sup E ([Po(y$) - p312 + 02[p(y9) - pi12),
I ysliim

where @ is fixed and f{€) = pg + pi& + (&), with (&) < m(E) and m a known
function of £,
A more general situation, is when ym(E, p) = rT(ﬁ)p, with

f8) = ym(&. p) + (&),

where la(E)l < m(E), with m a known function of E. This case is considered in the rest
of this section. The linear estimator of a linear function of p (e.g., a predictor of the
process output) minimizing the supremum of a quadratic error with respect to f is
constructed in (Sacks and Ylvisaker, 1978). However, estimation of p (or prediction of
several linear combinations of p) requires solution of a difficult optimization problem.
Mathew and Nordstrém (1993) consider instead the minimax cost function

= S;!rp s -RE)p - oE)]TW[ys - RE)p - ®(E)],

with 2 = (1T, ..., EmD)T o(Z) = [wE!), ... , @E")]T and W a diagonal weighting
matrix. They show that this cost function can be written as a linear combination of L,
(least-squares) and L (least-modulus) cost functions, and that it is convex with respect
to p, which facilitates its optimization.

The general design problcm for estimation of a linear functional of a regression
model belonging to a given class of functions is considered in (Sacks and Ylvisaker,
1984). Pesotchinsky (1982) defines a mean-square error matrix for Py, (for an LP
model structure linear with respect to &) and constructs minimax extensions for design
cost functions in the ¢; family; see (Kiefer, 1974) and Section 6.1. Welch (1983)
considers a minimax cost function based on the integral of the mean-square error
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i@=sup  E_([[AB) - rTEPisy)] c& ),
I YE ¢

with fIE) = rT(E)p + (&), and 1exE)| < wnyax. He suggests algorithms similar to the
DETMAX algorithm for exact design (Section 6.2.1.2) or to the Fedorov-Wynn

6.6.2.2 Bayesian approach

An altemnative approach to account for prior uncertainty in the model structure relies on a
Bayesian slatistical model. O’Hagan (1978) introduces the notion of a localized
regression model, for which f(§) = rT(£)p(&) (with £ scalar). Keeping p constant, one
gets an LP structure approximating f, whereas a deviation from the LP restriction is
obtained by letting p vary with £, and assuming that the correlation between p(&!) and
P(£2) increases as IE1 — £21 falls. Knowledge about p(&) is then introduced through a
prior density such that

E{p(&)} = po for all & and E{[p(&!) - pol[p(&2) — pol T} = p(IE! - E2)M,

with pg and M fixed, and p a monotononically decreasing function in B+ with
p(0) = 1. The joint density of the p(£)’s is assumed to be normal. The posterior mean
Ep(é ,ys{p(é)] is then obtained analytically, and can be used to predict the response at
any &, through
O=rT& E (pd}.
p(E)lyS

The proposed design criterion is based on the mean-square prediction error. The
flexibility of the approach allows, in principle, realistic modelling in a variety of
situations. A serious difficulty, however, is the choice of values for the prior
parameters; see the discussion of (O'Hagan, 1978). Strong similarities exist with the
linear Bayes regression estimator of Goldstein (1980) and the Bayesian model used by
Steinberg (1985) for response-surface problems.

Finally, kriging (Section 3.3.5) can also be considered as an attempt to achieve
robustness with respect to the model structure. 1t describes @(€) = (&) - y(E, p) as
a realization of a Gaussian process with known (or estimated) statistics. A Bayesian
formulation is presented in (Blight and Ott, 1975; Currin et al., 1991).

6.6.3 Structure discrimination

Consider now the problem of determining experimental conditions that will allow the
best possible discrimination between compeling model structures. The literature devoted
to this problem is almost as rich as that on experiment design for parameter estimation.
We restrict ourselves to presenting the main ideas, and recommend the survey papers of
Atkinson and Cox (1974), and Hill (1978). Much of this section is derived from
(Huang, 1991). Three approaches will be considered, based respectively on the notions
of prediction discrepancy, entropy and D¢-optimality. To simplify the presentation, the
additive measurement errors will be assumed to be scalar and i.i.d. {0, ¢2).



6.6.3.1 Discriminating by prediction discrepancy

The use of prediction discrepancy, initially suggested by Fedorov and Pazman (1968),
resulted in the theoretical notion of T-optimality (where T stands for Testing), related to
the power of a x2 test (Atkinson and Fedorov, 1975a). Consider first the case of two
rival structures.

Discriminating between two structures. Assume first that the true structure is known
and indexed by one, with pj the true value of its parameters. We shall see later how
this hypothesis can be relaxed. The observations thus correspond to

YE) =y, &L pD) + e&D, i=1,...,n.

The cost function for an experiment & = (EIT, ..., EmT)T s

(&)= { ."ml(E.ri’ pi) - .\’ml[gi» 62(5)]}2’

where P4(Z) is the least-squares estimator of the parameters p, € P» of the second
structure, obtained from the fictitious (noise-free) data yml(E_,’, pT) (=1, ...,n), Le

nl

py(E)=arg min Z [_\'m,(&,"' P1) — Ymo(EL, Pz)]z'
P2EP; =1

The cost [unction A( )( =) is called non-centrality parameter of the structure Yma
(Atkinson and Fedorov, 1975a). When approximate design theory is used, with ma
normalized design measure on the set & of admissible experimental conditions
(Section 6.2.2), the cost function becomes

AYm= min [ [y & pD - Y€ p2)]? m(dE),
p)e Pzg

which is concave with respect to m. A design measure mty is said to be T-optimal if it
maximizes A 2)(m). Atkinson and Fedorov (1975a) have proved the following result,
which summarizes the properties of T-optimal design measures.

EQUIVALENCE THEOREM

— A necessary and sufficient condition for m to be T-optimal is

mi €. P} = Yol Da(mp2 < AD(mer)

forall € in E.
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— {¥m(& P - Yma[&. Pa(11)]112 reaches its upper bound when & is a support point
of mp.

— The set of T-optimal design measures is convex. 0

From this theorem an optimization algorithm can be derived, similar to the
Fedorov- Wynn a]gorllhm of Section 6.2.2.4, but with d(E, m) replaced by
{¥m1 (& D) — Ym»[E, Po(1m])2. Tts global convergence is guaranteed. However, the
assumption of a known true structure with known parameters is not realistic, and a
sequential approach must be used in practice. The algorithm is then as follows
(Atkinson and Fedorov, 1975a):

Step 1: After k observations (with the experimental conditions Ef), estimate the

parameters P;(EX) and Po(ZF) of both structures (in the least-squares sense).
Step 2: Choose Lhe (k+1)th experimental conditions (support point) E¥+! such that

B+ = arg max { ym (€, B (ED)] = ymy[E. BoEN] 2.
Eek

Step 3: Increment k by one and go to Step 1.

When the algorithm converges to a design measure that is non-degenerate for both
structures, this design measure is almost surely T-optimal (Fedorov, 1975).

Discriminating between more than hvo structures. The notion of T-optimality can be
extended to m (i > 2) rival structures (Atkinson and Fedorov, 1975b). Assume again
that the true structure is yy,, with true parameters pj. The cost function then becomes

|
AW(11) = min A(i)(Tfl).
i#]

The possible non-differentiability of A1) at the optimum makes the design of a T-
optimal experiment difficult (Atkinson and Fedorov, 1975b; Huang, 1991). A possible
sequential policy is as follows:

Step 1: After k observations with experimental conditions Z*, rank the m sums of
squares of residuals,

pl<pf<..<pl,
and construct the set I}(EF) defined by
Pi - Pi,
I'Eh = {ie {1,...,m) |'—k?'~s v, i#i]

(which contmns io whatever the tolerance v > 0).
Step 2: If 1}(EX) is a singleton, I}(ZX) = (i), take
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: =1 s 2
5[.."’] - a['g énea)é {ym” [E_n 6[[(:L)] - _\'m,‘z[&’ 6[2(:“(')] } ]

else solve the minimax problem

(0", B! = arg min max z,a,- {ymil[év Bi, (ED)] -y lE, ﬁ,-(Ek)]}z,
acAbel o pvak

with

A={oeRmio=0ilie IJEH, o;20ifie |(ED), I o=1}.
ieT}(Ek)
Step 3: Increment k by one and go to Step 1.

The tolerance v can be taken as decreasing with k, but less rapidly than I/Nk (Atkinson
and Fedorov, 1975b). The minimax problem at Step 2 may be solved by a relaxation
algorithm similar to that in Section 6.4.4.2,

6.6.3.2 Discriminating via entropy

Let 74, ..., n‘,’f, be the probabilities associated with the m rival structures after k
observations. The corresponding Shannon entropy is

m
k k 4
ﬁmz-—Zﬂ'i In ﬂé

=]

It is a maximum when all structures have the same probability (Jrlf = l/m,

i=1,...,m). If a structure has probability one of being correct, the entropy takes its

minimal value zero, hence the intuitive idea of minimizing entropy, or, equivalently, of
b . - k+1 5 .

maximizing the decrease of entropy AA%*! due to the (k+1)th observation,

m
AREX! = AE & Z 2 yk+1)] In 2 [p(k+1)],
n=1
with
b muly(er Dy

m

T [yl 1)] =

y

: k
x4 mly(k+ DIy}
i=]
where n,,()'lyh denotes the probability density of y for the nth structure after the k

observations y; = [y(1), ... , Y(1T, with experimental conditions Z£. If y is obtained
with experimental conditions €, one has
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with 0‘,2,(5) the (approximated) variance of the prediction of the response of the nth
structure at the support point &, given by

(&) = 57,18, Bu(EN] F3' [Bu(ED), EH 5, [E, (M,

where s, [E, P.(EX)] and F,,[p,(EF), EX] are respectively the sensitivity of the model
response and the Fisher information matrix for the nth structure at the estimate '[‘),,(E'.k)
of its parameters, obtained after the k observations under experimental conditions EX.
This expression is obtained by linearization of the model response at '[\),,(E").

ARE*Y depends on y(k+1) which is unknown, so we consider instead its prior

expectation,
E(AARE*) = JAﬁ,é’,“ny[y(k+1)|yf]dy(k+1 ),
with
m

7y (et Dlys = z h e Dlys .

n=1

E{A/i,’,‘,+1 } cannot be obtained analytically, and Box and Hill (1967) suggest replacing it
by an upper bound 6§ > E[Aﬁ,’;’,+I }, which can. This leads to the following cost function
(to be maximized)

m nt

60=1Y Yok (, GG -0®F

= 5 [6? + a7(E)llo® + a2(E)]

) /\' Ek _ A Ek 2 l 1
(Y& BAEDT =y, [E. Bu@001) [sz%@ , o2+a,%@])’

The (k+1)th observation is then taken at the support point E+! that maximizes &&),
and the probabilities of the different structures are updated according to the expression
above for 7[,‘;'+][y(k+1)]. (Atkinson (1978) shows that, for structures with different
complexities, this approach tends to favour those with fewer parameters.) If there is no
clear indication that one of the structures should be preferred, the parameters of each are
estimated and the procedure is iterated.

Compared to that based on prediction discrepancy, this approach based on entropy
has the advantages of having an intuitively appealing stopping criterion and of not
requiring solution of a minimax problem when there are more than two rival structures.
Reilly (1970) suggests replacing the calculation of a bound on the expected variation of
entropy by its numerical evaluation (a modification of the Gauss-Hermite integration
method), which does not seem to yield significantly different results (Huang, 1991).
Note that if only two structures are considered, their probabilities do not take part in the
determination of EA+1,

These approaches based on prediction discrepancy and entropy are both sequential,
and a comparison on various simulated examples yielded closely similar experiments



(Huang, 1991). The approach presented in the next section permits consideration of
non-sequential discrimination problems for LP structures.

6.6.3.3 Discriminating via Dg-optimality

Consider first the simplest case where there are only two LP rival structures,

Y& PR =14 (B)pg, with dim pp=ny, k=12,

If the true structure is the first, with parameters p,, a possible cost function is the non-
centrality parameter, already considered in Section 6.6.3.1:

| .
ADm= min [ [y €, p1) = Yma(Es P2)I2m(dE),
PzEPzg

which, when P, = R"2, gives

1
A(z)(m) = pTF(; )(m)pl,
with
F(—_l)(m) =T (m) - Fpx( m)FEé(m)le (i),
and

Fi(m) = J.r,-(ﬁ)rz(&)m(dﬁ), k=12

W

REMARK 6.13

When the two structures have a common part, it may be removed from the parameter
vector p; and regressor vector 1y to write A';' (1) in a more compact form. To simplify
notation, we assume here that this is not so.

The cost function A(é)(m) depf:nds on the unknown parameters p;. A possible
approach is then to maximize det F (2)(m). Consider a generic structure

Ym(&s P) = Ym (&, Py) + yma(E, P2)s

containing all linearly independent terms of the two structures. F(é)(m) then corresponds
to F%(m), the inverse of the covariance matrix of the estimate of p; for the generic
structure, and det F(;,_)( 1) can be interpreted as a measure of the inadequacy of the
second structure for data generated by y.,(E, p). An equivalence theorem can be
proved, of the same Lype as for D-optimality (Section 6.2.2.3): provided Fos(mp) is
invertible, the design measure mp,_ is Dg-optimal if and only if, for all E,

rTE)F-1(mp Ir(E) - T3 (EYFo3(mp )ra(E) S o,
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with r(&) the regressor vector of the generic structure. When Fys(mp,) is singular, the
cost function det F(;)(m) is not differentiable (and may be discontinuous) at Mps. An
extension of this theorem for that situation can be found in (Silvey, 1980; Pazman,
1986).

Since there is no reason to favour either structure, Atkinson and Cox (1974) suggest
the cost function

Jr.20m) = [det F3(m)]e2[det F{(m)]¢1, with ¢; and ¢ > 0,

(and, for instance, ¢; = 1/n; to take the dimensions of the two matrices F%( ) and F%( my
into account). This approach easily extends to the case where there are more than two
rival structures, by defining a generic structure for the whole set of rival structures,
which yields the cost function (Atkinson and Cox, 1974)

m

gty =TT 1det Ty,
k=1

An algorithm of the same type as those used for D- or Dy-optimal design is proposed.
Refer to Atwood (1980) and Pazman (1986) for convergence studies in the special case
where the optimal experiment is degenerate (i.e. does not permit estimation of all
parameters of the generic structure).

6.6.3.4 Possible extensions

Joint estimation and discrimination. The most intuitive approach is to address the
problems successively, first designing an optimal experiment to choose between
structures and then, once a structure has been selected. designing an optimal experiment
to estimate its parameters. One may wish to link these two phases more smoothly, to
avoid premature selection of an inadequate structure and spend timely effort on
estimating the parameters of a suitable structure.

Hill, Hunter and Wichern (1968) suggest a sequential approach based on a linear
combination of cost functions for discrimination and estimation. The weight of the
former falls monotonically as the largest of the probabilities of the structures increases.

Borth (1975) suggests a cost function based on the notion of total entropy, which
includes the structural entropy, already used in the approach presented in
Section 6.6.3.2, and the parametric entropy related to the uncertainty in the parameters
of the different structures. This idea has been taken up by Huang (1991), who uses the
upper bound of Box and Hill (1967) for the expected variation of the structural entropy.
A numerical comparison on various simulated examples seems to indicate that the
method of Hill, Hunter and Wichern estimates better but discriminates worse than that
of Huang.

Other cost functions based on D-optinality. A first modification (Huang, 1991) is (o
replace the cost function of Atkinson and Cox (1974)

n

It = H |det F/%( m) |k
k=1
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by the more intuitively appealing function

j(m = min (det FE(m)]link,
ke {1, ..., m}

which yields an approach closely related to T-optimal design.

A second modification (Huang, 1991) consists of replacing the simultaneous
comparison of m structures with a unique generic structure by pairwise comparison
using simpler generic structures. This may have special interest when m is large, since
the unique generic structure may then be rather complicated if the rival structures have
few common parts. One thus obtains either a cost function written as a product of
determinants (following the approach of Atkinson and Cox), or 2 maximin cost function
(following the modification suggested above).

Numerical examples seem to indicate that the maximin approach requires more
computation (which is not surprising), but performs better. Pairwise comparison of
structures seems to yield experiments with fewer support points than using a unique
generic structure.

Other algorithms. New algorithms for approximate design have been suggested in the
context of structure discrimination (Huang, 1991; Huang, Pronzato and Walter, 1991):
an exchange algorithm, initially proposed in the literature for the estimation of mixtures
(Bohning, 1985, 1989); a global-substitution algorithm (modifying all support points
of the design measure at each iteration); an algorithm for the optimization of maximin
cost functions (because the direction of steepest ascent no longer corresponds to the
introduction of a unique support point into the design measure, contrary to what is
indicated in (Atkinson and Fedorov, 1975b)).

An average-optimal approach for T-optimal design. Consider two rival structures. T-
optimal design relies on the unrealistic assumption that the true structure (with index 1)
and the value p; of its parameters are known. The cost function is then A(,f,)(m, P,
which depends on p;. The average-optimal approach (Ponce de Leon and Atkinson,
1991a, 1991b), relies on knowledge of the prior probability 7; that the ith structure is
true, and the prior density 7,(p;) of the parameters of this structure (conditional on it
being true). The resulting cost function takes the form

. 1) 2
jmy=m E (AY(m ppt+m E (4 (m py)).
P P2

This non-sequential approach easily extends to more than two rival structures. An
equivalence theorem can again be proved, and used to derive an optimization algorithm
similar to those already presented.

6.7 Conclusions

Although experiment design is generally considered an important step of modelling, it is
too often restricted to a qualitative study. This is mainly due to some skepticism about
quantitative resulls often based on rather heuristic assumptions. However, although



making assumptions is inescapable (any model structure already incorporates some),
unrealistically precise prior information can be avoided. Some results deserve emphasis,
First, whereas the Fisher information matrix depends on the distribution of the
measurement noise, we have seen (in Section 6.1) that the optimal experiment does
not, provided that the noise corresponds to a sequence of i.i.d. variables. (Correlated
variables have been considered in Section 6.3.2.2.) Second, whereas local design
assumes a known prior nominal value for the parameters (when the structure is not LP),
the methods presented in Sections 6.4.3 and 6.4.4 allow the uncertainty in this nominal
value to be taken into account, and the dependence of the optimal experiment on any
other quantity (e.g., a nuisance parameter) with an unreliable prior value could be
treated in the same way.

Finally, one should note the simplicity of the optimal experiments usually obtained:
repetition of observations under the same experimental conditions, simple input
sequences. Their implementation will thus often be easier than that of more conventional
and less informative experiments.






7 Falsification

This step is of paramount importance, for it may cause some previous choices to be
rejected. It is often called validation, which should not be misinterpreted as implying
definitive confirmation of the model. In fact, the best one can do is (o test the model by
trying to falsify (invalidate) it, looking for defects. The aim of this chapter is to describe
some techniques for such festing. Even if the model successfully passes the tests, its
validity remains in doubt, since future tests may lead to its rejection. Most of the
lechniques are based on analysis of residuals; see, e.g. (Anscombe and Tukey, 1963;
Draper and Smith, 1981, Cook and Weisberg, 1982). Testing residuals, e.g. for
homogeneity, stationarity, independence or normality, is among the main topics of
applied statistics, so this chapler only gives some guide-lines, and is by no means
exhaustive on such a broad subject.

7.1 Simple inspection

First, when the parameters have a physical meaning, they must Uenerally satisfy some
inequality constraints (e.g. on their sign or order of mdgmtude) When P is obtained by
unconstrained optimization, one can check a posteriori whether p is admissible, which
may lead to the rejection of the associated model. In behavioural models, when a
parameter uncertainty interval (Chapter 5) contains zero, a simplified model structure
obtained by removing the associated parameter and the corresponding part of the
regressor may be considered.

Testing the predictive capability of the model is often very useful. It consists of
comparing the system and model behaviour on a new data set, corrupted by random
errors independent of those present when the model was constructed. Inputs (more
generally experimental conditions) different from those used for the estimation of the
mode! paramelters can also be used (Ljung and Hjalmarsson, 1995). The model will
pass the test if it delivers a suitable prediction of the system behaviour associated with
these fresh data. This method is especially efficient for discriminating between simple
and complex structures, the most complex ones often being unable to reproduce the
system behaviour for another sequence of errors (for they model a particular realization
of these errors in more detail; see Section 2.5). In structure selection, this procedure is
the basis of cross-validation; see e.g. (Stone, 1974; Snee, 1977). It requires that not all
the data be used to fit the models to the system behaviour. Optimal strategies for
partitioning the data records into estimation and validation subsets are discussed in
(Djuric and Kay, 1994).

Testing the model for robustness should also be considered. When neglected
phenomena may perturb initial conditions, inputs or state variables, or constants taken
as known, it is important to check that some small perturbation of these quantities does



not drastically modify the behaviour of M(f)). If that were the case, the model would not
be robust, and should be used with extreme caution.

Finally, simple graphical analysis of the residuals is also very instructive, Assume,
for instance, that

YD) = ym(ti P+ (), i=1, ., my,

where the g(¢;)’s are independently distributed Af0, 0',) with 0', known (or
parametrized). The evolution of the normalized residuals

oty = 2D = ymUip) ;o

Oy;

coy Ny

can then be plotted against time. If the number n; of observations is large enough, and if
the estimator is consistent, these normalized residuals should resemble the sequence
£(1;)/oy; and thus approximately correspond to i.i.d. A{0, 1) random variables. This plot
may reveal the presence of outliers, a non-zero mean, correlations, non-stationarity (or
more generally non-homogeneity, e.g., a sudden and unaccounted-for modification of
the experimental conditions). This may in turn lead to rejecting some of the assumptions
used in the identification. Plotting the normalized residuals against the inputs may be
instructive too, for it may reveal dependence not taken into account by the model
structure. Also, plotting histograms of normalized residuals gives a first indication of
the validity of the Gaussian assumption; see Section 7.2.1. More sophisticated graphical
tools from multivariate data analysis can also be used, sece e.g. (Atkinson, 1985), and a
wealth of software is available.
Such inspectlion may precede more sophisticated statistical analysis.

7.2 Statistical analysis of residuals

Beyond simple graphical analysis, statistical tools allow the validity of some underlying
assumptions to be tested. Outlier detection will not be detailed here. A technique to
bypass the problem is to use robust estimation (Sections 3.7.2, 3.7.4 and 5.4.2.2),
which yield parameter estimates relatively insensitive to outliers. Their presence may
then be revealed by inspection of the residuals, making it possible to discard them.
More efficient (but less robust) estimation techniques can be used with the data cleaned
up in this way.

We shall only consider the analyms of umvanale data corresponding to regression
residuals (or prediction errors) ep(l p) with p the estimated value of the parameters
(obtained, for instance, by maximum-likelihood estimation). We shall test these
residuals against assumptions made about the sequence of perturbations £(t). Many test
statistics can be used, see, e.g., (Kanji, 1993), with specific tabulated distributions.
Only procedures that use classical statistical tables (for normal, Student’s and Fisher-
Snedecor distributions) will be described, testing for normality, stationarity and
independence. The validity of these three assumptions is a prerequisite for many other
statistical procedures. More details can be found, e.g., in (Madansky, 1988). When the
values required for computing test statistics are not available in tables, they may be
computed numerically (Press ¢f al., 1986).
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EXAMPLE 7.1

The maximum-likelihood approach often relies on the assumption that the prediction
error satisfies

ep(t, p*) =&, t=1,...,m,

where the £(f)’s are i.i.d. {0, 62) random variables, with 62 not necessarily known.
Under the assumption of ergodicity, the mean m; and variance ve of the errors
ep(t, Pm1) can be estimated by

ny

A 1 A
e = 2 ep(t, Pr)
=1
and
m

|
<3(: = ;z_l—.l ; [ep(t, f’ml) - ’,'\’c]z'

If ep(t, Pm]) is distributed A{mg, ve), Mg is dlstrlbuledAN(mc, ve/my). A classical test for
zero mean is then the r-fest, the test statistic being t = Me/(Ven) /2. The null hypothesis:

Hp: ﬁze =0,
is tested against the alternative hypothesis
Hy: e # 0.

At significance level a (usually taken as 5%), Hg will be rejected if Il > 15(n, ~ 1),
where f4(ny - 1) has probability a/2 of being exceeded by a random variable with
Student’s t-distribution with ny — | degrees of freedom. Critical values of 1, are
tabulated in most statistical books. This means that the probability of rejecting Hg when
it is in fact true is & When n is large, a simpler test may be used, rejecting Hg when

v

A 0

el > 2\ —=.
n

If Hyp is rejected, the model may be augmented by introducing an additional parameter
giving a constant term in the response.

Note that whereas the Gaussian assumption for the distribution of errors is not
important here, the assumptlon of mdependence is crucial. Indeed, if the central-limit
theorem dppheq and n is large, then m‘, is approx1matcly distributed Alm,, ve/ny) even
if the eP(I Pm1)’s are not Gaussian, provndcd they are i.i.d. (The assumption that the
eplr, Pm]) s are identically distributed is not essential (Rényi, 1966).) 0
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7.2.1 Testing for normality

Many procedures are available. A first consists of comparing the plot of the empirical
cumulative distribution function (c.d.f.) F with that of a normal distribution.
The empirical mean ﬁzc and variance %, of the ep(t, f))’s are

n

he=L Y oo b
o= 2, eplts B)

=

and
1

1
?’c =7 E [ep(t, f)) - Il;le]z.
t
=1
The errors ey(?, P) are then normalized according to
pt P 2

A A
_eplty P) — i

A
epn(lv p) = _\“\}— y t = 1, ey My,
C

and ordered by indexing time instants so that
A A A
ep (11, P) Sep (12, P) S ... Sep (In, P)-
The empirical c.d.f. Fe(x) is then

0 ifx<ep (11.D),

i .
Fo)=9 ;- il ep (i P) € x < ep (fis1, D),

I ifep (tn, P) < x,

which may be plotted against the c.d.f. F(x) of a normal variable A{0, 1). F¢(x) can
also be plotted on normal paper, where, under the normality assumption, it should be
close to a straight line. The use of such nomograms could be avoided by plotting
Flep, (ti, ﬁ)] as a function of i/my (pp-plor). Note that

X
] n2
Fx)=—— exp(— 7) du
2T _ 5,

can easily be obtained by numerical integration (Press et al., 1986).



EXAMPLE 7.2

Consider the four following data sets:

— Data Set (i) consists of a sequence of (00 1i.i.d. A{0, 1) random variables;

— Data Set (ii) consists of a sequence of 100 i.i.d. Z(~1, 1) random variables;

— Data Set (iii) consists of a sequence of 100 prediction errors ep(t, 615),
corresponding to residuals of linear regression.

ep(t, Bis) = ¥(1) - rT(Ps,
with
Pis = (RTR)-IRTys,
where
yS=Rp* +¢,

R
R}
R;
R; =diag(l, 2, ... , 50),

R, =diag(51, 52, ..., 100),
pi=1i=1,..,50

and € is distributed A{0, Ijgg);
— Data Set (iv) consists of a sequence of autocorrelated variables x(r), such that

x(1)y = e(l); x(t+1) = =x(t) + €(t+1), t=1,...,99,
where the £(£)’s are i.i.d. A{0, 1) random variables.

Figure 7.1 presents a histogram for Data Set (i). The comparison between the
cumulative distribution functions F(x) (theoretical) and F¢(x) (empirical) is given in
Figure 7.2. The corresponding pp-plot is in Figure 7.3. The histogram does not help
much in deciding whether to accept or reject the normality assumption. The decision is
easier from Figures 7.2 and 7.3. The pp-plot for Data Set (ii) is given in Figure 7.4.
The decision to reject the normalily assumption is now easier {rom the histogram
presented in Figure 7.5. The case of Data Set (iii) is more difficult. The residuals
ep(t, P1s) are the entries of

e(p1s) = [I,, - R(RTR)-IRT]ys,

and their covariance matrix is V = [I,, - R(RTR)-IRT]. They are thus generally
autocorrelated and non-stationary (heteroscedastic). Since rank V =n - np, e(ﬁ15)
moves in an (1 - np)-dimensional space when y$ varies. When € is distributed
NO, 621,), as here, fle(p1s)II2/02 has a 2 distribution with ny — n, degrees of



364 Falsipcation

freedom. Figures 7.6, 7.7 and 7.8 respectively present the histogram, the functions
F(x) and Fe(x), and the pp-plot for this data set.

20+

Figure 7.1. Histogram for Data Set (i)
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Figure 7.2. Comparison between F(x) (o) and Fe(x) (*) for Data Set (i)

The lack of independence is so marked here as to make the normality assumption
seem not to be valid! Caution is thus needed when using such simple graphical
techniques if n, is not very much larger than np, (here, np = 50 = n/2).
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Figure 7.3. pp-plot for Data Set (i)
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Figure 7.4. pp-plot for Data Set (ii)

When the model structure is LP and least-squares estimation is used, one can
construct a sequence of 1y~ np homoscedaslic variables, with covariance matrix
621,,l_np, by a linear transformation of the observations (provided the &(¢)'s are i.i.d.
with zero mean and variance a2) (Madansky, 1988, p. 69). This makes it possible lo
test the £(1)’s for normality and homoscedasticity even when n, is not negligible
compared with n;. This procedure is now applied to Data set (iii). First R and y* are
partitioned into
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Ry y0
R = R and yS = ,
! vi

where Ry is p X p and nonsingular. The matrix M = Rg(RTR)- 1Rg is then computed.
Denote the eigenvalues of M smaller than one by A1, ..., 4, and the associated
eigenvectors by vy, ..., v,. Let eg(p]s) and el(plq) be the reslduals associated with the
partition of R and y®, thal is

eo(P1s) = Y0 ~ Ropis,
and

el(llsls) = Y? - R]ﬁls‘

The ny — np, variables to be considered are given by

1_

e =e(Pry) -R Ro'(z — vivT) eo(Brs).
I+ \f

They form Data Set (iii’), which will be tested for normality, stationarity and
independence (with np = 0).

Figure 7.9 presents the distribution functions Fe(x) and F(x) for Data Set (ii1") and
Figure 7.10 the corresponding pp-plot. Comparison with Figures 7.7 and 7.8 shows
that normality has been much improved by the transformation.
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Figure 7.5. Histogram for Data Set (i)

For autocorrelated Data Set (iv), F(x) and Fu(x) are presented in Figure 7.11 and
the pp-plot is in Figure 7.12. Note the similarity between Figures 7.7 and 7.11 (or 7.8
and 7.12). 0
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Figure 7.7. Comparison between F(x) (o) and Fa(x) (+) for Data Set (iii)

The graphical procedure above can be completed by statistical tests. For instance,
the Kolmogorov-Smirnov test uses the maximum difference between Fe(x) and F(x) as
a test statistic. The values exceeded with probability a by

max [Felep, (i, )] = Flep, (1, )l = max |-~ Flep, (13, D))
! !



under the normality assumption are tabulated for various values of n;. Similarly, the
Shapiro-Wilk, Flllben and D Agmlmo tests rely on the regression of F-1(i/n;) as a
function of ep, (15, p) Again, comparisons of test statistics with tabulated values
determine acceptance or rejection of the normality assumption.
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Figure 7.8. pp-plot for Data Sel (iii)
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Figure 7.9. Comparison hetween F(x) and Fg(x) for Data Set (iii’)
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Figure 7.10. pp-plot for Data Set (iii")
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Figure 7.11. Comparison between F(x) (o) and Fe(x) (*) for Data Set (iv)

Empirical moments can also be used to test data for normality. Let X(7)
(t =1, ..., n) be an i.i.d. sequence of random variables, with probability density
function f{x). The test statistic for skewness

_ EIX-BX)

" g~

is based on the third-order moment and that for kurtosis
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on the fourth-order moment.
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Figure 7.12. pp-plot for Data Set (iv)

When the distribution is symmetric about the mean E{X}, 7, =0, and

() E(X)
71 > 0 if J-f(x)dx> J-f(x)dx,
E(X) —oco
o E(X]
Y1 < 0 if J‘f(x)dx< J-f(.l‘)d.\',
E{X} —oo

For a norma] distribution, ¥ = 9 = 0. If f{x) decreases more rapidly than the density of
the normal distribution as x tends to teo | p» < 0. If f(x) decreases more slowly,
%> > 0. The test statistics are then the empirical values

1y
1
m 2 lep(t, B) — i o3
A f=]

1= -
4 £

and
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ny

1

LY lept, ) - ot
1=1

A
ch

Y= -3,

Under the normality assumption, the means of % and Py are respectively

6

mi1 = 0 and mg=—m,

and their variances

oy = 6(n — 2) and ys = 24n(ng - 2)(ng - 3)
P2+ D +3) ST g+ D20+ 3}y + 5Y

Moreover, the asymptotic distributions (as 1y — o) of'}\q and 4}2 are normal. The
normality assumption will thus be rejected (at significance level 5%) if

_

Ty
2Vv|

>1

or

I'}\'Z — mol
Tr="—"—F==>1,
T 2,
since prob(7) < 1) = prob(7T7 < 1) = 95% for normal variates.

Another method relies on the comparison between the sample range w of the errors
ep(t, P) and standard deviation % 1/2. The test statistic is w/(¥s)!/2, the critical values of
which are tabulated (Kanji, 1993).

EXAMPLE 7.2 (continued)

The values of the test statistics 7'y and T4 for the five data sets are indicated in
Table 7.1.

Data Set T T>
® 0.944 0.083
(i) 0.172 1.197
un 1.019 2.286

(N 0.815 0.296
(iv) 0.057 0.389

Table 7.1. Test statistics for normality

Data Set (i) passes tests 7y and 7. For the uniformly distributed Data Set (ii), T
confirms that the distribution is symmetric, but the normality assumption is rejected
by T5. The residuals of Data Set (iii) are too correlated to obtain a correct decision from
these tests. The condition ny >> np, is again seen to be essential for normality testing by
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this approach. The corrected residnals of Data Set (iii') pass the tests. The decisions
concerning Data Set (iv) are correct. 0

7.2.2  Testing for stationarity

Although stationarity is generally taken as with respect to time, it can also cover
homogeneity with respect to other independent variables. We shall only consider
second-order stationarity, that is constancy of the variance 62 (or homoscedasticity).
Many procedures for statistical analysis rely on this assumption. Moreover, knowing
that it should be rejected may suggest a change of the estimation criterion, for instance
from unweighted to weighted least-squares. Again, we shall only present methods that
do not require the use of very specific tables.

The Goldfeld-Quandt procedure relies on the intuitive idea of splitting the data set
into three parts. The first k| and last k3 data points are kept, while the k7 intermediate
data points are ehmmated A rule of thumb is k| = k3 and kp = m/4. The first k1 and last
k3 errors ep(t, p) are then used to compule the ratio

Z[Ep(t P) - ’”cl]

ka—np =1
ky - np n

3= \
[ep(t, lS) - ’;\lcg]2
1=n—ka+!

where the means mal and m,:j are compulted for the first k| and last k3 points. For an
LP structure with unwelghtcd least-squares estimation, and if we assume an i.i.d.
normal measurement noise, r3 has a Fisher-Snedecor distribution with ky —np and
k3 — np degrees of freedom, which we denote by Kki ~ np, k3 ~ np). The critical values
of r3 are tabulated in most statistical books. The null hypothesis Hg is that the variance
is the same for the first k) and last k3 data points. If the alternative hypothesis Hj is that
the variance decreases with k,

3= £
Fo.o5(ki = np, k3 = np)

is computed where Fp os(k1 — np, k3 — np) has probability 0.05 of being exceeded by a
random variable distributed Fk| — np, k3 — np), and Hp is rejected if 73 > 1. If the
alternative hypothesis is that the variance increases with k,

13

T3 = 3
Fo.95(k1 — np, k3 — np)

is computed, and Hp rejected if 73 < 1. If the alternative hypothesis does not specify
which way the variance varies with £, a test (based of the lower and upper tails of the
distribution) more accurate than successive use of 73 and T3 can be used (Madansky,
1988).

Another approach is based on regression of the squares of residuals on some
explanatory exogenous variables z;(f) (e.g. z|{(f) = 1, or, when the initial estimation
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problem corresponds to linear regression with regressors r(1), z(r) = v(#)). Consider the
normalized residuals

A A
ep(t, P) — me

A »
\j Ve

and define vp, (1, P) = esn(t, f)). We use the linear regression model

ep,(h, P =

r=1,..,m,

dim z

vp (1, B) = g + Z aizi(f) + €'(1).

i=1

Under the stationarity hypothesis, the a;'s (i = 1, ... , dim z) should be zero. The
vector

a = (aO’ a]! LR ] adlm Z)T
can be estimated (by least-squares) as

b = (Z2T2)-'ZTv;, ().
where
Vo, (B) = [vp, (1. B), vp (2, B, -+ vy (e IIT,

and where the first column of Z contains only ones, and the (i + Dthcolumn is
[zi(1), Zi(2), ..., zi(@)]T. Tt is also instructive to plot vp, (t, p) against the zj(1)'s (see
Figure 7.13).

The Lagrange multiplier rest relies on the computation of the sum of squares of
residuals explained by the regression over the z;j(f)'s. The sum of squares of residuals
corresponding to the regression model above is

m

2
I vp, (B - Z8 |2 = 1 vy
=

(L ) - v (DVZ(ZTZY'ZTv, (P).

n

When only oy is estimated, with ¢ = 0 for i 2 0, the residual sum of squares is

1y m

2
2 A 1 AT
&t Py ,2_, oyt )|

The residual sum of squares explained by the z;(¢)'s is therefore

ny

T /A T 17T. A 1 A 2
o4 = Vi DL vy By -1 D vy 1)
=1



It is to be compared to the total sum of squares

ny
’ 2 A
54 = vI;"(t. p).
=1
The ratio
Ky
ry==t,
S4

should be much less than one when stationarity with respect to the z;'s is satisfied.
Breusch and Pagan (1979) have shown that 54/2 has a y2 distribution with dim z
degrees of freedom. A test statistic is thus

Ty=———
2)(0.05(d1m Z)

with xglos(dim z) having probability 5% of being exceeded by a random variable
distributed y2(dim z). The assumption of stationarity with respect to the z;’s will be
rejected when T4 > 1.
Similar ideas lead (o evaluating the correlation between the variables vp (1, p) and
zi(h), that is
m

[vp, (s B) = myllzi(r) = miz ]
=1

cs(h) = s
5(0) m m 172

Z [vp, (2 p) - my]? 2 [zi(r) - mzi]2

=] =1

where m1, and my, respectively denote the means of vpn(r, ’[\:) and z;(). This ratio always
satisfies —1 < ¢5(1) £ 1, and c5(i) is close to zero when stationarity with respect to z; is
satisfied. This corresponds to Ansconmbe’s test (Anscombe, 1961): es5(i)(ng — np) /2 is
approximately distributed 2{0, 1), so a lest statistic is

iy = SOy

The assumplion of stationarity with respect to z; will then be rejected when 7'5(i) > 1.

EXAMPLE 7.2 (continued)

We consider now three additional data sets, residuals ep(!, ﬁls) of linear regression:

ep(t, P1s) = y(1) ~ rT(DPis,
with
Pis = (RTR)-IRTys,
where
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ys=Rp* +¢,

R =(vy, v2),
v[—cos(g9 7)1—1 100,
V2, = sin (199 2) i=1, 100,

p*=(1, DT.

These three data sets differ in the values of €.

— In Data Set (v), the g(t)’s are a sequence of 100 i.i.d, A{0, 1) random variables.

— In Data Set (vi), € is distributed A0, Cy), with C{ = diag(1, 22, ..., 1002), which
makes the distribution of the g(t)’s (very) non-stationary.

— In Data Set (vii), € is distributed (0, C2), with C2 = MC|MT, and
M;i=M;i1 =1, M;; =0V k=i, i+1, which makes the &1)’s serially dependent
and (very) non-stationary.

Figure 7.13 gives vp (1, Pis) and the response of the regression model

88}

vm(t, @) = 8o+ 2 izt
i=1

as functions of 1, with z;(f) = v, and z,(/) = vy, for Data Set (vi).

______
------

Figure 7.13.vp (1, 1’)\) and model response vy(t, &) for Data Set (vi}
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Non-stationarity is clear from this ﬁgure The values of T3, T3, r4, T4, c5 and Ts for
Data Sets (ii1’) and (v) to (vii) are given in Table 7.2. (73 and T; cannot be used for
Data Set (iii), because ny, is (oo large compared with ny, whereas ny, is taken equal to
zero for Data Set (iii’).) For tests T4 and T, the explanatory variables were z;(f) = 1 for
Data Sets (iii) and (iii’), and z((f) = vy, and z5(N) = V2, for Data Sets (v) to (vii).

DataSet| 73 T3 r4 Ty es(h) | Ts(h | es2) | Ts(2)
(v) | 0.502 | 1.520 | 0.002 | 0.056 | -0.058| 0.287 | 0.051 | 0.254
(vi) | 0.036 | 0.110 | 0.151 | 7.144 | -0.427| 2.112 | 0.381 | 1.886
(vii) | 0.006 | 0.019 | 0.229 | 10.49 | -0.523| 2.587 | 0.449 | 2.223
(iii) — — | 0.065 | 4.150 | -0.285| 1.006 | — —
Gii'y | 0.303 | 1.425 | 0.013 | 0.264 | 0.138 | 0.486 | — —

Table 7.2. Tests statistics for stationarity

The conclusions are correct for the three data sets (v), (vi) and (vii) and the four tests
T3, T‘3, T4 and T5. Note that the variables z;(¢) and z,(1) for tests T4 and T5 arc
oscillating functions, and non-stationarity would be even more easily detected using
time as the explanatory variable, as for Data Sets (iii) and (iii'). The residuals of Data
Set (m) does not pass T4 and Ts, whereas the corrected residuals of Data Set (iii’) pass
T, Tq, T4 and Ts. 0

7.2.3  Testing for independence

The absence of correlation is a necessary condition for independence, and is also
sufficient in the case of normal variables. The sample autocorrelation of the prediction

errors is given by
nek

1
Ce(l) = n—k Z Lep(r, Prt) — {;Tc][ep(""k, Pmi) = Pte]
=1

and their normalized sample autocorrelation is

A
Balh) = S8
cn(k) Q'C(O)

Under the hypothesis of independence (Hg), when i tends to infinity, the
distribution of &,(k) should resemble the normal distribution A{0, 1/n() for any k # 0.
One can thus plot &,(k), which, for n, large enough, should lie in the interval
[—2~ iy, 27n ] with probability close to 95%. However, this does not take into account
the fact that the number of data points used to evaluate 2n(k) varies with k. If the
variance of &,(k) is approximated by n(ny + 2)~1(ny - k)-V instead of 1/n,, 2,(k) should

lie in the interval
1k = 2Vn, 2V
(ky=|- )
N+ DY (ng = k) N+ 2)(n = k)
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with probability close to 95%. Note that the size of I(k) increases with k.

EXAMPLE 7.2 (continued)

Figure 7.14 presents the normalized autocorrelation Sn(lc) for Data Set (vii), logether
with the bounds of the interval I(k) defined above, as functions of k. These bounds are
crossed several times, which raises some doubts about the validity of the hypothesis of
independence (actually not satisfied).

Figure 7.14. Normalized sample autocorrelatton £4(k) and bounds of the interval F(k)
as functions of & Tor Data Set (vii).

Moreover, when n is large, the variable

ny
D (- 0220
k-..

1[+

ve =

approximately has a y* distribution with n; — np degrees of freedom. One can thus use
the ratio

Te=—5——0——
16,05k - 1p)

as a test statistic, where XO 05(nx — np) has probability 0.05 of being exceeded by a
random variable distributed y2(ng — np) The hypothesis of independence will be
rejected when Tg > L.

Note that correlation between past inputs and residuals can also be used for model
validation. The importance of this statistic is stressed in (Ljung and Hjalmarsson,
1995), from an inductive point of view with strong intuitive appeal.

Various non-parametric procedures also permit a sequence of random variables to be
tested for independence. They generally rely on the intuitive idea that, when



independence holds, each variable in the sequence has probability 1/2 of being larger (or
smaller) than the median m, and has probability 1/2 of being larger (or smaller) than the
previous variable in the sequence.

With each variable ep(t, f)), we associate a new variable x(7):

Lif ep(t, 6) >m,
x() = A
0 if ep(z, p) < m,

(and x(1) = 0 or 1 with probability 1/2 if ep(t, f)) =m). A first test statistic based on the
sequence of x(#)’s is the r test. A run is a succession of elements with the same value.
Let r denote the number of runs in the sequence. For instance, if the sequence of x(f)'s
is 0110001001110, r =17. Let ny denote the number of ones in the sequence x(¢) (ng =6
in this example). When the observations in the original data set are independent of the
order in the sequence, and when ny is large, the distribution of r for a given value of n,
is approximalely normal, with mean

2nqlng— ng)
mq = =800 ’:l ol 41,

and variance

_ 2ng(y = ng)[2no(n — ng) — nyl

vy 5
ng(ng = 1)

The test statistic will thus be
_r=m7|

T - y
[N
and independence will be rejected if 77 > 1.

REMARK 7.1

This non-parametric test is used here a posteriori 1o check the validity of a model. One
could also use maximization of the number of runs as a criterion to estimate p
(Section 3.7.4). 0

Another procedure considers the successive differences in the sequence of errors,
that is

{1 if ep(t+1, P) > ep(t, B),
x() =
0if ep(t+1, B) < ep(t, B,

(with x(7) = 0 or 1 with probability 1/2 if ep(l+] , f)) = ep(!, ﬁ))‘ When the observations
in the original data set are independent of the order in the sequence, and when ny is
large, the number r of rmns in the sequence of x(7)'s is then approximately normal, with
mean
2n -1
mg =="3—,

and variance
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16n,— 29
ve = T

Note in particular that r = 1 corresponds to a monotonic sequence of errors ep(?, .

whereas r = nn— 1 corresponds to a sequence which oscillates in direction with period

two. The test statistic is then

r— mg|

Tg =—7—
2vy

and the hypothesis of independence will be rejected when Tg > 1.

A last approach determines the ranking order r(f) of each error ep(t, p) (in
increasing or decreasing order), and calculates the Von-Newmann ratio:

m

122 [r(t) - r(+=1)12

1=2

rg = 5
mny — 1)

the statistics of which are tabulated. When n, is large, and under the hypothesis of
independence, the distribution of rg is approximately normal A{2, 20/(5m + 7)). The
test statistic will thus be

rg —2
Ty = [rg ~ 2| '

, 20
2 S+ 7

and the hypothesis of independence will be rejected if Tg > 1.

EXAMPLE 7.2 (continued)

Consider again Data Sets (i-vii). The test statistics Tg to Ty are given in Table 7.3.

Data Set Te T7 Ty Ty
i) 0.578 0 0.878 0.655
(i1) 0.426 0.804 1.276 0.562
(iif) 1.056 0.804 2.792 0.560
(iii”) 0.584 0.571 2.050 0.517
(iv) 7.896 7.237 5.425 9.369
v) 0.738 0 0.878 0.655
(vi) 0.923 0 0.878 0.593
(vii) 2.056 2.814 2.952 3.074

Table 7.3. Test statistics for independence

All confirm that Data Sets (iv) and (vii) are not independent. The lack of independence
in the residuals of Data Set (iii) is detected by Tg and Tg (which explains the poor
performance of normality tests 71 and T3). The situation is improved for the corrected
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residuals of Data Set (iii’). The non-stationarity of Data Set (vi) has no effect on the
performance of the four tests. 0

7.3 Conclusions

The statistical tests presented here do not always give an unambiguous conclusion about
the validity of the hypothesis tested. If doubt remains, fictitious data can be generated,
by simulation of the model response using the estimated values of the parameters,
corrupted by perturbations satisfying the tested hypothesis. The same testing procedure
applied to these simulated data should then reveal the same ambiguity. If there is clear
evidence that the hypothesis is true for the simulated data, it could mean that some
important aspect of the behaviour of the actual system has been neglected, and that the
hypothesis should be rejected.

Quite often there are several competing model structures for a single process.
Proving superiority of a given model is of course an effective way of eliminating the
others. Defects which are significant for some applications may be of minor imporlance
for others. Note, however, that defining a quantitative criterion related to the final
purpose is not always easy (and a similar problem has been encountered in Chapter 3).

Finally, if the available data do not permit selection of one of the rival models, one
should try to collect more data (provided the structures considered are distinguishable).
Experimental design for model discrimination should then be considered (as in
Section 6.6.3).
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asymptotic convergence 147
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asymptotic efficiency 52, 67
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Broyden-Fletcher-Goldfarb-Shanno
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chain rule for differentiation 155, 159
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Cholesky decomposition 95
combinatorial design 290
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asymptotic 287
exact 250
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exact 250
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convergence of
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T-optimal measures 351
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correlation between past inputs and
residuals 377
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cost contour 145, 231
determination of points on a 238
representation of a 240
cost function 37, 68
additive 155
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limited expansion of the 142
Cramér-Rao inequality 246, 277, 342
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criteria 37
for experiment design 287, 333, 338
cross-validation 81, 359
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cumulative distribution function 362
cutting-plane method 199, 202

D' Agostino test 368
D-efficiency 347
D-optimal design 218, 288
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Davidon-Fletcher-Powell algorithm 175
Dp-optimality 344, 347
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differential algebra 30
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discontinuous cost functions 218
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discrete-time models 12
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by a maximin approach 356
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via entropy 352
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distribution of experimental effort 295
Ds-optimality 289, 290, 333, 355
dual control 229, 333
dual instructions 161
dual vector 72
duality property 157, 162
dynamic programming 134, 320, 332
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ED-efficiency 334
ED-optimality 333
EDE-optimality 334
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efficient estimator 246
EID-efficiency 334
EID-optimality 333
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ELD-optimality 334, 337
elimination theory 30
ellipsoid
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volume of 260

ellipsoidal algorithm 186, 200, 202,

260
with parallel cuts 265
ellipsoidal inner bounding 267
cllipsoidal outer bounding 260, 267
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entropy 66, 331, 352
maximum 66
of the density 257
total 355
EPC algorithm 265
equality constraints 71, 185, 197
equivalence theorem 55, 298
for average-optimal design 337
for Bayesian experiment design 344
for Dg-optimal design 354
for T-optimal design 350
ergodicity 361
EITorsS
bounded 257
generalized 123
in bounds 277
in regressor 274, 276
in the structure 58, 258, 346, 347
in variables 115, 274
input 51, 275
input-output 276
introduced by computation 204
normalized 362
output 42, 88, 122, 258, 275
estimate 37
estimating filter 107, 114
estimation error
covariance matrix of the 105
exchange algorithms 56, 292, 305, 356
excursion 294
expeclation surface 89, 211, 232, 273,
329
Expectation-Maximization algorithm 56,
305
experiment design 63, 111, 218, 226,
227, 285
approximate 296, 322, 337, 341,
344
average-optimal 333
exact 292, 336, 340, 343
for Bayesian estimation 342
for structure discrimination 349
local 291
limitation of 329
minimax-optimal 338
sequential 229, 320, 331, 338
experimental conditions 286
exponential forgetting 96



extended Kalman filter 111
extended least squares 118, 126
extended matrix method 125, 210
extended parameter vector 249
extended state 112, 155

factors 226
falsification 6, 359
feasible set
at level jo 277
non-connected 272, 278
posterior 259, 272
prior 7
Fedorov’s algorithm 292
Fedorov-Wynn algorithm 55, 303, 337,
344, 351
feedback 311, 320, 325
Fibonacci's method 133
fictitious data 242, 380
Filiben test 368
filtering 122
Final Prediction Error criterion 63
finite difference 14, 149, 167
finite impulse response 16, 85
FIR 16, 85
first-order expansion
of the cost 142
of the error 126
first-order optimality condition 41
Fisher information 74, 252, 289
Fisher information matrix 52, 71, 74,
208, 287, 289, 310
after sampling 327
per sample 208, 295, 327
per unil time 321, 326
rank-reduced 71
Fisher-Snedecor distribution 235, 330,
372
flat models 255
forgetting factor 96
forward-shift operator 12
FPE criterion 63
Fréchet derivative 198
frequency folding effect 13, 327
Frisch method 117

G-optimality 298
Gauss-Markov estimator 44, 46, 105

Gauss-Newton algorithm 127, 171

stochastic version 208
Gaussian noise 40

multidimensional 45

with independently estimated vari-

ance 237
with known or-constant variance 43,
232

with unknown variance 44, 235
generalized least squares 120
generalized predictive control 99
generic property 20
Gibbs sampler 58
global optimization 204, 211, 240
golden number 136
golden-section method 133
Goldfeld-Quandt procedure 372
gradient 142

computation of the 149
gradient algorithm 142

choice of step length 143
gradient-projection algorithm 190, 316
graphical analysis of residuals 360
gridding 238

Hammerstein model 87
heavy-ball method 178
Hessian 167, 251, 252
approximation of 171
approximation of inverse of 174
computation of 169
heteroscedasticity 44, 298
Hill model 255
histograms 360
homeoscedasticity 43, 372
Huber’s cost function 77
hyperparameters 81, 248

identifiability 20, 95, 97, 110, 146,
171, 187, 213, 240, 260, 273,
278
loss of 287
identification for control 325
ill-conditioned problems 168
ill-posed problems 81, 85, 173
impulse response 85
inclusion function 221, 280
independent random variables 15, 42



inequality constraints 68, 72, 359
infinite-dimensional problems 54
initial conditions, 50, 152
initialization, 89, 203, 211
inner ellipsoids 195, 267
innovation 114
input design 306, 326
for ARX structures 313, 318
for Box-Jenkins structures 310
for continuous-time syslems 324
for FIR structures 308
globally optimal 320
sequential 318
input error 51, 275
input-additive perturbation 50
input-output errors 276
inputs
globally optimal 320
with bounded amplitude 309
with bounded average power 308
instrumental variables 127
instruments 128
interindividual variability 58
interior-point methods 184, 196
interpolation 60
interval analysis 219, 280
intrinsic nonlinearity 233, 255, 329
invariance principle 52
inverse model 3, 50

J-criterion 347

Jack-knife 244

Jacobian matrix 169

joint estimation and discrimination 355

Kalman filter 102

extended 111

stationary 110, 114
Kalman gain 93
Kalman-Luenberger observers 103
Kautz functions 86
knowledge-based models 8§
Kolmogorov-Smirnov test 367
kriging 58
kurtosis

test statistic for 369

L-optimality 229, 287, 293

lack of independence in residuals 364,
379
Lagrange multiplier test 373
Lagrangian formulation 59, 72, 188,
315
Laguerre functions 86
Laplace operator 11
Laplacian noise 47, 75
Lp-optimality 229, 342, 347
least mean squares 209
least median of squares 76, 278
least modulus 39, 48, 75, 76, 197
least squares 37, 44, 76, 88, 115, 127,
130, 168, 212, 247, 254, 258
data-recursive 92, 104
extended 118, 126
for constant parameters 92
for drifting parameters 96
for jumping parameters 97
generalized 120
initialization 95
iteration 94
numerical considerations 91
on correlations 129
parameter recursive 101
vector data-recursive 104
least trimmed squares 76, 278
level set see cost contours
Levenberg-Marquardt method 95, 173,
248
LI models 9
likelihood 40
likelihood set 259
lincarity
in the inputs 9
in the parameters 10, 84, 246, 249,
259, 329
linear parameters 131, 336, 339
linear programming 49, 185, 269
complexily of 265
local optima 203
elimination of 211
localized regression model 349
log-likelihood 40
LP structures 10, 84, 246, 249, 259,
329
partiafly 131
L estimation 39



algorithms for 201
Ly estimation 38
L. estimation 48, 186

M-estimator 77, 201
MA 16
MAP estimator 67, 70, 85, 253, 254
density of the 331
marginal densities 256
Markov parameters 27
matrix inversion lemma 94
maximum a posteriori estimator see
MAP estimator
maximum entropy 66
maximum likelihood 40
approximate 210
conditional 120
properties 51
mean-square error 59, 62, 129, 248,
330, 348
method of centres 194, 200
method of feasible directions 192, 196
Michaelis-Menten model 255
minimax approach to robustness 75,
348
minimax estimation 48, 76, 186, 197,
277
minimax optimality 134
minimum risk 68, 253, 342
prior expectation of the 254
mixture distributions 53
MMD-optimality 338
MMDE-optimality 338
model-free optimization 226
modulating functions 84
Monte-Carlo methods 242
multilinear regression 119
multimodality 146, 212, 240
multiple integration 69

NARMAX 16

Newton method 167

Newton-Raphson method 318

noise 15

non-centrality parameter 350

non-differentiable cost functions 197,
218

Non-LP model structures 272, 329

ndex

non-minimal phase systems 99
non-quadratric cost functions 171
non-redescending estimator 79
NONMEM method 58
nonparametric approaches 58, 346, 377
nonparametric inputs 308
normal equations 78
normal noise see Gaussian noise
normalized autocorrelation 376
normalized errors 362
normalized residuals 360
nuisance parameters 288, 333
number

of repetitions 42

of sign changes 80, 378

of significant digits 203, 243
numerical conditioning 91, 252
Nyquist’s lower bound 327

OBE algorithm 261
observability 25, 28
observer form 115
observers 103, 111
OMNE 277, 282
one-dimensional optimization 131
one-shot experiments 333
one-step-ahead prediction 49, 93
operating conditions 226
optimal control 70, 313
optimal inputs 306

in frequency domain 320

in time domain 308
optimal measurement times 306
optimal sampling frequency 327
oplimality conditions

first-order 41

second-order 225
optimization 83

of a measured response 226
optimizer 37

parasitic local 288
orthogonal projection 89, 233, 255
Osborne and Watson's algorithm 202
outer boxes 269
outer ellipsoids 261, 267, 299
Outlier Minimal Number Estimator 277,

282

outliers 75, 76, 80, 277, 278, 360
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output error 42, 88, 122, 258, 275
output-additive random variables
dependent 49
independent 42
outward rounding 221
overparametrization 85

parabolic interpolation 136
parallel models 3, 98, 123
parameter distribution in a population
53
parameter drift 97
parameter uncertainty 169
parameter uncertainty intervals 239,
241, 267, 269, 271, 279

parametric inputs 307
parametric nonlinearity 233, 255, 329
Parseval’s theorem 321
path-following methods 185
penalty functions 68, 71-73
persistency of excitation 324
perturbations 2, 15
phenomenological models 8§, 83
Polak-Ribiére algorithm 180
polyhedral cones 272
polynomial models 29, 8§, 303
polytopes 185, 260

exact description of 270

with limited complexity 272
population

of estimates 242

of processes 332

of results 205
posterior feasible set 187
posterior mean 70, 253
posterior values 106
Powell's method 137, 146, 197
power spectral density 321
pp-plot 362
predicting filter 107, 114
prediction

confidence intervals for 60
prediction discrepancy 350
prediction error 49, 93, 310

autocorrelation of 376
prediction variance 298
predictive capability 359
prefiltering 20

411

presampling filter 327

primal methods 184

principal component analysis 241
principal hyperplane 280

prior probability density 66

prior values 106

process noise 104

projected Newton method 192
pseudo-inverse 92

pseudolinear regression 118

PUI 239, 241, 267, 269, 277, 279

quadratic approximation 136, [43
quadratic cost functions 37, 88, 170
quadratic programming 187
quasi-Newton methods 174

random scanning 238
random search 216
random variables
dependent 49
independent 15, 42
real-time parameler estimation 111
realization methods 9
recurrence equation 12
recursive bounding 270
with ellipsoids 261
recursive least squares 92, 101, 104
recursive minimax estimator 272
recursive techniques 92, 101, 104, 206
redescending estimator 79
reference model 97
regression
lincar 84
localised 349
multilinear 119
of the squares of residuals 372
pseudolinear 118
regressor error 274, 276
regressor vector 84
regularization 68, 81, 85, 173
relaxation algorithm 340, 352
relaxation coefficient 169
reparametrization 10, 52, 67, 69, 71,
73, 145, 233, 288, 334, 338
repetition of measurements 38, 40, 52,
211, 237, 288, 295
residuals
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analysis of 360
autocorrelation of 363
lack of independence of 364, 379
normalized 360
response-surface methodology 227
reverse mode 156, 159
Riccati equation 110, 115
ridge estimators 81, 129, 248
risk 68
robust control 98
robust estimators 74, 359, 360
robust experiment design 329
robustness to neglected terms 347
Rosenbrock’s test function 140, 148,
171, 176, 181
run 378

s.d. 32
s.g.i. 21
s.l.i. 21
s.ui. 21
sampling 13, 320
schedule 326
search interval 132
second-order expansion of the cost 167
second-order optimality condition 225
second-order stationarity 372
Self TUning REgulator 98
sensitivity functions 163
first-order 149
for algebraic-differential systems
154
for ARARMAX models 152
for LT models 150
for non-LI models 153
for state-space equations 153
second-order 170
sensitivity set 299
sequential experiment design 229, 320,
331, 338
sequential input design 318
sequential quadratic programming 194,
305
series models 98
series-parallel models 98, 123
set estimation 48, 257
set inversion 280
Shannon's condition 13, 327

Index

Shapiro-Wilk test 368
simplex algorithm 141, 226
simulation scheme 15, 230
single-parameter models 255
singular-value decomposition 91, 116
sinusoidal inputs 321
skewness
test statistic for 369
solution locus see expeclation surface
space-dilation method 201
spectral density of sampled noise 327
spectral factorisation theorem 17
standard deviation
robust estimate of the 78
state-affine structure 9
state estimation 103
bounded-error 267
static nonlinearity 87
stationary Kalman filter 110, 114
steepest ascent 227, 304
sleepest descent 143
Steiglitz and McBride’s method 122
stochastic approximation 69, 207, 226,
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stochastic dynamic programming 320,
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stochastic gradient algorithm 100, 207,
210, 336
with averaging 210
stochastic identification 114
stochastic Newton algorithm 208
stochastic processes 15
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structural errors 257, 346, 347
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Student's t-distribution 206, 250, 361
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subdifferential 197
subgradient method 197, 201
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T-optimal design 341, 350, 356
t-test 361
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for independence 376
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time-invariant models 10
time-varying parameters 108, 208
total least squares 117
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transformation on data 90
Tukey’s cost function 78

U-D factorization 95, 96, 110
unbiased estimators 253
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on the noise distribution 74
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uncorrelated random vectors 104
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local dependencies between 32

uniform noise 48, 258
unimodality 133, 211
uninformative prior 66

universal differential equations 9

validation 65, 359
variable-metric methods 176, 201
variance

estimate of the 41
variance equalization 44
vector interval 221
Vignes' algorithm 146
Von-Neumann ratio 379

weighting coefficients 38
white noise 325

width of a box 222
Wolfe’s method 132, 183
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