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Introduction

This book provides an accessible yet rigorous introduction to the fields of mathe-
matics that are needed for success in investment and quantitative finance. The book’s
goal is to develop mathematics topics used in portfolio management and investment
banking, including basic derivatives pricing and risk management applications, that
are essential to quantitative investment finance, or more simply, investment finance.
A future book, Advanced Quantitative Finance: A Math Tool Kit, will cover more
advanced mathematical topics in these areas as used for investment modeling, deriv-
atives pricing, and risk management. Collectively, these latter areas are called quan-
titative finance or mathematical finance.

The mathematics presented in this book would typically be learned by an under-
graduate mathematics major. Each chapter of the book corresponds roughly to the
mathematical materials that are acquired in a one semester course. Naturally each
chapter presents only a subset of the materials from these traditional math courses,
since the goal is to emphasize the most important and relevant materials for the fi-
nance applications presented. However, more advanced topics are introduced earlier
than is customary so that the reader can become familiar with these materials in an
accessible setting.

My motivation for writing this text was to fill two current gaps in the financial and
mathematical literature as they apply to students, and practitioners, interested in
sharpening their mathematical skills and deepening their understanding of invest-
ment and quantitative finance applications. The gap in the mathematics literature is
that most texts are focused on a single field of mathematics such as calculus. Anyone
interested in meeting the field requirements in finance is left with the choice to either
pursue one or more degrees in mathematics or expend a significant self-study effort
on associated mathematics textbooks. Neither approach is efficient for business
school and finance graduate students nor for professionals working in investment
and quantitative finance and aiming to advance their mathematical skills. As the dil-
igent reader quickly discovers, each such book presents more math than is needed for
finance, and it is nearly impossible to identify what math is essential for finance
applications. An additional complication is that math books rarely if ever provide
applications in finance, which further complicates the identification of the relevant
theory.

The second gap is in the finance literature. Finance texts have effectively become
bifurcated in terms of mathematical sophistication. One group of texts takes the
recipe-book approach to math finance often presenting mathematical formulas with
only simplified or heuristic derivations. These books typically neglect discussion of
the mathematical framework that derivations require, as well as effects of assump-
tions by which the conclusions are drawn. While such treatment may allow more



xxii Introduction

discussion of the financial applications, it does not adequately prepare the student
who will inevitably be investigating quantitative problems for which the answers are
unknown.

The other group of finance textbooks are mathematically rigorous but inaccessible
to students who are not in a mathematics degree program. Also, while rigorous, such
books depend on sophisticated results developed elsewhere, and hence the discussions
are incomplete and inadequate even for a motivated student without additional class-
room instruction. Here, again, the unprepared student must take on faith referenced
results without adequate understanding, which is essentially another form of recipe
book.

With this book I attempt to fill some of these gaps by way of a reasonably eco-
nomic, yet rigorous and accessible, review of many of the areas of mathematics
needed in quantitative investment finance. My objective is to help the reader acquire
a deep understanding of relevant mathematical theory and the tools that can be ef-
fectively put in practice. In each chapter I provide a concluding section on finance
applications of the presented materials to help the reader connect the chapter’s math-
ematical theory to finance applications and work in the finance industry.

What Does It Take to Be a “Quant”?

In some sense, the emphasis of this book is on the development of the math tools one
needs to succeed in mathematical modeling applications in finance. The imagery
implied by “math tool kit” is deliberate, and it reflects my belief that the study of
mathematics is an intellectually rewarding endeavor, and it provides an enormously
flexible collection of tools that allow users to answer a wide variety of important and
practical questions.

By tools, however, I do not mean a collection of formulas that should be memo-
rized for later application. Of course, some memorization is mandatory in mathe-
matics, as in any language, to understand what the words mean and to facilitate
accurate communication. But most formulas are outside this mandatorily memorized
collection. Indeed, although mathematics texts are full of formulas, the memoriza-
tion of formulas should be relatively low on the list of priorities of any student or
user of these books. The student should instead endeavor to learn the mathematical
frameworks and the application of these frameworks to real world problems.

In other words, the student should focus on the thought process and mathematics
used to develop each result. These are the “tools,” that is, the mathematical methods
of each discipline of explicitly identifying assumptions, formally developing the
needed insights and formulas, and understanding the relationships between formulas
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and the underlying assumptions. The tools so defined and studied in this book will
equip the student with fairly robust frameworks for their applications in investment
and quantitative finance.

Despite its large size, this book has the relatively modest ambition of teaching a
very specific application of mathematics, that being to finance, and so the selection
of materials in every subdiscipline has been made parsimoniously. This selection of
materials was the most difficult aspect of developing this book. In general, the selec-
tion criterion I used was that a topic had to be either directly applicable to finance, or
needed for the understanding of a later topic that was directly applicable to finance.
Because my objective was to make this book more than a collection of mathematical
formulas, or just another finance recipe book, I devote considerable space to discus-
sion on how the results are derived, and how they relate to their mathematical
assumptions. Ideally the students of this book should never again accept a formulaic
result as an immutable truth separate from any assumptions made by its originator.

The motivation for this approach is that in investment and quantitative finance,
there are few good careers that depend on the application of standard formulas in
standard situations. All such applications tend to be automated and run in compa-
nies’ computer systems with little or no human intervention. Think “program trad-
ing” as an example of this statement. While there is an interesting and deep theory
related to identifying so-called arbitrage opportunities, these can be formulaically
listed and programmed, and their implementation automated with little further ana-
lyst intervention.

Equally, if not more important, with new financial products developed regularly,
there are increased demands on quants and all finance practitioners to apply the pre-
vious methodologies and adapt them appropriately to financial analyses, pricing, risk
modeling, and risk management. Today, in practice, standard results may or may
not apply, and the most critical job of the finance quant is to determine if the tradi-
tional approach applies, and if not, to develop an appropriate modification or even
an entirely new approach. In other words, for today’s finance quants, it has become
critical to be able to think in mathematics, and not simply to do mathematics by
rote.

The many finance applications developed in the chapters present enough detail to
be understood by someone new to the given application but in less detail than would
be appropriate for mastering the application. Ideally the reader will be familiar with
some applications and will be introduced to other applications that can, as needed,
be enhanced by further study. On my selection of mathematical topics and finance
applications, I hope to benefit from the valuable comments of finance readers, whether
student or practitioner. All such feedback will be welcomed and acknowledged in fu-
ture editions.
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Plan of the Book

The ten chapters of this book are arranged so that each topic is developed based on
materials previously discussed. In a few places, however, a formula or result is intro-
duced that could not be fully developed until a much later chapter. In fewer places, I
decided to not prove a deep result that would have brought the book too far afield
from its intended purpose. Overall, the book is intended to be self-contained, com-
plete with respect to the materials discussed, and mathematically rigorous. The only
mathematical background required of the reader is competent skill in algebraic
manipulations and some knowledge of pre-calculus topics of graphing, exponentials
and logarithms. Thus the topics developed in this book are interrelated and applied
with the understanding that the student will be motivated to work through, with pen
or pencil and paper or by computer simulation, any derivation or example that may
be unclear and that the student has the algebraic skills and self-discipline to do so.

Of course, even when a proof or example appears clear, the student will benefit in
using pencil and paper and computer simulation to clarify any missing details in der-
ivations. Such informal exercises provide essential practice in the application of the
tools discussed, and analytical skills can be progressively sharpened by way of the
book’s formal exercises and ultimately in real world situations. While not every deri-
vation in the book offers the same amount of enlightenment on the mathematical
tools studied, or should be studied in detail before proceeding, developing the habit
of filling in details can deepen mathematical knowledge and the understanding of
how this knowledge can be applied.

I have identified the more advanced sections by an asterisk (x). The beginning
student may find it useful to scan these sections on first reading. These sections can
then be returned to if needed for a later application of interest. The more advanced
student may find these sections to provide some insights on the materials they are
already familiar with. For beginning practitioners and professors of students new to
the materials, it may be useful to only scan the reasoning in the longer proofs on a
first review before turning to the applications.

There are a number of productive approaches to the chapter sequencing of this
book for both self-study and formal classroom presentation. Professors and practi-
tioners with good prior exposure might pick and choose chapters out of order to effi-
ciently address pressing educational needs. For finance applications, again the best
approach is the one that suits the needs of the student or practitioner. Those familiar
with finance applications and aware of the math skills that need to be developed will
focus on the appropriate math sections, then proceed to the finance applications to
better understand the connections between the math and the finance. Those less fa-
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miliar with finance may be motivated to first review the applications section of each
chapter for motivation before turning to the math.

Some Course Design Options

This book is well suited for a first-semester introductory graduate course in quantita-
tive finance, perhaps taken at the same time as other typical first-year graduate
courses for finance students, such as investment markets and products, portfolio
theory, financial reporting, corporate finance, and business strategy. For such stu-
dents the instructor can balance the class time between sharpening mathematical
knowledge and deepening a level of understanding of finance applications taken in
the first term. Students will then be well prepared for more quantitatively focused in-
vestment finance courses on fixed income and equity markets, portfolio management,
and options and derivatives, for example, in the second term.

For business school finance students new to the subject of finance, it might be bet-
ter to defer this book to a second semester course, following an introductory course
in financial markets and instruments so as to provide a context for the finance appli-
cations discussed in the chapters of this book.

This book is also appropriate for graduate students interested in firming up their
technical knowledge and skills in investment and quantitative finance, so it can be
used for self-study by students soon to be working in investment or quantitative fi-
nance, and by practitioners needing to improve their math skill set in order to ad-
vance their finance careers in the “quant” direction. Mathematics and engineering
departments, which will have many very knowledgeable graduate and undergraduate
students in the areas of math covered in this book, may also be interested in offering
an introductory course in finance with a strong mathematical framework. The rigor-
ous math approach to real world applications will be familiar to such students,
so a balance of math and finance could be offered early in the students’ academic
program.

For students for whom the early chapters would provide a relatively easy review, it
is feasible to take a sequential approach to all the materials, moving faster through
the familiar math topics and dwelling more on the finance applications. For non-
mathematical students who risk getting bogged down by the first four chapters in
their struggle with abstract notions, and are motivated to learn the math only after
recognizing the need in a later practical setting, it may be preferable to teach only a
subset of the math from chapters 1 through 4 and focus on the intuition behind these
chapters’” applications. For example, an instructor might provide a quick overview of
logic and proof from chapter 1, choose selectively from chapter 2 on number sys-
tems, then skip ahead to chapter 4 for set operations. After this topical tour the
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instructor could finally settle in with all the math and applications in chapter 5 on
sequences and then move forward sequentially through chapters 6 to 10. The other
mathematics topics of chapters 1 through 4 could then be assigned or taught as
required to supplement the materials of these later chapters. This approach and
pace could keep the students motivated by getting to the more meaningful applica-
tions sooner, and thus help prevent math burnout before reaching these important
applications.

Chapter Exercises

Chapter exercises are split into practice exercises and assignment exercises. Both
types of exercises provide practice in mathematics and finance applications. The
more challenging exercises are accompanied by a “hint,”” but students should not be
constrained by the hints. The best learning in mathematics and in applications often
occurs in pursuit of alternative approaches, even those that ultimately fail. Valuable
lessons can come from such failures that help the student identify a misunderstanding
of concepts or a misapplication of logic or mathematical techniques. Therefore, if
other approaches to a problem appear feasible, the student is encouraged to follow
at least some to a conclusion. This additional effort can provide reinforcement of a
result that follows from different approaches but also help identify errors and mis-
understandings when two approaches lead to different conclusions.

Solutions and Instructor’s Manuals

For the book’s practice exercises, a Solutions Manual with detailed explanations of
solutions is available for purchase by students. For the assignment exercises, solu-
tions are available to instructors as part of an Instructor’s Manual. This Manual
also contains chapter-by-chapter suggestions on teaching the materials. All instructor
materials are also available online.

Organization of Chapters

Few mathematics books today have an introductory chapter on mathematical logic,
and certainly none that address applications. The field of logic is a subject available
to mathematics or philosophy students as a separate course. To skip the material on
logic is to miss an opportunity to acquire useful tools of thinking, in drawing appro-
priate conclusions, and developing clear and correct quantitative reasoning.

Simple conclusions and quantitative derivations require no formality of logic, but
the tools of truth tables and statement analysis, as well as the logical construction of
a valid proof, are indispensable in evaluating the integrity of more complicated
results. In addition to the tools of logic, chapter 1 presents various approaches to
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proofs that follow from these tools, and that will be encountered in subsequent chap-
ters. The chapter also provides a collection of paradoxes that are often amusing and
demonstrate that even with careful reasoning, an argument can go awry or a conclu-
sion reached can make no sense. Yet paradoxes are important; they motivate clearer
thinking and more explicit identification of underlying assumptions.

Finally, for completeness, this chapter includes a discussion of the axiomatic for-
mality of mathematical theory and explains why this formality can help one avoid
paradoxes. It notes that there can be some latitude in the selection of the axioms,
and that axioms can have a strong effect on the mathematical theory. While the
reader should not get bogged down in these formalities, since they are not critical to
the understanding of the materials that follow, the reader should find comfort that
they exist beneath the more familiar frameworks to be studied later.

The primary application of mathematical logic to finance and to any field is as a
guide to cautionary practice in identifying assumptions and in applying or deriving a
needed result to avoid the risk of a potentially disastrous consequence. Intuition is
useful as a guide to a result, but never as a substitute for careful analysis.

Chapter 2, on number systems and functions, may appear to be on relatively trivial
topics. Haven’t we all learned numbers in grade school? The main objective in
reviewing the different number systems is that they are familiar and provide the foun-
dational examples for more advanced mathematical models. Because the aim of this
book is to introduce important concepts early, the natural numbers provide a rela-
tively simple example of an axiomatic structure from chapter 1 used to develop a
mathematical theory.

From the natural numbers other numbers are added sequentially to allow more
arithmetic operations, leading in turn to integers, rational, irrational, real, and com-
plex numbers. Along the way these collections are seen to share certain arithmetic
structures, and the notions of group and field are introduced. These collections also
provide an elementary context for introducing the notions of countable and uncount-
able infinite sets, as well as the notion of a “dense” subset of a given set. Once
defined, these number systems and their various subsets are the natural domains on
which functions are defined.

While it might be expected that only the rational numbers are needed in finance,
and indeed the rational numbers with perhaps only 6 to 10 decimal point represen-
tations, it is easy to exemplify finance problems with irrational and even complex
number solutions. In the former cases, rational approximations are used, and some-
times with reconciliation difficulties to real world transactions, while complex num-
bers are avoided by properly framing the interest rate basis. Functions appear
everywhere in finance—from interest rate nominal basis conversions, to the pricing
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functions for bonds, mortgages and other loans, preferred and common stock, and
forward contracts, and to the modeling of portfolio returns as a function of the asset
allocation.

The development of number system structures is continued in chapter 3 on Eucli-
dean and other spaces. Two-dimensional Euclidean space, as was introduced in chap-
ter 2, provided a visual framework for the complex numbers. Once defined, the
vector space structure of Euclidean space is discussed, as well as the notions of the
standard norm and inner product on these spaces. This discussion leads naturally to
the important Cauchy—Schwarz inequality relating these concepts, an inequality that
arises time and again in various contexts in this book. Euclidean space is also the
simplest context in which to introduce the notion of alternative norms, and the /,-
norms, in particular, are defined and relationships developed. The central result is
the generalization of Cauchy—Schwarz to the Holder inequality, and of the triangle
inequality to the Minkowski inequality.

Metrics are then discussed, as is the relationship between a metric and a norm, and
cases where one can be induced from the other on a given space using examples from
the /,-norm collection. A common theme in mathematics and one seen here is that
a general metric is defined to have exactly the essential properties of the standard
and familiar metric defined on R? or generalized to IR”. Two notions of equivalence
of two metrics is introduced, and it is shown that all the metrics induced by the /,-
norms are equivalent in Euclidean space. Strong evidence is uncovered that this re-
sult is fundamentally related to the finite dimensionality of these spaces, suggesting
that equivalence will not be sustained in more general forthcoming contexts. It is
also illustrated that despite this general /,-equivalence result, not all metrics are
equivalent.

For finance applications, Euclidean space is seen to be the natural habitat for
expressing vectors of asset allocations within a portfolio, various bond yield term
structures, and projected cash flows. In addition, all the /,-norms appear in the cal-
culation of various moments of sample statistical data, while some of the /,-norms,
specifically p = 1,2, and oo, appear in various guises in constrained optimization
problems common in finance. Sometimes these special norms appear as constraints
and sometimes as the objective function one needs to optimize.

Chapter 4 on set theory and topology introduces another example of an axiomatic
framework, and this example is motivated by one of the paradoxes discussed in
chapter 1. But the focus here is on set operations and their relationships. These are
important tools that are as essential to mathematical derivations as are algebraic
manipulations. In addition, basic concepts of open and closed are first introduced in
the familiar setting of intervals on the real line, but then generalized and illustrated
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making good use of the set manipulation results. After showing that open sets in IR
are relatively simple, the construction of the Cantor set is presented as an exotic ex-
ample of a closed set. It is unusual because it is uncountable and yet, at the same
time, shown to have “measure 0.”” This result is demonstrated by showing that the
Cantor set is what is left from the interval [0, 1] after a collection of intervals are
removed that have total length equal to 1!

The notions of open and closed are then extended in a natural way to Euclidean
space and metric spaces, and the idea of a topological space is introduced for com-
pleteness. The basic aim is once again to illustrate that a general idea, here topology,
is defined to satisfy exactly the same properties as do the open sets in more familiar
contexts. The chapter ends with a few other important notions such as accumulation
point and compactness, which lead to discussions in the next chapter.

For finance applications, constrained optimization problems are seen to be natu-
rally interpreted in terms of sets in Euclidean space defined by functions and/or
norms. The solution of such problems generally requires that these sets have certain
topological properties like compactness and that the defining functions have certain
regularity properties. Function regularity here means that the solution of an equation
can be approximated with an iterative process that converges as the number of steps
increases, a notion that naturally leads to chapter 5. Interval bisection is introduced
as an example of an iterative process, with an application to finding the yield of a
security, and convergence questions are made explicit and seen to motivate the no-
tion of continuity.

Sequences and their convergence are addressed in chapter 5, making good use of
the concepts, tools, and examples of earlier chapters. The central idea, of course, is
that of convergence to a limit, which is informally illustrated before it is formally
defined. Because of the importance of this idea, the formal definition is discussed at
some length, providing both more detail on what the words mean and justification
as to why this definition requires the formality presented. Convergence is demon-
strated to be preserved under various arithmetic operations. Also an important result
related to compactness is demonstrated: that is, while a bounded sequence need not
converge, it must have an accumulation point and contain a subsequence that con-
vergences to that accumulation point. Because such sequences may have many—
indeed infinitely many—such accumulation points, the notions of limit superior and
limit inferior are introduced and shown to provide the largest and smallest such ac-
cumulation points, respectively.

Convergence of sequences is then discussed in the more general context of Eucli-
dean space, for which all the earlier results generalize without modification, and
metric spaces, in which some care is needed. The notion of a Cauchy sequence is
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next introduced and seen to naturally lead to the question of whether such sequences
converge to a point of the space, as examples of both convergence and nonconver-
gence are presented. This discussion leads to the introduction of the idea of complete-
ness of a metric space, and of its completion, and an important result on completion
is presented without proof but seen to be consistent with examples studied.

Interval bisection provides an important example of a Cauchy sequence in finance.
Here the sequence is of solution iterates, but again the question of convergence of the
associated price values remains open to a future chapter. With more details on this
process, the important notion of continuous function is given more formality.

Although the convergence of an infinite sequence is broadly applicable in its own
right, this theory provides the perfect segue to the convergence of infinite sums
addressed in chapter 6 on series and their convergence. Notions of absolute and con-
ditional convergence are developed, along with the implications of these properties
for arithmetic manipulations of series, and for re-orderings or rearrangements of the
series terms. Rearrangements are discussed for both single-sum and multiple-sum
applications.

A few of the most useful tests for convergence are developed in this chapter. The
chapter 3 introduction to the /,-norms is expanded to include /,-spaces of sequences
and associated norms, demonstrating that these spaces are complete normed spaces,
or Banach spaces, and are overlapping yet distinct spaces for each p. The case of
p = 2 gets special notice as a complete inner product space, or Hilbert space, and
implications of this are explored. Power series are introduced, and the notions of
radius of convergence and interval of convergence are developed from one of the pre-
vious tests for convergence. Finally, results for products and quotients of power se-
ries are developed.

Applications to finance include convergence of price formulas for various perpet-
ual preferred and common stock models with cash flows modeled in different func-
tional ways, and various investor yield demands. Linearly increasing cash flows
provide an example of double summation methods, and the result is generalized to
polynomial payments. Approximating complicated pricing functions with power se-
ries is considered next, and the application of the /,-spaces is characterized as provid-
ing an accessible introduction to the generalized function space counterparts to be
studied in more advanced texts.

An important application of the tools of chapter 6 is to discrete probability theory,
which is the topic developed in chapter 7 starting with sample spaces and probability
measures. By discrete, it is meant that the theory applies to sample spaces with a
finite or countably infinite number of sample points. Also studied are notions of con-
ditional probability, stochastic independence, and an n-trial sample space construc-
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tion that provides a formal basis for the concept of an independent sample from a
sample space. Combinatorics are then presented as an important tool for organizing
and counting collections of events from discrete sample spaces.

Random variables are shown to provide key insights to a sample space and its
probability measure through the associated probability density and distribution func-
tions, making good use of the combinatorial tools. Moments of probability density
functions and their properties are developed, as well as moments of sample data
drawn from an n-trial sample space. Several of the most common discrete probability
density functions are introduced, as well as a methodology for generating random
samples from any such density function.

Applications of these materials in finance are many, and begin with loss models
related to bond or loan portfolios, as well as those associated with various forms of
insurance. In this latter context, various net premium calculations are derived. Asset
allocation provides a natural application of probability methods, as does the model-
ing of equity prices in discrete time considered within either a binomial lattice or bi-
nomial scenario model. The binomial lattice model is then used for option pricing in
discrete time based on the notion of option replication. Last, scenario-based option
pricing is introduced through the notion of a sample-based option price defined in
terms of a sampling of equity price scenarios.

With chapter 7 providing the groundwork, chapter 8 develops a collection of the
fundamental probability theorems, beginning with a modest proof of the unique-
ness of the moment-generating and characteristic functions in the case of finite dis-
crete probability density functions. Chebyshev’s inequality, or rather, Chebyshev’s
inequalities, are developed, as is the weak law of large numbers as the first of several
results related to the distribution of the sample mean of a random variable in the
limit as the sample size grows. Although the weak law requires only that the random
variable have a finite mean, in the more common case where the variance is also fi-
nite, this law is derived with a sleek one-step proof based on Chebyshev.

The strong law of large numbers requires both a finite mean and variance but pro-
vides a much more powerful statement about the distribution of sample means in the
limit. The strong law is based on a generalization of the Chebyshev inequality known
as Kolmogorov’s inequality. The De Moivre—Laplace theorem is investigated next,
followed by discussions on the normal distribution and the central limit theorem
(CLT). The CLT is proved in the special case of probability densities with moment-
generating functions, and some generalizations are discussed.

For finance applications, Chebyshev is applied to the problem of modeling and
evaluating asset adequacy, or capital adequacy, in a risky balance sheet. Then the bi-
nomial lattice model for stock prices under the real world probabilities introduced in
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chapter 7 is studied in the limit as the time interval converges to zero, and the prob-
ability density function of future stock prices is determined. This analysis uses the
methods underlying the De Moivre—Laplace theorem and provides the basis of the
next investigation into the derivation of the Black—Scholes—Merton formulas for the
price of a European put or call option. Several of the details of this derivation that
require the tools of chapters 9 and 10 are deferred to those chapters. The final appli-
cation is to the probabilistic properties of the scenario-based option price introduced
in chapter 7.

The calculus of functions of a single variable is the topic developed in the last two
chapters. Calculus is generally understood as the study of functions that display var-
ious types of “smoothness.” In line with tradition, this subject is split into a differen-
tiation theory and an integration theory. The former provides a rigorous framework
for approximating smooth functions, and the latter introduces in an accessible frame-
work an important tool needed for a continuous probability theory.

Chapter 9 on the calculus of differentiation begins with the formal introduction
of the notion of continuity and its variations, as well the development of important
properties of continuous functions. These basic notions of smoothness provide the
beginnings of an approximation approach that is generalized and formalized with
the development of the derivative of a function. Various results on differentiation fol-
low, as does the formal application of derivatives to the question of function approx-
imation via Taylor series. With these tools important results are developed related to
the derivative, such as classifying the critical points of a given function, characteriz-
ing the notions of convexity and concavity, and the derivation of Jensen’s inequality.
Not only can derivatives be used to approximate function values, but the values of
derivatives can be approximated using nearby function values and the associated
errors quantified. Results on the preservation of continuity and differentiability under
convergence of a sequence of functions are addressed, as is the relationship between
analytic functions and power series.

Applications found in finance include the continuity of price functions and their
application to the method of interval bisection. Also discussed is the continuity of
objective functions and constraint functions and implications for solvability of con-
strained optimization problems. Deriving the minimal risk portfolio allocation is
one application of a critical point analysis. Duration and convexity of fixed income
investments is studied next and used in an application of Taylor series to price func-
tion approximations and asset-liability management problems in various settings.

Outside of fixed income, the more common sensitivity measures are known as the
“Greeks,” and these are introduced and shown to easily lend themselves to Taylor
series methods. Ultility theory and its implications for risk preferences are studied
as an application of convex and concave functions and Jensen’s inequality, and then
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applied in the context of optimal portfolio allocation. Finally, details are provided
for the limiting distributions of stock prices under the risk-neutral probabilities and
special risk-averter probabilities needed for the derivation of the Black—Scholes—
Merton option pricing formulas, extending and formalizing the derivation begun in
chapter 8. The risk-averter model is introduced in chapter 8 as a mathematical arti-
fact to facilitate the final derivation, but it is clear the final result only depends on the
risk-neutral model.

The notion of Riemann integral is studied in chapter 10 on the calculus of integra-
tion, beginning with its definition for a continuous function on a closed and bounded
interval where it is seen to represent a “‘signed” area between the graph of the func-
tion and the x-axis. A series of generalizations are pursued, from the weakening of
the continuity assumption to that of bounded and continuous ‘“‘except on a set of
points of measure 0,” to the generalization of the interval to be unbounded, and fi-
nally to certain generalizations when the function is unbounded. Properties of such
integrals are developed, and the connection between integration and differentiation
is studied with two forms of the fundamental theorem of calculus.

The evaluation of a given integral is pursued with standard methods for exact val-
uation as well as with numerical methods. The notion of integral is seen to provide a
useful alternative representation of the remainder in a Taylor series, and to provide a
powerful tool for evaluating convergence of, and estimating the sum of or rate of di-
vergence of, an infinite series. Convergence of a sequence of integrals is included. The
Riemann notion of an integral is powerful but has limitations, some of which are
explored.

Continuous probability theory is developed with the tools of this chapter, encom-
passing more general probability spaces and sigma algebras of events. Continuously
distributed random variables are introduced, as well as their moments, and an acces-
sible result is presented on discretizing such a random variable that links the discrete
and continuous moment results. Several continuous distributions are presented and
their properties studied.

Applications to finance in chapter 10 include the present and accumulated value of
continuous cash flow streams with continuous interest rates, continuous interest rate
term structures for bond yields, spot and forward rates, and continuous equity
dividends and their reinvestment into equities. An alternative approach to applying
the duration and convexity values of fixed income investments to approximating
price functions is introduced. Numerical integration methods are exemplified by ap-
plication to the normal distribution.

Finally, a generalized Black—Scholes—Merton pricing formula for a European op-
tion is developed from the general binomial pricing result of chapter 8, using a “con-
tinuitization” of the binomial distribution and a derivation that this continuitization
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converges to the appropriate normal distribution encountered in chapter 9. As an-
other application, the Riemann-Stieltjes integral is introduced in the chapter exer-
cises. It is seen to provide a mathematical link between the calculations within the
discrete and continuous probability theories, and to generalize these to so-called
mixed probability densities.
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1 Mathematical Logic

1.1 Introduction

Nearly everyone thinks they know what logic is but will admit the difficulty in for-
mally defining it, or will protest that such a formal definition is not necessary because
its meaning is obvious. For example, we all like to stop an adversary in an argument
with the statement “‘that conclusion is illogical,” or attempt to secure our own vic-
tory by proclaiming “logic demands that my conclusion is correct.” But if compelled
in either instance, it may be difficult to formalize in what way logic provides the
desired conclusion.

A legal trial can be all about attempts at drawing logical conclusions. The prose-
cution is trying to prove that the accused is guilty based on the so-called facts. The
defense team is trying to prove the improbability of guilt, or indeed even innocence,
based on the same or another set of facts. In this example, however, there is an asym-
metry in the burden of proof. The defense team does not have to prove innocence.
Of course, if such a proof can be presented, one expects a not guilty verdict for the
accused. The burden of proof instead rests on the prosecution, in that they must
prove guilt, at least to some legal standard; if they cannot do so, the accused is
deemed not guilty.

Consequently a defense tactic is often focused not on attempting to prove inno-
cence but rather on demonstrating that the prosecution’s attempt to prove guilt is
faulty. This might be accomplished by demonstrating that some of the claimed facts
are in doubt, perhaps due to the existence of additional facts, or by arguing that even
given these facts, the conclusion of guilt does not necessarily follow ““logically.” That
is, the conclusion may be consistent with but not compelled by the facts. In such a
case the facts, or evidence, is called “‘circumstantial.”

What is clear is that the subject of logic applies to the drawing of conclusions, or
to the formulation of inferences. It is, in a sense, the science of good reasoning. At its
simplest, logic addresses circumstances under which one can correctly conclude that
“B follows from 4,” or that “4 implies B,” or again, “If 4, then B.” Most would
informally say that an inference or conclusion is logical if it makes sense relative to
experience. More specifically, one might say that a conclusion follows logically from
a statement or series of statements if the truth of the conclusion is guaranteed by, or
at least compelled by, the truth of the preceding statement or statements.

For example, imagine an accused who is charged with robbing a store in the dark
of night. The prosecution presents their facts: prior criminal record; eyewitness ac-
count that the perpetrator had the same height, weight, and hair color; roommate
testimony that the accused was not home the night of the robbery; and the accused’s
inability to prove his whereabouts on the evening in question. To be sure, all these
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facts are consistent with a conclusion of guilt, but they also clearly do not compel
such a conclusion. Even a more detailed eyewitness account might be challenged,
since this crime occurred at night and visibility was presumably impaired. A fact
that would be harder to challenge might be the accused’s possession of many expen-
sive items from the store, without possession of sales receipts, although even this
would not be an irrefutable fact. “Who keeps receipts?”’ the defense team asserts!

The world of mathematical theories and proofs shares features with this trial ex-
ample. For one, a mathematician claiming the validity of a result has the burden of
proof to demonstrate this result is true. For example, if I assert the claim,

For any two integers N and M, it is true that M + N =N + M,

I have the burden of demonstrating that such a conclusion is compelled by a set of
facts. A jury of my mathematical peers will then evaluate the validity of the assumed
facts, as well as the quality of the logic or reasoning applied to these facts to reach
the claimed conclusion. If this jury determines that my assumed facts or logic is inad-
equate, they will deem the conclusion “not proved.” In the same way that a failed
attempt to prove guilt is not a proof of innocence, a failed proof of truth is not a
proof of falsehood. Typically there is no single judge who oversees such a mathemat-
ical process, but in this case every jury member is a judge.

Imagine if in mathematics the burden of proof was not as described above but in-
stead reversed. Imagine if an acceptable proof of the claim above regarding N and M
was: “It must be true because you cannot prove it is false.” The consequence of this
would be parallel to that of reversing the burden of proof in a trial where the prose-
cution proclaims: “The accused must be guilty because he cannot prove he is inno-
cent.” Namely, in the case of trials, many innocent people would be punished, and
perhaps at a later date their innocence demonstrated. In the case of mathematics,
many false results would be believed to be true, and almost certainly their falsity
would ultimately be demonstrated at a later date. Our jails would be full of the inno-
cent people; our math books, full of questionable and indeed false theory.

In contrast to an assertion of the validity of a result, if I claim that a given state-
ment is false, I simply need to supply a single example, which would be called a
“counterexample” to the statement. For example, the claim,

For any integer A, there is an integer B so that 4 = 2B,

can be proved to be false, or disproved, by the simple counterexample: 4 = 3.

What distinguishes these two approaches to proof is not related to the asserted
statement being true or false, but to an asymmetry that exists in the approach to the
presentation of mathematical theory. Mathematicians are typically interested in
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whether a general result is always true or not always true. In the first case, a general
proof is required, whereas in the second, a single counterexample suffices. On the
other hand, if one attempted to prove that a result is always false, or not always
false, again in the first case, a general proof would be required, whereas in the sec-
ond, a single counterexample would suffice. The asymmetry that exists is that one
rarely sees propositions in mathematics stated in terms of a result that is always false,
or not always false. Mathematicians tend to focus on “positive” results, as well as
counterexamples to a positive result, and rarely pursue the opposite perspective. Of
course, this is more a matter of semantic preference than theoretical preference. A
mathematician has no need to state a proposition in terms of ““a given statement is
always false” when an equivalent and more positive perspective would be that “the
negative of the given statement is always true.” Why prove that “2x = x is always
false if x # 0 when you can prove that “for all x # 0, it is true that 2x # x.”

What distinguishes logic in the real world from the logic needed in mathematics
is that in the real world the determination that A follows from B often reflects the
human experience of the observers, for example, the judge and jury, as well as rules
specified in the law. This is reinforced in the case of a criminal trial where the jury is
given an explicit qualitative standard such as “beyond a reasonable doubt.” In this
case the jury does not have to receive evidence of the guilt of the accused that con-
vinces with 100 percent conviction, only that the evidence does so beyond a reason-
able doubt based on their human experiences and instincts, as further defined and
exemplified by the judge.

In mathematics one wants logical conclusions of truth to be far more secure than
simply dependent on the reasonable doubts of the jury of mathematicians. As math-
ematics is a cumulative science, each work is built on the foundation of prior results.
Consequently the discovery of any error, however improbable, would have far-
reaching implications that would also be enormously difficult to track down and rec-
tify. So not surprisingly, the goal for mathematical logic is that every conclusion will
be immutable, inviolate, and once drawn, never to be overturned or contradicted in
the future with the emergence of new information. Mathematics cannot be built as a
house of cards that at a later date is discovered to be unstable and prone to collapse.

In contrast, in the natural sciences, the burden of proof allowed is often closer to
that discussed above in a legal trial. In natural sciences, the first requirement of a
theory is that it be consistent with observations. In mathematics, the first requirement
of a theory is that it be consistent, rigorously developed, and permanent. While it is
always the case that mathematical theories are expanded upon, and sometimes be-
come more or less in vogue depending on the level of excitement surrounding the de-
velopment of new insights, it should never be the case that a theory is discarded
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because it is discovered to be faulty. The natural sciences, which have the added bur-
den of consistency with observations, can be expected to significantly change over
time and previously successful theories even abandoned as new observations are
made that current theories are unable to adequately explain.

1.2 Axiomatic Theory

From the discussion above it should be no surprise that structure is desired of every
mathematical theory:

1. Facts used in a proof are to be explicitly identified, and each is either assumed
true or proved true given other assumed or proved facts.

2. The rules of inference, namely the logic applied to these facts in proofs, are to be
“correct,” and the definition of correct must be objective and immutable.

3. The collection of conclusions provable from the facts in item 1 using the logic in
item 2 and known as theorems, are to be consistent. That is, for no statement P will
the collection of theorems include both “statement P is true” and “‘the negation of
statement P is true.”

4. The collection of all theorems is to be complete. That is, for every statement P, ei-
ther “‘statement P is a theorem” or ‘“‘the negation of statement P is a theorem.” A
related but stronger condition is that the resulting theory is decidable, which means
that one can develop a procedure so that for any statement P, one can determine if
P is true or not true in a finite number of steps.

It may seem surprising that in item 1 the “truth” of the assumed facts was not the
first requirement, but that these facts be explicitly identified. It is natural that identi-
fication of the assumed facts is important to allow a mathematical jury to do its re-
view, but why not an absolute requirement of “‘truth’’? The short answer is, there are
no facts in mathematics that are “true” and yet at the same time dependent on no
other statements of fact. One cannot start with an empty set of facts and somehow
derive, with logic alone, a collection of conclusions that can be demonstrated to be
true.

Consequently some basic collection of facts must be assumed to be true, and these
will be the axioms of the theory. In other words, all mathematical theories are axiom-
atic theories, in that some basic set of facts must be assumed to be true, and based on
these, other facts proved. Of course, the axioms of a theory are not arbitrary. Math-
ematicians will choose the axioms so that in the given context their truth appears un-
deniable, or at least highly reasonable. This is what ensures that the theorems of the
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mathematical theory in item 3, that is, the facts and conclusions that follow from
these axioms, will be useful in that given context.

Different mathematical theories will require different sets of axioms. What one
might assume as axioms to develop a theory of the integers will be different from
the axioms needed to develop a theory of plane geometry. Both sets will appear un-
deniably true in their given context, or at least quite reasonable and consistent with
experience. Moreover, even within a given subject matter, such as geometry, there
may be more than one context of interest, and hence more than one reasonable
choice for the axioms.

For example, the basic axioms assumed for plane geometry, or the geometry that
applies on a “flat” two-dimensional sheet, will logically be different from the axioms
one will need to develop spherical geometry, which is the geometry that applies on
the surface of a sphere, such as the earth. Which axioms are “true”? The answer is
both, since both theories one can develop with these sets of axioms are useful in the
given contexts. That is, these sets of axioms can legitimately be claimed to be “true”
because they imply theories that include many important and deep insights in the
given contexts.

That said, in mathematics one can and does also develop theories from sets of axi-
oms that may seem abstract and not have a readily observable context in the real
world. Yet these axioms can produce interesting and beautiful mathematical theories
that find real world relevance long after their initial development.

The general requirements on a set of axioms is that they are:

1. Adequate to develop an interesting and/or useful theory.

2. Consistent in that they cannot be used to prove both “statement P is true” and
“the negation of statement P is true.”

3. Minimal in that for aesthetic reasons, and because these are after all “assumed
truths,” it is desirable to have the simplest axioms, and the fewest number that ac-
complish the goal of producing an interesting and/or useful theory.

It is important to understand that the desirability, and indeed necessity, of framing
a mathematical theory in the context of an axiomatic theory is by no means a
modern invention. The earliest known exposition is in the Elements by Euclid of
Alexandria (ca. 325-265 BC), so Euclid is generally attributed with founding the ax-
iomatic method. The Elements introduced an axiomatic approach to two- and three-
dimensional geometry (called Euclidean geometry) as well as number theory. Like the
modern theories this treatise explicitly identifies axioms, which it classifies as “com-
mon notions” and “postulates,” and then proceeds to carefully deduce its theorems,
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called ““propositions.” Even by modern standards the Elements is a masterful exposi-
tion of the axiomatic method.

If there is one significant difference from modern treatments of geometry and other
theories, it is that the Elements defines all the basic terms, such as point and line, be-
fore stating the axioms and deducing the theorems. Mathematicians today recognize
and accept the futility of attempting to define all terms. Every such definition uses
words and references that require further expansion, and on and on. Modern devel-
opments simply identify and accept certain notions as undefined—the so-called prim-
itive concepts—as the needed assumptions about the properties of these terms are
listed within the axioms.

1.3 Inferences

Euclid’s logical development in the Elements depends on “rules of inference” but
does not formally include logic as a theory in and of itself. A formal development
of the theory of logic was not pursued for almost two millennia, as mathematicians,
following Euclid, felt confident that “logic” as they applied it was irrefutable. For
instance, if we are trying to prove that a certain solution to an equation satisfies
x < 100, and instead our calculation reveals that x < 50, without further thought
we would proclaim to be done. Logically we have:

“x < 50 implies that x < 100” is a true statement.
“x < 507 is a true statement by the given calculation.
“x < 100 is a true statement, by “deduction.”

Abstractly: if P = Q and P, then Q. Here we use the well-known symbol = for
“implies,” and agree that in this notation, all statements displayed are “true.”” That
is, if P = Q and P are true statements, then Q is a true statement. This is an example
of the direct method of proof applied to the conditional statement, P = Q, which is
also called an implication.

In the example above note that even as we were attempting to implement an objec-
tive logical argument on the validity of the conclusion that x < 100, we would likely
have been simultaneously considering, and perhaps even biased by, the intuition we
had about the given context of the problem. In logic, one attempts to strip away all
context, and thereby strip away all intuition and bias. The logical conclusion we
drew about x is true if and only if we are comfortable with the following logical
statement in every context, for any meanings we might ever ascribe to the statements
P and Q:
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If P = Q and P, then Q.

In logic, it must be all or nothing. The rule of inference summarized above is known
as modus ponens, and it will be discussed in more detail below.
Another logical deduction we might make, and one a bit more subtle, is as follows:

“x < 50 implies that x < 100” is a true statement.
“x < 100 is not a true statement by demonstration.
“x < 507 1s not a true statement, by deduction.

Again, abstractly: if P = Q and ~Q, then ~P. Here we use the symbol ~Q to mean
“the negation of Q is true,” which is “logic-speak’ for “Q is false.”” This is similar to
the “direct method of proof,” but applied to what will be called the contrapositive of
the conditional P = Q, and consequently it can be considered an indirect method of
proof. Again, we can apply this logical deduction in the given context if and only if
we are comfortable with the following logical statement in every context:

If P= Q and ~Q, then ~P.

The rule of inference summarized above is known as modus tollens, and will also be
discussed below.

Clearly, the logical structure of an argument can become much more complicated
and subtle than is implied by these very simple examples. The theory of mathemati-
cal logic creates a formal structure for addressing the validity of such arguments
within which general questions about axiomatic theories can be addressed. As it
turns out, there are a great many rules of inference that can be developed in mathe-
matical logic, but modus ponens plays the central role because other rules can be
deduced from it.

1.4 Paradoxes

One may wonder when and why mathematicians decided to become so formal with
the development of a mathematical theory of logic, collectively referred to as mathe-
matical logic, requiring an axiomatic structure and a formalization of rules of infer-
ence. An important motivation for increased formality has been the recognition that
even with early efforts to formalize, such as in Euclid’s Elements, mathematics has
not always been formal enough, and the result was the discovery of a host of para-
doxes throughout its history. A paradox is defined as a statement or collection of
statements which appear true but at the same time produce a contradiction or a
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conflict with one’s intuition. Some mathematical paradoxes in history where solved
by later developments of additional theory. That is, they were indicative of an incom-
plete or erroneous understanding of the theory, often as a consequence of erroneous
assumptions. Others were more fatal, in that they implied that the theory developed
was effectively built as a house of cards and so required a firmer and more formal
theoretical foundation.

Of course, paradoxes also exist outside of mathematics. The simplest example is
the liar’s paradox:

This statement is false.

The statement is paradoxical because if it is true, then it must be false, and con-
versely, if false, it must be true. So the statement is both true and false, or neither
true nor false, and hence a paradox.

Returning to mathematics, sometimes an apparent paradox represents nothing
more than sleight of hand. Take, for instance, the “proof” that 1 =0, developed
from the following series of steps:

a=1,
a’ =1,
a*—a=0,
ala—1) =0,
a=0,
1=0.

The sleight of hand here is obvious to many. We divided by a — 1 before the fifth step,
but by the first, « — 1 = 0. So the paradoxical conclusion is created by the illegitimate
division by 0. Put another way, this derivation can be used to confirm the illegiti-
macy of division by zero, since to allow this is to allow the conclusion that 1 = 0.

Sometimes the sleight of hand is more subtle, and strikes at the heart of our lack of
understanding and need for more formality. Take, again, the following deduction
that 1 = 0:

A=T—1+41—141-141—-..
— (=) 4+ 0=+ (1 —1)+--
—0.
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A=1-(1-1)-1-1)—(1—1)—
=1

)

so once more, 4 = 1 = 0. The problem with this derivation relates to the legitimacy
of the grouping operations demonstrated; once grouped, there can be little doubt that
the sum of an infinite string of zeros must be zero. Because we know that such group-
ings are fine if the summation has only finitely many terms, the problem here must be
related to this example being an infinite sum. Chapter 6 on numerical series will de-
velop this topic in detail, but it will be seen that this infinite alternating sum cannot
be assigned a well-defined value, and that such grouping operations are mathemati-
cally legitimate only when such a sum is well-defined.

An example of an early and yet more complex paradox in mathematics is Zeno’s
paradox, arising from a mythical race between Achilles and a tortoise. Zeno of Elea
(ca. 490-430 BC) noted that if both are moving in the same direction, with Achilles
initially behind, Achilles can never pass the tortoise. He reasoned that at any mo-
ment that Achilles reaches a point on the road, the tortoise will have already arrived
at that point, and hence the tortoise will always remain ahead, no matter how fast
Achilles runs. This is a paradox for the obvious reason that we observe faster runners
passing slower runners all the time. But how can this argument be resolved?

Although this will be addressed formally in chapter 6, the resolution comes from
the demonstration that the infinite collection of observations that Zeno described be-
tween Achilles and the tortoise occur in a finite amount of time. Zeno’s conclusion of
paradox implicitly reflected the assumption that if in each of an infinite number of
observations the tortoise is ahead of Achilles, it must be the case that the tortoise is
ahead for all time. A formal resolution again requires the development of a theory in
which the sum of an infinite collection of numbers can be addressed, where in this
case each number represents the length of the time interval between observations.

Another paradox is referred to as the wheel of Aristotle. Aristotle of Stagira (384
322 BC) imagined a wheel that has inner and outer concentric circles, as in the inner
and outer edges of a car tire. He then imagined a fixed line from the wheel’s hub
extending through these circles as the wheel rotates. Aristotle argued that at every
moment, there is a one-to-one correspondence between the points of intersection of
the line and the inner wheel, and the line and the outer wheel. Consequently the inner
and outer circles must have the same number of points and the same circumference, a
paradox. The resolution of this paradox lies in the fact that having a 1:1 correspon-
dence between the points on these two circles does not ensure that they have equal
lengths, but to formalize this required the development of the theory of infinite sets
many hundreds of years later. At the time of Aristotle it was not understood how two
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sets could be put in 1:1 correspondence and not be “equivalent” in their size or mea-
sure, as is apparently the case for two finite sets. Chapter 2 on number systems will
develop the topic of infinite sets further.

The final paradox is unlike the others in that it effectively dealt a fatal blow to an
existing mathematical theory, and made it clear that the theory needed to be redevel-
oped more formally from the beginning. It is fair to say that the paradoxes above
didn’t identify any house of cards but only a situation that could not be appropri-
ately explained within the mathematical theory or understanding of that theory
developed to that date. The next paradox has many forms, but a favorite is called
the Barber’s paradox. As the story goes, in a town there is a barber that shaves
all the men that do not shave themselves, and only those men. The question is:
Does the barber shave himself? Similar to the liar’s paradox, we conclude that the
barber shaves himself if and only if he does not shave himself. The problem here
strikes at the heart of set theory, where it had previously been assumed that a set
could be defined as any collection satisfying a given criterion, and once defined, one
could determine unambiguously whether or not a given element is a member of the
set. Here the set is defined as the collection of individuals satisfying the criterion that
they don’t shave themselves, and we can get no logical conclusion as to whether or
not the barber is a member of this set.

An equivalent form of this paradox, and the form in which it was discovered by
Bertrand Russell (1872-1970) in 1901 and known as Russell’s paradox, makes this
set theory connection explicit. Let X denote the set of all sets that are not elements
of themselves. The paradox is that one concludes X to be an element of itself if and
only if it is not an element of itself. This discovery was instrumental in identifying the
need for, and motivating the development of, a more careful axiomatic approach to
set theory. Of course, the need for the development of a more formal axiomatic
theory for all mathematics was equally compelled, since if mathematics went astray
by defining an object as simple and intuitive as a set, who could be confident that
other potential crises didn’t loom elsewhere?

1.5 Propositional Logic

1.5.1 Truth Tables

Much of mathematical logic can be better understood once the concept of truth table
is introduced and basic relationships developed. The starting point is to define a
statement in a mathematical theory as any declarative sentence that is either true or
false, but not both. For example, “today the sky is blue”” and 5 < 7” are statements.
An expression such as “x < 77 is not a statement because we cannot assign 7 or F to
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it without knowing what value the variable x assumes. Such an expression will be
called a formula below. While a formula is not a statement because the variable x is
a free variable, it can be made into a statement by making x a bound variable. The
most common ways of accomplishing this is with the universal quantifier, V, and ex-
istential quantifier, 3, defined as follows:

 Vx denotes: “for all x.”

+ Jx denotes: “there exists an x such that.”

For example, Vx (x < 7) and 3x (x < 7) are now statements. The first, “for all x,
x is less than 77 is assigned an F; the second, “there exists an x such that x is less
than 77 isa T.

A truth table is a mechanical device for deciphering the truth or falsity of a
complicated statement based on the truth or falsity of its various substatements.
Complicated statements are constructed using statement connectives in various com-
binations. Of course, from the discussion above it should be no surprise that the
initial collection of true statements for a given mathematical theory would be the
“assumed facts” or axioms of the theory. Truth tables then provide a mechanism
for determining the truth or falsity of more complicated statements that can be for-
mulated from these axioms and, as we will see, also provide a framework within
which one can evaluate the logical integrity of a given inference one makes in a
proof.

If P and Q are statements, we define the following statement connectives and pres-
ent the associated truth tables. Negation is a unary or singulary connective, whereas
the others are binary connectives. In each case the truth table identifies all possible
combinations of 7" or F for the given statements, denoted P or Q, and then assigns
a T or F to the defined statements.

1. Negation: ~P denotes the statement “not P.”

~P
a
T

Conjunction: P A Q denotes the statement “P and Q.”

PAQ

MTNNYY N TNy
TN TNR
YN
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3. Disjunction: P v Q denotes the statement “P or Q” but understood as “P
and/or Q.”

o pPvO
T T
F T
T T
F F

Conditional: P = Q denotes the statement “P implies Q.”

o P=0
T T
F
T T
F T

Biconditional: P < Q denotes the statement “P if and only if Q.”

0 P=Q
T T
F F
T F
F T

TMENNY O NN R NN
e

In other words, we have the following truth assignments, which are generally con-
sistent with common usage:

+ ~P has the opposite truth value as P.

« P A Q is true only when both P and Q are true.

« Pv Q is true when at least one of P and Q are true.

« P= Qistrucunless Pis 7, and Q is F.

+ P& Qs true when P and Q have the same truth values.

There may be two surprises here. First off, in mathematical logic the disjunctive “or”
means “and/or.” In common language, “P or Q” usually means “P or Q but not
both.” If you are told, ““your money or your life,”” you do not expect an unfavorable

outcome after handing over your wallet. Obviously, if the thief is a mathematician,
there could be an unpleasant surprise.
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An important consequence of this interpretation, which would not be true for the
common language notion, is that there is a logical symmetry between conjunction
and disjunction when negation is applied:

~(PAQ) & (~P)v(~0),
~(Pv Q) & (~P)A(~0Q).

That is, the statement “P A Q" is false if and only if “cither P is false or Q is false,”
and the statement “P v Q” is false if and only if “both P is false and Q is false.”

The equivalence of these statements follows from a truth table analysis that utilizes
the basic properties above. For example, the truth table for the first statement is:

P Q0 ~PrQ (~P)V(~0) ~(PArQ) & (~P)v(~0Q)
T T F F T
T F T T T
F T T T T
F F T T T

This demonstrates that the two statements always have the same truth values.

The second surprise relates to the conditional truth values in the last two rows of
the table, when P is false. Then, whether Q is true or false, the conditional P = Q is
declared true. For example, let

P : There is a mispricing in the market,

Q : T will attempt to arbitrage.

So P = Q is a statement I might make:

“If there is a mispricing in the market, then I will attempt to arbitrage.”

The question becomes, How would you evaluate whether or not my statement is
true? The truth table declares this statement true when P and Q are both true, and
so would you. In other words, if there was a mispricing and I attempted to arbitrage,
you would judge my statement true. Similarly, if P was true and I did not make this
attempt, you would judge my statement false, consistent with the second line in the
truth table.

Now assume that there was not a mispricing in the market today, and yet I was
observed to be attempting an arbitrage. Would my statement above be judged false?
What if in the same market, I did not attempt to arbitrage, would my statement be
deemed false? The truth table for the conditional states that in both cases my original
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statement would be deemed true, although in the real world the likely conclusion
would be “not apparently false.” In other words, in these last two cases my actions
do not present evidence of the falsity of my statement, and hence the truth table
deems my statement “true.” Simply said, the truth table holds me truthful unless
proved untruthful, or innocent unless proved guilty.

A consequence of this truth table assignment for the conditional is that

(P= Q) ~(PA~Q).

In other words, P = Q has exactly the same truth values as does ~(P A ~Q). The
associated truth table is as follows:

P 0 P=Q ~Pr~Q (P=Q=~Pr~Q)
T T T T T
T F F F T
F T T T T
F F T T T

This truth table analysis and the one above were somewhat tedious, especially
when all the missing columns are added in detail, but note that they were entirely me-
chanical. No intuition was needed; we just apply in a methodical way the logic rules
as defined by the truth tables above.

These truth tables have another interpretation, and that is, for any statements P
and Q, and any truth values assigned, the statement

~(PAQ) & (~P)v(~0),

is a tautology, which is to say that it is always true. The same can be said for the
biconditional statements illustrated above. Tautologies will be seen to form the foun-
dation for developing and evaluating rules of inference, and more specifically, the
logical integrity of a given proof.

There are many other tautologies possible, in fact infinitely many. One reason for
this is that there is redundancy in the list of connectives above:

~ALV, S S

In a formal treatment of mathematical logic, only ~ and = need be introduced, and
the others are then defined by the following statements, all of which are tautologies
in the framework above:

PvQO&e~P= 0,
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PAQ e ~(P=~0Q),
(PeQ)e (P=0)A(Q=P).

Note that the last statement can in turn be expressed in terms of only ~ and = using
the second tautology.

There is also redundancy between the universal and existential quantifiers. In
formal treatments one introduces the universal quantifier V and defines the existential
quantifier 3 by

IxP(x) & ~Vx(~P(x)).

In other words, “there exists an x so that statement P(x) is true” is the same as “it is
false that for all x the statement P(x) is false.”

Admittedly, such definitional connections require one to pause for understanding,
and one might wonder why all the terms are simply not defined straightaway instead
of in the complicated ways above. The reason was noted earlier in the discussion on
axioms. One goal of an axiomatic structure is to be minimal, or at least parsimoni-
ous. The cost of this goal is often apparent complexity, as one might spend consider-
able effort proving a statement that virtually everyone would be more than happy
just accepting as another axiom. But the goal of mathematical logic is not the avoid-
ance of complexity by adding more axioms; it is the illumination of the theory and
the avoidance of potential paradoxes by minimizing the number of axioms needed.
The fewer the axioms, the more transparent the theory becomes, and the less likely
the axioms will be in violation of another important goal of an axiomatic structure.
And that is consistency.

1.5.2 Framework of a Proof

In later chapters various statements will be made under the heading proposition,
which is the term used in this book for the more formal sounding theorem. These
terms are equivalent in mathematics, and the choice reflects style rather than sub-
stance. In virtually all cases, a “proof” of the statement will be provided. A lemma
is yet another name for the same thing, although it is generally accepted that a lemma
is considered a relatively minor result, whereas a proposition or theorem is a major
result. Some authors distinguish between proposition and theorem on the same basis,
with theorem used for the most important results.

This terminology is by no means universally accepted. For example, students of fi-
nance will undoubtedly encounter I7o’s lemma, and soon discover that in the theory
underlying the pricing of financial derivatives like options, this lemma is perhaps the
most important theoretical result in quantitative finance.
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Now the typical structure for the statement of a proposition is
If P, then Q.

The statement P is the hypothesis of the proposition, and in some cases it will be a
complex statement with many substatements and connectives, while the statement Q
is the conclusion. The goal of this and the next section is to identify logical frame-
works for such proofs.

First off, a proof of the statement “If P, then Q” is not equivalent to a proof of
the statement ‘P = Q’ despite their apparent equivalence in informal language. Spe-
cifically,

“If P, then Q” means ““if statement P is true, then statement Q is true,”
whereas
‘P = Q’ means ‘“‘the statement P implies Q is true.”

Of course, one is hardly interested in proving statements such as ‘P = Q’ unless Q
can be asserted to be a true statement. That is the true goal of a proposition, to
achieve the conclusion that Q is true. However, the statement P = Q was seen to be
true in three of the four cases displayed in the truth table above, and in only one of
these three cases is Q seen to be true. Namely the truth of ‘P = Q’ assures the truth
of Q only when P is true. Consequently, if we want to prove the typical propositional
structure above, which is to say that we can infer the truth of statement Q from the
truth of statement P, we can prove the following:

If P and P = Q, then Q.

If this statement is written in the notation of logic, it is in fact a tautology, and al-
ways true. That is, in the truth table of

PA(P= Q)= 0, (1.1)

we have that for any assignment of the truth values to P and Q, this statement has
constant truth value of “true.”

This statement is the central rule of inference in logic, and it is known as modus
ponens. It says that:

If statement P is true, and the statement P = Q is demonstrated as true, then Q
must be true.

This is the formal basis of many mathematical proofs of “If P, then Q.” Of course,
the language of the proof usually focuses on the development of the truth of the im-
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plication: P = Q, while the truth of the statement P, which is the hypothesis of the
theorem, is simply implied. Moreover, if P were false, the demonstration of the truth
of P = Q would be for naught, since in this case Q could be true or false, as the truth
table above attests.

In the next section we investigate proof structures in more detail. The central idea
is every logical structure for a valid proof must be representable as a tautology, such
as the modus ponens structure in (1.1). As we have seen, it is straightforward and me-
chanical, though perhaps tedious, to verify that a given proof structure, however
complicated, is indeed a tautology. Here are a few other possible proof structures
that are tautologies intuitively, as well as relatively easy to demonstrate in a truth
table. Each is simply related to a single line on one of the basic truth tables given
for the connectives:

PA(PAQ)= 0,
(PvO)A~Q = P,
(P< Q)A~Q = ~P.

For example, on the truth table for P A Q, the only row where both P and P A Q
are true is the row where Q is also true. In any other row, one or both of P and P A Q
are false, and hence the conjunction P A (P A Q) is false, assuring that the conditional
PA(PAQ)= Q is true. That is exactly how this statement becomes a tautology,
and this logic will be seen to hold in all such cases. Specifically, when the hypothesis
of the proposition is a conjunction, as is typically the case, we only really have to
evaluate the case where all substatements are true, and assure that the conclusion is
then true in this case. In all other cases the conjunction will be false and the condi-
tional automatically true.

1.5.3 Methods of Proof

With modus ponens in the background, the essence of virtually any mathematical
proof is a demonstration of the truth of the implication P = Q. To this end, the first
choice one has is to prove the direct conditional statement P = Q, or its contraposi-
tive ~Q = ~P. These statements are logically equivalent, which is to say that they
have the same truth values in all cases. In other words, the statement

(P= Q)& (~Q=~P) (1.2)

is a tautology, in that for any assignment of the truth values to P and Q, this state-
ment has constant truth value of “true.”
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If modus ponens is applied to this contrapositive, we arrive at
~OA(~Q = ~P) = ~P. (1.3)
However, because of (1.2), this can also be written as
~QA(P= Q)= ~P, (1.4)

which is a rule of inference known as modus tollens and exemplified in section 1.2 on
axiomatic theory. It is not an independent rule of inference, of course, as it follows
from modus ponens. In words, (1.4) states that if P = Q is true, and ~Q is true,
meaning Q is false, then ~P is also true, or P false.

In some proofs, the direct statement lends itself more easily to a proof, in
others, the contrapositive works more easily, while in others still, both are easy,
and in others still yet, both seem to fail miserably. The only general rule is, if the
method you are attempting is failing, try the other. Experience with success and
failure improves the odds of identifying the more expedient approach on the first
attempt.

For example, assume that we wish to prove P = Q, where

P:a=0b,
0:a*>=0b%
The direct proof might proceed as
a=b=[a®>=aband ab = b*] = a*> = b*.
The contrapositive proof proceeds by first identifying the statement negations
~P:a#b,
~Q:a* # b,
and constructing the proof as
~0=a’—b*#0
= (a+b)(a—b) #0
= [(a+b) #0and (a — b) # 0]
=a#b.
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In the last statement we also can conclude that a # —b, but this is extra information
not needed for the given demonstration.

Once a choice is made between the direct statement and its contrapositive, there
are two common methods for proving the truth of the resulting implication. To sim-
plify notation, we denote the implication to be proved as 4 = C, where A4 denotes
either P or ~Q, and C denoted either Q or ~P, respectively.

The Direct Proof

The first approach is what we often think of as the use of “deductive” reasoning,
whereby if we cannot prove 4 = C in one step, we may take two or more steps.
For example, proving that for some statement B that 4 = B and B = C, it would
seem transparent that 4 = C. One expects that such a partitioning of the demonstra-
tion ought to be valid, independent of how many intermediate implications are devel-
oped, and indeed this is the case. It is based on a result in logic that is called a
syllogism and forms the basis of what is known as a direct proof. Specifically, we
have that

(A= B A(B=C)= (4= C) (1.5)

is a tautology. That is, for any assignment of the truth values to 4, B, and C, this
statement has constant truth value of “true.”

This direct method is very powerful in that it allows the most complicated implica-
tions to be justified through an arbitrary number of smaller, and more easily proved,
implications. In the proof above that P = Q, this method was in fact used without
mention as follows:

A:a=0b,
B:a’>=abnab =0
C:a*=b"

Proof by Contradiction

The second approach to proving an implication is considered an indirect proof, and is
also known as reductio ad absurdum, as well as proof by contradiction. In its simplest
terms, proof by contradiction proceeds as follows:

To prove P, assume ~P. If R A ~R is derived for any R, deduce P.
In other words,

If ~P = (RA~R), then P.
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If ~P= (RA~R) is true, then since RA~R is always false, it must be the case
that ~P is also false, and hence P is true. The logical structure of this is the tauto-

logy
[~P= (RA~R)] = P. (1.6)

Remark 1.1 [z is often the case that in a given application, what is called a proof by
contradiction appears as

If ~P = R, and R is known to be false, then P. (1.7)

For example, one might derive that ~P = R, where R is the statement 1 # 1. Implic-
itly, the truth of the statement ~R, that 1 = 1, does not need to be explicitly identified,
but is understood. Also note that the truth of a statement like 1 =1 does not need to
“follow” in some sense from the statement ~P. That (1.7) is a valid conclusion can
also be formalized by explicitly identifying the truth of ~R in the tautology

[((~P= R)A~R] =P,

which except for notation is equivalent to modus tollens in (1.4). This approach also
Justifies the terminology of a reductio ad absurdum, namely from the assumed truth of
~P one deduces an absurd conclusion, R, such as 1 # 1.

The indirect method of proof may appear complex, but with some practice, it is
quite simple. The central point is that for any statement R, it is the case that RA ~R
is always false. This is because its negation, ~R v R, is always true and

~(RA~R) & ~RV R (1.8)

is a tautology. That is, for any statement R, either R is true or ~R is true. This is
known as the law of the excluded middle.

Before formalizing this further, let’s apply this approach to the earlier simple ex-
ample, taking careful steps:

Step 1 State what we seek to prove: a = b = a* = b>.

Step 2 Develop the negation of this implication. Looking at the truth table for the
conditional, an implication 4 = C is false only when A4 is true, and C is false. So the
negation of what we seek to prove is

a=b and a® #b>.

Step3 What can we conclude from this assumed statement? This amounts to “play-
ing” with some mathematics and seeing what we get:
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a#bsa®—b*#0
< (a+b)la=b) #0
Sa+b#0 and a—-b #0,
whereas
a=bsa—-b=0.

Step 4 Identify the contradiction: we have concluded that both ¢« —b =0 and
a—b#0.
Step 5 Claim victory: a = b = a®> = b? is true.

Admittedly, this may look like an ominous process, but with a little practice the
logical sequence will become second nature. The payoff to practicing this method is
that this provides a powerful and frequently used alternative approach to proving
statements in mathematics as will be often seen in later chapters.

Summarizing, we can rewrite (1.6) in the way it is most commonly used in mathe-

matics, and that is when the statement P is in fact an implication A = C. To do this,
we use the result from step 2 as to the logical negation of an implication. That is,

~A=C)es Ar~C.

It is also the case that the most common contradiction one arrives at in (1.6) is not a
general statement R, but as in the example above, it is a contradiction about 4. We
express this result first in the common form:

If (AA~C)= ~A4,then 4 = C. (1.9)
Tautology: [(A A~C) = ~A] = (4 = C).

In the more general case,
If (AA~C)= RA~R, then 4 = C. (1.10)
Tautology: [(AA~C) = (RA~R)| = (4= C).

Remark 1.2  As in remark 1.1 above, (1.10) can also be applied in the context of
(AA~C) = R, where R is known to be false. The conclusion of the truth of A= C
again follows.

Proof by Induction
A proof by induction is an approach frequently used when the statement to be proved
encompasses a (countably) infinite number of statements (more on countably infinite



22 Chapter I Mathematical Logic

sets in chapter 2 on number systems). A somewhat complicated example is the state-
ment in the introduction: For any two integers M and N, we have that M + N =
N + M. This is complicated because this statement involves two general quantities,
and each can assume an infinite number of values. In other words, this statement is
an economical way of expressing an infinite number of equalities (1 +9 =9+ 1,
—4 + 37 =37+ (—4), etc.).
A simpler example involving only one such quantity is as follows:

If N is a positive integer, then 1 +2+---+ N = w (L.11)
This has the form of an equality, P = Q, but neither P nor Q is a simple declarative
statement. Instead, both are indexed by the positive integers. That is, we seek to
prove

YN, P(N) = O(N), (1.12)
where we define
P(N)=142+---+N,

N(N +1)

o) ==

Obviously, for any fixed value of N, the proof requires no general theory, and the
result can be demonstrated or contradicted by a hand or computer calculation. A
proof by induction provides an economical way to demonstrate the validity of
(1.12) for all N. The idea can be summarized as follows:

If - P(1) = O(1),
and [P(N)=Q(N)]=[P(N+1)=Q(N +1)], (1.13)
then VYN,P(N)= Q(N).

In other words, proof by induction has two steps:

Step 1 (Initialization Step) Show the statement to be true for the smallest value of
N needed, say N = 1 (sometimes N = 0).

Step 2 (Induction Step) Show that if the result is true for a given N, it must also be
true for N + 1.

The logic is self-evident. From the initialization step, the induction step assures the
truth for N = 2, which when applied again assures the truth of N = 3, and so forth.
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Example 1.3 To show (1.11), we see that the result is apparently true for N = 1.
Next, assuming the result is true for N, we get

N(N +1)

14+2+- -+ N+ (N+1)= +N+1

N(N+1) 2(N+1)
2 T2

(N + 1)(N +2)
2 )

which is the desired result.

*1.6 Mathematical Logic

Mathematical logic is one of the most abstract and symbolic disciplines in mathe-
matics. This is quite deliberate. As exemplified above, the goal of mathematical logic
is to define and develop the properties of deductive systems that are context free. We
cannot be certain that a given logical development is correct if our assessment of it is
encumbered by our intuition in a given application to a field of mathematics. So the
goal of mathematical logic is to strip away any hint of a context, eliminate all that is
familiar in a given theory, and study the logical structure of a general, and unspeci-
fied, mathematical theory.

To do this, mathematical logic must first erase all familiar notations that imply a
given context. Also its symbolic structure needs to be very general so that it allows
application to a wide variety of mathematical disciplines or contexts. As a result
mathematical logic is highly symbolic, highly stylized, leaving the logician with noth-
ing to guide her except the rules allowed by the structure. This way every deduction
can be verified mechanically, effectively as an appropriately structured computer pro-
gram. This program then declares a symbolic statement to be “true” if and only if it
is able to construct a symbol sequence, using only the axioms or assumed facts and
rules of inference that results in the deductive construction of the statement. No con-
text is assumed, and no intuition is needed or desired.

The preceding section’s informal introduction to the mathematical logic of state-
ments, which is referred to as statement calculus or propositional logic, is a small sub-
set of the discipline of mathematical logic. The axiomatic structure of statement
calculus includes:
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1. Certain formal symbols made up of logical operators (~ and =, but excluding V
and 3), punctuation marks (e.g., parentheses), and other symbols that are undefined,
but in terms of which other needed concepts such as variable, predicate, formula, op-
eration, statement, and theorem are defined.

2. Axioms that identify the basic formula structures that will be assumed true.

3. A rule of inference: modus ponens.

The resulting theory can then be shown to be complete because it is decidable. The
algorithm for determining if a given statement is true or not is the construction of the
associated truth table, any one of which requires only a finite number of steps to de-
velop. The key to this result is that a statement is a theorem in statement calculus,
meaning it can be deduced from the axioms with modus ponens if and only if the
statement is a tautology in the sense of the associated truth table.

For many areas of mathematics, however, statement calculus is insufficient in that
it excludes statements of the form

VxP(x) or 3IxP(x)

that are central to the statements in most areas of mathematics. The mathematical
theory developed to accommodate these notions is called first-order predicate calcu-
lus, or simply first-order logic.

Landmark results in first-order logic are Godel’s incompleteness theorems, pub-
lished in 1931 by Kurt Gédel (1906-1978). Although far beyond the boundaries of
this book, the informal essence of Gddel’s first theorem is this: In any consistent
first-order theory powerful enough to develop the basic theory of numbers, one can
construct a true statement that is not provable in this system. In other words, in any
such theory one cannot hope to confirm or deny every statement that can be made
within the theory, and hence every such theory is “incomplete.”

The informal essence of Godel’s second theorem is this: In any consistent first-
order theory powerful enough to develop the basic theory of numbers, it is impossi-
ble to prove consistency from within the theory. In other words, for any such theory
the proof of consistency will of necessity have to be framed outside the theory.

1.7 Applications to Finance

The applications of mathematical logic discussed in this chapter to finance are
both specific and general. First off, there are many specific instances in finance
when one has to develop a proof of a given result. Typically the framework for this



1.7 Applications to Finance 25

proof is not a formally stated theorem as one sees in a research paper. The proof is
more or less an application of, and sometimes the adaptation of, a given theory to a
situation not explicitly anticipated by the theory, or entirely outside the framework
anticipated.

Alternatively, one might be developing and testing the validity of a variety of hy-
pothetical implications that appear reasonable in the given context. In such specific
applications the investigation pursued often requires a very formal process of deriva-
tion, logical deduction, and proof, and the tools described in the sections above can
be helpful in that they provide a rigorous, or at least semi-rigorous, framework for
such investigations.

More specifically, a truth table can often be put to good use to investigate the va-
lidity of a subtle logical derivation involving a series of implications and, based on
the various identities demonstrated, to provide alternative approaches to the desired
result. For example, a proof by contradiction applied to the contrapositive of the
desired implication can be subtle in the language provided by the context of the
problem. Just as in mathematics, isolating the logical argument from the context pro-
vides a better framework for assessing the former without the necessary bias that the
latter might convey. In addition, when the investigation ultimately reduces to the
proof of a given implication, as often arises in an attempt to evaluate the truth of a
reasonable and perhaps even desired implication, the various methods of proof pro-
vide a framework for the attack.

There is also a general application of the topics in this chapter to finance, and
more broadly, any applied mathematical discipline, and that is as a cautionary tale.
All too often the power and rigor of mathematics is interpreted to imply a certain
robustness. That is, one assumes that the true results in mathematics are “‘so true”
that they are robust enough to remain true even when one alters the hypotheses a
bit, or is careless in their application to a given situation. Actually nothing could be
further from the truth.

The most profound thought on this point I recall was made long ago by my thesis
advisor and mentor, Alberto P. Calderon (1920-1998), during a working visit made
to his office. What he said on this point, as perhaps altered by less than perfect recall,
was: “The most interesting and powerful theorems in mathematics are just barely
true.” In other words, the conclusions of the “best theorems’ in mathematics are
both solid in their foundation and yet fragile; they represent a delicate relationship
between the assumed hypothesis and the proved conclusion. In the “best” theorems
the hypothesis is in a sense very close to the minimal assumption needed for the con-
clusion, or said another way, the conclusion is very close to the maximal result
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possible that follows from the given hypothesis. The “more true” a theorem is, in the
sense of excessive hypotheses or suboptimal conclusions, the less interesting and
important it is. Such theorems are often revisited in the literature in search of a
more refined and economical statement.

The implication of this cautionary tale is that it is insufficient to simply memorize
a general version of the many results in mathematics without also paying close atten-
tion to the assumptions made to prove these results. A slight alteration of the as-
sumptions, or an attempt to broaden the conclusions, can and will lead to periodic
disasters. But more than just the need to carefully utilize known results, it is impor-
tant to understand the proof of how the given hypotheses provide the given conclu-
sions since, in practice, the researcher is often attempting to alter one or the other,
and evaluate what part of the original conclusion may still be valid.

The snippets of mathematical history alluded to in this chapter, and the paradoxes,
support this perspective of the fragility of the best results, and the care needed to get
them right and in balance. As careful as mathematicians were in the development of
their subjects, pitfalls were periodically identified and ultimately had to be overcome.
And perhaps it is obvious, but a great many of these mathematicians were intellec-
tual giants, and leaders in their mathematical disciplines. The pitfalls were far less a
reflection of their abilities than a testament to the subtlety of their discipline.

As a simple example of this cautionary tale, it is important that in any mathe-
matical pursuit, any quantitative calculation, and any logical deduction, one must
keep in mind that the truth of statement Q as promised by modus ponens, de-
pends on both the truth of the hypothesis P and the truth of the implication P = Q.
The truth of the latter relies on the careful application of many of the principles dis-
cussed above, and it is often the focus of the investigation. But modus ponens cau-
tions that equally important is to do what is often the more tedious part of the
derivation, and that is to check and recheck the validity of the assumptions, the
validity of P.

A simple example is the principle of arbitrage, which tends to fascinate new fi-
nance students. In an arbitrage, one is able to implement a market trade at no cost,
that is risk free over some period of time, and with positive likelihood of producing
a profit at the end of the period and no chance of loss. Invariably, students will
perform long, detailed, and very creative calculations that identify arbitrages in the
financial markets. In other words, they are very detailed and creative in their deriva-
tions of the truths of the statements P = Q, where in their particular applications, P
is the statement “I go long and short various instruments at the market prices I see in
the press or online,” and Q is the statement “I get embarrassingly rich as the profits
come rolling in.”
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Of course, the poorly trained students make mistakes in this proof of P = Q, using
the wrong collection of instruments, or not identifying the risks that exist post trade.
But the better students produce perfect and sometimes subtle trade analyses. Invari-
ably the finance professor is left the job of bursting bubbles with the question: “How
sure are you that the securities are tradable at the prices assumed?”” In other words,
how sure are you that P is true?

The answer to this question comes from a logical analysis of the following argu-
ment using syllogism and modus tollens:

If finance students’ arbitrages worked,

there would be numerous, embarrassingly rich finance students.
If finance students could trade at the assumed prices,

their arbitrages would work.

There are not numerous embarrassingly rich finance students.

Exercises

Practice Exercises

1. Create truth tables to evaluate if the following statements, 4 < B, are tauto-
logies:

(a) PvOQ&s~P=0Q

(b (PvO)v(P= Q)= PAQ

© (P& Q)= (P= Q)A(Q= P)

@ [P= (QVR]A[Q= (PVR) & R

2. It was noted that the truth of P = Q does not necessarily imply the truth of Q.
Confirm this with a truth table by showing that (P = Q) = Q is not a tautology.

Create real world applications by defining statements P and Q illustrating a case
where (P = Q) = Q is true, and one where it is false.

3. The contrapositive provides an alternative way to demonstrate the truth of the im-
plication P = Q. Confirm that (P = Q) < (~Q = ~P) is a tautology. Give a real
world example.

4. Confirm that the structure of the proof by contradiction,
[(AA~C) = ~A] = (4= O),

is a tautology.



28 Chapter I Mathematical Logic

5. Comedically, the logical deduction
(P=Q)nQ]=P (1.14)

is known as modus moronus. Show that this statement is not a tautology, and provide
a real world example of statements P and Q for which the hypothesis is true and con-
clusion false.

6. Show by mathematical induction that for any integer n > 0:

Zzl 2n+1

7. Develop a direct proof of the formula in exercise 6. (Hint: Define S =>"" 2,
consider the formula for 2, and then subtract.)

8. Develop a proof by contradiction in the form of (1.6) of the formula in exercise 6.
(Hint: The formula is apparently true for n = 0, 1,2, and other values of n. Let N be
the first integer for which it is false. From the truth for n = N — 1, and falsity for
n = N, conclude that 2"V # 2" and recall the remark after (1.6).)

9. It is often assumed that the initialization step in mathematical induction is un-
necessary, and that only the induction step need be confirmed. Show that the for-
mula

zn:zi _ 2n+1 .
i=0

satisfies the induction step for any ¢, but that only for ¢ = —1 does it satisfy the ini-
tialization step.

10. Show by mathematical induction that

Zz n—|—1(2n+1).

11. A bank has made the promise that for some fixed i > 0, an investment with it
will grow over every one-year period as Fj,; = Fj(1 + i), where F; denotes the fund
at time j in years. Prove by mathematical induction that if an investment of Fj is
made today, then for any n > 1,

Fp = Fo(1+0)"
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12. Develop a proof using modus tollens in the structure of (1.4) that if at some time
n years in the future, the bank communicates F, # Fy(1 +7)", then the bank at some
point must have broken its promise of one-year fund growth noted in exercise 11.
(Hint: Define P : Fy.y = Fj(1 +1i) for all j; Q: F, = Fy(1 +i)" for all n > 1. What
can you conclude from (P = Q) A ~Q?)

Assignment Exercises

13. Create truth tables to evaluate if the following statements, 4 < B or A = B, are
tautologies:

(@ PrQ & ~(P=~0)

(b) (PvQ)A~Q = P

© (P=Q)A(PAR)= QAR

d) ~Pv(QAR) <= (~NRV~Q)AP

14. Modus ponens identifies the necessary additional fact to convert a proof of the
truth of the implication, P = Q, into a proof of the conclusion, Q. Confirm that

PA(P= Q)= Qisa tautology. Demonstrate by real world examples as in exercise
2 that while (P = Q) = Q can be true or false, PA (P = Q) = Q is always true.

15. Show that modus ponens combined with the contrapositive yields ~O A (P = Q)
= ~P, and show directly that this statement is a tautology. Give a real world
example.

16. Identify and label (4, B, etc.) the statements in the argument at the end of this
chapter, convert the argument to a logical structure, and demonstrate what conclu-
sion can be derived using syllogism and modus tollens.

17. Show by mathematical induction that for i > 0 and integer n > 1,
n X 1 _ 1 SN —Nn

> (1407 el G

j=1 !

18. Develop a direct proof of the formula in exercise 17. (Hint: See exercise 7.)

19. Show by mathematical induction that

20. A bank has made the promise that for some fixed i > 0, an investment with it
will grow over every one-year period as Fj.; = Fj(1 + i), where F; denotes the fund
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at time j in years. Develop a proof by contradiction in the form of (1.9) that for any
n>1,

F, = F()(l + i)n.

(Hint: Define A : Fjiy = Fj(1+1i) for all j >0; C: F, = Fy(1 +1)" for all n > 1. If
AA~C and N is the smallest n that fails in C, what can you conclude about Fy,
which provides a contradiction, and about the conclusion 4 = C?)
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2.1 Numbers: Properties and Structures

2.1.1 Introduction

In this chapter some of the detailed proofs on number systems are omitted. The rea-
son is that to provide a rigorous framework for the fundamental properties of num-
ber systems summarized below would require the development of both subtle and
detailed mathematical tools for which we will have no explicit use in subsequent
chapters. The mathematics involved, however, gives beautiful examples of the ex-
traordinary power and elegance of mathematics, and provides an intuitive context
for many of the generalizations in later chapters.

This statement of the “power and elegance” of this theory might surprise a reader
who is tempted to think that the power of mathematics is only revealed in the devel-
opment of new and complex theory. However, the development of a rigorous frame-
work to prove statements about properties of numbers that we have been taught as
“true” since pre-school can be even more complex. For example, how would one set
out to prove that for any integers n and m,

n+m=m-+n?

Who but a mathematician would think that such an “obvious’ statement would re-
quire proof, and who but a mathematician would commit to the effort of developing
the necessary tools and mathematical framework to allow this and other such state-
ments an objective and critical analysis?

As discussed in chapter 1, such a framework must introduce certain undefined
terms, the formal symbols. It must also explicitly address what will be assumed within
the axioms about these terms and symbols and the system of numbers under study. It
will need to ensure that despite the strong belief system people have about properties
of numbers learned since childhood, all demonstrations of statements within theory
rely explicitly and exclusively on axioms, or on other results that follow from these
axioms. Such provable statements are then called the theorems or propositions of the
theory (terms used interchangeably), and the rigorous demonstrations of these state-
ments’ validity are called the proofs of the theory.

The modern axiomatic approach to natural numbers was introduced by Giuseppe
Peano (1858-1932) in 1889, when he developed what has come to be known as
Peano’s axioms, which simplified a 1888 axiomatic treatment by Richard Dedekind
(1831-1916).
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2.1.2 Natural Numbers

Perhaps the simplest collection of numbers is that of natural numbers or counting
numbers, denoted N, and defined as

N={1,2,3,...} or {0,1,2,3,...}.

To give a flavor for the axiomatic structure for N, we introduce Peano’s axioms in
the framework that provides the basic arithmetic structure. The formal symbols are
self-evident except for the symbol ’. Intuitively, for any natural number 7, the symbol
n’ denotes its successor, which in concrete terms can be thought of as n + 1.

1. Formal Symbols: =,’ +, -, 0

2. Axioms:

« Al: VmVn(m' = n' = m = n)

« A2: Vm(m' #0)

* A3: Vm(m + 0 =m)

« Ad: VmV¥n(m+n' = (m+n)")

* AS: Vm(m-0=0)

« A6: VmVn(m-n' =m-n+m)

+ A7: For any formula P(m): [P(0) AYm(P(m) = P(m'))] = YmP(m)

We note that the formal symbols include the familiar addition (+), multiplication
(+), and equality (=) symbols, as well as one numerical constant 0. There is also the
prime symbol ('), which, as can be inferred from the axioms, is meant to denote
“successor.” In layman’s terms, m’ stands for m + 1, but in the more abstract axiom-
atic setting, m’ simply denotes the successor of m.

Axiom 1 says that the “successor’ is unique; two different elements of IN cannot
have the same successor, while axiom 2 formally puts 0 at the front of the successor
chain. Axioms 3 and 4 form the foundation for how addition works while axioms 5
and 6 do the same for multiplication. Also axiom 6 reveals our layman understand-
ing that m’ = m + 1. To deduce this formally, we need to define 1 = 0’, then prove
that m = 1 - m, as well as prove that we can factor m-n+m =m- (n+ 1). Finally,
axiom 7 is the “induction” axiom, which provides a framework to prove general for-
mulas about N. Namely, if one proves that a formula is true for 0, and that its truth
for m implies truth for m’, then the formula is true for all m. This idea was intro-
duced in chapter 1 as “proof by induction.” We will not pursue this formal axiomatic
development further.
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Returning to the informal setting, we note that the natural numbers are useful pri-
marily for counting and ordering objects. There are an infinite number of elements of
the set N, of course, and to distinguish this notion of infinity, we say that the set N
is countable or denumerable. More generally, a collection X is said to denumerable if
there is a 1:1 correspondence between X and IN, denoted

X < N,
meaning that there exists an enumeration of the elements of X,
X = {Xl,Xz,X}, .. '}7

that includes all of the elements of X exactly once. Alternatively, each element of X
can be paired with a unique element of N.

Note, however, that to prove that a set is countable, it is sometimes easier to
explicitly demonstrate a correspondence that contains multiple counts where all ele-
ments of X are counted at least once. Such a demonstration implies the desired re-
sult, of course, and oftentimes there will be no reason to refine the argument to get
an explicit correspondence ““which includes all of the elements of X exactly once.”

Proposition 2.1 If the collections X; are countable for i=1,2 ... n, then X =
{x|x € X; for some i} is also countable.

Proof The necessary correspondence X < N is defined by associating the elements
of each X; = {xi,xn,x3,...,x5,...} with {i+(j—1)n|j=1,2,...}. In other
words, the first elements of the {X;} are counted sequentially, then the second ele-
ments, etc. ]

Remark 2.2 In the next chapter we introduce sets and operations on sets such as
unions and intersections, but for those already familiar with these concepts, it is appar-
ent that X above is defined as the union of the X;. It is the case that the proposition
above holds even if there are a countable number of X;. A proof of this statement will
be seen below when it is demonstrated that the rational numbers are countable.

As a collection the natural numbers are closed under addition and multiplication,
meaning that these operations produce results that are again natural numbers,

n,nyeN=mn+melN and n;-n €N,

but are not closed under subtraction or division. An important property of N under
multiplication (-), and one known to the ancient Greeks, is that of unique factoriza-
tion. We first set the stage.
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Definition 2.3 A number n € N is prime if n > 1 and
n=mny-ny implies ni=1 and ny=n, or conversely.

A number n > 1 is composite if it is not prime. That is, n = ny - ny and neither factor n;,
equals 1.

Note that n = 1 is neither prime nor composite by this definition. That is a matter
of personal taste, and one can define it to be prime without much consequence, other
than needing to be a bit more careful in the definition of “unique factorization,”
which will be discussed below.

Proposition 2.4 The collection of primes is infinite.

Proof Following Euclid of Alexandria (ca. 325-265 BC), who presented the proof
in Euclid’s Elements, we use the method of proof by contradiction. If the conclu-
sion were false and ny,ny,ns3,...,ny were the only primes, then define n=n; -n, -
n3-...-ny + 1. So either n is prime, which would be a contradiction as it is clearly
bigger than any of the original primes, or it is composite, meaning that it is evenly
divisible by one of the original set of primes. But this too is impossible given the for-
mula for #n, since 1 is not evenly divisible by any prime. [

We now return to the notion of unique factorization. By this we simply mean that
every natural number can be expressed as a product of prime numbers in only one
way.

Definition 2.5 The set N satisfies unique factovization if for every n, there exists a
collection of primes { pj}jN: | so that n =TIlp;, and if there exist collections of primes

{p}) and {qi}i, so that

n = Ilp; = lgy;

then N = M, and when these primes are arranged in nondecreasing order, p; = q; for
all j.

Remark 2.6
1. In the definition above, Ilp; is shorthand for the product
Up; = pipaps .. px,

and analogously for Tlq,. When necessary for clarity, this product will be expressed as

N
Hj:l Dj-
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2. The notion here of a nondecreasing arrangement seems awkward at first. We tend to
think of increasing and decreasing as opposites, so we expect a nondecreasing arrange-
ment to be an increasing one. But this definition must allow for cases where the primes
are not all distinct, and hence the arrangement can not be truly “increasing.” In other
contexts, the notion of “‘nonincreasing” will have the same intent.

3. If the natural number 1 is defined above to be a prime number, the definition of
unique factorization would have to be a bit more complicated to allow for any number
of factors equaling 1.

Proposition 2.7 (Fundamental Theorem of Arvithmetic) IN satisfies unique factori-
zation.

Proof The complexity of this proof lies in the proof of a much simpler idea: if a
prime divides a composite number, then given any factorization of that number, this
prime must divide at least one of its factors. This is known as Euclid’s lemma (after
Euclid of Alexandria), which we discuss below. Once this lemma is demonstrated, the
proof then proceeds by induction. The proposition is clearly true for n = 2, which is
prime. Assume next that it is true for all » < N, and that N has been factored:
N = TIlp; = Ilg;, where, for definitiveness, the primes have been arranged in nonde-
creasing order. Of course, we can assume that NV is composite, since all primes satisfy
unique factorization by definition. Now by Euclid’s lemma, if p; divides N = Ig;, it
must divide one of the factors. Because the ¢; are prime, it must be the case that
p1 = ¢; for some i. Similarly, because ¢; must divide Ilp; and the p; are prime, it
must be the case that ¢; = p; for some k. Consequently, by the assumed arrange-
ments of primes, we must have ¢; = p;, and this common factor can be eliminated
from the expressions by division. We now have two prime factorizations for
N/p1 = N/q1, a number which is less that N. Hence by the induction step, unique
factorization applies, and the result follows. |

Remark 2.8

1. Euclid’s Lemma The modern idea behind Euclid’s lemma, in contrast to the origi-
nal proof, is that if p and a are natural numbers that have no common factors, one can
find natural numbers x and y so that

1 =+(px —ay).

In other words, if p and a have no common factors, one can find multiples of these
numbers that differ by 1. This result is a special case of Bézout’s identity, named for
Etienne Bézout (1730-1783), and discussed below. Assuming this lemma, if p is a
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prime that divides n = ab but does not divide a, we know that p and a have no common
factors, so the identity above holds. Multiplying through by b, we conclude that

b = +(bpx — aby),
and hence p divides b, since it clearly divides bpx, and also divides aby = ny, since p
divides n by assumption.

2. Bézout’s Identity Bézout's identity states that given any natural numbers a and b,
if d denotes the greatest common divisor, d = gcd(a, b), then there are natural numbers
x and y so that

d = +(ax — by).

In other words, one can find multiples of these numbers that differ by the greatest com-
mon division of these numbers. If a and b have no common factors, then d = 1, and this
becomes Euclid’s lemma utilized above. The proof of this result comes from another
very neat construction of Euclid.

3. Euclid’s Algovithm Euclid’s algorithm provides an efficient process for finding d,
the greatest common divisor of a and b. To understand the basic idea, let’s assume
b > a, and write

b=gqia-+r,

where q1 is a natural number including 0, and ry is a natural number satisfying 0 <
r1 < a. Euclid’s critical observation is that any number that divides a and b must also
divide ry, since r = b — qia. Consequently the number ged(a,b) must also divide ry,
and hence

ged(a, b) = ged(ry, a).

We now repeat the process with a and ry:
a = qar +ra,

I = q3ry + 13,

Ty = qary +r4,...,

where in each step, 0 <11 <r. We continue in this way until a remainder of 0 is
obtained, which must happen because the remainders must decrease. The second to
last remainder must then be d because of the critical observation above. In other words,
we eventually get to the last two steps:
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Tn—1 = Gnt1¥n + Tnt1,
T'n = qn+2Tn+1 + 0.

Since ged(a, b) = ged(ry41,0) = ryy1, it must be the case that v, = d. We then ob-
tain x and y by reversing the steps above. For example, assume that the process stops
with a remainder of 0 on the third step so that ry =0 and ry = d. Then

d=a— qr
=a—q:(b—qia)
= (1+qq1)a — ¢2b.
Example 2.9 To show that ged(68013,6172) = 1:
68013 =11-6172 + 121,
6172 =51-121 + 1,
121 =121-1+0.
Reversing the steps obtains
1 =6172-51-121
=6172 —51- (68013 — 11 -6172)
= —51-68013 4562 - 6172.
2.1.3 Integers
The set of integers, denoted Z, and defined as
Z={..,-3-2,—-1,01,2,3 ...},

is closed under both addition and subtraction, as well as multiplication. In fact,
under the operation of +, the integers have the structure of a commutative group,
(Z,+), which we state without proof.

Definition 2.10 A set X is a group under the operation x, denoted (X , ) if:

X is closed under x: that is, x,ye X = xxye X.

X has a unit: there is an element e € X so that ex x = xxe = Xx.

X contains inverses: for any x # e, there is x ' € X so that x ' xx =xxx"!' =e.

PP b=

* is associative: for any x, y,z€ X: ((x* y) xz) = (xx (y * 2)).
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Definition 2.11 (X, *) is an abelian or commutative group if X is a group and for all
x,yeX,

X*xp=)p*X.

Of course, in (Z,+), the unit e = 0, and the inverses x ™! = —x.

Also the set Z is denumerable, since it is the union of three denumerable sets, the
natural numbers and their negatives, and {0}. It is also the case that unique factori-
zation holds in Z once one accounts for the possibility of products of +1, since we
clearly must allow for examples such as 2 - 3 = (=2) - (—3). In other words, the Fun-
damental Theorem of Arithmetic holds for both positive and negative natural num-
bers, but for prime factorization the conclusion must allow for the possibility that

pi = *q; for all j.

Finally, one sometimes sees the notation Z" and Z~ to denote the positive and
negative integers, respectively, although there is not a reliable convention as to
whether Z" contains 0, which is similar to the case for N.

2.1.4 Rational Numbers

The group Z is not closed under division, but it can be enlarged to the collection of
rational numbers, denoted @, and defined as

Qz{ﬁ
m

The collection @ is a group under both addition (+) and multiplication (-). In (@, +),
asin (Z, +), the unit is e = 0 and inverses are x~' = —x, whereas in (Q,-), e = 1 and
x~!'=1/x. In fact (@, +,-) has the structure of a field.

nmeZ,m 750}.

Definition 2.12 A4 set X under the operations + and - is a field, denoted (X, +,-), if-
1. (X, +) is a commutative group.

2. (X,-) is a commutative group.

3. (v) is distributive over (+): for any x, y,ze X: x-(y+z)=x-y+x-z

The set @ is denumerable as can be demonstrated by a famous construction of
Georg Cantor (1845-1918). Express all positive rational numbers in a grid such as

—IN ==
I =
WY W=
Bl B—
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3 3 3 3
1 2 3 4
4 4 4 4
1 2 3 4

It is clear that this is a listing of all positive rational numbers, with all rationals
counted infinitely many times. However, even with this redundancy, these numbers
can be enumerated by starting in the upper left-hand cell, and weaving through the
table in diagonals:
2
= =
1

= =

—] W

NSRS
W =
e

—_ —
N —

All rationals are then countable as the union of countable sets: positive and negative
rationals and {0}.

Remark 2.13  As noted above, this demonstration applies to the more general state-
ment that the union of a countable number of countable collections is countable, since
these collections can be displayed as rows in the table above and the enumeration
defined analogously.

While closed under the arithmetic operations of +, —, -, =, the set of rationals @ is
not closed under exponentiation of positive numbers. In other words,

x>0 and ye@Q # x’eQ,

where “Z"" is shorthand here for “does not necessarily imply.” The simplest demon-
stration that there exist numbers that are not rational comes from Greece around 500
BC, some 200 years before Euclid’s time. The original result was that v/2 was not
rational. The general result is that only perfect squares of natural numbers have ra-
tional square roots, only perfect cubes have rational cube roots, and so forth. We
demonstrate the square root result on natural numbers next.

Proposition 2.14 If ne N and n # m? for any m e N, then \/n ¢ Q.

Proof Again, using proof by contradiction, assume that /n is rational, with \/n =
5 € Q. Then nb? = a*. Now if a = Ilp; and b = Igy are the respective unique fac-
torizations, we get

nl'[q,% = l'ijz.
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However, since nb? also has unique factorization, it must be the case that the collec-
tion of primes on the left and right side of this equality are identical, which means
that after cancellation, there is a remaining set of primes so that n = Hrjz. That is,
n = m? for m = Ilr;, contradicting the assumption that n # m? for any m. [

This proposition can be generalized substantially, with exactly the same proof.
Specifically, if r € N and r > 1, the only time the rth root of a rational number is ra-
tional is in the most obvious case, when both the numerator and denominator are rth
powers of natural numbers.

Proposition 2.15 Let ;’1—', € Q, expressed with no common divisors and :;T/’ #0. If
ot ,'n’—',.forsomen,meN, andr e N, r > 1, then (/%é(]),

m'

Proof Follow the steps of the special case above. [

The set @ has four interesting, and perhaps not surprising, properties that provide
insight to the ultimate expansion below to the real numbers. As will be explained in
chapter 4, these properties can be summarized to say that within the collection of real
numbers, the rational numbers are a dense subset, as is the collection of numbers that
are not rational, called the irrational numbers. However, these number sets will later
be seen to differ in a dramatic and surprising way.

Proposition 2.16

1. For any q\,q> € Q with q1 < ¢, there is a g € Q with g1 < ¢ < ¢>.
2. For any qi1,q2 € Q with q1 < qa, there is an r ¢ Q with q1 < r < ¢».
3. Forany ry,rp ¢ Q withry <y, thereisa ge Q withry < g < ry.
4. For any ri,ry ¢ Q withry < ry, thereis anr ¢ Q withr; <r <r;.

Proof The first statement is easy to justify by construction, by letting ¢ =
0.5(¢q1 + ¢2), or more generally, ¢ = p(q; + ¢2) for any rational number p, 0 < p <
1. For the second statement we demonstrate with a proof by contradiction. Assume
that all such r are in fact rational numbers. Then it is also the case that for any
p € @Q, we have that all » with ¢| + p < r < g, + p are also rational, since rationals
are closed under addition. Choosing p = —¢;, we arrive at a contradiction as fol-
lows: The proposition above shows that if n # m? for any m, then \/n ¢ @, and hence
\/LE ¢ Q. However, we clearly have values of \/Lz satisfying 0 < \/Lﬁ < ¢> — ¢1. The third
statement has the same demonstration as the second. Specifically, if we assume that
all such ¢ are irrational, then we can translate this collection by a rational number p,
to conclude that all numbers ¢ with r; + p < ¢ < r; + p are not rational (it is an easy
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exercise that the sum of a rational number and an irrational number is again irratio-
nal). But then we can easily move this range to capture an integer, or any rational
number of our choosing. Finally, the fourth statement follows from the observation
that the construction for the third statement can produce two rationals between r
and r;, to which we can apply the second statement. [ ]

Consequently the collection of rational numbers can be informally thought of as
being “infinitely close,” with no “big holes,”” but at the same time, containing infi-
nitely many “‘small holes™ that are also infinitely close. The same is true for the col-
lection of irrational numbers. One might guess that this demonstrates that there are
an equal number of rational and irrational numbers. In other words, we might guess
that the above proposition implies that both sets are denumerable. We will see
shortly that this guess would be wrong.

2.1.5 Real Numbers

The rational numbers can be expanded to the real numbers, denoted IR, which
includes the rationals and irrationals, although the actual construction is subtle.
This construction of IR was introduced by Richard Dedekind (1831-1916) in a 1872
paper, using a method that has come to be known as Dedekind cuts. Although we
will discuss ““sets”” in chapter 4, we note that @ is the universal symbol for the “empty
set,”” or the set with no elements.

The idea in this construction is to capitalize on the one common property that
rationals and irrationals share, which follows from the proposition above as gener-
alized in exercises 2 and 17. That is, for any r € @ or r ¢ @Q there is a sequence of ra-
tional numbers, ¢1,¢>,¢3,... so that g, gets “arbitrarily close” to r as n increases
without bound, denoted n — oo.

Definition 2.17 A Dedekind cut is a subset o« < Q with the following properties:

1. 0 #0, and o # Q.
2. Ifgeoand p e Q with p < q, then p € a.
3. Thereisno peaso thato={qeQ|q < p}.

That is, a cut can neither be the empty set nor the set of all rationals, it must con-
tain all the rationals smaller than any member rational, and it contains no largest ra-
tional. Dedekind’s idea was to demonstrate that the collection of cuts form a field,
denoted R, that contains the field @. Of course, he also needed to create an identifi-
cation between cuts and real numbers. That identification was

reRe—ou={qeQ|q<r}.
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Put another way, each real number r is identified with the least upper bound (or
L.u.b.) of the cut «,, defined as the minimum of all upper bounds:

r=lub{p|pea}
=min{ge Q|¢g > pforall pea}.
Intuitively, this minimum is an element of @ if and only if » € Q. For example,

1
3= Lub{p|peaup}

=min{ge Q|q > p forall pea )},
\/Ezl.u.b.{p|peo<ﬁ}

=min{ge Q|q > pforall pea jz}.

In 1872 Augustin Louis Cauchy (1789-1857) introduced an alternative construc-
tion of R, using the notion of Cauchy sequences studied in chapter 5, and showed
that the field of real numbers could be identified with a field of Cauchy sequences
of rational numbers. In effect, each real number is identified with the limit of such a
sequence. To make this work, Cantor needed to “identify as one sequence’ all se-
quences with the same limit, but then for the purpose of the identification with ele-
ments of IR, any sequence from each association class worked equally well.

Like @, the set IR is also a field that is closed under +, —, -, =, and while closed
under exponentiation if applied to positive reals, it is not closed under exponentiation
if applied to negative reals. Also unlike @, the set R is not countable.

Proposition 2.18  There exists no enumeration R = {r,},,.

Proof The original proof was discovered by Georg Cantor (1845-1918), published
in 1874, and proceeds by contradiction as follows. It has come to be known as Can-
tor’s diagonalization argument. Assume that such an enumeration was possible, and
that the reals between 0 and 1 could be put into a table:

O.ananaizasaisas - - -
0.ar1anarararsa - - -
0.a31ana33a33a35a36 - - -

0.as1a40043044045046 - - -
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0.asyasyaszassassase - - -

0.ag1a62a63064065066 - - -

Here each digit, ay;, is an integer between 0 and 9. Cantor’s idea was that the enumer-
ation above could not be complete. His proof was that one could easily construct
many real numbers that could not be on this list. Simply define a real number a by

a = a11a22a33044455 . . . ,

where each digit of the constructed number G, denotes any number other than the a;
found on the listing above. For each j, we then have nine choices for g;, and infi-
nitely many combinations of choices, and none of these constructed real numbers
will be on the list. Consequently the listing above cannot be complete and hence IR
is not countable. ]

On first introduction to this notion of a nondenumerably infinite, or an uncountably
infinite collection, it is natural to be at least a bit skeptical. Perhaps it would be easier
to use a number base other than decimal, with fewer digits, so that we could be more
explicit about this listing. Naturally, since any number can be written in any base,
the question of countability or uncountability is also independent of this base.

Standard decimal expansions, also called base-10 expansions, represent a real num-
ber x € [0, 1] as

X = 0.X]1X2X3X4X5X¢ . . .
=SSt

where each x; € {0,1,2,...,9}. Similarly a base-b expansion of x is defined, for b a
positive integer, b > 2:

x<b> = 0.6116[261304615616 ce

a ar
i

as
b3

ay
b4

das

+ E

SRS 2.1)

where each a; € {0,1,2,...,b—1}. Each g; is defined iteratively by the so-called
greedy algorithm as the largest multiple of # that is less than or equal to what is left

after the prior steps. That is, the largest multiple less than or equal to x — Z,{;ll Z—f
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Other real numbers x € R are accommodated by applying this algorithm using both
positive and negative powers of b in the expression, as is done for base-10.

In particular, with b = 2, the base-2 or binary system is produced, and all g; €
{0, 1}, so one easily imagines a well-defined and countable listing of the real numbers
x € [0, 1] by an explicit ordering as follows:

0.000000000000. . .
0.100000000000. . .
0.010000000000. . .
0.110000000000. . .
0.001000000000. . .
0.011000000000. . .
0.101000000000. . .
0.111000000000.. .,

and so forth. It seems apparent that such a careful listing represents all possible reals,
and hence the reals are countable.

Unfortunately, the logic here comes up short. Since every number on this list has
all Os from a fixed binary position forward, every such number is a finite summation
of the form Z,’z:l%, with a; € {0,1}, and hence is rational. So we have simply
developed a demonstration that this proper subset of the rationals is countable. It is
a proper subset, since it does not contain %, for instance, which has no such finite ex-
pansion in base-2. Once infinite binary expansions are added to the listing, we can
again apply the Cantor diagonalization argument as before and find infinitely many
missing real numbers.

An interesting observation is that despite the analysis in the section on rational
numbers that seemed to imply that rational and irrational numbers are effectively
interspersed, the rational numbers are countable, and yet the irrational numbers are
uncountable; otherwise, the real numbers would be countable as well. This observa-

tion will have interesting and significant implications in later chapters.
*2.1.6 Complex Numbers

The real numbers form a field, (R, +, -), that is closed under the algebraic operations
of +, —, -, =, as well as exponentiation, x”, if x > 0, but it is not closed under expo-
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nentiation of negative reals. The simplest case is v/ —1, since the square of every real
number is nonnegative. More generally, not all polynomials with real coefficients
have solutions in R, again the simplest example being

xX>+1=0.

Remarkably, one only needs to augment IR by the addition of the so-called imagi-
nary unit, denoted : = v/—1, in an appropriate way, and all polynomials are then
solvable.

Definition 2.19  The collection of complex numbers, denoted C, is defined by
C={zlz=a+ba,beR,1=+—1}.

The term a is called the real part of z, denoted Re(z), and the term b is called the imag-
inary part of z, and denoted Im(z). Also the complex conjugate of z, denoted Z, is
defined as

z=a—bt, if z=a+ b

The absolute value of z, denoted |z|, is defined as

lz| = Va* + b = Vzz, (2.2)
where the positive square root is taken by convention.

It is common to identify the complex “number line”” with the two-dimensional real
space, also known as the Cartesian plane, denoted IR? (see chapter 3):

z + (a,b).

This way Re(z) is plotted along the traditional x-axis, and Im(z) is plotted along the
y-axis. The absolute value of z can then be seen to be a natural generalization of the
absolute value of x, |x|, for real x:

x| = \/ﬁz{’“ x=0, (2.3)
—x, x<0,
again with the positive square root taken by convention.

This absolute value can be interpreted as the distance from x to the origin, 0. Like-
wise |z] is the distance from the point z = (g, b) to the origin, (0,0), by the Pythago-
rean theorem applied to a right triangle with side lengths |a| and |b|. For example, in
figure 2.1 is displayed the case where ¢ > 0 and b > 0.
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e
X

Figure 2.1
Pythagorean theorem: ¢ = Va2 + b2

Another interesting connection between € and the Cartesian plane comes by way
of the so-called polar coordinate representation of a point (a,b) € R%. The identifica-
tion is (a,b) < (r,t), where r denotes the distance to the origin, and ¢ is the “radian”
measure of the angle « that the “ray” from (0, 0) to (a, b) makes with the positive x-
axis, measured counterclockwise. By convention, the measurement of « is limited to
one revolution so that 0° < o < 360°, or in the usual radian measure, 0 < ¢ < 27. The
connection between an angle of o° and the associated “‘radian measure of ¢ is that
the radian measure of an angle equals the arc length of the sector on a circle of radius
1, with internal angle o°. Such a circle is commonly called a unit circle. Numerically,
canceling the degrees units obtains t = 2

360 °
The polar coordinate representation is then defined as

(a,b) = (rcos t,rsin t), (2.4a)
r=+va*+b? (2.4b)

arctan 2, 0 <0< 2m, a +#0,

, a=0,b>0, (2.4c)
, a=0,b<0.

wofg oIN

In figure 2.2 is shown a graphical depiction of these relationships when ¢ > 0 and
b > 0. Fora=5b =0, t can be arbitrarily defined. In other words, (0,0) < (0,¢) for
all «.
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(a, b)

Figure 2.2
a=rcost,b=rsint

By this idea it is natural to also associate the complex number z =a+ b1 =
|z|(cos t + i sin ¢). However, an even more remarkable result is known as Euler’s for-
mula, after Leonhard Euler (1707-1783). He derived this formula based on methods
of calculus presented in chapter 9. Specifically, for z = a + b1,

e’ =e“(cos b+isinb), (2.5)

which for z = b1 implies that |e”| =1 for all b. This is because by (2.2), |¥|* =
cos? b +sin® b= 1.

In addition, when applied to z = 7, this formula provides the most remarkable,
and perhaps most famous, identity in all of mathematics. It is called Euler’s identity,
and follows from (2.5), since cos 7 = —1, and sin 7 = 0:

e =—1. (2.6)

More generally, Euler’s formula has other interesting trigonometric applications (see
exercise 5), and it is a “lifesaver” for those of us who struggled with the memoriza-
tion of the many complicated formulas known as “identities” in trigonometry.

We next show that for either (2.2) or (2.3) the so-called triangle inequality is
satisfied.

Proposition 2.20 Under either (2.2) or (2.3), we have that

X+ y] < [x| + [y]- (2.7)
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Proof We will demonstrate (2.7) by using the definition of absolute value in (2.2),
which is equivalent to (2.3) for real numbers x and y. We then have

x4+ y* = (x+ )X+ 7)

= XX+ XJ + pX+ )y
= x> + 2 Re(xp) + |y’

2 2
< [x|” 4 20x[ |y] + ]

= (x| + [7])?
Note that in the third step it was used that yx = xy, and that z + Z = 2 Re(z), where-
as for the fourth, Re(xy) < |xp| = /xpxy = Vxxpp = |x| |y|. [ ]
As it turns out, (C,+,-) is a field under the usual laws of arithmetic because
1> = —1. For example, multiplication proceeds as
(a+ b1) - (¢ +di) = (ac — bd) + (ad + bo)r. (2.8)

The one item perhaps not immediately obvious is the multiplicative inverse for z € C,
where z # 0. It is easy to check that with
4z a— by
S R R
|z] a +b
we have zz7! = 1.
With these definitions, we can identify the real number field IR as a “subfield” of
the field C:

R « {(a,0)[b =0},
completing the list of inclusions
NcZcQcRcC.

Remarkably, as alluded to above, C is the end of the number field “chain’ for the
vast majority of mathematics, at least in part due to a result first proved (in his doc-
toral thesis!) by Johann Carl Friedrich Gauss (1777-1855) in 1799 after more than
200 years of study by other great mathematicians. We state this result without proof,
and mention that there are numerous demonstrations of this result using many differ-
ent mathematical disciplines.



2.2 Functions 49

Proposition 2.21 (Fundamental Theovem of Algebra) Let P(z) be an nth-degree poly-
nomial with complex coefficients

n
P(z) = Z ¢z’
=0

Then the equation P(z) = 0 has exactly n complex roots, {w;} = C, counting multiplic-
ities, and P(z) can be factored:

n

P(z)=¢, H(z —wj).

Jj=0
Remark 2.22
1. The expression, “‘counting multiplicities,” means that the collection of roots is not

necessarily distinct, and that some may appear more than once. An example is P(z) =
22 =2z 41 = (z—1)?, which has two roots, 1 and 1, counting multiplicities.

2. This important theorem is often expressed with the assumption that P(z) has a lead-
ing coefficient, ¢, = 1, which then eliminates the coefficient in the factorization above.
3. If P(z) has real coefficients, then the complex roots, namely those with w = a + bi
and b # 0, come in conjugate pairs. That is,

Piw)=0 iff P(w)=0,

where the abbreviation iff is mathematical shorthand for “if and only if.” It denotes the
fact that the two statements are both true, or both false, and in this respect is the com-
mon language version of the logical symbol < of chapter 1. The complete logical state-
ment is that

Piw)y=0 if P(w)=0 andonlyif P(w)=0.

This result on conjugate pairs is easily demonstrated by showing that for real coeffi-

cients, P(w) = P(w) because conjugation satisfies the following properties:
< If w=wi + wy, then W = Wy + W,

< If w=wy - wo, then w = Wy - Wy.

2.2 Functions

Definition 2.23 A4 function is a rule by which elements of two sets of values are asso-
ciated. There is only one restriction on this association and that is that each element of
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the first set of values, called the domain, must be identified with a unique element of a
second set of values, called the range.

For many applications of interest in this book, both the domain and range of a
function are subsets of the real numbers or integers, but these may also be defined
on more general sets as will be seen below. The rule is then typically expressed by a
formula such as

f(x) =x*+3.

Here x is an element of the domain of the function f, while f(x) is an element of
the range of /. Functions are also thought of and “visualized”” as mappings between
their domain and range, whereby x is mapped to f(x), and this imagery is intuitively
helpful at times. In this context one might use the notation

f:X—=Y,

where X denotes the domain of f, and Y the range. It is also common to write f(x)
for both the function, which ought to be denoted only by f, and the value of the
function at x. This bit of carelessness will rarely cause confusion. Finally, Dmn(f)
and Rng(f) are commonly used as abbreviations for the domain and range of the
function.

In many applications, f/ will be a multivariate function, also called a function of
several variables, meaning that the domain of f is made up of n-tuples of variables:
(X1,X2,...,X,), where each of the variables x;, is defined on the reals, or complexes,
and so forth. For example, f(x, y,z) =1 — xy + yz is a function of three variables,
and illustrates the notational convention that when 7 is small, the n-tuple is denoted
as (x, y), or (x, y,z), avoiding subscripts. To distinguish the special case of 1-variable
functions, such functions are sometimes called univariate.

In general mathematical language, the word ““function” typically implies that the
range of f, or Y, is a subset of one of the number systems defined above. When
Y = IR, the function f is called a real-valued function, and one similarly defines the
notions of complex-valued function, integer-valued function, and so forth. This termi-
nology applies to both multivariate and univariate functions. Similarly, if X < IR,
the function f is referred to as a function of a real variable, and one similarly defines
the notion of a function of a complex variable, and so forth. When necessary, this
terminology might be modified to univariate function of a real variable, or multivari-
ate function of a real variable, for example, but the context of the discussion is usually
adequate to avoid such cumbersome terminology. In the more general case, where X
and Y are collections of n-tuples, perhaps with different values of n, f is typically re-
ferred to as a transformation from X to Y.
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It is important to note that while the definition of a function requires that f(x) be
unique for any x, it is not required that x be unique for any f(x). For instance, the
function, f(x) = x*+ 3, above has f(x) = f(—x) for any x > 0. Another way of
expressing this is that a function can be a many-to-one rule, or a one-to-one rule, but
it cannot be a one-to-many rule. A function that is in fact one to one has the special
property that it has an “inverse” that is also a function.

Definition 2.24 If f is a one-to-one function, f : X — Y, the inverse function,
denoted £, is defined by

iy - x, (2.9a)

) =x iff f(x) =y (2.9b)

The example, f(x) = x? + 3, above has no inverse if defined as a function with do-
main equal to all real numbers where it is many to one, but the function does have an
inverse if the domain is restricted to any subset of the nonnegative or nonpositive real
numbers, since this then makes it one to one.

Naturally, a function can also relate nonnumerical sets of values. For example, the
domain could be the set of all strings of heads (H) and tails (7) that arise from 10
flips of a fair coin. A function f could then be defined as the rule that counts the
number of heads for a given string. So this is a function

f : {strings of 10 T's and/or Hs} — {0,1,2,...,9,10},

where f(string) = number of Hs in the string.

2.3 Applications to Finance

2.3.1 Number Systems

This may seem too obvious, but ultimately finance is all about money, in one or sev-
eral currencies, and money is all about numbers. One hardly needs to say more on
this point. Admittedly, finance would seem to be only about rational numbers, since
who ever earned a profit on an investment of $1/200? On the other hand, when one is
dealing with rates of return or solving financial problems and their equations, the ra-
tional numbers are inadequate, and this is true even if all the inputs to the problem,
or terms in the resulting equations, are in fact rational numbers.

For example, if one had an investment that doubled in n years, the implied annual
return is irrational for any natural number n > 1. For n = 5 and an initial investment
of $1000, say, one solves the equation
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1000(1 4 r)° = 2000,
r=v2-1.

Well that’s the theory, but no one in the market would quote a return of
100(+v/2 — 1)%. It would be rounded to a rational return of 14.87%, or if one wanted
to impress, 14.869836%. Most people would be satisfied with the former answer, and
yet if we use a rational approximation, and the dollar investment is large enough, we
begin to see differences between the actual return and the approximated return using
the approximate rational yield.

For example, using the return r = 0.1476, we would have a positive error of $14.30
or so with a $1 million investment. Such discrepancies are commonly observed in the
financial markets. Not a big deal, perhaps, for so-called retail investors with modest
sums to invest, but for institutional investors with millions or billions, this rounding
error creates ambiguities and the need for conventions. It is also important to note
that as one uses rational approximations in the real world, it comes at a cost: round-
ing errors begin to appear in our calculations. In other words, if we solve an equation
and use a rational approximation to the solution, this solution will not exactly repro-
duce the desired result unless amounts are so small that the rounding error is less
than the minimum currency unit. Our theoretical calculations don’t balance with
the real world in other cases. When complex calculations are performed, the error
can be big enough to complicate our debugging of the computer program, since we
need to determine if the discrepancy is a rounding problem or an as yet undiscovered
error.

But are even the real numbers all that is needed? We are all likely to say so because
of an inherent suspicion of the complex numbers that is certainly reinforced by lack
of familiarity and compounded by the unfortunate terminology of “‘imaginary’” num-
bers versus ‘“‘real” numbers. But consider that some investment strategies can pro-
duce a negative final fund balance, even though this may be disguised if the investor
has posted margin.

For example, if a hedge fund manager with $100 million of capital is leveraged
10:1 by borrowing $1 billion, and investing the $1.1 billion in various strategies,
one of which loses $20 million in an investment of $10 million, what is the fund re-
turn to the capital investors on this strategy? Naturally the broker would require
margin for such a strategy, so the negative final fund balance would be reflected in
the reduction of the margin account and overall fund capital. One can similarly de-
velop investment strategies in the derivatives market directly, by going long and/or
short futures contracts on commodities or other “underlying” investments, or imple-
menting long/short strategies in the options markets. One invests $100, say, and has
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a final balance on delivery or exercise date of —$100, again in reality observed by a
reduction in margin balances of $100.

For the period, we could argue that the return was —200%, or a period return of
r = —2.00. On the other hand, if one desires to put this return on an annual rate
basis, difficulties occur. For example, if this investment occurred over a month, the
annual return satisfies

100(1 + ) /12 = ~100,

(141" =1,

which has no solutions in R but, as it turns out, 12 distinct solutions in C. Note that
exponentiation provides an illusory escape from C:

(141 = (=)™,
r=0.

However, while r = 0 solves the algebraically transformed equation, it does not solve

the original equation. Such a solution is sometimes called a spurious solution.
Alternatively, if this return occurred over a year and we sought to determine the

return for this investment on a monthly nominal rate basis discussed below, we obtain

12
r

1 I1+—=) =-1

00( +12> 00,

r 12
l1+—= V-1
+ 12 ’
r= 12[\12/—1 — 1},

a decidedly complex return, and as above, it has 12 distinct solutions in €. On the
other hand, by squaring the original equation, we can again produce the spurious
solution of r = 0. But this, of course, will not work if substituted into the equation
above.

So what is the correct answer? Despite possible discomfort, any one of the 12 pos-
sible values of r = 12[V/—1 — 1] is the actual complex return on a monthly nominal
basis, since each solves the required equation, and there are correspondingly 12 pos-
sible complex returns that can be articulated on an annual basis.

To be sure, the market can always avoid this problem by simply using the lan-
guage that the return was r = —200% ““over the period.”
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2.3.2 Functions

The other major area of application for this chapter is related to functions. Functions
are everywhere! Not just in finance but in every branch of the natural sciences, as
well as in virtually every branch of the social sciences, and indeed in every human
endeavor. This is because virtually every branch of human inquiry contains recipes,
or formulas, that describe relationships between quantities that are either provable in
theory or based on observations and considered approximate models of a true under-
lying theory. It is these formulas that help us understand the theories by revealing
relationships in the theories. We note a truism:

Every formula is a function in disguise.

The difference between a formula and a function is simply based on the objective
of the user. For example, if we seek the area of a circle of radius, r = 2, we recall or
look up the formula, which is

area equals 7 times radius squared,

and with the approximation 7 ~ 3.1416, we estimate that 4 ~ 12.5664. On the other
hand, if we seek to understand the relationship between area and radius, the pre-
ferred perspective is one of a function:

A(r) = r?.

We can now see clearly that if the radius doubles, the area quadruples. We can
also easily determine that a large 17-inch pizza has just about the same area as two
small 12-inch pizzas, an important observation when thinking about feeding the fam-
ily. This is especially useful given that a large pizza is often much less expensive than
two small pizzas, which is an application to finance, of course.

Returning to other areas of finance, we consider several examples. In every case it
is purely a matter of taste and purpose which of the parameters in the given formula
are distinguished as variables of the associated function. The general rule of thumb is
that one wants to frame each function in as few variables as possible, but sufficiently
many to allow the intended analysis.

Present Value Functions
If a payment of $100 is due in five years, the value today, or present value, can be
represented as a function of the assumed annual interest rate, -

V(r) =100(1+r)">,
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which easily generalizes to a payment of F due in n years as

Vir)=F1+r)™"=Fm". (2.10)

The present value function in (2.10) is often written in the shorthand of V(r) = Fv",
where v is universally understood as the discount factor for one period, so here
v=>1+nr"

More generally, if a series of payments of amount F are due at the end of each of
the next n years, the present value can be represented as a function of an assumed
annual rate:

V)= F3 (407,
=T

This last formula is derived in exercises 17 and 18 of chapter 1.
Because this present value factor is so common in finance, representing the present
value of an annuity of n fixed payments, it warrants a special notation:

PR Sl G LIRS Sl 2.11)
r r

Note that a,., is a function of n and r, and could equally well have been denoted
a(n,r).

Accumulated Value Functions
If an investment of F at time 0 is accumulated for #» years at an assumed annual in-
terest rate r, the accumulated value at time 7 is given as

A(r) = F(1+1)". (2.12)

The accumulated value at time 7 of a series of investments of amount F at the end of
each of the next n years can be represented as

A(r)=F (1—|—r)j7
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where this last formula is derived with the same trick as was used for (2.11). Again,
as this accumulated factor is so commonly used in finance, it is often accorded the
special notation:

gz LEN =1 (2.13)
r

and as a function of n and r it could equally well have been denoted s(n, r).
Although one could formally identify V' (r) with the multivariate function V(r, F),

and similarly for A(r), there is little point to this formalization since the dependence

of the valuation on F is fairly trivial. However, there are applications whereby the

functional dependence on # is of interest, and one sees this notation explicitly in the

ap,» and s, functions.

Nominal Interest Rate Conversion Functions

The financial markets require the use of interest rate bases for which the compound-
ing frequency is other than annual. The conventional system is that of nominal inter-
est rates, whereby rates are quoted on an annualized basis, but calculations are
performed in the following way, generalizing the monthly nominal rate example
above.

In the same way that an annual rate of r means that interest is accrued at 100r%
per year, if r is a semiannual rate, interest is accrued at the rate of 100 (g)% per half
year, while a monthly rate is accrued at 100 (ﬁ) % per month, and so forth. In each
case the numerical value quoted pertains to an annual period, as it is virtually never
the case in finance that an interest rate is quoted on the basis of a period shorter or
longer than a year. An interest rate of 6% on a monthly basis, or simply 6% monthly,
does not mean that 6% is paid or earned over one month; rather, it is the market con-
vention for expressing that 0.5% will be paid or earned over one month. Similarly 8%
semiannual means 4% per half year, and so forth. Consequently one can introduce
the notion of a rate r, on an mthly nominal basis, meaning that 100(#)% is paid or
accrued every %th of a year.

Nominal interest rates simplify the expression and calculation of present and accu-
mulated values where payments are made other than annually. For example, a bond’s
payments are typically made semiannually in the United States. If payments of F are
made semiannually for n years, the present value is expressible in terms of an annual
rate by
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or more simply in terms of a semiannual rate

2n r -
V(r) = r
(r) FiXL%)
j=1
:FaZn;r/27

making the application of the present value and accumulated value functions in
(2.11) and (2.13) more flexible.

Finally, one can introduce the notion of equivalence of nominal rates, meaning that
accumulating or present-valuing payments using equivalent rates produces the same
answer. If r,, is on an mthly nominal basis, and r, is on an nthly nominal basis, in
order for the present value of F payable at time N years to be the same with either
rate requires

y —Nm r —Nn
F<1+’”> :F<1+”> :
m n

and we immediately conclude that the notion of equivalence is independent of the
cash flow F and time period N. The resulting identity between r, and r,, equals that
produced by contemplating accumulated values rather than present values. Of course,
this identity between r, and r,, can be converted to a function such as r,,(r,). This
tells us that for any r, on an nthly nominal basis, the equivalent r,, on an mthly nom-
inal basis is given as

r n/m
<1+;> —1. (2.14)

Bond-Pricing Functions

The application of the formulas and functions above to fixed income instruments
such as bonds and mortgages is relatively straightforward. For example, under the
US convention of semiannual coupons quoted at a semiannual rate r, the coupon
paid is F% per half year, where F denotes the bond’s par value. If the bond has a ma-
turity of n years, the price of the bond at semiannual yield i is given by

rm(”n) =m

r

Pi) = F 3

oy i/2 + FUlz/nz (215)
Here v;/, again denotes the the discount factor for one period, v = (1 + é)fl, but with
a subscript for notational consistency. Sometimes this yield is expressed as i, to em-
phasize that this is the yield on an n-year bond.
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This formula allows a simple analysis of the relationship between P(i) and F, or
price and par. From (2.11) applied to a,,;/» we derive that Ulz/”z =1- %az,w-/z. When
substituted into (2.15), this price function becomes

P(l) =F|1 +%(l’— i)az,,;,»/z . (216)

From this expression we conclude the following:

» P(i) > F, and the bond sells at a premium, iff r > i.
* P(i) = F, and the bond sells at par, iff r = i.
» P(i) < F, and the bond sells at a discount, iff r < i.

Notice that the bond price function as expressed in either (2.15) or (2.16) can be
thought of as a function of time. Identifying the given formulas as the price today
when the bond has n years to maturity, and denoted Py(i), the price at time §/= imme-
diately after the jth coupon, denoted P;/,(i), is given by

. 1 .
Pip(i) = F|1 +§(V — ) j.if2 | (2.17)

using the format of (2.16), with a similar adjustment to express this in the format of
(2.15). This formula is correct at time 0, of course, as well as at time n, where it
reduces to F. In other words, immediately after the last coupon, the bond has value
equal to the outstanding par value then payable.

The price of this bond between coupons, for instance, at time 7, 0 < 1 < %, can be
derived prospectively, as the present value of remaining payments at that time, or
retrospectively, in terms of the value required by the investor to ensure that a return
of i is achieved. In either case one derives P,(i) = (1 + %)mPo(i), which generalizes to

.\ 2t
. I . 1
Pjpyi) = <1 +§) Pip(),  0<t<z, (2.18)

which demonstrates that for fixed yield rate 7, the price of a bond varies “‘smoothly”
between coupon dates and abruptly at the time of a coupon payment. In the lan-
guage of chapter 9, this price function is continuous between coupon payments and
discontinuous at coupon dates.

More generally, we may wish to express P as a function of 2n yield variables,
allowing each cash flow to be discounted by the appropriate semiannual spot rate,
in which case we obtain
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Pl i ! 21 | i\~ 71 i\ " 519
(l0.57l17"‘7ln)_ E]:ZI +7 + +§ . ( )

The domain of all these bond-pricing functions would logically be understood to
be real numbers with 0 <i <1 or 0 <i; <1 for most applications, although the
functions are mathematically well defined for 1 + L > 0, where i is an mthly nominal
yield.

Mortgage- and Loan-Pricing Functions

The same way that bonds often have a semiannual cash flow stream, mortgages and
other consumer loans are often repaid with monthly payments, and consequently
rate quotes are typically made on a monthly nominal basis. If a loan of L is made,
to be repaid with monthly payments of P over n years, the relationship between L
and P depends on the value of the loan rate, r. Specifically, the loan value must equal
the present value of the payments at the required rate. Using the tools above, this
becomes

L = Payy,,/12,
producing a monthly repayment of

L
P(rn) = —— . (2.20)
12(1 - 0/7)

Here the monthly repayment is expressed as a function of both r and n. In some
applications, where n is fixed, the notation is simplified to P(r).

Note that the identity between the value of the loan and the remaining payments
can also be used to track the progress of the loan’s outstanding balance over time ei-
ther immediately after a payment is made, as in (2.17), or in between payment dates,
as in (2.18) (see exercise 13).

Preferred Stock-Pricing Functions

A so-called perpetual preferred stock is effectively a bond with maturity n = co. That
is, there is a par value, F, a coupon rate, r, that is typically quoted on a semiannual
basis and referred to as the preferred’s dividend rate, but the financial instrument has
no maturity and hence no repayment of par. At a given semiannual yield of i, the
price of this instrument can be easily inferred from (2.15) by considering what hap-
pens to each of the present value functions as the term of the bond, n, grows without
bound. This subject of “limits”” will be addressed more formally in chapters 5 and 6,
but here we present an informal but compelling argument.
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Since it is natural to assume that the market yield rate i > 0, it is apparent that
1+£>1, and hence Ulz/”z decreases to 0 as n increases to co. Using (2.11) modified
to a semiannual yield, it is equally apparent that as viz/”2 decreases to 0, the annuity
factor a,,,; increases to ﬁ, which can be denoted a..;/>. Combining, and canceling
the % terms, we have that the pricing function for a perpetual preferred stock, is given

by
P(i) = —. (2.21)

From (2.21) we see that when the dividend rate and yield rate are both on a semian-
nual basis, the price does not explicitly reflect this basis. Generalizing, the same price
would be obtained if r and i were quoted on any common nominal basis.

It is also clear that a perpetual preferred will be priced at a premium, par or at a
discount in exactly the same conditions as was observed above for a given bond, and
that was if r > i, r = i, or r < i, respectively.

Common Stock-Pricing Functions

The so-called discounted dividend model for evaluating the price of a common stock,
often shortened to DDM, is another function of several variables. The basic idea of
this model is that the price of the stock equals the present value of the projected div-
idends. Since a common stock has no “par” value, the dividends are quoted and
modeled in dollars or the local currency, although it is common to unitize the calcu-
lation to a ““per share” basis.

If D denotes the annual dividend just paid (per share), and it is assumed that an-
nual dividends will grow in the future at annual rate of g, and investors demand an
annual return of r, then in its most general notational form, the price of the stock can
be modeled as a function of all these variables:

l+g

ViD,gr)=D—" 1>g. (2.22)
—9

The derivation of (2.22) is similar to that for the preferred stock above, but with a
small trick. That is, the present value of the dividends can be written

Di(l +1)7(1+g),
j=1

and since (1+7r)7(1+¢g) = (1 +%)_j, this present value becomes a preferred
stock with dividend D, valued with a yield of %. Consequently (2.22) follows from
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(2.21), ang where the requirement that r > ¢ is simply to ensure that in (2.11),
1+ %f]) decreases to 0 as n increases to co.

In many applications one thinks of this price function as a function of a single
variable. For example, if we think of D and r as fixed, we can express the stock value
as a function of the assumed growth rate, V' (g), and so forth. This illustrates the im-
portant point noted above. The functional representation of a quantity is usually not
uniquely defined; it is typically best defined based on the objectives of the user. As
was the case for the price of a bond, one could also allow either g and/or r to vary
by year, further expanding the multivariate nature of this price function, or modify
this derivation to allow for dividends payable other than annually.

Portfolio Return Functions

If the return on asset A, is projected to be rj, and that of A, projected to be rp, we
can define a function f(w) to represent the projected return on a portfolio of both
assets, with 100w% allocated to A4;, and 100(1 — w)% to A,. We then have

Sw)y=wri + (1 —w)r,
=1+ w(r —r).

While this may be initially modeled with the understanding that 0 <w < 1, it is a
perfectly sensible function outside this domain by understanding a “‘negative invest-
ment” to represent a short sale.

A short sale is one whereby the investor borrows and sells an asset for the cash
proceeds, with the future obligation to repurchase the asset in the open market to
cover the short, which is to say, return the asset to the original owner. Such short
sales require the posting of collateral in a margin account, typically in addition to
the cash proceeds or the securities purchased with these proceeds.

This model is easily generalized to the case of n assets, whereby our asset choices
are {4;}7_; with projected returns of {r;}/_; and asset allocations of {w;}7_, with
0<w; <1 and Z/n:1 w; = 1. One then sees that the projected portfolio return is a
function of these asset allocation weights:

Swi,wa, oo wy,) = Z wir;. (2.23)
j=1

Once again, with short sales allowed, the domain of this function can be expanded
beyond the original restricted domains of 0 < w; <1 for all j.

As a final comment, it may seem odd that with 2 assets, / was a function of 1
variable, yet with n assets, f is a function of n variables. This provides another
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example of the flexibility one has in such representations. As currently expressed, it
must be remembered in the analysis that logically Z _;w; =1, and hence these n
variables are constrained, meaning that the domain of this function is not the “n-
dimensional cube,” {(w1,w,...,w,) |0 < w; <1 for all j}, but a subset of this cube,
{(wi,wa,...,w,) |0 <w; <1 forall jand ij’:l w; = 1}. To eliminate the need to
remember this constraint, it can be built into the definition of the function, as was
done in the 2-asset model. For example, writing w, = 1 — > " | w;, we can rewrite
the projected return function as a function of » — 1 variables:

f(WhWZ; s Wn—1 *rn+§ W] rn

The domain of this function is now defined to either preclude or allow short sales.

Naturally this functional representation also makes sense when the r; values are
not initially defined as constants but instead represent values that will only be
revealed at the end of the period. This perspective then lends itself to thinking about
these returns as random variables, as will be discussed in chapter 7 on probability
theory. Within that framework, good analysis can be done with this function, and
the asset allocation will be seen to influence properties of the randomness of the port-
folio return.

Forward-Pricing Functions

As a final example, consider a forward contract on an equity, with current price Sp. A
forward contract is a contract that obligates the long position to purchase the equity,
and the short position to sell the equity, at forward time 7" > 0, measured in years
say, and at a price agreed to today, denoted Fj. No cash changes hands at time 0,
whereas at time 7" one share of the stock is exchanged for Fy. The natural question
is, What should be the value of Fy and on what variables should it depend?

As it turns out, the long position can replicate this contract in theory, which means
that the long can implement a trade at time 0 that provides the obligation to “buy”
the stock at time 7', and this can be done without finding another investor that is
willing to take on the short position. Similarly a short position can be replicated, so
an investor can implement this contract without finding another investor that is will-
ing to take on the long position.

The replication of the long position is accomplished by purchasing the equity to-
day for a price of Sy, and acquiring the cash to do so by short-selling a 7-period
Treasury bill. Imagine for clarity that the equity is placed in the margin account
required for the short position, along with other investor funds, so the investor
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doesn’t actually have possession of it at the time of this trade. At time 7', the short
sale will be covered at a cost of Sy(1 + r7)”, the value of the T-bill to the original
owner at that time, where r7 denotes the annual return on the 7-period T-bill, and
T is in units of years. Because the short position has been covered, the margin ac-
count is released and the investor takes possession of the stock, implicitly for the
price of covering the short.

Similarly a short forward can be replicated with a short position in the stock and
an investment in T-bills, and the same cost of So(1 + r7)” is derived. In both cases
the position is replicated with no out-of-pocket cost at time 0 for the investor.

So in either case we conclude that the forward price, Fy, that makes sense today
with no money now changing hands, if it is to be agreed to by independent parties
each of whom could in theory replicate their positions, is a function of 3 variables:

Fo(So,rr,T) = So(1+r7)7. (2.24)

In some applications one might think of one or two of these variables as fixed, and
the forward price function expressed with fewer variables. The reason this is the
“correct price” is that if forwards were offered at a different price, it would be possi-
ble for investors to make riskless profits by committing to forwards and then replicat-
ing the opposite position (see exercise 15).

Once the forward contract is negotiated and committed to, there arises the ques-
tion of the value of the contract to the long and to the short at time 7 where
0 <t < T. For definitiveness, let Fy denote the price agreed to at time ¢ = 0. At
time ¢, we know from the formula above that the forward price will be

Ft(S,,VT,t, T - t) = Sf(l + VT,t) T_t. (225)

So the long position is committed to buy at time 7" at price Fp, but today’s market
indicates that the right price is F;. That’s good news for the long if Fy < F;, and bad
news otherwise. The sentiments of the short position are opposite. So the value at
time 7 is ““plus or minus” the present value of the difference between the two prices
Fy and F,, that is, +[F, — Fy](1 —&-rT,,)*(T*’), which for the long position can be
expressed as

Vi(Sirr i, T —1) = S; — Fo(1+rp_) "0, (2.26)

The function representing the value of this contract to the short position is simply the
negative of the function in (2.26).



64 Chapter 2 Number Systems and Functions

Exercises

Practice Exercises

1. Apply Euclid’s algorithm to the following pairs of integers to find the greatest
common divisor (g.c.d.), and express the g.c.d. in terms of Bezout’s identity:

(a) 115 and 35

(b) 4531 and 828
(c) 1915 and 472
(d) 46053 and 3042

2. In a remark after the proof of the existence of nonrational numbers, or irrational
numbers, it was demonstrated that between any two rational numbers is a rational
number and an irrational number. Prove by construction, or by contradiction, that
in both cases there are infinitely many rationals and irrationals between the two
given rationals. (Hint: For intermediate irrationals, note that for n # m?, we know

that \/z ¢ @Q, and hence Jiﬁ ¢ Q. Note also that \/Lﬁ —0asn— 0.)

3. Prove that the irrationals are uncountable. (Hint: Consider a proof by con-
tradiction based on the countability of the rationals and uncountability of the
reals.)

4. Express the following real numbers in the indicated base using the greedy algo-
rithm either exactly or to four digits to the right of the “decimal point™:

(a) 100.4 in base-6

(b) 0.1212121212... in base-2

(c) 125,160.256256256. .. in base-12

(d) —127.33333333 ... in base-7

5. Demonstrate that if a number’s decimal expansion either terminates, or ends with
an infinite repeating cluster of digits such as 12.12536363636 = 12.12536, then this
number is rational. (Hint: If the number in this example is called x, compare 1000x
and 100,000x. Generalize.)

6. Euler’s formula gives a practical and easy way to derive many of the trigonomet-
ric identities involving the sine and cosine trigonometric functions. Verify the follow-
ing (Hint: ¢ = (e%)?):

2 2

(a) cos 2a =cos“ a—sin~ a

(b) sin 2a = 2 sin a cos a
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7. If an annual payment annuity of 100 is to be received from time 8 to time 20,
show that the value of this 7-year deferred, 13-year annuity can be represented in ei-
ther of the following ways:

(3) 100(a20:r - a7:r)

(b) 100(1 +r) a3,

8. What is the domain and range of the following functions? Note that the domain
may include real numbers that would not make sense in a finance application.

(a) Annuity present value: V(r) = F» /(1 + r)™ (If this is written in the equiva-
lent form V(r) = F &, the domain initially looks different. Convince yourself
by numerical calculation, or analysis, that r = 0 is not really a problem for this func-
tion even in the second form, since the r in the denominator ““cancels” an r in the
numerator, much like 3r/r.)

(b) Bond price: P(i) = F5as, ;/» + Fol!

i2
(¢) Loan repayment: P(r,n) = f(_rl{ llj,)
2

9. Use the nominal equivalent yield formula and demonstrate numerically for an-
nual “rates” r; = 0.01,0.10,0.25,1.00, that as m — oo, the equivalent yield r,,(r)
gets closer and closer to In(1 + ;). Consider m up to 1000, say. Show algebraically
that if this limiting result is true for all r;, and n and r, are fixed, then as m — oo, the
equivalent yield, r,,(r,), again gets closer and closer to In(1 + r;) where r| is the an-
nual rate equivalent to r,. (Note: These results can be proved with the tools of chap-
ter 5, once the notion of the limit of a sequence is formally introduced, and chapter 9,
which provides Taylor series approximations to the function In x.)

10. Complete the rows of the following table with equivalent nominal rates:

" r r4 2 7365

0.05

0.10

0.0825

0.0450

0.0775

11. You are given a 5-year and a 30-year bond, each with a par of 1000 and a semi-
annual coupon rate of 8%. Calculate the price of each at an 8% semiannual yield,
and graph each price function over the range of semiannual yields 0% < i < 16% on
the same set of axes. What pattern do you notice between the graphs?
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12. For the 5-year bond in exercise 11, start with prices calculated at 6% and 10%:
(a) Develop graphs of these bond prices over time using (2.18)

(b) Show that in the case of the 6% valuation, that the successive ratios of the bond’s
write downs, defined as the quantities P;/»(0.06) — P(;.1)/2(0.06), have a constant
ratio of 1.03.

(¢) Show similarly that for the 10% valuation, the successive ratios of the bond’s
write ups, defined as the quantities P(;,1)/2(0.10) — P;/>(0.10), have a constant ratio
of 1.05.

(d) Derive algebraically using (2.16), the general formula for a write up or write
down and show that the common ratio is 1 44, where i denotes the investor’s yield.

13. You are considering a 10-year loan for $100,000 at a monthly nominal rate of
7.5%.

(a) Calculate the monthly payment for this loan.

(b) Calculate the outstanding balance of this loan over the first year immediately fol-
lowing each of the required 12 payments as well as the changes in these balances,
called loan amortizations. (Hint: recall that the loan balance equals the present value
of remaining payments)

(¢) Confirm that the ratio of successive amortizations are in constant ratio of
] 4 0075

2 -
(d) Derive algebraically the general formula for the loan amortizations and confirm
that the ratio of successive values is a constant 1 + ﬁ

(e) Demonstrate that given the formula derived for the values of the amortizations,
they indeed add up to the original loan value, L.

14. What is the DDM price for a common stock with quarterly dividends, where the
last dividend of 2.50 was paid yesterday:

(a) If dividends are assumed to grow at a quarterly nominal rate of 9% and the in-
vestor requires a return of 15% quarterly?

(b) If dividends are assumed to grow at a quarterly nominal rate of 9% only for 5
years, and then to a grow at a rate of 4%, again on a quarterly basis? (Hint: Show
that the dividends can be modeled as a 5-year annuity at one rate, followed by a 5-
year deferred perpetuity [i.e., an infinite annuity| at another rate, where by “deferred”
means the first payment is one-quarter year after 1 = 5. See also exercise 7.).

15. A common stock trades today at Sy = 15, and the risk free rate is 6% on a semi-
annual basis.
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(a) What is the forward price of this stock for delivery in one year?

(b) Replicate a long position in this forward contract with a portfolio of stock and
T-bills, giving details on the initial position as well as trade resolution in 1 year.

(¢) If the market traded long and short 1-year forwards on this stock with a price of
15.10, develop an arbitrage to take advantage of this mispricing, giving details on the
initial position as well as trade resolution in 1 year. (Hint: Go long the forward if this
price is low, and short if this price is high. Offset the risk with replication.)

(d) If an investor goes short the forward in part (a), what is the investor’s gain or loss
at 3 months’ time when the contract is “offset” in the market (i.e., liquidated for the
then market value) if the stock price has fallen to 13.50, and the 9-month risk-free
rate is 7.50% (semiannual)?

Assignment Exercises

16. Apply Euclid’s algorithm to the following pairs of integers to find the greatest
common divisor (g.c.d.), and express the g.c.d. in terms of Bezout’s identity:

(a) 697 and 221

(b) 7500 and 2412

(c) 21423 and 3441

(d) 79107 and 32567

17. (See exercise 2.) In a remark after the proof of the existence of nonrational num-
bers, or irrational numbers, it was demonstrated that between any two irrational
numbers is a rational and an irrational. Prove by construction, or by contradiction,
that in both cases there are infinitely many rationals and irrationals between the two
irrational numbers.

18. Express the following real numbers in the indicated base using the greedy algo-
rithm either exactly or to four digits to the right of the “decimal’ point:

(a) 25.5 in base-2

(b) 150.151515... in base-5

(¢) 237,996.1256 in base-12

(d) —2,399.27 in base-9

19. (See exercise 5.) Explain why it is the case that if a number is rational, its decimal
expansion either terminates or, after a certain number of digits, ends with an infinite

repeating cluster of digits such as 12.12536. Specifically, explain that if this rational

number is given by /- where n and m have no common divisors, then the decimal
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expansion will terminate by the mth decimal digit, or there will be repeating cluster
that will begin on or before the mth decimal digit, and in this case, the repeating clus-
ter can contain at most m — 1 digits. (Hint: Think about the remainders you get at
each division step.)

20. Euler’s formula gives a practical and easy way to derive many of the trigonomet-
ric identities involving the sine and cosine trigonometric functions. Verify the follow-
ing (Hint: et = e®ebi):

(a) cos(a+b) =cosacosb—sinasinb

(b) sin(a + b) = cos a sin b+ cos b sin a

21. (See exercise 7.) If an annual payment annuity of 100 is to be received from time

n+ 1 to time n + m, show that the value of this n-year deferred, m-year annuity can
be represented as either of the following:

(@) 100(aypsm;r — an:r)

(b) 100(1 +r) " ap:,

22. What is the domain and range of the following functions? Note that the domain
may include real numbers that would not make sense in a finance application:

(a) Nominal equivalent rate: r,,(r,) = m|[(1 + %)n/ m—l]
(b) Common stock price: V (D, g,r) = D%;’

(¢) Forward price: F,(S;,rr—, T —1) = Si(1 +rp_) "

23. Complete the rows of the following table with equivalent nominal rates:

L r r4 r2 365

0.16

0.045

0.0955

0.0150

0.025
24. A $25 million, 10-year commercial mortgage is issued with a rate of 8% on a
monthly nominal basis.
(a) What is the monthly repayment, P, over the term of the mortgage?

(b) If B; denotes the outstanding balance on this loan immediately after the jth pay-
ment, with By = 25 million, show that
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B; = Pa120—j);0.08/12

0.08)’
= [Bo — Paj;.08/12] (1 +T) .

(c) If P; denotes the principal portion of the jth payment, show that

0.08

F=r-=

B ..

(d) Show that Py = (1 +%8)P; for j > 1.
(e) From part (d), confirm that ) P; = 25 million.

25. A common stock trades today at Sy = 50, and the risk-free rate is 5% on a semi-
annual basis.

(a) What is the forward price of this stock for delivery in 6 months?

(b) Replicate a long position in this forward contract with a portfolio of stock and
T-bills, giving details on the initial position as well as the trade resolution in 6 months.
(c) If the market traded long and short 6-month forwards on this stock with a price

of 53, develop an arbitrage to take advantage of this mispricing, giving details on the
initial position as well as the trade resolution in 6 months.

(d) If an investor goes long the forward in part (a), how much does the investor
make or lose at 3 months’ time when the contract is offset in the market if the stock
price has risen to 52, and the 3-month risk-free rate is at 4.50% (semiannual)?






3 Euclidean and Other Spaces

3.1 Euclidean Space

3.1.1 Structure and Arithmetic

The notion of a Euclidean space of dimension n is a generalization of the two-
dimensional plane and three-dimensional space studied by Euclid in the Elements.

Definition 3.1 Denoted R" or sometimes E", n-dimensional Euclidean space, or Eucli-
dean n-space, is defined as the collection of n-tuples of real numbers, referred to as
points:

R" = {(x1,x2,...,%,) | x; € R forall j}. (3.1

Arithmetic operations of pointwise addition and scalar multiplication in R" are defined
by

L x+y=(x1+y,+ ¥y, s X0+ V).

2. ax = (axy,axy,...,axy), where a € R.

In other words, addition and multiplication by so-called scalars ¢ € R, are defined
componentwise. Because points in R” have n components and are thought of as gen-
eralizing the corresponding notion in familiar two- and three-dimensional space, they
are typically referred to as points and sometimes vectors, and are either notated in
boldface, x, as will be used in this book, or with an overstrike arrow, ¥. The compo-
nents of these points, the {x;}, are called coordinates, and a given x; is referred to as
the jth coordinate.

The terminology of n-tuple may seem a bit strange at first. It is but a generaliza-
tion of the typical language for such groupings whereby, following “twin” and “trip-
let,” one says quadruple, quintuple, sextuple, and so forth. For specific values of n,
the language would be 2-tuple, 3-tuple, and on and on.

Note that the notation for Euclidean space, IR”, is more than just a fanciful play
on the notation for the real numbers, IR. This notation rather stems from that for a
product space defined in terms of a direct or Cartesian product:

Definition 3.2 If' X and Y are two collections, the direct or Cartesian product of X
and Y, denoted: X x Y is defined as

XxY={(x,y)|xeX,ye Y} (3.2)

That is, X x Y is the collection of ordered pairs, which is to say that X x Y # Y x X
in general, and the order of the terms in the product matter. One similarly defines
X x Y x Z, etc., and refers to all such constructions as product spaces.
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When X = Y, it is customary to denote X x X by X2, X x X x X by X3, etc.
Consequently the notation for Euclidean space, which is the original example of a
product space, is consistent with this notational convention:

R"=R xR x --- xR, with n factors.

One similarly defines C”, n-dimensional complex space; Z", n-dimensional integer
space or the n-dimensional integer lattice; and so forth.

In general, Euclidean space does not have the structure of a field as was the case
for @, IR, and C in chapter 2. This reason is not related to the “addition” in R” but
to the problem of defining a multiplication of vectors with the required properties.
However, Euclidean space has the structure of a vector space, and it is easily demon-
strated that IR” is a vector space over the real field R. In this book we will almost
exclusively be interested in real vector spaces that are defined by F = R:

Definition 3.3 A collection of points or vectors, X, is a vector space over a field F, if:
1. X is closed under pointwise addition and scalar multiplication:
Ifx,yeXandae F,then x+ye X and ax € F.

2. There is a zero vector: 0 = (0,0,...,0) € X such that

Xx+0=0+x=x  forallxeX.

3. Point addition is commutative and associative. Given X,y,z € X,

X+y=Yy+X,

Xx+(y+z)=(x+y)+z

4. Scalar multiplication satisfies the distributive law over addition: For X,y € X and
aeF,

a(x+y)=(x+y)a=ax+ay.

As was noted in chapter 2, one can define a multiplication and a field structure on
IR? by the identification with the complex numbers:

R? & € : (a,b) < a + b
Then multiplication is defined using (2.8):
(a,b) - (c,d) = (ac — bd,ad + bc),
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and multiplicative inverses follow from the formula for z~!:

-b
By = Li)
(a.5) (a2+b2 a’ +b?

It is natural to wonder if such an identification can be made for R”, with n > 2, and
other fields produced. The answer is that yes, identifications do exist for some n > 2,
but these do not produce the structure of fields.

For example, the first of these identifications was discovered by Sir William Rowan
Hamilton (1805-1865) in 1843, and called the quaternions. The quaternions can be
identified with IR*, and have the appearance of “generalized” complex numbers.
That is, having a “real” component and three “‘imaginary” components #, j, k, and
the identification is

(a,b,c,d) — a+ bi+ cj + dk,

i* = j*=k*=ijk = 1.

The resulting structure falls short of a field structure because multiplication is not
commutative. This follows from ijk = —1, which implies that ij = —ji. The resulting
structure is called an associative normed division algebra.

The quaternions can in turn be generalized and an identification made with R®,
known as the octonions, which were independently discovered by John T. Graves
(1806-1870) in 1843 and Arthur Cayley (1821-1895) in 1845. Although octonions
form a normed division algebra, in contrast to the quaternions, multiplication in the
octonions is neither commutative nor associative. Further generalizations to R?" are
possible for all n, each successive term in the sequence derived from the former term
through what is known as the Cayley—Dickson construction, also after Leonard
Eugene Dickson (1874-1954).

3.1.2 Standard Norm and Inner Product for IR”

Besides an arithmetic on R”, there is the need for a notion of length, or magnitude,
of a point. In mathematics this notion is called a “norm.”

Definition 3.4  The standard norm on R", denoted |x| or ||X||, is defined by

(3.3)

where the positive square root is implied.
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This norm generalizes the Pythagorean theorem and the notion of the length of a
vector in the plane or in 3-space, which in turn generalizes the notion of length on the
real line or 1-space achieved by the absolute value of x: |x|, defined in (2.3).

Another useful notion on R” that generalizes to other vector spaces is that of an
inner product, whose formula generalizes the notion of a dot product of vectors in
the plane and 3-space:

Definition 3.5 The standard inner product on R", denoted x -y or (X,y), is defined for
x,y € R" as

n
X-y= inyi. (3.4)
j=1

Inner products are intimately connected with norms. As may be apparent from the
definitions above, the standard norm for R” satisfies

x| =(x-x)"? or |x]*=|x-x]| (3.5)
Remark 3.6 The notion of an inner product is one that will reappear in later chapters
and studies in a variety of contexts. As it turns out, there are many possible inner prod-
ucts on R" that satisfy the same critical properties as the standard inner product above.
Here we identify these defining properties and leave their verification for the standard
inner product as an exercise. Note that item 4 below follows from properties 2 and 3,
but is listed for completeness.

Definition 3.7 An inner product on a real vector space X, is a real-valued function
defined on X x X with the following properties:

(x,x) > 0 and (x,x) = 0 if and only if x = 0.

(Xv Y) = (y,x).
(ax) +bxa,y) = a(x1,y) + b(x2,y) for a,b e R.
(x,ay; + by,) = a(x,y,) + b(X,y,) for a,b e R.

Ll ol

Definition 3.8 If (x,y) is an inner product on a real vector space X, the norm associ-
ated with this inner product is defined by (3.5).

*3,1.3 Standard Norm and Inner Product for C”

We note for completeness that in order to appropriately generalize (2.2) to an n-
dimensional complex vector space, the inner product and norm definitions are modi-
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fied when the space involved, such as C”, and its underlying field, have complex
values. We provide the definition here:

Definition 3.9  The standard inner product on C", denoted x -y or (x,y) is defined for
x,y e C",

n
Xy =Y Xi¥; (3.6)
j=1
where ¥, denotes the complex conjugate of y;. The standard norm for C" is defined as
x| = (x-x)"* or |x]*=x-x|. (3.7

Remark 3.10 In the context of a complex space, there are again many possible inner
products satisfying the critical properties of the standard inner product above. These
properties are identical to those listed for R", with the necessary adjustments for the
complex conjugate on the second term. As before, 5 follows from 3 and 4, and also
here 1 follows from 3, but these properties are listed for completeness.

Definition 3.11 An inner product on a complex vector space X, is a complex-valued
Sfunction defined on X x X with the following properties:

1. (x,x) € R for all x.

2. (x,x) >0 and (x,x) = 0 if and only if x = 0.
3. (x,y) = (¥,x)

4. (ax) + bxp,y) = a(x1,y) + b(xa,y) for a,b € C.
5. (x,ay, + by,) = a(x,y,) + b(x,y,) for a,b e C.

3.1.4 Norm and Inner Product Inequalities for R"

An important property of inner products is the Cauchy—Schwarz inequality, which
was originally proved in 1821 in the current finite-dimensional context by Augustin
Louis Cauchy (1759-1857), and generalized 25 years later to all “inner product
spaces’” by Hermann Schwarz (1843-1921).

Throughout this section, results on inner products are derived in the context of
the “‘standard” inner products in (3.4) or (3.6) for specificity. However, it should be
noted that the proofs of these results rely only on the properties identified above for
general inner products, and consequently these results will remain true for all inner
products once defined.
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Proposition 3.12 (Cauchy—Schwarz Inequality) With x -y defined as in (3.4) or (3.6),
x-yl < Ix[lyl. (3.8)

In other words, the absolute value of an inner product is bounded above by the product
of the vector norms.

Proof Consider x — ay. By definition of a norm, we have for any real number a:
|x —ay| > 0.

However, a calculation produces
x —ay|® = (x — ay,x — ay)
=x-Xx—2ax-y+a’y-y

= |x)* + a®|y|* — 2ax - y.

Choosing a = %, and combining, we get
y

2
w7 = & yz) >0,
Iyl
and the result follows. ]

Remark 3.13 We can remove the absolute values from X -y, and the result remains
true since, by definition, X -y = +|x - y| < |x-y|. We use this below.

The general notion of a norm is a fundamental tool in mathematics and is formal-
ized as follows:

Definition 3.14 A4 norm on a real vector space X , is a real-valued function on X with
values, denoted |x| or ||X||, satisfying:

1. x| e R.

2. 10| =0, and |x| > 0 for x # 0.

3. |ax| = |a| x| for a e R.

4. (Triangle inequality) |x +y| < |x| + |y|.

Definition 3.15 A normed vector space is any real vector space, X, on which there is

defined a norm, |x|. For specificity, a normed space is sometimes denoted (X, |x|) or
(X5 I1x)-
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Remark 3.16 Item 4 is known as the triangle inequality because it generalizes the
result in (2.7) that the length of any side of a triangle cannot exceed the sum of the
lengths of the other two sides. Also note that item 4 is easily generalized by an iterative
application to

n
> xi
Jj=1

Remark 3.17 A norm can be equally well defined on a vector space over a general
field F, such as the complex field C, where |a| denotes the norm of a € F. But we will
have no need for this generalization.

< z”: |X,‘|. (39)
j=1

The general definition of a norm was intended to capture the essential properties
known to be true of the standard norm |x| defined on R". Not surprisingly, we there-
fore have:

Proposition 3.18 |x| defined in (3.3) is a norm on R".

Proof Only the triangle inequality needs to be addressed as the others follow imme-
diately from definition. From (3.5) we have that

X+ ¥ = (x+¥,x+Y)

=X-X+2X-y+Yy'y
< [x|* + 2Ix| [y| + [y|*

2
= (X[ +1[yD",

and the result follows. Note that in the third step, the Cauchy—Schwarz inequality

was used because it implies that x -y < |x| |y|. ]

*3.1.5 Other Norms and Norm Inequalities for IR"

It turns out that there are many norms that can be defined on IR” in addition to the
standard norm in (3.3).

Example 3.19

>

1. For any p with 1< p < o, the so-called l,-norm, pronounced “Ip-norm,” is de-
fined by
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n 1/p
Ix[|, = <Z Ixi”> : (3.10)
=1

2. Extending to p = oo, the so-called ly-norm, pronounced ‘I infinity norm,” is
defined by

x|, :mlax\x,-|. (3.11)

Remark 3.20 We still have to prove that these l,-norms are true norms by the defini-
tion above, but note that for p =2, the h-norm is identical to the standard norm
defined in (3.3). So the l,-norms can be seen to generalize the standard norm by gen-
eralizing the power and root used in the definition. Also, as will be seen below, while
appearing quite differently defined, the [..-norm will be seen to be the “limit” of the
l,-norms as p increases to oo.

The challenge of demonstrating that these examples provide true norms is to show
the triangle inequality to be satisfied, since the other needed properties are easy to
verify. For the /,,-norm in (3.11) the triangle inequality follows from (2.7), since the
l,-norm is a maximum of absolute values. That is, |x; + y;| < |x;| + |yi| for any i by
(2.7), and we have that

max x; + | < max(x] + |yl) < max | + max| yi|.

Similarly the /;-norm again satisfies the triangle inequality due to (2.7), since the /;-
norm is a sum of absolute values, and

n n

Sl il <l + > il
=

J=1 J=1

For the /,-norm with 1 < p < o0, the proof will proceed in a somewhat long series
of steps that should be simply scanned on first reading, focusing instead on the flow
of the logic. The proof proceeds in steps:

1. First off, the triangle inequality in this norm is called the Minkowski inequality
or Minkowski’s inequality, and was derived by Hermann Minkowski (1864-1909) in
1896. The proof of this inequality requires a generalization of the Cauchy—Schwarz
inequality, which is called the Hoélder inequality or Hélder’s inequality, derived by
Otto Holder (1859-1937) in 1884 in a more general context than presented here.

2. To derive Holder’s inequality, we require Young’s inequality, which was derived
by W. H. Young (1863-1942) in 1912.
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Reversing the steps to a proof, we begin with Young’s inequality. It introduces a
new notion that arises often in the study of /,-norms, and that is the notion of an
index ¢ being the conjugate index to p. Specifically, given 1 < p < oo, the index ¢ is
said to be conjugate to p if % —|—$ = 1. It is then easy to see that ¢ = pf p also satisfies
1 < g < oo, and that p is also conjugate to ¢. In some cases this notion of conjugacy
is extended to 1 < p < oo, where one defines - =0, and hence p=1 and ¢ = o
are conjugate. This notion highlights the uniqueness of the index p = 2, namely that
this is the only index conjugate to itself, a fact that will later be seen to be quite
significant.

Before turning to the statement and proof of Young’s inequality, note that the nat-
ural logarithm is a concave function, which means that for any x, y > 0,

tlhhx+(1—f)lny<In(tx+(1—-1)y) for0<z<1. (3.12)

Graphically, for given points x, y > 0, say y > x > 0 for definiteness, the straight
line connecting the points (x,1n x) and (y,In y) never exceeds the graph of the func-
tion f(z) =Inz for x <z < y. This line in fact is always below the graph of this
function except at the endpoints, where the curve and line intersect. This is a prop-
erty called “strictly concave.”

This property is difficult to prove with the tools thus far at our disposal, but as will
be seen in chapter 9, the tools there will make this an easy derivation. At this point
we simply note that the inequality in (3.12) is equivalent to the arithmetic mean—
geometric mean inequality whenever 7 is a rational number. This familiar inequality,
which is also developed in chapter 9, states that for any collection of positive num-
bers, {x;}'_,, that AM > GM, or notationally,

i=1>

1}1 n l/n

SN Al 3.13
13z (1) 513

If t = ¢, a rational number in [0, 1], apply (3.13) with a of the x; equal to x, and
b — a of the x; equal to y, producing

gx+ (1 —%)y > xa/byl=la/b),

Taking logarithms of this inequality is equivalent to (3.12) for rational 7€ [0, 1].
While it is compelling that (3.12) is proved true for all rational ¢, the tools of chapter
9 are still needed to extend this to all ¢ € [0, 1]. For now, we assume (3.12) and defer a
proof to chapter 9.
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Proposition 3.21 (Young’s Inequality) Given p, q so that 1 < p,q < oo, and []; +$ =
1, then for all a,b > 0,

ab < — 4 —. (3.14)
P

Proof Assuming the concavity of In x, and with ¢ = % in (3.12), we derive

Ina’? 1In b4
+

q

a? b1
< ln<—+—>.
V4 q

The result in (3.14) follows by exponentiation. [

In(ab) =

Remark 3.22 The notion of concave function in (3.12) makes sense for any function
f: X — IR, and not just where X is the one-dimensional real line. All that is required is
that X is a vector space over R so that the addition of vectors in the inequality makes
sense. In other words, a function f is concave if for X,y € X,

yx)+ 1 -0)f(y) <f(x+(1—-1)y) for0<t<1. (3.15)

As noted above, the next result generalizes the Cauchy—Schwarz inequality, which
is now seen as the special case: p = g = 2.

Proposition 3.23 (Holder s Inequality) Given p, q so that 1 < p,q < oo, and L R e
1, where notationally, - — =0, we have that

x-yl < Ixl, Iyl (3.16)

In other words, the absolute value of the standard inner product is bounded above by the
product of the l,- and I ,-norms of the vectors, if (p,q) are a conjugate pair of indexes.

Proof First, if p =1 and ¢ = oo or conversely, then by the triangle inequality for
absolute value in (2.7) applied to (3.4),

n n
Xyl < Y byl < max |l Y [yil = X[yl
i=1 i=1

Otherwise, we apply Young’s inequality n-times to each term of the summation with

|Y!| — |}!‘ 1
ai = s and b; = T, which produces



3.1 Euclidean Space 81

lxi| il |xt|p |)’z|q 1 1
il =1,
; Ix[l, [Iyll, Z \|x||” Z Iylld P q
and consequently, >1" [x;] |yi| < [Ix]|,[¥]l, Now since [x-y| < 371, [x;[ || by the

triangle inequality, the result follows. ]

Finally, the goal of this series of results, that the /,-norms satisfy the triangle in-
equality, can now be addressed:

Proposition 3.24 (Minkowski’s Inequality) Given p with 1 < p < o0,
X+ I, < [Ix]l, + Iyl (3.17)

Proof The cases of p =1, o0, were handled above, so we assume that 1 < p < 0.
We then have by (2.7),

n

—1
x4 yll5 =" xi+ pil” i + il

i=1

n n
—1 —1
< z;|x[+y,»|p |xi|+2;\x,~+y,-|p | yil-
1= =

We can now apply Holder’s inequality to the last two summations:

n n 1/q
-1 —1
D i+ vl < Il (Z i + il ”) = [IxIl, Ix + ¥l

i=1 i=1

n n 1/q

—1 —1)g
> lxi+ il WASMM<§JM+yM””> — [lyll, IIx + yl2%2,
i=1 i=1

since (p — 1)g = p. Combining, we get

I+ 15 < (x+ v, + 1x],),
and the result follows by division by ||x + ny:/q since p — g =1. m

Admittedly, quite a lot of machinery was needed to demonstrate that the definition
above for ||x||, produced a true norm. However, there will be a significant payoff in
later chapters as these norms are the basis of important spaces of series, and in later
studies, important spaces of functions.
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Remark 3.25 Note that despite its appearance the l-norm, ||X|| ., is the limit of the
ly-norms x|, as p — oo. That is,

Ixll, = lIx as p — .

oo

To see this, assume that the l,,-norm of X satisfies ||x
is larger in absolute value than the jth element. Then

"l 1/p n 1/p
T _ BLLE. = A
.. (;u&) (Z )

Now, since A; =1 and all other A; <1, we have 1 < Z/‘rl:l P < n, and hence the pth

root of this sum approaches 1 as p — oo.

» = |xj|. That is, no component

3.2 Metric Spaces

3.2.1 Basic Notions

An important application of the notion of a norm is that it provides the basis for
defining a distance function or a metric, which will be seen to have many applications.
On R”, the standard metric is defined in terms of the standard norm by

dx,y) = |x—y| (3.18)

Just as the general definition of norm was intended to capture the essential proper-
ties of the standard norm |x| defined on IR”, so too is the general definition of dis-
tance or metric intended to capture the essential properties of |x — y| defined on IR”".
The connection between norms and metrics is discussed below, but note that in order
for a set X to have a norm defined on it, this set must have an arithmetic structure so
that quantities like x +y, and ax make sense. Consequently norms are defined on
vector spaces that allow such an arithmetic structure. On the other hand, a metric
can be defined on far more general sets than vector spaces.

Definition 3.26 A distance function or metric on an arbitrary set X is defined as a
real-valued function on X* = X x X, and denoted d(x,y) or d(x,y), with the following
properties.

1. d(x,x) = 0.

2..d(x,y) >0ifx#y.
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3. d(X7Y) = d(yu X)‘
4. (Triangle inequality) d(x,y) < d(x,z) +d(z,y) for any z € X.

If X is a vector space over F, a distance function is called translation invariant if for
anyze X:

5. d(x,y) =d(x+1zYy+1z).
A distance function is called homogeneous if for any a € F:
6. d(ax,ay) = |ald(x,y).

Definition 3.27 A4 metric space is any collection of points X on which there is defined
a distance function or metric d(- ,-). For clarity, a metric space may be denoted (X, d).

Remark 3.28 The name “triangle inequality” will be momentarily shown to be consis-
tent with the same notion defined in the context of norms.

Proposition 3.29 If'd(x, y) is a given metric, then:
1. d'(x,y) = Ad(x, y) is a metric for any real 1 > 0.

2. d'(x,y) = liifuy >y) is a metric.

Proof The first statement follows easily from the definition, and in this case, the
new metric d’ can be thought of as measuring distances in a different set of units.
For example, if d measures distances in units of meters, then with 1 = 100, d’ pro-
vides distances in centimeters. For the second statement, only the triangle inequality
requires examination. To show that

d(x,y) - d(x,z) d(z,y)
1+d(x,y) ~ 1+d(x,z)  1+d(z, )’

we simply cross-multiply, since all denominators are positive, and cancel common
terms. [

This second metric is interesting because under this definition, the distance between
any two points of X is less than 1. More specifically, for any 4, 0 < 1 < 1,

d'(x,y) =2 if and onlyif d(x,y)= (3.19a)

1-24

d(x,y) =2 ifandonlyif d'(x,y)= (3.19b)

A
1+
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3.2.2 Metrics and Norms Compared

Because the definitions of norm and metric appear so related, it is natural to wonder
about the connection between the two concepts. Can we make norms out of metrics
and metrics out of norms? First, we have to be careful because, as noted above,
norms are always defined on vector spaces while a metric can be defined on an arbi-
trary set. Norms require an arithmetic structure on the set X, since one item in the
definition required that |0] = 0, and hence we needed to have 0 € X well defined.
Given x,y € X and a € R, we also require in the definition of norm that x +ye X
and ax € X be well defined. So, by definition, a normed space must have this mini-
mal arithmetic structure, and the vector space structure is a natural requirement as
noted in the norm definition.

On the other hand, a metric can be defined on any set, as long as the distance func-
tion d(x,y) satisfies the required properties. There are no arithmetic operations on
the elements of X as part of the definition of metric. So the better question is, Given
a vector space X, can we make norms out of metrics and metrics out of norms?

The following shows that if the metric satisfies the additional properties 5 and 6
above, that a norm can be constructed.

Proposition 3.30 [f d(x,y) is a metric on a vector space X that is homogeneous and
translation invariant, then ||X|| = d(x,0) is a norm and is said to be induced by the
metric d.

Proof Property 1 in the norm definition, that |x| € IR, follows from a metric being a
real-valued function, while norm property 2, that 0| = 0, and |x| > 0 for x # 0, fol-
lows from | and 2 in the metric definition. Finally, norm property 3, that |ax| =
|a| |x| for a € R, follows from the assumed homogeneity of ¢, while norm property
4, that |x +y| < |x| + |y| is a consequence of translation invariance and homogene-
ity. Specifically,

|X + y| = d(X + y70) = d(X, _y) < d(X, 0) + d(Ov _y) = |X| + |y| L

The reverse implication is easier: on a vector space, a norm always gives rise to a
distance function.

Proposition 3.31 [f'||x|| is @ norm on a vector space X, then
d(x,y) =[x -y, (3.20)

is a metric on X, and in particular, (X, d) is a metric space. The metric d is said to be
induced by the norm || ||.
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Proof Only distance property 4, which is again called the triangle inequality,
requires comment. Rewriting, we seek to prove that

d(x,y) <d(x,z) +d(z,y),
[x =yl < [x—z| + Iz -yl

Letting x’ = x — z, and y' = z — y, we have that X’ +y’ = x —y, and this inequality
for d is equivalent to the triangle inequality for the associated norm applied to x’, y’
and x’ +y'. |

Corollary 3.32 d(x,y) = |x — y| defined in (3.3) is a metric on R", and consequently
(R”",d) is a metric space. In addition d(x, y) = |x — y| defined in (2.2) is a metric on
C, and consequently (C,d) is a metric space.

Proof The proof follows immediately from the proposition above. [ |

The corollary above provides the “natural” metric on IR”, but there are many
more that are definable in terms of the various /,-norms:

Corollary 3.33  Given any l,-norm ||| , for 1 < p <ocoonIR", then
dy(x,y) =[x =yl,, 1<p<oo, (3.21)
is a metric on R", and consequently (R",d,) is a metric space.

Proof The proof follows immediately from the proposition above, since IR” is a vec-
tor space. (]

Remark 3.34  Of course, dy(X,y) in this corollary is just the standard metric d(X,y)
on R" defined in (3.3). The metrics defined in (3.21) are referred to as l,-metrics, or
metrics induced by the [,-norms.

To understand the structure of these /,-metrics, d,(xX,y), we investigate IR? where
visualization is simple but instructive. Specifically, it is instructive to graph the closed
[,-ball of radius 1 about 0,

BY(0) = {x e R*|d,(x,0) = ||x]|, < 1}, (3.22)

for various values of p, 1 < p < co. Analogously, one can define the closed /,-ball of
radius r about y by

Bl(y) = {x e R*|dy(x,y) =[x — ¥, <r}. (3.23)
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Figure 3.1
l,-Balls: p =1,1.25,2,5, 0

The corresponding open /,-ball of radius 1 about 0 is defined as

B(0) = {x e R*|d,(x,0) =

x|, < 1}, (3.24)
and the open /,-ball of radius r about y by
Bl(y) = {xe R*[d,(x,y) =[x —y], <r}. (3.25)

Note that all these /,-ball definitions makes sense in any IR". Of course, for p = 2,
the closed A-ball of diameter 1 is truly a “2-dimensional ball,” and it represents the
familiar circle of radius 1, including its interior. In IR?, it is indeed a ball, or sphere of
radius 1, again including its interior. The corresponding open balls are just the inte-
riors of these closed balls.

For other values of p, these figures do not resemble any ball we would ever con-
sider playing with, but mathematicians retain the familiar name anyway. For exam-
ple, /,-balls about 0 for p =1,1.25,2,5, and o in R? are seen in figure 3.1. These
can be understood to be open or closed balls depending on whether or not the
“boundary” of the ball is included.

For p =1, this innermost “ball” has corners at its intersection points with the
coordinate axes, while for p > 1, these corners round out, approaching a circle as
p — 2. For p > 2, these balls again begin to square off in the direction of the diago-
nal lines in the plane, y = +x. It is clear from this figure that these balls very quickly
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converge to the /,-ball, which is the square with sides parallel to the axes, and four
corners at (+1,+1).

Even more generally, given any metric space (X,d) or normed space, (X, |x||),
one can define the closed ball of radius r about y by

B.(y) = {xeX|d(x,y) <r}, (3.26)
or
Biy) = (xe X[ Ix— vl <}, (327

as well as the associated open ball of radius r about y, denoted B,(y), using strict in-
equality <, rather than the inequality <.

One thing that each of these balls has in common with a true ball, if 1 < p < o0, is
that they are all convex sets. This means that if x;, X, € B?(y), then the straight line
segment joining these points also lies in B?(y). That is,

If x1,Xz € B(y), then 1x; + (1 — £)x € B/ (y) for 0 <z < I. (3.28)

The same is true for a closed ball in a general normed space, as well as in a metric
space X that is also a vector space, so in (3.28), rx; + (1 — #)x, makes sense. And
similarly open balls are convex:

If x;,x5 € BY(y), then 1x; + (1 — #)x, e B/ (y) for 0 < ¢t < 1. (3.29)

Use of this terminology and of the word “convex’ is related to the notion of a
concave function defined in (3.12). Analogously, the /,-ball above and the general
normed ball are convex because a norm, interpreted as a function f(x) = ||x||, is a
convex function. That is, given x|, Xa,

llexi + (1 — x| < tl|xq ]| + (1 — 7)[|x2]| for0<r<1. (3.30)

This inequality follows directly from the triangle inequality. Stated more generally, a
function f(x) is a convex function if for x;,x; € X,

flxi+ (1= %) < tf(xi) + (1 — ) f(x2) for0<r<L. (3.31)

Note that here the inequality is reversed compared to the definition of concave func-
tion in (3.15) above.

Graphically, when X is the real line and x < y, the inequality in (3.31) states that
on the interval [x, y], the value of the function never rises above the line segment
connecting (x, f(x)) and (y, f(»)). This insight on convexity provides a geometric
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Figure 3.2
l,-Ball: p = 0.5

interpretation of the implication of the triangle inequality as required in the defini-
tion of norm. That is, the triangle inequality assures that all balls defined by norms
are convex sets. Also the reason why no attempt was made to define an /,-norm for
0 < p < 1 is that in these cases the triangle inequality is not satisfied and geometri-
cally, as is easily demonstrated, the associated /,-balls are not convex.

For example, with p = 0.5, we have B)~(0) in figure 3.2. If we choose x; = (1,0)
and x, = (0, 1), it is clear that ||zx; + (1 — )Xol = [|(t, 1 = 1)||ps > L for 0 < ¢ < 1,
and this point is outside the ball. However, f||x;[/,s+ (1 —#)||x2]|o5 = 1. Conse-
quently this ball is not convex by definition, as is also visually apparent.

*3.2.3 Equivalence of Metrics

Two metrics on a metric space X, say d; and d,, may produce different numerical
values of distance between arbitrary points x, y € X, but they may be fundamentally
“equivalent” in terms of conclusions that might be drawn from certain observations
on the space. A trivial example on R would be where d;(x, y) = |x — y|, the standard
metric, and d>(x, y) = Ad;(x, y), where 4 is a positive real number. As noted above,
d, 1s a metric for any positive number 1. Also, while all such metrics produce differ-
ent numerical values of distance, such as miles and kilometers, they are fundamen-
tally the same in many ways.

For this example, if {x,, y} = X is a collection of points so that d;(x,, y) — 0 as
n — oo, we would observe the same property under ¢, for any positive A. Corre-
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spondingly d(x,, y) — 0 as n — oo would imply the same thing about d;. Note that
a formal definition of what d>(x,, y) — 0 means will be presented in the chapter 5,
but the intuition for this idea is adequate for our purposes here.

In general, two metrics are defined as equivalent when this simultaneous conver-
gence property is satisfied. The following definition provides a neat way of ensuring
this conclusion:

Definition 3.35 Two metrics, d, and dy, on a metric space X are Lipschitz equivalent
if there exists positive real constants L and A, so that for all x, y € X,

ildl(xv y) < dZ(xa y) < ;del(X, y) (332)

Lipschitz equivalence is named for Rudolf Lipschitz (1832-1903), who introduced
a related notion of Lipschitz continuity that will be studied in chapter 9.

It is clear from this definition that the original objective is satisfied. That is, it
would seem clear that

di(xp,y) — 0 iff da(x,,»)—0,

based on our current informal understanding of the definition of convergence. But
logically, and this will be made rigorous in chapter 5, the result is forced by the
inequalities in (3.32).

Note that every metric is Lipschitz equivalent to itself, and also it is easy to see
that this notion of Lipschitz metric equivalence is symmetric. That is, if (3.32), then

1 1
ZdZ(xna y) <di(xn,p) < A—]dz(xmy)- (3.33)

This notion is also transitive: if d; and d;, are Lipschitz equivalent, and ¢, and d5 are
Lipschitz equivalent, then d; and 5 are Lipschitz equivalent.

An important concept in mathematics is one of an equivalence relation, defined on an
arbitrary set. The simplest equivalence relation is equality, where xRy denotes x = y.

Definition 3.36 An equivalence relation on a set X, denoted xRy or x ~ y as short-
hand for “x is related to y,” is a binary relation on X, that is:

1. Reflexive: xRx forall xe X.

2. Symmetric: xRy if and only if yRx.

3. Transitive: if xRy and yRz, then xRz.

The importance of equivalence relations is that one can form equivalence classes of
elements of X. An equivalence class is a collection of elements related to each other
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under R. It is defined so that any two elements from a given class are equivalent,
while any two elements from different classes are not equivalent.

For example, the collections of Lipschitz equivalent metrics on a given space X are
equivalence classes. For many applications it matters not which element of the class
is used. For example, continuing with some informality, if we define x, — y by
d(xn,y) — 0 for a given metric d, we could equally well define x, — y relative to
any metric in the equivalence class of d. That is, the notion x, — y depends not so
much on d as on the equivalence class of d. If this property is true for a given d, it is
also true for an other d’ that is Lipschitz equivalent, d ~; d’, while if this property is
false for a given d, it is also false for an other d’ with d ~; d’. However, in neither
case can one draw a conclusion about the truth or falsity of this property for metrics
outside the given equivalence class.

Proposition 3.37 I d(x, y) is a metric on X, then:
1. 2d(x,y) ~pd(x, y) for any real . > 0.

2.d'(x,y) = 115;(\})}) ~pd(x,y) ifand only if d(x,y) < M forall x,y e X.

Proof 1In defining dh(x, y) = Ad(x,y) and d,(x, y) =d(x, y), it is apparent that
(3.32) is satisfied with A; = 1, = 4, proving part 1. The second statement is initially
less obvious, but it follows directly from the one-to-one correspondence between d
and d’ distances in (3.19). With d,(x, y) = d’(x, y) and d;(x, y) = d(x, ), we derive
from (3.19b) that d’(x, y) < d(x, y), which is consistent with 1, = 1 in (3.32). For the
other inequality we have from (3.19b) that if d(x, y) < M, then d'(x,y) < 4,
which is algebraically equivalent to W <1+ M. Then from (3.19a),

dlx) = gt < (1 (),

and so the second inequality in (3.32) is satisfied with A; = 574. If d(x, y) is un-
bounded, there can be no 1; for which 4,d(x, y) < d’(x, y), since d’(x, y) < 1. [ ]

In addition to these examples of equivalent metrics, it may be surprising but it
turns out that the various /,-norms, for 1 < p < oo, are equivalent in IR".

Proposition 3.38 On R", all distances given by the l,-norms in (3.21) for 1 < p < oo
are Lipschitz equivalent.

Proof We first show that if 1 < p < oo, that the /,-distance is Lipschitz equivalent
to the /,,-distance. For given x = (x1,x2,...,x,) and y = (y1, y2,..., yu), we have
that
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n
max |x; — y;|’ < Z\x,- — »i|” <n max|x; — yi|”.
i = i

That is, taking pth roots:

dOO (X7 y) S d[’(xa y) S nl/deO (Xa y)a

and so every /,-distance is Lipschitz equivalent to the /,-distance if 1 < p < o0.
Since Lipschitz equivalence is transitive, we conclude that d,(x,y) is equivalent to
dy(x,y) for any 1 < p, p’ < co. In fact, using (3.32) and (3.33), we can infer bounds
between d,(x,y) and d,/(X,y):

n VP dy(x,y) < dy(x,y) <n'?d,(x,y). (3.34)
|

Remark 3.39

1. Note that the Ay and 7, bounds between d,(X,y) and d.(X,y) are sharp in that these
bounds can be achieved by examples and hence cannot be improved upon. The left-
hand bound is attained, for example, with x = (x,0,...,0) and y = (»,0,...,0), or
with x and 'y being similarly defined to be on the same “axis.”” We can in fact observe
this equality in figure 3.1, where the five l,-balls about 0 for p =1,1.25,2,5, 0, are
seen to intersect at the axes. On the other hand, the right-hand bound is attained for
Xx= (x,x,...,x) and y= (y,y,...,»), as well as other point combinations with
|x; — yil = ¢ > 0—that is, on the “diagonals” of R”, which is again seen on figure
3.1. However, the inequalities between d,(X,y) and d, (X,y) in (3.34) are not sharp,
as is easily verified by considering the case p = p'. With a more detailed analysis using
the tools of multivariate calculus, we would obtain the sharp bounds with 1 < p <
p' <o,

dy (x.y) < dp(x,y) < 0P PP (x,y),

and these bounds would again be seen to be achieved on the axes and diagonals of R",
respectively.

2. Note also that the Lipschitz equivalence of d,(X,y) and d (X,y), and more gener-
ally, of d,(x,y) and d,(X,y), depends on the dimension of the space n in a way that
precludes any hope that this equivalence will be preserved as n — oo (as will be formal-
ized in chapter 6 on series). In other words, an informal consideration of the notion of
an RR™ suggests that the various l,-distances will not be Lipschitz equivalent.
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3. Not all metrics are Lipschitz equivalent to those in this proposition. For example,

define

0, x=y

axn ={ 327

It is easy to show that this is indeed a metric on R" that is not Lipschitz equivalent to
the l,-distances.

4. It was noted above that every norm on a vector space induces a metric on that space.
Consequently it is common to say that two such norms are Lipschitz equivalent if the
respective induced metrics are equivalent in the above-described sense.

As a final comment regarding Lipschitz equivalence of metrics, we note that there
is a simple and natural geometric interpretation of this concept. First, we introduce a
more general notion of metric equivalence, sometimes called topologically equiva-
lent. The term “topology’” will be addressed in chapter 4, and is related to the notion
of open sets in a space.

Definition 3.40 Two metrics on a metric space X, say d\ and d,, are equivalent, and
sometimes topologically equivalent for specificity, if for any x € X and r > 0, B,<.2) (x)
defined relative to d, both contains an open di-ball and is contained in an open d,-
ball. That is, there are real numbers ry, r», both formally functions of r and X, so that

Bf,ll)(x) c B (x) c Bﬁzl)(x), (3.35)
where BY >(X) denotes an open ball defined relative to d;, and A = B denotes “set inclu-
sion”” and means that every point in A is also contained in B.

Proposition 3.41 [n a metric space X, if di and dy are Lipschitz equivalent as in
(3.32), then they are topologically equivalent as in (3.35).

Proof 1f we are given x € X and r > 0, and B\” (x) = {y|da(x,y) < r}, by (3.32) we
conclude that for any y € Bgz)(x),

lldl (Xv y) < dZ(Xv y) < }~2d1 (Xa y)v
so (3.35) is satisfied with r, = r/A and r| = r/ 2. ]

This geometric statement is simple to see in figure 3.1. Notice that any /,-ball can
be envisioned as containing, and being contained in, two /,-balls for any p’. A more
specific example is seen in figure 3.3 where the /»-ball of radius 1 contains the /;-ball
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Figure 3.3
Equivalence of /;- and /,-metrics

of radius 1, and is contained in the /;-ball of radius v/2, and this /,-ball in turn is con-
tained in the L-ball of radius v/2.

Remark 3.42  The notion of metric equivalence, or “‘topological equivalence,” is more
general than Lipschitz equivalence, since it allows the relationship between these met-
rics to vary with x € X since the numbers r1, ry depend on X. For Lipschitz equivalence
this relationship is fixed for all x, as noted in the proof above.

3.3 Applications to Finance

3.3.1 Euclidean Space

Euclidean space provides a natural framework in any discipline in which one is try-
ing to solve problems that involve several parameters, and such problems exist in
many areas of finance. For example, in asset allocation problems one is attempting
to divide a given total investment fund between certain available asset classes, how-
ever defined, and the solution to such a problem can naturally be identified with a
point, or allocation vector, in a Euclidean space. The dimension of this space is logi-
cally equal to the number of available asset classes. In the fixed income markets the
very notion of a yield curve, which is defined in terms of the yields on a collection of
reference bonds of increasing maturities, compels the interpretation of a yield curve
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vector in an appropriately dimensioned Euclidean space. Such yield vectors can then
be translated to spot rate or forward rate vectors as needed by the given application,
or used in a price risk analysis. Finally, a given security or portfolio of securities can
be modeled in terms of projected cash flows, and these cash flow vectors, whether
fixed or variable, can then be used in a variety of portfolio modeling applications.

Asset Allocation Vectors

An asset allocation problem involves determining a vector of dollar amounts: (xi,
X2,...,X,), where n denotes the number of available assets, x; denotes the dollar in-
vestment in the ith asset, and > x; = A4, the total amount to be invested. In certain
applications, all x; satisfy x; > 0 and represent long positions, but we can allow
x; < 0 in cases where short-selling is possible. Equivalently, we can parametrize the
solution to the problem in percentage units so that x; denotes the proportion of the
portfolio to be invested in the ith asset, again long or short, and then > x; = 1.

Alternatively, the n-tuple (xj, x2, ..., x,) might represent a portfolio trade, whereby
x; > 0 implies a purchase and x; < 0 a sale of |x;| units of the ith asset, and now
> x; = 0 unless the trade is intended to also increase or decrease the portfolio bal-
ance due to net deposits or redemptions. In all such cases it is only natural to think
of the feasible n-tuples as residing in some collective structure such as R”. This is es-
pecially true in the trading model, since the vector space arithmetic properties of R”
exactly reflect arithmetic operations for such trades. Scalar multiplication by 2, say,
which doubles the trading done, doubles each individual trade, which is to say, is
reflected componentwise in the trade vector. If one trade is implemented after an-
other, the net trade is equivalent to the componentwise sum of the trade vectors.

However, this may appear to be a case of overkill. Admittedly, in all such cases the
real world feasible solution space is a finite collection of points, which clearly IR” is
not. The real world provides a finite solution set because first, no portfolio can be ar-
bitrarily large, nor can a trade be implemented in arbitrarily large volumes. Second,
even the maximally detailed solution cannot be implemented in units of less than
$.01 in the United States, or 1%¥ in Japan, or .01€ in the European Union, and so
there are only finitely many portfolio allocations, or trades, to consider. More realis-
tically, assets cannot be acquired in such units. For instance, we cannot acquire an
extra $.01 of a given US asset, and so the feasible solution set is far cruder than this
maximally detailed solution set implies.

Ironically, most problems in finance are harder to solve if one explicitly recognizes
the finiteness of this solution set. That is, if the objective of the asset allocation or
portfolio trade is to optimize a given function, referred to as the objective function,
it can be very difficult to solve this problem over the finite “grid” of feasible solu-
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tions, other than by a brute-force search. The difficulty arises because despite its
finiteness, the feasible solution set can be quite large. In most cases it is far easier to
make believe that one can trade any amount of any asset and solve the problem at
hand using the methods of later chapters that take advantage of the structure of R”.
It is then reasonable to assume that the approximate implementation in the real
world of this too-detailed solution will be quite close to that which would have been
obtained had the finite feasibility set been explicitly recognized at the outset.

That is, by interpreting our problem in an artificially refined setting of IR”, we sim-
plify the solution, but we are then required to assume that the approximate imple-
mentation of the exact solution is close to the exact solution obtained had we begun
with the finite feasible solution set. In many cases this assumption can be checked.
That is, once we solve the more detailed problem, we can investigate to what extent
its approximate implementation is an optimal or near-optimal solution among feasi-
ble alternatives. Even this analysis can be simpler than searching for a best solution
on the grid at the outset.

Interest Rate Term Structures

There are three common bases for describing the term structures of interest rates,
where by “‘structure” is meant the functional dependence of rates on the term of the
implied loan. In practice, the most readily available data for loans exist in the bond
markets. The three term structure bases are:

1. Bond Yields: The interest rates that equate each coupon bond’s price to the pres-
ent value of the bond’s scheduled cash flows.

2. Spot Rates: The bond yields on real or hypothetical zero coupon bonds.

3. Forward Rates: The bond yields on “forward” zero coupon bonds, which is to
say, the yield today for future investments in zero coupon bonds.

The bond market provides insights to these structures, but for the term structure to
be meaningful, it is important that as many of the bond characteristics as possible are
controlled for, so that only the dependency on the bond’s terms remain.

For example, it is common to group bonds by currency and credit quality, avoid-
ing when possible unusual cash flow structures that get special pricing, or bonds with
embedded options. One special class in every major currency is the class of all risk-
free Treasury bonds issued by the country’s central government. Bonds at the next
highest credit rating, often denoted AAA or Aaa, are then grouped, as are the next
level of AA or Aa, and so forth. With enough bonds in a given group, a term struc-
ture can be inferred in any of the three bases. When bond data are sparse, interpola-
tion techniques are often used to estimate missing data.



96 Chapter 3 Euclidean and Other Spaces

For a bond yield or spot rate, there is one implied time parameter determined by
the maturity of the bond. For forward rates, there are two time parameters: one
establishes the time of the investment in the forward zero coupon bond, and the sec-
ond determines the time of maturity of this bond.

To illustrate the calculation of these term structures, we assume that bonds have
semiannual coupons and that there are bonds available at all maturities from 0.5 to
n-years. As noted above, interpolation is often necessary to infer information at
maturities that have no market representatives. We also implement all calculations
with semiannual nominal rates, but note that these calculations can be implemented
in any nominal basis.

Bond Yields Using (2.15), bond yields at each maturity are derived by solving the
following equations for {i;}, the semiannual bond yields:
Ty 2j .

Pf :E}Ejazj;i//z—f—f‘jl)ij_]/z, ]205,10,15,,7’1 (336)
Here j denotes the term of the bond in years; {P;} are the bonds’ prices, {r;} the
semiannual coupon rates, and {F;} the bonds’ par values. It is typical to fix
F; =100, and so P; denotes the price per 100 par. The result is the bond yield term
structure: (iys, i1, - . ., i,), which can be envisioned as a vector in IR?".

One numerical approach to solving these equations, called interval bisection, is dis-
cussed in chapters 4 and 5.

Spot Rates From the same data used to determine the bond yield term struc-
ture, one can in theory calculate the spot rate structure, since a coupon bond is
nothing but a portfolio of zero coupon bonds. Using (2.19), the price P; must reflect

spot rates: (sos,s1,...,8;), each appropriate to discount a single cash flow of the
bond:
2j —k —2j
gl Sk/2 : 5
P]F]2kl<1+ 2) +F]<1+2) . (3.37)

Notation 3.43 In this summation the present value of the cash flow at time k-years is
calculated with the factor

S'kizk
1Sk
(1+3)

but then the summation above would be expressed in the nonstandard notation as
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k=0.5

where it would be hoped that the reader understood that the index values must be incre-
mented by 0.5. To avoid this notational ambiguity, we use standard natural number
indexing, and consequently we need to halve the index values to obtain the correct
result.

Forward Rates As noted above, forward rates are functions of two time parameters,
defining the investment date in the zero coupon bond and the maturity date. In other
words, a forward can be denoted, fjx, where j ke {0,0.51.0,1.5,... »n}, with
k > j. In this notation, f; denotes the yield today for a (k — j)-year zero coupon
bond, which is to be acquired at time j-years. Consequently fy , = sx. The forward
rate f; , would be described as the (k — j)-year forward rate at time j-years.

In the same way that s; is appropriate for discounting a cash flow from time k-
years to time 0, the forward rate f; ; is appropriate for discounting a cash flow from
time k-years to time j-years. With this interpretation, it must be the case that one can
discount from time k-years to time 0 either with the spot rate s;, or a sequence of
forward rates:

J0.05, 50.5.1.05 /1.0.1.55 - -+, Ji—0.5 k-
Of course, if k is an integer, one could also use the forward rates:
J0,1.0, /1.0,2.05 -+ -5 fi—1,k-

Specifically, using the first sequence, and recalling the notational comment above,
obtains

12 7k—ﬁ RSN (3.38)
> = 11 3 . .
So the price of a bond can be written in the messy but unambiguous notation
k 1
P =F /ZH(H = '”’”) +FH< /2’/2> . (3.39)
1i=1

In general, forward rates are calculated in series for applications, since from these
any forward f; x can be calculated in the same way one calculates spot rates. Revert-
ing to the original notation with j, k € {0.5,1.0,1.5,...,n} obtains
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-\ 2(k=)) 2k . o\
<1+%> =11 <1+f(7"”2/2"/2> . (3.40)

i=2j+1

Equivalence of Term Structures What is apparent from the three bond pricing for-
mulas (3.36), (3.37), and (3.39) is that if a term structure is given in any of the three
bases, all coupon bonds can be priced. What is also apparent is that these term struc-
tures must be consistent and produce the same prices, or else risk-free arbitrage is
possible.

For example, the price of zeros must be consistent with the pricing of coupon
bonds of the same issuer, since a coupon bond is a portfolio of zeros, and hence,
in theory, one can buy coupon bonds and sell zeros, or sell coupon bonds and
buy zeros. The first transaction is called coupon stripping, and the second, bond
reconstitution.

Similarly forward bond prices must be consistent with zero coupon pricing, since
by (3.38), a zero coupon bond is equivalent to a series of forward bonds. For exam-
ple, one could invest 100 in a 3-year zero, or invest this money in a 0.5-year zero,
and at the same time commit to a forward contract from time 0.5 to time 1.0 years,
and another from time 1.0 to 1.5 years, and so forth. The investment amount for
each forward contract would be calculated as the original 100 compounded with the
interest earned to that time, which is known. For example, if the 0.5-year spot rate is
2%, and the 0.5-year forward rate at time 0.5 is 2.2%, the investment amount for the
time 0.5-year forward contract would be 101, and the investment amount for the
time 1-year forward contract would be 102.11 to 2 decimals.

There is also a direct way to “replicate” a forward on a zero with a long/short
market trade in zero coupon bonds.

Example 3.44 Assume that a 5-year zero has semiannual yield 4%, and a 2-year zero
has yield 2%. To create a “long” forward contract from time 2 to time S years, mean-
ing an investment opportunity, we proceed as follows: In order to be able to invest 100
at time 2 years, we “‘short” 100(1.01)74 of the 2-year zero, and go long an equivalent
amount of the 5-year zero. So at time 0, no out-of-pocket money is required other than
perhaps a margin account deposit, which is not a cost. At time 2 years, we “‘cover the
short” position with an “‘investment” of 100. At time 5 years, we mature the original 5-
year zero for 100(1.01)*(1.02)"°, or 117.14 to 2 decimals. It is easy to show that if all
decimals are carried, then the rate obtained on this 100 investment at time 2 is exactly
equal to the 3-year forward rate at time 2 years, or 5.344%, implied by (3.40) and
(3.38):
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)ka

-\ 2(k=)) Sk
<1+ﬁvk> :(l—i_7272 (3.41)
) Taey?

So spot rates and forward rates must be equivalent because one can transact to
create zeros from forwards and forwards from zeros. Mathematically the associated
rates must satisfy (3.38), to create spot rates from forward rates, and (3.41), to create
forward rates from spot rates.

To convert between bond yields and spot rates is done as follows:

1. Spot Rates to Bond Yields: This is the easier direction, since spot rates provide
bond prices by (3.37), and one then calculates the associated bond yields by solving
(3.36) for i; (see interval bisection in chapters 4 and 5).

2. Bond Yields to Spot Rates: This methodology is known as bootstrapping or the
bootstrap method. First, all bond prices can be calculated from the bond yields using
(3.36). To derive the spot rates, the bootstrap method is an iterative procedure
whereby one spot rate is calculated at a time using (3.37). Specifically, one starts
with j = 0.5, and this produces

-1

0.5 50.5

Pos=Fys( 1 +—=—(1+—==
0.5 05(4—2)(—1—2)7

from which sy 5 is easily calculated. One next calculates s; from P; using

2 —k -2

r Sk/2 S1

P =F— l+—== Fill1+—
=i (1) +a(+3)

which can be solved since sp 5 is known from the first step. This process continues in
that once (sos,51,...,s;) is calculated, (3.37) is used to calculate sj05 from Pjios,
which is straightforward as this is then the only unknown in this equation.

Bond Yield Vector Risk Analysis

Besides portfolio allocation vectors, or trade vectors, another natural application of
n-tuples in finance is where (xj,xz,...,x,) represents one of the term structures of
interest rates discussed above. For example, these might be the yields of a collection
of benchmark bonds at certain maturities in increasing order, with interpolation used
for the other yields, or a complete collection of bond yields or spot rates, or a se-
quence of forwards.

The prices of other bonds might then be modeled as a function:

P(x1,x2,. .., Xn).
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Within this model, one then envisions moment-to-moment changes in the term struc-
ture as vector increments to this initial yield curve:

Ax = (Ax1,Axy, ..., Ax,).

In turn, as this yield curve evolves over time, so too does the price of the portfolio,
and the change in this price can be modeled:

AP(x1,X2, ..., %) = P(x1 + Ax1, X2 + Axa, ..o, Xy + Axy) — P(X1,X2, .0, Xp).

In practice, a spot rate structure is sometimes the most transparent approach. This
is because the connection between Ax and AP is then clearly visible for option-free
bonds. But there is far less transparency for bonds with embedded options. Also, al-
though spot rates can be readily calculated, they are not typically visible in market
trades, so a model that better connects AP with market observations might be a
bond yield model, whereby the mathematics needed to transform Ax on a bond yield
basis to Ay say, on a spot rate basis needed for pricing, is just part of the computer
model calculations, and then AP is modeled in terms of Ax.

Within this model, price sensitivities and hedging strategies can be evaluated. For-
mal methods for this risk analysis will be introduced in chapters 9 and 10.

Again, using an IR"-based model for such yield curve analyses is overkill formally,
as yields are rarely if ever quoted with even six decimal precision, which is equivalent
to “hundreths of a basis point” (1 basis point = 0.01% = 0.0001). However, just as in
the case of portfolio allocation and trading, most problems are easier to solve within
the framework of IR” than the discrete framework of feasible yield curves and yield
curve changes.

Cash Flow Vectors and ALM

As another example, the vector (xj,xa,...,x,) might represent the period-by-period
cash flows in a fixed income security such as a bond or a mortgage-backed security
(MBS). Because of the prepayment options afforded borrowers in MBS and callable
bonds, there can be significant variability in future cash flow which reflects the evolu-
tion of future interest rates, among other factors. Similarly, even a simple bullet bond
with no call option, where cash flows are, in theory, known with certainty at issue,
may experience variability due to the presence of credit risk and the potential for de-
fault and loss.

At a portfolio level, one might model the cash flow vectors representing the assets
and liabilities of a firm such as a life insurance or property and casualty insurance
company, commercial or investment bank, or pension plan. The liabilities could re-
flect explicit contractual obligations of the firm, or implicit liabilities associated with
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short positions in investment securities or financial derivatives. In any such case, these
cash flows may contain embedded options or credit risks, as well as changes due to
the issuance of new liabilities and portfolio management of assets.

Once so modeled, the firm is in a better position to evaluate its asset—liability man-
agement risk, or ALM risk, which is the residual risk to firm capital caused by any
risks in assets and liabilities that are not naturally offsetting or otherwise hedged.
Interest rate risk noted in the last section is often a major component of ALM risk.

In each case, one can embed the possible cash flow structures in IR” and begin the
risk analysis and evaluation of hedging strategies with the advantage of the structure
this space affords.

3.3.2 Metrics and Norms

Truthfully, the most prevalent norms and metrics in finance are of /,-type for
p=1,2 and oo. However, it is no easier to develop the necessary theory for these
three needed cases than it is to develop the general /, theory. So rather than expend
the effort to develop three special cases and leave the reader thinking that these are
isolated and special metrics, this book takes the position that for the given effort, it is
better to understand that p = 1,2, and oo are simply three special points in a contin-
uum of metrics spanning: 1 < p < oo.

And who knows, you may discover a natural application in finance of a different
l,-metric, and you will be ready with all the necessary tools.

One exception to the p = 1,2, and oo rule is for the analysis of sample data.

Sample Statistics

Of the given three common /,-norms, /> is the most frequently used. As is well known
and will be further developed in the chapter 7 on statistics, the most common mea-
sure of risk in finance is defined in terms of the measure known as variance, and its
square root, standard deviation, and both reflect an ,-type measurement. These are
special cases of what are known as the moments of the sample, and in general, sample
statistics utilize the full range of /,-norms for integer p.

For example, assume that x = (x1,x2,...,X,) represents a “sample” of observa-
tions of a random variable of interest. In finance, a common example would be
observations of sequential period returns of an asset or portfolio of interest. For ex-
ample, the monthly returns of a given common stock, or a benchmark portfolio such
as the S&P 500 Index, would be natural candidates for analysis. Alternatively, these
observations might reflect equally spaced observations of a currency exchange rate,
or interest rate, or price of a given commodity. In any such case, the variable of in-
terest might be the actual observation, or the change in the observed value measured
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in absolute or relative percentage units. The so-called moments of the sample are all
defined in a way which can be seen to be equivalent to an /,-norm:

1. Moments about the Origin

Mean: The mean of the sample is defined as

En:xj. (3.42)
j=1

If all observations x; > 0, the sample mean is equivalent to an /;-norm, 2 = 1[|x||,. In
general, however, this is not true as the “sign” of ; is preserved in the definition of a
mean, but not preserved in the definition of an /;-norm.

ﬂ:

S| =

Higher Moments: For r a positive integer, the so-called rth moment of the sample is
defined as

LI,
=50, (3.43)
J=1

so we see that 2 = fij. Also, when the observations are nonnegative, or in the general
case where r is an even integer, this moment is related to the /-norm, and we have
that 2/ = L|x]|.

Notation: To distinguish between the moments of the sample and those of the un-
known theoretical distribution of all such data, of which the sample is just a subset,
one sometimes sees the notation of m or ¥ for the sample mean, and m, for the
rth sample moment about the origin, with g and g/ preserved as notation for the
moments of the theoretical distributions. A caret over a variable, such as 4, is also
standard notation to signify that its value is based on a sample estimate and not the
theoretical distribution.

2. Moments about the Mean

Variance and Standard Deviation: The “unbiased” variance of the sample is denoted
62, and the standard deviation is the positive square root, denoted &, where

X 1 & .
6% = — > - ). (3.44)
j=1

In some applications (see chapter 7), 6> is defined with a divisor of n rather than
n — 1. If we denote by 4 the vector with constant components equal to 4,
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ﬁ:(ﬂ’ﬂJ"'7ﬂ)7
the variance is related to the h-norm, and we have that 6% = L ||x — Al

General Moments: The rth moment about the mean is denoted £, and defined by

=13 - (3.45

=
so that 62 = =1 4, When r is an even integer, we have that /i, =1 |x — 4.

Notation: As noted above, to distinguish between the moments of the sample and
those of the unknown theoretical distribution of all such data, of which the sample
is a subset, one sometimes sees the notation of s> for the variance, and s for the stan-
dard deviation. There is no standard notation for the rth moment about the mean,
although analogous to the notational comment above, m, would be a logical choice.

Constrained Optimization

It turns out that many mathematical problems in finance, especially those related to
optimizing an objective function given certain constraints, are more easily solvable
within an L-type measurement framework for reasons related to the tools of multi-
variate calculus, although these constraints may in fact be more accurately repre-
sented in terms of other norms.

Optimization with an /;-Norm An example of an /;{-norm occurs within a trading
model. Assume that we have a portfolio within which we are trying to change some
portfolio attribute through a trade. Typically there are infinitely many trades that
can provide the desired objective. What is clear is that trading can be expensive due
to the presence of bid—ask spreads as well as other direct costs. If one evaluates the
portfolio value after a trade represented by the n-tuple x = (x1, x2, ..., X,,), whereby
x; > 0 implies a purchase, and x; < 0 a sale of a dollar amount of |x;| of the ith asset
and > x; = 0, the portfolio value after the trade can be represented as

P(x1,x2,. .., Xn) :P*€Z|Xi|-

Here ¢ denotes the average cost per currency unit of trading, and P the current port-
folio market value.
Consequently one problem to be solved can be stated:

Of all (x1,x2,...,X,) that achieve portfolio objectives,

Minimize: Z |xi| = |Ix]];.
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Typically the condition of achieving portfolio objectives can also be expressed in
terms of an equation involving the terms (xj,xa,...,x,). For example, if § denotes
the current portfolio beta value, and 8’ the desired value, the constraint on traded
assets to achieve the target could be expressed as

ﬁ+¥=ﬁ’, (3.46)

where f; denotes the beta of the ith asset traded.
Summarizing, we see that this trading problem becomes one of finding a solution
of this equation with minimal /;-norm. That is, rewriting objectives results in

Minimize: ||x|; given
(x,8) = P(B" = ), (3.47)

ZX,‘ =0.

Here g denotes the vector of tradable asset betas, and we used inner product notation
(x,p) = > x;f;. This is an example of a constrained optimization in that we are opti-
mizing, and in this case minimizing, the /;-norm with the constraint that the solution
satisfies two given equations.

We can envision the problem in (3.47) geometrically. Of the set of all x that satisfy
the given constraints, find the value that is closest to the origin in terms of the /;-
norm.

Optimization with an /,,-Norm An example of the same type but with an /,,-norm
occurs when one is trying to control the total amount of any asset traded. Such a
constraint may occur because of illiquid markets and the desire to avoid a trade
that moves prices, or because one has an investment policy constraint on the concen-
tration in any given asset. In the simplest form, where all traded assets have the same
limitation, the objective would be one of finding a solution to equation (3.46) with
l,-norm bounded by this common limit: ||(x1, X2, ..., x,)|,, < L.

More realistically, one is generally not so much interested in limiting the maximum
trade as the maximum portfolio exposure post-trade. Consequently one would
instead look for solutions to equation (3.46) with the limit: ||(p1, p2,..., ) +
(x1,x2,...,%,)|l., <L, where x; is the amount of each trade, and p; the initial port-
folio exposure. Since there are potentially many such solutions, an optimization is
still possible, and the problem becomes
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Minimize: ||x||, given

(x,8) = (B' = B)P,

Z (3.48)
X = 0,

lp+x[l, <L,

where p = (p1, p2,-- -, Pn)-

Optimization with an ,-Norm Although in both types of problems above the use of
/;-norms and /,,-norms is more natural, one might actually solve the problem using
an h-norm instead. The reason relates to the tools of multivariate calculus and is one
of mathematical tractability. That is, explicit solutions to such problems with an /-
norm can often be derived analytically, whereas with other norms one must typically
utilize numerical procedures. Obviously, given the prevalence and power of com-
puters today, one could hardly imagine that obtaining an explicit mathematical ex-
pression, rather than a numerical solution, would be worth much. However, the
popularity of /,-norm methods was certified long before the “computer age,” and still
has merit.

The advantage of representing the solution as an explicit mathematical expression
is that the functional relationship between the problem’s inputs and the output solu-
tion is explicitly represented in a form that allows further analysis. For example, one
can easily perform a sensitivity analysis that quantifies the dependence of the solution
on changes to various constraints, and the addition of constraints. Such analyses are
also possible with numerical solutions, but they require the development of solutions
over a “grid” of input assumptions from which sensitivities can be estimated.

Tractability of the /,-Norms: An Optimization Example

A simple example of the mathematical tractability of /,-norms is as follows: Assume
we are given a collection of data points {x;}7_,, which we may envision either as dis-
tributed on the real line R or as a point x = (x1,x2,...,x,) in R". The goal is to find
a single number a, that best approximates these points in the /,-norm, where p > 1.
That is,

Find a, so that [|(x; —ay,x2 — ap,..., Xy — ap)|, is minimized.

Assume that for notational simplicity that we have arranged the data points in
increasing order: x; < x; < --- < Xx,,. This problem can be envisioned as a problem
in R, such as for p < oo,
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" 1/p
Minimize: f(a) = (Z X, — a|"> , (3.49)
i—1
or as a problem in IR”, for any p,
Minimize: f(a) = [|x —al|,, (3.50)
where x = (x1,x2,...,x,) and a = (a,q,...,a) is a point on the “diagonal” in IR".

Geometrically, for the problem statement in R”, we seek the smallest /,-ball cen-
tered on x, B?(x), that intersects this diagonal. The point or points of intersection
are then the values of a, that minimize f(a), and the “radius’ of this minimal ball
is the value of f(a,).

In either setting, minimizing the stated functions, or their pth powers to eliminate
the pth-root, are equivalent, since p > 1 and hence g(y) = y? is an increasing func-
tion on [0, o0). Consequently, if y = f(«) and y’ = f(a’), then y < »’ if and only if
9(y) <g(»).

What is easily demonstrated is that any solution must satisfy x; < a < x,,. For ex-
ample, if a > x,,

flay =3 —al’ = 3 (a—x),

which is an increasing function on [x,, c0), so we must have a < x,. Similarly,
for a < x;, we have that f(a)” =Y (x; —a)” which is a decreasing function on
(—o0,x1], and so a > x.

The analytical solution of this general problem is somewhat difficult and with three
exceptions requires the tools of calculus from chapter 9. In fact, at this point, it is not
even obvious that in the general case a solution exists, or if it does, that it is unique.
However, in the special cases of p = 1,2, and oo, this problem can be solved with
elementary methods, and this is easiest when p = 2, which we address first. In chap-
ter 9, the other cases will be addressed.

L-Solution  Given the points {x;}"_,, define the simple average consistently with the
sample mean in (3.42):

)_C:%ZX,‘.

By writing,

xi—a=(xi—X)+ (¥ —a),
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a simple algebraic calculation leads to

fla@)= Y —a) = 3 (v — )%+ n(x - a)’,

where f(a) denotes now the h-norm squared. So it is clear that a, = X gives the /-
norm minimizing point, since then n(x — a)* = 0.

In other words, the sample mean of a collection of points minimizes the /,-norm in
the sense of (3.49). Since this /-norm is related to the sample variance in (3.44), this
result can be restated. Considering j in the definition of sample variance as undefined
for a moment, the analysis above implies that the value of the sample variance is
minimized when 2 equals the sample mean, which it does.

l;-Solution The case of p =1 is more difficult but still tractable. Because x; <
x; < --- < X, we can relabel these to be distinct points y; < yy < -+ < y,,. Now,
letting n; denote the number of occurrences of y;, so that > | n; = n, we write

fla)=> Ixi—al=> nmly—d.

We know that if y; <a < yjy1, then |y; —a| = y; —afori> j+1, and |y; —a| =
a — y; for i < j. Consequently

J
fla)=¢ — <n—22ni>a,
i=1

where ¢; is a constant in each interval, and specifically, ¢; = Z;‘”:_/ LMy — Zij:l niy;.
So the graph of f(a) is linear between any consecutive distinct points, is decreasing if
n— 22{;1 n; > 0, is increasing if n — 2 Zij:l n; < 0, and is constant if n — 22{;1 n;
= 0. We can therefore conclude:

1. If n =2m+ 1 is odd, then there is no value of j for which n — 23 n; =0, and
hence there is a unique value of j with n—23"/ ;>0 and n—23/"n; <0.
Consequently a; = x;;; is the /;-norm minimizing point, since f(a) is decreasing

when a < xj;| and increasing when a > x;;.1. When all n; = 1, then a; = x,,,11.

2. If n = 2m, then the solution will be unique if there is no value of j for which
n— 22-[:] n; = 0, and in this case the value of a; is calculated as above. However,
if there is a value of j for which n — 2 Z;f:l n; = 0, then any a; with y; < a; < yj
will gives the same value for f(a;), namely c¢;, so the solution will not be unique.
When all n; = 1, then the solution is never unique, and any a; with x,,, < a; < X101
is a solution.
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Figure 3.4
fl@)=15—d +|-15—4|

As a simple graphical illustration of non-uniqueness in the even case when all
n; =1, let x; =5, and x, = —15. The graph of f(a) as a function on IR is seen in
figure 3.4.

Considered as a problem of in R?, the minimal /;-Ball centered on (5, —15) that
intersects the diagonal in R? is presented in figure 3.5. As can be seen, this minimal
[;-ball intersects the diagonal line over the same range of x-values that minimize the
function in figure 3.4.

Remark 3.45 The earlier l-norm trading problem is similar to this problem. How-
ever, the “admissible” set of solutions there is not defined as the R" diagonal, unless
we wish to trade the same amount in all assets, an unlikely scenario. The admissible
set is instead the collection of points that satisfy the beta-constraint in (3.46). In addi-
tion, rather than look for the point on the admissible set that is ““closest” to some initial
point X = (x1,Xx2,...,Xy), we seek the trading point on the admissible set that is closest
to 0 =(0,0,...,0) in the li-norm.

l,-Solution The case p = oo is considered next, and in this special example the so-
lution is immediate, though often this is not the case. Here the goal is to determine a
that minimizes

fa) = max{|x; — al},
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—40 +

Figure 3.5
lx =5+ ]y + 15[ =20

and this is easily seen to be a = (x, — x1)/2, the midpoint of the interval x; < x < x;,.
This is because the /,,-norm must be attained at one of the end points, so to minimize
this distance, the interval midpoint is optimal.

General /,-Solution In general, framing this /,-norm problem as a problem in IR or
R" are identical problems, but the intuitive framework differs between the two Eucli-
dean settings. The geometry and intuition in R can be exemplified by a simple graph.
Here we illustrate the problem with x; values of 5, and —15, and p = 3 in figure 3.6.

The function we aim to minimize is graphed in a bold line, and equals the cube of
the -norm. This function is seen to equal the sum of the two component functions
defined as fi(a) = |x; — a\3, graphed in light lines. Clearly, the minimum appears to
be at @ = —5, and this is easily confirmed. Letting ¢ = —5 + b, and assuming b < 10
say to make the absolute value unambiguous, we get that f(a) = 2000 + 605, which
is minimized when » = 0.

In IR? this problem can be written as one of minimizing the cube of the /3-norm
between (5, —15) and (a, a):

Minimize: ||(5,—15) — (a, a)||§

Geometrically, we are looking for a point on the diagonal of R?: {(x, y) |x = y} that
is closest to the point (5, —15) in the /-norm. Intuitively, we imagine /3-balls centered
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Figure 3.6
fla)=15—af’ +|-15—a®

on (5, —15) of various radius values, and seek the smallest one that intersects this di-
agonal. Graphically, the solution is seen in figure 3.7. If the radius of this ball is less
than v/2000 x 12.6, there is no intersection, while if is greater, there are two points of
intersection.

Without more powerful tools, however, we are not able to confirm that such prob-
lems have solutions for general p and n, nor if they do, if and when such solutions
are unique. Even if a solution is known to be unique, there may be no ‘“‘closed-form
solution” to the problem whereby the value of a, can be expressed as an explicit
function of p and the initial collection {x;}.

In the cases p = 1,2, and oo, it was shown that the solution of the problems in
(3.49) and (3.50) were always uniquely and explicitly solvable, except in the case
where p =1 and n is even, where although explicitly solvable, there could be infi-
nitely many solutions.

General Optimization Framework
Optimization problems are everywhere in finance, and they usually take the follow-
ing form:

Problem 3.46 Of all values of x = (x1,x2,...,X,) that satisfy
fx)=c,

find the value that optimizes (i.e., minimizes or maximizes)
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Figure 3.7
Ix = 5 + |y + 15]* = 2000

[x —al|,,

where c is a constant, and a is a point, perhaps 0, and p is typically 1, 2, or co.
In the more general case, the norm minimization is replaced:

Problem 3.47  Of all values of x = (x1,x2,...,X,) that satisfy

Jx)=¢

find the value that optimizes (i.e., minimizes or maximizes)

9(x),

where g(X) is a given function.

Note that in both cases the problem is known as a constrained optimization and is
defined by:

+ One or more constraint functions: The function that provides constraints on the
solution.
+ An objective function: The function that is to be optimized.

Depending on the application, one or both of these functions may reflect one or more
l,-norms, as well as a variety of other financial functions of interest.
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Exercises

Practice Exercises

1. Calculate the /,-norms of the following vectors in R", for p = 1,2, 5, and o and a
a positive real number:

(@) a = (+a,+aq,...,+a)

(b) a = (4+a,0,0,...,0)

(c) a=(ai,a,...,a,) where one a; = +a, all others are 0.

2. Calculate the inner product of the following pairs of vectors and confirm Holder’s
inequality in (3.16) (which is the Cauchy—Schwarz inequality for p = 2) for p = 1,2,
5,10, and oo:

(@ x=(-5,3)and y = (-2, -8)

(b) x=(-1,2,3) and y = (—1,—1,20)

(¢) x=1(2,12,-3,-3) and y = (-10,3,2,0)

d) x=(-3,-3,-5,-10,—1) and y = (2, 5,10,20,1)

3. For the vector pairs in exercise 2, verify the Minkowski inequality in (3.17) for
p=1,2,510, and co.

4. For the vector pairs in exercise 2:

(a) Calculate the /,-distances for p = 1,2, 5,10, and co.

(b) Demonstrate explicitly that for each pair of vectors, the /,-distance gets closer to
the [, -distance as p increases without bound. (Hint: Recall remark 3.25 following
the proof of the Minkowski inequality.)

5. Develop graphs of the /,-balls in R?, B?(0), for p=1,2, and oo, and r-values
r=0.10,0.5 and 1. Evaluate the relationship between the different balls for various
r by comparing /;- and /-balls, then /- and /.. -balls.

(a) Demonstrate the equivalence of the /;- and ,-norms by showing how one can
choose the associated r-values to verify (3.35).
(b) Demonstrate the equivalence of the /- and /,,-norms by showing how one can
choose the associated r-values to verify (3.35).
6. Show that if (x,y) is an inner product on a real vector space X, all the properties
of a norm are satisfied by |x| as defined by (3.5), and hence the terminology “norm
associated with this inner product™ is justified.

7. If x and y are two vectors in R n =23 andz=y — x:
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(a) Demonstrate |z||3 = ||x|3 + ||y|l3 — 2x-y. (Hinr: Use (3.5) and properties of
inner products.)

(b) Show that if 0 < = denotes the angle between x and y, then

X-y

cosf=——""—. (3.51)
X[ ¥l

(Hint: the law of cosines from trigonometry states that

¢* = a* + b* — 2ab cos 0, (3.52)

where «a, b, ¢ are the sides of a triangle, and 6 is the radian measure of the angle be-
tween sides ¢ and b. Now create a triangle with sides x, y, and z.)

(c) Show that if 6§ < = denotes the angle between x and y, then x -y = 0 iff § = 90°,
so x and y are “perpendicular.” (Note: The usual terminology is that x and y are
orthogonal, and this is often denoted x L y.)

Remark 3.48 Note that for n > 3, the formula in (3.51) is taken as the definition of
the cosine of the angle between x and 'y, and logically represents the true angle between
these vectors in the two-dimensional plane in R" that contain them. As was noted in the
section on inner products, the derivations in (a) and (b) remain true for a general inner
product and associated norm, and hence the notion of “‘orthogonality” can be defined in
this general context.

8. Show that if {x;}7_, is a collection of mutually orthogonal, unit vectors in R”,
namely X; - x; = 0 for j # k, and |xj|2 =x; -x; = 1 for all j, then for a vector y € R”

that can be expressed as a linear combination of these vectors

Y= a4x;, (3.53)
j=

the constants a; must satisfy ¢; = Xx; - y. (Hint: Consider an inner product of each side
with x;.)

Remark 3.49 The usual terminology is that the collection of vectors, {xj}7:1, are
orthonormal. With the tools of linear algebra, it can be shown that all vectors y € R”
can be represented as in (3.53).

9. Given a vector of sample data: x = (x1,xs,...,%,), demonstrate that 6> =

@ — i, where here 67 is defined with n rather than n — 1.
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10. Given semiannual coupon bond data with prices expressed per 100 par:

Term 0.5 years 1.0 years 1.5 years 2.0 years
Coupon 2.0% 2.2% 2.6% 3.0%
Price 99.5 100.0 100.5 101.0

(a) Bootstrap this data to determine semiannual market spot rates for 0.5, 1.0, 1.5,
and 2.0 years.

(b) What is the semiannual forward rate between 0.5 and 1.5 years?

11. Demonstrate that the forward rate in exercise 10(b) can be realized by an inves-
tor desiring to invest $1 million between time 0.5 and 1.5 years, by constructing an
appropriate portfolio of long and short zero coupon bonds. Assume that these zeros
are trading with the spot rates from 10(a).

12. Given a portfolio of three stocks with market values in $millions of 350, 150, and
500, and respective betas of 1.0, 0.9, and 1.1:

(a) Calculate the beta of the portfolio, where f = > x;6;/ > x; and x; denotes the
amount invested in stock i.

(b) Find the trade in R? that changes the portfolio beta to 1.08 that has the lowest
transaction fee, assuming that this fee is proportional to the market value bought and
sold, and that all final positions must be long. (Hint: See (3.47), but note that while
the constraint 3" x; = 0 allows you to analytically consider this a problem in R?, be-
cause x3 = —x] — X», the norm minimization in IR? will not work in general.)

(c) Repeat part (b) but now with a beta target of 0.935, and where final positions can
be long or short.

(d) Achieve the same objective in part (c), but adding the constraint that the invest-
ment policy maximum for any stock is 600 on a long or short basis.

Assignment Exercises

13. Calculate the inner product of the following pairs of vectors, and confirm Hold-
er’s inequality in (3.16) (which is the Cauchy—Schwarz inequality for p = 2) for
p=1,2,510, and oo:

(@) x=(11,-133) and y = (12,28)

(b) x=(10,-2,13) and y = (—10, 101, 30)

(¢) x=(1,-24,3,13) and y = (—1,-23,21,10)

(d x=(10,53,-53,—-10,21) and y = (1,—15,-10,25,11)
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14. For the vector pairs in exercise 13, verify the Minkowski inequality in (3.17) for
p=1,2,510, and 0.

15. For the vector pairs in exercise 13:

(a) Calculate the /,-distances for p = 1,2,5,10, and oo.

(b) Demonstrate explicitly that for each pair of vectors, the /,-distance gets closer to
the /. -distance as p increases without bound (Hint: Recall remark 3.25 following the
proof of the Minkowski inequality.)

16. Develop a graph of the /,-balls in R?, B?(0), for p = 1,5, and oo, and r-values
r=10.10, 0.5, and 1. Evaluate the relationship between the different balls for various
r by comparing /- and /s-balls, then /5- and /,,-balls.

(a) Demonstrate the equivalence of the /;- and /s-norms by showing how one can
choose the associated r-values to verify (3.35).

(b) Demonstrate the equivalence of the /5- and /,,-norms by showing how one can
choose the associated r-values to verify (3.35).

17. For fixed a,b >0, say a=3, b =15, develop a graph of the function for
I <p<oo:

al b4
P q
where g = % is conjugate to p. Confirm Young’s inequality that ab < f(p) for all

p- What happens if a = b?

18. Not all metrics are equivalent to the /,-metrics. Show that

0, x=y
dxn ={; 300

is a metric on IR” that is not equivalent to the /,-metrics.

19. Given a portfolio of 100, 000 par of 6% semiannual (s.a.) coupon, 10-year bonds, and
250,000 par of 4.5% s.a. coupon, 3-year bonds, let (i, j) € IR? denote the market yield
vector, where iisthes.a. yield for the 3-year bond, and j thes.a. yield for the 10-year bond.

(a) Develop the formula for the portfolio price function, P(i, j), using (2.15) or an
equivalent formulation, and calculate the initial portfolio market value assuming
that (io, jo) = (0.04,0.055).

(b) Assume that the initial yield vector shifts, (io, jo) — (i, j), where (i, j) = (ip + Ai,
Jo + Aj). Consider only shifts, (Ai,Aj), that have the same /,-norm as the shift vector
(0.01,0.01) for p = 1,2, 0co. Show by examples that the portfolio gain/loss P(iy + A,
Jo+ Aj) — P(io, jo) is not constant in any of these norms. (Hint: Consider shifts
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on the /,-balls in R?, B?(0.04,0.055) where r = (0.01,0.01)]|,. Try shift vectors,
(Ai,Aj) where Ai = +Aj, or where one or the other is 0, to get started.)

(¢) For each p-value, estimate numerically the yield shift vectors that provide the
largest portfolio gain and loss.

20. For the portfolio in exercise 19, implement a market-value neutral trade at the
initial yields, selling 75,000 par of the 10-year and purchasing an equivalent dollar
amount of the 3-year bonds.

(a) Express this trade as a vector-shift in R?’, where the initial vector Cy is the orig-
inal cash flow vector, and C the vector after the trade.

(b) Repeat exercise 19(b) and 19(c) for the traded portfolio, comparing results.

21. Given semiannual coupon bond data with prices expressed per 100 par:

Term 0.5 years 1.0 years 1.5 years 2.0 years
Coupon 3.0% 2.8% 2.4% 2.0%
Price 100.0 100.5 101.0 101.5

(a) Bootstrap this data to determine semiannual market spot rates for 0.5, 1.0, 1.5,
and 2.0 years.

(b) What is the semiannual forward rate between 1.0 and 2.0 years?

22. Demonstrate that the forward rate in exercise 21(b) can be realized by an inves-
tor desiring to borrow $100 million between time 1.0 and 2.0 years, by constructing
an appropriate portfolio of long and short zero coupon bonds. Assume that these
zeros are trading with the spot rates from 21(a).

23. Given a portfolio of 3 bonds with market values in $millions of: 200, 450, and
350, and respective durations of 3.5, 5.0, and 8.5.

(a) Calculate the duration of the portfolio, where D = > x;D;/ > x; and x; denotes
the amount invested in bond i.

(b) Find the trade in IR? that changes the portfolio duration to 4.0 that has the low-
est transaction fee, assuming that this fee is proportional to the market value bought
and sold, and that all final positions must be long. (Hint: See (3.47), but note that
while the constraint > x; = 0 allows you to analytically consider this a problem in
IR?, because x3 = —x| — x», the norm minimization in R? will not work in general.)
(c) Repeat part (b) but now with a duration target of 6.5, and where final positions
can be long or short.

(d) Achieve the same objective in part (c), but adding the constraint that the invest-
ment policy maximum for any bond is 462 on a long or short basis.



4 Set Theory and Topology

4.1 Set Theory

4.1.1 Historical Background

In this section we formalize the notion of sets and their most common operations.
Ironically, the definition of a “set” is more complex than it first appears. Before the
early 1900s, a set was generally accepted as being definable as any collection of
objects that satisfy a given property,

X = {a| a satisfies property P},

and an axiomatic structure was developed around this basic concept. This approach
has come to be known perhaps unfairly as naive set theory, despite the fact that it was
developed within a formal axiomatic framework.

In 1903 Bertrand Russell (1872-1970) published a paradox he discovered in 1901,
which has come to be known as Russell’s paradox, by proposing as a “set” the
following:

X ={R|Risaset,and R ¢ R}.

In other words, X is the “set” of all sets which are not a member of themselves.
The paradox occurs in attempting to answer the question

Is X e X7

If X € X, then by the defining property above it is a set that is not an element of it-
self. However, if we posit that X ¢ X, then again by definition, X should be one of
the sets R that are included in X. In summary,

XeX iff X¢X.

This is a situation that gives mathematicians great anxiety and rightfully so! What
is causing this unexpected result? Are there others? Could such paradoxes be avoided?
How? Defining a set as a ““collection satisfying a property” certainly works fine most
of the time, but apparently not this time.

What was needed was an even more careful and formal articulation of the axioms
of set theory and the fundamental properties that would be assumed. With this,
mathematicians would be able to develop a theory that was, on the one hand, ‘““famil-
iar,” but on the other, paradox free. This approach has come to be known as axiom-
atic set theory.

A number of axiomatic approaches have been developed. The first approach was
introduced by Ernst Zermelo (1871-1953) in 1908, called the Zermelo axioms, and
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produced Zermelo set theory. This axiomatic structure was later improved upon by
Adolf Fraenkel (1891-1965) in 1922, and produced the Zermelo—Fraenkel axioms,
and the Zermelo—Fraenkel set theory, or ZF set theory. This is the approach largely
used to this day.

In essence, sets are defined as those collections that can be constructed based on
the 10 or so ZF axioms, and the paradox above is resolved because it is not possible
to construct the Russell collection X as a set within this axiomatic structure. It is also
not possible to construct the set of all sets, which underlies another paradox. How-
ever, these axioms have been shown to be adequate to construct virtually all of the
types of sets one needs in mathematics, and that for these sets, set manipulations
can proceed just as if these sets were defined via naive set theory, as collections of
objects which satisfy given criteria.

*4.1.2 Overview of Axiomatic Set Theory

To give a flavor for the axiomatic structure of set theory, we introduce the Zermelo—
Fraenkel axioms, including the so-called axiom of choice, which collectively produce
what is referred to as ZFC set theory. This structure is presented below in a simplified
framework that omits many of the quantifiers necessary to make statements formal,
and is presented in both plain and informal English and approximately formal sym-
bolic language.

In this structure it will be noted that the intuitive notions of “set” and “‘element”
are formalized as relative terms, not absolute terms. A set may be an element of an-
other set, and an element of a set may itself be a set that contains elements. In addi-
tion the expression P(x) will denote a statement that may be true or false for any
given set x, and P(X) will denote that the statement is true for a given set X. For
example, if

P(x) : x contains an integer as an element,

then P(N). Also P(x,y) will denote a conditional statement in that given a set x,
there is a unique set y so that P(x, y) is true, and then P(X,Y) denotes that the
statement is true for X, Y. For example,

P(x, y) : y contains the elements of x plus the integers as elements.

Finally, we recall the logical symbols: V (for all), 3 (there exists), ~ (not), 3: (such
that), v (or), A (and), = (implies), and < (if and only if).

1. Formal Symbols: 0., {,},X,Y,Z,....

2. Axioms
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« ZF1 (Extensionality): Two sets are equal means they contain the same elements,
X=Y&(ZeXsZeY).

« ZF2 (Empty Set): There exists a set with no elements,

0={}

« ZF3 (Pairing): Given any two sets, there exists a set that contains these as
elements,

X,Y=3Z={X, Y}

« ZF4 (Union): Given two sets, there exists a set that contains as elements exactly
the elements of the original sets,

X, Y=3Z>xWeZs WeXvWeY.

« ZF5 (Infinity): There exists a set with an infinite number of elements, in that it
contains the empty set as an element, and for any element Y that it contains, it also
contains the element {Y,{Y}},

X 220eXA(YeX={Y {Y}}eX)

« ZF6 (Subset): Given any set and any statement, there is a set that contains all the
elements of the original set for which the statement is true,

X, Px)=3Y22ZeY o ZecXAP(Z).

+ ZF7 (Replacement): Given any set and conditional statement, there is a set that
contains as elements the unique sets associated with the elements of the original set
as defined by the conditional statement,

X, P(x,y)=3Y2:ZeY < IWeXAP(W,2Z).

- ZF8 (Power Set): For any set, there is a set that contains as elements any set that
contains elements of the original set. In other words, this new set, called the power
set, contains all the “subsets” of the original set,

X=3Y>2ZeY & (WeZ=WEeX).

« ZF9 (Regularity): Any set that is not empty contains an element that has no ele-
ments in common with the original set,

X#0=3Y2: YeXA~AWWeXAWEY),

where ~3 is shorthand for “there does not exist.”
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« ZF10 (Axiom of Choice): For any set, there is a set that contains as elements an
element from each nonempty element of the original set,

X=3YVZeX(Z#0)IWeYAWEeLZ.

These axioms fall into four categories.

EE)

1. Axiom 1 introduces the notion of equality of “sets,” and indirectly provides a
context for the undefined term €. Although the notion of subset is not explicitly
defined, we see that this is implicitly referenced in axiom 8, which suggests that the
condition on Z is one of “‘subset’:

ZcXe (WeZ=WeX).

2. Axioms 2 and 5 are existence axioms, on the one hand, declaring the existence
of an empty set and, on the other, the existence of a set with an infinite number of
elements.

3. All the other axioms except axiom 9 identify how one can make new sets from old
sets, or from sets and statements. For example, axiom 3 states that a set can be
formed to include as members two other sets, while axiom 4 states that the union of
sets is a set. Axioms 6 and 7 state that sets can be formed from sets and statements. A
simple application of axiom 6 is that the intersection of X and Y must be a set since
we can use the statement: P(Z) : (Z € Y). Axiom 8 introduces the power set, or the
set of all subsets of a given set, and axiom 10 states that there is a set that contains
one element from every nonempty element of a given set. In other words, from the
elements of X, we can form a set which “chooses” one element from each such ele-
ment, and hence the name, “axiom of choice.”

4. Finally, axiom 9 puts a limit on what a set can be, and can be shown to preclude
the “set of all sets” from being a set in this theory. It states that any nonempty set
contains an element that is disjoint from the original set.

In what follows, we will treat sets as if definable as collections of objects that sat-
isfy certain statements or formulaic properties, and this can generally be justified by
axiom 6. More specifically, the ZFC set theory states that defining a set as a collec-
tion of objects that satisfy certain properties will avoid paradoxes if the original col-
lection of objects is itself a set or a subcollection of a set. That is, if 4 is a set,

{x|x€ A4 and P(x)},

is a set for any “‘statement” P, by axiom 6. However, although beyond the scope of
this introduction to set theory, one needs to be careful as to exactly what kinds of
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“statements’ are appropriate in this axiom, as it can be shown that for a general
property P, paradoxes are still possible.

4.1.3 Basic Set Operations

As a collection of objects, and with the axiomatic structure in the background, we
distinguish between the notions: “element of,”” “subset of,”” and “‘equal to’":

1. Membership: “x is an element of 4,” denoted x € A4, is only defined indirectly in
the axioms, but understanding this notion in terms of the heuristic

A={x|xeAd}
is consistent with the axioms and operationally efficient.

2. Subset: “Bis a subset of 4,” denoted B = A, and defined by x e B= x € A4.
3. Equality: “Bequals 4,” denoted 4 = B, and defined by B = 4 and 4 < B.

Given sets 4 and B, the basic set operations are:

1. Union: AUB = {x|xe A and/or x € B}.
2. Intersection: ANB={x|xe A and x € B}.

3. Complement: A = {x|x¢ A}. A is an alternative notation, especially if 4 is a
complicated expression. Note that 4 = A.

4. Difference: A~ B = {x|xe Aand x¢ B}. Note that A ~ B= ANB.

Union and intersection are similarly defined for any indexed collection of sets:
{A, | €I}, where I denotes any indexing set which may be finite, or denumerably
or uncountably infinite (recall chapter 2):

() 4, = {x|x e 4, for some o € I},

() 4, ={x|xe A, forall uel}.

It is straightforward to justify the so-called De Morgan’s laws, named after Augus-
tus De Morgan (1806-1871), who formalized a system of “relational algebra” in
1860. Examples are:

mx;‘l\;'
Ux;i;'

1., 4,
2 ﬂoc Ay
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3. BN, 4,] = ,[4,N B].

o

4. BUN), 4] = (),[4. U B].

To demonstrate the first example in detail, we use the definitions above:

xel) 4,

o
sx¢ )4,
o

S xé A, for all o

<:>xe;1; for all «

S xe ﬂ;lv,x
o

4.2 Open, Closed, and Other Sets

4.2.1 Open and Closed Subsets of IR

The reader is undoubtedly familiar with the notion of an interval in R, as well as
the various types of intervals. First off, an interval is a subset of IR that has “no
holes.”

Definition 4.1  An interval I is a subset of R that has the property:
If x, yel, then for all z : x < z < y we have that z € I.
There are four types of intervals, as we list next. Interval notation is universal.
1. Open: (a,b) = {x|a < x < b}.
2. Closed: [a,b] = {x|a < x < b}.
3. Semi-open or Semi-closed: (a,b] and [a, b).

In some applications, where it is unimportant if the interval contains its endpoints,
the “generic interval’” will be denoted: {a, b), meaning that it can be any of the four
examples above without consequence in the given statement.

Any of these interval types may be bounded—meaning that —oo < a,b < co—and
that all but the closed interval may be unbounded. For example,

(a,0), (=o0,b), (—o0,0), (—o0,b], [a,0).
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Each of these characteristics of an interval: open, closed, bounded, and unbounded,
can be generalized, and each is important in mathematics for reasons that will
emerge over coming chapters. The notions of open and closed subsets of IR are gen-
eralized next.

Definition 4.2 Given x € R, a neighborhood of x of radius r, or open ball about x of
radius r, denoted B,(x), is defined as

B(x) ={yeR||x—y| <r}. (4.1)

A subset G = R is open if given x € G, there is an r > 0 so that B,(x) < G. A subset
F < R is closed if the complement of F, F, is open.

Intuitively, an open set only contains “interior’” points, in that every point can be
surrounded by an open ball that fits entirely inside the set. In contrast, a closed set
will contain at least one point that is not interior to the set. In other words, no matter
how small an open ball one constructs that contains this point, this ball will always
contain points outside the set. But while, by definition, the existence of such a point
is ensured for a closed set, the existence of such a point does not ensure that the set is
closed, and hence the need to define closed in terms of the complement of the set be-
ing open. The problem is that a set can be neither open nor closed.

A useful exercise is to think through how an interval like (—1,1) is open by this
definition, whereas the interval [—1,1] is closed. On the other hand, the interval
[—1,1) has one exceptional point that prevents it from being open, yet this set is
also not closed since (—oo, —1) U1, 00) is not open.

That open and closed sets are fundamentally different can be first appreciated by
observing how differently they behave under set operations.

Proposition 4.3  If {G,} is any collection of open sets, G, = R, with o. € I an arbitrary
indexing set, then

U G, is an open set.

If this collection is finite, then () G, is an open set. If {F,} is any collection of closed
sets, F,, = R, then

ﬂ F, is a closed set.

If this collection is finite, then | ) F, is a closed set.

Proof 1If xe U G,, then x € G, for some «. Since each G, is open, there is an r > 0
so that B,(x) = G, < | | G,, proving the first statement. If the collection is finite, and
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x€ () Gy, then for every n there is an r, so that B, (x) = G,, and therefore
B,(x) = ﬂ G,, where r = min r,,. The second statement on closed sets follows from
De Morgan’s laws and the first result. That is, the complement of this general inter-
section is open, since

N\ F. = F.,

which is a union of open sets by assumption. Similarly, if the collection is finite, the
complement of the union is an intersection of a finite collection of open sets, which is
open. ]

This proposition cannot be extended to a statement about the general intersection
of open sets, or the general union of closed sets. For example,

1 1
= (-5e1+3)
n n

has intersection equal to [0, 1], whereas

1 1
=il
n n

has union (0, 1) (see exercise 3).

Other examples are easy to generate where openness and closeness are preserved,
or where semi-openness/closeness is produced (see exercise 15). In other words, any-
thing is possible when an infinite collection of open sets are intersected or closed sets
are unioned.

It turns out that open sets in R can be characterized in a simple and direct way,
but not so closed sets.

Proposition 4.4 G < IR is an open set iff there is a countable collection of disjoint
open intervals, {I,}, so that G = | ) I,.

Proof Clearly, if G is a countable union of open intervals, it is open by the propo-
sition above. On the other hand, for any x € G, let {4 (x)} be the collection of
open intervals that contain x and that are contained in G. This family is not empty,
since by definition of open, /(. vy, (x) = B,(x) is in this collection for some r > 0.
Define 1(x) = () 14,5 (x). By the proposition above, I(x) is an open set. But also
we have that /(x) must be an open interval: I(x) = I(, 1 (x). To show this, let
v,z € I(x), with y < z for definitiveness. We must show that [y, z] = I(x). Now since
¥ € I(4,5)(x) for some (a,b), all points between x and y are also in /(, )(x). Similarly
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all points between x and z are in some other interval, I 4 (x), say. So we conclude
that

[yy Z] c I(a,b) (X) U I(c,d) (X) < I(X)

Finally, to show that {I(x)} can be collected into disjoint intervals, assume that for
some x # y, [(x)N1I(y) # 0. That is, assume that two such open intervals have non-
empty intersection. Then it must be the case that I(x) =I(y), since otherwise,
I(x)UI(y) would be a larger interval for each of x and y, contradicting the maxi-
mality of the individual intervals. That this collection is countable follows from the
observation that each of the disjoint open intervals constructed must contain a ratio-
nal number. ]

From this result we can redefine closed sets by reverse reasoning:
F < R is closed iff F is a countable collection of disjoint open intervals.

Unlike an open set, which is always a union of a finite or countably infinite number
of disjoint open intervals, closed sets can differ greatly. Any singleton set, {x}, is
closed, as is any finite set, {xj}]’?zl. Countably infinite closed sets can be sparsely
spaced in R, like the integers, or with accumulation points, such as {m —l—% |m,n e
Z,n > 0}UZ. A closed set can even contain uncountably many points, and yet con-
tain no interval. A famous example is the Cantor ternary set, named for its discoverer
Georg Cantor (1845-1918).

The Cantor set, K, is a subset of the interval [0, 1] and is defined as the intersection
of a countable number of closed sets, {F,}, so K = (| F, and K is closed. Each suc-
cessive closed set is defined as the prior set, with the open “middle third” intervals
removed. For example,

FO = [071]a

Fr=[0,1] ~ Gé)
a6}

Interestingly, the total length of the open intervals removed is 1, the length of the
original interval [0, 1]. This can be derived by noting that in the first step, one interval
of length one-third is removed, then two intervals of length one-ninth, then four of
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length one-twenty-seventh, and so forth. The total length of these intervals can be
expressed as

o} 2}’!

=
]
(==}
98]
N
+
|
W =
8
(==}
N
SSIRS)
N
=
I

This last summation is accomplished using the informal methodology introduced
in chapter 2 in the applications section for pricing a preferred stock. Recall, if
S=37,03)", then 25 =37 ,(3)". Subtracting, we conclude that 1S =1, and
the result follows. (See also the chapter 6 discussion of geometric series for a formal
justification.)

Because the complement of the Cantor ternary set in [0, 1] has length 1, the Cantor
ternary set is said to be a set of measure 0. The intuition, which will be formalized in
chapter 10 is that a set of measure zero can be contained in, or “covered by” a col-
lection of intervals, the total length of which is as small as desired. In this case the
closed sets F;, provide just such a sequence of sets, as each is a collection of intervals,
each covers K, and by the analysis above, the total length of the intervals in F, is
1 - Z” (} 3% , which is as small as we want by taking » large enough.

That the Cantor ternary set is in fact uncountable is not at all obvious, since it is
easy to believe that all that will be left in this set are the endpoints of the intervals
removed, and these form a countable collection. The demonstration of uncountability
relies on the base-3 expansion of numbers in the interval [0, 1], introduced in chapter 2.
Paralleling the decimal expansion, the base-3 expansion uses the digits 0, 1, and 2:

X(3) = 0.a1a2a3a4 ce

=25

It turns out that the removal of the “middle thirds” is equivalent to eliminating the
possibility of ¢; = 1, so the Cantor ternary set is made up of all numbers in [0, 1] with
base-3 expansions using only Os and 2s. This at first seems counterintuitive because
% € K, and yet the base-3 expansion of % is 0.1. The same is true for the left endpoints
of the leftmost intervals removed at each step, which are all of the form =-. But these
can all be rewritten as

1 “. 2
V-2

where a; = 0,1, 2.

w|\

n

as can be verified using the derivation above.
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By dividing each a; term by 2, all such expansions can then be identified in a 1:1
way with the base-2 expansions of all numbers in [0, 1], which are uncountable as was
seen in section 2.1.5. Specifically, the identification is

o0 0 0

Y ey aj/2
If 71§ EK, then 71?(—> 717.
4.2.2 Open and Closed Subsets of R”"

Generalizing the ideas from IR in the natural way to R”, we have the following:

Definition 4.5 Given x € R”, a neighborhood of x of vadius r, or open ball about x of
radius r, denoted B,(X), is defined as

B.(x) = {y e R"[|x —y[ <r}, (4.2)

where |X| denotes the standard norm on R". A subset G < R" is open if, given x € G,
there is an r > 0 so that B,(x) = G. A subset F = IR" is closed if the complement of F,
F, is open.

The proposition above on unions and intersections of open and closed sets in R
carries over to IR” without modification. We state this result without proof.

Proposition 4.6 If {G,} is any collection of open sets, G, = R", then
U G, is an open set.

If this collection is finite, then () G, is an open set. If {F,} is any collection of closed
sets, F,, = R", then

ﬂ F, is a closed set.

If this collection is finite, then \ | F, is a closed set.

It is also the case that one cannot generalize this result to arbitrary intersections of
open sets, nor arbitrary unions of open sets, and the examples above easily generalize
to this setting (see exercise 16).

Remark 4.7 Note that “open” was defined in terms of open balls, and in turn by the
standard metric in R", also called the L-metric in chapter 3. However, as might be
guessed from that chapter, we could have used any metric equivalent to the standard
metric and obtained the same open and closed sets due to (3.35). We formalize this
observation in the following:
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Proposition 4.8 Ler d'(x, y) be any metric on R" equivalent to the standard metric
d(x,y) = |x —y| given in (3.18), and let open sets be defined relative to open d’-balls.
Then G = R" is open relative to d' iff it is open relative to d.

Proof We demonstrate one implication only, as the other is analogous. Assume
that G is open relative to d’, and let x € G. Then, by definition, there is an ' > 0 so
that B/, (x) = G. By (3.35), there is an r > 0 so that

B.(x) < B, (x).
and hence B,(x) < G and so G is open relative to d(x, y). [

It is important to note that this proposition cannot be expanded arbitrarily. If d
and d’ are metrics that are not equivalent, it will generally be the case that the asso-
ciated notions of open and closed will also not be equivalent.

Remark 4.9 Because as proved in proposition 3.41, Lipschitz equivalence of metrics
implies equivalence, any result stated concerning equivalent metrics is automatically
true for Lipschitz equivalent metrics.

*4.2.3 Open and Closed Subsets in Metric Spaces

The definition of a neighborhood, or open ball about x € R”, is fundamentally a
metric notion. Namely an open ball of radius r about x is defined to be equal to
all points within a distance of r from x. Consequently, for any metric space, whether
familiar like € or an exotic construction, we can likewise define open ball, and
open and closed sets, in terms of the distance function—or metric—that defines the
space.

Definition 4.10 Given x € X, where (X,d) is a metric space, a neighborhood of x or
open ball about x of vadius r, denoted B,(x) is defined as

B,(x) = {y|d(x,y) <r}. (4.3)

A subset G = X is open, and sometimes d-open, if given x € G, there is an r > 0 so that
B,(x) = G. A subset F = R is closed if the complement of F, F, is open.

For example, let X = C, the complex numbers under the metric defined by the
norm in (2.2), and let B,(x) be defined as in (4.3). Then, if x=a+ b and y =
¢+ di, we have y € B,(x) iff |x — y| < r. That is, by (2.2),

[(a—c)*+ (b —d)"* <r.
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Note that under the identification € < IR?, a + b1 < (a,b), we can define y € B,(x)
on € iff y € B,(x) defined on R? under this identification. That is, the identifica-
tion € < IR? preserves the metrics defined on these respective spaces, as well as the
notions of open and closed.

We note that in the general context of a metric space, as was demonstrated for
R, €, and R", the concept of an open set is not as metric-dependent as it first
appears.

Proposition 4.11 Let X be a metric space under two equivalent metrics, dy and d-.
Then a set G = X is open in (X, dy) iff G is open in (X, d>).

Proof The proof, based on (3.35), is identical to that above in R". (]
*4.2.4 Open and Closed Subsets in General Spaces

In a more general space without a metric, one can specify the open sets of X by
defining a so-called topology on X as follows:

Definition 4.12  Given a space X, a topology is a collection of subsets of X, S, which
are the open sets, with the following properties:

1. 0, X e,
2. If {G,} =, then | ) G, €S,
3. If {G,} = S, a finite collection, then () G, € 3.

Hence a topology identifies the collection of open sets and demands that this col-
lection behaves the same way under union and intersection as we have shown open
sets to behave in the familiar settings of R, C, IR” or a general metric space X. In
particular, in any of these special spaces, if we define & as the collection of open
sets under the definition of open as a metric space, then S is a topology by the above
definition. Such a topology is said to be induced by the metric d.

Closed sets are then defined by

FcX isclosediff Feg,

and we see that this collection of closed sets again behaves in a familiar way under
unions and intersections, based on De Morgan’s laws.
Equivalent topologies can then be defined as follows:

Definition 4.13 Two topologies 31 and 3, on a space X are equivalent if for any
G < 3, there is a Gy < Xy with Gy < Gy, and conversely, for any Gy, < I, there is
a Gy < & with G < G,.
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Not surprisingly, especially given the terminology, we have immediately from the
above proposition in a general metric space:

Corollary 4.14  Let X be a metric space under two equivalent metrics, dy and dy. Then
the topologies induced by d, and d, are equivalent.

Remark 4.15 This corollary provides the motivation for the use of the language as
noted in chapter 3, that d; and d, are “topologically equivalent,” as an alternative to
the terminology, dy and d, are “‘equivalent.” The point is, such metrics provide the
equivalent topologies on the space.

Finally, we note that if a space X has a topology, <, and Y < X is a subset, then
there is a natural topology on Y called the relative topology or induced topology,
denoted Sy, which is defined as

Sy ={YNG|GeS}.

For example, if we consider R as a topological space with open sets defined by the
standard metric, and Y = [0, 1], then the induced topology on Y contains sets of the
form [0, ), (a,b), (b, 1], where 0 < a < b < 1, as well as [0, 1].

4.2.5 Other Properties of Subsets of a Metric Space

In the preceding sections it was clear that the notions of open and closed could be
defined in any metric space using nearly identical definitions, the only difference re-
lated to the particular space’s notion of distance as given by that space’s metric. In
this section, rather than repeat the same development for other important properties
of sets from an initial definition in R, to one in IR”, to a general metric space X, we
introduce the definitions directly in a general metric space, and leave it to the reader
to reformulate these definitions in the other special cases.

Many of these notions also have meaning in a general topological space, but we
will not have need for this development.

Definition 4.16  In a metric space X with metric d:

1. If x e X, the closed ball about x of radius r > 0 is defined by

B,(x) = {yld(x,y) <r}. (4.4)
2. If E c X, then x € X is a limit point of E, a cluster point of E, or an accumulation
point of E, if for any r > 0, B.(x) N E # (. So every x € E is a limit point, but if there
is an r > 0 with B,(x) N E = x, the point X is also said to be an isolated point of E. We
denote by E the set of limit points of E, or the closure of E, and note that E c E.
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3. E < X isdense in X if every x € X is a limit point of E.

4. E < X is bounded if for any x € X, there is a number r = r(x) so that E < B,(x),
and is unbounded otherwise. In the special case of X = IR, one also has the notion of
bounded from above and bounded fiom below. In the former case, there exists x™**
that x < x"™ for all x € E, whereas in the latter case, there exists X" so that x > x
forall x e E.

5. Given E < X, a collection of open sets, {G,}, is an open cover of E if E Ua G,

S0
min

6. E = X is compact if given any open cover of E, {G,}, which may be uncountably
infinite, there is a finite subcollection, {Gj}jm: | So that

E= | G

Jj<m

7. E < X is connected if given any two open sets, G| and G, with E < G; U G;, we
have GiN Gy # 0. E = X is disconnected if there exists open sets, Gi and G, with
ECG1UG2,cdelﬂG2=Q).

Several of the important properties related to these notions are summarized in the
following proposition, stated in the general metric space context. However, on first
reading the intuition may be more easily developed if one envisions R as the given
metric space, rather than X.

Proposition 4.17 Let X be a metric space, then:

1. If E < X is closed and X is a limit point of E, then x € E, and hence E = E. Con-
versely, if E = E, then E is closed.

2. If x € X is a limit point of E < X that is not an isolated point, then for any r > 0
there is a countable collection {x,} = B,(x) N E, with X,, # X.

3. If E = X is compact, then E is closed and bounded.

4. (Heine—Borel theorem) E = R" is compact iff E is closed and bounded.

5. If {x4} < E is a countable or uncountable infinite set, and E is compact, then {X,}
has a limit point x € E.

Proof We prove each statement in turn:

1. If E = X is closed, and x ¢ E, then x € E, which is open, and hence by definition,
there is an r > 0 so that B,(x) = E. So it must be the case that B.(x) N E = ¢, and
therefore x cannot be a limit point of E. Hence, if x is a limit point of £, we must
have x € E and so E = E. Conversely, if E = E, and x € E = E, then since x is not a
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limit point, there is an r > 0 so that B,(x) N E = @. That is, E is open and hence E is
closed.

2. Choose a sequence r, — 0. Then by assumption that x € X is a limit point of E
that is not isolated, B, (x) N E # 0 for all n, and each such intersection contains at
least one point other than x. Choose x, € B, (x) N E with x, # x. Then {x,} must
be countably infinite, since for any n, there is ry < min;<, d(x,x;), and hence xy
must be distinct from {x;};_,.

3. If £ < X is compact, it is bounded, since we can define an open cover of E by
{Bi(x)|x € E}. Then by compactness, there is a finite collection {B;(x;)|j=1,...,
n}. Let D = max d(x;,X,). Next, given any x € X, if y € E, then y € B;(xx) for some
k, and we can derive from the triangle inequality that

d(x,y) <d(x,x1) + d(x1,X) + d(xx,y)
< d(X,Xl) + D+ 1,

and hence E  Bg(x) for R =d(x,x;) + D+ 1 and E is bounded. To show that E is
closed, we demonstrate that E is open. To this end, let x € E. Then for any y € E, let
e(y) = d(x,y)/2 and construct B, (y). Clearly, by construction, {B,,(y)} is an
open cover of E. Since E is compact, let {B,,,(y,)} be the finite subcollection,
which is again a cover of E, and define e =1 min e(y,). By construction, B,(x)
(U Be(y)(¥,)) = 0. So since E < | ) By(,)(y,), we get that B.(x) < E, and hence E is

open and E closed.

4. From step 3 we only have to prove the “only if” part, that in R”, closed and
bounded implies compact. To that end, assume that £ = IR” is closed and bounded.
Since it is bounded, we have that for some R > 0, E = Bg(0). Also Bg(0) = Cg(0),
the closed cube about 0 of diameter 2R defined by

Cr(0) = {x|—R < x; < R, all j}. (4.5)

We will prove below that the closed cube, Cg(0), is compact for any R, and this will
prove that E is compact as follows. Given any open cover of E, it can be augmented
to become an open cover of Cg(0) by addition of the open set Cgr,(0) ~ E. Here
Cr+1(0) is the open cube defined as in (4.5) but with strict inequalities, and since E
is closed, Cgy1(0) ~ E = Cgy1(0) N E is open. Now once C(0) is proved to be com-
pact, this cover will have a finite subcover that then covers E without the added
set Cr:1(0) ~ E, and hence E is compact. We now prove that Cg(0) is compact by
contradiction—assuming that Cg(0) is not compact. Then there is an open cover
{G;} for which no finite subcover exists. Subdivide Cx(0) into 2" closed cubes by
halving each axis,
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where each C; is defined by one of the 2" combinations of positive and negative
coordinates:

C; = {x|for each i,0 < x; < Ror —R < x; < 0}.

Then at least one of these C; has no finite subcover from {G;}, for if all did, then
C z(0) would have a finite cover and hence be compact. Choose this C 7 and subdivide
it into 2" closed cubes,

2/7
CGi=U Ci,
k=1

by again halving each axis, and choose any one of these cubes that has no finite sub-
cover. Continuing in this way, we have an infinite collection of closed cubes: C(0) =
C; = Cy o Cjy o - -+, none of which have a finite subcover from {G;}. By construc-
tion, the intersection of all such cubes is a single point x, but since x € G; for some j,
and G, is open, there is a B,(x) < G;. Beyond a given point this ball must then con-
tain all the subcubes in the sequence above, since at each step the sides of the cube
are halved and decrease to 0. This contradicts that no subcube has a finite subcover,
and hence all such cubes have a finite subcover and Cg(0) is compact.

5. Assume that {x,} = E, and E is compact, but that {x,} has no limit point in E.
Then for any « there is an open ball B, (x,) that contains no other point in the se-
quence than x,. Indeed, if there was such an x, so that B,(x,) always contained at
least one other point for any » — 0, then this x, would be a limit point of the se-
quence by definition. Now {B,,(x,)} is an infinite collection of open sets, to which
we can add the open set 4 = X ~ [( ] B, >(x,)], which is open since the complement
of 4 in X is the closed set [| ) B,, /»(x,)]. We hence have an open cover of E with no
finite subcover by construction, contradicting the compactness of E. [ |

Note that in the proof of the Heine—Borel theorem there is a construction that can
easily be generalized to demonstrate:

Corollary 4.18 If X is a metric space, E = X is compact and F < E is closed, then F
is also compact.

Proof 1f {G;} is an open cover of F, then {G,;} UF is an open cover of E that has
a finite subcover by compactness. This finite subcover, excluding the set F, is then a
finite subcover of F. |
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Corollary 4.19 (Heine—Borel Theorem) E — C is compact iff E is closed and
bounded.

Proof We have seen that the identification € < IR? preserves the respective metrics
in these spaces, and hence the closed and open balls defined in (4.4) and (4.3) are
identical in both spaces. In IR? we have shown that the closed cube is compact, and
by the corollary above, any closed ball within this cube is also compact. Conse-
quently every closed ball in € is also compact and the above proof can be stream-
lined. If a closed and bounded E = € had an open cover with no finite subcover,
then this cover could be augmented with the open set Bg.1(0) ~ E = Bg,(0) N E;
here, as above, we assume that E = Bg(0). We have now constructed an open cover
of Br(0) with no finite subcover, contradicting the compactness of this closed ball.

]

The Heine—Borel theorem is named after Eduard Heine (1821-1881) and Emile
Borel (1871-1956). Borel formalized the earlier work of Heine in an 1895 publication
that applied to the notion of compactness, which was then defined in terms of count-
ably infinite open covers. Specifically, compact meant that every countable open
cover had a finite subcover. This in turn was generalized by Henri Lebesgue (1875—
1941) in 1898 to the notion of compactness defined in terms of an arbitrary infinite
open cover, and this is the definition now used.

Remark 4.20 The reader reviewing the propositions above may notice a glaring omis-
sion. On the one hand, in every metric space a compact set is closed and bounded.
On the other hand, the subject of the Heine—Borel theorem, that closed and bounded
implies compact, is only stated as true in R" and C. While Heine—Borel is also true in
C", we do not prove this as we have no need for this result. But it is only natural to
wonder if Heine—Borel can be extended to all metric spaces. The answer is no, although
the development of such an example will take us too far afield to be justified given that
we will not make use of this in what follows.

4.3 Applications to Finance

4.3.1 Set Theory

In general, knowledge of the axiomatic structure of set theory, or even the need for
an axiomatic structure, is not directly applicable to finance except as a cautionary
tale, as was discussed in chapter 1. While one’s intuition can be a valuable facilitator
in the development of an idea, or the pursuit of a solution to a problem, it is rarely
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adequate in and of itself even when the topic at hand appears elementary, and cau-
tion seems unwarranted. The ideal approach to problems in finance is where the
development is mathematically formal but enlightened with intuition.

In finance as in all mathematical applications, one sometimes has a compelling in-
tuitive argument as to how a problem ought to be solved, and then perhaps struggles
to make this intuition precise. On the other hand, one sometimes discovers (or stum-
bles upon) a formal mathematical relationship and then struggles with an intuitive
understanding. Both approaches are common, and both are valuable. The key is
that until one has both, mathematical rigor and intuition, one hasn’t really solved
the problem. That is, a true “solution” requires a quantitative derivation of the solu-
tion to the problem as well as an intuitive understanding of why this solution works.

Of course, the tools of set theory are necessary and important simply because
many problems in finance can be articulated in terms of sets, and so call for formal
understanding and working knowledge of the set operations as well as their
properties.

4.3.2 Constrained Optimization and Compactness

The constrained optimization problems discussed in chapter 3 on Euclidean spaces
can be posed in terms of sets. For example, consider the constrained maximization
problem in IR":

max ¢g(x), given that f(x)=rc.

Now define the sets

A={xeR"|f(x) =},
B={g(x)|x e 4}.

Then 4 = R” is clearly the constraint set, and B = IR is the set of values the objec-
tive function takes on this constraint set. For example, 4 might denote the portfolio
allocations that provide a given level of “risk™ appropriately defined, and B then
evaluates the average or return “expected” from these allocations.

Now, if B is unbounded from above, then the constrained optimization obviously
has no solution. Hence, within this framework, solvability is seen to depend at the
minimum on conditions on A4 and g(x), which assure that B is bounded from above.
Of course, if we seek a minimum, we need B to be bounded from below.

However, while boundedness is necessary, it is not sufficient. If B is an open subset
of IR, it will not contain its minimum or maximum points. This comes from the def-
inition of open, which is to say, if x € E an open set, then there is an r > 0 so that
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B,(x) = E, and no x can be a maximum or a minimum. Hence within this frame-
work, solvability is also seen to depend at the minimum on conditions on A and
¢g(x), which assure that B is bounded and closed—which is to say, by the Heine—
Borel theorem, that B is compact. In that case, if x?' € B is the optimized value,
either the maximum or the minimum, then by definition there is an x%"’ € 4 so that
g(x°P") = x°". Hence, if B is compact, there is in theory a solution to the constrained
optimization problem. Uniqueness will then depend on conditions on g(x).

Logically, the condition(s) on 4 and g(x) that assure compactness of B are in fact
conditions on the constraint function f(x) and the objective function g(x). More
generally, the constraint set 4 may be defined as

A ={x|f(x)eC},

where C is a given constraint set, C < IR. Alternatively, 4 may be defined in terms of
multiple constraints, as the intersection of sets of the form {x| f;(x) € C;}:

A={x]|fi(x)e C; forall | <i<mj.

So we see that in this general case the compactness of the objective function’s
range B reflects conditions on the functions f and g, as well as the constraint set C.
Notationally, if f is one-to-one, we can express 4 = f~!(C) and B = g(A4), and
hence

B=g(f'(C)).

So we seek conditions on C, f, and ¢ that ensure that B is compact.

When [ is not one-to-one, we seek conditions on g and A4 to ensure that g(4) is
compact, and in turn conditions on f and C to ensure that the needed conditions
on A are satisfied.

To explore this, we need to study additional properties of functions that will pro-
vide answers to these and related questions. The first steps will be taken in chapter 9
on calculus I, which addresses differential calculus on R, but this will not be enough
for the question above despite the fact that both B and C are subsets of R. The prob-
lem, of course, is that in going from C to B we need to “travel” through 4 = IR”, so
for a complete answer, multivariate calculus is required.

That said, there is still the issue of determining a solution. The analysis above
would provide what in mathematics is known as a qualitative theory and solution
to the constrained optimization problem. What is meant by “qualitative’ is that the
theory demonstrates that a solution exists and whether or not it is unique. There is
then the question of developing a quantitative theory and solution. That is, either an
explicit formula or procedure that provides the answer, or a numerical algorithm that
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will “converge” to the given solution after infinitely many iterations. In the latter
case, since we only have finitely much time, our goal would be to perform enough
iterations to assure accuracy to some level of tolerance.

This raises the question of “‘convergence’” and rate of convergence, issues intro-
duced in the next two chapters on sequences and series. This discussion will then be
expanded in chapter 9, where the relationship between properties of sets and proper-
ties of functions on R and related questions will be addressed.

4.3.3 Yield of a Security

In chapter 2 a number of formulas were derived for the prices of various securities,
expressed as functions of variables that define the security’s cash flow characteristics
as well as of the investors’ required yields. Put another way, given the cash flow
structure, price can be thought of as a function of yield. One application of these for-
mulas is to determine the price investors are willing to pay, given their yield require-
ments. Oftentimes in the financial markets, however, an investor faces a different
question, and that is, given the market price of a security, what is the implied inves-
tor yield.

Such questions can arise in terms of a bid price, the price that a dealer is willing to
pay on a purchase from an investor, or an offer (or ask) price, the price that a dealer
requires on a sale to an investor. In both cases the investor is interested in the yield
implications of the trade.

The offer price is always more, of course, and hence the offer yield is less than the
associated bid yield. It is common to be interested in the so-called bid—ask spread, or
bid—offer spread, defined as the difference between the higher bid yield and the lower
ask—offer yield. This yield differential provides information to the investor on the li-
quidity of the security. A small bid—ask spread is usually associated with high liquid-
ity, and increasingly larger spreads are associated with increasingly less liquidity.

In this context the notion of liquidity implies the commonly understood meaning
as a measure of “‘ease of sale,” since the dealer can encourage or discourage investor
sales by favorable or unfavorable pricing. Narrow spreads are associated with deep
markets of actively traded securities, and wide spreads with thin or narrow markets.
In effect, a wide spread is compensation to the dealer for the expected delayed offset-
ting transaction, and the risks or hedge costs incurred during the intervening period.

But more important, liquidity is a measure of the fairness of the transaction’s
price. A small spread implies pricing is fair, since dealers are willing to transact either
way at similar prices, whereas a wide spread implies that an investor sale may be well
below a fair price, and purchase well above a fair price. Of course, fairness is like
beauty; it is in the eye of the investor. Nonetheless, all market participants agree
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that the size of the spread tells a lot about both the ease of transacting and the fair-
ness of pricing.

If P(i) denotes the pricing function for a given security, and P, the price quoted,
the security’s implied yield, or in the case of a fixed income security, implied yield to
maturity, is the solution i, to the equation

Pi) = Py (4.6)

In this section we informally introduce the method of interval bisection in solving
(4.6) for iy, and return to this methodology with greater formality in later chapters.

First off, one can do a qualitative analysis of this equation to determine if a solu-
tion is feasible. In virtually all markets one expects that all yields on securities are
greater than 0%, and less than 100%, so a very simple qualitative assessment for the
existence of a solution is that

P(1.0) < Py < P(0),

where i = 0 and 1.0 mean that the respective discount factors in the pricing formula,
v=(1+i)" are 1 and L. From this assessment we can posit that iy € [0,1] = Fp. In
practice, this first step could well produce a much smaller initial solution interval,
such as [0.05,0.1], but for notational simplicity, we ignore this refinement.

Next we could evaluate P(0.5), or in general, the price function at the midpoint of
the initial interval. We then have either

P(1.0) < Py < P(0.5) or P(0.5) < Py < P(0).

From this we conclude that either iy € [0.5, 1] or iy € [0,0.5], respectively, and choose
the appropriate interval and label it ;. Of course, if Py = P(0.5), we are done.
Continuing in this way, one of two things happens:

1. We develop a sequence of closed intervals F,, with iy € F,, for all n, and lengths
|Fn| = 21_" :

2. Or the process serendipitiously stops in a finite number of steps, since i is an end-
point of one of the F,.

Assuming the process does not stop, we can identify “approximate’ solutions to
the equation in (4.6) by simply choosing the midpoints of the respective intervals.
Specifically, defining i, as the midpoint of F,, it must be the case, since iy € F,, and

|F,| = 5, that

1
liy — o] < ——.
2n+1
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Also, since {F,} are closed sets, and the length |F,| decreases to 0, then () F, is
closed and hence must be a single point. That is, it must be the case that

ip =) Fy.

Or does it?

If F, = [ay, b,), all we know is that P(b,) < Py < P(ay) for all n, and that b, — a,
= % But how do we know that there is a unique value in this interval, which we de-
note iy, on which Py is achieved by P(i)? Let’s summarize the assumptions made to
draw this desired conclusion:

1. We implicitly assumed that the price function was decreasing, or more generally,
that it is monotonic (increasing or decreasing), since at each step we assumed, in the
notation above, that the value at the midpoint was “between” the endpoint values:

P(by) < P(in) < P(ay).

Then we could choose one or the other of the subintervals [ay,, i, or [iy, b,] in the next
step. We know, or at least intuit, that this is true for most pricing functions in fi-
nance, and this can be demonstrated with the tools of chapter 9. But in a more gen-
eral application, P(i,) could exceed either endpoint value, or be less than either. In
such a case there could be more than one solution, and we would have to choose
which interval(s) we search to find them.

2. We implicitly assumed that the price function varies in a smooth and predictable
way, a property that will be called continuity in chapter 9. Specifically, we know from
the values of |F,| that the intersection of these closed sets will produce a unique
point, call it i. We also know that by construction, P(b,) < Py < P(a,), and given
the assumption of monotonicity, that P(b,) < P(i,) < P(a,), where i, is the midpoint
of F,. But to conclude from i, — iy that P(i,) — P(ip) requires an assumption on the
continuity of the price function P(7), which thankfully, is true for pricing functions as
will also be seen.

We will return to the analysis of interval bisection in chapter 5.

Exercises

Practice Exercises

1. Russell’s paradox is equivalently formulated as the Barber Paradox: In a town
there is a barber who shaves all the men that do not shave themselves, and only those
men. Define “set” A as the set of all men in the town that the barber shaves.
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(a) Is the barber a member of this set? Show that the barber’s set membership cannot
be determined as we would conclude the paradox that the barber shaves himself if
and only if he does not shave himself.

(b) Note that the paradox works because at the time, the barber was assumed to be
male. Show that if the barber were female, we could conclude that the barber is not a
member of this set, whether she shaves or not.

2. Prove De Morgan’s laws 2 to 4, using the operational definitions.
3. Demonstrate the following, using operational definitions:

(@ If G, = (—%, 1 +%), then () G, = [0,1], so the intersection of open sets can be
closed.

(b) If F, = [1,1 1], then (J F, = (0,1), so the union of closed sets can be open.

n
4. Show that if a set 4 contains n-elements, that the power set of A4, defined as the set
of all subsets of A, contains 2" elements. (Hint: Label the elements of A as
X1,X2,...,X,, and define a chooser function on the power set that produces decimal
expansions as follows:

f(B) =0.a1amazay . . . ay,
where

- 07 Xj ¢ B,
4= 1 Xj € B.

)

Show that f(B) = f(B’') iff B = B’, and that the range of / has 2" elements.)

5. Generalize exercise 4 to the case where 4 contains a countably infinite number of
elements, and show that with an abuse of notation, there are 2 elements in the
power set, where this symbol denotes the uncountable infinity of real numbers in the
interval [0, 1]. (Hint: Use the construction in exercise 4, and recall the binary expan-
sions of reals x € [0, 1].)

6. Demonstrate that the points in the Cantor set can be identified with base-3
expansions, 0.ajarazas . .., where a; = 0,2. (Hint: Show that points in F; all begin
as 0.0ayazay ... or 0.2ayazay ..., then show that points in F, are of the form:
0.ajarazay . .., where aja; = 00, 02,20, 22, etc.)

7. Develop another proof that the Cantor set has measure 0, using the fact that if we
denote by |F,| the total length of the intervals in F,, then by the construction,

Fusi| = 3|F|. (Hint: K = (2 B, but ([ F; = Fy.)

8. Show that the following sets have measure 0 by constructing a covering with inter-
vals that have arbitrarily small total length. (Hint: Recall that Y7 | & = 1.)
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(a) The integers Z

(b) {%|n = 1,2,3,...}

(c¢) The rationals QN (0, 1)

9. Forl <p< oo define a set, G c ]R2 to be “/,-open” if for any x € G there is an

r>0 so that B (x) = G where B\ (x) = {y| ||X—Y|| <r}, and where [x —y||,
denotes the /,-norm. The usual definition of open is then l,-open.

(a) Show that G is open if and only if it is /;-open. (Hint: Recall the graphs of equiv-
alent metrics in chapter 3.)

(b) Generalize part (a) to show that G is open if and only if it is /,-open for all p.
10. Define a set G < ]R” to be open if for any x € G, there is an r > 0 so that
B,(.d()cG where BY ()—{y|d(xy) r}.

(a) Exercise 18 of chapter 3 introduced a metric on R” that was not equivalent to the
l,-metrics. Specifically,

0, x=y,
dxn={; 3!

Determine all the open sets in R”.
(b) Define:

d(x,y) = {0, allx,y.

Prove that there is only one open set, and determine what it is.

11. The Heine—Borel theorem assures that a set is compact in R” if and only if it is
closed and bounded. Explain how to choose the finite subcovers of the following
open covers of the given sets:

(a) F=10,1] = |JB,(x;), where {x;} is an arbitrary enumeration of the rational
numbers in the interval and r > 0 is an arbitrary constant.

(b) F=[0,1] = {J B, (x)), where {x;} is an arbitrary enumeration of the rational
numbers in the interval, and r; > 0 are arbitrary values. If r; > r > 0, this can be
solved as in part (a), so assume that 0 is an accumulation point of {r;}.

(¢) F = Cr(0) = | ) C,(x;) in R?, where Cr denotes the closed 2-cube, or square,
about 0 of diameter 2R, and C,(x;) denotes the open cubes about points x;, with ra-
tional coordinates, of fixed diameter 2r > 0.

12. Show that the interval (0,1) is not compact by constructing an infinite open
cover for which there is no finite subcover. (Hint: Construct an open cover sequen-
tially, with [; = I4.)
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13. Use the method of interval bisection to determine the yields of the following
securities to four decimals (i.e., to basis points). Solve each in the appropriate nomi-
nal rate basis:

(a) A 10 year bond with 5% semiannual coupons, with a price of 98.75 per 100 par.

(b) An annual dividend common stock, last dividend of $10 paid yesterday and
assumed to grow at 8% annually, selling for $115.00.

(¢) A 5-year monthly pay commercial mortgage, with loan amount $5 million and
amortization schedule developed with a monthly rate of 6%, selling in the secondary
market for $5.2 million.

Assignment Exercises

14. Simplify the following expressions by applying De Morgan’s laws, and then
demonstrate that the expression derived is correct using the operational definitions.
(@ (ANB)‘UC

®) (BN[U, 4

© (U, 4.)°U(NyBp)"

Recall that (C)¢ denotes C.

15. Generalize exercise 3:

(a) Provide an example of a countably infinite collection of open G, = R so that
() Gy is open.

(b) Repeat part (a) so that ) G, is neither open nor closed.

(¢) Provide an example of a countably infinite collection of closed F,, = R so that
| ) Fy is closed.

(d) Repeat part (c) so that | ) F, is neither open nor closed.

16. Develop examples in IR? of the results illustrated in:

(a) Exercise 3

(b) Exercise 15

Can your constructions in parts (a) and (b) be applied in R"?

17. Generalize exercise 5 and show that if 4 is a set of any “cardinality,” the power
set of A has greater cardinality; that is to say, its elements cannot be put into one-to-
one correspondence with the elements of 4. (Hint: Assume there is such a correspon-
dence, and define f(a) as the 1:1 function that connects 4 and its power set. In other
words, f(a) = A,, the unique subset of A4 associated with a. Consider the set

A'={ala¢ A,}. Then there is an a’ € A so that this collection is produced by
f(a'); thatis, A’ = A,. Show thata’ € A, iff a’ ¢ A,.)
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Remark 4.21 In Cantor’s theory of infinite cardinal numbers, where “‘cardinal” is in-
tended as a generalization of the idea of the “number’’ of elements in a set, the symbol
Wo and read ““Aleph-naught,” denotes the cardinality of the integers, or “‘countably in-
finite.” Then Wy denotes the next greater cardinality, X, the next, and so forth, and
Cantor proved with the construction of this exercise that there is an infinite sequence
of cardinal numbers so that no one-to-one correspondence could be produced between
any two sets with different cardinalities. For example, we have already seen that a set
of cardinality Wy cannot be put into one-to-one correspondence with the set of real num-
bers, so the cardinality of the reals must exceed Wy. Now the cardinality of the power
set of a set of cardinality N is the same as the cardinality of the collection of all func-
tions from a set of cardinality X, to the 2-element set, {0,1}. This follows from the
construction in exercise S, since every set in the power set implies a function that has
value 1 on every element in this set, and value 0 on every element not in this set. The
notation used for the cardinality of this class of functions is 2% and exercise 5 assures
that Ry < 2™ and that 2% = ¢, the uncountable infinity of the real numbers, also called
the continuum. The power set of a set of cardinality N again has greater cardinality by
exercise 17, equal to the 2, and so Ry < 2™, This process continues, in turn producing
an infinite sequence of increasingly large infinite cardinals, since for all j, R; < 2%. The
continuum hypothesis, which is a statement that has been proved to be independent of
ZFC set theory (the 10 Zermelo—Fraenkel axioms with the axiom of choice), is that
there is no cardinal strictly between Yy and ¢ = 2%, and hence the next greater cardinal
Ry is 2%, In other words, R = 2%, The generalized continuum hypothesis states that
there is no cardinal strictly between X; and 2% for any j and so Njy1 = 2%. It has been
proved that this hypothesis is also independent of the ZFC set theory, and hence can
neither be proved nor disproved in that theory. In other words, mathematicians have
the option to add these hypotheses or their negative to the theory, and in each case
derive a consistent theory of cardinals.

18. Denote the Cantor set developed in this chapter by K3 to signify that in
each step, each closed interval from the prior step is divided equally into three-
subintervals, and the second open subinterval is removed. Define a generalized Can-
tor set, denoted K,,/,, for n, m integers, n > 3, m = 1,2,...,n, analogously. That is,
at each step, each closed interval of the form [£ L] from the prior step is divided
equally into n-subintervals, and the mth open subinterval removed.

(a) Defining K,,/, as the intersection of all the sets produced in these steps, confirm

that K,,,/, is closed.

(b) Show that K/, has measure 0 using the approach of exercise 7. Note the com-
plexity of proving this result by considering the sum of the lengths of the intervals
removed.
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(c) Show that K/, is uncountable by identifying points in this set with base-n expan-
sions, but without the digit m — 1. (Hint: Identify these expansions with base-(n — 1)
expansions of all real numbers in [0, 1].)

19. Demonstrate that the exercise 18(c) construction does not work if n = 2.
(a) Show that K,/ is a closed set of measure 0.

(b) Prove that K,,,, is countable and identify explicitly the elements of these two sets,
where m =1 orm = 2.

20. Generalizing exercise 8, show that the following sets in R? have measure 0,
which means that the set can be covered by a collection of balls with total area as
small as we choose.

(a) The “integer lattice”: {(n,m) |n,m e Z}

(b) {(%,#ﬂn,m eZ,nm# O}

© {(¢,r) ¢, r e Q}

21. Generalize exercise 9 to IR". (Hint: Recall (3.34).)

22. Show that the following sets are not compact by constructing an infinite open
cover for which there is no finite subcover.

@ {(x,») = R*||x] + [y <1}

(b) {(x,y) = R*|x>+ y> < R} for R > 0.

(©) {x = R"|x; # 0} where x = (x,x2,...,x,) (Hint: Try n = 2 first.)

23. Prove that:

(@) 01 < R” defined as 0; = {x < R"|x; € Q for all j} is dense for any ».

(b) For any k € N, the set Qr = IR” defined as Qy = {x =« R” |x}‘ e @ for all j} is
dense for any n. (Hint: Show QO < Oy.)

24. Use the method of interval bisection to determine the yields of the following
securities to four decimal places (i.e., to basis points). Solve each in the appropriate
nominal rate basis:

(a) A 15-year bond with 3% semiannual coupons, with a price of 92.50 per 100 par.

(b) A semiannual dividend common stock, last dividend of $6 paid yesterday and
assumed to grow at a 5% semiannual rate, selling for $66.00.

(¢) A perpetual preferred stock with quarterly dividends at a quarterly dividend rate
of 7%, priced at 105.25 per 100 par.
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5.1 Numerical Sequences

5.1.1 Definition and Examples

The mathematical concept of a numerical sequence is deceptively simple, and yet its
study provides a solid foundation for a great many deep and useful results as we will
see in coming chapters.

Definition 5.1 A numerical sequence, denoted {x,}, {z;}, and so forth, is a countably
infinite collection of real or complex numbers for which a numerical ordering is
specified:

{xn} = X1,X2,X3,....

For specificity, the sequence may be called a real sequence or a complex sequence. A
numerical sequence is said to be bounded if there is a number B so that |x,| < B for
all n. A subsequence of a numerical sequence is a countably infinite subcollection that
preserves order. That is, { y,} is a subsequence of {x,} if

Ym =Xy, and Ny > npy, for all m.

Remark 5.2 In some applications a numerical sequence is indexed as {x,},_, rather
than {x,}"

n=1-

Note that the notion of a numerical sequence requires both a countable infinite
collection of numbers as well as an ordering on this collection. For example, while
the collection of rational numbers is, as we have seen, a countably infinite collection
of real numbers, it is not a numerical sequence until an ordering has been imposed.
One such ordering was introduced in section 2.1.4 on rational numbers to prove
countability, although this ordering counted each rational infinitely many times.
However, there are infinitely many other orderings, in fact uncountably many.

Order is particularly important because one is generally interested in whether or
not the numerical sequence “‘converges” as n — oo. For example, even without a for-
mal definition of convergence, it is intuitively clear that the following sequences be-
have as indicated:

Example 5.3

1. y, = ”% converges to 0 as m — 0.
=D"

2. x, = ~—,~ converges to 0 as n — 0.

- )
3. a;= ’—l converges to 1 as j — oo.
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4. ¢; = (—1)"% does not converge as j — oo.

’ 3
5z, = 4n2ﬁ1*0500 + 38y converges to 0.5 + 0.62 as n — oo.

5n346
m n=72m
6. b, = ’ does not converge as n — oo.
—-m, n=2m+1

7. wi = k diverges to oo as k — oo.

8. uj = —j? diverges to —o0 as j — oo.

On an intuitive level, cases 1 and 3 of example 5.3 not only converge, but converge
monotonically, which is to say that both sequences get closer to their respective limits
at each increment of the index. Case 2 also converges but not monotonically because
of the alternating signs. Case 4 “almost’ converges, in that “half” of the sequence is
converging to a limit of 41, while the other half is converging to a limit of —1. Spe-
cifically, case 4 has two convergent subsequences:

{rn} = {ewm}p = 1,

{J’,/?} = {C2n—1} — —1.

That case 5 converges is made more transparent by rewriting the rational func-
tions, for example,

2n—>5 2-2

n

47+ 1000 4+ 1000

which converges to % Cases 6, 7, and 8 all “explode” in a sense, but cases 7 and 8
seem to be reasonable candidates for a definition of converge to oo, or converge to
—oo, for which we will use the language diverge to +oo.

These examples provide a range of sample behaviors for numerical sequences.
After formalizing the definition of convergence that will capture the intuition of all
convergent examples, we will develop several properties of numerical sequences and
see that the comment above on case 4 generalizes. That is, any bounded numerical
sequence has at least one convergent subsequence.

5.1.2 Convergence of Sequences

The following definition of convergence of a numerical sequence is formal, and will
be discussed below to provide additional intuition. But at this point, we note the key
intuitive idea that this formality is attempting to capture. The notion of convergence
X, — x means more than just “as n increases, there are terms x, that get arbitrarily
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close to x.” This is a notion that is weaker than convergence and will be addressed
below. The stronger property defined here is that “as n increases, all terms x,, get ar-
bitrarily close to x.”” More precisely:

Definition 5.4 A numerical sequence {x,} converges to the limit x as n — oo if for
any € > 0 there is an N = N () so that

|x, — x| < e whenever n=>=N. (5.1
In this case we write

Iim x,=x or x,— X.
n—oo

In (5.1) the notation |x, — x| is to be interpreted in terms of the standard norm in R
and € given in (2.3) and (2.2), respectively. A real sequence {x,} diverges to o as
n — oo if for any M > 0 there is N = N(M) so that

X, > M whenever n> N,

and diverges to —oo as n — oo if for any M > 0 there is N = N(M) so that

X, < —M whenever n> N.

In these cases we write, as appropriate,

lim x, =400 or x,— +o0,
n— oo

In all other cases we say that {x,} diverges as n — co, or simply, does not converge.

Definition 5.5 A real sequence {x,} is monotonic if any of the following conditions
are satisfied:

Xp < Xpy1 for all n: strictly increasing

Xp < Xpu1 for all n: increasing, or nondecreasing

Xp > Xpp1 for all n: strictly decreasing

Xp = Xuy1 for all n: decreasing, or nonincreasing

A real sequence {x,} converges monotonically to the limit x as n — oo if {x,} is mono-
tonic and converges to the limit x as n — oo.

Note that while convergence of a complex sequence is easily defined with the same
notation as that for a real sequence, as was noted in section 2.1.6 on complex num-
bers, there is no ordering of € as there is in R, and hence one does not have the
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notion of a monotonic complex sequence or that of monotonic convergence. Note
also that again with the exception of monotonicity, these definitions generalize with-
out change to vector sequences x,, € IR”, only where (2.3) is replaced by the standard
norm in (3.3). Moreover this notion of convergence only depends on the norm up to
equivalence. So, if x, — x under the standard norm, it will also converge relative to
the /,-norms for 1 < p < oo, or any other equivalent norm. This more general notion
will be discussed below.

Remark 5.6 The concept in the definition above, that “for any € > 0 there is an
N = N(e),” can be a difficult one to grasp initially. But this theme is repeated time
and again in the following chapters, so we pause a moment here to develop it a bit fur-
ther. The difficulty some have is that the intuitive notion of a limit, that

“x, gets closer to x as n gets large”

seems simple enough. But the detail that needs to be addressed is:

« Does convergence mean that we can find values of x, that get arbitrarily close to x?

*+ Or does convergence mean that all values of x, eventually get arbitrarily close to x?

For some purposes, the former weaker definition may suffice, and this idea is essen-
tially captured in the notion of accumulation point or limit point introduced in section
4.2.5. But for many applications we want the stronger definition of convergence in that
not just some x, get arbitrarily close to x as n — oo, but all x,, get arbitrarily close to x
as n — co. This is the reason to insist that |x, — x| < € for all n > N.

The formal definition of convergence may seem to suggest that we can randomly
generate any €, and as long as there is an associated N with the needed property, we
are done and have proved convergence. Actually the terminology “for any ¢ > 0
there is an N = N(€)” is not to be interpreted as if e is arbitrarily selected by the
mathematician. The idea is instead that the mathematician wants to be sure that
there is a sequence of epsilons ¢; — 0, for example, ¢; = %, so that for every term in
that sequence, an associated N; = N(¢;) can be found, resulting in |x, — x| <¢;
whenever n > N;. In other words, for any such ¢; there is an N; so that all terms of
the sequence from term xy, onward are closer to x than ¢;. Logically, as ¢; — 0, we
expect to have that N; — co. That is, as one insists that sequence values be increas-
ingly close to their limit, it may be necessary to exclude more and more of the
sequence’s initial terms. So a good intuitive model for the expression “for any € > 0
there is an N = N(e) so that...” is that “there is a sequence of epsilons, ¢; — 0, and
associated N; = N(¢;), so that....”
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The payoff from this definition is that one immediately has error bounds
—€6 < X=X, <€

as long as n > N;, so any such x,, could be used as an approximation to x with the
error bounded as noted.

Example 5.7 Let’s prove the convergence of cases 3 and 5 in example 5.3 above to the
intuited limits of 1 and 0.5 + 0.6i. First off, for case 3,

1
laj — 1] = —.

J
Given € > 0, to have |a; — 1| < € then requires that j > % So N is chosen as any inte-
ger that exceeds this value. For case 5 of example 5.3, we use the triangle inequality,
and recalling that |i| = 1, we write

555 036
\— (0.5 +0.60)| = -
2 = 05+ 060 = | 7000 "5 v 6
555 0.36
< +
4n +1000 543 +6
%
4+ 1000

This last inequality follows since 5n 4 6 > 4n 4 1000 for n > 10, say, and this is good
enough. Given e > 0, to have |z, — (0.5 + 0.6)| < € requires that n > 3619%¢_So N is
chosen to exceed this value.

5.1.3 Properties of Limits

The first observation about the definition of convergence, which is not true for the
weaker notion of accumulation point, is that if a numerical sequence converges, the
limit must be unique.

Proposition 5.8 Iflim, ... x, = x and lim,,_,., x, = X', then x = x'.

Proof This result is obvious if x = +o0: by definition, a sequence cannot have both
a finite limit and diverge to +oco, nor can it have both oo and —oo as limits. If x and
x" are both finite, then for any e > 0, there is an N = N(e) so that |x, — x| < € and
|x;, — x| < e for n > N. Actually the definition of limit assures the existence of N
and N,, one for each limit, so we simply define N = max(Nj, N,). By the triangle
inequality,
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|x — x'| < |x— x| + |x0 — X'| < 2e.
As this is true for any € > 0, we conclude that x = x'. [

The next observation concerning convergence is that convergence implies
boundedness.

Proposition 5.9  Let {x,} be a convergent numerical sequence with x, — x; then {x,}
is bounded.

Proof Fix any € > 0, for example, e = 1, and let N be the associated integer so that
|x, — x| < 1 whenever n > N. Then by the triangle inequality,

|xn|:|xn_x+x‘<1+|)€| forn> N.

For n < N, |x,| < max, <y|x,|, which is also finite. So all |x,| are bounded by the
larger of 1 + |x| and max,<n|x,|. [

Remark 5.10 Note that case 4 of example 5.3 above shows that boundedness does not
guarantee convergence.

It is relatively easy to show that the notion of convergence is preserved under
arithmetic operations:

Proposition 5.11 Let {x,} and {y,} be convergent numerical sequences with x, — x,
and y, — y, and let a be a real or complex number. Then:

. ax, — ax.

e Xp T+ Yn—x+ ).

. &= Laslong as y # 0, and y, # 0 for all n.
. % — % as long as y # 0, and y, # 0 for all n

1
2
3. X — Xy
4
5

Proof In each case we show that convergence is guaranteed by convergence of the
original sequences:

1. |ax, — ax| = |a| |x, — x| by either (2.3) or (2.2), so assuming a # 0, |ax, — ax| < €
if |x, — x| < Tk If a = 0, there is nothing to prove.

2. |(xp+ yu) — (x+ »)| < |xy — x|+ |yn — | by the triangle inequality in (2.7), so
[(xy + yu) — (x + »)| < € if each of the absolute values on the right-hand side are
bounded by 5.
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3. Again, by the triangle inequality, |x,y, — xy| < X0 — Xu¥| + | X0y — xy| =
|xul [yn = ¥+ |¥| |x0 — x|. So if y #0, |x,1y,, xy| < eif |y, — y| <55, where B is
an upper bound for {|x,|}, and |x, — x| < 2\y| If y = 0, the second term drops out.
+ =1 = "%57|- Now, since y # 0 and y, # 0 for all n, we can take e = 0.5[y|.
We know that by convergence y, — y, there is an N so that |vn — V| < 0.5|y| for
n > Ny. Now for n > Ny, |y,| > 0.5|y], and so |y,y| > 0.5]y|* and | L 1) o 2l
Given arbitrary e > 0, we have that | L 1‘ < e for n > max(N, Ny), 1f N is chosell to
have |y, — y| < 0.5]y|%

5. This follows from parts 3 and 4, since x" = Xp (}1 ) ]

While we have seen by example that boundedness does not guarantee convergence,
we have the following result that boundedness assures the existence of a convergent
subsequence, generalizing case 4 of example 5.3 above.

Proposition 5.12 Let {x,} be a bounded numerical sequence. Then there is a subse-
quence {y,} < {x,} and y so that y,, — y.

Proof Because both R and € are metric spaces under the standard norms defined
in (2.3) and (2.2), we have by proposition 5.9 that there is a closed ball in R or € so
that {x,} = Bg(0) for some R. By the Heine—Borel theorem, closed balls are com-
pact in both R and C, so we can apply proposition 4.17 that any infinite collection
of points in a compact set must have an accumulation point. That is, {x,} has an
accumulation point y € Bg(0). So for any r > 0, B.(y) N {x,} # 0. Next we choose
rm — 0, and for each m choose an arbitrary y,, € B,, (y) N {x,}. Then y,, — y, since
for any € > 0 we can choose any ry < ¢, and by construction, y,, € B,, (y) for all
m > N. That is, |y, — y| < e forallm > N. ]

The apparent arbitrariness in this proof implied by “choose an arbitrary y,, €
B, (y)N{x,}” may surprise the reader. However, not only will there be for a given
y many sequences {y,,} with y,, — y, but there may also be many such accumula-
tion points y. For example, every point of the sequence can be an accumulation
point, and moreover the total number of such accumulation points may be uncount-
ably infinite.

Example 5.13  Let {x,} be an arbitrary enumeration of the rational numbers in [0, 1].
Then every y € [0, 1] is an accumulation point. This is easily seen by taking an arbi-
trary y = 0.dydhds ... as a decimal expansion. If y is a rational number ending in all
0s, we first rewrite this as an equivalent decimal ending in all 9s. For example, 0.5 =
0.49999 . ... The subsequence is then formed by looking at the rational truncations of r:
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0.dy,0.d1d>,0.d\drd3,0.dydrdzdy, . . .

Define y; = 0.d,. Clearly, 0.d, = x,, for some ny. The next term of the subsequence,
V2, is the first decimal truncation, 0.d\dxds . . . dy, so that 0.didhd; . . . d,, = x,,, where
ny > ny. Continuing in this way, we obtain a subsequence {y,,} with y,, — .

*5.2  Limits Superior and Inferior

The preceding example illustrates that a bounded numerical sequence not only has
an accumulation point as well as a subsequence convergent to that accumulation
point, but that it may have a great many such accumulation points. For this reason
the notions of limit superior and limit inferior of a sequence have been introduced.
These are defined to equal the least upper bound or Lu.b., and greatest lower bound,
or g.l.b., respectively, of the collection of accumulation points, although unfortu-
nately, not in an immediately transparent way. A small but important application
of these notions will be seen in chapter 6 in the statement of the ratio test for series
convergence.

In addition these notions of limits have great utility in the advanced topic of real
analysis. But rather than deferring their introduction to that more abstract context,
we introduce limits superior and inferior here where the essence of these ideas is
more transparent.

Before defining formally and justifying the interpretations of limits superior and
inferior, we first define the l.u.b. and g.l.b. and introduce alternative notation.

Definition 5.14 Let {x,} be a collection of real numbers. The least upper bound or
supremum is defined by

Lu.b.{x,} = sup{x,} = min{x|x > x, for all o}. (5.2)

If {x,} is unbounded from above, we define 1.u.b.{x,} = sup{x,} = oo. The greatest
lower bound or infimum is defined by

glb{x,} = inf{x,} = max{x|x < x, for all o}. (5.3)
If {x,} is unbounded from below, we define g.1.b{x,} = inf{x,} = —oc0.
Notation 5.15 It is common to write l.u.b. as lub and g.1.b. as glb.

Next we state the formal definitions of the limits superior and inferior, and then
work toward the demonstration that these achieve the stated objective concerning
the g.I.b. and l.u.b. of accumulation points of the given sequence.
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Unfortunately, this is another example of where a lot of carefully positioned words
are needed to define an idea that has a relatively simple intuitive meaning.

Definition 5.16 Let {x,} be a numerical sequence. If sup{x,} = oo, meaning there
exists no U so that x, < U for all n, then we define the limit supevior of {x,} to be
o0, and denote this as

lim sup x,, = 0.

n—oo

If there exists a U so that x, < U for all n, let U, = sup,,~ ,{xn} and define

limsup x, = lim U,. (5.4)
n—o0 n—o
Similarly, if inf{x,} = — oo, meaning there exists no L so that L < x, for all n, then we

define the limit inferior of {x,} to be —co, and denote this as

liminf x, = —oo0.
n—oo

If there exists an L so that L < x, for all n, let L, = inf,,> ,{x,,} and define

liminf x, = lim L,. (5.5)
n—aoo n—aoo

Notation 5.17 In some mathematical references, the limit superior of {x,} is denoted

by lim,_, ., X, and the limit inferior of {x,} is denoted by lim,, ., x,, but throughout

this book we will use the more explicit notation above.

Before demonstrating that these rather abstract definitions provide the l.u.b. and
the g.1.b. of the collection of accumulation points of the sequence, we address a tech-
nicality within the definition above. That is, both the definition of lim sup in (5.4) and
that of liminf in (5.5) involve limits of sequences as n — oo. It is natural to wonder
why such limits exist when nothing but one-sided boundedness is assumed of the
original sequence {x;}.

The following proposition provides the missing detail because both sequences, U,
and L,, are monotonic as can be demonstrated by

U, = sup{x,} = sup {xn}= Uy, (5.6a)
mx=n m>n+1

L, = inf {x,} < inf {xn}= Lyt (5.6b)
m>n m>n+1

Consequently U, is monotonically decreasing, and L, monotonically increasing, al-
though in neither case must this monotonicity be strict.
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The next result is that a monotonic sequence either converges, or diverges to +oo,
depending on whether it is bounded or unbounded.

Proposition 5.18 If {x,} is monotonically decreasing, then lim,_.., x, = —oo if this
sequence is unbounded from below, otherwise, there is an x such that lim,_. , x, = x.
Similarly, if {x,} is monotonically increasing, we have that lim,_ . x, = o0 or
lim, ., x, = X, depending on whether this sequence is unbounded from above or
bounded, respectively.

Proof The unbounded cases are straightforward. For example, if unbounded from
below, we have for any positive integer M there is an N so that xy < —M, but by the
decreasing monotonicity assumption, we conclude that

X, < —M whenever n> N,

and we have lim,_,, x, = —oo. If bounded, we know from proposition 5.12 that
{x,} has an accumulation point x and a subsequence {y,,} so that y,, — x. By defi-
nition of this convergence, we have that for any e > 0 there is an N = N(e) so that
|ym — x| < e when m > N. We now show that x is in fact the limit of the original se-
quence, and indeed lim,_,, x, = x. First, choose N’ defined by xy: = yy,. Next, if
{x,} is monotonically decreasing, for any n > N’ choose y» and p+1 so that
and Ym(n)+1 <X < Ym(n)- Then

1% = X[ < [V — X| <¢,

since by assumption m(n) > N. The result is analogously proved in the opposite
monotonicity case, except that we have ;) < Xi < Ppun)+1 and

|xn - x| < ‘ym(n)H - x| <e u

We now return to the relationship between limits superior and inferior, and the ac-
cumulation points of the sequence {x,}. Given the formality in the definitions, it may
not be apparent how the definition of limit superior and limit inferior captures the
intention set out earlier, that being, to define the g.l.b. and the L.u.b. of all the accu-
mulation points of {x,}. The next proposition establishes this connection.

Proposition 5.19 Given a sequence {x,}, let {zx} denote the set of accumulation
points. Then

limsup x, = Lu.b.{z}, (5.7a)

n—oo

liminf x, = g.L.b.{z}. (5.7b)
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Proof First off, if the sequence {x,} is unbounded from above, then by defini-
tion, there is a subsequence {y,} so that y, — oo and hence oo € {z;}, but also
limsup,_, ., x, = co. Similarly, if unbounded below, there is a subsequence {y;} so
that y; — —oo, and we conclude that —oo € {z;}, but also liminf,_.,, x, = —c0. So
in these cases the intended goal regarding the collection of accumulation points is
achieved. On the other hand, if bounded above, then since the sequence {U,} must
be monotonically decreasing, it has a finite limit or diverges to —oo by the proposi-
tion above. If U, — U’, a finite limit, we claim that U’ is the supremum or lL.u.b. of
all accumulation points. To see this, we have by definition of U, — U’, that for any
e > 0 there is an N so that |U, — U’| < ¢ for n > N. Now, since U, = sup,,- ,{xm},
we can find a value of x,,,(,) so that |U, — x| < %, say. Define y, = X,(,). Then we
have that y, — U’, since by the triangle inequality,

1
| yn — U/| < |y = Ui +|U, - Ul| <ée+-—,
n

and hence U’ € {z;}. Also there can be no subsequence {y,} so that y, — U”" with

U” > U’, since by definition of U, we have U, > sup{y} | yjf = X, and m > n}.
Hence, since U, — U we cannot have y, — U” with U" > U’.

The cases where U, — —o0, L, — L' < o0, and L, — oo are reasoned similarly.

]

Example 5.20 Define the sequence

3—(=1/n)", n=73m,
X, =<9 (=D)"((n+1)/n), n=3m+1,m=0,1,2,...,
(=3/4)", n=3m+2.

This sequence has four accumulation points. The subsequence with n = 3m converges to
3, the subsequence with n = 3m + 1 has two subsequences that converge to —1 and +1,
and the subsequence with n = 3m + 2 converges to 0. So we conclude that by the prop-
osition above, it must be the case that limsup,_,, x, =3 and liminf,_, x, = —1.
Now

Un = SUP{Xm} =3+ < 1) 5

T
m=n n

"
1
L, = inf foon}t = — 2

m>=n n
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where n' = min{3m|3m > n and 3m is even} and n” = min{3m + 1|3m+ 1 > n and
3m+1isodd}. We see that each of {U,} and {L,} are convergent monotonic se-
quences, and that U, — 3 and L,, — —1.

In summary, we conclude from this proposition that the limit superior equals the
supremum of all accumulation points, and the limit inferior the infimum of all ac-
cumulation points of {x,}. Based on this result, the following proposition’s conclu-
sion cannot be a surprise. In theoretical applications this result can provide a useful
and powerful way of finding the limit of a convergent sequence, since it is sometimes
the case that the limits superior and inferior are easier to estimate than the ac-
tual limit itself, as each allows one to focus on what is often a more manageable
subsequence.

Proposition 5.21 Let {x,} be a numerical sequence. Then, for —oo < x < o0,
lim,, ., x, = x if and only if
liminf x, = limsup x, = x.

n— oo n—o0

Proof We consider three cases. The proof is a good example of “following the def-
inition” to the logical conclusion:

1. For x = oo, if x,, — o0, then for any M there is an N so that x, > M forn > N.
Hence {x,} is unbounded from above and limsup, x, = . Also L, =
inf>,{xm} = M, for n > N, so L, — o as n — oco. That is, liminf, ., x, = oo.
Conversely, if liminf,_., x, = limsup,_,, x, = o, then L, =inf,,>,{x,} — oo as
n — oo. That is, for any M there is an N so that L, > M for n > N. Hence, by def-
inition of L,, x, > M for n > N and x,, — o0.

2. For x = — o0, the argument is identical.

3. For —o0 < x < o0, if x, — x, then for any e there is an N so that |x, — x| < ¢ for
n>N.Thatis, x —e < x, <x+eforn>N,and hence x —e < L,, U, < x+ ¢, and
we conclude that liminf,_., x, = limsup,_,, x, = x. Conversely, liminf,_.., x, =
limsup,,_,,, x, = x implies that for any e there is an N so that |L, — x| < € and
|U, — x| < € for n > N, and hence by the definition of U, and L,, we conclude that
|x, — x| < eforn >N and x, — x. ]

The next result says that the interval with endpoints equal to the limits superior
and inferior, if expanded arbitrarily little, will contain all but finitely many values of
the original sequence {x,}.
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Proposition 5.22 [f LS = limsup, .., x, and L' = liminf, ., x,, then for any ¢ > 0
there is an N so that for alln > N,

L'—e<x,<L%+e (5.8)

Proof We proceed with a proof by contradiction, illustrating the upper inequality.
Assume that for some e > 0 there are infinitely many sequence terms satisfying
x; > LS + ¢. Then, for any n, U, = sup,,-,{xn} > L5 + ¢, and hence limsup,_,, x,
=lim,_., U, > L% + ¢, contradicting the definition of L. m

Example 5.13 discussed above, on an arbitrary enumeration of rationals in [0, 1],
also introduces an issue that will play a critically important role in subsequent chap-
ters. That being, if a sequence {x,} = X, where X is a subset of IR or € and where
X, — X, 1s x necessarily an element of this subset? The answer is “no,”” and we pro-
vide two examples of what can happen.

Example 5.23

1. If X = (0,1), then both {%} and {1 — %} converge, but not to a point in X. On the
other hand, any convergent sequence {x,} < [a,b] = (0,1) must converge to a point
in X.

2. If X = Q, the rational numbers, then as example 5.13 demonstrates, some sequences
converge to a point in X and some converge to a point outside X.

In the next section we generalize the notion of sequence to an arbitrary metric
space where x € X becomes an explicit component of the criterion for convergence.

*5.3 General Metric Space Sequences

The preceding section focused on properties of numerical sequences. However, if one
reviews the various proofs, it becomes clear that with one exception, no special prop-
erty of R or C is used other than the existence of a metric or distance function,
d(x, y) = |x — y|, which was used as a measure of “closeness.” The one special prop-
erty of R or € we used was the Heine—Borel theorem, which assures us that a
bounded sequence lies in a compact set and hence has a convergent subsequence.
Consequently it should be expected that we can define sequences {x,} = R” and
their convergence under the standard metric, defined by (3.18), or under any one of
the /,-norms defined in (3.10). This notion of convergence would satisfy all the prop-
erties in the preceding section, since in this context we once again have the benefit
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of the Heine—Borel theorem. Moreover the notion of convergence under equivalent
metrics d and d’ are identical. Namely x,, — x under d if and only if x,, — x under d’.

More generally, if {x,} = X, where (X,d) is a general metric space, convergence
can again be defined, and virtually all properties are satisfied. In this general context,
however, the definition of convergence must explicitly require that x € X. That is be-
cause for a general metric space if {x,} = X and x ¢ X, the notion of d(x,,x) < € is
not well defined. Also we note that we have two issues in this general metric space
setting that do not exist in IR, R", or C:

1. In a general metric space, numerical operations like addition may not be defined.
If they are defined, the proposition above on arithmetic operations on sequences with
limits remains valid.

2. In a general metric space, we do not necessarily have the Heine—Borel theorem.
That is, a closed and bounded set need not be compact (the converse is true as
proved in proposition 4.17). Consequently a bounded sequence need not be con-
tained in a compact set, and hence it need not have a convergent subsequence.

In this section we document definitions and properties, the latter generally without
proof, which the reader can supply as an exercise by redeveloping the arguments
above.

Definition 5.24 Let (X, d) be a metric space. A sequence, denoted {x,}, {z;}, and so
forth, is a countably infinite collection of elements of X for which a numerical ordering
is specified.:

{Xn} =X1,X2,X3,....

A sequence is bounded if there is a number D and an element y € X so that d(y,x,) < D
for all n. A subsequence of a sequence is a countably infinite subcollection that pre-
serves order. That is, {y,,} is a subsequence of {x,} if

Y = Xn, and Ny > n,  for all m.

We begin by noting that in the definition of bounded, there is nothing special
about the identified y.

Proposition 5.25 If {x,} = X, a metric space, and {x,} is bounded, then for any
y' € X there is a D(y') so that d(y',x,) < D(y’) for all n.

Proof Lety and D be given as in the definition of bounded, and let y’ € X be arbi-
trary. Then by the triangle inequality,
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d(y',x,) <d(y',y) +d(y,x,) <d(y',y) + D.
Hence D(y') =d(y’,y) + D. (]
Next we define convergence.

Definition 5.26 A4 sequence {x,} = (X, d), a metric space, converges to a limit x € X
as n — oo if for any € > 0 there is an N = N (¢) so that

d(x,,Xx) < € whenever n>=N, (5.9)
and in this case we write

Iim x, =x or Xx,—X.
n—oo

If {x,} does not converge, we say it diverges as n — oo, or simply does not converge.

We note in the general context of a metric space, which of course includes IR, C,
and IR”, that the concept of convergence is not as metric dependent as it first appears.
We state the result for equivalent metrics, also called topologically equivalent, but
recall this will also be true for Lipschitz equivalent metrics, since this latter notion
implies the former by proposition 3.41.

Proposition 5.27 Let X be a metric space under two equivalent metrics, dy and d>.
Then a sequence {x,} = X converges to x in (X, dy) iff {x,} converges to x in (X, d>).

Proof Since x, — x in (X,d;), we have that for any € > 0 there is an N = N(¢€’)
so that d)(x,,X) < ¢’ whenever n > N(¢’). In other words, {X,},~ v, = BS)(X), the
open ball about x of d;-radius €¢’. To show convergence in (X, d,), let € > 0 be given.
By (3.35) there is an €’ so that BS)(X) c Biz)(x). But from above, we have for this €,

(X} vy < BU(x) « B (x),

80 d»(x,,X) < € for n > N(€'). The reverse demonstration is identical. (]

We now record these convergence results in this general context, where (X, d) is a
given metric space.

Proposition 528 If {x,} = X is a convergent sequence with lim, ., X, =X and
lim,_, o X, = X', then x = Xx/.

Proposition 5.29 If {x,} = X is a convergent sequence with {x,} — X, then {x,} is
bounded.
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The next proposition requires a caveat, because a general metric space need not
have arithmetic operations. Recall that by definition, X can be any collection of
points on which a metric is defined. However, many metric spaces of interest are vec-
tor spaces that at least allow addition and scalar multiplication, so we record this
result without proof as the proof is identical to that above. These vector spaces are
called (real or complex) linear metric spaces, depending on whether the vector space
structure is over the real or complex numbers. Of course, R” is the classic example of
a real linear metric space, and correspondingly C” is the classic example of a com-
plex linear metric space.

Proposition 5.30 Ler {x,} and {y,} be convergent sequences in a linear metric space
X with {x,} — x, and {y,} —y, and let a be a scalar. Then we have:

1. ax, — ax.

2. X, +y, = X+Yy.

As noted above, a bounded sequence in a general metric space need not be con-
tained in a compact subset of that metric space. It will be contained in a closed and
bounded subset, but in general, this does not necessarily imply compact. Hence, if
this sequence is not contained in a compact set, it need not have an accumulation
point and hence need not have a convergent subsequence. One approach to ensuring
that every bounded sequence is contained in a compact subset is to introduce the no-
tion of a compact metric space.

Definition 5.31 A metric space (X ,d) is compact if every open cover of X contains a
finite subcover.

Proposition 5.32  Let {x,} = R" be a bounded sequence, or {x,} = X a general se-
quence in a compact metric space. Then there is a subsequence {y,,} < {x,} so that
Y, — Y where'y € R" in the first case, and'y € X in the second.

Proof In the first case, boundedness implies that {x,} = Bgr(x) for any x e R”,
where R in general depends on x. Now in IR”, Bg(x) is closed and bounded and
hence compact by the Heine—Borel theorem, so an accumulation point exists in
Bgr(x) by proposition 4.17. Consequently a convergent subsequence can be con-
structed as in proposition 5.12. If X is compact, we argue by contradiction and as-
sume that there is no such accumulation point. Then about each point x,, an open
ball can be constructed, B, (X,), that contains no other point of the sequence. We de-
fine the set 4 by 4 = X ~ [(J B,,2(x,)], which is open since the complement of 4 in
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X is the closed set [| ) B, 2(x,)]. With 4 and {B,, (x,)} we now have an open cover
of X that admits no finite subcover, since each B,,(x,) contains only one point of X
This contradicts that X is compact, and hence {x, } must have an accumulation point
in X. ]

It may not be surprising, at least on an intuitive level, that in a compact
metric space a sequence has a subsequence that clusters around some point and
“wants” to converge to this point. What should be surprising in this general case is
that this subsequence converges to a point y € X. The question is, why can X have
no “holes” so that the bounded sequence converges to the hole and not to a point
in X?

Example 5.33 Using the standard metric, imagine the “‘apparently compact” metric
space X = [0,1]NQ made up of all rational numbers q with 0 < g < 1. It is easy to
produce a sequence in X that converges to a hole, which would be an irrational
v €10,1], simply by defining this sequence in terms of the rational decimal approxima-
tions to y. This appears to contradict proposition 5.32, so it is best to evaluate our
assumptions more carefully. Since X is clearly a metric space under the standard met-
ric, it must be compactness that is in question. Is X compact?

To be compact, it must be the case that any open cover of X admits a finite open
subcover. So there must be an infinite open cover that cannot be so reduced. Recall
how such a cover was constructed in exercise 12 of chapter 4 to show that (0,1) was
not compact. The trick was that since 0 did not need to be covered, a collection of
slightly overlapping open intervals could be constructed that collectively covered all
real numbers between 0 and 1, but no finite subcover accomplished this. That same trick
works here, since we can split X using any irrational y as

X =[0,y)NQIU[(y,1]NQ].

Now the construction of that exercise can be applied to [0, y) and (y, 1] since neither is
compact, producing an open cover of [0, y) U (y, 1] that has no finite subcover. As this is
also now an open cover for X that has no finite subcover, we have demonstrated that X
is not compact.

An alternative and simpler argument to show that a compact metric space can
have no holes is to apply what we know from proposition 4.17, that a compact set
is closed and hence it must contain all its limit points. It is apparent that X in the
example above does not contain all its limit points, so it is not closed and cannot be
compact.
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5.4 Cauchy Sequences

5.4.1 Definition and Properties

In practice, given a sequence {x,} = X, where X is Euclidean or a metric space, the
principal challenge in applying the definition for convergence is that this definition
requires knowledge of the limiting value x. The notion of a Cauchy sequence, named
for Augustin Louis Cauchy (1759-1857), allows one to determine in many cases if a
sequence converges without first knowing its limiting value. The key defining idea is
that all pairs of points in the sequence will be found to be arbitrarily close if the index
values are required to exceed some value. Specifically:

Definition 5.34 A sequence {x,} = X, where (X,d) is a metric space, is a Cauchy
sequence, or satisfies the Cauchy criterion, if for any € > 0, there is an N = N(e) so
that

d(xn, Xpm) < € whenever n,m> N. (5.10)
Example 5.35

1. Consider the sequence in case 3 of example 5.3: a; = % Then by the triangle
inequality,
1 1

<L
n m

—m

n
lay — am| =
mn
Consequently, to have |a, — ay| < €, choose n,m > % In other words, define N as any
integer which exceeds %

2. Consider the sequence defined by the harmonic series: x, = > 1

17 Then given m,

consider n = 2m:

| |_§’”:1> 1y 1
X2om Xm| = . m2m —2

Jj=m+1 /

In other words, no matter how large m is, the sum of the terms from m to 2m exceeds %,
so this sequence is not a Cauchy sequence and cannot converge. Since this sequence is
apparently monotonically increasing, we conclude that x, — 0.

We note that in the general context of a metric space, which of course includes R,
C, R”, and C", the concept of a Cauchy sequence is not as metric-dependent as it
first appears.
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Proposition 5.36 Let X be a metric space under two equivalent metrics, d, and d,.
Then a sequence {x,} = X is a Cauchy sequence in (X,dy) iff {x,} is a Cauchy se-
quence in (X, d>).

Proof The proof is identical to that in proposition 5.27 for convergence of a se-
quence and is given as exercise 13(a). (]

The definition of a Cauchy sequence is somewhat more complex than that of con-
vergence to x because the condition in (5.10) applies to all pairs (r,m) of indexes that
exceed N rather than the simpler statement concerning all single indexes that exceed
N. This definition can be reframed in a logically more simple statement, although
this is rarely if ever so noted. The proof of the equivalence of these definitions is
assigned in exercise 7.

Definition 5.37 A4 sequence {x,} = X, where (X,d) is a metric space, is a Cauchy
sequence, or satisfies the Cauchy criterion, if for any ¢ > 0, there is an N = N(¢) so
that

d(xn,x,) <€ whenever n>=N. (5.11)

We next investigate the relationship between the property of a sequence converg-
ing and the property of a sequence being a Cauchy sequence. First off, we show that
just like convergent sequences, every Cauchy sequence in a metric space is bounded.

Proposition 5.38 If (X,d) is a metric space and {x,} = X a Cauchy sequence, then
{xn} is bounded.

Proof Let € > 0 be arbitrarily chosen. Since {x,} is a Cauchy sequence, there is an
N so that d(x,,x,) < € whenever n,m > N. In particular, d(x,,xy) < ¢ whenever
n>N. Now, if B=max,y d(x,,xy), then with x =xy we have d(x,,x) <
max (e, B) for all n, and hence {x,} is bounded. ]

It is easy to show that every convergent sequence is in fact a Cauchy sequence:

Proposition 5.39 I {x,} < X, where X is a metric space and x,, — x, then {x,} is a
Cauchy sequence.

Proof By the triangle inequality,
d(Xny Xm) < d(xn,x) +d(x, X).

Now, if € > 0 is given, choose N so that d(x,,x) <5 for n > N. By the inequality
above we then have d(x,, x,,) < e for n,m > N. ]
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While this last result is of interest, the result of greater value in applications has to
do with the reverse implication. Namely, when does a Cauchy sequence converge?
The answer can be readily seen to be: “not necessarily.”

Example 5.40

1. Let {x,} = {L} in the metric space X = (0,1) = R under the standard metric in
(3.18). This is a Cauchy sequence, and one readily verifies that d(x,, x,,) < € whenever
n,m > N for any N > % However, it is clear that this sequence does not converge in
X. It is also clear that in this case X can be enlarged somewhat or completed, to its
closure X = [0,1] in R, and in this metric space we obtain convergence.

2. In example 5.33 was introduced X = Q N[0, 1], under the standard metric, where it
was shown that for any real number y € [0, 1] there was a sequence {y,} = X so that
Vu — ¥. By the proposition above, all such sequences are Cauchy sequences. However,
these sequences only converge in X if y is chosen to be rational. Again, we see that this
metric space can be completed by enlarging it to X = [0,1], and then all these Cauchy
sequences converge to a point in X.

To motivate the result below, note that we have shown that if {x,} = X is a
Cauchy sequence in any metric space, then it is bounded. So the question of conver-
gence is closely related to the existence of an accumulation point, and we have seen
from the above that such an accumulation point can be assured if X = IR, C,IR" (as
well as C", though not proved) or if X is a compact metric space. Although the
results below that rely on the Heine—Borel theorem are also true in C”, we will drop
this reference since this theorem was not proved in this case, and we do not need this
result in this book.

Proposition 5.41 If {x,} = X is a Cauchy sequence, where X = R,C,R", or X is a
compact metric space, then there is an x € X so that x,, — Xx.

Proof 1In all cases we know that {x,} is bounded. Also for any e > 0 there is an N
so that |x, — x,,| < € for n,m > N. That is,

{xn};c:N € B.(xy).

Choose ¢; = %, and let N; be the associated integer. Then as j — oo,

[y, € Bujln).

We now claim that there is a unique x € X so that (), By ;(xy,) = x, and that x, — x.
Of course, the latter conclusion follows from the existence of x, since we can con-
clude that for any ¢, x € B (xy,) and hence for n > N;,
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2
d(x,x,) < d(x,xn,) +d(xn,xn,) < 5

To demonstrate the intersection claim, first note that every finite collection of these
closed balls has a nonempty intersection, since all contain {x,},—, where N =
max{N;}, and this maximum is finite for any finite collection. Also the intersection
of all such balls cannot contain more than one point since the radius of these balls,
€ = % converges to 0. To complete the proof, we show by contradiction that this infi-
nite intersection cannot be empty, and hence it contains the unique point x. Assume
that (), By/;(xy;) = 0 and, in particular, {(");., Bi/;(xx,)} N Bi(xy,) = 0. Then with
A€ = A, denoting the complement of A,

j=2 j=2

Bi(xy,) = {ﬂ Bl/j(XN,)} =U Bijj(xw,),

by De Morgan’s laws. Now the set Bj(xy,) is compact either by Heine—Borel if
X =IR,C,IR" or as a closed set in the compact metric space X, and it is covered by
a union of open sets {Bj/;(xy,)};~,. It therefore has a finite subcover, so Bi(xy,) =
Uj ubB /j(_xN/.) for some M. Again, using De Morgan’s laws, we conclude that
{1, <j<a Bi(xn)} N Bi(xy,) = 0, contradicting the observation above that every

finite collection of these balls has nonempty intersection. [ |

Unfortunately, many of the general metric spaces of interest are not compact.
Hence we cannot, in general, conclude that Cauchy sequences converge to a point
in the space. Of course, IR, €, and R" are also metric spaces of great interest, and
are not compact, yet we have seen that in these cases Cauchy sequences do converge.
So compactness is not a necessary condition for the convergence of Cauchy se-
quences, but it is a sufficient condition.

*5.4.2 Complete Metric Spaces

Because the property that Cauchy sequences converge to a point of the space is so
important in mathematics, special terminology has been introduced for metric spaces
that have this property.

Definition 5.42 Let (X, d) be a metric space. Then X is said to be complete under d if
every Cauchy sequence in X converges to a point in X.

It should be noted that this notion of being complete is not just a property of the
space X, but it is explicitly specified as “complete under d.” This is because by the
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very definition in (5.10) or (5.11) above, the metric d determines which sequences are
Cauchy sequences and therefore determines which sequences must converge in order
to satisfy the completeness criterion. However, as was seen above, the dependence on
the metric d is only up to metric equivalence. That is, X is complete under d if and
only if it is complete under d’ for any metric equivalent to d.

Example 5.43

1. We have seen from the analysis above that R, C, and RR" are all complete under the
standard metrics defined in (2.3), (2.2), and (3.3 ), respectively.

2. R" is also complete under all the l,-norms in (3.10) and (3.11), since these norms
are equivalent to the standard metric.

3. Every compact metric space is complete under its metric.

4. The metric space Q is not complete under the standard metric, nor is Q N[0, 1], nor
is any bounded open interval, (a,b).

5. The metric space Q" = IR" of rational n-tuples is not complete under the standard
metric, nor is Q" N Br(x) for any R and x, nor is Bgr(x).

Because completeness of a metric space is so important in applications, yet so
often it is the case that a metric space of interest is not complete, it is of no surprise
that the question of completing a metric space has received considerable attention. In
the various examples above, it was obvious why the given spaces failed to be com-
plete, and equally obvious how one could solve this problem by adding to the space
the “missing” points that prevented the space from being complete in the first place.

For the examples above we note that what is interesting about these informal com-
pletions of the given spaces was that within the resulting completed spaces, the orig-
inal spaces were dense. In addition distances between points of the original spaces
were preserved in the completed spaces.

Alternatively, by looking at the incomplete space as a subspace of a larger space,
we could interpret the completion of the original space as the closure of that space in
the larger space that contained it. The completions in effect just added the original
space’s accumulation points. For example, (a,b) is not complete, but the closure of
this interval in the metric space R, which is (a,b) = [a,b], is complete. Similarly,
while @ and QN [0, 1] are not complete metric spaces, we can create their closures
in IR, where @ = R, and QN [0, 1] = [0, 1], and these are complete. We can do the
same for Q", Q" N Bg(x), and Bg(x) in R”.

The next proposition, which we state without proof, indicates that these examples
illustrate the general case. Namely every metric space can be embedded in a complete
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metric space in a way that preserves distances, and where the original space is dense
in the larger space. In addition, if the original space is already contained within a
complete metric space, then this completion is equivalent to the closure of the origi-
nal space.

Proposition 5.44 Let (X, d) be a metric space. Then there is a complete metric space
(X',d") so that (X ,d) is isometric to a dense subset of (X',d"). That is, there is a dense
subset X" = X' and a one-to-one identification X" < X so that for any x", y" € X",
and identifications: x" < x and y" < y, with x, y € X, we have that

d'(x",y") =d(x, ).

Also, if under d there is a complete metric space, Y, with X < Y, then X" is isometric
to X, the closure of X in Y.

This proposition guarantees that any metric space (X,d) of interest can be com-
pleted in a way that does not change the original space very much, which is the
meaning of the isometric identification. Also, if we are working with a space (X, d)
that we know to be a subspace of a larger complete space Y, we can accomplish this
completion by forming the closure of X in Y, as was seen to be the case in the earlier
simpler examples.

5.5 Applications to Finance

The results of this chapter are to a large extent needed as an introduction to concepts
that underlie applicable mathematics in later chapters. For example, the notion of
convergence will be seen to be fundamental to much of what is to come. More di-
rectly, the notion of convergence of a sequence provides a context for understanding
what it means for an iterative numerical calculation to converge to the correct an-
swer, where in each step the calculation provides an approximate solution to a fi-
nance problem.

We return to the example of interval bisection next, extending the analysis origi-
nally introduced in section 4.3.3 for the evaluation of the yield to maturity of a
bond or other security offered at a given price. Here we illustrate the general proce-
dure with a detailed bond yield example.

5.5.1 Bond Yield to Maturity

Assume that we are offered a 1000 par, 10-year, 8% semiannual coupon bond at a
price of 1050. First off, we easily confirm that the yield to maturity (YTM) is less
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than 8% on a semiannual basis because this bond is selling at a premium. The cash
flows on this bond are 40 per half year for 10 years, with an extra payment of 1000 at
time 10. So if r is the yield on a semiannual basis, we have from (2.16) that

P(r) = 1000 -+ 1000[0.5(0.08 — r)]a20:0.5-

From this equation it is apparent that in order to have P(ro) = 1050, we need
ro < 0.08.

We now detail an interval bisection approximation procedure and construct a se-
quence {r;}, which we will prove is a Cauchy sequence. Consequently, without
knowing to what value this sequence converges, we will be able to assert that this se-
quence will indeed converge because IR is complete. Moreover, because of the nature
of the approximation procedure, we will be able to calculate the rate at which con-
vergence is achieved, and hence how many steps are needed for any given degree of
accuracy. All this is doable without our ever knowing the exact answer.

To this end, for the first step we require two trial values of r, denoted " and r~ so
that

P(rt) <1050 < P(r").

In other words, since r* provides too small a price, r™ > ro, where ry is the desired
exact value, and similarly »~ < ry. That is,

Fo<ry<rt.

For this step we choose somewhat arbitrarily, since this process will always con-
verge, but not naively, since to do so increases the number of steps needed to get a
good approximation. An example of a naive initial set of values is ™ = 1.00 (i.e.,
100%) and r~ = 0. We can with a moment of thought do better with ™ = 0.08 and
r~ =0.07, producing P(r") = 1000, and P(r~) = 1071.0620165. The first estimate of
ro is then

r =050 +r),

which produces r; = 0.075.

For the second step, the process is to now evaluate P(r;). If P(r;) < 1050,
r1 becomes the new r™ and we retain the former r~. Otherwise, r; becomes the
new r~ and we retain the former r*. In either case we calculate the second estimate
of 1y as
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Table 5.1

Interval bisection for bond yield

Step r P(r7) rt P(rt) rj =

1 7.0000% 1071.06202 8.00000% 1000.00000 7.50000% 1.00000%
2 7.0000% 1071.06202 7.50000% 1034.74051 7.25000% 0.50000%
3 7.2500% 1052.69870 7.50000% 1034.74051 7.37500% 0.25000%
4 7.2500% 1052.69870 7.37500% 1043.66959 7.31250% 0.12500%
5 7.2500% 1052.69870 7.31250% 1048.17157 7.28125% 0.06250%
6 7.2813% 1050.43198 7.31250% 1048.17157 7.29688% 0.03125%
7 7.2813% 1050.43198 7.29688% 1049.30099 7.28906% 0.01562%
8 7.2813% 1050.43198 7.28906% 1049.86629 7.28516% 0.00781%
9 7.2852% 1050.14908 7.28906% 1049.86629 7.28711% 0.00391%
10 7.2871% 1050.00767 7.28906% 1049.86629 7.28809% 0.00195%

ra =050 +1r7),

and the process continues into the third step and beyond. If at any step we find that
the calculated r, serendipitiously equals the exact answer, ry, the process stops. How-
ever, this virtually never happens to anyone, so we have no need to dwell on this
outcome.

The implementation of this algorithm to the bond yield problem yields the table of
results in table 5.1, where for visual appeal, yields are presented in percentage units,
on a semiannual nominal basis:

Now at each step, we have r, € (r—,r") by definition, and for any ' € (r—, "),

A

[r' — | < —
Since the lengths of these intervals halve at each step by construction, and for n = 1
we have r —r~ = 0.01, we conclude that for any ' € (r—, ") at the nth step,

0.01
n

[r' —r| <

From this estimate we demonstrate that the sequence {r;} is a Cauchy sequence, and
hence because R is complete by the analysis above, we conclude that there is an
ro € (r~,r") for all such intervals and that r; — ro.

To this end, let m and n > m be given; then for ' € I, = (r~,r") defined as the in-
terval produced as of the nth step, we also have r' € I,, = (r~,r") defined as of the
mth step since I, < I,,. By the triangle inequality, with r' € I, N I,
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A

Vn_rm‘—|rn_r/|+|r/_rm|

_ 001 o0l
- 2n 2111 :

From this estimate we can, for any €, choose N so that % < 5, and conclude that

|Vn_rm‘<€ fOI‘I’l,I’Vl>N.

In other words, {r;} is a Cauchy sequence, and hence there is an ry € (r~,r") for all
such intervals with r; — ry.

From the error estimate above, true for all +’ € I,, we derive the error estimate for
ro by letting m — oo:

0.01

|r0—rn\ < 211 .

(5.12)
From (5.12) we can choose n to provide any given level of accuracy. For example, to
have k-decimal point accuracy, we need the error to be less than 5(107%1) = %
that is,

3

0.01 - 10
2" 2

From this point we conclude that » must be chosen so that 2”~! > 1042, which is
easily solved with logarithms.

This simple, yet powerful algorithm is known as the interval bisection algorithm. It
has the property that the error decreases geometrically with a factor of % Note that
although the error in each step halves as is illustrated in the last column in table 5.1,
it is not the case that the sequence of estimators, {r;}, monotonically converge to r,
as is seen from the second last column of this table. This conclusion is logical, since
in each step one of the values of ¥~ and r* is replaced, and one is used in the next
step. Consequently, if 7~ is replaced in a given step, that step’s estimate will exceed
the prior step’s estimate, and conversely.

5.5.2 Interval Bisection Assumptions Analysis

As was observed in section 4.3.3, the usefulness of this algorithm relies on subtle
assumptions about the objective function, here P(r), but in general, f(x), where we
are attempting to solve

JS(x)=c
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for some value c. The interval bisection algorithm produces a Cauchy sequence, {x;},
which then has the property that x; — x for some x € R typically, where by construc-
tion, for every sequence point either f(x;) > c or f(x;) < c.

The first subtlety in the application of interval bisection is that we are assuming
that because {x;} is a Cauchy sequence, this implies that {f(x;)} is a convergent se-
quence. This appears to be the case for the bond yield example in table 5.1, but
should this always be the case? Consider the next example where it is not initially fea-
sible to produce a complete picture of what the graph of a given function looks like.

Imagine that it is a complicated function that has been programmed in terms of
an iterative process. All that is possible is that by crunching the program for a given
value of y, the value of f(y) can be calculated. You are attempting to find a value of
x so that f(x) = ¢. You know from sample calculations that ¢ is within the range of
sample values of f(y) so far calculated. You proceed to program the interval bisec-
tion algorithm, and let it run. At each step, either f(x;) > c or f(x;) < ¢, and it is
apparent that x; — x for some x # 0. However, it is also apparent that f(x;) is not
converging. To see what is going wrong, a graphical depiction of this function must
be laboriously estimated, and it appears to be given by

1_2.}}’ y <X,
f(y){l—i-Zy, y > X

In this case a subsequence of {f(x;)} is approaching 1 — 2x, another subsequence is
approaching 1 + 2x, and of course, | —2x < ¢ < 1 4 2x.

The second subtle assumption needed for the usefulness of the interval bisection
method is that if x; — x, and we observe f(x;) to be converging in that there is
some ¢ with

[/ (xj) = | = 0,

then it must be the case that f(x) = ¢. But this conclusion is really just another as-
sumption about the behavior of the function, f(x). That is, the assumption that
x; — x and f(x;) — ¢ implies that f(x) = c.

As it turns out, both assumptions are valid for an important, and fortuitously
abundant and commonly encountered collection of functions, known as the continu-
ous functions. These functions satisfy both properties needed. Namely, if f(x) is con-
tinuous on an interval, and {x;,x} are contained in this interval, then from x; — x
we can conclude that:

1. {f(x;)} converges.
2. {f(xj)} converges to f(x).
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Continuous functions will be investigated in more detail, along with other impor-
tant properties of functions, in chapter 9 on calculus I.

Exercises

Practice Exercises

1. Evaluate the convergence or lack of convergence of the following. In the cases of
convergence, attempt to determine the formula for N(e) for arbitrary e > 0, while for
divergence to +oo, do the same for N(M). (Hint: The formulas for N(e) and N(M)
do not have to be the “best possible,” so estimate the results.)
(@) ¢n = Vi + 1 — /n (Hint: Multiply by Y27 )

Vit+l+yn
(b) by, _ VYmtl-—Vm

vVm+3
(¢) d; =, where a > 1 (Hint: d;y) = i-&-ildi')
d xx = F - (Hint: Consider In x;.)
© 5= j +\/'
(0) = 2

2. Let {x,} be a convergent sequence and { y,} an arbitrary bounded sequence:
(a) Prove that if x, — 0, then y,x,, — 0.

(b) Show by example that if x, — x # 0, then y,x, need not be convergent. (Hint:
Consider y, with alternating signs.)

(c) Repeat part (b), showing that we need not have y,x, convergent even if all
yn = 0.

3. How does taking absolute values influence convergence?

(a) If x, — x is convergent, must |x,| be convergent? Does the answer depend on
whether x = 0 or x # 0?7

(b) If |x,] — x is convergent, must x, be convergent? Does the answer depend on
whether x = 0 or x # 0?

4. Forn=20,1,2,3,..., consider the sequence defined by

) m = 3n,
-D""n
Ym = ) ,,+1) , m=3n+1,
- n+1) m=3n+2.



Exercises 173

(a) Determine all the limit points of this sequence and the associated convergent
subsequences.

(b) Determine the formula for U, and L,, as given in the definition of limits su-
perior and inferior, and evaluate the limits of these monotonic sequences to derive
lim sup y,, and liminf y,,, respectively.

(c) Confirm that the limit superior and limit inferior, derived in part (b), correspond
to the Lu.b. and g.Lb. of the limit points in part (a).

5. Let {¢,} denote an ordering of all rational numbers in [0, 1].

(a) For the ordering implied by Cantor’s construction in section 2.1.4, including or

excluding multiple counts, demonstrate that for every n, U, = 1, L, = 0, and hence
limsup ¢,, = 1 and liminf ¢,, = 0.

(b) Generalize the result on part (a) by showing that the same conclusion follows for
an arbitrary ordering.

6. Demonstrate that the sequence in exercise 4 is not a Cauchy sequence, and draw
the otherwise obvious conclusion that this sequence does not converge.

7. Prove that the two definitions given for Cauchy sequence in (5.10) and (5.11) are
equivalent. (Hint: That (5.10) = (5.11) is true follows by definition. For the reverse
implication, express d(x,, x,,) using the triangle inequality.)

8. Identify which of the following sequences are Cauchy sequences and hence must
converge, even in cases where their limiting values may be unknown.

_ _n
(@) d, =5

_ 2’4
(b) xu =4

© yo =Y (=)

@ x, = >, (-1 2

© fi=>/(-1)"aV a>1

() ce=k+1

9. For the following securities, implement the interval bisection method to produce a
tabular analysis as in table 5.1, and determine how many steps are needed to assure
six decimal place yield accuracy.

(a) A 7-year, 3.5% s.a. coupon bond with a price of 92.50 per 100 par.
(b) A 2% annual dividend perpetual preferred stock with a price of 87.25 per 100 par.

(¢) A $1 million mortgage repayment loan, issued at 8% monthly, at a price of
$997,500.
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Assignment Exercises

10. Evaluate the convergence or lack of convergence of the following. In the cases of
convergence, attempt to determine the formula for N(e) for arbitrary e > 0, while for
divergence to +co, do the same for N(M).

@ ¢, =/n+1— nformeN, m>1 (Hint: Confirm that

m—1
bm_ (Za/bm 1- /) (513)

and compare to exercise 1(a).)
() z; = 5
©) wy, = (—1)"’+1 In(1+1)

@) x, =+ D!+ (=) "n!

(e) i = (71)k+1 102}\:/(
() b= (1) (® — > + 107

(e u, = %, p € R, a > 1 (Hint: Consider the value of

sl
uy 1
11. Consider the rational numbers in [0, 1]. Under an arbitrary enumeration, {g,},
this set is a bounded sequence. Show that:

(a) As proposition 5.12 states, this sequence has a convergent subsequence.

(b) This sequence has a countably infinite number of convergent sequences.

(¢) This sequence has an uncountably infinite number of convergent sequences.
(d) These results remain true if we require all sequences to be monotonic.

12. Forn=0,1,2,3,..., consider the sequence defined by

(_l))l

n+l m= s,

1—|—<n+1> m=>5n+1,
Xm = _1 + <n+)1 , m = 57’1 + 2’

—n®+n, m=5n+3,

10e7", m=5n+4.

(a) Determine all the limit points of this sequence and the associated convergent
subsequences.
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(b) Determine the formula for U, and L,, as given in the definition of limits superior
and inferior, and evaluate the limits of these monotonic sequences to derive
lim sup x,,, and lim inf x,,, respectively.

(c) Confirm that the limit superior and limit inferior, derived in part (b), correspond
to the L.u.b. and g.Lb. of the limit points in part (a).

13. Consider the notion of Cauchy sequence under different metrics.

(a) Prove proposition 5.27 in the form: In a metric space X under two equivalent
metrics, d; and d,, a sequence {x,} = X is a Cauchy sequence in (X,d,) iff {x,} is
a Cauchy sequence in (X, d,).

(b) Give an example of a metric on R”, d, so that sequences that are Cauchy under d
are different than sequences that are Cauchy under the standard metric. (Hint: Con-
sider a nonequivalent metric, like ¢ in exercise 18 in chapter 3.)

14. Identify which of the following sequences are Cauchy sequences and hence must
converge, even in cases where their limiting values may be unknown.

(@) a; =", _, L (Hint: Show that n! > 2" for n > 4.)
. '71 n+l

®) &= ﬁfﬁ( z

© 3=

) be =S5, L (Hint: 0> > n(n — 1).)
(—1)”“

© bk =31
(f) {z.} = R, increasing and bounded.

15. For the following securities, implement the interval bisection method to produce
a tabular analysis as in table 5.1. Determine how many steps need to be implemented
to assure six decimal place yield accuracy.

(a) A 10-year zero-coupon bond with a price of 66.75 per 100 par, priced with a
semiannual yield.

(b) A 10-year, 4% annual coupon bond, with a “sinking fund” payment of 50% of
par at time 5 years, with a price of 101 per 100 par.

(¢) A $25 million, 30-year mortgage repayment loan, issued at 6% monthly, at a
price of $25.525 million.






6 Series and Their Convergence

6.1 Numerical Series

6.1.1 Definitions

While a series can be defined in any space X that allows addition, and convergence
defined in any such space that also has a metric, we will focus on numerical series
defined on R or €. More general definitions can be inferred now, and will be made
in later chapters as needed.

Definition 6.1 Given a numerical sequence {x;}, the infinite series associated with
{x;j} is notationally represented by

For {x;} = R, if all x; > 0, the series is called a positive series, if all x; < 0, the series
is called a negative series, whereas if the signs of the consecutive terms alternate, most
commonly with x| > 0, the series is called an alternating series. The partial sums of a
numerical series, denoted s,, are defined as

n
Sp = E Xj.
Jj=1

The infinite series is said to converge to a numerical value s if the sequence of partial
sums converges to s. That is, we define

o0

E Xxj=s 1if and only if lim s, =s.
n—oo

=1

An infinite series that does not converge is said to diverge or be divergent.

A series is said to converge absolutely or be absolutely convergent if the series
Zjoil |x;| converges, and is said to converge conditionally or be conditionally conver-
gent if E;il X; converges yet Zf;l |x;| diverges. If a series diverges in the sense that
lim,, ., $, = 00, we will often write Z/ﬁ | Xj = o0 and say that 2111 x; diverges to
+oo.

Remark 6.2

1. For some examples, an infinite series will be indexed as Y ", x; rather than

27;1 Xj-
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2. By definition, every convergent positive or negative series is absolutely convergent,
but in general convergence does not imply absolute convergence (see cases 3 and 6 in
examples 6.9 and 6.10 below ).

This definition implies that to be convergent it must be the case that x; — 0 as
Jj — oo (see exercise 1). This property alone is not enough to assure convergence as
will be seen. However, while x; — 0 as j — oo does not assure the convergence of
Zjﬁl X;j in general, it does assure convergence when the series is alternating, as will
be demonstrated in proposition 6.20.

Applying the definition of convergence of a sequence to this series context, we

have that:

Definition 6.3 3" | x; = s if for any ¢ > 0 there is an N so that |s, — s| < € whenever
n > N. That is,

o0

2%

j=n+1

< e whenever n> N.

In other words, a numerical series converges when it can be shown that by discard-
ing a finite number of terms, here the first N terms, the residual summation can be
made as small as desired. Alternatively, because a numerical sequence converges if
and only if it is a Cauchy sequence, we can state that:

Definition 6.4 Z/Oil x; = s if for any € > 0 there is an N so that |s, — s,| < € when-
ever n,m > N. That is, assuming n > m,

n

ZX./

j=m+1

<€ whenever n,m> N.

6.1.2 Properties of Convergent Series

In this section three simple, useful results are presented. More subtle properties will
be investigated in section 6.1.4 on rearrangements. The first result reinforces the
intuitive conclusion that absolute convergence is a stronger condition than conver-
gence. In the examples below we will see that this implication cannot, in general, be
reversed.

Proposition 6.5 If Zjoil X; is absolutely convergent, then it is convergent.

Proof We show that s, = Z};l x; is a Cauchy sequence. By the assumption of ab-

solute convergence, s, = > | |x;| is Cauchy, and hence for any ¢ > 0 there is an N
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so that |s) — s;,| < e whenever n,m > N. Now, by the triangle inequality, say n > m
for specificity,

n n

|Sn — Sm| = ijg Z x5 = 15, = sl
j=m+1 Jj=m+1
SO |s, — S| < € whenever n,m > N. =

Next we see that convergent sequences combine well in terms of sums and scalar
multiples.

Proposition 6.6 Let Zjﬁl xj and Z;il yj be convergent series with respective summa-
tions of s and s', then for any constants a,b € R, the series {ax; + by;} is convergent,
and 37\ (ax; + by;) = as + bs'.

Proof The proof follows directly from the earlier result on sequences. The assumed
convergence of the series implies that as sequences, s, = > ;7:1 xj and s, = Zj’.izl Vis
converge to s and s’, respectively; hence as, + bs, — as + bs’ from proposition 5.11.

]
Finally, we consider the termwise product sequence {x;y;}.

Proposition 6.7 Let Zf;l x; and Z;’:] v; be absolutely convergent series. Then for
any a, b (real or complex):

1. Zf;l [ax; + byj| is absolutely convergent.

2. Z;C:I X;jy; is absolutely convergent.
Proof The first statement follows from the triangle inequality, since

0

[o 0] o0
> lax;+ byl < lal > x5+ 161> |yl
i=1 i=1

Jj=1

For the second, we show that s, = ZJ"ZI |x;v;| is a Cauchy sequence. Given e > 0,

there is an N so that Zfin |xj| < e and Z,’in |yj| < € for n,m > N. Now Zfin x|
<Y I, [yl < € forn > N, and the result follows. ]

Remark 6.8 If the assumption on Zfi] x; and Zfil yj is reduced to conver-
gent, rather than absolutely convergent, then Z;’il laxj + by;| is convergent as noted in
proposition 6.6, but Z,il X;y; need not be convergent. This will be assigned as exercise
21. '
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6.1.3 Examples of Series
Example 6.9

1. If x, = d”, a geometric sequence, then the associated geometric sevies converges if
and only if la| < 1, as can be demonstrated since the partial sums can be explicitly cal-
culated. Specifically, if a # 1, from s, = Zf:l a’ and as, = Z/"izl a’, we can solve for
s, by subtraction and obtain

n+1

a —da

Sy = ———
" a—1

It is apparent that if a > 1, then s, — o, and a"' grows without bound; while if

a < —1, then s, alternates sign between +, and |s,| — oo. Similarly, if a =1, then by
the definition we have that s, = n, which diverges, and if a = —1, s, alternates between
—1 and 0. Hence this series does not converge in any case for which |a| > 1. If |a| < 1,
we conclude a"' — 0, and hence

o0
Z = (6.1)
equivalently, Z;io al = ﬁ Of course, this is exactly the calculation introduced in the

pricing of perpetual preferreds in section 2.3.2, with a = (1 + i)fl.

2. If xj = <1+1 then again by explicit calculation we can conclude that the sum
s 1 1 1 no1 n+l 1
D TG converges. Since Sooy =5 — g, we derive that sy =3 ;" 15— 3355,

which reduces to

b
n+1’

and hence Z 1 j+l)
1

3. Ifx; = Zhe harmonic series, then surprisingly, Z 17 = - This result is justifi-
ably the most surprising example of divergence of a series. The surprise stems from
thinking about an arbitrarily large integer N, say the number of subatomic particles in
the known universe. Then it is apparent that Z —1 Lis finite, and the next omitted term
NL] is an unimaginably small number, and the rest smaller yet. However, the dzverqence
of the harmonic series implies that despite this unimaginable smallness, Z N1 Lis not
finite. There are many proofs of this well-known fact,; one seen in example 5.35 in chap-

ter S, but perhaps the simplest two are as follows:

S =1—
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« For an arbitrary integer m > 1, write

m 3m

ZZZZ+

j= m+lj j= 2111+IJ

Now every summation on the right has m terms, and because the harmonic series is
decreasing, each of these finite sums is strictly greater than m times the last term. That is,

>

35 ) enlm) o)+

~.| =

1

.
Il

So if Zﬁl % is finite, we can divide this inequality by this value to derive the absurd re-
sult 1 > 1, or subtract to derive 0 > 0. So via proof by contradiction we conclude that
the harmonic series diverges.

« Alternatively, we can manipulate this summation another way using a similar trick:

>3-

=1

m 2 3

1 |
S+ Z —+ S
J j= m+1 j:m2+1]

\‘\._.
lMﬁ

J

(2
(D) (D) D)

from which the divergence is apparent since each term after the first equals the constant
1-1

m
4. If x; = Jl for a > 1, then the power harmonic series, Z/ 1/4,, converges. Using the
second trick above for the harmonic series, we create an upper bound with the first term
of each group:
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o0
=m+ (m-—1) Zm/“_”
Jj=1

The last summation is a convergent geometric series if m'~* < 1. That is, if a > 1. Of
course, as a — 1, this last summation becomes increasingly large, as the given series
approaches a summation of 1s, and the original series approaches the harmonic series.

In all these cases, note that the analysis done for the harmonic series was to infer
divergence by manipulating the terms to produce a smaller and yet obviously diver-
gent series, while the approach taken in the first two examples was to explicitly derive
the summation. In many ways the harmonic series analysis is a more realistic exam-
ple of analytics done in practice. The reason is that although there are many exam-
ples of series that can be evaluated explicitly, most of these require advanced methods
of later chapters. In addition it is common to be confronted with a series that cannot
be so evaluated even with more advanced techniques. In many of these cases this
inability to find an exact value is not a problem since the primary question is related
to the convergence or divergence of the series, and not to the exact value that the
series converges to. If one can prove convergence, it is usually possible to develop a
numerical approximation to the summation, or reasonable upper and lower bounds
adequate for the purposes at hand.

There are many ways to prove convergence of series without an explicit evaluation
of its summation. The most direct is the strategy employed for the geometric har-
monic series, namely, to demonstrate that the series is smaller than one that appar-
ently converges.

Example 6.10

5. If xj = ]]n! , then ij:l x; converges. To demonstrate this convergence without
explicitly evaluating the actual summation, we show that this series is smaller than a
simpler series that is readily seen to converge. First off, In j < j, and so x; < # Hence

: _2
=1 ] i=1
This second summation converges as in case 4 of example 5.9 with a = 2. Alternatively,

by noting that - 1 /(j for Jj =2, and with case 2 we conclude that this series con-
verges to a value less than 2.
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—_ l+l . . . . .
6. If x; = ( l} , the alternating harmonic series, then Z;il X; converges Taking this
series in pairs, we obtain for n =1,3,5,... that x, + x,11 = which equals the
odd terms of the series in case 2. Consequently

i =n™ {E}”l T n=2m,

H m # _ ; _
= 21 3D~ mmrts M= 2mA L

n(n+1

Therefore the even partial sums of the alternating harmonic series equal the partial
sums of a subseries of the convergent series of case 2, while the odd partial sums equal
this same convergent series but minus a term that converges to 0. The even and odd par-
tial sums of this series must therefore converge to the same value. Yet, this series is only
conditionally convergent, since the absolute value of this series is the harmonic series
that diverges. As we wzll see as an application of a result from calculus in chapter 10,
it turns out that Z ; = In 2, the natural logarithm of 2, which is approximately
0.69315.

It is important to note that a subseries of a convergent series need not converge.
The conclusion in case 6 is justified because the original convergent series in case 2
had all positive terms. More generally, what is needed is that the original series is ab-
solutely convergent. An example of what can go wrong in the conditionally conver-
gent case follows:

Example 6.11

_ 1)/t
7. If x; :%, the (convergent) alternating harmonic series, then Zjoilxzj and
>y Xaj-1 both diverge. First off,

Jj=1

\‘._‘

which is a multiple of the harmonic series. Similarly

= =1 1 1&1
another multiple of the harmonic series.
Cases 3, 4, 5, 6, and 7 of the examples above present an application of the com-
parison test for a series. This and other tests are presented below in section 6.1.5 on

tests of convergence. However, the next section provides two important results
on absolutely versus conditionally convergent series.
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*6.1.4 Rearrangements of Series

In attempting to evaluate the sum of a series or even to prove convergence, it is often
desirable to be able to rearrange the order of the series. This is especially true for
double series as will be seen below. But while a valid manipulation for finite sums,
it is not always the case that an infinite sum can be rearranged without changing its
value, or indeed changing whether or not it even converges. This section analyzes the
relationship between convergence of a series and convergence of its rearrangements,
as well as the associated summations.

To introduce the notion of a rearrangement formally, we introduce the notion of
a rearrangement function, 7(n), defined on the index collection J = { j}f:‘O or J =
{ j};’;l, with the property that 7 :J — J as a one-to-one and onto function. These
words reflect three notions that can be reduced to the intuitive idea that 7 creates a
“shuffle” of the set J:

+ A “function” J — J means that for any j € J, n(j) is a unique element of J.

* “One-to-one” means that there cannot be j,keJ with #n(j) = =n(k). Each j is
mapped to a different point.

+ “Onto” means that for any element k € J, there is a j € J, with zn(j) = k.

Given a series {x;} the focus of this section has to do with the value of 377 x;
versus the value of Z _ | Xn(;) for an arbitrary rearrangement function 7. Before pre-
senting the results, let us con51der two examples that highlight what can happen.
Example 6.12

_ 1)/t
%, which con-
verges but is not absolutely convergent. As was demonstrated, both Z | Xoj and

1. Recall the alternating harmonic series in example 6.11, x; =

Z/:l Xaj—1 diverge, so the conditional convergence of this series occurs because of the
cancellation that occurs between one subseries that is accumulating to +oo, and the
other subseries that is accumulating to —oo. Intuition warns that rearranging this series
could cause trouble. Indeed, if we simply rearrange the series with all the positive terms
first, and all the negatives last, we arrive at a meaningless conclusion that Zfil Xj =
o0 — 00, and we are justifiable cautious about concluding that this sum is 0. However,
with a bit of ingenuity it is possible to rearrange this series so that the rearranged series
converges conditionally to any real number, or even to +oco. This seems impossible, but
it is not too difficult to demonstrate. Let r € R be given, and assume that r > 0. Choose
Ny to be the first mteger so that Z 1| Xo; > 1. Next choose M to be the first integer so
that Z,,l Xoj + Z/,l X2j—1 < r. Both choices are possible since the positive and nega-
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tive series grow without bound. Now choose N, > Ny to be the first integer so that

Zl\il X2 + Z = Xoj_1 + Z N Xoj > r, and M> > M, to be the first integer so that
Ny

Z_lxzj-i-z_lxz] 1+Z N1+1x21+z vy Xoj1 <1, and so forth. We can

therefore show that this lmplled rearrangement of the series,

x2;--~ax2N17'x17"'ax2M|71ax2(N|+1)7"'a

converges conditionally to r. For example, at the last step above, since M, was the first
integer to produce the desired property, it is the case that

Mr—1

szﬂ-zxzj 1+ Z Xy + Z Xj-1 > T,

j=Ni+1 j=M;+1

and hence

r— Z)Cz]-f—Zij 1+ Z X2j + Z X2j-1 <|x2M2|.

j=1 J=Ni+1 J=Mi+1

In other words, at each step the difference between the partial summation and r is
bounded by the absolute value of the last term added. Consequently, as these last added
terms converge to 0 absolutely, conditional convergence is proved. If r < 0, the process
is simply reversed. If r = + oo, think about how this construction can be modified (an-
swer is below in the proof of the Riemann series theorem).

2. Consider an alternating geometric series, x; = (—l)j a’, j >0, where 0 <a < 1.
This series is absolutely convergent by example 6.9 above, so it is also convergent. Let

the summation be denoted' 5= Z;’io(—l)jaj. Then with 5] = mo Y= ; la, and

852 = Z}io a¥tl =as) = 1 a2 Ve have S=81 — 8= F Let 7 be a given rearrange-

ment, and consider Zio(—l)”( Na™i). The goal is to show that > to(=1 1) gnli) =

and has the same vallue as the orlgmal series. To do so, for a given ¢ >0 we need
to show that there is an N so that |s — Z,”,O(—l)”<j>a”(~’)| < eforn>N. To this end,
we focus on the positive and negative series separately. Since s = Z ~oa¥, choose N,
so that |sy — Y1 ga¥| <§ for n= N, and choose Ny so that |sy — Y ga”*| < §
for n > N,. Also, since thzs series is absolutely convergent, we can apply the Cauchy
criteria and choose Ny so that |y a’| < for n,m > N3. Now note that for any
n, {n(j )}" o can be split into even and odd integers, and we choose N large enough
so that {n( )} ", contains {]}mlx N Then for n >N we have by the triangle

inequality,
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j=0
max(N;) max(N;)
= [Sl —Sz] [ Z aZ/_ Z a2]+1 + Z (_l)n(J)an-(/)
Jj=0 Jj=0 (j)=max(N;)
max(N) max(N;)
<|s1 — Z a¥| + |y — Z a4 Z ()
j=0 j=0 () =max(N;)
<fi4i=
373737 ¢

The following propositions summarize the results illustrated in the examples
above. The proofs will be brief since they follow closely the developments given in
these special cases. The first result is named for Bernhard Riemann (1826-1866).

Proposition 6.13 (Riemann Series Theorem) Let {x,'}joo1 be a conditionally conver-
gent series, Z ~,xj =5. Then for any r € R, as well as r = tco, there is a rearrange-
ment function 7 so that ijr Xn(jy =T.

Proof Since {x;},2, is not absolutely convergent, it must be the case that there are
infinitely many terms in the series that are both positive and negative. This is because
if either set was finite, say {x;}/_, were the positive terms, then since > ", x; =
DX+ 300 g, we derive that 307 L x; =5 — 3", x;. Now since all x; <0
for j > n, we have that Z Cae1 151 =302 x; —s. This implies that Z L] =

2 Z/=1 xj — s, contradicting that {xj};'il is not absolutely convergent. So both posi-
tive and negative subseries are infinite. Next, denoting by {x;}~, and {x; }~, these
infinite collections of positive and negative terrns represented in their respective
orderings, it must be the case that both Z = oo and Z —1X; = —o0. Again,
if either were finite, the conditional convergence of {x; }_/:1 would imply its absolute
convergence, a contradiction. Now with these divergent positive and negative sub-
series, the proof is identical to the derivation above for the alternating harmonic se-
ries if r € R. In the case r = oo, choose N so that Z > 10|x; |, then choose N
so that Z/ N+ x> 10|x; |, and so forth. The rearrangement is xi,..., 0,7,
XN 415+ s XNys X5 5+ .. By construction, the summation of each block of positives
and one negative term, x;, exceeds 9|x;|, and hence Z | Xx(j) grows like
95> |x; |, where m is the subscrlpt of the largest N; with N; <n. A srmllar type of
conStructlon produces the result for r = —oo. [
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It is interesting to note that the rearrangements implied by this proposition have a
special and initially not obvious property. Namely the collection of “forward shifts,”
{n(j) — j}, must be unbounded in the construction above for the summation of the
series to shift from the original value of s to any new value r. In other words, in order
to get the desired results, the rearrangement implied by this construction needs to
map the elements of the index set {j} farther and farther from their initial positions
to new forward positions.

To investigate this, note that the construction in the proof above creates a series

+ + - + - -
XY ey XN X sy X XN g e e s XNy X g 1s e o9 Xy -

within which the forward shifts for positive terms appear to be unbounded, since they
grow in relation to ) M; as caused by the insertion of groups of negative terms. Sim-
ilarly the forward shifts of negative terms appear unbounded as caused by the inser-
tion of groups of positive terms.

But we need to be skeptical of this argument. The positive and negative terms were
interspersed somehow initially, and perhaps interspersed similarly to what the con-
struction called for. So this construction likely only changed the order a small
amount, and not in the claimed unbounded way.

The next result shows in fact that if the rearrangement function only moves
indexes by a limited amount, then the rearranged series converges to the original
summation value and cannot be changed.

Proposition 6.14 Let {xj} be a conditionally convergent series, Z i xj=s,andn
a rearrangement function wzth the property that for some integer P and all j, n(j) <
j+ P Thenz | Xn(j) = 5.

Proof Consider the partial sums, ZJ" | Xj and Z] | Xx(j)- By the given assumption

on 7 that z(j) < j+ P, it must be the case that

{xn } {xj}j 1

It is also possible that some or all of {x;(;}/_, p,; are also included in {x}}_;, but
this will not matter for the proof. So we can conclude that

ij anm =Y - Y m

Jj=n—P+1 Jj=n—P+1
where by assumption, n— P+ 1 <=n(j) <n+ P for n— P+ 1 < j <n. Denoting
{m(/)}=ppoy BY {n— P+ ’?ﬁf:l for integers 1 < n; < 2P, we derive by the triangle
inequality,
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P

P
< Z |xn—P+j| + Z ‘xn—P+nj|~
j=1 =1

j=

n n
E Xj— E :xnm
j=1 j=1

Now, since {xj}f:l is a convergent series, we have that x; — 0 as j — oo, so the sum
of the 2P terms in this upper bound also converges to 0. More formally, for any
€ >0, choose N so that |x;| <55 for j > N. Then choose n above so that n—
P+1>N. [

The implication of this result is that rearrangements of conditionally convergent
series are allowable as long as the rearrangement is limited to index movements that
are bounded in the sense above, whereby for all j, n(j) < P + j for some fixed P.

As an application, if a series is presented for evaluation of convergence, any num-
ber of rearrangements are possible within the rule that z(j) < P + j for some fixed P.
If such manipulations then provide a basis for concluding convergence, then one can
be assured that the original series converges to the same value. In other words, this
result can be applied backward in that if a bounded rearrangement produces a con-
vergent series, then the original series must be convergent to the same value. As the
proposition demonstrated, however, with unbounded rearrangements, anything can
happen.

The conclusion for absolutely convergent series is completely general, in that such
a series can be rearranged in any way without changing the value of the sum.

Proposition 6.15  Let {x;}°, be an absolutely convergent series, Y " Xj = s, and n
any rearrangement function. Then Zﬁl Xn(j) =S

Proof The goal is to reproduce the proof used for the alternating geometric series in
case 2 of example 6.12, but we first need to show that this series can be split into a
positive and negative subseries, and that each of these converges to values that in
turn sum to s. To this end, define {x;"};Z, and {x;}~, by

x; =max{x;,0}, x; =max{—x;0}.

For the alternating geometric series above, this definition produces x2+j =a¥,

Xy = a¥~!, and both subseries are 0 for other indexes. Now note that x; =

xj+ —x;, and |x;| = x/+ + x; . Since this series is absolutely convergent, both subseries
x =3[+ |x]] and x; = 3 [|x;] — x;] are absolutely convergent to s; and s,, respec-

tively. Therefore

n n
2 %= (s =s2) PIERE
Jj=1

Jj=1

< +

)

n

+_
ij 51
j=1
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which implies that Z/x:] Xj = s1 — 52 = 5. With this setup the proof of this result for
the alternating geometric series now can be implemented identically, by substituting
xj+ and x; in the roles of the positive and negative terms in example 6.12. |

Example 6.16 Two common and important applications of this last result are:

1. If a series is given with only positive or negative terms, or one with only a finite num-
ber of terms of one sign and the remainder of the other, then such a series is convergent
if 'and only if it is absolutely convergent. Consequently one can apply completely arbi-
trary rearrangements to the series in search of evidence of convergence because, once
such evidence is found, one concludes absolute convergence, justifies the rearrangement
by the proposition above, and knows that the original series must have the same sum-
mation as that developed for the rearrangement.

2. Since the rearrangement functions contemplated by the proposition above are com-
pletely general, one could in theory split such a series into a series of even terms fol-
lowed by a series of odd terms, or in three collections

X1y Xgyoooy X2, X5, ..,X3,X6,...

or any number of countably infinite subseries. An important application of this observa-
tion is to a “multiple” series, such as the double series,

where n(j) is some function of j, or simply n(j) = co, for all j. A common example is
n(j) = j. Of course, triple, quadruple, and higher order series are similarly defined,
though less common in applications. These summations are always intended to be per-
formed from the outer summation inward so that in the example above,

xij:inl +in2+zxi3+zxi4+'“-

oo n(J) n(1) n(2) n(3) n(4)
=1 i=1 i=1 i=1 i=1 i=1

J

One can envision these index points on the positive integer lattice in R>, where Xjj is
defined at each point (i, j), i, j > 0 as in figure 6.1. The double summation is then envi-
sioned as summing along rows, starting with j =1 and summing the first row from
i =1 to n(l), then the second row, from i =1 to n(2), and so forth. It is often conve-
nient to be able to reverse the order of the summation, to in effect sum by columns first.
For example,
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J
61+ ° ° ° ° °
° ° ° ° ° °
4+ o ° ° ° ° °
° ° ° ° ° °
24+ e ° ° ° ° °
° ° ° ° ° °
0 f f f +H—
0 2 4 6 .
i
Figure 6.1

Positive integer lattice

o0 o0

J

0 0
x; becomes E E Xjj,
i=1 j=1

1 i=1

©_ _J

o0
E E x; becomes E Xjj.
j=i

=1 i=1 i=1

NgE

In the second summation, the integer lattice model simplifies the setting of the limits for
the reversed summations by providing a visual representation. The question that arises
is, can summations be switched in such a manner? Intuitively, if the series is only condi-
tionally convergent, there is little hope of a positive conclusion, since it is apparent that
such rearrangements move series terms by arbitrarily large distances. On the other
hand, if the series has terms of one sign, or all but a finite number of one sign, then
again it will be convergent if and only if absolutely convergent. In such cases, the result
above on absolute convergence is again applied backward; that is, if one rearranges as
necessary and convergence is justified, so too is absolute convergence. So we can con-
clude that the original multiple series has the same summation as the rearranged series.

6.1.5 Tests of Convergence

There are many tests of convergence for a series, and at first their large number may
seem odd. Just how many tests does one need? The problem is that no test is stated in
the unambiguous language:
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The series >_ 7, x; converges if and only if . . .;
j=1"]

that is, except the test in the definition itself, which then goes on to require for the
Cauchy condition that

...for every ¢ > 0, AN with [5°" | x; = >°" | xj| < e for n,m > N.

So the definition of convergence provides an “iff” test of convergence, but in many
cases there is no easy way to demonstrate that there is a value of N = N(¢) that will
work.

The various tests of convergence provide the benefit of relative ease of implemen-
tation, but at the cost of so-called indeterminate cases. To be more precise, all tests
provide the following schema, either explicitly or implicitly:

1. The series 3", x; converges if condition A4 is satisfied.
2. The series )" x; diverges if condition B is satisfied.

3. No information on convergence is provided in other cases.

So every test divides the collection of all series {3_”, x;|x; € R or €}, into these
three groups according to that test’s conditions. A given series may be in the indeter-
minate group for one test, and demonstrated to converge or diverge with another. Of
course, it will never be the case that one test assures convergence, another divergence,
or conversely.

The reason for the multitude of tests is that each varies in terms of ease of imple-
mentation for a given series, as well as in terms of the specific members of the group
of series that remain indeterminate. Tests can be intuitively thought of as stronger
if they provide a smaller indeterminate set, but there is no generally accepted order-
ing for the strength of such tests unless one test’s indeterminate set is contained in
another’s.

So far, no test other than the definition itself has been discovered that has (), the
empty set, as its indeterminate collection. In this section we identify a few of the
best and easiest to implement tests. Also a very useful test will be added in chapter
10, using a method involving Riemann integrals. The first test is probably the most
widely used because it affords the analyst a great deal of flexibility in its application.

Proposition 6.17 (The Comparison Test) If Zf;l X;j is absolutely convergent, and
> o721y is any series with |y;| < |x;|, for j = N for some N, then 3"
absolutely. Conversely, lfzjy:] x; and Zf;l yj are any series with | y;| < |x;|, for some

J=N,and 337 |yj| = oo, then Y7 |x;| = oo

1Yj converges
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Proof For the convergence condition, if s, = 2;1:1 |vjl, then for n > N,

n

N N 0
i< > l+ D i< Dl + D] Il
i1 =1 i1

J=N+1

In other words, the absolute partial sums of the series { y;} are both increasing with
n, and bounded. Because these partial sums are bounded, they must have an accumu-
lation point. So there is an s such that for any e > 0 there is an M (¢) with |5y — 5| <
e. However, since the sequence {s,} is increasing, |s, — S| < e for n > M, and hence s
is the limit of the partial sums. That is, Zfil |v;| = s. For the divergence condition, it
is clear by assumption that the absolute partial sums, s, = Zj”:l | y;], are unbounded.
Consequently, since all but a finite number of |x;| exceed |y;|, the partial sums of this

series must also be unbounded, and hence ;’;1 |xj| = co. ]
Remark 6.18

1. Note that for the purpose of establishing convergence by the comparison test, or di-
vergence, one can ignore any finite number of terms of the respective sequences. In
other words, the relationship between |y;| and |x;|, for j < N and any fixed N, is irrel-
evant to the conclusions.

2. Note also that the assumption in the comparison test for convergence is that for
some N and j > N,

=Xl <y < Ixl

That is, that all but finitely many terms of {y;} are bounded by two convergent series.
This can be generalized. Namely, if there are two convergent series Zﬁlxj and
> 212 so that

xj <y <z  forj=N for some N,

then > " y; is convergent. This is because 0<z;—y; <z;—x; and since

Ejoc:l(zj — X;) converges by assumption, and hence converges absolutely because the
. o0 . g

terms are nonnegative, we conclude that 3 | (z; — y;) converges, and in fact converges

absolutely. Subtracting the convergent Z/ﬁ | Zj implies the result.

Example 6.19 Consider Y., L. where as usual, n!=n(n—1)(n—2)---2-1 is
called n factorial. Note that for n > 4,

nn+1) n+1 1

<21
n n—-1m-2!"3 ’

N —
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1
n(n+1)

parison test because Y, m converges by case 2 in example 6.9.

for n >4, and consequently, > | L converges by the com-

1
In other words, a < =17l

The next test generalizes the result observed for the alternating harmonic series in
example 6.10.

Proposition 6.20 (Alternating Series Convergence Test) If Z;i] X;j is an alternating
series, and for some N we have |x;1| < |x;| for j = N and x; — 0, then Y7 x; con-
verges. If s denotes the summation, we have the partial sum error estimate with
Sn = Dy

Isp — 8| < |xps1|  form=N.

Proof Since Zj]if x; = s’ is finite, and forn > N,

n

/

Sp = E Xj—‘rS,
Jj=N

we can ignore these exceptional terms and assume that |x;| monotonically decreases
to 0 for all j. For specificity, assume that x; > 0. We first show that the odd partial
sums form a decreasing sequence that is bounded below. This follows from

Sl = Sop—1 + Xon + Xopt1
< -1,

since Xz, < 0 < x2,41 and |x2,41] < |x2,] by the monotonicity assumption. In addi-
tion this sequence is bounded below by 0, since we have that every s,.; can be
expressed as a summation of nonnegative terms by sy,11 = X241 + > (X2 + X2j-1),
where the summation is from j =1 to n.

Similarly the even partial sums form an increasing sequence that is bounded
above. By proposition 5.18, both sequences are convergent, say to £ and O for even
and odd. But since |sy,+1 — 21| = |X2011] — 0, we have E = O = s and 5, — 5. Now
by this discussion,

Son <8 < Saupn for all n,

$0 0 <5 — 50, < Sopy1 — Sy = Xopg1. Similarly 0 < sppp1 — 8 < 2001 — S22 < Xong2,
and the error bounds follow. ]

Example 6.21 As a simple application to the alternating harmonic series, if we desire
an estimate of the summation that is within € of the true sum, we simply choose N so
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that N_+1 < e. We then know from the proposition above that sy = le\il D wzll be
within € of the correct answer. As noted above, using methods of calculus, we wzll derive

that s = In 2, and we can conclude that

j+1

N +
(71)./
In2— 4

To get the correct Mth decimal place of In 2, which is to say that we want an error of
less that m‘ﬂ—fﬂ, requires about N = 2(10M*1) terms of this summation. In other words,
although this series converges, it does so very slowly.

< ! .
N+1

Next are two tests for convergence that depend on ratios. The first uses ratios of
the given series’ terms with those of an absolutely convergent series; the second uses
ratios of consecutive terms from the given series.

Proposition 6.22 (Comparative Ratio Test) If Z | Xj is an absolutely convergent
series, and {y;} is a sequence so that hmjﬁﬁl‘ /“ exists, then ZFI yj is absolutely
convergent.

[yl

J]
hence |y;| < B|x;| for all ;. Since Z 1 Bx; is absolutely convergent by assumption,

the result follows by the comparison test in proposition 6.17. [

Proof The existence of this limit implies that { } is a bounded sequence, and

Remark 6.23 This innocent looking result provides a powerful intuitive conclusion
about convergence. First off, if Z;il X;j is an absolutely convergent series, it is apparent
that |xj| — 0. Therefore for any € > 0 there is an N so that |x;| < € for j = N. The
comparative ratio test says that if { y;} is any sequence that converges as fast or faster
to 0, that is,

=C=0,

then Ejoil yj is also absolutely convergent.

In other words, any absolutely convergent series provides a “‘speed benchmark” for
the rate at which the absolute value of its terms converge to 0 in that every series that
converges as fast or faster must also be absolutely convergent.

Although there are many other tests of convergence, we end with one of the most
useful, as will be seen in the next section.
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Proposition 6.24 (Ratio Test) If Z;’il X;j is a series so that

limsup{M} =L<1,

n— oo |xl1|

then Zjoil x;j is absolutely convergent. On the other hand, if

then 3" | x; diverges. If L = 1 in either case, no conclusion can be drawn.

Remark 6.25 Recall the intuitive definition of limits superior and inferior. That is,

consider all values of the sequential ratios {% , as well as all possible accumulation

points. The ratio test says that if the largest such accumulation point is less than 1, the
series must be absolutely convergent, and if the smallest is greater than 1, the series
diverges. This test is powerful because it does not require the existence of the limit
of these ratios, it only depends on values of the smallest and largest accumulation
points.

Of course, if the limit of these ratios exists, then the series converges absolutely
or diverges according to whether the limit is less than or greater than 1. The in-
definite case of L =1 is easy to illustrate. From cases 3 and 4 of example 6.9,
we know that Z% diverges and ZJ% converges, and yet for both, L =1 as is easily
verified.

Proof In the first case where lim supn_,ao{M} = L < 1, by proposition 5.22, for

‘xrll

any e there is an N so that {%} < L+ ¢ forn>N. Choose € <1 — L; then for
any m > 1,

\XN+m| _ |xN+m| ‘XN+m—l| \XN+1|
|XN‘ |xN+mfl‘ ‘xN+m72| o |xN|
< (L+e)™.

In other words, |xym| < (L + ¢€)"|xn| for all m > 1, so {|xy |} is bounded above
by a geometric series. Now, since L + ¢ < 1 by construction, this geometric series
must converge, and so too the original series by the comparison test. The limit
inferior result is similar, only we conclude that |xy. | > (L —€)”|xy|, where € is
chosen as € < L — 1, so this sequence is bigger than a divergent geometric series
as L—e> 1. |
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6.2 The /,-Spaces

6.2.1 Definition and Basic Properties

The primary reason to introduce the notion of the /,-spaces is that they represent an
accessible introduction to an idea that will find more application with the notion of
L, function spaces studied in real analysis. In addition /,-spaces provide an interest-
ing and important counterpoint to the conclusion drawn in chapter 3, that all /,-
norms are equivalent in IR”. We now study what happens to this conclusion when
n— oo.

Notation 6.26  While one can easily distinguish between l,-space and L,-space in writ-
ing, it is more difficult to do so in conversation, since both are pronounced “Ip space.”
For this reason one sometimes hears “little Ip space” and “‘big Ip space’ in a discussion.

Definition 6.27 For 1 < p < oo the space 1, is defined by

by =A{x= {5} [lIxll, < o},

where, consistent with the [,-norms defined for Euclidean space,

1/
I, = ()" 1<p<e, (6.22)

X[l = sgp{lxj\}- (6.2b)

Real I,-space and complex ,-space are defined according to whether {xj}jil < R or
{xj}/21 = €. The absolute values |x;| in (6.2) are defined according to x; being real
or complex, as in (2.3) and (2.2), respectively.

Intuitively, one can imagine real /,-space as an infinite Euclidean space, R, under
the previously defined /,-norms. That is a good starting point for our intuition, in
that we will see that the /,-spaces are vector spaces just as was Euclidean space, and
that the /,-norms defined above are indeed norms in the sense of chapter 3.

There is a dramatic difference, however. Earlier we saw that all /,-norms are equiv-
alent in IR” for 1 < p < oo. Switching from one norm to another changed the numer-
ical value of our norm measurements, but in every real sense the spaces were
identical. By definition, the basic collection of points in IR” were the same, and the
notions of open and closed, as well as convergence, were identical under any of these
norms.

For example, G = R" is open with respect to one /,-norm if and only if it is open
with respect to all /,-norms. Similarly a sequence {x,} = IR” converges to x € R” in
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one /,-norm if and only if it converges with respect to all /,-norms. Put another way,
{x,} = R" is a Cauchy sequence with respect to one /,-norm if and only if it is a
Cauchy sequence with respect to all /,-norms.

On the other hand, the /,-norms are not equivalent in R™. In fact, for any p with
1 < p < oo, it is easy to produce a sequence {x;}”; so that {x;};Z; €/, for all p’
with p < p’ < oo but {x,-};il ¢ I,. The simplest example uses case 4 in example 6.9.
For p given, define

{0

j=

Then in /,, the norm of this point is the pth-root of the sum of the harmonic series,
and hence it cannot have finite /,-norm. However, by case 4, this point has finite
l,-norm for any p’ > p with p’ < co. In addition ||x||, = 1. This generalizes to:

Proposition 6.28 If'1 < p < p’ < oo, then I, < I/, and the inclusion is strict.

Proof Letx = {x;}/Z, €1, be given. Then the finiteness of |||, implies that all but
a finite number of x; satisfy |x;| < 1. Now, if p’ > p and p’ < oo, then

STl =3 Il + Y Il < Y IwliP+

<1 [xj|>1 |x;1<1

Consequently [x]|,, is finite and {x;};~, € /,. For p’ = co, it is apparent that ||x||,, =
sup;{|x;|} is finite since ) [x;|” is finite. Hence, in all cases, /, = /,,. That this inclu-
sion is strict was exemplified in the case of the power harmonic series for p’ < co.
The case p’ = oo is easily handled by the example x = {xj}jﬁl, where all x; =1,
say. Clearly, x € /,, but in no other /,-space for p < co. [

More surprisingly, there exists an infinite collection of sequences that are in all the
l,-spaces and are in fact dense in all the /,-spaces for 1 < p < co0. So the differences
between these spaces is caused entirely by the “completion” of the common collec-
tion of sequences in the various norms. To be more precise each /,-space can be cre-
ated by adding to this common collection of sequences the limiting values obtained
by forming convergent sequences in the various norms.

To illustrate such a construction first in a more familiar setting, consider " = IR”,
defined as the n-tuples of rational numbers. That is,

Q" ={x= (x1,x2,...,x,) | x; € Q for all j},
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which is a vector space over the rational numbers. Next, define ]R; by
R) = {x e R" so that 3{x;} = Q" with [|x —x;||, = 0,1 < p < c0}. (6.3)

Proposition 6.29 For any n, IRZ =R" forall p,1 < p < o0.

Proof By definition, IR; < IR”, so only the reverse inclusion need be proved. Let
x € R” be given. Define x; € Q" so that the integer parts, and the first j-decimals of
the components of x; agree with those of x, and the decimal expansions of the com-
ponents of x; are all Os past this jth position. Clearly, {x;} < Q". It is also clear that
for p < oo, using the geometric series summation approach illustrated in example 6.9
above obtains

- 1/p (s
10-0+D
X—xl| <9 g 107 =9 —,
|| ]H[I (kj+1 > <(1 o lo—p)l/p

which converges to 0 as j — o0. For p = oo, ||x — x;||,, <9(10~U*V), which again
converges to 0. Hence R” = IR} for all p, 1 < p < o0, and R = R". [

In other words, starting with this common vector space, Q", if we complete this
space with respect to any of the /,-norms, the same vector space arises, namely R".
Put yet another way, Q" is dense in IR” with respect to every /,-norm. We next show
that there is also a common vector space that is dense in all the /,-spaces, and that
each /,-space arises by completing this common space with respect to the associated
norm. To this end, we introduce the following:

Definition 6.30 1R™ and C” are formally defined as the collection of sequences:

R ={x = (x1,x2,...,Xs,...) | x; € R for all j}, (6.4a)

C” ={x=(x1,x2,...,%n,...) | x; € C for all j}. (6.4b)
Similarly Ry and C; are formally defined as ““truncated’ sequences:

Ry ={xeR™|x; =0 forall j > N, some N}, (6.5a)

Cy ={xeC” |x;=0forall j> N, some N}. (6.5b)

Addition and scalar multiplication are defined pointwise:

X+y= 1+ y,X+ V2, Xnt+ Vuyeen),
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ax = (axy,axy,...,ax,,...),
where a € R for R® and R§", and a € C for C* and C.

Remark 6.31 It is easy to see that R™ and R are vector spaces over R, and that
C” and C; are vector spaces over C, based on definition 3.3 in chapter 3. Also, by
the definition of the l,-spaces, it is clear that for every p,1 < p < 0, Ry" =, = R*
in the real case, and C; < I, = C* in the complex case. We study the l,-spaces in the
next section, but first demonstrate an interesting point. For conciseness, we limit the
Jollowing statement to the real l,-spaces, but it is equally valid in the complex case:

Proposition 6.32  The vector space R is dense in every l,-space, 1 < p < oo. That is,
given any X €, there is a sequence, {x,} = R(" so that [|x — Xy, — 0.

Proof Given X = (X1,X2,..., X, Xyy1,...), define x, = (x1,x2,...,%,,0,0,0,...).
In other words, x, is defined to have n nonzero components equal to the first n-
components of x. Now for p < oo, x €], implies that [|x||) =37 [x;|” < 0. By
definition, this implies that for any e > 0 there is an N so that } " |x|” < ¢ for

n> N. However, ||x —x,[[) = >~ ., |x;/, and hence [|x — x,[|) — 0asn — co. m

It is important to note that this result does not extend to p = oo, as a simple

example demonstrates. If x = (1,1,1,1,1,...), the constant vector, |x — X,
sup;.,{|;|} = 1, so no convergence occurs in the /,;-norm.

OC:

*6.2.2 Banach Space

For /,-spaces to be really useful, there are two as yet unanswered questions that need
to be addressed:

1. While /,-space is closed under addition and scalar multiplication as a vector space,
is it closed as a normed space? In other words, if x,y €/,, must it be true that
x+yel,, and so x 4y has a finite /,-norm?

2. Are the /,-spaces complete? That is, if {x,} < /, is a Cauchy sequence, must there
be an x € /, so that

o0

/p
[x —xul, = [Z(Xj - xnj)p] — 07

j=1

These questions are addressed in this section, and both are answered in the affir-
mative. First, the affirmative result on closure under addition.



200 Chapter 6 Series and Their Convergence

Proposition 6.33  Real l,-space is a normed linear space over the real numbers, R, and
complex l,-space is a normed linear space over the complex numbers, C. In addition in
both spaces we have the Minkowski inequality:

Ix+yll, < Ixll, + I¥ll,- (6.6)

Proof Because these collections are defined as subsets of the vector spaces R* and
C~, all that is left to prove is that these spaces are closed under the above-given def-
initions of addition and scalar multiplication, and that the /,-norms defined in (6.2)
are indeed norms in the sense of chapter 3. Of course, closure under scalar multipli-
cation is immediate, since for any p, [lax||, = |a| [|x]|,- The more subtle question is
addition, and for this, we demonstrate the Minkowski inequality. As in Euclidean
space, the Minkowski inequality is the name given to the triangle inequality under
the /,-norm. This result is apparent for p = oo since

sup{|x; + [} < sup{|x;|} + sup{|y;},
J J J

and for p = 1 by the triangle inequality,
I+ vl < Il + |l

which implies by summation that ||x +y|[; < |x||; + [|y||,. For 1 < p < oo the subtle
issue to address is the finiteness of ||x +y||,. If its finiteness is demonstrated, the
proof of the inequality in (6.6) for R” and €" in proposition 3.24 in chapter 3, for
which finiteness was guaranteed, goes through step by step.

To demonstrate the finiteness of |[x +y|,, we note that for 1 < p < oo, the func-
tion f(x) = x” is convex, which consistent with (3.31) means that

flzi+ (1 =0)z) <tf(z1) + (1 = ) f(z2) for0<r<I.

This function is also increasing for 7 € [0, 00). This can be readily demonstrated with
the tools in chapter 9 on calculus, although it is intuitively apparent from sam-
ple graphs. We will assume this result and let z; = |x;|, z» = |y;|, and = 0.5. We
get by the triangle inequality that (0.5|x; + y;])” < (0.5]x;| + 0.5]y;])” since p > 1,
and

(0.51x;] + 0.5]y;1)" = £(0.5]x;] + 0.5[ ;)
By the convexity of f(x) above,

J(0.50x;] +0.5]3;1) < 0.5(1x1" + [31”).



6.2 The [,-Spaces 201

That is, (0.5|x; + y;|)” < 0.5(|x;|” + |»|”), and hence
Ix+yll, < (0.5 PP (IxF + Iyl

which is finite. Following the exact steps of the proof of proposition 3.24, we then
derive the better estimate of the upper bound for [|x +y||,. Consequently /,-space is
closed under addition. Finally, the Minkowski inequality is also the critical step in
proving that the /,-norms are indeed norms in the sense of chapter 3, which is to
say that the triangle inequality is satisfied, since the other norm requirements are
immediate. [ ]

Because /,-space is a vector space, and || ||, a norm, we can define a distance func-
tion or metric on /,, the /,-metric, consistent with this norm, just as it was defined in
Euclidean space, IR” and complex space C".

Definition 6.34  The [,-metric, d,(X,y), is defined on I, by
dp(x,y) =[x —yl, forl<p<oo. (6.7)

The final critical property of the /,-spaces to verify is that they are complete in the
sense of chapter 4. That is, every Cauchy sequence in /,-space converges to a point in
that /,-space. In the proposition above it was proved that /,-space is closed under ad-
dition, but this gives no insight to the completeness question.

A simple example is the space of rational numbers, @ = IR. Clearly, @ is closed
under addition, but equally clearly, as was seen in example 5.13, it is not complete.
That is, while a Cauchy sequence in @ may well converge to a rational number, it is
also possible that a sequence of rationals can converge to an irrational number. In
fact, because @ is dense in IR, every number in R can be achieved by Cauchy se-
quences in Q.

As it turns out, the /,-spaces are complete for 1 < p < 0.

Proposition 6.35 If' 1 < p < o, [, is a complete normed linear space. That is, if
{x,} = I, is a Cauchy sequence, then there exists X € I, so that d,(X,,X) = ||x, — X||

— 0.

P

Proof The assumption that {x,} is a Cauchy sequence means that for any € > 0
there is an N so that [|x, — X[, < € for n,m > N. Now, if p < oo, this means that
ijf;l %, — xm/.|" < €”, where x,, denotes the jth component of x,. This implies that
|Xn, — Xm,|” < €” for every j, and so the jth components of {x,} form Cauchy se-
quences in R for every j. Since R is complete, there exists x; € R so that x,, — x;

for all j. A similar conclusion holds in the case of p = oo where the Cauchy property
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means that sup;|x, — X»,| < € for n,m > N. Defining x = (x1,x2,...), the vector of
componentwise limits, we must now show that x € /, and that ||x, —x||, — 0. The
convergence of x, to x is immediate from the Cauchy assumption, since for any
e > 0 there is an N so that ||x, — mep < € for n,m > N. Letting m — oo, we con-
clude that for any € > 0 there is an N so that |x, —x||, < e for n > N. Finally, to
show that x € /,, note that [[x||, < [[x —xyl|, + ||xn/, by the Minkowski inequality,
from which we derive that ||x||, < €+ [xyl|, and so ||x[|,, is finite. That is, x € /,. =

The notion of complete normed linear space is so important in mathematics that it
warrants a special name, after Stefan Banach (1892-1945), who first identified and
studied properties of this special class of spaces:

Definition 6.36 A normed linear space, (X, || ||), that is complete is called a Banach
space.

Remark 6.37 To identify our list of Banach spaces so far, we include R" and C",
under any of the l,-norms, 1 < p < co, as well as all the real and complex I,-spaces,
again for 1 < p < oo. In real analysis this list will be expanded to the function space
counterparts to the l,-spaces, denoted the L,-spaces.

*6.2.3 Hilbert Space

The preceding analysis shows that all the /,-spaces are Banach spaces for I < p < oo,
which is to say, complete normed linear spaces. As it turns out, there is one /,-space
that is more special than the rest. Specifically, /; has the additional property that its
norm is given by an “inner product,” and in that respect, /» is most like ordinary
Euclidean space IR”, or its complex counterpart C”, for which the same point was
made concerning the “standard norm.” Recall from chapter 3 that the inner product
between two vectors can be defined as in (3.4) and (3.6), and that there is an intimate
relationship between these inner products and the standard norms in these spaces as
in (3.5) and (3.7), as summarized by

x| = (x-x)""2

In the context of /,-space we formally revise these inner product definitions by

X-y= inyi, X,y € 12 (real), (68)
j=1

”
X-y= leyi, X,y € h (complex). (6.9)
J=1
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To the extent these definitions can be shown to make sense, one has immediately as
in (3.5) and (3.7) for the standard »-norms in R” and C", that in either real or com-
plex /-space:

Ixl, = (x %)/, (6.10)

This inner product construction can be implemented in /; and only in /,. The sub-
tlety, of course, is the demonstration that the inner products above actually converge,
since in contrast to the case for IR” and C", now n = co. If convergence is demon-
strated, it will be straightforward to demonstrate that this inner product satisfies the
same four properties as did the inner products in R” and €”" highlighted in defini-
tions 3.7 and 3.11 in chapter 3. That is, (6.8) satisfies the same properties as (3.4),
while (6.9) satisfies the same properties as (3.6).

To this end, the critical insight to the convergence of the series in (6.8) and (6.9) is
an inequality that was seen in chapter 3, and that was Hoélder’s inequality. In that
chapter this inequality was demonstrated as one of the steps toward the proof of the
Minkowski inequality. As noted above, the proof of the Minkowski inequality in /, is
identical to that in R" and €”, subject only to the demonstration above that [|x +y||,
is in fact finite for x,y € /,, 1 < p < co. Consequently, as a step in that proof, the
Holder inequality is also valid, and we state this without additional proof.

Proposition 6.38 (Holder’s Inequality) Given p, q so that 1 < p,q < oo, and %+é
= 1, where notationally, - = 0, then for x e l,,y €1,

[yl < Ix[, 1yl (6.11)
where X -y is defined in (6.8) or (6.9).

It is easy to see that this result highlights the special case of p = 2. That is, this is
the only case where both x and y can be selected from the same /,-space and an inner
product defined. In this case the inner product is well defined, and has absolute value
bounded by the product of the associated /,-norms:

(¥ < X[yl xyeb. (6.12)

Another important interpretation of (6.11) that is valuable in the future context of
function spaces is that the componentwise product of two series from /, is a series in
[;. That is, if we momentarily define the componentwise product

Xxy = (X101, X202, X33, - - -), (6.13)
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then if x,y € I, we have that x xy € /; and by the Holder inequality

[yl < [xl [yl (6.14)

The power of having this inner product in /, is that is provides a basis for defining
when two points are perpendicular, or in the language of such spaces, orthogonal.
This is a natural generalization of this same notion in chapter 3 (see exercises 7 and
8 in that chapter):

Definition 6.39 If x,y € I, then we say x and y are orthogonal, denoted x Ly, if
(x,y) = 0.

Of course, orthogonality is a generalization of the notion of perpendicularity in IR”
and €", in which (x,y) =0 is also the defining relation using the standard inner
product in those spaces. The classical collection of orthogonal vectors are those
defined by the coordinate axes. For example, in IR” we have the set of n vectors

(1,0,0,...,0),(0,1,0,...,0),(0,0,1,0,...,0)...(0,0,0,...,0,1),

denoted e;, for j = 1,...,n, and it is apparent that these vectors are orthogonal and
have unit norm or length

)0 T7E
B U

where of course, (e;,e;) = ||ej||§, the square of the norm of e;.

Such a collection of vectors is said to be orthonormal. Here “ortho” is short for
orthogonal, and “normal” means of unit length. In this case this collection is actually
an orthonormal basis where by ““basis’ is meant that with these vectors, every other
vector in R” can be generated using linear combinations of these. In other words, we
have for any vector x = (X1, X2,...,X,),

n
X = § :xjeja
Jj=1

where the coefficients, {x;} are used as scalars in what is called a linear combination
of vectors.

This construction generalizes to /, for which an infinite sequence of vectors,
{ej}j‘il can be correspondingly defined. In /,, however, the meaning given to the rep-

resentation above for x is with x,, = >°"

=1 X;€;:
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:ijej iff [|x —xu||, = 0asn — o0. (6.15)
j=1

In both cases, R” and /,, the norm of x can be derived from the scalar coefficients by

o0

2 2

Ix[3 =" x7.
j=1

This perhaps feels a bit like a notational sleight of hand, as the orthonormal basis
{ej}] | 1s pretty trivial, and so is the expansion of x in terms of this basis and the
corresponding identity for ||x||2 But in reality, this is just the tip of the iceberg. It
turns out that ,-space has infinitely many orthonormal bases, although we do not
prove this. The following is then a critical result on these bases.

Proposition 6.40 I/ {ej}jil is any orthonormal basis in R", C" or L-space, then for
any X in the respective space defined by

o
X = Z yjej, (616)
j=1
the coefficients are given by
yi = (x,€), (6.17)
and
i 2
IxI2 = 1yl (6.18)
j=1

Proof We focus on the ,-space result, and leave IR” and C” as an exercise. First off,
the expression for y; follows from (6.15), since by (6.12) we have as n — oo,

|(X — Xn7ej)| < ||X - Xn”z”ejHZ — 0,

and so (x,,e;) — (x,e;). But then (x,,e;) = y; for n > j, using the orthonormal
properties above, proving (6.17). Also, for (6.18), first note that (6.15) implies that
x|, — |Ix||, as m — co. That is, recalling that ||xn||§ = (Xp, X)),

2 2 2
[1xally = lIxll2 =[x = x]l2 + 2(x, %, = x).
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So from (6.12) we have
2 2 2
Ixallz = lIx[la2] < [1xn =[5 + 2[Ix[], (1%, — %]l

and the result follows. Then, again using the orthonormal properties above, we de-
rive (6.18), since

n

2 2
[1Xnll2 = (Xu, Xn) :Z|J’j| : n

i=1
Remark 6.41

1. The purpose of the absolute value in the identity in (6.18) is to indicate that in com-
plex L-spaces, it is the square of the norms of these complex numbers that are summed.

2. The identity in (6.18) is known as Parseval’s identity, after Marc-Antoine Parseval
(1755-1836), who derived this identity in the more general content of L, function
spaces. In that context, the collection of orthonormal functions used in (6.16) gave rise
to what is known as the Fourier series representation of the “function” X, named for
Jean Baptiste Joseph Fourier (1768—1830), who studied such functional expansions.

In real analysis this additional inner product structure in /, is repeated in the function
space counterpart L, and this structure has important consequences there as well,
similar to what was illustrated above.

The notion of complete normed linear space with a compatible inner product is so
important in mathematics that it warrants a special name, after David Hilbert (1862
1943), who first identified and studied properties of this special class of infinite di-
mensional Euclidean spaces.

Definition 6.42 A normed linear space, (X, || ||), that is complete and has a compati-
ble inner product is called a Hilbert space.

Remark 6.43 To identify our list of Hilbert spaces so far, we include R" and C”",
under the standard or L-norm, as well as the real and complex L-spaces. There will be
another identified later, but not until the study of real analysis, where we will be intro-
duced to the function space counterpart to the h-spaces, denoted Lj-space.

6.3 Power Series

In this section we introduce the notion of a power series that will justifiably get more
attention in chapter 9 on calculus in the study of Taylor series. Here we focus on
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power series of a single variable, although one can imagine that multivariate versions
are also possible, and as it turns out, important.

o0

Definition 6.44  Given a real numerical sequence, {c,}, ., the power series associated
with this sequence is notationally defined as a real function of x (or y, z, etc.), by

flx)= ZOC: cnx". (6.19)

n=0

In other words, a power series can be thought of as an infinite polynomial function
of x, defined on R. Not surprisingly, the central question to address here is the con-
vergence of the expression given in (6.19), outside of the obvious point of conver-
gence of x =0 for which f(0) = ¢y. In the later chapters on calculus, we will also
address questions such as:

1. Given a function f(x), when can this function be represented as in (6.19) for some
sequence {c¢,},—o?

2. Given a function f(x), when can this function be approximated by a finite version
of this series, and what is the nature of the error in this case?

Utilizing the results above on the convergence of numerical series, the following
result is easily demonstrated.

Proposition 6.45  Given the power series, f(x) =", c,x", define

L =lim sup{M}. (6.20)
n— oo ‘Cn|
Then with R :%, this power series converges absolutely for |x| < R, diverges for

|x| > R, and is indeterminate for |x| = R.
Proof By the ratio test, the requirement for absolute convergence is that
) ol
hmsup{mlin} <1,
n— 00 |Cnx |

which occurs exactly when |x| < R with R as defined. Similarly we conclude diver-
gence when |x| > R and that |x| = R is an indeterminate case. ]

Remark 6.46 R is called the radius of convergence of the power series, and the inter-
val, |x| < R is called the interval of convergence.
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Example 6.47
1L If f(x) =" %, then L =1lim sup,Hw{ﬁ = 0. Therefore R = oo, and this

n=0 gl >
power series converges for all x € R. In chapter 9 we will see that f(x) = e*.

2. If f(x) =2, o(=1)" 25, then L= hmsupnﬂw{zg} = 1. Therefore R =1, and
this power series converges for |x| < 1. This series diverges for x = —1, producing the
harmonic series but converges for x = 1 by the alternating series test. In chapter 9 we

will see that f(x) = In(1 + x).

30 f() =S D" 25, a > 1, then L—nmsup,w{s(;;g)"} — 3. There-
fore R = 3, and this power series converges for |x| < 3 It is also convergent for x —%
by the alternating series test, and for x = — 3, L producing a power harmonic series.

4. If f(x) =Y, o x", then L =limsup,_, {1} = 1. Therefore R = 1, and this power
series converges for |x| < 1. This series is easily seen to diverge for x = 1, and not con-
verge for x = —1. In chapter 9 we will see that f(x) = ﬁ, although this is easily
derivable as follows. Since we have convergence for |x| < 1, we can infer that xf(x) =
S x™ and hence f(x) — xf(x) =

5.1 f(x) =3 onx", then L =limsup,_, {n+ 1} — co. Therefore R =0, and
this series converges only for x = 0.

An alternative approach to power series convergence comes from the Comparison
test.

Proposition 6.48 Given the power series, f(x) = > cxX", if f(x) converges abso-
lutely for x = a, then it converges absolutely for all x with |x| < |a|.

Proof 1f |x| <lal, then it is obvious that |¢,x"| < |c,a”| for all n, and since
oo lena| converges, so does > |c,x"| by the comparison test. That is, f(x) is
absolutely convergent. [

A simple application of this last result is that every absolutely convergent numeri-
cal series gives rise to a power series that is absolutely convergent for |x| < 1. To see
this, assume that )7, ¢, is an absolutely convergent numerical series. Define the
power series f(x) = >,°, ¢,x". By assumption, f(1) is absolutely convergent, so
the result follows.

Example 6.49 It was demonstrated l'n case 4 of example 6.9 that if x; = %for a>1,
then the power harmonic series Z, | 70 converges, and since all terms are positive, it
converges absolutely. Consequently it lS immediate that the power series
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0

f)=>"

j=1

~.

<] %

~.

converges absolutely at least for |x| < 1. Calculating the radius of convergence from
a

the previous proposition, we obtain L = limsup,_, { (ﬁ) } =1,and R = % =1. So
in these cases the indeterminate case of |x| = R converges, although this is not deter-

minable by the ratio test.

As a final note, it will often be the case that the definition of power series requires
a small adjustment for the applications coming in chapter 9 on calculus.

Definition 6.50 Given a real numerical sequence {c,},_, and a constant a, the power
series centered on a associated with this sequence is notationally defined as a real func-
tion of x, by

f(x) :i:cn(xfa)”. (6.21)

n=0

The analysis above on power series convergence can be applied in this context,
with one adjustment:

Proposition 6.51  Given the power series f(x) =Y., ca(x — a)", define
L =1lim sup{w}.
n— oo ‘Cn|

Then f(x) converges absolutely for |x — a| < R, diverges for |x — a| > R, and is inde-
terminate for |x — a| = R, where R = %

Proof The proof is an immediate application of proposition 6.45 above, or can be
derived directly from the ratio test. [

In other words, for these power series the radius of convergence is independent of «,
but the interval of convergence is shifted from being “centered on 0" with |x| < R, to
being “centered on a”” with |x — a| < R, justifying the name.

*6.3.1 Product of Power Series

The discussion in this section relates to the product of two functions given by power
series. Obviously, if f(x) and g(x) are any two functions, the function /(x) =
f(x)g(x) is well defined. The question here is, if f(x) and g(x) are given as convergent
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power series centered on a, with respective radii of convergence of R and R’, what is
the power series representation of 4(x) and what is its radius of convergence? The
following proposition addresses this question:

Proposition 6.52 Let f(x) and g(x) be given as convergent power series centered
on a,

o0
by(x —a)"
—0

<«
—
=
~—
Il
[
o
3
—
[
|
)
S~—"
i

n n=0

with respective radii of convergence of R and R’. Then h(x) = f(x)g(x) is given by the
power series

:Zdn(x—a)”’ (622)
n=0
where
dy = bicy ;. (6.23)
=0

Further the radius of convergence of h(x) is R” = min(R, R’).

Proof The formula for the coefficients in (6.23) follows immediately from the obser-
vation that when multiplying these series, the only way that the product of a
bi(x —a)’ term from the expansion of f(x) and a ¢ (x — a)* term from the expan-
sion of g(x) can contribute to the coefficient of (x —a)" is to have j+ k = n. So
we see that this formula for d, simply accounts for all such products. The question
of convergence of (6.22) is the more difficult question which is addressed next. To
simplify notation, let f,,(x) denote the partial summation

and £, (x) = f(x) — fu(x), which is given by the summation
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Using similar notation for g(x) and /(x), and noting that the finite double summa-
tions such as 37" (37", can be reversed to 3" > ., we have for |x —a| < R,
due to the convergence of both f(x) and g(x),

m n

(%) = 3|0 (bi(x = @)Y (e s(x = )" )
n=0 [ j=0
= Y bi(x — a)j Em:cn,j(x _ a)n*j
Jj=0 n=j

=90 Y by —a) = D (b = @) ()

Now " bi(x—a)’ — f(x) as m—oo. If it can be shown that
>oitobj(x —a)’g,,_;(x) — 0 absolutely, the proof will be complete since then

m Z b j

Jj=0

— 0.

Now since g, (x) — 0, for any € > 0 there is an N so that |g,(x)| < e for n > N. To
have |g,,_;(x)| < e requires j < m — N, and so for m large enough,

m m—N—1 m
ij(x_a gm ] < Z gm j( )| + Z |b./(x_a)‘]gmfj(x)|
j=0 Jj=0 Jj=m—-N
<ey Iblx—a) |+ D |bi(x—a) g, (x)]
j=0 j=m—-N

N
X)e+ Y bm-j(x — )" g;(x)|
=0

< K(x )e—i— max_[g;(x)| max_|b,_;(x —a)"|.

- 0<j<N 0<j<N



212 Chapter 6 Series and Their Convergence

Note that the first summation converged to a finite value, K(x) say, for any x, be-
cause the power series for f(x) is absolutely convergent. Also the second term con-
verges to 0 as m — oo because the finite collection {gNj(x)}jN: o 1s bounded for any
x, and the maximum of the finite collection {|b,,_;(x — a)"’ |}]N: o converges to 0 as

m — o0, again because the power series for f(x) is absolutely convergent. [
*6.3.2 Quotient of Power Series

One important application of the proposition above is to generate the coefficients
of the reciprocal of a power series, or the quotient of two power series. Specifically,
the proposition above assures that if

J(x)g(x) = h(x),

NgE
M8
R
)

|
&

||~
&
=
s
“3

by(x —a)"

B
Il
<)

n=0 n=0

then the coefficients {d, } satisfy (6.23). Consequently, if f(x) and A(x) are given, and
if coefficients {c,} can be found that satisfy (6.23) and produce a convergent power
series, then we can conclude that

o x—a”:@
2l =y

And in the special case where /(x) = 1, the reciprocal of f(x) is produced.

Of course, to have any hope that the resultant expansion is convergent in an inter-
val of a, we require that f(a) # 0, which is equivalent to by # 0. In such a case the
equations in (6.23) can be solved for {c,} iteratively, producing after re-indexing for
visual appeal,

do
by’

1 n—1
c=— |d, — bu_ici|, n>1.
{fe-go)

We now show that the condition by # 0 is sufficient to ensure that Y~ , ¢,(x — a)"
is an absolutely convergent power series.

c) =

(6.24)
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Proposition 6.53 Let f(x) and h(x) be given as convergent power series centered
on a:

0 o0

bn x—a ; h(x) :Zd’l(x_a)n7
n=0 n=0
with common radius of convergence of R, and where f(a) = by # 0. Then g(x) = f{((%

is given by the power series

[=1

n—=

where {c,} satisfy (6.24), and this series is absolutely convergent on |x — a| < R’ for
some R' > 0.

Proof We prove this proposition in two steps.

1. Assume that we can prove this result for 4(x) = 1, where {c,} satisfy (6.24) with
dy =1 and d, = 0 for all n > 1. In other words,

@
7= D=’
is absolutely convergent, where
e n=o
NS b, n= L. (023

Then by the proposition above, g(x) = h(x ) & is well defined:

60 =3 el — )",
n=0

where by (6.23), stated in terms of {c,} and {d,},

d() n= 0 ,

n do

I by’

Cp = E djcn—j = 10
Jj=0

%[d Z Zk 1b” J— ka] n>1
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We must now show that this definition of ¢, is equivalent to (6.24). In this summa-
tion for n > 1, we define a new index variable / = j + k and observe that given j, we
have j </ <n — 1. Therefore

n—1 n—j—1 n—1 n—1
/ pr—
diby—jkcy = bu-1dje;_
j=0 k=0 j=0I1=j
n—1

|
>
=
L
SA
g
4

=0 j=0
n—1
= bn—ici )
1=0
where we reversed the double summation Z]";Ol Z,’:} =" Z}:o in the second

line. Substituting this final result into the definition above for ¢, produces (6.24) as
desired.

2. To prove (6.24) in the special case of /i(x) = 1, first note that we can assume that
bp =1, since this term can be factored out of the series without changing conver-
gence properties, and factored back in as i after the inversion. Now since the power
series for f(x) converges for |x —a| = r < R, its terms must converge to 0. Hence its
terms are bounded, |b,|r" < M. Therefore

M
|by| < e
For convenience below we take M > 1. With ¢, defined as the coefficients of ﬁ
above with by = 1, we now show by induction that '
Mn
eyl <2"—-.
r

Since ¢j = 1, we assume this statement is true for n and evaluate ¢, . Then by (6.25),

n

N
E b}’H*l*jCj
j=0

|Cr/1+1‘ =

IA

"M 2jM-/
ZrnJrlfj 7

Jj=0
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nt+l _n
M
rn+l
7=0

Mn+1

rn+l

< 2n+1

Since the power series coefficients for ﬁ are bounded in absolute value by a geomet-

ric series, we conclude that this series converges if

n

2" —|x—al" < 1.

rl’l
So the interval of absolute convergence contains

\x—a|<L. ]
2M

6.4 Applications to Finance

6.4.1 Perpetual Security Pricing: Preferred Stock

The most apparent application of numerical series to finance is the evaluation of the
price of common stock or nonredeemable preferred stock, both “perpetual” secu-
rities. A preferred stock with par value of 1000 and dividend rate of 5% on an annual
basis pays 50 per year to the investor in perpetuity. In general, with par value of F
and dividend rate d on an annual basis, the investor receives Fd per year in perpetu-
ity. For an investor desiring a fixed yield of » on an annual basis, and assuming the
next dividend is one year into the future, the appropriate price function is given as

P(r) = Fd f:(l +r)7. (6.26)
j=1

From the methods above on numerical series we conclude that for any r > 0, this
price function converges absolutely as noted in section 2.3.2, to

This model is easily generalized to different dividend payment frequencies and/or
yield nominal bases.
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A more general model of yearly varying yields is easily handled formally. Now the
price is a function of a sequence of yields, {r;}, and

() = i (1 41)7. (627)

But the question of convergence is more subtle. Clearly, if there is an r > 0 so that
r; > r for all j, then by the comparison test, P({r;}) converges and P({r;}) < P(r).

Consequently the only question is, if r; > 0 for all j, but r; — 0, does this price
converge? However, the question is not really about the stronger condition of con-
vergence of r; — 0; it is only about the weaker condition of {r;} having 0 as a possi-
ble accumulation point. This can be problematic, since it is then possible that
infinitely many terms in the summation are large enough to cause divergence. As
was seen in section 5.2, this accumulation point condition can be expressed as
111’1'1 il’lfj*,w Vj = 0

To investigate the question of convergence, we apply the ratio test to this series.
The criterion for convergence is that

14 7)Y
lim sup % =L<1.
n— oo (l—l—}’j) /

By proposition 5.22 this condition is satisfied if and only if for any € > 0 there is
an N so that j > N,

(1 +rj)j

i+1
(1+Vj+1)j > L+€

Choosing € so that L + € < 1 and iterating, we derive that with j = N + k and
k=1

)N+k > (1 +VN)N

1+ ryix
( - (L—|—6)k
That is,

(1+r )N/(N+k)
IN+k = )

(L + ) /) B

which appears to be a bound on the rate at which r; — 0.
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But closer inspection reveals more As k — oo, it is clear that N—+k — 1 and hence
(L+ e)kmwk) L + €. Also, NH{ — 0, and assuming that ry > 0, we conclude that
(I+r )N [N+, Consequently the lower bound for ry,; converges to m —1=
L=<, which exceeds 0 if L +¢ < 1.

Hence we obtain that as k — oo, the ratio test assures convergence of the preferred

stock price only when for some L' = L + ¢ < 1,

. 1-L
h}ﬁi?f e

and hence we return to the case where the sequence is bounded away from 0. That is,
this condition implies that for any ¢ > 0 there is an N so that r; > lz—,L/ — ¢ for all
Jj=N.

Of course, this does not prove that there is no sequence {r;} with liminf; .., r; =0
for which the preferred stock price converges, it only proves that there is no such se-
quence for which convergence is verifiable by the ratio test.

With a similar analysis, one could anticipate the convergence of this pricing func-
tion for nonconstant dividends. Again, if these dividends are bounded from above,
d; < d for all j, the price function P(r) = szil di(1 +r)7 is easily seen to con-
verge by the comparison test. For unbounded dividends, the answer is more subtle,
but insights can often be developed with the aid of the ratio test.

6.4.2 Perpetual Security Pricing: Common Stock

A similar analysis can be implemented for the price of common stock under the dis-
counted dividend model introduced in section 2.3.2. From (2.22) we have that the
price—as a function of the last annual dividend assumed to have been just paid D,
the annual dividend growth rate g, and the investor required yield r—is

V(D,g,r) DZ +r)" J )

i( 1+ g>_j'

For fixed r and g, the analysis above for preferred stock indicates that this price con-
verges as long as r > ¢, and in this case we have as in (2.22),
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1
V(D,g,r):Der, r>g.

To generalize this in contemplation of a growth rate sequence {g;} and yield se-
quence {r;}, we apply the same considerations as for preferred stock. Convergence
by the ratio test is assured if the effective discount rates are bounded away from 0,
that is, =% > r > 0. But this approach may be challenged if these rates converge

> 1+
to 0.

6.4.3 Price of an Increasing Perpetuity

In addition to pricing formulas for perpetuities with constant and geometrically
increasing payments discussed above, we can apply double summations methods to
value a linearly increasing payment stream with a fixed annual rate. Generalizations
to this payment model are then discussed.

First, if the perpetuity payment at time j is D; = aj + b for constants ¢ and b, then
by linearity,

—aZJ +1)” 21” )7

and only the first summation has not yet been evaluated. Writing j = ,’ 1, we
have

S+

Jj=1

"
M
M\

-
Il
Il

Il
\gE
=
ay
d

Il
—_
.

I

Reversing the summations will be justified once we demonstrate convergence, which
will imply absolute convergence.
Now

r

- * —i+1
S (U407 =143 (1407 = a+n =
. 2

Substituting into the double sum, we obtain
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Zf(l 7= ins (6.28)

=1 r

The last answer makes sense because l is the value of a perpetuity of 1s payable
annually from 7 =1 forward, so -; is the Value of a perpetuity of perpetuities, where-
by 1 + is paid annually from 7 =1 forward. The first such perpetuity provides for a se-
ries of 1s annually from ¢ = 2 forward, the second for a series of 1s annually from
t = 3 forward, so it is clear that the total payment is growing linearly. However, rlz
starts payment one year later than desired, so the multiplicative factor of 1 +4r
adjusts for this. Combining results, we obtain

a(l+r) b

V(Dpr) ===+~ Di=daj+b. (6.29)
r

The double-summations approach can be generalized to present values of the form
P, = E]ﬁl JM(1+ r)_-’ . However, rather than obtaining an explicit formula as in the
case of n=0,1, we derive an iterative formula whereby we give P, in terms of
{Po, P1,..., Py_1}. Of course, here Py =1, and P, = Lir.

There are two ways to develop this iterative formula. First, we can proceed as
above and write multiple series:

S

n

~.

0

=

=1 =1 1:1
0w )
-3 S

i=1 j=n(i)

where n(i) =k +1for k" +1 <i < (k+1)" and for k > 0. In other words, we have

1, i=1,
2, 2<i<2m,
n(i) =<3 2"+ 1 <i<3

k+1, k"+1<i<(k+1)"

Then the inner sums can be collected into groups for fixed n(i), and the outer sum
converted to index k > 0, producing
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)T =S ) RS ()
j=1 k=0 j=k+1
N AV N NS |
_ K -
;[io(l> PR

. ~ > Ak
since 3377, (1417 =1 +1) 72 (1477 =2

Note that a bit of care is necessary for the k-summation, which is split as Y/~ , =
S+ >0, to avoid 0% in the second step where the binomial theorem (see chap-
ter 8 for details) was used. This theorem states that with n! (“n factorial””) defined by

nl=nn—1)(n-1)...(2)(1) and with 0! = 1,

(k+1)" = Z(':)k

i=0

So rewriting, we obtain

1 n—1 n
P'F;l;(i)f’fﬂ, n=23,..., (6.30)
where

| 147
P0:_5 Pl: 2

r r

This formula is also valid for n = 1, with only the initial value Py = %
See exercise 15 for an alternative derivation.

6.4.4 Price of an Increasing Payment Security

The price of a security such as a bond or mortgage, or a fixed term annuity with lin-
early increasing payments, is now easily handled. Specifically, with D; = aj + b for
j=1,...,n,



6.4 Applications to Finance 221

V(Dj,r) = aij(l +n7 + bi(l +r7
j=1

j=1

Now the second summation equals a,., by (2.11), while

Z] +r- i]l+r "—ij(ler)*j
j=1 Jj=n+1

Here the first summation is the perpetuity above in (6.28), while the second splits as

o 0 )
> )T =3
=n+

Jj=n+l Jj=1

o0

(I+r)” nz +r)" J j(l—i—r)*j

J=1 .i:I

8

Combining and simplifying, and using notation from chapter 2, we derive for the first
summation

2N _ apy n(l1+r)"

g JA+nN7 =04r-= —Q. (6.31)
; r r
Jj=1

This formula can again be intuited from the component parts. The term “* pro-

vides a perpetuity that pays a,., at each of times 1,2,3,..., each of which is i 1n turn
equivalent to a series of n payments of 1 starting one year later. So collectively this
perpetuity provides for a payment stream that grows from 1 to » at times 2 to n + 1,
and is then frozen at level n from time n + 2 forward. The 1+ r factor puts these
increasing payments at times 1 to n, and the frozen payments of »n from time n + 1
onward. The second term eliminates the payments of n from time n 4+ 1 onward,
since 2 is a perpetuity of n per year starting at time 1 and the (1 +r)™" factor moves
these payments to start at time n + 1.
By defining 4,, = Zj”:l Jm(1+ r)fj , we can again split this increasing annuity as

o0 0
=y J"(+r7 =" "1+
=1 j=n+l
= "Z (G4+n)"1+r)". (6.32)
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The binomial theorem can be applied to the second summation, producing a formula
involving {P;}7_, (see exercise 28).

6.4.5 Price Function Approximation: Asset Allocation

The primary application of power series in finance is to the problem of modeling and
understanding the behavior of a complicated function f(x) in a neighborhood of
some fixed point a € R, or in the more general case, a multivariate function f(x) in
a neighborhood of a € R". For example, f(x) might denote the price of a bond when
x is the bond’s yield to maturity (YTM), and « denotes the yield today. Of course, as
this price function is not very complicated, one could argue that to understand its
behavior as the YTM changes from «a to x, we simply can generate additional prices.
However, this prospect becomes more daunting if one is managing a portfolio of
such bonds, or if the price calculations are made more complex by the presence of
embedded options like calls (i.e., early prepayment option for the issuer).

In more general multivariate cases, f(x) might reflect a given bond’s or bond port-
folio’s price as a function of a given yield curve, parametrized as a vector of values
x € IR” as noted in section 3.3.1, with f(a) the value on the current yield curve as
parametrized by the vector a. Prices of preferred stock, or common stock with the
formulas above, can also be contemplated as a single variable or as multivariate
functions. In each case the vector a denotes the collection of parameters that deter-
mine today’s prices, and we are interested in approximating how prices change as
these parameters change from a to x.

A different kind of problem might be contemplated in the context of asset alloca-
tion. For example, for a given allocation vector a denoting the proportionate alloca-
tion to the various asset classes, one might develop a function f(a) that quantifies
return expectations, and another function g(a) that quantifies risk expectations, given
the current allocation vector. The analysis undertaken is one of understanding the
behaviors of these functions in a neighborhood of a to investigate the possibilities of
improving both return and risk through allocation changes, or at least to quantify
the trade-off between risk and return.

In all such cases, as the complexity of the calculations increases, the utility and
attractiveness of developing reasonable approximations also increases. To this end,
methods discussed in chapter 9 on calculus will provide a basis for determining a
sequence of coefficients, {¢;}, which may be finite or infinite. In the special infinite
case, we will have

F0) =3 - )",
n=0



6.4 Applications to Finance 223

while in the finite case,

=
X

2
[
2
=

!
s

n=0

Both cases easily support approximations when x is “close to” a.
For example, assume that with either expansion above, with N > 2 say, that we
attempt a linear approximation:

f(x)xco+ci(x —a).

Then in either case we conclude that the absolute error in this approximation, using
the triangle inequality, is bounded by

/() = [eo + er(x = a)]] < [ea(x — a)?

N
& (x — a)"72
(&) '

n=2

That is, as x — « the relative error satisfies

|f(x) = [co + c1(x — a)]|
lea|(x — a)’

~ 1 (6.33)

This implies that for x ~ a, the absolute error is of order of magnitude |¢s|(x — a)?.

Similarly one can show that the absolute error in the approximation f(x) & ¢y is
of order of magnitude |c;||x — «|, and similarly for approximations using higher
order polynomials in (x — a). Ultimately the ability to approximate f(x) depends
on how many terms in the series above the given function allows. When only finitely
many terms are possible, approximation accuracy is limited but may still be adequate
for applications. Otherwise, any given degree of accuracy is possible in theory as
long as the analyst is willing to calculate additional terms in the approximating
polynomial.

6.4.6 [,-Spaces: Banach and Hilbert

The importance of these series spaces in finance is really that they provide an intro-
duction to some subtle and important concepts in higher mathematics in an intuitive
and accessible environment. The power of these concepts will only achieve full appli-
cability in later studies on real analysis and stochastic processes, where these spaces
are re-introduced as the L, function spaces in general, and most important for sto-
chastic processes, the special Hilbert space L,. Consequently, while not of imme-
diate application, these spaces and their properties, in addition to the examples of
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Euclidean and complex spaces IR” and C", will provide a solid foundation of exam-
ples that can be used to aid intuition in these admittedly more abstract settings.

In other words, the goal of this material in this chapter is to make the important
but necessarily more remote setting of L,-space better understood as a generalization
of an accessible and familiar idea, than as an isolated and abstract construction.

Exercises

Practice Exercises
1. Show that if >",”, b, is a convergent series, then as a sequence, b, — 0. (Hint:
Consider the Cauchy criterion.)

2. Use the comparison test to demonstrate the absolute convergence of the following
series, by comparing them to series shown to converge in this chapter:

(@) Y,
(b) S mnfor p>2

© S (-1 S“,;, , for p > 1, where for sin(n), n is understood in radians (i.e., 7
radians = 180°)

@ 7 (=) e for0 <a< 1

3. Use the alternating series test or other means to demonstrate that the following
converge and determine which converge absolutely:

l n+1

(@) Zn lin n+1)
b) 37 1 :' In(n!)

© > 1 n,, forp > 1
) 2;1;1<—1>"“ In (=)

4. For each series in exercise 2, demonstrate absolute convergence using the compar-

ative ratio test. In other words, in each case determine an absolutely convergent se-
ries > ;7| ¢, so that if @, denotes the original series, “ ”“ converges as n — 0.

5. For the series in exercises 2 and 3, identify which would be declared as absolutely
convergent using the ratio test, which would be not convergent, and which would be
inconclusive.

6. Given a real number x € [0, 1], with decimal expansion x = 0.aja2a3 ..., where
each ;€ {0,1,2,...,9}, identify x with the sequence, x € R defined by x = (xi,

X35y Xy o), where Xj = T
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(a) Confirm that so defined, x € /, forall p, 1 < p < 0.

(b) Show that the truncated point sequence x, € IR, defined by x,, = (1, X2,. .., Xy,
0,0,0,...), converges to x in the /;-norm.

(¢) Generalize part (b) to show that [[x — x|, — 0 forall p, 1 < p < co.
(d) Show that if the real number x is identified with the sequence y € IR™, defined by

y=(ai,a2,...,4q;...), thaty € [, only for p = o0, yet even in this case, ||y — y,|., +
0, where y, = (a1, a,...,a,,0,0,0,...) unless y € IR{".

7. Using the Minkowski inequality, demonstrate that the following series are abso-
lutely convergent:
( 1)11+]

()Z n+2 NG

k+1 k+1
m)ZkJ—ﬁgﬁJ—mﬁ—®5>
8. Determine the radius of convergence and interval of convergence for the following
power series:

@ ulz) =375

) f(x) = o(=D)"(x=1"

© g(y) =221~ 1)” P (y +2)" for p >0
@ h(z) = Y7, =2

P
for p > 2.

for p > 1.

© wx) =7 a/(x+1)7,a>0
awm=2%ﬁﬁﬁ
@ k(y) =3, 1n"(y+4)"

8ﬁ5‘

nyn

(h) m(u) =32, 5
9. With f(x) =>," %, develop the series expansion for (f (x ))? using (6.23), and

show that ( f (x))2 f(2x). (Hint: As will be demonstrated in (7.14) in chapter 7,
=3 07 A us1ng the binomial theorem.)

10. Generahze exercise 9 to show that for all ne N, (f(x))" = f(nx). (Hint: Use

induction.)

11. Confirm that for a preferred stock or common stock with nonconstant dividends

{d;}, where d; = a1j + ao, a1, ap = 0, the price function P(r) = 37", d;(1 +r)” is ab-

solutely convergent for r > 0. (Hint: Consider the ratio test.)

12. Consider the preferred or common stock pricing function applied to the case of

general nonconstant dividends P(r) = Z;il d;(1+r)™. Use the ratio test to develop

bounds on the greatest rate of dividend growth allowable, which will ensure conver-

gence for r > 0.
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13. With a semi-annual yield rate of r = 0.10:

(a) Value a semiannual payment perpetuity that pays 10j + 15 at time j = 0.5, 1.0,
1.5....

(b) What is the semiannual payment increase for a 20 year $10 million semiannual
payment mortgage where the borrower wants the payments to increase by equal
amounts each payment and the first payment to be $0.25 million?

14. With an annual rate of 15%:

(a) Price a common stock with an annual dividend growth rate of 10% if the next
dividend, due tomorrow, is expected to be $5.

(b) What is the price of the stock in part (a) if dividends are projected to grow for
only 5 years at the 10% rate, then decrease to a growth rate of 5%?

15. With P, defined as in the chapter by P, = > ;il J"(1+ r)fj :
(a) Derive (6.30),

1|2l /n
P,,:r[Z(i)P,H.

i=0

(Hint: Note that

i]" =(1+n"+ IZJH )

J=1 j=1
and expand (j+ 1)" with the binimial theorem of (7.15) as seen in this chapter’s
derivation.)

(b) Develop explicit formulas for P,, n =2,3,4,5 using Py = l and Py = -%F

16. Starting with the powers series, f(x) = >~ (% n, , consider the linear approx1ma-
tion fi(x) =1+ x. As indicated in (6.33),
W=+

as x — (. Demonstrate this result by calculating the power series for this ratio func-
tion, and confirming that it is absolutely convergent, which then justifies a substitu-
tion of x =0
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Assignment Exercises

17. Use the comparison test to demonstrate the absolute convergence of the follow-
ing series, by comparing them to series shown to converge in this chapter:

(@) >~ ¢ya" for 0 < a < 1 and any bounded sequence {c,}
) 37 (~ )”‘(l)qlnjforq >

(k+2)?
© X e eror

(k+2
@ yo, S
18. Use the alternating series test to demonstrate that the following converge and de-
termine which converge absolutely:

+ln
(a) En l++l)
(b)zn1 an ,pe]R a>1

n+l 2

(©) Zn 1 ?+1

n+1

@ 7

19. For each series in exercise 17, demonstrate absolute convergence using the com-
parative ratio test. In other words, in each case determine an absolutely convergent

series »_.~ | ¢, so that if a, denotes the original series, then H converges as 1 — 0.

20. For the series in exercises 17 and 18, identify which would be declared as abso-
lutely convergent using the ratio test, which would be not convergent, and which
would be inconclusive.

21. Proposition 6.7 states that if 3, x; and }°7, y; are absolutely convergent,
then so too is 77, x;¥;.

(a) Show thatif 37, x; is absolutely convergent, and »_” | y; conditionally conver-
gent, then again Z | Xjy; is absolutely convergent.

(b) Give an example of conditionally convergent Z;il x; and Z/Oi] y; for which
Zf | X;; 1s not convergent. (Hint: Can x; and y; be defined to satisfy the assump-
tions yet with x;y;, = ‘?)

22. Prove that parts (c ( ) and (d) of Exercise 6 have nothing to do with the base-10
assumption in the decimal expansion. In other words, if b is any positive integer,
b > 2, and each such x € [0, 1] is expanded in base-b so that x = 0.a;azas . .., where
each a; €{0,1,2,...,b— 1}, then again:

(a) With x e R defined by x = (x1,x2,...,xj,...), where x; = b,,
defined as before, we have that [|x — x,[|, — 0 for all p, 1 < p < o0.

and x, € IR;" is
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(b) Withy € R™ defined by y = (a1, as,...,4a;,...), where x; = a;, we have thaty € /,

only for p = oo; yet even in this case ||y —y,||,, + 0, where y, = (a1, a2,...,a,,0,0,
0,...) unless y € Ry .
23. Consider two sequences, X = (x1,X2,...,Xj,...), where x; = a7, and y defined

by y; = b/, where a,b > 1:
(a) Confirm that x,y e/, for all p, 1 < p < oo, and calculate the associated /,-
norms.

(b) Calculate the inner product (x,y), which is well defined.

(c) Develop the implication of Holder’s inequality, that for 1 < p,¢ < oo, with
%Jré: 1, where notationally, - =0, we have |(x,y)| < [[x[|,[ly]l,. Express the in-
equality in terms of one parameter, say with ¢ = pf

T
(d) Express the inequality in part (c) in the special case of p = ¢ = 2.

24. Determine the radius of convergence and interval of convergence for the follow-
ing power series:

@ f(x) =Y Ee
M) g(y) =2~ 1np(y 6)" for p >0

(© h(z) = Zk 1 k! .
@) 1(2) = ”‘1<—1>“”"

@ k(z)=3,", n'(z+ 1000)"

(h) n(u) =327 55, ¢ >0

25. Generalize exercise 11 to an arbitrary polynomial growth dividend model d; =
S r_oakj*, ar >0 for all k.

26. With an monthly rate of » = 0.06:

(a) Value a monthly payment perpetuity that pays 12 + 3 at time ;.

(b) What is the monthly payment increase for a 30-year, $5 million monthly pay-
ment mortgage, where the borrower wants the payments to increase by equal
amounts each payment, and the first payment to be $10,000?

27. With an annual rate of 18%:

(a) Price a common stock with a semiannual nominal dividend growth rate of 8% if
the next dividend, due tomorrow, is expected to be $15.
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(b) What is the price of the stock in part (a) if dividends are projected to grow for
only 3 years at the 8% rate and then increase to a growth rate of 12%?

28. Defining the increasing n-pay annuity, A4, = Zjn:1 7"(14r)7, use the formula
in (6.32) and show that

Am = Pm - (1 +r)nZ(,/1/l>n”1kP/cv

k=0

where {P;} are given in exercise 15.






7 Discrete Probability Theory

7.1 The Notion of Randomness

In this chapter some basic ideas in probability theory are introduced and applied
within a discrete distribution context. In chapter 10 these ideas will be generalized
to continuous and so-called mixed distributions. The last step of the progression
to “‘measurable” distributions will be deferred, since it requires the tools of real
analysis.

Probability theory is the mathematical discipline that provides a framework for
modeling and developing insights to the random outcomes of experiments developed
in a laboratory or a staged setting or observed as natural or at least unplanned phe-
nomenon. By random is meant that the outcome is not perfectly predictable, even
when many of the features of the event are held constant or otherwise controlled
and accounted for. By discrete probability theory is meant this theory as applied to
situations for which there are only a finite or countably infinite number of outcomes
possible. Later generalizations will extend these models and methods to situations for
which an uncountable collection of outcomes are envisioned and accommodated.

It may seem surprising that the definition of “random” above states that the
outcome is not perfectly predictable, rather than not predictable. This language is
motivated by the fact that in many applications the outcome of an experiment or ob-
servation logically considered to be random may not be completely random in the
stronger sense that we have no idea of what the outcome will be, but only random
in the weaker sense that we have an imperfect idea of what the outcome will be.

For example, imagine that the observation to be made is the change in a major US
stock market index, such as the S&P 500 Index, but simplified and reduced to a bi-
nary variable: —1 for a down market, and +1 for an up market. Most observers
would agree that the result of this observation would appear to be a random out-
come on a given day, at least as of the beginning of the day. However, just before
the US market opens, stock markets in Japan and Asia have recently closed,
Europe’s trading day is half over, and based on their binary results it would appear
that one could make a better guess of the subsequent US binary result than what
would be possible without this information. Not a perfect prediction, of course, and
the US result would still be considered random, but it would not be considered per-
fectly random.

Even more to the point, an hour before the US market closes, the binary result of
this market remains random, but in a real sense, less random than at the opening bell
because of the emergence of information throughout the trading hours. And this
result one hour before market close is in turn apparently less random than the result
as of the prior evening, before the Asian markets have traded.
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So the definition of randomness given here allows all such observations to be mod-
eled as random, until the moment in time when the outcome is perfectly predictable,
which in this example, is moments after the “closing bell” when final trades are pro-
cessed. Degrees of randomness is one of the ideas that can be quantified in probabil-
ity theory. The notion of randomness here is admittedly informal, and it is to a large
extent formalized only as a mathematical creation. But in the presence of the multi-
tude of real world events that appear random, this informality is not fatal and the
mathematical discipline of probability theory proves to be very useful.

For example, the flip of a “fair coin,” by which is meant a coin for which it is
equally likely to achieve a head, H, or a tail, 7, is considered a standard model of
randomness. On the assumption that the coin in question is perfectly fair, probability
theory can address questions about a real or imagined experiment such as:

1. In 100 flips, how likely is it that exactly 80 H's will occur?
2. In 10,000 flips, how likely is it that the number of H's will exceed 5800?

3. In each case, what does “likely’”” mean?

In the absence of absolute knowledge of the fairness of the coin, probability theory
can address questions on observations like:

1. In 10 flips, does 7 H's provide “certain” evidence that the coin is “biased” and not
fair?

2. In 10,000 flips, how large (or small) would the number of Hs have to be in order
to be “certain” that the coin in question is not fair?

3. In each case, what does ““certain’ mean?

In real life one might think of the occurrences of car accidents, or untimely ends of
life, as random outcomes within groups of individuals, though often not a perfectly
random outcome in a given example. The modeling of these events is critical for
property and casualty insurance and life insurance companies, respectively. In fi-
nance, virtually all observed market variables are also considered random, although
generally not perfectly random. Prices of stock and bond market indexes, individual
stocks and bonds, levels of interest rates, realized price or wage inflation indexes, cur-
rency exchange rates, commodity prices, and so forth, are all examples, as are events
such as bond issuer defaults or bankruptcies or natural disasters.

Once mathematical models are produced for these variables, probability theory
provides a framework for understanding the possible outcomes and answering ques-
tions such as those above, adapted to the given contexts.
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7.2 Sample Spaces

7.2.1 Undefined Notions

As in every mathematical theory there must be some notions in probability theory
that are considered “primitive” and hence will be left formally undefined. However,
in the same way that most can work effectively in geometry without a formal defini-
tion of point, line, or plane, most can work effectively in probability theory without a
formal definition of “sample space” or “sample points.” In either case, the lack of
formal definitions is made acceptable by the intuitive framework one can bring to
bear on the subject.

For example, when one encounters point, line, or plane in geometry, a picture im-
mediately comes to mind, and all statements about these terms understood, or at
least interpreted, in the context of these pictures, however imperfectly. One’s mental
pictures of these terms in fact sharpen with time as their properties, developed in the
context of the emerging theory, are revealed. So too for sample space and sample
points, which are intended to provide a “‘set theory” structure to probability theory.
In that context the sample space is understood as the “universe” of possible out-
comes of a given experiment or natural phenomenon, and sample points understood
to be the smallest possible units into which the sample space is decomposed, namely
the individual outcomes or events. In this context the sample space can be viewed as
a set of sample points, appropriately defined for the given application. By discrete
sample space is meant, a sample space with a finite, or countably infinite, collection
of sample points.

Example 7.1

1. Returning to the coin flip examples above, if we are interested in understanding the
possible outcomes of a 10-flip experiment, the sample space could be envisioned as the
set of all 10-flip outcomes, and the sample points the individual sequences of 10 Hs and
Ts. Similarly one could contemplate the sample space for the 100- and 10,000-flip
questions.

2. In a different context with playing cards, one could envision a sample space of all
S-card hands that can be dealt from a single deck of cards, as would be relevant to a
poker player. Similarly a sample space of all n-card hands that can be dealt from
a multiple deck of cards, with point total less than 21, would be relevant in Black-
Jjack. Especially relevant is the likelihood in any such case, that the (n+ 1)th card
brings the point total above 21. The significance of the single deck versus multiple
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deck models is that the latter allows repeated cards in a single hand, whereas the former
does not.

3. A related model for many probability problems is the “urn’ problem, in which one
envisions an urn that contains several colors of balls, with various numbers of each
color. For example, the urn contains 25 balls: 2 red, 11 blue, and 12 green. One can
then imagine an experiment where one selects 3 balls “at random” and forms the asso-
ciated sample space of ball triplets. This sample space differs depending on how we as-
sume that the 3 balls are selected:

« With replacement: Each of the 3 balls selected is returned to the urn after selection,
so for each of the 3 draws, the urn contains the same 25 balls.

« Without replacement: Selected balls are not returned, so the balls in the urn for the
second draw depend on the first ball drawn, and similarly for the third draw.

For example, 3 red balls are a sample point of the sample space with replacement, but
not in the space without replacement, since the urn contains only 2 red balls.

7.2.2 Events

We continue the set theory analogy. An event is defined to be a subset of the sample
space. In the discrete models contemplated here, whereby one could feasibly list all
possible sample points in the finite case, or produce a formula for the listing of all
outcomes in the countably infinite case, the collection of events could be defined as
the set of all subsets of the sample space. In other words, every subset of the sample
space could be defined as an event. In later applications, beginning in chapter 10,
where the idea of a sample space will be generalized, it will not be possible to allow
all subsets of the sample space to qualify as events. Consequently we introduce ideas
here, in a context where they are admittedly not strictly needed, in order to facilitate
the generalization we will see later in chapter 10 and need in more advanced treat-
ments. For subsets of the sample space to qualify as events, the specific question we
need to address is: If the collection of events defined does not equal the collection of
all subsets of the sample space, what minimal properties should this collection satisfy
in order to be useful in applications?
The answer is as follows:

Definition 7.2  Given a sample space, S, a collection of events, £ ={A|A < S}, is
called a complete collection if it satisfies the following properties:

1. 0,Seé.

2. f A& then A €&

3. Ifdjecfor j=1,2,3,... then|) 4; €€
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In other words, we require that a complete collection of events contain the “null
event,” 0, and the “certain event,” S, the complement of any event, and that it be
closed under countable unions. However, while item 3 is stated only for countable
unions, it is also true for countable intersections because of item 2 and De Morgan’s
laws (see exercise 1). So it is also the case that ﬂj A; e & Similarly, if 4, B e £, then
A~Be& where A~B={xeS|xeAdand x¢ B}, sinced~B=ANB.

Remark 7.3

1. In a discrete sample space, £ usually contains each of the sample points, and hence
all subsets of S, and is consequently always a complete collection. In other words, & is
the power set of S.

2. The use of the term “complete collection” is not standard but is introduced for sim-
plicity. The three conditions in the definition above are general requirements for & to be
a so-called sigma algebra as will be seen in chapter 10 and more advanced treatments.

In discrete probability theory this extra formality may seem absurd, since we can
so easily just list all possible events and work within this total collection in all appli-
cations. For example, in the sample space of 10 flips of a fair coin, the sample points
are strings of 10 Hs and T's, which we could list, even though there are 2'° such
points. Also we could at least imagine the power set of this sample space, the col-
lection of all subsets of sample points, of which there are 22" (recall exercise 4 in
chapter 4).

If the sample space is defined as the collection of Hs and T's in n flips of a coin for
all n, or defined as all sequences that emerge from flips that terminate on the occur-
rence of the first H, or the mth H, then these sample spaces have countably many
sample points, and although significantly more complicated, one could envision the
collection of all subsets as events.

However, if the sample space is defined as the collection of Hs and T’s in a count-
ably infinite number of flips, this space has the same cardinality as the real numbers
(recall exercise 5 in chapter 4), and the prospect of defining events as every subset
of this space becomes hopeless, as can be proved using the tools of real analysis.
Consequently the definition above is needed in such cases, and identifies the minimal
properties for an event space for the next step, which is the introduction of event
probabilities.

7.2.3 Probability Measures

The intuition behind the notion of the “probability” of an event is a simple one.
One approach is sometimes deemed the “frequentist” interpretation. That is, the
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probability of an event is the long-term proportion of times the event would be
observed in a repeated trials of an experiment that was designed to result in two
outcomes:

Event 4 observed;
Event A not observed.

In this interpretation it is assumed that each trial is “independent” of the others,
which is to say, that its outcome neither influences nor is influenced by the outcomes
of the other trials.

Example 7.4  In the 10-flip coin sample space S, define the event A as the subset of the
sample space that has HH as the first two flips. Intuitively, a fair coin makes every se-
quence equally likely, and it is easy to see that 25% of the sequences in S begin with
HH. So if we designed an experiment that flipped a coin 10 times, and recorded the
results after many trials, the expectation would be that in 25% of the tests, A would be
observed. The term “‘frequentist” probability comes from the idea that 25% is the rela-
tive frequency of event A in a long string of such trials. It is the relative frequency that
would be observed in the long run.

An alternative interpretation is related to games of chance, or gambling, which
was a primary motivator for the original studies of probability by Abraham de
Moivre (1667-1754), who published an early treatise on the subject in 1718 called
The Doctrine of Chances. The gambling perspective for this example can be phrased
as: For a $1 bet, what should the payoff be when event A occurs so that a gambler’s
wealth can be expected to not change in the long run? Such a bet would be called a
“fair bet.”” There is of course a frequentist flavor to this interpretation, since present
are the notions of “repeated trials” and “in the long run.”

So, if p denotes the probability of event A occurring and N is a large integer, then
in N bets the gambler will bet $1 and lose about (1 — p)N bets and $(1 — p)N, and
the gambler will win about Np bets and $Npw if w is the associated payoff or “win-
nings” for a $1 bet. This bet will be a fair bet if won and lost bets are equal, which
happens when

W=—". (7.1)
Example 7.5 In the coin-flip example above, the gambler’s winnings for a $1 bet, to

ensure that it is a fair bet, must be w = $3. That is, the gambler wins $3 if the coin-
[ip sequence is HH . .., and he loses $1 otherwise.
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The formula for w in (7.1) really only makes sense for p values of 0 < p < 1. Oth-
erwise, the bet degenerates to a sure win or sure loss, and it cannot be made ““fair” in
the sense above. On this domain, w = % — 1 is seen to decrease as p increases, is un-
bounded as p — 0, and decreases to 0 as p — 1, consistent with intuition.

Note that (7.1) also encodes information about the “probability” we seek, and can
be rewritten as

po L (7.2)

Wl
Example 7.6 Again in the coin-flip example, if participants agreed that the correct
payoff was w = 3, then we would conclude that the probability of the sequence HH . ..
is 0.25 or 25%.

This intuitive framework provides a starting point for formalizing the notion of
probability. Probabilities are logically associated with events and can therefore be
identified with a function on the collection of events, denoted Pr(4) for 4 € £. Fur-
thermore the value of this function must be between 0 and 1 for any event, and these
extremes should be achieved on the null event, (), and the full sample space, S, re-
spectively. Finally, we expect this function to behave logically on the collection of
events. For example, if 4 = B are events, we want Pr(4) < Pr(B), and if AN B = 0,
then Pr(4 U B) = Pr(4) + Pr(B), and so forth.

We collect the necessary properties in the following, and note in advance that in a
discrete sample space, Pr(s) is typically defined for all s € S since £ contains the indi-
vidual sample points.

Definition 7.7 Given a sample space, S, and a complete collection of events, & =
{A| A = S}, a probability measure is a function Pr : € — |0, 1] that satisfies the follow-
ing properties:
1. Pr(S) = 1.
2. If A €€, then Pr(A) = 0 and Pr(4) = 1 — Pr(A).
3. If 4; €& for j=1,2,3,... are mutually exclusive events, that is, with A; N Ay = ()
for all j # k, then Pr(| ), 4;) = 3" Pr(4;).

In this case the triplet (S, &, Pr) is called a probability space.

Definition 7.8 An event A € € is a null event under Pr if Pr(A) =0. If A is a null
event and every A' = A satisfies A' € E, then the triplet (S,&,Pr) is called a complete
probability space.
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Some properties of this probability measure are summarized next.

Proposition 7.9 If Pr is a probability measure on a complete collection of events &,
then:

1. Pr(0) = 0.
2. If A,Be&, with A = B, then Pr(4) < Pr(B).
3. Ifdje& for j=1,2,3,..., then

m]ax{Pr(Aj)} < Pr((j) Aj> < ;Pr(Aj).

4. If Aje& for j=1,2,3,..., then

J

Pf(ﬂ A./) < min{Pr(4;)}.

Proof See exercise 26. [

Remark 7.10 Note that in property 2 of the proposition above, it might be expected
that if Be &, and A < B, then automatically it is true that A € . In the special case of
this chapter of discrete probability spaces, this is virtually always true in applications,
since then & typically contains all the sample points and hence contains all possible sub-
sets of S. In the general case of what is called a “‘complete’ collection of events, or gen-
erally a sigma algebra, subsets of events need not be events.

7.2.4 Conditional Probabilities

Given a sample space S, a complete collection of events £ = {4|4 = S}, and a
probability measure Pr: £ — [0, 1], there are many situations in which we are inter-
ested in probability values that reflect additional information. For example, if the
sample space is the collection of all 10-flip sequences of a fair coin, we know that
the probability of every one of the 2! sample points is (%)10. Similarly, if we define
an event B as the collection of sample points with exactly 1-H and 9-T's, then
Pr(B) = 10(%)10 since we know there are exactly 10 such sequences.

Now imagine that we know that event B is true. How would that knowledge alter
our calculation of the probabilities of all the events in £? Perhaps simpler, how would
that knowledge alter our calculation of the probabilities of all the sample points in §?
In other words, what is Pr(A conditional on the knowledge that B is true), where 4
denotes any sample point or event? In probability theory, this is called a conditional
probability, and is written
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Pr(4|B),
and read, ““the probability of A4 given B,” or “the probability of 4 conditional on B.”

Example 7.11 The sample points are somewhat easier to address first. Since we want
Pr(-| B) to be a genuine probability measure on £, we need Pr(S | B) = 1, and since S is
the disjoint union of its sample points, we must have that the sum of all the conditional
probabilities of the sample points is also 1. Now, if A is any event with more or less
than 1 H, it must be the case that Pr(A|B) = 0. What about the 10 sample points,
each with 1 H? Since each is equally likely in E, it is logical to define Pr(4|B) = {;
for each such point. Similarly, if A is a general event that contains none of these
1-H points, we define Pr(A | B) =0, while if A contains j of these points, we define
Pr(4|B) = 4.

In this simple context the notion of conditional probability is somewhat transpar-
ent. The general definition is intended to formalize this idea to be more applicable in
more complex situations, and provide a calculation that explicitly references the orig-
inal probabilities of events under Pr.

Definition 7.12  Given a discrete sample space S, a complete collection of events £ =
{A| A4 < S}, a probability measure Pr : £ — [0, 1], and an event B € € with Pr(B) > 0,
then for any A €&, the conditional probability of A given B, denoted Pr(A|B), is
defined by

Pr(4N B)

Pr(A|B) =~

Pr(B) # 0. (7.3)

It is a straightforward exercise that for any such event B, that Pr(- | B) defines a
true probability measure on S as given in the definition above (see exercise 5). One
can also review the example above in the formalized context of (7.3) and see that
the respective intuitive results are reproduced.

Law of Total Probability
Another important application of these ideas is exemplified as follows:

Example 7.13 Imagine an urn containing 10 balls, 5 each of red (R) and blue (B),
from which 2 are to be selected. Let C| denote the color of the first ball drawn, and
C, the color of the second. Then construct two sample spaces of the pair of balls drawn,
(C1, Gy): one space defined under the assumption that the draws are done with replace-
ment, and the other reflecting no replacement. In the sample space with replacement, it
is easy to see that Pr(C,| Cy) = Pr(C,). For example, Pr(Ry) = Pr(C, = R) = 0.5,
and Pr(R, | C1) = 0.5 whether C; = Ror C; = B.
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In the sample space without replacement, it is never the case that Pr(Cy|Cy) =
Pr(Cy). For example, Pr(Ry| R)) =3 and Pr(Ry|By) =3, and we now show that
Pr(R,) = 0.5. To this end, first note that Pr(Ry | Ry) # 1, as might be expected given
that Ry happens “‘first” when there are five of each color. But that is not the meaning of
Pr(Ry | Ry). The question is, looking at the outcomes for which C, = R, what is the

probability that C; = R? There are two such outcomes:

4
Pr(RiNRy) =— d Pr(BiNRy)=—
(R 2) 18 an r(B 2) 18’
from which we conclude that Pr(R, | Ry) =§. An application of (7.3) now shows that
Pr(R,) = % = 0.5. This probability could have also been more easily calculated
from the respective conditional probabilities using a method discussed next.

Let {B;} be a collection of mutually exclusive events with | | B; = S. Then for
any event A, {AN B;} are also mutually exclusive, and have union 4. By the third
property of the probability measure, we have that Pr(4) =Pr(| J[ANB)]) =
> Pr(4NB)). Also, by (7.3), Pr(4 N B;) = Pr(4| B;) Pr(B;). Combining, we get the
law of total probability:

Pr(4) =Y Pr(4|B) Pr(B). (7.4)
J

This law has widespread application because it is often easier to calculate conditional
probabilities of an event than the direct probability because each “condition” pro-
vides a restriction on the sample points that need be considered.

Example 7.14  In the urn problem of example 7.13 without replacement, Pr(R;) = 0.5
could have been more easily derived using this law of total probability. The mutually
exclusive events {B;} are the events C, = R and C\ = B, and each of these events has
probability equal to 0.5. Consequently, using the respective conditional probabilities, we
can write

PI'(Rz) = PI'(R2 | R]) PI‘(R]) + PI'(RZ | Bl) PI‘(B])7
again producing Pr(Ry) = 0.5.
7.2.5 Independent Events

The notion of stochastic independence is a property of pairs of events under a given
probability measure Pr. Intuitively we say that 4 and B are stochastically indepen-
dent, or simply independent, if their probabilities are not changed by conditioning
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on each other. This idea is a simple one, except for the formality that in order for the
various conditional probabilities to be defined, it is necessary that both events have
nonzero probability.

To circumvent this technicality, observe that the desired condition: Pr(4|B) =
Pr(A), which requires that Pr(B) # 0 to be well defined, is by (7.3) equivalent to
Pr(4 N B) = Pr(A4) Pr(B), which does not require a condition on Pr(B) or Pr(4) to
be well defined. This latter formulation of the idea of independence also has the im-
mediate advantage of reflexivity; that is, A is independent of B iff B is independent of
A. Formally, we state:

Definition 7.15 Events Ay, Ay € £ are stochastically independent, or simply indepen-
dent, under the probability measure Pr, if

PI‘(A] ﬂAz) = PI‘(A]) PI‘(AQ). (75)

More generally, a collection of events: {Aj};:p where n may be oo, are mutually inde-
pendent, if for any integer subset J = {1,2,...,n} we have that

Pr<ﬂ Aj) =[] Pr(4)). (7.6)

This definition makes sense even if Ay is a null event, Pr(4;) = 0 for some k. In
either setting, we have from property 2 of the proposition above on probability mea-
sures that Pr(("), 4;) = 0 as well if k € J. So formally, null sets are independent of all
other sets.

In the case where one or both of 4 or B have nonzero probability, the notion of
independence can be reformulated using conditional probabilities. For example, if 4
and B are independent, and Pr(B) # 0, then

Pr(4) = Pr(4|B).

In other words, if 4 and B are independent, their probabilities are unaffected by
knowledge of the occurrence of the other event.

In the urn examples above, with C; denoting the color of the first ball drawn and
C, the color of the second, it was seen that in the sample space with replacement,
these events were independent, whereas without replacement, these events are not
independent.

7.2.6 Independent Trials: One Sample Space

One of the most important applications of the notion of independence is in the
formalization of the idea of a random sample from a discrete sample space, or
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equivalently, a series of independent trials from a discrete sample space. Given a sam-
ple space S with associated probability measure Pr, a random sample of size n, or a
sequence of 7 trials, is defined as a sample point in another sample space, S”, which
is formalized in:

Definition 7.16  Given a discrete sample space S, a complete collection of events £ =
{A| A = 8} containing the sample points, and a probability measure Pr: € — [0, 1],
the associated n-trial sample space, denoted S", is defined by

S"={(s1,8,...,8)|s €S}
The collection of events, denoted £", is defined by

E"={(A41,42,...,4,) | A; € € and by unions of such events}.

The associated probability measure, P,, is defined on E" by

Pul(s1,82,. . s2)] = [ Pr(s), (7.7)
j=1
as extended additively to events, for A € £",

Py(A)= > Pu(s1,82,....5)]. (7.8)

(81,52,...,8,) €A

The goal of the next proposition is to confirm that the collection of events in n-trial
sample space is a complete collection, and that P, is indeed a probability measure on
S". Most important, we confirm that any event in £ can be identified in a natural but
not unique way with an event in £", and that under this identification, n events in £
are mutually independent as events in £". This identification and associated indepen-
dence result provides a formal meaning to the notion of independent trials, or inde-
pendent draws, from a given sample space.

Before stating this proposition, we note that the multiplicative rule in (7.7) extends
to events in £". That is, with 4 = (41, 4»,...,4,), 4; €€,

pl= Y I[P

(81,82,0y8n) €A j=1
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=

> Pr(s)

j:1 S,’GA,‘

BN

=[] Pr(4)).

J=1

That is, for {4;}]_, =€,

Pu(A1, As, ... A)] = H Pr(4;). (7.9)
j=1

Remark 7.17 In the definition of n-trial sample space it is assumed that the event
space & contained all the sample points. In fact, while this assumption is almost always
true in discrete probability theory, it is more of a convenience here than a necessity.
With this assumption, E" then contains all the n-tuples of sample points, (s1,52,...,
Sn), whose probabilities are defined by (7.7), and the probability measure P, is then
easily generalized to all events in E" by (7.8). In the more general case where £ does
not contain all the sample points, but is a complete collection of events as defined
above, a similar construction is possible but more difficult. In this case E" is defined as
above to include all n-tuples of events, (A1, Aa, ..., Ay), and then expanded to include
all unions of these n-tuples and their complements so that £" becomes complete. The
probability measure P, is defined on n-tuples of events, (A1, Az, ..., Ay), using (7.9)
and then extended to all of £". It is not possible to define this extension directly using
a generalization of (7.8) because of a technicality that is avoided with our convenient
assumption. And that technicality is, if an event A = E" is a union of n-tuples of events,
{(Ak1, iy - - - Ak,,)},](V:l, where N may be oo, these events need not be disjoint, and so a
direct application of a formula such as (7.8) may involve multiple counts. This problem
is avoided when E" contains all n-tuples of sample points, (s1,s2,...,s,). This general
construction is subtle and developed in advanced studies using the tools of real analysis.

Proposition 7.18 Given a discrete sample space S, a complete collection of events
E={A4|A4 < 8} containing the sample points, and Pr a probability measure on &, then:

1. Every event A = & can be identified with n-events in ", any one if denoted A, satis-
fies P,[A] = Pr(A).

2. Under the identification in 1, every collection of up to n-events in £ can be identified
with mutually independent events in S". That is, for any collection of events in &,
{4k}, _,, there are associated {Ay};_, = E", so that for any K = {1,2,...,n}:
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=TI Pul4x) = T Pl4wl-

keK keK

Pnlﬂ Ay

keK

3. &" is a complete collection of events.
4. P, defined in (7.7) and (7.8) is a probability measure on E".

Proof

1. The n identifications as noted above are simply 4 < (4,S,....S5),(S,4,S,...,
S)...(S,...,8,4), and for each identification by (7.9) we have P,[4] = Pr(4), since
Pr(S) =1.

2. Given {A};_, we associate each with Ay where the event A4y is assigned to the
kth component of 4, and S assigned to the other components as in 1 above. Now,
if K= {1,2,....n}, (),.x 4k equals the event in £" : (4], A},..., A}), where each
A} equals 4; or S, and the result follows from (7.9).

3. Both §" =(S,S,...,S) and 0 = (0,0,...,0) are elements of £", by definition.
Also, since " contains all n-tuples of sample points, (si,s2,...,s,), if 4 €£&”, then
also A € £". Similarly, if 4; € £, then | ) 44 € £".

4. By definition of P,, we have P,[0] = 0, and

P[S"= [f[Pr(s;)

(51,52,00,80) €S" Lj=1

s; €S

= [Z Pr(sj)] =1.

Now, if 4 = UkM:1 (Sk1ySk2y + - - 3 Skn ), then AU A = 8", and we can rewrite the identity
above for P,[S"] as

n
1= Y [HPr(sj)]
(81,82,..,8,) €S" Lj=1

- ¥

(81,8250, 80) €A

Pr(s;)
1

+ ) l Pr(sj)].
Jj= (s ,sz,...,sn)e/‘f Jj=1

= Py(A) + P,(A).

Hence P,(A) =1 — P,(A). Finally, if {By};_, are mutually exclusive events, mean-
ing that for any K < {1,2,...,m},

() B =0,

keK
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then by (7.8),

n

Pu(|J Bx) = HPY(SI‘)

(51,82, 80) €| Be =1
n

=> > Pr(s;)
o

S1,82400y8n) €EBy j=1

= Pu(B),
k
where the second equality is due to mutual exclusivity: Z(sl,sz _____ welUB =
Dok Dt 0s) € By n
*7.2.7 Independent Trials: Multiple Sample Spaces

The construction of an n-trial sample space §”, reflecting independent samples from
a given sample space S, is readily generalized to the notion of an n-trial sample space
reflecting independent samples from a collection of different sample spaces. To this
end, we start with a definition.

Definition 7.19  Given a collection of discrete sample spaces {Sf};':l, complete collec-
tions of events {Ej}7:1 where each £ = {A| A = S;} contains all the sample points of
S;. and associated probability measures Pr; : £; — (0, 1], the associated generalized n-
trial sample space, denoted S ™ s defined by

S = {(s1,52, .., 8) |s; €S}
The collection of events, denoted EW s defined by

EM = {(Ay,43,...,4,)| A; € & and unions of such events}.

The associated probability measure, Py, is defined on & () by

P(m[(S],Sz, . ,Sn)} = ﬁPr,(s,), (710)
j=1

as extended additively to events, for A € E™:
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P(n)(A) = Z P(n)[(slasb"'asn)}' (711)

(51,5250, 50) €A

The proofs of the results in proposition 7.18 in the special case where S; = S and
& = & for all j carry over to this more general case without material change other
than notational. This is because, with one exception, nowhere in the derivations
above was it necessary to use the fact that the sample spaces, collections of events,
and probability measures underlying the various components of an n-trial sample
point were identical. The single exception is related to the identifications of events in
S with events in §”. In the simpler case above, each event in 4 = S could be identi-
fied with n events in §”, all of which had the same probability under P,, and this
common probability equaled Pr(A), the probability in S. In the general case it is nat-
ural to assume that the given sample spaces are ordered. Hence each event 4 = S; is
identified with a unique element A = S, and that is defined with 4 in the jth com-
ponent, and the various S spaces used as events in the other components, in order.
Of course the ordering is a convenience more than a necessity, and different order-
ings do not produce fundamentally different spaces.

As an example of how a result above generalizes to this setting, we note that (7.10)
generalizes in the same way that (7.7) generalizes to (7.9). Specifically, with the same
derivation, and for 4; € &,

Pul(A1, 4s, ..., 4,)] = ﬁPrj(Aj). (7.12)
j=1

Finally, we state without proof the fundamental result that generalizes the propo-
sition above to this setting, and note that remark 7.17 in that section, regarding the
assumption that each &; contains the sample points, applies here as well.

Proposition 7.20 Given a collection of discrete sample spaces {Sj};?:l, complete col-
lections of events {Sj}}’zl that contain the sample points, and associated probability
measures Prj : £ — [0, 1], then:

1. Every event A < &; can be identified with a unique event in A = EW that satisfies
PuylA] = Prj(A).

2. Under the identification in 1, every collection of events A, < &, 1 <k <n, can
be identified with mutually independent events in 8™ That is, Sfor any such collec-
tion of events {Ai}i_,, there are associated {AY;_, =& so that for any
K <c{1,2,...,n},
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Py

ﬂ Ak‘| - H P(”)[/Ik] = H Pk[Ak].
keK

keK keK

3. &M isa complete collections of events.
4. P, defined in (7.10) and (7.11) is a probability measure on s™.

7.3 Combinatorics

To determine the values of Pr(4) in various sample space applications, it is often
necessary to be able to efficiently count the sample points in the event 4 as well as
those in the sample space S, and such calculations can be both subtle and difficult.
The mathematical discipline of combinatorics, or combinatorial analysis, provides a
structured framework for addressing these types of problems, and we only scratch
the surface of this discipline here with the most common applications.

7.3.1 Simple Ordered Samples

In many applications we require the number of ways that m items can be selected
from a collection of n > m distinguishable items. For example, an urn may contain
n balls, all distinguishable by color or other markings, and we seek to determine how
many distinct m-ball collections can be drawn from this urn. As we have seen from
the examples above, we need to distinguish between whether this is an urn problem
with replacement or without replacement.

With Replacement

On the first draw there are n possible outcomes, and due to replacement, each succes-
sive draw has the same number of possible outcomes. So we conclude that there are
n™ total possibilities. This can be formalized by observing that for m =2 we can
explicitly enumerate the outcomes, and then proceed by induction. That is, we as-
sume the truth of the formula for m, and verify the truth for m + 1 based on the ex-
plicit pairings of each m-tuple with each last draw.

Without Replacement

On the first draw there are again n possible outcomes, but since the first draw is not
returned to the urn, the second draw has fewer possible outcomes, namely n — 1. This
process continues to the mth draw for which there are n — (m — 1) =n—m + 1 pos-
sible outcomes. Using the same logic and proof as above, we see that there are
n(n—1)...(n—m+ 1) possible outcomes. This sequential product is common in
combinatorics, and it is worthwhile to note that it can easily be expressed in terms
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of the factorial function. Recall that n factorial is defined n! = n(n — 1)(n —2)---2- 1,
and so

n!
In some texts this partial factorial, which contains m terms, is denoted (n),, =
n(n—1)...(n—m+1). Of course, in this notation, (n), = n!.

7.3.2 General Orderings

Here we seek an approach to determining how many distinguishable ways a given
collection of n objects can be ordered. The answer depends on how many subset
types are represented by the n objects, where all objects in each subset are identical.
For example, if there is one subset type, and all » objects are identical, there is
only one distinguishable ordering. If each of the objects are themselves distinguish-
able, which is n subset types, this is equivalent to the without replacement model
and m = n, and we have from the section above that there are n! distinguishable
orderings.

Two Subset Types

Next assume that there are two subsets of indistinguishable objects, say n; of one
type and n, = n — ny of the other. Envision a collection of n; 1s and n; 0s to be or-
dered, or n; red balls and n, blue balls. What distinguishes this example from that
where all the objects differ is that here, the collection of all orderings will contain
multiple counts. For example, if we start with the collection {1,2,3,4}, there are
4! = 24 possible orderings, but if we begin with {1,1, 1,4}, there are only 4 order-
ings. This is because we only have to choose the position for the one 4-digit, for the
other digits will all be 1s. This can also be deduced by observing that in the 4! order-
ings of the 4 digits in this second set, each distinct outcome will be seen 3! times,
reflecting the indistinguishable orderings of the three 1s.

Analogously in this general case, the number of orderings is

(m+m)!  n
n1!n2! n1!n2! ’

The logic of this formula, as will be analyzed in more detail next, is that the numer-
ator reflects the number of orderings of the n objects, temporarily treating them as if
all are distinguishable. The denominator then adjusts for multiple counts, since there
will be n;! orderings with the n; objects of the first type in the same locations but with
different orderings of these actual objects. Likewise for each of these orderings there
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will be 1, objects of the second type in the same locations but with different orderings
of these actual objects.

Binomial Coefficients

The formula above has many applications in mathematics, especially with respect
to coin-flip and associated binomial models, where “binomial”” means with two out-
comes. The two outcomes represent the two subset types discussed above. Because of
its prevalence, this formula has been given a special notation.

As a traditional binomial example, imagine that a coin is flipped n times. What is
the total number of sample points in the associated sample space that have exactly m
heads, for m = 0,1,2,...,n? This question is identical to that of a general ordering of
n objects, where there are m of one type, the Hs, and n — m of the other type, the Ts.

The analysis above shows that there will be (n#'),m, such sample points, and the gen-
eral notation is

<Z)_??£%ﬁﬁ' (7.13)

This factor is sometimes denoted ,,C,,,, and read, “n choose m,” and we recall that by
convention, 0! = 1.

For any n, these constants, {()}" _, are known as binomial coefficients, for a rea-
son that will be apparent below. The terminology “#n choose m” is shorthand for ““the
number of ways of choosing m positions from » positions.” In the example above,
the m positions chosen are of course equal to the locations of the m-Hs, with the

remaining positions filled with Ts.

Example 7.21 As another example of an application of “n choose m,” consider
explicitly choosing all possible subsets of a set of n distinguishable objects. For any
m=0,1,2,...,n, there are (;’1) possible subsets that can be selected. This is just a
reformulation of the earlier model in that we can envision these n objects as n positions,
and the selection of a subset of m objects as equivalent to the selection of m of these
positions. When m = 0, we are selecting the empty subset 0, and there is only one way
to do this. If we seek the total number of subsets of all sizes, which is the number of sets
in the power set, the answer must therefore be equal to ., _, (;’1) But we also know

from exercise 4 in chapter 4, that the number of sets in the power set of a set of n ele-
ments is 2". So we must have

ﬁi(;)zzw (7.14)

m=0
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The Binomial Theorem

Formula (7.14) is a special case of the so-called binomial theorem, which is yet an-
other application of “n choose m.” This theorem addresses the expansion of an inte-
ger power of a binomial, such as (a+b)". The problem posed is a ‘“chooser”
problem because in this multiplication we have to choose an « or a b from each of
the n factors of (a« + b) and multiply the selected n terms. Consequently the general
term in the product is of the form a”b"" form = 0, 1,2, ..., n. The question is, how
many times will each such factor arise? Of course, the answer is (,’;) times, since for
each m there are (:4) ways of selecting the m a-factors from these n binomial factors.
Consequently the binomial theorem states that

(a+b)" = i(l’;)amwm. (7.15)

m=0

From (7.15), the special case of (7.14) is easily derived by settinga = b = 1.
Also of interest, for « = —1, b = 1, the sum of the alternating binomial coefficients
is seen to equal 0:

i(;>(—1)”1 —0.

m=0

Finally, if a + b = 1, this theorem assures us that

z": ( n )ambnm _ 17
m=0 m

which is important in the binomial distribution below where it is also assumed that
0<ab<l.

The coefficients of the factors in these expressions are easily generated by a method
developed by Blaise Pascal (1623—-1662) and known as Pascal’s triangle. It is based
on the iterative formula (see exercise 33)

<:v):(:a_—11>+(n;;1>' (7.16)

The associated “triangle” is developed row by row, with the nth row correspond-
ing to the coefficients in the expansion of (a 4 b)". The coefficients up to (a + b)° are
in (7.17), and these may be familiar from elementary algebra:
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(7.17)

Notice that for any n, (j) = (") = 1 and how, with clever spacing, each term of a row

equals the sum of the terms right above it, implementing the iterative formula in
(7.16).

r Subset Types
Now assume that there are r subsets of distinguishable objects, with n; of type-j,
n; > 0, and with ) n; = n. Then the logic above carries forward identically, and we
see that the number of such orderings is
L 7.18
" mm!. L onl’ (7.18)
where the nonstandard notation ;C, is intended to connote that the choice made of
the n objects is a vector 7 = (ny,na,...,n,). For a given n the collection of the num-
ber of such orderings

{ﬁCn |ﬁ — (nl,nz,...,n,);an = n}

are known as the multinomial coefficients.

The logic behind this formula is that there are n! orderings of the n objects, mo-
mentarily considered to be distinct. For example, temporarily label the type-1 objects
with numbers 1,2, ..., sy, and so forth. Now select any one of these n! orderings, and
observe the positions of the type-1 objects. When this particular ordering was
achieved, there were ;! possible orderings in which these type-1 objects could have
been selected and placed into the given positions. Similarly, for any type-j, there
would be n;! possible orderings in which these objects could have been selected and
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placed into the given positions of the selected ordering. In other words, the n! order-
ings contain n;!ny! . .. n,! copies of every distinct ordering, and hence one needs to di-
vide by this factor to eliminate the redundancies.

Example 7.22  Assume that we are given the 10-digit collection,
{1,1,2,2,2,5,5,5,5,7}.

How many different base-10 numbers can be formed using all the digits? As before,
there are 10! possible orderings, but with many multiple counts. Adjusting for these,
we see that the total collection of distinct integers formed will be

10!

s 12000

Multinomial Theorem

In the same way that the binomial coefficients can be found in the general expansion
of the binomial (a + b)" so too can the multinomial coefficients in (7.18) be found in
the general expansion of a multinomial (3., a;)". Specifically, we have that

) n
’ n' ny np n
] = _ coaly 7.19
(;a> Z _nllnz!...n,!al % ar ( )

ny,na,..n,

where this summation is over all distinct r-tuples (ny,n,,...,n,) so that n; > 0 and

E;:l n; = n.

As for the binomial theorem above, special identities are produced with simple
applications of (7.19) in the special cases where >/, a; =0 or Y./, a; = 1. The lat-
ter case has an important application to the multinomial distribution below, where it

is also assumed that 0 < a; < 1 for all i.

7.4 Random Variables

7.4.1 Quantifying Randomness

Notions of sample space, events, and probability measures are often introduced in
the colorful and intuitive imagery of card hands dealt from one or more well-shuffled
decks of cards, collections of colored balls drawn from an urn containing different
numbers of colored balls with or without replacement, and sequences of flips of a
fair or biased coin. While interesting, these models do not lend themselves to mathe-
matical analysis very well because these contexts can obscure similarities or create
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misleading connections. If a problem is solved in the context of an urn problem, will
it be apparent that the same procedure might be applied and the same result obtained
in the very different context of dealt card hands? Or if a problem is solved in the con-
text of flips of a biased coin, will it be apparent that the same procedure might be
applied and result obtained in the very different context of the modeling of the prices
of a common stock in discrete time steps?

The notion of a random variable was introduced for the purpose of stripping away
the context of these problems, to reveal the common mathematical structures under-
lying them. In effect a random variable transfers the probabilities associated with
these colorful events to probabilities associated with numerical values in IR. A few
simple examples will illustrate the point.

Example 7.23

1. Let’s return to the sample space S of 10-flip sequences of a fair coin that, as we have
seen, contains 2'° sample points and 22" possible events, all with associated probabil-
ities. We now define a function on the original sample space, as follows:

X(s) =n,

where n is the number of Hs in s€S. So X is a function, X : § — {0,1,2,...,10}.
Note that for any ne {0,1,2,...,10}, the inverse X~'(n) = 4, € £ is a well-defined
event of sample points with n Hs, and hence we can define implied probabilities on these
integers by

P(n) = Pr[A4,)].

Of course, this particular random variable provides only one quantitative insight to this
sample space, its events, and the associated probability structure, and there are many
other insights that remain hidden. However, there are many more random variables
that can be defined, each providing certain insights and hiding others. The particular
definition of the random variable used is determined in such a way that the properties
of S that are of interest to the analyst are revealed.

2. As another example, one could imagine a game whereby after 10 flips of a fair coin,
producing sample point s, the player receives a payoff of Y (s) = Z}’:O 10/, where n is
the number of Hs in s. Now

Y:8— {1,11,111,..., 11111111111}

The range of Y here differs dramatically from the random variable X above, but the
probabilities of the range values are the same in the sense that for any n,
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Pr [Yl (Z 101‘)] = Pr[X!(n)],

since in both cases these implied probabilities are defined by Pr[A,), the probability of
the event in S defined by n Hss.

3. One can also change the probability structure by defining, for example, Z(s) =
Zjlil 5,107, where s; denotes the jth flip, with s; = 0 for a T, and s; = 1 for a H. Now
the range of Z differs significantly from that of Y, containing every integer that can be
constructed with 10 digits, each of which is 0 or 1. There are consequently 2'° points in
the range of Z, in contrast to 11 points in the range of X and Y. Also the probabilities
on the range of Z depend not only on the total number of heads in a given sample point
but also on the order of these heads in the sequence. So each event A, above is split into
(lno) events by Z. In essence, Z maps each sample point in S to a distinct integer and

assigns a probability to this integer equal to the probability of the associated sample
point.

7.4.2 Random Variables and Probability Functions

Because this chapter addresses discrete probability theory, which is the theory as it
applies to finite and countably infinite sample spaces, it is possible that the range of
a random variable is any countable subset of IR such as IN, Z, or @Q, so we introduce
a more economical way of demanding that X~!(r) € £ for every r in the range of the
random variable X. The idea is to use open intervals, (a,b), that are either bounded
or unbounded. Then in every case, X~'[(a,b)] must be an event either because it is
the finite or countable union of events of the form X~!(r) for r € (a,b), or because
it is the null event, @, if this interval is disjoint from the range of X.

Use of open intervals in this definition is just a convention, of course, since
X~![(a,b)] € £ for all open intervals if and only if X ~![[a, b]] € £ for all closed inter-
vals. To see this, first note that X~![(a,b)] € £ for all bounded or unbounded inter-
vals implies that X~![(—~c0,b)] €€ and hence the complement in S, which is
X-[[b,0)] € . Similarly X~![[a, )] € €. Also, if X~ ![[b,0)] € £ and X~ ![[a, x0)]
€ &, then the intersection, X ~![[b, 0)]N X ![[a, c0)] = X~ ![[a,b]] € £&. The reverse
implication is demonstrated similarly.

Next we formalize the definition with this open set convention:

Definition 7.24 Given a discrete sample space S and a complete collection of events
E={A4|A4 = 8}, a discrete random variable (r.v.) is a function

X:85— 1R,
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with XS] = {x;};_,, where possibly n = w0, so that for any bounded or unbounded in-
terval, (a,b) = R:

X~[(a,b)] € €.

The probability density function (p.d.f.) or probability function associated with X,
denoted f or fx, is defined on the range of X by

f(x;) = Pr[X ' (x)]. (7.20)

The distribution function (d.f.), or cumulative distribution function (c.d.f.) associated
with X, denoted F or Fy, is defined on IR by

F(x) =Pr[X (-0, x]]. (7.21)

Note that the c.d.f. is the sum of the p.d.f. values, since Pr[X~'(—oo,x]] =
> < PrIX 7! (x))], and so

F(x)=> f(x). (7.22)

Xjsx

Graphically, when the sample space is finite, the c.d.f. has a “jump” at each value of
x; in the range of X, and the graph of F(x) is horizontal otherwise. Such a function is
often called a step function for apparent reasons. When the sample space is countably
infinite, the c.d.f. will again look like a step function in the case of sparsely spaced
range, {x;}, such as the case for the positive integers. For a range with accumulation
points, {x;}, such as for the rationals in [0, 1], the c.d.f. again would have jumps at
each rational, but no flat spots or steps per se.

Remark 7.25  Note that given any discrete random variable on S, with X [S] = {x;}7_;,
where possibly n = oo, the collection of events defined by {X’l[xj]};zl are mutually
exclusive, and hence for any collection of points,

Pr(lJ X" [ol] = Y Pr[x gl

Example 7.26 Let S be defined as the sample space of 3 flips of a fair coin, and
X : § — R defined by X (s) equals the number of Hs in s. So the range of X, as in def-
inition 2.2.3, Rng[X] = {0, 1,2,3}. The sample space S contains 2> = 8 sample points,
1 each with 0 or 3 Hs, and 3 each with 1 or 2 Hs. This follows directly from the
values of (i) The probability of each sample point is % Consequently the associated

probability‘density function is defined by
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Figure 7.1

F(x) for Hs in three flips

n: 01 23

Sm:g 3% s
The graph of the cumulative distribution function, F(x), is seen in figure 7.1.
7.4.3 Random Vectors and Joint Probability Functions

We begin with the simplest example and definition, and generalize later. Imagine that
there are two random variables defined on the given sample space: X, Y : S — IR,
which we think of as being combined into a random vector or a vector-valued random
variable:

(X,Y):S — R%

Here, for a given sample point s € S, we define (X, Y) : s — (X (s), Y (s)).

Generalizing the notion of open interval in the definition of random variable, we
define the bounded or unbounded open rectangle, denoted (@, b), where @ = (ay, a3),
E = (b],bz) and where a; < b1 and ap < bz, by

(@,b) ={(x,y)|a1 < x < ay,by < y<by. (7.23)

A closed rectangle, [a, b], or a semi-closed (or semi-open) rectangle, [@,b) or (a,b], is
defined similarly.
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The requirement to qualify as a random vector is that the pre-image of all open
rectangles be events, where for any point (x, y), the pre-image under (X,Y) is
defined as

X, )72 =X )N Y ().

With this setup we can define the joint probability density function or joint probabil-
ity function, f(x;, y;), as the probability of the event X !(x;)N Y~!(y;), and cor-
respondingly define the joint cumulative distribution function or joint distribution
function, F(x, y), as the probability of the event that is the pre-image of (-, b),
where b = (x, y). Then

F(x,y)z Z f(xjayj)a

(6, 07) < (x,7)
with the understanding that (x;, y;) < (x, ) is shorthand for x; < x and y; < y. This
setup then easily generalizes to collections of 3 or more random variables, and we
state the formal definition in this generality:

Definition 7.27 Given a discrete sample space S, a complete collection of events
E={A|A < 8}, and a collection of random variables on S, {Xy};_,, a discrete ran-
dom vector is a function

X:5— R,

where X (s) = (X1(s), X2(5), ..., Xu(s)), with X;[S] = {xii}7e 1, and possibly m = oo,
for some or all k. For any bounded or unbounded open rectangle, (a,b) = R", we re-
quire that

X~((@ b))

U X '(®ee
<e(a,b)

where X ~\(X) is defined for X = (x1,xa,...,%,) by
X®) = X7 () N X5 () N NX ().

The joint probability density function (p.d.f.), or joint probability function, associated
with X, denoted f or fy, is defined on the range of X by

F(x1,x2, .0, x) = PriX o) D XS () NN X ()] (7.24)
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The joint cumulative distribution function (c.d.f.), or joint distribution function (d.f.)
associated with X, denoted F or Fy, is defined on R" by

F(x) = Pr[X (-5, x]. (7.25)

As was the case for random variables above, because Pr[X~!(—a0,x|] =
>~ PrlX71(x")], where X’ < X is shorthand for x; < x; for all j, and X' is in the
range of X, the counterpart to (7.22) is

F(x) = Z f(x). (7.26)
Example 7.28

1. On the sample space of 10-flip sequences of a fair coin, we could define random vari-
ables, {X} _onseSby

1, si=H,
Xj(s):{l s{*T
) g — 1.

In other words, each X; is defined entirely in terms of the value of the jth flip. The
range of X is then the 2'° vectors in R deﬁned by Rng(X) = {xe R" |x; = +1
Sor all j}. In this simple example the event X '(x1) contains all sequences with an H
for the first flip if x1 =1, and all sequences with a T for the first flip if x| = —1,
and similarly for other components. In addition X ' (%) = X; ' (x))NX; 1 (x2)N---N
XioM(x10) is a unique sample point for every %€ Rng(X) and correspondingly,
f(x) =271 for each such point.

2. Define Y, (s) = Zle Xi(s) and Y>(s) = Z/IOGX( ), where X;(s) is defined in case
1. Now with Y = (Y, Y,), we have Rng(Y) = {7 € R*| y1, y» = 45,43, +1}. The
number of sample points in Y; Y(y;) now varies by the value of y;. For instance,
Y Y(5) is the event of all 2° ﬂzp sequences starting with HHHHH , whereas Y[ '(1) is
the event of all flip sequences with 3-Hs and 2-T's in the first five flips, of which there
are (3)2° =5-2% sample points. Correspondingly the value of f(¥) =Pr[Y{ ()N
Y5 Y(»2)] also varies over the range of Y.

7.4.4 Marginal and Conditional Probability Functions

Once a joint probability density function is defined on a sample space, it is natural
to consider additional probability functions. To set the stage, we start with an
example.
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Example 7.29 Consider the random variables Y|(s) = 21‘3:1 Xi(s) and Y»(s) =
21‘6:4 X;(s) defined on the sample space of 6-flip sequences of a fair coin. As in case 1
in example 7.28 above, for s € S, X;(s) is defined by

1 si=H
X' ) — bl '] )
J(é) {—1, N T.
The joint p.d.f. of the pair, Y = (Y1, Y,), is defined on Rng(Y) = {7 e R?| yy, y» =
+1, 43}, which contains 16 points. The associated probabilities are given by

(y1,p2): (£1,41) (£1,43) (£3,41) (£3,13)

S, »2): 29_6 5 5

353
5%
2=~

where there are 4 sample points represented in each numerical column. It is easy to
see that the probabilities of the points in each column are the same by symmetry. For
example, switching all H — T gives a 1:1 correspondence between the (1,1) and
(=1, =1), while switching H < T only for the first 3 flips identifies (1,1) and (—1,1).
Interchanging the first 3 and last 3 flips identifies (1,3) and (3, 1), and so forth.

Since Y| and Y, are perfectly good random variables on their own, we can also de-
fine the p.d.fs f(y1) and f(y2), which by symmetry will have the same values on the
same 4 points:

yjI il i3

) & %

When calculating f/();), intuition suggests that the original sample space was not
necessary, and that it would have been easier to consider the sample space of 3-flip
sequences of a fair coin. On the other hand, if the calculation was implemented in the
original sample space S, every 3-flip outcome for the given yy, say, would be counted
23 times, since in S, such an outcome would be associated with all 23 possible 3-flip
sequences underlying y,. Put another way, every 3-flip outcome for the given y;
would be associated with all possible outcomes of y,. Consequently we must have

f0) = f, ) and  f(y2) = f(y1,02)-
12 Y1

A simple calculation relating these values to the defining probability measure on S,
Pr, demonstrates that this is the case. In this context, f(y;) and f(y,) are called the
marginal probability density functions of the joint p.d.f. f(y, 7).
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Another calculation of interest is for the so-called conditional probability functions
of the joint p.d.f. (1, y2), denoted f(y; | y2) and f(y2| y1). Focussing on f(y; | y2)
for specificity, this p.d.f. is defined relative to the probability of the conditional event
A| B, where 4 ={s|Yi(s) =y} and B = {s|Ya(s) = y»}. In other words, the
conditional p.d.f. f(y1]y2) is defined as the probability of the conditional event
A|B:

S| y2) =Pr[d|B] =Pr[Y] ' (31) ] Y5 (12)].

Once again, this conditional p.d.f. must be related to the joint p.d.f, f(y1, y2),
which provides probabilities for each event, Pr[Y;!(y1)N Y;!(y2)] = Pr[AN B).

Now in the preceding section on conditional events, we have from (7.3) that if
_ Pr[4nB]

Pr[B] # 0, then Pr[4|B] = PE Replacing this event notation with the corre-
sponding p.d.f. notation, we conclude that

g f(y17 y2) -
S l»)=—7==  for f(3n) #0,

011D =750) )

with a corresponding formula for f(y2 | y1).

Before formalizing these ideas in a definition, note that for a more general joint
p.d.f., f(y1,y2,...,yn), there are in fact 2" — 2 possible marginal p.d.f.s. Specifi-
cally, there are (}) of the form f(y;), (5) of the form f(y;, yi) for j # k, and so
forth. We get the —2 adjustment to the count because if no y; is chosen,
> rymy S (V13 V2, -, ya) = 1, which is not a probability function, whereas if all
yj are chosen, the original joint p.d.f. is produced.

In addition, for every such marginal p.d.f., one could define an associated condi-
tional p.d.f., such as f(yi,y2|»3,..., yn). However, the notation quickly becomes
cumbersome, so the following definition will be presented both in the more limited
generality of two random variables, a common framework for applications, and
then for the general case:

Definition 7.30  Given a random vector Y = (Y1, Y>) on a discrete sample space, S,
and associated joint probability distribution function f(y1, y2), the marginal probabil-
ity density functions, denoted f(y)) and f(y,), are defined by

F) =Y F(s ), (7.27a)

f(2) = F(y,»2). (7.27b)
N



7.4 Random Variables 261

The associated conditional probability density functions, denoted f(yi|y:) and
S (y2| »1), are defined by

fnly) = % when f(y2) # 0, (7.28a)
= fi(yl’ y2) when
ACARVES 7Om) hen f(y1) # 0. (7.28b)

Note that the law of total probability, stated in the context of events in (7.4), can
also be stated in terms of the joint, marginal, and conditional p.d.f. Specifically, we
have from (7.28a) that f(y1, y2) = f(y1]y2)f(»2), and also from (7.27a) that f(y;)
=>_,, f(»1,y2). Combining, we obtain the law of total probability:

S0 = i 92)f (), (7.29)

and the analogous identity for /().

For the more general definition, we introduce the notion of a partition of the
random vector Y = (Y, Y>,...,Y,) into two nonempty subsets of random variables
Y1 =(Y,,Y,,....Y,), and Y» = (Y}, Y,,..., Y, ), where this cumbersome nota-
tion is intended to imply that every Y} is in one of Y| and Y, but not both.

Definition 7.31 Given a random vector Y = (Y1, Ya,...,Y,) on a discrete sample
space, S, an associated joint probability distribution function f(yi,y2,..., vu), and a
partition, Y = (Y1, Y>), the marginal probability density function, denoted f(7,) is
defined by

f()_}l):Zf(ylvyb“'»yn)' (730)
2
The associated conditional probability density function, denoted f (7, | 7,), is defined by
F(al31) = L2230 £33 2 0 (1.31)
/()

We note that these general formulas also provide general versions of the law of
total probability, but leave it to the reader to develop these formulas.

7.4.5 Independent Random Variables

Because a random variable X is defined so that the pre-image of open intervals
X~[(a,b)] are events in £ with associated probabilities under the probability measure
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Pr, it is natural to say that two random variables are independent if their pre-images
of all intervals are stochastically independent as events in £.

Definition 7.32 Random variables X, X, on the discrete sample space S are inde-
pendent random variables if for any intervals (a;,b;) = IR, bounded or unbounded,
X7 (ar,b1)] and X5 '|(az, by)] are stochastically independent events in € as in (7.5).
Equivalently, if Xi:S8 — {xy} and X>:S8 — {xx}, then X\ and X, are inde-
pendent if X[ '[xy;] and Xy '[xy] are stochastically independent events for all x;
and xyy.

More generally, a collection of random variables {Xi};:l) where n may be oo, are
mutually independent random variables if every collection of events of the form
{X; (@, b)1};_, are mutually independent events as in (7.6), or equivalently,

j=1
{ X/fl [x/k]};?:l are mutually independent for any xj;. € Rng[X]].

Example 7.33

1. Define S as the sample space of all pairs of results achieved by rolling a fair die
twice. Specifically, S = {(dy,dr) |1 < d; < 6}, where d denotes the result on the first
roll, and dy the result on the second. By the assumption of fairness, each numerical
value is equally likely and has probability of % of occurrence, and consequently the
probability function for S is defined as Pr[(dy,d>)] = & for every such sample point.
Note that the values of this probability measure are influenced by the fact that the die
throws were sequential, and hence order counts. On this ordered sample space, define
first the random variables X, Y : S — N by

X((d,dr)] = dy,
Y[(d,dr)] = d>.

Intuition indicates that X and Y are independent random variables. To demonstrate
this, note that for any dy,dy € {1,2,...,6}, both X~'(dy) and Y~'(d>) are events in S
of 6 points with measures under Pr of t. Also X~'(d\) N Y~'(d>) contains a unique
sample point, specifically, (dy, d>), which has measure 3—16 under Pr. In other words, for
all (dy, d>),

Pr[X ! (d)) N Y~V (da)] = Pe[X ! (d))] Pr[Y ) (d2)].

2. Now define a new random variable Z on S above as follows:

Z[(dl,dz)] =d| + d.



7.4 Random Variables 263

Intuitively we expect X and Z not to be independent. That is because, if Z|(d\,d>)] =
12 (or 2), it must be the case that X[(d\,dr)] =6 (or 1). More formally, Z assumes
all integer values 2 < k < 12, and the event defined by Z~'(k) has probabilities

k: 2 3 4 5 6 7 8 9 10 11 12

PrZ7 (k) 5 % % %6 36 % 36 % 36 % %

It is apparent that the numerator of Pr[Z~' (k)] also represents the number of sample
points in the associated event. As noted above, for each 1 < j < 6, X~'(j) contains 6
sample points, and Pr[X~'(j)] = %for all j. Now it is straightforward to justify that
X-Y(j)NZ~Y(k) contains one sample point or none. For example, X~'(1)NZ~1(12)
=0, while X~'(4)NZ7Y(7) = (4,3). More generally, if di =j and di +d> =k,
there is a unique point provided that 1 < k — j < 6, and no point otherwise. Hence
Pr[X~(j) N Z~' (k)] equals O or 3¢, which can equal the product of probabilities of the
respective events only when k = 1. Consequently X and Z are not independent.

3. If instead of as in case 1, a pair of dice were thrown without keeping track of order,
then the sample space, S', would contain only 21 rather than 36 sample points. One re-
alization of this space is ' = {(d,d») |1 < d\ < d» < 6} where dy denotes the smaller
result, dy the larger. The associated probability measure is then given by

1

=~ d =d
Pr((d),dy)] =< 3¢ ’
[(d1,d)] {% 4 < d.

Define the random variables U, W : S’ — N by
Ul(dy,d>)] = min(d,, d>),
W[(d] s dz)] = max(dl s dz)

Now U and W are not independent. For example, Pr[U~'(1)] = 1L since this event

1
36>
contains the sample point

Uli(1) ={(1,d)|1 <d <6},

which has measure % by the above given probability measure on S'. On the other
hand, Pr[W='(1)] = 5%, since W='(1) = (1,1). Also U' ()N W=1(1) = w(1).
Consequently

PrlU ()N w1 (1)] # Pr[U'(1)] Pr[w 1 (1)].
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The notion of independent random variables can also be defined in terms of the
joint, conditional and marginal probability distribution functions.

Definition 7.34  Given a random vector Y = (Y1, Y>) on a discrete sample space S
and associated joint probability density function f(yi,y2), the random variables Y,
and Y, are independent random variables if

S p) =) f (1), (7.32a)
or equivalently if f(y2) # 0,

Fily2)=7n). (7.32b)
More generally, given a random vector Y = (Y1, Ya,...,Y,) on the discrete sample

space S, with associated joint probability density function f(yi1, ya,...,yn), the ran-
dom variables {Y;} are mutually independent random variables if given any partition
Y=(Y,1)

Sy = f(N)f(Ya), (7.33a)
or equivalently if f( ¥5) # 0,

f(Y1| ) = f(T). (7.33b)
In particular, we then have

Sy ) = L) f(02) - f(vn)- (7.34)

7.5 Expectations of Discrete Distributions

7.5.1 Theoretical Moments

The definitions and notation for moments here closely parallel that given in sec-
tion 3.3.2 for moments of sample data. This is no coincidence, as will be discussed
below.

Expected Values

The general structure of the formulas below is seen repeatedly in probability theory.
These calculations represent what are known as expected value calculations, and
sometimes referred to as taking expectations. The general case is defined first, then
specific examples are presented.
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Definition 7.35 Given a discrete random variable, X : S — R, and function g(x)
defined on the range of X, Rng[X] = R, the expected value of g(X), denoted E[g(X)],
is defined as

E[g(X)] =D g(X(s) Pr(s). (7.35)
s5€8

If {x;} = R denotes the range of X, and the p.d.f. of X is denoted by f(x) so that

f(x;) = Pr(s;) with x; = X(s;), then this expected value can be defined by

E[g(X)] = Zg(x/')f(xj)- (7.36)

In either case, this expectation is only defined when the associated summation is abso-
lutely