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Introduction

This book provides an accessible yet rigorous introduction to the fields of mathe-

matics that are needed for success in investment and quantitative finance. The book’s

goal is to develop mathematics topics used in portfolio management and investment

banking, including basic derivatives pricing and risk management applications, that

are essential to quantitative investment finance, or more simply, investment finance.

A future book, Advanced Quantitative Finance: A Math Tool Kit, will cover more

advanced mathematical topics in these areas as used for investment modeling, deriv-

atives pricing, and risk management. Collectively, these latter areas are called quan-

titative finance or mathematical finance.

The mathematics presented in this book would typically be learned by an under-

graduate mathematics major. Each chapter of the book corresponds roughly to the

mathematical materials that are acquired in a one semester course. Naturally each

chapter presents only a subset of the materials from these traditional math courses,

since the goal is to emphasize the most important and relevant materials for the fi-

nance applications presented. However, more advanced topics are introduced earlier

than is customary so that the reader can become familiar with these materials in an

accessible setting.

My motivation for writing this text was to fill two current gaps in the financial and

mathematical literature as they apply to students, and practitioners, interested in

sharpening their mathematical skills and deepening their understanding of invest-

ment and quantitative finance applications. The gap in the mathematics literature is

that most texts are focused on a single field of mathematics such as calculus. Anyone

interested in meeting the field requirements in finance is left with the choice to either

pursue one or more degrees in mathematics or expend a significant self-study e¤ort

on associated mathematics textbooks. Neither approach is e‰cient for business

school and finance graduate students nor for professionals working in investment

and quantitative finance and aiming to advance their mathematical skills. As the dil-

igent reader quickly discovers, each such book presents more math than is needed for

finance, and it is nearly impossible to identify what math is essential for finance

applications. An additional complication is that math books rarely if ever provide

applications in finance, which further complicates the identification of the relevant

theory.

The second gap is in the finance literature. Finance texts have e¤ectively become

bifurcated in terms of mathematical sophistication. One group of texts takes the

recipe-book approach to math finance often presenting mathematical formulas with

only simplified or heuristic derivations. These books typically neglect discussion of

the mathematical framework that derivations require, as well as e¤ects of assump-

tions by which the conclusions are drawn. While such treatment may allow more



discussion of the financial applications, it does not adequately prepare the student

who will inevitably be investigating quantitative problems for which the answers are

unknown.

The other group of finance textbooks are mathematically rigorous but inaccessible

to students who are not in a mathematics degree program. Also, while rigorous, such

books depend on sophisticated results developed elsewhere, and hence the discussions

are incomplete and inadequate even for a motivated student without additional class-

room instruction. Here, again, the unprepared student must take on faith referenced

results without adequate understanding, which is essentially another form of recipe

book.

With this book I attempt to fill some of these gaps by way of a reasonably eco-

nomic, yet rigorous and accessible, review of many of the areas of mathematics

needed in quantitative investment finance. My objective is to help the reader acquire

a deep understanding of relevant mathematical theory and the tools that can be ef-

fectively put in practice. In each chapter I provide a concluding section on finance

applications of the presented materials to help the reader connect the chapter’s math-

ematical theory to finance applications and work in the finance industry.

What Does It Take to Be a ‘‘Quant’’?

In some sense, the emphasis of this book is on the development of the math tools one

needs to succeed in mathematical modeling applications in finance. The imagery

implied by ‘‘math tool kit’’ is deliberate, and it reflects my belief that the study of

mathematics is an intellectually rewarding endeavor, and it provides an enormously

flexible collection of tools that allow users to answer a wide variety of important and

practical questions.

By tools, however, I do not mean a collection of formulas that should be memo-

rized for later application. Of course, some memorization is mandatory in mathe-

matics, as in any language, to understand what the words mean and to facilitate

accurate communication. But most formulas are outside this mandatorily memorized

collection. Indeed, although mathematics texts are full of formulas, the memoriza-

tion of formulas should be relatively low on the list of priorities of any student or

user of these books. The student should instead endeavor to learn the mathematical

frameworks and the application of these frameworks to real world problems.

In other words, the student should focus on the thought process and mathematics

used to develop each result. These are the ‘‘tools,’’ that is, the mathematical methods

of each discipline of explicitly identifying assumptions, formally developing the

needed insights and formulas, and understanding the relationships between formulas
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and the underlying assumptions. The tools so defined and studied in this book will

equip the student with fairly robust frameworks for their applications in investment

and quantitative finance.

Despite its large size, this book has the relatively modest ambition of teaching a

very specific application of mathematics, that being to finance, and so the selection

of materials in every subdiscipline has been made parsimoniously. This selection of

materials was the most di‰cult aspect of developing this book. In general, the selec-

tion criterion I used was that a topic had to be either directly applicable to finance, or

needed for the understanding of a later topic that was directly applicable to finance.

Because my objective was to make this book more than a collection of mathematical

formulas, or just another finance recipe book, I devote considerable space to discus-

sion on how the results are derived, and how they relate to their mathematical

assumptions. Ideally the students of this book should never again accept a formulaic

result as an immutable truth separate from any assumptions made by its originator.

The motivation for this approach is that in investment and quantitative finance,

there are few good careers that depend on the application of standard formulas in

standard situations. All such applications tend to be automated and run in compa-

nies’ computer systems with little or no human intervention. Think ‘‘program trad-

ing’’ as an example of this statement. While there is an interesting and deep theory

related to identifying so-called arbitrage opportunities, these can be formulaically

listed and programmed, and their implementation automated with little further ana-

lyst intervention.

Equally, if not more important, with new financial products developed regularly,

there are increased demands on quants and all finance practitioners to apply the pre-

vious methodologies and adapt them appropriately to financial analyses, pricing, risk

modeling, and risk management. Today, in practice, standard results may or may

not apply, and the most critical job of the finance quant is to determine if the tradi-

tional approach applies, and if not, to develop an appropriate modification or even

an entirely new approach. In other words, for today’s finance quants, it has become

critical to be able to think in mathematics, and not simply to do mathematics by

rote.

The many finance applications developed in the chapters present enough detail to

be understood by someone new to the given application but in less detail than would

be appropriate for mastering the application. Ideally the reader will be familiar with

some applications and will be introduced to other applications that can, as needed,

be enhanced by further study. On my selection of mathematical topics and finance

applications, I hope to benefit from the valuable comments of finance readers, whether

student or practitioner. All such feedback will be welcomed and acknowledged in fu-

ture editions.
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Plan of the Book

The ten chapters of this book are arranged so that each topic is developed based on

materials previously discussed. In a few places, however, a formula or result is intro-

duced that could not be fully developed until a much later chapter. In fewer places, I

decided to not prove a deep result that would have brought the book too far afield

from its intended purpose. Overall, the book is intended to be self-contained, com-

plete with respect to the materials discussed, and mathematically rigorous. The only

mathematical background required of the reader is competent skill in algebraic

manipulations and some knowledge of pre-calculus topics of graphing, exponentials

and logarithms. Thus the topics developed in this book are interrelated and applied

with the understanding that the student will be motivated to work through, with pen

or pencil and paper or by computer simulation, any derivation or example that may

be unclear and that the student has the algebraic skills and self-discipline to do so.

Of course, even when a proof or example appears clear, the student will benefit in

using pencil and paper and computer simulation to clarify any missing details in der-

ivations. Such informal exercises provide essential practice in the application of the

tools discussed, and analytical skills can be progressively sharpened by way of the

book’s formal exercises and ultimately in real world situations. While not every deri-

vation in the book o¤ers the same amount of enlightenment on the mathematical

tools studied, or should be studied in detail before proceeding, developing the habit

of filling in details can deepen mathematical knowledge and the understanding of

how this knowledge can be applied.

I have identified the more advanced sections by an asterisk (*). The beginning

student may find it useful to scan these sections on first reading. These sections can

then be returned to if needed for a later application of interest. The more advanced

student may find these sections to provide some insights on the materials they are

already familiar with. For beginning practitioners and professors of students new to

the materials, it may be useful to only scan the reasoning in the longer proofs on a

first review before turning to the applications.

There are a number of productive approaches to the chapter sequencing of this

book for both self-study and formal classroom presentation. Professors and practi-

tioners with good prior exposure might pick and choose chapters out of order to e‰-

ciently address pressing educational needs. For finance applications, again the best

approach is the one that suits the needs of the student or practitioner. Those familiar

with finance applications and aware of the math skills that need to be developed will

focus on the appropriate math sections, then proceed to the finance applications to

better understand the connections between the math and the finance. Those less fa-
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miliar with finance may be motivated to first review the applications section of each

chapter for motivation before turning to the math.

Some Course Design Options

This book is well suited for a first-semester introductory graduate course in quantita-

tive finance, perhaps taken at the same time as other typical first-year graduate

courses for finance students, such as investment markets and products, portfolio

theory, financial reporting, corporate finance, and business strategy. For such stu-

dents the instructor can balance the class time between sharpening mathematical

knowledge and deepening a level of understanding of finance applications taken in

the first term. Students will then be well prepared for more quantitatively focused in-

vestment finance courses on fixed income and equity markets, portfolio management,

and options and derivatives, for example, in the second term.

For business school finance students new to the subject of finance, it might be bet-

ter to defer this book to a second semester course, following an introductory course

in financial markets and instruments so as to provide a context for the finance appli-

cations discussed in the chapters of this book.

This book is also appropriate for graduate students interested in firming up their

technical knowledge and skills in investment and quantitative finance, so it can be

used for self-study by students soon to be working in investment or quantitative fi-

nance, and by practitioners needing to improve their math skill set in order to ad-

vance their finance careers in the ‘‘quant’’ direction. Mathematics and engineering

departments, which will have many very knowledgeable graduate and undergraduate

students in the areas of math covered in this book, may also be interested in o¤ering

an introductory course in finance with a strong mathematical framework. The rigor-

ous math approach to real world applications will be familiar to such students,

so a balance of math and finance could be o¤ered early in the students’ academic

program.

For students for whom the early chapters would provide a relatively easy review, it

is feasible to take a sequential approach to all the materials, moving faster through

the familiar math topics and dwelling more on the finance applications. For non-

mathematical students who risk getting bogged down by the first four chapters in

their struggle with abstract notions, and are motivated to learn the math only after

recognizing the need in a later practical setting, it may be preferable to teach only a

subset of the math from chapters 1 through 4 and focus on the intuition behind these

chapters’ applications. For example, an instructor might provide a quick overview of

logic and proof from chapter 1, choose selectively from chapter 2 on number sys-

tems, then skip ahead to chapter 4 for set operations. After this topical tour the
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instructor could finally settle in with all the math and applications in chapter 5 on

sequences and then move forward sequentially through chapters 6 to 10. The other

mathematics topics of chapters 1 through 4 could then be assigned or taught as

required to supplement the materials of these later chapters. This approach and

pace could keep the students motivated by getting to the more meaningful applica-

tions sooner, and thus help prevent math burnout before reaching these important

applications.

Chapter Exercises

Chapter exercises are split into practice exercises and assignment exercises. Both

types of exercises provide practice in mathematics and finance applications. The

more challenging exercises are accompanied by a ‘‘hint,’’ but students should not be

constrained by the hints. The best learning in mathematics and in applications often

occurs in pursuit of alternative approaches, even those that ultimately fail. Valuable

lessons can come from such failures that help the student identify a misunderstanding

of concepts or a misapplication of logic or mathematical techniques. Therefore, if

other approaches to a problem appear feasible, the student is encouraged to follow

at least some to a conclusion. This additional e¤ort can provide reinforcement of a

result that follows from di¤erent approaches but also help identify errors and mis-

understandings when two approaches lead to di¤erent conclusions.

Solutions and Instructor’s Manuals

For the book’s practice exercises, a Solutions Manual with detailed explanations of

solutions is available for purchase by students. For the assignment exercises, solu-

tions are available to instructors as part of an Instructor’s Manual. This Manual

also contains chapter-by-chapter suggestions on teaching the materials. All instructor

materials are also available online.

Organization of Chapters

Few mathematics books today have an introductory chapter on mathematical logic,

and certainly none that address applications. The field of logic is a subject available

to mathematics or philosophy students as a separate course. To skip the material on

logic is to miss an opportunity to acquire useful tools of thinking, in drawing appro-

priate conclusions, and developing clear and correct quantitative reasoning.

Simple conclusions and quantitative derivations require no formality of logic, but

the tools of truth tables and statement analysis, as well as the logical construction of

a valid proof, are indispensable in evaluating the integrity of more complicated

results. In addition to the tools of logic, chapter 1 presents various approaches to

xxvi Introduction



proofs that follow from these tools, and that will be encountered in subsequent chap-

ters. The chapter also provides a collection of paradoxes that are often amusing and

demonstrate that even with careful reasoning, an argument can go awry or a conclu-

sion reached can make no sense. Yet paradoxes are important; they motivate clearer

thinking and more explicit identification of underlying assumptions.

Finally, for completeness, this chapter includes a discussion of the axiomatic for-

mality of mathematical theory and explains why this formality can help one avoid

paradoxes. It notes that there can be some latitude in the selection of the axioms,

and that axioms can have a strong e¤ect on the mathematical theory. While the

reader should not get bogged down in these formalities, since they are not critical to

the understanding of the materials that follow, the reader should find comfort that

they exist beneath the more familiar frameworks to be studied later.

The primary application of mathematical logic to finance and to any field is as a

guide to cautionary practice in identifying assumptions and in applying or deriving a

needed result to avoid the risk of a potentially disastrous consequence. Intuition is

useful as a guide to a result, but never as a substitute for careful analysis.

Chapter 2, on number systems and functions, may appear to be on relatively trivial

topics. Haven’t we all learned numbers in grade school? The main objective in

reviewing the di¤erent number systems is that they are familiar and provide the foun-

dational examples for more advanced mathematical models. Because the aim of this

book is to introduce important concepts early, the natural numbers provide a rela-

tively simple example of an axiomatic structure from chapter 1 used to develop a

mathematical theory.

From the natural numbers other numbers are added sequentially to allow more

arithmetic operations, leading in turn to integers, rational, irrational, real, and com-

plex numbers. Along the way these collections are seen to share certain arithmetic

structures, and the notions of group and field are introduced. These collections also

provide an elementary context for introducing the notions of countable and uncount-

able infinite sets, as well as the notion of a ‘‘dense’’ subset of a given set. Once

defined, these number systems and their various subsets are the natural domains on

which functions are defined.

While it might be expected that only the rational numbers are needed in finance,

and indeed the rational numbers with perhaps only 6 to 10 decimal point represen-

tations, it is easy to exemplify finance problems with irrational and even complex

number solutions. In the former cases, rational approximations are used, and some-

times with reconciliation di‰culties to real world transactions, while complex num-

bers are avoided by properly framing the interest rate basis. Functions appear

everywhere in finance—from interest rate nominal basis conversions, to the pricing
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functions for bonds, mortgages and other loans, preferred and common stock, and

forward contracts, and to the modeling of portfolio returns as a function of the asset

allocation.

The development of number system structures is continued in chapter 3 on Eucli-

dean and other spaces. Two-dimensional Euclidean space, as was introduced in chap-

ter 2, provided a visual framework for the complex numbers. Once defined, the

vector space structure of Euclidean space is discussed, as well as the notions of the

standard norm and inner product on these spaces. This discussion leads naturally to

the important Cauchy–Schwarz inequality relating these concepts, an inequality that

arises time and again in various contexts in this book. Euclidean space is also the

simplest context in which to introduce the notion of alternative norms, and the lp-

norms, in particular, are defined and relationships developed. The central result is

the generalization of Cauchy–Schwarz to the Hölder inequality, and of the triangle

inequality to the Minkowski inequality.

Metrics are then discussed, as is the relationship between a metric and a norm, and

cases where one can be induced from the other on a given space using examples from

the lp-norm collection. A common theme in mathematics and one seen here is that

a general metric is defined to have exactly the essential properties of the standard

and familiar metric defined on R2 or generalized to Rn. Two notions of equivalence

of two metrics is introduced, and it is shown that all the metrics induced by the lp-

norms are equivalent in Euclidean space. Strong evidence is uncovered that this re-

sult is fundamentally related to the finite dimensionality of these spaces, suggesting

that equivalence will not be sustained in more general forthcoming contexts. It is

also illustrated that despite this general lp-equivalence result, not all metrics are

equivalent.

For finance applications, Euclidean space is seen to be the natural habitat for

expressing vectors of asset allocations within a portfolio, various bond yield term

structures, and projected cash flows. In addition, all the lp-norms appear in the cal-

culation of various moments of sample statistical data, while some of the lp-norms,

specifically p ¼ 1; 2, and y, appear in various guises in constrained optimization

problems common in finance. Sometimes these special norms appear as constraints

and sometimes as the objective function one needs to optimize.

Chapter 4 on set theory and topology introduces another example of an axiomatic

framework, and this example is motivated by one of the paradoxes discussed in

chapter 1. But the focus here is on set operations and their relationships. These are

important tools that are as essential to mathematical derivations as are algebraic

manipulations. In addition, basic concepts of open and closed are first introduced in

the familiar setting of intervals on the real line, but then generalized and illustrated
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making good use of the set manipulation results. After showing that open sets in R
are relatively simple, the construction of the Cantor set is presented as an exotic ex-

ample of a closed set. It is unusual because it is uncountable and yet, at the same

time, shown to have ‘‘measure 0.’’ This result is demonstrated by showing that the

Cantor set is what is left from the interval ½0; 1� after a collection of intervals are

removed that have total length equal to 1!

The notions of open and closed are then extended in a natural way to Euclidean

space and metric spaces, and the idea of a topological space is introduced for com-

pleteness. The basic aim is once again to illustrate that a general idea, here topology,

is defined to satisfy exactly the same properties as do the open sets in more familiar

contexts. The chapter ends with a few other important notions such as accumulation

point and compactness, which lead to discussions in the next chapter.

For finance applications, constrained optimization problems are seen to be natu-

rally interpreted in terms of sets in Euclidean space defined by functions and/or

norms. The solution of such problems generally requires that these sets have certain

topological properties like compactness and that the defining functions have certain

regularity properties. Function regularity here means that the solution of an equation

can be approximated with an iterative process that converges as the number of steps

increases, a notion that naturally leads to chapter 5. Interval bisection is introduced

as an example of an iterative process, with an application to finding the yield of a

security, and convergence questions are made explicit and seen to motivate the no-

tion of continuity.

Sequences and their convergence are addressed in chapter 5, making good use of

the concepts, tools, and examples of earlier chapters. The central idea, of course, is

that of convergence to a limit, which is informally illustrated before it is formally

defined. Because of the importance of this idea, the formal definition is discussed at

some length, providing both more detail on what the words mean and justification

as to why this definition requires the formality presented. Convergence is demon-

strated to be preserved under various arithmetic operations. Also an important result

related to compactness is demonstrated: that is, while a bounded sequence need not

converge, it must have an accumulation point and contain a subsequence that con-

vergences to that accumulation point. Because such sequences may have many—

indeed infinitely many—such accumulation points, the notions of limit superior and

limit inferior are introduced and shown to provide the largest and smallest such ac-

cumulation points, respectively.

Convergence of sequences is then discussed in the more general context of Eucli-

dean space, for which all the earlier results generalize without modification, and

metric spaces, in which some care is needed. The notion of a Cauchy sequence is
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next introduced and seen to naturally lead to the question of whether such sequences

converge to a point of the space, as examples of both convergence and nonconver-

gence are presented. This discussion leads to the introduction of the idea of complete-

ness of a metric space, and of its completion, and an important result on completion

is presented without proof but seen to be consistent with examples studied.

Interval bisection provides an important example of a Cauchy sequence in finance.

Here the sequence is of solution iterates, but again the question of convergence of the

associated price values remains open to a future chapter. With more details on this

process, the important notion of continuous function is given more formality.

Although the convergence of an infinite sequence is broadly applicable in its own

right, this theory provides the perfect segue to the convergence of infinite sums

addressed in chapter 6 on series and their convergence. Notions of absolute and con-

ditional convergence are developed, along with the implications of these properties

for arithmetic manipulations of series, and for re-orderings or rearrangements of the

series terms. Rearrangements are discussed for both single-sum and multiple-sum

applications.

A few of the most useful tests for convergence are developed in this chapter. The

chapter 3 introduction to the lp-norms is expanded to include lp-spaces of sequences

and associated norms, demonstrating that these spaces are complete normed spaces,

or Banach spaces, and are overlapping yet distinct spaces for each p. The case of

p ¼ 2 gets special notice as a complete inner product space, or Hilbert space, and

implications of this are explored. Power series are introduced, and the notions of

radius of convergence and interval of convergence are developed from one of the pre-

vious tests for convergence. Finally, results for products and quotients of power se-

ries are developed.

Applications to finance include convergence of price formulas for various perpet-

ual preferred and common stock models with cash flows modeled in di¤erent func-

tional ways, and various investor yield demands. Linearly increasing cash flows

provide an example of double summation methods, and the result is generalized to

polynomial payments. Approximating complicated pricing functions with power se-

ries is considered next, and the application of the lp-spaces is characterized as provid-

ing an accessible introduction to the generalized function space counterparts to be

studied in more advanced texts.

An important application of the tools of chapter 6 is to discrete probability theory,

which is the topic developed in chapter 7 starting with sample spaces and probability

measures. By discrete, it is meant that the theory applies to sample spaces with a

finite or countably infinite number of sample points. Also studied are notions of con-

ditional probability, stochastic independence, and an n-trial sample space construc-
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tion that provides a formal basis for the concept of an independent sample from a

sample space. Combinatorics are then presented as an important tool for organizing

and counting collections of events from discrete sample spaces.

Random variables are shown to provide key insights to a sample space and its

probability measure through the associated probability density and distribution func-

tions, making good use of the combinatorial tools. Moments of probability density

functions and their properties are developed, as well as moments of sample data

drawn from an n-trial sample space. Several of the most common discrete probability

density functions are introduced, as well as a methodology for generating random

samples from any such density function.

Applications of these materials in finance are many, and begin with loss models

related to bond or loan portfolios, as well as those associated with various forms of

insurance. In this latter context, various net premium calculations are derived. Asset

allocation provides a natural application of probability methods, as does the model-

ing of equity prices in discrete time considered within either a binomial lattice or bi-

nomial scenario model. The binomial lattice model is then used for option pricing in

discrete time based on the notion of option replication. Last, scenario-based option

pricing is introduced through the notion of a sample-based option price defined in

terms of a sampling of equity price scenarios.

With chapter 7 providing the groundwork, chapter 8 develops a collection of the

fundamental probability theorems, beginning with a modest proof of the unique-

ness of the moment-generating and characteristic functions in the case of finite dis-

crete probability density functions. Chebyshev’s inequality, or rather, Chebyshev’s

inequalities, are developed, as is the weak law of large numbers as the first of several

results related to the distribution of the sample mean of a random variable in the

limit as the sample size grows. Although the weak law requires only that the random

variable have a finite mean, in the more common case where the variance is also fi-

nite, this law is derived with a sleek one-step proof based on Chebyshev.

The strong law of large numbers requires both a finite mean and variance but pro-

vides a much more powerful statement about the distribution of sample means in the

limit. The strong law is based on a generalization of the Chebyshev inequality known

as Kolmogorov’s inequality. The De Moivre–Laplace theorem is investigated next,

followed by discussions on the normal distribution and the central limit theorem

(CLT). The CLT is proved in the special case of probability densities with moment-

generating functions, and some generalizations are discussed.

For finance applications, Chebyshev is applied to the problem of modeling and

evaluating asset adequacy, or capital adequacy, in a risky balance sheet. Then the bi-

nomial lattice model for stock prices under the real world probabilities introduced in
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chapter 7 is studied in the limit as the time interval converges to zero, and the prob-

ability density function of future stock prices is determined. This analysis uses the

methods underlying the De Moivre–Laplace theorem and provides the basis of the

next investigation into the derivation of the Black–Scholes–Merton formulas for the

price of a European put or call option. Several of the details of this derivation that

require the tools of chapters 9 and 10 are deferred to those chapters. The final appli-

cation is to the probabilistic properties of the scenario-based option price introduced

in chapter 7.

The calculus of functions of a single variable is the topic developed in the last two

chapters. Calculus is generally understood as the study of functions that display var-

ious types of ‘‘smoothness.’’ In line with tradition, this subject is split into a di¤eren-

tiation theory and an integration theory. The former provides a rigorous framework

for approximating smooth functions, and the latter introduces in an accessible frame-

work an important tool needed for a continuous probability theory.

Chapter 9 on the calculus of di¤erentiation begins with the formal introduction

of the notion of continuity and its variations, as well the development of important

properties of continuous functions. These basic notions of smoothness provide the

beginnings of an approximation approach that is generalized and formalized with

the development of the derivative of a function. Various results on di¤erentiation fol-

low, as does the formal application of derivatives to the question of function approx-

imation via Taylor series. With these tools important results are developed related to

the derivative, such as classifying the critical points of a given function, characteriz-

ing the notions of convexity and concavity, and the derivation of Jensen’s inequality.

Not only can derivatives be used to approximate function values, but the values of

derivatives can be approximated using nearby function values and the associated

errors quantified. Results on the preservation of continuity and di¤erentiability under

convergence of a sequence of functions are addressed, as is the relationship between

analytic functions and power series.

Applications found in finance include the continuity of price functions and their

application to the method of interval bisection. Also discussed is the continuity of

objective functions and constraint functions and implications for solvability of con-

strained optimization problems. Deriving the minimal risk portfolio allocation is

one application of a critical point analysis. Duration and convexity of fixed income

investments is studied next and used in an application of Taylor series to price func-

tion approximations and asset-liability management problems in various settings.

Outside of fixed income, the more common sensitivity measures are known as the

‘‘Greeks,’’ and these are introduced and shown to easily lend themselves to Taylor

series methods. Utility theory and its implications for risk preferences are studied

as an application of convex and concave functions and Jensen’s inequality, and then
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applied in the context of optimal portfolio allocation. Finally, details are provided

for the limiting distributions of stock prices under the risk-neutral probabilities and

special risk-averter probabilities needed for the derivation of the Black–Scholes–

Merton option pricing formulas, extending and formalizing the derivation begun in

chapter 8. The risk-averter model is introduced in chapter 8 as a mathematical arti-

fact to facilitate the final derivation, but it is clear the final result only depends on the

risk-neutral model.

The notion of Riemann integral is studied in chapter 10 on the calculus of integra-

tion, beginning with its definition for a continuous function on a closed and bounded

interval where it is seen to represent a ‘‘signed’’ area between the graph of the func-

tion and the x-axis. A series of generalizations are pursued, from the weakening of

the continuity assumption to that of bounded and continuous ‘‘except on a set of

points of measure 0,’’ to the generalization of the interval to be unbounded, and fi-

nally to certain generalizations when the function is unbounded. Properties of such

integrals are developed, and the connection between integration and di¤erentiation

is studied with two forms of the fundamental theorem of calculus.

The evaluation of a given integral is pursued with standard methods for exact val-

uation as well as with numerical methods. The notion of integral is seen to provide a

useful alternative representation of the remainder in a Taylor series, and to provide a

powerful tool for evaluating convergence of, and estimating the sum of or rate of di-

vergence of, an infinite series. Convergence of a sequence of integrals is included. The

Riemann notion of an integral is powerful but has limitations, some of which are

explored.

Continuous probability theory is developed with the tools of this chapter, encom-

passing more general probability spaces and sigma algebras of events. Continuously

distributed random variables are introduced, as well as their moments, and an acces-

sible result is presented on discretizing such a random variable that links the discrete

and continuous moment results. Several continuous distributions are presented and

their properties studied.

Applications to finance in chapter 10 include the present and accumulated value of

continuous cash flow streams with continuous interest rates, continuous interest rate

term structures for bond yields, spot and forward rates, and continuous equity

dividends and their reinvestment into equities. An alternative approach to applying

the duration and convexity values of fixed income investments to approximating

price functions is introduced. Numerical integration methods are exemplified by ap-

plication to the normal distribution.

Finally, a generalized Black–Scholes–Merton pricing formula for a European op-

tion is developed from the general binomial pricing result of chapter 8, using a ‘‘con-

tinuitization’’ of the binomial distribution and a derivation that this continuitization
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converges to the appropriate normal distribution encountered in chapter 9. As an-

other application, the Riemann–Stieltjes integral is introduced in the chapter exer-

cises. It is seen to provide a mathematical link between the calculations within the

discrete and continuous probability theories, and to generalize these to so-called

mixed probability densities.
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1Mathematical Logic

1.1 Introduction

Nearly everyone thinks they know what logic is but will admit the di‰culty in for-

mally defining it, or will protest that such a formal definition is not necessary because

its meaning is obvious. For example, we all like to stop an adversary in an argument

with the statement ‘‘that conclusion is illogical,’’ or attempt to secure our own vic-

tory by proclaiming ‘‘logic demands that my conclusion is correct.’’ But if compelled

in either instance, it may be di‰cult to formalize in what way logic provides the

desired conclusion.

A legal trial can be all about attempts at drawing logical conclusions. The prose-

cution is trying to prove that the accused is guilty based on the so-called facts. The

defense team is trying to prove the improbability of guilt, or indeed even innocence,

based on the same or another set of facts. In this example, however, there is an asym-

metry in the burden of proof. The defense team does not have to prove innocence.

Of course, if such a proof can be presented, one expects a not guilty verdict for the

accused. The burden of proof instead rests on the prosecution, in that they must

prove guilt, at least to some legal standard; if they cannot do so, the accused is

deemed not guilty.

Consequently a defense tactic is often focused not on attempting to prove inno-

cence but rather on demonstrating that the prosecution’s attempt to prove guilt is

faulty. This might be accomplished by demonstrating that some of the claimed facts

are in doubt, perhaps due to the existence of additional facts, or by arguing that even

given these facts, the conclusion of guilt does not necessarily follow ‘‘logically.’’ That

is, the conclusion may be consistent with but not compelled by the facts. In such a

case the facts, or evidence, is called ‘‘circumstantial.’’

What is clear is that the subject of logic applies to the drawing of conclusions, or

to the formulation of inferences. It is, in a sense, the science of good reasoning. At its

simplest, logic addresses circumstances under which one can correctly conclude that

‘‘B follows from A,’’ or that ‘‘A implies B,’’ or again, ‘‘If A, then B.’’ Most would

informally say that an inference or conclusion is logical if it makes sense relative to

experience. More specifically, one might say that a conclusion follows logically from

a statement or series of statements if the truth of the conclusion is guaranteed by, or

at least compelled by, the truth of the preceding statement or statements.

For example, imagine an accused who is charged with robbing a store in the dark

of night. The prosecution presents their facts: prior criminal record; eyewitness ac-

count that the perpetrator had the same height, weight, and hair color; roommate

testimony that the accused was not home the night of the robbery; and the accused’s

inability to prove his whereabouts on the evening in question. To be sure, all these



facts are consistent with a conclusion of guilt, but they also clearly do not compel

such a conclusion. Even a more detailed eyewitness account might be challenged,

since this crime occurred at night and visibility was presumably impaired. A fact

that would be harder to challenge might be the accused’s possession of many expen-

sive items from the store, without possession of sales receipts, although even this

would not be an irrefutable fact. ‘‘Who keeps receipts?’’ the defense team asserts!

The world of mathematical theories and proofs shares features with this trial ex-

ample. For one, a mathematician claiming the validity of a result has the burden of

proof to demonstrate this result is true. For example, if I assert the claim,

For any two integers N and M, it is true that M þN ¼ N þM,

I have the burden of demonstrating that such a conclusion is compelled by a set of

facts. A jury of my mathematical peers will then evaluate the validity of the assumed

facts, as well as the quality of the logic or reasoning applied to these facts to reach

the claimed conclusion. If this jury determines that my assumed facts or logic is inad-

equate, they will deem the conclusion ‘‘not proved.’’ In the same way that a failed

attempt to prove guilt is not a proof of innocence, a failed proof of truth is not a

proof of falsehood. Typically there is no single judge who oversees such a mathemat-

ical process, but in this case every jury member is a judge.

Imagine if in mathematics the burden of proof was not as described above but in-

stead reversed. Imagine if an acceptable proof of the claim above regarding N and M

was: ‘‘It must be true because you cannot prove it is false.’’ The consequence of this

would be parallel to that of reversing the burden of proof in a trial where the prose-

cution proclaims: ‘‘The accused must be guilty because he cannot prove he is inno-

cent.’’ Namely, in the case of trials, many innocent people would be punished, and

perhaps at a later date their innocence demonstrated. In the case of mathematics,

many false results would be believed to be true, and almost certainly their falsity

would ultimately be demonstrated at a later date. Our jails would be full of the inno-

cent people; our math books, full of questionable and indeed false theory.

In contrast to an assertion of the validity of a result, if I claim that a given state-

ment is false, I simply need to supply a single example, which would be called a

‘‘counterexample’’ to the statement. For example, the claim,

For any integer A, there is an integer B so that A ¼ 2B,

can be proved to be false, or disproved, by the simple counterexample: A ¼ 3.

What distinguishes these two approaches to proof is not related to the asserted

statement being true or false, but to an asymmetry that exists in the approach to the

presentation of mathematical theory. Mathematicians are typically interested in
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whether a general result is always true or not always true. In the first case, a general

proof is required, whereas in the second, a single counterexample su‰ces. On the

other hand, if one attempted to prove that a result is always false, or not always

false, again in the first case, a general proof would be required, whereas in the sec-

ond, a single counterexample would su‰ce. The asymmetry that exists is that one

rarely sees propositions in mathematics stated in terms of a result that is always false,

or not always false. Mathematicians tend to focus on ‘‘positive’’ results, as well as

counterexamples to a positive result, and rarely pursue the opposite perspective. Of

course, this is more a matter of semantic preference than theoretical preference. A

mathematician has no need to state a proposition in terms of ‘‘a given statement is

always false’’ when an equivalent and more positive perspective would be that ‘‘the

negative of the given statement is always true.’’ Why prove that ‘‘2x ¼ x is always

false if x0 0’’ when you can prove that ‘‘for all x0 0, it is true that 2x0 x.’’

What distinguishes logic in the real world from the logic needed in mathematics

is that in the real world the determination that A follows from B often reflects the

human experience of the observers, for example, the judge and jury, as well as rules

specified in the law. This is reinforced in the case of a criminal trial where the jury is

given an explicit qualitative standard such as ‘‘beyond a reasonable doubt.’’ In this

case the jury does not have to receive evidence of the guilt of the accused that con-

vinces with 100 percent conviction, only that the evidence does so beyond a reason-

able doubt based on their human experiences and instincts, as further defined and

exemplified by the judge.

In mathematics one wants logical conclusions of truth to be far more secure than

simply dependent on the reasonable doubts of the jury of mathematicians. As math-

ematics is a cumulative science, each work is built on the foundation of prior results.

Consequently the discovery of any error, however improbable, would have far-

reaching implications that would also be enormously di‰cult to track down and rec-

tify. So not surprisingly, the goal for mathematical logic is that every conclusion will

be immutable, inviolate, and once drawn, never to be overturned or contradicted in

the future with the emergence of new information. Mathematics cannot be built as a

house of cards that at a later date is discovered to be unstable and prone to collapse.

In contrast, in the natural sciences, the burden of proof allowed is often closer to

that discussed above in a legal trial. In natural sciences, the first requirement of a

theory is that it be consistent with observations. In mathematics, the first requirement

of a theory is that it be consistent, rigorously developed, and permanent. While it is

always the case that mathematical theories are expanded upon, and sometimes be-

come more or less in vogue depending on the level of excitement surrounding the de-

velopment of new insights, it should never be the case that a theory is discarded
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because it is discovered to be faulty. The natural sciences, which have the added bur-

den of consistency with observations, can be expected to significantly change over

time and previously successful theories even abandoned as new observations are

made that current theories are unable to adequately explain.

1.2 Axiomatic Theory

From the discussion above it should be no surprise that structure is desired of every

mathematical theory:

1. Facts used in a proof are to be explicitly identified, and each is either assumed

true or proved true given other assumed or proved facts.

2. The rules of inference, namely the logic applied to these facts in proofs, are to be

‘‘correct,’’ and the definition of correct must be objective and immutable.

3. The collection of conclusions provable from the facts in item 1 using the logic in

item 2 and known as theorems, are to be consistent. That is, for no statement P will

the collection of theorems include both ‘‘statement P is true’’ and ‘‘the negation of

statement P is true.’’

4. The collection of all theorems is to be complete. That is, for every statement P, ei-

ther ‘‘statement P is a theorem’’ or ‘‘the negation of statement P is a theorem.’’ A

related but stronger condition is that the resulting theory is decidable, which means

that one can develop a procedure so that for any statement P, one can determine if

P is true or not true in a finite number of steps.

It may seem surprising that in item 1 the ‘‘truth’’ of the assumed facts was not the

first requirement, but that these facts be explicitly identified. It is natural that identi-

fication of the assumed facts is important to allow a mathematical jury to do its re-

view, but why not an absolute requirement of ‘‘truth’’? The short answer is, there are

no facts in mathematics that are ‘‘true’’ and yet at the same time dependent on no

other statements of fact. One cannot start with an empty set of facts and somehow

derive, with logic alone, a collection of conclusions that can be demonstrated to be

true.

Consequently some basic collection of facts must be assumed to be true, and these

will be the axioms of the theory. In other words, all mathematical theories are axiom-

atic theories, in that some basic set of facts must be assumed to be true, and based on

these, other facts proved. Of course, the axioms of a theory are not arbitrary. Math-

ematicians will choose the axioms so that in the given context their truth appears un-

deniable, or at least highly reasonable. This is what ensures that the theorems of the
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mathematical theory in item 3, that is, the facts and conclusions that follow from

these axioms, will be useful in that given context.

Di¤erent mathematical theories will require di¤erent sets of axioms. What one

might assume as axioms to develop a theory of the integers will be di¤erent from

the axioms needed to develop a theory of plane geometry. Both sets will appear un-

deniably true in their given context, or at least quite reasonable and consistent with

experience. Moreover, even within a given subject matter, such as geometry, there

may be more than one context of interest, and hence more than one reasonable

choice for the axioms.

For example, the basic axioms assumed for plane geometry, or the geometry that

applies on a ‘‘flat’’ two-dimensional sheet, will logically be di¤erent from the axioms

one will need to develop spherical geometry, which is the geometry that applies on

the surface of a sphere, such as the earth. Which axioms are ‘‘true’’? The answer is

both, since both theories one can develop with these sets of axioms are useful in the

given contexts. That is, these sets of axioms can legitimately be claimed to be ‘‘true’’

because they imply theories that include many important and deep insights in the

given contexts.

That said, in mathematics one can and does also develop theories from sets of axi-

oms that may seem abstract and not have a readily observable context in the real

world. Yet these axioms can produce interesting and beautiful mathematical theories

that find real world relevance long after their initial development.

The general requirements on a set of axioms is that they are:

1. Adequate to develop an interesting and/or useful theory.

2. Consistent in that they cannot be used to prove both ‘‘statement P is true’’ and

‘‘the negation of statement P is true.’’

3. Minimal in that for aesthetic reasons, and because these are after all ‘‘assumed

truths,’’ it is desirable to have the simplest axioms, and the fewest number that ac-

complish the goal of producing an interesting and/or useful theory.

It is important to understand that the desirability, and indeed necessity, of framing

a mathematical theory in the context of an axiomatic theory is by no means a

modern invention. The earliest known exposition is in the Elements by Euclid of

Alexandria (ca. 325–265 BC), so Euclid is generally attributed with founding the ax-

iomatic method. The Elements introduced an axiomatic approach to two- and three-

dimensional geometry (called Euclidean geometry) as well as number theory. Like the

modern theories this treatise explicitly identifies axioms, which it classifies as ‘‘com-

mon notions’’ and ‘‘postulates,’’ and then proceeds to carefully deduce its theorems,
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called ‘‘propositions.’’ Even by modern standards the Elements is a masterful exposi-

tion of the axiomatic method.

If there is one significant di¤erence from modern treatments of geometry and other

theories, it is that the Elements defines all the basic terms, such as point and line, be-

fore stating the axioms and deducing the theorems. Mathematicians today recognize

and accept the futility of attempting to define all terms. Every such definition uses

words and references that require further expansion, and on and on. Modern devel-

opments simply identify and accept certain notions as undefined—the so-called prim-

itive concepts—as the needed assumptions about the properties of these terms are

listed within the axioms.

1.3 Inferences

Euclid’s logical development in the Elements depends on ‘‘rules of inference’’ but

does not formally include logic as a theory in and of itself. A formal development

of the theory of logic was not pursued for almost two millennia, as mathematicians,

following Euclid, felt confident that ‘‘logic’’ as they applied it was irrefutable. For

instance, if we are trying to prove that a certain solution to an equation satisfies

x < 100, and instead our calculation reveals that x < 50, without further thought

we would proclaim to be done. Logically we have:

‘‘x < 50 implies that x < 100’’ is a true statement.

‘‘x < 50’’ is a true statement by the given calculation.

‘‘x < 100’’ is a true statement, by ‘‘deduction.’’

Abstractly: if P ) Q and P, then Q. Here we use the well-known symbol ) for

‘‘implies,’’ and agree that in this notation, all statements displayed are ‘‘true.’’ That

is, if P ) Q and P are true statements, then Q is a true statement. This is an example

of the direct method of proof applied to the conditional statement, P ) Q, which is

also called an implication.

In the example above note that even as we were attempting to implement an objec-

tive logical argument on the validity of the conclusion that x < 100, we would likely

have been simultaneously considering, and perhaps even biased by, the intuition we

had about the given context of the problem. In logic, one attempts to strip away all

context, and thereby strip away all intuition and bias. The logical conclusion we

drew about x is true if and only if we are comfortable with the following logical

statement in every context, for any meanings we might ever ascribe to the statements

P and Q:
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If P ) Q and P, then Q.

In logic, it must be all or nothing. The rule of inference summarized above is known

as modus ponens, and it will be discussed in more detail below.

Another logical deduction we might make, and one a bit more subtle, is as follows:

‘‘x < 50 implies that x < 100’’ is a true statement.

‘‘x < 100’’ is not a true statement by demonstration.

‘‘x < 50’’ is not a true statement, by deduction.

Again, abstractly: if P ) Q and@Q, then@P. Here we use the symbol@Q to mean

‘‘the negation of Q is true,’’ which is ‘‘logic-speak’’ for ‘‘Q is false.’’ This is similar to

the ‘‘direct method of proof,’’ but applied to what will be called the contrapositive of

the conditional P ) Q, and consequently it can be considered an indirect method of

proof. Again, we can apply this logical deduction in the given context if and only if

we are comfortable with the following logical statement in every context:

If P ) Q and@Q, then@P.

The rule of inference summarized above is known as modus tollens, and will also be

discussed below.

Clearly, the logical structure of an argument can become much more complicated

and subtle than is implied by these very simple examples. The theory of mathemati-

cal logic creates a formal structure for addressing the validity of such arguments

within which general questions about axiomatic theories can be addressed. As it

turns out, there are a great many rules of inference that can be developed in mathe-

matical logic, but modus ponens plays the central role because other rules can be

deduced from it.

1.4 Paradoxes

One may wonder when and why mathematicians decided to become so formal with

the development of a mathematical theory of logic, collectively referred to as mathe-

matical logic, requiring an axiomatic structure and a formalization of rules of infer-

ence. An important motivation for increased formality has been the recognition that

even with early e¤orts to formalize, such as in Euclid’s Elements, mathematics has

not always been formal enough, and the result was the discovery of a host of para-

doxes throughout its history. A paradox is defined as a statement or collection of

statements which appear true but at the same time produce a contradiction or a
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conflict with one’s intuition. Some mathematical paradoxes in history where solved

by later developments of additional theory. That is, they were indicative of an incom-

plete or erroneous understanding of the theory, often as a consequence of erroneous

assumptions. Others were more fatal, in that they implied that the theory developed

was e¤ectively built as a house of cards and so required a firmer and more formal

theoretical foundation.

Of course, paradoxes also exist outside of mathematics. The simplest example is

the liar’s paradox:

This statement is false.

The statement is paradoxical because if it is true, then it must be false, and con-

versely, if false, it must be true. So the statement is both true and false, or neither

true nor false, and hence a paradox.

Returning to mathematics, sometimes an apparent paradox represents nothing

more than sleight of hand. Take, for instance, the ‘‘proof ’’ that 1 ¼ 0, developed

from the following series of steps:

a ¼ 1;

a2 ¼ 1;

a2 � a ¼ 0;

aða� 1Þ ¼ 0;

a ¼ 0;

1 ¼ 0:

The sleight of hand here is obvious to many. We divided by a� 1 before the fifth step,

but by the first, a� 1 ¼ 0. So the paradoxical conclusion is created by the illegitimate

division by 0. Put another way, this derivation can be used to confirm the illegiti-

macy of division by zero, since to allow this is to allow the conclusion that 1 ¼ 0.

Sometimes the sleight of hand is more subtle, and strikes at the heart of our lack of

understanding and need for more formality. Take, again, the following deduction

that 1 ¼ 0:

A ¼ 1� 1þ 1� 1þ 1� 1þ 1� � � �
¼ ð1� 1Þ þ ð1� 1Þ þ ð1� 1Þ þ � � �
¼ 0:
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A ¼ 1� ð1� 1Þ � ð1� 1Þ � ð1� 1Þ � � � �
¼ 1;

so once more, A ¼ 1 ¼ 0. The problem with this derivation relates to the legitimacy

of the grouping operations demonstrated; once grouped, there can be little doubt that

the sum of an infinite string of zeros must be zero. Because we know that such group-

ings are fine if the summation has only finitely many terms, the problem here must be

related to this example being an infinite sum. Chapter 6 on numerical series will de-

velop this topic in detail, but it will be seen that this infinite alternating sum cannot

be assigned a well-defined value, and that such grouping operations are mathemati-

cally legitimate only when such a sum is well-defined.

An example of an early and yet more complex paradox in mathematics is Zeno’s

paradox, arising from a mythical race between Achilles and a tortoise. Zeno of Elea

(ca. 490–430 BC) noted that if both are moving in the same direction, with Achilles

initially behind, Achilles can never pass the tortoise. He reasoned that at any mo-

ment that Achilles reaches a point on the road, the tortoise will have already arrived

at that point, and hence the tortoise will always remain ahead, no matter how fast

Achilles runs. This is a paradox for the obvious reason that we observe faster runners

passing slower runners all the time. But how can this argument be resolved?

Although this will be addressed formally in chapter 6, the resolution comes from

the demonstration that the infinite collection of observations that Zeno described be-

tween Achilles and the tortoise occur in a finite amount of time. Zeno’s conclusion of

paradox implicitly reflected the assumption that if in each of an infinite number of

observations the tortoise is ahead of Achilles, it must be the case that the tortoise is

ahead for all time. A formal resolution again requires the development of a theory in

which the sum of an infinite collection of numbers can be addressed, where in this

case each number represents the length of the time interval between observations.

Another paradox is referred to as the wheel of Aristotle. Aristotle of Stagira (384–

322 BC) imagined a wheel that has inner and outer concentric circles, as in the inner

and outer edges of a car tire. He then imagined a fixed line from the wheel’s hub

extending through these circles as the wheel rotates. Aristotle argued that at every

moment, there is a one-to-one correspondence between the points of intersection of

the line and the inner wheel, and the line and the outer wheel. Consequently the inner

and outer circles must have the same number of points and the same circumference, a

paradox. The resolution of this paradox lies in the fact that having a 1 :1 correspon-

dence between the points on these two circles does not ensure that they have equal

lengths, but to formalize this required the development of the theory of infinite sets

many hundreds of years later. At the time of Aristotle it was not understood how two
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sets could be put in 1 :1 correspondence and not be ‘‘equivalent’’ in their size or mea-

sure, as is apparently the case for two finite sets. Chapter 2 on number systems will

develop the topic of infinite sets further.

The final paradox is unlike the others in that it e¤ectively dealt a fatal blow to an

existing mathematical theory, and made it clear that the theory needed to be redevel-

oped more formally from the beginning. It is fair to say that the paradoxes above

didn’t identify any house of cards but only a situation that could not be appropri-

ately explained within the mathematical theory or understanding of that theory

developed to that date. The next paradox has many forms, but a favorite is called

the Barber’s paradox. As the story goes, in a town there is a barber that shaves

all the men that do not shave themselves, and only those men. The question is:

Does the barber shave himself ? Similar to the liar’s paradox, we conclude that the

barber shaves himself if and only if he does not shave himself. The problem here

strikes at the heart of set theory, where it had previously been assumed that a set

could be defined as any collection satisfying a given criterion, and once defined, one

could determine unambiguously whether or not a given element is a member of the

set. Here the set is defined as the collection of individuals satisfying the criterion that

they don’t shave themselves, and we can get no logical conclusion as to whether or

not the barber is a member of this set.

An equivalent form of this paradox, and the form in which it was discovered by

Bertrand Russell (1872–1970) in 1901 and known as Russell’s paradox, makes this

set theory connection explicit. Let X denote the set of all sets that are not elements

of themselves. The paradox is that one concludes X to be an element of itself if and

only if it is not an element of itself. This discovery was instrumental in identifying the

need for, and motivating the development of, a more careful axiomatic approach to

set theory. Of course, the need for the development of a more formal axiomatic

theory for all mathematics was equally compelled, since if mathematics went astray

by defining an object as simple and intuitive as a set, who could be confident that

other potential crises didn’t loom elsewhere?

1.5 Propositional Logic

1.5.1 Truth Tables

Much of mathematical logic can be better understood once the concept of truth table

is introduced and basic relationships developed. The starting point is to define a

statement in a mathematical theory as any declarative sentence that is either true or

false, but not both. For example, ‘‘today the sky is blue’’ and ‘‘5 < 7’’ are statements.

An expression such as ‘‘x < 7’’ is not a statement because we cannot assign T or F to
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it without knowing what value the variable x assumes. Such an expression will be

called a formula below. While a formula is not a statement because the variable x is

a free variable, it can be made into a statement by making x a bound variable. The

most common ways of accomplishing this is with the universal quantifier, E, and ex-

istential quantifier, b, defined as follows:

� Ex denotes: ‘‘for all x.’’

� bx denotes: ‘‘there exists an x such that.’’

For example, Ex ðx < 7Þ and bx ðx < 7Þ are now statements. The first, ‘‘for all x,

x is less than 7’’ is assigned an F ; the second, ‘‘there exists an x such that x is less

than 7’’ is a T .

A truth table is a mechanical device for deciphering the truth or falsity of a

complicated statement based on the truth or falsity of its various substatements.

Complicated statements are constructed using statement connectives in various com-

binations. Of course, from the discussion above it should be no surprise that the

initial collection of true statements for a given mathematical theory would be the

‘‘assumed facts’’ or axioms of the theory. Truth tables then provide a mechanism

for determining the truth or falsity of more complicated statements that can be for-

mulated from these axioms and, as we will see, also provide a framework within

which one can evaluate the logical integrity of a given inference one makes in a

proof.

If P and Q are statements, we define the following statement connectives and pres-

ent the associated truth tables. Negation is a unary or singulary connective, whereas

the others are binary connectives. In each case the truth table identifies all possible

combinations of T or F for the given statements, denoted P or Q, and then assigns

a T or F to the defined statements.

1. Negation: @P denotes the statement ‘‘not P.’’

P @P

T F

F T

2. Conjunction: P5Q denotes the statement ‘‘P and Q.’’

P Q P5Q

T T T

T F F

F T F

F F F
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3. Disjunction: P4Q denotes the statement ‘‘P or Q’’ but understood as ‘‘P

and/or Q.’’

P Q P4Q

T T T

T F T

F T T

F F F

4. Conditional: P ) Q denotes the statement ‘‘P implies Q.’’

P Q P ) Q

T T T

T F F

F T T

F F T

5. Biconditional: P , Q denotes the statement ‘‘P if and only if Q.’’

P Q P , Q

T T T

T F F

F T F

F F T

In other words, we have the following truth assignments, which are generally con-

sistent with common usage:

� @P has the opposite truth value as P.

� P5Q is true only when both P and Q are true.

� P4Q is true when at least one of P and Q are true.

� P ) Q is true unless P is T , and Q is F .

� P , Q is true when P and Q have the same truth values.

There may be two surprises here. First o¤, in mathematical logic the disjunctive ‘‘or’’

means ‘‘and/or.’’ In common language, ‘‘P or Q’’ usually means ‘‘P or Q but not

both.’’ If you are told, ‘‘your money or your life,’’ you do not expect an unfavorable

outcome after handing over your wallet. Obviously, if the thief is a mathematician,

there could be an unpleasant surprise.
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An important consequence of this interpretation, which would not be true for the

common language notion, is that there is a logical symmetry between conjunction

and disjunction when negation is applied:

@ðP5QÞ , ð@PÞ4ð@QÞ;
@ðP4QÞ , ð@PÞ5ð@QÞ:
That is, the statement ‘‘P5Q’’ is false if and only if ‘‘either P is false or Q is false,’’

and the statement ‘‘P4Q’’ is false if and only if ‘‘both P is false and Q is false.’’

The equivalence of these statements follows from a truth table analysis that utilizes

the basic properties above. For example, the truth table for the first statement is:

P Q @(P5Q) (@P)4(@Q) @(P5Q) , (@P)4(@Q)

T T F F T

T F T T T

F T T T T

F F T T T

This demonstrates that the two statements always have the same truth values.

The second surprise relates to the conditional truth values in the last two rows of

the table, when P is false. Then, whether Q is true or false, the conditional P ) Q is

declared true. For example, let

P : There is a mispricing in the market,

Q : I will attempt to arbitrage.

So P ) Q is a statement I might make:

‘‘If there is a mispricing in the market, then I will attempt to arbitrage.’’

The question becomes, How would you evaluate whether or not my statement is

true? The truth table declares this statement true when P and Q are both true, and

so would you. In other words, if there was a mispricing and I attempted to arbitrage,

you would judge my statement true. Similarly, if P was true and I did not make this

attempt, you would judge my statement false, consistent with the second line in the

truth table.

Now assume that there was not a mispricing in the market today, and yet I was

observed to be attempting an arbitrage. Would my statement above be judged false?

What if in the same market, I did not attempt to arbitrage, would my statement be

deemed false? The truth table for the conditional states that in both cases my original
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statement would be deemed true, although in the real world the likely conclusion

would be ‘‘not apparently false.’’ In other words, in these last two cases my actions

do not present evidence of the falsity of my statement, and hence the truth table

deems my statement ‘‘true.’’ Simply said, the truth table holds me truthful unless

proved untruthful, or innocent unless proved guilty.

A consequence of this truth table assignment for the conditional is that

ðP ) QÞ ,@ðP5@QÞ:
In other words, P ) Q has exactly the same truth values as does @ðP5@QÞ. The
associated truth table is as follows:

P Q P ) Q @(P5@Q) (P ) Q) ,@(P5@Q)

T T T T T

T F F F T

F T T T T

F F T T T

This truth table analysis and the one above were somewhat tedious, especially

when all the missing columns are added in detail, but note that they were entirely me-

chanical. No intuition was needed; we just apply in a methodical way the logic rules

as defined by the truth tables above.

These truth tables have another interpretation, and that is, for any statements P

and Q, and any truth values assigned, the statement

@ðP5QÞ , ð@PÞ4ð@QÞ;
is a tautology, which is to say that it is always true. The same can be said for the

biconditional statements illustrated above. Tautologies will be seen to form the foun-

dation for developing and evaluating rules of inference, and more specifically, the

logical integrity of a given proof.

There are many other tautologies possible, in fact infinitely many. One reason for

this is that there is redundancy in the list of connectives above:

@;5;4;);,:

In a formal treatment of mathematical logic, only@ and ) need be introduced, and

the others are then defined by the following statements, all of which are tautologies

in the framework above:

P4Q ,@P ) Q;
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P5Q ,@ðP )@QÞ;
ðP , QÞ , ðP ) QÞ5ðQ ) PÞ:
Note that the last statement can in turn be expressed in terms of only@ and ) using

the second tautology.

There is also redundancy between the universal and existential quantifiers. In

formal treatments one introduces the universal quantifier E and defines the existential

quantifier b by

bxPðxÞ ,@Exð@PðxÞÞ:
In other words, ‘‘there exists an x so that statement PðxÞ is true’’ is the same as ‘‘it is

false that for all x the statement PðxÞ is false.’’
Admittedly, such definitional connections require one to pause for understanding,

and one might wonder why all the terms are simply not defined straightaway instead

of in the complicated ways above. The reason was noted earlier in the discussion on

axioms. One goal of an axiomatic structure is to be minimal, or at least parsimoni-

ous. The cost of this goal is often apparent complexity, as one might spend consider-

able e¤ort proving a statement that virtually everyone would be more than happy

just accepting as another axiom. But the goal of mathematical logic is not the avoid-

ance of complexity by adding more axioms; it is the illumination of the theory and

the avoidance of potential paradoxes by minimizing the number of axioms needed.

The fewer the axioms, the more transparent the theory becomes, and the less likely

the axioms will be in violation of another important goal of an axiomatic structure.

And that is consistency.

1.5.2 Framework of a Proof

In later chapters various statements will be made under the heading proposition,

which is the term used in this book for the more formal sounding theorem. These

terms are equivalent in mathematics, and the choice reflects style rather than sub-

stance. In virtually all cases, a ‘‘proof ’’ of the statement will be provided. A lemma

is yet another name for the same thing, although it is generally accepted that a lemma

is considered a relatively minor result, whereas a proposition or theorem is a major

result. Some authors distinguish between proposition and theorem on the same basis,

with theorem used for the most important results.

This terminology is by no means universally accepted. For example, students of fi-

nance will undoubtedly encounter Ito’s lemma, and soon discover that in the theory

underlying the pricing of financial derivatives like options, this lemma is perhaps the

most important theoretical result in quantitative finance.
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Now the typical structure for the statement of a proposition is

If P, then Q.

The statement P is the hypothesis of the proposition, and in some cases it will be a

complex statement with many substatements and connectives, while the statement Q

is the conclusion. The goal of this and the next section is to identify logical frame-

works for such proofs.

First o¤, a proof of the statement ‘‘If P, then Q’’ is not equivalent to a proof of

the statement ‘P ) Q’ despite their apparent equivalence in informal language. Spe-

cifically,

‘‘If P, then Q’’ means ‘‘if statement P is true, then statement Q is true,’’

whereas

‘P ) Q’ means ‘‘the statement P implies Q is true.’’

Of course, one is hardly interested in proving statements such as ‘P ) Q’ unless Q

can be asserted to be a true statement. That is the true goal of a proposition, to

achieve the conclusion that Q is true. However, the statement P ) Q was seen to be

true in three of the four cases displayed in the truth table above, and in only one of

these three cases is Q seen to be true. Namely the truth of ‘P ) Q’ assures the truth

of Q only when P is true. Consequently, if we want to prove the typical propositional

structure above, which is to say that we can infer the truth of statement Q from the

truth of statement P, we can prove the following:

If P and P ) Q, then Q.

If this statement is written in the notation of logic, it is in fact a tautology, and al-

ways true. That is, in the truth table of

P5ðP ) QÞ ) Q; ð1:1Þ
we have that for any assignment of the truth values to P and Q, this statement has

constant truth value of ‘‘true.’’

This statement is the central rule of inference in logic, and it is known as modus

ponens. It says that:

If statement P is true, and the statement P ) Q is demonstrated as true, then Q

must be true.

This is the formal basis of many mathematical proofs of ‘‘If P, then Q.’’ Of course,

the language of the proof usually focuses on the development of the truth of the im-
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plication: P ) Q, while the truth of the statement P, which is the hypothesis of the

theorem, is simply implied. Moreover, if P were false, the demonstration of the truth

of P ) Q would be for naught, since in this case Q could be true or false, as the truth

table above attests.

In the next section we investigate proof structures in more detail. The central idea

is every logical structure for a valid proof must be representable as a tautology, such

as the modus ponens structure in (1.1). As we have seen, it is straightforward and me-

chanical, though perhaps tedious, to verify that a given proof structure, however

complicated, is indeed a tautology. Here are a few other possible proof structures

that are tautologies intuitively, as well as relatively easy to demonstrate in a truth

table. Each is simply related to a single line on one of the basic truth tables given

for the connectives:

P5ðP5QÞ ) Q;

ðP4QÞ5@Q ) P;

ðP , QÞ5@Q )@P:

For example, on the truth table for P5Q, the only row where both P and P5Q

are true is the row where Q is also true. In any other row, one or both of P and P5Q

are false, and hence the conjunction P5ðP5QÞ is false, assuring that the conditional

P5ðP5QÞ ) Q is true. That is exactly how this statement becomes a tautology,

and this logic will be seen to hold in all such cases. Specifically, when the hypothesis

of the proposition is a conjunction, as is typically the case, we only really have to

evaluate the case where all substatements are true, and assure that the conclusion is

then true in this case. In all other cases the conjunction will be false and the condi-

tional automatically true.

1.5.3 Methods of Proof

With modus ponens in the background, the essence of virtually any mathematical

proof is a demonstration of the truth of the implication P ) Q. To this end, the first

choice one has is to prove the direct conditional statement P ) Q, or its contraposi-

tive@Q )@P. These statements are logically equivalent, which is to say that they

have the same truth values in all cases. In other words, the statement

ðP ) QÞ , ð@Q )@PÞ ð1:2Þ
is a tautology, in that for any assignment of the truth values to P and Q, this state-

ment has constant truth value of ‘‘true.’’
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If modus ponens is applied to this contrapositive, we arrive at

@Q5ð@Q )@PÞ )@P: ð1:3Þ
However, because of (1.2), this can also be written as

@Q5ðP ) QÞ )@P; ð1:4Þ
which is a rule of inference known as modus tollens and exemplified in section 1.2 on

axiomatic theory. It is not an independent rule of inference, of course, as it follows

from modus ponens. In words, (1.4) states that if P ) Q is true, and @Q is true,

meaning Q is false, then@P is also true, or P false.

In some proofs, the direct statement lends itself more easily to a proof, in

others, the contrapositive works more easily, while in others still, both are easy,

and in others still yet, both seem to fail miserably. The only general rule is, if the

method you are attempting is failing, try the other. Experience with success and

failure improves the odds of identifying the more expedient approach on the first

attempt.

For example, assume that we wish to prove P ) Q, where

P : a ¼ b;

Q : a2 ¼ b2:

The direct proof might proceed as

a ¼ b ) ½a2 ¼ ab and ab ¼ b2� ) a2 ¼ b2:

The contrapositive proof proceeds by first identifying the statement negations

@P : a0 b;

@Q : a2 0 b2;

and constructing the proof as

@Q ) a2 � b2 0 0

) ðaþ bÞða� bÞ0 0

) ½ðaþ bÞ0 0 and ða� bÞ0 0�
) a0 b:
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In the last statement we also can conclude that a0�b, but this is extra information

not needed for the given demonstration.

Once a choice is made between the direct statement and its contrapositive, there

are two common methods for proving the truth of the resulting implication. To sim-

plify notation, we denote the implication to be proved as A ) C, where A denotes

either P or@Q, and C denoted either Q or@P, respectively.

The Direct Proof

The first approach is what we often think of as the use of ‘‘deductive’’ reasoning,

whereby if we cannot prove A ) C in one step, we may take two or more steps.

For example, proving that for some statement B that A ) B and B ) C, it would

seem transparent that A ) C. One expects that such a partitioning of the demonstra-

tion ought to be valid, independent of how many intermediate implications are devel-

oped, and indeed this is the case. It is based on a result in logic that is called a

syllogism and forms the basis of what is known as a direct proof. Specifically, we

have that

ðA ) BÞ5ðB ) CÞ ) ðA ) CÞ ð1:5Þ
is a tautology. That is, for any assignment of the truth values to A, B, and C, this

statement has constant truth value of ‘‘true.’’

This direct method is very powerful in that it allows the most complicated implica-

tions to be justified through an arbitrary number of smaller, and more easily proved,

implications. In the proof above that P ) Q, this method was in fact used without

mention as follows:

A : a ¼ b;

B : a2 ¼ ab5ab ¼ b2;

C : a2 ¼ b2:

Proof by Contradiction

The second approach to proving an implication is considered an indirect proof, and is

also known as reductio ad absurdum, as well as proof by contradiction. In its simplest

terms, proof by contradiction proceeds as follows:

To prove P, assume@P. If R5@R is derived for any R, deduce P.

In other words,

If @P ) ðR5@RÞ; then P:
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If @P ) ðR5@RÞ is true, then since R5@R is always false, it must be the case

that@P is also false, and hence P is true. The logical structure of this is the tauto-

logy

½@P ) ðR5@RÞ� ) P: ð1:6Þ
Remark 1.1 It is often the case that in a given application, what is called a proof by

contradiction appears as

If @P ) R; and R is known to be false; then P: ð1:7Þ
For example, one might derive that@P ) R, where R is the statement 10 1. Implic-

itly, the truth of the statement@R, that 1 ¼ 1, does not need to be explicitly identified,

but is understood. Also note that the truth of a statement like 1 ¼ 1 does not need to

‘‘follow’’ in some sense from the statement @P. That (1.7) is a valid conclusion can

also be formalized by explicitly identifying the truth of@R in the tautology

½ð@P ) RÞ5@R� ) P;

which except for notation is equivalent to modus tollens in (1.4). This approach also

justifies the terminology of a reductio ad absurdum, namely from the assumed truth of

@P one deduces an absurd conclusion, R, such as 10 1.

The indirect method of proof may appear complex, but with some practice, it is

quite simple. The central point is that for any statement R, it is the case that R5@R

is always false. This is because its negation,@R4R, is always true and

@ðR5@RÞ ,@R4R ð1:8Þ
is a tautology. That is, for any statement R, either R is true or@R is true. This is

known as the law of the excluded middle.

Before formalizing this further, let’s apply this approach to the earlier simple ex-

ample, taking careful steps:

Step 1 State what we seek to prove: a ¼ b ) a2 ¼ b2.

Step 2 Develop the negation of this implication. Looking at the truth table for the

conditional, an implication A ) C is false only when A is true, and C is false. So the

negation of what we seek to prove is

a ¼ b and a2 0 b2:

Step 3 What can we conclude from this assumed statement? This amounts to ‘‘play-

ing’’ with some mathematics and seeing what we get:
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a2 0 b2 , a2 � b2 0 0

, ðaþ bÞða� bÞ0 0

, aþ b0 0 and a� b0 0;

whereas

a ¼ b , a� b ¼ 0:

Step 4 Identify the contradiction: we have concluded that both a� b ¼ 0 and

a� b0 0.

Step 5 Claim victory: a ¼ b ) a2 ¼ b2 is true.

Admittedly, this may look like an ominous process, but with a little practice the

logical sequence will become second nature. The payo¤ to practicing this method is

that this provides a powerful and frequently used alternative approach to proving

statements in mathematics as will be often seen in later chapters.

Summarizing, we can rewrite (1.6) in the way it is most commonly used in mathe-

matics, and that is when the statement P is in fact an implication A ) C. To do this,

we use the result from step 2 as to the logical negation of an implication. That is,

@ðA ) CÞ , A5@C:

It is also the case that the most common contradiction one arrives at in (1.6) is not a

general statement R, but as in the example above, it is a contradiction about A. We

express this result first in the common form:

If ðA5@CÞ )@A; then A ) C: ð1:9Þ
Tautology: ½ðA5@CÞ )@A� ) ðA ) CÞ:

In the more general case,

If ðA5@CÞ ) R5@R; then A ) C: ð1:10Þ
Tautology: ½ðA5@CÞ ) ðR5@RÞ� ) ðA ) CÞ:
Remark 1.2 As in remark 1.1 above, (1.10) can also be applied in the context of

ðA5@CÞ ) R, where R is known to be false. The conclusion of the truth of A ) C

again follows.

Proof by Induction

A proof by induction is an approach frequently used when the statement to be proved

encompasses a (countably) infinite number of statements (more on countably infinite
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sets in chapter 2 on number systems). A somewhat complicated example is the state-

ment in the introduction: For any two integers M and N, we have that M þN ¼
N þM. This is complicated because this statement involves two general quantities,

and each can assume an infinite number of values. In other words, this statement is

an economical way of expressing an infinite number of equalities (1þ 9 ¼ 9þ 1,

�4þ 37 ¼ 37þ ð�4Þ, etc.).
A simpler example involving only one such quantity is as follows:

If N is a positive integer; then 1þ 2þ � � � þN ¼ NðN þ 1Þ
2

: ð1:11Þ

This has the form of an equality, P ¼ Q, but neither P nor Q is a simple declarative

statement. Instead, both are indexed by the positive integers. That is, we seek to

prove

EN;PðNÞ ¼ QðNÞ; ð1:12Þ
where we define

PðNÞ ¼ 1þ 2þ � � � þN;

QðNÞ ¼ NðN þ 1Þ
2

:

Obviously, for any fixed value of N, the proof requires no general theory, and the

result can be demonstrated or contradicted by a hand or computer calculation. A

proof by induction provides an economical way to demonstrate the validity of

(1.12) for all N. The idea can be summarized as follows:

If Pð1Þ ¼ Qð1Þ;
and ½PðNÞ ¼ QðNÞ� ) ½PðN þ 1Þ ¼ QðN þ 1Þ�; ð1:13Þ
then EN;PðNÞ ¼ QðNÞ:

In other words, proof by induction has two steps:

Step 1 (Initialization Step) Show the statement to be true for the smallest value of

N needed, say N ¼ 1 (sometimes N ¼ 0).

Step 2 (Induction Step) Show that if the result is true for a given N, it must also be

true for N þ 1.

The logic is self-evident. From the initialization step, the induction step assures the

truth for N ¼ 2, which when applied again assures the truth of N ¼ 3, and so forth.
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Example 1.3 To show (1.11), we see that the result is apparently true for N ¼ 1.

Next, assuming the result is true for N, we get

1þ 2þ � � � þN þ ðN þ 1Þ ¼ NðN þ 1Þ
2

þN þ 1

¼ NðN þ 1Þ
2

þ 2ðN þ 1Þ
2

¼ ðN þ 1ÞðN þ 2Þ
2

;

which is the desired result.

*1.6 Mathematical Logic

Mathematical logic is one of the most abstract and symbolic disciplines in mathe-

matics. This is quite deliberate. As exemplified above, the goal of mathematical logic

is to define and develop the properties of deductive systems that are context free. We

cannot be certain that a given logical development is correct if our assessment of it is

encumbered by our intuition in a given application to a field of mathematics. So the

goal of mathematical logic is to strip away any hint of a context, eliminate all that is

familiar in a given theory, and study the logical structure of a general, and unspeci-

fied, mathematical theory.

To do this, mathematical logic must first erase all familiar notations that imply a

given context. Also its symbolic structure needs to be very general so that it allows

application to a wide variety of mathematical disciplines or contexts. As a result

mathematical logic is highly symbolic, highly stylized, leaving the logician with noth-

ing to guide her except the rules allowed by the structure. This way every deduction

can be verified mechanically, e¤ectively as an appropriately structured computer pro-

gram. This program then declares a symbolic statement to be ‘‘true’’ if and only if it

is able to construct a symbol sequence, using only the axioms or assumed facts and

rules of inference that results in the deductive construction of the statement. No con-

text is assumed, and no intuition is needed or desired.

The preceding section’s informal introduction to the mathematical logic of state-

ments, which is referred to as statement calculus or propositional logic, is a small sub-

set of the discipline of mathematical logic. The axiomatic structure of statement

calculus includes:
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1. Certain formal symbols made up of logical operators (@ and ), but excluding E
and b), punctuation marks (e.g., parentheses), and other symbols that are undefined,

but in terms of which other needed concepts such as variable, predicate, formula, op-

eration, statement, and theorem are defined.

2. Axioms that identify the basic formula structures that will be assumed true.

3. A rule of inference: modus ponens.

The resulting theory can then be shown to be complete because it is decidable. The

algorithm for determining if a given statement is true or not is the construction of the

associated truth table, any one of which requires only a finite number of steps to de-

velop. The key to this result is that a statement is a theorem in statement calculus,

meaning it can be deduced from the axioms with modus ponens if and only if the

statement is a tautology in the sense of the associated truth table.

For many areas of mathematics, however, statement calculus is insu‰cient in that

it excludes statements of the form

ExPðxÞ or bxPðxÞ
that are central to the statements in most areas of mathematics. The mathematical

theory developed to accommodate these notions is called first-order predicate calcu-

lus, or simply first-order logic.

Landmark results in first-order logic are Gödel’s incompleteness theorems, pub-

lished in 1931 by Kurt Gödel (1906–1978). Although far beyond the boundaries of

this book, the informal essence of Gödel’s first theorem is this: In any consistent

first-order theory powerful enough to develop the basic theory of numbers, one can

construct a true statement that is not provable in this system. In other words, in any

such theory one cannot hope to confirm or deny every statement that can be made

within the theory, and hence every such theory is ‘‘incomplete.’’

The informal essence of Gödel’s second theorem is this: In any consistent first-

order theory powerful enough to develop the basic theory of numbers, it is impossi-

ble to prove consistency from within the theory. In other words, for any such theory

the proof of consistency will of necessity have to be framed outside the theory.

1.7 Applications to Finance

The applications of mathematical logic discussed in this chapter to finance are

both specific and general. First o¤, there are many specific instances in finance

when one has to develop a proof of a given result. Typically the framework for this
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proof is not a formally stated theorem as one sees in a research paper. The proof is

more or less an application of, and sometimes the adaptation of, a given theory to a

situation not explicitly anticipated by the theory, or entirely outside the framework

anticipated.

Alternatively, one might be developing and testing the validity of a variety of hy-

pothetical implications that appear reasonable in the given context. In such specific

applications the investigation pursued often requires a very formal process of deriva-

tion, logical deduction, and proof, and the tools described in the sections above can

be helpful in that they provide a rigorous, or at least semi-rigorous, framework for

such investigations.

More specifically, a truth table can often be put to good use to investigate the va-

lidity of a subtle logical derivation involving a series of implications and, based on

the various identities demonstrated, to provide alternative approaches to the desired

result. For example, a proof by contradiction applied to the contrapositive of the

desired implication can be subtle in the language provided by the context of the

problem. Just as in mathematics, isolating the logical argument from the context pro-

vides a better framework for assessing the former without the necessary bias that the

latter might convey. In addition, when the investigation ultimately reduces to the

proof of a given implication, as often arises in an attempt to evaluate the truth of a

reasonable and perhaps even desired implication, the various methods of proof pro-

vide a framework for the attack.

There is also a general application of the topics in this chapter to finance, and

more broadly, any applied mathematical discipline, and that is as a cautionary tale.

All too often the power and rigor of mathematics is interpreted to imply a certain

robustness. That is, one assumes that the true results in mathematics are ‘‘so true’’

that they are robust enough to remain true even when one alters the hypotheses a

bit, or is careless in their application to a given situation. Actually nothing could be

further from the truth.

The most profound thought on this point I recall was made long ago by my thesis

advisor and mentor, Alberto P. Calderón (1920–1998), during a working visit made

to his o‰ce. What he said on this point, as perhaps altered by less than perfect recall,

was: ‘‘The most interesting and powerful theorems in mathematics are just barely

true.’’ In other words, the conclusions of the ‘‘best theorems’’ in mathematics are

both solid in their foundation and yet fragile; they represent a delicate relationship

between the assumed hypothesis and the proved conclusion. In the ‘‘best’’ theorems

the hypothesis is in a sense very close to the minimal assumption needed for the con-

clusion, or said another way, the conclusion is very close to the maximal result
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possible that follows from the given hypothesis. The ‘‘more true’’ a theorem is, in the

sense of excessive hypotheses or suboptimal conclusions, the less interesting and

important it is. Such theorems are often revisited in the literature in search of a

more refined and economical statement.

The implication of this cautionary tale is that it is insu‰cient to simply memorize

a general version of the many results in mathematics without also paying close atten-

tion to the assumptions made to prove these results. A slight alteration of the as-

sumptions, or an attempt to broaden the conclusions, can and will lead to periodic

disasters. But more than just the need to carefully utilize known results, it is impor-

tant to understand the proof of how the given hypotheses provide the given conclu-

sions since, in practice, the researcher is often attempting to alter one or the other,

and evaluate what part of the original conclusion may still be valid.

The snippets of mathematical history alluded to in this chapter, and the paradoxes,

support this perspective of the fragility of the best results, and the care needed to get

them right and in balance. As careful as mathematicians were in the development of

their subjects, pitfalls were periodically identified and ultimately had to be overcome.

And perhaps it is obvious, but a great many of these mathematicians were intellec-

tual giants, and leaders in their mathematical disciplines. The pitfalls were far less a

reflection of their abilities than a testament to the subtlety of their discipline.

As a simple example of this cautionary tale, it is important that in any mathe-

matical pursuit, any quantitative calculation, and any logical deduction, one must

keep in mind that the truth of statement Q as promised by modus ponens, de-

pends on both the truth of the hypothesis P and the truth of the implication P ) Q.

The truth of the latter relies on the careful application of many of the principles dis-

cussed above, and it is often the focus of the investigation. But modus ponens cau-

tions that equally important is to do what is often the more tedious part of the

derivation, and that is to check and recheck the validity of the assumptions, the

validity of P.

A simple example is the principle of arbitrage, which tends to fascinate new fi-

nance students. In an arbitrage, one is able to implement a market trade at no cost,

that is risk free over some period of time, and with positive likelihood of producing

a profit at the end of the period and no chance of loss. Invariably, students will

perform long, detailed, and very creative calculations that identify arbitrages in the

financial markets. In other words, they are very detailed and creative in their deriva-

tions of the truths of the statements P ) Q, where in their particular applications, P

is the statement ‘‘I go long and short various instruments at the market prices I see in

the press or online,’’ and Q is the statement ‘‘I get embarrassingly rich as the profits

come rolling in.’’
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Of course, the poorly trained students make mistakes in this proof of P ) Q, using

the wrong collection of instruments, or not identifying the risks that exist post trade.

But the better students produce perfect and sometimes subtle trade analyses. Invari-

ably the finance professor is left the job of bursting bubbles with the question: ‘‘How

sure are you that the securities are tradable at the prices assumed?’’ In other words,

how sure are you that P is true?

The answer to this question comes from a logical analysis of the following argu-

ment using syllogism and modus tollens:

If finance students’ arbitrages worked,

there would be numerous, embarrassingly rich finance students.

If finance students could trade at the assumed prices,

their arbitrages would work.

There are not numerous embarrassingly rich finance students.

Exercises

Practice Exercises

1. Create truth tables to evaluate if the following statements, A , B, are tauto-

logies:

(a) P4Q ,@P ) Q

(b) ðP4QÞ4ðP ) QÞ , P5Q

(c) ðP , QÞ , ðP ) QÞ5ðQ ) PÞ
(d) ½P ) ðQ4RÞ�5½Q ) ðP4RÞ� , R

2. It was noted that the truth of P ) Q does not necessarily imply the truth of Q.

Confirm this with a truth table by showing that ðP ) QÞ ) Q is not a tautology.

Create real world applications by defining statements P and Q illustrating a case

where ðP ) QÞ ) Q is true, and one where it is false.

3. The contrapositive provides an alternative way to demonstrate the truth of the im-

plication P ) Q. Confirm that ðP ) QÞ , ð@Q )@PÞ is a tautology. Give a real

world example.

4. Confirm that the structure of the proof by contradiction,

½ðA5@CÞ )@A� ) ðA ) CÞ;
is a tautology.
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5. Comedically, the logical deduction

½ðP ) QÞ5Q� ) P ð1:14Þ
is known as modus moronus. Show that this statement is not a tautology, and provide

a real world example of statements P and Q for which the hypothesis is true and con-

clusion false.

6. Show by mathematical induction that for any integer nb 0:

Xn
i¼0

2 i ¼ 2nþ1 � 1:

7. Develop a direct proof of the formula in exercise 6. (Hint: Define S ¼Pn
i¼0 2

i,

consider the formula for 2S, and then subtract.)

8. Develop a proof by contradiction in the form of (1.6) of the formula in exercise 6.

(Hint: The formula is apparently true for n ¼ 0; 1; 2, and other values of n. Let N be

the first integer for which it is false. From the truth for n ¼ N � 1, and falsity for

n ¼ N, conclude that 2N 0 2N and recall the remark after (1.6).)

9. It is often assumed that the initialization step in mathematical induction is un-

necessary, and that only the induction step need be confirmed. Show that the for-

mula

Xn
i¼0

2 i ¼ 2nþ1 þ c

satisfies the induction step for any c, but that only for c ¼ �1 does it satisfy the ini-

tialization step.

10. Show by mathematical induction that

Xn
j¼1

j2 ¼ nðnþ 1Þð2nþ 1Þ
6

:

11. A bank has made the promise that for some fixed i > 0, an investment with it

will grow over every one-year period as Fjþ1 ¼ Fjð1þ iÞ, where Fj denotes the fund

at time j in years. Prove by mathematical induction that if an investment of F0 is

made today, then for any nb 1,

Fn ¼ F0ð1þ iÞn:
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12. Develop a proof using modus tollens in the structure of (1.4) that if at some time

n years in the future, the bank communicates Fn 0F0ð1þ iÞn, then the bank at some

point must have broken its promise of one-year fund growth noted in exercise 11.

(Hint: Define P : Fjþ1 ¼ Fjð1þ iÞ for all j; Q : Fn ¼ F0ð1þ iÞn for all nb 1. What

can you conclude from ðP ) QÞ5@Q?)

Assignment Exercises

13. Create truth tables to evaluate if the following statements, A , B or A ) B, are

tautologies:

(a) P5Q ,@ðP )@QÞ
(b) ðP4QÞ5@Q ) P

(c) ðP ) QÞ5ðP5RÞ ) Q5R

(d) @P4ðQ5RÞ , ð@R4@QÞ5P

14. Modus ponens identifies the necessary additional fact to convert a proof of the

truth of the implication, P ) Q, into a proof of the conclusion, Q. Confirm that

P5ðP ) QÞ ) Q is a tautology. Demonstrate by real world examples as in exercise

2 that while ðP ) QÞ ) Q can be true or false, P5ðP ) QÞ ) Q is always true.

15. Show that modus ponens combined with the contrapositive yields@Q5ðP ) QÞ
)@P, and show directly that this statement is a tautology. Give a real world

example.

16. Identify and label (A, B, etc.) the statements in the argument at the end of this

chapter, convert the argument to a logical structure, and demonstrate what conclu-

sion can be derived using syllogism and modus tollens.

17. Show by mathematical induction that for i > 0 and integer nb 1,

Xn
j¼1

ð1þ iÞ�j ¼ 1� ð1þ iÞ�n

i
:

18. Develop a direct proof of the formula in exercise 17. (Hint: See exercise 7.)

19. Show by mathematical induction that

Xn
j¼1

j3 ¼
Xn
j¼1

j

" #2
:

20. A bank has made the promise that for some fixed i > 0, an investment with it

will grow over every one-year period as Fjþ1 ¼ Fjð1þ iÞ, where Fj denotes the fund
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at time j in years. Develop a proof by contradiction in the form of (1.9) that for any

nb 1,

Fn ¼ F0ð1þ iÞn:
(Hint: Define A : Fjþ1 ¼ Fjð1þ iÞ for all jb 0; C : Fn ¼ F0ð1þ iÞn for all nb 1. If

A5@C and N is the smallest n that fails in C, what can you conclude about FN ,

which provides a contradiction, and about the conclusion A ) C?)
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2 Number Systems and Functions

2.1 Numbers: Properties and Structures

2.1.1 Introduction

In this chapter some of the detailed proofs on number systems are omitted. The rea-

son is that to provide a rigorous framework for the fundamental properties of num-

ber systems summarized below would require the development of both subtle and

detailed mathematical tools for which we will have no explicit use in subsequent

chapters. The mathematics involved, however, gives beautiful examples of the ex-

traordinary power and elegance of mathematics, and provides an intuitive context

for many of the generalizations in later chapters.

This statement of the ‘‘power and elegance’’ of this theory might surprise a reader

who is tempted to think that the power of mathematics is only revealed in the devel-

opment of new and complex theory. However, the development of a rigorous frame-

work to prove statements about properties of numbers that we have been taught as

‘‘true’’ since pre-school can be even more complex. For example, how would one set

out to prove that for any integers n and m,

nþm ¼ mþ n?

Who but a mathematician would think that such an ‘‘obvious’’ statement would re-

quire proof, and who but a mathematician would commit to the e¤ort of developing

the necessary tools and mathematical framework to allow this and other such state-

ments an objective and critical analysis?

As discussed in chapter 1, such a framework must introduce certain undefined

terms, the formal symbols. It must also explicitly address what will be assumed within

the axioms about these terms and symbols and the system of numbers under study. It

will need to ensure that despite the strong belief system people have about properties

of numbers learned since childhood, all demonstrations of statements within theory

rely explicitly and exclusively on axioms, or on other results that follow from these

axioms. Such provable statements are then called the theorems or propositions of the

theory (terms used interchangeably), and the rigorous demonstrations of these state-

ments’ validity are called the proofs of the theory.

The modern axiomatic approach to natural numbers was introduced by Giuseppe

Peano (1858–1932) in 1889, when he developed what has come to be known as

Peano’s axioms, which simplified a 1888 axiomatic treatment by Richard Dedekind

(1831–1916).



2.1.2 Natural Numbers

Perhaps the simplest collection of numbers is that of natural numbers or counting

numbers, denoted N, and defined as

N ¼ f1; 2; 3; . . .g or f0; 1; 2; 3; . . .g:
To give a flavor for the axiomatic structure for N, we introduce Peano’s axioms in

the framework that provides the basic arithmetic structure. The formal symbols are

self-evident except for the symbol 0. Intuitively, for any natural number n, the symbol

n 0 denotes its successor, which in concrete terms can be thought of as nþ 1.

1. Formal Symbols: ¼, 0, þ, �, 0
2. Axioms:

� A1: EmEnðm 0 ¼ n 0 ) m ¼ nÞ
� A2: Emðm 0 0 0Þ
� A3: Emðmþ 0 ¼ mÞ
� A4: EmEnðmþ n 0 ¼ ðmþ nÞ0Þ
� A5: Emðm � 0 ¼ 0Þ
� A6: EmEnðm � n 0 ¼ m � nþmÞ
� A7: For any formula PðmÞ: ½Pð0Þ5EmðPðmÞ ) Pðm 0ÞÞ� ) EmPðmÞ

We note that the formal symbols include the familiar addition (þ), multiplication

(�), and equality (¼) symbols, as well as one numerical constant 0. There is also the

prime symbol ( 0 ), which, as can be inferred from the axioms, is meant to denote

‘‘successor.’’ In layman’s terms, m 0 stands for mþ 1, but in the more abstract axiom-

atic setting, m 0 simply denotes the successor of m.

Axiom 1 says that the ‘‘successor’’ is unique; two di¤erent elements of N cannot

have the same successor, while axiom 2 formally puts 0 at the front of the successor

chain. Axioms 3 and 4 form the foundation for how addition works while axioms 5

and 6 do the same for multiplication. Also axiom 6 reveals our layman understand-

ing that m 0 ¼ mþ 1. To deduce this formally, we need to define 1 ¼ 0 0, then prove

that m ¼ 1 �m, as well as prove that we can factor m � nþm ¼ m � ðnþ 1Þ. Finally,
axiom 7 is the ‘‘induction’’ axiom, which provides a framework to prove general for-

mulas about N. Namely, if one proves that a formula is true for 0, and that its truth

for m implies truth for m 0, then the formula is true for all m. This idea was intro-

duced in chapter 1 as ‘‘proof by induction.’’ We will not pursue this formal axiomatic

development further.
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Returning to the informal setting, we note that the natural numbers are useful pri-

marily for counting and ordering objects. There are an infinite number of elements of

the set N, of course, and to distinguish this notion of infinity, we say that the set N
is countable or denumerable. More generally, a collection X is said to denumerable if

there is a 1 :1 correspondence between X and N, denoted

X $ N;

meaning that there exists an enumeration of the elements of X ,

X ¼ fx1; x2; x3; . . .g;
that includes all of the elements of X exactly once. Alternatively, each element of X

can be paired with a unique element of N.

Note, however, that to prove that a set is countable, it is sometimes easier to

explicitly demonstrate a correspondence that contains multiple counts where all ele-

ments of X are counted at least once. Such a demonstration implies the desired re-

sult, of course, and oftentimes there will be no reason to refine the argument to get

an explicit correspondence ‘‘which includes all of the elements of X exactly once.’’

Proposition 2.1 If the collections Xi are countable for i ¼ 1; 2; . . . ; n, then X ¼
fx j x A Xi for some ig is also countable.

Proof The necessary correspondence X $ N is defined by associating the elements

of each Xi 1 fxi1; xi2; xi3; . . . ; xij ; . . .g with fi þ ð j � 1Þn j j ¼ 1; 2; . . .g. In other

words, the first elements of the fXig are counted sequentially, then the second ele-

ments, etc. n

Remark 2.2 In the next chapter we introduce sets and operations on sets such as

unions and intersections, but for those already familiar with these concepts, it is appar-

ent that X above is defined as the union of the Xi. It is the case that the proposition

above holds even if there are a countable number of Xi. A proof of this statement will

be seen below when it is demonstrated that the rational numbers are countable.

As a collection the natural numbers are closed under addition and multiplication,

meaning that these operations produce results that are again natural numbers,

n1; n2 A N ) n1 þ n2 A N and n1 � n2 A N;

but are not closed under subtraction or division. An important property of N under

multiplication (�), and one known to the ancient Greeks, is that of unique factoriza-

tion. We first set the stage.
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Definition 2.3 A number n A N is prime if n > 1 and

n ¼ n1 � n2 implies n1 ¼ 1 and n2 ¼ n; or conversely:

A number n > 1 is composite if it is not prime. That is, n ¼ n1 � n2 and neither factor nj ,

equals 1.

Note that n ¼ 1 is neither prime nor composite by this definition. That is a matter

of personal taste, and one can define it to be prime without much consequence, other

than needing to be a bit more careful in the definition of ‘‘unique factorization,’’

which will be discussed below.

Proposition 2.4 The collection of primes is infinite.

Proof Following Euclid of Alexandria (ca. 325–265 BC), who presented the proof

in Euclid’s Elements, we use the method of proof by contradiction. If the conclu-

sion were false and n1; n2; n3; . . . ; nN were the only primes, then define n ¼ n1 � n2 �
n3 � . . . � nN þ 1. So either n is prime, which would be a contradiction as it is clearly

bigger than any of the original primes, or it is composite, meaning that it is evenly

divisible by one of the original set of primes. But this too is impossible given the for-

mula for n, since 1 is not evenly divisible by any prime. n

We now return to the notion of unique factorization. By this we simply mean that

every natural number can be expressed as a product of prime numbers in only one

way.

Definition 2.5 The set N satisfies unique factorization if for every n, there exists a

collection of primes fpjgNj¼1 so that n ¼ Ppj, and if there exist collections of primes

fpjgNj¼1 and fqkgMk¼1 so that

n ¼ Ppj ¼ Pqk;

then N ¼ M, and when these primes are arranged in nondecreasing order, pj ¼ qj for

all j.

Remark 2.6

1. In the definition above, Ppj is shorthand for the product

Ppj ¼ p1p2p3 . . . pN ;

and analogously for Pqk. When necessary for clarity, this product will be expressed asQN
j¼1 pj.
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2. The notion here of a nondecreasing arrangement seems awkward at first. We tend to

think of increasing and decreasing as opposites, so we expect a nondecreasing arrange-

ment to be an increasing one. But this definition must allow for cases where the primes

are not all distinct, and hence the arrangement can not be truly ‘‘increasing.’’ In other

contexts, the notion of ‘‘nonincreasing’’ will have the same intent.

3. If the natural number 1 is defined above to be a prime number, the definition of

unique factorization would have to be a bit more complicated to allow for any number

of factors equaling 1.

Proposition 2.7 (Fundamental Theorem of Arithmetic) N satisfies unique factori-

zation.

Proof The complexity of this proof lies in the proof of a much simpler idea: if a

prime divides a composite number, then given any factorization of that number, this

prime must divide at least one of its factors. This is known as Euclid’s lemma (after

Euclid of Alexandria), which we discuss below. Once this lemma is demonstrated, the

proof then proceeds by induction. The proposition is clearly true for n ¼ 2, which is

prime. Assume next that it is true for all n < N, and that N has been factored:

N ¼ Ppj ¼ Pqj, where, for definitiveness, the primes have been arranged in nonde-

creasing order. Of course, we can assume that N is composite, since all primes satisfy

unique factorization by definition. Now by Euclid’s lemma, if p1 divides N ¼ Pqj, it

must divide one of the factors. Because the qj are prime, it must be the case that

p1 ¼ qi for some i. Similarly, because q1 must divide Ppj and the pj are prime, it

must be the case that q1 ¼ pk for some k. Consequently, by the assumed arrange-

ments of primes, we must have q1 ¼ p1, and this common factor can be eliminated

from the expressions by division. We now have two prime factorizations for

N=p1 ¼ N=q1, a number which is less that N. Hence by the induction step, unique

factorization applies, and the result follows. n

Remark 2.8

1. Euclid’s Lemma The modern idea behind Euclid’s lemma, in contrast to the origi-

nal proof, is that if p and a are natural numbers that have no common factors, one can

find natural numbers x and y so that

1 ¼Gðpx� ayÞ:
In other words, if p and a have no common factors, one can find multiples of these

numbers that di¤er by 1. This result is a special case of Bézout’s identity, named for

Étienne Bézout (1730–1783), and discussed below. Assuming this lemma, if p is a
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prime that divides n ¼ ab but does not divide a, we know that p and a have no common

factors, so the identity above holds. Multiplying through by b, we conclude that

b ¼Gðbpx� abyÞ;
and hence p divides b, since it clearly divides bpx, and also divides aby ¼ ny, since p

divides n by assumption.

2. Bézout’s Identity Bézout’s identity states that given any natural numbers a and b,

if d denotes the greatest common divisor, d ¼ gcdða; bÞ, then there are natural numbers

x and y so that

d ¼Gðax� byÞ:
In other words, one can find multiples of these numbers that di¤er by the greatest com-

mon division of these numbers. If a and b have no common factors, then d ¼ 1, and this

becomes Euclid’s lemma utilized above. The proof of this result comes from another

very neat construction of Euclid.

3. Euclid’s Algorithm Euclid’s algorithm provides an e‰cient process for finding d,

the greatest common divisor of a and b. To understand the basic idea, let’s assume

b > a, and write

b ¼ q1aþ r1;

where q1 is a natural number including 0, and r1 is a natural number satisfying 0a

r1 < a. Euclid’s critical observation is that any number that divides a and b must also

divide r1, since r1 ¼ b� q1a. Consequently the number gcdða; bÞ must also divide r1,

and hence

gcdða; bÞ ¼ gcdðr1; aÞ:
We now repeat the process with a and r1:

a ¼ q2r1 þ r2;

r1 ¼ q3r2 þ r3;

r2 ¼ q4r3 þ r4; . . . ;

where in each step, 0a rjþ1 < rj. We continue in this way until a remainder of 0 is

obtained, which must happen because the remainders must decrease. The second to

last remainder must then be d because of the critical observation above. In other words,

we eventually get to the last two steps:
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rn�1 ¼ qnþ1rn þ rnþ1;

rn ¼ qnþ2rnþ1 þ 0:

Since gcdða; bÞ ¼ gcdðrnþ1; 0Þ ¼ rnþ1, it must be the case that rnþ1 ¼ d. We then ob-

tain x and y by reversing the steps above. For example, assume that the process stops

with a remainder of 0 on the third step so that r3 ¼ 0 and r2 ¼ d. Then

d ¼ a� q2r1

¼ a� q2ðb� q1aÞ
¼ ð1þ q2q1Þa� q2b:

Example 2.9 To show that gcdð68013; 6172Þ ¼ 1:

68013 ¼ 11 � 6172þ 121;

6172 ¼ 51 � 121þ 1;

121 ¼ 121 � 1þ 0:

Reversing the steps obtains

1 ¼ 6172� 51 � 121
¼ 6172� 51 � ð68013 � 11 � 6172Þ
¼ �51 � 68013þ 562 � 6172:

2.1.3 Integers

The set of integers, denoted Z, and defined as

Z ¼ f. . . ;�3;�2;�1; 0; 1; 2; 3; . . .g;
is closed under both addition and subtraction, as well as multiplication. In fact,

under the operation of þ, the integers have the structure of a commutative group,

ðZ;þÞ, which we state without proof.

Definition 2.10 A set X is a group under the operation ?, denoted ðX ; ?Þ if:
1. X is closed under ?: that is, x; y A X ) x ? y A X.

2. X has a unit: there is an element e A X so that e ? x ¼ x ? e ¼ x.

3. X contains inverses: for any x0 e, there is x�1 A X so that x�1 ? x ¼ x ? x�1 ¼ e.

4. ? is associative: for any x; y; z A X: ððx ? yÞ ? zÞ ¼ ðx ? ðy ? zÞÞ.
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Definition 2.11 ðX ; ?Þ is an abelian or commutative group if X is a group and for all

x; y A X,

x ? y ¼ y ? x:

Of course, in ðZ;þÞ, the unit e ¼ 0, and the inverses x�1 ¼ �x.

Also the set Z is denumerable, since it is the union of three denumerable sets, the

natural numbers and their negatives, and f0g. It is also the case that unique factori-

zation holds in Z once one accounts for the possibility of products ofG1, since we

clearly must allow for examples such as 2 � 3 ¼ ð�2Þ � ð�3Þ. In other words, the Fun-

damental Theorem of Arithmetic holds for both positive and negative natural num-

bers, but for prime factorization the conclusion must allow for the possibility that

pj ¼Gqj for all j:

Finally, one sometimes sees the notation Zþ and Z� to denote the positive and

negative integers, respectively, although there is not a reliable convention as to

whether Zþ contains 0, which is similar to the case for N.

2.1.4 Rational Numbers

The group Z is not closed under division, but it can be enlarged to the collection of

rational numbers, denoted Q, and defined as

Q ¼ n

m





 n;m A Z;m0 0

( )
:

The collection Q is a group under both addition (þ) and multiplication (�). In ðQ;þÞ,
as in ðZ;þÞ, the unit is e ¼ 0 and inverses are x�1 ¼ �x, whereas in ðQ; �Þ, e ¼ 1 and

x�1 ¼ 1=x. In fact ðQ;þ; �Þ has the structure of a field.

Definition 2.12 A set X under the operations þ and � is a field, denoted ðX ;þ; �Þ, if:
1. ðX ;þÞ is a commutative group.

2. ðX ; �Þ is a commutative group.

3. ð�Þ is distributive over ðþÞ: for any x; y; z A X: x � ðyþ zÞ ¼ x � yþ x � z.
The set Q is denumerable as can be demonstrated by a famous construction of

Georg Cantor (1845–1918). Express all positive rational numbers in a grid such as

1
1

1
2

1
3

1
4 � � �

2
1

2
2

2
3

2
4 � � �
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3
1

3
2

3
3

3
4 � � �

4
1

4
2

4
3

4
4 � � �

..

. ..
. ..

. ..
. ..

.

It is clear that this is a listing of all positive rational numbers, with all rationals

counted infinitely many times. However, even with this redundancy, these numbers

can be enumerated by starting in the upper left-hand cell, and weaving through the

table in diagonals:

1

1
7! 1

2
7! 2

1
7! 3

1
7! 2

2
7! 1

3
7! 1

4
7! � � � :

All rationals are then countable as the union of countable sets: positive and negative

rationals and f0g.
Remark 2.13 As noted above, this demonstration applies to the more general state-

ment that the union of a countable number of countable collections is countable, since

these collections can be displayed as rows in the table above and the enumeration

defined analogously.

While closed under the arithmetic operations of þ, �, �,o, the set of rationals Q is

not closed under exponentiation of positive numbers. In other words,

x > 0 and y A Q 6) xy A Q;

where ‘‘ 6)’’ is shorthand here for ‘‘does not necessarily imply.’’ The simplest demon-

stration that there exist numbers that are not rational comes from Greece around 500

BC, some 200 years before Euclid’s time. The original result was that
ffiffiffi
2

p
was not

rational. The general result is that only perfect squares of natural numbers have ra-

tional square roots, only perfect cubes have rational cube roots, and so forth. We

demonstrate the square root result on natural numbers next.

Proposition 2.14 If n A N and n0m2 for any m A N, then
ffiffiffi
n

p
B Q.

Proof Again, using proof by contradiction, assume that
ffiffiffi
n

p
is rational, with

ffiffiffi
n

p ¼
a
b
A Q. Then nb2 ¼ a2. Now if a ¼ Ppj and b ¼ Pqk are the respective unique fac-

torizations, we get

nPq2k ¼ Pp2j :
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However, since nb2 also has unique factorization, it must be the case that the collec-

tion of primes on the left and right side of this equality are identical, which means

that after cancellation, there is a remaining set of primes so that n ¼ Pr2j . That is,

n ¼ m2 for m ¼ Prj , contradicting the assumption that n0m2 for any m. n

This proposition can be generalized substantially, with exactly the same proof.

Specifically, if r A N and r > 1, the only time the rth root of a rational number is ra-

tional is in the most obvious case, when both the numerator and denominator are rth

powers of natural numbers.

Proposition 2.15 Let n 0
m 0 A Q, expressed with no common divisors and n 0

m 0 0 0. If
n 0
m 0 0 nr

mr for some n;m A N, and r A N, r > 1, then
ffiffiffiffi
n 0
m 0

r

q
B Q.

Proof Follow the steps of the special case above. n

The set Q has four interesting, and perhaps not surprising, properties that provide

insight to the ultimate expansion below to the real numbers. As will be explained in

chapter 4, these properties can be summarized to say that within the collection of real

numbers, the rational numbers are a dense subset, as is the collection of numbers that

are not rational, called the irrational numbers. However, these number sets will later

be seen to di¤er in a dramatic and surprising way.

Proposition 2.16

1. For any q1; q2 A Q with q1 < q2, there is a q A Q with q1 < q < q2.

2. For any q1; q2 A Q with q1 < q2, there is an r B Q with q1 < r < q2.

3. For any r1; r2 B Q with r1 < r2, there is a q A Q with r1 < q < r2.

4. For any r1; r2 B Q with r1 < r2, there is an r B Q with r1 < r < r2.

Proof The first statement is easy to justify by construction, by letting q ¼
0:5ðq1 þ q2Þ, or more generally, q ¼ pðq1 þ q2Þ for any rational number p, 0 < p <

1. For the second statement we demonstrate with a proof by contradiction. Assume

that all such r are in fact rational numbers. Then it is also the case that for any

p A Q, we have that all r with q1 þ p < r < q2 þ p are also rational, since rationals

are closed under addition. Choosing p ¼ �q1, we arrive at a contradiction as fol-

lows: The proposition above shows that if n0m2 for any m, then
ffiffiffi
n

p
B Q, and hence

1ffiffi
n

p B Q. However, we clearly have values of 1ffiffi
n

p satisfying 0 < 1ffiffi
n

p < q2 � q1. The third

statement has the same demonstration as the second. Specifically, if we assume that

all such q are irrational, then we can translate this collection by a rational number p,

to conclude that all numbers q with r1 þ p < q < r2 þ p are not rational (it is an easy
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exercise that the sum of a rational number and an irrational number is again irratio-

nal). But then we can easily move this range to capture an integer, or any rational

number of our choosing. Finally, the fourth statement follows from the observation

that the construction for the third statement can produce two rationals between r1
and r2, to which we can apply the second statement. n

Consequently the collection of rational numbers can be informally thought of as

being ‘‘infinitely close,’’ with no ‘‘big holes,’’ but at the same time, containing infi-

nitely many ‘‘small holes’’ that are also infinitely close. The same is true for the col-

lection of irrational numbers. One might guess that this demonstrates that there are

an equal number of rational and irrational numbers. In other words, we might guess

that the above proposition implies that both sets are denumerable. We will see

shortly that this guess would be wrong.

2.1.5 Real Numbers

The rational numbers can be expanded to the real numbers, denoted R, which

includes the rationals and irrationals, although the actual construction is subtle.

This construction of R was introduced by Richard Dedekind (1831–1916) in a 1872

paper, using a method that has come to be known as Dedekind cuts. Although we

will discuss ‘‘sets’’ in chapter 4, we note that j is the universal symbol for the ‘‘empty

set,’’ or the set with no elements.

The idea in this construction is to capitalize on the one common property that

rationals and irrationals share, which follows from the proposition above as gener-

alized in exercises 2 and 17. That is, for any r A Q or r B Q there is a sequence of ra-

tional numbers, q1; q2; q3; . . . so that qn gets ‘‘arbitrarily close’’ to r as n increases

without bound, denoted n ! y.

Definition 2.17 A Dedekind cut is a subset aHQ with the following properties:

1. a0j, and a0Q.

2. If q A a and p A Q with p < q, then p A a.

3. There is no p A a so that a ¼ fq A Q j qa pg.
That is, a cut can neither be the empty set nor the set of all rationals, it must con-

tain all the rationals smaller than any member rational, and it contains no largest ra-

tional. Dedekind’s idea was to demonstrate that the collection of cuts form a field,

denoted R, that contains the field Q. Of course, he also needed to create an identifi-

cation between cuts and real numbers. That identification was

r A R $ ar 1 fq A Q j q < rg:
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Put another way, each real number r is identified with the least upper bound (or

l.u.b.) of the cut ar, defined as the minimum of all upper bounds:

r ¼ l:u:b:fp j p A arg
¼ minfq A Q j q > p for all p A arg:

Intuitively, this minimum is an element of Q if and only if r A Q. For example,

1

2
¼ l:u:b:fp j p A a1=2g

¼ minfq A Q j q > p for all p A a1=2g;ffiffiffi
2

p
¼ l:u:b:fp j p A a ffiffi2p g

¼ minfq A Q j q > p for all p A a ffiffi2p g:

In 1872 Augustin Louis Cauchy (1789–1857) introduced an alternative construc-

tion of R, using the notion of Cauchy sequences studied in chapter 5, and showed

that the field of real numbers could be identified with a field of Cauchy sequences

of rational numbers. In e¤ect, each real number is identified with the limit of such a

sequence. To make this work, Cantor needed to ‘‘identify as one sequence’’ all se-

quences with the same limit, but then for the purpose of the identification with ele-

ments of R, any sequence from each association class worked equally well.

Like Q, the set R is also a field that is closed under þ, �, �,o, and while closed

under exponentiation if applied to positive reals, it is not closed under exponentiation

if applied to negative reals. Also unlike Q, the set R is not countable.

Proposition 2.18 There exists no enumeration R ¼ frngyn¼1.

Proof The original proof was discovered by Georg Cantor (1845–1918), published

in 1874, and proceeds by contradiction as follows. It has come to be known as Can-

tor’s diagonalization argument. Assume that such an enumeration was possible, and

that the reals between 0 and 1 could be put into a table:

0:a11a12a13a14a15a16 � � �
0:a21a22a23a24a25a26 � � �
0:a31a32a33a34a35a36 � � �
0:a41a42a43a44a45a46 � � �
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0:a51a52a53a54a55a56 � � �
0:a61a62a63a64a65a66 � � �
..
.

Here each digit, aij , is an integer between 0 and 9. Cantor’s idea was that the enumer-

ation above could not be complete. His proof was that one could easily construct

many real numbers that could not be on this list. Simply define a real number a by

a ¼ ~aa11~aa22~aa33~aa44~aa55 . . . ;

where each digit of the constructed number ~aajj , denotes any number other than the ajj
found on the listing above. For each j, we then have nine choices for ~aajj , and infi-

nitely many combinations of choices, and none of these constructed real numbers

will be on the list. Consequently the listing above cannot be complete and hence R
is not countable. n

On first introduction to this notion of a nondenumerably infinite, or an uncountably

infinite collection, it is natural to be at least a bit skeptical. Perhaps it would be easier

to use a number base other than decimal, with fewer digits, so that we could be more

explicit about this listing. Naturally, since any number can be written in any base,

the question of countability or uncountability is also independent of this base.

Standard decimal expansions, also called base-10 expansions, represent a real num-

ber x A ½0; 1� as
x ¼ 0:x1x2x3x4x5x6 . . .

¼ x1

10
þ x2

102
þ x3

103
þ x4

104
þ � � � ;

where each xj A f0; 1; 2; . . . ; 9g. Similarly a base-b expansion of x is defined, for b a

positive integer, bb 2:

xðbÞ ¼ 0:a1a2a3a4a5a6 . . .

1
a1

b
þ a2

b2
þ a3

b3
þ a4

b4
þ a5

b5
þ � � � ; ð2:1Þ

where each aj A f0; 1; 2; . . . ; b� 1g. Each aj is defined iteratively by the so-called

greedy algorithm as the largest multiple of 1
b j that is less than or equal to what is left

after the prior steps. That is, the largest multiple less than or equal to x�P j�1
k¼1

ak
bk .
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Other real numbers x A R are accommodated by applying this algorithm using both

positive and negative powers of b in the expression, as is done for base-10.

In particular, with b ¼ 2, the base-2 or binary system is produced, and all aj A
f0; 1g, so one easily imagines a well-defined and countable listing of the real numbers

x A ½0; 1� by an explicit ordering as follows:

0:000000000000 . . .

0:100000000000 . . .

0:010000000000 . . .

0:110000000000 . . .

0:001000000000 . . .

0:011000000000 . . .

0:101000000000 . . .

0:111000000000 . . . ;

and so forth. It seems apparent that such a careful listing represents all possible reals,

and hence the reals are countable.

Unfortunately, the logic here comes up short. Since every number on this list has

all 0s from a fixed binary position forward, every such number is a finite summation

of the form
Pn

k¼1
ak
2k , with ak A f0; 1g, and hence is rational. So we have simply

developed a demonstration that this proper subset of the rationals is countable. It is

a proper subset, since it does not contain 1
3 , for instance, which has no such finite ex-

pansion in base-2. Once infinite binary expansions are added to the listing, we can

again apply the Cantor diagonalization argument as before and find infinitely many

missing real numbers.

An interesting observation is that despite the analysis in the section on rational

numbers that seemed to imply that rational and irrational numbers are e¤ectively

interspersed, the rational numbers are countable, and yet the irrational numbers are

uncountable; otherwise, the real numbers would be countable as well. This observa-

tion will have interesting and significant implications in later chapters.

*2.1.6 Complex Numbers

The real numbers form a field, ðR;þ; �Þ, that is closed under the algebraic operations

of þ, �, �,o, as well as exponentiation, xy, if x > 0, but it is not closed under expo-
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nentiation of negative reals. The simplest case is
ffiffiffiffiffiffiffi�1

p
, since the square of every real

number is nonnegative. More generally, not all polynomials with real coe‰cients

have solutions in R, again the simplest example being

x2 þ 1 ¼ 0:

Remarkably, one only needs to augment R by the addition of the so-called imagi-

nary unit, denoted ı ¼ ffiffiffiffiffiffiffi�1
p

, in an appropriate way, and all polynomials are then

solvable.

Definition 2.19 The collection of complex numbers, denoted C, is defined by

C ¼ fz j z ¼ aþ bı; a; b A R; ı ¼ ffiffiffiffiffiffiffi�1
p g:

The term a is called the real part of z, denoted ReðzÞ, and the term b is called the imag-

inary part of z, and denoted ImðzÞ. Also the complex conjugate of z, denoted z, is

defined as

z ¼ a� bı; if z ¼ aþ bı:

The absolute value of z, denoted jzj, is defined as

jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
¼

ffiffiffiffiffi
zz

p
; ð2:2Þ

where the positive square root is taken by convention.

It is common to identify the complex ‘‘number line’’ with the two-dimensional real

space, also known as the Cartesian plane, denoted R2 (see chapter 3):

z $ ða; bÞ:
This way ReðzÞ is plotted along the traditional x-axis, and ImðzÞ is plotted along the

y-axis. The absolute value of z can then be seen to be a natural generalization of the

absolute value of x, jxj, for real x:

jxj ¼
ffiffiffiffiffi
x2

p
¼ x; xb 0,

�x; x < 0,

�
ð2:3Þ

again with the positive square root taken by convention.

This absolute value can be interpreted as the distance from x to the origin, 0. Like-

wise jzj is the distance from the point z ¼ ða; bÞ to the origin, ð0; 0Þ, by the Pythago-

rean theorem applied to a right triangle with side lengths jaj and jbj. For example, in

figure 2.1 is displayed the case where a > 0 and b > 0.
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Another interesting connection between C and the Cartesian plane comes by way

of the so-called polar coordinate representation of a point ða; bÞ A R2. The identifica-

tion is ða; bÞ $ ðr; tÞ, where r denotes the distance to the origin, and t is the ‘‘radian’’

measure of the angle a that the ‘‘ray’’ from ð0; 0Þ to ða; bÞ makes with the positive x-

axis, measured counterclockwise. By convention, the measurement of a is limited to

one revolution so that 0� a a < 360�, or in the usual radian measure, 0a t < 2p. The

connection between an angle of a� and the associated ‘‘radian measure of t’’ is that

the radian measure of an angle equals the arc length of the sector on a circle of radius

1, with internal angle a�. Such a circle is commonly called a unit circle. Numerically,

canceling the degrees units obtains t ¼ 2pa
360 .

The polar coordinate representation is then defined as

ða; bÞ ¼ ðr cos t; r sin tÞ; ð2:4aÞ

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
; ð2:4bÞ

t ¼
arctan b

a
; 0a y < 2p; a0 0,

p
2 ; a ¼ 0; b > 0,
3p
2 ; a ¼ 0; b < 0.

8><>: ð2:4cÞ

In figure 2.2 is shown a graphical depiction of these relationships when a > 0 and

b > 0. For a ¼ b ¼ 0, t can be arbitrarily defined. In other words, ð0; 0Þ $ ð0; tÞ for
all t.

Figure 2.1
Pythagorean theorem: c ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p
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By this idea it is natural to also associate the complex number z ¼ aþ bı ¼
jzjðcos tþ i sin tÞ. However, an even more remarkable result is known as Euler’s for-

mula, after Leonhard Euler (1707–1783). He derived this formula based on methods

of calculus presented in chapter 9. Specifically, for z ¼ aþ bı,

ez ¼ eaðcos bþ i sin bÞ; ð2:5Þ
which for z ¼ bı implies that jebij ¼ 1 for all b. This is because by (2.2), jebij2 ¼
cos2 bþ sin2 b ¼ 1.

In addition, when applied to z ¼ pi, this formula provides the most remarkable,

and perhaps most famous, identity in all of mathematics. It is called Euler’s identity,

and follows from (2.5), since cos p ¼ �1, and sin p ¼ 0:

epi ¼ �1: ð2:6Þ
More generally, Euler’s formula has other interesting trigonometric applications (see

exercise 5), and it is a ‘‘lifesaver’’ for those of us who struggled with the memoriza-

tion of the many complicated formulas known as ‘‘identities’’ in trigonometry.

We next show that for either (2.2) or (2.3) the so-called triangle inequality is

satisfied.

Proposition 2.20 Under either (2.2) or (2.3), we have that

jxþ yja jxj þ jyj: ð2:7Þ

Figure 2.2
a ¼ r cos t, b ¼ r sin t
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Proof We will demonstrate (2.7) by using the definition of absolute value in (2.2),

which is equivalent to (2.3) for real numbers x and y. We then have

jxþ yj2 ¼ ðxþ yÞðxþ yÞ
¼ xxþ xyþ yxþ yy

¼ jxj2 þ 2 ReðxyÞ þ jyj2

a jxj2 þ 2jxj jyj þ jyj2

¼ ðjxj þ jyjÞ2:
Note that in the third step it was used that yx ¼ xy, and that zþ z ¼ 2 ReðzÞ, where-
as for the fourth, ReðxyÞa jxyj ¼

ffiffiffiffiffiffiffiffiffiffiffi
xyxy

p
¼ ffiffiffiffiffiffiffiffiffiffiffi

xxyy
p ¼ jxj jyj. n

As it turns out, ðC;þ; �Þ is a field under the usual laws of arithmetic because

ı2 ¼ �1. For example, multiplication proceeds as

ðaþ bıÞ � ðcþ dıÞ ¼ ðac� bdÞ þ ðad þ bcÞı: ð2:8Þ
The one item perhaps not immediately obvious is the multiplicative inverse for z A C,

where z0 0. It is easy to check that with

z�1 ¼ z

jzj2 ¼
a� b

a2 þ b2
;

ı

we have zz�1 ¼ 1.

With these definitions, we can identify the real number field R as a ‘‘subfield’’ of

the field C:

R $ fða; bÞ j b ¼ 0g;
completing the list of inclusions

NHZHQHRHC:

Remarkably, as alluded to above, C is the end of the number field ‘‘chain’’ for the

vast majority of mathematics, at least in part due to a result first proved (in his doc-

toral thesis!) by Johann Carl Friedrich Gauss (1777–1855) in 1799 after more than

200 years of study by other great mathematicians. We state this result without proof,

and mention that there are numerous demonstrations of this result using many di¤er-

ent mathematical disciplines.

48 Chapter 2 Number Systems and Functions



Proposition 2.21 (Fundamental Theorem of Algebra) Let PðzÞ be an nth-degree poly-

nomial with complex coe‰cients

PðzÞ ¼
Xn
j¼0

cjz
j:

Then the equation PðzÞ ¼ 0 has exactly n complex roots, fwjgHC, counting multiplic-

ities, and PðzÞ can be factored:

PðzÞ ¼ cn
Yn
j¼0

ðz� wjÞ:

Remark 2.22

1. The expression, ‘‘counting multiplicities,’’ means that the collection of roots is not

necessarily distinct, and that some may appear more than once. An example is PðzÞ1
z2 � 2zþ 1 ¼ ðz� 1Þ2, which has two roots, 1 and 1, counting multiplicities.

2. This important theorem is often expressed with the assumption that PðzÞ has a lead-

ing coe‰cient, cn ¼ 1, which then eliminates the coe‰cient in the factorization above.

3. If PðzÞ has real coe‰cients, then the complex roots, namely those with w ¼ aþ bi

and b0 0, come in conjugate pairs. That is,

PðwÞ ¼ 0 i¤ PðwÞ ¼ 0;

where the abbreviation i¤ is mathematical shorthand for ‘‘if and only if.’’ It denotes the

fact that the two statements are both true, or both false, and in this respect is the com-

mon language version of the logical symbol , of chapter 1. The complete logical state-

ment is that

PðwÞ ¼ 0 if PðwÞ ¼ 0 and only if PðwÞ ¼ 0:

This result on conjugate pairs is easily demonstrated by showing that for real coe‰-

cients, PðwÞ ¼ PðwÞ because conjugation satisfies the following properties:

� If w ¼ w1 þ w2, then w ¼ w1 þ w2,

� If w ¼ w1 � w2, then w ¼ w1 � w2.

2.2 Functions

Definition 2.23 A function is a rule by which elements of two sets of values are asso-

ciated. There is only one restriction on this association and that is that each element of
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the first set of values, called the domain, must be identified with a unique element of a

second set of values, called the range.

For many applications of interest in this book, both the domain and range of a

function are subsets of the real numbers or integers, but these may also be defined

on more general sets as will be seen below. The rule is then typically expressed by a

formula such as

f ðxÞ ¼ x2 þ 3:

Here x is an element of the domain of the function f , while f ðxÞ is an element of

the range of f . Functions are also thought of and ‘‘visualized’’ as mappings between

their domain and range, whereby x is mapped to f ðxÞ, and this imagery is intuitively

helpful at times. In this context one might use the notation

f : X ! Y ;

where X denotes the domain of f , and Y the range. It is also common to write f ðxÞ
for both the function, which ought to be denoted only by f , and the value of the

function at x. This bit of carelessness will rarely cause confusion. Finally, Dmnð f Þ
and Rngð f Þ are commonly used as abbreviations for the domain and range of the

function.

In many applications, f will be a multivariate function, also called a function of

several variables, meaning that the domain of f is made up of n-tuples of variables:

ðx1; x2; . . . ; xnÞ, where each of the variables xj, is defined on the reals, or complexes,

and so forth. For example, f ðx; y; zÞ ¼ 1� xyþ yz is a function of three variables,

and illustrates the notational convention that when n is small, the n-tuple is denoted

as ðx; yÞ, or ðx; y; zÞ, avoiding subscripts. To distinguish the special case of 1-variable

functions, such functions are sometimes called univariate.

In general mathematical language, the word ‘‘function’’ typically implies that the

range of f , or Y , is a subset of one of the number systems defined above. When

Y HR, the function f is called a real-valued function, and one similarly defines the

notions of complex-valued function, integer-valued function, and so forth. This termi-

nology applies to both multivariate and univariate functions. Similarly, if X HR,

the function f is referred to as a function of a real variable, and one similarly defines

the notion of a function of a complex variable, and so forth. When necessary, this

terminology might be modified to univariate function of a real variable, or multivari-

ate function of a real variable, for example, but the context of the discussion is usually

adequate to avoid such cumbersome terminology. In the more general case, where X

and Y are collections of n-tuples, perhaps with di¤erent values of n, f is typically re-

ferred to as a transformation from X to Y .
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It is important to note that while the definition of a function requires that f ðxÞ be
unique for any x, it is not required that x be unique for any f ðxÞ. For instance, the
function, f ðxÞ ¼ x2 þ 3, above has f ðxÞ ¼ f ð�xÞ for any x > 0. Another way of

expressing this is that a function can be a many-to-one rule, or a one-to-one rule, but

it cannot be a one-to-many rule. A function that is in fact one to one has the special

property that it has an ‘‘inverse’’ that is also a function.

Definition 2.24 If f is a one-to-one function, f : X ! Y, the inverse function,

denoted f �1, is defined by

f �1 : Y ! X ; ð2:9aÞ

f �1ðyÞ ¼ x i¤ f ðxÞ ¼ y: ð2:9bÞ
The example, f ðxÞ ¼ x2 þ 3, above has no inverse if defined as a function with do-

main equal to all real numbers where it is many to one, but the function does have an

inverse if the domain is restricted to any subset of the nonnegative or nonpositive real

numbers, since this then makes it one to one.

Naturally, a function can also relate nonnumerical sets of values. For example, the

domain could be the set of all strings of heads (H) and tails (T) that arise from 10

flips of a fair coin. A function f could then be defined as the rule that counts the

number of heads for a given string. So this is a function

f : fstrings of 10 Ts and=or Hsg ! f0; 1; 2; . . . ; 9; 10g;
where f ðstringÞ ¼ number of Hs in the string.

2.3 Applications to Finance

2.3.1 Number Systems

This may seem too obvious, but ultimately finance is all about money, in one or sev-

eral currencies, and money is all about numbers. One hardly needs to say more on

this point. Admittedly, finance would seem to be only about rational numbers, since

who ever earned a profit on an investment of $
ffiffiffiffiffiffiffiffi
200

p
? On the other hand, when one is

dealing with rates of return or solving financial problems and their equations, the ra-

tional numbers are inadequate, and this is true even if all the inputs to the problem,

or terms in the resulting equations, are in fact rational numbers.

For example, if one had an investment that doubled in n years, the implied annual

return is irrational for any natural number n > 1. For n ¼ 5 and an initial investment

of $1000, say, one solves the equation
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1000ð1þ rÞ5 ¼ 2000;

r ¼
ffiffiffi
2

5
p

� 1:

Well that’s the theory, but no one in the market would quote a return of

100ð ffiffiffi
25

p � 1Þ%. It would be rounded to a rational return of 14.87%, or if one wanted

to impress, 14.869836%. Most people would be satisfied with the former answer, and

yet if we use a rational approximation, and the dollar investment is large enough, we

begin to see di¤erences between the actual return and the approximated return using

the approximate rational yield.

For example, using the return r ¼ 0:1476, we would have a positive error of $14.30

or so with a $1 million investment. Such discrepancies are commonly observed in the

financial markets. Not a big deal, perhaps, for so-called retail investors with modest

sums to invest, but for institutional investors with millions or billions, this rounding

error creates ambiguities and the need for conventions. It is also important to note

that as one uses rational approximations in the real world, it comes at a cost: round-

ing errors begin to appear in our calculations. In other words, if we solve an equation

and use a rational approximation to the solution, this solution will not exactly repro-

duce the desired result unless amounts are so small that the rounding error is less

than the minimum currency unit. Our theoretical calculations don’t balance with

the real world in other cases. When complex calculations are performed, the error

can be big enough to complicate our debugging of the computer program, since we

need to determine if the discrepancy is a rounding problem or an as yet undiscovered

error.

But are even the real numbers all that is needed? We are all likely to say so because

of an inherent suspicion of the complex numbers that is certainly reinforced by lack

of familiarity and compounded by the unfortunate terminology of ‘‘imaginary’’ num-

bers versus ‘‘real’’ numbers. But consider that some investment strategies can pro-

duce a negative final fund balance, even though this may be disguised if the investor

has posted margin.

For example, if a hedge fund manager with $100 million of capital is leveraged

10 :1 by borrowing $1 billion, and investing the $1.1 billion in various strategies,

one of which loses $20 million in an investment of $10 million, what is the fund re-

turn to the capital investors on this strategy? Naturally the broker would require

margin for such a strategy, so the negative final fund balance would be reflected in

the reduction of the margin account and overall fund capital. One can similarly de-

velop investment strategies in the derivatives market directly, by going long and/or

short futures contracts on commodities or other ‘‘underlying’’ investments, or imple-

menting long/short strategies in the options markets. One invests $100, say, and has
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a final balance on delivery or exercise date of �$100, again in reality observed by a

reduction in margin balances of $100.

For the period, we could argue that the return was �200%, or a period return of

r ¼ �2:00. On the other hand, if one desires to put this return on an annual rate

basis, di‰culties occur. For example, if this investment occurred over a month, the

annual return satisfies

100ð1þ rÞ1=12 ¼ �100;

ð1þ rÞ1=12 ¼ �1;

which has no solutions in R but, as it turns out, 12 distinct solutions in C. Note that

exponentiation provides an illusory escape from C:

ð1þ rÞ ¼ ð�1Þ12;
r ¼ 0:

However, while r ¼ 0 solves the algebraically transformed equation, it does not solve

the original equation. Such a solution is sometimes called a spurious solution.

Alternatively, if this return occurred over a year and we sought to determine the

return for this investment on a monthly nominal rate basis discussed below, we obtain

100 1þ r

12

� �12
¼ �100;

1þ r

12
¼

ffiffiffiffiffiffiffi
�1

12
p

;

r ¼ 12½
ffiffiffiffiffiffiffi
�1

12
p

� 1�;
a decidedly complex return, and as above, it has 12 distinct solutions in C. On the

other hand, by squaring the original equation, we can again produce the spurious

solution of r ¼ 0. But this, of course, will not work if substituted into the equation

above.

So what is the correct answer? Despite possible discomfort, any one of the 12 pos-

sible values of r ¼ 12½ ffiffiffiffiffiffiffi�112
p � 1� is the actual complex return on a monthly nominal

basis, since each solves the required equation, and there are correspondingly 12 pos-

sible complex returns that can be articulated on an annual basis.

To be sure, the market can always avoid this problem by simply using the lan-

guage that the return was r ¼ �200% ‘‘over the period.’’

2.3 Applications to Finance 53



2.3.2 Functions

The other major area of application for this chapter is related to functions. Functions

are everywhere! Not just in finance but in every branch of the natural sciences, as

well as in virtually every branch of the social sciences, and indeed in every human

endeavor. This is because virtually every branch of human inquiry contains recipes,

or formulas, that describe relationships between quantities that are either provable in

theory or based on observations and considered approximate models of a true under-

lying theory. It is these formulas that help us understand the theories by revealing

relationships in the theories. We note a truism:

Every formula is a function in disguise.

The di¤erence between a formula and a function is simply based on the objective

of the user. For example, if we seek the area of a circle of radius, r ¼ 2, we recall or

look up the formula, which is

area equals p times radius squared,

and with the approximation pA3:1416, we estimate that AA12:5664. On the other

hand, if we seek to understand the relationship between area and radius, the pre-

ferred perspective is one of a function:

AðrÞ ¼ pr2:

We can now see clearly that if the radius doubles, the area quadruples. We can

also easily determine that a large 17-inch pizza has just about the same area as two

small 12-inch pizzas, an important observation when thinking about feeding the fam-

ily. This is especially useful given that a large pizza is often much less expensive than

two small pizzas, which is an application to finance, of course.

Returning to other areas of finance, we consider several examples. In every case it

is purely a matter of taste and purpose which of the parameters in the given formula

are distinguished as variables of the associated function. The general rule of thumb is

that one wants to frame each function in as few variables as possible, but su‰ciently

many to allow the intended analysis.

Present Value Functions

If a payment of $100 is due in five years, the value today, or present value, can be

represented as a function of the assumed annual interest rate, r:

VðrÞ ¼ 100ð1þ rÞ�5;
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which easily generalizes to a payment of F due in n years as

VðrÞ ¼ Fð1þ rÞ�n ¼ Fvn: ð2:10Þ
The present value function in (2.10) is often written in the shorthand of VðrÞ ¼ Fvn,

where v is universally understood as the discount factor for one period, so here

v ¼ ð1þ rÞ�1.

More generally, if a series of payments of amount F are due at the end of each of

the next n years, the present value can be represented as a function of an assumed

annual rate:

VðrÞ ¼ F
Xn
j¼1

ð1þ rÞ�j ;

¼ F
1� ð1þ rÞ�n

r
:

This last formula is derived in exercises 17 and 18 of chapter 1.

Because this present value factor is so common in finance, representing the present

value of an annuity of n fixed payments, it warrants a special notation:

an; r 1
1� ð1þ rÞ�n

r
¼ 1� vn

r
: ð2:11Þ

Note that an; r is a function of n and r, and could equally well have been denoted

aðn; rÞ.
Accumulated Value Functions

If an investment of F at time 0 is accumulated for n years at an assumed annual in-

terest rate r, the accumulated value at time n is given as

AðrÞ ¼ Fð1þ rÞn: ð2:12Þ
The accumulated value at time n of a series of investments of amount F at the end of

each of the next n years can be represented as

AðrÞ ¼ F
Xn�1

j¼0

ð1þ rÞ j;

¼ F
ð1þ rÞn � 1

r
;
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where this last formula is derived with the same trick as was used for (2.11). Again,

as this accumulated factor is so commonly used in finance, it is often accorded the

special notation:

sn; r 1
ð1þ rÞn � 1

r
; ð2:13Þ

and as a function of n and r it could equally well have been denoted sðn; rÞ.
Although one could formally identify VðrÞ with the multivariate function Vðr;FÞ,

and similarly for AðrÞ, there is little point to this formalization since the dependence

of the valuation on F is fairly trivial. However, there are applications whereby the

functional dependence on n is of interest, and one sees this notation explicitly in the

an; r and sn; r functions.

Nominal Interest Rate Conversion Functions

The financial markets require the use of interest rate bases for which the compound-

ing frequency is other than annual. The conventional system is that of nominal inter-

est rates, whereby rates are quoted on an annualized basis, but calculations are

performed in the following way, generalizing the monthly nominal rate example

above.

In the same way that an annual rate of r means that interest is accrued at 100r%

per year, if r is a semiannual rate, interest is accrued at the rate of 100 r
2

� �
% per half

year, while a monthly rate is accrued at 100 r
12

� �
% per month, and so forth. In each

case the numerical value quoted pertains to an annual period, as it is virtually never

the case in finance that an interest rate is quoted on the basis of a period shorter or

longer than a year. An interest rate of 6% on a monthly basis, or simply 6% monthly,

does not mean that 6% is paid or earned over one month; rather, it is the market con-

vention for expressing that 0:5% will be paid or earned over one month. Similarly 8%

semiannual means 4% per half year, and so forth. Consequently one can introduce

the notion of a rate r, on an mthly nominal basis, meaning that 100 r
m

� �
% is paid or

accrued every 1
m
th of a year.

Nominal interest rates simplify the expression and calculation of present and accu-

mulated values where payments are made other than annually. For example, a bond’s

payments are typically made semiannually in the United States. If payments of F are

made semiannually for n years, the present value is expressible in terms of an annual

rate by

VðrÞ ¼ F
X2n
j¼1

ð1þ rÞ�j=2;
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or more simply in terms of a semiannual rate

VðrÞ ¼ F
X2n
j¼1

1þ r

2

� ��j

¼ Fa2n; r=2;

making the application of the present value and accumulated value functions in

(2.11) and (2.13) more flexible.

Finally, one can introduce the notion of equivalence of nominal rates, meaning that

accumulating or present-valuing payments using equivalent rates produces the same

answer. If rm is on an mthly nominal basis, and rn is on an nthly nominal basis, in

order for the present value of F payable at time N years to be the same with either

rate requires

F 1þ rm

m

� ��Nm

¼ F 1þ rn

n

� ��Nn

;

and we immediately conclude that the notion of equivalence is independent of the

cash flow F and time period N. The resulting identity between rn and rm equals that

produced by contemplating accumulated values rather than present values. Of course,

this identity between rn and rm can be converted to a function such as rmðrnÞ. This
tells us that for any rn on an nthly nominal basis, the equivalent rm on an mthly nom-

inal basis is given as

rmðrnÞ ¼ m 1þ rn

n

� �n=m
� 1

" #
: ð2:14Þ

Bond-Pricing Functions

The application of the formulas and functions above to fixed income instruments

such as bonds and mortgages is relatively straightforward. For example, under the

US convention of semiannual coupons quoted at a semiannual rate r, the coupon

paid is F r
2 per half year, where F denotes the bond’s par value. If the bond has a ma-

turity of n years, the price of the bond at semiannual yield i is given by

PðiÞ ¼ F
r

2
a2n; i=2 þ Fv2ni=2: ð2:15Þ

Here vi=2 again denotes the the discount factor for one period, v ¼ 1þ i
2

� ��1
, but with

a subscript for notational consistency. Sometimes this yield is expressed as in to em-

phasize that this is the yield on an n-year bond.
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This formula allows a simple analysis of the relationship between PðiÞ and F , or

price and par. From (2.11) applied to a2n; i=2 we derive that v2ni=2 ¼ 1� i
2 a2n; i=2. When

substituted into (2.15), this price function becomes

PðiÞ ¼ F 1þ 1

2
ðr� iÞa2n; i=2


 �
: ð2:16Þ

From this expression we conclude the following:

� PðiÞ > F , and the bond sells at a premium, i¤ r > i.

� PðiÞ ¼ F , and the bond sells at par, i¤ r ¼ i.

� PðiÞ < F , and the bond sells at a discount, i¤ r < i.

Notice that the bond price function as expressed in either (2.15) or (2.16) can be

thought of as a function of time. Identifying the given formulas as the price today

when the bond has n years to maturity, and denoted P0ðiÞ, the price at time j
2 , imme-

diately after the jth coupon, denoted Pj=2ðiÞ, is given by

Pj=2ðiÞ ¼ F 1þ 1

2
ðr� iÞa2n�j; i=2


 �
; ð2:17Þ

using the format of (2.16), with a similar adjustment to express this in the format of

(2.15). This formula is correct at time 0, of course, as well as at time n, where it

reduces to F . In other words, immediately after the last coupon, the bond has value

equal to the outstanding par value then payable.

The price of this bond between coupons, for instance, at time t, 0 < t < 1
2 , can be

derived prospectively, as the present value of remaining payments at that time, or

retrospectively, in terms of the value required by the investor to ensure that a return

of i is achieved. In either case one derives PtðiÞ ¼ 1þ i
2

� �2t
P0ðiÞ, which generalizes to

Pð j=2ÞþtðiÞ ¼ 1þ i

2

� �2t
Pj=2ðiÞ; 0a t <

1

2
; ð2:18Þ

which demonstrates that for fixed yield rate i, the price of a bond varies ‘‘smoothly’’

between coupon dates and abruptly at the time of a coupon payment. In the lan-

guage of chapter 9, this price function is continuous between coupon payments and

discontinuous at coupon dates.

More generally, we may wish to express P as a function of 2n yield variables,

allowing each cash flow to be discounted by the appropriate semiannual spot rate,

in which case we obtain
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Pði0:5; i1; . . . ; inÞ ¼ F
r

2

X2n
j¼1

1þ ij=2

2

� ��j

þ F 1þ in

2

� ��2n

: ð2:19Þ

The domain of all these bond-pricing functions would logically be understood to

be real numbers with 0a i < 1 or 0a ij < 1 for most applications, although the

functions are mathematically well defined for 1þ i
m
> 0, where i is an mthly nominal

yield.

Mortgage- and Loan-Pricing Functions

The same way that bonds often have a semiannual cash flow stream, mortgages and

other consumer loans are often repaid with monthly payments, and consequently

rate quotes are typically made on a monthly nominal basis. If a loan of L is made,

to be repaid with monthly payments of P over n years, the relationship between L

and P depends on the value of the loan rate, r. Specifically, the loan value must equal

the present value of the payments at the required rate. Using the tools above, this

becomes

L ¼ Pa12n; r=12;

producing a monthly repayment of

Pðr; nÞ ¼ Lr

12ð1� v12nr=12Þ
: ð2:20Þ

Here the monthly repayment is expressed as a function of both r and n. In some

applications, where n is fixed, the notation is simplified to PðrÞ.
Note that the identity between the value of the loan and the remaining payments

can also be used to track the progress of the loan’s outstanding balance over time ei-

ther immediately after a payment is made, as in (2.17), or in between payment dates,

as in (2.18) (see exercise 13).

Preferred Stock-Pricing Functions

A so-called perpetual preferred stock is e¤ectively a bond with maturity n ¼ y. That

is, there is a par value, F , a coupon rate, r, that is typically quoted on a semiannual

basis and referred to as the preferred’s dividend rate, but the financial instrument has

no maturity and hence no repayment of par. At a given semiannual yield of i, the

price of this instrument can be easily inferred from (2.15) by considering what hap-

pens to each of the present value functions as the term of the bond, n, grows without

bound. This subject of ‘‘limits’’ will be addressed more formally in chapters 5 and 6,

but here we present an informal but compelling argument.
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Since it is natural to assume that the market yield rate i > 0, it is apparent that

1þ i
2 > 1, and hence v2ni=2 decreases to 0 as n increases to y. Using (2.11) modified

to a semiannual yield, it is equally apparent that as v2ni=2 decreases to 0, the annuity

factor a2n; i=2 increases to
1
i=2

, which can be denoted ay; i=2. Combining, and canceling

the 1
2 terms, we have that the pricing function for a perpetual preferred stock, is given

by

PðiÞ ¼ Fr

i
: ð2:21Þ

From (2.21) we see that when the dividend rate and yield rate are both on a semian-

nual basis, the price does not explicitly reflect this basis. Generalizing, the same price

would be obtained if r and i were quoted on any common nominal basis.

It is also clear that a perpetual preferred will be priced at a premium, par or at a

discount in exactly the same conditions as was observed above for a given bond, and

that was if r > i, r ¼ i, or r < i, respectively.

Common Stock-Pricing Functions

The so-called discounted dividend model for evaluating the price of a common stock,

often shortened to DDM, is another function of several variables. The basic idea of

this model is that the price of the stock equals the present value of the projected div-

idends. Since a common stock has no ‘‘par’’ value, the dividends are quoted and

modeled in dollars or the local currency, although it is common to unitize the calcu-

lation to a ‘‘per share’’ basis.

If D denotes the annual dividend just paid (per share), and it is assumed that an-

nual dividends will grow in the future at annual rate of g, and investors demand an

annual return of r, then in its most general notational form, the price of the stock can

be modeled as a function of all these variables:

VðD; g; rÞ ¼ D
1þ g

r� g
; r > g: ð2:22Þ

The derivation of (2.22) is similar to that for the preferred stock above, but with a

small trick. That is, the present value of the dividends can be written

D
Xy
j¼1

ð1þ rÞ�jð1þ gÞ j;

and since ð1þ rÞ�jð1þ gÞ j ¼ 1þ r�g

1þg

� 	�j

, this present value becomes a preferred

stock with dividend D, valued with a yield of r�g

1þg
. Consequently (2.22) follows from
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(2.21), and where the requirement that r > g is simply to ensure that in (2.11),

1þ r�g
1þg

� 	�n

decreases to 0 as n increases to y.

In many applications one thinks of this price function as a function of a single

variable. For example, if we think of D and r as fixed, we can express the stock value

as a function of the assumed growth rate, VðgÞ, and so forth. This illustrates the im-

portant point noted above. The functional representation of a quantity is usually not

uniquely defined; it is typically best defined based on the objectives of the user. As

was the case for the price of a bond, one could also allow either g and/or r to vary

by year, further expanding the multivariate nature of this price function, or modify

this derivation to allow for dividends payable other than annually.

Portfolio Return Functions

If the return on asset A1 is projected to be r1, and that of A2 projected to be r2, we

can define a function f ðwÞ to represent the projected return on a portfolio of both

assets, with 100w% allocated to A1, and 100ð1� wÞ% to A2. We then have

f ðwÞ ¼ wr1 þ ð1� wÞr2
¼ r2 þ wðr1 � r2Þ:

While this may be initially modeled with the understanding that 0awa 1, it is a

perfectly sensible function outside this domain by understanding a ‘‘negative invest-

ment’’ to represent a short sale.

A short sale is one whereby the investor borrows and sells an asset for the cash

proceeds, with the future obligation to repurchase the asset in the open market to

cover the short, which is to say, return the asset to the original owner. Such short

sales require the posting of collateral in a margin account, typically in addition to

the cash proceeds or the securities purchased with these proceeds.

This model is easily generalized to the case of n assets, whereby our asset choices

are fAjgnj¼1 with projected returns of frjgnj¼1 and asset allocations of fwjgnj¼1 with

0awj a 1 and
Pn

j¼1 wj ¼ 1. One then sees that the projected portfolio return is a

function of these asset allocation weights:

f ðw1;w2; . . . ;wnÞ ¼
Xn
j¼1

wjrj: ð2:23Þ

Once again, with short sales allowed, the domain of this function can be expanded

beyond the original restricted domains of 0awj a 1 for all j.

As a final comment, it may seem odd that with 2 assets, f was a function of 1

variable, yet with n assets, f is a function of n variables. This provides another

2.3 Applications to Finance 61



example of the flexibility one has in such representations. As currently expressed, it

must be remembered in the analysis that logically
Pn

j¼1 wj ¼ 1, and hence these n

variables are constrained, meaning that the domain of this function is not the ‘‘n-

dimensional cube,’’ fðw1;w2; . . . ;wnÞ j 0awj a 1 for all jg, but a subset of this cube,

fðw1;w2; . . . ;wnÞ j 0awj a 1 for all j and
Pn

j¼1 wj ¼ 1g. To eliminate the need to

remember this constraint, it can be built into the definition of the function, as was

done in the 2-asset model. For example, writing wn ¼ 1�Pn�1
j¼1 wj, we can rewrite

the projected return function as a function of n� 1 variables:

f ðw1;w2; . . . ;wn�1Þ ¼ rn þ
Xn�1

j¼1

wjðrj � rnÞ:

The domain of this function is now defined to either preclude or allow short sales.

Naturally this functional representation also makes sense when the rj values are

not initially defined as constants but instead represent values that will only be

revealed at the end of the period. This perspective then lends itself to thinking about

these returns as random variables, as will be discussed in chapter 7 on probability

theory. Within that framework, good analysis can be done with this function, and

the asset allocation will be seen to influence properties of the randomness of the port-

folio return.

Forward-Pricing Functions

As a final example, consider a forward contract on an equity, with current price S0. A

forward contract is a contract that obligates the long position to purchase the equity,

and the short position to sell the equity, at forward time T > 0, measured in years

say, and at a price agreed to today, denoted F0. No cash changes hands at time 0,

whereas at time T one share of the stock is exchanged for F0. The natural question

is, What should be the value of F0 and on what variables should it depend?

As it turns out, the long position can replicate this contract in theory, which means

that the long can implement a trade at time 0 that provides the obligation to ‘‘buy’’

the stock at time T , and this can be done without finding another investor that is

willing to take on the short position. Similarly a short position can be replicated, so

an investor can implement this contract without finding another investor that is will-

ing to take on the long position.

The replication of the long position is accomplished by purchasing the equity to-

day for a price of S0, and acquiring the cash to do so by short-selling a T-period

Treasury bill. Imagine for clarity that the equity is placed in the margin account

required for the short position, along with other investor funds, so the investor
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doesn’t actually have possession of it at the time of this trade. At time T , the short

sale will be covered at a cost of S0ð1þ rT ÞT , the value of the T-bill to the original

owner at that time, where rT denotes the annual return on the T-period T-bill, and

T is in units of years. Because the short position has been covered, the margin ac-

count is released and the investor takes possession of the stock, implicitly for the

price of covering the short.

Similarly a short forward can be replicated with a short position in the stock and

an investment in T-bills, and the same cost of S0ð1þ rT ÞT is derived. In both cases

the position is replicated with no out-of-pocket cost at time 0 for the investor.

So in either case we conclude that the forward price, F0, that makes sense today

with no money now changing hands, if it is to be agreed to by independent parties

each of whom could in theory replicate their positions, is a function of 3 variables:

F0ðS0; rT ;TÞ ¼ S0ð1þ rTÞT : ð2:24Þ
In some applications one might think of one or two of these variables as fixed, and

the forward price function expressed with fewer variables. The reason this is the

‘‘correct price’’ is that if forwards were o¤ered at a di¤erent price, it would be possi-

ble for investors to make riskless profits by committing to forwards and then replicat-

ing the opposite position (see exercise 15).

Once the forward contract is negotiated and committed to, there arises the ques-

tion of the value of the contract to the long and to the short at time t where

0 < taT . For definitiveness, let F0 denote the price agreed to at time t ¼ 0. At

time t, we know from the formula above that the forward price will be

FtðSt; rT�t;T � tÞ ¼ Stð1þ rT�tÞT�t: ð2:25Þ
So the long position is committed to buy at time T at price F0, but today’s market

indicates that the right price is Ft. That’s good news for the long if F0 aFt, and bad

news otherwise. The sentiments of the short position are opposite. So the value at

time t is ‘‘plus or minus’’ the present value of the di¤erence between the two prices

F0 and Ft, that is, G½Ft � F0�ð1þ rT�tÞ�ðT�tÞ, which for the long position can be

expressed as

VtðSt; rT�t;T � tÞ ¼ St � F0ð1þ rT�tÞ�ðT�tÞ: ð2:26Þ
The function representing the value of this contract to the short position is simply the

negative of the function in (2.26).
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Exercises

Practice Exercises

1. Apply Euclid’s algorithm to the following pairs of integers to find the greatest

common divisor (g.c.d.), and express the g.c.d. in terms of Bezout’s identity:

(a) 115 and 35

(b) 4531 and 828

(c) 1915 and 472

(d) 46053 and 3042

2. In a remark after the proof of the existence of nonrational numbers, or irrational

numbers, it was demonstrated that between any two rational numbers is a rational

number and an irrational number. Prove by construction, or by contradiction, that

in both cases there are infinitely many rationals and irrationals between the two

given rationals. (Hint: For intermediate irrationals, note that for n0m2, we know

that
ffiffiffi
n

p
B Q, and hence 1ffiffi

n
p B Q. Note also that 1ffiffi

n
p ! 0 as n ! y:Þ

3. Prove that the irrationals are uncountable. (Hint: Consider a proof by con-

tradiction based on the countability of the rationals and uncountability of the

reals.)

4. Express the following real numbers in the indicated base using the greedy algo-

rithm either exactly or to four digits to the right of the ‘‘decimal point’’:

(a) 100:4 in base-6

(b) 0:1212121212 . . . in base-2

(c) 125;160:256256256 . . . in base-12

(d) �127:33333333 . . . in base-7

5. Demonstrate that if a number’s decimal expansion either terminates, or ends with

an infinite repeating cluster of digits such as 12:125363636361 12:12536, then this

number is rational. (Hint: If the number in this example is called x, compare 1000x

and 100;000x. Generalize.)

6. Euler’s formula gives a practical and easy way to derive many of the trigonomet-

ric identities involving the sine and cosine trigonometric functions. Verify the follow-

ing (Hint: e2ai ¼ ðeaiÞ2):
(a) cos 2a ¼ cos2 a� sin2 a

(b) sin 2a ¼ 2 sin a cos a
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7. If an annual payment annuity of 100 is to be received from time 8 to time 20,

show that the value of this 7-year deferred, 13-year annuity can be represented in ei-

ther of the following ways:

(a) 100ða20; r � a7; rÞ
(b) 100ð1þ rÞ�7

a13; r

8. What is the domain and range of the following functions? Note that the domain

may include real numbers that would not make sense in a finance application.

(a) Annuity present value: VðrÞ ¼ F
Pn

j¼1ð1þ rÞ�j (If this is written in the equiva-

lent form VðrÞ ¼ F
1�ð1þrÞ�n

r
, the domain initially looks di¤erent. Convince yourself

by numerical calculation, or analysis, that r ¼ 0 is not really a problem for this func-

tion even in the second form, since the r in the denominator ‘‘cancels’’ an r in the

numerator, much like 3r=r:Þ
(b) Bond price: PðiÞ ¼ F r

2 a2n; i=2 þ Fv2ni=2

(c) Loan repayment: Pðr; nÞ ¼ Lðr=12Þ
1�v12n

r=12

9. Use the nominal equivalent yield formula and demonstrate numerically for an-

nual ‘‘rates’’ r1 ¼ 0:01; 0:10; 0:25; 1:00, that as m ! y, the equivalent yield rmðr1Þ
gets closer and closer to lnð1þ r1Þ. Consider m up to 1000, say. Show algebraically

that if this limiting result is true for all r1, and n and rn are fixed, then as m ! y, the

equivalent yield, rmðrnÞ, again gets closer and closer to lnð1þ r1Þ where r1 is the an-

nual rate equivalent to rn. (Note: These results can be proved with the tools of chap-

ter 5, once the notion of the limit of a sequence is formally introduced, and chapter 9,

which provides Taylor series approximations to the function ln x.)

10. Complete the rows of the following table with equivalent nominal rates:

r1 r2 r4 r12 r365

0.05

0.10

0.0825

0.0450

0.0775

11. You are given a 5-year and a 30-year bond, each with a par of 1000 and a semi-

annual coupon rate of 8%. Calculate the price of each at an 8% semiannual yield,

and graph each price function over the range of semiannual yields 0%a ia 16% on

the same set of axes. What pattern do you notice between the graphs?
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12. For the 5-year bond in exercise 11, start with prices calculated at 6% and 10%:

(a) Develop graphs of these bond prices over time using (2.18)

(b) Show that in the case of the 6% valuation, that the successive ratios of the bond’s

write downs, defined as the quantities Pj=2ð0:06Þ � Pð jþ1Þ=2ð0:06Þ, have a constant

ratio of 1:03.

(c) Show similarly that for the 10% valuation, the successive ratios of the bond’s

write ups, defined as the quantities Pð jþ1Þ=2ð0:10Þ � Pj=2ð0:10Þ, have a constant ratio

of 1:05.

(d) Derive algebraically using (2.16), the general formula for a write up or write

down and show that the common ratio is 1þ i
2 , where i denotes the investor’s yield.

13. You are considering a 10-year loan for $100,000 at a monthly nominal rate of

7.5%.

(a) Calculate the monthly payment for this loan.

(b) Calculate the outstanding balance of this loan over the first year immediately fol-

lowing each of the required 12 payments as well as the changes in these balances,

called loan amortizations. (Hint: recall that the loan balance equals the present value

of remaining payments)

(c) Confirm that the ratio of successive amortizations are in constant ratio of

1þ 0:075
12 .

(d) Derive algebraically the general formula for the loan amortizations and confirm

that the ratio of successive values is a constant 1þ i
12 .

(e) Demonstrate that given the formula derived for the values of the amortizations,

they indeed add up to the original loan value, L.

14. What is the DDM price for a common stock with quarterly dividends, where the

last dividend of 2:50 was paid yesterday:

(a) If dividends are assumed to grow at a quarterly nominal rate of 9% and the in-

vestor requires a return of 15% quarterly?

(b) If dividends are assumed to grow at a quarterly nominal rate of 9% only for 5

years, and then to a grow at a rate of 4%, again on a quarterly basis? (Hint: Show

that the dividends can be modeled as a 5-year annuity at one rate, followed by a 5-

year deferred perpetuity [i.e., an infinite annuity] at another rate, where by ‘‘deferred’’

means the first payment is one-quarter year after t ¼ 5. See also exercise 7.).

15. A common stock trades today at S0 ¼ 15, and the risk free rate is 6% on a semi-

annual basis.
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(a) What is the forward price of this stock for delivery in one year?

(b) Replicate a long position in this forward contract with a portfolio of stock and

T-bills, giving details on the initial position as well as trade resolution in 1 year.

(c) If the market traded long and short 1-year forwards on this stock with a price of

15:10, develop an arbitrage to take advantage of this mispricing, giving details on the

initial position as well as trade resolution in 1 year. (Hint: Go long the forward if this

price is low, and short if this price is high. O¤set the risk with replication.)

(d) If an investor goes short the forward in part (a), what is the investor’s gain or loss

at 3 months’ time when the contract is ‘‘o¤set’’ in the market (i.e., liquidated for the

then market value) if the stock price has fallen to 13:50, and the 9-month risk-free

rate is 7:50% (semiannual)?

Assignment Exercises

16. Apply Euclid’s algorithm to the following pairs of integers to find the greatest

common divisor (g.c.d.), and express the g.c.d. in terms of Bezout’s identity:

(a) 697 and 221

(b) 7500 and 2412

(c) 21423 and 3441

(d) 79107 and 32567

17. (See exercise 2.) In a remark after the proof of the existence of nonrational num-

bers, or irrational numbers, it was demonstrated that between any two irrational

numbers is a rational and an irrational. Prove by construction, or by contradiction,

that in both cases there are infinitely many rationals and irrationals between the two

irrational numbers.

18. Express the following real numbers in the indicated base using the greedy algo-

rithm either exactly or to four digits to the right of the ‘‘decimal’’ point:

(a) 25:5 in base-2

(b) 150:151515 . . . in base-5

(c) 237;996:1256 in base-12

(d) �2;399:27 in base-9

19. (See exercise 5.) Explain why it is the case that if a number is rational, its decimal

expansion either terminates or, after a certain number of digits, ends with an infinite

repeating cluster of digits such as 12:12536. Specifically, explain that if this rational

number is given by n
m
where n and m have no common divisors, then the decimal
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expansion will terminate by the mth decimal digit, or there will be repeating cluster

that will begin on or before the mth decimal digit, and in this case, the repeating clus-

ter can contain at most m� 1 digits. (Hint: Think about the remainders you get at

each division step.)

20. Euler’s formula gives a practical and easy way to derive many of the trigonomet-

ric identities involving the sine and cosine trigonometric functions. Verify the follow-

ing (Hint: eðaþbÞi ¼ eaiebi):

(a) cosðaþ bÞ ¼ cos a cos b� sin a sin b

(b) sinðaþ bÞ ¼ cos a sin bþ cos b sin a

21. (See exercise 7.) If an annual payment annuity of 100 is to be received from time

nþ 1 to time nþm, show that the value of this n-year deferred, m-year annuity can

be represented as either of the following:

(a) 100ðanþm; r � an; rÞ
(b) 100ð1þ rÞ�n

am; r

22. What is the domain and range of the following functions? Note that the domain

may include real numbers that would not make sense in a finance application:

(a) Nominal equivalent rate: rmðrnÞ ¼ m
�
1þ rn

n

� �n=m�1
�

(b) Common stock price: VðD; g; rÞ ¼ D
1þg

r�g

(c) Forward price: FtðSt; rT�t;T � tÞ ¼ Stð1þ rT�tÞT�t

23. Complete the rows of the following table with equivalent nominal rates:

r1 r2 r4 r12 r365

0.16

0.045

0.0955

0.0150

0.025

24. A $25 million, 10-year commercial mortgage is issued with a rate of 8% on a

monthly nominal basis.

(a) What is the monthly repayment, P, over the term of the mortgage?

(b) If Bj denotes the outstanding balance on this loan immediately after the jth pay-

ment, with B0 ¼ 25 million, show that
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Bj ¼ Pað120�jÞ;0:08=12

¼ ½B0 � Paj;0:08=12� 1þ 0:08

12

� �j

:

(c) If Pj denotes the principal portion of the jth payment, show that

Pj ¼ P� 0:08

12
Bj�1:

(d) Show that Pjþ1 ¼ 1þ 0:08
12

� �
Pj for jb 1.

(e) From part (d), confirm that
P

Pj ¼ 25 million.

25. A common stock trades today at S0 ¼ 50, and the risk-free rate is 5% on a semi-

annual basis.

(a) What is the forward price of this stock for delivery in 6 months?

(b) Replicate a long position in this forward contract with a portfolio of stock and

T-bills, giving details on the initial position as well as the trade resolution in 6 months.

(c) If the market traded long and short 6-month forwards on this stock with a price

of 53, develop an arbitrage to take advantage of this mispricing, giving details on the

initial position as well as the trade resolution in 6 months.

(d) If an investor goes long the forward in part (a), how much does the investor

make or lose at 3 months’ time when the contract is o¤set in the market if the stock

price has risen to 52, and the 3-month risk-free rate is at 4:50% (semiannual)?
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3 Euclidean and Other Spaces

3.1 Euclidean Space

3.1.1 Structure and Arithmetic

The notion of a Euclidean space of dimension n is a generalization of the two-

dimensional plane and three-dimensional space studied by Euclid in the Elements.

Definition 3.1 Denoted Rn or sometimes En, n-dimensional Euclidean space, or Eucli-

dean n-space, is defined as the collection of n-tuples of real numbers, referred to as

points:

Rn 1 fðx1; x2; . . . ; xnÞ j xj A R for all jg: ð3:1Þ
Arithmetic operations of pointwise addition and scalar multiplication in Rn are defined

by

1. xþ y ¼ ðx1 þ y1; x2 þ y2; . . . ; xn þ ynÞ.
2. ax ¼ ðax1; ax2; . . . ; axnÞ, where a A R.

In other words, addition and multiplication by so-called scalars a A R, are defined

componentwise. Because points in Rn have n components and are thought of as gen-

eralizing the corresponding notion in familiar two- and three-dimensional space, they

are typically referred to as points and sometimes vectors, and are either notated in

boldface, x, as will be used in this book, or with an overstrike arrow, ~xx. The compo-

nents of these points, the fxjg, are called coordinates, and a given xj is referred to as

the jth coordinate.

The terminology of n-tuple may seem a bit strange at first. It is but a generaliza-

tion of the typical language for such groupings whereby, following ‘‘twin’’ and ‘‘trip-

let,’’ one says quadruple, quintuple, sextuple, and so forth. For specific values of n,

the language would be 2-tuple, 3-tuple, and on and on.

Note that the notation for Euclidean space, Rn, is more than just a fanciful play

on the notation for the real numbers, R. This notation rather stems from that for a

product space defined in terms of a direct or Cartesian product:

Definition 3.2 If X and Y are two collections, the direct or Cartesian product of X

and Y, denoted: X � Y is defined as

X � Y ¼ fðx; yÞ j x A X ; y A Yg: ð3:2Þ
That is, X � Y is the collection of ordered pairs, which is to say that X � Y 0Y � X

in general, and the order of the terms in the product matter. One similarly defines

X � Y � Z, etc., and refers to all such constructions as product spaces.



When X ¼ Y , it is customary to denote X � X by X 2, X � X � X by X 3, etc.

Consequently the notation for Euclidean space, which is the original example of a

product space, is consistent with this notational convention:

Rn 1R�R� � � � �R; with n factors:

One similarly defines Cn, n-dimensional complex space; Zn, n-dimensional integer

space or the n-dimensional integer lattice; and so forth.

In general, Euclidean space does not have the structure of a field as was the case

for Q, R, and C in chapter 2. This reason is not related to the ‘‘addition’’ in Rn but

to the problem of defining a multiplication of vectors with the required properties.

However, Euclidean space has the structure of a vector space, and it is easily demon-

strated that Rn is a vector space over the real field R. In this book we will almost

exclusively be interested in real vector spaces that are defined by F ¼ R:

Definition 3.3 A collection of points or vectors, X , is a vector space over a field F , if:

1. X is closed under pointwise addition and scalar multiplication:

If x; y A X and a A F , then xþ y A X and ax A F .

2. There is a zero vector: 0 ¼ ð0; 0; . . . ; 0Þ A X such that

xþ 0 ¼ 0þ x ¼ x for all x A X :

3. Point addition is commutative and associative: Given x; y; z A X,

xþ y ¼ yþ x;

xþ ðyþ zÞ ¼ ðxþ yÞ þ z:

4. Scalar multiplication satisfies the distributive law over addition: For x; y A X and

a A F ,

aðxþ yÞ ¼ ðxþ yÞa ¼ axþ ay:

As was noted in chapter 2, one can define a multiplication and a field structure on

R2 by the identification with the complex numbers:

R2 $ C : ða; bÞ $ aþ bı.

Then multiplication is defined using (2.8):

ða; bÞ � ðc; dÞ ¼ ðac� bd; ad þ bcÞ;
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and multiplicative inverses follow from the formula for z�1:

ða; bÞ�1 ¼ a

a2 þ b2
;

�b

a2 þ b2

� �
:

It is natural to wonder if such an identification can be made for Rn, with n > 2, and

other fields produced. The answer is that yes, identifications do exist for some n > 2,

but these do not produce the structure of fields.

For example, the first of these identifications was discovered by Sir William Rowan

Hamilton (1805–1865) in 1843, and called the quaternions. The quaternions can be

identified with R4, and have the appearance of ‘‘generalized’’ complex numbers.

That is, having a ‘‘real’’ component and three ‘‘imaginary’’ components i, j, k, and

the identification is

ða; b; c; dÞ $ aþ bi þ cj þ dk;

i2 ¼ j2 ¼ k2 ¼ ijk ¼ �1:

The resulting structure falls short of a field structure because multiplication is not

commutative. This follows from ijk ¼ �1, which implies that ij ¼ �ji. The resulting

structure is called an associative normed division algebra.

The quaternions can in turn be generalized and an identification made with R8,

known as the octonions, which were independently discovered by John T. Graves

(1806–1870) in 1843 and Arthur Cayley (1821–1895) in 1845. Although octonions

form a normed division algebra, in contrast to the quaternions, multiplication in the

octonions is neither commutative nor associative. Further generalizations to R2 n

are

possible for all n, each successive term in the sequence derived from the former term

through what is known as the Cayley–Dickson construction, also after Leonard

Eugene Dickson (1874–1954).

3.1.2 Standard Norm and Inner Product for Rn

Besides an arithmetic on Rn, there is the need for a notion of length, or magnitude,

of a point. In mathematics this notion is called a ‘‘norm.’’

Definition 3.4 The standard norm on Rn, denoted jxj or kxk, is defined by

jxj1
ffiffiffiffiffiffiffiffiffiffiffiffiffiXn
j¼1

x2
i

vuut ; ð3:3Þ

where the positive square root is implied.
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This norm generalizes the Pythagorean theorem and the notion of the length of a

vector in the plane or in 3-space, which in turn generalizes the notion of length on the

real line or 1-space achieved by the absolute value of x: jxj, defined in (2.3).

Another useful notion on Rn that generalizes to other vector spaces is that of an

inner product, whose formula generalizes the notion of a dot product of vectors in

the plane and 3-space:

Definition 3.5 The standard inner product on Rn, denoted x � y or ðx; yÞ, is defined for

x; y A Rn as

x � y ¼
Xn
j¼1

xiyi: ð3:4Þ

Inner products are intimately connected with norms. As may be apparent from the

definitions above, the standard norm for Rn satisfies

jxj ¼ ðx � xÞ1=2; or jxj2 ¼ jx � xj: ð3:5Þ
Remark 3.6 The notion of an inner product is one that will reappear in later chapters

and studies in a variety of contexts. As it turns out, there are many possible inner prod-

ucts on Rn that satisfy the same critical properties as the standard inner product above.

Here we identify these defining properties and leave their verification for the standard

inner product as an exercise. Note that item 4 below follows from properties 2 and 3,

but is listed for completeness.

Definition 3.7 An inner product on a real vector space X, is a real-valued function

defined on X � X with the following properties:

1. ðx; xÞb 0 and ðx; xÞ ¼ 0 if and only if x ¼ 0.

2. ðx; yÞ ¼ ðy; xÞ.
3. ðax1 þ bx2; yÞ ¼ aðx1; yÞ þ bðx2; yÞ for a; b A R.

4. ðx; ay1 þ by2Þ ¼ aðx; y1Þ þ bðx; y2Þ for a; b A R.

Definition 3.8 If ðx; yÞ is an inner product on a real vector space X, the norm associ-

ated with this inner product is defined by (3.5).

*3.1.3 Standard Norm and Inner Product for Cn

We note for completeness that in order to appropriately generalize (2.2) to an n-

dimensional complex vector space, the inner product and norm definitions are modi-
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fied when the space involved, such as Cn, and its underlying field, have complex

values. We provide the definition here:

Definition 3.9 The standard inner product on Cn, denoted x � y or ðx; yÞ is defined for

x; y A Cn,

x � y ¼
Xn
j¼1

xi yi; ð3:6Þ

where yi denotes the complex conjugate of yi. The standard norm for Cn is defined as

jxj ¼ ðx � xÞ1=2 or jxj2 ¼ jx � xj: ð3:7Þ
Remark 3.10 In the context of a complex space, there are again many possible inner

products satisfying the critical properties of the standard inner product above. These

properties are identical to those listed for Rn, with the necessary adjustments for the

complex conjugate on the second term. As before, 5 follows from 3 and 4, and also

here 1 follows from 3, but these properties are listed for completeness.

Definition 3.11 An inner product on a complex vector space X, is a complex-valued

function defined on X � X with the following properties:

1. ðx; xÞ A R for all x.

2. ðx; xÞb 0 and ðx; xÞ ¼ 0 if and only if x ¼ 0.

3. ðx; yÞ ¼ ðy; xÞ.
4. ðax1 þ bx2; yÞ ¼ aðx1; yÞ þ bðx2; yÞ for a; b A C.

5. ðx; ay1 þ by2Þ ¼ aðx; y1Þ þ bðx; y2Þ for a; b A C.

3.1.4 Norm and Inner Product Inequalities for Rn

An important property of inner products is the Cauchy–Schwarz inequality, which

was originally proved in 1821 in the current finite-dimensional context by Augustin

Louis Cauchy (1759–1857), and generalized 25 years later to all ‘‘inner product

spaces’’ by Hermann Schwarz (1843–1921).

Throughout this section, results on inner products are derived in the context of

the ‘‘standard’’ inner products in (3.4) or (3.6) for specificity. However, it should be

noted that the proofs of these results rely only on the properties identified above for

general inner products, and consequently these results will remain true for all inner

products once defined.
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Proposition 3.12 (Cauchy–Schwarz Inequality) With x � y defined as in (3.4) or (3.6),

jx � yja jxj jyj: ð3:8Þ
In other words, the absolute value of an inner product is bounded above by the product

of the vector norms.

Proof Consider x� ay. By definition of a norm, we have for any real number a:

jx� ayjb 0:

However, a calculation produces

jx� ayj2 ¼ ðx� ay; x� ayÞ

¼ x � x� 2ax � yþ a2y � y

¼ jxj2 þ a2jyj2 � 2ax � y:
Choosing a ¼ x�y

jyj2 , and combining, we get

jxj2 � ðx � yÞ2
jyj2 b 0;

and the result follows. n

Remark 3.13 We can remove the absolute values from x � y, and the result remains

true since, by definition, x � y ¼Gjx � yja jx � yj. We use this below.

The general notion of a norm is a fundamental tool in mathematics and is formal-

ized as follows:

Definition 3.14 A norm on a real vector space X, is a real-valued function on X with

values, denoted jxj or kxk, satisfying:
1. jxj A R.

2. j0j ¼ 0, and jxj > 0 for x0 0.

3. jaxj ¼ jaj jxj for a A R.

4. (Triangle inequality) jxþ yja jxj þ jyj.
Definition 3.15 A normed vector space is any real vector space, X , on which there is

defined a norm, jxj. For specificity, a normed space is sometimes denoted ðX ; jxjÞ or

ðX ; kxkÞ.
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Remark 3.16 Item 4 is known as the triangle inequality because it generalizes the

result in (2.7) that the length of any side of a triangle cannot exceed the sum of the

lengths of the other two sides. Also note that item 4 is easily generalized by an iterative

application to

Xn
j¼1

xi












a Xn

j¼1

jxij: ð3:9Þ

Remark 3.17 A norm can be equally well defined on a vector space over a general

field F , such as the complex field C, where jaj denotes the norm of a A F . But we will

have no need for this generalization.

The general definition of a norm was intended to capture the essential properties

known to be true of the standard norm jxj defined on Rn. Not surprisingly, we there-

fore have:

Proposition 3.18 jxj defined in (3.3) is a norm on Rn.

Proof Only the triangle inequality needs to be addressed as the others follow imme-

diately from definition. From (3.5) we have that

jxþ yj2 ¼ ðxþ y; xþ yÞ
¼ x � xþ 2x � yþ y � y

a jxj2 þ 2jxj jyj þ jyj2

¼ ðjxj þ jyjÞ2;
and the result follows. Note that in the third step, the Cauchy–Schwarz inequality

was used because it implies that x � ya jxj jyj. n

*3.1.5 Other Norms and Norm Inequalities for Rn

It turns out that there are many norms that can be defined on Rn in addition to the

standard norm in (3.3).

Example 3.19

1. For any p with 1a p<y, the so-called lp-norm, pronounced ‘‘lp-norm,’’ is de-

fined by
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kxkp 1
Xn
j¼1

jxijp
 !1=p

: ð3:10Þ

2. Extending to p ¼ y, the so-called lT-norm, pronounced ‘‘l infinity norm,’’ is

defined by

kxky ¼ max
i

jxij: ð3:11Þ

Remark 3.20 We still have to prove that these lp-norms are true norms by the defini-

tion above, but note that for p ¼ 2, the l2-norm is identical to the standard norm

defined in (3.3). So the lp-norms can be seen to generalize the standard norm by gen-

eralizing the power and root used in the definition. Also, as will be seen below, while

appearing quite di¤erently defined, the ly-norm will be seen to be the ‘‘limit’’ of the

lp-norms as p increases to y.

The challenge of demonstrating that these examples provide true norms is to show

the triangle inequality to be satisfied, since the other needed properties are easy to

verify. For the ly-norm in (3.11) the triangle inequality follows from (2.7), since the

ly-norm is a maximum of absolute values. That is, jxi þ yija jxij þ jyij for any i by

(2.7), and we have that

max
i

jxi þ yija max
i

ðjxij þ jyijÞa max
i

jxij þmax
i

jyij:

Similarly the l1-norm again satisfies the triangle inequality due to (2.7), since the l1-

norm is a sum of absolute values, and

Xn
j¼1

jxi þ yija
Xn
j¼1

jxij þ
Xn
j¼1

jyij:

For the lp-norm with 1 < p < y, the proof will proceed in a somewhat long series

of steps that should be simply scanned on first reading, focusing instead on the flow

of the logic. The proof proceeds in steps:

1. First o¤, the triangle inequality in this norm is called the Minkowski inequality

or Minkowski’s inequality, and was derived by Hermann Minkowski (1864–1909) in

1896. The proof of this inequality requires a generalization of the Cauchy–Schwarz

inequality, which is called the Hölder inequality or Hölder’s inequality, derived by

Otto Hölder (1859–1937) in 1884 in a more general context than presented here.

2. To derive Hölder’s inequality, we require Young’s inequality, which was derived

by W. H. Young (1863–1942) in 1912.
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Reversing the steps to a proof, we begin with Young’s inequality. It introduces a

new notion that arises often in the study of lp-norms, and that is the notion of an

index q being the conjugate index to p. Specifically, given 1 < p < y, the index q is

said to be conjugate to p if 1
p
þ 1

q
¼ 1. It is then easy to see that q ¼ p

p�1 also satisfies

1 < q < y, and that p is also conjugate to q. In some cases this notion of conjugacy

is extended to 1a pay, where one defines 1
y 1 0, and hence p ¼ 1 and q ¼ y

are conjugate. This notion highlights the uniqueness of the index p ¼ 2, namely that

this is the only index conjugate to itself, a fact that will later be seen to be quite

significant.

Before turning to the statement and proof of Young’s inequality, note that the nat-

ural logarithm is a concave function, which means that for any x; y > 0,

t ln xþ ð1� tÞ ln ya lnðtxþ ð1� tÞyÞ for 0a ta 1: ð3:12Þ
Graphically, for given points x; y > 0, say y > x > 0 for definiteness, the straight

line connecting the points ðx; ln xÞ and ðy; ln yÞ never exceeds the graph of the func-

tion f ðzÞ ¼ ln z for xa za y. This line in fact is always below the graph of this

function except at the endpoints, where the curve and line intersect. This is a prop-

erty called ‘‘strictly concave.’’

This property is di‰cult to prove with the tools thus far at our disposal, but as will

be seen in chapter 9, the tools there will make this an easy derivation. At this point

we simply note that the inequality in (3.12) is equivalent to the arithmetic mean–

geometric mean inequality whenever t is a rational number. This familiar inequality,

which is also developed in chapter 9, states that for any collection of positive num-

bers, fxigni¼1, that AMbGM, or notationally,

1

n

Xn
i¼1

xi b
Yn
i¼1

xi

 !1=n
: ð3:13Þ

If t ¼ a
b
, a rational number in ½0; 1�, apply (3.13) with a of the xi equal to x, and

b� a of the xi equal to y, producing

a

b
xþ 1� a

b

� �
yb xa=by1�ða=bÞ:

Taking logarithms of this inequality is equivalent to (3.12) for rational t A ½0; 1�.
While it is compelling that (3.12) is proved true for all rational t, the tools of chapter

9 are still needed to extend this to all t A ½0; 1�. For now, we assume (3.12) and defer a

proof to chapter 9.
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Proposition 3.21 (Young’s Inequality) Given p, q so that 1 < p; q < y, and 1
p
þ 1

q
¼

1, then for all a; b > 0,

aba
ap

p
þ bq

q
: ð3:14Þ

Proof Assuming the concavity of ln x, and with t ¼ 1
p
in (3.12), we derive

lnðabÞ ¼ ln ap

p
þ ln bq

q

a ln
ap

p
þ bq

q

� �
:

The result in (3.14) follows by exponentiation. n

Remark 3.22 The notion of concave function in (3.12) makes sense for any function

f : X ! R, and not just where X is the one-dimensional real line. All that is required is

that X is a vector space over R so that the addition of vectors in the inequality makes

sense. In other words, a function f is concave if for x; y A X,

tf ðxÞ þ ð1� tÞ f ðyÞa f ðtxþ ð1� tÞyÞ for 0a ta 1: ð3:15Þ
As noted above, the next result generalizes the Cauchy–Schwarz inequality, which

is now seen as the special case: p ¼ q ¼ 2.

Proposition 3.23 (Hölder’s Inequality) Given p, q so that 1a p; qay, and 1
p
þ 1

q
¼

1, where notationally, 1
y 1 0, we have that

jx � yja kxkpkykq: ð3:16Þ

In other words, the absolute value of the standard inner product is bounded above by the

product of the lp- and lq-norms of the vectors, if ðp; qÞ are a conjugate pair of indexes.

Proof First, if p ¼ 1 and q ¼ y or conversely, then by the triangle inequality for

absolute value in (2.7) applied to (3.4),

jx � yja
Xn
i¼1

jxiyija max
i

jxij
Xn
i¼1

jyij ¼ kxkykyk1:

Otherwise, we apply Young’s inequality n-times to each term of the summation with

ai 1
jxi j
kxkp , and bi 1

jyi j
kykq , which produces
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Xn
i¼1

jxij
kxkp

� jyijkykq
a

1

p

Xn
i¼1

jxijp
kxkpp

þ 1

q

Xn
i¼1

jyijq
kykqq

¼ 1

p
þ 1

q
¼ 1;

and consequently,
Pn

i¼1 jxij jyija kxkpkykq. Now since jx � yjaPn
i¼1 jxij jyij by the

triangle inequality, the result follows. n

Finally, the goal of this series of results, that the lp-norms satisfy the triangle in-

equality, can now be addressed:

Proposition 3.24 (Minkowski’s Inequality) Given p with 1a pay,

kxþ ykp a kxkp þ kykp: ð3:17Þ

Proof The cases of p ¼ 1;y, were handled above, so we assume that 1 < p < y.

We then have by (2.7),

kxþ ykpp ¼
Xn
i¼1

jxi þ yijp�1jxi þ yij

a
Xn
i¼1

jxi þ yijp�1jxij þ
Xn
i¼1

jxi þ yijp�1jyij:

We can now apply Hölder’s inequality to the last two summations:

Xn
i¼1

jxi þ yijp�1jxija kxkp
Xn
i¼1

jxi þ yijðp�1Þq
 !1=q

¼ kxkpkxþ ykp=qp ;

Xn
i¼1

jxi þ yijp�1jyija kykp
Xn
i¼1

jxi þ yijð p�1Þq
 !1=q

¼ kykpkxþ ykp=qp ;

since ðp� 1Þq ¼ p. Combining, we get

kxþ ykpp a ðkxþ ykp=qp Þðkykp þ kxkpÞ;

and the result follows by division by kxþ ykp=qp since p� p

q
¼ 1. n

Admittedly, quite a lot of machinery was needed to demonstrate that the definition

above for kxkp produced a true norm. However, there will be a significant payo¤ in

later chapters as these norms are the basis of important spaces of series, and in later

studies, important spaces of functions.
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Remark 3.25 Note that despite its appearance the ly-norm, kxky, is the limit of the

lp-norms kxkp as p ! y. That is,

kxkp ! kxky as p ! y:

To see this, assume that the ly-norm of x satisfies kxky ¼ jxj j. That is, no component

is larger in absolute value than the jth element. Then

kxkp
kxky

¼
Xn
i¼1

jxijp
kxkp

y

 !1=p
¼

Xn
i¼1

l
p
i

 !1=p
:

Now, since lj ¼ 1 and all other li a 1, we have 1a
Pn

j¼1 l
p
i a n, and hence the pth

root of this sum approaches 1 as p ! y.

3.2 Metric Spaces

3.2.1 Basic Notions

An important application of the notion of a norm is that it provides the basis for

defining a distance function or a metric, which will be seen to have many applications.

On Rn, the standard metric is defined in terms of the standard norm by

dðx; yÞ1 jx� yj: ð3:18Þ
Just as the general definition of norm was intended to capture the essential proper-

ties of the standard norm jxj defined on Rn, so too is the general definition of dis-

tance or metric intended to capture the essential properties of jx� yj defined on Rn.

The connection between norms and metrics is discussed below, but note that in order

for a set X to have a norm defined on it, this set must have an arithmetic structure so

that quantities like xþ y, and ax make sense. Consequently norms are defined on

vector spaces that allow such an arithmetic structure. On the other hand, a metric

can be defined on far more general sets than vector spaces.

Definition 3.26 A distance function or metric on an arbitrary set X is defined as a

real-valued function on X 2 1X � X, and denoted dðx; yÞ or dðx; yÞ, with the following

properties:

1. dðx; xÞ ¼ 0.

2. dðx; yÞ > 0 if x0 y.
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3. dðx; yÞ ¼ dðy; xÞ.
4. (Triangle inequality) dðx; yÞa dðx; zÞ þ dðz; yÞ for any z A X.

If X is a vector space over F , a distance function is called translation invariant if for

any z A X:

5. dðx; yÞ ¼ dðxþ z; yþ zÞ.
A distance function is called homogeneous if for any a A F :

6. dðax; ayÞ ¼ jajdðx; yÞ.
Definition 3.27 A metric space is any collection of points X on which there is defined

a distance function or metric dð� ; �Þ. For clarity, a metric space may be denoted ðX ; dÞ.
Remark 3.28 The name ‘‘triangle inequality’’ will be momentarily shown to be consis-

tent with the same notion defined in the context of norms.

Proposition 3.29 If dðx; yÞ is a given metric, then:

1. d 0ðx; yÞ1 ldðx; yÞ is a metric for any real l > 0.

2. d 0ðx; yÞ1 dðx;yÞ
1þdðx;yÞ is a metric.

Proof The first statement follows easily from the definition, and in this case, the

new metric d 0 can be thought of as measuring distances in a di¤erent set of units.

For example, if d measures distances in units of meters, then with l ¼ 100, d 0 pro-
vides distances in centimeters. For the second statement, only the triangle inequality

requires examination. To show that

dðx; yÞ
1þ dðx; yÞa

dðx; zÞ
1þ dðx; zÞ þ

dðz; yÞ
1þ dðz; yÞ ;

we simply cross-multiply, since all denominators are positive, and cancel common

terms. n

This second metric is interesting because under this definition, the distance between

any two points of X is less than 1. More specifically, for any l, 0a l < 1,

d 0ðx; yÞ ¼ l if and only if dðx; yÞ ¼ l

1� l
; ð3:19aÞ

dðx; yÞ ¼ l if and only if d 0ðx; yÞ ¼ l

1þ l
: ð3:19bÞ
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3.2.2 Metrics and Norms Compared

Because the definitions of norm and metric appear so related, it is natural to wonder

about the connection between the two concepts. Can we make norms out of metrics

and metrics out of norms? First, we have to be careful because, as noted above,

norms are always defined on vector spaces while a metric can be defined on an arbi-

trary set. Norms require an arithmetic structure on the set X , since one item in the

definition required that j0j ¼ 0, and hence we needed to have 0 A X well defined.

Given x; y A X and a A R, we also require in the definition of norm that xþ y A X

and ax A X be well defined. So, by definition, a normed space must have this mini-

mal arithmetic structure, and the vector space structure is a natural requirement as

noted in the norm definition.

On the other hand, a metric can be defined on any set, as long as the distance func-

tion dðx; yÞ satisfies the required properties. There are no arithmetic operations on

the elements of X as part of the definition of metric. So the better question is, Given

a vector space X , can we make norms out of metrics and metrics out of norms?

The following shows that if the metric satisfies the additional properties 5 and 6

above, that a norm can be constructed.

Proposition 3.30 If dðx; yÞ is a metric on a vector space X that is homogeneous and

translation invariant, then kxk1 dðx; 0Þ is a norm and is said to be induced by the

metric d.

Proof Property 1 in the norm definition, that jxj A R, follows from a metric being a

real-valued function, while norm property 2, that j0j ¼ 0, and jxj > 0 for x0 0, fol-

lows from 1 and 2 in the metric definition. Finally, norm property 3, that jaxj ¼
jaj jxj for a A R, follows from the assumed homogeneity of d, while norm property

4, that jxþ yja jxj þ jyj is a consequence of translation invariance and homogene-

ity. Specifically,

jxþ yj ¼ dðxþ y; 0Þ ¼ dðx;�yÞa dðx; 0Þ þ dð0;�yÞ ¼ jxj þ jyj: n

The reverse implication is easier: on a vector space, a norm always gives rise to a

distance function.

Proposition 3.31 If kxk is a norm on a vector space X, then

dðx; yÞ1 kx� yk; ð3:20Þ
is a metric on X, and in particular, ðX ; dÞ is a metric space. The metric d is said to be

induced by the norm k k.
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Proof Only distance property 4, which is again called the triangle inequality,

requires comment. Rewriting, we seek to prove that

dðx; yÞa dðx; zÞ þ dðz; yÞ;
kx� yka kx� zk þ kz� yk:
Letting x 0 ¼ x� z, and y 0 ¼ z� y, we have that x 0 þ y 0 ¼ x� y, and this inequality

for d is equivalent to the triangle inequality for the associated norm applied to x 0, y 0

and x 0 þ y 0. n

Corollary 3.32 dðx; yÞ1 jx� yj defined in (3.3) is a metric on Rn, and consequently

ðRn; dÞ is a metric space. In addition dðx; yÞ1 jx� yj defined in (2.2) is a metric on

C, and consequently ðC; dÞ is a metric space.

Proof The proof follows immediately from the proposition above. n

The corollary above provides the ‘‘natural’’ metric on Rn, but there are many

more that are definable in terms of the various lp-norms:

Corollary 3.33 Given any lp-norm kxkp for 1a pay on Rn, then

dpðx; yÞ1 kx� ykp; 1a pay; ð3:21Þ

is a metric on Rn, and consequently ðRn; dpÞ is a metric space.

Proof The proof follows immediately from the proposition above, since Rn is a vec-

tor space. n

Remark 3.34 Of course, d2ðx; yÞ in this corollary is just the standard metric dðx; yÞ
on Rn defined in (3.3). The metrics defined in (3.21) are referred to as lp-metrics, or

metrics induced by the lp-norms.

To understand the structure of these lp-metrics, dpðx; yÞ, we investigate R2 where

visualization is simple but instructive. Specifically, it is instructive to graph the closed

lp-ball of radius 1 about 0,

B
p
1 ð0Þ ¼ fx A R2 j dpðx; 0Þ1 kxkp a 1g; ð3:22Þ

for various values of p, 1a pay. Analogously, one can define the closed lp-ball of

radius r about y by

Bp
r ðyÞ ¼ fx A R2 j dpðx; yÞ1 kx� ykp a rg: ð3:23Þ
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The corresponding open lp-ball of radius 1 about 0 is defined as

B
p
1 ð0Þ ¼ fx A R2 j dpðx; 0Þ1 kxkp < 1g; ð3:24Þ

and the open lp-ball of radius r about y by

Bp
r ðyÞ ¼ fx A R2 j dpðx; yÞ1 kx� ykp < rg: ð3:25Þ

Note that all these lp-ball definitions makes sense in any Rn. Of course, for p ¼ 2,

the closed l2-ball of diameter 1 is truly a ‘‘2-dimensional ball,’’ and it represents the

familiar circle of radius 1, including its interior. In R3, it is indeed a ball, or sphere of

radius 1, again including its interior. The corresponding open balls are just the inte-

riors of these closed balls.

For other values of p, these figures do not resemble any ball we would ever con-

sider playing with, but mathematicians retain the familiar name anyway. For exam-

ple, lp-balls about 0 for p ¼ 1; 1:25; 2; 5, and y in R2 are seen in figure 3.1. These

can be understood to be open or closed balls depending on whether or not the

‘‘boundary’’ of the ball is included.

For p ¼ 1, this innermost ‘‘ball’’ has corners at its intersection points with the

coordinate axes, while for p > 1, these corners round out, approaching a circle as

p ! 2. For p > 2, these balls again begin to square o¤ in the direction of the diago-

nal lines in the plane, y ¼Gx. It is clear from this figure that these balls very quickly

Figure 3.1
lp-Balls: p ¼ 1; 1:25; 2; 5;y
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converge to the ly-ball, which is the square with sides parallel to the axes, and four

corners at ðG1;G1Þ.
Even more generally, given any metric space ðX ; dÞ or normed space, ðX ; kxkÞ,

one can define the closed ball of radius r about y by

BrðyÞ ¼ fx A X j dðx; yÞa rg; ð3:26Þ
or

BrðyÞ ¼ fx A X j kx� yka rg; ð3:27Þ
as well as the associated open ball of radius r about y, denoted BrðyÞ, using strict in-

equality <, rather than the inequalitya.

One thing that each of these balls has in common with a true ball, if 1a pay, is

that they are all convex sets. This means that if x1; x2 A Bp
r ðyÞ, then the straight line

segment joining these points also lies in Bp
r ðyÞ. That is,

If x1; x2 A Bp
r ðyÞ; then tx1 þ ð1� tÞx2 A Bp

r ðyÞ for 0a ta 1: ð3:28Þ

The same is true for a closed ball in a general normed space, as well as in a metric

space X that is also a vector space, so in (3.28), tx1 þ ð1� tÞx2 makes sense. And

similarly open balls are convex:

If x1; x2 A Bp
r ðyÞ; then tx1 þ ð1� tÞx2 A Bp

r ðyÞ for 0a ta 1: ð3:29Þ

Use of this terminology and of the word ‘‘convex’’ is related to the notion of a

concave function defined in (3.12). Analogously, the lp-ball above and the general

normed ball are convex because a norm, interpreted as a function f ðxÞ ¼ kxk, is a
convex function. That is, given x1, x2,

ktx1 þ ð1� tÞx2ka tkx1k þ ð1� tÞkx2k for 0a ta 1: ð3:30Þ
This inequality follows directly from the triangle inequality. Stated more generally, a

function f ðxÞ is a convex function if for x1; x2 A X ,

f ðtx1 þ ð1� tÞx2Þa tf ðx1Þ þ ð1� tÞ f ðx2Þ for 0a ta 1: ð3:31Þ
Note that here the inequality is reversed compared to the definition of concave func-

tion in (3.15) above.

Graphically, when X is the real line and x < y, the inequality in (3.31) states that

on the interval ½x; y�, the value of the function never rises above the line segment

connecting ðx; f ðxÞÞ and ðy; f ðyÞÞ. This insight on convexity provides a geometric
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interpretation of the implication of the triangle inequality as required in the defini-

tion of norm. That is, the triangle inequality assures that all balls defined by norms

are convex sets. Also the reason why no attempt was made to define an lp-norm for

0 < p < 1 is that in these cases the triangle inequality is not satisfied and geometri-

cally, as is easily demonstrated, the associated lp-balls are not convex.

For example, with p ¼ 0:5, we have B0:5
1 ð0Þ in figure 3.2. If we choose x1 ¼ ð1; 0Þ

and x2 ¼ ð0; 1Þ, it is clear that ktx1 þ ð1� tÞx2k0:5 ¼ kðt; 1� tÞk0:5 > 1 for 0 < t < 1,

and this point is outside the ball. However, tkx1k0:5 þ ð1� tÞkx2k0:5 ¼ 1. Conse-

quently this ball is not convex by definition, as is also visually apparent.

*3.2.3 Equivalence of Metrics

Two metrics on a metric space X , say d1 and d2, may produce di¤erent numerical

values of distance between arbitrary points x; y A X , but they may be fundamentally

‘‘equivalent’’ in terms of conclusions that might be drawn from certain observations

on the space. A trivial example on R would be where d1ðx; yÞ ¼ jx� yj, the standard
metric, and d2ðx; yÞ ¼ ld1ðx; yÞ, where l is a positive real number. As noted above,

d2 is a metric for any positive number l. Also, while all such metrics produce di¤er-

ent numerical values of distance, such as miles and kilometers, they are fundamen-

tally the same in many ways.

For this example, if fxn; ygHX is a collection of points so that d1ðxn; yÞ ! 0 as

n ! y, we would observe the same property under d2 for any positive l. Corre-

Figure 3.2
lp-Ball: p ¼ 0:5
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spondingly d2ðxn; yÞ ! 0 as n ! y would imply the same thing about d1. Note that

a formal definition of what d2ðxn; yÞ ! 0 means will be presented in the chapter 5,

but the intuition for this idea is adequate for our purposes here.

In general, two metrics are defined as equivalent when this simultaneous conver-

gence property is satisfied. The following definition provides a neat way of ensuring

this conclusion:

Definition 3.35 Two metrics, d1 and d2, on a metric space X are Lipschitz equivalent

if there exists positive real constants l1 and l2 so that for all x; y A X,

l1d1ðx; yÞa d2ðx; yÞa l2d1ðx; yÞ: ð3:32Þ
Lipschitz equivalence is named for Rudolf Lipschitz (1832–1903), who introduced

a related notion of Lipschitz continuity that will be studied in chapter 9.

It is clear from this definition that the original objective is satisfied. That is, it

would seem clear that

d1ðxn; yÞ ! 0 i¤ d2ðxn; yÞ ! 0;

based on our current informal understanding of the definition of convergence. But

logically, and this will be made rigorous in chapter 5, the result is forced by the

inequalities in (3.32).

Note that every metric is Lipschitz equivalent to itself, and also it is easy to see

that this notion of Lipschitz metric equivalence is symmetric. That is, if (3.32), then

1

l2
d2ðxn; yÞa d1ðxn; yÞa 1

l1
d2ðxn; yÞ: ð3:33Þ

This notion is also transitive: if d1 and d2 are Lipschitz equivalent, and d2 and d3 are

Lipschitz equivalent, then d1 and d3 are Lipschitz equivalent.

An important concept in mathematics is one of an equivalence relation, defined on an

arbitrary set. The simplest equivalence relation is equality, where xRy denotes x ¼ y.

Definition 3.36 An equivalence relation on a set X, denoted xRy or x@ y as short-

hand for ‘‘x is related to y,’’ is a binary relation on X; that is:

1. Reflexive: xRx for all x A X.

2. Symmetric: xRy if and only if yRx.

3. Transitive: if xRy and yRz, then xRz.

The importance of equivalence relations is that one can form equivalence classes of

elements of X . An equivalence class is a collection of elements related to each other
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under R. It is defined so that any two elements from a given class are equivalent,

while any two elements from di¤erent classes are not equivalent.

For example, the collections of Lipschitz equivalent metrics on a given space X are

equivalence classes. For many applications it matters not which element of the class

is used. For example, continuing with some informality, if we define xn ! y by

dðxn; yÞ ! 0 for a given metric d, we could equally well define xn ! y relative to

any metric in the equivalence class of d. That is, the notion xn ! y depends not so

much on d as on the equivalence class of d. If this property is true for a given d, it is

also true for an other d 0 that is Lipschitz equivalent, d@L d
0, while if this property is

false for a given d, it is also false for an other d 0 with d@L d
0. However, in neither

case can one draw a conclusion about the truth or falsity of this property for metrics

outside the given equivalence class.

Proposition 3.37 If dðx; yÞ is a metric on X, then:

1. ldðx; yÞ@L dðx; yÞ for any real l > 0.

2. d 0ðx; yÞ1 dðx;yÞ
1þdðx;yÞ @L dðx; yÞ if and only if dðx; yÞaM for all x; y A X.

Proof In defining d2ðx; yÞ ¼ ldðx; yÞ and d1ðx; yÞ ¼ dðx; yÞ, it is apparent that

(3.32) is satisfied with l1 ¼ l2 ¼ l, proving part 1. The second statement is initially

less obvious, but it follows directly from the one-to-one correspondence between d

and d 0 distances in (3.19). With d2ðx; yÞ ¼ d 0ðx; yÞ and d1ðx; yÞ ¼ dðx; yÞ, we derive

from (3.19b) that d 0ðx; yÞa dðx; yÞ, which is consistent with l2 ¼ 1 in (3.32). For the

other inequality we have from (3.19b) that if dðx; yÞaM, then d 0ðx; yÞa M
Mþ1 ,

which is algebraically equivalent to 1
1�d 0ðx;yÞ a 1þM. Then from (3.19a),

dðx; yÞ ¼ d 0ðx; yÞ
1� d 0ðx; yÞ a ð1þMÞd 0ðx; yÞ;

and so the second inequality in (3.32) is satisfied with l1 ¼ 1
Mþ1 . If dðx; yÞ is un-

bounded, there can be no l1 for which l1dðx; yÞa d 0ðx; yÞ, since d 0ðx; yÞa 1. n

In addition to these examples of equivalent metrics, it may be surprising but it

turns out that the various lp-norms, for 1a pay, are equivalent in Rn.

Proposition 3.38 On Rn, all distances given by the lp-norms in (3.21) for 1a pay
are Lipschitz equivalent.

Proof We first show that if 1a p < y, that the lp-distance is Lipschitz equivalent

to the ly-distance. For given x ¼ ðx1; x2; . . . ; xnÞ and y ¼ ðy1; y2; . . . ; ynÞ, we have

that
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max
i

jxi � yijp a
Xn
i¼1

jxi � yijp a n max
i

jxi � yijp:

That is, taking pth roots:

dyðx; yÞa dpðx; yÞa n1=pdyðx; yÞ;
and so every lp-distance is Lipschitz equivalent to the ly-distance if 1a p < y.

Since Lipschitz equivalence is transitive, we conclude that dpðx; yÞ is equivalent to

dp 0 ðx; yÞ for any 1a p; p 0 ay. In fact, using (3.32) and (3.33), we can infer bounds

between dpðx; yÞ and dp 0 ðx; yÞ:

n�1=p 0
dp 0 ðx; yÞa dpðx; yÞa n1=pdp 0 ðx; yÞ: ð3:34Þ

n

Remark 3.39

1. Note that the l1 and l2 bounds between dpðx; yÞ and dyðx; yÞ are sharp in that these

bounds can be achieved by examples and hence cannot be improved upon. The left-

hand bound is attained, for example, with x ¼ ðx; 0; . . . ; 0Þ and y ¼ ðy; 0; . . . ; 0Þ, or
with x and y being similarly defined to be on the same ‘‘axis.’’ We can in fact observe

this equality in figure 3.1, where the five lp-balls about 0 for p ¼ 1; 1:25; 2; 5;y, are

seen to intersect at the axes. On the other hand, the right-hand bound is attained for

x ¼ ðx; x; . . . ; xÞ and y ¼ ðy; y; . . . ; yÞ, as well as other point combinations with

jxi � yij ¼ c > 0—that is, on the ‘‘diagonals’’ of Rn, which is again seen on figure

3.1. However, the inequalities between dpðx; yÞ and dp 0 ðx; yÞ in (3.34) are not sharp,

as is easily verified by considering the case p ¼ p 0. With a more detailed analysis using

the tools of multivariate calculus, we would obtain the sharp bounds with 1a pa

p 0 ay,

dp 0 ðx; yÞa dpðx; yÞa nð p
0�pÞ=pp 0

dp 0 ðx; yÞ;
and these bounds would again be seen to be achieved on the axes and diagonals of Rn,

respectively.

2. Note also that the Lipschitz equivalence of dpðx; yÞ and dyðx; yÞ, and more gener-

ally, of dpðx; yÞ and dp 0 ðx; yÞ, depends on the dimension of the space n in a way that

precludes any hope that this equivalence will be preserved as n ! y (as will be formal-

ized in chapter 6 on series). In other words, an informal consideration of the notion of

an Ry suggests that the various lp-distances will not be Lipschitz equivalent.
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3. Not all metrics are Lipschitz equivalent to those in this proposition. For example,

define

dðx; yÞ ¼ 0; x ¼ y

1; x0 y

�
:

It is easy to show that this is indeed a metric on Rn that is not Lipschitz equivalent to

the lp-distances.

4. It was noted above that every norm on a vector space induces a metric on that space.

Consequently it is common to say that two such norms are Lipschitz equivalent if the

respective induced metrics are equivalent in the above-described sense.

As a final comment regarding Lipschitz equivalence of metrics, we note that there

is a simple and natural geometric interpretation of this concept. First, we introduce a

more general notion of metric equivalence, sometimes called topologically equiva-

lent. The term ‘‘topology’’ will be addressed in chapter 4, and is related to the notion

of open sets in a space.

Definition 3.40 Two metrics on a metric space X, say d1 and d2, are equivalent, and

sometimes topologically equivalent for specificity, if for any x A X and r > 0, B
ð2Þ
r ðxÞ

defined relative to d2 both contains an open d1-ball and is contained in an open d1-

ball. That is, there are real numbers r1, r2, both formally functions of r and x, so that

Bð1Þ
r1
ðxÞHBð2Þ

r ðxÞHBð1Þ
r2
ðxÞ; ð3:35Þ

where B
ð jÞ
r ðxÞ denotes an open ball defined relative to dj, and AHB denotes ‘‘set inclu-

sion’’ and means that every point in A is also contained in B.

Proposition 3.41 In a metric space X, if d1 and d2 are Lipschitz equivalent as in

(3.32), then they are topologically equivalent as in (3.35).

Proof If we are given x A X and r > 0, and B
ð2Þ
r ðxÞ ¼ fy j d2ðx; yÞ < rg, by (3.32) we

conclude that for any y A B
ð2Þ
r ðxÞ,

l1d1ðx; yÞa d2ðx; yÞa l2d1ðx; yÞ;
so (3.35) is satisfied with r2 ¼ r=l1 and r1 ¼ r=l2. n

This geometric statement is simple to see in figure 3.1. Notice that any lp-ball can

be envisioned as containing, and being contained in, two lp 0 -balls for any p 0. A more

specific example is seen in figure 3.3 where the l2-ball of radius 1 contains the l1-ball
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of radius 1, and is contained in the l1-ball of radius
ffiffiffi
2

p
, and this l1-ball in turn is con-

tained in the l2-ball of radius
ffiffiffi
2

p
.

Remark 3.42 The notion of metric equivalence, or ‘‘topological equivalence,’’ is more

general than Lipschitz equivalence, since it allows the relationship between these met-

rics to vary with x A X since the numbers r1, r2 depend on x. For Lipschitz equivalence

this relationship is fixed for all x, as noted in the proof above.

3.3 Applications to Finance

3.3.1 Euclidean Space

Euclidean space provides a natural framework in any discipline in which one is try-

ing to solve problems that involve several parameters, and such problems exist in

many areas of finance. For example, in asset allocation problems one is attempting

to divide a given total investment fund between certain available asset classes, how-

ever defined, and the solution to such a problem can naturally be identified with a

point, or allocation vector, in a Euclidean space. The dimension of this space is logi-

cally equal to the number of available asset classes. In the fixed income markets the

very notion of a yield curve, which is defined in terms of the yields on a collection of

reference bonds of increasing maturities, compels the interpretation of a yield curve

Figure 3.3
Equivalence of l1- and l2-metrics
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vector in an appropriately dimensioned Euclidean space. Such yield vectors can then

be translated to spot rate or forward rate vectors as needed by the given application,

or used in a price risk analysis. Finally, a given security or portfolio of securities can

be modeled in terms of projected cash flows, and these cash flow vectors, whether

fixed or variable, can then be used in a variety of portfolio modeling applications.

Asset Allocation Vectors

An asset allocation problem involves determining a vector of dollar amounts: ðx1;
x2; . . . ; xnÞ, where n denotes the number of available assets, xi denotes the dollar in-

vestment in the ith asset, and
P

xi ¼ A, the total amount to be invested. In certain

applications, all xi satisfy xi b 0 and represent long positions, but we can allow

xi < 0 in cases where short-selling is possible. Equivalently, we can parametrize the

solution to the problem in percentage units so that xi denotes the proportion of the

portfolio to be invested in the ith asset, again long or short, and then
P

xi ¼ 1.

Alternatively, the n-tuple ðx1; x2; . . . ; xnÞ might represent a portfolio trade, whereby

xi > 0 implies a purchase and xi < 0 a sale of jxij units of the ith asset, and nowP
xi ¼ 0 unless the trade is intended to also increase or decrease the portfolio bal-

ance due to net deposits or redemptions. In all such cases it is only natural to think

of the feasible n-tuples as residing in some collective structure such as Rn. This is es-

pecially true in the trading model, since the vector space arithmetic properties of Rn

exactly reflect arithmetic operations for such trades. Scalar multiplication by 2, say,

which doubles the trading done, doubles each individual trade, which is to say, is

reflected componentwise in the trade vector. If one trade is implemented after an-

other, the net trade is equivalent to the componentwise sum of the trade vectors.

However, this may appear to be a case of overkill. Admittedly, in all such cases the

real world feasible solution space is a finite collection of points, which clearly Rn is

not. The real world provides a finite solution set because first, no portfolio can be ar-

bitrarily large, nor can a trade be implemented in arbitrarily large volumes. Second,

even the maximally detailed solution cannot be implemented in units of less than

$.01 in the United States, or 1< in Japan, or .01@ in the European Union, and so

there are only finitely many portfolio allocations, or trades, to consider. More realis-

tically, assets cannot be acquired in such units. For instance, we cannot acquire an

extra $.01 of a given US asset, and so the feasible solution set is far cruder than this

maximally detailed solution set implies.

Ironically, most problems in finance are harder to solve if one explicitly recognizes

the finiteness of this solution set. That is, if the objective of the asset allocation or

portfolio trade is to optimize a given function, referred to as the objective function,

it can be very di‰cult to solve this problem over the finite ‘‘grid’’ of feasible solu-
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tions, other than by a brute-force search. The di‰culty arises because despite its

finiteness, the feasible solution set can be quite large. In most cases it is far easier to

make believe that one can trade any amount of any asset and solve the problem at

hand using the methods of later chapters that take advantage of the structure of Rn.

It is then reasonable to assume that the approximate implementation in the real

world of this too-detailed solution will be quite close to that which would have been

obtained had the finite feasibility set been explicitly recognized at the outset.

That is, by interpreting our problem in an artificially refined setting of Rn, we sim-

plify the solution, but we are then required to assume that the approximate imple-

mentation of the exact solution is close to the exact solution obtained had we begun

with the finite feasible solution set. In many cases this assumption can be checked.

That is, once we solve the more detailed problem, we can investigate to what extent

its approximate implementation is an optimal or near-optimal solution among feasi-

ble alternatives. Even this analysis can be simpler than searching for a best solution

on the grid at the outset.

Interest Rate Term Structures

There are three common bases for describing the term structures of interest rates,

where by ‘‘structure’’ is meant the functional dependence of rates on the term of the

implied loan. In practice, the most readily available data for loans exist in the bond

markets. The three term structure bases are:

1. Bond Yields: The interest rates that equate each coupon bond’s price to the pres-

ent value of the bond’s scheduled cash flows.

2. Spot Rates: The bond yields on real or hypothetical zero coupon bonds.

3. Forward Rates: The bond yields on ‘‘forward’’ zero coupon bonds, which is to

say, the yield today for future investments in zero coupon bonds.

The bond market provides insights to these structures, but for the term structure to

be meaningful, it is important that as many of the bond characteristics as possible are

controlled for, so that only the dependency on the bond’s terms remain.

For example, it is common to group bonds by currency and credit quality, avoid-

ing when possible unusual cash flow structures that get special pricing, or bonds with

embedded options. One special class in every major currency is the class of all risk-

free Treasury bonds issued by the country’s central government. Bonds at the next

highest credit rating, often denoted AAA or Aaa, are then grouped, as are the next

level of AA or Aa, and so forth. With enough bonds in a given group, a term struc-

ture can be inferred in any of the three bases. When bond data are sparse, interpola-

tion techniques are often used to estimate missing data.
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For a bond yield or spot rate, there is one implied time parameter determined by

the maturity of the bond. For forward rates, there are two time parameters: one

establishes the time of the investment in the forward zero coupon bond, and the sec-

ond determines the time of maturity of this bond.

To illustrate the calculation of these term structures, we assume that bonds have

semiannual coupons and that there are bonds available at all maturities from 0:5 to

n-years. As noted above, interpolation is often necessary to infer information at

maturities that have no market representatives. We also implement all calculations

with semiannual nominal rates, but note that these calculations can be implemented

in any nominal basis.

Bond Yields Using (2.15), bond yields at each maturity are derived by solving the

following equations for fijg, the semiannual bond yields:

Pj ¼ Fj

rj

2
a2j; ij=2 þ Fjv

2j
ij=2

; j ¼ 0:5; 1:0; 1:5; . . . ; n: ð3:36Þ

Here j denotes the term of the bond in years; fPjg are the bonds’ prices, frjg the

semiannual coupon rates, and fFjg the bonds’ par values. It is typical to fix

Fj ¼ 100, and so Pj denotes the price per 100 par. The result is the bond yield term

structure: ði0:5; i1; . . . ; inÞ, which can be envisioned as a vector in R2n.

One numerical approach to solving these equations, called interval bisection, is dis-

cussed in chapters 4 and 5.

Spot Rates From the same data used to determine the bond yield term struc-

ture, one can in theory calculate the spot rate structure, since a coupon bond is

nothing but a portfolio of zero coupon bonds. Using (2.19), the price Pj must reflect

spot rates: ðs0:5; s1; . . . ; sjÞ, each appropriate to discount a single cash flow of the

bond:

Pj ¼ Fj

rj

2

X2j
k¼1

1þ sk=2

2

� ��k

þ Fj 1þ sj

2

� ��2j

: ð3:37Þ

Notation 3.43 In this summation the present value of the cash flow at time k-years is

calculated with the factor

1þ sk

2

� ��2k

;

but then the summation above would be expressed in the nonstandard notation as
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Xj

k¼0:5

1þ sk

2

� ��2k

;

where it would be hoped that the reader understood that the index values must be incre-

mented by 0:5. To avoid this notational ambiguity, we use standard natural number

indexing, and consequently we need to halve the index values to obtain the correct

result.

Forward Rates As noted above, forward rates are functions of two time parameters,

defining the investment date in the zero coupon bond and the maturity date. In other

words, a forward can be denoted, fj;k, where j; k A f0; 0:5; 1:0; 1:5; . . . ; ng, with

k > j. In this notation, fj;k denotes the yield today for a ðk � jÞ-year zero coupon

bond, which is to be acquired at time j-years. Consequently f0;k ¼ sk. The forward

rate fj;k would be described as the ðk � jÞ-year forward rate at time j-years.

In the same way that sk is appropriate for discounting a cash flow from time k-

years to time 0, the forward rate fj;k is appropriate for discounting a cash flow from

time k-years to time j-years. With this interpretation, it must be the case that one can

discount from time k-years to time 0 either with the spot rate sk, or a sequence of

forward rates:

f0;0:5; f0:5;1:0; f1:0;1:5; . . . ; fk�0:5;k:

Of course, if k is an integer, one could also use the forward rates:

f0;1:0; f1:0;2:0; . . . ; fk�1;k:

Specifically, using the first sequence, and recalling the notational comment above,

obtains

1þ sk=2

2

� ��k

¼
Yk
i¼1

1þ fði�1Þ=2; i=2
2

� ��1

: ð3:38Þ

So the price of a bond can be written in the messy but unambiguous notation

Pj ¼ Fj

rj

2

X2j
k¼1

Yk
i¼1

1þ fði�1Þ=2; i=2
2

� ��1

þ F
Y2j
i¼1

1þ fði�1Þ=2; i=2
2

� ��1

: ð3:39Þ

In general, forward rates are calculated in series for applications, since from these

any forward fj;k can be calculated in the same way one calculates spot rates. Revert-

ing to the original notation with j; k A f0:5; 1:0; 1:5; . . . ; ng obtains
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1þ fj;k

2

� ��2ðk�jÞ
¼

Y2k
i¼2jþ1

1þ fði�1Þ=2; i=2
2

� ��1

: ð3:40Þ

Equivalence of Term Structures What is apparent from the three bond pricing for-

mulas (3.36), (3.37), and (3.39) is that if a term structure is given in any of the three

bases, all coupon bonds can be priced. What is also apparent is that these term struc-

tures must be consistent and produce the same prices, or else risk-free arbitrage is

possible.

For example, the price of zeros must be consistent with the pricing of coupon

bonds of the same issuer, since a coupon bond is a portfolio of zeros, and hence,

in theory, one can buy coupon bonds and sell zeros, or sell coupon bonds and

buy zeros. The first transaction is called coupon stripping, and the second, bond

reconstitution.

Similarly forward bond prices must be consistent with zero coupon pricing, since

by (3.38), a zero coupon bond is equivalent to a series of forward bonds. For exam-

ple, one could invest 100 in a 3-year zero, or invest this money in a 0:5-year zero,

and at the same time commit to a forward contract from time 0:5 to time 1:0 years,

and another from time 1:0 to 1:5 years, and so forth. The investment amount for

each forward contract would be calculated as the original 100 compounded with the

interest earned to that time, which is known. For example, if the 0:5-year spot rate is

2%, and the 0:5-year forward rate at time 0:5 is 2:2%, the investment amount for the

time 0:5-year forward contract would be 101, and the investment amount for the

time 1-year forward contract would be 102:11 to 2 decimals.

There is also a direct way to ‘‘replicate’’ a forward on a zero with a long/short

market trade in zero coupon bonds.

Example 3.44 Assume that a 5-year zero has semiannual yield 4%, and a 2-year zero

has yield 2%. To create a ‘‘long’’ forward contract from time 2 to time 5 years, mean-

ing an investment opportunity, we proceed as follows: In order to be able to invest 100

at time 2 years, we ‘‘short’’ 100ð1:01Þ�4
of the 2-year zero, and go long an equivalent

amount of the 5-year zero. So at time 0, no out-of-pocket money is required other than

perhaps a margin account deposit, which is not a cost. At time 2 years, we ‘‘cover the

short’’ position with an ‘‘investment’’ of 100. At time 5 years, we mature the original 5-

year zero for 100ð1:01Þ�4ð1:02Þ10, or 117:14 to 2 decimals. It is easy to show that if all

decimals are carried, then the rate obtained on this 100 investment at time 2 is exactly

equal to the 3-year forward rate at time 2 years, or 5:344%, implied by (3.40) and

(3.38):
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1þ fj;k

2

� ��2ðk�jÞ
¼ 1þ sk

2

� ��2k

1þ sj
2

� ��2j
: ð3:41Þ

So spot rates and forward rates must be equivalent because one can transact to

create zeros from forwards and forwards from zeros. Mathematically the associated

rates must satisfy (3.38), to create spot rates from forward rates, and (3.41), to create

forward rates from spot rates.

To convert between bond yields and spot rates is done as follows:

1. Spot Rates to Bond Yields: This is the easier direction, since spot rates provide

bond prices by (3.37), and one then calculates the associated bond yields by solving

(3.36) for ij (see interval bisection in chapters 4 and 5).

2. Bond Yields to Spot Rates: This methodology is known as bootstrapping or the

bootstrap method. First, all bond prices can be calculated from the bond yields using

(3.36). To derive the spot rates, the bootstrap method is an iterative procedure

whereby one spot rate is calculated at a time using (3.37). Specifically, one starts

with j ¼ 0:5, and this produces

P0:5 ¼ F0:5 1þ r0:5

2

� �
1þ s0:5

2

� ��1

;

from which s0:5 is easily calculated. One next calculates s1 from P1 using

P1 ¼ F1
r1

2

X2
k¼1

1þ sk=2

2

� ��k

þ F1 1þ s1

2

� ��2

;

which can be solved since s0:5 is known from the first step. This process continues in

that once ðs0:5; s1; . . . ; sjÞ is calculated, (3.37) is used to calculate sjþ0:5 from Pjþ0:5,

which is straightforward as this is then the only unknown in this equation.

Bond Yield Vector Risk Analysis

Besides portfolio allocation vectors, or trade vectors, another natural application of

n-tuples in finance is where ðx1; x2; . . . ; xnÞ represents one of the term structures of

interest rates discussed above. For example, these might be the yields of a collection

of benchmark bonds at certain maturities in increasing order, with interpolation used

for the other yields, or a complete collection of bond yields or spot rates, or a se-

quence of forwards.

The prices of other bonds might then be modeled as a function:

Pðx1; x2; . . . ; xnÞ:
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Within this model, one then envisions moment-to-moment changes in the term struc-

ture as vector increments to this initial yield curve:

Dx ¼ ðDx1;Dx2; . . . ;DxnÞ:
In turn, as this yield curve evolves over time, so too does the price of the portfolio,

and the change in this price can be modeled:

DPðx1; x2; . . . ; xnÞ1Pðx1 þ Dx1; x2 þ Dx2; . . . ; xn þ DxnÞ � Pðx1; x2; . . . ; xnÞ:
In practice, a spot rate structure is sometimes the most transparent approach. This

is because the connection between Dx and DP is then clearly visible for option-free

bonds. But there is far less transparency for bonds with embedded options. Also, al-

though spot rates can be readily calculated, they are not typically visible in market

trades, so a model that better connects DP with market observations might be a

bond yield model, whereby the mathematics needed to transform Dx on a bond yield

basis to Dy say, on a spot rate basis needed for pricing, is just part of the computer

model calculations, and then DP is modeled in terms of Dx.

Within this model, price sensitivities and hedging strategies can be evaluated. For-

mal methods for this risk analysis will be introduced in chapters 9 and 10.

Again, using an Rn-based model for such yield curve analyses is overkill formally,

as yields are rarely if ever quoted with even six decimal precision, which is equivalent

to ‘‘hundreths of a basis point’’ (1 basis point ¼ 0:01% ¼ 0:0001). However, just as in

the case of portfolio allocation and trading, most problems are easier to solve within

the framework of Rn than the discrete framework of feasible yield curves and yield

curve changes.

Cash Flow Vectors and ALM

As another example, the vector ðx1; x2; . . . ; xnÞ might represent the period-by-period

cash flows in a fixed income security such as a bond or a mortgage-backed security

(MBS). Because of the prepayment options a¤orded borrowers in MBS and callable

bonds, there can be significant variability in future cash flow which reflects the evolu-

tion of future interest rates, among other factors. Similarly, even a simple bullet bond

with no call option, where cash flows are, in theory, known with certainty at issue,

may experience variability due to the presence of credit risk and the potential for de-

fault and loss.

At a portfolio level, one might model the cash flow vectors representing the assets

and liabilities of a firm such as a life insurance or property and casualty insurance

company, commercial or investment bank, or pension plan. The liabilities could re-

flect explicit contractual obligations of the firm, or implicit liabilities associated with
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short positions in investment securities or financial derivatives. In any such case, these

cash flows may contain embedded options or credit risks, as well as changes due to

the issuance of new liabilities and portfolio management of assets.

Once so modeled, the firm is in a better position to evaluate its asset–liability man-

agement risk, or ALM risk, which is the residual risk to firm capital caused by any

risks in assets and liabilities that are not naturally o¤setting or otherwise hedged.

Interest rate risk noted in the last section is often a major component of ALM risk.

In each case, one can embed the possible cash flow structures in Rn and begin the

risk analysis and evaluation of hedging strategies with the advantage of the structure

this space a¤ords.

3.3.2 Metrics and Norms

Truthfully, the most prevalent norms and metrics in finance are of lp-type for

p ¼ 1; 2, and y. However, it is no easier to develop the necessary theory for these

three needed cases than it is to develop the general lp theory. So rather than expend

the e¤ort to develop three special cases and leave the reader thinking that these are

isolated and special metrics, this book takes the position that for the given e¤ort, it is

better to understand that p ¼ 1; 2, and y are simply three special points in a contin-

uum of metrics spanning: 1a pay.

And who knows, you may discover a natural application in finance of a di¤erent

lp-metric, and you will be ready with all the necessary tools.

One exception to the p ¼ 1; 2, and y rule is for the analysis of sample data.

Sample Statistics

Of the given three common lp-norms, l2 is the most frequently used. As is well known

and will be further developed in the chapter 7 on statistics, the most common mea-

sure of risk in finance is defined in terms of the measure known as variance, and its

square root, standard deviation, and both reflect an l2-type measurement. These are

special cases of what are known as the moments of the sample, and in general, sample

statistics utilize the full range of lp-norms for integer p.

For example, assume that x ¼ ðx1; x2; . . . ; xnÞ represents a ‘‘sample’’ of observa-

tions of a random variable of interest. In finance, a common example would be

observations of sequential period returns of an asset or portfolio of interest. For ex-

ample, the monthly returns of a given common stock, or a benchmark portfolio such

as the S&P 500 Index, would be natural candidates for analysis. Alternatively, these

observations might reflect equally spaced observations of a currency exchange rate,

or interest rate, or price of a given commodity. In any such case, the variable of in-

terest might be the actual observation, or the change in the observed value measured

3.3 Applications to Finance 101



in absolute or relative percentage units. The so-called moments of the sample are all

defined in a way which can be seen to be equivalent to an lp-norm:

1. Moments about the Origin

Mean: The mean of the sample is defined as

m̂m ¼ 1

n

Xn
j¼1

xj: ð3:42Þ

If all observations xj b 0, the sample mean is equivalent to an l1-norm, m̂m ¼ 1
n
kxk1. In

general, however, this is not true as the ‘‘sign’’ of xj is preserved in the definition of a

mean, but not preserved in the definition of an l1-norm.

Higher Moments: For r a positive integer, the so-called rth moment of the sample is

defined as

m̂m 0
r ¼

1

n

Xn
j¼1

xr
j ; ð3:43Þ

so we see that m̂m ¼ m̂m 0
1. Also, when the observations are nonnegative, or in the general

case where r is an even integer, this moment is related to the lr-norm, and we have

that m̂m 0
r ¼ 1

n
kxkr

r .

Notation: To distinguish between the moments of the sample and those of the un-

known theoretical distribution of all such data, of which the sample is just a subset,

one sometimes sees the notation of m or x for the sample mean, and m 0
r for the

rth sample moment about the origin, with m and m 0
r preserved as notation for the

moments of the theoretical distributions. A caret over a variable, such as m̂m, is also

standard notation to signify that its value is based on a sample estimate and not the

theoretical distribution.

2. Moments about the Mean

Variance and Standard Deviation: The ‘‘unbiased’’ variance of the sample is denoted

ŝs2, and the standard deviation is the positive square root, denoted ŝs, where

ŝs2 ¼ 1

n� 1

Xn
j¼1

ðxj � m̂mÞ2: ð3:44Þ

In some applications (see chapter 7), ŝs2 is defined with a divisor of n rather than

n� 1. If we denote by m̂m the vector with constant components equal to m̂m,
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m̂m ¼ ðm̂m; m̂m; . . . ; m̂mÞ;
the variance is related to the l2-norm, and we have that ŝs2 ¼ 1

n�1 kx� m̂mk22.
General Moments: The rth moment about the mean is denoted m̂mr and defined by

m̂mr ¼
1

n

Xn
j¼1

ðxj � m̂mÞr ð3:45Þ

so that ŝs2 ¼ n�1
n
m̂m2. When r is an even integer, we have that m̂mr ¼ 1

n
kx� m̂mkr

r .

Notation: As noted above, to distinguish between the moments of the sample and

those of the unknown theoretical distribution of all such data, of which the sample

is a subset, one sometimes sees the notation of s2 for the variance, and s for the stan-

dard deviation. There is no standard notation for the rth moment about the mean,

although analogous to the notational comment above, mr would be a logical choice.

Constrained Optimization

It turns out that many mathematical problems in finance, especially those related to

optimizing an objective function given certain constraints, are more easily solvable

within an l2-type measurement framework for reasons related to the tools of multi-

variate calculus, although these constraints may in fact be more accurately repre-

sented in terms of other norms.

Optimization with an l1-Norm An example of an l1-norm occurs within a trading

model. Assume that we have a portfolio within which we are trying to change some

portfolio attribute through a trade. Typically there are infinitely many trades that

can provide the desired objective. What is clear is that trading can be expensive due

to the presence of bid–ask spreads as well as other direct costs. If one evaluates the

portfolio value after a trade represented by the n-tuple x ¼ ðx1; x2; . . . ; xnÞ, whereby
xi > 0 implies a purchase, and xi < 0 a sale of a dollar amount of jxij of the ith asset

and
P

xi ¼ 0, the portfolio value after the trade can be represented as

Pðx1; x2; . . . ; xnÞ ¼ P� e
X

jxij:

Here e denotes the average cost per currency unit of trading, and P the current port-

folio market value.

Consequently one problem to be solved can be stated:

Of all ðx1; x2; . . . ; xnÞ that achieve portfolio objectives,

Minimize:
X

jxij ¼ kxk1.
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Typically the condition of achieving portfolio objectives can also be expressed in

terms of an equation involving the terms ðx1; x2; . . . ; xnÞ. For example, if b denotes

the current portfolio beta value, and b 0 the desired value, the constraint on traded

assets to achieve the target could be expressed as

b þ
P

xibi
P

¼ b 0; ð3:46Þ

where bi denotes the beta of the ith asset traded.

Summarizing, we see that this trading problem becomes one of finding a solution

of this equation with minimal l1-norm. That is, rewriting objectives results in

Minimize: kxk1 given

ðx; bÞ ¼ Pðb 0 � bÞ; ð3:47ÞX
xi ¼ 0:

Here b denotes the vector of tradable asset betas, and we used inner product notation

ðx; bÞ ¼P xibi. This is an example of a constrained optimization in that we are opti-

mizing, and in this case minimizing, the l1-norm with the constraint that the solution

satisfies two given equations.

We can envision the problem in (3.47) geometrically. Of the set of all x that satisfy

the given constraints, find the value that is closest to the origin in terms of the l1-

norm.

Optimization with an lT-Norm An example of the same type but with an ly-norm

occurs when one is trying to control the total amount of any asset traded. Such a

constraint may occur because of illiquid markets and the desire to avoid a trade

that moves prices, or because one has an investment policy constraint on the concen-

tration in any given asset. In the simplest form, where all traded assets have the same

limitation, the objective would be one of finding a solution to equation (3.46) with

ly-norm bounded by this common limit: kðx1; x2; . . . ; xnÞky aL.

More realistically, one is generally not so much interested in limiting the maximum

trade as the maximum portfolio exposure post-trade. Consequently one would

instead look for solutions to equation (3.46) with the limit: kðp1; p2; . . . ; pnÞ þ
ðx1; x2; . . . ; xnÞky aL, where xi is the amount of each trade, and pi the initial port-

folio exposure. Since there are potentially many such solutions, an optimization is

still possible, and the problem becomes
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Minimize: kxk1 given

ðx; bÞ ¼ ðb 0 � bÞP;X
xi ¼ 0;

ð3:48Þ

kpþ xky aL;

where p ¼ ðp1; p2; . . . ; pnÞ.
Optimization with an l2-Norm Although in both types of problems above the use of

l1-norms and ly-norms is more natural, one might actually solve the problem using

an l2-norm instead. The reason relates to the tools of multivariate calculus and is one

of mathematical tractability. That is, explicit solutions to such problems with an l2-

norm can often be derived analytically, whereas with other norms one must typically

utilize numerical procedures. Obviously, given the prevalence and power of com-

puters today, one could hardly imagine that obtaining an explicit mathematical ex-

pression, rather than a numerical solution, would be worth much. However, the

popularity of l2-norm methods was certified long before the ‘‘computer age,’’ and still

has merit.

The advantage of representing the solution as an explicit mathematical expression

is that the functional relationship between the problem’s inputs and the output solu-

tion is explicitly represented in a form that allows further analysis. For example, one

can easily perform a sensitivity analysis that quantifies the dependence of the solution

on changes to various constraints, and the addition of constraints. Such analyses are

also possible with numerical solutions, but they require the development of solutions

over a ‘‘grid’’ of input assumptions from which sensitivities can be estimated.

Tractability of the lp-Norms: An Optimization Example

A simple example of the mathematical tractability of l2-norms is as follows: Assume

we are given a collection of data points fxigni¼1, which we may envision either as dis-

tributed on the real line R or as a point x ¼ ðx1; x2; . . . ; xnÞ in Rn. The goal is to find

a single number ap that best approximates these points in the lp-norm, where pb 1.

That is,

Find ap so that kðx1 � ap; x2 � ap; . . . ; xn � apÞkp is minimized.

Assume that for notational simplicity that we have arranged the data points in

increasing order: x1 a x2 a � � �a xn. This problem can be envisioned as a problem

in R, such as for p < y,
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Minimize: f ðaÞ ¼
Xn
i¼1

jxi � ajp
 !1=p

; ð3:49Þ

or as a problem in Rn, for any p,

Minimize: f ðaÞ ¼ kx� akp; ð3:50Þ

where x1 ðx1; x2; . . . ; xnÞ and a1 ða; a; . . . ; aÞ is a point on the ‘‘diagonal’’ in Rn.

Geometrically, for the problem statement in Rn, we seek the smallest lp-ball cen-

tered on x, Bp
r ðxÞ, that intersects this diagonal. The point or points of intersection

are then the values of ap that minimize f ðaÞ, and the ‘‘radius’’ of this minimal ball

is the value of f ðapÞ.
In either setting, minimizing the stated functions, or their pth powers to eliminate

the pth-root, are equivalent, since pb 1 and hence gðyÞ ¼ yp is an increasing func-

tion on ½0;yÞ. Consequently, if y1 f ðaÞ and y 0 1 f ða 0Þ, then ya y 0 if and only if

gðyÞa gðy 0Þ.
What is easily demonstrated is that any solution must satisfy x1 a aa xn. For ex-

ample, if a > xn,

f ðaÞp ¼
X

jxi � ajp ¼
X

ða� xiÞp;

which is an increasing function on ½xn;yÞ, so we must have aa xn. Similarly,

for a < x1, we have that f ðaÞp ¼Pðxi � aÞp which is a decreasing function on

ð�y; x1�, and so ab x1.

The analytical solution of this general problem is somewhat di‰cult and with three

exceptions requires the tools of calculus from chapter 9. In fact, at this point, it is not

even obvious that in the general case a solution exists, or if it does, that it is unique.

However, in the special cases of p ¼ 1; 2, and y, this problem can be solved with

elementary methods, and this is easiest when p ¼ 2, which we address first. In chap-

ter 9, the other cases will be addressed.

l2-Solution Given the points fxigni¼1, define the simple average consistently with the

sample mean in (3.42):

x ¼ 1

n

X
xi:

By writing,

xi � a ¼ ðxi � xÞ þ ðx� aÞ;
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a simple algebraic calculation leads to

f ðaÞ1
X

ðxi � aÞ2 ¼
X

ðxi � xÞ2 þ nðx� aÞ2;

where f ðaÞ denotes now the l2-norm squared. So it is clear that a2 ¼ x gives the l2-

norm minimizing point, since then nðx� aÞ2 ¼ 0.

In other words, the sample mean of a collection of points minimizes the l2-norm in

the sense of (3.49). Since this l2-norm is related to the sample variance in (3.44), this

result can be restated. Considering m̂m in the definition of sample variance as undefined

for a moment, the analysis above implies that the value of the sample variance is

minimized when m̂m equals the sample mean, which it does.

l1-Solution The case of p ¼ 1 is more di‰cult but still tractable. Because x1 a

x2 a � � �a xn, we can relabel these to be distinct points y1 < y2 < � � � < ym. Now,

letting ni denote the number of occurrences of yi, so that
Pm

i¼1 ni ¼ n, we write

f ðaÞ1
X

jxi � aj ¼
X

nijyi � aj:

We know that if yj a aa yjþ1, then jyi � aj ¼ yi � a for ib j þ 1, and jyi � aj ¼
a� yi for ia j. Consequently

f ðaÞ ¼ cj � n� 2
Xj

i¼1

ni

 !
a;

where cj is a constant in each interval, and specifically, cj ¼
Pn

i¼ jþ1 niyi �
P j

i¼1 niyi.

So the graph of f ðaÞ is linear between any consecutive distinct points, is decreasing if

n� 2
P j

i¼1 ni > 0, is increasing if n� 2
P j

i¼1 ni < 0, and is constant if n� 2
P j

i¼1 ni
¼ 0. We can therefore conclude:

1. If n ¼ 2mþ 1 is odd, then there is no value of j for which n� 2
P j

i¼1 ni ¼ 0, and

hence there is a unique value of j with n� 2
P j

i¼1 ni > 0 and n� 2
P jþ1

i¼1 ni < 0.

Consequently a1 ¼ xjþ1 is the l1-norm minimizing point, since f ðaÞ is decreasing

when a < xjþ1 and increasing when a > xjþ1. When all ni ¼ 1, then a1 ¼ xmþ1.

2. If n ¼ 2m, then the solution will be unique if there is no value of j for which

n� 2
P j

i¼1 ni ¼ 0, and in this case the value of a1 is calculated as above. However,

if there is a value of j for which n� 2
P j

i¼1 ni ¼ 0, then any a1 with yj a a1 a yjþ1

will gives the same value for f ða1Þ, namely cj , so the solution will not be unique.

When all ni ¼ 1, then the solution is never unique, and any a1 with xm a a1 a xmþ1

is a solution.
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As a simple graphical illustration of non-uniqueness in the even case when all

ni ¼ 1, let x1 ¼ 5, and x2 ¼ �15. The graph of f ðaÞ as a function on R is seen in

figure 3.4.

Considered as a problem of in R2, the minimal l1-Ball centered on ð5;�15Þ that

intersects the diagonal in R2 is presented in figure 3.5. As can be seen, this minimal

l1-ball intersects the diagonal line over the same range of x-values that minimize the

function in figure 3.4.

Remark 3.45 The earlier l1-norm trading problem is similar to this problem. How-

ever, the ‘‘admissible’’ set of solutions there is not defined as the Rn diagonal, unless

we wish to trade the same amount in all assets, an unlikely scenario. The admissible

set is instead the collection of points that satisfy the beta-constraint in (3.46). In addi-

tion, rather than look for the point on the admissible set that is ‘‘closest’’ to some initial

point x ¼ ðx1; x2; . . . ; xnÞ, we seek the trading point on the admissible set that is closest

to 0 ¼ ð0; 0; . . . ; 0Þ in the l1-norm.

lT-Solution The case p ¼ y is considered next, and in this special example the so-

lution is immediate, though often this is not the case. Here the goal is to determine a

that minimizes

f ðaÞ ¼ maxfjxi � ajg;

Figure 3.4
f ðaÞ ¼ j5� aj þ j�15� aj
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and this is easily seen to be a ¼ ðxn � x1Þ=2, the midpoint of the interval x1 a xa xn.

This is because the ly-norm must be attained at one of the end points, so to minimize

this distance, the interval midpoint is optimal.

General lp-Solution In general, framing this lp-norm problem as a problem in R or

Rn are identical problems, but the intuitive framework di¤ers between the two Eucli-

dean settings. The geometry and intuition in R can be exemplified by a simple graph.

Here we illustrate the problem with xi values of 5, and �15, and p ¼ 3 in figure 3.6.

The function we aim to minimize is graphed in a bold line, and equals the cube of

the l3-norm. This function is seen to equal the sum of the two component functions

defined as fiðaÞ ¼ jxi � aj3, graphed in light lines. Clearly, the minimum appears to

be at a ¼ �5, and this is easily confirmed. Letting a ¼ �5þ b, and assuming b < 10

say to make the absolute value unambiguous, we get that f ðaÞ ¼ 2000þ 60b2, which

is minimized when b ¼ 0.

In R2 this problem can be written as one of minimizing the cube of the l3-norm

between ð5;�15Þ and ða; aÞ:

Minimize: kð5;�15Þ � ða; aÞk33:

Geometrically, we are looking for a point on the diagonal of R2: fðx; yÞ j x ¼ yg that

is closest to the point ð5;�15Þ in the l3-norm. Intuitively, we imagine l3-balls centered

Figure 3.5
jx� 5j þ jyþ 15j ¼ 20
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on ð5;�15Þ of various radius values, and seek the smallest one that intersects this di-

agonal. Graphically, the solution is seen in figure 3.7. If the radius of this ball is less

than
ffiffiffiffiffiffiffiffiffiffi
20003

p
A12:6, there is no intersection, while if is greater, there are two points of

intersection.

Without more powerful tools, however, we are not able to confirm that such prob-

lems have solutions for general p and n, nor if they do, if and when such solutions

are unique. Even if a solution is known to be unique, there may be no ‘‘closed-form

solution’’ to the problem whereby the value of ap can be expressed as an explicit

function of p and the initial collection fxig.
In the cases p ¼ 1; 2, and y, it was shown that the solution of the problems in

(3.49) and (3.50) were always uniquely and explicitly solvable, except in the case

where p ¼ 1 and n is even, where although explicitly solvable, there could be infi-

nitely many solutions.

General Optimization Framework

Optimization problems are everywhere in finance, and they usually take the follow-

ing form:

Problem 3.46 Of all values of x ¼ ðx1; x2; . . . ; xnÞ that satisfy
f ðxÞ ¼ c;

find the value that optimizes (i.e., minimizes or maximizes)

Figure 3.6
f ðaÞ ¼ j5� aj3 þ j�15� aj3
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kx� akp;

where c is a constant, and a is a point, perhaps 0, and p is typically 1, 2, or y.

In the more general case, the norm minimization is replaced:

Problem 3.47 Of all values of x ¼ ðx1; x2; . . . ; xnÞ that satisfy
f ðxÞ ¼ c;

find the value that optimizes (i.e., minimizes or maximizes)

gðxÞ;
where gðxÞ is a given function.

Note that in both cases the problem is known as a constrained optimization and is

defined by:

� One or more constraint functions: The function that provides constraints on the

solution.

� An objective function: The function that is to be optimized.

Depending on the application, one or both of these functions may reflect one or more

lp-norms, as well as a variety of other financial functions of interest.

Figure 3.7
jx� 5j3 þ jyþ 15j3 ¼ 2000
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Exercises

Practice Exercises

1. Calculate the lp-norms of the following vectors in Rn, for p ¼ 1; 2; 5, and y and a

a positive real number:

(a) a ¼ ðGa;Ga; . . . ;GaÞ
(b) a ¼ ðGa; 0; 0; . . . ; 0Þ
(c) a ¼ ða1; a2; . . . ; anÞ where one aj ¼Ga, all others are 0.

2. Calculate the inner product of the following pairs of vectors and confirm Hölder’s

inequality in (3.16) (which is the Cauchy–Schwarz inequality for p ¼ 2Þ for p ¼ 1; 2;

5; 10, and y:

(a) x ¼ ð�5; 3Þ and y ¼ ð�2;�8Þ
(b) x ¼ ð�1; 2; 3Þ and y ¼ ð�1;�1; 20Þ
(c) x ¼ ð2; 12;�3;�3Þ and y ¼ ð�10; 3; 2; 0Þ
(d) x ¼ ð�3;�3;�5;�10;�1Þ and y ¼ ð2; 5; 10; 20; 1Þ
3. For the vector pairs in exercise 2, verify the Minkowski inequality in (3.17) for

p ¼ 1; 2; 5; 10, and y.

4. For the vector pairs in exercise 2:

(a) Calculate the lp-distances for p ¼ 1; 2; 5; 10, and y.

(b) Demonstrate explicitly that for each pair of vectors, the lp-distance gets closer to

the ly-distance as p increases without bound. (Hint: Recall remark 3.25 following

the proof of the Minkowski inequality.)

5. Develop graphs of the lp-balls in R2, Bp
r ð0Þ, for p ¼ 1; 2, and y, and r-values

r ¼ 0:10; 0:5 and 1. Evaluate the relationship between the di¤erent balls for various

r by comparing l1- and l2-balls, then l2- and ly-balls.

(a) Demonstrate the equivalence of the l1- and l2-norms by showing how one can

choose the associated r-values to verify (3.35).

(b) Demonstrate the equivalence of the l2- and ly-norms by showing how one can

choose the associated r-values to verify (3.35).

6. Show that if ðx; yÞ is an inner product on a real vector space X , all the properties

of a norm are satisfied by jxj as defined by (3.5), and hence the terminology ‘‘norm

associated with this inner product’’ is justified.

7. If x and y are two vectors in Rn, n ¼ 2; 3 and z1 y� x:
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(a) Demonstrate kzk22 ¼ kxk22 þ kyk22 � 2x � y. (Hint: Use (3.5) and properties of

inner products.)

(b) Show that if y < p denotes the angle between x and y, then

cos y ¼ x � y
kxk2kyk2

: ð3:51Þ

(Hint: the law of cosines from trigonometry states that

c2 ¼ a2 þ b2 � 2ab cos y; ð3:52Þ
where a, b, c are the sides of a triangle, and y is the radian measure of the angle be-

tween sides a and b. Now create a triangle with sides x, y, and z.)

(c) Show that if y < p denotes the angle between x and y, then x � y ¼ 0 i¤ y ¼ 90�,
so x and y are ‘‘perpendicular.’’ (Note: The usual terminology is that x and y are

orthogonal, and this is often denoted x ? y.)

Remark 3.48 Note that for n > 3, the formula in (3.51) is taken as the definition of

the cosine of the angle between x and y, and logically represents the true angle between

these vectors in the two-dimensional plane in Rn that contain them. As was noted in the

section on inner products, the derivations in (a) and (b) remain true for a general inner

product and associated norm, and hence the notion of ‘‘orthogonality’’ can be defined in

this general context.

8. Show that if fxjgnj¼1 is a collection of mutually orthogonal, unit vectors in Rn,

namely xj � xk ¼ 0 for j0 k, and jxjj2 ¼ xj � xj ¼ 1 for all j, then for a vector y A Rn

that can be expressed as a linear combination of these vectors

y ¼
Xn
j¼1

ajxj; ð3:53Þ

the constants aj must satisfy aj ¼ xj � y. (Hint: Consider an inner product of each side

with xj.)

Remark 3.49 The usual terminology is that the collection of vectors, fxjgnj¼1, are

orthonormal. With the tools of linear algebra, it can be shown that all vectors y A Rn

can be represented as in (3.53).

9. Given a vector of sample data: x ¼ ðx1; x2; . . . ; xnÞ, demonstrate that ŝs2 ¼
m̂m 0
2 � m̂m2, where here ŝs2 is defined with n rather than n� 1.
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10. Given semiannual coupon bond data with prices expressed per 100 par:

Term 0.5 years 1.0 years 1.5 years 2.0 years

Coupon 2.0% 2.2% 2.6% 3.0%

Price 99.5 100.0 100.5 101.0

(a) Bootstrap this data to determine semiannual market spot rates for 0.5, 1.0, 1.5,

and 2.0 years.

(b) What is the semiannual forward rate between 0.5 and 1.5 years?

11. Demonstrate that the forward rate in exercise 10(b) can be realized by an inves-

tor desiring to invest $1 million between time 0.5 and 1.5 years, by constructing an

appropriate portfolio of long and short zero coupon bonds. Assume that these zeros

are trading with the spot rates from 10(a).

12. Given a portfolio of three stocks with market values in $millions of 350, 150, and

500, and respective betas of 1.0, 0.9, and 1:1:

(a) Calculate the beta of the portfolio, where b ¼P xibi=
P

xi and xi denotes the

amount invested in stock i.

(b) Find the trade in R3 that changes the portfolio beta to 1:08 that has the lowest

transaction fee, assuming that this fee is proportional to the market value bought and

sold, and that all final positions must be long. (Hint: See (3.47), but note that while

the constraint
P

xi ¼ 0 allows you to analytically consider this a problem in R2, be-

cause x3 ¼ �x1 � x2, the norm minimization in R2 will not work in general.)

(c) Repeat part (b) but now with a beta target of 0:935, and where final positions can

be long or short.

(d) Achieve the same objective in part (c), but adding the constraint that the invest-

ment policy maximum for any stock is 600 on a long or short basis.

Assignment Exercises

13. Calculate the inner product of the following pairs of vectors, and confirm Höld-

er’s inequality in (3.16) (which is the Cauchy–Schwarz inequality for p ¼ 2) for

p ¼ 1; 2; 5; 10, and y:

(a) x ¼ ð11;�133Þ and y ¼ ð12; 28Þ
(b) x ¼ ð10;�2; 13Þ and y ¼ ð�10; 101; 30Þ
(c) x ¼ ð1;�24; 3; 13Þ and y ¼ ð�1;�23; 21; 10Þ
(d) x ¼ ð10; 53;�53;�10; 21Þ and y ¼ ð1;�15;�10; 25; 11Þ
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14. For the vector pairs in exercise 13, verify the Minkowski inequality in (3.17) for

p ¼ 1; 2; 5; 10, and y.

15. For the vector pairs in exercise 13:

(a) Calculate the lp-distances for p ¼ 1; 2; 5; 10, and y.

(b) Demonstrate explicitly that for each pair of vectors, the lp-distance gets closer to

the ly-distance as p increases without bound (Hint: Recall remark 3.25 following the

proof of the Minkowski inequality.)

16. Develop a graph of the lp-balls in R2, Bp
r ð0Þ, for p ¼ 1; 5, and y, and r-values

r ¼ 0:10, 0:5, and 1. Evaluate the relationship between the di¤erent balls for various

r by comparing l1- and l5-balls, then l5- and ly-balls.

(a) Demonstrate the equivalence of the l1- and l5-norms by showing how one can

choose the associated r-values to verify (3.35).

(b) Demonstrate the equivalence of the l5- and ly-norms by showing how one can

choose the associated r-values to verify (3.35).

17. For fixed a; b > 0, say a ¼ 3, b ¼ 5, develop a graph of the function for

1 < p < y:

f ðpÞ ¼ ap

p
þ bq

q
;

where q ¼ p

p�1 is conjugate to p. Confirm Young’s inequality that aba f ðpÞ for all
p. What happens if a ¼ b?

18. Not all metrics are equivalent to the lp-metrics. Show that

dðx; yÞ ¼ 0; x ¼ y

1; x0 y

�
;

is a metric on Rn that is not equivalent to the lp-metrics.

19. Given a portfolio of 100; 000 par of 6% semiannual (s.a.) coupon, 10-year bonds, and

250,000 par of 4:5% s.a. coupon, 3-year bonds, let ði; jÞ A R2 denote the market yield

vector,where i is thes.a.yield for the3-yearbond,and j the s.a. yield for the10-yearbond.

(a) Develop the formula for the portfolio price function, Pði; jÞ, using (2.15) or an

equivalent formulation, and calculate the initial portfolio market value assuming

that ði0; j0Þ ¼ ð0:04; 0:055Þ.
(b) Assume that the initial yield vector shifts, ði0; j0Þ ! ði; jÞ, where ði; jÞ ¼ ði0 þ Di;

j0 þ D jÞ. Consider only shifts, ðDi;D jÞ, that have the same lp-norm as the shift vector

ð0:01; 0:01Þ for p ¼ 1; 2;y. Show by examples that the portfolio gain/loss Pði0 þ Di;

j0 þ D jÞ � Pði0; j0Þ is not constant in any of these norms. (Hint: Consider shifts
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on the lp-balls in R2, Bp
r ð0:04; 0:055Þ where r ¼ kð0:01; 0:01Þkp. Try shift vectors,

ðDi;D jÞ where Di ¼GDj, or where one or the other is 0, to get started.)

(c) For each p-value, estimate numerically the yield shift vectors that provide the

largest portfolio gain and loss.

20. For the portfolio in exercise 19, implement a market-value neutral trade at the

initial yields, selling 75,000 par of the 10-year and purchasing an equivalent dollar

amount of the 3-year bonds.

(a) Express this trade as a vector-shift in R20, where the initial vector C0 is the orig-

inal cash flow vector, and C the vector after the trade.

(b) Repeat exercise 19(b) and 19(c) for the traded portfolio, comparing results.

21. Given semiannual coupon bond data with prices expressed per 100 par:

Term 0.5 years 1.0 years 1.5 years 2.0 years

Coupon 3.0% 2.8% 2.4% 2.0%

Price 100.0 100.5 101.0 101.5

(a) Bootstrap this data to determine semiannual market spot rates for 0.5, 1.0, 1.5,

and 2.0 years.

(b) What is the semiannual forward rate between 1.0 and 2.0 years?

22. Demonstrate that the forward rate in exercise 21(b) can be realized by an inves-

tor desiring to borrow $100 million between time 1.0 and 2.0 years, by constructing

an appropriate portfolio of long and short zero coupon bonds. Assume that these

zeros are trading with the spot rates from 21(a).

23. Given a portfolio of 3 bonds with market values in $millions of: 200, 450, and

350, and respective durations of 3.5, 5.0, and 8:5.

(a) Calculate the duration of the portfolio, where D ¼P xiDi=
P

xi and xi denotes

the amount invested in bond i.

(b) Find the trade in R3 that changes the portfolio duration to 4:0 that has the low-

est transaction fee, assuming that this fee is proportional to the market value bought

and sold, and that all final positions must be long. (Hint: See (3.47), but note that

while the constraint
P

xi ¼ 0 allows you to analytically consider this a problem in

R2, because x3 ¼ �x1 � x2, the norm minimization in R2 will not work in general.)

(c) Repeat part (b) but now with a duration target of 6:5, and where final positions

can be long or short.

(d) Achieve the same objective in part (c), but adding the constraint that the invest-

ment policy maximum for any bond is 462 on a long or short basis.
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4 Set Theory and Topology

4.1 Set Theory

4.1.1 Historical Background

In this section we formalize the notion of sets and their most common operations.

Ironically, the definition of a ‘‘set’’ is more complex than it first appears. Before the

early 1900s, a set was generally accepted as being definable as any collection of

objects that satisfy a given property,

X ¼ fa j a satisfies property Pg;
and an axiomatic structure was developed around this basic concept. This approach

has come to be known perhaps unfairly as naive set theory, despite the fact that it was

developed within a formal axiomatic framework.

In 1903 Bertrand Russell (1872–1970) published a paradox he discovered in 1901,

which has come to be known as Russell’s paradox, by proposing as a ‘‘set’’ the

following:

X ¼ fR jR is a set; and R B Rg:
In other words, X is the ‘‘set’’ of all sets which are not a member of themselves.

The paradox occurs in attempting to answer the question

Is X A X?

If X A X , then by the defining property above it is a set that is not an element of it-

self. However, if we posit that X B X , then again by definition, X should be one of

the sets R that are included in X . In summary,

X A X i¤ X B X :

This is a situation that gives mathematicians great anxiety and rightfully so! What

is causing this unexpected result? Are there others? Could such paradoxes be avoided?

How? Defining a set as a ‘‘collection satisfying a property’’ certainly works fine most

of the time, but apparently not this time.

What was needed was an even more careful and formal articulation of the axioms

of set theory and the fundamental properties that would be assumed. With this,

mathematicians would be able to develop a theory that was, on the one hand, ‘‘famil-

iar,’’ but on the other, paradox free. This approach has come to be known as axiom-

atic set theory.

A number of axiomatic approaches have been developed. The first approach was

introduced by Ernst Zermelo (1871–1953) in 1908, called the Zermelo axioms, and



produced Zermelo set theory. This axiomatic structure was later improved upon by

Adolf Fraenkel (1891–1965) in 1922, and produced the Zermelo–Fraenkel axioms,

and the Zermelo–Fraenkel set theory, or ZF set theory. This is the approach largely

used to this day.

In essence, sets are defined as those collections that can be constructed based on

the 10 or so ZF axioms, and the paradox above is resolved because it is not possible

to construct the Russell collection X as a set within this axiomatic structure. It is also

not possible to construct the set of all sets, which underlies another paradox. How-

ever, these axioms have been shown to be adequate to construct virtually all of the

types of sets one needs in mathematics, and that for these sets, set manipulations

can proceed just as if these sets were defined via naive set theory, as collections of

objects which satisfy given criteria.

*4.1.2 Overview of Axiomatic Set Theory

To give a flavor for the axiomatic structure of set theory, we introduce the Zermelo–

Fraenkel axioms, including the so-called axiom of choice, which collectively produce

what is referred to as ZFC set theory. This structure is presented below in a simplified

framework that omits many of the quantifiers necessary to make statements formal,

and is presented in both plain and informal English and approximately formal sym-

bolic language.

In this structure it will be noted that the intuitive notions of ‘‘set’’ and ‘‘element’’

are formalized as relative terms, not absolute terms. A set may be an element of an-

other set, and an element of a set may itself be a set that contains elements. In addi-

tion the expression PðxÞ will denote a statement that may be true or false for any

given set x, and PðX Þ will denote that the statement is true for a given set X . For

example, if

PðxÞ : x contains an integer as an element,

then PðNÞ. Also Pðx; yÞ will denote a conditional statement in that given a set x,

there is a unique set y so that Pðx; yÞ is true, and then PðX ;YÞ denotes that the

statement is true for X , Y . For example,

Pðx; yÞ : y contains the elements of x plus the integers as elements.

Finally, we recall the logical symbols: E (for all), b (there exists),@ (not), C: (such
that),4 (or),5 (and), ) (implies), and , (if and only if ).

1. Formal Symbols: j; A; f; g;X ;Y ;Z; . . . .

2. Axioms
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� ZF1 (Extensionality): Two sets are equal means they contain the same elements,

X ¼ Y , ðZ A X , Z A YÞ:
� ZF2 (Empty Set): There exists a set with no elements,

bj ¼ f g:
� ZF3 (Pairing): Given any two sets, there exists a set that contains these as

elements,

X ;Y ) bZ ¼ fX ;Yg:
� ZF4 (Union): Given two sets, there exists a set that contains as elements exactly

the elements of the original sets,

X ;Y ) bZ C: W A Z , W A X4W A Y :

� ZF5 (Infinity): There exists a set with an infinite number of elements, in that it

contains the empty set as an element, and for any element Y that it contains, it also

contains the element fY ; fYgg,
bX C: j A X5ðY A X ) fY ; fYgg A XÞ:
� ZF6 (Subset): Given any set and any statement, there is a set that contains all the

elements of the original set for which the statement is true,

X ;PðxÞ ) bY C: Z A Y , Z A X5PðZÞ:
� ZF7 (Replacement): Given any set and conditional statement, there is a set that

contains as elements the unique sets associated with the elements of the original set

as defined by the conditional statement,

X ;Pðx; yÞ ) bY C: Z A Y , bW A X5PðW ;ZÞ:
� ZF8 (Power Set): For any set, there is a set that contains as elements any set that

contains elements of the original set. In other words, this new set, called the power

set, contains all the ‘‘subsets’’ of the original set,

X ) bY C: Z A Y , ðW A Z ) W A XÞ:
� ZF9 (Regularity): Any set that is not empty contains an element that has no ele-

ments in common with the original set,

X 0j ) bY C: Y A X5@bWðW A X5W A Y Þ;
where@b is shorthand for ‘‘there does not exist.’’
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� ZF10 (Axiom of Choice): For any set, there is a set that contains as elements an

element from each nonempty element of the original set,

X ) bY C: EZ A XðZ0jÞbW A Y5W A Z:

These axioms fall into four categories.

1. Axiom 1 introduces the notion of equality of ‘‘sets,’’ and indirectly provides a

context for the undefined term A. Although the notion of subset is not explicitly

defined, we see that this is implicitly referenced in axiom 8, which suggests that the

condition on Z is one of ‘‘subset’’:

ZHX , ðW A Z ) W A XÞ:
2. Axioms 2 and 5 are existence axioms, on the one hand, declaring the existence

of an empty set and, on the other, the existence of a set with an infinite number of

elements.

3. All the other axioms except axiom 9 identify how one can make new sets from old

sets, or from sets and statements. For example, axiom 3 states that a set can be

formed to include as members two other sets, while axiom 4 states that the union of

sets is a set. Axioms 6 and 7 state that sets can be formed from sets and statements. A

simple application of axiom 6 is that the intersection of X and Y must be a set since

we can use the statement: PðZÞ : ðZ A YÞ. Axiom 8 introduces the power set, or the

set of all subsets of a given set, and axiom 10 states that there is a set that contains

one element from every nonempty element of a given set. In other words, from the

elements of X , we can form a set which ‘‘chooses’’ one element from each such ele-

ment, and hence the name, ‘‘axiom of choice.’’

4. Finally, axiom 9 puts a limit on what a set can be, and can be shown to preclude

the ‘‘set of all sets’’ from being a set in this theory. It states that any nonempty set

contains an element that is disjoint from the original set.

In what follows, we will treat sets as if definable as collections of objects that sat-

isfy certain statements or formulaic properties, and this can generally be justified by

axiom 6. More specifically, the ZFC set theory states that defining a set as a collec-

tion of objects that satisfy certain properties will avoid paradoxes if the original col-

lection of objects is itself a set or a subcollection of a set. That is, if A is a set,

fx j x A A and PðxÞg;
is a set for any ‘‘statement’’ P, by axiom 6. However, although beyond the scope of

this introduction to set theory, one needs to be careful as to exactly what kinds of
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‘‘statements’’ are appropriate in this axiom, as it can be shown that for a general

property P, paradoxes are still possible.

4.1.3 Basic Set Operations

As a collection of objects, and with the axiomatic structure in the background, we

distinguish between the notions: ‘‘element of,’’ ‘‘subset of,’’ and ‘‘equal to’’:

1. Membership: ‘‘x is an element of A,’’ denoted x A A, is only defined indirectly in

the axioms, but understanding this notion in terms of the heuristic

A1 fx j x A Ag
is consistent with the axioms and operationally e‰cient.

2. Subset: ‘‘B is a subset of A,’’ denoted BHA, and defined by x A B ) x A A.

3. Equality: ‘‘B equals A,’’ denoted A ¼ B, and defined by BHA and AHB.

Given sets A and B, the basic set operations are:

1. Union: AUB ¼ fx j x A A and=or x A Bg.
2. Intersection: AVB ¼ fx j x A A and x A Bg.
3. Complement: ~AA ¼ fx j x B Ag. Ac is an alternative notation, especially if A is a

complicated expression. Note that ~~AA~AA ¼ A.

4. Di¤erence: A@B ¼ fx j x A A and x B Bg. Note that A@B ¼ AV ~BB.

Union and intersection are similarly defined for any indexed collection of sets:

fAa j a A Ig, where I denotes any indexing set which may be finite, or denumerably

or uncountably infinite (recall chapter 2):

6
a

Aa ¼ fx j x A Aa for some a A Ig;

7
a

Aa ¼ fx j x A Aa for all a A Ig:

It is straightforward to justify the so-called De Morgan’s laws, named after Augus-

tus De Morgan (1806–1871), who formalized a system of ‘‘relational algebra’’ in

1860. Examples are:

1. g6
a
Aa6

a
Aa ¼ 7

a
fAaAa.

2. g7
a
Aa7

a
Aa ¼ 6

a
fAaAa.
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3. BV ½6
a
Aa� ¼ 6

a
½Aa VB�.

4. BU ½7
a
Aa� ¼ 7

a
½Aa UB�.

To demonstrate the first example in detail, we use the definitions above:

x A g6
a

Aa6
a

Aa

, x B 6
a

Aa

, x B Aa for all a

, x A fAaAa for all a

, x A 7
a

fAaAa:

4.2 Open, Closed, and Other Sets

4.2.1 Open and Closed Subsets of R

The reader is undoubtedly familiar with the notion of an interval in R, as well as

the various types of intervals. First o¤, an interval is a subset of R that has ‘‘no

holes.’’

Definition 4.1 An interval I is a subset of R that has the property:

If x; y A I , then for all z : xa za y we have that z A I .

There are four types of intervals, as we list next. Interval notation is universal.

1. Open: ða; bÞ ¼ fx j a < x < bg.
2. Closed: ½a; b� ¼ fx j aa xa bg.
3. Semi-open or Semi-closed: ða; b� and ½a; bÞ.

In some applications, where it is unimportant if the interval contains its endpoints,

the ‘‘generic interval’’ will be denoted: ha; bi, meaning that it can be any of the four

examples above without consequence in the given statement.

Any of these interval types may be bounded—meaning that �y < a; b < y—and

that all but the closed interval may be unbounded. For example,

ða;yÞ; ð�y; bÞ; ð�y;yÞ; ð�y; b�; ½a;yÞ:
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Each of these characteristics of an interval: open, closed, bounded, and unbounded,

can be generalized, and each is important in mathematics for reasons that will

emerge over coming chapters. The notions of open and closed subsets of R are gen-

eralized next.

Definition 4.2 Given x A R, a neighborhood of x of radius r, or open ball about x of

radius r, denoted BrðxÞ, is defined as

BrðxÞ ¼ fy A R j jx� yj < rg: ð4:1Þ
A subset GHR is open if given x A G, there is an r > 0 so that BrðxÞHG. A subset

F HR is closed if the complement of F , ~FF, is open.

Intuitively, an open set only contains ‘‘interior’’ points, in that every point can be

surrounded by an open ball that fits entirely inside the set. In contrast, a closed set

will contain at least one point that is not interior to the set. In other words, no matter

how small an open ball one constructs that contains this point, this ball will always

contain points outside the set. But while, by definition, the existence of such a point

is ensured for a closed set, the existence of such a point does not ensure that the set is

closed, and hence the need to define closed in terms of the complement of the set be-

ing open. The problem is that a set can be neither open nor closed.

A useful exercise is to think through how an interval like ð�1; 1Þ is open by this

definition, whereas the interval ½�1; 1� is closed. On the other hand, the interval

½�1; 1Þ has one exceptional point that prevents it from being open, yet this set is

also not closed since ð�y;�1ÞU ½1;yÞ is not open.
That open and closed sets are fundamentally di¤erent can be first appreciated by

observing how di¤erently they behave under set operations.

Proposition 4.3 If fGag is any collection of open sets, Ga HR, with a A I an arbitrary

indexing set, then

6Ga is an open set:

If this collection is finite, then 7Ga is an open set. If fFag is any collection of closed

sets, Fa HR, then

7Fa is a closed set:

If this collection is finite, then 6Fa is a closed set.

Proof If x A 6Ga, then x A Ga for some a. Since each Ga is open, there is an r > 0

so that BrðxÞHGa H6Ga, proving the first statement. If the collection is finite, and
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x A 7Gn, then for every n there is an rn so that BrnðxÞHGn, and therefore

BrðxÞH7Gn, where r ¼ min rn. The second statement on closed sets follows from

De Morgan’s laws and the first result. That is, the complement of this general inter-

section is open, since

g7Fa7Fa ¼ 6 eFaFa;

which is a union of open sets by assumption. Similarly, if the collection is finite, the

complement of the union is an intersection of a finite collection of open sets, which is

open. n

This proposition cannot be extended to a statement about the general intersection

of open sets, or the general union of closed sets. For example,

Gn ¼ � 1

n
; 1þ 1

n

� �
has intersection equal to ½0; 1�, whereas

Fn ¼ 1

n
; 1� 1

n


 �
has union ð0; 1Þ (see exercise 3).

Other examples are easy to generate where openness and closeness are preserved,

or where semi-openness/closeness is produced (see exercise 15). In other words, any-

thing is possible when an infinite collection of open sets are intersected or closed sets

are unioned.

It turns out that open sets in R can be characterized in a simple and direct way,

but not so closed sets.

Proposition 4.4 GHR is an open set i¤ there is a countable collection of disjoint

open intervals, fIng, so that G ¼ 6 In.

Proof Clearly, if G is a countable union of open intervals, it is open by the propo-

sition above. On the other hand, for any x A G, let fIða;bÞðxÞg be the collection of

open intervals that contain x and that are contained in G. This family is not empty,

since by definition of open, Iðx�r;xþrÞðxÞ1BrðxÞ is in this collection for some r > 0.

Define IðxÞ ¼ 6 Iða;bÞðxÞ. By the proposition above, IðxÞ is an open set. But also

we have that IðxÞ must be an open interval: IðxÞ ¼ Iða 0;b 0ÞðxÞ. To show this, let

y; z A IðxÞ, with y < z for definitiveness. We must show that ½y; z�H IðxÞ. Now since

y A Iða;bÞðxÞ for some ða; bÞ, all points between x and y are also in Iða;bÞðxÞ. Similarly
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all points between x and z are in some other interval, Iðc;dÞðxÞ, say. So we conclude

that

½y; z�H Iða;bÞðxÞU Iðc;dÞðxÞH IðxÞ:
Finally, to show that fIðxÞg can be collected into disjoint intervals, assume that for

some x0 y, IðxÞV IðyÞ0j. That is, assume that two such open intervals have non-

empty intersection. Then it must be the case that IðxÞ ¼ IðyÞ, since otherwise,

IðxÞU IðyÞ would be a larger interval for each of x and y, contradicting the maxi-

mality of the individual intervals. That this collection is countable follows from the

observation that each of the disjoint open intervals constructed must contain a ratio-

nal number. n

From this result we can redefine closed sets by reverse reasoning:

F HR is closed i¤ ~FF is a countable collection of disjoint open intervals.

Unlike an open set, which is always a union of a finite or countably infinite number

of disjoint open intervals, closed sets can di¤er greatly. Any singleton set, fxg, is
closed, as is any finite set, fxjgnj¼1. Countably infinite closed sets can be sparsely

spaced in R, like the integers, or with accumulation points, such as mþ 1
n
jm; n A

�
Z; n > 0gUZ. A closed set can even contain uncountably many points, and yet con-

tain no interval. A famous example is the Cantor ternary set, named for its discoverer

Georg Cantor (1845–1918).

The Cantor set, K, is a subset of the interval ½0; 1� and is defined as the intersection

of a countable number of closed sets, fFng, so K ¼ 7Fn and K is closed. Each suc-

cessive closed set is defined as the prior set, with the open ‘‘middle third’’ intervals

removed. For example,

F0 ¼ ½0; 1�;

F1 ¼ ½0; 1�@ 1

3
;
2

3

� �
;

F2 ¼ F1 @
1

9
;
2

9

� �
U

7

9
;
9

9

� �� �
;

..

.

Interestingly, the total length of the open intervals removed is 1, the length of the

original interval ½0; 1�. This can be derived by noting that in the first step, one interval

of length one-third is removed, then two intervals of length one-ninth, then four of
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length one-twenty-seventh, and so forth. The total length of these intervals can be

expressed as

Xy
n¼0

2n

3nþ1
¼ 1

3

Xy
n¼0

2

3

� �n
¼ 1:

This last summation is accomplished using the informal methodology introduced

in chapter 2 in the applications section for pricing a preferred stock. Recall, if

S1
Py

n¼0
2
3

� �n
, then 2

3S ¼Py
n¼1

2
3

� �n
. Subtracting, we conclude that 1

3S ¼ 1, and

the result follows. (See also the chapter 6 discussion of geometric series for a formal

justification.)

Because the complement of the Cantor ternary set in ½0; 1� has length 1, the Cantor

ternary set is said to be a set of measure 0. The intuition, which will be formalized in

chapter 10 is that a set of measure zero can be contained in, or ‘‘covered by’’ a col-

lection of intervals, the total length of which is as small as desired. In this case the

closed sets Fn provide just such a sequence of sets, as each is a collection of intervals,

each covers K, and by the analysis above, the total length of the intervals in Fn is

1�Pn�1
j¼0

2 j

3 jþ1 , which is as small as we want by taking n large enough.

That the Cantor ternary set is in fact uncountable is not at all obvious, since it is

easy to believe that all that will be left in this set are the endpoints of the intervals

removed, and these form a countable collection. The demonstration of uncountability

relies on the base-3 expansion of numbers in the interval ½0; 1�, introduced in chapter 2.

Paralleling the decimal expansion, the base-3 expansion uses the digits 0, 1, and 2:

xð3Þ ¼ 0:a1a2a3a4 . . .

1
Xy
j¼1

aj

3 j
; where aj ¼ 0; 1; 2:

It turns out that the removal of the ‘‘middle thirds’’ is equivalent to eliminating the

possibility of aj ¼ 1, so the Cantor ternary set is made up of all numbers in ½0; 1� with
base-3 expansions using only 0s and 2s. This at first seems counterintuitive because
1
3 A K , and yet the base-3 expansion of 1

3 is 0.1. The same is true for the left endpoints

of the leftmost intervals removed at each step, which are all of the form 1
3 j . But these

can all be rewritten as

1

3 j
¼
Xy

n¼ jþ1

2

3n ;

as can be verified using the derivation above.
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By dividing each aj term by 2, all such expansions can then be identified in a 1:1

way with the base-2 expansions of all numbers in ½0; 1�, which are uncountable as was

seen in section 2.1.5. Specifically, the identification is

If
Xy
n¼1

aj

3 j
A K ; then

Xy
n¼1

aj

3 j
$
Xy
n¼1

aj=2

2 j
:

4.2.2 Open and Closed Subsets of Rn

Generalizing the ideas from R in the natural way to Rn, we have the following:

Definition 4.5 Given x A Rn, a neighborhood of x of radius r, or open ball about x of

radius r, denoted BrðxÞ, is defined as

BrðxÞ ¼ fy A Rn j jx� yj < rg; ð4:2Þ
where jxj denotes the standard norm on Rn. A subset GHRn is open if, given x A G,

there is an r > 0 so that BrðxÞHG. A subset F HRn is closed if the complement of F ,
~FF, is open.

The proposition above on unions and intersections of open and closed sets in R
carries over to Rn without modification. We state this result without proof.

Proposition 4.6 If fGag is any collection of open sets, Ga HRn, then

6Ga is an open set:

If this collection is finite, then 7Ga is an open set. If fFag is any collection of closed

sets, Fa HRn, then

7Fa is a closed set:

If this collection is finite, then 6Fa is a closed set.

It is also the case that one cannot generalize this result to arbitrary intersections of

open sets, nor arbitrary unions of open sets, and the examples above easily generalize

to this setting (see exercise 16).

Remark 4.7 Note that ‘‘open’’ was defined in terms of open balls, and in turn by the

standard metric in Rn, also called the l2-metric in chapter 3. However, as might be

guessed from that chapter, we could have used any metric equivalent to the standard

metric and obtained the same open and closed sets due to (3.35). We formalize this

observation in the following:
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Proposition 4.8 Let d 0ðx; yÞ be any metric on Rn equivalent to the standard metric

dðx; yÞ ¼ jx� yj given in (3.18), and let open sets be defined relative to open d 0-balls.
Then GHRn is open relative to d 0 i¤ it is open relative to d.

Proof We demonstrate one implication only, as the other is analogous. Assume

that G is open relative to d 0, and let x A G. Then, by definition, there is an r 0 > 0 so

that B 0
r 0 ðxÞHG. By (3.35), there is an r > 0 so that

BrðxÞHB 0
r 0 ðxÞ:

and hence BrðxÞHG and so G is open relative to dðx; yÞ. n

It is important to note that this proposition cannot be expanded arbitrarily. If d

and d 0 are metrics that are not equivalent, it will generally be the case that the asso-

ciated notions of open and closed will also not be equivalent.

Remark 4.9 Because as proved in proposition 3.41, Lipschitz equivalence of metrics

implies equivalence, any result stated concerning equivalent metrics is automatically

true for Lipschitz equivalent metrics.

*4.2.3 Open and Closed Subsets in Metric Spaces

The definition of a neighborhood, or open ball about x A Rn, is fundamentally a

metric notion. Namely an open ball of radius r about x is defined to be equal to

all points within a distance of r from x. Consequently, for any metric space, whether

familiar like C or an exotic construction, we can likewise define open ball, and

open and closed sets, in terms of the distance function—or metric—that defines the

space.

Definition 4.10 Given x A X, where ðX ; dÞ is a metric space, a neighborhood of x or

open ball about x of radius r, denoted BrðxÞ is defined as

BrðxÞ ¼ fy j dðx; yÞ < rg: ð4:3Þ
A subset GHX is open, and sometimes d-open, if given x A G, there is an r > 0 so that

BrðxÞHG. A subset F HR is closed if the complement of F , ~FF, is open.

For example, let X ¼ C, the complex numbers under the metric defined by the

norm in (2.2), and let BrðxÞ be defined as in (4.3). Then, if x ¼ aþ bı and y ¼
cþ dı, we have y A BrðxÞ i¤ jx� yj < r. That is, by (2.2),

½ða� cÞ2 þ ðb� dÞ2�1=2 < r:
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Note that under the identification C $ R2, aþ bı $ ða; bÞ, we can define y A BrðxÞ
on C i¤ y A BrðxÞ defined on R2 under this identification. That is, the identifica-

tion C $ R2 preserves the metrics defined on these respective spaces, as well as the

notions of open and closed.

We note that in the general context of a metric space, as was demonstrated for

R, C, and Rn, the concept of an open set is not as metric-dependent as it first

appears.

Proposition 4.11 Let X be a metric space under two equivalent metrics, d1 and d2.

Then a set GHX is open in ðX ; d1Þ i¤ G is open in ðX ; d2Þ.
Proof The proof, based on (3.35), is identical to that above in Rn. n

*4.2.4 Open and Closed Subsets in General Spaces

In a more general space without a metric, one can specify the open sets of X by

defining a so-called topology on X as follows:

Definition 4.12 Given a space X, a topology is a collection of subsets of X, =, which
are the open sets, with the following properties:

1. j;X A =,
2. If fGagH=, then 6Ga A =,
3. If fGngH=, a finite collection, then 7Gn A =.

Hence a topology identifies the collection of open sets and demands that this col-

lection behaves the same way under union and intersection as we have shown open

sets to behave in the familiar settings of R, C, Rn or a general metric space X . In

particular, in any of these special spaces, if we define = as the collection of open

sets under the definition of open as a metric space, then = is a topology by the above

definition. Such a topology is said to be induced by the metric d.

Closed sets are then defined by

F HX is closed i¤ ~FF A =;
and we see that this collection of closed sets again behaves in a familiar way under

unions and intersections, based on De Morgan’s laws.

Equivalent topologies can then be defined as follows:

Definition 4.13 Two topologies =1 and =2 on a space X are equivalent if for any

G1 H=1, there is a G2 H=2 with G2 HG1, and conversely, for any G2 H=2, there is

a G1 H=1 with G1 HG2.
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Not surprisingly, especially given the terminology, we have immediately from the

above proposition in a general metric space:

Corollary 4.14 Let X be a metric space under two equivalent metrics, d1 and d2. Then

the topologies induced by d1 and d2 are equivalent.

Remark 4.15 This corollary provides the motivation for the use of the language as

noted in chapter 3, that d1 and d2 are ‘‘topologically equivalent,’’ as an alternative to

the terminology, d1 and d2 are ‘‘equivalent.’’ The point is, such metrics provide the

equivalent topologies on the space.

Finally, we note that if a space X has a topology, =, and Y HX is a subset, then

there is a natural topology on Y called the relative topology or induced topology,

denoted =Y , which is defined as

=Y ¼ fY VG jG A =g:
For example, if we consider R as a topological space with open sets defined by the

standard metric, and Y ¼ ½0; 1�, then the induced topology on Y contains sets of the

form ½0; bÞ, ða; bÞ, ðb; 1�, where 0 < a < b < 1, as well as ½0; 1�.
4.2.5 Other Properties of Subsets of a Metric Space

In the preceding sections it was clear that the notions of open and closed could be

defined in any metric space using nearly identical definitions, the only di¤erence re-

lated to the particular space’s notion of distance as given by that space’s metric. In

this section, rather than repeat the same development for other important properties

of sets from an initial definition in R, to one in Rn, to a general metric space X , we

introduce the definitions directly in a general metric space, and leave it to the reader

to reformulate these definitions in the other special cases.

Many of these notions also have meaning in a general topological space, but we

will not have need for this development.

Definition 4.16 In a metric space X with metric d:

1. If x A X, the closed ball about x of radius r > 0 is defined by

BrðxÞ ¼ fy j dðx; yÞa rg: ð4:4Þ
2. If EHX, then x A X is a limit point of E, a cluster point of E, or an accumulation

point of E, if for any r > 0, BrðxÞVE0j. So every x A E is a limit point, but if there

is an r > 0 with BrðxÞVE1 x, the point x is also said to be an isolated point of E. We

denote by E the set of limit points of E, or the closure of E, and note that EHE.
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3. EHX is dense in X if every x A X is a limit point of E.

4. EHX is bounded if for any x A X, there is a number r ¼ rðxÞ so that EHBrðxÞ,
and is unbounded otherwise. In the special case of X ¼ R, one also has the notion of

bounded from above and bounded from below. In the former case, there exists xmax so

that x < xmax for all x A E, whereas in the latter case, there exists xmin so that x > xmin

for all x A E.

5. Given EHX, a collection of open sets, fGag, is an open cover of E if EH6
a
Ga.

6. EHX is compact if given any open cover of E, fGag, which may be uncountably

infinite, there is a finite subcollection, fGjgmj¼1 so that

EH 6
jam

Gj:

7. EHX is connected if given any two open sets, G1 and G2, with EHG1 UG2, we

have G1 VG2 0j. EHX is disconnected if there exists open sets, G1 and G2, with

EHG1 UG2, and G1 VG2 ¼ j.

Several of the important properties related to these notions are summarized in the

following proposition, stated in the general metric space context. However, on first

reading the intuition may be more easily developed if one envisions R as the given

metric space, rather than X .

Proposition 4.17 Let X be a metric space, then:

1. If EHX is closed and x is a limit point of E, then x A E, and hence E ¼ E. Con-

versely, if E ¼ E, then E is closed.

2. If x A X is a limit point of EHX that is not an isolated point, then for any r > 0

there is a countable collection fxngHBrðxÞVE, with xn 0 x.

3. If EHX is compact, then E is closed and bounded.

4. (Heine–Borel theorem) EHRn is compact i¤ E is closed and bounded.

5. If fxagHE is a countable or uncountable infinite set, and E is compact, then fxag
has a limit point x A E.

Proof We prove each statement in turn:

1. If EHX is closed, and x B E, then x A ~EE, which is open, and hence by definition,

there is an r > 0 so that BrðxÞH ~EE. So it must be the case that BrðxÞVE ¼ j, and
therefore x cannot be a limit point of E. Hence, if x is a limit point of E, we must

have x A E and so E ¼ E. Conversely, if E ¼ E, and x A ~EE ¼ ~EE, then since x is not a

4.2 Open, Closed, and Other Sets 131



limit point, there is an r > 0 so that BrðxÞVE ¼ j. That is, ~EE is open and hence E is

closed.

2. Choose a sequence rn ! 0. Then by assumption that x A X is a limit point of E

that is not isolated, BrnðxÞVE0j for all n, and each such intersection contains at

least one point other than x. Choose xn A BrnðxÞVE with xn 0 x. Then fxng must

be countably infinite, since for any n, there is rN < minjan dðx; xjÞ, and hence xN
must be distinct from fxjgnj¼1.

3. If EHX is compact, it is bounded, since we can define an open cover of E by

fB1ðxÞ j x A Eg. Then by compactness, there is a finite collection fB1ðxjÞ j j ¼ 1; . . . ;

ng. Let D ¼ max dðxj; xkÞ. Next, given any x A X, if y A E, then y A B1ðxkÞ for some

k, and we can derive from the triangle inequality that

dðx; yÞa dðx; x1Þ þ dðx1; xkÞ þ dðxk; yÞ
a dðx; x1Þ þDþ 1;

and hence EHBRðxÞ for R ¼ dðx; x1Þ þDþ 1 and E is bounded. To show that E is

closed, we demonstrate that ~EE is open. To this end, let x A ~EE. Then for any y A E, let

eðyÞ ¼ dðx; yÞ=2 and construct BeðyÞðyÞ. Clearly, by construction, fBeðyÞðyÞg is an

open cover of E. Since E is compact, let fBeðynÞðynÞg be the finite subcollection,

which is again a cover of E, and define e ¼ 1
2 min eðynÞ. By construction, BeðxÞV

ð6BeðyÞðynÞÞ ¼ j. So since EH6BeðyÞðynÞ, we get that BeðxÞH ~EE, and hence ~EE is

open and E closed.

4. From step 3 we only have to prove the ‘‘only if ’’ part, that in Rn, closed and

bounded implies compact. To that end, assume that EHRn is closed and bounded.

Since it is bounded, we have that for some R > 0, EHBRð0Þ. Also BRð0ÞHCRð0Þ,
the closed cube about 0 of diameter 2R defined by

CRð0Þ ¼ fx j �Ra xj aR; all jg: ð4:5Þ
We will prove below that the closed cube, CRð0Þ, is compact for any R, and this will

prove that E is compact as follows. Given any open cover of E, it can be augmented

to become an open cover of CRð0Þ by addition of the open set CRþ1ð0Þ@E. Here

CRþ1ð0Þ is the open cube defined as in (4.5) but with strict inequalities, and since E

is closed, CRþ1ð0Þ@E ¼ CRþ1ð0ÞV ~EE is open. Now once CRð0Þ is proved to be com-

pact, this cover will have a finite subcover that then covers E without the added

set CRþ1ð0Þ@E, and hence E is compact. We now prove that CRð0Þ is compact by

contradiction—assuming that CRð0Þ is not compact. Then there is an open cover

fGjg for which no finite subcover exists. Subdivide CRð0Þ into 2n closed cubes by

halving each axis,
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CRð0Þ ¼ 6
2 n

j¼1

Cj;

where each Cj is defined by one of the 2n combinations of positive and negative

coordinates:

Cj ¼ fx j for each i; 0a xi aR or �Ra xi a 0g:
Then at least one of these Cj has no finite subcover from fGjg, for if all did, then

CRð0Þ would have a finite cover and hence be compact. Choose this Cj and subdivide

it into 2n closed cubes,

Cj ¼ 6
2n

k¼1

Cjk;

by again halving each axis, and choose any one of these cubes that has no finite sub-

cover. Continuing in this way, we have an infinite collection of closed cubes: CRð0ÞI
Cj ICjk ICjkl I � � �, none of which have a finite subcover from fGjg. By construc-

tion, the intersection of all such cubes is a single point x, but since x A Gj for some j,

and Gj is open, there is a BrðxÞHGj . Beyond a given point this ball must then con-

tain all the subcubes in the sequence above, since at each step the sides of the cube

are halved and decrease to 0. This contradicts that no subcube has a finite subcover,

and hence all such cubes have a finite subcover and CRð0Þ is compact.

5. Assume that fxagHE, and E is compact, but that fxag has no limit point in E.

Then for any a there is an open ball BraðxaÞ that contains no other point in the se-

quence than xa. Indeed, if there was such an xa so that BrðxaÞ always contained at

least one other point for any r ! 0, then this xa would be a limit point of the se-

quence by definition. Now fBraðxaÞg is an infinite collection of open sets, to which

we can add the open set A1X @ ½6Bra=2ðxaÞ�, which is open since the complement

of A in X is the closed set ½6Brn=2ðxnÞ�. We hence have an open cover of E with no

finite subcover by construction, contradicting the compactness of E. n

Note that in the proof of the Heine–Borel theorem there is a construction that can

easily be generalized to demonstrate:

Corollary 4.18 If X is a metric space, EHX is compact and F HE is closed, then F

is also compact.

Proof If fGjg is an open cover of F , then fGjgU ~FF is an open cover of E that has

a finite subcover by compactness. This finite subcover, excluding the set ~FF , is then a

finite subcover of F . n
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Corollary 4.19 (Heine–Borel Theorem) EHC is compact i¤ E is closed and

bounded.

Proof We have seen that the identification C , R2 preserves the respective metrics

in these spaces, and hence the closed and open balls defined in (4.4) and (4.3) are

identical in both spaces. In R2 we have shown that the closed cube is compact, and

by the corollary above, any closed ball within this cube is also compact. Conse-

quently every closed ball in C is also compact and the above proof can be stream-

lined. If a closed and bounded EHC had an open cover with no finite subcover,

then this cover could be augmented with the open set BRþ1ð0Þ@E ¼ BRþ1ð0ÞV ~EE;

here, as above, we assume that EHBRð0Þ. We have now constructed an open cover

of BRð0Þ with no finite subcover, contradicting the compactness of this closed ball.

n

The Heine–Borel theorem is named after Eduard Heine (1821–1881) and Émile

Borel (1871–1956). Borel formalized the earlier work of Heine in an 1895 publication

that applied to the notion of compactness, which was then defined in terms of count-

ably infinite open covers. Specifically, compact meant that every countable open

cover had a finite subcover. This in turn was generalized by Henri Lebesgue (1875–

1941) in 1898 to the notion of compactness defined in terms of an arbitrary infinite

open cover, and this is the definition now used.

Remark 4.20 The reader reviewing the propositions above may notice a glaring omis-

sion. On the one hand, in every metric space a compact set is closed and bounded.

On the other hand, the subject of the Heine–Borel theorem, that closed and bounded

implies compact, is only stated as true in Rn and C. While Heine–Borel is also true in

Cn, we do not prove this as we have no need for this result. But it is only natural to

wonder if Heine–Borel can be extended to all metric spaces. The answer is no, although

the development of such an example will take us too far afield to be justified given that

we will not make use of this in what follows.

4.3 Applications to Finance

4.3.1 Set Theory

In general, knowledge of the axiomatic structure of set theory, or even the need for

an axiomatic structure, is not directly applicable to finance except as a cautionary

tale, as was discussed in chapter 1. While one’s intuition can be a valuable facilitator

in the development of an idea, or the pursuit of a solution to a problem, it is rarely
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adequate in and of itself even when the topic at hand appears elementary, and cau-

tion seems unwarranted. The ideal approach to problems in finance is where the

development is mathematically formal but enlightened with intuition.

In finance as in all mathematical applications, one sometimes has a compelling in-

tuitive argument as to how a problem ought to be solved, and then perhaps struggles

to make this intuition precise. On the other hand, one sometimes discovers (or stum-

bles upon) a formal mathematical relationship and then struggles with an intuitive

understanding. Both approaches are common, and both are valuable. The key is

that until one has both, mathematical rigor and intuition, one hasn’t really solved

the problem. That is, a true ‘‘solution’’ requires a quantitative derivation of the solu-

tion to the problem as well as an intuitive understanding of why this solution works.

Of course, the tools of set theory are necessary and important simply because

many problems in finance can be articulated in terms of sets, and so call for formal

understanding and working knowledge of the set operations as well as their

properties.

4.3.2 Constrained Optimization and Compactness

The constrained optimization problems discussed in chapter 3 on Euclidean spaces

can be posed in terms of sets. For example, consider the constrained maximization

problem in Rn:

max gðxÞ; given that f ðxÞ ¼ c:

Now define the sets

A ¼ fx A Rn j f ðxÞ ¼ cg;
B ¼ fgðxÞ j x A Ag:

Then AHRn is clearly the constraint set, and BHR is the set of values the objec-

tive function takes on this constraint set. For example, A might denote the portfolio

allocations that provide a given level of ‘‘risk’’ appropriately defined, and B then

evaluates the average or return ‘‘expected’’ from these allocations.

Now, if B is unbounded from above, then the constrained optimization obviously

has no solution. Hence, within this framework, solvability is seen to depend at the

minimum on conditions on A and gðxÞ, which assure that B is bounded from above.

Of course, if we seek a minimum, we need B to be bounded from below.

However, while boundedness is necessary, it is not su‰cient. If B is an open subset

of R, it will not contain its minimum or maximum points. This comes from the def-

inition of open, which is to say, if x A E an open set, then there is an r > 0 so that
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BrðxÞHE, and no x can be a maximum or a minimum. Hence within this frame-

work, solvability is also seen to depend at the minimum on conditions on A and

gðxÞ, which assure that B is bounded and closed—which is to say, by the Heine–

Borel theorem, that B is compact. In that case, if xopt A B is the optimized value,

either the maximum or the minimum, then by definition there is an xopt A A so that

gðxoptÞ ¼ xopt. Hence, if B is compact, there is in theory a solution to the constrained

optimization problem. Uniqueness will then depend on conditions on gðxÞ.
Logically, the condition(s) on A and gðxÞ that assure compactness of B are in fact

conditions on the constraint function f ðxÞ and the objective function gðxÞ. More

generally, the constraint set A may be defined as

A ¼ fx j f ðxÞ A Cg;
where C is a given constraint set, CHR. Alternatively, A may be defined in terms of

multiple constraints, as the intersection of sets of the form fx j fiðxÞ A Cig:
A ¼ fx j fiðxÞ A Ci for all 1a iamg:

So we see that in this general case the compactness of the objective function’s

range B reflects conditions on the functions f and g, as well as the constraint set C.

Notationally, if f is one-to-one, we can express A ¼ f �1ðCÞ and B ¼ gðAÞ, and

hence

B ¼ gð f �1ðCÞÞ:
So we seek conditions on C, f , and g that ensure that B is compact.

When f is not one-to-one, we seek conditions on g and A to ensure that gðAÞ is
compact, and in turn conditions on f and C to ensure that the needed conditions

on A are satisfied.

To explore this, we need to study additional properties of functions that will pro-

vide answers to these and related questions. The first steps will be taken in chapter 9

on calculus I, which addresses di¤erential calculus on R, but this will not be enough

for the question above despite the fact that both B and C are subsets of R. The prob-

lem, of course, is that in going from C to B we need to ‘‘travel’’ through AHRn, so

for a complete answer, multivariate calculus is required.

That said, there is still the issue of determining a solution. The analysis above

would provide what in mathematics is known as a qualitative theory and solution

to the constrained optimization problem. What is meant by ‘‘qualitative’’ is that the

theory demonstrates that a solution exists and whether or not it is unique. There is

then the question of developing a quantitative theory and solution. That is, either an

explicit formula or procedure that provides the answer, or a numerical algorithm that
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will ‘‘converge’’ to the given solution after infinitely many iterations. In the latter

case, since we only have finitely much time, our goal would be to perform enough

iterations to assure accuracy to some level of tolerance.

This raises the question of ‘‘convergence’’ and rate of convergence, issues intro-

duced in the next two chapters on sequences and series. This discussion will then be

expanded in chapter 9, where the relationship between properties of sets and proper-

ties of functions on R and related questions will be addressed.

4.3.3 Yield of a Security

In chapter 2 a number of formulas were derived for the prices of various securities,

expressed as functions of variables that define the security’s cash flow characteristics

as well as of the investors’ required yields. Put another way, given the cash flow

structure, price can be thought of as a function of yield. One application of these for-

mulas is to determine the price investors are willing to pay, given their yield require-

ments. Oftentimes in the financial markets, however, an investor faces a di¤erent

question, and that is, given the market price of a security, what is the implied inves-

tor yield.

Such questions can arise in terms of a bid price, the price that a dealer is willing to

pay on a purchase from an investor, or an o¤er (or ask) price, the price that a dealer

requires on a sale to an investor. In both cases the investor is interested in the yield

implications of the trade.

The o¤er price is always more, of course, and hence the o¤er yield is less than the

associated bid yield. It is common to be interested in the so-called bid–ask spread, or

bid–o¤er spread, defined as the di¤erence between the higher bid yield and the lower

ask–o¤er yield. This yield di¤erential provides information to the investor on the li-

quidity of the security. A small bid–ask spread is usually associated with high liquid-

ity, and increasingly larger spreads are associated with increasingly less liquidity.

In this context the notion of liquidity implies the commonly understood meaning

as a measure of ‘‘ease of sale,’’ since the dealer can encourage or discourage investor

sales by favorable or unfavorable pricing. Narrow spreads are associated with deep

markets of actively traded securities, and wide spreads with thin or narrow markets.

In e¤ect, a wide spread is compensation to the dealer for the expected delayed o¤set-

ting transaction, and the risks or hedge costs incurred during the intervening period.

But more important, liquidity is a measure of the fairness of the transaction’s

price. A small spread implies pricing is fair, since dealers are willing to transact either

way at similar prices, whereas a wide spread implies that an investor sale may be well

below a fair price, and purchase well above a fair price. Of course, fairness is like

beauty; it is in the eye of the investor. Nonetheless, all market participants agree
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that the size of the spread tells a lot about both the ease of transacting and the fair-

ness of pricing.

If PðiÞ denotes the pricing function for a given security, and P0 the price quoted,

the security’s implied yield, or in the case of a fixed income security, implied yield to

maturity, is the solution i0 to the equation

PðiÞ ¼ P0: ð4:6Þ
In this section we informally introduce the method of interval bisection in solving

(4.6) for i0, and return to this methodology with greater formality in later chapters.

First o¤, one can do a qualitative analysis of this equation to determine if a solu-

tion is feasible. In virtually all markets one expects that all yields on securities are

greater than 0%, and less than 100%, so a very simple qualitative assessment for the

existence of a solution is that

Pð1:0ÞaP0 aPð0Þ;
where i ¼ 0 and 1:0 mean that the respective discount factors in the pricing formula,

v ¼ ð1þ iÞ�1, are 1 and 1
2 . From this assessment we can posit that i0 A ½0; 1�1F0. In

practice, this first step could well produce a much smaller initial solution interval,

such as ½0:05; 0:1�, but for notational simplicity, we ignore this refinement.

Next we could evaluate Pð0:5Þ, or in general, the price function at the midpoint of

the initial interval. We then have either

Pð1:0ÞaP0 aPð0:5Þ or Pð0:5ÞaP0 aPð0Þ:
From this we conclude that either i0 A ½0:5; 1� or i0 A ½0; 0:5�, respectively, and choose

the appropriate interval and label it F1. Of course, if P0 ¼ Pð0:5Þ, we are done.
Continuing in this way, one of two things happens:

1. We develop a sequence of closed intervals Fn, with i0 A Fn for all n, and lengths

jFnj ¼ 1
2 n .

2. Or the process serendipitiously stops in a finite number of steps, since i0 is an end-

point of one of the Fn.

Assuming the process does not stop, we can identify ‘‘approximate’’ solutions to

the equation in (4.6) by simply choosing the midpoints of the respective intervals.

Specifically, defining in as the midpoint of Fn, it must be the case, since i0 A Fn and

jFnj ¼ 1
2 n , that

jin � i0j < 1

2nþ1
:
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Also, since fFng are closed sets, and the length jFnj decreases to 0, then 7Fn is

closed and hence must be a single point. That is, it must be the case that

i0 ¼ 7Fn:

Or does it?

If Fn ¼ ½an; bn�, all we know is that PðbnÞaP0 aPðanÞ for all n, and that bn � an
¼ 1

2 n . But how do we know that there is a unique value in this interval, which we de-

note i0, on which P0 is achieved by PðiÞ? Let’s summarize the assumptions made to

draw this desired conclusion:

1. We implicitly assumed that the price function was decreasing, or more generally,

that it is monotonic (increasing or decreasing), since at each step we assumed, in the

notation above, that the value at the midpoint was ‘‘between’’ the endpoint values:

PðbnÞaPðinÞaPðanÞ:
Then we could choose one or the other of the subintervals ½an; in� or ½in; bn� in the next

step. We know, or at least intuit, that this is true for most pricing functions in fi-

nance, and this can be demonstrated with the tools of chapter 9. But in a more gen-

eral application, PðinÞ could exceed either endpoint value, or be less than either. In

such a case there could be more than one solution, and we would have to choose

which interval(s) we search to find them.

2. We implicitly assumed that the price function varies in a smooth and predictable

way, a property that will be called continuity in chapter 9. Specifically, we know from

the values of jFnj that the intersection of these closed sets will produce a unique

point, call it i0. We also know that by construction, PðbnÞaP0 aPðanÞ, and given

the assumption of monotonicity, that PðbnÞaPðinÞaPðanÞ, where in is the midpoint

of Fn. But to conclude from in ! i0 that PðinÞ ! Pði0Þ requires an assumption on the

continuity of the price function PðiÞ, which thankfully, is true for pricing functions as

will also be seen.

We will return to the analysis of interval bisection in chapter 5.

Exercises

Practice Exercises

1. Russell’s paradox is equivalently formulated as the Barber Paradox: In a town

there is a barber who shaves all the men that do not shave themselves, and only those

men. Define ‘‘set’’ A as the set of all men in the town that the barber shaves.
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(a) Is the barber a member of this set? Show that the barber’s set membership cannot

be determined as we would conclude the paradox that the barber shaves himself if

and only if he does not shave himself.

(b) Note that the paradox works because at the time, the barber was assumed to be

male. Show that if the barber were female, we could conclude that the barber is not a

member of this set, whether she shaves or not.

2. Prove De Morgan’s laws 2 to 4, using the operational definitions.

3. Demonstrate the following, using operational definitions:

(a) If Gn 1 � 1
n
; 1þ 1

n

� �
, then 7Gn ¼ ½0; 1�, so the intersection of open sets can be

closed.

(b) If Fn 1 1
n
; 1� 1

n

� �
, then 6Fn ¼ ð0; 1Þ, so the union of closed sets can be open.

4. Show that if a set A contains n-elements, that the power set of A, defined as the set

of all subsets of A, contains 2n elements. (Hint: Label the elements of A as

x1; x2; . . . ; xn, and define a chooser function on the power set that produces decimal

expansions as follows:

f ðBÞ ¼ 0:a1a2a3a4 . . . an;

where

aj ¼
0; xj B B,

1; xj A B.

�
Show that f ðBÞ ¼ f ðB 0Þ i¤ B ¼ B 0, and that the range of f has 2n elements.)

5. Generalize exercise 4 to the case where A contains a countably infinite number of

elements, and show that with an abuse of notation, there are 2y elements in the

power set, where this symbol denotes the uncountable infinity of real numbers in the

interval ½0; 1�. (Hint: Use the construction in exercise 4, and recall the binary expan-

sions of reals x A ½0; 1�.)
6. Demonstrate that the points in the Cantor set can be identified with base-3

expansions, 0:a1a2a3a4 . . . , where aj ¼ 0; 2. (Hint: Show that points in F1 all begin

as 0:0a2a3a4 . . . or 0:2a2a3a4 . . . , then show that points in F2 are of the form:

0:a1a2a3a4 . . . , where a1a2 ¼ 00; 02; 20; 22, etc.)

7. Develop another proof that the Cantor set has measure 0, using the fact that if we

denote by jFnj the total length of the intervals in Fn, then by the construction,

jFnþ1j ¼ 2
3 jFnj. (Hint: K ¼ 7y

j¼0
Fj, but 7

n

j¼0
Fj ¼ Fn.)

8. Show that the following sets have measure 0 by constructing a covering with inter-

vals that have arbitrarily small total length. (Hint: Recall that
Py

n¼1
1
2n ¼ 1.)
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(a) The integers Z
(b) 1

n
j n ¼ 1; 2; 3; . . .

� �
(c) The rationals QV ð0; 1Þ
9. For 1a pay, define a set, GHR2 to be ‘‘lp-open’’ if for any x A G there is an

r > 0 so that B
ðpÞ
r ðxÞHG where B

ðpÞ
r ðxÞ ¼ fy j kx� ykp < rg, and where kx� ykp

denotes the lp-norm. The usual definition of open is then l2-open.

(a) Show that G is open if and only if it is l1-open. (Hint: Recall the graphs of equiv-

alent metrics in chapter 3.)

(b) Generalize part (a) to show that G is open if and only if it is lp-open for all p.

10. Define a set GHRn to be open if for any x A G, there is an r > 0 so that

B
ðdÞ
r ðxÞHG, where B

ðdÞ
r ðxÞ ¼ fy j dðx; yÞ < rg.

(a) Exercise 18 of chapter 3 introduced a metric on Rn that was not equivalent to the

lp-metrics. Specifically,

dðx; yÞ ¼ 0; x ¼ y,

1; x0 y.

�
Determine all the open sets in Rn.

(b) Define:

dðx; yÞ ¼ f0; all x; y:

Prove that there is only one open set, and determine what it is.

11. The Heine–Borel theorem assures that a set is compact in Rn if and only if it is

closed and bounded. Explain how to choose the finite subcovers of the following

open covers of the given sets:

(a) F ¼ ½0; 1�H6BrðxjÞ, where fxjg is an arbitrary enumeration of the rational

numbers in the interval and r > 0 is an arbitrary constant.

(b) F ¼ ½0; 1�H6Brj ðxjÞ, where fxjg is an arbitrary enumeration of the rational

numbers in the interval, and rj > 0 are arbitrary values. If rj > r > 0, this can be

solved as in part (a), so assume that 0 is an accumulation point of frjg.
(c) F ¼ CRð0ÞH6CrðxjÞ in R2, where CR denotes the closed 2-cube, or square,

about 0 of diameter 2R, and CrðxjÞ denotes the open cubes about points xj, with ra-

tional coordinates, of fixed diameter 2r > 0.

12. Show that the interval ð0; 1Þ is not compact by constructing an infinite open

cover for which there is no finite subcover. (Hint: Construct an open cover sequen-

tially, with Ij H Ijþ1.)

Exercises 141



13. Use the method of interval bisection to determine the yields of the following

securities to four decimals (i.e., to basis points). Solve each in the appropriate nomi-

nal rate basis:

(a) A 10 year bond with 5% semiannual coupons, with a price of 98:75 per 100 par.

(b) An annual dividend common stock, last dividend of $10 paid yesterday and

assumed to grow at 8% annually, selling for $115:00.

(c) A 5-year monthly pay commercial mortgage, with loan amount $5 million and

amortization schedule developed with a monthly rate of 6%, selling in the secondary

market for $5:2 million.

Assignment Exercises

14. Simplify the following expressions by applying De Morgan’s laws, and then

demonstrate that the expression derived is correct using the operational definitions.

(a) ðAV ~BBÞc UC

(b) ðBV ½6
a
Aa�Þc

(c) ð6
a
AaÞc U ð7

b
~BBbÞc

Recall that ðCÞc denotes ~CC.

15. Generalize exercise 3:

(a) Provide an example of a countably infinite collection of open Gn HR so that

7Gn is open.

(b) Repeat part (a) so that 7Gn is neither open nor closed.

(c) Provide an example of a countably infinite collection of closed Fn HR so that

6Fn is closed.

(d) Repeat part (c) so that 6Fn is neither open nor closed.

16. Develop examples in R2 of the results illustrated in:

(a) Exercise 3

(b) Exercise 15

Can your constructions in parts (a) and (b) be applied in Rn?

17. Generalize exercise 5 and show that if A is a set of any ‘‘cardinality,’’ the power

set of A has greater cardinality; that is to say, its elements cannot be put into one-to-

one correspondence with the elements of A. (Hint: Assume there is such a correspon-

dence, and define f ðaÞ as the 1 :1 function that connects A and its power set. In other

words, f ðaÞ ¼ Aa, the unique subset of A associated with a. Consider the set

A 0 ¼ fa j a B Aag. Then there is an a 0 A A so that this collection is produced by

f ða 0Þ; that is, A 0 ¼ Aa 0 . Show that a 0 A Aa 0 i¤ a 0 B Aa 0 .)
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Remark 4.21 In Cantor’s theory of infinite cardinal numbers, where ‘‘cardinal’’ is in-

tended as a generalization of the idea of the ‘‘number’’ of elements in a set, the symbol

@0 and read ‘‘Aleph-naught,’’ denotes the cardinality of the integers, or ‘‘countably in-

finite.’’ Then @1 denotes the next greater cardinality, @2 the next, and so forth, and

Cantor proved with the construction of this exercise that there is an infinite sequence

of cardinal numbers so that no one-to-one correspondence could be produced between

any two sets with di¤erent cardinalities. For example, we have already seen that a set

of cardinality @0 cannot be put into one-to-one correspondence with the set of real num-

bers, so the cardinality of the reals must exceed @0. Now the cardinality of the power

set of a set of cardinality @0 is the same as the cardinality of the collection of all func-

tions from a set of cardinality @0, to the 2-element set, f0; 1g. This follows from the

construction in exercise 5, since every set in the power set implies a function that has

value 1 on every element in this set, and value 0 on every element not in this set. The

notation used for the cardinality of this class of functions is 2@0 and exercise 5 assures

that @0 < 2@0 and that 2@0 ¼ c, the uncountable infinity of the real numbers, also called

the continuum. The power set of a set of cardinality @1 again has greater cardinality by

exercise 17, equal to the 2@1 , and so @1 < 2@1 . This process continues, in turn producing

an infinite sequence of increasingly large infinite cardinals, since for all j, @j < 2@j . The

continuum hypothesis, which is a statement that has been proved to be independent of

ZFC set theory (the 10 Zermelo–Fraenkel axioms with the axiom of choice), is that

there is no cardinal strictly between @0 and c ¼ 2@0 , and hence the next greater cardinal

@1 is 2@0 . In other words, @1 ¼ 2@0 . The generalized continuum hypothesis states that

there is no cardinal strictly between @j and 2@j for any j and so @jþ1 ¼ 2@j . It has been

proved that this hypothesis is also independent of the ZFC set theory, and hence can

neither be proved nor disproved in that theory. In other words, mathematicians have

the option to add these hypotheses or their negative to the theory, and in each case

derive a consistent theory of cardinals.

18. Denote the Cantor set developed in this chapter by K2=3 to signify that in

each step, each closed interval from the prior step is divided equally into three-

subintervals, and the second open subinterval is removed. Define a generalized Can-

tor set, denoted Km=n, for n, m integers, nb 3, m ¼ 1; 2; . . . ; n, analogously. That is,

at each step, each closed interval of the form k
n j ;

kþ1
n j

� �
from the prior step is divided

equally into n-subintervals, and the mth open subinterval removed.

(a) Defining Km=n as the intersection of all the sets produced in these steps, confirm

that Km=n is closed.

(b) Show that Km=n has measure 0 using the approach of exercise 7. Note the com-

plexity of proving this result by considering the sum of the lengths of the intervals

removed.
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(c) Show that Km=n is uncountable by identifying points in this set with base-n expan-

sions, but without the digit m� 1. (Hint: Identify these expansions with base-ðn� 1Þ
expansions of all real numbers in ½0; 1�.)
19. Demonstrate that the exercise 18(c) construction does not work if n ¼ 2.

(a) Show that Km=2 is a closed set of measure 0.

(b) Prove that Km=2 is countable and identify explicitly the elements of these two sets,

where m ¼ 1 or m ¼ 2.

20. Generalizing exercise 8, show that the following sets in R2 have measure 0,

which means that the set can be covered by a collection of balls with total area as

small as we choose.

(a) The ‘‘integer lattice’’: fðn;mÞ j n;m A Zg
(b) 1

n
; 1
m

� �j n;m A Z; n;m0 0
� �

(c) fðq; rÞ j q; r A Qg
21. Generalize exercise 9 to Rn. (Hint: Recall (3.34).)

22. Show that the following sets are not compact by constructing an infinite open

cover for which there is no finite subcover.

(a) fðx; yÞHR2 j jxj þ jyj < 1g
(b) fðx; yÞHR2 j x2 þ y2 < Rg for R > 0.

(c) fxHRn j x1 0 0g where x ¼ ðx1; x2; . . . ; xnÞ (Hint: Try n ¼ 2 first.)

23. Prove that:

(a) Q1 HRn defined as Q1 ¼ fxHRn j xj A Q for all jg is dense for any n.

(b) For any k A N, the set Qk HRn defined as Qk ¼ fxHRn j xk
j A Q for all jg is

dense for any n. (Hint: Show Q1 HQk.)

24. Use the method of interval bisection to determine the yields of the following

securities to four decimal places (i.e., to basis points). Solve each in the appropriate

nominal rate basis:

(a) A 15-year bond with 3% semiannual coupons, with a price of 92:50 per 100 par.

(b) A semiannual dividend common stock, last dividend of $6 paid yesterday and

assumed to grow at a 5% semiannual rate, selling for $66:00.

(c) A perpetual preferred stock with quarterly dividends at a quarterly dividend rate

of 7%, priced at 105:25 per 100 par.
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5 Sequences and Their Convergence

5.1 Numerical Sequences

5.1.1 Definition and Examples

The mathematical concept of a numerical sequence is deceptively simple, and yet its

study provides a solid foundation for a great many deep and useful results as we will

see in coming chapters.

Definition 5.1 A numerical sequence, denoted fxng, fzjg, and so forth, is a countably

infinite collection of real or complex numbers for which a numerical ordering is

specified:

fxng1 x1; x2; x3; . . . :

For specificity, the sequence may be called a real sequence or a complex sequence. A

numerical sequence is said to be bounded if there is a number B so that jxnjaB for

all n. A subsequence of a numerical sequence is a countably infinite subcollection that

preserves order. That is, fymg is a subsequence of fxng if

ym ¼ xnm and nmþ1 > nm for all m:

Remark 5.2 In some applications a numerical sequence is indexed as fxngyn¼0 rather

than fxngyn¼1.

Note that the notion of a numerical sequence requires both a countable infinite

collection of numbers as well as an ordering on this collection. For example, while

the collection of rational numbers is, as we have seen, a countably infinite collection

of real numbers, it is not a numerical sequence until an ordering has been imposed.

One such ordering was introduced in section 2.1.4 on rational numbers to prove

countability, although this ordering counted each rational infinitely many times.

However, there are infinitely many other orderings, in fact uncountably many.

Order is particularly important because one is generally interested in whether or

not the numerical sequence ‘‘converges’’ as n ! y. For example, even without a for-

mal definition of convergence, it is intuitively clear that the following sequences be-

have as indicated:

Example 5.3

1. ym 1 1
m
converges to 0 as m ! y.

2. xn 1
ð�1Þ n

n
converges to 0 as n ! y.

3. aj 1
j�1
j
converges to 1 as j ! y.



4. cj 1 ð�1Þ j j�1
j
does not converge as j ! y.

5. zn 1 2n�5
4nþ1000 þ 3n3

5n3þ6
{ converges to 0:5þ 0:6{ as n ! y.

6. bn 1
m; n ¼ 2m

�m; n ¼ 2mþ 1

�
does not converge as n ! y.

7. wk 1 k diverges to y as k ! y.

8. uj ¼ �j2 diverges to �y as j ! y.

On an intuitive level, cases 1 and 3 of example 5.3 not only converge, but converge

monotonically, which is to say that both sequences get closer to their respective limits

at each increment of the index. Case 2 also converges but not monotonically because

of the alternating signs. Case 4 ‘‘almost’’ converges, in that ‘‘half ’’ of the sequence is

converging to a limit of þ1, while the other half is converging to a limit of �1. Spe-

cifically, case 4 has two convergent subsequences:

fyng1 fc2ng ! 1;

fy 0
ng1 fc2n�1g ! �1:

That case 5 converges is made more transparent by rewriting the rational func-

tions, for example,

2n� 5

4nþ 1000
¼ 2� 5

n

4þ 1000
n

;

which converges to 1
2 . Cases 6, 7, and 8 all ‘‘explode’’ in a sense, but cases 7 and 8

seem to be reasonable candidates for a definition of converge to y, or converge to

�y, for which we will use the language diverge toGy.

These examples provide a range of sample behaviors for numerical sequences.

After formalizing the definition of convergence that will capture the intuition of all

convergent examples, we will develop several properties of numerical sequences and

see that the comment above on case 4 generalizes. That is, any bounded numerical

sequence has at least one convergent subsequence.

5.1.2 Convergence of Sequences

The following definition of convergence of a numerical sequence is formal, and will

be discussed below to provide additional intuition. But at this point, we note the key

intuitive idea that this formality is attempting to capture. The notion of convergence

xn ! x means more than just ‘‘as n increases, there are terms xn that get arbitrarily
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close to x.’’ This is a notion that is weaker than convergence and will be addressed

below. The stronger property defined here is that ‘‘as n increases, all terms xn get ar-

bitrarily close to x.’’ More precisely:

Definition 5.4 A numerical sequence fxng converges to the limit x as n ! y if for

any � > 0 there is an N1Nð�Þ so that

jxn � xj < � whenever nbN: ð5:1Þ
In this case we write

lim
n!y

xn ¼ x or xn ! x:

In (5.1) the notation jxn � xj is to be interpreted in terms of the standard norm in R
and C given in (2.3) and (2.2), respectively. A real sequence fxng diverges to y as

n ! y if for any M > 0 there is N1NðMÞ so that

xn bM whenever nbN;

and diverges to �y as n ! y if for any M > 0 there is N1NðMÞ so that

xn a�M whenever nbN:

In these cases we write, as appropriate,

lim
n!y

xn ¼Gy or xn !Gy;

In all other cases we say that fxng diverges as n ! y, or simply, does not converge.

Definition 5.5 A real sequence fxng is monotonic if any of the following conditions

are satisfied:

xn < xnþ1 for all n: strictly increasing

xn a xnþ1 for all n: increasing, or nondecreasing

xn > xnþ1 for all n: strictly decreasing

xn b xnþ1 for all n: decreasing, or nonincreasing

A real sequence fxng converges monotonically to the limit x as n ! y if fxng is mono-

tonic and converges to the limit x as n ! y.

Note that while convergence of a complex sequence is easily defined with the same

notation as that for a real sequence, as was noted in section 2.1.6 on complex num-

bers, there is no ordering of C as there is in R, and hence one does not have the
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notion of a monotonic complex sequence or that of monotonic convergence. Note

also that again with the exception of monotonicity, these definitions generalize with-

out change to vector sequences xn A Rn, only where (2.3) is replaced by the standard

norm in (3.3). Moreover this notion of convergence only depends on the norm up to

equivalence. So, if xn ! x under the standard norm, it will also converge relative to

the lp-norms for 1a pay, or any other equivalent norm. This more general notion

will be discussed below.

Remark 5.6 The concept in the definition above, that ‘‘for any � > 0 there is an

N1Nð�Þ,’’ can be a di‰cult one to grasp initially. But this theme is repeated time

and again in the following chapters, so we pause a moment here to develop it a bit fur-

ther. The di‰culty some have is that the intuitive notion of a limit, that

“xn gets closer to x as n gets large”

seems simple enough. But the detail that needs to be addressed is:

� Does convergence mean that we can find values of xn that get arbitrarily close to x?

� Or does convergence mean that all values of xn eventually get arbitrarily close to x?

For some purposes, the former weaker definition may su‰ce, and this idea is essen-

tially captured in the notion of accumulation point or limit point introduced in section

4.2.5. But for many applications we want the stronger definition of convergence in that

not just some xn get arbitrarily close to x as n ! y, but all xn get arbitrarily close to x

as n ! y. This is the reason to insist that jxn � xj < � for all nbN.

The formal definition of convergence may seem to suggest that we can randomly

generate any �, and as long as there is an associated N with the needed property, we

are done and have proved convergence. Actually the terminology ‘‘for any � > 0

there is an N1Nð�Þ’’ is not to be interpreted as if � is arbitrarily selected by the

mathematician. The idea is instead that the mathematician wants to be sure that

there is a sequence of epsilons �j ! 0, for example, �j ¼ 1
j
, so that for every term in

that sequence, an associated Nj 1Nð�jÞ can be found, resulting in jxn � xj < �j
whenever nbNj. In other words, for any such �j there is an Nj so that all terms of

the sequence from term xNj
onward are closer to x than �j. Logically, as �j ! 0, we

expect to have that Nj ! y. That is, as one insists that sequence values be increas-

ingly close to their limit, it may be necessary to exclude more and more of the

sequence’s initial terms. So a good intuitive model for the expression ‘‘for any � > 0

there is an N1Nð�Þ so that . . .’’ is that ‘‘there is a sequence of epsilons, �j ! 0, and

associated Nj 1Nð�jÞ, so that . . . .’’
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The payo¤ from this definition is that one immediately has error bounds

��j < x� xn < �j

as long as nbNj , so any such xn could be used as an approximation to x with the

error bounded as noted.

Example 5.7 Let’s prove the convergence of cases 3 and 5 in example 5.3 above to the

intuited limits of 1 and 0:5þ 0:6i. First o¤, for case 3,

jaj � 1j ¼ 1

j
:

Given � > 0, to have jaj � 1j < � then requires that j > 1
� . So N is chosen as any inte-

ger that exceeds this value. For case 5 of example 5.3, we use the triangle inequality,

and recalling that jij ¼ 1, we write

jzn � ð0:5þ 0:6iÞj ¼ �555

4nþ 1000
� 0:36

5n3 þ 6
i





 




a

555

4nþ 1000
þ 0:36

5n3 þ 6

<
556

4nþ 1000
:

This last inequality follows since 5n3 þ 6 > 4nþ 1000 for n > 10, say, and this is good

enough. Given � > 0, to have jzn � ð0:5þ 0:6iÞj < � requires that n > 556�1000�
4�

. So N is

chosen to exceed this value.

5.1.3 Properties of Limits

The first observation about the definition of convergence, which is not true for the

weaker notion of accumulation point, is that if a numerical sequence converges, the

limit must be unique.

Proposition 5.8 If limn!y xn ¼ x and limn!y xn ¼ x 0, then x ¼ x 0.

Proof This result is obvious if x ¼Gy: by definition, a sequence cannot have both

a finite limit and diverge toGy, nor can it have both y and �y as limits. If x and

x 0 are both finite, then for any � > 0, there is an N1Nð�Þ so that jxn � xj < � and

jxn � x 0j < � for nbN. Actually the definition of limit assures the existence of N1

and N2, one for each limit, so we simply define N ¼ maxðN1;N2Þ. By the triangle

inequality,
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jx� x 0ja jx� xnj þ jxn � x 0j < 2�:

As this is true for any � > 0, we conclude that x ¼ x 0. n

The next observation concerning convergence is that convergence implies

boundedness.

Proposition 5.9 Let fxng be a convergent numerical sequence with xn ! x; then fxng
is bounded.

Proof Fix any � > 0, for example, � ¼ 1, and let N be the associated integer so that

jxn � xj < 1 whenever nbN. Then by the triangle inequality,

jxnj ¼ jxn � xþ xj < 1þ jxj for nbN:

For n < N, jxnjamaxnaN jxnj, which is also finite. So all jxnj are bounded by the

larger of 1þ jxj and maxnaN jxnj. n

Remark 5.10 Note that case 4 of example 5.3 above shows that boundedness does not

guarantee convergence.

It is relatively easy to show that the notion of convergence is preserved under

arithmetic operations:

Proposition 5.11 Let fxng and fyng be convergent numerical sequences with xn ! x,

and yn ! y, and let a be a real or complex number. Then:

1. axn ! ax.

2. xn þ yn ! xþ y.

3. xnyn ! xy.

4. 1
yn
! 1

y
as long as y0 0, and yn 0 0 for all n.

5. xn
yn
! x

y
as long as y0 0, and yn 0 0 for all n.

Proof In each case we show that convergence is guaranteed by convergence of the

original sequences:

1. jaxn � axj ¼ jaj jxn � xj by either (2.3) or (2.2), so assuming a0 0, jaxn � axj < �

if jxn � xj < �
jaj . If a ¼ 0, there is nothing to prove.

2. jðxn þ ynÞ � ðxþ yÞja jxn � xj þ jyn � yj by the triangle inequality in (2.7), so

jðxn þ ynÞ � ðxþ yÞj < � if each of the absolute values on the right-hand side are

bounded by �
2 .
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3. Again, by the triangle inequality, jxnyn � xyja jxnyn � xnyj þ jxny� xyj ¼
jxnj jyn � yj þ jyj jxn � xj. So if y0 0, jxnyn � xyj < � if jyn � yj < �

2B , where B is

an upper bound for fjxnjg, and jxn � xj < �
2jyj . If y ¼ 0, the second term drops out.

4.


 1
yn
� 1

y



¼ 

yn�y

yyn



. Now, since y0 0 and yn 0 0 for all n, we can take � ¼ 0:5jyj.
We know that by convergence yn ! y, there is an N so that jyn � yj < 0:5jyj for
n > N0. Now for n > N0, jynj > 0:5jyj, and so jynyj > 0:5jyj2 and



 1
yn
� 1

y



< 2jyn�yj
jyj2 .

Given arbitrary � > 0, we have that


 1
yn
� 1

y



< � for nbmaxðN;N0Þ, if N is chosen to

have jyn � yj < 0:5jyj2�.
5. This follows from parts 3 and 4, since xn

yn
¼ xn

1
yn

� 	
. n

While we have seen by example that boundedness does not guarantee convergence,

we have the following result that boundedness assures the existence of a convergent

subsequence, generalizing case 4 of example 5.3 above.

Proposition 5.12 Let fxng be a bounded numerical sequence. Then there is a subse-

quence fymgH fxng and y so that ym ! y.

Proof Because both R and C are metric spaces under the standard norms defined

in (2.3) and (2.2), we have by proposition 5.9 that there is a closed ball in R or C so

that fxngHBRð0Þ for some R. By the Heine–Borel theorem, closed balls are com-

pact in both R and C, so we can apply proposition 4.17 that any infinite collection

of points in a compact set must have an accumulation point. That is, fxng has an

accumulation point y A BRð0Þ. So for any r > 0, BrðyÞV fxng0j. Next we choose

rm ! 0, and for each m choose an arbitrary ym A BrmðyÞV fxng. Then ym ! y, since

for any � > 0 we can choose any rN < �, and by construction, ym A BrN ðyÞ for all

mbN. That is, jym � yj < � for all mbN. n

The apparent arbitrariness in this proof implied by ‘‘choose an arbitrary ym A
BrmðyÞV fxng’’ may surprise the reader. However, not only will there be for a given

y many sequences fymg with ym ! y, but there may also be many such accumula-

tion points y. For example, every point of the sequence can be an accumulation

point, and moreover the total number of such accumulation points may be uncount-

ably infinite.

Example 5.13 Let fxng be an arbitrary enumeration of the rational numbers in ½0; 1�.
Then every y A ½0; 1� is an accumulation point. This is easily seen by taking an arbi-

trary y ¼ 0:d1d2d3 . . . as a decimal expansion. If y is a rational number ending in all

0s, we first rewrite this as an equivalent decimal ending in all 9s. For example, 0:5 ¼
0:49999 . . . . The subsequence is then formed by looking at the rational truncations of r:
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0:d1; 0:d1d2; 0:d1d2d3; 0:d1d2d3d4; . . . :

Define y1 ¼ 0:d1. Clearly, 0:d1 ¼ xn1 for some n1. The next term of the subsequence,

y2, is the first decimal truncation, 0:d1d2d3 . . . dm, so that 0:d1d2d3 . . . dm ¼ xn2 , where

n2 > n1. Continuing in this way, we obtain a subsequence fymg with ym ! y.

*5.2 Limits Superior and Inferior

The preceding example illustrates that a bounded numerical sequence not only has

an accumulation point as well as a subsequence convergent to that accumulation

point, but that it may have a great many such accumulation points. For this reason

the notions of limit superior and limit inferior of a sequence have been introduced.

These are defined to equal the least upper bound or l.u.b., and greatest lower bound,

or g.l.b., respectively, of the collection of accumulation points, although unfortu-

nately, not in an immediately transparent way. A small but important application

of these notions will be seen in chapter 6 in the statement of the ratio test for series

convergence.

In addition these notions of limits have great utility in the advanced topic of real

analysis. But rather than deferring their introduction to that more abstract context,

we introduce limits superior and inferior here where the essence of these ideas is

more transparent.

Before defining formally and justifying the interpretations of limits superior and

inferior, we first define the l.u.b. and g.l.b. and introduce alternative notation.

Definition 5.14 Let fxag be a collection of real numbers. The least upper bound or

supremum is defined by

l:u:b:fxag ¼ supfxag1minfx j xb xa for all ag: ð5:2Þ
If fxag is unbounded from above, we define l:u:b:fxag ¼ supfxag1y. The greatest

lower bound or infimum is defined by

g:l:b:fxag ¼ inffxag1maxfx j xa xa for all ag: ð5:3Þ
If fxag is unbounded from below, we define g:l:bfxag ¼ inffxag1�y.

Notation 5.15 It is common to write l:u:b: as lub and g:l:b: as glb.

Next we state the formal definitions of the limits superior and inferior, and then

work toward the demonstration that these achieve the stated objective concerning

the g.l.b. and l.u.b. of accumulation points of the given sequence.
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Unfortunately, this is another example of where a lot of carefully positioned words

are needed to define an idea that has a relatively simple intuitive meaning.

Definition 5.16 Let fxng be a numerical sequence. If supfxng ¼ y, meaning there

exists no U so that xn aU for all n, then we define the limit superior of fxng to be

y, and denote this as

lim sup
n!y

xn ¼ y:

If there exists a U so that xn aU for all n, let Un ¼ supmbnfxmg and define

lim sup
n!y

xn ¼ lim
n!y

Un: ð5:4Þ

Similarly, if inffxng ¼ �y, meaning there exists no L so that La xn for all n, then we

define the limit inferior of fxng to be �y, and denote this as

lim inf
n!y

xn ¼ �y:

If there exists an L so that La xn for all n, let Ln ¼ infmbnfxmg and define

lim inf
n!y

xn ¼ lim
n!y

Ln: ð5:5Þ

Notation 5.17 In some mathematical references, the limit superior of fxng is denoted

by limn!y xn, and the limit inferior of fxng is denoted by limn!y xn, but throughout

this book we will use the more explicit notation above.

Before demonstrating that these rather abstract definitions provide the l.u.b. and

the g.l.b. of the collection of accumulation points of the sequence, we address a tech-

nicality within the definition above. That is, both the definition of lim sup in (5.4) and

that of lim inf in (5.5) involve limits of sequences as n ! y. It is natural to wonder

why such limits exist when nothing but one-sided boundedness is assumed of the

original sequence fxng.
The following proposition provides the missing detail because both sequences, Un

and Ln, are monotonic as can be demonstrated by

Un ¼ sup
mbn

fxmgb sup
mbnþ1

fxmg ¼ Unþ1; ð5:6aÞ

Ln ¼ inf
mbn

fxmga inf
mbnþ1

fxmg ¼ Lnþ1: ð5:6bÞ

Consequently Un is monotonically decreasing, and Ln monotonically increasing, al-

though in neither case must this monotonicity be strict.
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The next result is that a monotonic sequence either converges, or diverges toGy,

depending on whether it is bounded or unbounded.

Proposition 5.18 If fxng is monotonically decreasing, then limn!y xn ¼ �y if this

sequence is unbounded from below; otherwise, there is an x such that limn!y xn ¼ x.

Similarly, if fxng is monotonically increasing, we have that limn!y xn ¼ y or

limn!y xn ¼ x, depending on whether this sequence is unbounded from above or

bounded, respectively.

Proof The unbounded cases are straightforward. For example, if unbounded from

below, we have for any positive integer M there is an N so that xN a�M, but by the

decreasing monotonicity assumption, we conclude that

xn a�M whenever nbN;

and we have limn!y xn ¼ �y. If bounded, we know from proposition 5.12 that

fxng has an accumulation point x and a subsequence fymg so that ym ! x. By defi-

nition of this convergence, we have that for any � > 0 there is an N1Nð�Þ so that

jym � xj < � when mbN. We now show that x is in fact the limit of the original se-

quence, and indeed limn!y xn ¼ x. First, choose N 0 defined by xN 0 ¼ yNþ1. Next, if

fxng is monotonically decreasing, for any nbN 0 choose ymðnÞ and ymðnÞþ1 so that

and ymðnÞþ1 a xn a ymðnÞ. Then

jxn � xja jymðnÞ � xj < �;

since by assumption mðnÞbN. The result is analogously proved in the opposite

monotonicity case, except that we have ymðnÞ a xn a ymðnÞþ1 and

jxn � xja jymðnÞþ1 � xj < �: n

We now return to the relationship between limits superior and inferior, and the ac-

cumulation points of the sequence fxng. Given the formality in the definitions, it may

not be apparent how the definition of limit superior and limit inferior captures the

intention set out earlier, that being, to define the g.l.b. and the l.u.b. of all the accu-

mulation points of fxng. The next proposition establishes this connection.

Proposition 5.19 Given a sequence fxng, let fzkg denote the set of accumulation

points. Then

lim sup
n!y

xn ¼ l:u:b:fzkg; ð5:7aÞ

lim inf
n!y

xn ¼ g:l:b:fzkg: ð5:7bÞ
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Proof First o¤, if the sequence fxng is unbounded from above, then by defini-

tion, there is a subsequence fyng so that yn ! y and hence y A fzkg, but also

lim supn!y xn ¼ y. Similarly, if unbounded below, there is a subsequence fy 0
ng so

that y 0
n ! �y, and we conclude that �y A fzkg, but also lim infn!y xn ¼ �y. So

in these cases the intended goal regarding the collection of accumulation points is

achieved. On the other hand, if bounded above, then since the sequence fUng must

be monotonically decreasing, it has a finite limit or diverges to �y by the proposi-

tion above. If Un ! U 0, a finite limit, we claim that U 0 is the supremum or l.u.b. of

all accumulation points. To see this, we have by definition of Un ! U 0, that for any
� > 0 there is an N so that jUn �U 0j < � for nbN. Now, since Un ¼ supmbnfxmg,
we can find a value of xmðnÞ so that jUn � xmðnÞj < 1

n
, say. Define yn 1 xmðnÞ. Then we

have that yn ! U 0, since by the triangle inequality,

jyn �U 0ja jyn �Unj þ jUn �U 0j < �þ 1

n
;

and hence U 0 A fzkg. Also there can be no subsequence fy 0
ng so that y 0

n ! U 00 with
U 00 > U 0, since by definition of Un we have Un b supfy 0

j j y 0
j ¼ xm and mb ng.

Hence, since Un ! U we cannot have y 0
n ! U 00 with U 00 > U 0.

The cases where Un ! �y, Ln ! L 0 < y, and Ln ! y are reasoned similarly.

n

Example 5.20 Define the sequence

xn ¼
3� ð�1=nÞn; n ¼ 3m,

ð�1Þnððnþ 1Þ=nÞ; n ¼ 3mþ 1

ð�3=4Þn; n ¼ 3mþ 2.

8><>: ; m ¼ 0; 1; 2; . . . ;

This sequence has four accumulation points. The subsequence with n ¼ 3m converges to

3, the subsequence with n ¼ 3mþ 1 has two subsequences that converge to �1 and þ1,

and the subsequence with n ¼ 3mþ 2 converges to 0. So we conclude that by the prop-

osition above, it must be the case that lim supn!y xn ¼ 3 and lim infn!y xn ¼ �1.

Now

Un ¼ sup
mbn

fxmg ¼ 3þ 1

n 0

� �n 0

;

Ln ¼ inf
mbn

fxmg ¼ � n 00 þ 1

n 00 ;
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where n 0 ¼ minf3m j 3mb n and 3m is eveng and n 00 ¼ minf3mþ 1 j 3mþ 1b n and

3mþ 1 is oddg. We see that each of fUng and fLng are convergent monotonic se-

quences, and that Un ! 3 and Ln ! �1.

In summary, we conclude from this proposition that the limit superior equals the

supremum of all accumulation points, and the limit inferior the infimum of all ac-

cumulation points of fxng. Based on this result, the following proposition’s conclu-

sion cannot be a surprise. In theoretical applications this result can provide a useful

and powerful way of finding the limit of a convergent sequence, since it is sometimes

the case that the limits superior and inferior are easier to estimate than the ac-

tual limit itself, as each allows one to focus on what is often a more manageable

subsequence.

Proposition 5.21 Let fxng be a numerical sequence. Then, for �ya xay,

limn!y xn ¼ x if and only if

lim inf
n!y

xn ¼ lim sup
n!y

xn ¼ x:

Proof We consider three cases. The proof is a good example of ‘‘following the def-

inition’’ to the logical conclusion:

1. For x ¼ y, if xn ! y, then for any M there is an N so that xn bM for nbN.

Hence fxng is unbounded from above and lim supn!y xn ¼ y. Also Ln ¼
infmbnfxmgbM, for n > N, so Ln ! y as n ! y. That is, lim infn!y xn ¼ y.

Conversely, if lim infn!y xn ¼ lim supn!y xn ¼ y, then Ln ¼ infmbnfxmg ! y as

n ! y. That is, for any M there is an N so that Ln bM for nbN. Hence, by def-

inition of Ln; xn bM for nbN and xn ! y.

2. For x ¼ �y, the argument is identical.

3. For �y < x < y, if xn ! x, then for any � there is an N so that jxn � xj < � for

nbN. That is, x� � < xn < xþ � for nbN, and hence x� � < Ln, Un < xþ �, and

we conclude that lim infn!y xn ¼ lim supn!y xn ¼ x. Conversely, lim infn!y xn ¼
lim supn!y xn ¼ x implies that for any � there is an N so that jLn � xj < � and

jUn � xj < � for nbN, and hence by the definition of Un and Ln, we conclude that

jxn � xj < � for nbN and xn ! x. n

The next result says that the interval with endpoints equal to the limits superior

and inferior, if expanded arbitrarily little, will contain all but finitely many values of

the original sequence fxng.
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Proposition 5.22 If LS ¼ lim supn!y xn and LI ¼ lim infn!y xn, then for any � > 0

there is an N so that for all nbN,

LI � �a xn aLS þ �: ð5:8Þ
Proof We proceed with a proof by contradiction, illustrating the upper inequality.

Assume that for some � > 0 there are infinitely many sequence terms satisfying

xj > LS þ �. Then, for any n, Un ¼ supmbnfxmg > LS þ �, and hence lim supn!y xn
¼ limn!y Un bLS þ �, contradicting the definition of LS. n

Example 5.13 discussed above, on an arbitrary enumeration of rationals in ½0; 1�,
also introduces an issue that will play a critically important role in subsequent chap-

ters. That being, if a sequence fxngHX , where X is a subset of R or C and where

xn ! x, is x necessarily an element of this subset? The answer is ‘‘no,’’ and we pro-

vide two examples of what can happen.

Example 5.23

1. If X ¼ ð0; 1Þ, then both 1
n

� �
and 1� 1

n

� �
converge, but not to a point in X. On the

other hand, any convergent sequence fxngH ½a; b�H ð0; 1Þ must converge to a point

in X.

2. If X ¼ Q, the rational numbers, then as example 5.13 demonstrates, some sequences

converge to a point in X and some converge to a point outside X.

In the next section we generalize the notion of sequence to an arbitrary metric

space where x A X becomes an explicit component of the criterion for convergence.

*5.3 General Metric Space Sequences

The preceding section focused on properties of numerical sequences. However, if one

reviews the various proofs, it becomes clear that with one exception, no special prop-

erty of R or C is used other than the existence of a metric or distance function,

dðx; yÞ ¼ jx� yj, which was used as a measure of ‘‘closeness.’’ The one special prop-

erty of R or C we used was the Heine–Borel theorem, which assures us that a

bounded sequence lies in a compact set and hence has a convergent subsequence.

Consequently it should be expected that we can define sequences fxngHRn and

their convergence under the standard metric, defined by (3.18), or under any one of

the lp-norms defined in (3.10). This notion of convergence would satisfy all the prop-

erties in the preceding section, since in this context we once again have the benefit
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of the Heine–Borel theorem. Moreover the notion of convergence under equivalent

metrics d and d 0 are identical. Namely xn ! x under d if and only if xn ! x under d 0.
More generally, if fxngHX , where ðX ; dÞ is a general metric space, convergence

can again be defined, and virtually all properties are satisfied. In this general context,

however, the definition of convergence must explicitly require that x A X . That is be-

cause for a general metric space if fxngHX and x B X , the notion of dðxn; xÞ < � is

not well defined. Also we note that we have two issues in this general metric space

setting that do not exist in R, Rn, or C:

1. In a general metric space, numerical operations like addition may not be defined.

If they are defined, the proposition above on arithmetic operations on sequences with

limits remains valid.

2. In a general metric space, we do not necessarily have the Heine–Borel theorem.

That is, a closed and bounded set need not be compact (the converse is true as

proved in proposition 4.17). Consequently a bounded sequence need not be con-

tained in a compact set, and hence it need not have a convergent subsequence.

In this section we document definitions and properties, the latter generally without

proof, which the reader can supply as an exercise by redeveloping the arguments

above.

Definition 5.24 Let ðX ; dÞ be a metric space. A sequence, denoted fxng, fzjg, and so

forth, is a countably infinite collection of elements of X for which a numerical ordering

is specified:

fxng1 x1; x2; x3; . . . :

A sequence is bounded if there is a number D and an element y A X so that dðy; xnÞaD

for all n. A subsequence of a sequence is a countably infinite subcollection that pre-

serves order. That is, fymg is a subsequence of fxng if

ym ¼ xnm and nmþ1 > nm for all m:

We begin by noting that in the definition of bounded, there is nothing special

about the identified y.

Proposition 5.25 If fxngHX, a metric space, and fxng is bounded, then for any

y 0 A X there is a Dðy 0Þ so that dðy 0; xnÞaDðy 0Þ for all n.
Proof Let y and D be given as in the definition of bounded, and let y 0 A X be arbi-

trary. Then by the triangle inequality,
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dðy 0; xnÞa dðy 0; yÞ þ dðy; xnÞa dðy 0; yÞ þD:

Hence Dðy 0Þ ¼ dðy 0; yÞ þD. n

Next we define convergence.

Definition 5.26 A sequence fxngH ðX ; dÞ, a metric space, converges to a limit x A X

as n ! y if for any � > 0 there is an N1Nð�Þ so that

dðxn; xÞ < � whenever nbN; ð5:9Þ
and in this case we write

lim
n!y

xn ¼ x or xn ! x:

If fxng does not converge, we say it diverges as n ! y, or simply does not converge.

We note in the general context of a metric space, which of course includes R, C,

and Rn, that the concept of convergence is not as metric dependent as it first appears.

We state the result for equivalent metrics, also called topologically equivalent, but

recall this will also be true for Lipschitz equivalent metrics, since this latter notion

implies the former by proposition 3.41.

Proposition 5.27 Let X be a metric space under two equivalent metrics, d1 and d2.

Then a sequence fxngHX converges to x in ðX ; d1Þ i¤ fxng converges to x in ðX ; d2Þ.
Proof Since xn ! x in ðX ; d1Þ, we have that for any � 0 > 0 there is an N1Nð� 0Þ
so that d1ðxn; xÞ < � 0 whenever nbNð� 0Þ. In other words, fxngyn¼Nð� 0Þ HB

ð1Þ
� 0 ðxÞ, the

open ball about x of d1-radius �
0. To show convergence in ðX ; d2Þ, let � > 0 be given.

By (3.35) there is an � 0 so that B
ð1Þ
� 0 ðxÞHB

ð2Þ
� ðxÞ. But from above, we have for this � 0,

fxngyn¼Nð� 0Þ HB
ð1Þ
� 0 ðxÞHBð2Þ

� ðxÞ;

so d2ðxn; xÞ < � for nbNð� 0Þ. The reverse demonstration is identical. n

We now record these convergence results in this general context, where ðX ; dÞ is a
given metric space.

Proposition 5.28 If fxngHX is a convergent sequence with limn!y xn ¼ x and

limn!y xn ¼ x 0, then x ¼ x 0.

Proposition 5.29 If fxngHX is a convergent sequence with fxng ! x, then fxng is

bounded.
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The next proposition requires a caveat, because a general metric space need not

have arithmetic operations. Recall that by definition, X can be any collection of

points on which a metric is defined. However, many metric spaces of interest are vec-

tor spaces that at least allow addition and scalar multiplication, so we record this

result without proof as the proof is identical to that above. These vector spaces are

called (real or complex) linear metric spaces, depending on whether the vector space

structure is over the real or complex numbers. Of course, Rn is the classic example of

a real linear metric space, and correspondingly Cn is the classic example of a com-

plex linear metric space.

Proposition 5.30 Let fxng and fyng be convergent sequences in a linear metric space

X with fxng ! x, and fyng ! y, and let a be a scalar. Then we have:

1. axn ! ax.

2. xn þ yn ! xþ y.

As noted above, a bounded sequence in a general metric space need not be con-

tained in a compact subset of that metric space. It will be contained in a closed and

bounded subset, but in general, this does not necessarily imply compact. Hence, if

this sequence is not contained in a compact set, it need not have an accumulation

point and hence need not have a convergent subsequence. One approach to ensuring

that every bounded sequence is contained in a compact subset is to introduce the no-

tion of a compact metric space.

Definition 5.31 A metric space ðX ; dÞ is compact if every open cover of X contains a

finite subcover.

Proposition 5.32 Let fxngHRn be a bounded sequence, or fxngHX a general se-

quence in a compact metric space. Then there is a subsequence fymgH fxng so that

ym ! y where y A Rn in the first case, and y A X in the second.

Proof In the first case, boundedness implies that fxngHBRðxÞ for any x A Rn,

where R in general depends on x. Now in Rn, BRðxÞ is closed and bounded and

hence compact by the Heine–Borel theorem, so an accumulation point exists in

BRðxÞ by proposition 4.17. Consequently a convergent subsequence can be con-

structed as in proposition 5.12. If X is compact, we argue by contradiction and as-

sume that there is no such accumulation point. Then about each point xn, an open

ball can be constructed, BrnðxnÞ, that contains no other point of the sequence. We de-

fine the set A by A1X @ ½6Brn=2ðxnÞ�, which is open since the complement of A in

160 Chapter 5 Sequences and Their Convergence



X is the closed set ½6Brn=2ðxnÞ�. With A and fBrnðxnÞg we now have an open cover

of X that admits no finite subcover, since each BrnðxnÞ contains only one point of X .

This contradicts that X is compact, and hence fxng must have an accumulation point

in X . n

It may not be surprising, at least on an intuitive level, that in a compact

metric space a sequence has a subsequence that clusters around some point and

‘‘wants’’ to converge to this point. What should be surprising in this general case is

that this subsequence converges to a point y A X . The question is, why can X have

no ‘‘holes’’ so that the bounded sequence converges to the hole and not to a point

in X ?

Example 5.33 Using the standard metric, imagine the ‘‘apparently compact’’ metric

space X 1 ½0; 1�VQ made up of all rational numbers q with 0a qa 1. It is easy to

produce a sequence in X that converges to a hole, which would be an irrational

y A ½0; 1�, simply by defining this sequence in terms of the rational decimal approxima-

tions to y. This appears to contradict proposition 5.32, so it is best to evaluate our

assumptions more carefully. Since X is clearly a metric space under the standard met-

ric, it must be compactness that is in question. Is X compact?

To be compact, it must be the case that any open cover of X admits a finite open

subcover. So there must be an infinite open cover that cannot be so reduced. Recall

how such a cover was constructed in exercise 12 of chapter 4 to show that ð0; 1Þ was
not compact. The trick was that since 0 did not need to be covered, a collection of

slightly overlapping open intervals could be constructed that collectively covered all

real numbers between 0 and 1, but no finite subcover accomplished this. That same trick

works here, since we can split X using any irrational y as

X ¼ ½½0; yÞVQ�U ½ðy; 1�VQ�:
Now the construction of that exercise can be applied to ½0; yÞ and ðy; 1� since neither is
compact, producing an open cover of ½0; yÞU ðy; 1� that has no finite subcover. As this is

also now an open cover for X that has no finite subcover, we have demonstrated that X

is not compact.

An alternative and simpler argument to show that a compact metric space can

have no holes is to apply what we know from proposition 4.17, that a compact set

is closed and hence it must contain all its limit points. It is apparent that X in the

example above does not contain all its limit points, so it is not closed and cannot be

compact.
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5.4 Cauchy Sequences

5.4.1 Definition and Properties

In practice, given a sequence fxngHX , where X is Euclidean or a metric space, the

principal challenge in applying the definition for convergence is that this definition

requires knowledge of the limiting value x. The notion of a Cauchy sequence, named

for Augustin Louis Cauchy (1759–1857), allows one to determine in many cases if a

sequence converges without first knowing its limiting value. The key defining idea is

that all pairs of points in the sequence will be found to be arbitrarily close if the index

values are required to exceed some value. Specifically:

Definition 5.34 A sequence fxngHX, where ðX ; dÞ is a metric space, is a Cauchy

sequence, or satisfies the Cauchy criterion, if for any � > 0, there is an N ¼ Nð�Þ so

that

dðxn; xmÞ < � whenever n;mbN: ð5:10Þ
Example 5.35

1. Consider the sequence in case 3 of example 5.3: aj 1
j�1
j
. Then by the triangle

inequality,

jan � amj ¼ n�m

mn




 


a 1

n
þ 1

m
:

Consequently, to have jan � amj < �, choose n;m > 2
� . In other words, define N as any

integer which exceeds 2
� .

2. Consider the sequence defined by the harmonic series: xn ¼
Pn

j¼1
1
j
. Then given m,

consider n ¼ 2m:

jx2m � xmj ¼
X2m

j¼mþ1

1

j
> m

1

2m

� �
¼ 1

2
:

In other words, no matter how large m is, the sum of the terms from m to 2m exceeds 1
2 ,

so this sequence is not a Cauchy sequence and cannot converge. Since this sequence is

apparently monotonically increasing, we conclude that xn ! y.

We note that in the general context of a metric space, which of course includes R,

C, Rn, and Cn, the concept of a Cauchy sequence is not as metric-dependent as it

first appears.
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Proposition 5.36 Let X be a metric space under two equivalent metrics, d1 and d2.

Then a sequence fxngHX is a Cauchy sequence in ðX ; d1Þ i¤ fxng is a Cauchy se-

quence in ðX ; d2Þ.
Proof The proof is identical to that in proposition 5.27 for convergence of a se-

quence and is given as exercise 13(a). n

The definition of a Cauchy sequence is somewhat more complex than that of con-

vergence to x because the condition in (5.10) applies to all pairs ðn;mÞ of indexes that
exceed N rather than the simpler statement concerning all single indexes that exceed

N. This definition can be reframed in a logically more simple statement, although

this is rarely if ever so noted. The proof of the equivalence of these definitions is

assigned in exercise 7.

Definition 5.37 A sequence fxngHX, where ðX ; dÞ is a metric space, is a Cauchy

sequence, or satisfies the Cauchy criterion, if for any � > 0, there is an N ¼ Nð�Þ so

that

dðxN ; xnÞ < � whenever nbN: ð5:11Þ
We next investigate the relationship between the property of a sequence converg-

ing and the property of a sequence being a Cauchy sequence. First o¤, we show that

just like convergent sequences, every Cauchy sequence in a metric space is bounded.

Proposition 5.38 If ðX ; dÞ is a metric space and fxngHX a Cauchy sequence, then

fxng is bounded.

Proof Let � > 0 be arbitrarily chosen. Since fxng is a Cauchy sequence, there is an

N so that dðxn; xmÞ < � whenever n;mbN. In particular, dðxn; xNÞ < � whenever

nbN. Now, if B ¼ maxn<N dðxn; xNÞ, then with x ¼ xN we have dðxn; xÞ <
maxð�;BÞ for all n, and hence fxng is bounded. n

It is easy to show that every convergent sequence is in fact a Cauchy sequence:

Proposition 5.39 If fxngHX, where X is a metric space and xn ! x, then fxng is a

Cauchy sequence.

Proof By the triangle inequality,

dðxn; xmÞa dðxn; xÞ þ dðx; xmÞ:
Now, if � > 0 is given, choose N so that dðxn; xÞ < �

2 for nbN. By the inequality

above we then have dðxn; xmÞ < � for n;mbN. n
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While this last result is of interest, the result of greater value in applications has to

do with the reverse implication. Namely, when does a Cauchy sequence converge?

The answer can be readily seen to be: ‘‘not necessarily.’’

Example 5.40

1. Let fxng ¼ 1
n

� �
in the metric space X ¼ ð0; 1ÞHR under the standard metric in

(3.18). This is a Cauchy sequence, and one readily verifies that dðxn; xmÞ < � whenever

n;mbN for any N > 1
� . However, it is clear that this sequence does not converge in

X. It is also clear that in this case X can be enlarged somewhat or completed, to its

closure X ¼ ½0; 1� in R, and in this metric space we obtain convergence.

2. In example 5.33 was introduced X ¼ QV ½0; 1�, under the standard metric, where it

was shown that for any real number y A ½0; 1� there was a sequence fyngHX so that

yn ! y. By the proposition above, all such sequences are Cauchy sequences. However,

these sequences only converge in X if y is chosen to be rational. Again, we see that this

metric space can be completed by enlarging it to X ¼ ½0; 1�, and then all these Cauchy

sequences converge to a point in X.

To motivate the result below, note that we have shown that if fxngHX is a

Cauchy sequence in any metric space, then it is bounded. So the question of conver-

gence is closely related to the existence of an accumulation point, and we have seen

from the above that such an accumulation point can be assured if X ¼ R;C;Rn (as

well as Cn, though not proved) or if X is a compact metric space. Although the

results below that rely on the Heine–Borel theorem are also true in Cn, we will drop

this reference since this theorem was not proved in this case, and we do not need this

result in this book.

Proposition 5.41 If fxngHX is a Cauchy sequence, where X ¼ R;C;Rn, or X is a

compact metric space, then there is an x A X so that xn ! x.

Proof In all cases we know that fxng is bounded. Also for any � > 0 there is an N

so that jxn � xmj < � for n;mbN. That is,

fxngyn¼N A B�ðxNÞ:

Choose �j ¼ 1
j
, and let Nj be the associated integer. Then as j ! y,

fxngyn¼Nj
A B1=jðxNj

Þ:

We now claim that there is a unique x A X so that 7
j
B1=jðxNj

Þ ¼ x, and that xn ! x.

Of course, the latter conclusion follows from the existence of x, since we can con-

clude that for any �j , x A B�j ðxNj
Þ and hence for n > Nj,
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dðx; xnÞa dðx; xNj
Þ þ dðxn; xNj

Þ < 2

j
:

To demonstrate the intersection claim, first note that every finite collection of these

closed balls has a nonempty intersection, since all contain fxngyn¼N where N ¼
maxfNjg, and this maximum is finite for any finite collection. Also the intersection

of all such balls cannot contain more than one point since the radius of these balls,

�j ¼ 1
j
converges to 0. To complete the proof, we show by contradiction that this infi-

nite intersection cannot be empty, and hence it contains the unique point x. Assume

that 7
j
B1=jðxNj

Þ ¼ j and, in particular, f7
jb2

B1=jðxNj
ÞgVB1ðxN1

Þ ¼ j. Then with

Ac 1 ~AA, denoting the complement of A,

B1ðxN1
ÞH 7

jb2

B1=jðxNj
Þ

( )c

¼ 6
jb2

~BB1=jðxNj
Þ;

by De Morgan’s laws. Now the set B1ðxN1
Þ is compact either by Heine–Borel if

X ¼ R;C;Rn or as a closed set in the compact metric space X , and it is covered by

a union of open sets f ~BB1=jðxNj
Þgjb2. It therefore has a finite subcover, so B1ðxN1

ÞH
6

jaM
~BB1=jðxNj

Þ for some M. Again, using De Morgan’s laws, we conclude that

f7
2ajaM

B1=jðxNj
ÞgVB1ðxN1

Þ ¼ j, contradicting the observation above that every

finite collection of these balls has nonempty intersection. n

Unfortunately, many of the general metric spaces of interest are not compact.

Hence we cannot, in general, conclude that Cauchy sequences converge to a point

in the space. Of course, R, C, and Rn are also metric spaces of great interest, and

are not compact, yet we have seen that in these cases Cauchy sequences do converge.

So compactness is not a necessary condition for the convergence of Cauchy se-

quences, but it is a su‰cient condition.

*5.4.2 Complete Metric Spaces

Because the property that Cauchy sequences converge to a point of the space is so

important in mathematics, special terminology has been introduced for metric spaces

that have this property.

Definition 5.42 Let ðX ; dÞ be a metric space. Then X is said to be complete under d if

every Cauchy sequence in X converges to a point in X.

It should be noted that this notion of being complete is not just a property of the

space X , but it is explicitly specified as ‘‘complete under d.’’ This is because by the
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very definition in (5.10) or (5.11) above, the metric d determines which sequences are

Cauchy sequences and therefore determines which sequences must converge in order

to satisfy the completeness criterion. However, as was seen above, the dependence on

the metric d is only up to metric equivalence. That is, X is complete under d if and

only if it is complete under d 0 for any metric equivalent to d.

Example 5.43

1. We have seen from the analysis above that R, C, and Rn are all complete under the

standard metrics defined in (2.3), (2.2), and (3.3), respectively.

2. Rn is also complete under all the lp-norms in (3.10) and (3.11), since these norms

are equivalent to the standard metric.

3. Every compact metric space is complete under its metric.

4. The metric space Q is not complete under the standard metric, nor is QV ½0; 1�, nor
is any bounded open interval, ða; bÞ.
5. The metric space Qn HRn of rational n-tuples is not complete under the standard

metric, nor is Qn VBRðxÞ for any R and x, nor is BRðxÞ.
Because completeness of a metric space is so important in applications, yet so

often it is the case that a metric space of interest is not complete, it is of no surprise

that the question of completing a metric space has received considerable attention. In

the various examples above, it was obvious why the given spaces failed to be com-

plete, and equally obvious how one could solve this problem by adding to the space

the ‘‘missing’’ points that prevented the space from being complete in the first place.

For the examples above we note that what is interesting about these informal com-

pletions of the given spaces was that within the resulting completed spaces, the orig-

inal spaces were dense. In addition distances between points of the original spaces

were preserved in the completed spaces.

Alternatively, by looking at the incomplete space as a subspace of a larger space,

we could interpret the completion of the original space as the closure of that space in

the larger space that contained it. The completions in e¤ect just added the original

space’s accumulation points. For example, ða; bÞ is not complete, but the closure of

this interval in the metric space R, which is ða; bÞ ¼ ½a; b�, is complete. Similarly,

while Q and QV ½0; 1� are not complete metric spaces, we can create their closures

in R, where Q ¼ R, and QV ½0; 1� ¼ ½0; 1�, and these are complete. We can do the

same for Qn, Qn VBRðxÞ, and BRðxÞ in Rn.

The next proposition, which we state without proof, indicates that these examples

illustrate the general case. Namely every metric space can be embedded in a complete
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metric space in a way that preserves distances, and where the original space is dense

in the larger space. In addition, if the original space is already contained within a

complete metric space, then this completion is equivalent to the closure of the origi-

nal space.

Proposition 5.44 Let ðX ; dÞ be a metric space. Then there is a complete metric space

ðX 0; d 0Þ so that ðX ; dÞ is isometric to a dense subset of ðX 0; d 0Þ. That is, there is a dense

subset X 00 HX 0 and a one-to-one identification X 00 , X so that for any x 00; y 00 A X 00,
and identifications: x 00 , x and y 00 , y, with x; y A X, we have that

d 0ðx 00; y 00Þ ¼ dðx; yÞ:
Also, if under d there is a complete metric space, Y, with X HY, then X 00 is isometric

to X, the closure of X in Y.

This proposition guarantees that any metric space ðX ; dÞ of interest can be com-

pleted in a way that does not change the original space very much, which is the

meaning of the isometric identification. Also, if we are working with a space ðX ; dÞ
that we know to be a subspace of a larger complete space Y , we can accomplish this

completion by forming the closure of X in Y , as was seen to be the case in the earlier

simpler examples.

5.5 Applications to Finance

The results of this chapter are to a large extent needed as an introduction to concepts

that underlie applicable mathematics in later chapters. For example, the notion of

convergence will be seen to be fundamental to much of what is to come. More di-

rectly, the notion of convergence of a sequence provides a context for understanding

what it means for an iterative numerical calculation to converge to the correct an-

swer, where in each step the calculation provides an approximate solution to a fi-

nance problem.

We return to the example of interval bisection next, extending the analysis origi-

nally introduced in section 4.3.3 for the evaluation of the yield to maturity of a

bond or other security o¤ered at a given price. Here we illustrate the general proce-

dure with a detailed bond yield example.

5.5.1 Bond Yield to Maturity

Assume that we are o¤ered a 1000 par, 10-year, 8% semiannual coupon bond at a

price of 1050. First o¤, we easily confirm that the yield to maturity (YTM) is less
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than 8% on a semiannual basis because this bond is selling at a premium. The cash

flows on this bond are 40 per half year for 10 years, with an extra payment of 1000 at

time 10. So if r is the yield on a semiannual basis, we have from (2.16) that

PðrÞ ¼ 1000þ 1000½0:5ð0:08� rÞ�a20;0:5r:
From this equation it is apparent that in order to have Pðr0Þ ¼ 1050, we need

r0 < 0:08.

We now detail an interval bisection approximation procedure and construct a se-

quence frjg, which we will prove is a Cauchy sequence. Consequently, without

knowing to what value this sequence converges, we will be able to assert that this se-

quence will indeed converge because R is complete. Moreover, because of the nature

of the approximation procedure, we will be able to calculate the rate at which con-

vergence is achieved, and hence how many steps are needed for any given degree of

accuracy. All this is doable without our ever knowing the exact answer.

To this end, for the first step we require two trial values of r, denoted rþ and r� so

that

PðrþÞ < 1050 < Pðr�Þ:
In other words, since rþ provides too small a price, rþ > r0, where r0 is the desired

exact value, and similarly r� < r0. That is,

r� < r0 < rþ:

For this step we choose somewhat arbitrarily, since this process will always con-

verge, but not naively, since to do so increases the number of steps needed to get a

good approximation. An example of a naive initial set of values is rþ ¼ 1:00 (i.e.,

100%) and r� ¼ 0. We can with a moment of thought do better with rþ ¼ 0:08 and

r� ¼ 0:07, producing PðrþÞ ¼ 1000, and Pðr�Þ ¼ 1071:0620165. The first estimate of

r0 is then

r1 ¼ 0:5ðrþ þ r�Þ;
which produces r1 ¼ 0:075.

For the second step, the process is to now evaluate Pðr1Þ. If Pðr1Þ < 1050,

r1 becomes the new rþ and we retain the former r�. Otherwise, r1 becomes the

new r� and we retain the former rþ. In either case we calculate the second estimate

of r0 as
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r2 ¼ 0:5ðrþ þ r�Þ;
and the process continues into the third step and beyond. If at any step we find that

the calculated rn serendipitiously equals the exact answer, r0, the process stops. How-

ever, this virtually never happens to anyone, so we have no need to dwell on this

outcome.

The implementation of this algorithm to the bond yield problem yields the table of

results in table 5.1, where for visual appeal, yields are presented in percentage units,

on a semiannual nominal basis:

Now at each step, we have rn A ðr�; rþÞ by definition, and for any r 0 A ðr�; rþÞ,

jr 0 � rnja rþ � r�

2
:

Since the lengths of these intervals halve at each step by construction, and for n ¼ 1

we have rþ � r� ¼ 0:01, we conclude that for any r 0 A ðr�; rþÞ at the nth step,

jr 0 � rnja 0:01

2n :

From this estimate we demonstrate that the sequence frjg is a Cauchy sequence, and

hence because R is complete by the analysis above, we conclude that there is an

r0 A ðr�; rþÞ for all such intervals and that rj ! r0.

To this end, let m and n > m be given; then for r 0 A In 1 ðr�; rþÞ defined as the in-

terval produced as of the nth step, we also have r 0 A Im 1 ðr�; rþÞ defined as of the

mth step since In H Im. By the triangle inequality, with r 0 A In V Im,

Table 5.1
Interval bisection for bond yield

Step r� Pðr�Þ rþ PðrþÞ rj rþ � r�

1 7.0000% 1071.06202 8.00000% 1000.00000 7.50000% 1.00000%
2 7.0000% 1071.06202 7.50000% 1034.74051 7.25000% 0.50000%
3 7.2500% 1052.69870 7.50000% 1034.74051 7.37500% 0.25000%
4 7.2500% 1052.69870 7.37500% 1043.66959 7.31250% 0.12500%
5 7.2500% 1052.69870 7.31250% 1048.17157 7.28125% 0.06250%
6 7.2813% 1050.43198 7.31250% 1048.17157 7.29688% 0.03125%
7 7.2813% 1050.43198 7.29688% 1049.30099 7.28906% 0.01562%
8 7.2813% 1050.43198 7.28906% 1049.86629 7.28516% 0.00781%
9 7.2852% 1050.14908 7.28906% 1049.86629 7.28711% 0.00391%
10 7.2871% 1050.00767 7.28906% 1049.86629 7.28809% 0.00195%
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jrn � rmja jrn � r 0j þ jr 0 � rmj

a
0:01

2n þ 0:01

2m :

From this estimate we can, for any �, choose N so that 0:01
2N < �

2 , and conclude that

jrn � rmj < � for n;m > N:

In other words, frjg is a Cauchy sequence, and hence there is an r0 A ðr�; rþÞ for all
such intervals with rj ! r0.

From the error estimate above, true for all r 0 A In, we derive the error estimate for

r0 by letting m ! y:

jr0 � rnja 0:01

2n : ð5:12Þ

From (5.12) we can choose n to provide any given level of accuracy. For example, to

have k-decimal point accuracy, we need the error to be less than 5ð10�k�1Þ ¼ 10�k

2 ,

that is,

0:01

2n <
10�k

2
:

From this point we conclude that n must be chosen so that 2n�1 > 10k�2, which is

easily solved with logarithms.

This simple, yet powerful algorithm is known as the interval bisection algorithm. It

has the property that the error decreases geometrically with a factor of 1
2 . Note that

although the error in each step halves as is illustrated in the last column in table 5.1,

it is not the case that the sequence of estimators, frjg, monotonically converge to r,

as is seen from the second last column of this table. This conclusion is logical, since

in each step one of the values of r� and rþ is replaced, and one is used in the next

step. Consequently, if r� is replaced in a given step, that step’s estimate will exceed

the prior step’s estimate, and conversely.

5.5.2 Interval Bisection Assumptions Analysis

As was observed in section 4.3.3, the usefulness of this algorithm relies on subtle

assumptions about the objective function, here PðrÞ, but in general, f ðxÞ, where we

are attempting to solve

f ðxÞ ¼ c
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for some value c. The interval bisection algorithm produces a Cauchy sequence, fxjg,
which then has the property that xj ! x for some x A R typically, where by construc-

tion, for every sequence point either f ðxjÞ > c or f ðxjÞ < c.

The first subtlety in the application of interval bisection is that we are assuming

that because fxjg is a Cauchy sequence, this implies that f f ðxjÞg is a convergent se-

quence. This appears to be the case for the bond yield example in table 5.1, but

should this always be the case? Consider the next example where it is not initially fea-

sible to produce a complete picture of what the graph of a given function looks like.

Imagine that it is a complicated function that has been programmed in terms of

an iterative process. All that is possible is that by crunching the program for a given

value of y, the value of f ðyÞ can be calculated. You are attempting to find a value of

x so that f ðxÞ ¼ c. You know from sample calculations that c is within the range of

sample values of f ðyÞ so far calculated. You proceed to program the interval bisec-

tion algorithm, and let it run. At each step, either f ðxjÞ > c or f ðxjÞ < c, and it is

apparent that xj ! x for some x0 0. However, it is also apparent that f ðxjÞ is not
converging. To see what is going wrong, a graphical depiction of this function must

be laboriously estimated, and it appears to be given by

f ðyÞ ¼ 1� 2y; y < x,

1þ 2y; yb x.

�
In this case a subsequence of f f ðxjÞg is approaching 1� 2x, another subsequence is

approaching 1þ 2x, and of course, 1� 2x < c < 1þ 2x.

The second subtle assumption needed for the usefulness of the interval bisection

method is that if xj ! x, and we observe f ðxjÞ to be converging in that there is

some c with

j f ðxjÞ � cj ! 0;

then it must be the case that f ðxÞ ¼ c. But this conclusion is really just another as-

sumption about the behavior of the function, f ðxÞ. That is, the assumption that

xj ! x and f ðxjÞ ! c implies that f ðxÞ ¼ c.

As it turns out, both assumptions are valid for an important, and fortuitously

abundant and commonly encountered collection of functions, known as the continu-

ous functions. These functions satisfy both properties needed. Namely, if f ðxÞ is con-
tinuous on an interval, and fxj; xg are contained in this interval, then from xj ! x

we can conclude that:

1. f f ðxjÞg converges.

2. f f ðxjÞg converges to f ðxÞ.
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Continuous functions will be investigated in more detail, along with other impor-

tant properties of functions, in chapter 9 on calculus I.

Exercises

Practice Exercises

1. Evaluate the convergence or lack of convergence of the following. In the cases of

convergence, attempt to determine the formula for Nð�Þ for arbitrary � > 0, while for

divergence toGy, do the same for NðMÞ. (Hint: The formulas for Nð�Þ and NðMÞ
do not have to be the ‘‘best possible,’’ so estimate the results.)

(a) cn ¼
ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p � ffiffiffi
n

p
(Hint: Multiply by

ffiffiffiffiffiffi
nþ1

p þ ffiffi
n

pffiffiffiffiffiffi
nþ1

p þ ffiffi
n

p .)

(b) bm ¼
ffiffiffiffiffiffiffi
mþ1

p � ffiffiffi
m

pffiffiffiffiffiffiffi
mþ3

p

(c) di ¼ a i

i!
, where a > 1 (Hint: diþ1 ¼ a

iþ1
di.)

(d) xk ¼ k k

k!
(Hint: Consider ln xk.)

(e) zj ¼ 4j

j 2þ ffiffi
j

p

(f ) ym ¼ 3m2�5m
8m2þ5m

2. Let fxng be a convergent sequence and fyng an arbitrary bounded sequence:

(a) Prove that if xn ! 0, then ynxn ! 0.

(b) Show by example that if xn ! x0 0, then ynxn need not be convergent. (Hint:

Consider yn with alternating signs.)

(c) Repeat part (b), showing that we need not have ynxn convergent even if all

yn b 0.

3. How does taking absolute values influence convergence?

(a) If xn ! x is convergent, must jxnj be convergent? Does the answer depend on

whether x ¼ 0 or x0 0?

(b) If jxnj ! x is convergent, must xn be convergent? Does the answer depend on

whether x ¼ 0 or x0 0?

4. For n ¼ 0; 1; 2; 3; . . . , consider the sequence defined by

ym ¼

1
ðnþ1Þ! ; m ¼ 3n,

ð�1Þn10þ ð�1Þ nþ1
n

2ðnþ1Þ ; m ¼ 3nþ 1,

ð�1Þnþ1 þ ð�1Þ n
10ðnþ1Þ ; m ¼ 3nþ 2.

8>>><>>>:
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(a) Determine all the limit points of this sequence and the associated convergent

subsequences.

(b) Determine the formula for Un and Ln, as given in the definition of limits su-

perior and inferior, and evaluate the limits of these monotonic sequences to derive

lim sup ym and lim inf ym, respectively.

(c) Confirm that the limit superior and limit inferior, derived in part (b), correspond

to the l.u.b. and g.l.b. of the limit points in part (a).

5. Let fqng denote an ordering of all rational numbers in ½0; 1�.
(a) For the ordering implied by Cantor’s construction in section 2.1.4, including or

excluding multiple counts, demonstrate that for every n, Un ¼ 1, Ln ¼ 0, and hence

lim sup qm ¼ 1 and lim inf qm ¼ 0.

(b) Generalize the result on part (a) by showing that the same conclusion follows for

an arbitrary ordering.

6. Demonstrate that the sequence in exercise 4 is not a Cauchy sequence, and draw

the otherwise obvious conclusion that this sequence does not converge.

7. Prove that the two definitions given for Cauchy sequence in (5.10) and (5.11) are

equivalent. (Hint: That (5.10) ) (5.11) is true follows by definition. For the reverse

implication, express dðxn; xmÞ using the triangle inequality.)

8. Identify which of the following sequences are Cauchy sequences and hence must

converge, even in cases where their limiting values may be unknown.

(a) dn ¼ n
nþ1

(b) xn ¼ 2n2�4
4n2þ10

(c) yn ¼
Pn

j¼1ð�1Þ jþ1

(d) xn ¼
Pn

j¼1ð�1Þ jþ12�j

(e) fn ¼
Pn

j¼1ð�1Þ jþ1
a�j, a > 1

(f ) ck ¼ k þ 1
k

9. For the following securities, implement the interval bisection method to produce a

tabular analysis as in table 5.1, and determine how many steps are needed to assure

six decimal place yield accuracy.

(a) A 7-year, 3.5% s.a. coupon bond with a price of 92.50 per 100 par.

(b) A 2% annual dividend perpetual preferred stock with a price of 87.25 per 100 par.

(c) A $1 million mortgage repayment loan, issued at 8% monthly, at a price of

$997,500.
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Assignment Exercises

10. Evaluate the convergence or lack of convergence of the following. In the cases of

convergence, attempt to determine the formula for Nð�Þ for arbitrary � > 0, while for

divergence toGy, do the same for NðMÞ.
(a) cn ¼

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1m

p � ffiffiffi
nm

p
for m A N, m > 1 (Hint: Confirm that

am � bm ¼ ða� bÞ
Xm�1

j¼0

a jbm�1�j

 !
; ð5:13Þ

and compare to exercise 1(a).)

(b) zj ¼ j!þ j

ð jþ1Þ!
(c) wm ¼ ð�1Þmþ1 ln 1þ 1

m

� �
(d) xn ¼ ðnþ 1Þ!þ ð�1Þnþ1

n!

(e) ak ¼ ð�1Þkþ1 2k

10kþk

(f ) bi ¼ ð�1Þ iþ1ði5 � i3 þ 10 iÞ
(g) un ¼ ð�1Þ nþ1

np

an , p A R, a > 1 (Hint: Consider the value of


unþ1

un



:Þ
11. Consider the rational numbers in ½0; 1�. Under an arbitrary enumeration, fqng,
this set is a bounded sequence. Show that:

(a) As proposition 5.12 states, this sequence has a convergent subsequence.

(b) This sequence has a countably infinite number of convergent sequences.

(c) This sequence has an uncountably infinite number of convergent sequences.

(d) These results remain true if we require all sequences to be monotonic.

12. For n ¼ 0; 1; 2; 3; . . . , consider the sequence defined by

xm ¼

ð�1Þ n
nþ1 ; m ¼ 5n,

1þ ð�1Þ nn
2ðnþ1Þ ; m ¼ 5nþ 1,

�1þ ð�1Þ n
nþ1 ; m ¼ 5nþ 2,

�n2 þ n; m ¼ 5nþ 3,

10e�n; m ¼ 5nþ 4.

8>>>>>>>><>>>>>>>>:
(a) Determine all the limit points of this sequence and the associated convergent

subsequences.
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(b) Determine the formula for Un and Ln, as given in the definition of limits superior

and inferior, and evaluate the limits of these monotonic sequences to derive

lim sup xm and lim inf xm, respectively.

(c) Confirm that the limit superior and limit inferior, derived in part (b), correspond

to the l.u.b. and g.l.b. of the limit points in part (a).

13. Consider the notion of Cauchy sequence under di¤erent metrics.

(a) Prove proposition 5.27 in the form: In a metric space X under two equivalent

metrics, d1 and d2, a sequence fxngHX is a Cauchy sequence in ðX ; d1Þ i¤ fxng is

a Cauchy sequence in ðX ; d2Þ.
(b) Give an example of a metric on Rn, d, so that sequences that are Cauchy under d

are di¤erent than sequences that are Cauchy under the standard metric. (Hint: Con-

sider a nonequivalent metric, like d in exercise 18 in chapter 3:Þ
14. Identify which of the following sequences are Cauchy sequences and hence must

converge, even in cases where their limiting values may be unknown.

(a) aj ¼
P j

n¼1
1
n!
(Hint: Show that n! > 2n for nb 4.)

(b) aj ¼
P j

n¼1
ð�1Þnþ1

n!

(c) yn ¼ ð�1Þnþ1

n

(d) bk ¼Pk
n¼1

1
n2

(Hint: n2 > nðn� 1Þ.)
(e) bk ¼Pk

n¼1
ð�1Þ nþ1

n2

(f ) fzngHR, increasing and bounded.

15. For the following securities, implement the interval bisection method to produce

a tabular analysis as in table 5.1. Determine how many steps need to be implemented

to assure six decimal place yield accuracy.

(a) A 10-year zero-coupon bond with a price of 66.75 per 100 par, priced with a

semiannual yield.

(b) A 10-year, 4% annual coupon bond, with a ‘‘sinking fund’’ payment of 50% of

par at time 5 years, with a price of 101 per 100 par.

(c) A $25 million, 30-year mortgage repayment loan, issued at 6% monthly, at a

price of $25.525 million.
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6 Series and Their Convergence

6.1 Numerical Series

6.1.1 Definitions

While a series can be defined in any space X that allows addition, and convergence

defined in any such space that also has a metric, we will focus on numerical series

defined on R or C. More general definitions can be inferred now, and will be made

in later chapters as needed.

Definition 6.1 Given a numerical sequence fxjg, the infinite series associated with

fxjg is notationally represented by

Xy
j¼1

xj :

For fxjgHR, if all xj > 0, the series is called a positive series, if all xj < 0, the series

is called a negative series, whereas if the signs of the consecutive terms alternate, most

commonly with x1 > 0, the series is called an alternating series. The partial sums of a

numerical series, denoted sn, are defined as

sn ¼
Xn
j¼1

xj:

The infinite series is said to converge to a numerical value s if the sequence of partial

sums converges to s. That is, we define

Xy
j¼1

xj ¼ s if and only if lim
n!y

sn ¼ s:

An infinite series that does not converge is said to diverge or be divergent.

A series is said to converge absolutely or be absolutely convergent if the seriesPy
j¼1 jxjj converges, and is said to converge conditionally or be conditionally conver-

gent if
Py

j¼1 xj converges yet
Py

j¼1 jxjj diverges. If a series diverges in the sense that

limn!y sn ¼Gy, we will often write
Py

j¼1 xj ¼Gy and say that
Py

j¼1 xj diverges to

Gy.

Remark 6.2

1. For some examples, an infinite series will be indexed as
Py

j¼0 xj rather thanPy
j¼1 xj.



2. By definition, every convergent positive or negative series is absolutely convergent,

but in general convergence does not imply absolute convergence (see cases 3 and 6 in

examples 6.9 and 6.10 below).

This definition implies that to be convergent it must be the case that xj ! 0 as

j ! y (see exercise 1). This property alone is not enough to assure convergence as

will be seen. However, while xj ! 0 as j ! y does not assure the convergence ofPy
j¼1 xj in general, it does assure convergence when the series is alternating, as will

be demonstrated in proposition 6.20.

Applying the definition of convergence of a sequence to this series context, we

have that:

Definition 6.3
Py

j¼1 xj ¼ s if for any � > 0 there is an N so that jsn � sj < � whenever

nbN. That is,

Xy
j¼nþ1

xj












< � whenever nbN:

In other words, a numerical series converges when it can be shown that by discard-

ing a finite number of terms, here the first N terms, the residual summation can be

made as small as desired. Alternatively, because a numerical sequence converges if

and only if it is a Cauchy sequence, we can state that:

Definition 6.4
Py

j¼1 xj ¼ s if for any � > 0 there is an N so that jsn � smj < � when-

ever n;mbN. That is, assuming n > m,

Xn
j¼mþ1

xj












< � whenever n;mbN:

6.1.2 Properties of Convergent Series

In this section three simple, useful results are presented. More subtle properties will

be investigated in section 6.1.4 on rearrangements. The first result reinforces the

intuitive conclusion that absolute convergence is a stronger condition than conver-

gence. In the examples below we will see that this implication cannot, in general, be

reversed.

Proposition 6.5 If
Py

j¼1 xj is absolutely convergent, then it is convergent.

Proof We show that sn ¼
Pn

j¼1 xj is a Cauchy sequence. By the assumption of ab-

solute convergence, s 0n ¼
Pn

j¼1 jxjj is Cauchy, and hence for any � > 0 there is an N
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so that js 0n � s 0mj < � whenever n;mbN. Now, by the triangle inequality, say n > m

for specificity,

jsn � smj ¼
Xn

j¼mþ1

xj












a Xn

j¼mþ1

jxjj ¼ js 0n � s 0mj;

so jsn � smj < � whenever n;mbN. n

Next we see that convergent sequences combine well in terms of sums and scalar

multiples.

Proposition 6.6 Let
Py

j¼1 xj and
Py

j¼1 yj be convergent series with respective summa-

tions of s and s 0, then for any constants a; b A R, the series faxj þ byjg is convergent,

and
Py

j¼1ðaxj þ byjÞ ¼ asþ bs 0.

Proof The proof follows directly from the earlier result on sequences. The assumed

convergence of the series implies that as sequences, sn 1
Pn

j¼1 xj and s 0n 1
Pn

j¼1 yj,

converge to s and s 0, respectively; hence asn þ bs 0n ! asþ bs 0 from proposition 5.11.

n

Finally, we consider the termwise product sequence fxjyjg.
Proposition 6.7 Let

Py
j¼1 xj and

Py
j¼1 yj be absolutely convergent series. Then for

any a, b (real or complex):

1.
Py

j¼1½axj þ byj � is absolutely convergent.

2.
Py

j¼1 xjyj is absolutely convergent.

Proof The first statement follows from the triangle inequality, since

Xy
j¼1

jaxj þ byjja jaj
Xy
j¼1

jxj j þ jbj
Xy
j¼1

jyjj:

For the second, we show that sn 1
Pn

j¼1 jxjyjj is a Cauchy sequence. Given � > 0,

there is an N so that
Pm

j¼n jxjj < � and
Pm

j¼n jyjj < � for n;m > N. Now
Pm

j¼n jxjyjj
<
Pm

j¼n jxj j
Pm

j¼n jyj j < �2 for n > N, and the result follows. n

Remark 6.8 If the assumption on
Py

j¼1 xj and
Py

j¼1 yj is reduced to conver-

gent, rather than absolutely convergent, then
Py

j¼1½axj þ byj � is convergent as noted in

proposition 6.6, but
Py

j¼1 xjyj need not be convergent. This will be assigned as exercise

21.
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6.1.3 Examples of Series

Example 6.9

1. If xn ¼ an, a geometric sequence, then the associated geometric series converges if

and only if jaj < 1, as can be demonstrated since the partial sums can be explicitly cal-

culated. Specifically, if a0 1, from sn ¼
Pn

j¼1 a
j and asn ¼

Pnþ1
j¼2 a

j, we can solve for

sn by subtraction and obtain

sn ¼ anþ1 � a

a� 1
:

It is apparent that if a > 1, then sn ! y, and anþ1 grows without bound; while if

a < �1, then sn alternates sign betweenG, and jsnj ! y. Similarly, if a ¼ 1, then by

the definition we have that sn ¼ n, which diverges, and if a ¼ �1, sn alternates between

�1 and 0. Hence this series does not converge in any case for which jajb 1. If jaj < 1,

we conclude anþ1 ! 0, and hence

Xy
j¼1

a j ¼ a

1� a
; ð6:1Þ

equivalently,
Py

j¼0 a
j ¼ 1

1�a
. Of course, this is exactly the calculation introduced in the

pricing of perpetual preferreds in section 2.3.2, with a ¼ ð1þ iÞ�1
.

2. If xj ¼ 1
jð jþ1Þ , then again by explicit calculation we can conclude that the sumPy

j¼1
1

jð jþ1Þ converges. Since 1
jð jþ1Þ ¼ 1

j
� 1

jþ1
, we derive that sn ¼

Pn
j¼1

1
j
�Pnþ1

j¼2
1
j
,

which reduces to

sn ¼ 1� 1

nþ 1
;

and hence
Py

j¼1
1

jð jþ1Þ ¼ 1.

3. If xj ¼ 1
j
, the harmonic series, then surprisingly,

Py
j¼1

1
j
¼ y. This result is justifi-

ably the most surprising example of divergence of a series. The surprise stems from

thinking about an arbitrarily large integer N, say the number of subatomic particles in

the known universe. Then it is apparent that
PN

j¼1
1
j
is finite, and the next omitted term

1
Nþ1

is an unimaginably small number, and the rest smaller yet. However, the divergence

of the harmonic series implies that despite this unimaginable smallness,
Py

j¼Nþ1
1
j
is not

finite. There are many proofs of this well-known fact; one seen in example 5.35 in chap-

ter 5, but perhaps the simplest two are as follows:
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� For an arbitrary integer m > 1, write

Xy
j¼1

1

j
¼
Xm
j¼1

1

j
þ
X2m

j¼mþ1

1

j
þ

X3m
j¼2mþ1

1

j
þ � � � :

Now every summation on the right has m terms, and because the harmonic series is

decreasing, each of these finite sums is strictly greater than m times the last term. That is,

Xy
j¼1

1

j
> m

1

m

� �
þm

1

2m

� �
þm

1

3m

� �
þ � � �

¼
Xy
j¼1

1

j
:

So if
Py

j¼1
1
j
is finite, we can divide this inequality by this value to derive the absurd re-

sult 1 > 1, or subtract to derive 0 > 0. So via proof by contradiction we conclude that

the harmonic series diverges.

� Alternatively, we can manipulate this summation another way using a similar trick:

Xy
j¼1

1

j
¼
Xm
j¼1

1

j
þ
Xm2

j¼mþ1

1

j
þ

Xm3

j¼m2þ1

1

j
þ � � �

> m
1

m

� �
þ ðm2 �mÞ 1

m2

� �
þ ðm3 �m2Þ 1

m3

� �
þ � � �

¼ 1þ 1� 1

m

� �
þ 1� 1

m

� �
þ 1� 1

m

� �
þ � � � ;

from which the divergence is apparent since each term after the first equals the constant

1� 1
m
.

4. If xj ¼ 1
j a
for a > 1, then the power harmonic series,

Py
j¼1

1
j a
, converges. Using the

second trick above for the harmonic series, we create an upper bound with the first term

of each group:

Xy
j¼1

1

j a
¼
Xm
j¼1

1

j a
þ
Xm2

j¼mþ1

1

j a
þ

Xm3

j¼m2þ1

1

j a
þ � � �

< mð1Þ þ ðm2 �mÞ 1

ðmþ 1Þa þ ðm3 �m2Þ 1

ðm2 þ 1Þa þ � � �
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< mþm2 �m

ma þm3 �m2

m2a
þ � � �

¼ mþ ðm� 1Þ
Xy
j¼1

m jð1�aÞ:

The last summation is a convergent geometric series if m1�a < 1. That is, if a > 1. Of

course, as a ! 1, this last summation becomes increasingly large, as the given series

approaches a summation of 1s, and the original series approaches the harmonic series.

In all these cases, note that the analysis done for the harmonic series was to infer

divergence by manipulating the terms to produce a smaller and yet obviously diver-

gent series, while the approach taken in the first two examples was to explicitly derive

the summation. In many ways the harmonic series analysis is a more realistic exam-

ple of analytics done in practice. The reason is that although there are many exam-

ples of series that can be evaluated explicitly, most of these require advanced methods

of later chapters. In addition it is common to be confronted with a series that cannot

be so evaluated even with more advanced techniques. In many of these cases this

inability to find an exact value is not a problem since the primary question is related

to the convergence or divergence of the series, and not to the exact value that the

series converges to. If one can prove convergence, it is usually possible to develop a

numerical approximation to the summation, or reasonable upper and lower bounds

adequate for the purposes at hand.

There are many ways to prove convergence of series without an explicit evaluation

of its summation. The most direct is the strategy employed for the geometric har-

monic series, namely, to demonstrate that the series is smaller than one that appar-

ently converges.

Example 6.10

5. If xj ¼ ln j

j 3
, then

Py
j¼1 xj converges. To demonstrate this convergence without

explicitly evaluating the actual summation, we show that this series is smaller than a

simpler series that is readily seen to converge. First o¤, ln j < j, and so xj <
1
j 2
. Hence

Xy
j¼1

ln j

j3
<
Xy
j¼1

1

j2
< y:

This second summation converges as in case 4 of example 5.9 with a ¼ 2. Alternatively,

by noting that 1
j 2
< 1

jð j�1Þ for jb 2, and with case 2 we conclude that this series con-

verges to a value less than 2.
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6. If xj ¼ ð�1Þ jþ1

j
, the alternating harmonic series, then

Py
j¼1 xj converges. Taking this

series in pairs, we obtain for n ¼ 1; 3; 5; . . . that xn þ xnþ1 ¼ 1
nðnþ1Þ , which equals the

odd terms of the series in case 2. Consequently

Xn
j¼1

ð�1Þ jþ1

j
¼

Pm
j¼1

1
2jð2j�1Þ ; n ¼ 2m,Pm

j¼1
1

2jð2j�1Þ � 1
2mþ1 ; n ¼ 2mþ 1.

(

Therefore the even partial sums of the alternating harmonic series equal the partial

sums of a subseries of the convergent series of case 2, while the odd partial sums equal

this same convergent series but minus a term that converges to 0. The even and odd par-

tial sums of this series must therefore converge to the same value. Yet, this series is only

conditionally convergent, since the absolute value of this series is the harmonic series

that diverges. As we will see as an application of a result from calculus in chapter 10,

it turns out that
Py

j¼1
ð�1Þ jþ1

j
¼ ln 2, the natural logarithm of 2, which is approximately

0:69315.

It is important to note that a subseries of a convergent series need not converge.

The conclusion in case 6 is justified because the original convergent series in case 2

had all positive terms. More generally, what is needed is that the original series is ab-

solutely convergent. An example of what can go wrong in the conditionally conver-

gent case follows:

Example 6.11

7. If xj ¼ ð�1Þ jþ1

j
, the (convergent) alternating harmonic series, then

Py
j¼1 x2j andPy

j¼1 x2j�1 both diverge. First o¤,

Xy
j¼1

x2j ¼ � 1

2

Xy
j¼1

1

j
;

which is a multiple of the harmonic series. Similarly

Xy
j¼1

x2j�1 ¼
Xy
j¼1

1

2j � 1
>
Xy
j¼1

1

2j
¼ 1

2

Xy
j¼1

1

j
;

another multiple of the harmonic series.

Cases 3, 4, 5, 6, and 7 of the examples above present an application of the com-

parison test for a series. This and other tests are presented below in section 6.1.5 on

tests of convergence. However, the next section provides two important results

on absolutely versus conditionally convergent series.
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*6.1.4 Rearrangements of Series

In attempting to evaluate the sum of a series or even to prove convergence, it is often

desirable to be able to rearrange the order of the series. This is especially true for

double series as will be seen below. But while a valid manipulation for finite sums,

it is not always the case that an infinite sum can be rearranged without changing its

value, or indeed changing whether or not it even converges. This section analyzes the

relationship between convergence of a series and convergence of its rearrangements,

as well as the associated summations.

To introduce the notion of a rearrangement formally, we introduce the notion of

a rearrangement function, pðnÞ, defined on the index collection J1 f jgyj¼0 or J1
f jgyj¼1, with the property that p : J ! J as a one-to-one and onto function. These

words reflect three notions that can be reduced to the intuitive idea that p creates a

‘‘shu¿e’’ of the set J:

� A ‘‘function’’ J ! J means that for any j A J, pð jÞ is a unique element of J.

� ‘‘One-to-one’’ means that there cannot be j; k A J with pð jÞ ¼ pðkÞ. Each j is

mapped to a di¤erent point.

� ‘‘Onto’’ means that for any element k A J, there is a j A J, with pð jÞ ¼ k.

Given a series fxjg the focus of this section has to do with the value of
Py

j¼1 xj
versus the value of

Py
j¼1 xpð jÞ for an arbitrary rearrangement function p. Before pre-

senting the results, let us consider two examples that highlight what can happen.

Example 6.12

1. Recall the alternating harmonic series in example 6.11, xj ¼ ð�1Þ jþ1

j
, which con-

verges but is not absolutely convergent. As was demonstrated, both
Py

j¼1 x2j andPy
j¼1 x2j�1 diverge, so the conditional convergence of this series occurs because of the

cancellation that occurs between one subseries that is accumulating to þy, and the

other subseries that is accumulating to �y. Intuition warns that rearranging this series

could cause trouble. Indeed, if we simply rearrange the series with all the positive terms

first, and all the negatives last, we arrive at a meaningless conclusion that
Py

j¼1 xj ¼
y�y, and we are justifiable cautious about concluding that this sum is 0. However,

with a bit of ingenuity it is possible to rearrange this series so that the rearranged series

converges conditionally to any real number, or even toGy. This seems impossible, but

it is not too di‰cult to demonstrate. Let r A R be given, and assume that rb 0. Choose

N1 to be the first integer so that
PN1

j¼1 x2j > r. Next choose M1 to be the first integer so

that
PN1

j¼1 x2j þ
PM1

j¼1 x2j�1 < r. Both choices are possible since the positive and nega-
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tive series grow without bound. Now choose N2 > N1 to be the first integer so thatPN1

j¼1 x2j þ
PM1

j¼1 x2j�1 þ
PN2

j¼N1þ1 x2j > r, and M2 > M1 to be the first integer so thatPN1

j¼1 x2j þ
PM1

j¼1 x2j�1 þ
PN2

j¼N1þ1 x2j þ
PM2

j¼M1þ1 x2j�1 < r, and so forth. We can

therefore show that this implied rearrangement of the series,

x2; . . . ; x2N1
; x1; . . . ; x2M1�1; x2ðN1þ1Þ; . . . ;

converges conditionally to r. For example, at the last step above, since M2 was the first

integer to produce the desired property, it is the case that

XN1

j¼1

x2j þ
XM1

j¼1

x2j�1 þ
XN2

j¼N1þ1

x2j þ
XM2�1

j¼M1þ1

x2j�1 > r;

and hence

r�
XN1

j¼1

x2j þ
XM1

j¼1

x2j�1 þ
XN2

j¼N1þ1

x2j þ
XM2

j¼M1þ1

x2j�1

 !










< jx2M2

j:

In other words, at each step the di¤erence between the partial summation and r is

bounded by the absolute value of the last term added. Consequently, as these last added

terms converge to 0 absolutely, conditional convergence is proved. If r < 0, the process

is simply reversed. If r ¼Gy, think about how this construction can be modified (an-

swer is below in the proof of the Riemann series theorem).

2. Consider an alternating geometric series, xj ¼ ð�1Þ ja j , jb 0, where 0 < a < 1.

This series is absolutely convergent by example 6.9 above, so it is also convergent. Let

the summation be denoted: s ¼Py
j¼0ð�1Þ ja j. Then with s1 ¼

Py
j¼0 a

2j ¼ 1
1�a2 and

s2 ¼
Py

j¼0 a
2jþ1 ¼ as1 ¼ a

1�a2
, we have s ¼ s1 � s2 ¼ 1

1þa
. Let p be a given rearrange-

ment, and consider
Py

j¼0ð�1Þpð jÞapð jÞ. The goal is to show that
Py

j¼0ð�1Þpð jÞapð jÞ ¼ s

and has the same value as the original series. To do so, for a given � > 0 we need

to show that there is an N so that js�Pn
j¼0ð�1Þpð jÞapð jÞj < � for nbN. To this end,

we focus on the positive and negative series separately. Since s1 ¼
Py

j¼0 a
2j , choose N1

so that js1 �
Pn

j¼0 a
2j j < �

3 for nbN1, and choose N2 so that js2 �
Pn

j¼0 a
2jþ1j < �

3

for nbN2. Also, since this series is absolutely convergent, we can apply the Cauchy

criteria and choose N3 so that jPm
j¼n a

jj < �
3 for n;m > N3. Now note that for any

n, fpð jÞgnj¼0 can be split into even and odd integers, and we choose N large enough

so that fpð jÞgNj¼0 contains f jgmaxðNjÞ
j¼0 . Then for nbN we have by the triangle

inequality,
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s�
Xn
j¼0

ð�1Þpð jÞapð jÞ













¼ ½s1 � s2� �

XmaxðNjÞ

j¼0

a2j �
XmaxðNjÞ

j¼0

a2jþ1

" #
þ

X
pð jÞbmaxðNjÞ

ð�1Þpð jÞapð jÞ
















a s1 �
XmaxðNjÞ

j¼0

a2j












þ s2 �

XmaxðNjÞ

j¼0

a2jþ1












þ X

pð jÞbmaxðNjÞ
apð jÞ
















<
�

3
þ �

3
þ �

3
¼ �:

The following propositions summarize the results illustrated in the examples

above. The proofs will be brief since they follow closely the developments given in

these special cases. The first result is named for Bernhard Riemann (1826–1866).

Proposition 6.13 (Riemann Series Theorem) Let fxjgyj¼1 be a conditionally conver-

gent series,
Py

j¼1 xj ¼ s. Then for any r A R, as well as r ¼Gy, there is a rearrange-

ment function p so that
Py

j¼1 xpð jÞ ¼ r.

Proof Since fxjgyj¼1 is not absolutely convergent, it must be the case that there are

infinitely many terms in the series that are both positive and negative. This is because

if either set was finite, say fxjgnj¼1 were the positive terms, then since
Py

j¼1 xj ¼Pn
j¼1 xj þ

Py
j¼nþ1 xj, we derive that

Py
j¼nþ1 xj ¼ s�Pn

j¼1 xj. Now since all xj < 0

for j > n, we have that
Py

j¼nþ1 jxjj ¼
Pn

j¼1 xj � s. This implies that
Py

j¼1 jxjj ¼
2
Pn

j¼1 xj � s, contradicting that fxjgyj¼1 is not absolutely convergent. So both posi-

tive and negative subseries are infinite. Next, denoting by fxþj gyj¼1 and fx�j gyj¼1 these

infinite collections of positive and negative terms represented in their respective

orderings, it must be the case that both
Py

j¼1 x
þ
j ¼ y and

Py
j¼1 x

�
j ¼ �y. Again,

if either were finite, the conditional convergence of fxjgyj¼1 would imply its absolute

convergence, a contradiction. Now with these divergent positive and negative sub-

series, the proof is identical to the derivation above for the alternating harmonic se-

ries if r A R. In the case r ¼ y, choose N1 so that
PN1

j¼1 x
þ
j b 10jx�1 j, then choose N2

so that
PN2

j¼N1þ1 x
þ
j b 10jx�2 j, and so forth. The rearrangement is xþ1 ; . . . ; x

þ
N1
; x�1 ;

xþN1þ1; . . . ; x
þ
N2
; x�2 ; . . . . By construction, the summation of each block of positives

and one negative term, x�j , exceeds 9jx�j j, and hence
Pn

j¼1 xpð jÞ grows like

9
Pm

j¼1 jx�j j, where m is the subscript of the largest Nj with Nj a n. A similar type of

construction produces the result for r ¼ �y. n
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It is interesting to note that the rearrangements implied by this proposition have a

special and initially not obvious property. Namely the collection of ‘‘forward shifts,’’

fpð jÞ � jg, must be unbounded in the construction above for the summation of the

series to shift from the original value of s to any new value r. In other words, in order

to get the desired results, the rearrangement implied by this construction needs to

map the elements of the index set f jg farther and farther from their initial positions

to new forward positions.

To investigate this, note that the construction in the proof above creates a series

xþ1 ; . . . ; x
þ
N1
; x�1 ; . . . ; x

�
M1

; xþN1þ1; . . . ; x
þ
N2
; x�M1þ1; . . . ; x

�
M2

; . . .

within which the forward shifts for positive terms appear to be unbounded, since they

grow in relation to
P

Mj as caused by the insertion of groups of negative terms. Sim-

ilarly the forward shifts of negative terms appear unbounded as caused by the inser-

tion of groups of positive terms.

But we need to be skeptical of this argument. The positive and negative terms were

interspersed somehow initially, and perhaps interspersed similarly to what the con-

struction called for. So this construction likely only changed the order a small

amount, and not in the claimed unbounded way.

The next result shows in fact that if the rearrangement function only moves

indexes by a limited amount, then the rearranged series converges to the original

summation value and cannot be changed.

Proposition 6.14 Let fxjgyj¼1 be a conditionally convergent series,
Py

j¼1 xj ¼ s, and p

a rearrangement function with the property that for some integer P and all j, pð jÞa
j þ P. Then

Py
j¼1 xpð jÞ ¼ s.

Proof Consider the partial sums,
Pn

j¼1 xj and
Pn

j¼1 xpð jÞ. By the given assumption

on p that pð jÞa j þ P, it must be the case that

fxpð jÞgn�P
j¼1 H fxjgnj¼1:

It is also possible that some or all of fxpð jÞgn
j¼n�Pþ1 are also included in fxgnj¼1, but

this will not matter for the proof. So we can conclude that

Xn
j¼1

xj �
Xn
j¼1

xpð jÞ ¼
Xn

j¼n�Pþ1

xj �
Xn

j¼n�Pþ1

xpð jÞ;

where by assumption, n� Pþ 1a pð jÞa nþ P for n� Pþ 1a ja n. Denoting

fpð jÞgn
j¼n�Pþ1 by fn� Pþ njgPj¼1 for integers 1a nj a 2P, we derive by the triangle

inequality,
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Xn
j¼1

xj �
Xn
j¼1

xpð jÞ












a XP

j¼1

jxn�Pþjj þ
XP
j¼1

jxn�Pþnj j:

Now, since fxjgyj¼1 is a convergent series, we have that xj ! 0 as j ! y, so the sum

of the 2P terms in this upper bound also converges to 0. More formally, for any

� > 0, choose N so that jxjj < �
2P for j > N. Then choose n above so that n�

Pþ 1 > N. n

The implication of this result is that rearrangements of conditionally convergent

series are allowable as long as the rearrangement is limited to index movements that

are bounded in the sense above, whereby for all j, pð jÞaPþ j for some fixed P.

As an application, if a series is presented for evaluation of convergence, any num-

ber of rearrangements are possible within the rule that pð jÞaPþ j for some fixed P.

If such manipulations then provide a basis for concluding convergence, then one can

be assured that the original series converges to the same value. In other words, this

result can be applied backward in that if a bounded rearrangement produces a con-

vergent series, then the original series must be convergent to the same value. As the

proposition demonstrated, however, with unbounded rearrangements, anything can

happen.

The conclusion for absolutely convergent series is completely general, in that such

a series can be rearranged in any way without changing the value of the sum.

Proposition 6.15 Let fxjgyj¼1 be an absolutely convergent series,
Py

j¼1 xj ¼ s, and p

any rearrangement function. Then
Py

j¼1 xpð jÞ ¼ s.

Proof The goal is to reproduce the proof used for the alternating geometric series in

case 2 of example 6.12, but we first need to show that this series can be split into a

positive and negative subseries, and that each of these converges to values that in

turn sum to s. To this end, define fxþj gyj¼1 and fx�j gyj¼1 by

xþj ¼ maxfxj ; 0g; x�j ¼ maxf�xj; 0g:

For the alternating geometric series above, this definition produces xþ2j ¼ a2j,

x�2j�1 ¼ a2j�1, and both subseries are 0 for other indexes. Now note that xj ¼
xþj � x�j , and jxjj ¼ xþj þ x�j . Since this series is absolutely convergent, both subseries

xþj ¼ 1
2 ½xj þ jxjj� and x�j ¼ 1

2 ½jxj j � xj� are absolutely convergent to s1 and s2, respec-

tively. Therefore

Xn
j¼1

xj � ðs1 � s2Þ












a Xn
j¼1

xþj � s1












þ Xn

j¼1

x�j � s2












;
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which implies that
Py

j¼1 xj ¼ s1 � s2 ¼ s. With this setup the proof of this result for

the alternating geometric series now can be implemented identically, by substituting

xþj and x�j in the roles of the positive and negative terms in example 6.12. n

Example 6.16 Two common and important applications of this last result are:

1. If a series is given with only positive or negative terms, or one with only a finite num-

ber of terms of one sign and the remainder of the other, then such a series is convergent

if and only if it is absolutely convergent. Consequently one can apply completely arbi-

trary rearrangements to the series in search of evidence of convergence because, once

such evidence is found, one concludes absolute convergence, justifies the rearrangement

by the proposition above, and knows that the original series must have the same sum-

mation as that developed for the rearrangement.

2. Since the rearrangement functions contemplated by the proposition above are com-

pletely general, one could in theory split such a series into a series of even terms fol-

lowed by a series of odd terms, or in three collections

x1; x4; . . . ; x2; x5; . . . ; x3; x6; . . .

or any number of countably infinite subseries. An important application of this observa-

tion is to a ‘‘multiple’’ series, such as the double series,

Xy
j¼1

Xnð jÞ
i¼1

xij ;

where nð jÞ is some function of j, or simply nð jÞ ¼ y, for all j. A common example is

nð jÞ ¼ j. Of course, triple, quadruple, and higher order series are similarly defined,

though less common in applications. These summations are always intended to be per-

formed from the outer summation inward so that in the example above,

Xy
j¼1

Xnð jÞ
i¼1

xij ¼
Xnð1Þ
i¼1

xi1 þ
Xnð2Þ
i¼1

xi2 þ
Xnð3Þ
i¼1

xi3 þ
Xnð4Þ
i¼1

xi4 þ � � � :

One can envision these index points on the positive integer lattice in R2, where xij is

defined at each point ði; jÞ, i; j > 0 as in figure 6.1. The double summation is then envi-

sioned as summing along rows, starting with j ¼ 1 and summing the first row from

i ¼ 1 to nð1Þ, then the second row, from i ¼ 1 to nð2Þ, and so forth. It is often conve-

nient to be able to reverse the order of the summation, to in e¤ect sum by columns first.

For example,
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Xy
j¼1

Xy
i¼1

xij becomes
Xy
i¼1

Xy
j¼1

xij;

Xy
j¼1

Xj

i¼1

xij becomes
Xy
i¼1

Xy
j¼i

xij:

In the second summation, the integer lattice model simplifies the setting of the limits for

the reversed summations by providing a visual representation. The question that arises

is, can summations be switched in such a manner? Intuitively, if the series is only condi-

tionally convergent, there is little hope of a positive conclusion, since it is apparent that

such rearrangements move series terms by arbitrarily large distances. On the other

hand, if the series has terms of one sign, or all but a finite number of one sign, then

again it will be convergent if and only if absolutely convergent. In such cases, the result

above on absolute convergence is again applied backward; that is, if one rearranges as

necessary and convergence is justified, so too is absolute convergence. So we can con-

clude that the original multiple series has the same summation as the rearranged series.

6.1.5 Tests of Convergence

There are many tests of convergence for a series, and at first their large number may

seem odd. Just how many tests does one need? The problem is that no test is stated in

the unambiguous language:

Figure 6.1
Positive integer lattice
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The series
Py

j¼1 xj converges if and only if . . . ;

that is, except the test in the definition itself, which then goes on to require for the

Cauchy condition that

. . . for every � > 0, bN with jPm
j¼1 xj �

Pn
j¼1 xjj < � for n;m > N.

So the definition of convergence provides an ‘‘i¤ ’’ test of convergence, but in many

cases there is no easy way to demonstrate that there is a value of N1Nð�Þ that will
work.

The various tests of convergence provide the benefit of relative ease of implemen-

tation, but at the cost of so-called indeterminate cases. To be more precise, all tests

provide the following schema, either explicitly or implicitly:

1. The series
Py

j¼1 xj converges if condition A is satisfied.

2. The series
Py

j¼1 xj diverges if condition B is satisfied.

3. No information on convergence is provided in other cases.

So every test divides the collection of all series fPy
j¼1 xj j xj A R or Cg, into these

three groups according to that test’s conditions. A given series may be in the indeter-

minate group for one test, and demonstrated to converge or diverge with another. Of

course, it will never be the case that one test assures convergence, another divergence,

or conversely.

The reason for the multitude of tests is that each varies in terms of ease of imple-

mentation for a given series, as well as in terms of the specific members of the group

of series that remain indeterminate. Tests can be intuitively thought of as stronger

if they provide a smaller indeterminate set, but there is no generally accepted order-

ing for the strength of such tests unless one test’s indeterminate set is contained in

another’s.

So far, no test other than the definition itself has been discovered that has j, the
empty set, as its indeterminate collection. In this section we identify a few of the

best and easiest to implement tests. Also a very useful test will be added in chapter

10, using a method involving Riemann integrals. The first test is probably the most

widely used because it a¤ords the analyst a great deal of flexibility in its application.

Proposition 6.17 (The Comparison Test) If
Py

j¼1 xj is absolutely convergent, andPy
j¼1 yj is any series with jyjja jxjj, for jbN for some N, then

Py
j¼1 yj converges

absolutely. Conversely, if
Py

j¼1 xj and
Py

j¼1 yj are any series with jyjja jxjj, for some

jbN, and
Py

j¼1 jyjj ¼ y, then
Py

j¼1 jxj j ¼ y.
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Proof For the convergence condition, if sn ¼
Pn

j¼1 jyjj, then for nbN,

sn a
XN
j¼1

jyjj þ
Xn

j¼Nþ1

jxj ja
XN
j¼1

jyj j þ
Xy
j¼1

jxjj:

In other words, the absolute partial sums of the series fyjg are both increasing with

n, and bounded. Because these partial sums are bounded, they must have an accumu-

lation point. So there is an s such that for any � > 0 there is an Mð�Þ with jsM � sj <
�. However, since the sequence fsng is increasing, jsn � Sj < � for nbM, and hence s

is the limit of the partial sums. That is,
Py

j¼1 jyj j ¼ s. For the divergence condition, it

is clear by assumption that the absolute partial sums, sn ¼
Pn

j¼1 jyj j, are unbounded.
Consequently, since all but a finite number of jxj j exceed jyjj, the partial sums of this

series must also be unbounded, and hence
Py

j¼1 jxjj ¼ y. n

Remark 6.18

1. Note that for the purpose of establishing convergence by the comparison test, or di-

vergence, one can ignore any finite number of terms of the respective sequences. In

other words, the relationship between jyjj and jxj j, for jaN and any fixed N, is irrel-

evant to the conclusions.

2. Note also that the assumption in the comparison test for convergence is that for

some N and jbN,

�jxjja yj a jxj j:
That is, that all but finitely many terms of fyjg are bounded by two convergent series.

This can be generalized. Namely, if there are two convergent series
Py

j¼1 xj andPy
j¼1 zj so that

xj a yj a zj for jbN for some N;

then
Py

j¼1 yj is convergent. This is because 0a zj � yj a zj � xj, and sincePy
j¼1ðzj � xjÞ converges by assumption, and hence converges absolutely because the

terms are nonnegative, we conclude that
Py

j¼1ðzj � yjÞ converges, and in fact converges

absolutely. Subtracting the convergent
Py

j¼1 zj implies the result.

Example 6.19 Consider
Py

n¼1
1
n! , where as usual, n!1 nðn� 1Þðn� 2Þ � � � 2 � 1 is

called n factorial. Note that for nb 4,

nðnþ 1Þ
n!

¼ nþ 1

n� 1

1

ðn� 2Þ! a
5

3
� 1
2
< 1:
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In other words, 1
n! <

1
nðnþ1Þ for nb 4, and consequently,

Py
n¼1

1
n! converges by the com-

parison test because
Py

n¼1
1

nðnþ1Þ converges by case 2 in example 6.9.

The next test generalizes the result observed for the alternating harmonic series in

example 6.10.

Proposition 6.20 (Alternating Series Convergence Test) If
Py

j¼1 xj is an alternating

series, and for some N we have jxjþ1ja jxjj for jbN and xj ! 0, then
Py

j¼1 xj con-

verges. If s denotes the summation, we have the partial sum error estimate with

sn ¼
Pn

j¼1 xj:

jsn � sja jxnþ1j for nbN:

Proof Since
PN�1

j¼1 xj ¼ s 0 is finite, and for nbN,

sn ¼
Xn
j¼N

xj þ s 0;

we can ignore these exceptional terms and assume that jxj j monotonically decreases

to 0 for all j. For specificity, assume that x1 > 0. We first show that the odd partial

sums form a decreasing sequence that is bounded below. This follows from

s2nþ1 ¼ s2n�1 þ x2n þ x2nþ1

a s2n�1;

since x2n a 0a x2nþ1 and jx2nþ1ja jx2nj by the monotonicity assumption. In addi-

tion this sequence is bounded below by 0, since we have that every s2nþ1 can be

expressed as a summation of nonnegative terms by s2nþ1 ¼ x2nþ1 þ
Pðx2j þ x2j�1Þ,

where the summation is from j ¼ 1 to n.

Similarly the even partial sums form an increasing sequence that is bounded

above. By proposition 5.18, both sequences are convergent, say to E and O for even

and odd. But since js2nþ1 � s2nj ¼ jx2nþ1j ! 0, we have E ¼ O ¼ s and sn ! s. Now

by this discussion,

s2n a sa s2nþ1 for all n;

so 0a s� s2n a s2nþ1 � sn ¼ x2nþ1. Similarly 0a s2nþ1 � sa s2nþ1 � s2nþ2 a x2nþ2,

and the error bounds follow. n

Example 6.21 As a simple application to the alternating harmonic series, if we desire

an estimate of the summation that is within � of the true sum, we simply choose N so

6.1 Numerical Series 193



that 1
Nþ1 < �. We then know from the proposition above that sN ¼PN

j¼1
ð�1Þ jþ1

j
will be

within � of the correct answer. As noted above, using methods of calculus, we will derive

that s ¼ ln 2, and we can conclude that

ln 2�
XN
j¼1

ð�1Þ jþ1

j












a 1

N þ 1
:

To get the correct Mth decimal place of ln 2, which is to say that we want an error of

less that 0:5
10Mþ1 , requires about NA2ð10Mþ1Þ terms of this summation. In other words,

although this series converges, it does so very slowly.

Next are two tests for convergence that depend on ratios. The first uses ratios of

the given series’ terms with those of an absolutely convergent series; the second uses

ratios of consecutive terms from the given series.

Proposition 6.22 (Comparative Ratio Test) If
Py

j¼1 xj is an absolutely convergent

series, and fyjg is a sequence so that limj!y
jyj j
jxj j exists, then

Py
j¼1 yj is absolutely

convergent.

Proof The existence of this limit implies that
jyj j
jxj j
n o

is a bounded sequence, and

hence jyjjaBjxjj for all j. Since
Py

j¼1 Bxj is absolutely convergent by assumption,

the result follows by the comparison test in proposition 6.17. n

Remark 6.23 This innocent looking result provides a powerful intuitive conclusion

about convergence. First o¤, if
Py

j¼1 xj is an absolutely convergent series, it is apparent

that jxjj ! 0. Therefore for any � > 0 there is an N so that jxjj < � for jbN. The

comparative ratio test says that if fyjg is any sequence that converges as fast or faster

to 0, that is,

lim
j!y

jyjj
jxjj ¼ Cb 0;

then
Py

j¼1 yj is also absolutely convergent.

In other words, any absolutely convergent series provides a ‘‘speed benchmark’’ for

the rate at which the absolute value of its terms converge to 0 in that every series that

converges as fast or faster must also be absolutely convergent.

Although there are many other tests of convergence, we end with one of the most

useful, as will be seen in the next section.
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Proposition 6.24 (Ratio Test) If
Py

j¼1 xj is a series so that

lim sup
n!y

jxnþ1j
jxnj

� �
¼ L < 1;

then
Py

j¼1 xj is absolutely convergent. On the other hand, if

lim inf
n!y

jxnþ1j
jxnj

� �
¼ L > 1;

then
Py

j¼1 xj diverges. If L ¼ 1 in either case, no conclusion can be drawn.

Remark 6.25 Recall the intuitive definition of limits superior and inferior. That is,

consider all values of the sequential ratios
jxnþ1j
jxnj

n o
, as well as all possible accumulation

points. The ratio test says that if the largest such accumulation point is less than 1, the

series must be absolutely convergent, and if the smallest is greater than 1, the series

diverges. This test is powerful because it does not require the existence of the limit

of these ratios, it only depends on values of the smallest and largest accumulation

points.

Of course, if the limit of these ratios exists, then the series converges absolutely

or diverges according to whether the limit is less than or greater than 1. The in-

definite case of L ¼ 1 is easy to illustrate. From cases 3 and 4 of example 6.9,

we know that
P

1
j
diverges and

P
1
j 2
converges, and yet for both, L ¼ 1 as is easily

verified.

Proof In the first case where lim supn!y
jxnþ1j
jxnj

n o
¼ L < 1, by proposition 5.22, for

any � there is an N so that
jxnþ1j
jxnj

n o
< Lþ � for nbN. Choose � < 1� L; then for

any mb 1,

jxNþmj
jxN j ¼ jxNþmj

jxNþm�1j
jxNþm�1j
jxNþm�2j . . .

jxNþ1j
jxN j

< ðLþ �Þm:
In other words, jxNþmj < ðLþ �ÞmjxN j for all mb 1, so fjxNþmjg is bounded above

by a geometric series. Now, since Lþ � < 1 by construction, this geometric series

must converge, and so too the original series by the comparison test. The limit

inferior result is similar, only we conclude that jxNþmj > ðL� �ÞmjxN j, where � is

chosen as � < L� 1, so this sequence is bigger than a divergent geometric series

as L� � > 1. n
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6.2 The lp-Spaces

6.2.1 Definition and Basic Properties

The primary reason to introduce the notion of the lp-spaces is that they represent an

accessible introduction to an idea that will find more application with the notion of

Lp function spaces studied in real analysis. In addition lp-spaces provide an interest-

ing and important counterpoint to the conclusion drawn in chapter 3, that all lp-

norms are equivalent in Rn. We now study what happens to this conclusion when

n ! y.

Notation 6.26 While one can easily distinguish between lp-space and Lp-space in writ-

ing, it is more di‰cult to do so in conversation, since both are pronounced ‘‘lp space.’’

For this reason one sometimes hears ‘‘little lp space’’ and ‘‘big lp space’’ in a discussion.

Definition 6.27 For 1a pay the space lp is defined by

lp ¼ fx ¼ fxjgyj¼1 j kxkp < yg;

where, consistent with the lp-norms defined for Euclidean space,

kxkp 1
X

jxjjp
� 	1=p

; 1a p < y; ð6:2aÞ

kxky 1 sup
j

fjxjjg: ð6:2bÞ

Real lp-space and complex lp-space are defined according to whether fxjgyj¼1 HR or

fxjgyj¼1 HC. The absolute values jxjj in (6.2) are defined according to xj being real

or complex, as in (2.3) and (2.2), respectively.

Intuitively, one can imagine real lp-space as an infinite Euclidean space, Ry, under

the previously defined lp-norms. That is a good starting point for our intuition, in

that we will see that the lp-spaces are vector spaces just as was Euclidean space, and

that the lp-norms defined above are indeed norms in the sense of chapter 3.

There is a dramatic di¤erence, however. Earlier we saw that all lp-norms are equiv-

alent in Rn for 1a pay. Switching from one norm to another changed the numer-

ical value of our norm measurements, but in every real sense the spaces were

identical. By definition, the basic collection of points in Rn were the same, and the

notions of open and closed, as well as convergence, were identical under any of these

norms.

For example, GHRn is open with respect to one lp-norm if and only if it is open

with respect to all lp-norms. Similarly a sequence fxngHRn converges to x A Rn in
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one lp-norm if and only if it converges with respect to all lp-norms. Put another way,

fxngHRn is a Cauchy sequence with respect to one lp-norm if and only if it is a

Cauchy sequence with respect to all lp-norms.

On the other hand, the lp-norms are not equivalent in Ry. In fact, for any p with

1a p < y, it is easy to produce a sequence fxjgyj¼1 so that fxjgyj¼1 A lp 0 for all p 0

with p < p 0 ay but fxjgyj¼1 B lp. The simplest example uses case 4 in example 6.9.

For p given, define

x ¼ fxjgyj¼1 1
1

j

� �1=p( )y

j¼1

:

Then in lp, the norm of this point is the pth-root of the sum of the harmonic series,

and hence it cannot have finite lp-norm. However, by case 4, this point has finite

lp 0 -norm for any p 0 > p with p 0 < y. In addition kxky ¼ 1. This generalizes to:

Proposition 6.28 If 1a p < p 0 ay, then lp H lp 0 , and the inclusion is strict.

Proof Let x ¼ fxjgyj¼1 A lp be given. Then the finiteness of kxkp implies that all but

a finite number of xj satisfy jxj j < 1. Now, if p 0 > p and p 0 < y, thenX
jxjjp

0 ¼
X
jxj j<1

jxj jp
0 þ

X
jxj jb1

jxjjp
0
<
X
jxj j<1

jxjjp þ C:

Consequently kxkp 0 is finite and fxjgyj¼1 A lp 0 . For p 0 ¼ y, it is apparent that kxky ¼
supjfjxj jg is finite since

P jxj jp is finite. Hence, in all cases, lp H lp 0 . That this inclu-

sion is strict was exemplified in the case of the power harmonic series for p 0 < y.

The case p 0 ¼ y is easily handled by the example x ¼ fxjgyj¼1, where all xj ¼ 1,

say. Clearly, x A ly but in no other lp-space for p < y. n

More surprisingly, there exists an infinite collection of sequences that are in all the

lp-spaces and are in fact dense in all the lp-spaces for 1a p < y. So the di¤erences

between these spaces is caused entirely by the ‘‘completion’’ of the common collec-

tion of sequences in the various norms. To be more precise each lp-space can be cre-

ated by adding to this common collection of sequences the limiting values obtained

by forming convergent sequences in the various norms.

To illustrate such a construction first in a more familiar setting, consider Qn HRn,

defined as the n-tuples of rational numbers. That is,

Qn ¼ fx1 ðx1; x2; . . . ; xnÞ j xj A Q for all jg;
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which is a vector space over the rational numbers. Next, define Rn
p by

Rn
p ¼ fx A Rn so that bfxjgHQn with kx� xjkp ! 0; 1a payg: ð6:3Þ

Proposition 6.29 For any n, Rn
p ¼ Rn for all p, 1a pay.

Proof By definition, Rn
p HRn, so only the reverse inclusion need be proved. Let

x A Rn be given. Define xj A Qn so that the integer parts, and the first j-decimals of

the components of xj agree with those of x, and the decimal expansions of the com-

ponents of xj are all 0s past this jth position. Clearly, fxjgHQn. It is also clear that

for p < y, using the geometric series summation approach illustrated in example 6.9

above obtains

kx� xjkp a 9
Xy
k¼jþ1

10�kp

 !1=p

¼ 9
10�ð jþ1Þ

ð1� 10�pÞ1=p
 !

;

which converges to 0 as j ! y. For p ¼ y, kx� xjky a 9ð10�ð jþ1ÞÞ, which again

converges to 0. Hence Rn HRn
p for all p, 1a pay, and Rn

p ¼ Rn. n

In other words, starting with this common vector space, Qn, if we complete this

space with respect to any of the lp-norms, the same vector space arises, namely Rn.

Put yet another way, Qn is dense in Rn with respect to every lp-norm. We next show

that there is also a common vector space that is dense in all the lp-spaces, and that

each lp-space arises by completing this common space with respect to the associated

norm. To this end, we introduce the following:

Definition 6.30 Ry and Cy are formally defined as the collection of sequences:

Ry ¼ fx1 ðx1; x2; . . . ; xn; . . .Þ j xj A R for all jg; ð6:4aÞ

Cy ¼ fx1 ðx1; x2; . . . ; xn; . . .Þ j xj A C for all jg: ð6:4bÞ
Similarly Ry

0 and Cy
0 are formally defined as ‘‘truncated’’ sequences:

Ry
0 ¼ fx A Ry j xj ¼ 0 for all j > N; some Ng; ð6:5aÞ

Cy
0 ¼ fx A Cy j xj ¼ 0 for all j > N; some Ng: ð6:5bÞ

Addition and scalar multiplication are defined pointwise:

xþ y1 ðx1 þ y1; x2 þ y2; . . . ; xn þ yn; . . .Þ;
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ax1 ðax1; ax2; . . . ; axn; . . .Þ;
where a A R for Ry and Ry

0 , and a A C for Cy and Cy
0 .

Remark 6.31 It is easy to see that Ry and Ry
0 are vector spaces over R, and that

Cy and Cy
0 are vector spaces over C, based on definition 3.3 in chapter 3. Also, by

the definition of the lp-spaces, it is clear that for every p, 1a pay, Ry
0 H lp HRy

in the real case, and Cy
0 H lp HCy in the complex case. We study the lp-spaces in the

next section, but first demonstrate an interesting point. For conciseness, we limit the

following statement to the real lp-spaces, but it is equally valid in the complex case:

Proposition 6.32 The vector space Ry
0 is dense in every lp-space, 1a p < y. That is,

given any x A lp, there is a sequence, fxngHRy
0 so that kx� xnkp ! 0.

Proof Given x1 ðx1; x2; . . . ; xn; xnþ1; . . .Þ, define xn ¼ ðx1; x2; . . . ; xn; 0; 0; 0; . . .Þ.
In other words, xn is defined to have n nonzero components equal to the first n-

components of x. Now for p < y, x A lp implies that kxkp
p ¼Py

j¼1 jxjjp < y. By

definition, this implies that for any � > 0 there is an N so that
Py

j¼n jxjjp < � for

n > N. However, kx� xnkp
p ¼Py

j¼nþ1 jxjjp, and hence kx� xnkp
p ! 0 as n ! y. n

It is important to note that this result does not extend to p ¼ y, as a simple

example demonstrates. If x ¼ ð1; 1; 1; 1; 1; . . .Þ, the constant vector, kx� xnky ¼
supj>nfjxjjg ¼ 1, so no convergence occurs in the ly-norm.

*6.2.2 Banach Space

For lp-spaces to be really useful, there are two as yet unanswered questions that need

to be addressed:

1. While lp-space is closed under addition and scalar multiplication as a vector space,

is it closed as a normed space? In other words, if x; y A lp, must it be true that

xþ y A lp, and so xþ y has a finite lp-norm?

2. Are the lp-spaces complete? That is, if fxngH lp is a Cauchy sequence, must there

be an x A lp so that

kx� xnkp 1
Xy
j¼1

ðxj � xnjÞp
" #1=p

! 0?

These questions are addressed in this section, and both are answered in the a‰r-

mative. First, the a‰rmative result on closure under addition.
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Proposition 6.33 Real lp-space is a normed linear space over the real numbers, R, and

complex lp-space is a normed linear space over the complex numbers, C. In addition in

both spaces we have the Minkowski inequality:

kxþ ykp a kxkp þ kykp: ð6:6Þ

Proof Because these collections are defined as subsets of the vector spaces Ry and

Cy, all that is left to prove is that these spaces are closed under the above-given def-

initions of addition and scalar multiplication, and that the lp-norms defined in (6.2)

are indeed norms in the sense of chapter 3. Of course, closure under scalar multipli-

cation is immediate, since for any p, kaxkp ¼ jaj kxkp. The more subtle question is

addition, and for this, we demonstrate the Minkowski inequality. As in Euclidean

space, the Minkowski inequality is the name given to the triangle inequality under

the lp-norm. This result is apparent for p ¼ y since

sup
j

fjxj þ yjjga sup
j

fjxjjg þ sup
j

fjyjjg;

and for p ¼ 1 by the triangle inequality,

jxj þ yjja jxjj þ jyjj;
which implies by summation that kxþ yk1 a kxk1 þ kyk1. For 1 < p < y the subtle

issue to address is the finiteness of kxþ ykp. If its finiteness is demonstrated, the

proof of the inequality in (6.6) for Rn and Cn in proposition 3.24 in chapter 3, for

which finiteness was guaranteed, goes through step by step.

To demonstrate the finiteness of kxþ ykp, we note that for 1 < p < y, the func-

tion f ðxÞ ¼ xp is convex, which consistent with (3.31) means that

f ðtz1 þ ð1� tÞz2Þa tf ðz1Þ þ ð1� tÞ f ðz2Þ for 0a ta 1:

This function is also increasing for t A ½0;yÞ. This can be readily demonstrated with

the tools in chapter 9 on calculus, although it is intuitively apparent from sam-

ple graphs. We will assume this result and let z1 ¼ jxjj, z2 ¼ jyj j, and t ¼ 0:5. We

get by the triangle inequality that ð0:5jxj þ yjjÞp a ð0:5jxjj þ 0:5jyjjÞp since pb 1,

and

ð0:5jxjj þ 0:5jyjjÞp 1 f ð0:5jxjj þ 0:5jyj jÞ:
By the convexity of f ðxÞ above,

f ð0:5jxjj þ 0:5jyjjÞa 0:5ðjxjjp þ jyjjpÞ:
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That is, ð0:5jxj þ yjjÞp a 0:5ðjxjjp þ jyjjpÞ, and hence

kxþ ykp a ð0:5Þð1�pÞ=pðkxkp
p þ kykp

p Þ1=p;

which is finite. Following the exact steps of the proof of proposition 3.24, we then

derive the better estimate of the upper bound for kxþ ykp. Consequently lp-space is

closed under addition. Finally, the Minkowski inequality is also the critical step in

proving that the lp-norms are indeed norms in the sense of chapter 3, which is to

say that the triangle inequality is satisfied, since the other norm requirements are

immediate. n

Because lp-space is a vector space, and k kp a norm, we can define a distance func-

tion or metric on lp, the lp-metric, consistent with this norm, just as it was defined in

Euclidean space, Rn and complex space Cn.

Definition 6.34 The lp-metric, dpðx; yÞ, is defined on lp by

dpðx; yÞ1 kx� ykp for 1a pay: ð6:7Þ
The final critical property of the lp-spaces to verify is that they are complete in the

sense of chapter 4. That is, every Cauchy sequence in lp-space converges to a point in

that lp-space. In the proposition above it was proved that lp-space is closed under ad-

dition, but this gives no insight to the completeness question.

A simple example is the space of rational numbers, QHR. Clearly, Q is closed

under addition, but equally clearly, as was seen in example 5.13, it is not complete.

That is, while a Cauchy sequence in Q may well converge to a rational number, it is

also possible that a sequence of rationals can converge to an irrational number. In

fact, because Q is dense in R, every number in R can be achieved by Cauchy se-

quences in Q.

As it turns out, the lp-spaces are complete for 1a pay.

Proposition 6.35 If 1a pay, lp is a complete normed linear space. That is, if

fxngH lp is a Cauchy sequence, then there exists x A lp so that dpðxn; xÞ1 kxn � xkp
! 0.

Proof The assumption that fxng is a Cauchy sequence means that for any � > 0

there is an N so that kxn � xmkp < � for n;mbN. Now, if p < y, this means thatPy
j¼1 jxnj � xmj

jp < �p, where xnj denotes the jth component of xn. This implies that

jxnj � xmj
jp < �p for every j, and so the jth components of fxng form Cauchy se-

quences in R for every j. Since R is complete, there exists xj A R so that xnj ! xj
for all j. A similar conclusion holds in the case of p ¼ y where the Cauchy property
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means that supj jxnj � xmj
j < � for n;mbN. Defining x ¼ ðx1; x2; . . .Þ, the vector of

componentwise limits, we must now show that x A lp and that kxn � xkp ! 0. The

convergence of xn to x is immediate from the Cauchy assumption, since for any

� > 0 there is an N so that kxn � xmkp < � for n;mbN. Letting m ! y, we con-

clude that for any � > 0 there is an N so that kxn � xkp < � for nbN. Finally, to

show that x A lp, note that kxkp a kx� xNkp þ kxNkp by the Minkowski inequality,

from which we derive that kxkp a �þ kxNkp and so kxkp is finite. That is, x A lp. n

The notion of complete normed linear space is so important in mathematics that it

warrants a special name, after Stefan Banach (1892–1945), who first identified and

studied properties of this special class of spaces:

Definition 6.36 A normed linear space, ðX ; k kÞ, that is complete is called a Banach

space.

Remark 6.37 To identify our list of Banach spaces so far, we include Rn and Cn,

under any of the lp-norms, 1a pay, as well as all the real and complex lp-spaces,

again for 1a pay. In real analysis this list will be expanded to the function space

counterparts to the lp-spaces, denoted the Lp-spaces.

*6.2.3 Hilbert Space

The preceding analysis shows that all the lp-spaces are Banach spaces for 1a pay,

which is to say, complete normed linear spaces. As it turns out, there is one lp-space

that is more special than the rest. Specifically, l2 has the additional property that its

norm is given by an ‘‘inner product,’’ and in that respect, l2 is most like ordinary

Euclidean space Rn, or its complex counterpart Cn, for which the same point was

made concerning the ‘‘standard norm.’’ Recall from chapter 3 that the inner product

between two vectors can be defined as in (3.4) and (3.6), and that there is an intimate

relationship between these inner products and the standard norms in these spaces as

in (3.5) and (3.7), as summarized by

jxj ¼ ðx � xÞ1=2:
In the context of l2-space we formally revise these inner product definitions by

x � y ¼
Xy
j¼1

xiyi; x; y A l2 ðrealÞ; ð6:8Þ

x � y ¼
Xy
j¼1

xiyi; x; y A l2 ðcomplexÞ: ð6:9Þ

202 Chapter 6 Series and Their Convergence



To the extent these definitions can be shown to make sense, one has immediately as

in (3.5) and (3.7) for the standard l2-norms in Rn and Cn, that in either real or com-

plex l2-space:

kxk2 ¼ ðx � xÞ1=2: ð6:10Þ

This inner product construction can be implemented in l2 and only in l2. The sub-

tlety, of course, is the demonstration that the inner products above actually converge,

since in contrast to the case for Rn and Cn, now n ¼ y. If convergence is demon-

strated, it will be straightforward to demonstrate that this inner product satisfies the

same four properties as did the inner products in Rn and Cn highlighted in defini-

tions 3.7 and 3.11 in chapter 3. That is, (6.8) satisfies the same properties as (3.4),

while (6.9) satisfies the same properties as (3.6).

To this end, the critical insight to the convergence of the series in (6.8) and (6.9) is

an inequality that was seen in chapter 3, and that was Hölder’s inequality. In that

chapter this inequality was demonstrated as one of the steps toward the proof of the

Minkowski inequality. As noted above, the proof of the Minkowski inequality in lp is

identical to that in Rn and Cn, subject only to the demonstration above that kxþ ykp
is in fact finite for x; y A lp, 1a pay. Consequently, as a step in that proof, the

Hölder inequality is also valid, and we state this without additional proof.

Proposition 6.38 (Hölder’s Inequality) Given p, q so that 1a p; qay, and 1
p
þ 1

q

¼ 1, where notationally, 1
y 1 0, then for x A lp, y A lq,

jðx; yÞja kxkpkykq; ð6:11Þ

where x � y is defined in (6.8) or (6.9).

It is easy to see that this result highlights the special case of p ¼ 2. That is, this is

the only case where both x and y can be selected from the same lp-space and an inner

product defined. In this case the inner product is well defined, and has absolute value

bounded by the product of the associated l2-norms:

jðx; yÞja kxk2kyk2; x; y A l2: ð6:12Þ

Another important interpretation of (6.11) that is valuable in the future context of

function spaces is that the componentwise product of two series from l2 is a series in

l1. That is, if we momentarily define the componentwise product

x � y1 ðx1y1; x2y2; x3y3; . . .Þ; ð6:13Þ
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then if x; y A l2 we have that x � y A l1 and by the Holder inequality

kx � yk1 a kxk2kyk2: ð6:14Þ
The power of having this inner product in l2 is that is provides a basis for defining

when two points are perpendicular, or in the language of such spaces, orthogonal.

This is a natural generalization of this same notion in chapter 3 (see exercises 7 and

8 in that chapter):

Definition 6.39 If x; y A l2, then we say x and y are orthogonal, denoted x ? y; if

ðx; yÞ ¼ 0.

Of course, orthogonality is a generalization of the notion of perpendicularity in Rn

and Cn, in which ðx; yÞ ¼ 0 is also the defining relation using the standard inner

product in those spaces. The classical collection of orthogonal vectors are those

defined by the coordinate axes. For example, in Rn we have the set of n vectors

ð1; 0; 0; . . . ; 0Þ; ð0; 1; 0; . . . ; 0Þ; ð0; 0; 1; 0; . . . ; 0Þ . . . ð0; 0; 0; . . . ; 0; 1Þ;
denoted ej, for j ¼ 1; . . . ; n, and it is apparent that these vectors are orthogonal and

have unit norm or length

ðej ; ekÞ ¼ 0; j0 k,

1; j ¼ k,

�
where of course, ðej; ejÞ ¼ kejk22, the square of the norm of ej.

Such a collection of vectors is said to be orthonormal. Here ‘‘ortho’’ is short for

orthogonal, and ‘‘normal’’ means of unit length. In this case this collection is actually

an orthonormal basis where by ‘‘basis’’ is meant that with these vectors, every other

vector in Rn can be generated using linear combinations of these. In other words, we

have for any vector x ¼ ðx1; x2; . . . ; xnÞ,

x ¼
Xn
j¼1

xjej;

where the coe‰cients, fxjg are used as scalars in what is called a linear combination

of vectors.

This construction generalizes to l2, for which an infinite sequence of vectors,

fejgyj¼1 can be correspondingly defined. In l2, however, the meaning given to the rep-

resentation above for x is with xn 1
Pn

j¼1 xjej:
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x ¼
Xy
j¼1

xjej i¤ kx� xnk2 ! 0 as n ! y: ð6:15Þ

In both cases, Rn and l2, the norm of x can be derived from the scalar coe‰cients by

kxk22 ¼
Xy
j¼1

x2
j :

This perhaps feels a bit like a notational sleight of hand, as the orthonormal basis

fejgyj¼1 is pretty trivial, and so is the expansion of x in terms of this basis and the

corresponding identity for kxk22. But in reality, this is just the tip of the iceberg. It

turns out that l2-space has infinitely many orthonormal bases, although we do not

prove this. The following is then a critical result on these bases.

Proposition 6.40 If fejgyj¼1 is any orthonormal basis in Rn, Cn or l2-space, then for

any x in the respective space defined by

x ¼
Xy
j¼1

yjej; ð6:16Þ

the coe‰cients are given by

yj ¼ ðx; ejÞ; ð6:17Þ
and

kxk22 ¼
Xy
j¼1

jyjj2: ð6:18Þ

Proof We focus on the l2-space result, and leave Rn and Cn as an exercise. First o¤,

the expression for yj follows from (6.15), since by (6.12) we have as n ! y,

jðx� xn; ejÞja kx� xnk2kejk2 ! 0;

and so ðxn; ejÞ ! ðx; ejÞ. But then ðxn; ejÞ ¼ yj for nb j, using the orthonormal

properties above, proving (6.17). Also, for (6.18), first note that (6.15) implies that

kxnk2 ! kxk2 as n ! y. That is, recalling that kxnk22 ¼ ðxn; xnÞ,

kxnk22 � kxk22 ¼ kxn � xk22 þ 2ðx; xn � xÞ:
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So from (6.12) we have

jkxnk22 � kxk22ja kxn � xk22 þ 2kxk2kxn � xk2;

and the result follows. Then, again using the orthonormal properties above, we de-

rive (6.18), since

kxnk22 ¼ ðxn; xnÞ ¼
Xn
j¼1

jyjj2: n

Remark 6.41

1. The purpose of the absolute value in the identity in (6.18) is to indicate that in com-

plex l2-spaces, it is the square of the norms of these complex numbers that are summed.

2. The identity in (6.18) is known as Parseval’s identity, after Marc-Antoine Parseval

(1755–1836), who derived this identity in the more general content of L2 function

spaces. In that context, the collection of orthonormal functions used in (6.16) gave rise

to what is known as the Fourier series representation of the ‘‘function’’ x, named for

Jean Baptiste Joseph Fourier (1768–1830), who studied such functional expansions.

In real analysis this additional inner product structure in l2 is repeated in the function

space counterpart L2, and this structure has important consequences there as well,

similar to what was illustrated above.

The notion of complete normed linear space with a compatible inner product is so

important in mathematics that it warrants a special name, after David Hilbert (1862–

1943), who first identified and studied properties of this special class of infinite di-

mensional Euclidean spaces.

Definition 6.42 A normed linear space, ðX ; k kÞ, that is complete and has a compati-

ble inner product is called a Hilbert space.

Remark 6.43 To identify our list of Hilbert spaces so far, we include Rn and Cn,

under the standard or l2-norm, as well as the real and complex l2-spaces. There will be

another identified later, but not until the study of real analysis, where we will be intro-

duced to the function space counterpart to the l2-spaces, denoted L2-space.

6.3 Power Series

In this section we introduce the notion of a power series that will justifiably get more

attention in chapter 9 on calculus in the study of Taylor series. Here we focus on
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power series of a single variable, although one can imagine that multivariate versions

are also possible, and as it turns out, important.

Definition 6.44 Given a real numerical sequence, fcngyn¼0, the power series associated

with this sequence is notationally defined as a real function of x (or y, z, etc.), by

f ðxÞ ¼
Xy
n¼0

cnx
n: ð6:19Þ

In other words, a power series can be thought of as an infinite polynomial function

of x, defined on R. Not surprisingly, the central question to address here is the con-

vergence of the expression given in (6.19), outside of the obvious point of conver-

gence of x ¼ 0 for which f ð0Þ ¼ c0. In the later chapters on calculus, we will also

address questions such as:

1. Given a function f ðxÞ, when can this function be represented as in (6.19) for some

sequence fcngyn¼0?

2. Given a function f ðxÞ, when can this function be approximated by a finite version

of this series, and what is the nature of the error in this case?

Utilizing the results above on the convergence of numerical series, the following

result is easily demonstrated.

Proposition 6.45 Given the power series, f ðxÞ ¼Py
n¼0 cnx

n, define

L ¼ lim sup
n!y

jcnþ1j
jcnj

� �
: ð6:20Þ

Then with R ¼ 1
L
, this power series converges absolutely for jxj < R, diverges for

jxj > R, and is indeterminate for jxj ¼ R.

Proof By the ratio test, the requirement for absolute convergence is that

lim sup
n!y

jcnþ1x
nþ1j

jcnxnj
� �

< 1;

which occurs exactly when jxj < R with R as defined. Similarly we conclude diver-

gence when jxj > R and that jxj ¼ R is an indeterminate case. n

Remark 6.46 R is called the radius of convergence of the power series, and the inter-

val, jxj < R is called the interval of convergence.
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Example 6.47

1. If f ðxÞ ¼Py
n¼0

xn

n!
, then L ¼ lim supn!y

1
nþ1

n o
¼ 0. Therefore R ¼ y, and this

power series converges for all x A R. In chapter 9 we will see that f ðxÞ ¼ ex.

2. If f ðxÞ ¼Py
n¼0ð�1Þn xn

nþ1
, then L ¼ lim supn!y

nþ1
nþ2

n o
¼ 1. Therefore R ¼ 1, and

this power series converges for jxj < 1. This series diverges for x ¼ �1, producing the

harmonic series but converges for x ¼ 1 by the alternating series test. In chapter 9 we

will see that f ðxÞ ¼ lnð1þ xÞ.
3. If f ðxÞ ¼Py

n¼0ð�1Þn 3 nxn

ðnþ1Þ a , a > 1, then L ¼ lim supn!y 3 nþ1
nþ2

� 	an o
¼ 3. There-

fore R ¼ 1
3 , and this power series converges for jxj < 1

3 . It is also convergent for x ¼ 1
3

by the alternating series test, and for x ¼ � 1
3 , producing a power harmonic series.

4. If f ðxÞ ¼Py
n¼0 x

n, then L ¼ lim supn!yf1g ¼ 1. Therefore R ¼ 1, and this power

series converges for jxj < 1. This series is easily seen to diverge for x ¼ 1, and not con-

verge for x ¼ �1. In chapter 9 we will see that f ðxÞ ¼ 1
1�x

, although this is easily

derivable as follows. Since we have convergence for jxj < 1, we can infer that xf ðxÞ ¼Py
n¼1 x

n and hence f ðxÞ � xf ðxÞ ¼ 1.

5. If f ðxÞ ¼Py
n¼0 n!x

n, then L ¼ lim supn!yfnþ 1g ! y. Therefore R ¼ 0, and

this series converges only for x ¼ 0.

An alternative approach to power series convergence comes from the Comparison

test.

Proposition 6.48 Given the power series, f ðxÞ ¼Py
n¼0 cnx

n, if f ðxÞ converges abso-
lutely for x ¼ a, then it converges absolutely for all x with jxja jaj.
Proof If jxja jaj, then it is obvious that jcnxnja jcnanj for all n, and sincePy

n¼0 jcnanj converges, so does
Py

n¼0 jcnxnj by the comparison test. That is, f ðxÞ is
absolutely convergent. n

A simple application of this last result is that every absolutely convergent numeri-

cal series gives rise to a power series that is absolutely convergent for jxja 1. To see

this, assume that
Py

n¼0 cn is an absolutely convergent numerical series. Define the

power series f ðxÞ ¼Py
n¼0 cnx

n. By assumption, f ð1Þ is absolutely convergent, so

the result follows.

Example 6.49 It was demonstrated in case 4 of example 6.9 that if xj ¼ 1
j a
for a > 1,

then the power harmonic series
Py

j¼1
1
j a
converges, and since all terms are positive, it

converges absolutely. Consequently it is immediate that the power series
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f ðxÞ ¼
Xy
j¼1

x j

j a

converges absolutely at least for jxja 1. Calculating the radius of convergence from

the previous proposition, we obtain L ¼ lim supn!y
n

nþ1

� 	an o
¼ 1, and R ¼ 1

L
¼ 1. So

in these cases the indeterminate case of jxj ¼ R converges, although this is not deter-

minable by the ratio test.

As a final note, it will often be the case that the definition of power series requires

a small adjustment for the applications coming in chapter 9 on calculus.

Definition 6.50 Given a real numerical sequence fcngyn¼0 and a constant a, the power

series centered on a associated with this sequence is notationally defined as a real func-

tion of x, by

f ðxÞ ¼
Xy
n¼0

cnðx� aÞn: ð6:21Þ

The analysis above on power series convergence can be applied in this context,

with one adjustment:

Proposition 6.51 Given the power series f ðxÞ ¼Py
n¼0 cnðx� aÞn, define

L ¼ lim sup
n!y

jcnþ1j
jcnj

� �
:

Then f ðxÞ converges absolutely for jx� aj < R, diverges for jx� aj > R, and is inde-

terminate for jx� aj ¼ R, where R ¼ 1
L
.

Proof The proof is an immediate application of proposition 6.45 above, or can be

derived directly from the ratio test. n

In other words, for these power series the radius of convergence is independent of a,

but the interval of convergence is shifted from being ‘‘centered on 0’’ with jxj < R, to

being ‘‘centered on a’’ with jx� aj < R, justifying the name.

*6.3.1 Product of Power Series

The discussion in this section relates to the product of two functions given by power

series. Obviously, if f ðxÞ and gðxÞ are any two functions, the function hðxÞ1
f ðxÞgðxÞ is well defined. The question here is, if f ðxÞ and gðxÞ are given as convergent
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power series centered on a, with respective radii of convergence of R and R 0, what is
the power series representation of hðxÞ and what is its radius of convergence? The

following proposition addresses this question:

Proposition 6.52 Let f ðxÞ and gðxÞ be given as convergent power series centered

on a,

f ðxÞ ¼
Xy
n¼0

bnðx� aÞn; gðxÞ ¼
Xy
n¼0

cnðx� aÞn;

with respective radii of convergence of R and R 0. Then hðxÞ1 f ðxÞgðxÞ is given by the

power series

hðxÞ ¼
Xy
n¼0

dnðx� aÞn; ð6:22Þ

where

dn ¼
Xn
j¼0

bjcn�j: ð6:23Þ

Further the radius of convergence of hðxÞ is R 00 ¼ minðR;R 0Þ.
Proof The formula for the coe‰cients in (6.23) follows immediately from the obser-

vation that when multiplying these series, the only way that the product of a

bjðx� aÞ j term from the expansion of f ðxÞ and a ckðx� aÞk term from the expan-

sion of gðxÞ can contribute to the coe‰cient of ðx� aÞn is to have j þ k ¼ n. So

we see that this formula for dn simply accounts for all such products. The question

of convergence of (6.22) is the more di‰cult question which is addressed next. To

simplify notation, let fmðxÞ denote the partial summation

fmðxÞ ¼
Xm
n¼0

bnðx� aÞn;

and ~ffmðxÞ ¼ f ðxÞ � fmðxÞ, which is given by the summation

~ffmðxÞ ¼
Xy

n¼mþ1

bnðx� aÞn:
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Using similar notation for gðxÞ and hðxÞ, and noting that the finite double summa-

tions such as
Pm

n¼0

Pn
j¼0 can be reversed to

Pm
j¼0

Pm
n¼ j, we have for jx� aj < R 00,

due to the convergence of both f ðxÞ and gðxÞ,

hmðxÞ ¼
Xm
n¼0

Xn
j¼0

ðbjðx� aÞ jÞðcn�jðx� aÞn�jÞ
" #

¼
Xm
j¼0

bjðx� aÞ j
Xm
n¼j

cn�jðx� aÞn�j

¼
Xm
j¼0

bjðx� aÞ jgm�jðxÞ

¼ gðxÞ
Xm
j¼0

bjðx� aÞ j �
Xm
j¼0

ðbjðx� aÞ jÞ~ggm�jðxÞ:

Now
Pm

j¼0 bjðx� aÞ j ! f ðxÞ as m ! y. If it can be shown thatPm
j¼0 bjðx� aÞ j ~ggm�jðxÞ ! 0 absolutely, the proof will be complete since then

hmðxÞ � gðxÞ
Xm
j¼0

bjðx� aÞ j












! 0:

Now since ~ggnðxÞ ! 0, for any � > 0 there is an N so that j~ggnðxÞj < � for n > N. To

have j~ggm�jðxÞj < � requires j < m�N, and so for m large enough,

Xm
j¼0

bjðx� aÞ j ~ggm�jðxÞ












a Xm�N�1

j¼0

jbjðx� aÞ j ~ggm�jðxÞj þ
Xm

j¼m�N

jbjðx� aÞ j ~ggm�jðxÞj

< �
Xy
j¼0

jbjðx� aÞ jj þ
Xm

j¼m�N

jbjðx� aÞ j ~ggm�jðxÞj

¼ KðxÞ�þ
XN
j¼0

jbm�jðx� aÞm�j ~ggjðxÞj

aKðxÞ�þ max
0ajaN

j~ggjðxÞj max
0ajaN

jbm�jðx� aÞm�jj:
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Note that the first summation converged to a finite value, KðxÞ say, for any x, be-

cause the power series for f ðxÞ is absolutely convergent. Also the second term con-

verges to 0 as m ! y because the finite collection f~ggjðxÞgNj¼0 is bounded for any

x, and the maximum of the finite collection fjbm�jðx� aÞm�j jgNj¼0 converges to 0 as

m ! y, again because the power series for f ðxÞ is absolutely convergent. n

*6.3.2 Quotient of Power Series

One important application of the proposition above is to generate the coe‰cients

of the reciprocal of a power series, or the quotient of two power series. Specifically,

the proposition above assures that if

f ðxÞgðxÞ ¼ hðxÞ;

Xy
n¼0

bnðx� aÞn
Xy
n¼0

cnðx� aÞn ¼
Xy
n¼0

dnðx� aÞn;

then the coe‰cients fdng satisfy (6.23). Consequently, if f ðxÞ and hðxÞ are given, and
if coe‰cients fcng can be found that satisfy (6.23) and produce a convergent power

series, then we can conclude that

Xy
n¼0

cnðx� aÞn ¼ hðxÞ
f ðxÞ :

And in the special case where hðxÞ1 1, the reciprocal of f ðxÞ is produced.
Of course, to have any hope that the resultant expansion is convergent in an inter-

val of a, we require that f ðaÞ0 0, which is equivalent to b0 0 0. In such a case the

equations in (6.23) can be solved for fcng iteratively, producing after re-indexing for

visual appeal,

c0 ¼ d0

b0
;

cn ¼ 1

b0
dn �

Xn�1

j¼0

bn�jcj

" #
; nb 1:

ð6:24Þ

We now show that the condition b0 0 0 is su‰cient to ensure that
Py

n¼0 cnðx� aÞn
is an absolutely convergent power series.
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Proposition 6.53 Let f ðxÞ and hðxÞ be given as convergent power series centered

on a:

f ðxÞ ¼
Xy
n¼0

bnðx� aÞn; hðxÞ ¼
Xy
n¼0

dnðx� aÞn;

with common radius of convergence of R, and where f ðaÞ ¼ b0 0 0. Then gðxÞ1 hðxÞ
f ðxÞ

is given by the power series

gðxÞ ¼
Xy
n¼0

cnðx� aÞn;

where fcng satisfy (6.24), and this series is absolutely convergent on jx� aj < R 0 for
some R 0 > 0.

Proof We prove this proposition in two steps.

1. Assume that we can prove this result for hðxÞ1 1, where fc 0ng satisfy (6.24) with

d0 ¼ 1 and dn ¼ 0 for all nb 1. In other words,

1

f ðxÞ ¼
Xy
n¼0

c 0nðx� aÞn

is absolutely convergent, where

c 0n ¼
1
b0
; n ¼ 0,

�1
b0

Pn�1
j¼0 bn�jc

0
j ; nb 1.

8<: ð6:25Þ

Then by the proposition above, gðxÞ ¼ hðxÞ 1
f ðxÞ is well defined:

gðxÞ ¼
Xy
n¼0

cnðx� aÞn;

where by (6.23), stated in terms of fc 0ng and fdng,

cn ¼
Xn
j¼0

djc
0
n�j ¼

d0
b0
; n ¼ 0,

1
b0
½dn �

Pn�1
j¼0 dj

Pn�j�1
k¼0 bn�j�kc

0
k�; nb 1.

8<:
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We must now show that this definition of cn is equivalent to (6.24). In this summa-

tion for nb 1, we define a new index variable l ¼ j þ k and observe that given j, we

have ja la n� 1. Therefore

Xn�1

j¼0

Xn�j�1

k¼0

djbn�j�kc
0
k ¼

Xn�1

j¼0

Xn�1

l¼ j

bn�ldjc
0
l�j

¼
Xn�1

l¼0

bn�l

Xl

j¼0

djc
0
l�j

¼
Xn�1

l¼0

bn�lcl ;

where we reversed the double summation
Pn�1

j¼0

Pn�1
l¼ j ¼

Pn�1
l¼0

P l
j¼0 in the second

line. Substituting this final result into the definition above for cn produces (6.24) as

desired.

2. To prove (6.24) in the special case of hðxÞ1 1, first note that we can assume that

b0 ¼ 1, since this term can be factored out of the series without changing conver-

gence properties, and factored back in as 1
b0
after the inversion. Now since the power

series for f ðxÞ converges for jx� aj ¼ r < R, its terms must converge to 0. Hence its

terms are bounded, jbnjrn aM. Therefore

jbnja M

rn
:

For convenience below we take M > 1. With c 0n defined as the coe‰cients of 1
f ðxÞ

above with b0 ¼ 1, we now show by induction that

jc 0nja 2n M
n

rn
:

Since c 00 ¼ 1, we assume this statement is true for n and evaluate c 0nþ1. Then by (6.25),

jc 0nþ1j ¼
Xn
j¼0

bnþ1�jc
0
j














a
Xn
j¼0

M

rnþ1�j
2 j M

j

r j
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<
Mnþ1

rnþ1

Xn
j¼0

2 j

< 2nþ1 M
nþ1

rnþ1
:

Since the power series coe‰cients for 1
f ðxÞ are bounded in absolute value by a geomet-

ric series, we conclude that this series converges if

2n M
n

rn
jx� ajn < 1:

So the interval of absolute convergence contains

jx� aj < r

2M
: n

6.4 Applications to Finance

6.4.1 Perpetual Security Pricing: Preferred Stock

The most apparent application of numerical series to finance is the evaluation of the

price of common stock or nonredeemable preferred stock, both ‘‘perpetual’’ secu-

rities. A preferred stock with par value of 1000 and dividend rate of 5% on an annual

basis pays 50 per year to the investor in perpetuity. In general, with par value of F

and dividend rate d on an annual basis, the investor receives Fd per year in perpetu-

ity. For an investor desiring a fixed yield of r on an annual basis, and assuming the

next dividend is one year into the future, the appropriate price function is given as

PðrÞ ¼ Fd
Xy
j¼1

ð1þ rÞ�j : ð6:26Þ

From the methods above on numerical series we conclude that for any r > 0, this

price function converges absolutely as noted in section 2.3.2, to

PðrÞ ¼ Fd

r
:

This model is easily generalized to di¤erent dividend payment frequencies and/or

yield nominal bases.
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A more general model of yearly varying yields is easily handled formally. Now the

price is a function of a sequence of yields, frjg, and

PðfrjgÞ ¼ Fd
Xy
j¼1

ð1þ rjÞ�j: ð6:27Þ

But the question of convergence is more subtle. Clearly, if there is an r > 0 so that

rj b r for all j, then by the comparison test, PðfrjgÞ converges and PðfrjgÞaPðrÞ.
Consequently the only question is, if rj > 0 for all j, but rj ! 0, does this price

converge? However, the question is not really about the stronger condition of con-

vergence of rj ! 0; it is only about the weaker condition of frjg having 0 as a possi-

ble accumulation point. This can be problematic, since it is then possible that

infinitely many terms in the summation are large enough to cause divergence. As

was seen in section 5.2, this accumulation point condition can be expressed as

lim inf j!y rj ¼ 0.

To investigate the question of convergence, we apply the ratio test to this series.

The criterion for convergence is that

lim sup
n!y

ð1þ rjþ1Þ�j�1

ð1þ rjÞ�j

( )
¼ L < 1:

By proposition 5.22 this condition is satisfied if and only if for any � > 0 there is

an N so that jbN,

ð1þ rjþ1Þ jþ1 b
ð1þ rjÞ j
Lþ �

:

Choosing � so that Lþ � < 1 and iterating, we derive that with j ¼ N þ k and

kb 1:

ð1þ rNþkÞNþk b
ð1þ rNÞN
ðLþ �Þk

:

That is,

rNþk b
ð1þ rNÞN=ðNþkÞ

ðLþ �Þk=ðNþkÞ � 1;

which appears to be a bound on the rate at which rj ! 0.
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But closer inspection reveals more. As k ! y, it is clear that k
Nþk

! 1 and hence

ðLþ �Þk=ðNþkÞ ! Lþ �. Also, N
Nþk

! 0, and assuming that rN > 0, we conclude that

ð1þ rNÞN=ðNþkÞ ! 1. Consequently the lower bound for rNþk converges to 1
Lþ� � 1 ¼

1�L��
Lþ� , which exceeds 0 if Lþ � < 1.

Hence we obtain that as k ! y, the ratio test assures convergence of the preferred

stock price only when for some L 0 ¼ Lþ � < 1,

lim inf
j!y

rj b
1� L 0

L 0 ;

and hence we return to the case where the sequence is bounded away from 0. That is,

this condition implies that for any � > 0 there is an N so that rj >
1�L 0
L 0 � � for all

jbN.

Of course, this does not prove that there is no sequence frjg with lim inf j!y rj ¼ 0

for which the preferred stock price converges, it only proves that there is no such se-

quence for which convergence is verifiable by the ratio test.

With a similar analysis, one could anticipate the convergence of this pricing func-

tion for nonconstant dividends. Again, if these dividends are bounded from above,

dj a d for all j, the price function PðrÞ ¼ F
Py

j¼1 djð1þ rÞ�j is easily seen to con-

verge by the comparison test. For unbounded dividends, the answer is more subtle,

but insights can often be developed with the aid of the ratio test.

6.4.2 Perpetual Security Pricing: Common Stock

A similar analysis can be implemented for the price of common stock under the dis-

counted dividend model introduced in section 2.3.2. From (2.22) we have that the

price—as a function of the last annual dividend assumed to have been just paid D,

the annual dividend growth rate g, and the investor required yield r—is

VðD; g; rÞ ¼ D
Xy
j¼1

ð1þ rÞ�jð1þ gÞ j

¼ D
Xy
j¼1

1þ r� g

1þ g

� ��j

:

For fixed r and g, the analysis above for preferred stock indicates that this price con-

verges as long as r > g, and in this case we have as in (2.22),
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VðD; g; rÞ ¼ D
1þ g

r� g
; r > g:

To generalize this in contemplation of a growth rate sequence fgjg and yield se-

quence frjg, we apply the same considerations as for preferred stock. Convergence

by the ratio test is assured if the e¤ective discount rates are bounded away from 0,

that is,
rj�gj
1þgj

b r > 0. But this approach may be challenged if these rates converge

to 0.

6.4.3 Price of an Increasing Perpetuity

In addition to pricing formulas for perpetuities with constant and geometrically

increasing payments discussed above, we can apply double summations methods to

value a linearly increasing payment stream with a fixed annual rate. Generalizations

to this payment model are then discussed.

First, if the perpetuity payment at time j is Dj ¼ aj þ b for constants a and b, then

by linearity,

VðDj; rÞ ¼ a
Xy
j¼1

jð1þ rÞ�j þ b
Xy
j¼1

ð1þ rÞ�j;

and only the first summation has not yet been evaluated. Writing j ¼P j
i¼1 1, we

have

Xy
j¼1

jð1þ rÞ�j ¼
Xy
j¼1

Xj

i¼1

ð1þ rÞ�j

¼
Xy
i¼1

Xy
j¼i

ð1þ rÞ�j:

Reversing the summations will be justified once we demonstrate convergence, which

will imply absolute convergence.

Now

Xy
j¼i

ð1þ rÞ�j ¼ ð1þ rÞ�iþ1
Xy
j¼1

ð1þ rÞ�j ¼ ð1þ rÞ�iþ1

r
:

Substituting into the double sum, we obtain
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Xy
j¼1

jð1þ rÞ�j ¼ 1þ r

r2
: ð6:28Þ

The last answer makes sense because 1
r
is the value of a perpetuity of 1s payable

annually from t ¼ 1 forward, so 1
r2
is the value of a perpetuity of perpetuities, where-

by 1
r
is paid annually from t ¼ 1 forward. The first such perpetuity provides for a se-

ries of 1s annually from t ¼ 2 forward, the second for a series of 1s annually from

t ¼ 3 forward, so it is clear that the total payment is growing linearly. However, 1
r2

starts payment one year later than desired, so the multiplicative factor of 1þ r

adjusts for this. Combining results, we obtain

VðDj ; rÞ ¼ að1þ rÞ
r2

þ b

r
; Dj ¼ aj þ b: ð6:29Þ

The double-summations approach can be generalized to present values of the form

Pn 1
Py

j¼1 j nð1þ rÞ�j. However, rather than obtaining an explicit formula as in the

case of n ¼ 0; 1, we derive an iterative formula whereby we give Pn in terms of

fP0;P1; . . . ;Pn�1g. Of course, here P0 ¼ 1
r
, and P1 ¼ 1þr

r2
.

There are two ways to develop this iterative formula. First, we can proceed as

above and write multiple series:

Xy
j¼1

j nð1þ rÞ�j ¼
Xy
j¼1

Xj n
i¼1

ð1þ rÞ�j

¼
Xy
i¼1

Xy
j¼nðiÞ

ð1þ rÞ�j;

where nðiÞ ¼ k þ 1 for kn þ 1a ia ðk þ 1Þn and for kb 0. In other words, we have

nðiÞ ¼

1; i ¼ 1,

2; 2a ia 2n,

3; 2n þ 1a ia 3n,

..

. ..
.

k þ 1; kn þ 1a ia ðk þ 1Þn.

8>>>>>><>>>>>>:
Then the inner sums can be collected into groups for fixed nðiÞ, and the outer sum

converted to index kb 0, producing
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Xy
j¼1

j nð1þ rÞ�j ¼
Xy
k¼0

½ðk þ 1Þn � kn�
Xy

j¼kþ1

ð1þ rÞ�j

¼
Xy
k¼1

Xn�1

i¼0

n

i

� �
k i

" #
ð1þ rÞ�k

r
þ 1

r

¼ 1

r

Xn�1

i¼0

n

i

� �Xy
k¼1

kið1þ rÞ�k þ 1

" #
;

since
Py

j¼kþ1ð1þ rÞ�j ¼ ð1þ rÞ�kPy
j¼1ð1þ rÞ�j ¼ ð1þrÞ�k

r
.

Note that a bit of care is necessary for the k-summation, which is split as
Py

k¼0 ¼Py
k¼1 þ

P
k¼0, to avoid 00 in the second step where the binomial theorem (see chap-

ter 8 for details) was used. This theorem states that with n! (‘‘n factorial’’) defined by

n! ¼ nðn� 1Þðn� 1Þ . . . ð2Þð1Þ and with 0!1 1,

ðk þ 1Þn ¼
Xn
i¼0

n

i

� �
k i;

n

i

� �
1

n!

i!ðn� iÞ! :

So rewriting, we obtain

Pn ¼ 1

r

Xn�1

i¼0

n

i

� �
Pi þ 1

" #
; n ¼ 2; 3; . . . ; ð6:30Þ

where

P0 ¼ 1

r
; P1 ¼ 1þ r

r2
:

This formula is also valid for n ¼ 1, with only the initial value P0 ¼ 1
r
.

See exercise 15 for an alternative derivation.

6.4.4 Price of an Increasing Payment Security

The price of a security such as a bond or mortgage, or a fixed term annuity with lin-

early increasing payments, is now easily handled. Specifically, with Dj ¼ aj þ b for

j ¼ 1; . . . ; n,
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VðDj ; rÞ ¼ a
Xn
j¼1

jð1þ rÞ�j þ b
Xn
j¼1

ð1þ rÞ�j :

Now the second summation equals an:r by (2.11), while

Xn
j¼1

jð1þ rÞ�j ¼
Xy
j¼1

jð1þ rÞ�j �
Xy
j¼nþ1

jð1þ rÞ�j:

Here the first summation is the perpetuity above in (6.28), while the second splits as

Xy
j¼nþ1

jð1þ rÞ�j ¼
Xy
j¼1

ð j þ nÞð1þ rÞ�j�n

¼ ð1þ rÞ�n
n
Xy
j¼1

ð1þ rÞ�j þ
Xy
j¼1

jð1þ rÞ�j

" #
:

Combining and simplifying, and using notation from chapter 2, we derive for the first

summation

Xn
j¼1

jð1þ rÞ�j ¼ ð1þ rÞ an:r
r

� nð1þ rÞ�n

r
: ð6:31Þ

This formula can again be intuited from the component parts. The term an:r
r
pro-

vides a perpetuity that pays an:r at each of times 1; 2; 3; . . . , each of which is in turn

equivalent to a series of n payments of 1 starting one year later. So collectively this

perpetuity provides for a payment stream that grows from 1 to n at times 2 to nþ 1,

and is then frozen at level n from time nþ 2 forward. The 1þ r factor puts these

increasing payments at times 1 to n, and the frozen payments of n from time nþ 1

onward. The second term eliminates the payments of n from time nþ 1 onward,

since n
r
is a perpetuity of n per year starting at time 1 and the ð1þ rÞ�n factor moves

these payments to start at time nþ 1.

By defining Am ¼Pn
j¼1 jmð1þ rÞ�j , we can again split this increasing annuity as

Am ¼
Xy
j¼1

jmð1þ rÞ�j �
Xy
j¼nþ1

j mð1þ rÞ�j

¼ Pm � ð1þ rÞ�n
Xy
j¼1

ð j þ nÞmð1þ rÞ�j: ð6:32Þ
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The binomial theorem can be applied to the second summation, producing a formula

involving fPjgmj¼0 (see exercise 28).

6.4.5 Price Function Approximation: Asset Allocation

The primary application of power series in finance is to the problem of modeling and

understanding the behavior of a complicated function f ðxÞ in a neighborhood of

some fixed point a A R, or in the more general case, a multivariate function f ðxÞ in
a neighborhood of a A Rn. For example, f ðxÞ might denote the price of a bond when

x is the bond’s yield to maturity (YTM), and a denotes the yield today. Of course, as

this price function is not very complicated, one could argue that to understand its

behavior as the YTM changes from a to x, we simply can generate additional prices.

However, this prospect becomes more daunting if one is managing a portfolio of

such bonds, or if the price calculations are made more complex by the presence of

embedded options like calls (i.e., early prepayment option for the issuer).

In more general multivariate cases, f ðxÞ might reflect a given bond’s or bond port-

folio’s price as a function of a given yield curve, parametrized as a vector of values

x A Rn as noted in section 3.3.1, with f ðaÞ the value on the current yield curve as

parametrized by the vector a. Prices of preferred stock, or common stock with the

formulas above, can also be contemplated as a single variable or as multivariate

functions. In each case the vector a denotes the collection of parameters that deter-

mine today’s prices, and we are interested in approximating how prices change as

these parameters change from a to x.

A di¤erent kind of problem might be contemplated in the context of asset alloca-

tion. For example, for a given allocation vector a denoting the proportionate alloca-

tion to the various asset classes, one might develop a function f ðaÞ that quantifies

return expectations, and another function gðaÞ that quantifies risk expectations, given

the current allocation vector. The analysis undertaken is one of understanding the

behaviors of these functions in a neighborhood of a to investigate the possibilities of

improving both return and risk through allocation changes, or at least to quantify

the trade-o¤ between risk and return.

In all such cases, as the complexity of the calculations increases, the utility and

attractiveness of developing reasonable approximations also increases. To this end,

methods discussed in chapter 9 on calculus will provide a basis for determining a

sequence of coe‰cients, fcjg, which may be finite or infinite. In the special infinite

case, we will have

f ðxÞ ¼
Xy
n¼0

cnðx� aÞn;
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while in the finite case,

f ðxÞA
XN
n¼0

cnðx� aÞn:

Both cases easily support approximations when x is ‘‘close to’’ a.

For example, assume that with either expansion above, with N > 2 say, that we

attempt a linear approximation:

f ðxÞAc0 þ c1ðx� aÞ:
Then in either case we conclude that the absolute error in this approximation, using

the triangle inequality, is bounded by

j f ðxÞ � ½c0 þ c1ðx� aÞ�ja jc2jðx� aÞ2
XN
n¼2

cn

c2
ðx� aÞn�2





 



:
That is, as x ! a the relative error satisfies

j f ðxÞ � ½c0 þ c1ðx� aÞ�j
jc2jðx� aÞ2 ! 1: ð6:33Þ

This implies that for x@ a, the absolute error is of order of magnitude jc2jðx� aÞ2.
Similarly one can show that the absolute error in the approximation f ðxÞAc0 is

of order of magnitude jc1j jx� aj, and similarly for approximations using higher

order polynomials in ðx� aÞ. Ultimately the ability to approximate f ðxÞ depends

on how many terms in the series above the given function allows. When only finitely

many terms are possible, approximation accuracy is limited but may still be adequate

for applications. Otherwise, any given degree of accuracy is possible in theory as

long as the analyst is willing to calculate additional terms in the approximating

polynomial.

6.4.6 lp-Spaces: Banach and Hilbert

The importance of these series spaces in finance is really that they provide an intro-

duction to some subtle and important concepts in higher mathematics in an intuitive

and accessible environment. The power of these concepts will only achieve full appli-

cability in later studies on real analysis and stochastic processes, where these spaces

are re-introduced as the Lp function spaces in general, and most important for sto-

chastic processes, the special Hilbert space L2. Consequently, while not of imme-

diate application, these spaces and their properties, in addition to the examples of
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Euclidean and complex spaces Rn and Cn, will provide a solid foundation of exam-

ples that can be used to aid intuition in these admittedly more abstract settings.

In other words, the goal of this material in this chapter is to make the important

but necessarily more remote setting of Lp-space better understood as a generalization

of an accessible and familiar idea, than as an isolated and abstract construction.

Exercises

Practice Exercises

1. Show that if
Py

n¼1 bn is a convergent series, then as a sequence, bn ! 0. (Hint:

Consider the Cauchy criterion.)

2. Use the comparison test to demonstrate the absolute convergence of the following

series, by comparing them to series shown to converge in this chapter:

(a)
Py

n¼1
ðln nÞ2
n4

(b)
Py

n¼1
ln n
np for p > 2

(c)
Py

n¼1ð�1Þnþ1 sinðnÞ
np , for p > 1, where for sinðnÞ, n is understood in radians (i.e., p

radians ¼ 180�)

(d)
Py

n¼1ð�1Þnþ1
an for 0 < a < 1

3. Use the alternating series test or other means to demonstrate that the following

converge and determine which converge absolutely:

(a)
Py

n¼1
ð�1Þ nþ1

lnðnþ1Þ

(b)
Py

n¼1
ð�1Þ nþ1 lnðn!Þ

n!

(c)
Py

n¼1
ð�1Þ nþ1 lnðnÞ

np for pb 1

(d)
Py

n¼1ð�1Þnþ1 ln nþ1
n

� �
4. For each series in exercise 2, demonstrate absolute convergence using the compar-

ative ratio test. In other words, in each case determine an absolutely convergent se-

ries
Py

i¼1 cn so that if an denotes the original series,
janj
jcnj converges as n ! y.

5. For the series in exercises 2 and 3, identify which would be declared as absolutely

convergent using the ratio test, which would be not convergent, and which would be

inconclusive.

6. Given a real number x A ½0; 1�, with decimal expansion x ¼ 0:a1a2a3 . . . , where

each aj A f0; 1; 2; . . . ; 9g, identify x with the sequence, x A Ry defined by x ¼ ðx1;
x2; . . . ; xj ; . . .Þ, where xj ¼ aj

10 j .
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(a) Confirm that so defined, x A lp for all p, 1a pay.

(b) Show that the truncated point sequence xn A Ry
0 , defined by xn ¼ ðx1; x2; . . . ; xn;

0; 0; 0; . . .Þ, converges to x in the l1-norm.

(c) Generalize part (b) to show that kx� xnkp ! 0 for all p, 1a pay.

(d) Show that if the real number x is identified with the sequence y A Ry, defined by

y ¼ ða1; a2; . . . ; aj; . . .Þ, that y A lp only for p ¼ y, yet even in this case, ky� ynky n

0, where yn ¼ ða1; a2; . . . ; an; 0; 0; 0; . . .Þ unless y A Ry
0 .

7. Using the Minkowski inequality, demonstrate that the following series are abso-

lutely convergent:

(a)
Py

n¼1
n1:5

ðnþ2Þ2 �
ð�1Þ nþ1ffiffi

n
p




 


p for p > 2.

(b)
Py

k¼1
ð�1Þkþ1ðkþ1Þ

kðkþ10Þ � ln k
k2 � ð0:5Þk




 


p for p > 1.

8. Determine the radius of convergence and interval of convergence for the following

power series:

(a) uðzÞ ¼Py
n¼1

zn

n

(b) f ðxÞ ¼Py
m¼0ð�1Þmðx� 1Þm

(c) gðyÞ ¼Py
n¼1ð�1Þnþ1

npðyþ 2Þn for p > 0

(d) hðzÞ ¼Py
k¼1

ðz�4Þk
k

(e) wðxÞ ¼Py
j¼1 a

jðxþ 1Þ j, a > 0

(f ) vðyÞ ¼Py
m¼0

ð y�10Þm
ðmþ1Þðmþ2Þ

(g) kðyÞ ¼Py
n¼1 n

nðyþ 4Þn
(h) mðuÞ ¼Py

n¼1
2 nun

n

9. With f ðxÞ ¼Py
n¼0

xn

n! , develop the series expansion for ð f ðxÞÞ2 using (6.23), and

show that ð f ðxÞÞ2 ¼ f ð2xÞ. (Hint: As will be demonstrated in (7.14) in chapter 7,

2n ¼Pn
j¼0

n!
j!ðn� jÞ! using the binomial theorem.)

10. Generalize exercise 9 to show that for all n A N, ð f ðxÞÞn ¼ f ðnxÞ. (Hint: Use

induction.)

11. Confirm that for a preferred stock or common stock with nonconstant dividends

fdjg, where dj ¼ a1 j þ a0, a1; a0 b 0, the price function PðrÞ ¼Py
j¼1 djð1þ rÞ�j is ab-

solutely convergent for r > 0. (Hint: Consider the ratio test.)

12. Consider the preferred or common stock pricing function applied to the case of

general nonconstant dividends PðrÞ ¼Py
j¼1 djð1þ rÞ�j . Use the ratio test to develop

bounds on the greatest rate of dividend growth allowable, which will ensure conver-

gence for r > 0.
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13. With a semi-annual yield rate of r ¼ 0:10:

(a) Value a semiannual payment perpetuity that pays 10j þ 15 at time j ¼ 0:5; 1:0;

1:5 . . . .

(b) What is the semiannual payment increase for a 20 year $10 million semiannual

payment mortgage where the borrower wants the payments to increase by equal

amounts each payment and the first payment to be $0:25 million?

14. With an annual rate of 15%:

(a) Price a common stock with an annual dividend growth rate of 10% if the next

dividend, due tomorrow, is expected to be $5.

(b) What is the price of the stock in part (a) if dividends are projected to grow for

only 5 years at the 10% rate, then decrease to a growth rate of 5%?

15. With Pn defined as in the chapter by Pn 1
Py

j¼1 j nð1þ rÞ�j:

(a) Derive (6.30),

Pn ¼ 1

r

Xn�1

i¼0

n

i

� �
Pi þ 1

" #
:

(Hint: Note that

Xy
j¼1

j nð1þ rÞ�j ¼ ð1þ rÞ�1 þ ð1þ rÞ�1
Xy
j¼1

ð j þ 1Þnð1þ rÞ�j

and expand ð j þ 1Þn with the binimial theorem of (7.15) as seen in this chapter’s

derivation.)

(b) Develop explicit formulas for Pn, n ¼ 2; 3; 4; 5 using P0 ¼ 1
r
and P1 ¼ 1þr

r2
.

16. Starting with the powers series, f ðxÞ ¼Py
n¼0

xn

n!
, consider the linear approxima-

tion f1ðxÞ ¼ 1þ x. As indicated in (6.33),

f ðxÞ � ð1þ xÞ
x2

2

! 1;

as x ! 0. Demonstrate this result by calculating the power series for this ratio func-

tion, and confirming that it is absolutely convergent, which then justifies a substitu-

tion of x ¼ 0.
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Assignment Exercises

17. Use the comparison test to demonstrate the absolute convergence of the follow-

ing series, by comparing them to series shown to converge in this chapter:

(a)
Py

n¼1 cna
n for 0 < a < 1 and any bounded sequence fcng

(b)
Py

j¼1ð�1Þ jþ1 1
j

� 	q
ln j for q > 2

(c)
Py

k¼1
ðkþ2Þ2

kðkþ1Þðkþ10Þ2

(d)
Py

k¼1
ð�1Þkðkþ2Þ3

k!

18. Use the alternating series test to demonstrate that the following converge and de-

termine which converge absolutely:

(a)
Py

n¼1
ð�1Þ nþ1 lnðnþ1Þ

n4

(b)
Py

n¼1
ð�1Þ nþ1np

an , p A R, a > 1

(c)
Py

n¼1
ð�1Þ nþ1n2

n3þ1

(d)
Py

n¼1
ð�1Þ nþ1n

ln½ðnþ1Þ n�
19. For each series in exercise 17, demonstrate absolute convergence using the com-

parative ratio test. In other words, in each case determine an absolutely convergent

series
Py

i¼1 cn so that if an denotes the original series, then
janj
jcnj converges as n ! y.

20. For the series in exercises 17 and 18, identify which would be declared as abso-

lutely convergent using the ratio test, which would be not convergent, and which

would be inconclusive.

21. Proposition 6.7 states that if
Py

j¼1 xj and
Py

j¼1 yj are absolutely convergent,

then so too is
Py

j¼1 xjyj.

(a) Show that if
Py

j¼1 xj is absolutely convergent, and
Py

j¼1 yj conditionally conver-

gent, then again
Py

j¼1 xjyj is absolutely convergent.

(b) Give an example of conditionally convergent
Py

j¼1 xj and
Py

j¼1 yj for whichPy
j¼1 xjyj is not convergent. (Hint: Can xj and yj be defined to satisfy the assump-

tions yet with xjyj ¼ 1
j
?)

22. Prove that parts (c) and (d) of Exercise 6 have nothing to do with the base-10

assumption in the decimal expansion. In other words, if b is any positive integer,

bb 2, and each such x A ½0; 1� is expanded in base-b so that x ¼ 0:a1a2a3 . . . , where

each aj A f0; 1; 2; . . . ; b� 1g, then again:

(a) With x A Ry defined by x ¼ ðx1; x2; . . . ; xj ; . . .Þ, where xj ¼ aj

b j , and xn A Ry
0 is

defined as before, we have that kx� xnkp ! 0 for all p, 1a pay.
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(b) With y A Ry defined by y ¼ ða1; a2; . . . ; aj; . . .Þ, where xj ¼ aj, we have that y A lp
only for p ¼ y; yet even in this case ky� ynky n 0, where yn ¼ ða1; a2; . . . ; an; 0; 0;
0; . . .Þ unless y A Ry

0 .

23. Consider two sequences, x ¼ ðx1; x2; . . . ; xj; . . .Þ, where xj ¼ a�j, and y defined

by yj ¼ b�j, where a; b > 1:

(a) Confirm that x; y A lp for all p, 1a pay, and calculate the associated lp-

norms.

(b) Calculate the inner product ðx; yÞ, which is well defined.

(c) Develop the implication of Hölder’s inequality, that for 1a p; qay, with
1
p
þ 1

q
¼ 1, where notationally, 1

y 1 0, we have jðx; yÞja kxkpkykq. Express the in-

equality in terms of one parameter, say with q ¼ p

p�1
.

(d) Express the inequality in part (c) in the special case of p ¼ q ¼ 2.

24. Determine the radius of convergence and interval of convergence for the follow-

ing power series:

(a) f ðxÞ ¼Py
m¼1

ð�1Þmðx�5Þm
m

(b) gðyÞ ¼Py
n¼1 n

pðy� 6Þn for p > 0

(c) hðzÞ ¼Py
k¼1

ðz�4Þk
k!

(d) tðzÞ ¼Py
k¼1ð�1Þk ðzþ1Þk

k!

(e) wðxÞ ¼Py
j¼1 a

�jðx� 2Þ j, a > 0

(f ) vðyÞ ¼Py
m¼0

ðyþ2Þm
ðmþ1Þ2

(g) kðzÞ ¼Py
n¼1 n!ðzþ 1000Þn

(h) nðuÞ ¼Py
n¼1

cnun

n
, c > 0

25. Generalize exercise 11 to an arbitrary polynomial growth dividend model dj ¼Pn
k¼0 ak j

k, ak b 0 for all k.

26. With an monthly rate of r ¼ 0:06:

(a) Value a monthly payment perpetuity that pays 12j þ 3 at time j.

(b) What is the monthly payment increase for a 30-year, $5 million monthly pay-

ment mortgage, where the borrower wants the payments to increase by equal

amounts each payment, and the first payment to be $10,000?

27. With an annual rate of 18%:

(a) Price a common stock with a semiannual nominal dividend growth rate of 8% if

the next dividend, due tomorrow, is expected to be $15.
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(b) What is the price of the stock in part (a) if dividends are projected to grow for

only 3 years at the 8% rate and then increase to a growth rate of 12%?

28. Defining the increasing n-pay annuity, Am ¼Pn
j¼1 jmð1þ rÞ�j , use the formula

in (6.32) and show that

Am ¼ Pm � ð1þ rÞ�n
Xm
k¼0

m

k

� �
nm�kPk;

where fPkg are given in exercise 15.
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7 Discrete Probability Theory

7.1 The Notion of Randomness

In this chapter some basic ideas in probability theory are introduced and applied

within a discrete distribution context. In chapter 10 these ideas will be generalized

to continuous and so-called mixed distributions. The last step of the progression

to ‘‘measurable’’ distributions will be deferred, since it requires the tools of real

analysis.

Probability theory is the mathematical discipline that provides a framework for

modeling and developing insights to the random outcomes of experiments developed

in a laboratory or a staged setting or observed as natural or at least unplanned phe-

nomenon. By random is meant that the outcome is not perfectly predictable, even

when many of the features of the event are held constant or otherwise controlled

and accounted for. By discrete probability theory is meant this theory as applied to

situations for which there are only a finite or countably infinite number of outcomes

possible. Later generalizations will extend these models and methods to situations for

which an uncountable collection of outcomes are envisioned and accommodated.

It may seem surprising that the definition of ‘‘random’’ above states that the

outcome is not perfectly predictable, rather than not predictable. This language is

motivated by the fact that in many applications the outcome of an experiment or ob-

servation logically considered to be random may not be completely random in the

stronger sense that we have no idea of what the outcome will be, but only random

in the weaker sense that we have an imperfect idea of what the outcome will be.

For example, imagine that the observation to be made is the change in a major US

stock market index, such as the S&P 500 Index, but simplified and reduced to a bi-

nary variable: �1 for a down market, and þ1 for an up market. Most observers

would agree that the result of this observation would appear to be a random out-

come on a given day, at least as of the beginning of the day. However, just before

the US market opens, stock markets in Japan and Asia have recently closed,

Europe’s trading day is half over, and based on their binary results it would appear

that one could make a better guess of the subsequent US binary result than what

would be possible without this information. Not a perfect prediction, of course, and

the US result would still be considered random, but it would not be considered per-

fectly random.

Even more to the point, an hour before the US market closes, the binary result of

this market remains random, but in a real sense, less random than at the opening bell

because of the emergence of information throughout the trading hours. And this

result one hour before market close is in turn apparently less random than the result

as of the prior evening, before the Asian markets have traded.



So the definition of randomness given here allows all such observations to be mod-

eled as random, until the moment in time when the outcome is perfectly predictable,

which in this example, is moments after the ‘‘closing bell’’ when final trades are pro-

cessed. Degrees of randomness is one of the ideas that can be quantified in probabil-

ity theory. The notion of randomness here is admittedly informal, and it is to a large

extent formalized only as a mathematical creation. But in the presence of the multi-

tude of real world events that appear random, this informality is not fatal and the

mathematical discipline of probability theory proves to be very useful.

For example, the flip of a ‘‘fair coin,’’ by which is meant a coin for which it is

equally likely to achieve a head, H, or a tail, T , is considered a standard model of

randomness. On the assumption that the coin in question is perfectly fair, probability

theory can address questions about a real or imagined experiment such as:

1. In 100 flips, how likely is it that exactly 80 Hs will occur?

2. In 10,000 flips, how likely is it that the number of Hs will exceed 5800?

3. In each case, what does ‘‘likely’’ mean?

In the absence of absolute knowledge of the fairness of the coin, probability theory

can address questions on observations like:

1. In 10 flips, does 7 Hs provide ‘‘certain’’ evidence that the coin is ‘‘biased’’ and not

fair?

2. In 10,000 flips, how large (or small) would the number of Hs have to be in order

to be ‘‘certain’’ that the coin in question is not fair?

3. In each case, what does ‘‘certain’’ mean?

In real life one might think of the occurrences of car accidents, or untimely ends of

life, as random outcomes within groups of individuals, though often not a perfectly

random outcome in a given example. The modeling of these events is critical for

property and casualty insurance and life insurance companies, respectively. In fi-

nance, virtually all observed market variables are also considered random, although

generally not perfectly random. Prices of stock and bond market indexes, individual

stocks and bonds, levels of interest rates, realized price or wage inflation indexes, cur-

rency exchange rates, commodity prices, and so forth, are all examples, as are events

such as bond issuer defaults or bankruptcies or natural disasters.

Once mathematical models are produced for these variables, probability theory

provides a framework for understanding the possible outcomes and answering ques-

tions such as those above, adapted to the given contexts.
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7.2 Sample Spaces

7.2.1 Undefined Notions

As in every mathematical theory there must be some notions in probability theory

that are considered ‘‘primitive’’ and hence will be left formally undefined. However,

in the same way that most can work e¤ectively in geometry without a formal defini-

tion of point, line, or plane, most can work e¤ectively in probability theory without a

formal definition of ‘‘sample space’’ or ‘‘sample points.’’ In either case, the lack of

formal definitions is made acceptable by the intuitive framework one can bring to

bear on the subject.

For example, when one encounters point, line, or plane in geometry, a picture im-

mediately comes to mind, and all statements about these terms understood, or at

least interpreted, in the context of these pictures, however imperfectly. One’s mental

pictures of these terms in fact sharpen with time as their properties, developed in the

context of the emerging theory, are revealed. So too for sample space and sample

points, which are intended to provide a ‘‘set theory’’ structure to probability theory.

In that context the sample space is understood as the ‘‘universe’’ of possible out-

comes of a given experiment or natural phenomenon, and sample points understood

to be the smallest possible units into which the sample space is decomposed, namely

the individual outcomes or events. In this context the sample space can be viewed as

a set of sample points, appropriately defined for the given application. By discrete

sample space is meant, a sample space with a finite, or countably infinite, collection

of sample points.

Example 7.1

1. Returning to the coin flip examples above, if we are interested in understanding the

possible outcomes of a 10-flip experiment, the sample space could be envisioned as the

set of all 10-flip outcomes, and the sample points the individual sequences of 10 Hs and

Ts. Similarly one could contemplate the sample space for the 100- and 10,000-flip

questions.

2. In a di¤erent context with playing cards, one could envision a sample space of all

5-card hands that can be dealt from a single deck of cards, as would be relevant to a

poker player. Similarly a sample space of all n-card hands that can be dealt from

a multiple deck of cards, with point total less than 21, would be relevant in Black-

jack. Especially relevant is the likelihood in any such case, that the ðnþ 1Þth card

brings the point total above 21. The significance of the single deck versus multiple
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deck models is that the latter allows repeated cards in a single hand, whereas the former

does not.

3. A related model for many probability problems is the ‘‘urn’’ problem, in which one

envisions an urn that contains several colors of balls, with various numbers of each

color. For example, the urn contains 25 balls: 2 red, 11 blue, and 12 green. One can

then imagine an experiment where one selects 3 balls ‘‘at random’’ and forms the asso-

ciated sample space of ball triplets. This sample space di¤ers depending on how we as-

sume that the 3 balls are selected:

� With replacement: Each of the 3 balls selected is returned to the urn after selection,

so for each of the 3 draws, the urn contains the same 25 balls.

� Without replacement: Selected balls are not returned, so the balls in the urn for the

second draw depend on the first ball drawn, and similarly for the third draw.

For example, 3 red balls are a sample point of the sample space with replacement, but

not in the space without replacement, since the urn contains only 2 red balls.

7.2.2 Events

We continue the set theory analogy. An event is defined to be a subset of the sample

space. In the discrete models contemplated here, whereby one could feasibly list all

possible sample points in the finite case, or produce a formula for the listing of all

outcomes in the countably infinite case, the collection of events could be defined as

the set of all subsets of the sample space. In other words, every subset of the sample

space could be defined as an event. In later applications, beginning in chapter 10,

where the idea of a sample space will be generalized, it will not be possible to allow

all subsets of the sample space to qualify as events. Consequently we introduce ideas

here, in a context where they are admittedly not strictly needed, in order to facilitate

the generalization we will see later in chapter 10 and need in more advanced treat-

ments. For subsets of the sample space to qualify as events, the specific question we

need to address is: If the collection of events defined does not equal the collection of

all subsets of the sample space, what minimal properties should this collection satisfy

in order to be useful in applications?

The answer is as follows:

Definition 7.2 Given a sample space, S , a collection of events, E ¼ fA jAHSg, is
called a complete collection if it satisfies the following properties:

1. j;S A E .

2. If A A E then ~AA A E .

3. If Aj A E for j ¼ 1; 2; 3; . . . , then 6
j
Aj A E .
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In other words, we require that a complete collection of events contain the ‘‘null

event,’’ j, and the ‘‘certain event,’’ S , the complement of any event, and that it be

closed under countable unions. However, while item 3 is stated only for countable

unions, it is also true for countable intersections because of item 2 and De Morgan’s

laws (see exercise 1). So it is also the case that 7
j
Aj A E . Similarly, if A;B A E , then

A@B A E , where A@B1 fx A S j x A A and x B Bg, since A@B ¼ AV ~BB.

Remark 7.3

1. In a discrete sample space, E usually contains each of the sample points, and hence

all subsets of S , and is consequently always a complete collection. In other words, E is

the power set of S .

2. The use of the term ‘‘complete collection’’ is not standard but is introduced for sim-

plicity. The three conditions in the definition above are general requirements for E to be

a so-called sigma algebra as will be seen in chapter 10 and more advanced treatments.

In discrete probability theory this extra formality may seem absurd, since we can

so easily just list all possible events and work within this total collection in all appli-

cations. For example, in the sample space of 10 flips of a fair coin, the sample points

are strings of 10 Hs and Ts, which we could list, even though there are 210 such

points. Also we could at least imagine the power set of this sample space, the col-

lection of all subsets of sample points, of which there are 22
10

(recall exercise 4 in

chapter 4).

If the sample space is defined as the collection of Hs and Ts in n flips of a coin for

all n, or defined as all sequences that emerge from flips that terminate on the occur-

rence of the first H, or the mth H, then these sample spaces have countably many

sample points, and although significantly more complicated, one could envision the

collection of all subsets as events.

However, if the sample space is defined as the collection of Hs and Ts in a count-

ably infinite number of flips, this space has the same cardinality as the real numbers

(recall exercise 5 in chapter 4), and the prospect of defining events as every subset

of this space becomes hopeless, as can be proved using the tools of real analysis.

Consequently the definition above is needed in such cases, and identifies the minimal

properties for an event space for the next step, which is the introduction of event

probabilities.

7.2.3 Probability Measures

The intuition behind the notion of the ‘‘probability’’ of an event is a simple one.

One approach is sometimes deemed the ‘‘frequentist’’ interpretation. That is, the
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probability of an event is the long-term proportion of times the event would be

observed in a repeated trials of an experiment that was designed to result in two

outcomes:

Event A observed;

Event A not observed.

In this interpretation it is assumed that each trial is ‘‘independent’’ of the others,

which is to say, that its outcome neither influences nor is influenced by the outcomes

of the other trials.

Example 7.4 In the 10-flip coin sample space S , define the event A as the subset of the

sample space that has HH as the first two flips. Intuitively, a fair coin makes every se-

quence equally likely, and it is easy to see that 25% of the sequences in S begin with

HH. So if we designed an experiment that flipped a coin 10 times, and recorded the

results after many trials, the expectation would be that in 25% of the tests, A would be

observed. The term ‘‘frequentist’’ probability comes from the idea that 25% is the rela-

tive frequency of event A in a long string of such trials. It is the relative frequency that

would be observed in the long run.

An alternative interpretation is related to games of chance, or gambling, which

was a primary motivator for the original studies of probability by Abraham de

Moivre (1667–1754), who published an early treatise on the subject in 1718 called

The Doctrine of Chances. The gambling perspective for this example can be phrased

as: For a $1 bet, what should the payo¤ be when event A occurs so that a gambler’s

wealth can be expected to not change in the long run? Such a bet would be called a

‘‘fair bet.’’ There is of course a frequentist flavor to this interpretation, since present

are the notions of ‘‘repeated trials’’ and ‘‘in the long run.’’

So, if p denotes the probability of event A occurring and N is a large integer, then

in N bets the gambler will bet $1 and lose about ð1� pÞN bets and $ð1� pÞN, and

the gambler will win about Np bets and $Npw if w is the associated payo¤ or ‘‘win-

nings’’ for a $1 bet. This bet will be a fair bet if won and lost bets are equal, which

happens when

w ¼ 1� p

p
: ð7:1Þ

Example 7.5 In the coin-flip example above, the gambler’s winnings for a $1 bet, to

ensure that it is a fair bet, must be w ¼ $3. That is, the gambler wins $3 if the coin-

flip sequence is HH . . . , and he loses $1 otherwise.
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The formula for w in (7.1) really only makes sense for p values of 0 < p < 1. Oth-

erwise, the bet degenerates to a sure win or sure loss, and it cannot be made ‘‘fair’’ in

the sense above. On this domain, w ¼ 1
p
� 1 is seen to decrease as p increases, is un-

bounded as p ! 0, and decreases to 0 as p ! 1, consistent with intuition.

Note that (7.1) also encodes information about the ‘‘probability’’ we seek, and can

be rewritten as

p ¼ 1

wþ 1
: ð7:2Þ

Example 7.6 Again in the coin-flip example, if participants agreed that the correct

payo¤ was w ¼ 3, then we would conclude that the probability of the sequence HH . . .

is 0:25 or 25%.

This intuitive framework provides a starting point for formalizing the notion of

probability. Probabilities are logically associated with events and can therefore be

identified with a function on the collection of events, denoted PrðAÞ for A A E . Fur-
thermore the value of this function must be between 0 and 1 for any event, and these

extremes should be achieved on the null event, j, and the full sample space, S , re-
spectively. Finally, we expect this function to behave logically on the collection of

events. For example, if AHB are events, we want PrðAÞaPrðBÞ, and if AVB ¼ j,
then PrðAUBÞ ¼ PrðAÞ þ PrðBÞ, and so forth.

We collect the necessary properties in the following, and note in advance that in a

discrete sample space, PrðsÞ is typically defined for all s A S since E contains the indi-

vidual sample points.

Definition 7.7 Given a sample space, S , and a complete collection of events, E ¼
fA jAHSg, a probability measure is a function Pr : E ! ½0; 1� that satisfies the follow-
ing properties:

1. PrðSÞ ¼ 1.

2. If A A E , then PrðAÞb 0 and Prð ~AAÞ ¼ 1� PrðAÞ.
3. If Aj A E for j ¼ 1; 2; 3; . . . are mutually exclusive events, that is, with Aj VAk ¼ j
for all j0 k, then Prð6

j
AjÞ ¼

P
PrðAjÞ.

In this case the triplet ðS ;E ;PrÞ is called a probability space.

Definition 7.8 An event A A E is a null event under Pr if PrðAÞ ¼ 0. If A is a null

event and every A 0 HA satisfies A 0 A E , then the triplet ðS ;E ;PrÞ is called a complete

probability space.

7.2 Sample Spaces 237



Some properties of this probability measure are summarized next.

Proposition 7.9 If Pr is a probability measure on a complete collection of events E ,
then:

1. PrðjÞ ¼ 0.

2. If A;B A E , with AHB, then PrðAÞaPrðBÞ.
3. If Aj A E for j ¼ 1; 2; 3; . . . , then

max
j

fPrðAjÞgaPr 6
j

Aj

 !
a
X
j

PrðAjÞ:

4. If Aj A E for j ¼ 1; 2; 3; . . . , then

Pr 7
j

Aj

 !
a min

j
fPrðAjÞg:

Proof See exercise 26. n

Remark 7.10 Note that in property 2 of the proposition above, it might be expected

that if B A E , and AHB, then automatically it is true that A A E . In the special case of

this chapter of discrete probability spaces, this is virtually always true in applications,

since then E typically contains all the sample points and hence contains all possible sub-

sets of S . In the general case of what is called a ‘‘complete’’ collection of events, or gen-

erally a sigma algebra, subsets of events need not be events.

7.2.4 Conditional Probabilities

Given a sample space S , a complete collection of events E ¼ fA jAHSg, and a

probability measure Pr : E ! ½0; 1�, there are many situations in which we are inter-

ested in probability values that reflect additional information. For example, if the

sample space is the collection of all 10-flip sequences of a fair coin, we know that

the probability of every one of the 210 sample points is 1
2

� �10
. Similarly, if we define

an event B as the collection of sample points with exactly 1-H and 9-Ts, then

PrðBÞ ¼ 10 1
2

� �10
since we know there are exactly 10 such sequences.

Now imagine that we know that event B is true. How would that knowledge alter

our calculation of the probabilities of all the events in E? Perhaps simpler, how would

that knowledge alter our calculation of the probabilities of all the sample points in S?
In other words, what is PrðA conditional on the knowledge that B is true), where A

denotes any sample point or event? In probability theory, this is called a conditional

probability, and is written
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PrðA jBÞ;
and read, ‘‘the probability of A given B,’’ or ‘‘the probability of A conditional on B.’’

Example 7.11 The sample points are somewhat easier to address first. Since we want

Prð� jBÞ to be a genuine probability measure on E , we need PrðS jBÞ ¼ 1, and since S is

the disjoint union of its sample points, we must have that the sum of all the conditional

probabilities of the sample points is also 1. Now, if A is any event with more or less

than 1 H, it must be the case that PrðA jBÞ ¼ 0. What about the 10 sample points,

each with 1 H? Since each is equally likely in E , it is logical to define PrðA jBÞ ¼ 1
10

for each such point. Similarly, if A is a general event that contains none of these

1-H points, we define PrðA jBÞ ¼ 0, while if A contains j of these points, we define

PrðA jBÞ ¼ j

10 .

In this simple context the notion of conditional probability is somewhat transpar-

ent. The general definition is intended to formalize this idea to be more applicable in

more complex situations, and provide a calculation that explicitly references the orig-

inal probabilities of events under Pr.

Definition 7.12 Given a discrete sample space S , a complete collection of events E ¼
fA jAHSg, a probability measure Pr : E ! ½0; 1�, and an event B A E with PrðBÞ > 0,

then for any A A E , the conditional probability of A given B, denoted PrðA jBÞ, is
defined by

PrðA jBÞ ¼ PrðAVBÞ
PrðBÞ ; PrðBÞ0 0: ð7:3Þ

It is a straightforward exercise that for any such event B, that Prð� jBÞ defines a

true probability measure on S as given in the definition above (see exercise 5). One

can also review the example above in the formalized context of (7.3) and see that

the respective intuitive results are reproduced.

Law of Total Probability

Another important application of these ideas is exemplified as follows:

Example 7.13 Imagine an urn containing 10 balls, 5 each of red (R) and blue (B),

from which 2 are to be selected. Let C1 denote the color of the first ball drawn, and

C2 the color of the second. Then construct two sample spaces of the pair of balls drawn,

ðC1;C2Þ: one space defined under the assumption that the draws are done with replace-

ment, and the other reflecting no replacement. In the sample space with replacement, it

is easy to see that PrðC2 jC1Þ ¼ PrðC2Þ. For example, PrðR2Þ1PrðC2 ¼ RÞ ¼ 0:5,

and PrðR2 jC1Þ ¼ 0:5 whether C1 ¼ R or C1 ¼ B.
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In the sample space without replacement, it is never the case that PrðC2 jC1Þ ¼
PrðC2Þ. For example, PrðR2 jR1Þ ¼ 4

9 and PrðR2 jB1Þ ¼ 5
9 , and we now show that

PrðR2Þ ¼ 0:5. To this end, first note that PrðR1 jR2Þ0 1
2 , as might be expected given

that R1 happens ‘‘first’’ when there are five of each color. But that is not the meaning of

PrðR1 jR2Þ. The question is, looking at the outcomes for which C2 ¼ R, what is the

probability that C1 ¼ R? There are two such outcomes:

PrðR1 VR2Þ ¼ 4

18
and PrðB1 VR2Þ ¼ 5

18
;

from which we conclude that PrðR1 jR2Þ ¼ 4
9 . An application of (7.3) now shows that

PrðR2Þ ¼ PrðR1 VR2Þ
PrðR1 jR2Þ ¼ 0:5. This probability could have also been more easily calculated

from the respective conditional probabilities using a method discussed next.

Let fBjg be a collection of mutually exclusive events with 6Bj ¼ S . Then for

any event A, fAVBjg are also mutually exclusive, and have union A. By the third

property of the probability measure, we have that PrðAÞ ¼ Prð6½AVBj�Þ ¼P
PrðAVBjÞ. Also, by (7.3), PrðAVBjÞ ¼ PrðA jBjÞ PrðBjÞ. Combining, we get the

law of total probability:

PrðAÞ ¼
X
j

PrðA jBjÞ PrðBjÞ: ð7:4Þ

This law has widespread application because it is often easier to calculate conditional

probabilities of an event than the direct probability because each ‘‘condition’’ pro-

vides a restriction on the sample points that need be considered.

Example 7.14 In the urn problem of example 7.13 without replacement, PrðR2Þ ¼ 0:5

could have been more easily derived using this law of total probability. The mutually

exclusive events fBjg are the events C1 ¼ R and C1 ¼ B, and each of these events has

probability equal to 0:5. Consequently, using the respective conditional probabilities, we

can write

PrðR2Þ ¼ PrðR2 jR1Þ PrðR1Þ þ PrðR2 jB1Þ PrðB1Þ;
again producing PrðR2Þ ¼ 0:5.

7.2.5 Independent Events

The notion of stochastic independence is a property of pairs of events under a given

probability measure Pr. Intuitively we say that A and B are stochastically indepen-

dent, or simply independent, if their probabilities are not changed by conditioning
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on each other. This idea is a simple one, except for the formality that in order for the

various conditional probabilities to be defined, it is necessary that both events have

nonzero probability.

To circumvent this technicality, observe that the desired condition: PrðA jBÞ ¼
PrðAÞ, which requires that PrðBÞ0 0 to be well defined, is by (7.3) equivalent to

PrðAVBÞ ¼ PrðAÞ PrðBÞ, which does not require a condition on PrðBÞ or PrðAÞ to

be well defined. This latter formulation of the idea of independence also has the im-

mediate advantage of reflexivity; that is, A is independent of B i¤ B is independent of

A. Formally, we state:

Definition 7.15 Events A1;A2 A E are stochastically independent, or simply indepen-

dent, under the probability measure Pr, if

PrðA1 VA2Þ ¼ PrðA1Þ PrðA2Þ: ð7:5Þ
More generally, a collection of events: fAjgnj¼1, where n may be y, are mutually inde-

pendent, if for any integer subset JH f1; 2; . . . ; ng we have that

Pr 7
J

Aj

 !
¼
Y
J

PrðAjÞ: ð7:6Þ

This definition makes sense even if Ak is a null event, PrðAkÞ ¼ 0 for some k. In

either setting, we have from property 2 of the proposition above on probability mea-

sures that Prð7
J
AjÞ ¼ 0 as well if k A J. So formally, null sets are independent of all

other sets.

In the case where one or both of A or B have nonzero probability, the notion of

independence can be reformulated using conditional probabilities. For example, if A

and B are independent, and PrðBÞ0 0, then

PrðAÞ ¼ PrðA jBÞ:
In other words, if A and B are independent, their probabilities are una¤ected by

knowledge of the occurrence of the other event.

In the urn examples above, with C1 denoting the color of the first ball drawn and

C2 the color of the second, it was seen that in the sample space with replacement,

these events were independent, whereas without replacement, these events are not

independent.

7.2.6 Independent Trials: One Sample Space

One of the most important applications of the notion of independence is in the

formalization of the idea of a random sample from a discrete sample space, or
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equivalently, a series of independent trials from a discrete sample space. Given a sam-

ple space S with associated probability measure Pr, a random sample of size n, or a

sequence of n trials, is defined as a sample point in another sample space, S n, which

is formalized in:

Definition 7.16 Given a discrete sample space S , a complete collection of events E ¼
fA jAHSg containing the sample points, and a probability measure Pr : E ! ½0; 1�,
the associated n-trial sample space, denoted S n, is defined by

S n ¼ fðs1; s2; . . . ; snÞ j sj A Sg:
The collection of events, denoted E n, is defined by

E n ¼ fðA1;A2; . . . ;AnÞ jAj A E and by unions of such eventsg:
The associated probability measure, Pn, is defined on E n by

Pn½ðs1; s2; . . . ; snÞ� ¼
Yn
j¼1

PrðsjÞ; ð7:7Þ

as extended additively to events, for A A E n,

PnðAÞ ¼
X

ðs1; s2;...; snÞ AA
Pn½ðs1; s2; . . . ; snÞ�: ð7:8Þ

The goal of the next proposition is to confirm that the collection of events in n-trial

sample space is a complete collection, and that Pn is indeed a probability measure on

S n. Most important, we confirm that any event in E can be identified in a natural but

not unique way with an event in E n, and that under this identification, n events in E
are mutually independent as events in E n. This identification and associated indepen-

dence result provides a formal meaning to the notion of independent trials, or inde-

pendent draws, from a given sample space.

Before stating this proposition, we note that the multiplicative rule in (7.7) extends

to events in E n. That is, with A1 ðA1;A2; . . . ;AnÞ, Aj A E ,

Pn½A� ¼
X

ðs1; s2;...; snÞ AA

Yn
j¼1

PrðsjÞ
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¼
Yn
j¼1

X
sj AAj

PrðsjÞ
24 35

¼
Yn
j¼1

PrðAjÞ:

That is, for fAjgnj¼1 HE ,

Pn½ðA1;A2; . . . ;AnÞ� ¼
Yn
j¼1

PrðAjÞ: ð7:9Þ

Remark 7.17 In the definition of n-trial sample space it is assumed that the event

space E contained all the sample points. In fact, while this assumption is almost always

true in discrete probability theory, it is more of a convenience here than a necessity.

With this assumption, E n then contains all the n-tuples of sample points, ðs1; s2; . . . ;
snÞ, whose probabilities are defined by (7.7), and the probability measure Pn is then

easily generalized to all events in E n by (7.8). In the more general case where E does

not contain all the sample points, but is a complete collection of events as defined

above, a similar construction is possible but more di‰cult. In this case E n is defined as

above to include all n-tuples of events, ðA1;A2; . . . ;AnÞ, and then expanded to include

all unions of these n-tuples and their complements so that E n becomes complete. The

probability measure Pn is defined on n-tuples of events, ðA1;A2; . . . ;AnÞ, using (7.9)

and then extended to all of E n. It is not possible to define this extension directly using

a generalization of (7.8) because of a technicality that is avoided with our convenient

assumption. And that technicality is, if an event AHE n is a union of n-tuples of events,

fðAk1;Ak2; . . . ;AknÞgNk¼1, where N may bey, these events need not be disjoint, and so a

direct application of a formula such as (7.8) may involve multiple counts. This problem

is avoided when E n contains all n-tuples of sample points, ðs1; s2; . . . ; snÞ. This general
construction is subtle and developed in advanced studies using the tools of real analysis.

Proposition 7.18 Given a discrete sample space S , a complete collection of events

E ¼ fA jAHSg containing the sample points, and Pr a probability measure on E , then:

1. Every event AHE can be identified with n-events in E n, any one if denoted A, satis-

fies Pn½A� ¼ PrðAÞ.
2. Under the identification in 1, every collection of up to n-events in E can be identified

with mutually independent events in S n. That is, for any collection of events in E ,
fAkgnk¼1, there are associated fAkgnk¼1 HE n, so that for any KH f1; 2; . . . ; ng:
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Pn 7
k AK

Ak

" #
¼
Y
k AK

Pn½Ak� ¼
Y
k AK

P½Ak�:

3. E n is a complete collection of events.

4. Pn defined in (7.7) and (7.8) is a probability measure on E n.

Proof

1. The n identifications as noted above are simply A $ ðA;S ; . . . ;SÞ; ðS ;A;S ; . . . ;
SÞ . . . ðS ; . . . ;S ;AÞ, and for each identification by (7.9) we have Pn½A� ¼ PrðAÞ, since
PrðSÞ ¼ 1.

2. Given fAkgnk¼1 we associate each with Ak where the event Ak is assigned to the

kth component of Ak, and S assigned to the other components as in 1 above. Now,

if KH f1; 2; . . . ; ng, 7
k AK Ak equals the event in E n : ðA 0

1;A
0
2; . . . ;A

0
nÞ, where each

A 0
j equals Aj or S , and the result follows from (7.9).

3. Both S n 1 ðS ;S ; . . . ;SÞ and j1 ðj; j; . . . ; jÞ are elements of E n, by definition.

Also, since E n contains all n-tuples of sample points, ðs1; s2; . . . ; snÞ, if A A E n, then

also ~AA A E n. Similarly, if Aj A E
n, then 6Ak A E

n.

4. By definition of Pn, we have Pn½j� ¼ 0, and

Pn½S n� ¼
X

ðs1; s2;...; snÞ AS n

Yn
j¼1

PrðsjÞ
" #

¼
X
sj AS

PrðsjÞ
24 35n

¼ 1:

Now, if A ¼ 6M

k¼1
ðsk1; sk2; . . . ; sknÞ, then AU ~AA ¼ S n, and we can rewrite the identity

above for Pn½S n� as

1 ¼
X

ðs1; s2;...; snÞ AS n

Yn
j¼1

PrðsjÞ
" #

¼
X

ðs1; s2;...; snÞ AA

Yn
j¼1

PrðsjÞ
" #

þ
X

ðs1; s2;...; snÞ A ~AA

Yn
j¼1

PrðsjÞ
" #

:

¼ PnðAÞ þ Pnð ~AAÞ:
Hence Pnð ~AAÞ ¼ 1� PnðAÞ. Finally, if fBkgmk¼1 are mutually exclusive events, mean-

ing that for any KH f1; 2; . . . ;mg,

7
k AK

Bk ¼ j;
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then by (7.8),

Pnð6BkÞ ¼
X

ðs1; s2;...; snÞ A6Bk

Yn
j¼1

PrðsjÞ

¼
X
k

X
ðs1; s2;...; snÞ ABk

Yn
j¼1

PrðsjÞ

¼
X
k

PnðBkÞ;

where the second equality is due to mutual exclusivity:
P

ðs1; s2;...; snÞ A6Bk
¼P

k

P
ðs1; s2;...; snÞ ABk

. n

*7.2.7 Independent Trials: Multiple Sample Spaces

The construction of an n-trial sample space S n, reflecting independent samples from

a given sample space S , is readily generalized to the notion of an n-trial sample space

reflecting independent samples from a collection of di¤erent sample spaces. To this

end, we start with a definition.

Definition 7.19 Given a collection of discrete sample spaces fS jgnj¼1, complete collec-

tions of events fE jgnj¼1 where each E j ¼ fA jAHS jg contains all the sample points of

S j , and associated probability measures Prj : E j ! ½0; 1�, the associated generalized n-

trial sample space, denoted S ðnÞ, is defined by

S ðnÞ ¼ fðs1; s2; . . . ; snÞ j sj A S jg:
The collection of events, denoted E ðnÞ, is defined by

E ðnÞ ¼ fðA1;A2; . . . ;AnÞ jAj A E j and unions of such eventsg:
The associated probability measure, PðnÞ, is defined on E ðnÞ by

PðnÞ½ðs1; s2; . . . ; snÞ� ¼
Yn
j¼1

PrjðsjÞ; ð7:10Þ

as extended additively to events, for A A E ðnÞ:
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PðnÞðAÞ ¼
X

ðs1; s2;...; snÞ AA
PðnÞ½ðs1; s2; . . . ; snÞ�: ð7:11Þ

The proofs of the results in proposition 7.18 in the special case where S j ¼ S and

E j ¼ E for all j carry over to this more general case without material change other

than notational. This is because, with one exception, nowhere in the derivations

above was it necessary to use the fact that the sample spaces, collections of events,

and probability measures underlying the various components of an n-trial sample

point were identical. The single exception is related to the identifications of events in

S with events in S n. In the simpler case above, each event in AHS could be identi-

fied with n events in S n, all of which had the same probability under Pn, and this

common probability equaled PrðAÞ, the probability in S . In the general case it is nat-

ural to assume that the given sample spaces are ordered. Hence each event AHS j is

identified with a unique element AHS ðnÞ, and that is defined with A in the jth com-

ponent, and the various Sk spaces used as events in the other components, in order.

Of course the ordering is a convenience more than a necessity, and di¤erent order-

ings do not produce fundamentally di¤erent spaces.

As an example of how a result above generalizes to this setting, we note that (7.10)

generalizes in the same way that (7.7) generalizes to (7.9). Specifically, with the same

derivation, and for Aj A E j,

PðnÞ½ðA1;A2; . . . ;AnÞ� ¼
Yn
j¼1

PrjðAjÞ: ð7:12Þ

Finally, we state without proof the fundamental result that generalizes the propo-

sition above to this setting, and note that remark 7.17 in that section, regarding the

assumption that each E j contains the sample points, applies here as well.

Proposition 7.20 Given a collection of discrete sample spaces fS jgnj¼1, complete col-

lections of events fE jgnj¼1 that contain the sample points, and associated probability

measures Prj : E j ! ½0; 1�, then:
1. Every event AHE j can be identified with a unique event in AHE ðnÞ that satisfies
PðnÞ½A� ¼ PrjðAÞ.
2. Under the identification in 1, every collection of events Ak HEk, 1a ka n, can

be identified with mutually independent events in S ðnÞ. That is, for any such collec-

tion of events fAkgnk¼1, there are associated fAkgnk¼1 HE ðnÞ so that for any

K H f1; 2; . . . ; ng,
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PðnÞ 7
k AK

Ak

" #
¼
Y
k AK

PðnÞ½Ak� ¼
Y
k AK

Pk½Ak�:

3. E ðnÞ is a complete collections of events.

4. PðnÞ defined in (7.10) and (7.11) is a probability measure on S ðnÞ.

7.3 Combinatorics

To determine the values of PrðAÞ in various sample space applications, it is often

necessary to be able to e‰ciently count the sample points in the event A as well as

those in the sample space S , and such calculations can be both subtle and di‰cult.

The mathematical discipline of combinatorics, or combinatorial analysis, provides a

structured framework for addressing these types of problems, and we only scratch

the surface of this discipline here with the most common applications.

7.3.1 Simple Ordered Samples

In many applications we require the number of ways that m items can be selected

from a collection of nbm distinguishable items. For example, an urn may contain

n balls, all distinguishable by color or other markings, and we seek to determine how

many distinct m-ball collections can be drawn from this urn. As we have seen from

the examples above, we need to distinguish between whether this is an urn problem

with replacement or without replacement.

With Replacement

On the first draw there are n possible outcomes, and due to replacement, each succes-

sive draw has the same number of possible outcomes. So we conclude that there are

nm total possibilities. This can be formalized by observing that for m ¼ 2 we can

explicitly enumerate the outcomes, and then proceed by induction. That is, we as-

sume the truth of the formula for m, and verify the truth for mþ 1 based on the ex-

plicit pairings of each m-tuple with each last draw.

Without Replacement

On the first draw there are again n possible outcomes, but since the first draw is not

returned to the urn, the second draw has fewer possible outcomes, namely n� 1. This

process continues to the mth draw for which there are n� ðm� 1Þ ¼ n�mþ 1 pos-

sible outcomes. Using the same logic and proof as above, we see that there are

nðn� 1Þ . . . ðn�mþ 1Þ possible outcomes. This sequential product is common in

combinatorics, and it is worthwhile to note that it can easily be expressed in terms
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of the factorial function. Recall that n factorial is defined n! ¼ nðn� 1Þðn� 2Þ � � � 2 � 1,
and so

nðn� 1Þ . . . ðn�mþ 1Þ ¼ n!

ðn�mÞ! :

In some texts this partial factorial, which contains m terms, is denoted ðnÞm 1
nðn� 1Þ . . . ðn�mþ 1Þ. Of course, in this notation, ðnÞn ¼ n!.

7.3.2 General Orderings

Here we seek an approach to determining how many distinguishable ways a given

collection of n objects can be ordered. The answer depends on how many subset

types are represented by the n objects, where all objects in each subset are identical.

For example, if there is one subset type, and all n objects are identical, there is

only one distinguishable ordering. If each of the objects are themselves distinguish-

able, which is n subset types, this is equivalent to the without replacement model

and m ¼ n, and we have from the section above that there are n! distinguishable

orderings.

Two Subset Types

Next assume that there are two subsets of indistinguishable objects, say n1 of one

type and n2 ¼ n� n1 of the other. Envision a collection of n1 1s and n2 0s to be or-

dered, or n1 red balls and n2 blue balls. What distinguishes this example from that

where all the objects di¤er is that here, the collection of all orderings will contain

multiple counts. For example, if we start with the collection f1; 2; 3; 4g, there are

4! ¼ 24 possible orderings, but if we begin with f1; 1; 1; 4g, there are only 4 order-

ings. This is because we only have to choose the position for the one 4-digit, for the

other digits will all be 1s. This can also be deduced by observing that in the 4! order-

ings of the 4 digits in this second set, each distinct outcome will be seen 3! times,

reflecting the indistinguishable orderings of the three 1s.

Analogously in this general case, the number of orderings is

ðn1 þ n2Þ!
n1!n2!

¼ n!

n1!n2!
:

The logic of this formula, as will be analyzed in more detail next, is that the numer-

ator reflects the number of orderings of the n objects, temporarily treating them as if

all are distinguishable. The denominator then adjusts for multiple counts, since there

will be n1! orderings with the n1 objects of the first type in the same locations but with

di¤erent orderings of these actual objects. Likewise for each of these orderings there
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will be n2 objects of the second type in the same locations but with di¤erent orderings

of these actual objects.

Binomial Coe‰cients

The formula above has many applications in mathematics, especially with respect

to coin-flip and associated binomial models, where ‘‘binomial’’ means with two out-

comes. The two outcomes represent the two subset types discussed above. Because of

its prevalence, this formula has been given a special notation.

As a traditional binomial example, imagine that a coin is flipped n times. What is

the total number of sample points in the associated sample space that have exactly m

heads, for m ¼ 0; 1; 2; . . . ; n? This question is identical to that of a general ordering of

n objects, where there are m of one type, the Hs, and n�m of the other type, the Ts.

The analysis above shows that there will be n!
ðn�mÞ!m!

such sample points, and the gen-

eral notation is

n

m

� �
¼ n!

ðn�mÞ!m!
: ð7:13Þ

This factor is sometimes denoted nCm, and read, ‘‘n choose m,’’ and we recall that by

convention, 0! ¼ 1.

For any n, these constants, n
m

� �� �n
m¼0

, are known as binomial coe‰cients, for a rea-

son that will be apparent below. The terminology ‘‘n choose m’’ is shorthand for ‘‘the

number of ways of choosing m positions from n positions.’’ In the example above,

the m positions chosen are of course equal to the locations of the m-Hs, with the

remaining positions filled with Ts.

Example 7.21 As another example of an application of ‘‘n choose m,’’ consider

explicitly choosing all possible subsets of a set of n distinguishable objects. For any

m ¼ 0; 1; 2; . . . ; n, there are n
m

� �
possible subsets that can be selected. This is just a

reformulation of the earlier model in that we can envision these n objects as n positions,

and the selection of a subset of m objects as equivalent to the selection of m of these

positions. When m ¼ 0, we are selecting the empty subset j, and there is only one way

to do this. If we seek the total number of subsets of all sizes, which is the number of sets

in the power set, the answer must therefore be equal to
Pn

m¼0
n
m

� �
. But we also know

from exercise 4 in chapter 4, that the number of sets in the power set of a set of n ele-

ments is 2n. So we must have

Xn
m¼0

n

m

� �
¼ 2n: ð7:14Þ
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The Binomial Theorem

Formula (7.14) is a special case of the so-called binomial theorem, which is yet an-

other application of ‘‘n choose m.’’ This theorem addresses the expansion of an inte-

ger power of a binomial, such as ðaþ bÞn. The problem posed is a ‘‘chooser’’

problem because in this multiplication we have to choose an a or a b from each of

the n factors of ðaþ bÞ and multiply the selected n terms. Consequently the general

term in the product is of the form ambn�m for m ¼ 0; 1; 2; . . . ; n. The question is, how

many times will each such factor arise? Of course, the answer is n
m

� �
times, since for

each m there are n
m

� �
ways of selecting the m a-factors from these n binomial factors.

Consequently the binomial theorem states that

ðaþ bÞn ¼
Xn
m¼0

n

m

� �
ambn�m: ð7:15Þ

From (7.15), the special case of (7.14) is easily derived by setting a ¼ b ¼ 1.

Also of interest, for a ¼ �1, b ¼ 1, the sum of the alternating binomial coe‰cients

is seen to equal 0:

Xn
m¼0

n

m

� �
ð�1Þm ¼ 0:

Finally, if aþ b ¼ 1, this theorem assures us that

Xn
m¼0

n

m

� �
ambn�m ¼ 1;

which is important in the binomial distribution below where it is also assumed that

0a a; ba 1.

The coe‰cients of the factors in these expressions are easily generated by a method

developed by Blaise Pascal (1623–1662) and known as Pascal’s triangle. It is based

on the iterative formula (see exercise 33)

n

m

� �
¼ n� 1

m� 1

� �
þ n� 1

m

� �
: ð7:16Þ

The associated ‘‘triangle’’ is developed row by row, with the nth row correspond-

ing to the coe‰cients in the expansion of ðaþ bÞn. The coe‰cients up to ðaþ bÞ6 are
in (7.17), and these may be familiar from elementary algebra:
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

. . .

(7.17)

Notice that for any n, n
0

� �¼ n
n

� �¼ 1 and how, with clever spacing, each term of a row

equals the sum of the terms right above it, implementing the iterative formula in

(7.16).

r Subset Types

Now assume that there are r subsets of distinguishable objects, with nj of type-j,

nj b 0, and with
P

nj ¼ n. Then the logic above carries forward identically, and we

see that the number of such orderings is

nCn ¼ n!

n1!n2! . . . nr!
; ð7:18Þ

where the nonstandard notation nCn is intended to connote that the choice made of

the n objects is a vector n1 ðn1; n2; . . . ; nrÞ. For a given n the collection of the num-

ber of such orderings

nCn j n ¼ ðn1; n2; . . . ; nrÞ;
X

nj ¼ n
n o
are known as the multinomial coe‰cients.

The logic behind this formula is that there are n! orderings of the n objects, mo-

mentarily considered to be distinct. For example, temporarily label the type-1 objects

with numbers 1; 2; . . . ; n1, and so forth. Now select any one of these n! orderings, and

observe the positions of the type-1 objects. When this particular ordering was

achieved, there were n1! possible orderings in which these type-1 objects could have

been selected and placed into the given positions. Similarly, for any type-j, there

would be nj! possible orderings in which these objects could have been selected and
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placed into the given positions of the selected ordering. In other words, the n! order-

ings contain n1!n2! . . . nr! copies of every distinct ordering, and hence one needs to di-

vide by this factor to eliminate the redundancies.

Example 7.22 Assume that we are given the 10-digit collection,

f1; 1; 2; 2; 2; 5; 5; 5; 5; 7g:
How many di¤erent base-10 numbers can be formed using all the digits? As before,

there are 10! possible orderings, but with many multiple counts. Adjusting for these,

we see that the total collection of distinct integers formed will be

10!

2!3!4!1!
¼ 12;600:

Multinomial Theorem

In the same way that the binomial coe‰cients can be found in the general expansion

of the binomial ðaþ bÞn so too can the multinomial coe‰cients in (7.18) be found in

the general expansion of a multinomial ðPr
i¼1 aiÞn. Specifically, we have that

Xr
i¼1

ai

 !n

¼
X

n1;n2;...nr

n!

n1!n2! . . . nr!
an1
1 an2

2 . . . anr
r ; ð7:19Þ

where this summation is over all distinct r-tuples ðn1; n2; . . . ; nrÞ so that nj b 0 andPr
j¼1 nj ¼ n.

As for the binomial theorem above, special identities are produced with simple

applications of (7.19) in the special cases where
Pr

i¼1 ai ¼ 0 or
Pr

i¼1 ai ¼ 1. The lat-

ter case has an important application to the multinomial distribution below, where it

is also assumed that 0a ai a 1 for all i.

7.4 Random Variables

7.4.1 Quantifying Randomness

Notions of sample space, events, and probability measures are often introduced in

the colorful and intuitive imagery of card hands dealt from one or more well-shu¿ed

decks of cards, collections of colored balls drawn from an urn containing di¤erent

numbers of colored balls with or without replacement, and sequences of flips of a

fair or biased coin. While interesting, these models do not lend themselves to mathe-

matical analysis very well because these contexts can obscure similarities or create
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misleading connections. If a problem is solved in the context of an urn problem, will

it be apparent that the same procedure might be applied and the same result obtained

in the very di¤erent context of dealt card hands? Or if a problem is solved in the con-

text of flips of a biased coin, will it be apparent that the same procedure might be

applied and result obtained in the very di¤erent context of the modeling of the prices

of a common stock in discrete time steps?

The notion of a random variable was introduced for the purpose of stripping away

the context of these problems, to reveal the common mathematical structures under-

lying them. In e¤ect a random variable transfers the probabilities associated with

these colorful events to probabilities associated with numerical values in R. A few

simple examples will illustrate the point.

Example 7.23

1. Let’s return to the sample space S of 10-flip sequences of a fair coin that, as we have

seen, contains 210 sample points and 22
10
possible events, all with associated probabil-

ities. We now define a function on the original sample space, as follows:

X ðsÞ ¼ n;

where n is the number of Hs in s A S . So X is a function, X : S ! f0; 1; 2; . . . ; 10g.
Note that for any n A f0; 1; 2; . . . ; 10g, the inverse X�1ðnÞ1An A E is a well-defined

event of sample points with n Hs, and hence we can define implied probabilities on these

integers by

PðnÞ ¼ Pr½An�:
Of course, this particular random variable provides only one quantitative insight to this

sample space, its events, and the associated probability structure, and there are many

other insights that remain hidden. However, there are many more random variables

that can be defined, each providing certain insights and hiding others. The particular

definition of the random variable used is determined in such a way that the properties

of S that are of interest to the analyst are revealed.

2. As another example, one could imagine a game whereby after 10 flips of a fair coin,

producing sample point s, the player receives a payo¤ of YðsÞ ¼Pn
j¼0 10

j , where n is

the number of Hs in s. Now

Y : S ! f1; 11; 111; . . . ; 11111111111g:
The range of Y here di¤ers dramatically from the random variable X above, but the

probabilities of the range values are the same in the sense that for any n,
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Pr Y�1
Xn
j¼0

10 j

 !" #
¼ Pr½X�1ðnÞ�;

since in both cases these implied probabilities are defined by Pr½An�, the probability of

the event in S defined by n Hs.

3. One can also change the probability structure by defining, for example, ZðsÞ ¼P10
j¼1 sj10

j , where sj denotes the jth flip, with sj ¼ 0 for a T, and sj ¼ 1 for a H. Now

the range of Z di¤ers significantly from that of Y, containing every integer that can be

constructed with 10 digits, each of which is 0 or 1. There are consequently 210 points in

the range of Z, in contrast to 11 points in the range of X and Y. Also the probabilities

on the range of Z depend not only on the total number of heads in a given sample point

but also on the order of these heads in the sequence. So each event An above is split into
10
n

� �
events by Z. In essence, Z maps each sample point in S to a distinct integer and

assigns a probability to this integer equal to the probability of the associated sample

point.

7.4.2 Random Variables and Probability Functions

Because this chapter addresses discrete probability theory, which is the theory as it

applies to finite and countably infinite sample spaces, it is possible that the range of

a random variable is any countable subset of R such as N, Z, or Q, so we introduce

a more economical way of demanding that X�1ðrÞ A E for every r in the range of the

random variable X . The idea is to use open intervals, ða; bÞ, that are either bounded

or unbounded. Then in every case, X�1½ða; bÞ� must be an event either because it is

the finite or countable union of events of the form X�1ðrÞ for r A ða; bÞ, or because
it is the null event, j, if this interval is disjoint from the range of X .

Use of open intervals in this definition is just a convention, of course, since

X�1½ða; bÞ� A E for all open intervals if and only if X�1½½a; b�� A E for all closed inter-

vals. To see this, first note that X�1½ða; bÞ� A E for all bounded or unbounded inter-

vals implies that X�1½ð�y; bÞ� A E and hence the complement in S , which is

X�1½½b;yÞ� A E . Similarly X�1½½a;yÞ� A E . Also, if X�1½½b;yÞ� A E and X�1½½a;yÞ�
A E , then the intersection, X�1½½b;yÞ�VX�1½½a;yÞ�1X�1½½a; b�� A E . The reverse

implication is demonstrated similarly.

Next we formalize the definition with this open set convention:

Definition 7.24 Given a discrete sample space S and a complete collection of events

E ¼ fA jAHSg, a discrete random variable (r.v.) is a function

X : S ! R;
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with X ½S � ¼ fxjgnj¼1, where possibly n ¼ y, so that for any bounded or unbounded in-

terval, ða; bÞHR:

X�1½ða; bÞ� A E :
The probability density function (p.d.f.) or probability function associated with X,

denoted f or fX , is defined on the range of X by

f ðxjÞ ¼ Pr½X�1ðxjÞ�: ð7:20Þ
The distribution function (d.f.), or cumulative distribution function (c.d.f.) associated

with X, denoted F or FX , is defined on R by

F ðxÞ ¼ Pr½X�1ð�y; x��: ð7:21Þ
Note that the c.d.f. is the sum of the p.d.f. values, since Pr½X�1ð�y; x�� ¼P
xjax Pr½X�1ðxjÞ�, and so

F ðxÞ ¼
X
xjax

f ðxjÞ: ð7:22Þ

Graphically, when the sample space is finite, the c.d.f. has a ‘‘jump’’ at each value of

xj in the range of X , and the graph of FðxÞ is horizontal otherwise. Such a function is

often called a step function for apparent reasons. When the sample space is countably

infinite, the c.d.f. will again look like a step function in the case of sparsely spaced

range, fxjg, such as the case for the positive integers. For a range with accumulation

points, fxjg, such as for the rationals in ½0; 1�, the c.d.f. again would have jumps at

each rational, but no flat spots or steps per se.

Remark 7.25 Note that given any discrete random variable on S , with X ½S � ¼ fxjgnj¼1,

where possibly n ¼ y, the collection of events defined by fX�1½xj�gnj¼1 are mutually

exclusive, and hence for any collection of points,

Pr 6X�1½xj�
� �¼XPr½X�1½xj��:

Example 7.26 Let S be defined as the sample space of 3 flips of a fair coin, and

X : S ! R defined by XðsÞ equals the number of Hs in s. So the range of X, as in def-

inition 2.2.3, Rng½X � ¼ f0; 1; 2; 3g. The sample space S contains 23 ¼ 8 sample points,

1 each with 0 or 3 Hs, and 3 each with 1 or 2 Hs. This follows directly from the

values of 3
j

� 	
. The probability of each sample point is 1

8 . Consequently the associated

probability density function is defined by
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n: 0 1 2 3

f ðnÞ: 1
8

3
8

3
8

1
8

The graph of the cumulative distribution function, FðxÞ, is seen in figure 7.1.

7.4.3 Random Vectors and Joint Probability Functions

We begin with the simplest example and definition, and generalize later. Imagine that

there are two random variables defined on the given sample space: X ;Y : S ! R,

which we think of as being combined into a random vector or a vector-valued random

variable:

ðX ;YÞ : S ! R2:

Here, for a given sample point s A S , we define ðX ;YÞ : s ! ðXðsÞ;YðsÞÞ.
Generalizing the notion of open interval in the definition of random variable, we

define the bounded or unbounded open rectangle, denoted ða; bÞ, where a ¼ ða1; a2Þ,
b ¼ ðb1; b2Þ and where a1 < b1 and a2 < b2, by

ða; bÞ ¼ fðx; yÞ j a1 < x < a2; b1 < y < b2: ð7:23Þ
A closed rectangle, ½a; b�, or a semi-closed (or semi-open) rectangle, ½a; bÞ or ða; b�, is
defined similarly.

Figure 7.1
F ðxÞ for Hs in three flips
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The requirement to qualify as a random vector is that the pre-image of all open

rectangles be events, where for any point ðx; yÞ, the pre-image under ðX ;Y Þ is

defined as

ðX ;Y Þ�1½ðx; yÞ� ¼ X�1ðxÞVY�1ðyÞ:
With this setup we can define the joint probability density function or joint probabil-

ity function, f ðxj ; yjÞ, as the probability of the event X�1ðxjÞVY�1ðyjÞ, and cor-

respondingly define the joint cumulative distribution function or joint distribution

function, F ðx; yÞ, as the probability of the event that is the pre-image of ð�y; b�,
where b ¼ ðx; yÞ. Then

F ðx; yÞ ¼
X

ðxj ;yjÞaðx;yÞ
f ðxj; yjÞ;

with the understanding that ðxj; yjÞa ðx; yÞ is shorthand for xj a x and yj a y. This

setup then easily generalizes to collections of 3 or more random variables, and we

state the formal definition in this generality:

Definition 7.27 Given a discrete sample space S , a complete collection of events

E ¼ fA jAHSg, and a collection of random variables on S , fXkgnk¼1, a discrete ran-

dom vector is a function

X : S ! Rn;

where X ðsÞ ¼ ðX1ðsÞ;X2ðsÞ; . . . ;XnðsÞÞ, with Xk½S � ¼ fxkjgnkj¼1, and possibly nk ¼ y,

for some or all k. For any bounded or unbounded open rectangle, ða; bÞHRn, we re-

quire that

X�1ðða; bÞÞ1 6
x A ða;bÞ

X�1ðxÞ A E ;

where X�1ðxÞ is defined for x ¼ ðx1; x2; . . . ; xnÞ by

X�1ðxÞ ¼ X�1
1 ðx1ÞVX�1

2 ðx2ÞV � � �VX�1
n ðxnÞ:

The joint probability density function (p.d.f.), or joint probability function, associated

with X, denoted f or fX , is defined on the range of X by

f ðx1; x2; . . . ; xnÞ ¼ Pr½X�1
1 ðx1ÞVX�1

2 ðx2ÞV � � �VX�1
n ðxnÞ�: ð7:24Þ
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The joint cumulative distribution function (c.d.f.), or joint distribution function (d.f.)

associated with X, denoted F or FX , is defined on Rn by

F ðxÞ ¼ Pr½X�1ð�y; x��: ð7:25Þ
As was the case for random variables above, because Pr½X�1ð�y; x�� ¼P
x 0ax Pr½X�1ðx 0Þ�, where x 0 a x is shorthand for x 0

j a xj for all j, and x 0 is in the

range of X , the counterpart to (7.22) is

F ðxÞ ¼
X
x 0ax

f ðx 0Þ: ð7:26Þ

Example 7.28

1. On the sample space of 10-flip sequences of a fair coin, we could define random vari-

ables, fXjg10j¼1 on s A S by

XjðsÞ ¼ 1; sj ¼ H;

�1; sj ¼ T :

�
In other words, each Xj is defined entirely in terms of the value of the jth flip. The

range of X is then the 210 vectors in R10 defined by RngðXÞ ¼ fx A R10 j xj ¼G1

for all jg. In this simple example the event X�1
1 ðx1Þ contains all sequences with an H

for the first flip if x1 ¼ 1, and all sequences with a T for the first flip if x1 ¼ �1,

and similarly for other components. In addition X�1ðxÞ ¼ X�1
1 ðx1ÞVX�1

2 ðx2ÞV � � �V
X�1

10 ðx10Þ is a unique sample point for every x A RngðX Þ and correspondingly,

f ðxÞ ¼ 2�10 for each such point.

2. Define Y1ðsÞ ¼
P5

j¼1 XjðsÞ and Y2ðsÞ ¼
P10

j¼6 XjðsÞ, where XjðsÞ is defined in case

1. Now with Y 1 ðY1;Y2Þ, we have RngðY Þ ¼ fy A R2 j y1; y2 ¼G5;G3;G1g. The
number of sample points in Y�1

j ðyjÞ now varies by the value of yj. For instance,

Y�1
1 ð5Þ is the event of all 25-flip sequences starting with HHHHH, whereas Y�1

1 ð1Þ is
the event of all flip sequences with 3-Hs and 2-Ts in the first five flips, of which there

are 5
3

� �
25 ¼ 5 � 26 sample points. Correspondingly the value of f ðyÞ ¼ Pr½Y�1

1 ðy1ÞV
Y�1

2 ðy2Þ� also varies over the range of Y.

7.4.4 Marginal and Conditional Probability Functions

Once a joint probability density function is defined on a sample space, it is natural

to consider additional probability functions. To set the stage, we start with an

example.
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Example 7.29 Consider the random variables Y1ðsÞ ¼
P3

j¼1 XjðsÞ and Y2ðsÞ ¼P6
j¼4 XjðsÞ defined on the sample space of 6-flip sequences of a fair coin. As in case 1

in example 7.28 above, for s A S , XjðsÞ is defined by

XjðsÞ ¼ 1; sj ¼ H,

�1; sj ¼ T .

�
The joint p.d.f. of the pair, Y 1 ðY1;Y2Þ, is defined on RngðY Þ ¼ fy A R2 j y1; y2 ¼
G1;G3g, which contains 16 points. The associated probabilities are given by

ðy1; y2Þ: ðG1;G1Þ ðG1;G3Þ ðG3;G1Þ ðG3;G3Þ

f ðy1; y2Þ: 9
26

3
26

3
26

1
26

where there are 4 sample points represented in each numerical column. It is easy to

see that the probabilities of the points in each column are the same by symmetry. For

example, switching all H $ T gives a 1 :1 correspondence between the ð1; 1Þ and

ð�1;�1Þ, while switching H $ T only for the first 3 flips identifies ð1; 1Þ and ð�1; 1Þ.
Interchanging the first 3 and last 3 flips identifies ð1; 3Þ and ð3; 1Þ, and so forth.

Since Y1 and Y2 are perfectly good random variables on their own, we can also de-

fine the p.d.f.s f ðy1Þ and f ðy2Þ, which by symmetry will have the same values on the

same 4 points:

yj: G1 G3

f ðyjÞ: 3
23

1
23

When calculating f ðyjÞ, intuition suggests that the original sample space was not

necessary, and that it would have been easier to consider the sample space of 3-flip

sequences of a fair coin. On the other hand, if the calculation was implemented in the

original sample space S , every 3-flip outcome for the given y1, say, would be counted

23 times, since in S , such an outcome would be associated with all 23 possible 3-flip

sequences underlying y2. Put another way, every 3-flip outcome for the given y1
would be associated with all possible outcomes of y2. Consequently we must have

f ðy1Þ ¼
X
y2

f ðy1; y2Þ and f ðy2Þ ¼
X
y1

f ðy1; y2Þ:

A simple calculation relating these values to the defining probability measure on S ,
Pr, demonstrates that this is the case. In this context, f ðy1Þ and f ðy2Þ are called the

marginal probability density functions of the joint p.d.f. f ðy1; y2Þ.
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Another calculation of interest is for the so-called conditional probability functions

of the joint p.d.f. f ðy1; y2Þ, denoted f ðy1 j y2Þ and f ðy2 j y1Þ. Focussing on f ðy1 j y2Þ
for specificity, this p.d.f. is defined relative to the probability of the conditional event

A jB, where A ¼ fs jY1ðsÞ ¼ y1g and B ¼ fs jY2ðsÞ ¼ y2g. In other words, the

conditional p.d.f. f ðy1 j y2Þ is defined as the probability of the conditional event

A jB:

f ðy1 j y2Þ ¼ Pr½A jB� ¼ Pr½Y�1
1 ðy1Þ jY�1

2 ðy2Þ�:

Once again, this conditional p.d.f. must be related to the joint p.d.f, f ðy1; y2Þ,
which provides probabilities for each event, Pr½Y�1

1 ðy1ÞVY�1
2 ðy2Þ� ¼ Pr½AVB�.

Now in the preceding section on conditional events, we have from (7.3) that if

Pr½B�0 0, then Pr½A jB� ¼ Pr½AVB�
Pr½B� . Replacing this event notation with the corre-

sponding p.d.f. notation, we conclude that

f ðy1 j y2Þ ¼ f ðy1; y2Þ
f ðy2Þ for f ðy2Þ0 0;

with a corresponding formula for f ðy2 j y1Þ.
Before formalizing these ideas in a definition, note that for a more general joint

p.d.f., f ðy1; y2; . . . ; ynÞ, there are in fact 2n � 2 possible marginal p.d.f.s. Specifi-

cally, there are n
1

� �
of the form f ðyjÞ, n

2

� �
of the form f ðyj; ykÞ for j0 k, and so

forth. We get the �2 adjustment to the count because if no yj is chosen,P
ðy1;y2;...;ynÞ f ðy1; y2; . . . ; ynÞ ¼ 1, which is not a probability function, whereas if all

yj are chosen, the original joint p.d.f. is produced.

In addition, for every such marginal p.d.f., one could define an associated condi-

tional p.d.f., such as f ðy1; y2 j y3; . . . ; ynÞ. However, the notation quickly becomes

cumbersome, so the following definition will be presented both in the more limited

generality of two random variables, a common framework for applications, and

then for the general case:

Definition 7.30 Given a random vector Y ¼ ðY1;Y2Þ on a discrete sample space, S ,
and associated joint probability distribution function f ðy1; y2Þ, the marginal probabil-

ity density functions, denoted f ðy1Þ and f ðy2Þ, are defined by

f ðy1Þ ¼
X
y2

f ðy1; y2Þ; ð7:27aÞ

f ðy2Þ ¼
X
y1

f ðy1; y2Þ: ð7:27bÞ
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The associated conditional probability density functions, denoted f ðy1 j y2Þ and

f ðy2 j y1Þ, are defined by

f ðy1 j y2Þ ¼ f ðy1; y2Þ
f ðy2Þ when f ðy2Þ0 0; ð7:28aÞ

f ðy2 j y1Þ ¼ f ðy1; y2Þ
f ðy1Þ when f ðy1Þ0 0: ð7:28bÞ

Note that the law of total probability, stated in the context of events in (7.4), can

also be stated in terms of the joint, marginal, and conditional p.d.f. Specifically, we

have from (7.28a) that f ðy1; y2Þ ¼ f ðy1 j y2Þ f ðy2Þ, and also from (7.27a) that f ðy1Þ
¼Py2

f ðy1; y2Þ. Combining, we obtain the law of total probability:

f ðy1Þ ¼
X
y2

f ðy1 j y2Þ f ðy2Þ; ð7:29Þ

and the analogous identity for f ðy2Þ.
For the more general definition, we introduce the notion of a partition of the

random vector Y ¼ ðY1;Y2; . . . ;YnÞ into two nonempty subsets of random variables

Y1 ¼ ðYj1 ;Yj2 ; . . . ;YjmÞ, and Y2 ¼ ðYi1 ;Yi2 ; . . . ;Yin�m
Þ, where this cumbersome nota-

tion is intended to imply that every Yk is in one of Y1 and Y2 but not both.

Definition 7.31 Given a random vector Y ¼ ðY1;Y2; . . . ;YnÞ on a discrete sample

space, S , an associated joint probability distribution function f ðy1; y2; . . . ; ynÞ, and a

partition, Y ¼ ðY1;Y2Þ, the marginal probability density function, denoted f ðy1Þ is

defined by

f ðy1Þ ¼
X
y2

f ðy1; y2; . . . ; ynÞ: ð7:30Þ

The associated conditional probability density function, denoted f ðy2 j y1Þ, is defined by

f ðy2 j y1Þ ¼
f ðy1; y2; . . . ; ynÞ

f ðy1Þ
when f ðy1Þ0 0: ð7:31Þ

We note that these general formulas also provide general versions of the law of

total probability, but leave it to the reader to develop these formulas.

7.4.5 Independent Random Variables

Because a random variable X is defined so that the pre-image of open intervals

X�1½ða; bÞ� are events in E with associated probabilities under the probability measure
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Pr, it is natural to say that two random variables are independent if their pre-images

of all intervals are stochastically independent as events in E .

Definition 7.32 Random variables X1, X2 on the discrete sample space S are inde-

pendent random variables if for any intervals ðaj; bjÞHR, bounded or unbounded,

X�1
1 ½ða1; b1Þ� and X�1

2 ½ða2; b2Þ� are stochastically independent events in E as in (7.5).

Equivalently, if X1 : S ! fx1jg and X2 : S ! fx2kg, then X1 and X2 are inde-

pendent if X�1
1 ½x1j� and X�1

2 ½x2k� are stochastically independent events for all x1j
and x2k.

More generally, a collection of random variables fXjgnj¼1, where n may be y, are

mutually independent random variables if every collection of events of the form

fX�1
j ½ðaj; bjÞ�gnj¼1 are mutually independent events as in (7.6), or equivalently,

fX�1
j ½xjk�gnj¼1 are mutually independent for any xjk A Rng½Xj�.

Example 7.33

1. Define S as the sample space of all pairs of results achieved by rolling a fair die

twice. Specifically, S ¼ fðd1; d2Þ j 1a dj a 6g, where d1 denotes the result on the first

roll, and d2 the result on the second. By the assumption of fairness, each numerical

value is equally likely and has probability of 1
6 of occurrence, and consequently the

probability function for S is defined as Pr½ðd1; d2Þ� ¼ 1
36 for every such sample point.

Note that the values of this probability measure are influenced by the fact that the die

throws were sequential, and hence order counts. On this ordered sample space, define

first the random variables X ;Y : S ! N by

X ½ðd1; d2Þ� ¼ d1;

Y ½ðd1; d2Þ� ¼ d2:

Intuition indicates that X and Y are independent random variables. To demonstrate

this, note that for any d1; d2 A f1; 2; . . . ; 6g, both X�1ðd1Þ and Y�1ðd2Þ are events in S
of 6 points with measures under Pr of 1

6 . Also X�1ðd1ÞVY�1ðd2Þ contains a unique

sample point, specifically, ðd1; d2Þ, which has measure 1
36 under Pr. In other words, for

all ðd1; d2Þ,

Pr½X�1ðd1ÞVY�1ðd2Þ� ¼ Pr½X�1ðd1Þ� Pr½Y�1ðd2Þ�:
2. Now define a new random variable Z on S above as follows:

Z½ðd1; d2Þ� ¼ d1 þ d2:

262 Chapter 7 Discrete Probability Theory



Intuitively we expect X and Z not to be independent. That is because, if Z½ðd1; d2Þ� ¼
12 (or 2), it must be the case that X ½ðd1; d2Þ� ¼ 6 (or 1). More formally, Z assumes

all integer values 2a ka 12, and the event defined by Z�1ðkÞ has probabilities
k: 2 3 4 5 6 7 8 9 10 11 12

Pr½Z�1ðkÞ�: 1
36

2
36

3
36

4
36

5
36

6
36

5
36

4
36

3
36

2
36

1
36

It is apparent that the numerator of Pr½Z�1ðkÞ� also represents the number of sample

points in the associated event. As noted above, for each 1a ja 6, X�1ð jÞ contains 6
sample points, and Pr½X�1ð jÞ� ¼ 1

6 for all j. Now it is straightforward to justify that

X�1ð jÞVZ�1ðkÞ contains one sample point or none. For example, X�1ð1ÞVZ�1ð12Þ
¼ j, while X�1ð4ÞVZ�1ð7Þ ¼ ð4; 3Þ. More generally, if d1 ¼ j and d1 þ d2 ¼ k,

there is a unique point provided that 1a k � ja 6, and no point otherwise. Hence

Pr½X�1ð jÞVZ�1ðkÞ� equals 0 or 1
36 , which can equal the product of probabilities of the

respective events only when k ¼ 7. Consequently X and Z are not independent.

3. If instead of as in case 1, a pair of dice were thrown without keeping track of order,

then the sample space, S 0, would contain only 21 rather than 36 sample points. One re-

alization of this space is S 0 ¼ fðd1; d2Þ j 1a d1 a d2 a 6g where d1 denotes the smaller

result, d2 the larger. The associated probability measure is then given by

Pr½ðd1; d2Þ� ¼
1
36 d1 ¼ d2;
1
18 d1 < d2:

(

Define the random variables U ;W : S 0 ! N by

U ½ðd1; d2Þ� ¼ minðd1; d2Þ;
W ½ðd1; d2Þ� ¼ maxðd1; d2Þ:
Now U and W are not independent. For example, Pr½U�1ð1Þ� ¼ 11

36 , since this event

contains the sample point

U�1ð1Þ ¼ fð1; dÞ j 1a da 6g;
which has measure 11

36 by the above given probability measure on S 0. On the other

hand, Pr½W�1ð1Þ� ¼ 1
36 , since W�1ð1Þ ¼ ð1; 1Þ. Also U�1ð1ÞVW�1ð1Þ ¼ W�1ð1Þ.

Consequently

Pr½U�1ð1ÞVW�1ð1Þ�0Pr½U�1ð1Þ� Pr½W�1ð1Þ�:
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The notion of independent random variables can also be defined in terms of the

joint, conditional and marginal probability distribution functions.

Definition 7.34 Given a random vector Y ¼ ðY1;Y2Þ on a discrete sample space S
and associated joint probability density function f ðy1; y2Þ, the random variables Y1

and Y2 are independent random variables if

f ðy1; y2Þ ¼ f ðy1Þ f ðy2Þ; ð7:32aÞ
or equivalently if f ðy2Þ0 0,

f ðy1 j y2Þ ¼ f ðy1Þ: ð7:32bÞ
More generally, given a random vector Y ¼ ðY1;Y2; . . . ;YnÞ on the discrete sample

space S , with associated joint probability density function f ðy1; y2; . . . ; ynÞ, the ran-

dom variables fYjg are mutually independent random variables if given any partition

Y ¼ ðY1;Y2Þ
f ðy1; y2; . . . ; ynÞ ¼ f ðY1Þ f ðY2Þ; ð7:33aÞ
or equivalently if f ðY2Þ0 0,

f ðY1 jY2Þ ¼ f ðY1Þ: ð7:33bÞ
In particular, we then have

f ðy1; y2; . . . ; ynÞ ¼ f ðy1Þ f ðy2Þ . . . f ðynÞ: ð7:34Þ

7.5 Expectations of Discrete Distributions

7.5.1 Theoretical Moments

The definitions and notation for moments here closely parallel that given in sec-

tion 3.3.2 for moments of sample data. This is no coincidence, as will be discussed

below.

Expected Values

The general structure of the formulas below is seen repeatedly in probability theory.

These calculations represent what are known as expected value calculations, and

sometimes referred to as taking expectations. The general case is defined first, then

specific examples are presented.
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Definition 7.35 Given a discrete random variable, X : S ! R, and function gðxÞ
defined on the range of X, Rng½X �HR, the expected value of gðXÞ, denoted E½gðX Þ�,
is defined as

E½gðX Þ� ¼
X
sj AS

gðXðsjÞÞ PrðsjÞ: ð7:35Þ

If fxjgHR denotes the range of X, and the p.d.f. of X is denoted by f ðxÞ so that

f ðxjÞ1PrðsjÞ with xj 1X ðsjÞ, then this expected value can be defined by

E½gðX Þ� ¼
X
j

gðxjÞ f ðxjÞ: ð7:36Þ

In either case, this expectation is only defined when the associated summation is abso-

lutely convergent, and so in the notation of (7.36), since f ðxjÞb 0, it is required thatX
j

jgðxjÞj f ðxjÞ < y: ð7:37Þ

If (7.37) is not satisfied, we say that E½gðXÞ� does not exist.
Remark 7.36

1. The condition in (7.37) is automatically satisfied if the fxjg is finite. The purpose of

this restriction in the countably infinite case is to avoid the problem discussed in section

6.1.4, that if only conditionally convergent, the value of this summation is not well

defined and depends on the order in which the summation is carried out.

2. All expectation formulas can be stated in terms of the random variable X, the sam-

ple space S , and its probability measure Pr, or directly in terms of the p.d.f. associated

with X. In general, we will only provide the p.d.f. versions as in (7.36) and leave it as

an exercise for the reader to formulate the sample space versions as in (7.35).

3. It is to be explicitly understood without further repetition that expectation defini-

tions are valid only when the respective absolute convergence conditions as in (7.37)

are satisfied.

4. When needed for clarity, a subscript is placed on the expectations symbol to identify

what variable is involved in the expectation. For example, given p.d.f. f ðxÞ, the mean-

ing of E½X � is unambiguous, so expressing this as EX ½X � is redundant. On the other

hand, the meaning of E½XY � is ambiguous, since it is not clear which variable is

involved. So in this case one would clarify as EX ½XY � or EY ½XY � or EXY ½XY �.

7.5 Expectations of Discrete Distributions 265



Of course, all expectations of random variables in finite sample spaces exist when

gðxÞ is defined and hence finitely valued on the range of X . However, for random

variables on countably infinite sample spaces, expected values may not exist even

when gðxÞ is defined on the range of X .

Example 7.37 If S is countally infinite, X : S ! N is defined by X ðsjÞ ¼ j with range

equal to the positive integers, and f ð jÞ is given by f ð jÞ ¼ c
j 2
, where c is chosen so thatP

j f ð jÞ ¼ 1, then E½X � does not exist, since E½X � ¼Pj j
c
j 2
¼Pj

c
j
is a multiple of the

harmonic series and hence not finite. If instead X is defined by X ðsjÞ ¼ ð�1Þ j j, then
again E½X � does not exist. This is because, although E½X � is conditionally convergent,

it is not absolutely convergent. Similarly it is easy to find p.d.f.s with finite expected

values up to some exponent: gðxÞ ¼ xn, but with no finite expected values with larger

exponents using power harmonic series from example 6.9 to define f ð jÞ.
On the assumption that expected values exist, they are easy to work with in terms

of addition and scalar multiplication.

Proposition 7.38 If gðxÞ and hðxÞ are functions for which E½gðxÞ� and E½hðxÞ� exist,
and a, b, c are real numbers, then E½agðxÞ þ bhðxÞ þ c� exists and
E½agðxÞ þ bhðxÞ þ c� ¼ aE½gðxÞ� þ bE½hðxÞ� þ c: ð7:38Þ
Proof This result is immediate from the definition, but we must first verify that

agðxÞ þ bhðxÞ þ c satisfies (7.37). This, of course, follows from the triangle inequality

jagðxÞ þ bhðxÞ þ cja jaj jgðxÞj þ jbj jhðxÞj þ jcj;
and the assumption that E½gðxÞ� and E½hðxÞ� exist. n

On the other hand, expected values do not work well with multiplication and divi-

sion, and as might be expected,

E½ f ðxÞgðxÞ�0E½ f ðxÞ�E½gðxÞ�;

E
f ðxÞ
gðxÞ

 �

0
E½ f ðxÞ�
E½gðxÞ� :

Conditional and Joint Expectations

Expected value calculations can also be defined with respect to joint probability den-

sity functions, as well as conditional probability density functions. For example, if

X ¼ ðX1;X2Þ is a random vector with joint p.d.f. f ðx1; x2Þ, and gðx1; x2Þ is defined

on Rng½X �HR2, we define the joint expectation of gðx1; x2Þ by
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E½gðX1;X2Þ� ¼
X

ðx1;x2Þ
gðx1; x2Þ f ðx1; x2Þ: ð7:39Þ

Many such calculations are possible with di¤ering values of gðx1; x2Þ. One impor-

tant application of this type of formula is in the case where fXjg are independent

trials from a given p.d.f. Another important example is for the covariance of two ran-

dom variables. Both are addressed below.

If f ðx1 j x2Þ is one of the associated conditional p.d.f.s, and gðxÞ is given, then the

conditional expected value or conditional expectation is defined as

E½gðX1Þ jX2 ¼ x2� ¼
X
x1

gðx1Þ f ðx1 j x2Þ: ð7:40Þ

Sometimes for clarity, though cumbersome, the conditional expectation symbol is

written with a subscript of X1 jX2 as in EX1 jX2
½gðX1Þ jX2� or E½gðX1Þ jX2�.

Remark 7.39 Unlike most expected values, which provide numerical results, a condi-

tional expectation can be interpreted as a function on the original sample space S ,
defined by s ! E½gðX1Þ jX2ðsÞ�. It is in fact a random variable on S , since the pre-

image of an open interval ða; bÞHR is just the union of countably many events, which

is an event in E . It is then the case that the expectation of this random variable under

the p.d.f. f ðx2Þ equals the expectation of gðxÞ using f ðx1Þ. In other words,

EX2
½EX1 jX2

½gðX1Þ jX2�� ¼ EX1
½gðX1Þ�: ð7:41Þ

The demonstration of this somewhat tediously notated formula is actually simple. By

absolute convergence, we can reverse the order of the double summation and apply the

law of total probability:

EX2
½EX1 jX2

½gðX1Þ jX2�� ¼
X
x2

X
x1

gðx1Þ f ðx1 j x2Þ
" #

f ðx2Þ

¼
X
x1

gðx1Þ
X
x2

f ðx1 j x2Þ f ðx2Þ
" #

¼
X
x1

gðx1Þ f ðx1Þ:

This interpretation of E½gðX1Þ jX2� as a random variable on S is critical in advanced

probability theory.
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Mean

The mean of X , denoted m, is defined as m ¼ E½X �,

m ¼
X
i

xi f ðxiÞ: ð7:42Þ

In some applications, the random variable X may be defined in a complicated way,

perhaps dependent on another random variable Y , and for which the conditional ex-

pectation, E½X jY � is simpler to evaluate. An immediate application of (7.41) with

gðX Þ ¼ X leads to the following identity between E½X � and the various conditional

expectations E½X jY �, which is known as the law of total expectation:

E½X � ¼ E½E½X jY ��: ð7:43Þ
While this formula may at first appear ambiguous, a moment of reflection justifies

that it is well defined even without the subscript clutter of (7.41). The inner expecta-

tion can only be defined relative to the conditional p.d.f. f ðx j yÞ as E½X jY � ¼P
i xi f ðxi jY Þ. Once this expectation is performed, the remaining term is a function

of Y alone, and hence the outer expectation must be calculated relative to the mar-

ginal p.d.f., f ðyÞ. In other words,

E½E½X jY �� ¼
X
j

X
i

xi f ðxi j yjÞ f ðyjÞ:

Variance

The variance of X , denoted s2, is defined as E½ðX � mÞ2�:

s2 ¼
X
i

ðxi � mÞ2f ðxiÞ; ð7:44Þ

and the standard deviation, denoted s, is the positive square root of the variance. It is

often more convenient to denote the variance by Var½X �, and standard deviation by

s.d.½X �, as this notation has the advantage of making the random variable explicit. In

addition one can also use the notation s2
X and sX .

It is often easier to calculate variance by first expanding ðxi � mÞ2 ¼ x2
i � 2mxi þ

m2, and then using (7.38) to obtain

s2 ¼ E½X 2� � E½X �2: ð7:45Þ
As noted above in the discussion of the mean, it may be the case that the random

variable X is defined in a complicated way, perhaps dependent on another random
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variable Y , and that Var½X � is di‰cult to estimate directly, yet the conditional vari-

ance Var½X jY � is simpler. Of course, this conditional variance is well defined as the

variance of X , utilizing the conditional p.d.f. f ðx j yÞ. In other words,

Var½X jY � ¼
X
i

ðxi � mX jY Þ2f ðxi jY Þ;

where the conditional mean is defined, mX jY ¼ E½X jY �.
The question then becomes, can Var½X � be recovered from the conditional vari-

ances Var½X jY � the same way that the mean can be recovered from the conditional

means via (7.43)? The answer is ‘‘yes,’’ but with a slightly more complicated formula,

known as the law of total variance:

Var½X � ¼ E½Var½X jY �� þ Var½E½X jY ��: ð7:46Þ
Before addressing the derivation, note that the formula above is again well defined.

As Var½X jY � and E½X jY � are functions only of Y , E½Var½X jY �� and Var½E½X jY ��
must be calculated using the marginal p.d.f. f ðyÞ, and the variance term is defined as

in (7.44), with m ¼ E½E½X jY �� ¼ E½X �. Summarizing, we have

E½Var½X jY �� ¼
X
i

Var½X j yi� f ðyiÞ;

Var½E½X jY �� ¼
X
i

ðE½X j yi� � mÞ2f ðyiÞ:

To derive (7.46), we use the variance formula in (7.45), and substitute the law of

total expectation in (7.41):

Var½X � ¼ E½X 2� � ðE½X �ÞÞ2

¼ E½E½X 2 jY �� � ðE½E½X jY ��Þ2:
Now another application of (7.45) is

E½X 2 jY � ¼ Var½X jY � þ E½X jY �2;
which is inserted into the formula above to produce:

Var½X � ¼ E½Var½X jY �� þ E½E½X jY �2� � ðE½E½X jY ��Þ2:
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Finally, the last two terms are equal to Var½E½X jY �� by another application of

(7.45), completing the derivation.

Because the laws of total probability, expectation, and variance are so important,

the next proposition brings these results together:

Proposition 7.40 Let X and Y be random variables on a discrete probability space

S , with associated joint p.d.f. f ðx; yÞ, marginal p.d.f.s f ðxÞ and f ðyÞ, and conditional

p.d.f. f ðx j yÞ. Then:
1. Law of total probability,

f ðxÞ ¼
X
y

f ðx j yÞ f ðyÞ: ð7:47Þ

2. Law of total expectation,

E½X � ¼ E½E½X jY ��: ð7:48Þ
3. Law of total variance,

Var½X � ¼ E½Var½X jY �� þ Var½E½X jY ��: ð7:49Þ
Example 7.41 Let X denote the number of heads obtained in Y flips of a fair coin,

where Y is the number of dots obtained in a roll of a fair die. The goal is to calculate

E½X � and Var½X �. To formalize a sample space, define S as the space of n-flips of a fair

coin for n ¼ 1; 2; 3; . . . ; 6. So S ¼ fðF1;F2; . . . ;FnÞ j 1a na 6g. Here Fj ¼ 1 for an H

on the jth flip, and 0 otherwise, so S contains
P6

n¼1 2
n ¼ 27 � 1 sample points. The

probability measure is defined on each point by

Pr½ðF1;F2; . . . ;FnÞ� ¼ 1

6

1

2n :

Now X and Y are defined on S by

Y ½ðF1;F2; . . . ;FnÞ� ¼ n;

X ½ðF1;F2; . . . ;FnÞ� ¼
Xn
j¼1

Fj ;

and so Rng½Y � ¼ f1a na 6g and Rng½X � ¼ f0ama 6g. Also f ðnÞ ¼ 1
6 for all n.

For E½X jY ¼ n� and Var½X jY ¼ n�, we use formulas below in (7.99) from sec-

tion 7.6.2 on the binomial distribution. Then E½X jY ¼ n� ¼ n
2 , and from (7.48),

E½X � ¼ E n
2

� �
, so
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E½X � ¼ 1

12

X6
n¼1

n ¼ 21

12
:

Next, Var½X jY ¼ n� ¼ n
4 , so E½Var½X jY �� ¼ 21

24 . Also from E½X jY ¼ n� ¼ n
2 we ob-

tain that

Var½E½X jY �� ¼ E
n2

4


 �
� E

n

2


 �� �2

¼ 1

24

X6
n¼1

n2 � 21

12

� �2

¼ 105

144
:

Finally, using (7.49) obtains

Var½X � ¼ 21

24
þ 105

144
¼ 231

144
:

Covariance and Correlation

As noted above, there are many expected values that can be defined with a joint

p.d.f. One common set of expectations, given f ðx1; x2; . . . ; xnÞ, is to evaluate the

covariance between any two of these random variables. With the associated marginal

densities f ðxjÞ, the respective means mj and variances s2
j of each Xj can be calculated

as discussed above. To calculate the covariance between Xi and Xj requires the

joint p.d.f. f ðxi; xjÞ. Although the notation is not standardized, we denote this

expectation by sij , and sometimes CovðXi;XjÞ, the covariance is defined by

E½ðXi � miÞðYj � mjÞ�:

sij ¼
X
k; l

ðxk � miÞðxl � mjÞ f ðxk; xlÞ: ð7:50Þ

With a slight abuse of notation, we can define sjj 1 s2
j ¼ Var½Xj�.

Note that a calculation produces a result analogous to (7.45):

sij ¼ E½XiYj � � E½Xi�E½Yj�: ð7:51Þ
Also, if Xi and Xj are independent, then f ðxi; xjÞ ¼ f ðxiÞ f ðxjÞ, and it is apparent

that sij ¼ 0, since
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X
kl

ðxk � miÞðxl � mjÞ f ðxk; xlÞ ¼
X
k

ðxk � miÞ f ðxkÞ
X
l

ðxl � mjÞ f ðxlÞ:

The correlation between xi and xj, denoted rij , and sometimes CorrðXi;XjÞ, is
defined as

rij ¼
sij

sisj
; ð7:52Þ

which is equivalently calculated as rij ¼
P

k; l
xk�mi
si

� 	
xl�mj
sj

� 	
f ðxk; xlÞ. The random

variables are said to be uncorrelated if rij ¼ 0, they are positively correlated if rij > 0,

whereas they are said to be negatively correlated if rij < 0. As noted above, indepen-

dent random variables are uncorrelated, and hence have rij ¼ 0.

However, being uncorrelated is a weaker condition on two random variables than

being independent.

Example 7.42 Define f ðx; yÞ by

f ðx; yÞ ¼
1
3 ; ðx; yÞ ¼ ð�1; 1Þ,
1
3 ; ðx; yÞ ¼ ð0; 0Þ,
1
3 ; ðx; yÞ ¼ ð1; 1Þ.

8>><>>:
Then f ðxÞ ¼ 1

3 for x ¼ �1; 0; 1, and f ðyÞ ¼ 2
3 for y ¼ 1 and f ðyÞ ¼ 1

3 for y ¼ 0. Con-

sequently X and Y are not independent, since f ðx; yÞ0 f ðxÞ f ðyÞ. On the other hand,

X and Y are uncorrelated, since E½XY � ¼ 0, E½X � ¼ 0 and E½Y � ¼ 2
3 imply that sXY ¼

E½XY � � E½X �E½Y � ¼ 0, and so rxy ¼ 0.

An important application of the Cauchy–Schwarz inequality is as follows:

Proposition 7.43 Given random variables X, Y with joint p.d.f. f ðx; yÞ,
jsXY ja sXsY : ð7:53Þ
In other words,

�1a rXY a 1: ð7:54Þ

Proof Since f ðx; yÞb 0, we have

sXY ¼
X
i; j

ðxi � mX Þðyj � mY Þ f ðxi; yjÞ

¼
X
i; j

ðxi � mX Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðxi; yjÞ

qh i
ðyj � mY Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðxi; yjÞ

qh i
:
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This second summation is seen to be an inner product, and by the Cauchy–Schwarz

inequality, the square of this inner product is bounded by the product of the sums of

squares:

s2
XY a

X
i; j

ðxi � mX Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðxi; yjÞ

qh i2X
i; j

ðyj � mY Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðxi; yjÞ

qh i2
¼
X
i; j

ðxi � mX Þ2f ðxi; yjÞ
X
i; j

ðyj � mY Þ2f ðxi; yjÞ

¼
X
i

ðxi � mX Þ2f ðxiÞ
X
j

ðyj � mY Þ2f ðyjÞ ¼ s2
Xs

2
Y : n

The covariance also arises in the variance calculation of the sum of random vari-

ables, X ¼Pn
j¼1 ajXj for constants fajg. The associated p.d.f. used in the expected

value calculation is the joint p.d.f., f ðx1; x2; . . . ; xnÞ. With this we see that

E
Xn
j¼1

ajXj

" #
¼
Xn
j¼1

ajE½Xj �: ð7:55Þ

Also

ðX � E½X �Þ2 ¼
Xn
j¼1

aj½Xj � E½Xj��
 !2

¼
Xn
i¼1

Xn
j¼1

aiaj½Xi � E½Xi��½Xj � E½Xj��:

After expectations are taken, this leads to

Var
Xn
j¼1

ajXj

" #
¼
Xn
i¼1

Xn
j¼1

aiajsij ð7:56aÞ

¼
Xn
j¼1

a2j s
2
j þ 2

X
i<j

aiajrijsisj: ð7:56bÞ

Note that when the component random variables are independent, or simply

uncorrelated:
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Var
Xn
j¼1

ajXj

" #
¼
Xn
j¼1

a2j s
2
j : ð7:57Þ

General Moments

Generalizing the definition of the mean of a random variable, the nth moment,

denoted m 0
n, is defined as E½X n� for nb 0:

m 0
n ¼

X
i

xn
i f ðxiÞ; ð7:58Þ

so in particular, m 0
0 ¼ 1, m 0

1 ¼ m, and m 0
2 ¼ s2 þ m2 as noted in (7.45).

Note that a direct application of (7.41) with gðX Þ ¼ X n produces

E½X n� ¼ E½E½X n jY ��;
as was used in the derivation of the law of total variance.

General Central Moments

Generalizing the definition of variance of a random variable, the nth central moment,

denoted mn, is defined as E½ðX � mÞn� for nb 0:

mn ¼
X
i

ðxi � mÞnf ðxiÞ; ð7:59Þ

so in particular, m0 ¼ 1, m1 ¼ 0, and m2 ¼ s2.

Absolute Moments

When n is odd, the value of the moments E½X n� and/or E½ðX � mÞn� can reflect the

cancellation of positive and negative terms. The notion of absolute moments is used

to value the associated absolutely convergent series. The nth absolute moment,

denoted m 0
jnj, is defined as E½jX jn� for nb 0:

m 0
jnj ¼

X
i

jxijnf ðxiÞ; ð7:60Þ

and the nth absolute central moment, denoted mjnj, is defined as E½jX � mjn� for nb 0:

mjnj ¼
X
i

jxi � mjnf ðxiÞ: ð7:61Þ

This notation is descriptive but not standard.
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Because of the condition in (7.37), absolute moments always exist when the corre-

sponding moments exist. Of course, for n even, the absolute moments agree with the

respective moments defined above. For n odd, the moments may agree with the ab-

solute moments, for instance, if the range of X is positive, but the central moments

and absolute central moments will not agree, since fxi � mg will always have both

positive and negative terms.

Moment-Generating Function

The moment-generating function (m.g.f.), as the name implies, reflects an expected

value calculation that produces a function rather than a numerical constant. Denoted

MðtÞ, or MX ðtÞ, it is defined as E½eXt�:

MX ðtÞ ¼
X
i

exitf ðxiÞ: ð7:62Þ

Of course, MX ð0Þ ¼ 1, so the question of existence of the m.g.f. relates to existence

for some interval, jtj < T . It is important to note at the outset that MðtÞ does not

always exist.

As we have seen before and will prove in chapter 9, the exponential function can

be expanded into the power series:

ex ¼
Xy
n¼0

xn

n!
: ð7:63Þ

This series converges absolutely for all x by the ratio test,

xnþ1

ðnþ1Þ!
xn

n!












¼ x

nþ 1





 



! 0 as n ! y;

so what needs to be shown in chapter 9 is that the function of x defined by this series

is indeed equal to ex.

Substituting the corresponding expression for exit into (7.62), and using the arith-

metic properties of expected value noted above and the assumption of absolute con-

vergence justified by the existence of MX ðtÞ, we derive

MX ðtÞ ¼
X
i

Xy
n¼0

ðxitÞn
n!

f ðxiÞ ¼
Xy
n¼0

tn

n!

X
i

xn
i f ðxiÞ;

and hence
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MX ðtÞ ¼
Xy
n¼0

m 0
nt

n

n!
: ð7:64Þ

Of course, since all terms in the summation are positive, all these manipulations

require the assumption that MX ðtÞ actually exists and so the series in (7.62) con-

verges and hence converges absolutely. This is always the case for finite sample

spaces, but not necessarily the case when the sample space is countably infinite. As

seen in section 6.1.4, it is the absolute convergence of this series that justifies the

manipulations in the double series and the reversal of the order of the summations.

In chapter 9 we will see that the moments fm 0
ng can in turn be recovered from the

moment-generating function, or better said, ‘‘generated’’ from the m.g.f., if it con-

verges in an interval containing 0. Specifically, with M
ðnÞ
X ðtÞ denoting the nth deriva-

tive of the function MX ðtÞ with respect to t, we will see that

m 0
n ¼ M

ðnÞ
X ð0Þ: ð7:65Þ

A simple modification to the definition of the m.g.f. can be introduced that will

generate the central moments. Specifically, since X � m has the same p.d.f. as does

X , its moment-generating function is defined by MX�mðtÞ ¼
P

i e
ðxi�mÞtf ðxiÞ. Apply-

ing (7.63) obtains

MX�mðtÞ ¼
Xy
n¼0

mnt
n

n!
; ð7:66Þ

from which is produced

mn ¼ M
ðnÞ
X�mð0Þ: ð7:67Þ

For a joint probability density function, f ðx1; x2; . . . ; xnÞ, the moment-generating

function is analogously defined. The definition above where MX ðtÞ1E½eXt� is gener-
alized so that the m.g.f. is now a function of ðt1; t2; . . . ; tnÞ, and defined with the aid

of boldface vector notation as MXðtÞ1E½eX�t�, where X � t denotes the inner product.
In other words,

MXðtÞ ¼
X

ðx1;x2;...;xnÞ
eT xiti f ðx1; x2; . . . ; xnÞ: ð7:68Þ

If the random variables in the definition of f ðx1; x2; . . . ; xnÞ are independent, then
(7.34) is satisfied, so
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MXðtÞ ¼
Yn
i¼1

MXi
ðtiÞ:

If the random variables are independent and identically distributed, then with Y ¼Pn
i¼1 Xi we derive from (7.34) and directly from MY ðtÞ ¼ E etTXi

� �
that

MY ðtÞ ¼ ½MX ðtÞ�n: ð7:69Þ
Characteristic Function

The characteristic function (c.f.) is defined similarly to the m.g.f., and it will again be

possible to generate moments from it, but it has the advantage that it always exists.

The disadvantage to some is that while MX ðtÞ is a function MX ðtÞ : R ! R, the

characteristic function, denoted CX ðtÞ, is a function CX ðtÞ : R ! C. Specifically,

CX ðtÞ ¼ E½eiXt�, where i denotes the ‘‘imaginary unit’’ i ¼ ffiffiffiffiffiffiffi�1
p

, producing

CX ðtÞ ¼
X
j

eixj tf ðxjÞ: ð7:70Þ

It is straightforward to confirm that CX ðtÞ exists for all t A R, since the summation

converges absolutely. This is demonstrated using the triangle inequality and a conse-

quence of Euler’s formula: that jeixj tj ¼ 1 for all t and xj . Specifically,

jCX ðtÞja
X
j

jeixjtf ðxjÞj ¼
X
j

f ðxjÞ ¼ 1:

Unlike the case of the m.g.f., which may not exist but is di¤erentiable when it does

exist, the characteristic function always exists, but it need not be di¤erentiable. How-

ever, if all moments exist, then using the same manipulations above, justified by ab-

solute converge, produces

CX ðtÞ ¼
Xy
n¼0

m 0
nðitÞn
n!

; ð7:71Þ

and once again the moments can be recovered from this function as in (7.65). With

analogous notation,

m 0
n ¼

1

i n
C

ðnÞ
X ð0Þ: ð7:72Þ

Central moments can again be generated if they exist using CX�mðtÞ ¼P
j e

iðxj�mÞtf ðxjÞ; then

7.5 Expectations of Discrete Distributions 277



CX�mðtÞ ¼
Xy
n¼0

mnðitÞn
n!

; ð7:73Þ

mn ¼
1

i n
C

ðnÞ
X�mð0Þ: ð7:74Þ

For a joint probability density function f ðx1; x2; . . . ; xnÞ, the characteristic func-

tion is analogously defined. The definition above where CX ðtÞ ¼ E½eiXt� is generalized
so that the c.f. is a function of ðt1; t2; . . . ; tnÞ, and defined with the aid of boldface

vector notation as CXðtÞ1E½eiX�t�. In other words,

CXðtÞ ¼
X

ðx1;x2;...;xnÞ
eiT xjtj f ðx1; x2; . . . ; xnÞ: ð7:75Þ

Remark 7.44 An important property of the moment-generating and characteristic

functions is that they ‘‘characterize’’ the discrete probability density function (a prop-

erty we will prove in chapter 8 but only in the case of finite discrete random variables).

The proof in the more general cases requires the tools of real analysis and complex

analysis. What ‘‘characterize’’ means is that if CX ðtÞ ¼ CY ðtÞ or MX ðtÞ ¼ MY ðtÞ for
random variables X and Y, and for t A I where I is any open interval containing 0, then

the discrete probability density functions are equal: f ðxÞ ¼ gðyÞ. In the finite discrete

case this means that if fxigni¼1 and fyjgmj¼1 are the respective domains of these proba-

bility functions, arranged in increasing order, then n ¼ m, xi ¼ yi and f ðxiÞ ¼ gðyiÞ
for all i. The m.g.f. and c.f. also characterize the p.d.f. of random variables in the

more general cases to be developed later. Since the characteristic function always

exists, this result can be applied to any p.d.f. and in any context.

*7.5.2 Moments of Sample Data

An important application of the general random vector expectation formula (7.39) is

to so-called sample data expectations. In this section we provide a theoretical frame-

work for the sample statistics introduced in section 3.3.2.

Given a sample space S , we have the theoretical framework for a random sample

or independent trials introduced in section 7.2.6 above. Specifically, recall that a ran-

dom sample of size n was identified with a sample point in a new n-trial sample

space, denoted S n, that was given a probability structure defined in (7.7). In this sec-

tion we apply this structure to random samples of a given random variable, and de-

rive some important formulas related to the moments of these samples.

In the space S we assume that there is given a random variable X , and define a

random vector X ¼ ðX1;X2; . . . ;XnÞ on S n. For s ¼ ðs1; s2; . . . ; snÞ A S n, we define
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XjðsÞ ¼ X ðsjÞ. In the same way that ðs1; s2; . . . ; snÞ represents a random sample of n

possible sample points, with probability in S n defined so that PnðsÞ ¼
Qn

j¼1 PrðsjÞ,
the random vector of values, XðsÞ ¼ ðX1ðsÞ;X2ðsÞ; . . . ;XnðsÞÞ A Rn is a random sam-

ple of the values assumed by X on S . In other words, the components of this random

vector are independent in the formal meaning given in (7.34) above.

To see this, let f ðx1; x2; . . . ; xnÞ be the joint p.d.f. defined on the Rng½X �. That is,

f ðx1; x2; . . . ; xnÞ ¼ PnðX�1
1 ðx1Þ;X�1

2 ðx2Þ; . . . ;X�1
n ðxnÞÞ:

Then by (7.7),

f ðx1; x2; . . . ; xnÞ ¼
Yn
j¼1

PrðX�1
j ðxjÞÞ

¼
Yn
j¼1

f ðxjÞ;

where f ðxÞ is the p.d.f. of the random variable X .

In summary, we see that if a random variable X on S is generalized as above to a

random vector X on the n-trial sample space S n, then the collection of component

random variables fXjðsÞg comprises independent random variables on S in the sense

defined above, and

f ðx1; x2; . . . ; xnÞ ¼
Yn
j¼1

f ðxjÞ: ð7:76Þ

Initially this construction of a random sample may appear overly formal and un-

necessary. In applications the random variable X is usually defined as the outcome of

an experiment, or as an observation, and the notion of independent trials is under-

stood as meaning that the experiment is repeated many times, or other observations

are made. In such cases the truth of the identity in (7.76) would appear obvious to

anyone that has flipped a coin, or rolled dice, and so forth. And in many applications

this is a perfectly legitimate intuitive framework for what a random sample is, and

perfectly legitimate justification for the meaning of independent sample.

But intuition does not always guarantee that a rigorous development is possible.

So the construction above provides a rigorous construction, in a discrete sample

space context, of what a random sample from a sample space represents, and also,

what n independent trials of a random variable means. And better than our intuition,
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this formality will lead the way to the corresponding ideas in the less intuitive

frameworks.

Definition 7.45

1. Given a discrete sample space S and a random variable X : S ! R, the terminology

that fXjgnj¼1 are n-independent and identically distributed (i.i.d.) random variables will

mean that X 1 ðX1;X2; . . . ;XnÞ is a random vector on S n, where for s ¼ ðs1; s2; . . . ; snÞ
A S n the component random variables are defined by XjðsÞ ¼ X ðsjÞ. In other words, the

collection fXjgnj¼1 consists of independent random variables in that the joint p.d.f.,

f ðx1; x2; . . . ; xnÞ, satisfies (7.76), and each component random variable has the same

probability density function as X. When n ¼ y, the terminology that fXjgyj¼1 are inde-

pendent and identically distributed (i.i.d.) random variables means that this is true of

fXjgnj¼1 for any n.

2. The terminology that fxjgnj¼1 is a random sample from X of size n means that there

is an s ¼ ðs1; s2; . . . ; snÞ A S n, selected according to the probability measure Pn on S
n so

that ðx1; x2; . . . ; xnÞ ¼ ðX ðs1Þ;Xðs2Þ; . . . ;X ðsnÞÞ. In practice, this sample can be gener-

ated iteratively by first selecting independent fsjgnj¼1 HS (see section 7.7 on generating

random samples), and defining ðx1; x2; . . . ; xnÞ as above.
Remark 7.46 It is standard notation in probability theory that a capital letter is used

for the a random variable, such as X, while a lowercase letter, such as x, is used to rep-

resent a realization, or sample point, of the random variable selected according to the

probabilities implied by the probability density function of X. Also note that the equiv-

alence of the approaches to a random sample in 2 of definition 7.45 above is due to the

probability measure Pn satisfying (7.7).

Sample Mean

If fXjgnj¼1 are n independent and identically distributed (i.i.d.) random variables on

S , the sample mean, denoted X̂X , is a random variable X̂X : S n ! R defined by

X̂X 1
1

n

Xn
j¼1

Xj ; ð7:77Þ

with probability density function given by f ðx1; x2; . . . ; xnÞ ¼
Qn

j¼1 f ðxjÞ, where

f ðxÞ is the p.d.f. of X .

When a specific sample is drawn or observed, that is, when fXjgnj¼1 ¼ fxjgnj¼1, the

application of (7.77) to these data yields the numerical value denoted m̂m or m in sec-

tion 3.3.2.
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The distinction here is the explicit recognition that any such observation fxjgnj¼1 is

simply based on one sample point in the sample space S n, and that in more general

terms, the calculation produces not a single and unique numerical value but only one

of many possible values that the random variable X̂X assumes on this sample space.

Considered as a random variable, it is natural to inquire into its moments, as we do

next.

Mean of the Sample Mean By definition, we have that

E½X̂X � ¼
X

ðx1;x2;...;xnÞ

1

n

Xn
j¼1

xj

 !
f ðx1; x2; . . . ; xnÞ:

This formula simplifies using (7.76) and the observation that for any xj,

X
ðx1;x2;...;xnÞ

xj
Yn
k¼1

f ðxkÞ ¼
X
xj

xj f ðxjÞ ¼ E½X �;

since
P

xk
f ðxkÞ ¼ 1 for k0 j. Combining, we get that

E½X̂X � ¼ E½X �; ð7:78Þ
provided that E½X � exists. In other words, the expected value of the sample mean is

the expected value of the original random variable X .

Variance of the Sample Mean Denoting E½X � by m, we have that

Var½X̂X � ¼ E½ðX̂X � mÞ2�

¼
X

ðx1;x2;...;xnÞ

1

n

Xn
j¼1

ðxj � mÞ
 !2

f ðx1; x2; . . . ; xnÞ:

Again using (7.76), we get

Var½X̂X � ¼ 1

n2

Xn
j¼1

ðxj � mÞ2f ðxjÞ
" #

¼ s2

n
:

This result is due to the fact that the mixed terms such as ðxj � mÞðxk � mÞ f ðxjÞ f ðxkÞ,
with j0 k, have expectation of 0, since the summations can be done sequentially.
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Summarizing, we get

Var½X̂X � ¼ s2
X

n
; ð7:79Þ

provided that s2
X exists, and correspondingly

s:d:½X̂X � ¼ sXffiffiffi
n

p : ð7:80Þ

m.g.f. of Sample Mean Noting that etX̂X ¼ Qn
j¼1 e

tXj=n, and applying the same

method as above, we get that

MX̂X ðtÞ ¼ MX
t

n

� �
 �n
; ð7:81Þ

provided that MX
t
n

� �
exists.

Sample Variance

If fXjgnj¼1 are n independent and identically distributed (i.i.d.) random variables on

S , the unbiased sample variance is defined as

V̂V ¼ 1

n� 1

Xn
j¼1

ðXj � X̂XÞ2; ð7:82Þ

where X̂X ¼ 1
n

Pn
j¼1 Xj. V̂V is again a random variable V̂V : S n ! R with a probability

density function given by f ðx1; x2; . . . ; xnÞ ¼
Qn

j¼1 f ðxjÞ, where f ðxÞ is the p.d.f. of

X . Note that the sample variance is defined with the sample mean X̂X , and not the

theoretical mean m. As we will see, this is the reason that it is necessary to use 1
n�1 in

the formula above rather than the more natural value of 1
n
.

As was the case for the sample mean X̂X , when a specific sample is drawn or

observed—that is, when fXjgnj¼1 ¼ fxjgnj¼1—the application of (7.82) to these data

yields the numerical value denoted ŝs2 or s2 in section 3.3.2, there defined with n� 1

rather than n. However, once again the perspective here is that any such observation

fxjgnj¼1 is simply one sample point in the sample space S n, and that in more general

terms, the calculation produces not a single and unique numerical value but only one

of many possible values that the random variable V̂V assumes on this sample space.

Considered as a random variable, it is natural to inquire into its moments, as we do

next.
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Mean of Sample Variance The calculation of E½V̂V � is complicated by the fact that

the random variables appear in two places in the squared terms, explicitly in the Xj

terms, and implicitly in the X̂X term. A simple trick is to write Xj � X̂X ¼ ðXj � mÞ�
ðX̂X � mÞ and X̂X � m ¼ 1

n

Pn
k¼1ðXk � mÞ, from which we get

ðXj � X̂XÞ2 ¼ ðXj � mÞ2 � 2ðXj � mÞðX̂X � mÞ þ ðX̂X � mÞ2

¼ ðXj � mÞ2 � 2

n

Xn
k¼1

½ðXj � mÞðXk � mÞ� þ 1

n2

Xn
i¼1

Xn
k¼1

½ðXi � mÞðXk � mÞ�:

Summed over j, the second and third term then combine, producing

Xn
j¼1

ðXj � X̂X Þ2 ¼
Xn
j¼1

ðXj � mÞ2 � 1

n

Xn
i¼1

Xn
k¼1

½ðXi � mÞðXk � mÞ�:

Assuming that s2 exists, and taking expectations, we get

E
Xn
j¼1

ðXj � X̂X Þ2
" #

¼ ðn� 1Þs2;

since the expectation of mixed terms in the double sum, when i0 k, is 0 because of

independence. This identity is equivalent to

E½V̂V � ¼ s2: ð7:83Þ
It is this identity that motivates the use of the term ‘‘unbiased’’ for the sample vari-

ance formula given above. It is unbiased in the sense that the expected value of this

statistic is the theoretical value of what is being estimated. In that sense, from (7.78)

it is also the case that X̂X is an unbiased estimator of the theoretical mean m1E½X �,
but this formula is never called the unbiased sample mean.

It is easy to check that if the theoretical mean, m, is known and the sample variance

defined as in (7.82) but with m rather than X̂X , then the correct coe‰cient in (7.82)

would be 1
n
, in that with this coe‰cient (7.83) would again be derived. But in most

applications this is not relevant since sampling implies limited knowledge of the the-

oretical distribution and its theoretical moments, so it may be illogical to assume that

m is known.

Remark 7.47 As it turns out, there is another calculation of sample variance that uses
1
n
in its formulation rather than 1

n�1 , and yet also uses X̂X. This particular formulation is
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known as the maximum likelihood estimator of the sample variance, and since the no-

tation is not standardized, we use

ŝs2
MLE ¼ 1

n

Xn
j¼1

ðxj � X̂XÞ2; ð7:84Þ

where X̂X ¼ 1
n

Pn
j¼1 xj. By the analysis above, if this version of a sample variance is

defined as a random variable on S n analogously to V̂V, it is biased on the small side, in

that

E½ŝs2
MLE � ¼

n� 1

n
s2: ð7:85Þ

The idea behind the MLE calculation is way ahead of our mathematical development,

but it can be presented in an intuitive way. Assume that a sample has been drawn or

observed, fxjgnj¼1, and for various reasons we believe a particular form for the p.d.f. of

the observed random variable, f ðxÞ. In this case as in many, the assumed p.d.f. is that

of the normal distribution, which is formally introduced in chapter 8 and studied in

chapter 10. This distribution will be seen to be characterized by only two moments, m

and s2. The question is then, given this assumed distribution, what estimates for m and

s2 will maximize the probability of the observed sample? In other words, What esti-

mates for m and s2 will maximize the likelihood of observing the given sample?

Since the sample p.d.f. is f ðx1; x2; . . . ; xnÞ ¼
Qn

j¼1 f ðxjÞ, as seen in (7.76), and f ðxÞ
only depends on m and s2, this question reduces to determining the values of these

parameters that maximize
Qn

j¼1 f ðxjÞ, the probability of the sample point ðx1; x2; . . . ;
xnÞ under this distributional assumption. This function to be maximized is actually a

function of the parameters m and s2, since the sample point ðx1; x2; . . . ; xnÞ is fixed

and known. Determining the maximum value of a function is an application of calculus

and will be seen in chapter 9 for one variable functions, while this particular application

with two variables requires multivariate calculus. As it turns out, the MLE estimators

for m and s2 are X̂X and ŝs2
MLE.

Variance of Sample Variance Because of (7.83) the needed calculation is that of

Var½V̂V � ¼ E½ðŝs2 � s2Þ2�, which involves some messy algebra and some determination

on the part of the analyst. To make this calculation reasonably tractable, we use the

approach in (7.45) that variance equals the second moment less the mean squared,

which becomes Var½V̂V � ¼ E½V̂V 2� � ðE½V̂V �Þ2 ¼ E½V̂V 2� � s4. From the algebra in the

derivation of the mean of the sample variance, recall that
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ðn� 1ÞV̂V ¼
Xn
j¼1

ðXj � X̂XÞ2 ¼
Xn
j¼1

Y 2
j � 1

n

Xn
i¼1

Xn
k¼1

YiYk;

where we simplify notation with Yj ¼ Xj � m. The key is that E½Yj � ¼ 0, and so in

any expression in which there is at least one Yj term to the first power, the expecta-

tion will be zero and can be ignored.

This expression squared, which equals ðn� 1Þ2V̂V 2, is then

Xn
j¼1

ðXj � X̂XÞ2
" #2

¼
Xn
j¼1

Y 2
j

" #2
� 2

n

Xn
j¼1

Y 2
j

Xn
i¼1

Xn
k¼1

YiYk þ 1

n2

Xn
i¼1

Xn
k¼1

YiYk

" #2
:

While initially ominous looking, we are only interested in determining how many

terms of each ‘‘type’’ there are. For example, the squared first expression produces a

sum of Y 2
j Y

2
k terms, which fall into two types: one if j ¼ k and another if j0 k. Any

term of the first type has expectation m4, the fourth central moment of X , and any of

the second type have expectation m2
2 ¼ s4.

Using the combinatorics discussed earlier, we have n terms of the first type and

nðn� 1Þ of the second, since every j can be paired with ðn� 1Þ-ks. Hence the first

expression becomes

E
Xn
j¼1

Y 2
j

" #2
¼ nm4 þ nðn� 1Þs4:

The second expression produces four types of terms:

Y 4
j ; Y 3

j Yi; Y 2
j Y

2
k ; Y 2

j YiYk;

where the subscripts are meant to di¤er. These terms have expectations of m4, 0, s
4,

and 0, respectively, since E½Yk� ¼ 0. The challenge is then counting the types, and all

we are concerned with is the first and third type. Again, we draw on combinatorics

and determine that there are n of the first type and nðn� 1Þ of the third. Combined,

the second expression becomes

E � 2

n

Xn
j¼1

Y 2
j

Xn
i¼1

Xn
k¼1

YiYk

" #
¼ �2m4 � 2ðn� 1Þs4:

The third expression produces five di¤erent types of terms, the four above and

YiYjYkYl . Of these five, we only need to evaluate the first and third, since all others
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have expectation of 0. Again, there are n of the first type, but for the third, the com-

binatorics for this expression are di¤erent. First o¤, ½Pn
i¼1

Pn
k¼1 YiYk�2 ¼ ½Pn

i¼1 Yi�4,
and from the multinomial formula in (7.19), the coe‰cient of every Y 2

j Y
2
k term is

4!
2!2!

¼ 6, and as there are
nðn�1Þ

2 di¤erent such terms with j0 k, the total count is

3nðn� 1Þ. Combining produces the third expression:

E
1

n2

Xn
i¼1

Xn
k¼1

YiYk

" #224 35¼ 1

n
m4 þ

3ðn� 1Þ
n

s4:

Finally, the three expressions are combined to

E
Xn
j¼1

ðXj � X̂XÞ2
" #224 35¼ nm4 þ nðn� 1Þs4 � 2m4 � 2ðn� 1Þs4 þ 1

n
m4 þ

3ðn� 1Þ
n

s4

¼ n� 2þ 1

n

� �
m4 þ ðn� 2Þðn� 1Þ þ 3ðn� 1Þ

n


 �
s4:

Dividing by ðn� 1Þ2 produces E½V̂V 2�, and subtracting ðE½V̂V �Þ2 ¼ s4 gives the final

result:

Var½V̂V � ¼ 1

n
m4 �

n� 3

nðn� 1Þ s
4; ð7:86Þ

as well as the associated result for ŝs2
MLE , interpreted as a random variable, by multi-

plying (7.86) by
ðn�1Þ2

n2
:

Var½ŝs2
MLE � ¼

ðn� 1Þ2
n3

m4 �
ðn� 1Þðn� 3Þ

n3
s4: ð7:87Þ

Other Sample Moments

Higher Order Moments Due to the messiness of estimating the central moments, as

observed for the estimates above related to the sample variance, we focus on esti-

mates of the moments m 0
k. Given an independent and identically distributed sample

fXjgnj¼1, the general higher sample moment estimation formula is

m̂m 0
k ¼

1

n

Xn
j¼1

X k
j : ð7:88Þ

The derivations of the following are assigned in exercise 13:
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E½m̂m 0
k� ¼ m 0

k; ð7:89aÞ

Var½m̂m 0
k� ¼

1

n
½m 0

2k � ðm 0
kÞ2�; ð7:89bÞ

provided that m 0
k and m 0

2k exist.

Remark 7.48 The identities in exercise 12 between theoretical moments fm 0
kg and

fmkg do not apply in the context of sample moments because, in that context, mk is typ-

ically defined relative to the sample mean X̂X and not the theoretical mean m. These for-

mulas do apply if central moments are defined relative to the theoretical mean m, but

this is impractical in most circumstances, as noted above.

Moment-Generating Function Given an independent and identically distributed

sample fXjgnj¼1, the sample moment-generating function estimation formula is

M̂MX ðtÞ ¼ 1

n

Xn
j¼1

etXj : ð7:90Þ

The function M̂MX ðtÞ can be interpreted as a random variable on S n for each t.

In exercise 34 are assigned the following:

E½M̂MX ðtÞ� ¼ MX ðtÞ; ð7:91aÞ

Var½M̂MX ðtÞ� ¼ 1

n
½MX ð2tÞ �M 2

X ðtÞ�: ð7:91bÞ

These functions are interpreted as valid for each t, provided that MX ðtÞ and MX ð2tÞ
exist.

7.6 Discrete Probability Density Functions

Clearly, a random variable X conveys some but not all of the information about a

sample space S , its complete collection of events E , and associated probability mea-

sure Pr, and it transfers this information to a collection of real numbers fxjg in the

range of the random variable. In particular, a random variable allows us to think of

the values in the range of X as ‘‘occurring’’ with certain probabilities. This is a good

way to proceed for mathematical analysis because we can then study probability den-

sity functions and their properties objectively without having to reference the context

of the original sample space or defining random variable. Indeed it is common to use
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a generic random variable X to define a given p.d.f., without reference to the defining

sample space or events or to the functional form of X , in order to provide an objec-

tive language for investigating the properties of f ðxÞ.
However, it is important to remember that the number xj occurs with probability

f ðxjÞ not in isolation but because the event defined by X�1ðxjÞ A E occurs with prob-

ability Pr½X�1ðxjÞ� in a given sample space S .
In this section we list several of the most common examples of discrete p.d.f.s. Of

course, there are infinitely many possible probability functions. In the finite case, if

fxjgnj¼1 HR and f fjgnj¼1 is any collection of real numbers, then one can define a

p.d.f. by

f ðxjÞ ¼ j fjjPn
k¼1 j fkj

:

In the countably infinite case, if fxjgyj¼1 HR and f fjgyj¼1 A l1 as defined in chapter

6, then a p.d.f. can analogously be defined by

f ðxjÞ ¼ j fjjPy
k¼1 j fkj

:

Consequently any l1-sequence can be used to define a p.d.f. in a countably infinite

context. Of course, we use j fjj to ensure that f ðxjÞb 0 for all j. In either the finite

or countable case, the associated c.d.f.s are then defined by (7.22).

While these general constructions are useful to exemplify the range of potential

p.d.f.s and some of their properties, there is a far more limited number of examples

found in common practice.

7.6.1 Discrete Rectangular Distribution

The simplest probability density that can be imagined is one that assumes the same

value on every sample point. The domain of this distribution is arbitrary but is con-

ventionally taken as
j

n

n on
j¼1

or
j

nþ1

n on
j¼0

, so in either case Dmn½ f ðxÞ�H ½0; 1�, where
‘‘Dmn’’ denotes the domain of the function as in definition 2.23. Rather than present

two sets of formulas, we focus on the former definition and leave it as a general exer-

cise to translate these to the latter setting if needed.

For a given n, the p.d.f. of the discrete rectangular distribution, sometimes called

the discrete uniform distribution, is defined on
j

n

n on
j¼1

by

f R j

n

� �
¼ 1

n
; j ¼ 1; 2; . . . ; n: ð7:92Þ
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It is a relatively easy calculation to derive the mean and variance of this distribu-

tion, using the formulas

Xn
j¼1

j ¼ nðnþ 1Þ
2

;

Xn
j¼1

j2 ¼ nðnþ 1Þð2nþ 1Þ
6

;

which can be easily proved by mathematical induction. Implementing the necessary

algebra, we derive

mR ¼ nþ 1

2n
; ð7:93aÞ

s2
R ¼ n2 � 1

12n2
: ð7:93bÞ

Similarly the moment-generating function can be calculated as the sum of a geomet-

ric series, since 1
n

Pn
j¼1 e

jt=n ¼ 1
n

Pn
j¼1ðet=nÞ j , producing

MRðtÞ ¼ e½1þð1=nÞ�t � et=n

nðet=n � 1Þ : ð7:94Þ

It is apparent from (7.93) that as n ! y, mR ! 1
2 and s2

R ! 1
12 . Less apparent is

what happens in the limit for the moment-generating function, due to the denomina-

tor, as it is clear that the numerator approaches et � 1. For the denominator we once

again use the series expression for the exponential, to be proved in chapter 9, that

et=n ¼Py
j¼0

t
n

� � j 1
j! . From this the denominator is seen to equal tþ hnðtÞ

n
, where hnðtÞ

is bounded as n ! y, so this denominator is seen to approach t. Hence as n ! y,

MRðtÞ ! e t�1
t

. As will be seen in chapter 10, these limiting values are the correspond-

ing expressions for the continuous counterpart to the rectangular distribution defined

on ½0; 1�.
One of the most important applications of this distribution will be to the problem

of generating random samples from other distributions, a problem that is addressed

in section 7.7 below.

This distribution can also be defined on an arbitrary closed interval ½a; b�, general-
izing the model above defined on ½0; 1�. The probability density is now defined on
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aþ ðb� aÞ j

n

n on

j¼1
with values as in (7.92), and from (7.55) and (7.56) or directly we

obtain

mRa; b
¼ n� 1

2n
aþ nþ 1

2n
b; ð7:95aÞ

s2
Ra; b

¼ ðb� aÞ2 n
2 � 1

12n2
: ð7:95bÞ

Limits as n ! y are then mRa; b
¼ aþb

2
and s2

Ra; b
¼ ðb�aÞ2

12
.

7.6.2 Binomial Distribution

For a given p, 0 < p < 1, the standard binomial random variable is defined as

X B
1 : S ! f0; 1g, where the associated p.d.f. is defined on f0; 1g by f ð1Þ ¼ p,

f ð0Þ ¼ p 0 1 1� p. This is often economically expressed as

X B
1 ¼ 1; Pr ¼ p,

0; Pr ¼ p 0,

�
or to emphasize the associated p.d.f.,

f ðX B
1 Þ ¼

p; X B
1 ¼ 1,

p 0; X B
1 ¼ 0.

�
ð7:96Þ

A simple application for this random variable is the single coin flip so that S ¼
fH;Tg, and where a probability measure has been defined on S by PrðHÞ ¼ p and

PrðTÞ ¼ p 0 so that X B
1 ðHÞ1 1 and X B

1 ðTÞ1 0. This random variable is sometimes

referred to as a Bernoulli trial, and the associated c.d.f. as the Bernoulli distribution,

after Jakob Bernoulli (1654–1705).

This standard formulation is then easily transformed to a shifted standard binomial

random variable: Y B
1 ¼ bþ ða� bÞX B

1 , which is defined as

Y B
1 ¼ a; Pr ¼ p,

b; Pr ¼ p 0,

�
where the example of a ¼ 1, b ¼ �1, is common in discrete stock price modeling.

Similarly this model can be extended to accommodate sample spaces of n-coin

flips, producing the general binomial random variable, which now has two parame-

ters, p and n A N. That is, S ¼ fðF1F2 . . .FnÞ j all Fj ¼ H or Tg, and X B
n is defined

as the ‘‘head-counting’’ random variable:

290 Chapter 7 Discrete Probability Theory



X B
n ðF1F2 . . .FnÞ ¼

Xn
j¼1

X B
1 ðFjÞ:

It is apparent that X B
n assumes values 0; 1; 2; . . . ; n, and that using the combinatorial

analysis above, the associated probabilities are given by

X B
n ¼ j;Pr ¼ n

j

� �
p jð1� pÞn�j; j ¼ 0; 1; . . . ; n;

�
or to emphasize the associated p.d.f.,

f Bð jÞ ¼ n

j

� �
p jð1� pÞn�j ; j ¼ 0; 1; . . . ; n: ð7:97Þ

To derive these probabilities, we observe that if ðF1F2 . . .FnÞ A S is any sample

point with j Hs, then PrðF1F2 . . .FnÞ ¼ p jð1� pÞn�j. Moreover, for any j, there are
n
j

� 	
such sample points. Consequently the event ½X B

n ��1ð jÞ in E has probability as

given in (7.97). Of course,
Pn

j¼0 f Bð jÞ ¼ 1 by the binomial theorem in (7.15) with

a ¼ p and b ¼ p 0, since then aþ b ¼ 1.

Finally, the mean, variance and moment-generating function of f Bð jÞ are easier to
handle using the fact, as was seen above, that X B

n ¼Pn
j¼1 X

B
1j , where fX B

1j g are n in-

dependent, identically distributed standard binomials. For the standard binomial we

readily obtain

mB ¼ p; s2
B ¼ pq; MBðtÞ ¼ pet þ q: ð7:98Þ

Using the method of independent sums as seen in section 7.5.1 above on moments,

also summarized in (7.38), (7.57), and (7.69), produces for any n the moments of the

general binomial:

mB ¼ np; s2
B ¼ npq; MBðtÞ ¼ ðpet þ qÞn: ð7:99Þ

Note that the formulas in (7.99) at first appear inconsistent with those from the

preceding section on the sample mean. This is because here we are working with

a simple summation, while the earlier analysis was applied to the average of a

summation.

It is sometimes necessary to be able to determine the mode of this distribution,

defined as the value of j for which f Bð jÞ is maximized, and which we denote by ĵj.

We now show that the mode is any integer that satisfies

pðnþ 1Þ � 1a ĵja pðnþ 1Þ; ð7:100Þ
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so in general, it is possible to have two modes, and this occurs only when pðnþ 1Þ is
an integer. Otherwise, ĵj is unique.

This result is derived from the identity

fBð j þ 1Þ ¼ pðn� jÞ
ð1� pÞð j þ 1Þ fBð jÞ:

From this formula it is apparent that fBð j þ 1Þb fBð jÞ if and only if
pðn� jÞ

ð1�pÞð jþ1Þ b 1.

A bit of algebra produces that this occurs when ja pðnþ 1Þ � 1. In other words, the

last j for which fBð j þ 1Þb fBð jÞ, and the value of j that maximizes fBð j þ 1Þ satis-
fies ja pðnþ 1Þ � 1. From that point forward these probabilities begin to decrease.

So the mode must satisfy ĵj ¼ j þ 1, and from this analysis we conclude that

ĵja pðnþ 1Þ.
Now, if ĵj � 1 ¼ pðnþ 1Þ � 1 is an integer, then this coe‰cient ratio is exactly

1. Hence fBð ĵj � 1Þ ¼ fBð ĵjÞ, and the binomial has two modes, one at each of

pðnþ 1Þ � 1 and pðnþ 1Þ.
7.6.3 Geometric Distribution

For a given p, 0 < p < 1, the geometric distribution is defined on the nonnegative

integers, and its p.d.f. is given by

f Gð jÞ ¼ pð1� pÞ j; j ¼ 0; 1; 2; . . . : ð7:101Þ
This distribution is related to the standard binomial distribution in a natural way.

The underlying sample space can be envisioned as the collection of all coin-flip

sequences that terminate on the first H. So

S ¼ fH;TH;TTH ;TTTH; . . .g;
and the random variable X is defined as the number of flips before the first H. Con-

sequently f Gð jÞ above is the probability in S of the sequence of j-Ts and then 1-H,

that is, the probability that the first H occurs after j-Ts.

Remark 7.49 The geometric distribution is sometimes parametrized as

f G 0 ð jÞ ¼ pð1� pÞ j�1; j ¼ 1; 2; . . . ;

and then represents the probability of the first head in a coin flip sequence appearing

on flip j. These representations are conceptually equivalent, but mathematically distinct

due to the shift in domain. The result is that the moments for f G 0 ð jÞ di¤er from those

of f Gð jÞ in that for mb 1,
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m 0
mð f GÞ ¼ ð1� pÞm 0

mð f G 0 Þ;

although coincidentally the variance remains the same.

Note that
Py

j¼0 f Gð jÞ ¼ 1 as this geometric series can be summed with the meth-

ods of chapter 6. That is,

Xy
j¼0

ð1� pÞ j ¼ 1

p
:

The mean, variance, and moment-generating function of the geometric distribu-

tion can be calculated using various approaches, but the easiest of these to derive,

surprisingly, is the m.g.f. as this is just another geometric series. Specifically:

MGðtÞ ¼ p
Xy
j¼0

ð1� pÞ je jt ¼ p
Xy
j¼0

½ð1� pÞet� j ;

which is convergent by the ratio test if ð1� pÞet < 1. Using the usual geometric se-

ries approach, we obtain

MGðtÞ ¼ p

1� ð1� pÞet : ð7:102Þ

The mean and variance can be derived from this expression with a bit of calculus

from chapter 9 using (7.65), or directly (see exercise 15). This produces, with p 0 1
1� p,

mG ¼ p 0

p
; s2

G ¼ p 0

p2
: ð7:103Þ

7.6.4 Multinomial Distribution

The multinomial distribution reflects the combinatorial analysis in section 7.3.2

above for general orderings with r-subset types. For given fpjgrj¼1, 0 < pj < 1 withPr
j¼1 pj ¼ 1, and fixed n A N, the multinomial p.d.f. is defined on every integer r-

tuple, ðn1; n2; . . . ; nrÞ, with 0a nj and
P

nj ¼ n, by

f Mðn1; n2; . . . ; nrÞ ¼ n!pn1
1 pn2

2 . . . pnr
r

n1!n2! . . . nr!
: ð7:104Þ
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There are several intuitive models for this distribution. One can imagine that at

target practice, a girl scout with n arrows is shooting down-field at r� 1 targets of

di¤erent sizes, and has probability pj of hitting the jth target, and probability pr ¼
1�Pr�1

j¼1 pj of missing them all. The sample space is the collection of all r-tuples of

results, where each nj denotes the number of arrows hitting the respective target

(where j ¼ r denotes hitting the ground).

An alternative model can be achieved with the binomial model in (7.97). Now

imagine that N sequences of n coin flips are to be generated. The question becomes,

how many of these sequences will end up in each of the r1 nþ 1 ‘‘head-count buck-

ets’’ implied by this model? Better said, for any nonnegative ðnþ 1Þ-tuple: ðN0;N1;

N2; . . . ;NnÞ with
P

Nj ¼ N, what is the probability that exactly Nj sequences will

have j-Hs for all j? In this application the probability of ending up in the j-heads

bucket is given by pj ¼ n
j

� 	
p jð1� pÞn�j, j ¼ 0; 1; . . . ; n.

In either sample space interpretation, we develop the p.d.f. formula in (7.104)

using the same approach as for the binomial. For any r-tuple, ðn1; n2; . . . ; nrÞ, the
probability of any specific such sequence is pn1

1 pn2
2 . . . pnr

r . We now need to count

how many of the sample points in the sample space have exactly this cell count.

From section 7.3.2 on general orderings with r-subset types, the number is n!
n1!n2!...nr!

,

so the probability of the event defined by having exactly this many of each type is the

product of this count factor with the probability above, which is formula (7.104).

Note thatX
n1;n2;...;nr

f Mðn1; n2; . . . ; nrÞ ¼ 1;

by the multinomial theorem in (7.19), since
Pr

j¼1 pj ¼ 1; hence ½Pr
j¼1 pj�n ¼ 1.

It is not di‰cult to show that if ðN1;N2; . . . ;NrÞ is multinomial, with parameters

fpjgrj¼1 and n, then each of the variables Nj has a binomial distribution. For exam-

ple, calculating the marginal density of N1, we have

f ðn1Þ ¼
X

n2;...;nr

n!pn1
1 pn2

2 . . . pnr
r

n1!n2! . . . nr!

¼ n!pn1
1

ðn� n1Þ!n1!
X

n2;...;nr

ðn� n1Þ!pn2
2 . . . pnr

r

n2! . . . nr!
;

where this summation is over all ðr� 1Þ-tuples, ðn2; . . . ; nrÞ, with
Pr

j¼2 nj ¼ n� n1.

Now this summation has exactly the structure of a multinomial distribution, with
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parameters fpjgr
j¼2 and n� n1 ¼

Pr
j¼2 nj, but it cannot add up to 1 by the multi-

nomial theorem because
Pr

j¼2 pj ¼ 1� p1 0 1. This can be fixed by dividing each

such pj by 1� p1, so the summation is identically 1. Fixing this division outside the

summation proceeds as follows:

f ðn1Þ ¼ n!pn1
1 ð1� p1Þn�n1

ðn� n1Þ!n1!
X

n2;...;nr

ðn� n1Þ! p2
1�p1

� 	n2
. . .

pr
1�p1

� 	nr
n2! . . . nr!

¼ n

n1

� �
pn1
1 ð1� p1Þn�n1 ;

which is the binomial density with parameters n and p1. Consequently we know that

every variable is similarly binomial, and by (7.99),

E½Nj� ¼ njpj; Var½Nj � ¼ njpjð1� pjÞ: ð7:105Þ
In the same way the marginal density of any group of distinct variables can be

shown to be multinomial. For example, with two variables,

f ðn1; n2Þ ¼
X

n3;...;nr

n!pn1
1 pn2

2 . . . pnr
r

n1!n2! . . . nr!

¼ n!pn1
1 pn2

2 ð1� p1 � p2Þn�n1�n2

n1!n2!

�
X

n2;...;nr

ðn� n1 � n2Þ! p3
1�p1�p2

� 	n3
. . .

pr
1�p1�p2

� 	nr
n3! . . . nr!

¼ n!pn1
1 pn2

2 ð1� p1 � p2Þn�n1�n2

n1!n2!ðn� n1 � n2Þ! :

This is a multinomial with parameters fp1; p2; 1� p1 � p2g and n. A similar formula

is derived for f ðni; njÞ, i0 j. This joint p.d.f. is used in exercise 35 to derive the cal-

culation that

Cov½Ni;Nj� ¼ �npipj: ð7:106Þ
Finally, the moment-generating function of the multinomial distribution can be

easily derived with the help of the multinomial theorem in (7.19). Using the definition
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in (7.68), where as above the summation is over all nonnegative r-tuples, ðn1; n2; . . . ;
nrÞ, with

P
nj ¼ n, produces

MMðtÞ ¼
X

ðn1;n2;...;nrÞ
eT niti

n!pn1
1 pn2

2 . . . pnr
r

n1!n2! . . . nr!

¼
X

ðn1;n2;...;nrÞ

n!ðp1et1Þn1 . . . ðpretrÞnr
n1!n2! . . . nr!

:

Finally, applying the multinomial theorem, we obtain

MMðtÞ ¼
Xr
j¼1

pje
tj

 !n
: ð7:107Þ

The characteristic function is derived analogously, using (7.75).

7.6.5 Negative Binomial Distribution

The name of this distribution calls out yet another connection to the binomial dis-

tribution, and here we generalize the idea behind the geometric distribution. There

f Gð jÞ was defined as the probability of j-Ts before the first H. The negative bi-

nomial, f NBð jÞ introduces another parameter, k, and is defined as the probability

of j-Ts before the kth-H. So when k ¼ 1, the negative binomial is the same as the

geometric. With that as an introduction, the p.d.f. is defined with parameters p,

0 < p < 1, and k A N as follows:

f NBð jÞ ¼ j þ k � 1

k � 1

� �
pkð1� pÞ j; j ¼ 0; 1; 2; . . . : ð7:108Þ

This formula can be derived analogously to the geometric by considering in the

sample space of all coin-flip sequences, those that are terminated on the occurrence

of the kth-H. The probability of any such sequence with j-Ts and k-Hs is of course

pkð1� pÞ j . Next we must determine the number of such sequences in the sample

space. First o¤, since every such sequence terminates with an H, there are only the

first j þ k � 1 positions that need to be addressed. Each such sequence is then deter-

mined by the placement of the first ðk � 1Þ-Hs, and so the total count of these

sequences is jþk�1
k�1

� �
. Multiplying the probability and the count, we have (7.108).

As stated above, the negative binomial generalizes the geometric distribution and

reduces to that distribution when the parameter k ¼ 1. This is easily confirmed by
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comparing (7.108) with k ¼ 1 to (7.101), recalling that j
0

� �¼ 1 for all jb 0 since

0!1 1.

Finally, to demonstrate that
Py

j¼0 f NBð jÞ ¼ 1, which is equivalent toPy
j¼0

jþk�1
k�1

� �ð1� pÞ j ¼ p�k, we establish the following proposition. To simplify no-

tation, we define q ¼ 1� p.

Proposition 7.50 For 0 < q < 1 and integer kb 1,

ð1� qÞ�k ¼
Xy
j¼0

j þ k � 1

k � 1

� �
q j: ð7:109Þ

Proof We demonstrate this by induction, but first we must confirm that the series

on the right of (7.109) actually converges. Defining aj ¼ jþk�1
k�1

� �
q j, we derive the

absolute value of the ratio of successive terms as

ajþ1

aj





 



¼ j þ k

j þ 1
jqj:

By the ratio test this series converges absolutely for jqj < lim supj!y
jþ1

jþk
¼ 1. As an

absolutely convergent series, we are now able to manipulate the terms freely.

We use an induction proof, and first note that for k ¼ 1, (7.109) reduces to

ð1� qÞ�1 ¼Py
j¼0 q

j, which is easily derived as a geometric summation from chapter

6. Next assume that this formula is true for a given k, as well as for k ¼ 1. Then we

have that for k þ 1,

ð1� qÞ�k�1 ¼ ð1� qÞ�1ð1� qÞ�k

¼
Xy
i¼0

qi
Xy
j¼0

j þ k � 1

k � 1

� �
q j

¼
Xy
i¼0

Xy
j¼0

j þ k � 1

k � 1

� �
q jþi

¼
Xy
l¼0

alq
l ;

where the coe‰cient al is the sum of all the coe‰cients in the prior double sum

for which i þ j ¼ l. So for given lb 0, al ¼
P l

j¼0
jþk�1
k�1

� �
, since for each such j there

is a corresponding i ¼ l � j. We finally need to show that al ¼ lþk
k

� �
, as this is the

7.6 Discrete Probability Density Functions 297



appropriate coe‰cient in (7.109) for exponent k þ 1. To do this, we apply (7.16) to

each term with j > 0. We conclude that

Xl

j¼0

j þ k � 1

k � 1

� �
¼ 1þ

Xl

j¼1

j þ k

k

� �
� j þ k � 1

k

� �
 �

¼ 1þ
Xl

j¼1

j þ k

k

� �
�
Xl�1

j¼0

j þ k

k

� �

¼ l þ k

k

� �
;

as was to be proved. n

Moments of the negative binomial are di‰cult to develop directly, as could be pre-

dicted from the length of the justification that
Py

j¼0 f NBð jÞ ¼ 1. However, like the

geometric distribution, the moment-generating function is easily manageable using

(7.109), as we now demonstrate.

By definition,

MNBðtÞ ¼
Xy
j¼0

j þ k � 1

k � 1

� �
pkð1� pÞ je jt

¼ pk
Xy
j¼0

j þ k � 1

k � 1

� �
½ð1� pÞet� j :

Comparing the summation here with that in (7.109), we see that as long as q1
ð1� pÞet < 1, it must be the case that

Py
j¼0

jþk�1
k�1

� �½ð1� pÞet� j ¼ ð1� qÞ�k. Com-

bining, we obtain

MNBðtÞ ¼ p

1� ð1� pÞet
� �k

: ð7:110Þ

Using this formula and (7.65) with the tools of chapter 9 produces the following

results, with q1 1� p:

mNB ¼ kq

p
; s2

NB ¼ kq

p2
: ð7:111Þ
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7.6.6 Poisson Distribution

The Poisson distribution is named for Siméon-Denis Poisson (1781–1840), who dis-

covered its p.d.f. and its properties. This distribution is characterized by a single pa-

rameter l > 0, and its p.d.f. is defined on the nonnegative integers by

f Pð jÞ ¼ e�l l
j

j!
; j ¼ 0; 1; 2; . . . : ð7:112Þ

That
Py

j¼0 f Pð jÞ ¼ 1 is an immediate application of (7.63), to be proved in chapter

9, since from that formula is produced el ¼Py
j¼0

l j

j!
. Unfortunately, in order to de-

velop other properties, we need to make an assumption of another result that will not

be formally proved until chapter 9.

One important application of the Poisson distribution is that it provides a good ap-

proximation to the binomial distribution when the binomial parameter p is ‘‘small.’’

Specifically, the binomial probabilities in (7.97) can be approximated by the Poisson

probabilities above, with l ¼ np. Then for p small, and n large,

n

j

� �
p jð1� pÞn�j F e�np ðnpÞ j

j!
: ð7:113Þ

This approximation was far more useful in pre-computer days, and comes from the

result:

Proposition 7.51 For l ¼ np fixed, then as n ! y, binomial probabilities satisfy

n

j

� �
p jð1� pÞn�j ! e�l l

j

j!
: ð7:114Þ

In other words, as n increases and p decreases so that the product np is fixed and equal

to l, each of the probabilities of the binomial distribution will converge to the respective

probabilities of the Poisson distribution.

Proof First o¤,

n

j

� �
p jð1� pÞn�j ¼ nðn� 1Þ . . . ðn� j þ 1Þ

j!

l

n

� �j

1� l

n

� �n
1� l

n

� ��j

¼ nðn� 1Þ . . . ðn� j þ 1Þ
n j

l j

j!
1� l

n

� �n
1� l

n

� ��j

:
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Now the second term is fixed and independent of n, and the last is seen to converge

to 1 as n ! y, as the exponent �j is fixed. The first term equals the fixed product of

j-terms
Q j�1

k¼0 1� k
n

� �
, and this product also converges to 1. The major subtlety here,

and one we will not prove until chapter 9, is the result that for any real number l,

we have that 1� l
n

� �n ! e�l as n ! y. With that limit assumed, the proposition is

proved. n

Remark 7.52 The requirement that p be small is typically understood as the condition

that p < 0:1, or by symmetry, p > 0:9, while n large is understood as nb 100 or so.

Another important property of the Poisson distribution is that it is the unique

p.d.f. that characterizes arrivals during a given period of time under reasonable and

frequently encountered assumptions. For example, the model might be one of auto-

mobile arrivals at a stop light or toll booth, telephone calls to a switchboard, internet

searches to a server, radio-active particles to a Geiger counter, insurance claims of

any type (injuries, deaths, automobile accidents, etc.) from a large group of policy-

holders, defaults from a large portfolio of loans or bonds, and so forth.

The required assumptions about such arrivals are that:

1. Arrivals in any interval of time are independent of arrivals in any other distinct

interval of time.

2. For any interval of time of length 1
n
, measured in fixed units of time, the probabil-

ity of one arrival is l
n
þ k1

n2 as n ! y for some constants l and k1.

3. The probability of two or more arrivals during any one of n intervals of time of

length 1
n
can be ignored as n ! y

We now show that under these conditions, if f ð jÞ denotes the probability of j

arrivals during this unit interval of time, then with l defined from assumption 2,

f ð jÞ ¼ f Pð jÞ:
As will be seen below, the parameter l in the Poisson p.d.f. equals mP and hence in

this context the average number of arrivals during one unit of time.

The derivation begins by dividing the unit time interval into n-parts. Then

f ð jÞ ¼ f1ð jÞ, where f1ð jÞ denotes the probability of j-arrivals with at most one ar-

rival in each subinterval, since by assumption 3 we can ignore in the limit the event

that 2 or more arrivals occur in any subinterval. We then have that f1ð jÞ is a general

binomial probability because of the interval independence assumption in 1, and it

equals the probability of one arrival in j-intervals, and none in ðn� jÞ-intervals.
This binomial probability is given in assumption 2. With the appropriate binomial

coe‰cient we obtain
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f1ð jÞ ¼ n

j

� �
l

n
þ k1

n2

� �j

1� l

n
� k1

n2

� �n�j

:

Using the same approach as in proposition 7.51, we derive that f1ð jÞ ! f Pð jÞ as
n ! y. Here, however, we have that p ¼ l

n
þ k1

n2
, so np ¼ lþ k1

n
, and we require a

generalized version of the above unproved fact that 1� l
n
� k1

n2

� 	n
! e�l. In other

words, the probability adjustment of k1
n2 is irrelevant in this limit as will be demon-

strated in chapter 9.

Remark 7.53 In many applications l is defined as the average number of arrivals in

a unit of time such as a minute, a month, or a year, depending on the application, and

then the appropriate parameter for a period of length T-units of time is l 0 ¼ lT for

any T.

Turning next to expectations, we note that the moment-generating function is

somewhat easier to derive than are the mean and variance. Specifically, MPðtÞ ¼
e�l
Py

j¼0
l j

j!
e jt ¼ e�l

Py
j¼0

ðle tÞ j

j!
, where this summation is recognizable from (7.63) as

ele
t

. Consequently we obtain

MPðtÞ ¼ elðe
t�1Þ: ð7:115Þ

The mean and variance of the Poisson can then be derived from the m.g.f. or by a

direct method assigned in exercise 16:

mP ¼ l; s2
P ¼ l: ð7:116Þ

7.7 Generating Random Samples

In certain contexts random samples are observed, such as the daily market close

prices, the periodic returns of a given security or investment index, the weekly rain-

fall in a given forest, the height measurements of girls upon their fourteenth birthday,

or the number of hits on a Geiger counter in 30 seconds, or the number of bond

defaults in a year, or the proportion of males just turning 65 years of age that

will survive one year. Indeed the world is full of observations that can be construed

by the observer as representing random sample points from an unknown probability

distribution. The mathematical discipline of statistics concerns itself with the collec-

tion of such data, as well as the analysis and interpretation of these data.

On the other hand, past observations, often with a healthy dose of intuition and

sometimes mathematical convenience, can lead one to assume that a given random

variable of interest is in fact governed by a given probability density function. For
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example, an individual bond default or death could logically be assumed to be mod-

eled by a standard binomial distribution, or the number of bond defaults or deaths

perhaps modeled by a general binomial distribution or a Poisson approximation,

while the average of many collections of observed random variables may be assumed

to be normally distributed (see chapter 8). Such distributional assumptions can then

be ‘‘calibrated’’ to observed data by choosing the distribution’s parameters appropri-

ately, or calibrated to characteristics assumed to hold in the future.

Once such a transition is made, from observing a random variable to assuming

that the given random variable is governed by a given p.d.f., it is possible in theory

to generate additional samples that can be studied. Such generated samples are used

for insights that may not be possible based on observable data, often due to the

sparseness of the observations or because one assumes that the p.d.f.s parameters in

the future will di¤er from those underlying past observations.

For example, Chebyshev’s inequality discussed in the next chapter assures that it is

very unlikely to observe a random variable that is far from its mean when measured

in units of standard deviations, but for many applications in finance, it is exactly the

extreme events that are of most interest in the modeling. As another example, a mar-

ket model calibrated during a bear market would need to have parameters modified

to be applicable in a bull market.

So while the assumed p.d.f. has the potential to provide all the details on such ex-

treme and other events neither observed nor perhaps observable, it does so with the

inherent risk to the investigator that in most applications, such a p.d.f., is, after all,

only an assumption. Nature almost never truly reveals underlying p.d.f.s nor prom-

ises to keep the parameters in any p.d.f.s constant. Nature doesn’t even commit to

using p.d.f.s, but in practice, it is convenient to assume such a commitment has

been made, and to be mindful of the inherent risks of such an assumption.

That said, the purpose of this section is to present a very handy result with imme-

diate application to the generation of random samples of the values of any random

variable, given an assumed probability density function. First a definition.

Definition 7.54 A collection frjgnj¼1 H ½0; 1� is a uniformly distributed random sample

if:

1. For any subinterval ha; biH ½0; 1�, where h i is intended to mean open, closed or

mixed, Pr½rj A ha; bi� ¼ b� a.

2. For any collection of subintervals fhaj ; bjignj¼1, haj; bjiH ½0; 1� for all j,

Pr½rj A haj; bji for all j� ¼
Yn
j¼1

ðbj � ajÞ: ð7:117Þ
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It should be noted that part 1 of definition 7.54 implies that for any given a A ½0; 1�,
Pr½r ¼ a� ¼ 0. The term ‘‘uniform’’ means that the probabilities governing the loca-

tion of each rj value are proportional to the length of the interval in which such a

value is sought. In addition the use of ‘‘random’’ is identical with that given in (7.9),

where the probability of a joint event equals the product of the probabilities of the

individual events. This is the essence of (7.117).

Remark 7.55 This model can be imagined as the limiting situation for the discrete

uniform p.d.f. as n ! y. This is because as n ! y, while the probabilities of individ-

ual points decrease to 0 under the discrete uniform p.d.f., the total probability of r A
ha; bi approaches b� a. In theory, however, the notion of uniformly distributed ran-

dom sample is intended as a notion of continuous probability theory, as was the case

noted above for the normal distribution. But, in practice, there is little di¤erence be-

tween the uniform distribution above and the discrete uniform distribution for n large.

Indeed all computers work in finite decimal (or binary) point precision, so in a given

application, they are incapable of distinguishing x from xþ 10�m for mbM, where

M is generally about 16 or so. So with nb 10M, the discrete uniform and continuous

uniform are identical to your computer.

The result in this section is simply that if frjgnj¼1 H ½0; 1� is a uniformly distributed

random sample, then fF�1ðrjÞgnj¼1 ¼ fXjgnj¼1 will be a random sample of the random

variable X . In other words, fXjgnj¼1 are independent, identically distributed random

variables in the sense of (7.34). So the problem of generating a random sample for

any discrete random variable can be reduced to the problem of generating a uni-

formly distributed random sample from the interval ½0; 1�, which is a problem that is

solved in virtually any mathematical or calculation software.

The inverse distribution function of a discrete random variable, F�1ðrÞ, is defined:
Definition 7.56 Let X be a random variable defined on a discrete sample space S with

range fxjg and cumulative distribution function F ðxÞ. Then for r A R,

F�1ðrÞ ¼ minfxj j raFðxjÞg: ð7:118Þ
Example 7.57 For simplicity, let X denote the binomial random variable,

f ðxÞ ¼ 0:25; x ¼ 0;

0:75; x ¼ 1;

�
with distribution function
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F ðxÞ ¼
0; x < 0;

0:25; 0a x < 1;

1:0; 1a x:

8<:
The graph of F ðxÞ is seen in figure 7.2.

From (7.118) the inverse distribution function is defined as

F�1ðrÞ ¼ 0; 0a ra 0:25;

1; 0:25 < ra 1:0:

�
So, if frjgnj¼1 is a uniformly distributed sample from the interval ½0; 1�, then for any rj ,

Pr½rj A ½0; 0:25�� ¼ 0:25, and hence Pr½F�1ðrjÞ ¼ 0� ¼ 0:25. Similarly Pr½rj A ð0:25; 1:0��
¼ Pr½rj A ½0:25; 1:0�� ¼ 0:75. Hence Pr½F�1ðrjÞ ¼ 1� ¼ 0:75.

The proof of a simpler version of the general statement follows identically with this

example, and is presented for completeness. By ‘‘simpler’’ is meant that we assume

that the range of the random variable, which equals the domain of the probability

density function, is sparse, meaning it has no accumulation points. The general state-

ment and proof will then follow.

Proposition 7.58 Let X be a discrete random variable on a sample space S with

sparse range fxjg and distribution function FðxÞ. Then, if frjgnj¼1 H ½0; 1� is a uni-

formly distributed random sample, fF�1ðrjÞgnj¼1 is a random sample of X in the sense

of (7.34).

Figure 7.2
Binomial c.d.f.
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Proof If the collection fxjg is sparse and hence has no accumulation points, then

enumerating in increasing order, we have that for any rj 0 0 there is a unique xk
so that rj A ðF ðxkÞ;F ðxkþ1Þ�. Since Pr½rj ¼ 0� ¼ 0, we ignore this case. Now, since

F�1ðrjÞ ¼ xkþ1, we have that by the definition of uniformly distributed sample,

Pr½F�1ðrjÞ ¼ xkþ1� ¼ Pr½rj A ðF ðxkÞ;Fðxkþ1Þ�� ¼ Fðxkþ1Þ � FðxkÞ ¼ f ðxkþ1Þ:
In other words, through F�1, a uniformly distributed sample is transformed into a

collection of outcomes of X with the correct probabilities. To demonstrate indepen-

dence of fF�1ðrjÞgnj¼1, let any collection fxkjgnj¼1 be given; then

f ðxk1 ; xk2 ; . . . ; xknÞ ¼ Pr½F�1ðr1Þ ¼ xk1 ;F
�1ðr2Þ ¼ xk2 ; . . . ;F

�1ðrnÞ ¼ xkn �
¼ Pr½r1 A ðFðxk1�1Þ;Fðxk1Þ�; . . . ; rn A ðF ðxkn�1Þ;F ðxknÞ��

¼
Yn
j¼1

½Fðxkj Þ � F ðxkj�1Þ�

¼
Yn
j¼1

f ðxkj Þ;

where the third equality comes from the definition of frjgnj¼1 as a uniformly distrib-

uted random sample. n

Example 7.59 To generate a random sample of Poisson variables with l ¼ 2, we first

calculate the appropriate half-open intervals for the r-values. Let F ðnÞ ¼Pn
j¼0 e

�2 2 j

j!

for n ¼ 0; 1; 2; . . . and define the associated half-open intervals: In ¼ ðF ðn� 1Þ;F ðnÞ�,
for n ¼ 0; 1; 2; . . . , where we note that Fð�1Þ ¼ 0 by definition. Then the length of In
is given by jInj ¼ FðnÞ � Fðn� 1Þ ¼ f ðnÞ1 e�2 2 n

n! , and it is clear that
Py

j¼0 jIjj ¼Py
j¼0 f ðnÞ ¼ 1. For any collection frjgnj¼1 H ½0; 1� generated using common software

such as Randð Þ in Excel, the random sample of Poisson variables fF�1ðrjÞgnj¼1 are

defined by

F�1ðrjÞ ¼ n if rj A In:

Note that if the range of the random variable fxjg has accumulation points, the

proof above becomes compromised. For example, imagine a discrete random vari-

able with range equal to the rational numbers in ½0; 1�, ordered in some way. In this

case F ðxÞ is well defined as in (7.22), but it is no longer true that fxjg can be enu-

merated in increasing order, nor is it true that for any rj 0 0 there is a unique xk so
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that rj A ðF ðxkÞ;F ðxkþ1Þ�. The implication of this observation is not that the conclu-

sion of the proposition above is false in this case, but that a somewhat more subtle

argument is needed to demonstrate its truth.

Proposition 7.60 Let X be a discrete random variable on a sample space S , with
range fxkg, and distribution function F ðxÞ. Then, if frjgnj¼1 H ½0; 1� is a uniformly dis-

tributed random sample, fF�1ðrjÞgnj¼1 is a random sample of X in the sense of (7.34).

Proof Let xk be given. As above, our first goal is to show that Pr½F�1ðrjÞ ¼ xk� ¼
f ðxkÞ. Consider the half-open interval about xk, defined by In ¼ xk � 1

n
; xk þ 1

n

� �
.

Now, by (7.118), for r A ½0; 1�, F�1ðrÞ A In if and only if xk � 1
n
< minfxj j raFðxjÞg

a xk þ 1
n
. That is, F�1ðrÞ A In if and only if,

r A F xk � 1

n

� �
;F xk þ 1

n

� �
 �
:

So by the definition of uniformly distributed sample,

Pr½F�1ðrÞ A In� ¼ F xk þ 1

n

� �
� F xk � 1

n

� �
¼

X
xk�1=n<xjaxkþ1=n

f ðxjÞ:

Finally, as n ! y, Pr½F�1ðrÞ A In� ! Pr½F�1ðrÞ ¼ xk�, and the summation above

reduces to f ðxkÞ, demonstrating that Pr½F�1ðrjÞ ¼ xk� ¼ f ðxkÞ. To demonstrate in-

dependence of fF�1ðrjÞgmj¼1, let any collection fxkjgmj¼1 be given, and define Inj as

above for each xkj . Then

f ðxk1 ; xk2 ; . . . ; xkmÞ ¼ Pr½F�1ðrjÞ A Inj for all j�

¼ Pr rj A F xkj �
1

n

� �
;F xkj þ

1

n

� �� �
for all j


 �

¼
Ym
j¼1

F xkj þ
1

n

� �
� F xkj �

1

n

� �
 �

¼
Ym
j¼1

X
xkj�1=n<xlaxkjþ1=n

f ðxlÞ
24 35;
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where the second equality comes from the definition of uniformly distributed sample.

Finally, letting n ! y, we obtain

f ðxk1 ; xk2 ; . . . ; xkmÞ ¼
Ym
j¼1

f ðxkj Þ: n

7.8 Applications to Finance

7.8.1 Loan Portfolio Defaults and Losses

An example of a combination coin-flip and urn problem in finance that is typically

implemented with computer algorithms is bond or loan default and loss modeling.

Imagine a portfolio of n bonds, all with the same credit rating, say Baa=BBB. As-

sume that the event of a default in a given year is generated by an H-flip of a biased

coin that produces heads, on average, in 75 of 1000 flips. We toss this coin n times,

and record the number of heads; say it is nH . We then go to the portfolio urn of

bonds and select nH bonds without replacement. These are the defaulted bonds in

this trial, and the total par defaulted is denoted FH . From this defaulted portfolio,

losses can be modeled in terms of a fixed loss of lFH , with 0a la 1 denoting a fixed

loss ratio, or a loss given default (LGD) model can be implemented whereby losses

vary according to some probability density function.

A simple example of how one might generate nonconstant losses is that with each

defaulted bond, a die is rolled. So one dot represents a loss of 1
6 , or about 16:6% of

par, and so forth to a roll of 6 dots, which represents a loss of 100%. More realisti-

cally one could use a variety of probability density functions calibrated to historic

data, or create a sample space of losses constructed directly from all past defaults.

In the former case, random losses are produced by first generating a uniform random

sample on ½0; 1�, then applying the approach of the last section. In the latter model

this historic loss collection would be another urn containing the collection of LGDs

experienced historically in percentage terms. Then with each bond selected from the

original urn for default, an LGD is drawn from this second urn to determine the

associated loss. This second urn would logically be sampled with replacement.

Individual Loss Model

More formally, let fjk denote the loan amount of the jth bond or loan, in risk class k.

Risk classes might be defined in terms of credit ratings for bonds or internal risk as-

sessment criteria for other loans. For each risk class define the default random vari-

able Djk for this loan as a binomial with
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Djk ¼ 1; Pr ¼ qk,

0; Pr ¼ 1� qk.

�
Here the probability of default in the period is denoted qk. The probability of con-

tinued payments during the period is pk ¼ 1� qk.

Note that the random variable Djk will typically not depend on the loan other than

through the risk class, and that the notational device of the subscript j is simply to

confirm that each of the loans in the same risk class will have separate and indepen-

dent coin flips. Notational use of Dk might suggest that all loans in a class default or

do not default together, an unrealistic assumption.

Finally, the loss given default random variable, or loss ratio, for each loan,

denoted Ljk, is again defined only by risk class as a random variable with range in

the interval ½0; 1� and the same notational convention as for Djk. Sometimes the loan

recovery Rjk is modeled, representing the relative amount recovered from a borrower

on default. Of course, Ljk ¼ 1� Rjk.

Total losses can now be notationally represented as the random variable that is

given by the individual loss model:

L ¼
X
j;k

fjkDjkLjk: ð7:119Þ

For each loan the random variable Djk is generated, and for each loan for which

Djk ¼ 1, the random variable Ljk is generated. Both random variables can be gener-

ated with the methodology of section 7.7 using uniformly distributed random sam-

ples from ½0; 1�, since we want the collection fDjkg to be independent random

variables, as well as the collection fLjk jDjk ¼ 1g. Of course, the collections fDjkg
and fLjkg cannot be independent, since Djk ¼ 0 implies that Ljk ¼ 0, although there

is no harm, other than with respect to wasted computational time, of generating

fLjkg for all combinations of jk, and generating these as independent random vari-

ables that are also independent of the collection fDjkg.
Specifically, for fixed k we generate frjkgH ½0; 1�, one for each bond, and denoting

by Bk the c.d.f. of the binomial with parameter qk, we have

Djk 1B�1
k ðrjkÞ ¼

1; rjk a qk;

0; rjk > qk:

�
Similarly, from another collection, fr 0jkgH ½0; 1�, one for each default, losses are gen-

erated using the assumed loss c.d.f. for each risk class. In other words, Ljk ¼ F�1
k ðr 0jkÞ,

where Fk is the cumulative loss given default distribution function for risk class k.
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Of course, such values need only be generated for those jk combinations for which

B�1
k ðrjkÞ ¼ 1.

From this model one can calculate the mean and variance of losses using the con-

ditional expectation formulas in (7.43) and (7.46). For example, conditioning on the

random variable Djk obtains

E½L� ¼
X
j;k

E½ fjkDjkLjk�

¼
X
j;k

E½E½ fjkDjkLjk jDjk��:

Now E½ fjkDjkLjk jDjk ¼ 0� ¼ 0 and E½ fjkDjkLjk jDjk ¼ 1� ¼ fjkE½Ljk� ¼ fjkE½Lk�,
since fjk is a constant and the loss distribution depends only on the risk class. Said

another way, for each risk class, fLjkg are independent and identically distributed

with c.d.f. Fk. These ‘‘inner’’ conditional expectations can be expressed conveniently

by

E½ fjkDjkLjk jDjk� ¼ fjkE½Lk�Djk:

Consequently, since E½Djk� ¼ qk,

E½L� ¼
X
j;k

qk fjkE½Lk� ð7:120aÞ

¼
X
k

qk fkE½Lk�; ð7:120bÞ

where fk ¼Pj fjk, the total loan amount in this risk class.

Variance is similarly calculated with a conditioning approach. With the assump-

tions above regarding the generation of the collections fDjkg and fLjkg, the losses

on bonds are independent random variables. So the variance of the sum is the sum

of the variances, and each of these variances is calculated by conditioning. In other

words,

Var½L� ¼
X
j;k

Var½E½ fjkDjkLjk jDjk�� þ
X
j;k

E½Var½ fjkDjkLjk jDjk��:

Now from the conditional expectation for E½ fjkDjkLjk jDjk� above, and Var½Djk� ¼
qkð1� qkÞ, we get

Var½E½ fjkDjkLjk jDjk�� ¼ qkð1� qkÞ f 2
jkE½Lk�2:
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Next, from Var½ fjkDjkLjk jDjk ¼ 0� ¼ 0 and Var½ fjkDjkLjk jDjk ¼ 1� ¼ f 2
jk Var½Lk�, we

conclude that Var½ fjkDjkLjk jDjk� ¼ f 2
jk Var½Lk�Djk. Hence

E½Var½ fjkDjkLjk jDjk�� ¼ qk f
2
jk Var½Lk�:

Combining, we have

Var½L� ¼
X
j;k

qkð1� qkÞ f 2
jkE½Lk�2 þ

X
j;k

qk f
2
jk Var½Lk� ð7:121aÞ

¼
X
k

qkð1� qkÞ f ð2Þk E½Lk�2 þ
X
k

qk f
ð2Þ
k Var½Lk�: ð7:121bÞ

Here we define f
ð2Þ
k ¼Pj f

2
jk , which of course is not the same as f 2

k for fk defined

above in (7.120b). These formulas can be rewritten if desired using Var½Lk� ¼
E½L2

k � � E½Lk�2.
Aggregate Loss Model

If the loan amounts in each risk class are similar and narrowly distributed, loan

losses can also be modeled in what is called an aggregate loss model, or collective

loss model. In each risk class, say class k, the collection of actual loan amounts

f fjkg, which contains nk loans, is modeled as a portfolio of nk loans of the same

amount given by the average fk 1
1
nk

P
j fjk. Total losses can now be expressed as

L ¼
X
j;k

fkDjkLjk ¼
X
k

fk

X
j

DjkLjk:

Note that for each k, Nk 1
P

j Djk is a random variable with a binomial distribu-

tion with parameters nk and qk, and by (7.99) we have E½Nk� ¼ nkqk and Var½Nk� ¼
nkqkð1� qkÞ. Also

P
j DjkLjk can be rewritten asX

j

DjkLjk ¼
X
Djk00

Ljk

¼ NkL
0
k:

Here the random variable L 0
k is given by

L 0
k ¼

1

Nk

XNk

j¼1

Ljk for 1aNk a nk;
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and defined as the average loss ratio for class k, conditional on Nk b 1. In other

words, L 0
k is the average loss ratio conditional on there being a loss. This is consistent

with the definition of Ljk, which is the loss ratio on loan j in class k given that a loss

occurred, meaning that Djk ¼ 1.

Combining results, we have that in the case of loan amounts that are narrowly dis-

tributed by risk class, the individual loss model can be rewritten as an aggregate loss

model:

L ¼
X
k

fkNkL
0
k: ð7:122Þ

Here Nk has binomial distribution with parameters nk and qk, fk is the average loan

amount in class k, and L 0
k is a random variable equal to the average loss ratio in class

k, conditional on Nk b 1.

We will now see that not surprisingly, L 0
k has the same expected value as does the

individual loss ratio random variable for class k, which is denoted Lk in the individ-

ual loss model above. On the other hand, L 0
k will have a smaller variance than Lk,

intuitively because L 0
k is defined in terms of averages of the original fLjkg, whereas

Lk reflects no averaging.

First, E½L 0
k� can be evaluated using the conditioning argument of (7.43), where

subscripts are put on the expectation operators for clarity:

E½L 0
k� ¼ EN EL

1

Nk

XNk

j¼1

Ljk





Nk ¼ nb 1

" #" #

¼ EN

1

n

Xn
j¼1

E½Lk�




nb 1

" #

¼ E½Lk�EN ½1 j nb 1�

¼ E½Lk�
Xnk
n¼1

Pr½Nk ¼ n j nb 1�:

For the last step, it must be remembered that Nk is a binomial random variable, but

conditional on the restriction that Nk b 1. So here Pr½Nk ¼ n j nb 1� ¼ Pr½Nk¼n�
1�Pr½Nk¼0� ,

and so
Pnk

n¼1 Pr½Nk ¼ n j nb 1� ¼ 1. Consequently

E½L 0
k� ¼ E½Lk�: ð7:123Þ
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Next, while L 0
k is a random variable with the same mean as Lk for each k fixed, it

has a smaller variance. This is again derived from a conditioning argument in (7.46)

as follows: From the mean calculation above, we have that EL
1
Nk

PNk

j¼1 Ljk jNk ¼
h

nb 1� ¼ E½Lk�, a constant. Consequently the variance of this conditional expectation

is 0.

On the other hand, for the conditional variance,

Var
1

Nk

XNk

j¼1

Ljk





Nk ¼ nb 1

" #
¼ Var

1

n

Xn
j¼1

Ljk

" #

¼ 1

n2

Xn
j¼1

Var½Ljk�

¼ 1

n
Var½Lk�:

Combining and evaluating the expectation of this conditional variance obtains

Var½L 0
k� ¼ Var½Lk�EN

1

Nk





Nk b 1


 �
; ð7:124Þ

where Nk has binomial distribution with parameters nk and qk, but conditional on

Nk b 1. Apparently E 1
Nk

jNk b 1
h i

< 1, since by the conditional binomial probabil-

ities, Pr½Nk ¼ n j nb 1� ¼ Pr½Nk¼n�
1�Pr½Nk¼0� :

E
1

Nk





Nk b 1


 �
¼
Xnk
n¼1

1

n

nk

n

� �
qn
kð1� qkÞnk�n

1� ð1� qkÞnk :

So Var½L 0
k� < Var½Lk�, since the summation is a weighted average

Pnk
n¼1

1
n
wn wherePnk

n¼1 wn ¼ 1.

The random variable Nk can also be modeled as Poisson for, in general, the asso-

ciated qk are quite small and satisfy in all but the most extreme cases the condition

qk a 0:1. In this case the Poisson parameter for risk class k is given by lk ¼ nkqk,

and the E 1
Nk

jNk b 1
h i

calculated accordingly.

The mean and variance of L within the aggregate loss model can again be devel-

oped using the conditioning arguments. In exercise 17 is assigned the derivation of

the following formulas, where E½L 0
k� is used for notational consistency, but recall

from above that E½L 0
k� ¼ E½Lk�:
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E½L� ¼
X
k

fkE½Nk�E½L 0
k�; ð7:125Þ

Var½L� ¼
X
k

f 2
k E½L 0

k�2 Var½Nk� þ
X
k

f 2
k E½N 2

k � Var½L 0
k�: ð7:126Þ

Note that in these formulas, E½Nk� and Var½Nk� reflect the whole distribution of

Nk, and not the conditional distribution reflecting Nk b 1 as was used for the L 0
k

moments. Specifically, E½Nk� ¼ nkqk whether Nk is modeled as binomial or Poisson,

since for the latter, lk ¼ nkqk. However, Var½Nk� will equal nkqkð1� qkÞ with the

binomial, and nkqk with the Poisson approximation. Also, while E½L 0
k� can be cal-

culated directly from the assumed distribution for Ljk with k fixed, as was derived

above, Var½L 0
k� will be smaller than Var½Lk�, due to the multiplicative factor of

E 1
Nk

jNk b 1
h i

.

As was the case for the individual loss model, the random variable L can be simu-

lated using (7.122) and the approach in section 7.7 above to generating random sam-

ples from a distribution function. In this formula, for instance, Nk has binomial

distribution with parameters nk and qk, or a Poisson distribution with lk ¼ nkqk. In

either case each simulation for class k involves first generating one uniformly distrib-

uted random variable r A ½0; 1� from which Nk 1F�1
N ðrÞ, with FNðxÞ denoting the

cumulative distribution for Nk. Then, if Nk > 0, another Nk uniformly distributed

variables are generated, frjgNk

j¼1, from which loss ratios are defined by fLjkgNk

j¼1 ¼
fF�1

Lk
ðrjÞgNk

j¼1, with FLk
ðxÞ the cumulative distribution function for Lk. The average

loss ratio is then L 0
k ¼ 1

Nk

PNk

j¼1 Ljk: Each simulation then proceeds the same way.

7.8.2 Insurance Loss Models

With only a change in the definitions of the random variables, the individual and ag-

gregate loss models can be used in a wide variety of insurance claims applications.

For example, within a life insurance claims context, risk classes would typically be

defined at least by age groups, with gender and/or insurance ‘‘ratings’’ classes not un-

common. Life insurance ratings are analogous to credit ratings on loans, only that

here the goal is to identify individuals relative to mortality risk rather than the risk

of default. Consequently, in this application, qk is the probability of death in a pe-

riod, often in a year, and fjk denotes the life insurance policy ‘‘face amount’’ on a

‘‘net amount at risk’’ basis payable on death.

This so-called net amount at risk is an adjustment to the policy face amount that

reflects the fact that for many insurance contracts, particularly those with level pre-

miums paid by the insured, the insurer holds ‘‘reserves’’ backed by accumulated
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excess premiums. In many policies, while the net exposure amounts vary year to

year, they are not random variables per se. In other words, there is no need for the

random variable Ljk in a traditional life insurance model, since the ‘‘loss’’ on death is

known in advance. When Djk ¼ 1, the entire net policy amount is paid, and hence

Ljk ¼ 1 as well.

It is also of interest to apply these models, and those below, over a multiple-year

modeling horizon, changing model parameters each year. In such an application a

random sequence is generated, and this is a special case of a stochastic process. Also

note that with a multiple-year model, the present value of all losses could be modeled

as a random variable, by introducing appropriate interest rates for discounting.

These future interest rates could be modeled as fixed or as random variables.

For life insurance policies for which the death benefit is not fixed, such as is the

case with variable life insurance, Ljk is once again a random variable. But in this

application Ljk is a ‘‘multiplier’’ applied to the original policy face amount, and it

usually reflects the performance in the financial markets, often with a minimum guar-

antee. It is also natural to allow Ljk > 1 in this model to accommodate favorable

market environments.

These loss models also apply to various types of insurance policies for which the

benefits are not fixed. For example, with a disability insurance policy, qk would be

the probability of disability in a period, again often a year, and the claim paid, sym-

bolically fjkLjk, would be based on a probability distribution that reflects both past

insurer claims patterns and trends, as well as amount limitations defined in the pol-

icy. It would be common practice to model the value of the claim as a present value

of expected payments over the expected disability period. Specifically, fjk could be

modeled as the present value of the maximum claim allowed by the policy, and Ljk

a loss ratio, 0 < Ljk a 1, in the sense above.

Various types of health insurance benefits could be handled similarly, as could var-

ious benefits payable under property and casualty insurance policies, which include

automobile insurance and home-owners or renters insurance.

7.8.3 Insurance Net Premium Calculations

Generalized Geometric and Related Distributions

Recall that the geometric density in (7.101) defined by f Gð jÞ ¼ pð1� pÞ j,
j ¼ 0; 1; 2; . . . , provided the probability that j-Ts precede the first H in a sequence

of binomial trials with Pr½H� ¼ p. The negative binomial distribution generalized

this definition in that a new parameter k is introduced, and then f NBð jÞ represented
the probability that j-Ts precede the kth-H in a sequence of binomial trials with

Pr½H� ¼ p.

314 Chapter 7 Discrete Probability Theory



Another way of generalizing the geometric distribution is to allow the probability

of a head to vary with the sequential number of the coin flip. Specifically, if

Pr½H j jth flip� ¼ pj , then with a simplifying change in notation to exclude the case

j ¼ 0, a generalized geometric distribution can be defined by the p.d.f.

f GGð jÞ ¼ pj
Yj�1

k¼1

ð1� pkÞ; j ¼ 1; 2; 3; . . . ; ð7:127Þ

where f GGð jÞ is the probability of the first head appearing on flip j. By convention,

when j ¼ 1,
Q0

k¼1ð1� pkÞ ¼ 1.

Of course, as was demonstrated above, if pk ¼ p > 0 for all k, then f Gð jÞ is in-

deed a p.d.f. in that
Py

j¼0 pð1� pÞ j ¼ 1. With nonconstant probabilities, this conclu-

sion is true but not obvious. Note, however, that if 0 < aa pk a b < 1 for all j, then

the summation is finite, since f GGð jÞ < bð1� aÞ j�1 and
Py

j¼1 f GGð jÞ < b
a
by a geo-

metric series summation.

In addition, letting c0 ¼ 1 and cj ¼
Q j

k¼1ð1� pkÞ for jb 1, we have that

f GGð jÞ ¼ cj�1 � cj;

and
Py

j¼0 cj a
Py

j¼0ð1� aÞ j ¼ 1
a
. Consequently the alternating series version of this

absolutely convergent series can be rearranged, producing

Xy
j¼1

f GGð jÞ ¼
Xy
j¼1

ðcj�1 � cjÞ

¼ c0 þ
Xy
j¼1

ðcj � cjÞ

¼ 1:

This probability density function is the essence of a survival model, although the

notation switches from

pk ¼ Pr½H on kth flip j all Ts before kth flip�
to

qk ¼ Pr½death in year k j survival for first k � 1 years�;
where as expected, year 1 extends from time t ¼ 0 to t ¼ 1, and so forth. Conse-

quently this conditional probability can also be expressed qk ¼ Pr½death by time k j
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alive at time k � 1�. In practice, for the group being modeled, fqkg1 fqxþk�1g,
where x ¼ current age, and the standard actuarial notation: qxþk�1 ¼ Prfperson age

xþ k � 1 will die within one yearg. However, to simplify notation, we generally

avoid the age-based notation unless it is needed for emphasis.

This definition of qk may appear odd in that a natural reaction to the condition

‘‘alive at time k � 1’’ might well be ‘‘of course, they are alive at the beginning of the

year, as that is what it means to die in year j!’’ But this obvious point is not the pur-

pose of the condition.

Population census data as well as various insurance company and pension plan

data usually present the probabilities of death on the basis of the qk model definition.

That is, among a group of individuals with comparable mortality risk that are alive

at a point in time, say grouped by age x, what is the proportion that will die during

the period? So q̂qx, based on the sample, is just the ratio of those that die during the

period to those alive and age x at the start of the period. From such studies various

statistical methods are used to develop estimates of the underlying probabilities of

death during the period by risk class, and this is denoted qx for the various ages or

otherwise defined risk classes.

The question of interest now, and one that a survival p.d.f. is intended to answer

is, of an individual member of a group alive at time 0, say aged x, what is the prob-

ability of death in year k for k ¼ 1; 2; 3 . . . ? The answer to this question is not a

qxþk�1-value, as this is only the probability of a death in a year k given survival to

the beginning of that year. The necessary adjustment to qxþk�1 is to multiply byQk�1
j¼1 ð1� qxþj�1Þ, since this now combines the probability of survival for the first

k � 1 years, with the probability of death in year k.

For example, this model implies that two persons of age 25 and 30 can be expected

to have di¤erent probabilities of death between ages 30 and 31, meaning between the

30th and 31st birthdays, and for the younger person the probability is smaller. This

is not due to any projected favorable trends in the probabilities of death fqxg over

time, but simply that for the younger individual there is some chance that life will

terminate prior to reaching age 30. So the respective probabilities, using age-based

notation, are
Q4

k¼0ð1� q25þkÞq30 and q30, respectively. So the younger person has a

lower chance of death in this year of age simply because they may not survive to the

beginning of it!

The mortality probability density, f Mð jÞ, is therefore defined for j ¼ 1; 2; 3; . . . ,

and it denotes the probability that a person now alive will survive j � 1 years and

die in year j, as is given by

f Mð jÞ ¼ qj
Yj�1

k¼1

ð1� qkÞ; j ¼ 1; 2; 3; . . . : ð7:128Þ
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Again, within an actuarial context, the notation for this probability would be

ð j�1Þjqx ¼ qxþj�1

Yj�1

k¼1

ð1� qxþk�1Þ for jb 1;

where ð j�1Þjqx denotes the probability of a person now age x will survive ð j � 1Þ-
years and die in year j, and so 0jqx ¼ qx.

Associated with the p.d.f. f Mð jÞ is the mortality distribution function, FMð jÞ ¼P j
k¼1 f MðkÞ, and the survival function, SMð jÞ ¼ 1� FMð jÞ, which gives the proba-

bility that an individual survives j years.

Life Insurance Single Net Premium

One simple application of a survival model is to determine the expected present value

of an insurance payment of $1 to a person at the end of their year of death. This is a

whole life insurance contract, meaning the coverage does not expire as of a specified

point in time as is the case for term life insurance. Let I denote the random variable

that equals the present value of this insurance payment. The expected value of I con-

ditional on the death occurring in year j, denoted E½I j j�, equals v j 1 ð1þ iÞ�j for a

constant annual rate of interest i. The expected value of I equals the expected value

of these conditional expectations under f Sð jÞ by (7.43), and hence

E½I � ¼
Xy
j¼1

v jqj
Yj�1

k¼1

ð1� qkÞ:

Here the use of y is merely a notational convenience.

The calculated value of E½I � is the expected value of this whole life insurance pay-

ment in units of present value at rate i. It is often denoted Ax in standard actuarial

notation to identify the dependency on age x. It is a ‘‘single’’ premium, in that it

reflects what would need to be received at t ¼ 0 and invested at rate i to provide for

the expected benefit. Put another way, if received from a large group of individuals of

the same mortality risk and invested, all benefits would be payable with nothing left

‘‘in the end.’’

Also E½I � is a ‘‘net’’ premium in that it provides only for the expected benefit; it

does not provide for the various risks that would be assumed with such a contract

(mortality, interest rate, etc.), nor does it provide for various levels of expenses asso-

ciated with selling and maintaining this policy, nor the associated profits that the in-

surer requires as a return on risk capital invested.

To calculate the variance of I using conditioning and (7.46), let Qj ¼
qj
Q j�1

k¼1ð1� qkÞ. Then from the calculation above that E½I j j� ¼ v j 1 ð1þ iÞ�j, we

have
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Var½E½I j j�� ¼ E½ðE½I j j�Þ2� � ðE½E½I j j��Þ2

¼
Xy
j¼1

v2jQj �
Xy
j¼1

v jQj

" #2
:

Also the conditional variance is given by Var½I j j� ¼ 0, and so E½Var½I j j�� ¼ 0.

Combining, we get

Var½I � ¼
Xy
j¼1

v2jQj �
Xy
j¼1

v jQj

" #2
:

This basic life insurance benefit can be modified in various ways and handled sim-

ilarly (see exercise 37).

Pension Benefit Single Net Premium

The survival function can also be used to evaluate, again on a single net premium

basis, the cost to provide for an annual pension benefit to an individual, payable at

the beginning of every year as long as the individual survives. This is an example of

what is called a life annuity contract. Let B denote the random variable that equals

the present value of these pension benefits or annuity payments. Then letting E½B j j�
denote the expected value of this random variable conditional on death in year j we

obtain E½B j j� ¼P j
k¼1 v

k�1 ¼ ð1þ iÞaj; i in the notation of (2.11) of chapter 2. In

other words, aj; i ¼ 1�ð1þiÞ�j

i
. Using (7.43), we have

E½B� ¼ ð1þ iÞ
Xy
j¼1

aj; iqj
Yj�1

k¼1

ð1� qkÞ:

This value is a single net premium in the same sense as was E½I � above, providing
for neither risks, expenses, nor profit. In exercise 19 is assigned the demonstration

that E½B� can also be expressed in terms of the survival function SMð jÞ. Using the

same approach as for insurance benefits, we derive

Var½B� ¼ ð1þ iÞ2
Xy
j¼1

a2j; iQj � ð1þ iÞ
Xy
j¼1

aj; iQj

" #2
:

Life annuity benefits can be guaranteed payable for a minimum of m years,

and called an m-year certain life annuity, so that am is payable with probability

1�Pmþ1
j¼1 Qj, and thereafter for as long as life continues. Also annuity benefits need
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not be payable for the remainder of an individual’s life; the annuity may be only pay-

able for survival up through n years, and called an n-year temporary life annuity con-

tract, or be guaranteed payable for a minimum of m years independent of survival to

a maximum of n years, and called an m-year certain, n-year temporary life annuity,

where logically m < n. Any of these annuity benefits can also be deferred k years,

and called k-year deferred . . . . See exercises 20 and 21.

Life Insurance Periodic Net Premiums

It is common that whole life insurance is paid for not as a single premium but as

a periodic premium, which we model as annually payable, although other payment

frequencies are common. Denoting by p the net premium payable annually for the

whole life insurance contract above, at the beginning of the year as long as the in-

sured survives, we derive from pE½B� ¼ E½I �,

p ¼
Py

j¼1 v
jQj

ð1þ iÞPy
j¼1 aj; iQj

:

These periodic payments can also be structured to be payable only several years.

Pension and annuity contracts can also be paid for with periodic payments when

the annuity payments are deferred, as long as the payment period is less than or

equal to the deferral period, and that for death during the deferral period there is a

return of some fraction of payments with interest.

7.8.4 Asset Allocation Framework

The fundamental questions of asset allocation are:

1. Given a collection of risky assets, how does one model and evaluate the implica-

tions of allocating a given amount of wealth to each of these assets and a risk-free

asset in di¤erent ways?

2. Can certain allocations be said to be ‘‘preferred’’ to others in the sense that their

properties would be seen to be superior by any rational investor? Given allocations

W and V, examples of this preference for W over V would be, where we infor-

mally define risk in terms of the investor failing to achieve the desired investment

objectives:

W produces returns that are better than those of V no matter what happens in the

market.

W and V have the same risk, but W has more expected return.

W and V have the same expected returns, but W has less risk.
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3. Can certain allocations, W, be said to be ‘‘relatively optimally preferred’’ to

others? For example:

W has a better expected return than any other allocation with the same risk.

W has less risk than any other allocation with the same expected return.

4. Can a certain allocation, W, be said to be ‘‘optimally preferred’’ in the sense that

of all relatively optimally preferred allocations, W would be seen to be superior by

any rational investor?

In this section we begin the analysis of asset allocation by addressing a framework

for such investigations, which is the essence of question 1 above. We will return to

this subject in later chapters with additional results as additional tools are developed.

The most general analyses require the tools of multivariate calculus and linear

algebra.

To this end, assume that a given finite collection of risky assets fAjgnj¼1 and a sin-

gle risk-free asset T are given. By risky is meant that the return over the investor’s

horizon is uncertain, and risk-free means the return is certain over the investment ho-

rizon. Consequently the risk-free asset depends on the investor and the investment

horizon. While a one-month T-bill in the United States is risk-free for a US dollar

investor with a one-month investment horizon, it is neither risk-free for a US dollar

‘‘day trader’’ nor is it risk-free for euro investor with a one-month investment

horizon.

Given this notion, it must be the case that for any investor group with a common

investment horizon, there is e¤ectively one risk-free investment vehicle, which is to

say, any two such vehicles would share a common and unique return. This is because

if there were two such investments with di¤erent returns, investors would sell the

lower return investment and buy the higher return investment to create a risk-free

arbitrage, or simply, arbitrage. Sales pressure on the former would lower its price

and increase its return, while demand pressure on the latter would increase price

and decrease return, until return equilibrium was achieved.

An asset allocation is a vector W ¼ ðw0;w1; . . . ;wnÞ, where w0 represents the in-

vestment in T , and wj the investment in Aj. This vector can be unitized in relative

terms, where
Pn

j¼0 wj ¼ 1, and correspondingly wj denotes the proportion of total

wealth invested in the given asset, or in absolute terms, where
Pn

j¼0 wj ¼ W0 and cor-

respondingly wj denotes the actual wealth invested in the given asset, with W0 repre-

senting total initial wealth. The mathematical development in the two cases is similar,

di¤ering in predictable ways. To simplify notation, we assume that W is unitized in

relative terms, and will explicitly acknowledge total wealth of W0 when necessary.
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To set notation, let Rj denote the random return from asset Aj over the investment

horizon, which can be assumed to be discrete if for no other reason than investors’

limited appetite for long decimal expressions in return reports, and let rF denote the

fixed risk-free return for the period. To simplify, assume that the investment horizon

is one year, and that all rates are expressed as annual returns. Unless wj ¼ 0 for

jb 1, it is apparent that the return on this portfolio allocation, R, is risky, and can

be represented as

R ¼ w0rF þ
Xn
j¼1

wjRj: ð7:129Þ

The return R is a discrete random variable with probability function f ðRÞ, the do-

main values of which depend on the given allocation as well as the p.d.f.s of the var-

ious Rj.

Given an asset allocation, the theoretical connection between f ðRÞ and f f ðRjÞg is,

in general, complicated even when the latter are explicitly known. A counterexample

where simplicity prevails is when the collection fRjg is assumed to have a multivari-

ate normal distribution, which is not discrete, but then R will have a normal distribu-

tion. But this statement is way ahead of the tools developed so far.

Without additional tools it is also very di‰cult to even empirically simulate the

implied p.d.f. for R, since this requires the simulation of collections fRjg of risky

asset returns. While a random sample of returns on any one risky asset Aj can be

simulated from its c.d.f. using the method described in section 7.7, the di‰culty asso-

ciated with generating the collection of returns for all assets is that it is virtually

never the case that these returns are ‘‘independent,’’ or the weaker statement,

‘‘uncorrelated.’’ In other words, between virtually any two risky assets one evaluates

historically, it is the case that the correlation between returns r is generally nonzero;

in almost all nontrivial cases, it is positive, so r > 0. By a trivial case is meant that if

one asset is a long position and the other a short position in a given security, then

artificially one will have constructed a case with r < 0, and in fact r ¼ �1. But

most examples of long positions display positive correlations and more generally

nonzero correlations, and consequently an empirical simulation of returns on the

risky assets needs to reflect these correlations.

One popular approach to simulation is known as historical simulation, whereby

one has access to contemporaneous return series for each of the assets in question:

fðRðkÞ
1 ;R

ðkÞ
2 ; . . . ;R

ðkÞ
n Þ j k ¼ 1; 2; . . . ;Ng. This notation implies that for each sequen-

tial time period k, which would be chosen in length to equal the investment horizon

of interest, ðRðkÞ
1 ;R

ðkÞ
2 ; . . . ;R

ðkÞ
n Þ denotes the respective returns of the given assets
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during this period. For the same historical periods one would also identify the

returns of the risk-free asset, denoted frðkÞF g. With these data series two simulations

are possible:

1. Simulation of historical returns for the given allocation,

RðkÞ ¼ w0r
ðkÞ
F þ

Xn
j¼1

wjR
ðkÞ
j :

2. Simulation of potential returns for the next period, where rF is known,

RðkÞ ¼ w0rF þ
Xn
j¼1

wjR
ðkÞ
j ;

which is in e¤ect the model in (7.129).

From either model and a specified allocation fwjgnj¼0, a return data series is simu-

lated, fRðkÞg, from which all moments of R can be calculated and f ðrÞ estimated.

However, if it is desired to evaluate explicitly how these moments depend on the al-

location parameters, an alternative approach is needed.

Specifically, sample moments from the historical return data can be used to esti-

mate the various moments of the random variable R, without needing to fix the

allocation parameters or explicitly calculate f ðRÞ. For example, applying (7.38) to

(7.129), we derive

E½R� ¼ w0rF þ
Xn
j¼1

wjmj ; mj 1E½Rj�; ð7:130Þ

and applying (7.56),

Var½R� ¼
Xn
i¼1

Xn
j¼1

wiwjsisjrij ; ð7:131aÞ

s2
j 1Var½Rj�; rij 1Corr½Ri;Rj�: ð7:131bÞ

Of course, if the goal is to calculate the mean and variance of end of period

wealth, defined as W1 ¼ W0ð1þ RÞ, these would be calculated as

E½W1� ¼ W0½1þ m�; Var½W1� ¼ W 2
0 s

2; ð7:132Þ

where m and s2 are commonly used notation for E½R� and Var½R�, respectively.
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Higher moments can similarly be estimated from the higher joint sample moments

of the historical data. For example, the third central moment, m3 1E½ðR� mÞ3�, is
developed from R� m ¼Pn

j¼1 wjðRj � mjÞ, and hence

ðR� mÞ3 ¼
Xn
i¼1

Xn
j¼1

Xn
k¼1

wiwjwkðRi � miÞðRj � mjÞðRk � mkÞ:

This formula requires a bit of combinatorial manipulation, but the expectation will

clearly involve terms as follows, where the subscripts are now intended to be distinct:

E½ðRi � miÞðRj � mjÞðRk � mkÞ�; E½ðRi � miÞðRj � mjÞ2�; E½ðRi � miÞ3�:

The analysis of these risk and return statistics, especially in terms of their behav-

iors for di¤erent allocation vectors, W, is now a question of evaluating these

moments as functions of ðw0;w1; . . . ;wnÞ considered as a point in Rnþ1. Such an

analysis requires the more powerful tools of multivariate calculus and linear algebra

to be complete. Still here we can appreciate what is to come with an informal analy-

sis of the issue raised in question 2 above.

Given allocations W and V, there are many ways to define that W is ‘‘preferred’’

over V. For example, given the allocation W ¼ ðw0;w1; . . . ;wnÞ define an epsilon

switch allocation W ij
� as equal to W except that wi is increased by �, and wj is

decreased by �. Let R denote the random return under W; and Rij
� the return under

W ij
� . An easy calculation produces

E½Rij
� � � E½R� ¼ �ðmi � mjÞ;

where for notational convenience we denote rF by m0. Clearly, for � > 0 the expected

return is increased or decreased according to whether mi > mj or mi < mj.

For the variance analysis, the notation is simplified by noting that (7.131a) can be

expressed as

Var½R� ¼
Xn
i¼0

Xn
j¼0

wiwjsij; sij 1Cov½Ri;Rj�; sjj 1Var½Rj�; ð7:133Þ

since for any j0 0, s0j ¼ sj0 ¼ 0 and s2
0 ¼ 0. With this formula the change in vari-

ance can be calculated, although in a more complicated way. The trick is to split the

summation into terms that include i or j,

2wi

X
k0i; j

wksik þ 2wj

X
k0i; j

wkskj þ 2wiwjsij þ w2
i s

2
i þ w2

j s
2
j ;
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and into terms that exclude both i and j,X
k0i; j

X
l0i; j

wkwlskl :

With this splitting, since only wi and wj are changed, we obtain with a bit of

algebra

Var½Rij
� � � Var½R� ¼ 2�

X
k0i; j

wkðsik � skjÞ þ 2½�ðwi � wjÞ � �2�sij

þ �2ðs2
i þ s2

j Þ þ 2�ðwis
2
i � wjs

2
j Þ

¼ �2½s2
i þ s2

j � 2sij � þ 2�
Xn
k¼0

wkðsik � skjÞ þ 2ðwi � wjÞsij
" #

:

In other words, given any i and j, Var½Rij
� � � Var½R� is a quadratic function of � that

goes through the origin. So for fixed constants A and B that depend on i and j,

Var½Rij
� � � Var½R� ¼ A�2 þ 2B�:

Now in the proof of (7.54) it was shown by use of the Cauchy–Schwarz inequality,

that s2
ij a s2

i s
2
j . From this we conclude that �sisj a sij a sisj, and hence Ab 0.

Specifically,

0a ðsi � sjÞ2 aAa ðsi þ sjÞ2:
Now, if B ¼ 0, then Var½Rij

� � � Var½R�b 0 for all � and the epsilon switch creates the

same or more risk. If B0 0, this inequality for A implies that there is an interval for

� for which Var½Rij
� � � Var½R� < 0, which is to say, that the variance has been

decreased. Specifically, if B > 0, the variance reduction interval is � A � 2B
A
; 0

� �
,

whereas if B < 0, the variance reduction interval is 0; 2B
A

� �
. In both cases the point

of maximal reduction is the interval midpoint.

This simple analysis can provide one answer to question 2 on an allocation being

‘‘preferred.’’ Namely, if there is an i and j for which the expected return can be

increased, E½Rij
� � > E½R�, and variance of return decreased, Var½Rij

� � < Var½R�, then
this would appear to be a reasonable basis to claim that W ij

� is preferred to W. Of

course, this is only a reasonable basis, since it ignores higher moments of these ran-

dom variables with the two allocations.
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7.8.5 Equity Price Models in Discrete Time

Stock Price Data Analysis

Let S0 denote the price of an equity security at time zero. Many problems in finance

relate to modeling the probability density functions and related characteristics of

prices at a point in the future, or the evolution of such prices through time. Essential

to this model is the notion that future stock prices, as well as the prices of futures

contracts, currencies, interest rates, and so forth, are fundamentally random vari-

ables at time zero, even though their movements may well be fully or at least par-

tially explainable after the fact. This is sometimes described by saying that future

prices are random ex ante, but deterministic and possibly explainable ex post. These

perspectives are not at odds.

Being explainable ex post means that one can develop certain cause and e¤ect

arguments that make the price e¤ect understandable and even compelling, whereas

being random ex ante means that one cannot predict what the future causes of price

movements will be. In general, these causes evolve with the markets’ information pro-

cesses, which is the general model of how information emerges and travels through

the markets. Randomness of price movements therefore reflects the randomness in

the discovery, release, and dissemination of market relevant information.

Historical analysis also reinforces this view of randomness. If fSjg denotes a given

stock price series evaluated at the market’s close on a daily, weekly, or other regu-

larly spaced basis over a reasonably long period of time, say 10 years or so, the col-

lection of period returns fRjg1 Sjþ1�Sj

Sj

n o
can be plotted as a sequence, called a time

series, and will generally appear to have many of the characteristics of a coin-flip se-

quence. Specifically, about 50 :50 positive and negative results, with positive and neg-

ative runs of varying lengths.

Also, while one observes runs, a calculation of the correlation between successive

returns, Rj and Rjþ1, produces a so-called autocorrelation that is typically near 0. By

autocorrelation is meant the correlation of a random variable with itself over time.

An autocorrelation near 0 implies that on average, Rj provides little predictability

to the value or even the sign of Rjþ1, again like a series of coin flips. It is also the

case that grouping ranges of returns, and plotting the associated approximate p.d.f.

in a histogram, provides a familiar bell-shaped curve, seemingly almost normally dis-

tributed. But closer analysis proves that this distribution often has fat tails in the

sense that the probabilities of normalized returns far from 0 exceed that allowed by

the normal distribution.

These same characteristics are often observed in the growth rate series or log-ratio

return series, frjg1 ln
Sjþ1

Sj

� 	n o
1 flnð1þ RjÞg. The log-ratio returns tend to be the
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more popular for modeling, since in this case Sjþ1 ¼ Sje
rj , whereas in terms of period

returns, Sjþ1 ¼ Sjð1þ RjÞ. While this may appear of little mathematical conse-

quence, the distinction comes from the modeling of prices n-periods forward:

Return model: Sn ¼ S0

Yn�1

j¼0

ð1þ RjÞ; ð7:134Þ

Growth model: Sn ¼ S0e
T n�1

j¼0 rj : ð7:135Þ
From these formulas it should be apparent that using frjg as the collection of re-

turn variables requires the modeling of sums of random variables, whereas with fRjg,
we will be required to work with products. The log-ratio return parametrization is to

be preferred simply because the mathematical analysis is more tractable in these

terms.

Binomial Lattice Model

Now let m and s2 denote the mean and variance of the log-ratio return series, where

these parameters of necessity reflect some period of time, say Dt ¼ 1, separating the

data points. Knowing from history that frjg has a bell-shaped distribution for small

time intervals, one can approximate the log-ratio returns with binomial returns in an-

ticipation of results of chapter 8:

Sjþ1 ¼ Sje
Bj :

Here fBjg are a random collection of i.i.d. binomials defined by

B ¼ u; Pr½u� ¼ p,

d; Pr½d� ¼ p 0,

�
where p 0 1 1� p and p, u, and d are ‘‘calibrated’’ to achieve the desired moments

from historical data as follows.

To derive all three model parameters from historical data will require three con-

straints. In practice, the analysis is often simplified by introducing one reasonable

constraint judgementally. For example, by choosing p ¼ 1
2 , E½B� ¼ 1

2 ðuþ dÞ, E½B2� ¼
1
2 ðu2 þ d 2Þ, and Var½B� ¼ 1

4 ðu� dÞ2. Consequently, in order to produce the two his-

torical moments, it is required that

1

2
ðuþ dÞ ¼ m;
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1

4
ðu� dÞ2 ¼ s2;

which is easily solved to produce the stock model

Sjþ1 ¼ Sje
mþs; p ¼ 1

2 ,

Sje
m�s; p 0 ¼ 1

2 .

(
ð7:136Þ

An alternative calibration is to constrain d ¼ 1
u
; then using only mean and variance

again, determine the parameters p and u.

From this p ¼ 1
2 model, stock prices in n time steps are seen to be binomially dis-

tributed with parameters n and p. This is because (7.135), with rj ¼ mþ bjs and

bj ¼ 1; Pr ¼ 1
2 ,

�1; Pr ¼ 1
2 ,

(

produces

Sn ¼ S0e
nmþsT n�1

j¼0 bj ; ð7:137Þ
where

Pn�1
j¼0 bj assumes values of f�nþ 2kgn

k¼0 with probabilities f n
k

� �
1
2 ngn

k¼0.

This observation allows a notationally simpler parametrization of stock prices as

follows:

Sn ¼ S0e
nðm�sÞþ2sBn ¼ S0e

ndþðu�dÞBn ; ð7:138aÞ

Pr½Bn ¼ j� ¼ n

j

� �
1

2n ¼
n

j

� �
p jð1� pÞn�j; j ¼ 0; 1; . . . ; n: ð7:138bÞ

This formula is the basis of the binomial lattice model of stock prices whereby from

an initial price of S0 two prices are possible at t ¼ 1, three prices are possible at

t ¼ 2; . . . , and finally, nþ 1 prices are possible at time n. Not uncommonly, these

prices are represented in a positive integer lattice, with time plotted on the horizontal,

and ‘‘state,’’ or random stock price, along the vertical, as seen in figure 7.3.

The graph shown in the figure is usually oriented in the logical way, with lowest

stock prices plotted at the bottom and associated with Bn ¼ 0. From any ‘‘time-

state’’ price, there are two possibilities in the next period, with the price directly

to the right representing d, and the price to the northeast representing u, both with

probability 1
2 with this calibration. With the calibration assigned in exercise 23,

the probability of the price directly to the right equals 1� p, while the price to the
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northeast has probability p. Looked at another way, the collection of nþ 1 prices at

time n are distributed as binomial variables with parameters n and 1
2 , as is indicated

in (7.138), or more generally in exercise 23, distributed as binomial variables with

parameters n and p. This provides a bell-shaped distribution of returns defined

as ln½Sn=S0�, which is consistent with historical data. This will be formalized in chap-

ter 8.

Binomial Scenario Model

An alternative and equally useful way to both conceptualize the evolution of stock

prices, as well as to perform many types of calculations, is to generate stock price

paths, or stock price scenarios. In contrast to the binomial lattice approach, which

generates all possible prices up to time n under this model, the scenario approach

generates one possible price path at a time. An example of a single price path is

seen in figure 7.4.

Each such path requires the generation of n prices, since S0 is given. In contrast,

the generation of a complete lattice requires
Pnþ1

j¼2 j ¼ ðnþ1Þðnþ2Þ�2

2 prices. The motiva-

tion for the scenario-based approach is often not combinatorial. Since there are 2n

possible paths, to generate them all requires 2nn calculations when done methodi-

cally, and this materially exceeds
ðnþ1Þðnþ2Þ�2

2 in total e¤ort. In the typical situation

the motivation for scenarios might be that the given problem cannot be solved within

a lattice framework but can only be solved with generated paths.

Figure 7.3
Binomial stock price lattice
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For example, the price of a simple European or American option on a given com-

mon stock can be estimated on a lattice of stock prices. On the other hand, if the

value of a European option at expiry reflects values of the stock’s prices along what-

ever price path it followed, lattice-based methods do not work, and this calculation

must be estimated with scenario-based calculations.

Scenario methods are also necessary in certain lattice models that are nonrecombin-

ing. The lattice model above is recombining in that from any given price the same

price is produced two periods hence if the intervening returns were ðu; dÞ or ðd; uÞ.
Not all lattices have this property. A nonrecombining lattice is one for which

Sðu;dÞ 0Sðd;uÞ. In such a case generation of the entire lattice may be impossible, since

the number of such prices is now
Pnþ1

j¼1 2
j ¼ 2nþ2 � 1. For a nonrecombining model,

even if lattice-based methods are theoretically possible, as in European option pric-

ing, they are infeasible for large n, and scenario-based methods are required.

7.8.6 Discrete Time European Option Pricing: Lattice-Based

One-Period Pricing

Remark 7.61 In this and other sections on option pricing, or more generally deriva-

tives pricing, the underlying asset, denoted S, will be called a common stock. How-

ever, all of this theory applies to derivatives on any asset in which investors can take

short positions. Of course, all assets allow investors to take long positions by simply

Figure 7.4
Binomial stock price path
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acquiring them, so allowing a short position is somewhat restrictive. It is common lan-

guage to call assets that can be shorted, investment assets, since these are assets com-

monly held in inventory by investors for their appreciation potential. Common stocks

and stock indexes, fixed income investments and indexes, currencies, precious metals

like gold and platinum, and all futures contracts are examples of investment assets;

the general framework developed here is adaptable to derivatives on these assets. Other

assets are called consumption assets, since these are assets that rarely are held in inven-

tory except for consumption purposes; hence they are not available for lending and

shorting. Examples include most commodities other than precious metals.

Suppose that on a given stock with current value S0, which will be assumed to pay

no dividends, we seek to price a European option or other derivative security that

expires in one period, and whose payo¤ is given by an arbitrary function of price at

that time, denoted LðS1Þ. Recall that the terminology ‘‘European’’ means that the

option provides for no early exercise; it can only be exercised on the expiry date.

For example, if this option is a European call or a put with a strike price of K , the

payo¤ function to the holder of the option is given:

Call option: LðS1Þ ¼ maxðS1 � K ; 0Þ; ð7:139aÞ
Put option: LðS1Þ ¼ maxðK � S1; 0Þ; ð7:139bÞ
where the use of the ‘‘max’’ function is conventional and shorthand for the fact that

the holder of the option, or the ‘‘long position,’’ will either receive a positive payo¤

or nothing.

For the purposes here, the payo¤ function LðS1Þ can be arbitrary without a¤ecting

the mathematical development, but it is common in the market that LðS1Þb 0 for

the long position, and LðS1Þa 0 for the short. Again, the mathematics does not re-

quire this, but the terminology is simplified in this case. An example of a derivatives

security in the market that has both positive and negative payo¤s is a futures con-

tract, for which a long futures contract is equivalent to a long call and short put,

and conversely, and either side of the contract can be paid or required to pay at

expiry. To simplify the language below, we will assume that we are taking the per-

spective of the long position.

Assume that the stock price in one period is modeled,

S1 ¼
S0e

u; Pr ¼ p,

S0e
d ; Pr ¼ 1� p,

�
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for suitable p, u, d. Then the option payo¤ is either LðS0e
uÞ or LðS0e

dÞ, which we

denote by Lu and Ld , respectively. Naturally the price of this option at time 0, L0,

cannot equal or exceed the present value of the greater payo¤, nor be equal to or less

than the present value of the lesser payo¤. In the former case, an investor would try

to sell these options, and in the latter, buy them, thereby creating a chance (perhaps

certain chance) of profit with no risk, which is an arbitrage, or a risk-free arbitrage.

In theory, such a purchase would be financed by shorting T-bills, and the sale of

options invested in T-bills, thereby insulating the trader from all risk.

Let r denote the continuous risk-free interest rate for this period, on a Treasury bill

say. Note that it is nonstandard to quote r in other than annual units, and we correct

this in chapter 8 where the appropriate time context is addressed. These bounds on

L0 can be expressed as

e�r min½Lu;Ld � < L0 < e�r max½Lu;Ld �:
Consequently there must be a unique real number q that can be called a probability,

since 0 < q < 1, so with q 0 ¼ 1� q,

L0ðS0Þ ¼ e�r½qLu þ q 0Ld �: ð7:140Þ
In other words, the market price must equal the expected present value of the payo¤s

at some as yet unspecified ‘‘probability’’ q.

It turns out that q can be derived because this option can be replicated. The idea of

replication is that one can construct a portfolio of traded assets that has the same

payo¤ as does the option. Hence the price of the option must equal the price of this

portfolio, or else there will be an arbitrage opportunity. If the option was more ex-

pensive than the replicating portfolio, the savvy trader would sell the option, buy

the portfolio for an immediate profit, and settle at expiry with no out of pocket

cost. Similarly, if the option was cheaper than the replicating portfolio, the opposite

trade would be implemented.

The replicating portfolio turns out to be a mix of stock and risk-free assets, usually

referred to as T-bills. To see this, construct a portfolio of a shares of stock, and $b

invested in T-bills, so the portfolio, denoted P0, is

P0 ¼ faS0; bTg;
where T denotes a $1 investment in a T-bill. This portfolio costs aS0 þ b at time 0,

and at time 1 will have values
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P1 ¼ aS0e
u þ ber; Pr ¼ p,

aS0e
d þ ber; Pr ¼ p 0:

�
It is not di‰cult to determine the correct values of a, b so that aS0e

u þ ber ¼ Lu

and aS0e
d þ ber ¼ Ld . Specifically, we derive

a ¼ Lu �Ld

S0ðeu � edÞ ; b ¼ e�r e
uLd � edLu

eu � ed
: ð7:141Þ

With these coe‰cients, a bit of algebra shows that the price of this portfolio at

time 0, which is

L0ðS0Þ ¼ aS0 þ b; ð7:142Þ
can be expressed as in (7.140) with

q ¼ er � ed

eu � ed
: ð7:143Þ

It must be the case that 0 < q < 1, since the stock is a risky asset. Hence ed <

er < eu, or else an arbitrage opportunity would exist.

We collect these results in a proposition:

Proposition 7.62 Let LðSÞ denote the payo¤ function for a one-period European

derivatives contract on an investment asset with current price S0, for which the end of

period prices follow a binomial distribution as given in (7.138) with n ¼ 1. Then the

price of this derivatives contract L0ðS0Þ equals the price of the replicating portfolio

given in (7.142), with coe‰cients given in (7.141). Alternatively, this price can be

expressed as in (7.140) with probability q defined in (7.143).

Remark 7.63 This ‘‘probability’’ q is known as the risk-neutral probability of an up-

state, since this is what the probability of an upstate must be in a risk-neutral world to

justify the stock price of S0. To better see this, first note that q is the unique probability

that prices the current value of the common stock, S0, to be equal to the risk-free pres-

ent value of its expected future prices:

S0 ¼ e�r½qS0e
u þ q 0S0e

d �: ð7:144Þ
So why does this matter? We will see more on risk preference models in chapter 9,

but the conclusion will be that risk-neutral investors do not charge for risk, as the term

implies, and consequently they require the same return on all investments. Logically
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this implies that the same return they require for all assets is the risk-free return. But

what does ‘‘require the same return’’ mean if an asset has risk? The answer is that each

investor can summarize risk through their own ‘‘utility function,’’ and in general, will

price assets in order to maximize the expected value of the utility of their wealth. This

is usually called maximizing expected utility. For a risk-neutral investor, utility maxi-

mization turns out to be equivalent to pricing assets based on expected payo¤s. Rewrit-

ing the stock-pricing formula above, we have

S0e
r ¼ ½qeu þ q 0ed �S0;

which shows that the expected payo¤ on S0 under q provides the risk-free return.

Of course, no one believes investors to be risk neutral, but this is a good framework

for describing how q can be interpreted. Indeed the model suggests that if investors ex-

pect a log-ratio return of m, they likely believe that the probability of prices rising to

S0e
u is p, and not q. It is not di‰cult by example to show that q0 p, and this can be

proved with methods of chapter 9.

Multi-period Pricing

A two-period European option with payo¤ function LðS2Þ can be priced with the

same methodology. If we know the prices of this option at time 1 in both stock price

‘‘states,’’ LðSu
1 Þ and LðSd

1 Þ, then the price at time 0 is given by (7.140) with risk-

neutral probability q in (7.143):

L0ðS0Þ ¼ e�r½qLðSu
1 Þ þ q 0LðSd

1 Þ�: ð7:145Þ

The argument is the same. This is the correct price because a replicating portfolio can

be purchased for this amount that provides the correct future values whether the

stock price rises or falls.

On the other hand, LðSu
1 Þ can also be evaluated by this formula based on the pay-

o¤s at time 2,

LðSu
1 Þ ¼ e�r½qLðS2u

2 Þ þ q 0LðSuþd
2 Þ�;

and similarly for LðSd
1 Þ,

LðSd
1 Þ ¼ e�r½qLðSdþu

2 Þ þ q 0LðS2d
2 Þ�:

These formulas again follow, since these are the prices of the respective replicating

portfolios. Note that the subscript in these formulas denotes time, and superscript

denotes the stock state. For example, S2u
2 ¼ S0e

2u, and so forth.
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Inserting the second two formulas into the first, we see that L0ðS0Þ is again equal

to the expected present value of the t ¼ 2 payo¤s, where the expectation is calculated

with binomial probability q, and the present value at the risk-free rate r, producing

L0ðS0Þ ¼ e�2r½q2LðS2u
2 Þ þ 2qq 0LðSdþu

2 Þ þ ðq 0Þ2LðS2d
2 Þ�: ð7:146Þ

In exercise 39 is assigned the proof of the generalized version of this formula, for a

European option with expiry in n time steps. The formula becomes

L0ðS0Þ ¼ e�nr
Xn
j¼0

n

j

� �
q jð1� qÞn�jLðS j

nÞ; S j
n ¼ S0e

juþðn�jÞd : ð7:147Þ

This price can also be expressed as the price of a replicating portfolio that repli-

cates option prices at time 1-period, where the option prices are in turn given by an

application of this same formula with n� 1 periods to expiry:

LðSu
1 Þ ¼ e�ðn�1ÞrXn�1

j¼0

n� 1

j

� �
q jð1� qÞn�1�jLðSuj

n�1Þ; ð7:148aÞ

LðSd
1 Þ ¼ e�ðn�1ÞrXn�1

j¼0

n� 1

j

� �
q jð1� qÞn�1�jLðSdj

n�1Þ; ð7:148bÞ

where

S
uj
n�1 ¼ Su

1 e
juþðn�1�jÞd ; S

dj
n�1 ¼ Sd

1 e
juþðn�1�jÞd :

In other words, L0ðS0Þ in (7.147) satisfies (7.145) with these values of LðSu
1 Þ and

LðSd
1 Þ, and from the preceding section we know that this is the same price as that

of a replicating portfolio that replicates these option values. This result can be dem-

onstrated directly by an application of (7.16).

By (7.147), the price of the option can be expressed as an expected present value

under the assumption that the calculated value of q in (7.143) is the correct binomial

probability of an upstate return of eu. This will di¤er from the binomial probability

of p that we started with, that reproduced the mean and variance of the stock’s log-

ratio returns.

Of course, the price in (7.147) is the theoretically correct price under the assump-

tions of this lattice. If two analysts calibrate their lattices to di¤erent assumptions of

stock price behavior, or even the same assumptions but calibrated with di¤erent time

steps of Dt, di¤erent prices will result, possibly materially di¤erent.
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In finance, the p-model is referred to as the real world model, since it produces the

statistical properties observed or believed to be valid in the real world, and the q-

model is referred to as the risk-neutral model, since these probabilities correctly price

the stock in a world where investors are risk neutral.

We collect these results in a proposition:

Proposition 7.64 Let LðSÞ denote the payo¤ function for an n-period European deriv-

atives contract on an investment asset with current price S0, for which the end of period

prices follow a binomial distribution as given in (7.138). Then the price of this deriva-

tives contract, L0ðS0Þ, is given in (7.147) with probability q defined in (7.143). This

price also equals that of the replicating portfolio given in (7.142), with coe‰cients

given in (7.141), where the derivatives prices at time 1-period are given by (7.148).

Remark 7.65 It is important to recognize that while the pricing formula in (7.147)

can be understood to provide a risk-neutral present value of option payo¤s, this inter-

pretation does not provide a compelling reason why the number produced is the theoret-

ically correct market price. The logic that compels this conclusion is that L0ðS0Þ as

given in that formula also satisfies the equation in (7.145):

L0ðS0Þ ¼ e�r½qLðSu
1 Þ þ q 0LðSd

1 Þ�:

So by the analysis of the one-period model, this is the price of a portfolio that replicates

the value of this option at the end of the first period. Each of these prices in turn equals

what is needed to create a portfolio that replicates option prices in the next period, and

so forth. In other words, by ‘‘rebalancing’’ the replicating portfolio each period after

the first, and realizing this can be done with no additional costs, these replicating port-

folios will track the emerging values of the option up to the final period in which the last

replicating portfolio will replicate the actual option payo¤s. That said, this argument

ignores all real world market ‘‘friction’’ caused by trading costs and taxes, so the real

world price will need to be adjusted somewhat for this.

Of course, the replication argument relies on the assumption that this option is

on an investment asset as noted above. The reason for this is twofold. First o¤, the

actual replicating portfolio will involve a short position in S when a < 0 in (7.141),

which occurs when Lu < Ld . This is the case for a put option, for instance. Second,

this argument does not in and of itself compel the conclusion that options must be

sold at this price, it merely demonstrates that they could be sold near this price be-

cause the seller can hedge his risk with a replicating portfolio. In other words, selling

the option creates a short position for the seller that can be hedged with a

long position in the replicating portfolio. By ‘‘near this price’’ is meant adjusted for
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transactions costs and buyer convenience. Now, if the seller attempts to sell an

option on an investment asset at a price materially di¤erent from the replicating

portfolio cost, one of two things happen. Some investors will buy ‘‘cheap options’’

and hedge their position with short positions in the replicating portfolio. Some other

investors will sell ‘‘dear options’’ and hedge with a long position in the replicating

portfolio. In either case, the buying pressures would increase prices, and selling pres-

sures would decrease prices. So in both cases investors move toward the price of the

replicating portfolio, as adjusted for transactions costs.

7.8.7 Discrete Time European Option Pricing: Scenario Based

If N-paths are randomly generated, and fS j
ngnj¼0 denotes the nþ 1 possible stock

prices in the recombining lattice above at time n, it is of interest to analyze the num-

ber of paths that arrive at each final state. In theory, we know from the lattice anal-

ysis above that the distribution of stock prices at time n is binomially distributed

with parameters n, p in general, and hence Pr½Sn ¼ S j
n � ¼ n

j

� 	
p jð1� pÞn�j. Here p

denotes the probability of a u-return, and stock prices are parametrized so that

j ¼ 0 corresponds to the lowest price, S0
n ¼ endS0, and j ¼ n corresponds to the

highest price, Sn
n ¼ enuS0. On the other hand, we have shown that for the purposes

of option pricing, we continue to use the stock price returns of eu and ed but switch

the assumed probability of an upstate return from p to q given in (7.143).

In the lattice-based model, these q probabilities provide the likelihood of each final

state for option pricing. Consequently, if from a sample of N-paths, Nj denotes the

number that terminate at price S j
n so that

P
Nj ¼ N, then the ðnþ 1Þ-tuple of inte-

gers ðN0;N1; . . . ;NnÞ has a multinomial distribution with parameters N and fQjgnj¼0,

where Qj ¼ n
j

� 	
q jð1� qÞn�j. In other words, from (7.105) and (7.106) we conclude

that

E½Nj� ¼ NQj; ð7:149aÞ
Var½Nj � ¼ NQjð1�QjÞ; ð7:149bÞ
Cov½Qj;Qk� ¼ �NQjQk: ð7:149cÞ

In a nonrecombining lattice, Qj is again defined as the risk-neutral probability of

terminating at price S j
n , only in this case there are 2n stock prices rather than nþ 1.

The multinomial distribution is again applicable as are the moment formulas above.

As an application we develop the methodology for estimating the price of an n-

period European option using the scenario-based methodology. For simplicity, we

focus on the recombining lattice model, although the development is equally applica-
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ble in the more general case. To this end, let LðS j
nÞ denote the exercise value of the

option at time n when the stock price, S j
n , prevails. Given N-paths, define a random

variable ON , the sample option price,

ON ¼ e�nr

N

Xn
j¼0

NjLðS j
nÞ: ð7:150Þ

Intuitively the random variable ON is an estimate of the true option price based

on a price scenario sample of size N. Although this formula at first looks completely

di¤erent from the exact formula given in (7.147), the formulas are quite similar. Be-

cause of (7.149a), it is apparent that

E
Nj

N


 �
¼ Qj 1

n

j

� �
q jð1� qÞn�j;

and consequently the option price in (7.147) can be rewritten as

L0ðS0Þ ¼ e�nr
Xn
j¼0

E
Nj

N


 �
LðS j

nÞ:

In this form it is apparent that the di¤erence between L0ðS0Þ and ON is that for

the former, the option exercise price of LðS j
nÞ is given the theoretically correct weight

E
Nj

N

h i
, while for the latter, this weight is replaced by a sample-based estimate

Nj

N
. We

should then expect that since the paths are generated in such a way as to arrive at

each final stock price with the correct probability, the expected value of this random

variable ought to equal L0ðS0Þ, and this will be the case.

Even more important, it will turn out that as N increases, the probability that we

are in error by any fixed amount goes to 0. These results are demonstrated in chapter

8. In addition the relationship of this pricing approach to the replication-based pric-

ing above will be evaluated.

Exercises

Practice Exercises

1. Demonstrate that if E is a complete collection of events, and Aj A E for j ¼ 1; 2;

3; . . . , then 7
j
Aj A E .

2. Confirm that in the sample space S of sequences of 10 flips of a fair coin, the event

A ¼ fx j x ¼ HH . . .g contains exactly 25% of the total number of sequences, where
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this notation means that only the first two outcomes are fixed. In this demonstration,

if you ignore what happens after the first 2 flips, justify explicitly that this is valid.

3. On the sample space of 10-flip sequences of a fair coin S :

(a) Define three di¤erent random variables, X : S ! R. (Hint: For simplicity, iden-

tify an H with a 1, and a T with a 0.)

(b) Determine the associated ranges of these functions.

(c) Calculate PrðaÞ for one a in the range of each X .

4. Generalize (7.2) and (7.1) in the following way:

(a) If a gambler is asked to bet m for a chance to win n, what is the probability of

winning that will make this bet fair? Confirm that m ¼ 1 gives (7.2).

(b) If the gambler knows that the probability of a win is p, what ratio of amount bet

to amount won, m
n
from part (a), will make this a fair bet? Confirm that m ¼ 1 gives

(7.1).

(c) Show that if p is irrational in part (b), a fair bet requires an irrational value for
m
n
. Conclude that since bets and payo¤s must be rational numbers, a bet with an ir-

rational probability of winning can never be fair.

5. Show that if an event B A E satisfies PrðBÞ0 0, then Prð� jBÞ satisfies all the defini-
tional properties of a probability measure on the sample space S .

6. Consider the sample space of 5 flips of a fair coin, where we identify an H with a

1, and a T with a 0. Define events A and B as

A ¼ s A S






X3
i¼1

si ¼ 2

( )
and B ¼ s A S






X5
i¼3

si ¼ 1

( )
:

(a) List the sample points in each event.

(b) Determine the probability of each event.

(c) What points are in the event AVB?

(d) Verify that Pr½AVB� ¼ Pr½A jB� Pr½B�.
7. Define the events Ck;Bj HS , the sample space in exercise 6, by Ck ¼ fs A S jP2

i¼1 si ¼ kg, and Bj ¼ fs A S j P5
i¼3 si ¼ jg. Show for all j, k that Ck and Bj are in-

dependent events.

8. An urn contains 20 white, and 30 red balls.

(a) What is the probability of getting 8 or fewer red balls in a draw of 10 balls from

this urn, with replacement? (Hint: Pr½A� ¼ 1� Pr½ ~AA�.)
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(b) What is the probability of getting 8 or fewer red balls in a draw of 10 balls from

this urn, without replacement? (Hint: In addition to the part (a) hint, note that while

the individual probabilities associated with getting 9 red and 1 white ball reflect

order, their product does not.)

9. Consider a simultaneous roll of two dice, and a sample space defined as S ¼
fðn1; n2; . . . ; n6Þg, where nj denotes the number of dice showing j dots.

(a) Let X ¼P6
j¼1 jnj, the total number of dots showing on a roll, and determine the

range of X and associated p.d.f., f ðxjÞ.
(b) Develop a graph of the c.d.f. of X : F ðxÞ
10. In the sample space in exercise 9, define Y ¼P3

j¼1 jnj, and consider the pair of

random variables ðX ;YÞ.
(a) Determine the range of ðX ;YÞ and associated p.d.f. f ðx; yÞ.
(b) Calculate the marginal p.d.f.s f ðxÞ and f ðyÞ.
(c) Calculate the conditional p.d.f.s f ðx j yÞ and f ðy j xÞ, and confirm the law of

total probability, that f ðxÞ ¼Py f ðx j yÞ f ðyÞ and f ðyÞ ¼Px f ðy j xÞ f ðxÞ.
11. Demonstrate that the two definitions of independence of a collection of random

variables are equivalent where one is framed in terms of independence of pre-image

events in S as in definition 7.32, and the other in terms of joint and marginal proba-

bility distribution functions as in definition 7.34.

12. Given a random variable with moments up to order N, demonstrate that the col-

lections of moments and central moments can each be derived from the other. Specif-

ically, using properties of expectations, show that for naN:

(a) mn ¼
Pn

j¼0ð�1Þn�j n
j

� 	
m 0
jm

n�j (Hint: Use the binomial theorem.)

(b) m 0
n ¼

Pn
j¼0

n
j

� 	
mjm

n�j (Hint: X ¼ ½X � m� þ m.)

13. Given a sample, fxjgnj¼1, and m̂m 0
k defined in (7.88), show the following under the

assumption of the existence of the stated moments:

(a) E½m̂m 0
k� ¼ m 0

k

(b) Var½m̂m 0
k� ¼ 1

n
½m 0

2k � ðm 0
kÞ2�

14. Develop the details for deriving the formulas in (7.99) for the standard binomial

X B
n . Generalize this derivation to the analogously defined general binomial Y B

n ¼Pn
j¼1 Y

B
1j , where

Y B
1 ¼ a; Pr ¼ p,

b; Pr ¼ p 0.

�

Exercises 339



15. For the geometric distribution, let m 0
m 1E½ jm� ¼ p

Py
j¼0 j mð1� pÞ j for m A N

and mb 1, and analogously, m 0
0 ¼ 1.

(a) Show that these moments can be produced iteratively by

m 0
m ¼ 1� p

p

Xm�1

j¼0

m

j

� �
m 0
j :

(Hint: Show that for mb 1,
Py

j¼1 jmð1� pÞ j ¼ ð1� pÞ½1þPy
j¼1ð j þ 1Þmð1� pÞ j�,

and use the binomial theorem.)

(b) Derive the mean and variance formulas in (7.103) from part (a).

16. For the Poisson distribution with parameter l, show that:

(a) mP ¼ l (Hint: j l
j

j!
¼ l l j�1

ð j�1Þ! .)

(b) s2
P ¼ l (Hint: j2 l j

j!
¼ lð j � 1Þ l j�1

ð j�1Þ! þ l l j�1

ð j�1Þ! .)

17. Derive the mean and variance formulas for the aggregate loss model in (7.125)

and (7.126) using a conditioning argument. (Hint: Classes are independent, so derive

for class k by conditioning on Nk. Recall that here, Nk is binomial or Poisson, but it

is not conditional on Nk b 1.)

18. An automobile insurer wants to model claims for collision costs on 10,000 in-

sured automobiles, 2000 ‘‘luxury class’’ and 8000 ‘‘standard class.’’ It estimates that

the annual probability of a collision on any given auto is 0.10 for standard class and

0.06 for luxury class. The average value of insured autos is $25,000 for luxury and

$10,000 for standard. Experience dictates that when an accident occurs, the cost to

repair is uniformly distributed as a percentage of car value, and is 25–75% for lux-

ury, and 50–100% for standard. Total repair costs in the two classes are assumed to

be independent.

(a) Create an individual loss model for the insurer, and with it determine the mean

and variance of repair costs.

(b) Create an aggregate loss model for the insurer using the Poisson distribution, and

with it determine the mean and variance of repair costs.

(Hint: The mean and variance of the uniform distribution equal the limits of these

moments for the discrete rectangular distribution as n ! y. See (7.95) and also

chapter 10.)

19. Demonstrate that the expected value of a life annuity can also be expressed in

terms of the survival function by

340 Chapter 7 Discrete Probability Theory



E½B� ¼
Xy
j¼0

v jSMð jÞ:

20. Calculate E½B� and Var½B� using a conditioning argument in the following cases:

(a) Let B denote the random variable that equals the present value of annuity pay-

ments that are payable at the end of each year survived for life, but guaranteed pay-

able for a minimum of m years, independent of survival. This is an ‘‘m-year certain

life annuity.’’

(b) Let B denote the random variable that equals the present value of annuity pay-

ments that are only payable for survival up through the end of n years. This is an ‘‘n-

year temporary life annuity.’’

(c) Let B denote the random variable that equals the present value of annuity pay-

ments that are only payable for survival up through the end of n years, but guaran-

teed payable for a minimum of m years, independent of survival, where m < n. This

is an ‘‘m-year certain, n-year temporary life annuity.’’

21. Let B denote the random variable in each of parts (a) through (c) of exercise 20,

but redefined to allow for a k year deferral of benefits. So each annuity is ‘‘k-year

deferred’’ version of the annuity defined above. Consider the case where:

(a) No benefit is paid if death occurs during the first k years.

(b) A benefit of $1 is paid at the end of year of death if death occurs during the first

k years.

(c) Show that the benefit in part (b) equals the benefit in part (a) plus a k year term

life policy from exercise 37(a).

22. Assume that: rF ¼ 0:05, m1 ¼ 0:065, m2 ¼ 0:09, m3 ¼ 0:15, s2
1 ¼ ð0:07Þ2, s2

2 ¼
ð0:12Þ2, s2

3 ¼ ð0:18Þ2, r12 ¼ 0:35, r23 ¼ 0:4, and r13 ¼ 0:25:

(a) Develop formulas for the mean and variance of portfolio returns for an arbitrary

allocation to three risky assets and the risk-free asset.

(b) Define W ¼ ð0:25; 0:25; 0:25; 0:25Þ, and evaluate an epsilon shift between the

risk-free and third risky asset. Graph both E½R03
� � � E½R� and Var½R03

� � � Var½R� as
functions of � for �0:25a �a 0:25.

23. Generalize the calibration of the growth model for stock prices in (7.136) to de-

velop formulas for u and d for arbitrary p, 0 < p < 1, where p ¼ Pr½u�, being explicit

about the binomial probabilities that govern the associated price lattice in (7.138).

(Hint: Proceed as before, showing that with the binomial B defined as in section

7.8.5, and p 0 1 1� p, E½B� ¼ puþ p 0d and Var½B� ¼ pu2 þ p 0d 2 � ðpuþ p 0dÞ2.)
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24. Price a 2-year European call, with strike price of 100, in the ways noted below.

The stock has S0 ¼ 100, and based on time steps of Dt ¼ 0:25 years, the quarterly

log-ratios have been estimated to have mQ ¼ 0:02 and s2
Q ¼ ð0:07Þ2. The annual con-

tinuous risk-free rate is r ¼ 0:048, and so for Dt ¼ 0:25 years, you can assume that

rQ ¼ 0:012.

(a) Develop a real world lattice of quarterly stock prices, with p ¼ 1
2 , and price this

option using (7.147).

(b) Evaluate the two prices of this option at time t ¼ 0:25 from part (a), and con-

struct a replicating portfolio at t ¼ 0 for these prices. Demonstrate that the cost of

this replicating portfolio equals the price obtained in part (a).

(c) Using exercise 23, price this option using (7.147) with the appropriate value of q

based on a lattice for which p ¼ 0:25.

(d) Generate one hundred 2-year paths in the risk-neutral world, each with quarterly

time steps and using the model of part (a). Then estimate the price of this option

using (7.150), by counting how many scenarios end in each stock price at time 2

years.

25. Demonstrate that the conclusion following (7.143), that 0 < q < 1, follows from

ed < er < eu, and that this latter conclusion is demanded by an arbitrage argument.

(Hint: Show that if er a ed or er b eu, then there would be a trade at time 0 that

costs nothing, has no probability of a loss, and a positive probability of a profit

over the period.)

Assignment Exercises

26. Prove the following properties of a probability measure based on the properties

in definition 7.7:

(a) PrðjÞ ¼ 0

(b) If A;B A E , AHB, then PrðAÞaPrðBÞ. (Hint: Split B into disjoint sets.)

(c) If Aj A E for j ¼ 1; 2; 3; . . . , then Prð6
j
AjÞa

P
PrðAjÞ. (Hint: Split 6

j
Aj into

disjoint sets.)

(d) If Aj A E for j ¼ 1; 2; 3; . . . , then Prð7
j
AjÞaminjfPrðAjÞg. (Hint: 7

j
Aj HAk

for all k.)

27. Generalize exercise 2 and confirm that in the sample space S of sequences of n

flips of a fair coin, the event A defined by specifying the values of any ma n out-

comes, contains exactly 100
2m % of the total number of sequences. As before, if you

ignore what happens outside of these m flips, justify explicitly that this is valid.
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28. Answer exercise 4 in the case of a lottery rather than a bet. (Hint: A lottery is the

same as a bet with di¤erent payo¤s.)

(a) If a gambler buys the lottery ticket for m, and either wins 0 or n, what is the

probability of winning that will make this lottery fair?

(b) If the gambler knows that the probability of a win is p, what ratio of the cost of a

ticket to amount won, m
n
from part (a), will make this a fair lottery?

(c) Show that if p is irrational in part (b), a fair lottery requires an irrational value

for m
n
. Conclude that since ticket prices and payo¤s must be rational numbers, a lot-

tery with an irrational probability of winning can never be fair.

29. Generalize the event B in exercise 6 to Bj ¼ fs A S j P5
i¼3 si ¼ jg.

(a) What points are in the event AVBj for all j?

(b) Show that 6Bj ¼ S .

(c) Confirm the law of total probability, that Pr½A� ¼Pj Pr½A jBj� Pr½Bj �.
30. Consider a simultaneous roll of 21 dice, and a sample space defined as S ¼
fðn1; n2; . . . ; n6Þg, where nj denotes the number of dice showing j dots. Develop for-

mulaic or numerical solutions to the following:

(a) What is the probability of the sample point s ¼ ð1; 2; 3; 4; 5; 6Þ?
(b) What is the probability of the event A ¼ fs j n6 ¼ 12 and n3 ¼ 2g? (Hint: Can

this event be defined in terms of ðn3; n6; notherÞ with adjusted probabilities?)

31. Consider a simultaneous flip of 5 unfair coins, Pr½H� ¼ 0:3, and a sample space

defined as S ¼ fðn1; n2Þ j n1 denotes the number of Hs, and n2 the number of Tsg.
(a) Let X ¼ 0:01

P2
j¼1 10

jnj , and determine the range of X and associated p.d.f.

f ðxjÞ.
(b) Develop a graph of the c.d.f. of X : F ðxÞ.
32. In the sample space in exercise 31, define Y ¼ n1, and consider the pair of ran-

dom variables ðX ;Y Þ.
(a) Determine the range of ðX ;YÞ and associated p.d.f. f ðx; yÞ.
(b) Calculate the marginal p.d.f.s f ðxÞ and f ðyÞ.
(c) Calculate the conditional p.d.f.s f ðx j yÞ and f ðy j xÞ, and confirm the law of

total probability, that f ðxÞ ¼Py f ðx j yÞ f ðyÞ and f ðyÞ ¼Px f ðy j xÞ f ðxÞ.
33. Demonstrate algebraically the iterative formula in (7.16) underlying Pascal’s tri-

angle: n
m

� �¼ n�1
m�1

� �þ n�1
m

� �
.

34. Given a sample fxjgnj¼1, and M̂MX ðtÞ defined in (7.90), show the following under

the assumption of the existence of the stated moments:
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(a) E½M̂MX ðtÞ� ¼ MX ðtÞ
(b) Var½M̂MX ðtÞ� ¼ 1

n
½MX ð2tÞ �M 2

X ðtÞ�
35. Using the 2-variable joint p.d.f. derived for the multinomial distribution and

(7.50), show that for any two components with i0 j: Cov½Ni;Nj� ¼ �npipj . (Hint:

First justify:

E½N1N2� ¼
Xn�1

n1¼1

Xn�n1

n2¼1

n1n2
n!pn1

1 pn2
2 ð1� p1 � p2Þn�n1�n2

n1!n2!ðn� n1 � n2Þ! :

Then split this summation as the product

Xn�1

n1¼1

n1
n!pn1

1 ð1� p1Þn�n1

n1!ðn� n1Þ! �
Xn�n1

n2¼1

n2
ðn� n1Þ!

n2!ðn� n1 � n2Þ!
p2

1� p1

� �n2 1� p1 � p2

1� p1

� �n�n1�n2

;

and note that this second summation is E½n2� with a certain binomial distribution.

Alternatively, start with the double summation above, simplify n1n2
n1!n2!

, and look for

the binomial theorem.)

36. A bond portfolio quantitative analyst wants to model credit losses on a $750 mil-

lion portfolio, which includes three classes of credit risk: $250 million ‘‘low risk,’’

$350 million ‘‘medium risk,’’ and $150 million ‘‘high risk,’’ where in each class the

manager has maintained a $5 million average par investment exposure per credit.

Annual default probabilities are 0.002, 0.009, and 0.025. Experience dictates that

when a default occurs, the loss is uniformly distributed as a percentage of par value,

and is 25–50% for low risk, 25–75% for medium risk, and 50–100% for high risk.

Total credit losses in the three classes are assumed to be independent.

(a) Create an individual loss model for the analyst, and with it determine the mean

and variance of credit losses.

(b) Create an aggregate loss model for the analyst using the Poisson distribution,

and with it determine the mean and variance of credit losses.

(Hint: The mean and variance of the uniform distribution equal the limits of these

moments for the discrete rectangular distribution as n ! y. See (7.95) and also

chapter 10.)

37. Calculate E½In� and Var½In� using a conditioning argument in the following cases:

(a) Let In denote the random variable which equals the present value of a life insur-

ance payment at the end of the year of death, but where a payment is made only if

death occurs in the first n years. This is an ‘‘n-year term insurance’’ contract.
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(b) Let In denote the random variable that equals the present value of a life insur-

ance payment at the end of the year of death if death occurs in the first n years, or a

payment of $1 at time t ¼ n if the individual survives the n years. This is an ‘‘n-year

endowment’’ contract.

38. Assuming that: rF ¼ 0:03, m1 ¼ 0:095, m2 ¼ 0:19, m3 ¼ 0:15, s2
1 ¼ ð0:12Þ2,

s2
2 ¼ ð0:25Þ2, s2

3 ¼ ð0:18Þ2, r12 ¼ 0:55, r23 ¼ 0:4, and r13 ¼ 0:20:

(a) Develop formulas for the mean and variance of portfolio returns for an arbitrary

allocation to three risky assets and the risk-free asset.

(b) Define W ¼ ð0:25; 0:25; 0:25; 0:25Þ, and evaluate an epsilon shift between the sec-

ond and third risky asset. Graph both E½R23
� � � E½R� and Var½R23

� � � Var½R� as func-
tions of � for �0:25a �a 0:25.

39. Prove the formula in (7.147) using mathematical induction. (Hint: The formula is

proved for n ¼ 1; 2 already. Assume it to be true for n, and show it is true for nþ 1

by applying the assumed formula to the two values of the option at time 1, LðSu
1 Þ

and LðSd
1 Þ. Recall exercise 33.)

40. Price a 2-year European put, with strike price of 100, in the ways noted below.

The stock has S0 ¼ 100, and based on time steps of Dt ¼ 0:25 years, the quarterly

log-ratios have been estimated to have mQ ¼ 0:025, and s2
Q ¼ ð0:09Þ2. The annual

continuous risk-free rate is r ¼ 0:06, and so for Dt ¼ 0:25 years you can assume that

rQ ¼ 0:015.

(a) Develop a real world quarterly lattice of stock prices, with p ¼ 1
2 , and price this

option using (7.147).

(b) Evaluate the two prices of this option at time t ¼ 0:25 from part (a), and con-

struct a replicating portfolio at t ¼ 0 for these prices. Demonstrate that the cost of

this replicating portfolio equals the price obtained in part (a).

(c) Using exercise 23, price this option using (7.147) with the appropriate value of q

based on a lattice for which p ¼ 0:35.

(d) Generate one hundred 2-year paths in the risk-neutral world, each with quarterly

time steps and using the model of part (a), and estimate the price of this option using

(7.150), by counting how many scenarios end in each stock price at time 2 years.

41. Using (7.147), if LC
0 and LP

0 denote the t ¼ 0 prices of European call and put

options, respectively, both with a strike price of K and maturity of T , show that

these prices satisfy put-call parity:

LC
0 þ Ke�rT ¼ LP

0 þ S0; ð7:151Þ

where r denotes the risk-free rate in units of T .
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8 Fundamental Probability Theorems

In this chapter is introduced several of the very important theorems from probability

theory. Although a number of these results are somewhat challenging to demon-

strate, they all have a great many applications. This is due to the great generality of

the conclusions and the relatively minimal assumptions needed to produce them.

8.1 Uniqueness of the m.g.f. and c.f.

In this section we demonstrate a limited version of the result quoted in chapter 7,

that if CX ðtÞ ¼ CY ðtÞ or MX ðtÞ ¼ MY ðtÞ for discrete random variables X and Y ,

and for some open interval I , containing 0, then the probability density functions

are equal: fX ðxÞ ¼ gY ðxÞ. The narrower version of this result contemplated here

assumes that these random variable have finite ranges. This result can be shown to

be true in a more general context than finite discrete p.d.f.s, or even discrete p.d.f.s,

but requires the tools of real analysis and complex analysis.

Proposition 8.1 Let X and Y be finite discrete random variables with associated

probability functions f ðxÞ and gðyÞ, and respective domains of fxigni¼1 and fyjgmj¼1,

arranged in increasing order. If either CX ðtÞ ¼ CY ðtÞ or MX ðtÞ ¼ MY ðtÞ for t A I ,

where I is an open interval containing 0, then m ¼ n, xi ¼ yi, and f ðxiÞ ¼ gðyiÞ for

all i.

Proof If MX ðtÞ ¼ MY ðtÞ for t A I , then
P

etxi f ðxiÞ ¼
P

etyi gðyiÞ. Consequently

there are collections of real numbers fakg and fbkg, where the fbkg are all distinct,

so that

XN
k¼1

ake
tbk ¼ 0 for t A I : ð8:1Þ

In other words, for cases where xi ¼ yj for some i and j, ak ¼ f ðxiÞ � gðyjÞ and

bk ¼ xi ¼ yj. In all other cases, ak is either an f ðxiÞ or a gðyjÞ term, and the associ-

ated bk is xi, respectively yj. We now show that if (8.1) holds, then ak ¼ 0 for all k.

This provides the result, since it means that for any xi ¼ yj, it must be the case that

f ðxiÞ ¼ gðyjÞ, whereas for any xi or yj with no ‘‘match,’’ f ðxiÞ ¼ 0 or gðyjÞ ¼ 0, re-

spectively. The proof proceeds by induction on N. The result is apparently true for

N ¼ 1, since a1e
tb1 ¼ 0 for t A I clearly implies that a1 ¼ 0. This result is also appar-

ent for N ¼ 2, since in this case it is concluded that a2e
tðb2�b1Þ ¼ a1, but this is impos-

sible unless a1 ¼ a2 ¼ 0, since b2 � b1 0 0. Assume next that the result holds for N,

and that we seek to demonstrate the result for N þ 1. Now
PNþ1

k¼1 ake
tbk ¼ 0 implies

that
PN

k¼1 ake
tck ¼ �aNþ1 for t A I , where ck ¼ bk � bNþ1, and fckg are all distinct

and, importantly, all nonzero, since the fbkg are all distinct by assumption. Now, if



s; t A I , this equation implies that
PN

k¼1 ake
tck ¼PN

k¼1 ake
sck . This result can then be

expressed as follows if s0 t:

XN
k¼1

ake
sck

eðt�sÞck � 1

t� s


 �
¼ 0:

Now from (7.63) note that eðt�sÞck�1
t�s

¼ ck þ ðt� sÞ c2
k

2 þ Xk

h i
, where Xk is an absolutely

convergent summation of terms, all of which contain positive powers of ðt� sÞ. Con-
sequently, using the identities above obtains

XN
k¼1

akcke
sck ¼

XN
k¼1

ak ck � eðt�sÞck � 1

t� s


 �
esck

¼ �ðt� sÞ
XN
k¼1

ak
c2k
2
þ Xk


 �
:

Now as t ! s, since each Xk ! 0 as noted above, we conclude that

XN
k¼1

akcke
sck ¼ 0:

From the induction step for N we conclude that akck ¼ 0 for 1a kaN, and since

ck 0 0, it must be the case that ak ¼ 0 for 1a kaN. Finally, this implies that

aNþ1 ¼ 0 by substitution. To extend this proof to characteristic functions is immedi-

ate, with one subtlety, and that is the applicability of (7.63) to an exponential of the

form eix, where i ¼ ffiffiffiffiffiffiffi�1
p

and x A R. In this case the resulting power series is again

seen to be absolutely convergent by the ratio test, and this series is equal to eix be-

cause that is how eix is defined! n

Remark 8.2 The proof above cannot be adapted to a countably infinite discrete prob-

ability function, and for that case an entirely di¤erent approach is needed, requiring a

new and advanced set of tools. These tools will also handle this result for p.d.f.s that are

not discrete. The problem is that while we could again conclude (8.1) with N ¼ y, and

the trick employed above adapted, this would only yield

Xy
k¼2

akcke
sck ¼ 0;

which provides no real simplification.
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8.2 Chebyshev’s Inequality

Chebyshev’s inequality, sometimes spelled as Chebychev or Tchebyshe¤, applies to

any probability density function that has a mean and variance, and hence it is quite

generally applicable. It is named for its discoverer, Pafnuty Chebyshev (1821–1894).

Chebyshev was a Russian mathematician, and hence the many transliterations of his

name in English.

This inequality can be stated in many ways, and Chebyshev is actually a name

now given to a family of inequalities as will be seen below. But this inequality is often

applied as stated in the following proposition, when we are interested in an upper

bound for the probability of the random variable being far from its mean, where

‘‘far’’ is measured in two common ways. Although the Chebyshev inequalities are

stated here for discrete f ðxÞ, it is an easy exercise to generalize these to continuous

f ðxÞ using the tools of chapter 10.

Proposition 8.3 (Chebyshev’s inequality) If f ðxÞ is a discrete probability function

with mean m and variance s2, then for any real number t > 0,

Pr½jX � mjb ts�a 1

t2
: ð8:2Þ

Equivalently,

Pr½jX � mjb s�a s2

s2
: ð8:3Þ

Proof By definition, s2 ¼Pxi
ðxi � mÞ2f ðxiÞb

P
jxi�mjbtsðxi � mÞ2f ðxiÞ. In other

words, in this last summation, only the xi terms that satisfy jxi � mjb ts are

included. This second summation now satisfies
P

jxi�mjbtsðxi � mÞ2f ðxiÞb
ðtsÞ2Pjxi�mjbts f ðxiÞ, and this last summation is seen to equal Pr½jX � mjb ts�.
Combining the inequalities and dividing by s2 provides the first result. The second

result is implied by the first with the substitution t ¼ s
s
. n

Note that for any t with ta 1, this inequality provides no real limit on the associ-

ated probability, since in such a case, 1
t2
b 1. However, using integral multiples of the

standard deviation we obtain

Pr½jX � mjb 2s�a 1

4
¼ 0:25;

Pr½jX � mjb 3s�a 1

9
A0:11;
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Pr½jX � mjb 4s�a 1

16
A0:06;

and so forth.

For example, if X B has the binomial distribution with parameters n and p, then

Pr½jX B � npjb s�a npð1� pÞ
s2

:

Similarly, for the negative binomial distribution with parameters p and k, we con-

clude that

Pr X P � kð1� pÞ
p





 



b s


 �
a

kð1� pÞ
s2p2

:

This inequality can be generalized in many ways. For example, an estimate of a

probability of the form Pr½jX jb s� can be made with the same formula, except with

m 0
2 used instead of s2 ¼ m2. The proof above also readily applies to the case of m2n for

any n, which then bounds the associated probabilities in terms of higher order central

moments. In the case of odd central moments the proof only works when absolute

values are introduced. We state the generalization in the form of absolute values,

though the absolute value is redundant for even moments.

Proposition 8.4 If f ðxÞ is a discrete probability function, with mean m and absolute

central moment mjnj 1E½jX � mjn� for nb 1, then for any real number t > 0,

Pr½jX � mjb t�a mjnj
tn

: ð8:4Þ

Proof By definition,

mjnj ¼
X
xi

jxi � mjnf ðxiÞb
X

jxi�mjbt

jxi � mjnf ðxiÞb tn Pr½jX � mjb t�;

and the result follows by division. n

Once again, probabilities of the form Pr½jX jb t� can be bounded by the corre-

sponding formula, with m 0
jnj 1E½jX jn�. In this case, if the random variable has its

range in the nonnegative real numbers, these estimates apply without the absolute

values, that is, by using the moments m 0
n directly.

In exercise 1 is assigned the development of a probability estimate utilizing the

moment-generating function MX ðtÞ.
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Remark 8.5

1. Note that when n ¼ 1, the inequality in (8.4) restated in terms of m 0
j1j 1E½jX j� is

known as Markov’s inequality, named for Andrey Markov (1856–1922), a student of

Chebyshev. In other words,

Pr½jX jb t�a E½jX j�
t

: ð8:5Þ

2. Note also that if f ðxÞ is a p.d.f. with mjnj ¼ 0 for some nb 1, then it must be the

case that Pr½X ¼ m� ¼ 1. In other words, the random variable X assumes only the value

m. This is because in (8.4) the inequality states that Pr½jX � mjb t�a 0 for any t > 0,

but since probabilities are nonnegative, we conclude that Pr½jX � mjb t� ¼ 0 for any

t > 0 and therefore Pr½X ¼ m� ¼ 1. Such a random variable is referred to as a degener-

ate random variable, and the associated p.d.f., a degenerate probability density, with no

insult intended.

There is also a one-sided version of the Chebyshev inequality that is useful when

the focus of the investigation is on one and not both tails of the distribution. For in-

stance, if we are modeling losses in a credit portfolio, we are interested in the proba-

bility of losses being large and positive relative to expected losses, and not so much

interested in the probability that losses could be either large or small relative to this

expected value. The following result gives a better bound than (8.3) in this case, and

the amount of improvement grows with s2:

Proposition 8.6 (Chebyshev’s One-Sided Inequality) If f ðxÞ is a discrete probability

function, with mean m and variance s2, then for any real number s > 0,

Pr½X � mb s�a s2

s2 þ s2
: ð8:6Þ

Proof For any value of t, we have

Pr½X � mb s� ¼ Pr½X � mþ tb sþ t�aPr½ðX � mþ tÞ2 b ðsþ tÞ2�:
This is because the last probability statement also encompasses Pr½�ðX � mþ tÞa
�ðsþ tÞ�. Now, by the Markov inequality in (8.5) and a little algebra,

Pr½ðX � mþ tÞ2 b ðsþ tÞ2�a E½ðX � mþ tÞ2�
ðsþ tÞ2 ¼ s2 þ t2

ðsþ tÞ2 :

Summarizing we obtain
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Pr½X � mb s�a s2 þ t2

ðsþ tÞ2 for any t > 0:

Since t can be chosen arbitrarily, we do so to make the bound s2þt2

ðsþtÞ2 as small as pos-

sible. Using the methods of calculus discussed in chapter 9, we find the value of t that

minimizes this bound to be t ¼ s2

s
, and a substitution demonstrates that this produces

the bound in (8.6). n

This one-sided inequality can also be expressed in units of the variance as in (8.2)

as follows:

Pr½X � mb ts�a 1

t2 þ 1
: ð8:7Þ

8.3 Weak Law of Large Numbers

The so-called weak law of large numbers is actually a very powerful and general re-

sult with wide applicability but with the misfortune to be a relative of an even more

general result, known as the strong law of large numbers. Like the Chebyshev in-

equality, it has the power of being applicable to virtually any probability distribu-

tion. Unlike the Chebyshev inequality, which requires that these distributions have

both a mean and variance, the weak law requires only the existence of the first mo-

ment, but it is far easier to prove when the variance also exists.

Before giving its statement, recall that if a random variable X is defined on a dis-

crete sample space S , then a random sample of size n of this random variable can be

associated with a sample point in the n-trial sample space, denoted S n, with probabil-

ity structure defined in (7.7). The components of this sample point are then called in-

dependent and identically distributed (i.i.d.) random variables.

Proposition 8.7 (Weak Law of Large Numbers) For any n, let fXigni¼1 be indepen-

dent and identically distributed random variables with common mean m. Define the ran-

dom variable X̂X as the average, X̂X ¼ 1
n

Pn
i¼1 Xi. Then for any � > 0:

Pr½jX̂X � mj > �� ! 0 as n ! y: ð8:8Þ
Remark 8.8 Note that if fXigni¼1 are defined on the discrete sample space S , then X̂X is

a random variable defined on the n-trial sample space S n. The formal meaning of the

statement in (8.8) is that for any fixed � > 0, the events V n
� HS n in the n-trial sample

spaces S n, defined by
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V n
� ¼ fðX1; . . . ;XnÞ j jX̂X � mj > �g;

satisfy Pr½V n
� � ! 0 as n ! y.

The intuitive meaning of the statement in (8.8) can be described as follows: Suppose

that for any n we can easily generate as many samples fXigni¼1 as desired, and for each

sample calculate the associated sample average X̂X. On the real line we then plot the

collection of averages and determine the proportion of these that are outside the inter-

val ½m� �; mþ ��. The weak law asserts that for any � > 0, the proportion of sample

averages outside this interval converges to 0 as n ! y. In general, the weak law pro-

vides no information on the speed at which this proportion converges, but see below the

case where X also has a finite variance.

Proof We prove this result in two cases. In applications the first case is often

satisfied.

1. If the random variable X also has a variance s2, the weak law is an immediate

consequence of Chebyshev’s inequality and the formulas above for sample moments.

As developed in (7.78) and (7.79), we have E½X̂X � ¼ m, and Var½X̂X � ¼ s2

n
, which when

substituted into (8.3) provides the result

Pr½jX̂X � mj > ��a s2

n�2
: ð8:9Þ

This implies more than (8.8), and assures that this probability converges to 0 with a

rate at least as fast as c
n
for c ¼ s2

�2
.

2. In the general case we introduce the method of truncation, whereby, for each n and

arbitrary but fixed l > 0, the collection fXigni¼1 is truncated and split as

Yi ¼ Xi � m; jXi � mja ln;

0; jXi � mj > ln;

�

Zi ¼ 0; jXi � mja ln;

Xi � m; jXi � mj > ln:

�
So Xi � m ¼ Yi þ Zi. Now with ŶY and ẐZ defined as the associated averages, note

that (see exercise 15)

Pr½jX̂X � mj > ��aPr jŶY j > �

2


 �
þ Pr jẐZj > �

2


 �
:
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The weak law follows if it can be shown that for some l > 0, the two probabilities on

the right can be made as small as desired. For the first probability, note that since

jY1ja ln,

E½ðY1Þ2�a lnE½jY1j� < lnmj1j;

where mj1j ¼ E½jX1 � mj�. Now fYigni¼1 are independent because of the independence

of fXigni¼1, and

Var½ŶY � ¼ 1

n
Var½Y1�a 1

n
E½ðY1Þ2� < lmj1j:

Then by Chebyshev’s inequality,

Pr jŶY � E½ŶY �j > �

2


 �
a

4lmj1j
�2

:

But E½ŶY � ! E½X̂X � m� ¼ 0 as n ! y. So by choosing l small, we can make

Pr jŶY j > �
2

� �
as small as desired for any � as n ! y.

For the second probability, we show that Pr½jẐZj > 0� ! 0 as n ! y for any l.

By a consideration of the associated events and the independence of fZigni¼1, we

write

Pr½jẐZj > 0�a
X

Pr½jZij > 0� ¼ n Pr½jZ1j > 0�:

But, by definition,

Pr½jZ1j > 0� ¼ Pr½jXi � mj > ln�

¼
X

jxi�mj>ln

f ðxiÞ

a
1

ln

X
jxi�mj>ln

jxi � mj f ðxiÞ:

Then, combining, we have

Pr½jẐZj > 0�a 1

l

X
jxi�mj>ln

jxi � mj f ðxiÞ;

which converges to 0 for any l as n ! y. n
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In the common application to a random variable with mean and variance, this law

also provides a lower bound for the probability that the estimate will be close to the

expected value. In other words, if m and s2 exist, then

Pr½jX̂X � mja �� > 1� s2

n�2
; ð8:10Þ

which is only useful, of course, when s2

n�2
a 1 or �b sffiffi

n
p . In the general case all that

can be said is that

Pr½jX̂X � mja �� ! 1 as n ! y: ð8:11Þ
The formulation in (8.10) can then be understood in the context of providing a

general confidence interval for the theoretical mean m, which we may be interested in

estimating using a sample mean X̂X . Specifically, define the closed interval I� by

I� 1 ½X̂X � �; X̂X þ ��: ð8:12Þ
Then the weak law of large numbers says that if fXigni¼1 are independent and identi-

cally distributed random variables with common mean m and variance s2, then

Pr½m A I�� > 1� s2

n�2
: ð8:13Þ

To be clear, in any given application with sample statistic X̂X , it will be the case that

either m A I� or m B I�. The probability statement in (8.13) needs to be interpreted in

the context of n-trial sample space S n. Specifically, for ðX1;X2; . . . ;XnÞ A S n, let

X̂X ¼ 1
n

Pn
i¼1 Xi, and define the event fV n

�V n
� A E , the complement in S n of the event in re-

mark 8.8 above, by

fV n
�V n
� 1 fðX1;X2; . . . ;XnÞ A S n j m A ½X̂X � �; X̂X þ ��g;

where m is the mean of the random variable X . Then (8.13) states that for any � > 0,

Pr
hfV n

�V n
�

i
> 1� s2

n�2
; ð8:14Þ

where s2 is the variance of X .

The weak law, with exactly the same proof and interpretations, applies to all of

the sample moment estimates developed earlier, since all that was assumed in the

proof above was that X̂X is a random variable defined on n-trial sample space S n and
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that the m and s2 in (8.9) are, respectively, the mean and variance of this random

variable.

Example 8.9 With ŝs2 ¼ 1
n�1

Pn
j¼1ðXj � X̂XÞ2, the unbiased variance estimator, since

E½ŝs2� ¼ s2, we have that for any random sample of size n,

Pr½jŝs2 � s2j > ��a ðn� 1Þm4 � ðn� 3Þs4

nðn� 1Þ�2 ;

where the upper bound for this probability reflects Var½ŝs2�. For higher moments, with

higher moment estimators defined by m̂m 0
k ¼ 1

n

Pn
j¼1 X

k
j , we have that for any random

sample of size n,

Pr½jm̂m 0
k � m 0

kj > ��a m 0
2k � ðm 0

kÞ2
n�2

:

Here again it is used that E½m̂m 0
k� ¼ m 0

k, and the upper bound for this probability reflects

Var½m̂m 0
k�.

The critical observation on all these probability estimates is that each probability

is proportional to 1
n
, which is favorable as we can select n ! y, but is also propor-

tional to 1
�2
, which is unfavorable if we desire to have � ! 0. But for any desired

margin of error �, we can use these formulas to determine how large the sample size

n needs to be so that the sample estimator will be within that margin of error with

any probability that is desired.

Example 8.10 To estimate the parameter l ¼ E½XP� for a Poisson distribution, the

statement above produces

Pr½jX̂X � lj > ��a l

n�2
;

which is initially a bit of a problem due to the presence of the unknown l ¼ VarðXPÞ
in the probability upper bound. However, it is commonly the case that a crude upper

bound can be used successfully. For example, if a given sample produced X̂X ¼ 3, we

might be comfortable assuming la 5, and hence the probability statement above

becomes

Pr½jX̂X � lj > ��a 5

n�2
:
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In order to have 1 decimal point accuracy on the estimate for l, we choose � ¼ 0:05 and

derive

Pr½jX̂X � lj > 0:05�a 2000

n
;

from which, with n ¼ 200;000, a random sample will have less than a 1% probability of

producing an error in the first decimal place. Of course, if a smaller upper bound is

assumed for l, and/or a lower level of confidence desired, smaller samples will su‰ce.

Remark 8.11 This example reflects a practical constraint on the use of the weak law

in empirical estimates. While this law provided a calculation of n ¼ 200;000 to achieve

the desired result, most statisticians would agree that this is an enormous sample, and

almost certainly a sample size that is far bigger than what is truly needed. The problem

is that the empirical weakness of this law is caused by its theoretical strength. Specifi-

cally, this law applies to every random variable that has a finite mean, or in the appli-

cations above, every random variable with finite mean and variance. Because of this

generality, it would be unlikely that the formula provided would be e‰cient empirically

when applied to any given random variable, which in many cases will have many more

finite moments than the law requires. Consequently the weak law tends to be applied far

more often in theoretical estimates than in empirical estimations.

8.4 Strong Law of Large Numbers

The weak law of large numbers makes a statement about every n-trial sample space

S n associated with a random variable X with mean m. Specifically, this law asserts

that for any � > 0 the random variable X̂X ¼ 1
n

Pn
i¼1 Xi with i.i.d. fXigni¼1, ‘‘splits’’

this sample space into the event V n
� , of those sample points that are far from the

mean in that jX̂X � mj > �, and the event fV n
�V n
� , of those sample points that are close to

the mean in that jX̂X � mja �.

If we fix � and assume that X has variance s2, the event V n
� has probability no

more than s2

n�2
, which goes to 0, and event fV n

�V n
� has probability greater than 1� s2

n�2
,

which goes to 1, both as n ! y. Without the assumption of the existence of s2, the

same conclusions hold but without the information on rate of convergence.

Alternatively, for a fixed n, attempting to let � ! 0 in the case of finite variance

provides ine¤ective probability bounds in that the event V n
� has probability bounded

above by a quantity that goes to y mathematically but to 1 logically. Likewise fV n
�V n
�

has probability bounded below by a quantity that goes to �y mathematically but to

0 logically.
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On the other hand, if we choose � ! 0 carefully, say �n ¼ n½a�ð1=2Þ� for 0 < a < 1
2 ,

then we can simultaneously have that the probability of V n
�n
goes to zero as n ! y,

and the error tolerance �n goes to zero. That is, with X̂Xn denoting the sample mean

random variable in S n, and m the corresponding theoretical mean, we obtain that as

n ! y,

Pr½jX̂Xn � mj > n½a�ð1=2Þ��a s2

n2a
! 0:

We formalize this in a proposition.

Proposition 8.12 Let S be a sample space and fXigni¼1 independent, identically dis-

tributed with mean m and variance s2. If X̂Xn ¼ 1
n

Pn
i¼1 Xi denotes the average as a ran-

dom variable in S n, and V n
� HS n is defined by

V n
� ¼ fðX1; . . . ;XnÞ j jX̂Xn � mj > �g;

then there is a sequence �n ! 0 so that

Pr½V n
�n
� ! 0 as n ! y;

and correspondingly

Pr
�fV n

�n
V n

�n

�! 1 as n ! y:

Proof Choose �n ¼ n½a�ð1=2Þ� where 0 < a < 1
2 , and apply the weak law of large

numbers. n

Since this result gives that Pr
hfV n

�V n
�

i
! 1 as n ! y, it would be tempting to make

the bold assertion that Pr½X̂Xn ! m� ¼ 1 as n ! y. But the proposition above is silent

on the connection between the terms of any such sequence fX̂Xng. Each sequential X̂Xn

term could be generated in at least one of two ways:

1. Model 1 Each sequential X̂Xn term is generated and independent of the sample

points that are chosen for X̂Xj with j < n, meaning that for each n a new independent

sample ðX1;X2; . . . ;XnÞ A S n is produced.

2. Model 2 Each sequential X̂Xn term is generated but dependent on the sam-

ple points that are chosen for X̂Xj with j < n, so that X̂Xnþ1 is defined with the same

points as X̂Xn, which is ðX1;X2; . . . ;XnÞ, plus a new and independent sample point

Xnþ1.

358 Chapter 8 Fundamental Probability Theorems



The proposition above on the events V n
� gives no apparent statement on which

model if either would allow the conclusion that Pr½X̂Xn ! m� ¼ 1 as n ! y. This

proposition simply provides a statement about the probabilities of events defined in

the sequential sample spaces S n and confirms that these successive probabilities con-

verge to 1. In either of these models of how fX̂Xngyn¼1 might be generated, we do not

have a sample space with an associated probability structure, within which the collec-

tion fX̂Xngyn¼1 can be measured.

To better understand this point, we pursue these models in more detail. We will

then see that model 2 is the model underlying the strong law of large numbers, and

that this result is able to finesse a conclusion of Pr½X̂Xn ! m� ¼ 1 as n ! y, without

the explicit construction of a probability space in which fX̂Xngyn¼1 can be measured.

8.4.1 Model 1: Independent {X̂Xn}

Intuitively for model 1 we need an ‘‘infinite product’’ sample space:

S ðyÞ 1S � S 2 � S 3 � S 4 � � � � ;
where each S n denotes the n-trial sample space of sample points Xn 1 ðX1;X2; . . . ;

XnÞ and associated probability structure on which the random variable X̂Xn ¼ 1
n

P
Xj

is defined. The probability structures of the S n would then need to be combined to a

probability measure on this infinite product space in a way that is analogous to how

the probability structure of S n 1S � S � S � S � � � � � S (n-times) was defined rela-

tive to the probability measure Pr on S . For any finite product S ðMÞ ¼ S � S 2 � S 3 �
S 4 � � � � � SM , this sample space would be an example of a generalized M-trial sam-

ple space introduced in section 7.2.7, but for this model, this earlier construction

must be generalized further to M ¼ y.

The sequence fX̂Xngyn¼1 could then be defined in terms of a sample point in this

product space ðX1;X2; . . . ;Xn; . . .Þ, and the assertion Pr½X̂Xn ! m� ¼ 1 would have

meaning. Namely Pr½X̂Xn ! m� ¼ 1 would mean that Pr½A� ¼ 1, where the event

AHS ðyÞ is defined as the collection of all sequences that so converge:

A1 fðX1;X2; . . . ;Xn; . . .Þ j X̂Xn ! mg;
where each X̂Xn is defined relative to the components of Xn.

Alternatively, to attempt to avoid the construction of this sample space, let’s recall

the definition of limit. The statement X̂Xn ! m means that for any � > 0 there is an in-

teger N so that jX̂Xn � mj < � for nbN. We could say that within this model, the ex-

pression Pr½X̂Xn ! m� is defined as the probability that for any � > 0 there is an integer

N so that jX̂Xn � mj < � for nbN.
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Now by the weak law of large numbers, applied to the case where X has a finite

variance, we know from (8.10) that for a given n this probability is greater than or

equal to 1� s2

n�2
. In other words,

Pr½jX̂Xn � mj < ��b 1� s2

n�2

� �
:

So by independence,

Pr½jX̂Xn � mj < � for nbN� ¼
Yy
n¼N

½PrjX̂Xn � mj < ��

b
Yy
n¼N

1� s2

n�2

� �
:

Unfortunately, this leads to a dead end. Although beyond the tools we have devel-

oped so far the theory of infinite products is well developed in mathematics. As it

turns out, the convergence of this infinite product to a number greater than 0 is re-

lated to the absolute convergence of the series s2

n�2

n o
. Specifically, it will be shown in

chapter 9 that given fxngyn¼1 with xn > 0 and xn ! 0 as n ! y,

Yy
n¼1

ð1� xnÞ ¼ 0; if
P

xn diverges,

c > 0; if
P

xn converges.

�
Of course here xn is a multiple of the harmonic series, and we know from chapter 6

that
P

xn diverges. This implies that this infinite product has value 0 independent of

N. In other words, we can only conclude what was obvious without any work, that

in model 1, for any � > 0 and any N,

Pr½jX̂Xn � mj < � for nbN�b 0:

Equivalently, all that can be derived from the weak law is that

Pr½X̂Xn ! m�b 0;

which is not a very deep insight.

8.4.2 Model 2: Dependent {X̂Xn}

In the second model for how fX̂Xngyn¼1 might be generated, we need a di¤erent sample

space, one that is in e¤ect the countably infinite version of S n,
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Sy 1S � S � S � S � � � � ;
with appropriate probability structure so that a sample point of the form ðX1;X2; . . . ;

Xn; . . .Þ can be selected, and associated sample mean sequence fX̂Xngyn¼1 1
1
n

Pn
j¼1 Xj

n oy
n¼1

defined. Within such a space we could then define the event AHSy

as the collection of all sequences ðX1;X2; . . . ;Xn; . . .Þ A Sy with associated mean se-

quences that satisfies X̂Xn ! m. Then the statement that Pr½X̂Xn ! m� ¼ 1 would mean

that Pr½A� ¼ 1, where

A1 fðX1;X2; . . . ;Xn; . . .Þ A Sy j X̂Xn ! mg:
The construction of this sample space would seem to be easy. We simply assert

that

Sy 1 fðX1;X2; . . . ;Xn; . . .Þ jXj A S for all jg:
The hard part, however, is the imposition of a probability measure. What is easy to

demonstrate is that any attempt to generalize from (7.8) is hopeless. To attempt to

define a probability function on Sy by Py½ðs1; s2; . . .Þ� ¼
Qy

j¼1 PrðsjÞ provides the

immediate conclusion that Py½ðs1; s2; . . .Þ� ¼ 0 for all ðs1; s2; . . .Þ A Sy. Specifically,

if ðs1; s2; . . .Þ is any sample point, then in any nondegenerate space S it will be the

case that Pr½sj�a p < 1 for all j, and so
QN

j¼1 PrðsjÞ < pN , which converges to 0 as

N ! y. The only counterexample to this conclusion is for a degenerate probability

space S ¼ fsg with one point in which Pr½s� ¼ 1. So another definitional approach is

needed.

But any such approach will have to abandon the idea that sample points have non-

zero probabilities since it can never be the case that such an Sy will be countable.

Indeed, even for the simplest nondegenerate space, S 1 f0; 1g underlying the stan-

dard binomial, Sy so defined contains the equivalent of the base-2 expansions of all

real numbers in the interval ½0; 1� and hence is an uncountably infinite space. Assign-

ing nonzero probabilities to an uncountable collection of sample points with the hope

that these probabilities will add up to 1 is then doomed at the start. Why?

Because from the Cantor diagonalization approach in chapter 2, we know that

every summation of the probabilities of sample points will of necessity omit many

points, and hence any such sum must be unbounded and hence infinite. The only pos-

sible solution is to somehow identify a countable subcollection of points within

Sy, assign nonzero probabilities, and simply declare all other sample points to have

probability 0. But since Sy is truly uncountable, it is clear that using such a construc-

tion to conclude that Pr½X̂Xn ! m� ¼ 1 would not answer the original question.
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So another big idea is needed, but we do not have the necessary tools for such a

product space with methods of this chapter. We will begin work on that big idea

somewhat in chapter 10, which will address continuous probability theory, but the

complete theory requires the tools of real analysis. It turns out that the strong law

of large numbers addresses the desired result, produces a strong assertion, and avoids

the construction of this infinite dimensional space. It addresses the sequence fX̂Xngyn¼1,

which is defined in terms of a given sequence of independent X sample points

fXjgyj¼1 HS , without constructing the sample space Sy. But, if the strong law

assures the conclusion that Pr½X̂Xn ! m� ¼ 1, without the space Sy, what exactly

does this conclusion mean?

8.4.3 The Strong Law Approach

The approach taken in the strong law of large numbers will be to strengthen the con-

clusion above, where it was shown that when s2 exists, there exists �n ! 0 so that the

events

V n
�n
1 fðX1; . . . ;XnÞ j jX̂Xn � mj > �ngHS n

satisfy pn 1Pr½V n
�n
� ! 0 as n ! y. The idea was to choose �n ¼ na�ð1=2Þ, 0 < a < 1

2 .

While this result is meaningful, these probabilities do not converge to 0 very

quickly. Indeed there is no N for which
Py

n¼N pn < y, since pn ¼ s2

n2a
, where 0 <

2a < 1. In other words, the probabilities pn ! 0 slower than the terms of the har-

monic series, which we have seen does not converge. This is important becausePy
n¼N pn ¼

Py
n¼N Pr½V n

�n
�. So if this summation could be made to converge, it would

mean we could make this summation of probabilities as small as we want by choos-

ing N big enough, and below we will see that this is enough to provide the desired

conclusion in a logical way.

The problem of slow convergence is only partially caused by the goal of having the

error tolerance, �n ¼ na�ð1=2Þ, also converge to 0 as n increases. Even for fixed � > 0

we have seen from the weak law of large numbers that pn 1Pr½V n
� � ¼ s2

n�2
by (8.9).

While pn ! 0 as n ! y, there again is no N so that
Py

n¼N pn < y. In other words,

the best we can assert on the basis of the weak law is that for fixed � > 0, these prob-

abilities decrease to 0 no faster than 1
n
for a random collection fX̂Xng.

The strong law of large numbers will apply to a collection of random variables

fXngyn¼1 defined on S and the associated sample mean sequence

X̂Xn 1
1

n

Xn
j¼1

Xj:
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It will improve the results above in two ways:

1. The collection fXngyn¼1 must be independent but need not be identically distrib-

uted. However, if not i.i.d., the collection of variances, fs2
i g must not grow too fast

with i.

2. It will be shown that with m̂mk 1
1
k

Pk
j¼1 mj, then for any � > 0,

Xy
n¼1

pn < y;

where pn ¼ pnð�Þ is defined by

pn ¼ Pr½jX̂Xk � m̂mkj > � for at least one k with 2n�1 < ka 2n�:
Hence for any d > 0 there is an N so that

Py
n¼N pn < d.

The strong law of large numbers then ‘‘finesses’’ the conclusion that Pr½X̂Xn ! m� ¼ 1

without the construction of Sy because of the critical statement in 2 which could not

be derived from the weak law. First o¤, by definition,

Xy
n¼N

pn ¼ Pr½jX̂Xk � m̂mkj > � for at least one k > 2N�1�:

So from 2 above we can state that for any d > 0 there is an N ¼ Nð�Þ so that

Pr½jX̂Xk � m̂mkj > � for at least one k > 2N�1� < d:

In other words, for any d > 0 there is an N so that

Pr½jX̂Xk � m̂mkja � for all k > 2N�1�b 1� d:

We return to this analysis after the statement and proof of the strong law of large

numbers.

*8.4.4 Kolmogorov’s Inequality

In order to prove the strong law, we need another and stronger inequality than Che-

byshev’s inequality, called Kolmogorov’s inequality, named for Andrey Kolmogorov

(1903–1987) who was also responsible for introducing an axiomatic framework for

probability theory. Extending Chebyshev’s inequality, Kolmogorov’s inequality
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addresses a collection of random variables fXigni¼1 and provides a probability state-

ment regarding their maximum summation.

Kolmogorov’s inequality is stated for simplicity, under the assumption that

E½Xj� ¼ 0 for all j. However, this is not a true restriction. That is, if we are given

fYjgnj¼1 with E½Yj� ¼ mj, we can apply the result to Xj 1Yj � mj, since it is clear

that Var½Xj� ¼ Var½Yj�. And while this result requires that fXjgnj¼1 be independent

random variables, it does not require that they be identically distributed, so it allows

for di¤ering variances.

Proposition 8.13 (Kolmogorov’s inequality) Let fXigni¼1 be independent random vari-

ables with E½Xj� ¼ 0 and Var½Xj� ¼ s2
j . Then for t > 0,

Pr max
1aian

Xi

j¼1

Xj












> t

( )
a
Xn
j¼1

s2
j

t2
: ð8:15Þ

Remark 8.14 Note that the event defined in (8.15) is an event in S n, where S is the

common sample space on which fXigni¼1 are defined and independent. Note also that

Kolmogorov’s inequality is considerably stronger than is Chebyshev’s inequality applied

to this probability statement. The Chebyshev inequality would state that for any i, with

1a ia n,

Pr
Xi

j¼1

Xj












> t

( )
a
Xi

j¼1

s2
j

t2
;

since for independent random variables VarðP i
j¼1 XjÞ ¼

P i
j¼1 s

2
j . Of course,P i

j¼1

s2
j

t2
a
Pn

j¼1

s2
j

t2
, so at first these inequalities appear similar. However, Chebyshev’s

inequality provides probability statements on n separate events, and it is silent on the

question of the simultaneous occurrence of these n events. Kolmogorov’s inequality

says that the largest of the n Chebyshev probability bounds is su‰cient to bound the

probability of the worst case of these n events. Alternatively, Kolmogorov’s inequality

says that the largest of the n Chebyshev probability bounds is su‰cient to bound the

probability that all inequalities are satisfied simultaneously.

Proof The idea of this proof is to eliminate the maximum function by introducing a

new random variable that identifies the first summation for which jP i
j¼1 Xjj > t, and

then use a conditioning argument on this random variable. Consider the sequence

ðP i
j¼1 XjÞ2, i ¼ 1; 2; . . . ; n. For any collection of random variables fXigni¼1, define a

new random variable N ¼ minfi j ðP i
j¼1 XjÞ2 > t2g, but if ðP i

j¼1 XjÞ2 a t2 for all

ia n, define N ¼ n. Then the events in S n defined by
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max
1aian

Xi

j¼1

Xj

 !2
> t2

8<:
9=;;

XN
j¼1

Xj

 !2
> t2

8<:
9=;;

are identical events with equal probabilities. Now by the Markov inequality applied

to the second event, we get

Pr
XN
j¼1

Xj

 !2
> t2

8<:
9=;a

E½ðPN
j¼1 XjÞ2�
t2

:

Because of the assumption that E½Xj� ¼ 0, we have that E½ðPN
j¼1 XjÞ2� ¼

Var½PN
j¼1 Xj�, and so the proof will be complete if we can show that

Var
XN
j¼1

Xj

" #
a
Xn
j¼1

s2
j :

Note that this is a bit subtle because while fXigNi¼1 H fXigni¼1, N is a random vari-

able, and hence we cannot simply assert that Var½PN
j¼1 Xj�a

Pn
j¼1 s

2
j . To demon-

strate this upper bound, we use the law of total variance. First, for the conditional

variance, Var½PN
j¼1 Xj jN ¼ k� ¼ Var½Pk

j¼1 Xj� ¼
Pk

j¼1 s
2
j . Next, for the conditional

mean, E½PN
j¼1 Xj jN ¼ k� ¼ E½Pk

j¼1 Xj � ¼ 0. We now have by (7.49),

Var
XN
j¼1

Xj

" #
¼ E

Xk
j¼1

s2
j

" #
þ Var½0�:

For this last expectation, if ak ¼ Pr½N ¼ k�, then, sincePn
j¼1 ak ¼ 1,

E
Xk
j¼1

s2
j

" #
¼
Xn
k¼1

ak
Xk
j¼1

s2
j

" #
a
Xn
j¼1

s2
j ;

which follows by reversing the double summation:
Pn

k¼1

Pk
j¼1 ¼

Pn
j¼1

Pn
k¼j . n

*8.4.5 Strong Law of Large Numbers

We next turn to the statement of the strong law of large numbers. The primary re-

quirement is that while the collection of variances fs2
i g do not need to be bounded,
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if unbounded, they cannot increase too fast. We provide this statement in both the

simpler case of independent and identically distributed random variables, since that

is the statement that is often su‰cient for applications as well as in the more general

case.

Proposition 8.15 (Strong Law of Large Numbers 1) Let fXjgyj¼1 be independent,

identically distributed random variables with mean m and variance s2, and define

X̂Xk ¼ 1
k

Pk
j¼1 Xj. For any � > 0 define the event An HS 2 n

,

An ¼ fX j jX̂Xk � mj > � for at least one k with 2n�1 < ka 2ng;
where X 1 ðX1;X2; . . . ;X2 nÞ A S 2 n

. Then

Xy
n¼1

Pr½An� < y;

and hence for any d > 0 there is an N so that
Py

n¼N Pr½An� < d.

Proposition 8.16 (Strong Law of Large Numbers 2) Let fXjgyj¼1 be a sequence of mu-

tually independent random variables with means fmjgyj¼1 and variances fs2
j gyj¼1 withPy

j¼1

s2
j

j 2
< y. Define X̂Xk ¼ 1

k

Pk
j¼1 Xj and m̂mk ¼ 1

k

Pk
j¼1 mj . For any � > 0 define the

event An HS 2 n

,

An ¼ fX j jX̂Xk � m̂mkj > � for at least one k with 2n�1 < ka 2ng; ð8:16Þ
where X 1 ðX1;X2; . . . ;X2 nÞ A S 2 n

. Then

Xy
n¼1

Pr½An� < y; ð8:17Þ

and hence for any d > 0 there is an N so that
Py

n¼N Pr½An� < d.

Proof The event An can equivalently be defined as the event

An ¼ max
2 n�1<ka2n

Xk
j¼1

Yj












> k�

" #
;

where Yj ¼ Xj � mj. In other words, jX̂Xk � m̂mkj > � for at least one k with 2n�1 <

ka 2n if and only if maxð2 n�1<ka2 nÞj
Pk

j¼1 Yjj > k�. Note that Pr½An� < Pr½A 0
n�, where

A 0
n is defined in terms of 2n�1� rahter than k�. By Kolmogorov’s inequality, the prob-

ability of this latter event is given by
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Pr½A 0
n� <

1

22n�2

X2 n

j¼1

s2
j

�2
:

Hence

Xy
n¼1

Pr½An� < 4

�2

Xy
n¼1

1

22n

X2 n

j¼1

s2
j :

Note that in this double summation, each s2
j is counted multiple times. In partic-

ular,

Xy
n¼1

1

22n

X2 n

j¼1

s2
j ¼

Xy
j¼1

s2
j

Xy
2nbj

1

22n

a 2
Xy
j¼1

s2
j

j2
;

since
Py

2nbj
1
22n

a
Py

n¼j
1
2n ¼ 1

2 j�1 a
2
j 2
for jb 4. Hence

Py
n¼1 Pr½An� < y. n

Remark 8.17 The assumption in the general version of the strong law, thatPy
j¼1

s2
j

j 2
< y, is certainly an assumption about the growth rate of s2

j as j ! y. For

example, if s2
j ¼ s2, which is the assumption of no growth, then, since

Py
j¼1

1
j 2
< y

from chapter 6, the strong law applies. On the other hand, if s2
j ¼ js2, so the standard

deviation grows like
ffiffi
j

p
, the strong law does not apply, since again from chapter 6,PN

j¼1
1
j
! y with N. Consequently linear variance growth, or equivalently, square

root growth in standard deviation, is just a bit too fast for the strong law to apply.

However, if s2
j ¼ j as2 for any a < 1, the strong law applies, since

Py
j¼1

s2
j

j 2
¼

s2
Py

j¼1
1

j 2�a < y for 2� a > 1.

Corollary 8.18 Let fXjgyj¼1 be independent random variables with means fmjgyj¼1

and variances s2
j with

Py
j¼1

s2
j

j 2
< y, and for any k define X̂Xk ¼ 1

k

Pk
j¼1 Xj and m̂mk ¼

1
k

Pk
j¼1 mj . Then for any � > 0 and d > 0 there is an N so that

Pr½jX̂Xk � m̂mkj > � for any k > 2N � < d:

Equivalently, for any � > 0 and d > 0 there is an N so that

Pr½jX̂Xk � m̂mkja � for all k > 2N � > 1� d: ð8:18Þ
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Proof This follows from the observation that

½jX̂Xk � m̂mkj > � for any k > 2N � ¼ 6
nbNþ1

An;

and the conclusion that
Py

n¼1 Pr½An� < y. Hence for any d > 0 there is an N so thatPy
n¼Nþ1 Pr½An� < d. n

Remark 8.19 Note that in this corollary, ½jX̂Xk � m̂mkj > � for any k > 2N � is not an

event in any of the n-trial sample spaces defined so far. Indeed, since this ‘‘event’’ is re-

lated to the entire collection of random variables, it would have to exist in Sy, which

we have not defined. In essence, with the strong law, we can avoid the construction of

this event in Sy and finesse the result by defining this event as a union of the respective

events in the S 2 n

spaces for nbN þ 1. And this corollary estimates that the sum of the

measures of all such events in all such sample spaces can be made as small as desired.

And it is in this light that the strong law of large numbers provides the conclusion

Pr½X̂Xn � m̂mn ! 0� ¼ 1, or in the case of identically distributed Xn-values, the conclusion

Pr½X̂Xn ! m� ¼ 1.

8.5 De Moivre–Laplace Theorem

The De Moivre–Laplace theorem is a special case of a very general result discussed

below, known as the central limit theorem. The theorem of this section addresses the

question of the ‘‘limiting distribution’’ of the binomial distribution as n ! y. Specif-

ically, if X ðnÞ 1
Pn

j¼1 X
B
j is a binomially distributed random variable with parame-

ters n and p, where X B
j are i.i.d. standard binomial variables, we have from (7.97) the

probability that for integers a and b,

Pr½aaX ðnÞ a b� ¼
Xb 0

j¼a 0

n

j

� �
p jð1� pÞn�j;

where a 0 ¼ maxða; 0Þ and b 0 ¼ minðb; nÞ.
In this form it is di‰cult to specify what happens to this distribution as n ! y be-

cause the range of the random variable is ½0; n� which varies with n. Put another way,

we have from (7.99) that E½X ðnÞ� ¼ np and Var½X ðnÞ� ¼ npð1� pÞ, so both the mean

and variance of X ðnÞ grow without bound as n ! y. In order to investigate quanti-

tatively the probabilities under this distribution as n ! y, some form of scaling is

necessary to stabilize results.
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The approach used by Abraham de Moivre (1667–1754) in the special case of

p ¼ 1
2 , and many years later generalized to all p, 0 < p < 1, by Pierre-Simon Laplace

(1749–1827), was to consider what is now called the normalized random variable,

Y ðnÞ, defined by

Y ðnÞ ¼ X ðnÞ � E½X ðnÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½X ðnÞ�

p : ð8:19Þ

The random variable Y ðnÞ has the same binomial probabilities as does X ðnÞ, of
course, since for any n, E½X ðnÞ� and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½X ðnÞ�

p
are constants. However, its range is

now
j�E½X ðnÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½X ðnÞ�

p



 0a ja n

� �
, and a simple calculation using (7.38) yields that

E½Y ðnÞ� ¼ 0; Var½Y ðnÞ� ¼ 1:

Consequently, with mean and variance both constant and independent of n, the ques-

tion of investigating and potentially identifying the limiting distribution of Y ðnÞ as

n ! y is better defined and its pursuit more compelling.

To this end, we first note two elementary but important results on Y ðnÞ:

Proposition 8.20 Given Y ðnÞ defined as in (8.19) where the binomial probability p

satisfies 0 < p < 1:

1. The range of Y ðnÞ is unbounded both positively and negatively as n ! y.

2. If y A R, there is a sequence fyng with yn ! y, and each yn is in the range of Y ðnÞ.

Proof

1. Since 0a ja n, a simple calculation shows that with q1 1� p,

� ffiffiffi
n

p ffiffiffi
p

q

r
a

j � E½X ðnÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½X ðnÞ�

p a
ffiffiffi
n

p ffiffiffi
q

p

r
:

This result reduces to the unbounded symmetric interval ½�n; n� when p ¼ 1
2 , and it is

unbounded and asymmetrical otherwise as n ! y.

2. Let N denote the smallest integer so that y A � ffiffiffiffiffi
N

p ffiffiffi
p
q

q
;
ffiffiffiffiffi
N

p ffiffiffi
q
p

q� 	
, where again

q ¼ 1� p. This result is always possible, since these intervals grow without bound

with N. Now it must be the case that there is a j, perhaps two such values, so that

y A j�Npffiffiffiffiffiffi
Npq

p ; jþ1�Npffiffiffiffiffiffi
Npq

p

 �

, since the collection of these intervals covers � ffiffiffiffiffi
N

p ffiffiffi
p
q

q
;
ffiffiffiffiffi
N

p ffiffiffi
q
p

qh i
.

We then define y0 as the left endpoint of this interval. For each value of N þ n,

where nb 1, now define yn as the left endpoint of the interval for which y A
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j�ðNþnÞpffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNþnÞpq

p ;
jþ1�ðNþnÞ pffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðNþnÞpq
p


 �
. There is again at least one such interval, since these intervals

collectively cover � ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ n

p ffiffiffi
p

q

q
;
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ n

p ffiffiffi
q

p

qh i
. Since the length of the interval in this

nth step is 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNþnÞpq

p , which converges to 0 as n ! y, it is apparent by construction

that jy� ynja 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNþnÞpq

p , and we can conclude that yn ! y. n

Remark 8.21 In this construction for the proof of 2, the right end points work equally

well, as does a random selection from the two end points of each interval. In other

words, there are infinitely many such sequences.

Consequently for any y A R we can investigate the existence of a probability den-

sity function gðyÞ defined as

gðyÞ1 lim
n!y

PrfY ðnÞ ¼ yng;

where fyng is constructed so that yn ! y. To be sure that such a pursuit is justified,

one needs to ascertain that this limit makes sense and answers the original question:

Is such a gðyÞ the limiting density of the binomial p.d.f. for Y ðnÞ as n ! y?

A moment of reflection demonstrates that this limit may well not answer this ques-

tion, since it is the case that for any such sequence, fyng,

Pr½Y ðnÞ ¼ yn� ¼ Pr½X ðnÞ ¼ jn�;
where jn ¼ yn

ffiffiffiffiffiffiffiffi
npq

p þ np. So as yn ! y, we see that jn ! y, and hence it would ap-

pear logical that

lim
n!y

Pr½Y ðnÞ ¼ yn� ¼ 0

for any y. In other words, as defined above, it would appear to be the case that

gðyÞ ¼ 0 for all y.

Before investigating this further, note that this conclusion is also compelled by the

fact that if gðyÞ is defined as above for every y A R, then it would not make sense to

have gðyÞ > 0 for more than a countable subset of R. This is because if gðyÞ > 0 for

an uncountable set, then
P

gðyÞ over all such values would have to be infinite and

never equal 1 as is needed for a probability density. This follows from an argument

analogous to the Cantor diagonalization process, that any attempt to enumerate and

add up all such gðyÞ values would of necessity omit all but a countable subcollection.

Hence any such summation would of necessity be unbounded.
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To formally show that gðyÞ ¼ 0 for all y where gðyÞ is defined above is somewhat

di‰cult, but this conclusion will be an immediate consequence of the proof of the De

Moivre–Laplace theorem that we now pursue. As will be seen, in order to get a true

p.d.f. from the limit of the p.d.f.s of the associated Y ðnÞ random variables, an adjust-

ment factor is needed in the definition above of gðyÞ. Specifically, each probability

PrfY ðnÞ ¼ yng will be multiplied by
ffiffiffiffiffiffiffiffi
npq

p
, and the product will then be shown to

converge to the desired probability density function hðyÞ. In addition this proof

will establish the speculation above that PrfY ðnÞ ¼ yng ! 0, since
ffiffiffiffiffiffiffiffi
npq

p ! y andffiffiffiffiffiffiffiffi
npq

p
PrfY ðnÞ ¼ yng ! hðyÞ clearly implies this result.

The proof of this theorem depends on a famous approximation formula for n!,

known as Stirling’s formula, or Stirling’s approximation, named for its discoverer,

James Stirling (1692–1770), which is of interest in itself.

8.5.1 Stirling’s Formula

To establish this approximation formula, we require another power series expansion

from chapter 9 for the natural logarithm function lnð1þ xÞ. The proof of this will

depend on the same mathematical tools that will be used to prove the power series

expansion of ex noted in (7.63). The needed expansion here is

lnð1þ xÞ ¼
Xy
n¼1

ð�1Þnþ1 1

n

� �
xn for jxj < 1: ð8:20Þ

As was the case for the series expansion for ex, the ratio test confirms absolute con-

vergence of this series, since

ð�1Þnþ2 1
nþ1

� 	
xnþ1

ð�1Þnþ1 1
n

� �
xn














 ¼ x

nþ1
n












! jxj as n ! y;

and consequently the restriction jxj < 1 assures absolute convergence. As x ! �1,

this series approaches the negative of the harmonic series �Py
n¼1

1
n
, which diverges

to �y. On the other hand, we will see in chapter 10 that as x ! 1, this series is well

defined.

Note also that this formula can be written with �x, using lnð1� xÞ ¼ �ln 1
1�x

� �
,

ln
1

1� x

� �
¼
Xy
n¼1

1

n

� �
xn for jxj < 1: ð8:21Þ

When combined with (8.20), this yields
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1

2
ln

1þ x

1� x

� �
¼
Xy
n¼1

1

2n� 1

� �
x2n�1 for jxj < 1; ð8:22Þ

since ln 1þx
1�x

� �¼ lnð1þ xÞ � lnð1� xÞ, and absolute convergence justifies rearranging

the terms of these two series into a single series.

Proposition 8.22 (Stirling’s Formula) As n ! y, we have the relative approximation

n!@
ffiffiffiffiffiffi
2p

p
nnþð1=2Þe�n, in the sense that

n!ffiffiffiffiffiffi
2p

p
nnþð1=2Þe�n

! 1 as n ! y: ð8:23Þ

Moreover the relative error in this approximation is given by

e1=ð12nþ1Þ <
n!ffiffiffiffiffiffi

2p
p

nnþð1=2Þe�n
< e1=12n: ð8:24Þ

Proof We first show that there is a constant C so that n!@ eCnnþð1=2Þe�n has the

noted properties. To this end, define fn ¼ ln n!
nnþð1=2Þe�n

� 	
, which can be rewritten using

properties of the logarithm

fn ¼ ln n!� nþ 1

2

� �
ln nþ n:

We now show that there is a constant C so that fn ! C. By exponentiation, this will

then establish (8.23) with eC in place of
ffiffiffiffiffiffi
2p

p
. To do this, consider fn � fnþ1. A calcu-

lation shows that

fn � fnþ1 ¼ nþ 1

2

� �
ln

nþ 1

n

� �
� 1:

Expressing nþ1
n

¼ 1þx
1�x

, where x ¼ 1
2nþ1

, and using (8.22) with index m produces

fn � fnþ1 ¼
Xy
m¼1

1

2mþ 1

� �
x2m;

which demonstrates that fn � fnþ1 > 0. Hence the sequence f fng is decreasing. Fur-

ther, since 1
2mþ1

� 	
< 1

3 except for m ¼ 1, in which case we have equality

fn � fnþ1 <
1

3

Xy
m¼1

x2m
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¼ 1

3½ð2nþ 1Þ2 � 1�

¼ 1

12n
� 1

12ðnþ 1Þ :

The last inequality shows that fn � 1
12n < fnþ1 � 1

12ðnþ1Þ , so fn � 1
12n is increasing.

Since 1
12n ! 0, this implies that there is a constant C for which fn ! C. The upper

error bound in (8.24) also comes from this analysis. Because fn � 1
12n is increasing

with limit C, we have fn < C þ 1
12n , and this can be exponentiated to the desired

result. For the lower bound, the series expansion for fn � fnþ1 above, using only

the first term implies fn � fnþ1 >
1
3

1
2nþ1

� 	2
> 1

12nþ1 � 1
12ðnþ1Þþ1

. As a result fn � 1
12nþ1 is

increasing and consequently fn > C þ 1
12nþ1 . The final step is the demonstration that

eC ¼ ffiffiffiffiffiffi
2p

p
, which we only sketch here and defer the details to chapter 10. This con-

clusion is a consequence of what is known as Wallis’ product formula for p
2 , named

for its discoverer, John Wallis (1616–1703), which is

p

2
¼
Yy
n¼1

ð2nÞ2
ð2n� 1Þð2nþ 1Þ : ð8:25Þ

A calculation with much cancellation shows that

Ym
n¼1

ð2nÞ2
ð2n� 1Þð2nþ 1Þ ¼

24mðm!Þ4
ð2mÞ!ð2mþ 1Þ! :

So this result can be written as

p

2
¼ lim

m!y

24mðm!Þ4
ð2mÞ!ð2mþ 1Þ! :

Substituting the approximations for the factorial functions derived above, which are

in the form n!@ eCnnþð1=2Þe�n completes the derivation that eC ¼ ffiffiffiffiffiffi
2p

p
. The proof of

Wallis’ formula involves mathematical tools of chapter 10 and an application of in-

tegration by parts. n

Remark 8.23

1. Note that the approximation in Stirling’s formula only converges in terms of relative

error, and not in terms of absolute error. In fact from (8.24) we can conclude only that
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ðe1=ð12nþ1Þ � 1Þ
ffiffiffiffiffiffi
2p

p
nnþð1=2Þe�n < n!�

ffiffiffiffiffiffi
2p

p
nnþð1=2Þe�n < ðe1=12n � 1Þ

ffiffiffiffiffiffi
2p

p
nnþð1=2Þe�n;

which is an error interval that grows without bound.

2. Also note that the convergence of the Wallis’ product formula for p
2
is painfully

slow. Indeed, defining aN ¼ QN
n¼1

ð2nÞ2
ð2n�1Þð2nþ1Þ , we have that aN ¼ ð2NÞ2

ð2N�1Þð2Nþ1Þ aN�1, and

the successive multiplicative factors
ð2NÞ2

ð2N�1Þð2Nþ1Þ ¼ 1
1� 1

4N 2

converge to 1 very quickly.

8.5.2 De Moivre–Laplace Theorem

With the aid of this approximation for n!, we can now address the primary result in

this section.

Proposition 8.24 (De Moivre–Laplace Theorem) Let X ðnÞ be a binomial random vari-

able with parameters p and n, with 0 < p < 1, and let Y ðnÞ denote the normalized ran-

dom variable in (8.19). For any y A R, and fyng constructed so that yn A Rng½Y ðnÞ�
and yn ! y, we have as n ! y,

ffiffiffiffiffiffiffiffi
npq

p
PrfY ðnÞ ¼ yng ! 1ffiffiffiffiffiffi

2p
p e�y2=2: ð8:26Þ

Proof As noted above, with jn ¼ yn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½X ðnÞ�

p
þ E½X ðnÞ�, we have that PrfY ðnÞ ¼

yng ¼ PrfX ðnÞ ¼ jng. Consequently
ffiffiffiffiffiffiffiffi
npq

p
PrfY ðnÞ ¼ yng ¼ ffiffiffiffiffiffiffiffi

npq
p n

jn

� �
p jnð1� pÞn�jn :

Using Stirling’s formula applied to n
j

� 	
, we write

n!

j!ðn� jÞ! @
ffiffiffiffiffiffi
2p

p
nnþð1=2Þe�nffiffiffiffiffiffi

2p
p

j jþð1=2Þe�j
ffiffiffiffiffiffi
2p

p
ðn� jÞðn�jÞþð1=2Þ

e�ðn�jÞ

¼ 1ffiffiffiffiffiffi
2p

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

jðn� jÞ
r

n

n� j

� �n�j
n

j

� �j

:

In this analysis we shortcut with ‘‘@’’ the more technically accurate use of ‘‘<’’ and

the necessary insertion of error terms in each of the Stirling approximations. We

know from (8.24) that these approximations are collectively bounded above and

below by exponential terms that converge to 1 as n ! y, since then jn ! y.

With this restatement of the combinatorial term, the proof has two parts, since the
1ffiffiffiffi
2p

p term is apparently accounted for:
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1. The first step is to show that

ffiffiffiffiffiffiffiffi
npq

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

jnðn� jnÞ
r

! 1:

To this end, note that
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jnðn�jnÞ

n

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

jn
n

� 	
1� jn

n

� 	r
. But jn

n
¼ pþ yn

ffiffiffiffi
pq

n

q
, and 1� jn

n
¼

q� yn

ffiffiffiffi
pq
n

q
, soffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
jn

n

� �
1� jn

n

� �s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npqþ ðq� pÞyn ffiffiffiffiffiffiffiffi

pqn
p � y2n pq

q
:

The ratio of
ffiffiffiffiffiffiffiffi
npq

p
to this term converges to 1 as n ! y, since yn ! y, completing

the first step.

2. The second step is to show that as n ! y,

n

n� jn

� �n�jn n

jn

� �jn

p jnð1� pÞn�jn ¼ n� jn

nq

� ��ðn�jnÞ jn

np

� ��jn

! e�y2=2:

To do this, we first take �1 times the logarithm of the second expression and

show that the resulting expression converges to y2

2 . From part 1 we have that jn ¼
npþ yn

ffiffiffiffiffiffiffiffi
pqn

p
, and n� jn ¼ nq� yn

ffiffiffiffiffiffiffiffi
pqn

p
, from which jn

np
¼ 1þ yn

ffiffiffiffi
q
np

q
and n�jn

nq
¼

1� yn

ffiffiffiffi
p
nq

q
. Hence

�ln
nq

n� jn

� �n�jn np

jn

� �jn
" #

¼ ðnq� yn
ffiffiffiffiffiffiffiffi
pqn

p Þ ln 1� yn

ffiffiffiffiffi
p

nq

r� �

þ ðnpþ yn
ffiffiffiffiffiffiffiffi
pqn

p Þ ln 1þ yn

ffiffiffiffiffi
q

np

r� �
:

Next we apply the first three terms of the power series expansions for the logarithm

in (8.20) to the expressions above, multiply, and collect terms. The ‘‘trick’’ in such a

calculation is to not worry about any terms that will ultimately contain a factor of

n�1=2, or n�1, and so forth, since these converge to 0 in the limit as n ! y. Since

the terms in front of the logarithms contain a factor of n, the logarithm series is

needed up to its third term, which is up to a factor of n�3=2, and the product of this

term with n will go to 0, as will all higher powers in the series.
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Implementing this messy bit of algebra, and recalling that yn ! y, produces

�ln
nq

n� jn

� �n�jn np

jn

� �jn
" #

¼ 1

2
y2n þ n�1=2EðnÞ

! 1

2
y2;

with E denoting the remainder of the series’ terms. This limit as n ! y is justified by

the observation that EðnÞ is an absolutely convergent series with constant first term,

and all other terms of the form cjn
�aj for some aj > 0. n

8.5.3 Approximating Binomial Probabilities I

The De Moivre–Laplace theorem provides another handy way to approximate bi-

nomial probabilities, in addition to the Poisson distribution discussed in chapter 7.

Rewriting (8.26) provides the approximation

PrfY ðnÞ ¼ yngF 1ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffiffi
npq

p e�y2n=2: ð8:27Þ

In a given binomial application, a common calculation needed is one of the form

Pr½aaX ðnÞ a aþ b�, where a and b are integers, and X ðnÞ is binomially distributed

with parameters n and p. Specifically,

Pr½aaX ðnÞ a aþ b� ¼
Xaþb

j¼a

n!

j!ðn� jÞ! p
jqn�j:

This expression reflects the assumption that 0a a < aþ ba n; otherwise, the sum-

mation begins at j ¼ 0 and ends at j ¼ n, as appropriate. While this is only an arith-

metic calculation, for n large and the range ½a; aþ b� wide, this calculation can be

di‰cult even with advanced computing power.

To approximate this probability in such a case for n large, the Poisson p.d.f. can be

used if p is small, say p < 0:1, as noted in chapter 7. In general, this approximation

can also be implemented using (8.27) by converting this probability statement to a

statement in the normalized variable Y ðnÞ ¼ X ðnÞ�npffiffiffiffiffiffi
npq

p . Specifically,

Pr½aaX ðnÞ a aþ b� ¼ Pr
a� npffiffiffiffiffiffiffiffi

npq
p aY ðnÞ a

aþ b� npffiffiffiffiffiffiffiffi
npq

p

 �

:
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Using the approximation in (8.27) above, with y0 ¼ a�npffiffiffiffiffiffi
npq

p and yk ¼ yk�1 þ 1ffiffiffiffiffiffi
npq

p , we

get

Pr½aaX ðnÞ a aþ b�F 1ffiffiffiffiffiffi
2p

p ffiffiffiffiffiffiffiffi
npq

p
Xb
k¼0

e�y2
k
=2; ð8:28Þ

which is a more manageable calculation. As noted above, this formula needs to be

adjusted if either a < 0 and/or aþ b > n to ensure that the original summation

includes at most the range j ¼ 0; 1; . . . ; n.

Remark 8.25 Note that while the De Moivre–Laplace theorem is stated in terms

of sums of the standard binomial X ðnÞ 1
Pn

j¼1 X
B
j , where fX B

j g are i.i.d. with

Pr½X B
j ¼ 1� ¼ p and Pr½X B

j ¼ 0� ¼ 1� p, it is equally true for sums of shifted binomial

random variables, where Pr½X B0
j ¼ c� ¼ p and Pr½X B0

j ¼ d� ¼ 1� p. This is because

this variable can be expressed as

X B0
j ¼ ðc� dÞX B

j þ d:

Consequently E½X B0
j � ¼ ðc� dÞE½X B

j � þ d, and Var½X B0
j � ¼ ðc� dÞ2 Var½X B

j �. Apply-
ing this to the normalized sums, we obtainPn

j¼1 X
B0
j � E½Pn

j¼1 X
B0
j �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½Pn
j¼1 X

B0
j �

q ¼
Pn

j¼1 X
B
j � E½Pn

j¼1 X
B
j �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var½Pn
j¼1 X

B
j �

q ¼ Y ðnÞ:

In other words, the normalized summation of shifted binomial random variables equals

the normalized summation of standard binomial random variables. Hence the De

Moivre–Laplace theorem applies and (8.28) is adapted accordingly.

8.6 The Normal Distribution

8.6.1 Definition and Properties

The function

f ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p e�x2=2; ð8:29Þ

is in fact a continuous probability density function, although we will not have the

mathematical tools to verify in what way this is true until chapter 10. This function
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is called the normal density function, and sometimes the unit or standardized normal

density function. There is an associated distribution function, the normal distribution

function, which again requires the tools of chapter 10 to formally define. When not

specifically referring to either the density or distribution functions, it is common to

simply refer to the normal distribution, particularly in reference to the graph of the

density function in figure 8.1.

The normal distribution is also referred to as the Gaussian distribution, named for

Johann Carl Friedrich Gauss (1777–1855), who used it as a model of measurement

errors. The implied random variable, often denoted Z, is apparently not of the dis-

crete type because it assumes all real values. In other words, Rng Z ¼ R. This dis-

tribution is of continuous type, and it may be the most celebrated example of a

continuous probability distribution. The mathematics required for continuous distri-

butions, and some more general distributions, will be developed in chapters 9 and 10,

and we will return to study probability theory in these contexts.

It will be seen in chapter 10 that

E½Z� ¼ 0; Var½Z� ¼ 1; MZðtÞ ¼ et
2=2; CZðtÞ ¼ e�t2=2; ð8:30Þ

and we express this p.d.f. relationship as Z@Nð0; 1Þ. If X is a random variable so

that X�m
s

¼ Z, then X is said to have a general normal distribution, denoted X @
Nðm; s2Þ, and using properties of expectations, one derives that

Figure 8.1
f ðxÞ ¼ 1ffiffiffiffi

2p
p e�x2=2
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E½X � ¼ m; Var½X � ¼ s2; MX ðtÞ ¼ emtþs2t2=2; CZðtÞ ¼ eimt�s2t2=2: ð8:31Þ
The graph of this density function is the familiar bell-shaped curve in figure 8.1.

As will be seen, associated with the normal p.d.f. is the normal distribution func-

tion F ðxÞ, defined as in the discussion leading up to (7.22),

F ðxÞ ¼ Pr½Z�1ð�y; x��
¼ Pr½Za x�:

The calculation of F ðxÞ from f ðxÞ used in (7.22) requires generalization here, where-

by the summation of f ðxÞ values is replaced by the integral of f ðxÞ developed in

chapter 10.

However, even with that mathematical insight and the needed tools, the normal

distribution function F ðxÞ cannot be calculated exactly from the density function

f ðxÞ ¼ 1ffiffiffiffi
2p

p e�x2=2 and must be numerically approximated. Consequently it is com-

mon that many mathematical software packages supply this distribution function

as a built-in formula, and also mandatory that every book in probability theory or

statistics provides a table of Nð0; 1Þ values at least for x > 0, often referred to as

the standard normal table.

Such tables are easy to use because of the apparent symmetry of this function

around the point x ¼ 0. In other words, it is apparent that Pr½Za�a� ¼ Pr½Zb a�.
Also Pr½Za�a� ¼ 1� Pr½Z < a� ¼ 1� Pr½Za a�, since Pr½Z ¼ a� ¼ 0. That is,

F ð�aÞ ¼ 1� F ðaÞ. Consequently we calculate from the standard normal tables

Pr½aaZa b� ¼
F ðbÞ � F ðaÞ; if 0 < a < b,

F ðbÞ � ½1� Fð�aÞ�; if a < 0 < b,

F ð�aÞ � Fð�bÞ; if a < b < 0.

8><>: ð8:32Þ

Of course, if we have a table with positive and negative x values, or a computer built-

in function, it is always the case that for a < b, Pr½aaZa b� ¼ FðbÞ � FðaÞ.
8.6.2 Approximating Binomial Probabilities II

Normal distribution tables can be used to approximate binomial probabilities as

noted in (8.28), but a small adjustment is required. From that formula, it would be

natural to assume that

Pr
a� npffiffiffiffiffiffiffiffi

npq
p aY ðnÞ a

aþ b� npffiffiffiffiffiffiffiffi
npq

p

 �

FF
aþ b� npffiffiffiffiffiffiffiffi

npq
p

� �
� F

a� npffiffiffiffiffiffiffiffi
npq

p
� �

;
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and of course, the presence of ‘‘F’’ suggests this to be a ‘‘true’’ statement. However,

it is not true that this approximation is as accurate as is possible. The problem with

this approximation can be best observed by letting b ! 0, in which case the left-hand

side becomes Pr Y ðnÞ ¼ a�npffiffiffiffiffiffi
npq

p
h i

, and the right-hand side becomes F
a�npffiffiffiffiffiffi
npq

p
� 	

� F
a�npffiffiffiffiffiffi
npq

p
� 	

¼ 0. This simple example highlights the error and illustrates the problem.

The binomial distribution for X ðnÞ allocates a total probability of 1 among nþ 1

real values 0; 1; 2; . . . ; n. In turn the binomial distribution for Y ðnÞ allocates a total

probability of 1 among nþ 1 real values

�npffiffiffiffiffiffiffiffi
npq

p ;
1� npffiffiffiffiffiffiffiffi

npq
p ;

2� npffiffiffiffiffiffiffiffi
npq

p ; . . . ;
nqffiffiffiffiffiffiffiffi
npq

p :

From (8.27) we have that Pr Y ðnÞ ¼ a�npffiffiffiffiffiffi
npq

p
n o

F 1ffiffiffiffi
2p

p ffiffiffiffiffiffi
npq

p e�ðða�npÞ= ffiffiffiffiffiffinpq
p Þ2=2, where we note

that the multiplicative term 1ffiffiffiffiffiffi
npq

p is exactly equal to the distance between any two suc-

cessive Y ðnÞ values. In other words, this binomial probability is being approximated

by the normal distribution, not at the point a�npffiffiffiffiffiffi
npq

p but over an interval around this

point of length 1ffiffiffiffiffiffi
npq

p .

Consequently one has for some 0a la 1,

Pr Y ðnÞ ¼ a� npffiffiffiffiffiffiffiffi
npq

p

 �

FPr
a� np� ð1� lÞffiffiffiffiffiffiffiffi

npq
p aZa

a� npþ lffiffiffiffiffiffiffiffi
npq

p

 �

:

The usual convention is to take the symmetric value of l ¼ 1
2 , and hence

Pr Y ðnÞ ¼ a� npffiffiffiffiffiffiffiffi
npq

p

 �

FF
a� npþ 1

2ffiffiffiffiffiffiffiffi
npq

p
� �

� F
a� np� 1

2ffiffiffiffiffiffiffiffi
npq

p
� �

:

This is often referred to as the half-interval adjustment, or half-integer adjustment.

Extending this conventional approximation for a single probability, the binomial

probability statement above, written in terms of the original binomial X ðnÞ, becomes

Pr½aaX ðnÞ a aþ b�FF
aþ b� npþ 1

2ffiffiffiffiffiffiffiffi
npq

p
� �

� F
a� np� 1

2ffiffiffiffiffiffiffiffi
npq

p
� �

: ð8:33Þ

Notation 8.26 Because the normal distribution is so important in probability theory, it

has inherited special notation that is almost universally recognized. As noted above, the

standard normal random variable is usually denoted as Z, while the probability density

function is denoted with the Greek letter phi, jðzÞ1 1ffiffiffiffi
2p

p e�z2=2, and the distribution

function either with the Greek capital phi, FðzÞ, or as NðzÞ.
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*8.7 The Central Limit Theorem

There are many versions of the central limit theorem. All of them generalize the De

Moivre–Laplace theorem in one remarkable way or another. In essence, what any

version states and what makes any version indeed the ‘‘central’’ limit theorem is

that under a wide variety of assumptions, the p.d.f. of the sum of n independent vari-

ables, after normalizing as in (8.19), converges to the normal distribution as n ! y.

Remarkably these random variables need not be identically distributed, just inde-

pendent, although the need for normalization demands that these random variables

have at least two moments: means and variances. When not identically distributed,

there is a requirement that the sequence of variances does not grow too fast to pre-

clude latter terms in the random variable series from increasingly dominating the

summation, as well as a requirement that they do not converge to 0 so quickly that

the average variance converges to 0.

These theorems can be equivalently stated in terms of the sum of these random

variables, or their average. This is because from (7.38) we have

Pn
j¼1 Xj � E½Pn

j¼1 Xj �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Pn

j¼1 Xj�
q ¼

1
n

Pn
j¼1 Xj � E 1

n

Pn
j¼1 Xj

h i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var 1

n

Pn
j¼1 Xj

h ir ;

since E 1
n

Pn
j¼1 Xj

h i
¼ 1

n
E½Pn

j¼1 Xj� and Var 1
n

Pn
j¼1 Xj

h i
¼ 1

n2 Var½Pn
j¼1 Xj�. So while

the ranges of the sum and average of random variables are quite di¤erent, the asso-

ciated normalized random variables are identical.

Consequently central limit theorems, in general, and the De Moivre–Laplace the-

orem, in particular, apply to the sums of random variables if and only if they apply

to the averages of random variables. And similar to the result explored above for

sums of general binomial random variables, the central limit theorem applies toPn
j¼1 Xj for i.i.d. fXjg, and it applies to

Pn
j¼1 Yj where Yj ¼ aXj þ b for constants a

and b.

Central limit theorems apply to all probability distributions that satisfy the given

requirements, whether discrete, continuous, or mixed. Because of this generality there

is no hope that a proof of such a result can proceed along the lines of the proof of the

De Moivre–Laplace theorem, which relied heavily on the exact form of the binomial

p.d.f. The tool used for these general proofs represents a sophisticated application of

properties of the moment-generating function (m.g.f.), or more generally, the charac-

teristic function (c.f.).
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To set the stage, we provide a simplified proof of the central limit theorem in the

case of independent, identically distributed discrete random variables that have

moments of all orders and a convergent moment-generating function, and hence

(7.66) applies. Mechanically, the proof works in settings other than discrete, but it

requires manipulation properties of the moment-generating function that have only

been proved in a discrete setting but are valid more generally. The proof can also be

generalized to discrete distributions with only a few moments, and this will be dis-

cussed below.

That the conclusion of this theorem is consistent with the normal distribution

depends on a fact that cannot be proved until chapter 10, that the moment-

generating function of the unit normal distribution satisfies: MZðtÞ ¼ et
2=2. In ad-

dition, as has been noted many times, and partially proved in section 8.1, the

moment-generating function truly characterizes this and every distribution when

it exists, so the standard normal distribution is the only distribution with the m.g.f.

MZðtÞ ¼ et
2=2.

Proposition 8.27 (Central Limit Theorem) Let X be a discrete random variable with

moments of all orders and a convergent moment-generating function, and let fXjgnj¼1

be independent and identically distributed random variables. Denote by X ðnÞ the aver-

age of this collection, X ðnÞ ¼ 1
n

Pn
j¼1 Xj, and by Y ðnÞ the normalized version, Y ðnÞ ¼

X ðnÞ�m
sffiffi
n

p . If MY ðnÞ ðtÞ denotes the moment-generating function of Y ðnÞ, then

MY ðnÞ ðtÞ ! et
2=2 as n ! y: ð8:34Þ

Proof First note two properties of moment-generating functions that follow from

the definition and properties of expectations (see exercise 8):

1. MX=bðtÞ ¼ MX
t
b

� �
.

2. MTXi
ðtÞ ¼QMXi

ðtÞ if fXig are independent.

From these it follows that with Y ðnÞ ¼Pn
j¼1

Xj�mffiffi
n

p
s

� 	
, we have

MY ðnÞ ðtÞ ¼
Yn
j¼1

MðXj�mÞ
tffiffiffi
n

p
s

� �

¼ MðX�mÞ
tffiffiffi
n

p
s

� �� �n
;

where this last step follows from fXjgnj¼1 being i.i.d. Now, by (7.66),
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MðX�mÞ
tffiffiffi
n

p
s

� �
¼
Xy
j¼0

1

j!
mj

tffiffiffi
n

p
s

� �j

:

Recalling that m0 ¼ 1, m1 ¼ 0 and m2 ¼ s2, we get

MðX�mÞ
tffiffiffi
n

p
s

� �
¼ 1þ s2

2

tffiffiffi
n

p
s

� �2
þ n�3=2EðnÞ

¼ 1þ t2

2n
þ n�3=2EðnÞ;

where EðnÞ ¼Py
j¼3

1
j!
mj

t
s

� � j
nð3�jÞ=2. Now, since MX ðtÞ is assumed convergent for

jtj < T say, MX�mðtÞ ¼ e�mtMX ðtÞ has the same interval of convergence, and hence

EðnÞ is convergent for jtj < sT . As is true for MX ðtÞ, it is also true that EðnÞ is a

di¤erentiable function of t, and hence a continuous function that attains its maxi-

mum and minimum on any closed interval jtja sT � � (see proposition 9.39). Let

K be defined so that jEðnÞjaK for all n on one such interval.

This expression can now be raised to the nth power, and a logarithm taken. The

same trick is used here as in the proof of the De Moivre–Laplace theorem, in which

we keep track of only the powers of n that are needed for the final limit, sometimes

invoking a sample calculation to determine how many terms will be needed. This

produces

ln MY ðnÞ ðtÞ ¼ n ln 1þ t2

2n
þ n�3=2EðnÞ


 �

¼ n
t2

2n
þ n�3=2EðnÞ

� �
� 1

2

t2

2n
þ n�3=2EðnÞ

� �2
þ � � �

" #
;

where in the second step is invoked the power series expansion for lnð1þ xÞ from

(8.20) with x ¼ t2

2n þ n�3=2EðnÞ. Now, since jEðnÞjaK , we have that jxja
t2

2n þ n�3=2K < 1 for n large, and lnð1þ xÞ is absolutely convergent. Next the series

above can be expanded and rearranged to produce

ln MY ðnÞ ðtÞ ¼ 1

2
t2 þ F ðnÞ:

Now FðnÞ ¼ n�1=2EðnÞ þ n�1 ~EEðnÞ is absolutely convergent for the same range of t, is

continuous, and hence is bounded on closed subintervals. From this last step we con-

clude that ln MY ðnÞ ðtÞ ! 1
2
t2 as n ! y, and hence MY ðnÞ ðtÞ ! et

2=2. n
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The fact that this theorem allows a variety of generalizations can now be under-

stood. For example, the assumption that X had ‘‘moments of all orders’’ was not

really needed. What was needed was knowledge that MðX�mÞ tffiffi
n

p
s

� 	
could be approxi-

mated by

MðX�mÞ
tffiffiffi
n

p
s

� �
¼ 1þ t2

2n
þ n�3=2EðnÞ;

and where EðnÞ is a bounded function of t on an interval jtjaC as n ! y.

To reach a comparable conclusion in the case of a limited number of moments,

one must work with the characteristic function, which always exists, and with that

function it will be enough to assume that X has three moments using the tools of

chapter 9 adapted to complex-valued functions such as CX ðtÞ.
Moreover, looking at the calculation above, we did not really need to have

the error term, E 0ðnÞ ¼ n�3=2EðnÞ, with a factor of n�3=2. If this coe‰cient was

n�1�a for any a > 0, this would be enough to again force the conclusion because

then the leading coe‰cient of F ðnÞ would be nE 0ðnÞ ¼ n�aEðnÞ. It turns out that

we can ‘‘almost’’ reach this conclusion if X has only two moments. The conclusion

that can be reached, again with the adapted tools of chapter 9, is that this leading

coe‰cient of F ðnÞ satisfies nE 0ðnÞ ! 0 as n ! y, and this again is enough for the

conclusion.

As another example of a direction for generalization, suppose that fXjgnj¼1 are in-

dependent and have moments of all orders and convergent m.g.f.s but are not identi-

cally distributed. The normalized random variable Y ðnÞ is defined as

Y ðnÞ ¼ X ðnÞ � mðnÞ
sðnÞffiffi
n

p
;

where mðnÞ ¼ 1
n

Pn
j¼1 mj and ½sðnÞ�2 ¼ 1

n

Pn
j¼1 s

2
j . Then all the steps up to MY ðnÞ ðtÞ ¼Qn

j¼1 MðXj�mjÞ
tffiffi
n

p
sðnÞ

� 	
go through without any obstacle.

This approach produces, with the aid of (7.66) and taking of logarithms,

ln MY ðnÞ ðtÞ ¼
Xn
j¼1

ln 1þ s2
j

2

tffiffiffi
n

p
sðnÞ

� �2
þ n�3=2EjðnÞ

" #

¼
Xn
j¼1

ln 1þ t2

2n

sj

sðnÞ

� �2
þ n�3=2EjðnÞ

" #
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¼ t2

2

1

n

Xn
j¼1

sj

sðnÞ

� �2" #
þ FðnÞ

¼ t2

2
þ F ðnÞ;

where the last step is justified by the definition of sðnÞ.
Although everything looks harmless in this last expression, a closer examination of

the new FðnÞ expression reveals that this comes from summations and products of

terms of the form EjðnÞ ¼
Py

k¼3
1
k!
mjk

t
sðnÞ

� 	k
nð3�kÞ=2, where mjk denotes the kth central

moment of Xj. As above, this can be reduced to essentially 1
3!
mj3

t
sðnÞ

� 	3
þ n�1=2 ~EEjðnÞ,

which means that the first term in F ðnÞ is

n�3=2
Xn
j¼1

1

3!
mj3

t

sðnÞ

� �3
¼ 1

3!
t3

n�3=2
Pn

j¼1 mj3

1
n

Pn
j¼1 s

2
j

� 	3=2
¼ 1

3!
t3

Pn
j¼1 mj3

ðPn
j¼1 s

2
j Þ3=2

:

So in order to be assured that FðnÞ can be dismissed, it is necessary to assume that

the absolute value of this ratio converges to 0. Now, by the triangle inequality ap-

plied twice,

Xn
j¼1

mj3












a Xn

j¼1

jmj3ja
Xn
j¼1

mj j3j;

where mj j3j denotes the third absolute central moment of Xj , which is mj j3j 1
E½jXj � mjj3�.

To assure this needed absolute convergence, it is common to define the condition

in terms of the relative size of third absolute central moments to the variance terms:

Pn
j¼1 mj j3j

ðPn
j¼1 s

2
j Þ3=2

 !1=3
¼ ðPn

j¼1 mj j3jÞ1=3

ðPn
j¼1 mj2Þ1=2

! 0 as n ! y:

This assumption is a special case of what is known as Lyapunov’s condition, after

Aleksandr Lyaponov (1857–1918).
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Note that in the case where fXjgnj¼1 are independent and identically distributed,Pn
j¼1 mj j3j

ðPn
j¼1 s

2
j Þ3=2

¼ nmj3j
ðns2Þ3=2

¼ mj3jffiffiffi
n

p
s3

;

and then Lyapunov’s condition is automatically satisfied.

8.8 Applications to Finance

8.8.1 Insurance Claim and Loan Loss Tail Events

For both the loan loss models and claims models of chapter 7, in which the mean

and variance of the distributions were estimated, there is a natural interest in evalu-

ating the probability of severe loss events, which in both cases is the probability

Pr½LbA�, or, Pr½L� E½L�bC� for various values of assets A or capital C. In this

notation one might envision A to be the assets allocated to cover all losses and insur-

ance claims in a given period, or if E½L� has been placed on this balance sheet as a

liability representing a provision for expected losses and claims, C then represents

the capital allocated to cover excess losses. In this simple balance sheet framework,

A ¼ E½L� þ C for each risk.

Of course, in the one-period model that we investigate the random loss variable L

has two components in general:

� Insurance liability payments

� Credit losses on assets

So, if A denotes an asset portfolio at time 0, and LA and LI denote losses on assets

and insurance payments respectively, then Pr½LbA� is shorthand for

Pr½LbA�1Pr½LI þ LA > A�;
and Pr½L� E½L�bC� is shorthand for

Pr½L� E½L�bC�1Pr½LI � E½LI � þ LA � E½LA� > C�;
where C1A� E½LI � � E½LA�.

If assets are risk free, then adding more assets to A creates the same increase in C

and this change has no e¤ect on the volatility of losses.

However, when assets are risky, E½LA� depends on A. Then adding assets to A cre-

ates a smaller increase in C, and also a¤ects the volatility of losses. In this case it is
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simpler to think of E½LA� in terms of a loss ratio random variable RA, in that

LA ¼ ARA. Hence we can define

Pr½LbA�1Pr½LI þ ARA > A�; ð8:35Þ
and with C1Að1� E½RA�Þ � E½LI �,

Pr½L� E½L�bC�1Pr½LI � E½LI � þ AðRA � E½RA�Þ > C�:
When such models are applied to a single business unit, the total entity is modeled

as

A ¼ Lþ C;

where A denotes total assets of the firm, L total liabilities representing provisions for

all expected claims and losses, and C is total capital. Intuitively A ¼PAj , and sim-

ilarly for L and C, but the adequacy of corporate capital or assets cannot be assessed

in terms of the capital or assets needs of each unit or risk separately.

Indeed, if Cj denotes the capital needed for the jth risk, in general, one has that

C <
P

Cj because risks are not perfectly correlated. Hence tail events will not, in

general, be realized together. To evaluate the entity in total, explicit assumptions

are needed on the joint distribution of all risks. We ignore the broader question here

and focus on the adequacy of assets or capital for the risks modeled in chapter 7,

which were related to insurance claims or loan losses during a given fixed period.

We consider three approaches and introduce these in the model with risk-free

assets so that LA ¼ 0. We then turn to the more general asset case.

Risk-Free Asset Portfolio

Chebyshev I If insurance claims are modeled as in chapter 7, and E½L� and Var½L�
calculated as in (7.120) and (7.121) for the individual loss model, or (7.125) and

(7.126) for the aggregate loss model, the one-sided Chebyshev inequality in (8.6) can

be used to deduce that for AbE½L�,

Pr½LbA�a Var½L�
ðA� E½L�Þ2 þ Var½L� : ð8:36Þ

Since A ¼ E½L� þ C, this probability upper bound can also be expressed in terms

of Cb 0:

Pr½L� E½L�bC�a Var½L�
C2 þ Var½L� : ð8:37Þ
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Still this estimate can be considered crude because it is an estimate that applies to

all distributions, and not necessarily one that specifically applies to the distribution at

hand. In addition this estimate only reflects two moments of the given loss distribu-

tion, and no special information about the tail probabilities in this model.

Loss Simulation As noted in chapter 7, insurance claims under either the individual

or aggregate loss model can be simulated using the approach in section 7.7 on gener-

ating random samples. These models are very general, and need to be adapted to a

specific claims context as noted in chapter 7, but we discuss the general case.

Specifically, for the individual model in (7.119), losses are given by

L ¼
X
j;k

fjkDjkLjk;

where k denotes the risk class, j an enumeration of the individual exposures in this

class, and fjk the exposure on the jth exposure in class k.

To implement one simulation of L, one uniformly distributed random variable

rjk A ½0; 1� is first generated for each exposure of amount fjk to determine if a loss

occurred. If rjk < qk, with qk the probability of a loss, then Djk ¼ 1 and there is a

loss; otherwise, Djk ¼ 0. This procedure is equivalent to defining Djk ¼ F�1
Bk

ðrjkÞ,
where FBk

ðxÞ is the distribution function for this binomial.

In addition for each exposure for which Djk ¼ 1, a new uniformly distributed ran-

dom variable r 0jk A ½0; 1� is generated, and using the c.d.f. of the class k loss ratio

random variable FkðxÞ, we define the sampled loss ratio by Ljk ¼ F�1
k ðr 0jkÞ. This pro-

cedure then generates one simulation of the random variable L, and it can be

repeated as many times as is desired.

Similarly, from (7.122) for the aggregate loss model,

L ¼
X
k

fkNkL
0
k;

each of the random variables Nk and L 0
k needs to be generated. Here fk denotes the

average of the nk exposures in class k. Since Nk denotes the total number of claims

from this class, it can be modeled either as a binomial distribution with parameters

nk and qk or as a Poisson distribution with lk ¼ nkqk. In either case one simula-

tion for class k requires first generating one uniformly distributed random variable

r A ½0; 1�, from which we define Nk 1F�1
N ðrÞ, where FNðxÞ denotes the assumed

cumulative distribution for Nk. If Nk > 0, then another Nk uniformly distributed

variables frjgNk

j¼1 are generated from which are defined the loss ratios fLjkgNk

j¼1 ¼
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fF�1
k ðrjÞgNk

j¼1, with FkðxÞ the cumulative distribution function for Lk. The average

loss ratio is then L 0
k ¼ 1

Nk

PNk

j¼1 Ljk. Each additional simulation proceeds in the same

way and is repeated as many times as is desired.

From these simulations one can now estimate Pr½LbA� directly from the gener-

ated data. Namely, if M denotes the total number of simulations, and MA the num-

ber for which LbA, then

Pr½LbA�A MA

M
: ð8:38Þ

If there is a shortcoming in this procedure, it is that for A large there may be very

few sample points generated for which LbA. For example, if Pr½LbA� ¼ pA, then

given a simulation of M sample points for L,

E½MA� ¼ MpA;

Var½MA� ¼ MpAð1� pAÞ:
Consequently the mean and standard deviation of this probability estimate are

E
MA

M


 �
¼ pA;

s:d:
MA

M


 �
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pAð1� pAÞ

M

r
;

and so by the De Moivre theorem, the 100ð1� aÞ% confidence interval for MA

M
is

approximately

pA 1� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pAÞ
MpA

s !
a

MA

M
a pA 1þ z1�ða=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pAÞ
MpA

s !
;

where za=2 and z1�ða=2Þ denote the respective percentiles on Nð0; 1Þ. This result can be

better stated in terms of the relative error of the estimate:

1� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pAÞ
MpA

s
a

MA

M

pA
a 1þ z1�ða=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� pAÞ
MpA

s
:

Example 8.28 If pA ¼ 0:001 and a ¼ 0:05, then the range of the ratio of the estimate
MA

M
to the actual value pA, for a 95% confidence interval, is 2z0:975

ffiffiffiffiffiffiffiffiffiffiffiffi
ð1�pAÞ
MpA

q
F 123:9ffiffiffiffi

M
p ,
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since z0:975 F 1:96. So to have this range equal to pA, for a 50% relative estimate error

‘‘on average,’’ requires, MF 1:5� 1010 simulations. If pA F 0:01, we have that

2z0:975

ffiffiffiffiffiffiffiffiffiffiffiffi
ð1�pAÞ
MpA

q
F 39:0ffiffiffiffi

M
p , so to again have this range equal to pA, for a 50% relative error

requires MF 15:2 million. Finally, for pA F 0:1, we require MF 13;830, and for

pA F 0:2, the number of simulations reduces to MF 1537.

Simulations and Chebyshev II To avoid the estimation problem noted above when

Pr½LbA� is small, which is the anticipated case for most problems of interest in

assessing asset or capital adequacy, we use the simulation above to calibrate a new

Chebyshev estimate. To this end, we first choose an initial asset level, A 0, so that

pA 0
1 Pr½LbA 0� is relatively large, say in the range: 0:10a pA 0

a 0:20. Then

approximately 10–20% of the simulations will produce losses in excess of this initial

level.

Define L 0 to be the generated losses above this threshold. Specifically, L 0 is a con-

ditional random variable:

L 0 ¼ L j ðL > A 0Þ:
Formulaically, the distribution function of L 0 is given in terms of the distribution

function of L by

FL 0 ðxÞ ¼ FLðxÞ � FLðA 0Þ
1� FLðA 0Þ ; xbA 0:

From the simulated data, E½L 0� and Var½L 0� can be estimated, and from the one-

sided Chebyshev inequality, we have for A > E½L 0�,

Pr½L 0 > A�a Var½L 0�
ðA� E½L 0�Þ2 þ Var½L 0� : ð8:39Þ

Note that Pr½L > A 0� is also estimated from the simulations as MA 0

M
, and this is used

next.

By the law of total probability, for any values of A and A 0,

Pr½L > A� ¼ Pr½L > A jL < A 0� Pr½L < A 0� þ Pr½L > A jL > A 0� Pr½L > A 0�:
For A > A 0, we have that Pr½L > A jL < A 0� ¼ 0. Also Pr½L > A jL > A 0� ¼
Pr½L 0 > A�, and therefore

Pr½L > A� ¼ Pr½L 0 > A� Pr½L > A 0�:
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Finally, for A > E½L 0�, we have from (8.39) and (8.38) that

Pr½L > A�a MA 0

M

Var½L 0�
ðA� E½L 0�Þ2 þ Var½L 0� : ð8:40Þ

Since A ¼ E½L� þ C, this probability upper bound can also be expressed in terms

of C:

Pr½L� E½L�bC�a MA 0

M

Var½L 0�
ðC þ E½L� � E½L 0�Þ2 þ Var½L 0� ð8:41Þ

Risky Assets

Using (8.35), we write

Pr½LbA�1Pr½LI þ ARA > A�;
the new challenge is the estimation of the moments of the random variable L1
LI þ ARA from two respective models. Of course, LI is modeled as above in the

risk-free asset case. For RA the same models can be applied to a representative risky

asset portfolio of amount A0, and we then define the random variable RA by

RA ¼ LA0

A0
:

We can then determine the mean and variance of RA from the mean and variance of

LA0 , and simulate RA from simulations of LA0 .

The critical question in this context is the correlation between the random vari-

ables LI and RA. In some applications, such as for life insurance and credit losses,

the assumption of independence seems justifiable. In others, for example, disability

insurance and credit losses, or variable life insurance claims and stock portfolio

losses, a nonzero correlation assumption is needed. This is because disability claims

can be negatively correlated with the economy as are credit losses, so there is a posi-

tive correlation between LI and RA. Likewise variable life insurance minimum guar-

antees are more costly when equity markets are falling, so again there is a positive

correlation between LI and RA.

We only investigate here the case of uncorrelated LI and RA and leave the more

general development as an exercise. In this case,

E½L� ¼ E½LI � þ AE½RA�;

Var½L� ¼ Var½LI � þ A2 Var½RA�:
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Consequently the direct application of Chebyshev’s inequality in (8.36) becomes for

Að1� E½RA�Þ > E½LI �, or A >
E½LI �

1�E½RA� :

Pr½LbA�a Var½LI � þ A2 Var½RA�
ðAð1� E½RA�Þ � E½LI �Þ2 þ Var½LI � þ A2 Var½RA� : ð8:42Þ

For simulations, the random variables LI and RA are generated in pairs, and now

(8.38) is applied directly, where MA is again the number of paired scenarios for

which LbA, which is equivalent to

LI bAð1� RAÞ:
Finally, the combined simulation and Chebyshev estimate works as above. First

o¤, A 0 is defined so that pA 0
1Pr½LbA 0� is again in the range 0:1a pA 0

a 0:2

where

Pr½LbA 0� ¼ Pr½LI bA 0ð1� RAÞ�:
Then L 0 is defined as the total loss random variable conditional on LbA 0:

L 0 ¼ L j ðL > A 0Þ;
where L ¼ LI þ ARA.

The moments E½L 0� and Var½L 0� can be estimated from paired simulations, as can

Pr½L > A 0� ¼ MA 0

M
. Note, however, that in general, there is no formulaic relationship

between the conditional mean and variance of L 0 and the conditional means and

variances of the components losses LI and ARA.

Finally, for A > E½L 0�, (8.40) again applies.

8.8.2 Binomial Lattice Equity Price Models as Dt? 0

Let m and s2 denote the mean and variance of the log-ratio return series as in chapter

7, where these parameters of necessity reflect the period of time separating the data

points. By convention, and independent of the time period reflected in the data, these

return statistics are always denominated in units of years. In other words,

m ¼ E ln
Stþ1

St

� �
 �
; s2 ¼ Var ln

Stþ1

St

� �
 �
;

where the time parameter of these equity price observations, t, is denominated in

years. Of course, if the raw data are spaced di¤erently, say weekly or monthly, there
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may be a question as to how these estimates are defined if one chooses not to dis-

regard most of the data. This question is addressed below.

Given this historical data series of annual log-ratio returns, which we now index

with the natural numbers

Rj ¼ ln
Sjþ1

Sj

� �
;

the density function usually appears bell-shaped, and tests confirm that this series

appears reasonably uncorrelated. So one approximate model for projecting into the

future assumes independent normally distributed returns. If fzjg denotes a random

collection of standard normal variables, with E½zj � ¼ 0, Var½zj� ¼ 1, then fRjg1
fmþ zjsg will be normally distributed and have the correct mean and variance, and

the projection model becomes

Sjþ1 ¼ Sje
mþzjs:

While we have not proved this yet (see chapter 10), these standard normal variables

are produced the same way as are discrete variables. That is, by starting with a uni-

formly distributed collection fxjgH ½0; 1�, and defining zj ¼ N�1ðxjÞ with NðxÞ the

standard normal distribution function.

Alternatively, if the goal of the projection is to model prices in the distant future,

we could approximate the log-ratio returns in this normal model with binomial

returns, Rj FBj, defining

Sjþ1 ¼ Sje
Bj :

In this case fBjg are a random collection of binomials as in chapter 7,

Bj ¼ u; Pr½u� ¼ p,

d; Pr½d� ¼ 1� p,

�
and here u and d are calibrated to achieve the desired moments of m and s2.

The justification for these models being used as alternatives is that at a distant

future point in time,
Pn

j¼1 Bj will be nearly normally distributed by the De Moivre–

Laplace theorem, as long as n is large. Alternatively, if these models could be trans-

lated into models with small time steps of size Dt, the binomial approximation to the

normal would be justified even for short-term projections, as long as Dt was small

enough.

But how do the parameters m and s2 depend on Dt?
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Parameter Dependence on Dt

Since the modeling period is often fixed as ½0;T �, say, n large is equivalent to Dt1 T
n

being small. But, of course, if Dt is taken as small, it may well be smaller than

the original periods of time separating the data points on which m and s2 were de-

veloped. Consequently in this section we first investigate a reasonable model for

mðDtÞ and s2ðDtÞ, or the relationship between the log-ratio return mean and variance

and the length of the time interval. For specificity, one may assume the intuitive

model that m and s2 are defined as annualized statistics so that the units of Dt are

years, but all that is needed mathematically is that the statistics m and s2 correspond

to Dt ¼ 1.

Specifically, assume that m and s2 denote the mean and variance of the log-ratio

return series fRjg for Dt ¼ 1, and that Bj has been calibrated to the binomial model

as in chapter 7. As derived in exercise 27 of that chapter, the general formulas for u

and d, which define Bj for general p, 0 < p < 1, equal

u ¼ mþ
ffiffiffiffiffi
p 0

p

s" #
s; d ¼ m�

ffiffiffiffiffi
p

p 0

r
 �
s: ð8:43Þ

Now for Dt ¼ 1
m
, so that there are m time steps in a given period, ½ j; j þ 1�, let

fBkðDtÞgmk¼1 denote the associated subinterval random variables, defined by

Sjþk=m ¼ Sjþðk�1Þ=meBkðDtÞ; k ¼ 1; 2; . . . ;m:

If this model is applied iteratively to obtain Sjþ1 ¼ Sje
TBkðDtÞ, then it is apparent

upon comparing it to the original model that

Xm
k¼1

BkðDtÞ ¼ Bj:

In the same way that the collection fBjg were assumed in the model to be indepen-

dent and identically distributed, it is logical to extend this assumption to fBkðDtÞg.
Namely we assume that for any Dt, the collection of subperiod log-ratio returns is

independent and identically distributed.

Recall that the mean of a sum of random variables is the sum of the means, and

the variance of an independent sum of random variables is the sum of the variances.

Consequently we obtain mmðDtÞ ¼ m and ms2ðDtÞ ¼ s2 for the binomial model, and

since Dt ¼ 1
m
, this can be expressed as
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mðDtÞ ¼ mDt; ð8:44aÞ

s2ðDtÞ ¼ s2Dt: ð8:44bÞ
For example, the binomial stock price model in time steps of Dta 1 units for p ¼ 1

2

becomes

StþDt ¼
Ste

mDtþs
ffiffiffiffi
Dt

p
; Pr ¼ 1

2 ,

Ste
mDt�s

ffiffiffiffi
Dt

p
; Pr ¼ 1

2 ,

(
ð8:45Þ

with the analogous formula for general p using (8.43).

The normally distributed log-ratio return model can also be recalibrated to the new

time interval with the same result based on the same calculation, that
Pm

k¼1 RkðDtÞ ¼
Rj, again producing (8.44).

Distributional Dependence on Dt

If fRjg are assumed to be independent and normally distributed, so too will be the

subperiod returns fRkðDtÞg. In other words,

StþDt ¼ Ste
RtðDtÞ;

where again, the collection fRjðDtÞg are i.i.d. and NðmDt; s2DtÞ. That is, for any

time t,

RtðDtÞ ¼ mDtþ zts
ffiffiffiffiffi
Dt

p
;

where fztg are i.i.d. and Nð0; 1Þ.
This is demonstrated by the uniqueness of the moment-generating function or

characteristic function as was introduced above. For example, if fRjg are normally

distributed, R1Rj @Nðm; s2Þ, then from (8.31) we have MRðsÞ ¼ emsþs2s2=2. On

the other hand, because of independence it must be the case that MTRkðDtÞðsÞ ¼
½MRkðDtÞðsÞ�m. Since

Pm
k¼1 RkðDtÞ ¼ R and Dt ¼ 1

m
, we derive

MRkðDtÞðsÞ ¼ ½emsþs2s2=2�1=m

¼ emDtsþs2Dts2=2:

This confirms both the mean and variance result in (8.44), as well as the result that

RkðDtÞ@NðmDt; s2DtÞ.
In exercise 9 is assigned the demonstration that this result does not hold for bi-

nomially distributed Bj, despite the fact that we still have the moments result in
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(8.44). In other words, there is a theoretical inconsistency in assuming for each Dt

that log-ratio returns are independent and binomially distributed. However, we will

now show that as Dt ! 0, this inconsistent binomial model converges and gives the

same probability distribution of stock prices as does the assumption of normal log-

ratio returns, which is consistent.

Real World Binomial Distribution as Dt ? 0

In this section we address the question of the limiting distribution of equity prices

under the real world binomial model. Later, using the tools of chapter 9, we will be

able to generalize this calculation to the question of the limiting distribution of equity

prices under the risk-neutral binomial model. Such a derivation is of necessity more

di‰cult, and hence the need for additional tools, since despite assuming the same

values for future equity prices, the probabilities of the u and d returns change from

numerically fixed values of p and p 0 to risk-neutral probabilities q and q 0 that depend
on Dt.

For a fixed T > 0, where T is denominated in units of the time interval associated

with m and s2, we now investigate the limiting probability density function of ST as

Dt ! 0. For any given integer n, define Dt ¼ T
n
, and calibrate the n-step binomial lat-

tice from t ¼ 0 to t ¼ T . Since T ¼ nDt, we have that for general p, as in (8.43),

S
ðnÞ
T ¼ S0e

TBj ; ð8:46aÞ

Bj ¼ mDtþ as
ffiffiffiffiffi
Dt

p
; Pr ¼ p,

mDt� 1
a
s
ffiffiffiffiffi
Dt

p
; Pr ¼ p 0, j ¼ 1; 2; . . . ; n,

(
ð8:46bÞ

a ¼
ffiffiffiffiffi
p 0

p

s
: ð8:46cÞ

In other words, ln½SðnÞ
T =S0� ¼

Pn
j¼1 Bj is a sum of n independent binomial random

variables. Also, since E½Bj � ¼ mDt and Var½Bj� ¼ s2Dt, we obtain the following result,

which is independent of n by construction:

E
Xn
j¼1

Bj

" #
¼ mT ; Var

Xn
j¼1

Bj

" #
¼ s2T :

Now remark 8.25 following the proof of the de Moivre–Laplace theorem, here

with c ¼ mDtþ as
ffiffiffiffiffi
Dt

p
and d ¼ mDt� 1

a
s
ffiffiffiffiffi
Dt

p
and general p, does not directly imply

that the normalized summation of fBjg has a distribution that converges to the unit

normal distribution as n ! y. The reason is that c and d are not constants here but
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change with n, since Dt ¼ T
n
. In other words, here we have c ¼ mT

n
þ as

ffiffiffi
T

pffiffi
n

p and d ¼
mT

n
� s

ffiffiffi
T

p
a
ffiffi
n

p .

So this summation of random variables is completely di¤erent from that accom-

modated by either the De Moivre–Laplace theorem or the central limit theorems,

since here the basic random variables in the summation di¤er for each n, in that

Bj 1B
ðnÞ
j . Also there is no way to ‘‘freeze’’ these random variables to be independent

of n. In the application at hand it is important for these random variables to change

as n ! y so that over the time interval ½0;T � the expected value of the sum is fixed

at mT , and the variance of the sum is fixed at s2T .

Still we can construct the normalized random variable Y ðnÞ as in remark 8.25 and

demonstrate that the unit normal is again produced in the limit. Specifically:

Proposition 8.29 For Bj defined as in (8.46), let

Y ðnÞ ¼
Pn

j¼1 Bj � mT

s
ffiffiffiffi
T

p : ð8:47Þ

Then as n ! y,

MY ðnÞ ðsÞ ! es
2=2: ð8:48Þ

In other words, by (8.30), Y ðnÞ ! Nð0; 1Þ.

Proof Note that with Yj ¼ Bj�mDt

s
ffiffiffi
T

p , we have Y ðnÞ ¼Pn
j¼1 Yj. Also, since

Yj ¼
affiffi
n

p ; Pr ¼ p;

� 1
a
ffiffi
n

p ; Pr ¼ p 0,

(

with a ¼
ffiffiffiffi
p 0
p

q
, we obtain with exp A1 eA,

MYj
ðsÞ ¼ p exp

asffiffiffi
n

p
� �

þ p 0 exp � s

a
ffiffiffi
n

p
� �

:

Using (7.63) and simplifying notation with mj 1 pa j þ ð�1Þ jp 0

a j leads to

MYj
ðsÞ ¼

Xy
j¼0

mj

s j

j!
n�j=2

¼ 1þ s2n�1

2
þ n�3=2EðnÞ;
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since m0 ¼ 1, m1 ¼ 0, and m2 ¼ 1. The rearrangement of these series is justified by

their absolute convergence. The error term EðnÞ is then also an absolutely convergent

series for all n, and that as n ! y, we have that EðnÞ ! m3
s3

6 . Consequently, since

the fYjg are independent, the m.g.f. of Y ðnÞ ¼Pn
j¼1 Yj is this expression raised to the

nth power. Now, taking logarithms, we obtain

ln MY ðnÞ ðsÞ ¼ n ln 1þ s2n�1

2
þ n�3=2EðnÞ


 �
:

Next we apply (8.20) with x ¼ s2n�1

2 þ n�3=2EðnÞ. This series is absolutely convergent

for x < 1, which is to say, for n large enough. Then rearranging and keeping track

of only the first few terms of the series, as the rest will converge to 0 as n ! y, we

obtain

ln MY ðnÞ ðsÞ ¼ n
Xy
j¼1

ð�1Þ jþ1 1

j

� �
x j

¼ n
s2n�1

2
þ n�3=2EðnÞ


 �
þ n�1E 0ðnÞ

¼ s2

2
þ n�1=2½EðnÞ þ n�1=2E 0ðnÞ�;

where E 0ðnÞ is also absolutely convergent, and with E 0ðnÞ ! s2

2

h i2
as n ! y. Finally,

we see from this expression that as n ! y,

ln MY ðnÞ ðsÞ ! s2

2
;

and from this we conclude (8.48) because of the continuity of the exponential func-

tion. So Y ðnÞ ! Nð0; 1Þ, the standard normal variable by (8.30). n

Of course, since

Y ðnÞ ¼ ln½SðnÞ
T =S0� � mT

s
ffiffiffiffi
T

p ;

we can apply the properties of the m.g.f. from exercise 8 to ln½SðnÞ
T =S0� ¼ s

ffiffiffiffi
T

p
Y ðnÞ þ

mT , to obtain

M
ln½SðnÞ

T
=S0�ðsÞ ¼ emTsMY ðnÞ ðss

ffiffiffiffi
T

p
Þ: ð8:49Þ
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The proposition above then asserts that as n ! y,

M
ln½SðnÞ

T
=S0�ðsÞ ! emTsþs2Ts2=2;

and so

ln
S
ðnÞ
T

S0

" #
! NðmT ; s2TÞ:

This formula can be written as ln S
ðnÞ
T ! ln ST as n ! y, where

ln ST @Nðln S0 þ mT ; s2TÞ: ð8:50Þ
In other words, in the limit of the real world binomial lattice model as n ! y, or

equivalently as Dt ! 0, ln ST will be normally distributed with a mean of ln S0 þ mT

and variance of s2T . This can equivalently be expressed as follows:

Corollary 8.30 With S
ðnÞ
T defined as in (8.46), then S

ðnÞ
T ! ST as n ! y with

ST ¼ S0e
X ; ð8:51Þ

where X @NðmT ; s2TÞ.
Written in this form, ST is said to have a lognormal distribution, which will be seen

again in chapter 10.

Remark 8.31

1. It was noted in section 7.8.5 and developed in exercise 23 of that chapter, that for

any p with 0 < p < 1, a binomial lattice with unit step-size can be calibrated with up

and down state returns, u and d, so that E½Stþ1=St� ¼ m and Var½Stþ1=St� ¼ s2 for ar-

bitrary m and s2. In section 8.8.2 this point was generalized to binomial lattices with

step-size of Dt, so that now with uðDtÞ and dðDtÞ, we obtain E½StþDt=St� ¼ mDt and

Var½StþDt=St� ¼ s2Dt. Further proposition 8.29 demonstrates that for any such choice

of p and corresponding calibration, as n1 T
Dt
! y, the distribution of the binomial

prices at time T, denoted S
ðnÞ
T satisfies

ln S
ðnÞ
T ! Nðln S0 þ mT ; s2TÞ:

It is natural to wonder if the selection of p influences the speed of this convergence. A

closer inspection of the proof of proposition 8.29 provides an insight. With the notation

of that proof, we have

8.8 Applications to Finance 399



ln MY ðnÞ ðsÞ ¼ s2

2
þ n�1=2EðnÞ þ n�1E 0ðnÞ;

where the EðnÞ series equals m3s
3=6þOðn�1=2Þ, and the E 0ðnÞ series equals ½s2=2�2 þ

Oðn�1=2Þ. Consequently the speed of convergence could be improved from Oðn�1=2Þ to
Oðn�1Þ if p could be selected to make m3 ¼ 0, and this is seen to occur when p ¼ 1=2.

In remark 9.158 we will return to this issue and there see that p ¼ 1=2 also plays a par-

tial role in improving the speed of convergence of the distribution of prices under the

risk-neutral probability qðDtÞ.
2. If returns are assumed to be normally distributed in each period, where

Rj ¼ mDtþ zjs
ffiffiffiffiffi
Dt

p
, with Dt ¼ T

m
, then it is easy to see that at time T, independent

of m,

ST ¼ S0e
Tm

j¼1Rj

¼ S0e
Tm

j¼1½mDtþzjs
ffiffiffiffi
Dt

p �

¼ S0e
mTþzs

ffiffiffi
T

p

¼ S0e
X ;

where X @NðmT ; s2TÞ. In the third line of this calculation
Pm

j¼1 zj @Nð0;mÞ is used,
and hence

Pm
j¼1 zj ¼

ffiffiffiffi
m

p
z, where z@Nð0; 1Þ, as can be verified by considering

moment-generating functions. So the real world binomial lattice model converges as

Dt ! 0 to exactly the same model of stock prices as does the normal return model.

Interestingly this convergence occurs despite the fact that the assumption on subperiod

returns having independent binomial distributions for all Dt is an inconsistent distribu-

tional assumption, as noted at the end of the last section.

Although providing the same equity price model in the limit, the advantage of the

binomial model is that it provides a simpler framework within which to contemplate

option pricing, which we address next.

8.8.3 Lattice-Based European Option Prices as Dt? 0

The Model

In (7.147) was derived the lattice-based price of a European option, or other

European-type derivative security with payo¤ function LðSTÞ, by way of a replicat-

ing portfolio argument,
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L0ðS0Þ ¼ e�nr
Xn
j¼0

n

j

� �
q jð1� qÞn�jLðS j

nÞ;

S j
n ¼ S0e

juþðn�jÞd :

Here n denotes the number of time steps to the exercise date T , and the risk-neutral

probability q is a function of the binomial stock returns u and d, as well as the period

risk-free rate r. Recall from (7.143) that this relationship is given by

q ¼ er � ed

eu � ed
:

Further recall the binomial stock returns calibrated in (8.43) to equal

u ¼ mþ
ffiffiffiffiffi
p 0

p

s" #
s; d ¼ m�

ffiffiffiffiffi
p

p 0

r
 �
s;

where 0 < p < 1, p 0 1 1� p, and m and s2 denote the mean and variance of the log-

ratio series for one time step. These formulas for u and d generalize those in (7.136),

which were u ¼ mþ s, d ¼ m� s, when p ¼ p 0 ¼ 1
2 .

Naturally, in this revised setting where T is fixed and time steps are defined by

Dt ¼ T
n
, all these formulas are applicable with adjusted stock returns as in (8.44)

and an adjusted risk-free rate. In other words, for the definition of q, we have

qðDtÞ ¼ erðDtÞ � edðDtÞ

euðDtÞ � edðDtÞ
; ð8:52Þ

where

uðDtÞ ¼ mDtþ
ffiffiffiffiffi
p 0

p

s" #
s
ffiffiffiffiffi
Dt

p
; ð8:53aÞ

dðDtÞ ¼ mDt�
ffiffiffiffiffi
p

p 0

r
 �
s
ffiffiffiffiffi
Dt

p
: ð8:53bÞ

While not completely defensible, the common model for the risk-free rate is that

with r denoting the rate for Dt ¼ 1, which equals one year in practice,

rðDtÞ ¼ rDt: ð8:54Þ
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This model reflects the idea that the applicable continuous risk-free rate r is e¤ec-

tively fixed and that any investment for period Dta 1 earns this same rate. This e¤ec-

tively ignores the term structure of risk-free investments, which can be observed

historically to sometimes be a normal term structure for which rðDtÞ < rDt, sometimes

an inverted term structure for which rðDtÞ > rDt, and sometimes a flat term structure

for which rðDtÞ ¼ rDt. That said, refinements to the assumption in (8.54) have little

e¤ect in practice, at least for common options with maturities within a few months.

European Call Option Illustration

To illustrate the behavior of the price of a European option as Dt ! 0, we assume

that LðS j
nÞ is the exercise price of a call option: LðS j

nÞ ¼ maxðS j
n � K ; 0Þ. Inserting

this exercise function into the formula above for L0ðS0Þ, and recalling that S j
n ¼

S0e
juþðn�jÞd and nDt ¼ T , we get

LC
0 ðS0Þ ¼ e�nrDt

Xn
j¼0

n

j

� �
q jð1� qÞn�j maxðS j

n � K ; 0Þ

¼ e�rT
Xn
j¼a

n

j

� �
q jð1� qÞn�j

S j
n � K

Xn
j¼a

n

j

� �
q jð1� qÞn�j

" #

¼ S0

Xn
j¼a

n

j

� �
ðqeue�rDtÞ j½ð1� qÞede�rDt�n�j � e�rTK

Xn
j¼a

n

j

� �
q jð1� qÞn�j :

Here a is defined by

a ¼ minf j jS j
n bKg:

Note that if we define

q ¼ qeue�rDt; ð8:55Þ
then a calculation shows that 1� q ¼ ð1� qÞede�rDt. In other words,

LC
0 ðS0Þ ¼ S0

Xn
j¼a

n

j

� �
q jð1� qÞn�j � e�rTK

Xn
j¼a

n

j

� �
q jð1� qÞn�j

¼ S0 Pr½Sn bK jBinðq; nÞ� � e�rTK Pr½Sn bK jBinðq; nÞ�;
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where Binðq; nÞ is shorthand for the binomial distribution with parameters q and n,

and similarly for Binðq; nÞ. For both binomials, the subperiod stock returns are given

by uðDtÞ and dðDtÞ above, where q and q, respectively, denote the probability of the

return uðDtÞ.
In more detail, the random variable Sn can be expressed with notation

expðAÞ1 eA:

Sn ¼ S0 exp
Xn
i¼1

Bi

" #
;

where fBig are independent and identically distributed binomial variables that as-

sume values of uðDtÞ and dðDtÞ. In the Binðq; nÞ model, Pr½uðDtÞ� ¼ q, while in the

Binðq; nÞ model, Pr½uðDtÞ� ¼ q. With
Pn

i¼1 Bi denoted by BðnÞ in the Binðq; nÞ model,

and by BðnÞ in the Binðq; nÞ model, the result above can be expressed as

LC
0 ðS0Þ ¼ S0 Pr BðnÞ b ln

K

S0


 �
 �
� e�rTK Pr BðnÞ b ln

K

S0


 �
 �
:

Finally, we normalize the binomial random variables in the expression above for

L0ðS0Þ, subtracting the means of mn and mn, respectively, and dividing by the stan-

dard deviations of sn and sn, respectively. Call these normalized binomials B 0
ðnÞ and

B 0
ðnÞ, to produce

LC
0 ðS0Þ ¼ S0 Pr B 0

ðnÞ b
ln K

S0

h i
� mn

sn

24 35
� e�rTK Pr B 0

n b
ln K

S0

h i
� mn

sn

24 35: ð8:56Þ

Remark 8.32 As noted in chapter 7, q is called the risk-neutral probability. Utility

functions will be discussed in chapter 9, but it will be seen there that q is a risk-averter

probability. Unlike the risk-neutral probability, which is unique, any probability q̂q > q

is a risk-averter probability. So q is simply one example, since uðDtÞ > rDt implies

q > q, and we will refer to it as the special risk-averter probability. However, despite

the presence of a risk-averter probability in this option price, it is essential to under-

stand that option pricing will be shown to be entirely independent of risk preferences,

and the presence of q in the formula above is merely a mathematical artifact that sim-

plifies the ultimate solution.
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To see this, note that the formula above for L0ðS0Þ can be expressed as

LC
0 ðS0Þ ¼ e�rT

Xn
j¼0

n

j

� �
q jð1� qÞn�j maxðS j

n � K ; 0Þ

¼ e�rTE½maxðSn � K ; 0Þ jBinðq; nÞ�:
Clearly, in this formulation only the risk-neutral probability is needed for the option

price. Restating this formula in terms of q and q just facilitates the study we discuss

next and in chapter 9.

Black–Scholes–Merton Option-Pricing Formulas I

Because u, d, q, and q, the parameters underlying B 0
n and B 0

n, are all functions of

Dt ¼ T
n
, there will be some work ahead to determine what are the limits of the two

complicated probability expressions in (8.56) as Dt ! 0. We cannot, however, con-

sider pursuing this analysis until we have some additional tools at our disposal from

chapter 9, and even then the derivation will be seen to be subtle and somewhat chal-

lenging. We will also develop another approach using the chapter 10 tools, which cir-

cumvents the explicit analysis of u, d, q, and q as functions of Dt, or rather, studies

this dependence from a di¤erent perspective using a new set of tools. This analysis

will also be seen to be subtle and somewhat challenging. Both derivations will stand

as testament to the depth and insight of the Black–Scholes–Merton results.

However, given the result above in section 8.8.2 on the limiting distribution of eq-

uity prices in the real world binomial lattice, it should not surprise the reader that

both binomial random variables in (8.56) will be shown to converge in chapter 9 to

normal variables:

BðnÞ ! N rþ 1

2
s2


 �
T ; s2T

� �
;

BðnÞ ! N r� 1

2
s2


 �
T ; s2T

� �
;

as n ! y, or equivalently, as Dt ! 0.

Remark 8.33 Interestingly, within the real world binomial lattice analysis, the random

variable that was normalized,
Pn

j¼1 Bj, was a summation of binomials for which the

probability p of u was fixed and independent of n but where the two values assumed

by each Bj, u and d, changed with n. In the binomial models needed for option pricing,

the random variable that is normalized is again of the form
Pn

j¼1 Bj, with each Bj the
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same binomial as before, but where the probabilities that Bj ¼ uðDtÞ, which are q or q,

also now change with n.

Assume for now this conclusion about the limiting distributions of the variables

BðnÞ and BðnÞ. Then B 0
ðnÞ and B 0

ðnÞ converge to the unit normal distribution. In other

words,

Pr B 0
ðnÞ b

ln K
S0

h i
� mn

sn

24 35! Pr Zb
ln K

S0

h i
� rþ 1

2 s
2

� �
T

s
ffiffiffiffi
T

p
24 35:

Because of the symmetry of the unit normal distribution, we have from (8.32) that

Pr½Zb�d1� ¼ Pr½Za d1� ¼ Fðd1Þ, where F denotes the unit normal distribution

function. Similarly the second probability statement can be expressed as Pr½Zb

�d2� ¼ Pr½Za d2� ¼ Fðd2Þ.
Putting everything together, one arrives at the famous Black–Scholes–Merton for-

mula for the price of a European call option, named for Fischer Black (1938–1995),

Myron S. Scholes (b. 1941), and Robert C. Merton (b. 1944), for research published

in papers by Black and Scholes, and Merton in the early 1970s, and for which Mer-

ton and Scholes received the 1997 Nobel Prize in Economics (sadly, such awards are

not made posthumously).

The final result for a European call option is

LC
0 ðS0Þ ¼ S0Fðd1Þ � e�rTKFðd2Þ; ð8:57aÞ

d1 ¼
ln S0

K
þ rþ 1

2s
2

� �
T

s
ffiffiffiffi
T

p ; ð8:57bÞ

d2 ¼
ln S0

K
þ r� 1

2s
2

� �
T

s
ffiffiffiffi
T

p : ð8:57cÞ

The related result for a European put option is

LP
0 ðS0Þ ¼ e�rTKFð�d2Þ � S0Fð�d1Þ: ð8:58Þ

The approach used by Black–Scholes and Merton was close in spirit to that above,

in the sense that they were able to replicate the option with a portfolio of stock and

T-bills. They then concluded that the option must have a price equal to the price of

this replicating portfolio. However, they used the advanced tools of stochastic calcu-

lus for this development (which will not be addressed until my next book, Advanced
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Quantitative Finance, as mentioned in the Introduction). The approach taken here

and in chapter 7, which used a binomial lattice approximation to stock price move-

ments, and then replicated the option and evaluated the limit as Dt ! 0, is known as

the Cox–Ross–Rubinstein binomial lattice model for option pricing. It was developed

in a paper in the late 1970s by John C. Cox, Stephen A. Ross, and Mark Rubinstein.

Remark 8.34 Using a binomial lattice with time step Dt to evaluate the price of a Eu-

ropean option or other derivative security, which results in an application of (7.147),

produces a price L0ðS0Þ1L0ðS0;DtÞ. This price reflects what is known as discretiza-

tion error. In other words, the theoretically correct answer is obtained as Dt ! 0, and

the lattice produces an error eDðDtÞ ¼ L0ðS0; 0Þ �L0ðS0;DtÞ, which is caused by dis-

cretizing time and the p.d.f. of stock price movements. One consequence of this dis-

cretization is that for any Dt, the calculated value of L0ðS0;DtÞ explicitly reflects the

stock’s mean log-ratio return m as well as the real world probability used in the calibra-

tion, p, through the formulas for q, u, and d. For any Dt, the calculated value of the

derivatives price will consequently vary somewhat as these parameters change. How-

ever, as one can explicitly appreciate in the Black–Scholes–Merton formulas, and will

be seen to be true generally as Dt ! 0, these dependencies of option price on both m and

p disappear. Indeed in the formulas above there is no vestige of either parameter pres-

ent, and in chapter 9 we will return to this point and observe this transition. In contrast,

the variance of the stock’s log-ratio return, s2, is quite evident in the final formulas, as

is the risk-free rate, r.

8.8.4 Scenario-Based European Option Prices as N ?T

The Model

If N-paths are randomly generated, and fS j
ngnj¼0 denotes the nþ 1 possible stock

prices in the recombining lattice in section 8.8.3 above at time nDt ¼ T , it is of inter-

est to analyze the number of paths that arrive at each final state. In theory, we know

from the lattice analysis in section 8.8.2 that the distribution of stock prices at time n

is binomially distributed in the real world with parameters n, p in general, and hence

Pr½Sn ¼ S j
n � ¼ n

j

� 	
p jð1� pÞn�j . As in chapter 7, p denotes the probability of a u-

return, p 0 ¼ 1� p the probability of a d-return, and stock prices are parametrized

so that j ¼ 0 corresponds to the lowest price, S0
n ¼ endS0, and j ¼ n corresponds to

the highest price, Sn
n ¼ enuS0.

On the other hand, we have shown that for the purposes of option pricing, we con-

tinue to use the stock price returns of eu and ed but switch the assumed probability of

an upstate return from the real world probability p to the risk-neutral probability q

given in (8.52) above.
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In the lattice-based model these q-probabilities determine the likelihood of each

final equity price state that is relevant for option pricing. Consequently, if Nj denotes

the number that terminate at price S j
n from a sample of N paths so that

P
Nj ¼ N,

then the ðnþ 1Þ-tuple of integers ðN0;N1; . . . ;NnÞ has a multinomial distribution

with parameters N and fQjgnj¼0, where Qj ¼ n
j

� 	
q jð1� qÞn�j . From (7.105) and

(7.106) we conclude that

E½Nj� ¼ NQj; Var½Nj� ¼ NQjð1�QjÞ; Cov½Qj;Qk� ¼ �NQjQk:

In a nonrecombining lattice, Qj is again defined as the risk-neutral probability of ter-

minating at price S j
n ; only then there are 2n stock prices rather than nþ 1. The multi-

nomial distribution is again applicable in this case, as are the moment formulas above.

We now formalize the methodology for pricing an n-period European option using

the scenario-based methodology introduced in section 7.8.7. For simplicity, we focus

on the recombining lattice model, although the development is equally applicable in

the more general case. To this end, let LðS j
nÞ denote the exercise value of the option

or other derivative at time n when the stock price S j
n prevails. Also assume that a

time step of Dt1 T
n
has been chosen as in section 8.8.3, and that the binomial lattice

is calibrated as in (8.52), (8.53), and (8.54).

Given N paths, define a random variable ON , the sample option price, as in (7.150):

ON ¼ e�rT

N

Xn
j¼0

NjLðS j
nÞ: ð8:59Þ

The random variable ON is an estimate of the true option price based on a sample of

size N. As was noted in section 7.8.7, the actual lattice-based price can be expressed

L0ðS0Þ ¼ e�rT
Xn
j¼0

E
Nj

N


 �
LðS j

nÞ;

and so the sample option price replaces the correct probability weight of E
Nj

N

h i
¼ Qj

with the sample-based estimate of
Nj

N
.

Option Price Estimates as N ?T

We would expect that since the paths are generated in such a way as to arrive at each

final stock price with the correct probability, the expected value of this random vari-

able ought to equal L0ðS0Þ, the value produced on the lattice with (7.147). Even

more important, as N increases, we will prove that the probability that we are in

error by any given amount goes to 0. The main result is as follows:
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Proposition 8.35 With ON defined as in (8.59):

1. The expected value of ON equals the lattice-based option price

E½ON � ¼ L0ðS0Þ: ð8:60Þ
2. If Var½LðS j

nÞ� < y, where this variance is defined under fQjg, then for any � > 0,

Pr½jON �L0ðS0Þj > �� ! 0 as N ! y: ð8:61Þ
Proof For property 1,

E½ON � ¼ e�rT
Xn
j¼0

E
Nj

N


 �
LðS j

nÞ ¼ L0ðS0Þ;

since E
Nj

N

h i
¼ Qj by (7.105). To demonstrate property 2, we use the Chebyshev in-

equality, which requires the variance of ON . To this end, first note that using (7.56)

obtains

Var½ON � ¼ e�2rT

N 2

Xn
j¼0

Var½Nj �L2ðS j
nÞ þ

2e�2rT

N 2

X
j<k

Cov½Nj;Nk�LðS j
nÞLðSk

n Þ

¼ e�2rT

N 2

Xn
j¼0

NQjð1�QjÞL2ðS j
nÞ � 2

X
j<k

NQjQkLðS j
nÞLðSk

n Þ
" #

¼ e�2rT

N

Xn
j¼0

QjL
2ðS j

nÞ �
Xn
j¼0

QjLðS j
nÞ

 !2
24 35

¼ e�2rT

N
Var½LðS j

nÞ�:

Note that in the last step we used the identity that under fQjg, Var½LðS j
nÞ� ¼

E½L2ðS j
nÞ� � ½E½LðS j

nÞ��2. From this derivation we conclude that as N ! y, we

have Var½ON � ! 0. Now, by Chebyshev’s inequality, since E½ON � ¼ L0ðS0Þ by prop-

erty 1,

Pr½jON �L0ðS0Þj > �� < Var½ON �
�2

;

completing the proof. n
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Remark 8.36

1. The price of a European derivative security obtained with the scenario-based model

above will contain two types of error compared to the theoretically correct price.

Denoting the price obtained with N-paths and time steps of Dt by ONðDtÞ, the errors

are

� Discretization error, which is identical to that produced by the underlying lattice-

based calculation and depends on Dt. This error is defined in remark 8.34 as

eDðDtÞ ¼ L0ðS0; 0Þ �L0ðS0;DtÞ:
� Estimation error, which is defined as

eEðDtÞ ¼ L0ðS0;DtÞ �ONðDtÞ;
is the error between the scenario-based option price estimate and the lattice-based

value.

2. As was seen in the proof above, the estimation error decreases with 1
N
in the sense

that

Pr½jL0ðS0;DtÞ �ONðDtÞj > �� < e�2rT Var½LðS j
nÞ�

N�2
:

Consequently, as was observed in proposition 8.12, we can choose �N ! 0 in such a

way that N�2N ! y and thereby ensure that as N ! y, all estimation error is theoret-

ically eliminated. In practice, however, this elimination of error will be a slow and pain-

ful process, since in order for N�2N ! y it will be necessary to have �N ! 0 slowly

and/or have N�2N ! y slowly. For example, if � ¼ 1
N a for 0 < a < 1

2 , both objectives

are achieved, where a@ 1
2 provides faster �N ! 0 and slower N�2N ! y, and a@ 0

does the opposite.

Scenario-Based Prices and Replication

As the last question for this section on scenario-based option pricing, we investigate

the connection between option pricing based on sample scenarios and option pricing

based on replication. First o¤, from (7.145), we know that replication-based prices

can be rebalanced period to period. Rewriting that formula to reflect a period of

length Dt produces

L0ðS0Þ ¼ e�rDt½qLðSu
1 Þ þ q 0LðSd

1 Þ�:
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Consequently, from the first conclusion of the proposition above, with the analogous

notation

E½ON � ¼ e�rDt½qE½Ou
N � þ q 0E½Od

N ��;

the expected values of the scenario-based prices can also be rebalanced.

To investigate the one-period rebalancing of ON to one of Ou
N and Od

N , an assump-

tion needs to be made about the collection of scenarios used for the latter calcula-

tions. We first assume that Ou
N is evaluated on the subset of the N original paths

that start with a u, of which there are Nu, and similarly assume that Od
N is evaluated

on the subset of the N original paths that start with a d, of which there are Nd , and

so Nu þNd ¼ N.

Next rewrite (8.59) as

ON ¼ e�rT

N

Xn
j¼1

Nu
j LðS j

nÞ þ
Xn�1

j¼0

Nd
j LðS j

nÞ
" #

;

where fNu
j g is defined as the number of paths from the Nu subset that end at S j

n , and

similarly for fNd
j g, where it is apparent by definition that Nu

0 ¼ Nd
n ¼ 0.

Now to price Ou
N and Od

N on these subsets of paths, we derive that

Ou
N u ¼ e�rðT�DtÞ

Nu

Xn
j¼1

Nu
j LðS j

nÞ;

Od
N d ¼ e�rðT�DtÞ

Nd

Xn�1

j¼0

Nd
j LðS j

nÞ:

Finally, with a bit of algebra is obtained

ON ¼ e�rDt½q½auOu
N u � þ q 0½adOd

N d ��; ð8:62Þ

where

au ¼ Nu

Nq
; ad ¼ Nd

Nq 0 :

In summary, with Ou
N and Od

N priced on the subsets of the original paths, ON is the

price of a replicating portfolio that will rebalance to auOu
N and adOd

N in the next

period, and not Ou
N and Od

N . So there is additional error in this rebalancing related

to how far from 1 the au and ad terms are. Of course,

410 Chapter 8 Fundamental Probability Theorems



E½au� ¼ E½ad � ¼ 1;

Var½au� ¼ q 0

Nq
; Var½ad � ¼ q

Nq 0 ;

so for large N the rebalancing error over one period will be small. However, the pro-

cess cannot be repeated to maturity because in each step the estimated prices are

based on fewer and fewer paths.

Alternatively, if Ou
N and Od

N are priced on new collections of N-paths each, there

will be additional rebalancing error. Specifically, we obtain

ON ¼ e�rDt½q½buOu
N � þ q 0½bdOd

N ��; ð8:63Þ

where

bu ¼ auOu
N u

Ou
N

; bd ¼ adOd
N u

Od
N

:

In other words, ON will equal the price of a portfolio that replicates values of buOu
N

and bdOd
N .

Exercises

Practice Exercises

1. Show that if f ðxÞ is a discrete probability function, with m.g.f. MðtÞ, then for any

real number t > 0,

Pr½X b t�a MðtÞ
et

2 :

(Hint: MðtÞb P
jxi jbt e

txi f ðxiÞ.)
2. Market observers sometimes talk about 5-sigma or 10-sigma events, where sigma

is the standard deviation. Such a statement is often used in the context of, ‘‘who

could have possibly predicted this event?’’ as if all random variables were known to

be normally distributed, and for which the probabilities of such events are indeed

miniscule.

(a) Using the Chebyshev inequality, calculate the upper bound for the probability of

a 5-sigma or worse event. A 10-sigma or worse event.

(b) Repeat part (a) using the one-sided Chebyshev inequality.
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3. Apply the weak law of large numbers to determine the necessary sample size in

the following cases to have 95% confidence:

(a) For the standard binomial distribution, estimate p to three decimal places

ð� ¼ 0:0005Þ if it is known that 0:1a pa 0:5.

(b) For the negative binomial distribution with k ¼ 10, estimate m to two decimal

places, where it is known that pa 0:1.

4. Using the De Moivre–Laplace theorem (Hint: Recall the half-interval

adjustment.):

(a) Approximate the probability that in one million flips of a biased coin with

Pr½H� ¼ 0:65, the number of heads will be between 649,500 and 650,000.

(b) Approximate the probability that the number of tails will be 700,000 or more.

5. Using the central limit theorem (Hint: Recall the half-interval adjustment.):

(a) Approximate the probability of X̂X b 79 in a Poisson distribution with l ¼ 75,

where X̂X is a sample average of 50 independent trials.

(b) Approximate the probability of 76a X̂X a 78, with X̂X based on a sample of 100.

6. Generalize the calibration of the growth model for stock prices in (8.45) to de-

velop formulas for u and d for arbitrary p, 0 < p < 1, and Dt.

7. Using the result of exercise 6, express SmDt in terms of S0 in two ways, paralleling

the formulas in (7.137) and (7.138) but for general p and Dt, and being explicit about

the binomial probabilities that govern the associated price lattice.

8. Demonstrate the following two properties of moment-generating functions, where

X and Xi are discrete random variables, using the definition and properties of

expectations:

(a) MaþbX ðtÞ ¼ eatMX ðbtÞ
(b) MTXi

ðtÞ ¼QMXi
ðtÞ if fXig are independent.

9. Using properties of the moment-generating function, show that if fBjg in the bi-

nomial lattice model are assumed to be independent and binomially distributed, then

this will not imply that fBkðDtÞg are binomially distributed. (Hint: See exercise 8(b).)

10. Recall the claims model of exercise 18 of chapter 7:

(a) For both the individual and aggregate risk model estimates of the mean and vari-

ance of claims, apply the Chebyshev inequality in (8.36) to estimate the probability

that claims exceed $8 million, $9.5 million, and $11 million.

(b) Estimate the probabilities from part (a) directly by a simulation method, with

1000 simulations, using (8.38).
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(c) Using the simulations from part (b), and C0 ¼ $7.5 million, estimate the condi-

tional means and variances of the two models, and with these results estimate the

probabilities in part (a) using (8.40).

11. (Compare with exercise 24 of chapter 7Þ Price a two-year European call, with

strike price of 100, in the following ways. The stock price is S0 ¼ 100, and based on

time steps of Dt ¼ 0:25 years, the quarterly log-ratios have been estimated to have

mQ ¼ 0:02, and s2
Q ¼ ð0:07Þ2. The annual continuous risk-free rate is r ¼ 0:048.

(a) Develop a real world lattice of stock prices, with p ¼ 1
2 and time steps with

Dt ¼ 0:05, and price this option using (7.147) with the appropriate value of q.

(b) Evaluate the two prices of this option at time t ¼ 0:05 from part (a), and con-

struct a replicating portfolio at t ¼ 0 for these prices. Demonstrate that the cost of

this replicating portfolio equals the price obtained in part (a).

(c) Price this option using (7.147) with the appropriate value of q based on a lattice

for which p ¼ 0:75.

(d) Generate 500 two-year paths in the risk-neutral world using the same model as

part (a), and estimate the price of this option using (7.150) by counting how many

scenarios end in each stock price at time 2 years.

12. Generate another 99 prices for the exercise in 11(d) above, by generating another

99 batches of 500 two-year paths.

(a) Calculate the estimated price ON using all N ¼ 50;000 paths, and show that this

is equivalent to simply averaging the 100 batch prices.

(b) Calculate the variance of the 100 batch prices, Var½O500�, and use this to estimate

the variance of the estimated price in part (a), Var½ON �. (Hint: Recall that as a ran-

dom variable ON is the average of 100 prices.)

(c) With L0ðS0Þ defined as the lattice price obtained in exercise 11(a), and using

Var½O500� from part (b), compare for various values of � the proportion of the 100

prices that satisfy jO500 �L0ðS0Þj > � to the upper bound for the probability of this

event,
Var½O500�

�2
, developed in proposition 8.35.

Assignment Exercises

13. Let X be a discrete random variable.

(a) Prove that if mjnj aC for all n, then Pr½jX � mjb t� ¼ 0 for any t > 1. In other

words, it must be the case that Pr½jX � mja 1� ¼ 1: (Hint: Chebyshev.)

(b) Generalize part (a). Prove that if mjnj aCn for all n, then Pr½jX � mjb t� ¼ 0 for

any t > C.
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(c) Conclude that if X has unbounded range, then it cannot be the case that

mjnj aCn for any C.

14. Apply the weak law of large numbers to determine the necessary sample size in

the following cases to have 95% confidence:

(a) For the geometric distribution, estimate the unbiased variance to one decimal

place, where it is know that p > 0:25 (Hint: For the geometric, m4 ¼ q

p2
1þ 9q

p2

� 	
.)

(b) For the Poisson distribution, estimate l to two decimal places where it is known

that l > 2.

15. Demonstrate that in the proof of the weak law of large numbers:

Pr½jX̂X � mj > ��aPr jŶY j > �

2


 �
þ Pr jẐZj > �

2


 �
:

(Hint: By the triangle inequality, jX̂X � mja jŶY j þ jẐZj, and hence, if both jŶY ja �
2 and

jẐZja �
2 , then jX̂X � mja �. Define events A;B;CHS by A ¼ fðX1; . . . ;XnÞ j

jX̂Xn � mja �g, B ¼ ðX1; . . . ;XnÞ j jŶY ja �
2

� �
, and C ¼ ðX1; . . . ;XnÞ j jẐZja �

2

� �
. Then

justify BVCHA, and use De Morgan’s laws.)

16. Using the De Moivre–Laplace theorem (Hint: Recall the half-interval

adjustment.):

(a) Approximate the probability that in one million flips of a biased coin with

Pr½H� ¼ 0:15, the number of heads will be between 0 and 145,000 or between

149,500 and 150,000.

(b) Approximate the probability that the number of heads will be within 100 of the

expected value.

17. Assuming that all the properties of expectations developed for discrete random

variables apply to continuous random variables as well, derive (8.31) from (8.30).

18. Using the central limit theorem (Hint: Recall the half-interval adjustment.):

(a) Approximate the probability of X̂X b 10 in a geometric distribution with p ¼ 0:15,

where X̂X represents an average from a sample of 40 trials.

(b) Approximate the probability of 4a X̂X a 8 where X̂X is based on a sample of 60

from the same geometric distribution.

19. Demonstrate the following two properties of characteristic functions, where

X and Xi are discrete random variables, using the definition and properties of

expectations:

(a) CaþbX ðtÞ ¼ eiatCX ðbtÞ
(b) CTXi

ðtÞ ¼ QCXi
ðtÞ if fXig are independent
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20. Recall the credit model of exercise 36 of chapter 7:

(a) For both the individual and aggregate risk model estimates of the mean and vari-

ance of losses, apply the Chebyshev inequality in (8.36) to estimate the probability

that losses exceed $8 million, $11 million, and $14 million.

(b) Estimate the probabilities from part (a) directly by a simulation method, with

1000 simulations, using (8.38).

(c) Using the simulations from part (b), and C0 ¼ $6 million, estimate the condi-

tional means and variances of the two models, and with these results estimate the

probabilities in part (a) using (8.40).

21. (Compare with exercise 40 of chapter 7:Þ Price a two-year European put, with

strike price of 100, in the following ways. The stock price is S0 ¼ 100, and based on

time steps of Dt ¼ 0:25 years, the quarterly log-ratios have been estimated to have:

mQ ¼ 0:025, and s2
Q ¼ ð0:09Þ2. The annual continuous risk-free rate is r ¼ 0:06.

(a) Develop a real world lattice of stock prices, with p ¼ 1
2 and time steps with

Dt ¼ 0:05, and price this option using (7.147) with the appropriate value of q.

(b) Evaluate the two prices of this option at time t ¼ 0:05 using the same method as

part (a), and construct a replicating portfolio at t ¼ 0 for these prices. Demonstrate

that the cost of this replicating portfolio equals the price obtained in part (a).

(c) Price this option using (7.147) with the appropriate value of q based on a lattice

for which p ¼ 0:25.

(d) Generate 500 two-year paths in the risk neutral world using the same model as

part (a), and estimate the price of this option using (7.150) by counting how many

scenarios end in each stock price at time 2 years.

22. Generate another 99 prices to the exercise in 21(d) above, by generating another

99 batches of 500 two-year paths.

(a) Calculate the estimated price ON using all N ¼ 50;000 paths, and show that this

is equivalent to simply averaging the 100 batch prices.

(b) Calculate the variance of the batch prices, Var½O500�, and use this to estimate the

variance of the estimated price in part (a), Var½ON �. (Hint: Recall that as a random

variable ON is the average of 100 prices.)

(c) With L0ðS0Þ defined as the lattice price obtained in exercise 21(a), and using

Var½O500� from part (b), compare for various values of � the proportion of the 100

prices that satisfy jO500 �L0ðS0Þj > � to the upper bound for the probability of this

event,
Var½O500�

�2
, developed in proposition 8.35.
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9 Calculus I: Di¤erentiation

9.1 Approximating Smooth Functions

Calculus is the mathematical discipline that studies properties of ‘‘smooth’’ functions.

Intuitively a function is smooth if its values vary in a somewhat predictable way. So

based on knowledge of its values and behavior at a given point, we can approximate

its values ‘‘near’’ that given point. There are moreover various degrees of smooth-

ness, and these in turn provide various degrees of accuracy in the approximation.

We begin by recalling the definition of a function introduced in chapter 2, and then

introduce the simplest notion of smoothness, known as continuity, and some if its

refinements. We will spend some time on these concepts because of their impor-

tance and subtlety. The next section then studies derivatives of a function, as well as

Taylor series expansions, which are seen to both provide a formal basis for approxi-

mating function values, and for quantifying the notion of the accuracy of such an

approximation.

In the process, we will finally be able to justify the earlier assumed power series

expansions for ex and ln x, as well as demonstrate the validity of the limits needed

in the development of the Poisson distribution, such as

1� l

n

� �n
! e�l; as n ! y:

Remark 9.1 In general, the functions that appear to be addressed in calculus are real-

valued functions of a real variable. In other words, functions

f : X ! Y where X ;Y HR:

However, while the assumption that the domain of f ðxÞ is real is critical, and so X ¼
Dmnð f ÞHR, there is often no essential di‰culty in assuming f to be a complex-

valued function of a real variable so that the range of f ðxÞ, Y ¼ Rngð f ÞHC. This is

not often needed in finance, and the characteristic function is one of the few examples in

finance where complex-valued functions are encountered.

One reason that Dmnð f ÞHR is critical in the development of calculus is that we

will often utilize the natural ordering of the real numbers. In other words, given

x; y A R with x0 y, it must be the case that either x < y or y < x. None of these

proofs would generalize easily to functions of a complex variable where no such order-

ing exists. Indeed it turns out that the calculus of such functions is quite di¤erent and

studied in what is called complex analysis. On the other hand, the only essential prop-

erty of Rngð f Þ that is often assumed is that there is a metric with which one can define

closeness and limits. Since C has a metric as noted in chapter 3, any proof that only



relies on the standard metric in R, the absolute value, works equally well in C with

its standard metric or any equivalent metric. In other words, the existence of an order-

ing in the range space doesn’t matter for most results, and we simply need a metric

structure.

One counterexample to this statement on the range space is any result that addresses

both f ðxÞ and its inverse function, f �1ðyÞ, since in such a development, Dmnð f �1Þ ¼
Rngð f Þ. Another relates to statements about maximum or minimum values of f ðxÞ, or
intermediate values, which by definition implies an ordering. Such statements must be

reviewed carefully to determine if only metric properties are needed, as may be the

case for maximum or minimum values, or if the existence of an ordering is also needed,

as is the case for an intermediate value.

Because of the rarity of encountering complex-valued functions of a real variable

in finance, all the statements in this chapter are either silent on the location of Y, or

explicitly assume Y HR. In particular, no e¤ort was made to explicitly frame all

proofs in the general case Y HC, since this overt generality seemed to have little pur-

pose given the objectives of this book. However, any proof that is silent and relies only

on a metric in Y will virtually always be seen to extend to the case where Y HC.

When a proof explicitly states that Y HR, its generality must be thought through

step by step, and in many cases it will be seen that again, only the metric in Y is used.

The applicability of many results to a complex-valued function can also be justified

by splitting the function values into real and imaginary parts. If Y HC, we write

f ðxÞ ¼ gðxÞ þ ihðxÞ;
where both gðxÞ and hðxÞ are real valued. The theory in this chapter can typically then

be justifiably applied to f ðxÞ by applying it separately to gðxÞ and hðxÞ and combining

results.

9.2 Functions and Continuity

9.2.1 Functions

Definition 9.2 A function is a rule, often represented notationally by f , g, and so

forth, by which each element of one set of values, called the domain and denoted

Dmnð f Þ, is identified with a unique element of a second set of values, call the range

and denoted Rngð f Þ.
The rule is often expressed by a formula such as

f ðxÞ ¼ x2 þ 3:
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Here x is an element of the domain of the function f , while f ðxÞ is an element of the

range of f . Functions are also thought of as ‘‘mappings’’ between their domain and

range. The imagery of x being mapped to f ðxÞ, is intuitively helpful at times. In this

context, one might use the notation

f : X ! Y ;

where X denotes the domain of f , and Y the range. It is also common to write f ðxÞ
for both the function, which ought to be denoted only by f , and the value of the

function at x. This bit of carelessness rarely causes confusion.

Note that while the definition of a function requires that f ðxÞ be unique for any x,

it is not required that x be unique for any f ðxÞ. For instance, the function above has

f ðxÞ ¼ f ð�xÞ for any x0 0. Another way of expressing this is that a function can be

a ‘‘many-to-one’’ rule, which includes one-to-one, but it cannot be a one-to-many

rule.

An example of a one-to-many rule that is therefore not a function is

f ðxÞ ¼ ffiffiffi
x

p
;

which assigns two values to every positive value of x, such as f ð4Þ ¼G2. In many

applications one can transform such a rule into a function by simply defining its

value to be one of the possible ‘‘branches’’ in the range. For example, the positive

square root (or negative square root) are both functions.

A function that is in fact one-to-one, meaning that it satisfies f ðxÞ ¼ f ðx 0Þ i¤

x ¼ x 0, has the special property that it has an inverse that is also a function.

Definition 9.3 Given a one-to-one function f ðxÞ, f : X ! Y, the inverse function,

denoted f �1, is defined by

f �1 : Y ! X ;

f �1ðyÞ ¼ x if f ðxÞ ¼ y:

In other words, Dmnð f �1Þ ¼ Rngð f Þ and Rngð f �1Þ ¼ Dmnð f Þ. More generally, for

an arbitrary function f and set A, the set f �1ðAÞ, the pre-image of A under f is defined

by

f �1ðAÞ ¼ fx A Dmnð f Þ j f ðxÞ A Ag:
Example 9.4 The function f ðxÞ ¼ x2 þ 3 has no inverse if defined as a function with

domain equal to all real numbers R because it is many-to-one on this domain, but it

does have an inverse if the domain is restricted to any subset of the nonnegative or
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nonpositive real numbers. On the other hand, f �1ðAÞ is defined for any set AHR. For

example, f �1ð½�1; 0�Þ ¼ 0 and f �1ð½1; 4�Þ ¼ ½�1;�2�U ½1; 2�.
Functions can also be combined, or ‘‘composed,’’ to produce so-called composite

functions.

Definition 9.5 If g : X ! Y and f : Y ! Z, the composition of f and g, denoted

f � g or f ðgÞ is a function: X ! Z defined by

f � gðxÞ ¼ f ðgÞðxÞ1 f ðgðxÞÞ:
More generally, it is not necessary that Dmnð f Þ ¼ RngðgÞ, and f ðgÞ is well defined as

long as RngðgÞHDmnð f Þ.
Compositions of more than two functions are defined analogously, with the nota-

tional convention that functions are applied right to left. For instance,

f � g � hðxÞ1 f ðgðhðxÞÞÞ;
which is evaluated as a mapping

x ! hðxÞ ! gðhðxÞÞ ! f ðgðhðxÞÞÞ:
Note finally that a composition of functions is not a ‘‘commutative’’ process, in

that even when the domains and ranges of the functions allow the definition of both

f � g and g � f , in only the most trivial exceptional cases will these be equal. The

rule is

f � g0 g � f ;

and so order matters!

9.2.2 The Notion of Continuity

Intuitively a function is said to be continuous at a given point x0 if f ðxÞ must be close

to f ðx0Þ whenever x is close to x0. In other words, j f ðxÞ � f ðx0Þj will be ‘‘small’’

whenever jx� x0j is ‘‘small.’’ Mathematicians formalize this notion with a logically

complex statement that receives some discussion below.

Definition 9.6 A function f ðxÞ is continuous at a point x0 if for any value � > 0, one

can find a d > 0, so that:

� j f ðxÞ � f ðx0Þj < � whenever jx� x0j < d, or equivalently,

� jx� x0j < d implies that j f ðxÞ � f ðx0Þj < �.
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The function f ðxÞ is continuous on an interval if it is continuous at every point of

that interval, and f ðxÞ is continuous if it is continuous at every point of its domain.

Remark 9.7

1. By convention, a function is defined to be continuous at the endpoint(s) of a closed

interval ½a; b� if the definition applies with x restricted to that interval. The formal ter-

minology is that f ðxÞ is continuous from the left at b, or continuous from the right at a.

However, this formal language is often not used and a statement such as, f ðxÞ is con-
tinuous on ½a; b�, is universally understood in this sense.

2. Note that in this definition, the numerical value of d depends on the value of �. In a

given application it is in fact required that this dependency can be formalized by a func-

tion so that d1 dð�Þ.
Continuity at a point x0 means that however small an open interval one constructs

around f ðx0Þ, here the interval ð f ðx0Þ � �; f ðx0Þ þ �Þ, one can find an open interval

around x0, here the interval ðx0 � d; x0 þ dÞ, that gets mapped into it. In the case

where x0 is an endpoint of a closed interval ½a; b�, this statement says that however

small an open interval one constructs around f ðx0Þ, here the interval ð f ðx0Þ � �;

f ðx0Þ þ �Þ, one can find a half-open interval, here the interval ðb� d; b� or ½a; aþ dÞ,
that gets mapped into it.

Now the statement above about � and d is subtle, and even passive in tone. But this

definition can be stated in a more active way.

Definition 9.8 f ðxÞ is continuous at a point x0 if for any sequence �n ! 0 we can

find a sequence dn so that j f ðxÞ � f ðx0Þj < �n whenever jx� x0j < dn. In other words,

by choosing xn arbitrarily in the intervals jx� x0j < dn, we can be assured that

j f ðxnÞ � f ðx0Þj < �n, and hence j f ðxnÞ � f ðx0Þj ! 0.

In general, it will also be the case that dn ! 0, but the example of f ðxÞ1 1 for all

x shows that this need not be the case.

This �-d definition is one of many in mathematics, and it is close in structure to the

�-N definition used to define convergence of a sequence in chapter 5. This definition

may seem sti¤ and formal. This is because continuity, which is intuitively a simple

notion, is also quite subtle and somewhat di‰cult to define precisely. So this and

other such definitions periodically fall in and out of favor among mathematics edu-

cators, and it is fair to say that at least some mathematicians have a love–hate rela-

tionship with this string of words that with practice rolls o¤ their tongues like a

religious chant.
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In this book we pay homage to the tradition of such definitions, but at the same

time acknowledge the pain and su¤ering they cause many students of the subject.

So we do invest a bit more time in exploring their meaning. In point of fact, the tra-

ditional continuity chant is: ‘‘. . . for any � > 0, there is a d > 0 so that . . . ,’’ which we

have adapted as above to make the point that determining if such a d exists is typi-

cally an exercise in finding one that does work.

To explore this complicated notion, let’s informally say that f ðxÞ is continuous at
x0 if we can make j f ðxÞ � f ðx0Þj as small as we want by choosing jx� x0j small

enough. We can also think of this as saying that the value of f ðx0Þ can be predicted

if we know the value of f ðxÞ for all x arbitrarily close to x0. That is, we cannot be

surprised at the value of f ðx0Þ once we know the values of f ðxÞ for x near x0.

The cause of the complexity in the definition is that continuity means more than

simply that ‘‘we can find an x near x0 so that f ðxÞ is near f ðx0Þ,’’ or even ‘‘so that

f ðxÞ is arbitrarily close to f ðx0Þ.’’ Let’s formalize these simpler statements and see

what goes wrong.

Definition 9.9 (Version 1) f ðxÞ is almost continuous at a point x0 if for any � > 0

there is an x so that j f ðxÞ � f ðx0Þj < �.

Well this version does not tell us very much, since it does not even ensure that x is

anywhere near x0.

Definition 9.10 (Version 2) f ðxÞ is almost continuous at a point x0 if for any � > 0

there is an x so that jx� x0j < � and j f ðxÞ � f ðx0Þj < �.

This version 2 makes a bit more sense because at least we can be sure that

as we require f ðxÞ to be nearer to f ðx0Þ, that there are x-values that work for

which x becomes nearer to x0. On the other hand, this definition allows there to be

lots of x-values that are close to x0 for which f ðxÞ is far, perhaps very far, from

f ðx0Þ.
Example 9.11 The classical example of this almost continuous situation is

f ðxÞ ¼ sin 1
x
; x0 0;

0; x ¼ 0,

�
as graphed in figure 9.1. This graph satisfies the definition of ‘‘almost continuous (ver-

sion 2) at x0 ¼ 0,’’ where f ð0Þ ¼ 0, since it is clear that ‘‘for any � > 0, there is an x so

that jx� x0j < � and j f ðxÞ � f ðx0Þj < �.’’ In fact ‘‘for any � > 0, there is an x so that

jx� x0j < � and f ðxÞ ¼ f ð0Þ’’.
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The inadequacy of this ‘‘almost continuous (version 2)’’ notion is further illus-

trated by the fact that if we arbitrarily define f ð0Þ as any number between �1 and

1, this definition is still satisfied. So the point is, what conclusions could be made

about such a function at x ¼ 0 if we can arbitrarily define its value there and still sat-

isfy the definition? Obviously we cannot predict this value of f ð0Þ from knowing the

value of f ðxÞ for x near 0.

Example 9.12 The example above can be made even more compelling by considering

gðxÞ ¼
1
x
sin 1

x
; x0 0;

0; x ¼ 0:

�
We then have that gðxÞ is ‘‘almost continuous (version 2) at x ¼ 0,’’ and and this will

be true even if we define gð0Þ as any real number! This is displayed in figure 9.2, where

it is noted that gðxÞ is unbounded both positively and negatively as x ! 0.

The important detail that the definition of continuity adds to the definition of ‘‘al-

most continuous (version 2),’’ is that it demands that the function f make all the

values of f ðxÞ close to f ðx0Þ, for x near x0, not just some of them. In doing so, it

allows the distance between x and x0 to di¤er from the distance between f ðxÞ and

f ðx0Þ, as long as we can choose the latter distance for any �. So the final logic

becomes the chant, ‘‘. . . for any value � > 0, one can find a d > 0 . . . .’’

Figure 9.1

f ðxÞ ¼ sin 1
x
; x0 0

0; x ¼ 0

�
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Example 9.13 The price of a 5-year zero-coupon bond per $1 par, in terms of an an-

nual rate, is given by PðrÞ ¼ ð1þ rÞ�5
. To see that this is a continuous function at

r0 A ð0;yÞ, the goal is to be able to make jð1þ rÞ�5 � ð1þ r0Þ�5j small by making

jr� r0j small. To this end, note that

jð1þ rÞ�5 � ð1þ r0Þ�5j ¼ ð1þ r0Þ5 � ð1þ rÞ5
ð1þ rÞ5ð1þ r0Þ5














< jð1þ r0Þ5 � ð1þ rÞ5j;
since ð1þ rÞ5ð1þ r0Þ5 b 1 for rb 0, which we can assume by choosing � < r0. Now,

by the binomial theorem, ð1þ r0Þ5 � ð1þ rÞ5 ¼P5
j¼1

5
j

� 	
½r j0 � r j�, since the j ¼ 0

terms cancel. Each of the remaining terms r
j
0 � r j for jb 1 can be factored:

r
j
0 � r j ¼ ðr0 � rÞ

Xj�1

k¼0

rk0 r
j�k�1:

Combining, we get that jð1þ rÞ�5 � ð1þ r0Þ�5j < K jr0 � rj, where K is choosen as the

largest numerical value of the
P5

j¼1
5
j

� 	P j�1
k¼0 r

k
0 r

j�k�1 factor. This bound would be de-

termined by noting that r < r0 þ � ¼ ar0, for some a > 1, and then

Figure 9.2

gðxÞ ¼
1
x
sin 1

x
; x0 0

0; x ¼ 0

�
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K ¼ max
r<r0þ�

X5
j¼1

5

j

� �Xj�1

k¼0

rk0 r
j�k�1

¼
X5
j¼1

5

j

� �
r
j�1
0

Xj�1

k¼0

a j�k�1 ¼
X5
j¼1

5

j

� �
a j � 1

a� 1

� �
r
j�1
0 :

Finally, from this we have that for any � > 0, jð1þ rÞ�5 � ð1þ r0Þ�5j < � if jr0 � rj <
�
K
. That is, we define dð�Þ ¼ �

K
. In fact PðrÞ is continuous on r0 A ð�1;yÞ, but more

care is needed for the numerical estimates, since there is an apparent problem at

r ¼ �1.

Note that in this example, no e¤ort was made to determine the best value of K , for

instance, by further restricting the range of allowable r-values in this maximum. To

simply verify continuity, the analysis can be crude to simplify the derivation, or more

refined. The conclusion of continuity does not depend on the size of this K , only that

there was some function dð�Þ that worked for any �.

The Meaning of ‘‘Discontinuous’’

Because of the logical complexity of the continuity definition, it makes sense to for-

malize the meaning of the notion that f ðxÞ is not continuous at x0, that is, f ðxÞ is

discontinuous at a point x0. This idea could be needed for the proof of any statement

of the form:

If property S, then f ðxÞ is continuous at x0.
For example, we could choose to use a contrapositive proof, whereby we would

attempt to prove

If f ðxÞ is discontinuous at x0, then@S,

or a proof by contradiction, whereby we would attempt to prove

If property S and f ðxÞ is discontinuous at x0, then@S.

In other words, for either of these approaches to a proof, a clear understanding is

needed of the meaning of the statement that ‘‘ f ðxÞ is discontinuous at x0.’’
Using the ideas from chapter 1, we temporarily introduce statement notation:

P1 f ðxÞ is continuous at x0;
Qð�Þ1 j f ðxÞ � f ðx0Þj < �;

RðdÞ1 jx� x0j < d:
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Then we have that P is defined by

P , E�bdExðRðdÞ ) Qð�ÞÞ:
The logical development of @P proceeds as follows, recalling that the universal

quantifiers are negations of each other:

@P $@½E�bdExðRðdÞ ) Qð�ÞÞ�
$ b�@ ½bdExðRðdÞ ) Qð�ÞÞ�
$ b�Ed@ ½ExðRðdÞ ) Qð�ÞÞ�
$ b�Edbx@ ðRðdÞ ) Qð�ÞÞ
$ b�EdbxðRðdÞ5@Qð�ÞÞ:

Summarizing, we obtain:

Definition 9.14 f ðxÞ is discontinuous at a point x0 if there is an � > 0 so that for

any d > 0 we can find an x with jx� x0j < d and yet j f ðxÞ � f ðx0Þjb �. More gener-

ally given this �, for any sequence dn ! 0, we can find xn so that jxn � x0j < dn and

j f ðxnÞ � f ðx0Þjb �. So xn ! x0 but f ðxnÞn f ðx0Þ.
As will be seen below, every continuous function has the useful property that it pre-

serves convergence of sequences. To set the stage for this, first recall the �-N defini-

tion of convergence from chapter 5, which is generalized here to functions. To obtain

this generalization, note that if fxng is a sequence, we can define a function

f : N ! R by

f ðnÞ ¼ xn:

Definition 9.15 A sequence fxng converges to x < y as n ! y, denoted xn ! x, if,

given any � > 0, one can find an N A N so that

jxn � xj < � whenever nbN:

Analogously, a function f ðxÞ converges to a limit L < y as x ! y, denoted

limx!y f ðxÞ ¼ L, if, given any � > 0, one can find an N so that

j f ðxÞ � Lj < � whenever xbN:

More generally, a function f ðxÞ converges to a limit L < y as x ! x0 < y, denoted

limx!x0 f ðxÞ ¼ L, if, given any � > 0, one can find a d > 0 so that
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j f ðxÞ � Lj < � whenever jx� x0j < d:

In other words, convergence of a sequence implies that eventually all the terms of

the sequence get arbitrarily close to the limiting value. For convergence of a function

we require that f ðxÞ can be made arbitrarily close to L by choosing x close enough

to x0, or in the case of x0 ¼ y, the definition is adapted to ensure that f ðxÞ can be

made arbitrarily close to L by choosing x large enough.

Remark 9.16 It is important to understand that the notion of a limit of a function in

the definition above is two sided. That is to say, because of the absolute values in the

convergence criterion, the statement limx!x0 f ðxÞ ¼ L means that a limiting value for

f ðxÞ exists whether x ! x0 ‘‘from the right,’’ so that x > x0, or ‘‘from the left,’’ so that

x < x0, and that these limits are equal. ‘‘One-sided’’ limits can also be defined:

Definition 9.17 A function f ðxÞ converges to a limit L < y from the left as

x ! x0 < y, denoted limx!x�
0
f ðxÞ ¼ L, if, given any � > 0, one can find a d > 0 so

that

j f ðxÞ � Lj < � whenever x0 � d < x < x0:

A function f ðxÞ converges to a limit L < y from the right as x ! x0 < y, denoted

limx!xþ
0
f ðxÞ ¼ L, if, given any � > 0, one can find a d > 0 so that

j f ðxÞ � Lj < � whenever x0 < x < x0 þ d:

Notation 9.18 To economize on language, it is common to say that limx!x0 f ðxÞ
exists for all x0 A ½a; b�, as a brief way of stating that limx!x0 f ðxÞ exists for all

x0 A ða; bÞ, and also that limx!aþ f ðxÞ and limx!b� f ðxÞ exist.
Example 9.19 It is instructive to demonstrate by the definitions above that if f ðxÞ ¼
x2

1�x2 , then limx!0 f ðxÞ ¼ 0 and limx!y f ðxÞ ¼ �1.

1. For the limit limx!0 f ðxÞ, we can arbitrarily restrict attention to jxj < 0:1 say,

since we only care about the limit at x ¼ 0. To make x2

1�x2




 


 small for jxj small, note

that

x2

1� x2





 



< 100

99
x2 <

100

99
jxj;

since jxj < 0:1 implies that 1
1�x2 <

100
99 and x2 < x. So to make x2

1�x2




 


< �, we can choose

jxj < dð�Þ1 99
100 �.
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2. For the limit limx!y f ðxÞ, to make x2

1�x2 � ð�1Þ



 


 small for x large, note that

x2

1� x2
þ 1





 



¼ 1

x2 � 1





 



< 1

x
;

since x2 � 1 > x for x > 3, say. So to make x2

1�x2 � ð�1Þ



 


< �, we can choose N1 1

� .

From the definitions above it should also be apparent that the statement: f ðxÞ is
continuous at x0, is equivalent to the statement that limx!x0 f ðxÞ ¼ f ðx0Þ. To say

that f ðxÞ is continuous on ða; bÞ is equivalent to the statement that limx!x0 f ðxÞ ¼
f ðx0Þ for all x0 A ða; bÞ. Finally, the notion of one-sided limits implies that the state-

ment, f ðxÞ is continuous on ½a; b� is equivalent to the statement that limx!x0 f ðxÞ
¼ f ðx0Þ for all x0 A ða; bÞ, and also that limx!aþ f ðxÞ ¼ f ðaÞ, and limx!b� f ðxÞ ¼
f ðbÞ.
This observation provides another simple way to think about functions that are

discontinuous at a point x0.

Definition 9.20 The function f ðxÞ is discontinuous at x0 if either:
1. limx!x0 f ðxÞ does not exist, or
2. limx!x0 f ðxÞ does exist and equals L, but f ðx0Þ0L.

For example, f ðxÞ ¼ 1
x
is discontinuous at x ¼ 0 both because limx!0

1
x
does not

exist, and because f ð0Þ is not defined. On the other hand,

gðxÞ ¼ x; x0 0

1; x ¼ 0

�
is discontinuous at x ¼ 0 not because limx!0 gðxÞ does not exist but because gð0Þ0
limx!0 gðxÞ ¼ 0.

*The Metric Notion of Continuity

Stated as in the definition above, continuity is seen to be a fundamentally ‘‘metric’’

notion. Recall from chapter 3 that jxj is a norm on R that gives rise to a metric or

distance function, defined by

dða; bÞ ¼ ja� bj:
Consequently the definition of continuity explicitly utilizes this notion of distance,

and with this notion it requires that we can make j f ðxÞ � f ðx0Þj as small as we

want by choosing jx� x0j small enough. In other words, for any value of � > 0, one

can find a d > 0 so that dð f ðxÞ; f ðx0ÞÞ < � whenever dðx; x0Þ < d.
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The importance of this observation is that all of the development below for real-

valued functions of a real variable, f ðxÞ, carries over with only a notational change

to functions defined between any two metric spaces. For example, the notion of a

continuous complex-valued function of a complex variable, as well as other examples,

can be framed directly in terms of the respective metrics. We leave this general point

here for now, and continue to develop the theory in the more familiar setting of

Dmnð f ÞHR.

Also more generally, one can develop additional intuition for continuity by intro-

ducing a more geometric interpretation. Recall the open ball constructions from

chapter 4 in (4.1):

BrðxÞ ¼ fy A R j jx� yj < rg:
The definition of continuity can then be restated in two ways, each of which has

apparent application to the more general framework of later chapters and more

advanced mathematical treatments.

Definition 9.21

1. f ðxÞ is continuous at a point x0 if for any value � > 0 one can find a d > 0 so that

f ðBdðx0ÞÞHB�ð f ðx0ÞÞ:
2. f ðxÞ is continuous at a point x0 if for any integer n > 0 one can find an integer

m > 0 so that

f ðB1=mðx0ÞÞHB1=nð f ðx0ÞÞ:

In other words, continuity at x0 means that however small an open ball one con-

structs around f ðx0Þ, one can find an open ball around x0 that gets mapped into it.

Interpreted this way, it is again apparent that the notion of continuity is very gen-

erally applicable to all metric spaces. Below it will be seen to be applicable even be-

yond metric spaces.

Sequential Continuity

Another notion of continuity that is equivalent to that above is the notion of sequen-

tial continuity, which we define next.

Definition 9.22 f ðxÞ is sequentially continuous at x0 if, given any sequence fxng such

that xn ! x0, then f ðxnÞ ! f ðx0Þ. Similarly f ðxÞ is sequentially continuous on an in-

terval if it has this property at every point of the interval.
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Proposition 9.23 f ðxÞ is continuous at x0 if and only if it is sequentially continuous

at x0.

Proof See exercise 28. n

9.2.3 Basic Properties of Continuous Functions

While providing various intuitive frameworks for continuity, none of the preceding

definitions provide an accessible approach to demonstrating that a given function is

continuous in any but the simplest cases. For example, how might one prove that

f ðxÞ ¼ x5 þ x4 þ x3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx6 þ 4Þ

p
þ xðx

2þxÞ is continuous for all x > 0? Certainly the

prospect of determining d for a given � > 0 is not appealing, and determining

the general formula for dð�Þ is even less so.

The following propositions state that the notion of continuity combines well arith-

metically, and in a variety of other ways.

Proposition 9.24 If f ðxÞ and gðxÞ are continuous at x0, then the following are also

continuous at x0:

1. af ðxÞ þ b, for a; b A R
2. f ðxÞ þ gðxÞ
3. f ðxÞ � gðxÞ
4. f ðxÞgðxÞ
5.

f ðxÞ
gðxÞ if gðx0Þ0 0

Proof In each case the objective is to show that if we can make both j f ðxÞ � f ðx0Þj
and jgðxÞ � gðx0Þj arbitrarily small by choosing jx� x0j small, that this property

transfers to the given combinations. Denoting by dð�Þ the value that works for both

f and g given �, which is defined as the smaller of the respective values, we find d 0ð�Þ,
the value that is needed for the given combination.

1. j½af ðxÞ þ b� � ½af ðx0Þ þ b�j ¼ jaj j f ðxÞ � f ðx0Þj, so we can choose d 0ð�Þ ¼ d �
jaj
� 	

.

2. j½ f ðxÞ þ gðxÞ� � ½ f ðx0Þ þ gðx0Þ�ja j f ðxÞ � f ðx0Þj þ jgðxÞ � gðx0Þj by the triangle

inequality, so we choose d 0ð�Þ ¼ d �
2

� �
.

3. This follows from part 1, with a ¼ �1 and b ¼ 0, and then part 2 applied to the

continuous f ðxÞ and �gðxÞ.
4. By the triangle inequality,

j f ðxÞgðxÞ � f ðx0Þgðx0Þj ¼ j½ f ðxÞgðxÞ � f ðx0ÞgðxÞ� þ ½ f ðx0ÞgðxÞ � f ðx0Þgðx0Þ�j
aMj f ðxÞ � f ðx0Þj þ j f ðx0Þj jgðxÞ � gðx0Þj;

430 Chapter 9 Calculus I: Di¤erentiation



where M denotes any upper bound for jgðxÞj on jx� x0j < d. Such an upper bound

must exist; that is, if we are given that jgðxÞ � gðx0Þj < �, then since gðxÞ ¼ gðx0Þ þ
ðgðxÞ � gðx0ÞÞ, we have by the triangle inequality that jgðxÞj < jgðx0Þj þ �. We can

hence choose d 0ð�Þ ¼ min d �
2M

� �
; d �

2j f ðx0Þj
� 	h i

if f ðx0Þ0 0. Otherwise, if f ðx0Þ ¼ 0,

then j f ðxÞgðxÞ � f ðx0Þgðx0ÞjaMj f ðxÞ � f ðx0Þj, and we take d 0ð�Þ ¼ d �
M

� �
.

5. First o¤, since gðx0Þ0 0, and gðxÞ is continuous at x0, for � ¼ gðx0Þ
2 there is a d 00 so

that jgðxÞ � gðx0Þj < gðx0Þ
2 for jx� x0j < d 00. Consequently gðxÞ0 0 for jx� x0j < d 00.

Next

f ðxÞ
gðxÞ �

f ðx0Þ
gðx0Þ





 



¼ f ðxÞgðx0Þ � f ðx0ÞgðxÞ
gðxÞgðx0Þ





 




¼ f ðxÞgðx0Þ � f ðx0Þgðx0Þ þ f ðx0Þgðx0Þ � f ðx0ÞgðxÞ

gðxÞgðx0Þ




 





a
f ðxÞ � f ðx0Þ

gðxÞ




 



þ f ðx0Þ

gðx0Þ
gðx0Þ � gðxÞ

gðxÞ




 





amj f ðxÞ � f ðx0Þj þ cmjgðxÞ � gðx0Þj;

where m is the maximum value of 1
gðxÞ for jx� x0j < d 00 and c ¼ f ðx0Þ

gðx0Þ




 


. We can now

choose d 0ð�Þ ¼ min d �
2m

� �
; d �

2cm

� �
; d 00

� �
. n

Example 9.25 Returning to the question on verification of the continuity of compli-

cated functions, the proposition above provides useful tools. Since f ðxÞ ¼ x is obviously

continuous with dð�Þ ¼ �, it follows that every integer power of x is also continuous,

since these are products of f ðxÞ, as is any polynomial in x, since this equals sums and

scalar multiples of these continuous integer powers of x. Similarly every rational func-

tion, defined as a ratio of polynomials, is continuous everywhere the denominator poly-

nomial is nonzero.

The final building blocks for confirming the continuity of complicated functions fol-

low in a series of propositions below:

1. The first proposition addresses inverses of one-to-one functions, which will imply

that f ðxÞ ¼ x1=n is continuous on xb 0 for all integer n A N, as is f ðxÞ ¼ x�1=n for

x > 0.

2. The second proposition addresses compositions of continuous functions, from which

one derives the continuity of many common functions, for instance, f ðxÞ ¼ xm=n for all

integers m; n0 0, as well as various linear combinations of such functions and ratios of

these combinations with nonzero denominators.
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3. Last, the common exponential functions f ðxÞ ¼ ax for some real number a > 0 re-

quire direct verification of continuity, from which the associated logarithms gðxÞ ¼
loga x will be continuous for x > 0 as these are inverse functions to the exponentials.

Then for irrational exponents q the continuity of f ðxÞ ¼ xq follows for x > 0 by noting

that f ðxÞ ¼ eq ln x, which is a composition of continuous functions.

Proposition 9.26 If f ðxÞ is continuous at x0 and one-to-one in an open interval about

x0, then f �1 is continuous at f ðx0Þ.
Proof Assume that f ðxÞ is continuous at x0 and one-to-one on an open interval I

about x0, and let JH I be the closure of a bounded open subinterval, with x0 A J.

We restrict f to J and show that f �1 is then continuous at f ðx0Þ by a proof by con-

tradiction. If f �1 is discontinuous at f ðx0Þ, then there exists an � 0 > 0 and a sequence

fyngH f ðJÞ so that jyn � f ðx0Þj < 1
n
yet j f �1ðynÞ � f �1ð f ðx0ÞÞj ¼ jxn � x0j > � 0 for

all n. Now, since J is compact and fxngH J, there is an accumulation point x 0 A J

and a subsequence fx 0
ngH fxng so that x 0

n ! x 0. Hence, since jxn � x0j > � 0 for all

n, it follows that jx 0
n � x0j > � 0, and so jx 0 � x0jb � 0. However, jyn � f ðx0Þj ¼

j f ðxnÞ � f ðx0Þj < 1
n
implies that j f ðx 0

nÞ � f ðx0Þj ! 0. But x 0
n ! x 0 and continuity of

f ðxÞ then implies j f ðx 0
nÞ � f ðx 0Þj ! 0 and so f ðx 0Þ ¼ f ðx0Þ. We now have a contra-

diction. Namely jx 0 � x0j > � 0 and f ðx 0Þ ¼ f ðx0Þ contradicts that f is one-to-one. n

The following proposition applies to the composition of any collection of continu-

ous functions, by iteration:

Proposition 9.27 If gðxÞ is continuous at x0, and f ðxÞ is continuous at gðx0Þ, then
f ðgðxÞÞ is continuous at x0.
Proof Given � > 0, the goal is to find dð�Þ so that j f ðgðxÞÞ � f ðgðx0ÞÞj < �

when jx� x0j < dð�Þ. By continuity of f ðxÞ, we conclude for any � < 0 that

j f ðgðxÞÞ � f ðgðx0ÞÞj < � if jgðxÞ � gðx0Þj < d 0ð�Þ, where d 0 denotes the associated

function for f ðxÞ. Next, by the continuity of gðxÞ, we conclude that jgðxÞ � gðx0Þj
< d 0ð�Þ when jx� x0j < d 00ðd 0ð�ÞÞ, where d 00 denotes the associated function for gðxÞ.
Hence we choose dð�Þ ¼ d 00ðd 0ð�ÞÞ. n

Finally, we address the exponential and logarithmic functions.

Proposition 9.28 The function f ðxÞ ¼ ex is continuous for all x A R.

Proof Given x0, e
x � ex0 ¼ ex0 ½ex�x0 � 1� so that ex is continuous at x0 if, for any �,

we can find a d so that ex0 jex�x0 � 1j < � whenever jx� x0j < d. Since ex0 is just a

number, this result will follow if ey is continuous at y ¼ 0. Then for any � 0 we can

find a d 0 so that jey � 1j < � 0 whenever jyj < d 0, and so given �, we define � 0 ¼ �
ex0
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and d ¼ d 0. In summary, if ey is continuous at y ¼ 0, it is continuous everywhere.

Now by section 9.3.3, e > 1, and we have that ey > 1 and e�y < 1 for y > 0. Hence

ex is a monotonically increasing function on R, meaning, if x 0 < x, then ex
0
< ex.

This is because if x ¼ x 0 þ x 00 for some x 00 > 0, then ex ¼ ex
0
ex

00
> ex

0
. Also, since

ðey � 1Þ2 b 0, we derive by expansion that

ey � 1b 1� e�y b 0:

So, if for any � > 0, there is a d so that 0a ey � 1 < � whenever 0a y < d; then also

0 < 1� e�y < �, and hence for jyj < d it follows that jey � 1j < � and the proof of

continuity at y ¼ 0 will be complete. To this end, let � > 0 be given, and consider

the sequence xn ¼ eyn where yn > 0 and yn ! 0 monotonically. Consequently xn > 1

for all n. Also the monotonicity of ex implies that xn is a monotonically decreasing

sequence. It is also bounded from below by 1, and hence it has a unique accumula-

tion point x0. If x0 ¼ 1, we are done. But assume that x0 > 1. Then xn ! x0, and is

monotonically decreasing. Therefore

e ¼ x1=yn
n > x

1=yn
0 ;

but this is a contradiction, since x0 > 1 and yn ! 0 implies x
1=yn
0 ! y. Consequently

x0 ¼ 1. n

Example 9.29 The continuity of ex implies the continuity of its inverse function, ln x

for x > 0, since ex is one-to-one. For a > 0 the function f ðxÞ ¼ ax is then continuous

as a composite function, since ax ¼ ex ln a. Similarly the continuity of loga x follows for

x > 0 and a > 0, since loga x ¼ ln x
ln a , and also of xx ¼ ex ln x for x > 0.

9.2.4 Uniform Continuity

As noted in the preceding section, a formal demonstration of continuity requires an

explicit expression for d as a function of �, d1 dð�Þ. It should also be noted that such

a demonstration can be complicated by the fact that while the value of d in the defi-

nition of continuity apparently depends on �, it can also in general depend on x0, so

d1 dð�; x0Þ.
Example 9.30 The function f ðxÞ ¼ 1=x is continuous throughout its domain:

Dmnð f Þ ¼ fx j x0 0g. However, it is not di‰cult to verify that for a given � and pos-

itive x0, that the associated d is also a function of � and x0:

dð�; x0Þ ¼ �x2
0

1þ �jx0j :
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This is justified for x0 > 0 say, by noting that if jx� x0j < d, with d < x0
2 to keep x > 0;

then

1

x
� 1

x0





 



< d

xx0
<

d

ðx0 � dÞx0 :

To have 1
x
� 1

x0




 


< �, we solve for d producing the formula above. Consequently, for a

given �, d can be arbitrarily large if jx0j is large, yet it must be choosen increasingly

small as jx0j approaches 0. This is, of course, also apparent from the graph of f ðxÞ.
An important notion is that of uniform continuity, whereby it is possible to choose

d to be independent of x0.

Definition 9.31 f ðxÞ is uniformly continuous on an interval if for any value � > 0 one

can find a d > 0 so that for all x and y in the interval, j f ðxÞ � f ðyÞj < � whenever

jx� yj < d. Similarly f ðxÞ is uniformly continuous if it satisfies this property for all x

and y in its domain.

Example 9.32 f ðxÞ ¼ 1=x is uniformly continuous on any closed interval ½a; b� not
containing the origin. This is easily demonstrated using example 9.30 in that one

chooses d to equal the minimum value of dðx0Þ for x0 in the interval, which is appar-

ently the value of dðxÞ at the endpoint of the interval closest to 0.

This example is generalized below. But note that the idea of uniform continuity is

that for any � > 0 the associated d in the definition of continuity, which in general is

a function of both x and �, dðx; �Þ, satisfies dðx; �Þ > dð�Þ > 0 for all x for some other

function, dð�Þ. So what keeps a continuous function from being uniformly continuous

is that for a given �, the dðx; �Þ values get arbitrarily close to 0 as x varies. This was

seen in example 9.30, where f ðxÞ ¼ 1=x.

We return to this point after the next result. Its proof relies on a simple but impor-

tant property of closed and bounded intervals which we have encountered before in

chapter 4 in proposition 4.17. We prove this simpler version directly.

Proposition 9.33 If frjg is a bounded infinite sequence of reals frjgH ½a; b�, then there

is a subsequence fr 0jg and a point r A ½a; b� so that r 0j ! r as j ! y.

Proof Divide the interval into halves: a; aþb
2

� �
and aþb

2 ; b
� �

. Then one or both of

these subintervals contains an infinite subsequence of frjg, and we choose that sub-

interval if unique, or an arbitrary subinterval otherwise. We also choose r 01 to be any

point in the choosen interval. We then divide that subinterval in half, and once again

observe that one or both of the new subintervals contains an infinite subsequence. So
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we choose one, as well as r 02 in that subinterval. Continuing in this manner, we obtain

a sequence of nested intervals of length aþb
2 j , each of which contains one member of

the desired sequence fr 0jg. It is clear that the intersection of all choosen subintervals is

a single point r, since, if it contained more than one point, it would also contain the

interval spanning the two points, in contradiction to the fact that the lengths of these

subintervals converge to 0 by the halving property of the construction. Finally, by

construction jr 0j � rj < aþb
2 j , so r 0n ! r as required. n

By the Heine–Borel theorem, the closed and bounded interval ½a; b� is compact.

This result is then a special case of the general chapter 4 result noted above that if a

compact set K contains an infinite sequence frjg, then there is a subsequence fr 0jg and

a point r A K so that r 0j ! r as j ! y. However, this proof was supplied rather than

simply quoting the proposition 4.17 result because in this application, as in many, the

construction in the special case is revealing and too simple to avoid.

Note that this proposition addresses the existence of such a point r, and it cannot

be improved to assert the uniqueness of this point. Indeed it is possible that in every

subinterval of the construction above there is an infinite subsequence of the original

sequence frjg.
Example 9.34 Let frjg denote an arbitrary enumeration of the rational numbers in

½a; b�. Then the construction above shows that for every real number r A ½a; b� there is

a subsequence fr 0jgH ½a; b� so that r 0j ! r as j ! y. One simply chooses, at each step,

the subinterval that contains the given point, r.

Proposition 9.35 (Version 1) If f ðxÞ is continuous on a closed and bounded interval

½a; b�, then it is uniformly continuous on this interval.

Proof Assume that � > 0 is given. For each number r A ½a; b�, let dðrÞ1 dðr; �Þ de-

note the associated delta for this �. We claim that fdðrÞg is bounded away from 0,

and that we can take d in the definition of uniform continuity to be equal to any non-

zero lower bound for this collection. To show this boundedness, assume that it is not,

and a contradiction will be revealed. That is, assume that there is a sequence of real

numbers rj with dðrjÞ ! 0. Then for each positive integer k there is an associated rk
and xk so that j f ðrkÞ � f ðxkÞjb � and jrk � xkj < 1

k
. If such points did not exist for

kbK , say, then f ðxÞ would be uniformly continuous with d ¼ 1
K
. Now we demon-

strate a contradiction to the continuity of f ðxÞ. The sequences frkg and fxkg have

subsequences that converge by the proposition above, and must converge to the

same point in ½a; b�, since jrk � xkj < 1
k
. But since j f ðrkÞ � f ðxkÞjb �, we cannot

have f f ðrkÞg and f f ðxkÞg convergent to the same point, contradicting the sequential
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continuity, and hence continuity of f ðxÞ. Hence fdðrÞg is bounded away from 0 and

the proof is complete. n

From the comments above on compactness, one would have to think that this

result is somehow related to the compactness of the interval ½a; b�, and that on this

basis the result will generalize. Recall that by compactness is meant that every collec-

tion of open intervals that cover ½a; b� contains a finite subcover, which is to say, a

finite subcollection that also covers this interval. We demonstrate this general case

with an alternative proof.

Proposition 9.36 (Version 2) If f ðxÞ is continuous on a compact set, KHR, then it is

uniformly continuous on K.

Proof Assume that � > 0 is given. For each number r A K , let dðrÞ denote the

associated delta for �
2 . Next consider the interval defined by dðrÞ for a given r:

Ir ¼ r 0 j jr� r 0j < dðrÞ
2

n o
. The reason for this sleight of hand of dividing � by 2 will

be apparent in a moment. Now consider fIrg for all r A K . Clearly, this is an

open cover for K , which due to compactness, has a finite subcover, fIrjgnj¼1.

Define dð�Þ ¼ 1
2 minfdðrjÞg and let r 0; r 00 A K with jr 0 � r 00j < dð�Þ. Then, since r 0 A Irj

for some j, jr 0 � rjj < dðrjÞ
2 , and so j f ðr 0Þ � f ðrjÞj < �

2 . Also, by the triangle in-

equality,

jr 00 � rjja jr 00 � r 0j þ jr 0 � rjj

< dð�Þ þ dðrjÞ
2

a dðrjÞ;

and hence j f ðrjÞ � f ðr 00Þj < �
2 . Finally, by another application of the triangle

inequality,

j f ðr 0Þ � f ðr 00Þja j f ðr 0Þ � f ðrjÞj þ j f ðrjÞ � f ðr 00Þj
< �: n

Remark 9.37 A few comments are in order:

1. There are basically two approaches to the kind of proof just given:

� Reverse engineer all the intermediate steps so that one gets the desired conclusion that

j f ðr 0Þ � f ðr 00Þj < � in the last line of the proof. This is the approach used above. It fits

right into the definition that ‘‘for any � > 0 one can find a d so that . . . .’’ The advantage
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is that the continuity definition is produced verbatim; the disadvantage, which the

reader undoubtedly encountered, is the temporary mystery associated with the 1
2 factors,

which in other proofs may be 1
3 ,

1
4 , and so forth.

� Ignore the reverse engineering and ultimately derive something like j f ðr 0Þ � f ðr 00Þj <
4�. Then we prove a statement like ‘‘given � > 0 there is a d so that if jr 0 � r 00j < d, then

j f ðr 0Þ � f ðr 00Þj < 4�.’’ Of course, this is logically equivalent to the original idea, but

some find the presence of the 4 in the conclusion to be aesthetically unpleasant.

The present author alternates between these approaches, and generally prefers the sec-

ond approach in personal research, and the first approach in communications. However,

the reverse engineering required to produce a clean conclusion can at times add unjusti-

fiable complexity to the derivation, and so will sometimes be abandoned.

2. One can easily imagine going through the proof above almost verbatim if K is a

compact subset of any metric space ðX ; dÞ and f ðxÞ is a continuous function from X

to R, or from X to another metric space ðY ; d 0Þ. See exercises 5 and 30.

9.2.5 Other Properties of Continuous Functions

A few other fundamental results on continuous functions are addressed next. The

first is simple but powerful. Namely the sign of a continuous function at a point

must be preserved in some open interval about that point.

Proposition 9.38 If f ðxÞ is continuous at x0, and f ðx0Þ0 0, then there is an interval

about x0, say I ¼ ðx0 � a; x0 þ aÞ for some a > 0, so that

f ðx0Þ > 0 ) f ðxÞ > 0 for all x A I ;

f ðx0Þ < 0 ) f ðxÞ < 0 for all x A I :

Proof We demonstrate the result for f ðx0Þ > 0. By continuity, for � ¼ 1
2 f ðx0Þ say,

there is a d so that

j f ðxÞ � f ðx0Þj < 1

2
f ðx0Þ when jx� x0j < d:

If this inequality is rewritten without the absolute values, it implies that

1

2
f ðx0Þ < f ðxÞ < 3

2
f ðx0Þ for x0 � d < x < x0 þ d;

and this completes the proof with a ¼ d. n
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The next result is that a continuous function is bounded on a compact interval, but

far more important, such a function actually achieves these bounds at points within

the interval.

Proposition 9.39 If f ðxÞ is continuous on a closed and bounded (i.e., compact) inter-

val ½a; b�, then f ðxÞ attains its maximum and minimum values within this interval. That

is, there are points xmin; xmax A ½a; b�, so that for all x A ½a; b�,

f ðxminÞa f ðxÞa f ðxmaxÞ:
Proof Because f ðxÞ is uniformly continuous on ½a; b�, it must be bounded from

above and below. Indeed, for an arbitrary value of �, there is an associated d so that

j f ðxÞ � f ðyÞj < � whenever jx� yj < d. This implies that the range of f ðxÞ must be

contained in an interval of length N�, where integer N >
ðb�aÞ

d
, since we can then

cover ½a; b� with N intervals of length d. Now, because f ðxÞ is bounded, there must

be a greatest lower bound, and least upper bound, which we denote by L and U . By

definition, we can construct two sequences fxL
n g and fxU

n g, both in ½a; b� and so that

f ðxL
n Þ ! L, and f ðxU

n Þ ! U . By the proposition above, these sequences must each

have subsequences that converge to points in ½a; b�, xL
n ! xmin and xU

n ! xmax, and

by the continuity of f ðxÞ, this convergence is preserved by f so that f ðxL
n Þ !

f ðxminÞ and f ðxU
n Þ ! f ðxmaxÞ. Hence, again by continuity, L ¼ f ðxminÞ and U ¼

f ðxmaxÞ. n

Remark 9.40 Note that the idea of a maximum or minimum in mathematics is di¤er-

ent from what one may understand of these terms informally. Outside mathematics, the

notion of a maximum is one of biggest, while the notion of a minimum is one of small-

est. In mathematics, the term maximum simply means that there is no value of x with

f ðxÞ > f ðxmaxÞ; it does not preclude the possibility that there are many values of x

with f ðxÞ ¼ f ðxmaxÞ, and likewise for the term minimum. While in the real world,

such an interpretation is not excluded by the language, it tends to be excluded in prac-

tice. For example, the statement, ‘‘I got the maximum grade in my class on the math

final’’ would generally not be expected to include the possibility that everyone got the

same grade. In mathematics the possibility that f ðxÞ ¼ f ðxmaxÞ for all x is explicitly

allowed and encompassed by the notion that ‘‘ f ðxÞ attains its maximum at x0.’’

The final result reinforces the intuitive notion that the graph of a continuous func-

tion must be drawn without the pencil leaving the paper, or in updated imagery, on

your computer without your finger leaving the mouse button. In other words, with

no holes or gaps in the graph.
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Proposition 9.41 (Intermediate Value Theorem) If f ðxÞ is continuous on a closed and

bounded (i.e., compact) interval ½a; b�, then f ðxÞ attains every value between its maxi-

mum and minimum values. That is, for any point y so that f ðxminÞa ya f ðxmaxÞ,
there is a point c A ½a; b� with
f ðcÞ ¼ y: ð9:1Þ
Proof Let y be given. We define A ¼ fx A ½a; b� j f ðxÞa yg. Let xA denote the least

upper bound of the set A, and let fxngHA be a sequence so that xn ! xA. Then, by

continuity, f ðxnÞ ! f ðxAÞa y. Because xA is a least upper bound for A, it must

also be the case that there is sequence fx 0
ngH ~AA1 fx j f ðxÞb yg with x 0

n ! xA. By

continuity, we have that f ðx 0
nÞ ! f ðxAÞ, and hence that f ðxAÞb y. Combining, we

see that f ðxAÞ ¼ y, and the conclusion follows. n

While the notion of continuity assures us what the value of f ðx0Þ will be based on

values of f ðxÞ for x ‘‘near’’ x0, it provides no insight as to how quickly the value of

f ðxÞ approaches this value. The notions of Lipschitz and Hölder continuity address

this question next.

9.2.6 Hölder and Lipschitz Continuity

Definition 9.42 f ðxÞ is Hölder continuous at a given point x0 of order a > 0 if there is

a constant C1Cðx0Þ so that

j f ðxÞ � f ðx0ÞjaCjx� x0ja: ð9:2Þ
More generally, we say that f ðxÞ is Hölder continuous of order a > 0 on an interval or

simply Hölder continuous of order a > 0, if it is Hölder continuous at every point of the

interval or of its domain. In the special case when a ¼ 1, f ðxÞ is called Lipschitz con-

tinuous instead of Hölder continuous of order 1.

Notation 9.43 To simplify terminology, the statement that ‘‘f ðxÞ is Hölder continuous

of order a > 0’’ will be be intended to include the a ¼ 1 Lipschitz case.

Lipschitz continuity is named for Rudolf Lipschitz (1832–1903), and Hölder conti-

nuity is named for Otto Hölder (1859–1937). In practice, one only considers Hölder

continuity of order aa 1, since the only functions that can be continuous of higher

order, except at isolated points, are the constant functions: f ðxÞ ¼ c. The demonstra-

tion of this follows in the next section in two steps:

1. Once derivatives are defined and studied, we will see that such a function has a

derivative that is identically 0 everywhere.
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2. With the help of the mean value theorem, we will then see that the only continu-

ous functions with an identically 0 derivative are the constant functions.

These notions of continuity can also be thought of as providing an explicit func-

tional relationship between the � and d in the definition of continuity. Specifically, a

Hölder continuous function can be defined as a continuous function for which given

� one can choose dð�Þ by

dð�Þ ¼ �

C

� �1=a
:

Knowing that a function is Hölder continuous is valuable, since this knowledge

provides an explicit estimate of exactly how fast f ðxÞ converges to f ðx0Þ in terms of

the distance between x and x0. For instance, a Lipschitz continuous function con-

verges with speed jDxj1 jx� x0j, whereas a Hölder continuous function of order
1
2 converges with speed

ffiffiffiffiffiffiffiffiffijDxjp
. In general, this speed of convergence implies an ap-

proximation formula:

f ðx0Þ � Cjx� x0ja a f ðxÞa f ðx0Þ þ Cjx� x0ja: ð9:3Þ
This notion of speed of convergence is formalized in mathematics in terms of ‘‘Big

O’’ and ‘‘Little o’’ notation as follows.

Big O and Little o Convergence

Definition 9.44 A function f ðxÞ is Big O of gðxÞ as x ! a, denoted

f ðxÞ ¼ OðgðxÞÞ as x ! a;

if there is a C0 0 and d > 0 so that

j f ðxÞj
jgðxÞj aC for jx� aj < d:

Similarly a function f ðxÞ is Little o of gðxÞ as x ! a, denoted

f ðxÞ ¼ oðgðxÞÞ as x ! a;

if

j f ðxÞj
jgðxÞj ! 0 as x ! a:
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Remark 9.45 In most applications in this book, we will be interested in expressing

jDf j1 j f ðxþ DxÞ � f ðxÞj in terms of gðxÞ ¼ jDxja. The common language we use is,

‘‘Df is Big O of order a’’ or ‘‘Little o of order a.’’ Also of interest in this context is

Oð1Þ, which means j f ðxÞjaC as x ! a, and especially oð1Þ, which means f ðxÞ ! 0

as x ! a.

Example 9.46 If f ðxÞ is Hölder continuous at x of order a, then

jDf j ¼ OðjDxjaÞ;
where Df 1 f ðxþ DxÞ � f ðxÞ, but if f ðxÞ is simply continuous at x, then

jDf j ¼ oð1Þ
as Dx ! 0.

Because the definition of continuity can be informally summarized by

jDf j ! 0 as jDxj ! 0;

it is tempting to think that every continuous function must be Hölder continuous of

some order a, perhaps a value of a quite close to 0, In other words:

Question: If jDf j ! 0, as jDxj ! 0, must it be the case that jDf j ¼ OðjDxjaÞ for

some a > 0?

Answer: ‘‘No.’’ A continuous function’s speed of convergence can be slower than

Hölder at any order.

Example 9.47 Consider:

f ðxÞ ¼
1

lnjxj ; x0 0,

0; x ¼ 0.

(

First o¤, this function is continuous at x ¼ 0, as can be seen by considering xn ¼ e�n,

for example, and evaluating f ðxÞ. But it is not Hölder continuous of any order. This

is demonstrated by considering xn ¼ e�n=a for an arbitrary value of a > 0. Then since

f ðxnÞ ¼ � a
n
, and xa

n ¼ e�n, if f ðxÞ was Hölder continuous of order a, then there would

exist C > 0 so that

j f ðxnÞjaCjxa
n j as n ! y;

which in turn implies that
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aaCne�n as n ! y:

But since ne�n ! 0, no such a > 0 can exist.

It is also tempting to think that because Little o convergence is faster than Big O

convergence, it must be the case that Little o implies Big O convergence at a higher

order. In other words:

Question: If jDf j ¼ oðjDxjaÞ, must jDf j ¼ OðjDxjaþ�Þ for some � > 0?

Answer: ‘‘No.’’ While oðjDxjaÞ is faster than OðjDxjaÞ, it can be slower than

OðjDxjaþ�Þ for any � > 0.

Example 9.48 Take gðxÞ ¼ xaf ðxÞ, with f ðxÞ defined in example 9.27 above. Then

the same analysis shows that at x ¼ 0, jDgj ¼ oðjDxjaÞ, but that we do not have

jDgj ¼ OðjDxjaþ�Þ for any � > 0.

9.2.7 Convergence of a Sequence of Continuous Functions

There is another important notion related to continuity which we introduce with the

following question:

Question: If fnðxÞ is a sequence of continuous functions, and there is a function

f ðxÞ so that for every x, fnðxÞ ! f ðxÞ as n ! y, must f ðxÞ be continuous?
Answer: In general, the answer is no, and this conclusion is easy to exemplify.

Example 9.49 Define

f ðxÞ ¼ 1; xa 0;

0; x > 0;

�
and

fnðxÞ ¼
1; xa 0,

1� nx; 0 < xa 1
n
,

0; x > 1
n
.

8><>: ð9:4Þ

It is clear that fnðxÞ is continuous for all n, and that f ðxÞ is not continuous at x ¼ 0.

Also, for every x, fnðxÞ ! f ðxÞ as n ! y. To understand why f ðxÞ n f ð0Þ ¼ 1 as

x ! 0, we expand for any given n,

f ðxÞ � f ð0Þ ¼ ½ f ðxÞ � fnðxÞ� þ ½ fnðxÞ � fnð0Þ� þ ½ fnð0Þ � f ð0Þ�:
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As x ! 0, only the first term in brackets requires analysis, since by continuity of each

fnðxÞ, the second term goes to 0 for any n and the third term is identically 0. Now note

that

f ðxÞ � fnðxÞ ¼
0; xa 0;

nx� 1; 0 < xa 1
n
,

0; x > 1
n
.

8><>:
In other words, although fnðxÞ ! f ðxÞ for each x as n ! y, it does so increasingly

slowly as x ! 0. That is, for any x > 0 we have fnðxÞ ! f ðxÞ because fnðxÞ ¼ f ðxÞ
¼ 0 for n > 1

x
. But for 0 < xa 1

n
we have

f ðxÞ � f ð0Þ ¼ ½ f ðxÞ � fnðxÞ� � nx

¼ �1:

The following definition introduces an important notion of convergence that proves

to give the a‰rmative conclusion to the question above. It will be seen that this def-

inition eliminates the problem observed in this example, whereby the speed of con-

vergence varies greatly with n.

Definition 9.50 A function sequence fnðxÞ is said to converge pointwise to f ðxÞ on an

interval I if for every x A I , fnðxÞ ! f ðxÞ as n ! y. That is, for any � > 0 there is an

integer N ¼ NðxÞ so that j fnðxÞ � f ðxÞj < � for n > NðxÞ. Pointwise convergence on

an arbitrary set KHR is defined similarly. A function sequence fnðxÞ is said to con-

verge uniformly to f ðxÞ on an interval I if for any � > 0 there is an integer N, indepen-

dent of x, so that for x A I: j fnðxÞ � f ðxÞj < � for n > N. Uniform convergence on an

arbitrary set K HR is defined similarly.

It should be clear from the definition that uniform convergence implies pointwise

convergence. Also example 9.49 provides an illustration that this implication cannot

be reversed in general. In that example fnðxÞ ! f ðxÞ pointwise for every x A R, but

this convergence is not uniform. For example, with � ¼ 1
2 , since j fnðxÞ � f ðxÞj ¼

1� nx for 0 < xa 1
n
, we have that for any n, j fnðxÞ � f ðxÞj > 1

2 for 0 < xa 1
2n . In

other words, we cannot have j fnðxÞ � f ðxÞj < � for all n and all jxj < d independent

of how small a value of d is chosen since for any n with 1
2n < d, the calculations above

show that j fnðxÞ � f ðxÞj > 1
2 for 0 < x < 1

2n .

The next result demonstrates that unlike what was seen to be the case for pointwise

convergence, uniform convergence preserves continuity.
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Proposition 9.51 If fnðxÞ is a sequence of continuous functions that converge uni-

formly to f ðxÞ on an interval I , then f ðxÞ is continuous on I.

Remark 9.52 Note that by the proposition 9.33, if I is a closed and bounded (i.e.,

compact) interval, ½a; b�, then each fnðxÞ is in fact uniformly continuous on ½a; b�, and
the same will be true for f ðxÞ once it is shown to be continuous.

Proof Let x0 A ½a; b� and � > 0 be given. To prove that f ðxÞ is continuous at x0, we
show that there exists d so that j f ðxÞ � f ðx0Þj < � when jx� x0j < d. To this end, let

N be given as in the definition of uniform continuity to ensure that j fnðxÞ � f ðxÞj < �
3

for all x provided that n > N. For any such n, let d be the value associated with fnðxÞ
to ensure that j fnðxÞ � f ðx0Þj < �

3 for jx� x0j < d. We write

f ðxÞ � f ðx0Þ ¼ ½ f ðxÞ � fnðxÞ� þ ½ fnðxÞ � fnðx0Þ� þ ½ fnðx0Þ � f ðx0Þ�;
and by the triangle inequality, for jx� x0j < d, we have

j f ðxÞ � f ðx0Þja j f ðxÞ � fnðxÞj þ j fnðxÞ � fnðx0Þj þ j fnðx0Þ � f ðx0Þj

<
�

3
þ �

3
þ �

3
¼ �: n

Remark 9.53 The term ‘‘uniform’’ in the context of convergence is conceptually iden-

tical to the use of that term in the context of continuity.

1. For continuity, the general requirement is the existence of a d for every �, but in gen-

eral, this d can depend on both � and the point x. What is required for uniform continu-

ity is that d may depend on � but not the point x.

2. For pointwise convergence, the general requirement is the existence of an N for

every �, but again this N can depend on both � and the point x. What is required for

uniform convergence is that N may depend on � but not the point x.

The notion of ‘‘uniformity’’ in both contexts removes the dependency on x.

The property of uniform convergence can also be stated in terms of the

Cauchy criterion, as was the case for convergence of numerical sequences in chap-

ter 5.

Proposition 9.54 A function sequence fnðxÞ converges uniformly to a function f ðxÞ
on KHR if and only if for any � > 0 there is an integer N so that if n;m > N, then

j fnðxÞ � fmðxÞj < � for all x A K.
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Proof If fnðxÞ converges uniformly to f ðxÞ, then for � > 0 there is an integer N so

that j fnðxÞ � f ðxÞj < �
2 for all x provided that n > N. Now if n;m > N, we have by

the triangle inequality,

j fnðxÞ � fmðxÞja j fnðxÞ � f ðxÞj þ j f ðxÞ � fmðxÞj
< �;

which is the Cauchy criterion. Conversely, given the Cauchy criterion, the numerical

sequence fnðxÞ is a Cauchy sequence by chapter 4 for every x, and hence it converges

to some number for every x, which we denote by f ðxÞ. Now given � > 0, the Cauchy

criterion states that for all x, j fnðxÞ � fmðxÞj < � if n;m > N. Letting m ! y, we

conclude that for all x, j fnðxÞ � f ðxÞj < � if n > N, and so fnðxÞ ! f ðxÞ uniformly.

n

*Series of Functions

An important corollary to proposition 9.51 above relates to series of functions,Py
j¼1 gjðxÞ. First a definition.

Definition 9.55 Given a sequence of functions gjðxÞ defined on a common interval I ,

and a function gðxÞ also defined on I , the function series
Py

j¼1 gjðxÞ is said to converge

pointwise to gðxÞ if with fnðxÞ1
Pn

j¼1 gjðxÞ for any � > 0 there is an integer

N ¼ NðxÞ so that j fnðxÞ � gðxÞj < � for n > NðxÞ. A function series
Py

j¼1 gjðxÞ is

said to converge uniformly to gðxÞ on an interval JH I if for any � > 0 there is an

integer N, independent of x, so that for x A J: j fnðxÞ � gðxÞj < � for n > N. Pointwise

and uniform convergence of a series of functions on an arbitrary set K HR are defined

analogously.

There is an immediate application of proposition 9.51 to series of continuous func-

tions that converge uniformly.

Proposition 9.56 If gjðxÞ is a sequence of continuous functions defined on an interval

I , and
Py

j¼1 gjðxÞ converges uniformly to a function gðxÞ, then gðxÞ is continuous on I.

Proof Define the function sequence fnðxÞ1
Pn

j¼1 gjðxÞ. Then each fnðxÞ is con-

tinuous on I , as a finite sum of continuous functions, and fnðxÞ ! gðxÞ uniformly

by assumption. Consequently the continuity of gðxÞ follows from proposition 9.51

above. n

*Interchanging Limits

There is another important consequence to proposition 9.51 that is useful in practice

and relates to interchanging the order of limits. This is a manipulation that is always
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dangerous in mathematics and one that needs to be approached with caution. Specif-

ically, the question here is:

Question: If fnðxÞ ! f ðxÞ for each x as n ! y, when is

lim
x!y

lim
n!y

fnðxÞ ¼ lim
n!y

lim
x!y

fnðxÞ?

Partial Answer: The functions in (9.4) of example 9.49 show that pointwise conver-

gence fnðxÞ ! f ðxÞ is not enough to allow this interchange.

Example 9.57 With y ¼ 0 in example 9.49, we have that limn!y limx!0 fnðxÞ ¼ 1,

while limx!0 limn!y fnðxÞ ¼ limx!0 f ðxÞ is not even defined, since this limit is 0 if

approached from the right and 1 if approached from the left. In the notation introduced

in definition 9.17, limx!0þ f ðxÞ ¼ 0, and limx!0� f ðxÞ ¼ 1. So it appears that this ex-

ample fails because f ðxÞ is not continuous at y.
The a‰rmative result for interchanging limits is again provided by uniform con-

vergence. We provide a simple result first that is often adequate in practice, and a

more general result in proposition 9.59. In section 9.4 on convergence of a sequence

of derivatives we will return to this question. The simple result follows immediately

from the proposition above.

Proposition 9.58 If fnðxÞ is a sequence of continuous functions that converge uni-

formly to f ðxÞ on a closed and bounded (i.e., compact) interval ½a; b�, then for any

y A ½a; b�,
lim
x!y

lim
n!y

fnðxÞ ¼ lim
n!y

lim
x!y

fnðxÞ: ð9:5Þ

Proof This result is immediate from proposition 9.51 by the restatement of

(9.5) which is justified by the sequential convergence and continuity assumptions,

as:

lim
x!y

f ðxÞ ¼ lim
n!y

fnðyÞ:

Since f ðxÞ is continuous on ½a; b�, limx!y f ðxÞ ¼ f ðyÞ. Also, since y A ½a; b�, we have
limn!y fnðyÞ ¼ f ðyÞ. n

Surprisingly, it turns out that the property of uniform convergence is so strong that

it allows the interchange of limits even when the point y is outside the interval of uni-

form convergence as long as it is a limit point of this interval, and limx!y fnðxÞ exists
for all n.
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Proposition 9.59 Let fnðxÞ be a sequence of continuous functions that converge uni-

formly to f ðxÞ on an interval I , and let y A I , the closure of I . If limx!y fnðxÞ exists
for all n, then (9.5) holds.

Proof Since this limit is assumed to exist, we define fnðyÞ1 limx!y fnðxÞ. Of course,

if y A I , then this definition reproduces the original value of fnðyÞ by continuity but

otherwise extends the domain and range of fnðxÞ when y A I @ I . By the Cauchy cri-

terion for uniform convergence, we conclude that for any � > 0 there is an N so that

for all x A I ,

j fnðxÞ � fmðxÞj < �; n;m > N:

Also the assumption that limx!y fnðxÞ exists for all n justifies letting x ! y in this

inequality and yields that

j fnðyÞ � fmðyÞja �; n;m > N:

So fnðyÞ is a Cauchy numerical sequence as n ! y, and hence converges to a

number by chapter 5, which is labeled f ðyÞ. Note that by construction, f ðyÞ ¼
limn!y limx!y fnðxÞ. The goal is to now show that f ðyÞ ¼ limx!y limn!y fnðxÞ ¼
limx!y f ðxÞ. To do this, note that for x A I , by the triangle inequality,

j f ðxÞ � f ðyÞja j f ðxÞ � fnðxÞj þ j fnðxÞ � fnðyÞj þ j fnðyÞ � f ðyÞj:
This summation can be made small for n large enough, since for � > 0 given above

and the various definitions of convergence:

1. fnðxÞ ! f ðxÞ uniformly for x A I , means there is an N1 so that j f ðxÞ � fnðxÞj < �

for all x for n > N1.

2. fnðyÞ ! f ðyÞ, means there is an N2 so that j fnðyÞ � f ðyÞj < � for n > N2.

3. fnðxÞ ! fnðyÞ for any n, means there is dn so that jx� yj < dn implies that

j fnðxÞ � fnðyÞj < �.

Combining, we conclude that for N 0 ¼ maxðN1;N2Þ, and jx� yj < dN 0 that

j f ðxÞ � f ðyÞj < 3�:

In other words, f ðyÞ ¼ limx!y f ðxÞ. n

Remark 9.60 In the example of I ¼ ða; bÞ, the proposition 9.59 result states that if

limx!a fnðxÞ1 fnðaÞ exists for all n, then uniform convergence on I gives more infor-

mation about what happens at a. This result assures that it must be the case that:
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1. limn!y fnðaÞ exists,
2. limx!a f ðxÞ exists, and
3. limn!y fnðaÞ ¼ limx!a f ðxÞ.
*9.2.8 Continuity and Topology

In addition to the interpretation that the continuity of a function implies metric

properties—that f ðxÞ can be made arbitrarily close to f ðx0Þ by choosing x close to

x0—continuity also has topological implications. That is, continuous functions have

predictable behaviors on open, closed, connected, and compact sets.

Remark 9.61 In the statement and proof below, recall that f �1ðAÞ, the pre-image of a

set A under f , is defined even if f is not one-to-one, which is to say, even when f �1 is

not defined as a function. Specifically, f �1ðAÞ ¼ fx j f ðxÞ A Ag.
Proposition 9.62 If f ðxÞ is a continuous function, f : R ! R, then:

1. f �1ðGÞ is open for every open set GHR

2. f �1ðF Þ is closed for every closed set F HR
3. f ðCÞ is connected for every connected set CHR
4. f ðKÞ is compact for every compact set K HR

Proof

1. Given GHR open, to show that f �1ðGÞ is open is to show that for any

x0 A f �1ðGÞ, there is an open ball about x0, Brðx0Þ, with Brðx0ÞH f �1ðGÞ. Now

since G is open, there is a ball about f ðx0Þ contained in G. That is, for some � > 0

we have B�ð f ðx0ÞÞHG. Given �, by the continuity of f there is a d > 0 so that

jx� x0j < d implies that j f ðxÞ � f ðx0Þj < �. That is, f ðBdðx0ÞÞHB�ð f ðx0ÞÞ. Conse-
quently Bdðx0ÞH f �1ðGÞ, and hence f �1ðGÞ is open.
2. Given F HR closed, the complement of F : ~FF 1R@F , is open, so by 1, f �1ð ~FF Þ
is also open. Consequently gf �1ð ~FFÞf �1ð ~FFÞ is closed. The final step is to show that gf �1ð ~FFÞf �1ð ~FFÞ ¼
f �1ðF Þ. The proof of the equivalent statement that f �1ð ~FF Þ ¼ gf �1ðFÞf �1ðFÞ, for an arbi-

trary set F , is left as exercise 31.

3. We argue by contradiction. Suppose that CHR is connected but that f ðCÞ is

not. Then there are open sets G1 and G2 so that f ðCÞHG1 UG2 yet G1 VG2 ¼ j.
Now, by definition, CH f �1ðG1 UG2Þ, but also f �1ðG1 UG2Þ ¼ f �1ðG1ÞU f �1ðG2Þ
as is easily demonstrated. However, G1 VG2 ¼ j, implies that f �1ðG1ÞV f �1ðG2Þ ¼
j, and by part 1, both f �1ðG1Þ and f �1ðG2Þ are open, contradicting the assumption

that C is connected.
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4. Assume that K HR is compact, and let fGag be an open cover of f ðKÞ. That is,
f ðKÞH6Ga. We need to show that there is a finite subcollection fGjgnj¼1 H fGag
so that f ðKÞH6n

j¼1
Gj. Now by part 1, f f �1ðGaÞg is an open cover of K , and since

K is compact, there is a finite subcover KH6n

j¼1
f �1ðGjÞ. Hence f ðKÞH6n

j¼1
Gj,

demonstrating that f ðKÞ is compact. n

Remark 9.63 Note that parts 1 and 2 in this proposition can be stated in terms of ‘‘if

and only if,’’ and not just as an implication. In other words, a function is continuous if

and only if f �1ðGÞ is open for every open set G, or equivalently f �1ðF Þ is closed for

every closed set F . For example, if f �1ðGÞ is open for every open set G, then for

f ðx0Þ A G there is an open ball B�ð f ðx0ÞÞHG, and by assumption, f �1ðB�ð f ðx0ÞÞÞ is
an open set that contains x0. So, by definition, there is an open ball Bdðx0ÞH
f �1ðB�ð f ðx0ÞÞÞ, which means that f ðBdðx0ÞÞHB�ð f ðx0ÞÞ, and these are the e and d

needed for the definition of continuity.

The importance of this observation is that it motivates the definition of continuous

function on, or between, general topological spaces.

Definition 9.64 If f : X ! Y is a function defined on a topological space X, and tak-

ing values in a topological space Y, then we define f to be continuous if f �1ðGÞ is open
in X for all G open in Y.

The proposition 9.62 result on preserving openness is explicitly related to the in-

verse of a continuous function, as it is not true in general that a continuous function

itself will preserve openness. As an example of G open but f ðGÞ closed:
Example 9.65 Consider the function: f ðxÞ ¼ x2ðx2 � 2Þ in figure 9.3. It is clear from

the graph that f ðGÞ need not be open when G is open. For instance, if G ¼ ð�a; aÞ for
any 1 < aa

ffiffiffi
2

p
, then f ðGÞ ¼ ½�1; 0�.

It is also the case that in general, F closed does not imply that f ðF Þ is closed.

However, from part 4 of the proposition above, such an example would have to be

one for which the set F is closed and unbounded. This is because if F is closed and

bounded it is compact by the Heine–Borel theorem, and hence so too is f ðF Þ by part

4. But in a metric space, compact means closed and bounded, and so f ðF Þ must then

also be closed and bounded.

Example 9.66 The classic example of F closed and unbounded and f ðF Þ not closed is

F ¼ f�np j n ¼ 0; 1; 2; 3; . . .g and the continuous function f ðxÞ ¼ ex cos x. Of course,

since the complement of F is the union of open intervals, F is clearly closed. However,

f ðF Þ is seen to equal fð�1Þne�np j n ¼ 0; 1; 2; 3; . . .g, since cosð�npÞ ¼ ð�1Þn. The set
f ðF Þ is not closed because a closed set must contain all of its limit points. However,

x ¼ 0, is apparently a limit point of this set but not an element of this set.
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Note that in each of these counterexamples the given function f ðxÞ was seen to be

a many-to-one function. This was necessary because, for one-to-one continuous func-

tions, all the statements of the proposition above generalize:

Proposition 9.67 If f ðxÞ is a continuous one-to-one function, f : R ! R, then:

1. f ðGÞ is open for every open set GHR.

2. f ðF Þ is closed for every closed set F HR.

3. f �1ðCÞ is connected for every connected set CHR.

4. f �1ðKÞ is compact for every compact set K HR.

Proof The proof follows from the fact that because f ðxÞ is a continuous one-to-one

function, f �1ðxÞ is also continuous by proposition 9.26, and hence we can apply

proposition 9.62. n

9.3 Derivatives and Taylor Series

9.3.1 Improving an Approximation I

In the preceding section various notions of continuity were reviewed and their prop-

erties discussed. To motivate the discussion of this section, we begin with an informal

attempt to improve upon the definition of continuity in terms of its implication for

Figure 9.3
f ðxÞ ¼ x2ðx2 � 2Þ
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approximating a function’s values. Recall that if f ðxÞ is continuous at x0, then f ðxÞ
can be approximated by f ðx0Þ for x ‘‘near’’ x0. In the case of Hölder continuity, we

can even determine the order of magnitude of this error as seen in (9.3).

Furthering this investigation, it is natural to inquire into the approximation of

f ðxÞ near x0, not simply by a constant f ðx0Þ but instead by a ‘‘linear’’ term that

varies proportionally with Dx ¼ x� x0:

f ðxÞA f ðx0Þ þ aDx;

where a is a constant.

To be e¤ective as an approximation tool, we require that the error in this approx-

imation goes to 0 as Dx ! 0. That is, at the minimum, we require that

f ðxÞ � ½ f ðx0Þ þ aDx� ! 0 as Dx ! 0;

or equivalently

f ðxÞ � f ðx0Þ � aDx ¼ oð1Þ as Dx ! 0:

Here we recall definition 9.44 that oð1Þ means that this expression converges to 0 as

Dx ! 0.

However, a moment of thought reveals the weakness in this idea. Namely, if f ðxÞ
is continuous at x0, the minimal requirement above is satisfied for any constant a, so

we have gained nothing with the addition of the extra term of aDx in the approxima-

tion. This approximation would be an improvement, however, if the error term could

somehow be changed from oð1Þ to oðDxÞ.
To this end, we rewrite:

f ðxÞ � f ðx0Þ � aDx1
f ðxÞ � f ðx0Þ

Dx
� a

� �
Dx:

In order for this expression to go to 0 in a way that supports better approximations,

and provides a method of determining the appropriate value of a, we require that

f ðxÞ � f ðx0Þ
Dx

� a ¼ oð1Þ as Dx ! 0: ð9:6Þ

Then, by recognizing the extra Dx term above and recalling that oð1ÞDx ¼ oðDxÞ,
we see that we can improve the approximation of f ðxÞ for x near x0 by the resulting

value of a, and that for this value

f ðxÞ � f ðx0Þ � aDx ¼ oðDxÞ: ð9:7Þ
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In other words, if the limit in (9.6) exists, we can dramatically improve our ability

to approximate from the case of general continuity,

f ðxÞ � f ðx0Þ ! 0 as x ! x0;

with no information on speed of convergence, to (9.7). This tells us that the conver-

gence f ðxÞ ! f ðx0Þ is OðDxÞ, and once we account for the linear term aDx, we

achieve an approximation and convergence that is in fact oðDxÞ. This discussion

motivates the following development.

9.3.2 The First Derivative

We formalize in a definition the condition required in (9.6).

Definition 9.68 f ðxÞ is di¤erentiable at x0, or has a first derivative at x0, denoted

f 0ðx0Þ, or df
dx





x¼x0

, if the following limit exists:

f 0ðx0Þ ¼ lim
Dx!0

f ðx0 þ DxÞ � f ðx0Þ
Dx

: ð9:8Þ

Similarly f ðxÞ is di¤erentiable on an open interval ða; bÞ1 fx j a < x < bg, or has a

first derivative everywhere on ða; bÞ, if the limit in (9.8) exists for all x0 A ða; bÞ.
Remark 9.69

1. The ratio
f ðx0þDxÞ� f ðx0Þ

Dx
represents the slope of the secant line between the points

ðx0; f ðx0ÞÞ and ðx0 þ Dx; f ðx0 þ DxÞÞ, on the graph of y ¼ f ðxÞ. Consequently, as
Dx ! 0, the derivative can be interpreted as the slope of the tangent line to the graph

of y ¼ f ðxÞ at the point ðx0; f ðx0ÞÞ. The equation of this tangent line, which can be

used to approximate f ðxÞ for x near x0, is then

y ¼ f ðx0Þ þ f 0ðx0Þðx� x0Þ: ð9:9Þ
2. One can introduce the notion of a one-sided derivative at the endpoints of a closed

interval ½a; b�, by restricting the limit in (9.8) to limDx!0þ for f 0ðaÞ, or limDx!0� for

f 0ðbÞ. In general, however, most of our applications will relate to the standard two-

sided limit.

From the earlier discussion in section 9.3.1, it should be clear that there is an alter-

native way to define the notion that f ðxÞ is di¤erentiable at x0 that avoids the some-

times troublesome division by Dx and can be easier to apply in derivations to come.

Specifically:
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Definition 9.70 f ðxÞ is di¤erentiable at x0 if there is number f 0ðx0Þ and an ‘‘error’’

function ef ðx0 þ DxÞ with ef ðx0 þ DxÞ ! 0 as Dx ! 0, and for which

f ðx0 þ DxÞ � f ðx0Þ ¼ Dxð f 0ðx0Þ þ ef ðx0 þ DxÞÞ: ð9:10Þ
That this definition is equivalent to the former follows from the observation that

the limit in (9.8) means that for any given Dx0 0, we have that
f ðx0þDxÞ� f ðx0Þ

Dx
¼

f 0ðx0Þ þ error. This error term, denoted ef ðx0 þ DxÞ in (9.10), must converge to 0 as

Dx ! 0.

Example 9.71

1. If f ðxÞ ¼ c, a constant, then trivially, f 0ðxÞ ¼ 0. Not so obviously, but as was noted

in section 9.2.6, constant functions are the only continuous functions with this property.

2. One easily derives that for any positive integer n, f ðxÞ ¼ xn is di¤erentiable, and

dxn

dx






x¼x0

¼ nxn�1
0 : ð9:11Þ

This result is immediate for n ¼ 1 by the definition, while for nb 2 one derives this

from the binomial formula:

ðxþ DxÞn ¼ xn þ nxn�1DxþOðDx2Þ:
3. The absolute value function f ðxÞ ¼ jxj is di¤erentiable for x0 0. We obtain, by

definition,

f 0ðxÞ ¼ 1; x > 0,

�1; x < 0.

�
The absolute value function is not di¤erentiable at x ¼ 0 because the limit in (9.8) pro-

duces þ1 when Dx > 0, and �1 when Dx < 0.

From (9.8) we derive the following:

Proposition 9.72 If f ðxÞ is di¤erentiable at x0, then it is continuous there. Moreover

f ðxÞ is Lipschitz continuous at x0.
Proof From (9.8), as Dx ! 0,

f ðx0 þ DxÞ � f ðx0Þ ¼ Dx
f ðx0 þ DxÞ � f ðx0Þ

Dx

! 0 � f 0ðx0Þ ¼ 0;
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so f ðxÞ is continuous. This derivation also shows that

f ðx0 þ DxÞ � f ðx0Þ ¼ OðDxÞ as Dx ! 0;

so f ðxÞ is Lipschitz continuous. n

Remark 9.73 The converse of this proposition is false because Lipschitz continuity

simply requires that with x1 x0 þ Dx,

f ðxÞ � f ðx0Þ
Dx





 



aC as Dx ! 0:

Lipschitz continuity does not require that this ratio converge to a limit. The simplest

example of this is the next:

Example 9.74 f ðxÞ ¼ jxj is Lipschitz continuous at x ¼ 0 but not di¤erentiable there,

since the left- and right-sided limits produced by (9.8) are �1 and þ1, respectively as

noted in example 9.71.

9.3.3 Calculating Derivatives

Demonstrating that complicated functions are di¤erentiable, and finding their deriv-

atives, can be di‰cult and tedious based on the definitions above. The following

three results provide a systematic approach to verifying di¤erentiability and deter-

mining derivatives of many common functions.

Proposition 9.75 If f ðxÞ and gðxÞ are di¤erentiable at x0, then so too is:

1. hðxÞ ¼ af ðxÞG bgðxÞ, with h 0ðx0Þ ¼ af 0ðx0ÞG bg 0ðx0Þ
2. hðxÞ ¼ f ðxÞgðxÞ, with h 0ðx0Þ ¼ f 0ðx0Þgðx0Þ þ f ðx0Þg 0ðx0Þ
3. hðxÞ ¼ 1

gðxÞ if gðx0Þ0 0, with h 0ðx0Þ ¼ �g 0ðx0Þ
g2ðx0Þ

4. hðxÞ ¼ f ðxÞ
gðxÞ if gðx0Þ0 0, with h 0ðx0Þ ¼ f 0ðx0Þgðx0Þ� f ðx0Þg 0ðx0Þ

g2ðx0Þ

Proof See exercises 6 and 32. See also exercise 34 for a generalization of 2 known as

the Leibniz rule, which is reminiscent of the binomial theorem. n

The next two results are more subtle, so we provide details of the proofs.

Proposition 9.76 If gðxÞ is di¤erentiable at x0 and f ðxÞ is di¤erentiable at gðx0Þ, then
so too is

5. hðxÞ ¼ f ðgðxÞÞ at x0, with h 0ðx0Þ ¼ f 0ðgðx0ÞÞg 0ðx0Þ
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Proof Note that if gðxÞ is di¤erentiable at x0 and f ðxÞ is di¤erentiable at y0 ¼
gðx0Þ, then from (9.10),

gðx0 þ DxÞ � gðx0Þ ¼ Dxðg 0ðx0Þ þ egðx0 þ DxÞÞ;

f ðy0 þ DyÞ � f ðy0Þ ¼ Dyð f 0ðy0Þ þ ef ðy0 þ DyÞÞ:
Consequently, noting that y0 þ Dy ¼ gðx0 þ DxÞ, we write
hðx0 þ DxÞ � hðx0Þ ¼ f ðgðx0 þ DxÞÞ � f ðgðx0ÞÞ

¼ ½gðx0 þ DxÞ � gðx0Þ�½ f 0ðgðx0ÞÞ þ ef ðgðx0 þ DxÞÞ�

¼ Dx½g 0ðx0Þ þ egðx0 þ DxÞ�½ f 0ðgðx0ÞÞ þ ef ðgðx0 þ DxÞÞ�:
By definition that gðxÞ is di¤erentiable at x0, egðx0 þ DxÞ ! 0 as Dx ! 0. Also

ef ðy0 þ DyÞ ! 0 as Dy ! 0, but since Dy ¼ gðx0 þ DxÞ � gðx0Þ, we have by the con-

tinuity of gðxÞ that Dy ! 0 as Dx ! 0. Multiplying out the final expression, we de-

rive with a notational change

hðx0 þ DxÞ � hðx0Þ ¼ Dx½ f 0ðgðx0ÞÞg 0ðx0Þ þ ehðx0 þ DxÞ�;
where ehðx0 þ DxÞ ! 0 as Dx ! 0, with the error term given by

ehðx0 þ DxÞ ¼ g 0ðx0Þef ðgðx0 þ DxÞÞ þ f 0ðgðx0ÞÞegðx0 þ DxÞ
þ egðx0 þ DxÞef ðgðx0 þ DxÞÞ:

Hence hðxÞ is di¤erentiable by (9.10). n

Proposition 9.77 If gðxÞ is di¤erentiable at x0, g 0ðx0Þ0 0, and g 0ðxÞ is continuous on
an interval about x0, then

6. hðyÞ ¼ g�1ðyÞ is di¤erentiable at y0 ¼ gðx0Þ, with h 0ðy0Þ ¼ 1
g 0ðx0Þ

Remark 9.78 Note that we do not explicitly assume that gðxÞ is one-to-one, or even
one-to-one ‘‘near’’ x0. While this result may appear odd, since we require the existence

of g�1ðyÞ ‘‘near’’ y0 so that its derivative there is well defined, this requirement on gðxÞ
is assured by the assumption that g 0ðx0Þ0 0 and the continuity of g 0ðxÞ (see exercise 7).
Proof From (9.10), we need to show that if g 0ðx0Þ0 0,

g�1ðy0 þ DyÞ � g�1ðy0Þ ¼ Dy
1

g 0ðx0Þ þ eg�1ðy0 þ DyÞ
� �
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for some error function with eg�1ðy0 þ DyÞ ! 0 as Dy ! 0. Now, if g�1ðy0Þ1 x0,

and g�1ðy0 þ DyÞ1 x0 þ Dx, then Dy ¼ gðx0 þ DxÞ � gðx0Þ, and the equation above

is notationally equivalent to showing that

Dx ¼ ½gðx0 þ DxÞ � gðx0Þ� 1

g 0ðx0Þ þ eg�1ðgðx0 þ DxÞÞ
� �

:

This in turn is equivalent to

gðx0 þ DxÞ � gðx0Þ ¼ Dxg 0ðx0Þ
1þ g 0ðx0Þeg�1ðgðx0 þ DxÞÞ

¼ Dxðg 0ðx0Þ þ ~eeg�1ðgðx0 þ DxÞÞÞ;

where with some algebra, we can derive

~eeg�1ðgðx0 þ DxÞÞ1� ½g 0ðx0Þ�2eg�1ðgðx0 þ DxÞÞ
1þ g 0ðx0Þeg�1ðgðx0 þ DxÞÞ :

Now, by the di¤erentiability of gðxÞ at x0, we have that there is an egðx0 þ DxÞ so that

gðx0 þ DxÞ � gðx0Þ ¼ Dxðg 0ðx0Þ þ egðx0 þ DxÞÞ:
Comparing expressions, we will be done if we can solve

egðx0 þ DxÞ ¼ � ½g 0ðx0Þ�2eg�1ðgðx0 þ DxÞÞ
1þ g 0ðx0Þeg�1ðgðx0 þ DxÞÞ

for the needed error function, eg�1ðgðx0 þ DxÞÞ, and demonstrate that it has the right

properties. A bit of algebra yields

eg�1ðgðx0 þ DxÞÞ ¼ �egðx0 þ DxÞ
½g 0ðx0Þ�2 þ g 0ðx0Þegðx0 þ DxÞ :

Finally, as Dy1 gðx0 þ DxÞ � gðx0Þ ! 0, we can conclude that Dx ! 0 because

of the one-to-oneness assured by exercise 7. Hence as Dy ! 0, we have that

egðx0 þ DxÞ ! 0 and also eg�1ðgðx0 þ DxÞÞ ¼ eg�1ðy0 þ DyÞ ! 0, and the proof is

complete. n

Remark 9.79 After the somewhat detailed proof of the derivative of the inverse func-

tion, here is a really easy proof—provided that hðyÞ ¼ g�1ðyÞ is explicitly assumed to
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be one-to-one near y0 and di¤erentiable at y0. Since the composition gðhðyÞÞ is the

simple function gðhðyÞÞ ¼ y, we can take the derivative of both sides using the compo-

sition formula in property 5 of proposition 9.76 above, evaluated at y0, to obtain

g 0ðhðy0ÞÞh 0ðy0Þ ¼ 1:

The conclusion follows with hðy0Þ ¼ x0. Now exercise 7 demonstrates that g�1ðyÞ is

one-to-one near y0, but there is no easy way to demonstrate that g�1ðyÞ is di¤erenti-
able at y0 without the added details of the proof above.

Example 9.80 Some examples of the wide applicability of these propositions are:

1. From (9.11) and property 1 above, one easily finds the derivative of any polynomial

function, while with property 4, one finds the derivative of any rational function, which

is a ratio of polynomials, at points for which the denominator polynomial is nonzero.

Similarly one finds the derivative of various composites of polynomial and rational

functions using property 5. In addition, 6 is useful in generalizing (9.11) from positive

integers to rationals of the form 1
m
, since gðyÞ ¼ y1=m is inverse to f ðxÞ ¼ xm, which

with properties 5 and 3 can be further generalized to all rational number exponents

(positive or negative) of the form n
m
. For these non-integer rational exponents, the

domains of the functions are restricted to xb 0 for positive exponents, and x > 0 for

negative exponents.

As a specific case,

If f ðxÞ ¼
Xn
i¼0

aix
i; then f 0ðxÞ ¼

Xn
i¼1

iaix
i�1;

since the derivative of the constant a0 is zero. Similarly, with f ðxÞ as above, and

gðxÞ ¼ xq for q rational, define the function hðxÞ1 gð f ðxÞÞ:

If hðxÞ1
Xn
i¼0

aix
i

" #q
; then h 0ðxÞ ¼ q

Xn
i¼0

aix
i

" #q�1Xn
i¼1

iaix
i�1:

2. However, these formulas do not confirm di¤erentiability, nor provide the derivative

of the exponential functions f ðxÞ ¼ ax for a > 1. In exercise 8 it is noted that

dax

dx
¼ ax ln a; a > 1; ð9:12Þ

is a corollary of the formula for the natural exponential:
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dex

dx
¼ ex: ð9:13Þ

For this latter formula it is easy to see that

f ðxþ DxÞ � f ðxÞ
Dx

¼ ax a
Dx � 1

Dx
;

and the base of the ‘‘natural exponential,’’ e, can be defined as the real number that

satisfies

lim
Dx!0

eDx � 1

Dx
¼ 1; ð9:14Þ

from which (9.13) follows immediately. That there exists such a number e that satisfies

the limit in (9.14) is not apparent, but this numerical value can be expressed in an

equivalent way as in (9.19) below, and shown to exist by direct arguments (see case 7

below and the following section).

For a derivative example with f ðxÞ as in case 1, and gðxÞ ¼ ex, define the function

hðxÞ1 gð f ðxÞÞ:

If hðxÞ ¼ eT
n

i¼0 aix
i

; then h 0ðxÞ ¼ ðeT n

i¼0 aix
iÞ
Xn
i¼1

iaix
i�1:

3. The natural exponential provides a basis for extending (9.11) to any real number

exponent. That is, for any real number r, gðxÞ1 xr can be defined by gðxÞ ¼ er ln x on

the domain x > 0. Applying (9.13) and property 5 in the proposition, we get g 0ðxÞ ¼
r
x
er ln x ¼ r

x
xr ¼ rxr�1. In other words,

If gðxÞ ¼ xr; x > 0; r A R; then g 0ðxÞ ¼ rxr�1: ð9:15Þ
4. Let f ðxÞ ¼ eix, where i ¼ ffiffiffiffiffiffiffi�1

p
. We have from Euler’s formula in (2.5) that

eix ¼ cos xþ i sin x:

Now, if b A R and gðxÞ ¼ ebx ¼ ðebÞx, then from (9.12) we derive g 0ðxÞ ¼ bebx. This

formula also turns out to be true for b A C, but we do not prove this since it is not es-

sential to this book’s goals. But this fact allows an easy derivation of the derivatives of

sin x and cos x. Namely

ieix ¼ deix

dx
¼ d cos x

dx
þ i

d sin x

dx
;
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but also

ieix ¼ �sin xþ i cos x:

Comparing, we derive (with a bit of cheating that the derivative formula above is valid

for b A C):

d sin x

dx
¼ cos x;

d cos x

dx
¼ �sin x: ð9:16Þ

Remark 9.81 To make these ideas rigorous, we must first derive (9.16) directly from

the definition of f 0ðxÞ using trigonometric identities. These formulas imply each func-

tion is infinitely di¤erentiable (see definition 9.91). From the methods of Taylor series

used below, it turns out that ex, sin x, and cos x are each analytic and have convergent

series representations. The function eix, or generally eibx for b A R, can then be defined

in terms of the Taylor series expansion for ex by substitution, and shown to be abso-

lutely convergent. Moreover, if c A C, c ¼ aþ bi, then define ecx ¼ eaxeibx. Finally, the

associated Taylor series for eibx, sin bx and cos bx, can be shown to satisfy

eibx ¼ cos bxþ i sin bx;

which for b ¼ 1 is Euler’s formula.

5. Because f ðyÞ ¼ ln y, defined on y > 0, is the inverse function of gðxÞ ¼ ex defined

on R, we can apply property 6 in the proposition above to conclude that

d ln y

dy
¼ 1

y
: ð9:17Þ

Also, since loga y ¼ 1
ln a ln y for a > 1, we obtain from property 1 of the proposition,

since 1
ln a is a constant,

d loga y

dy
¼ 1

y ln a
: ð9:18Þ

6. With the formula for the derivative of ln x, we are now in the position to clarify a

couple of limits that were used in the chapter 7 development of the Poisson distribution.

Specifically, we need to show that for any real number l and constant k,

1� l

n
þ k

n2

� �n
! e�l as n ! y:
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Taking natural logarithms, this is equivalent to showing that

n ln 1� l

n
þ k

n2

� �
! �l as n ! y:

Consider the function f ðxÞ ¼ lnð1� lxþ kx2Þ, which is di¤erentiable for 1� lxþ
kx2 > 0, and this in turn is valid for any choice of constants for x close enough to 0.

In particular, f ðxÞ is di¤erentiable at x ¼ 0, and from the development above we have

that f 0ðxÞ ¼ �lþ2kx
1�lxþkx2 , and so f 0ð0Þ ¼ �l. Applying the formula for the derivative

f 0ð0Þ, and observing that f ð0Þ ¼ 0, we have

�l ¼ lim
Dx!0

f ðDxÞ
Dx

:

Finally, substituting Dx ¼ 1
n
and letting n ! y completes the derivation.

7. A simple yet elegant corollary to case 6 is the following definition of e, obtained with

k ¼ 0 and l ¼ �1:

e ¼ lim
n!y

1þ 1

n

� �n
; ð9:19Þ

which also follows from (9.14) by setting Dx ¼ 1
n
and letting n ! y.

Remark 9.82 Obviously, to avoid circular logic, one of cases 2, 5, 6, and 7 of example

9.80 must be independently derived, and the others then follow. The usual approach, as

noted above, is to first establish the limit in (9.19) directly by analysis of the sequence

an ¼ 1þ 1
n

� �n
(see the following section). From this the limit in (9.14) and di¤erenti-

ability of ex and ax follow, as then does the di¤erentiability of ln x and loga x, and then

finally the limits in case 6 above.

8. As noted above, f ðxÞ ¼ jxj is di¤erentiable everywhere except for x ¼ 0. However,

if p > 1, the function gðxÞ ¼ jxjp is di¤erentiable everywhere. This follows from noting

that since

gðxÞ ¼ xp; xb 0,

ð�xÞp; xa 0,

�
we can apply (9.15) in example 9.80 to produce for x0 0,

g 0ðxÞ ¼ pxp�1; x > 0,

�pð�xÞp�1; x < 0.

(
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For x ¼ 0,

gðDxÞ � gð0Þ
Dx

¼ ðDxÞp�1; Dx > 0;

�jDxjp�1; Dx < 0;

(
and hence g 0ð0Þ ¼ 0. Combining, we obtain the result:

If gðxÞ ¼ jxjp, p > 1, then

g 0ðxÞ ¼ pjxjp�1; xb 0;

�pjxjp�1; xa 0:

(
ð9:20Þ

A Discussion of e

The simplest approach to deriving the numerical value of e involves two steps:

Step 1. Define e by

e ¼
Xy
n¼0

1

n!
:

That this summation converges follows directly from chapter 6 and the ratio test.

Since bn ¼ 1
n! , we see that as n ! y,

bnþ1

bn
¼ 1

nþ 1
! 0:

It is also apparent that 1
n! a

1
2 n�1 for nb 1, so by evaluation of the geometric series,

e ¼ 1þ
Xy
n¼1

1

n!

a 1þ
Xy
n¼0

1

2n ¼ 3:

In fact

eA2:718281828459 . . . : ð9:21Þ
Step 2. Define an ¼ 1þ 1

n

� �n
as in (9.19) of case 7 of example 9.80 above. We now

show that an ! e. By the binomial theorem,
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an ¼
Xn
j¼0

n

j

� �
1

n j

¼ 1þ
Xn
j¼1

Yj�1

k¼0

1� k

n

� �" #
1

j!
:

From this result we conclude that since
Q j�1

k¼0 1� k
n

� �
a 1,

an a en < e;

where en ¼
Pn

j¼0
1
j!
is the partial sum that converges to e above. It is also apparent

that

an < anþ1;

since anþ1 has one more positive term in the summation above, and for the other

terms, the coe‰cients of 1
j!

n on

j¼1
increase from

Q j�1
k¼0 1� k

n

� �
to
Q j�1

k¼0 1� k
nþ1

� 	
. Be-

cause an is an increasing sequence and is bounded above by e, this sequence con-

verges by chapter 5 to a say, where aa e. To see that a ¼ e, note that for m > n,

am ¼ 1þ
Xm
j¼1

Yj�1

k¼0

1� k

m

� �" #
1

j!

> 1þ
Xn
j¼1

Yj�1

k¼0

1� k

m

� �" #
1

j!
:

Letting m ! y, we conclude that since am ! a and
Q j�1

k¼0 1� k
m

� �! 1,

ab en:

Combining, we have

an a en a a;

and hence an ! e as desired.

9.3.4 Properties of Derivatives

One important and well-known result for di¤erentiable functions is the following

mean value theorem, which often goes under the moniker of the MVT. Graphically,

recalling (9.9), the MVT states that if f ðxÞ satisfies the given properties on ½a; b�, then
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there is a point c A ða; bÞ so that the slope of the tangent line to y ¼ f ðxÞ at c, or

f 0ðcÞ, equals the slope between the endpoints of the graph of f ðxÞ on ½a; b�. The end-
points are, of course, ða; f ðaÞÞ and ðb; f ðbÞÞ.
Proposition 9.83 (Mean Value Theorem) If f ðxÞ is di¤erentiable on ða; bÞ and contin-

uous on ½a; b�, then there is a number c A ða; bÞ, so that

f 0ðcÞ ¼ f ðbÞ � f ðaÞ
b� a

: ð9:22Þ

Proof Define a new function

gðxÞ ¼ f ðxÞ � f ðbÞ � f ðaÞ
b� a

ðx� aÞ:

Then gðaÞ ¼ gðbÞ ¼ f ðaÞ, and g 0ðxÞ ¼ f 0ðxÞ � f ðbÞ� f ðaÞ
b�a

, so the proof follows if we

can show that there is a c A ða; bÞ with g 0ðcÞ ¼ 0. The next proposition provides this

conclusion. n

Proposition 9.84 (Rolle’s Theorem) If gðxÞ is di¤erentiable on ða; bÞ and continuous

on ½a; b�, with gðaÞ ¼ gðbÞ, then there is a number c A ða; bÞ, so that g 0ðcÞ ¼ 0.

Proof If gðxÞ is constant on ½a; b�, then the conclusion follows for all c A ða; bÞ. If
not constant, then as a continuous function on ½a; b�, gðxÞ must achieve both its max-

imum and minimum value on this interval. Since gðxÞ is assumed to be nonconstant

and gðaÞ ¼ gðbÞ, at least one of these must occur within ða; bÞ, and we denote this

value by c. Now, if gðcÞ is a maximum, we conclude that

gðxÞ � gðcÞ
x� c

a 0; xb c;

b 0; xa c;

�
and with the opposite inequalities at a minimum. Since the limit must exist as x ! c,

and equal g 0ðcÞ, we conclude that the only possible value for this limit is 0. n

Remark 9.85

1. With the aid of the mean value theorem, we return to the point made in section 9.2.6

on Hölder continuity, that being, if f ðxÞ is Hölder continuous of order a > 1 on an

interval ða; bÞ, then f ðxÞ ¼ c, a constant on this interval. To see this, first note that if

f ðxÞ has this order of continuity at x0, then

f ðxÞ � f ðx0Þ
Dx





 



¼ OðDxa�1Þ;
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and hence f 0ðx0Þ ¼ 0. Consequently, if f ðxÞ has this order of continuity throughout an

interval ða; bÞ, then f 0ðxÞ ¼ 0 for all x A ða; bÞ. By the MVT, for any interval ½c; d�H
ða; bÞ there is e A ½c; d� with f ðdÞ� f ðcÞ

d�c
¼ f 0ðeÞ, and we conclude from f 0ðeÞ ¼ 0 that

f ðdÞ ¼ f ðcÞ, so f ðxÞ is constant. Of course, there is no such conclusion if f ðxÞ satisfies
this Hölder condition at an isolated point, as the functions f ðxÞ ¼ xa for a > 1 demon-

strate at x ¼ 0.

2. Another consequence of (9.22) noted in item 1 is that if f 0ðxÞ1 0 on an interval

ða; bÞ, then for any c; d A ða; bÞ, we must have that f ðcÞ ¼ f ðdÞ. In other words, the

only functions with identically 0 first derivatives are the constant functions.

The proof of Rolle’s theorem produces a necessary condition on a point c A ða; bÞ
to be a relative maximum or a relative minimum of f ðxÞ on ½a; b�, but first a

definition.

Definition 9.86 A point c is a relative minimum of a function f ðxÞ if there is an

open interval I , with c A I , so that for all x A I , f ðcÞa f ðxÞ. The point c is a relative

maximum of f ðxÞ if there is an open interval I containing c so that for all x A I ,

f ðcÞb f ðxÞ.
When f ðxÞ is a di¤erentiable function, it is often easy to find all possible candi-

dates for relative minimums and relative maximums. Specifically, at any such point,

f 0ðcÞ ¼ 0.

Proposition 9.87 If c is a relative maximum or relative minimum of f ðxÞ, and f ðxÞ is
di¤erentiable at c, then f 0ðcÞ ¼ 0.

Proof As in the proof of Rolle’s theorem, at a relative minimum,

f ðxÞ � f ðcÞ
x� c

b 0; xb c;

a 0; xa c;

�
and the inequalities reverse at a relative maximum. As x ! c, the existence of f 0ðcÞ
implies that these ratios converge to the same value, which must therefore be 0. n

Example 9.88

1. Note that a di¤erentiable function does not necessarily have f 0ðxÞ ¼ 0 at a global

maximum or global minimum on ½a; b�, since such extreme values may occur at an in-

terval endpoint. For example, f ðxÞ ¼ x is a simple function that achieves its global

maximum and minimum on the endpoints of every closed interval ½a; b�, and yet

f 0ðxÞ1 1.
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2. Also f 0ðcÞ ¼ 0 is only a necessary condition for a relative maximum or minimum; it

is not su‰cient as the function f ðxÞ ¼ x3 exemplifies at c ¼ 0.

Because of the importance of the points at which the derivative of a function is

zero, these points warrant a special name.

Definition 9.89 Given a di¤erentiable function f ðxÞ, the points for which f 0ðcÞ ¼ 0

are known as the critical points of f ðxÞ.
Critical points are the first place one looks to find relative maximums or mini-

mums of a di¤erentiable function. Because such an analysis will only reveal a func-

tion’s relative maximums and minimums, for global maximums and minimums on a

closed and bounded interval, the second place to be evaluated are the interval’s end-

points. For global maximums and minimums on an open interval, ða; bÞ, bounded or

unbounded, one needs to consider the function’s values as x ! a and x ! b, and in

such cases the function may be unbounded, meaning the global maximum (respec-

tively, minimum) is y (respectively, �y).

A final simple property, but a useful one to highlight, was noted in the proof of the

derivative formula for the inverse function in proposition 9.77. Its proof is assigned

as exercise 7, and will be omitted.

Proposition 9.90 If f ðxÞ is di¤erentiable at x0, f 0ðx0Þ0 0, and f 0ðxÞ is continuous in
an open interval containing x0 then there is an open interval about x0, say I ¼ ðx0 � a;

x0 þ aÞ for some a > 0, so that on I , f ðxÞ is one-to-one and monotonic. Specifically, if

x; y A I and x < y, then

f 0ðx0Þ > 0 ) f ðxÞ < f ðyÞ;

f 0ðx0Þ < 0 ) f ðxÞ > f ðyÞ:
9.3.5 Improving an Approximation II

Another significant conclusion that can be drawn from the mean value theorem is

a numerical refinement of the rate of convergence of f ðxÞ to f ðx0Þ in the case where

f ðxÞ has a bounded derivative. Specifically, if M ¼ maxf f 0ðxÞ j x A ða; bÞg, then for

any x; x0 A ða; bÞ, we have from (9.10) and the triangle inequality that

j f ðxÞ � f ðx0ÞjaMjx� x0j: ð9:23Þ
While this bound is in theory less powerful than (9.7), which we rewrite here for

comparability,
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j f ðxÞ � f ðx0Þja f 0ðx0Þjx� x0j þ oðjx� x0jÞ;
in practice, it can be more valuable when M is easily estimated, since this inequality

works uniformly for any x and x0 in the interval, rather than only at a point, x0. This

estimate also avoids the extra Little o term that, while useful when we have Dx ! 0,

is not useful for numerical estimates when Dx is fixed and finite, since its exact for-

mula is unknown.

Also note that by rewriting (9.7) with a ¼ f 0ðx0Þ, we achieve the following

approximation:

f ðxÞ ¼ f ðx0Þ þ f 0ðx0ÞDxþ oðDxÞ; ð9:24Þ
where as usual, x ¼ x0 þ Dx. We will see below that this is a special case of a Taylor

series expansion of f ðxÞ.
Comparing (9.24) with (9.9), we identify the error between the tangent line approxi-

mation and the graph of the function to be oðDxÞ.
9.3.6 Higher Order Derivatives

In order to pursue higher order approximations to f ðxÞ near x0, we define the fol-

lowing notion:

Definition 9.91 For each integer n > 1, the nth derivative of f ðxÞ at x0, denoted

f ðnÞðx0Þ, or, d
nf

dxn





x¼x0

, is defined iteratively by

f ðnÞðx0Þ1 lim
Dx!0

f ðn�1ÞðxÞ � f ðn�1Þðx0Þ
Dx

; ð9:25Þ

when this limit exists. One then says that f ðxÞ is n-times di¤erentiable at x0, or on an

interval ða; bÞ, and so forth. If f ðnÞðx0Þ exists for all n, we say that f ðxÞ is infinitely

di¤erentiable at x0, or infinitely di¤erentiable on an interval, and so forth. The exis-

tence of the nth derivative of f ðxÞ can also be expressed in a way that is analogous to

(9.10):

f ðn�1Þðx0 þ DxÞ � f ðn�1Þðx0Þ ¼ Dxð f ðnÞðx0Þ þ ef ðn�1Þ ðx0 þ DxÞÞ:
Note that if f ðxÞ is n-times di¤erentiable at x0, then by proposition 9.72 each of

the first ðn� 1Þ derivatives must be continuous at x0. Also note above that a func-

tion’s nth derivative is calculated sequentially, by calculating in turn the function’s

derivatives, first, then second, and so on. Below we investigate numerical estimation

of derivatives that are developed directly from values of the function.
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Example 9.92 Let f ðxÞ ¼ xN, where N is a positive integer. Then as was shown in

example 9.71 above, f 0ðxÞ ¼ NxN�1. By iteration, we derive that

dxN

dxn ¼
N!

ðN�nÞ! x
N�n; naN;

0; n > N;

(
where we recall below the factorial notation and related binomial coe‰cients.

Definition 9.93

1. If N is a positive integer, then N!, or N factorial is defined as

N! ¼ NðN � 1ÞðN � 2Þ . . . 2 � 1;
and also 0! ¼ 1 (see chapter 10, the gamma distribution, for a compelling motivation

for the definition of 0!).

2. If N and M are nonnegative integers, 0aMaN, the binomial coe‰cient, N
M

� �
is

defined as

N

M

� �
¼ N!

M!ðN �MÞ! :

9.3.7 Improving an Approximation III: Taylor Series Approximations

Generalizing the analysis above that led to (9.24), we introduce next the general Tay-

lor series. To this end, assume that we want to approximate f ðxÞ with an nth order

polynomial, generalizing the first order approximation in (9.24). In other words, the

goal is to approximate f ðxÞ by

f ðxÞA
Xn
j¼0

ajðx� x0Þ j;

where here we express Dx as x� x0 for specificity below.

If we assume that f ðxÞ is n-times di¤erentiable, we can di¤erentiate this expression

using example 9.92 above, and substitute x ¼ x0 to solve for the coe‰cients aj. For

example,

f ðx0Þ ¼
Xn
j¼0

ajðx0 � x0Þ j ¼ a0;

f 0ðx0Þ ¼
Xn
j¼1

jajðx0 � x0Þ j�1 ¼ a1;
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f ð2Þðx0Þ ¼
Xn
j¼2

jð j � 1Þajðx0 � x0Þ j�2 ¼ 2a2;

..

.

f ðmÞðx0Þ ¼
Xn
j¼m

j!

ð j �mÞ! ajðx0 � x0Þ j�m ¼ m!am for ma n:

From this calculation we derive the nth-order Taylor polynomial for f ðxÞ centered
at x0:

f ðxÞA
Xn
j¼0

1

j!
f ð jÞðx0Þðx� x0Þ j: ð9:26Þ

This expansion is named for Brook Taylor (1685–1731) who published the approxi-

mation result in (9.26) in the early 1700s, although it was apparently discovered some

time earlier by James Gregory (1638–1675). When x0 ¼ 0, this series approximation

is sometimes referred to as a Maclaurin series, named for Colin Maclaurin (1698–

1746), who applied this idea to trigonometric functions.

As a first application we derive the nth-order Taylor polynomial for ex, first refer-

enced in chapter 6 and applied in chapter 7.

Example 9.94 With f ðxÞ ¼ ex, and x0 ¼ 0, we have that f ðnÞðx0Þ ¼ ex0 ¼ 1 for all n,

and so

exA
Xn
j¼0

1

j!
x j:

We next investigate the error in the approximation in (9.26). Of course, if f ðxÞ is a
polynomial of degree n, the nth-order Taylor polynomial will exactly reproduce f ðxÞ.
In fact from (9.26) it is apparent that for any such polynomial, the coe‰cient of x j

equals the jth-derivative of the polynomial divided by j!, where these derivatives are

evaluated at x ¼ 0. In general, however, there will be a remainder, also called the

error term.

We now investigate one property of this remainder.

Proposition 9.95 If f ðxÞ is n-times di¤erentiable on an interval ða; bÞ, with f ð jÞðxÞ
continuous on ½a; b� for ja n� 1, then for x; x0 A ½a; b�,
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f ðxÞ ¼
Xn
j¼0

1

j!
f ð jÞðx0Þðx� x0Þ j þOðDxnÞ; ð9:27Þ

where Dx ¼ x� x0. In addition, if f ðnÞðxÞ is continuous on ½a; b�, then the error

improves slightly to

f ðxÞ ¼
Xn
j¼0

1

j!
f ð jÞðx0Þðx� x0Þ j þ oðDxnÞ: ð9:28Þ

Proof For x; x0 A ½a; b� given, with x0 < x for specificity, define the constant A1
Aðx; x0Þ, so that

f ðxÞ ¼
Xn�1

j¼0

1

j!
f ð jÞðx0Þðx� x0Þ j þ A

ðx� x0Þn
n!

;

and define the residual function

gðyÞ ¼ f ðxÞ �
Xn�1

j¼0

1

j!
f ð jÞðyÞðx� yÞ j � A

ðx� yÞn
n!

:

Now by the assumptions of the proposition, gðyÞ is continuous on ½a; b� and di¤eren-

tiable on ða; bÞ. Also gðxÞ ¼ gðx0Þ ¼ 0. So by Rolle’s theorem, there is a value c A
ðx0; xÞ so that g 0ðcÞ ¼ 0. A calculation, using the product rule for derivatives, pro-

duces g 0ðyÞ:

g 0ðyÞ ¼ �
Xn�1

j¼0

1

j!
f ð jþ1ÞðyÞðx� yÞ j þ

Xn�1

j¼1

1

ð j � 1Þ! f
ð jÞðyÞðx� yÞ j�1

þ A
ðx� yÞn�1

ðn� 1Þ! :

A careful look at the two summations reveals that the first n� 1 terms of the first

sum cancel with the n� 1 terms of the second, leaving

g 0ðyÞ ¼ � 1

ðn� 1Þ! f
ðnÞðyÞðx� yÞn�1 þ A

ðx� yÞn�1

ðn� 1Þ! :

The conclusion of Rolle’s theorem, that there is a c A ðx0; xÞ so that g 0ðcÞ ¼ 0, can be

rewritten as
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f ðnÞðcÞ ¼ A:

Hence we have that for some c A ðx0; xÞ,

f ðxÞ ¼
Xn�1

j¼0

1

j!
f ð jÞðx0Þðx� x0Þ j þ f ðnÞðcÞ ðx� x0Þn

n!
: ð9:29Þ

The same conclusion follows if x0 > x. From (9.29) we have then that for some

c A ðx0; xÞ or c A ðx; x0Þ,

f ðxÞ ¼
Xn
j¼0

1

j!
f ð jÞðx0Þðx� x0Þ j þ ½ f ðnÞðcÞ � f ðnÞðx0Þ� ðx� x0Þn

n!
:

The error term is seen to be OðDxnÞ if we only know that f ðnÞðxÞ exists. However, if

f ðnÞðxÞ is also continuous so that f ðnÞðcÞ � f ðnÞðx0Þ ! 0 as Dx ! 0, then this error is

seen to be oðDxnÞ. n

Notation 9.96 Given x; x0 A ða; bÞ, there is a convenient notational devise for identify-

ing a point c that is ‘‘between’’ x and x0, which is to say that c A ðx0; xÞ if x0 < x, and

c A ðx; x0Þ if x < x0. Stated more succinctly, there exists y, with 0 < y < 1, so that

c ¼ x0 þ yDx, where Dx ¼ x� x0, and this is used below.

Example 9.97 From example 9.94, we have that since ex is infinitely di¤erentiable,

and hence has continuous derivatives of all orders, then for any n,

ex �
Xn
j¼0

1

j!
x j ¼ oðxnÞ as x ! 0:

Analytic Functions

It turns out that in many applications, the Taylor polynomials not only provide high-

order approximations to the given function at x0 as Dx ! 0, but also these polyno-

mials approximate the function everywhere as n ! y. Such functions are called

analytic functions.

Definition 9.98 A function f ðxÞ is called analytic in a neighborhood of x0 if it can be

expanded in a convergent Taylor series:

f ðxÞ ¼
Xy
j¼0

1

j!
f ð jÞðx0Þðx� x0Þ j; ð9:30Þ

for x in an open interval centered on x0. In other words, for every x in this interval,
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f ðxÞ ¼ lim
n!y

Xn
j¼0

1

j!
f ð jÞðx0Þðx� x0Þ j :

It is apparent that every polynomial is analytic, since all but a finite number of

derivatives satisfy f ð jÞðx0Þ ¼ 0, as are many familiar functions such as ex, ln x,

sin x, and cos x. Each is analytic everywhere in their respective domains of defini-

tion. Proving analyticity, however, requires some new tools, as developed in (9.34)

below. The formula (9.27) does not help, even if we know that f ðxÞ is infinitely dif-

ferentiable and this formula holds for all n. The reason is that this expression only

provides information about the behavior of the Taylor polynomial as Dx ! 0. To

be analytic at x0 requires that fnðxÞ ! f ðxÞ as n ! y for x in a neighborhood of

x0, where fnðxÞ denotes the nth-degree Taylor polynomial in (9.26).

While analyticity requires the existence of infinitely many derivatives, the follow-

ing classical example demonstrates that it requires more than just this. In other

words, infinite di¤erentiability is a necessary condition for a function to be analytic,

but it is not a su‰cient condition.

Example 9.99 Define f ðxÞ by

f ðxÞ ¼ e�1=x2
; x0 0;

0; x ¼ 0:

(
Then every derivative of f ðxÞ is a finite sum of terms of the form

c
e�1=x2

x j
:

So f ðnÞðxÞ exists for all x0 0, but also it is possible to justify that for all n, f ðnÞðxÞ ! 0

as x ! 0. To see this, substitute y ¼ 1
x
, obtaining sums of terms of the form cy je�y2 ,

and let y ! y. Then, as y ! y, since y j < ey for any j, we conclude that

cy je�y2 < ce�yðy�1Þ ! 0 as y ! y:

In other words, f ðnÞð0Þ ¼ 0 for all n, and hence the Taylor polynomials evaluated at

x0 ¼ 0 satisfy fnðxÞ1 0 for all n. Consequently we cannot have that fnðxÞ ! f ðxÞ as
n ! y for x in a neighborhood of 0, and we conclude that f ðxÞ is infinitely di¤erentia-

ble but not analytic at 0.

Note that the definition of analytic above does not require that the Taylor

series converge absolutely, only that it converges. This is in contrast to the definition

of a power series in chapter 6 for which the interval of convergence and radius of
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convergence are defined in a way to ensure that these series converge absolutely.

However, many analytic functions do indeed converge absolutely, and using chapter

6 methods, we can readily identify two conditions that assure absolute convergence.

Both conditions relate to the growth of f f ðnÞðx0Þg as n ! y.

Proposition 9.100 Let f ðxÞ be an analytic function given by (9.30) in the interval

jx� x0j < R.

1. If

lim sup
n

f ðnþ1Þðx0Þ
ðnþ 1Þ f ðnÞðx0Þ












¼ L < y; ð9:31Þ

then the Taylor series is absolutely convergent for jx� x0j < R 0, where R 0 ¼ 1
L
.

2. If there is an x 0 so that

f ðnÞðx0Þ
n!

ðx 0 � x0Þn




 



aC for all n; ð9:32Þ

then the Taylor series is absolutely convergent for jx� x0j < R 00, where R 00 ¼
jx 0 � x0j.
Proof Statement 1 follows from the ratio test in chapter 6, which assures absolute

convergence if the limit superior of the ratios of successive terms is less than 1. Let-

ting cn 1
f ðnÞðx0Þ

n! ðx� x0Þn, we write

lim sup
n

cnþ1

cn





 



¼ lim sup
n

f ðnþ1Þðx0Þ
ðnþ 1Þ f ðnÞðx0Þ












 jx� x0j;

¼ Ljx� x0j;
so absolute convergence is assured if Ljx� x0j < 1. Statement 2 follows from the

comparison test. Specifically, (9.32) implies that

f ðnÞðx0Þ
n!

ðx� x0Þn




 



aC

x� x0

x 0 � x0





 



n
< Crn;

where r < 1 if jx� x0j < jx 0 � x0j, and this Taylor series is therefore bounded by a

convergent geometric series. n
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A useful corollary of this result is as follows:

Proposition 9.101 If

f ðxÞ ¼
Xy
j¼0

1

j!
f ð jÞðx0Þðx� x0Þ j; gðxÞ ¼

Xy
j¼0

1

j!
gð jÞðx0Þðx� x0Þ j ;

are analytic functions that are absolutely convergent for jx� x0j < R, then for any

a; b A R, hðxÞ1 af ðxÞ þ bgðxÞ is analytic, absolutely convergent for jx� x0j < R, and

hðxÞ ¼Py
j¼0

1
j!
hð jÞðx0Þðx� x0Þ j .

Proof That hðxÞ is absolutely convergent follows from the triangle inequality and

the absolute convergence of f ðxÞ and gðxÞ:

a
Xy
j¼0

1

j!
f ð jÞðx0Þðx� x0Þ j þ b

Xy
j¼0

1

j!
gð jÞðx0Þðx� x0Þ j














a jaj
Xy
j¼0

1

j!
j f ð jÞðx0Þðx� x0Þ j j þ jbj

Xy
j¼0

1

j!
jgð jÞðx0Þðx� x0Þ jj:

That the Taylor series for hðxÞ is given in terms of the derivatives of hðxÞ also follows

by the absolute convergence of the series

a
Xy
j¼0

1

j!
f ð jÞðx0Þðx� x0Þ j þ b

Xy
j¼0

1

j!
gð jÞðx0Þðx� x0Þ j ;

which justifies the rearrangement of these terms to

Xy
j¼0

1

j!
½af ð jÞðx0Þ þ bgð jÞðx0Þ�ðx� x0Þ j . n

Remark 9.102 While the Taylor series of an analytic function need not be absolutely

convergent, the partial sums of these series are pointwise convergent. Hence these

partial sums will be uniformly convergent on any compact set inside the interval of

convergence.

9.3.8 Taylor Series Remainder

In this section we present a useful and explicit expression for the remainder term im-

plicit in (9.26) and seen in the development of (9.27) and (9.28). Another expression

for this remainder will be seen in section 10.8.
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Defining fnðxÞ as the nth-order Taylor polynomial in (9.26), we write

fnðxÞ ¼
Xn
j¼0

1

j!
f ð jÞðx0Þðx� x0Þ j:

Proposition 9.95 provides qualitative information on the error term:

f ðxÞ ¼ fnðxÞ þ RnðxÞ:
Summarizing, we have from (9.27) and (9.28) that:

1. RnðxÞ ¼ OðDxnÞ in all cases, requiring only that f ðnÞðxÞ exists on ða; bÞ.
2. RnðxÞ ¼ oðDxnÞ if f ðnÞðxÞ is also continuous on this interval.

Now, what if f ðnÞðxÞ is also di¤erentiable on this interval? Then proposition

9.95 states that f ðxÞ can be approximated by fnþ1ðxÞ with an error of Rnþ1ðxÞ ¼
OðDxnþ1Þ. Alternatively, the last term in fnþ1ðxÞ can be moved to the error term so

that f ðxÞ can be approximated by fnðxÞ, with an error of

R 0
nðxÞ ¼ Rnþ1ðxÞ þ 1

ðnþ 1Þ! f
ðnþ1Þðx0Þðx� x0Þnþ1 ¼ OðDxnþ1Þ:

However, it turns out that in this case where we assume that f ðxÞ has one addi-

tional derivative f ðnþ1ÞðxÞ, an explicit expression for this remainder can also be

derived. If this additional derivative is continuous, this explicit expression provides

a useful upper bound for this error everywhere in the given interval. This remainder

is often used for proving convergence of a Taylor series, as well as providing nu-

merical estimates for given x0 and Dx, while the upper bound is used for proving

analyticity on a given interval.

Proposition 9.103 If f ðxÞ is ðnþ 1Þ-times di¤erentiable on an interval ða; bÞ, with
f ð jÞðxÞ continuous on ½a; b� for ja n, and x; x0 A ða; bÞ, then there exists y, with

0 < y < 1, so that

f ðxÞ ¼
Xn
j¼0

1

j!
f ð jÞðx0Þðx� x0Þ j þ 1

ðnþ 1Þ! f
ðnþ1ÞðcÞðx� x0Þnþ1; ð9:33Þ

where c ¼ x0 þ yDx. In other words, c is between x and x0, and so c A ðx0, xÞ if x0 < x,

and c A ðx; x0Þ if x < x0. In addition, if f ðnþ1ÞðxÞ is continuous on ½a; b�, then there

exists M > 0 so that for all x; x0 A ða; bÞ,
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f ðxÞ �
Xn
j¼0

1

j!
f ð jÞðx0Þðx� x0Þ j












a M

ðnþ 1Þ! jx� x0jnþ1: ð9:34Þ

Proof The expression in (9.33) follows immediately from (9.29) in the proof of

proposition 9.95. In addition, if f ðnþ1ÞðxÞ is continuous on ½a; b�, then from proposi-

tion 9.39 this function attains its upper and lower bounds in this interval. Here M

denotes the larger of the absolute values of these bounds. n

Remark 9.104 The remainder term in the Taylor series expansion in (9.33) is known

as the Lagrange form of the remainder, after Joseph-Louis Lagrange (1736–1813),

who proved the mean value theorem and derived this remainder term from this result.

Another form of this remainder, named for Augustin Louis Cauchy, will be developed

in section 10.8.

Example 9.105

1. We can apply this proposition to the infinite product encountered in section 8.4.1, in

the discussion preceding the strong law of large numbers. Given fxngyn¼1 with xn > 0

and xn ! 0 as n ! y, we show that

Yy
n¼1

ð1� xnÞ ¼ 0; if
P

xn diverges;

c > 0; if
P

xn converges:

�
Applying (9.33) with n ¼ 1 to f ðxÞ ¼ lnð1� xÞ, and recalling that f 0ðxÞ ¼ �1

1�x
and

f 00ðxÞ ¼ �1

ð1�xÞ2 , we obtain the following with x0 ¼ 0, where it is also assumed that

xn < 1:

lnð1� xnÞ ¼ �xn � 1

2
ðynxnÞ2; 0 < yn < 1:

Consequently, since all but a finite number of xn satisfy xn < 1, we can ignore these

exceptions since they do not influence the conclusion, and obtain

ln
YN
n¼1

ð1� xnÞ ¼ �
XN
n¼1

xn � 1

2

XN
n¼1

ðynxnÞ2:

Now, if
Py

n¼1 xn ¼ y, then we have that ln
Qy

n¼1ð1� xnÞ ¼ �y, and henceQy
n¼1ð1� xnÞ ¼ 0. On the other hand, if

Py
n¼1 xn ¼ s < y, then since yn; xn < 1,

it is apparent that
Py

n¼1ðynxnÞ2 ¼ s 0 < s. So ln
Qy

n¼1ð1� xnÞ ¼ �s� 1
2 s

0, andQy
n¼1ð1� xnÞ ¼ e�s�ðs 0=2Þ.
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2. If fxngyn¼1 satisfies xn ! 0 as n ! y without the restriction xn > 0, the same sec-

ond convergence conclusion follows provided that
P jxnj converges. This condition

assures that
Py

n¼1ðynxnÞ2 converges, since for jxnj < 1,

Xy
n¼1

ðynxnÞ2 <
Xy
n¼1

x2
n <

X
jxnj:

Note that xn ¼ ð�1Þnffiffi
n

p demonstrates the necessity of this condition of absolute conver-

gence, since although
Py

n¼1 xn ¼ s < y, all that can be said about this second summa-

tion is that
Py

n¼1ðynxnÞ2 <
Py

n¼1
1
n
, which is divergent.

The upper bound for the remainder term is often useful in proving analyticity of a

given function. However, we will see that this estimate sometimes fails to provide a

proof of convergence of a Taylor series because it is somewhat crude, reflecting the

maximum of f ðnþ1ÞðxÞ on ½a; b� in general, or more specifically for given x, x0, the

maximum of f ðnþ1ÞðxÞ on ½x; x0� or ½x0; x�. According to (9.29) in the proof of prop-

osition 9.95, we really only need an estimate of the absolute value of f ðnþ1ÞðxÞ at an
intermediate point c, which is generally unknown. This crudeness can be a problem

when this interval maximum is large.

As noted above, there are other forms of the remainder, and the Cauchy form,

which reflects an average of f ðnþ1ÞðtÞ between x and x0, will be developed in section

10.8, and seen to succeed in proving analyticity in cases where the Lagrange remain-

der fails.

Example 9.106 We now address three Taylor series quoted and used in prior chap-

ters. The series for f ðxÞ ¼ 1
1�x

was used in example 6.47 in chapter 6, the exponential

series ex was used in chapter 7 in the development of moment relationships, and the nat-

ural logarithm series lnð1þ xÞ was needed for the chapter 8 development of Stirling’s

formula and other results.

1. With f ðxÞ ¼ 1
1�x

¼ ð1� xÞ�1
and x0 ¼ 0 it is easy to derive that f ðnÞðxÞ ¼

n!ð1� xÞ�n�1
and so f ðnÞð0Þ ¼ n!. Noting that ð1� xÞ�n�1

is an increasing function

on ð�y; 1Þ, and hence

max
½0;x�

ð1� yÞ�n�1 ¼ ð1� xÞ�n�1; 0 < x < 1;

1; xa 0;

(
we obtain from (9.34) that

1

1� x
�
Xn
j¼0

x j












a x

1�x



 

nþ1
; 0 < x < 1;

jxjnþ1; xa 0:

(
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In chapter 6 it was shown that
Py

j¼0 x
j converges for jxj < 1. Consequently the

Lagrange remainder only proves that 1
1�x

¼Py
j¼0 x

j in the second case where �1 <

xa 0, since then jxjnþ1 ! 0 as n ! y. For 0 < x < 1, x
1�x

> 1, and hence x
1�x



 

nþ1!
y as n ! y. We will return to this example in chapter 10 with a di¤erent remainder

estimate and proof of convergence to f ðxÞ in this case.

2. With f ðxÞ ¼ ex in (9.34) and x0 ¼ 0, recall that f ð jÞðxÞ ¼ ex and f ð jÞð0Þ ¼ 1 for

all j, and so

ex �
Xn
j¼0

1

j!
x j












a

ex

ðnþ1Þ! jxj
nþ1; x > 0;

1
ðnþ1Þ! jxj

nþ1; xa 0;

8<:
since the maximum value of f ðnþ1ÞðyÞ over ½0; x� is ex when x > 0 and is 1 when xa 0.

Now in chapter 6 it was shown that
Py

j¼0
1
j!
x j converges for all x A R. By Simpson’s

rule applied to ðnþ 1Þ!,
ðnþ 1Þ!ffiffiffiffiffiffi

2p
p

ðnþ 1Þnþð3=2Þ
e�ðnþ1Þ ¼

ðnþ 1Þ!ffiffiffiffiffiffiffiffi
2pn

p
nþ1
e

� �nþ1
! 1;

and so ðnþ 1Þ! grows faster than nþ1
e

� �nþ1
and hence much faster than xnþ1 for any x.

This shows that for any value of x, this error goes to zero, and the Taylor series con-

verges to ex as n ! y. In other words, ex is an analytic function, and as was noted in

(7.63),

ex ¼
Xy
j¼0

1

j!
x j for all x A R: ð9:35Þ

3. With f ðxÞ ¼ lnð1þ xÞ, we obtain

f 0ðxÞ ¼ 1

1þ x
; f ð2ÞðxÞ ¼ �1

ð1þ xÞ2 ; . . . ; f
ðnÞðxÞ ¼ ð�1Þnþ1ðn� 1Þ!

ð1þ xÞn :

Consequently with x0 ¼ 0, f ð0Þ ¼ 0 and f ðnÞð0Þ ¼ ð�1Þn�1ðn� 1Þ! for nb 1. Also, to

find M, note that since 1

ð1þyÞ nþ1 is a decreasing function for y > �1,

max
½0;x�

1

ð1þ yÞnþ1
¼

1; 0a x;
1

ð1þxÞ nþ1 ; �1 < x < 0:

(

By (9.34) we obtain
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lnð1þ xÞ �
Xn
j¼1

ð�1Þ jþ1

j
x j












a 1

nþ1 jxjnþ1; y A ½0; x�; xb 0;

1
nþ1

x
1þx



 

nþ1
; y A ½x; 0�;�1 < xa 0:

(

It was shown in chapter 6 that
Py

j¼1
ð�1Þ jþ1

j
x j converges absolutely for jxj < 1 and con-

ditionally for x ¼ 1, and diverges for x ¼ �1. So as in case 1 of this example, the

Lagrange remainder only yields a partial result. That is, lnð1þ xÞ ¼Py
j¼1

ð�1Þ jþ1

j
x j in

the first case where 0a xa 1, since then
jxjnþ1

ðnþ1Þ ! 0 as n ! y, and in part of the sec-

ond case where �1 < xa 0. Specifically, for this latter range of x, we have that
x

1þx



 

a 1 if � 1
2 a xa 0 and hence 1

nþ1
x

1�x



 

nþ1! 0 as n ! y. But for �1 < x < � 1
2 ,

we see that x
1þx



 

 > 1, so 1
nþ1

x
1�x



 

nþ1! y as n ! y. We will return to this example in

chapter 10 with a di¤erent remainder estimate and proof of convergence in this case.

With this analysis applied to x ¼ 1, we can conclude that

ln 2 ¼
Xy
j¼1

ð�1Þ jþ1

j
; ð9:36Þ

deriving the numerical value of the alternating harmonic series as was noted in example

6.10.

9.4 Convergence of a Sequence of Derivatives

Expanding the discussion in section 9.2.7 on convergence of a sequence of continu-

ous functions, there is an analogous discussion related to derivatives which we intro-

duce with the following questions:

Question 1: If fnðxÞ is a sequence of di¤erentiable functions, and there is a function

f ðxÞ so that fnðxÞ ! f ðxÞ pointwise as n ! y, must f ðxÞ be di¤erentiable?
Question 2: If f ðxÞ in question 1 is di¤erentiable, must f 0

n ðxÞ ! f 0ðxÞ for every x

as n ! y?

Question 3: If fnðxÞ ! f ðxÞ uniformly rather than pointwise, do the answers to

questions 1 and 2 change?

Answer: The answer to all three questions is, in general, ‘‘no,’’ and this is easy to

exemplify.

Example 9.107

1. Define

fnðxÞ ¼ x1þð1=nÞ; xb 0;

ð�xÞ1þð1=nÞ; x < 0:

(
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Then each fnðxÞ is di¤erentiable, with

f 0
n ðxÞ ¼

1þ 1
n

� �
x1=n; xb 0;

� 1þ 1
n

� �ð�xÞ1=n; x < 0:

(

Now fnðxÞ ! f ðxÞ1 jxj, which is not di¤erentiable at x ¼ 0, and for x0 0, f 0ðxÞ ¼ 1

for x > 0 and f 0ðxÞ ¼ �1 for x < 0. Also, it is the case that f 0
n ðxÞ ! f 0ðxÞ for x0 0,

since jxj1=n ! 1 as n ! y for all x0 0. This observation provides hope, albeit tempo-

rary, that the answer to the second question might be ‘‘yes.’’

2. Define

fnðxÞ ¼ sin nxffiffiffi
n

p :

Then each fnðxÞ is di¤erentiable, with

f 0
n ðxÞ ¼

ffiffiffi
n

p
cos nx:

Now fnðxÞ ! f ðxÞ1 0 for all x since jsin nxja 1, and f ðxÞ is di¤erentiable every-

where with f 0ðxÞ1 0. However, f 0
n ð0Þ ¼

ffiffiffi
n

p ! y, while f 0
n ðpÞ alternates between

G
ffiffiffi
n

p
, and f 0

n
p
2

� �
cycles through the sequence f0;� ffiffiffi

n
p

; 0;
ffiffiffi
n

p g, and so forth.

3. Finally, although uniform convergence provided a positive result in section 9.2.7

above in terms of preserving continuity it does not help here. Case 1 converges uni-

formly on compact sets and case 2 converges uniformly, so the same negative conclu-

sions follow. Note, however, that in case 1 the sequence of derivatives, f 0
n ðxÞ, does not

converge uniformly by the Cauchy criterion on any interval that contains 0, since as

n ! y:

f 0
n ðxÞ !

1; x > 0;

�1; x < 0:

�
For case 2, the sequence of derivatives f 0

n ðxÞ does not converge uniformly on any

interval.

Although not the most general statement, the following positive result is adequate

in most applications.

Proposition 9.108 If fnðxÞ is a sequence of continuously di¤erentiable functions and

there is a function f ðxÞ so that on some interval I , fnðxÞ ! f ðxÞ uniformly and f 0
n ðxÞ
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converge uniformly by the Cauchy criterion, then f ðxÞ is di¤erentiable and f 0
n ðxÞ !

f 0ðxÞ.
Proof From propositions 9.51 and 9.54 on uniform convergence in section 9.2.7,

the assumption that f 0
n ðxÞ are continuous and converge uniformly by the Cauchy cri-

terion implies that there is a continuous function, gðxÞ say, so that f 0
n ðxÞ ! gðxÞ uni-

formly. What is left to prove is that f ðxÞ is di¤erentiable and f 0ðxÞ ¼ gðxÞ. To this

end, fix x0 A I , and define the ‘‘finite di¤erence functions’’ for x0 x0:

DnðxÞ ¼ fnðxÞ � fnðx0Þ
x� x0

; DðxÞ ¼ f ðxÞ � f ðx0Þ
x� x0

:

The assumption that fnðxÞ ! f ðxÞ uniformly implies that for x0 x0,

DnðxÞ ! DðxÞ as n ! y:

Since fnðxÞ is di¤erentiable,

lim
x!x0

DnðxÞ ¼ f 0
n ðx0Þ for all n:

We now show that for fixed x0 x0, DnðxÞ converges uniformly as n ! y. This fol-

lows in two steps. First o¤, the mean value theorem applied to fnðxÞ � fmðxÞ yields
that for some y between x and x0,

j fnðxÞ � fmðxÞ � fnðx0Þ þ fmðx0Þj ¼ j f 0
n ðyÞ � f 0

mðyÞj jx� x0j:

Second, the uniform convergence of f 0
n ðxÞ means that for any � > 0 there is an N so

that for n;m > N and any y A I ,

j f 0
n ðyÞ � f 0

mðyÞj < �:

Combining these steps, we derive that for n;m > N and x0 x0,

jDnðxÞ �DmðxÞj < �;

and so DnðxÞ converges uniformly as n ! y for x0 x0. Combining these pieces, and

noting that since x0 is a limit point of the set I � x0, the limits below can be reversed

because of proposition 9.60. This produces

f 0ðx0Þ1 lim
x!x0

DðxÞ

¼ lim
x!x0

lim
n!y

DnðxÞ
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¼ lim
n!y

lim
x!x0

DnðxÞ

¼ lim
n!y

f 0
n ðx0Þ: n

9.4.1 Series of Functions

The preceding proposition 9.108 generalizes easily to a series of functions.

Proposition 9.109 If gjðxÞ is a sequence of continuously di¤erentiable functions, and

there is a function gðxÞ so that on some interval I ,
Pn

j¼1 gjðxÞ converges uniformly to

gðxÞ as n ! y and
Pn

j¼1 g
0
j ðxÞ converges uniformly by the Cauchy criterion, then gðxÞ

is di¤erentiable and
Pn

j¼1 g
0
j ðxÞ ! g 0ðxÞ. In other words,

g 0ðxÞ ¼ lim
n!y

Xn
j¼1

g 0
j ðxÞ:

Remark 9.110 In plain language, the uniform convergence of a series of continuously

di¤erentiable functions yields a di¤erentiable function when the series of derivatives

also converge uniformly, and the derivative of this limit function equals the sum of the

derivatives of terms in the series. That is, uniform convergence of the series and its

derivatives justifies di¤erentiating term by term, which means that

Xy
j¼1

gjðxÞ
 !0

¼
Xy
j¼1

g 0
j ðxÞ:

Proof Define fnðxÞ ¼
Pn

j¼1 gðxÞ. Then fnðxÞ is continuously di¤erentiable for all n

as a finite sum of continuously di¤erentiable functions, and by assumption, fnðxÞ !
gðxÞ uniformly. Also f 0

n ðxÞ1
Pn

j¼1 g
0
j ðxÞ, and so f 0

n ðxÞ converges uniformly by the

Cauchy criterion. The result follows from proposition 9.108 above. n

9.4.2 Di¤erentiability of Power Series

We have seen that in order to have any hope of expanding a given function as a Tay-

lor series, such a function must be infinitely di¤erentiable. However, not all infinitely

di¤erentiable functions can be represented as convergent Taylor series, as

f ðxÞ ¼ e�1=x2
; x0 0;

0; x ¼ 0;

(
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analyzed in example 9.99 above illustrates. Here f ðnÞð0Þ ¼ 0 for all n, so the Taylor

series centered at x0 ¼ 0 satisfies

Xy
j¼0

1

j!
f ð jÞð0Þx j 1 0;

and so cannot possibly represent this function in any neighborhood of this point.

The property of f ðxÞ called analytic above, or more precisely, analytic in a neigh-

borhood of x0, means more than just that this function is infinitely di¤erentiable

at x0. It means that the function can be represented by a Taylor series centered at

x ¼ x0, and that this series is convergent to the function values in some neighborhood

of this point. The emphasis on ‘‘to the function values’’ is deliberate, since the func-

tion above has a Taylor series centered on x0 ¼ 0 that is convergent everywhere, but

it does not converge to f ðxÞ for any x0 0.

Now a Taylor series is a special case of a power series introduced in chapter 6, and

it is natural to ask:

Question: If a function f ðxÞ is defined as the power series f ðxÞ ¼Py
j¼0 cjðx� x0Þ j

that is convergent for jx� x0j < R for some R > 0:

1. Is f ðxÞ infinitely di¤erentiable, and if so, how is f ðnÞðxÞ evaluated?
2. If infinitely di¤erentiable, is f ðxÞ an analytic function in the sense of (9.30)?

3. If an analytic function, and f ðxÞ is expanded in a Taylor series about x0, must it

be the case that

cn ¼ f ðnÞðx0Þ
n!

?

The following proposition addresses these questions, and provides a‰rmative

responses. It is largely a corollary to proposition 9.109 above on series of functions,

but it is stated here to clarify that a small amount of thought needs to be applied to

assure that the uniformity of convergence needed for the result above applies.

Proposition 9.111 If a function f ðxÞ is defined by the power series

f ðxÞ ¼
Xy
j¼0

cjðx� x0Þ j ð9:37Þ

and has an interval of convergence given by jx� x0j < R for some R > 0, then:
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1. f ðxÞ is infinitely di¤erentiable, and

f ðnÞðxÞ ¼
Xy
j¼n

cj
j!

ð j � nÞ! ðx� x0Þ j ð9:38Þ

is absolutely convergent for jx� x0j < R. In other words, power series are infinitely dif-

ferentiable and can be di¤erentiated term by term.

2. f ðxÞ is analytic in the sense of (9.30), so

f ðxÞ ¼
Xy
n¼0

f ðnÞðx0Þ
n!

ðx� x0Þn;

and this series is absolutely convergent on jx� x0j < R. Further

f ðnÞðx0Þ
n!

¼ cn: ð9:39Þ

In other words, power series expansions are unique.

Proof Define fnðxÞ as the partial summation associated with f ðxÞ:

fnðxÞ ¼
Xn
j¼0

cjðx� x0Þ j :

For the moment, assume the radius of convergence, R < y, where we recall that R is

defined in chapter 6 by R ¼ 1
L
, where L is given in (6.20):

L ¼ lim sup
j!y

jcjþ1j
jcj j

� �
:

Then it is apparent that fnðxÞ is continuous, fnðxÞ ! f ðxÞ pointwise on jx� x0j < R,

and hence by exercise 30(b) converges uniformly on the compact jx� x0jaR� �,

for any � > 0. Also fnðxÞ is di¤erentiable,

f 0
n ðxÞ ¼

Xn
j¼1

jcjðx� x0Þ j�1;

and we now show that f 0
n ðxÞ converges pointwise on jx� x0j < R by demonstrating

that the series
Py

j¼1 jcjðx� x0Þ j�1 has the same interval of convergence as the series

for f ðxÞ. By the ratio test,
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lim sup
j!y

jð j þ 1Þcjþ1ðx� x0Þ j j
j jcjðx� x0Þ j�1j

( )
¼ lim sup

j!y

j þ 1

j

jcjþ1j
jcj j jx� x0j

� �

¼ lim sup
j!y

jcjþ1j
jcjj

� �
jx� x0j

¼ Ljx� x0j:
So the series f 0

n ðxÞ converges on jx� x0j < R and hence also converges uniformly

by the Cauchy criterion on jx� x0jaR� �. By proposition 9.108, it follows that

f ðxÞ is di¤erentiable, and f 0ðxÞ ¼ limn!y f 0
n ðxÞ for all jx� x0jaR� �. Since this

is true for all � > 0, the result in (9.38) follows for n ¼ 1. However, f 0ðxÞ ¼Py
j¼1 jcjðx� x0Þ j�1 is now a power series to which the same argument applies, and

by iteration, (9.38) follows for all n. If R ¼ y, the same argument applies except that

compact sets needed for uniform convergence are defined, jx� x0jaR 0 for any

R 0 < y. This proves part 1 of the proposition.

For part 2, it is apparent from (9.38) by substitution that f ðnÞðx0Þ ¼ n!cn, and so

the Taylor series centered on x0 converges absolutely for jx� x0j < R because it is

identical to the power series. n

Remark 9.112 Of course, the notion that power series representations are unique, as

stated in part 2 of proposition 9.111, is meant in the sense that if for some x0,

f ðxÞ ¼
Xy
j¼0

cjðx� x0Þ j ¼
Xy
j¼0

djðx� x0Þ j

for jx� x0j < R with R > 0, then cj ¼ dj ¼ f ð jÞðx0Þ
j!

for all j. A given analytic function

has many Taylor series expansions for di¤erent values of x0, of course. For example,

expanding about x ¼ 0 and x ¼ 1, we have

ex ¼
Xy
j¼0

x j

j!
¼
Xy
j¼0

eðx� 1Þ j
j!

:

By the proposition above, every power series is an analytic function in its interval

of convergence in the sense of definition 9.98 in section 9.3.7.

Example 9.113 In section 7.5.1 formulas were introduced for the moment-generating

function and characteristic function of a discrete random variable, and it was claimed

that each was equal to a power series reflecting the moments of the given random vari-
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able. For example, if f ðxÞ is the probability density function of a given discrete random

variable X : S ! fxigyi¼1 HR, the moment-generating function is defined by

MX ðtÞ ¼
Xy
i¼1

etxi f ðxiÞ;

when this series converges, and also converges absolutely, for t in an interval I about

t ¼ 0. Now etxi is an analytic function for all t, and expressing it as a Taylor series,

we have

MX ðtÞ ¼
Xy
i¼1

Xy
j¼0

ðtxiÞ j
j!

f ðxiÞ:

Since this series is absolutely convergent on I , we can interchange the order of summa-

tion by the analysis in section 6.1.4 to produce (7.64):

MX ðtÞ ¼
Xy
j¼0

t j

j!

Xy
i¼1

x
j
i f ðxiÞ

¼
Xy
j¼0

t jm 0
j

j!
:

As a convergent power series on I , we now have that MX ðtÞ is infinitely di¤erentiable

on I , and (9.38) can be applied to produce

M
ðnÞ
X ðtÞ ¼

Xy
j¼n

t j�nm 0
j

ð j � nÞ! ;

which produces (7.65) when t ¼ 0 is substituted:

m 0
n ¼ M

ðnÞ
X ð0Þ:

The same analysis works for the characteristic function CX ðtÞ, when all moments exist,

and demonstrates the analogous properties of this function. As noted before, this

requires the use of the power series expansion for eitxj , with a complex exponent, and

this series is seen to be absolutely convergent by the triangle inequality. However,

CX ðtÞ need not be infinitely di¤erentiable at t ¼ 0, and will have the same number of

derivatives there as f ðxÞ has moments.
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Product of Taylor Series

The next discussion in this section relates to the product of two analytic functions.

Obviously, if f ðxÞ and gðxÞ are any two analytic functions, the function hðxÞ1
f ðxÞgðxÞ is well defined. The question here is, if f ðxÞ and gðxÞ are given as abso-

lutely convergent Taylor series centered on x0, with respective radii of convergence

of R and R 0, is hðxÞ analytic? If so, what is the power series representation of hðxÞ
and what is its radius of convergence?

The following proposition addresses this question, and expands the result in prop-

osition 9.101, which addressed the analyticity of af ðxÞ þ bgðxÞ for a; b A R, when

f ðxÞ and gðxÞ are analytic.
Proposition 9.114 Let f ðxÞ and gðxÞ be analytic functions and given as convergent

power series centered on x0:

f ðxÞ ¼
Xy
n¼0

f ðnÞðx0Þ
n!

ðx� x0Þn; gðxÞ ¼
Xy
n¼0

gðnÞðx0Þ
n!

ðx� x0Þn;

which are absolutely convergent for jx� x0j < R. Then hðxÞ1 f ðxÞgðxÞ is an analytic

function, absolutely convergent for jx� x0j < R:

hðxÞ ¼
Xy
n¼0

dnðx� x0Þn; ð9:40Þ

where

dn ¼
Xn
k¼0

f ðkÞðx0Þgðn�kÞðx0Þ
k!ðn� kÞ! : ð9:41Þ

Proof Because f ðxÞ and gðxÞ are absolutely convergent, the conclusion follows di-

rectly from proposition 6.52. Specifically, (9.41) follows from (6.22). n

We now have an immediate corollary from this proposition, known as the Leibniz

rule for the nth-derivative of the product of two n-times di¤erentiable functions,

named for Gottfried Wilhelm Leibniz (1646–1716). This corollary applies to the

product of analytic functions, but is true under the weaker assumption that the func-

tions each are simply n-times di¤erentiable. Exercise 34 assigns the proof of this for-

mula in this general case, using mathematical induction.

Proposition 9.115 If f ðxÞ and gðxÞ are analytic functions, absolutely convergent for

jx� x0j < R, then for hðxÞ ¼ f ðxÞgðxÞ,
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hðnÞðxÞ ¼
Xn
k¼0

n

k

� �
f ðkÞðxÞgðn�kÞðxÞ for jx� x0j < R: ð9:42Þ

Proof This formula for hðnÞðxÞ is true for x ¼ x0 because hðxÞ is analytic, and hence

hðxÞ ¼
Xy
n¼0

hðnÞðx0Þ
n!

ðx� x0Þn:

Comparing this expansion with (6.22), produces hðnÞðx0Þ ¼ n!dn and the result follows

since n
k

� � ¼ n!
k!ðn�kÞ! . For any other x with jx� x0j < R, a Taylor series can be cen-

tered on x, and will be absolutely convergent on any interval ðx� R 0; xþ R 0ÞH
ðx0 � R; x0 þ RÞ. With this Taylor series, and the above derivation, (9.42) follows

for all such x. n

*Division of Taylor Series

The last discussion in this section relates to the division of two analytic functions, or

the reciprocal of an analytic function. Obviously, if f ðxÞ and hðxÞ are any two ana-

lytic functions, the function gðxÞ1 hðxÞ
f ðxÞ is well defined if f ðxÞ0 0. When hðxÞ1 1,

the function gðxÞ is the reciprocal of f ðxÞ. The question here is, if f ðxÞ and hðxÞ are
given as absolutely convergent Taylor series centered on x0, with f ðx0Þ0 0, and

common radius of convergence of R, is gðxÞ analytic? If so, what is the power series

representation of hðxÞ and what is its radius of convergence?

The following proposition addresses this question:

Proposition 9.116 Let f ðxÞ and hðxÞ be analytic functions and given as convergent

power series centered on x0,

f ðxÞ ¼
Xy
n¼0

f ðnÞðx0Þ
n!

ðx� x0Þn; hðxÞ ¼
Xy
n¼0

hðnÞðx0Þ
n!

ðx� x0Þn;

which are absolutely convergent for jx� x0j < R and where f ðx0Þ0 0. Then gðxÞ1
hðxÞ
f ðxÞ is an analytic function,

gðxÞ ¼
Xy
n¼0

cnðx� x0Þn; ð9:43Þ

where

c0 ¼ hðx0Þ
f ðx0Þ ð9:44aÞ

9.4 Convergence of a Sequence of Derivatives 487



cn ¼ 1

f ðx0Þ
hðnÞðx0Þ

n!
�
Xn�1

k¼0

f ðn�kÞðx0Þck
ðn� kÞ!

" #
; ð9:44bÞ

which is absolutely convergent for jx� x0j < R 0 for some R 0 > 0.

Proof Because f ðxÞ and hðxÞ are absolutely convergent, the conclusion follows di-

rectly from proposition 6.53, which also showed that 1
f ðxÞ is absolutely convergent.

Specifically, (9.44) follows from (6.25). n

Remark 9.117 In section 9.8.10 below on the risk-neutral probability qðDtÞ will be an
analysis of the ratio of analytic functions and an application of this result, or equiva-

lently, an application of formulas (6.25). However, it is often the case that the power

series for the ratio can be derived directly and more easily by a ‘‘long division’’ of the

power series of hðxÞ by the power series of f ðxÞ rather than by generating these coe‰-

cients iteratively through formulas such as in (9.44) or (6.25). The importance of the

proposition above is that it assures that this ratio function is analytic in a neighborhood

of x0, so we can generate only a few of the terms and still be sure that the remainder

will converge to 0 with the order of magnitude implied by the number of terms gener-

ated. Without such a result, we could be generating and using a partial sum of a series

for which the remainder did not converge.

Because cn ¼ gðnÞðx0Þ
n!

, we have an immediate corollary from this proposition for the

nth-derivative of the ratio of two analytic functions within the interval of convergence.

This corollary applies to the ratio of analytic functions because we use the result above,

but is true under the general assumption that the functions are each n-times di¤erentia-

ble, as can be proved using mathematical induction.

Proposition 9.118 If gðxÞ1 hðxÞ
f ðxÞ , with hðxÞ and f ðxÞ given in proposition 9.116, then

gðnÞðxÞ ¼ 1

f ðxÞ hðnÞðxÞ �
Xn�1

k¼0

n

k

� �
f ðn�kÞðxÞgðkÞðxÞ

" #
; nb 1:

Proof This result follows from (9.44), and also follows from the Leibniz rule in

(9.42) by writing hðxÞ ¼ f ðxÞgðxÞ and iteratively solving for gðnÞðxÞ. n

9.5 Critical Point Analysis

9.5.1 Second-Derivative Test

With the help of section 9.3.8 on Taylor series, it is now possible to classify the criti-

cal points of a di¤erentiable function. Proposition 9.87 above provided a necessary
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condition in order that x0 be a relative maximum or relative minimum of f ðxÞ,
namely that f 0ðx0Þ ¼ 0. In other words, a necessary condition is that x0 be a critical

point of f ðxÞ. The second and higher derivatives now provide a sorting of these

cases.

Proposition 9.119 If f ðxÞ is a twice di¤erentiable function with f 0ðx0Þ ¼ 0, and

f 00ðxÞ is continuous in a neighborhood of x0, then:

1. x0 is a relative minimum of f ðxÞ if f 00ðx0Þ > 0

2. x0 is a relative maximum of f ðxÞ if f 00ðx0Þ < 0

3. x0 can be either or neither if f 00ðx0Þ ¼ 0

Proof First o¤, in cases 1 and 2, as was demonstrated in proposition 9.38, if f 00ðxÞ
is continuous at x0, then there is an interval about x0, say I ¼ ðx0 � a; x0 þ aÞ, within
which f 00ðxÞ has the same sign as it does at x0. The result in these cases then fol-

lows immediately from the Taylor series representation in (9.33) with n ¼ 1. Since

f 0ðx0Þ ¼ 0,

f ðxÞ ¼ f ðx0Þ þ 1

2
f 00ðyÞðx� x0Þ2;

where y ¼ x0 þ yDx with 0 < y < 1. Choosing x in the interval I within which the

sign of f 00ðyÞ equals the sign of f 00ðx0Þ, the result follows. Case 3 is easily handled

by examples below. n

Example 9.120

1. Simple examples of a relative maximum and minimum in cases 1 and 2 are given by

f ðxÞ ¼Gx2 with x0 ¼ 0. We then have f 0ðx0Þ ¼ 0 and f 00ðx0Þ ¼G2.

2. For case 3, we use f ðxÞ ¼Gx4 with x0 ¼ 0 for examples of a maximum and mini-

mum when f 0ðx0Þ ¼ 0 and f 00ðx0Þ ¼ 0; and f ðxÞ ¼ x3 provides a simple example of

f 0ð0Þ ¼ 0 and f 00ðx0Þ ¼ 0 but with x0 ¼ 0 being neither a maximum or minimum. A

critical point that is not a maximum or minimum is a point of inflection or inflection point

of f ðxÞ, although inflection points need not be critical points. See also definition 9.137.

Definition 9.121 Given twice di¤erentiable f ðxÞ, the point x0 is a point of inflection or

inflection point of f ðxÞ if f 00ðxÞ changes sign between x < x0 and x > x0.

Example 9.122 For continuous f 00ðxÞ, we note that f 00ðx0Þ ¼ 0 is therefore a neces-

sary condition for a point of inflection by proposition 9.41, but not a su‰cient condi-

tion, as f ðxÞ ¼ x4 exemplifies at x0 ¼ 0. Also a point of inflection need not be a

critical point, as f ðxÞ ¼ x3 � x exemplifies at x0 ¼ 0.
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Remark 9.123 In the case where f 0ðx0Þ ¼ 0 and f 00ðx0Þ ¼ 0, we can resolve the na-

ture of f ðxÞ at x0 if f ðxÞ has enough derivatives by determining the first value of n for

which f ðnÞðx0Þ0 0. Again based on (9.24), as long as f ðnÞðxÞ is continuous in a neigh-

borhood of x0, we can conclude that:

1. If n is even, x0 will be a relative minimum if f ðnÞðx0Þ > 0 and a relative maximum if

f ðnÞðx0Þ < 0.

2. If n is odd, x0 will be an inflection point, independent of the sign of f ðnÞðx0Þ.
Functions of the form f ðxÞ ¼Gxm provide simple examples of this generalization with

x0 ¼ 0. See section 9.6 on concave and convex functions for more details on points of

inflection, and especially example 9.140.

As will be seen in an lp-norm example in example 9.129 in the next section, it is

not always convenient or even possible to evaluate f 00ðx0Þ to determine if x0 is a

maximum or a minimum. In such cases there is an alternative first derivative test

that is sometimes more convenient to apply.

Proposition 9.124 Let f ðxÞ be a di¤erentiable function, with f 0ðx0Þ ¼ 0, and assume

that there is an open interval I , with x0 A I , on which f 0ðxÞ is continuous. Then:
1. If f 0ðxÞ is a strictly increasing function on I , then x0 is a relative minimum of f ðxÞ.
2. If f 0ðxÞ is a strictly decreasing function on I , then x0 is a relative maximum of f ðxÞ.
Proof By (9.33) and n ¼ 0, for x A I there is y ¼ x0 þ yDx, with 0 < y < 1, so that

f ðxÞ ¼ f ðx0Þ þ f 0ðyÞDx:
Now, if f 0ðxÞ is a strictly increasing function on I , then since f 0ðx0Þ ¼ 0, we con-

clude that f 0ðxÞ < 0 for x < x0 and f 0ðxÞ > 0 for x > x0. But for x A I , by definition

of y A I , it must be the case that f 0ðyÞDx > 0. So f ðxÞ > f ðx0Þ and x0 is a relative

minimum of f ðxÞ. When f 0ðxÞ is a strictly decreasing function on I , then f 0ðyÞDx <

0, so f ðxÞ < f ðx0Þ and x0 is a relative maximum of f ðxÞ. n

*9.5.2 Critical Points of Transformed Functions

When pursuing a critical point analysis of a given function f ðxÞ, it is often conve-

nient to first transform the function by taking a composite of f ðxÞ with another func-

tion gðxÞ and consider the critical points of gð f ðxÞÞ. For example, if f ðxÞ is given as

an exponential function f ðxÞ ¼ e jðxÞ, it would be natural to prefer to evaluate the

derivatives of ln f ðxÞ ¼ jðxÞ rather than derivatives of f ðxÞ. This same idea applies

when f ðxÞ is the ratio of functions, f ðxÞ ¼ jðxÞ
kðxÞ , or the product, f ðxÞ ¼ jðxÞkðxÞ,
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where again ln f ðxÞ would be simpler to di¤erentiate than f ðxÞ as long as the various

functions are positive so that the logarithm is well defined. In these examples the

function used in the composition is given by gðxÞ ¼ ln x.

Similar considerations apply if f ðxÞ is given as the natural logarithm of a positive

function f ðxÞ ¼ ln jðxÞ, where composing with gðxÞ ¼ ex gives e f ðxÞ ¼ jðxÞ, or if

f ðxÞ is a power of a function f ðxÞ ¼ jðxÞa; where forming the composition with

gðxÞ ¼ x1=a produces a simpler function. In each case composition produces a sim-

pler function to di¤erentiate.

In all such cases the question is: What is the relationship between the critical points

of f ðxÞ and those of gð f ðxÞÞ? The next proposition summarizes the result.

Proposition 9.125 Let f ðxÞ be a di¤erentiable function, and gðxÞ a di¤erentiable

function that is well defined on Rngð f Þ. Then, if x0 is a critical point of f ðxÞ, it will
also be a critical point of gð f ðxÞÞ.
Proof The function hðxÞ1 gð f ðxÞÞ is di¤erentiable on Dmnð f Þ, and using the

results from proposition 9.76 produces

h 0ðxÞ ¼ g 0ð f ðxÞÞ f 0ðxÞ:
Consequently, if f 0ðx0Þ ¼ 0, then h 0ðx0Þ ¼ 0. n

In other words, the critical points of f ðxÞ will be a subset of the critical points of

hðxÞ. However, we see from the formula above for h 0ðxÞ that critical points of the

transformed function hðxÞ need not be critical points of f ðxÞ unless one knows that

g 0ð f ðx0ÞÞ0 0.

Example 9.126 Take gðxÞ ¼ ex, ln x, or x1=a. Then g 0ðxÞ ¼ ex, 1
x
, and 1

a
xð1�aÞ=a, re-

spectively. In the first two cases, since g 0ðxÞ has no zero values, the critical points of

f ðxÞ and those of hðxÞ agree. In the third case of gðxÞ ¼ x1=a, it appears possible for

hðxÞ to inherit extra critical points at any value of x for which f ðx0Þ ¼ 0, since then

h 0ðx0Þ ¼ g 0ð f ðx0ÞÞ f 0ðx0Þ ¼ 1

a
ð f ðx0ÞÞð1�aÞ=a

f 0ðx0Þ ¼ 0:

But this conclusion requires that 1�a
a

> 0, which is equivalent to 1
a
> 1 or 0 < a < 1,

since otherwise, ð0Þð1�aÞ=a
is meaningless. On the other hand, this transformation would

typically only be considered when f ðxÞ ¼ jðxÞa, which equals 0 only when jðx0Þ ¼ 0.

But, if 0 < a < 1, such an f ðxÞ is not di¤erentiable when jðx0Þ ¼ 0, so the di¤erenti-

ability of f ðxÞ assures that jðx0Þ0 0 and no additional critical points are inherited in

this case as well.
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In summary, the three simple transformations illustrated above will exactly pre-

serve the critical points of f ðxÞ, as long as the di¤erentiability assumptions of the

proposition are satisfied. For more general transformations, for which g 0ð f ðx0ÞÞ ¼ 0

for some x0, the critical points of f ðxÞ will be augmented by the critical points of

gðxÞ on Rngð f Þ.
We turn next to the second derivative test:

Proposition 9.127 Let f ðxÞ be a twice di¤erentiable function, and gðxÞ a twice di¤er-

entiable function that is well defined on Rngð f Þ. Then, if x0 is a critical point of f ðxÞ
that is a relative maximum or relative minimum of f ðxÞ, x0 will have the same property

for gð f ðxÞÞ if g 0ð f ðx0ÞÞ > 0, and the opposite property if g 0ð f ðx0ÞÞ < 0.

Proof The function hðxÞ1 gð f ðxÞÞ is twice di¤erentiable on Dmnð f Þ, and

h 00ðxÞ ¼ g 00ð f ðxÞÞ½ f 0ðxÞ�2 þ g 0ð f ðxÞÞ f 00ðxÞ:
Consequently, if f 0ðx0Þ ¼ 0, then

h 00ðx0Þ ¼ g 0ð f ðx0ÞÞ f 00ðx0Þ;
and f 00ðx0Þ and h 00ðx0Þ will have the same sign if g 0ð f ðx0ÞÞ > 0, and opposite signs if

g 0ð f ðx0ÞÞ < 0. n

Example 9.128

1. If the transforming function, gðxÞ, is an increasing function so that g 0ðxÞ > 0 for all

x, proposition 9.125 ensures that the critical points of f ðxÞ and hðxÞ coincide, while

proposition 9.127 ensures that maximums will coincide with maximums, and minimums

with minimums. As examples, gðxÞ ¼ ex is an increasing function for all x, while ln x is

an increasing function for x > 0, as is x1=a as long as a > 0.

2. If the transforming function is a decreasing function so that g 0ðxÞ < 0 for all x, the

critical points of f ðxÞ and hðxÞ will again coincide, but maximums and minimums will

be reversed. In such a case is is easier to work with the transforming function: ~ggðxÞ1
�gðxÞ, which is increasing, to avoid the necessity of remembering that maximums and

minimums will reverse under gðxÞ.
Recall the following problem from section 3.3.2 on tractability of the lp-norms:

Suppose that we are given a collection of data points fxigni¼1 that we envision either

as distributed on the real line R or as a point x ¼ ðx1; x2; . . . ; xnÞ A Rn. Assume that

for notational simplicity we arrange the data points in increasing order x1 a x2 a � � �
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a xn. The goal is to find a single number xp that best approximates these points in

the lp-norm, where pb 1. That is, find xp so that

kðx1 � xp; x2 � xp; . . . ; xn � xpÞkp is minimized:

This problem can be envisioned as a problem in R or as a problem in Rn, but we

choose the former to apply the tools of this chapter. The problem then becomes

Minimize: f ðxÞ ¼
Xn
i¼1

jxi � xjp
 !1=p

:

This problem was solved in chapter 3 by direct methods in the cases of p ¼ 1; 2;y,

where we recall that for p ¼ y the lp-norm problem is defined as

Minimize: f ðxÞ ¼ max
i

fjxi � xjg:

We now return to this example for other values of p.

Example 9.129 To apply the tools of this chapter, we require f ðxÞ to be di¤erentia-

ble, and we have seen in example 9.80 (case 8) that this requires that 1 < p < y. Be-

cause gðxÞ ¼ xp is an increasing function, the maximums and minimums of f ðxÞ and
f ðxÞp agree as noted in example 9.128 above, with 1

a
¼ p. This follows because

f ðxÞ > 0 for all x except in the trivial case where all xj ¼ c, and so f ðcÞ ¼ 0. We ig-

nore this case, since then xp ¼ c apparently.

Suppose that fxjgnj¼1 contain m di¤erent values, which we denote by fyjgmj¼1 in

increasing order, and that the original set contains nj of each yj. The goal is then to

find the minimum of hðxÞ ¼ gð f ðxÞÞ:

hðxÞ ¼
Xm
j¼1

njjyj � xjp; 1 < p < y:

From (9.20), we have that

h 0ðxÞ ¼
�p
Pm

j¼1 njðyj � xÞp�1; xa y1;

p
Pk

j¼1 njðx� yjÞp�1 � p
Pm

j¼kþ1 njðyj � xÞp�1; yk a xa ykþ1;

p
Pm

j¼1 njðx� yjÞp�1; ym a x:

8>><>>:
Note that h 0ðxÞ is continuous, since its values at the interval endpoints fyjgmj¼1 are well

defined even though they are defined piecewise continuously on intervals. Also h 0ðxÞ is
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negative for xa y1 and positive for ym a x. So by the intermediate value theorem,

there is at least one point x 0, with

y1 < x 0 < ym and h 0ðx 0Þ ¼ 0:

Specifically, if yk a x 0 a ykþ1, then

Xk
j¼1

nj pðx 0 � yjÞp�1 ¼
Xm
j¼kþ1

nj pðyj � x 0Þp�1:

When p ¼ 2, this equation can be explicitly solved, producing

x 0 ¼
Pm

j¼1 njyjPm
j¼1 nj

¼ 1

n

Xn
j¼1

xj ;

as derived in chapter 3.

We can confirm that x 0 is always unique for 1 < p < y, since h 0ðxÞ is a strictly

increasing function. This is apparent for xa y1 and ym a x but also for yk a xa

ykþ1, since as x increases, the positive summation increases and the negative summa-

tion decreases. This analysis also confirms that x 0 is a minimum of hðxÞ, as noted in

proposition 9.124, so x 0 ¼ xp.

Note that in general, we can not use a second derivative test to confirm that x 0 is a
minimum, since h 0ðxÞ is di¤erentiable only if pb 2. The di¤erentiability problem for

1 < p < 2 occurs for x ¼ yj for any j, as h 0ðxÞ is di¤erentiable otherwise for any x. If

we assume that pb 2, or if 1 < p < 2 and x 0 0 yj for any j, then the second derivative

test can be used:

h 00ðxÞ ¼ pðp� 1Þ
Xm
j¼1

njjyj � xjp�2:

From this we can conclude that h 00ðx 0Þ > 0, even though x 0 is not explicitly known, and

hence x 0 is a minimum.

9.6 Concave and Convex Functions

9.6.1 Definitions

In previous chapters the notions of convexity and concavity have been encountered.

First we recall the definitions:

494 Chapter 9 Calculus I: Di¤erentiation



Definition 9.130 A function f ðxÞ is concave on an interval I , which can be open,

closed or semi-closed, finite or infinite, if for any x; y A I ,

f ðtxþ ð1� tÞyÞb tf ðxÞ þ ð1� tÞ f ðyÞ for t A ½0; 1�: ð9:45Þ
A function f ðxÞ is convex on I if, for any x; y A I ,

f ðtxþ ð1� tÞyÞa tf ðxÞ þ ð1� tÞ f ðyÞ for t A ½0; 1�: ð9:46Þ
When the inequalities are strict for t A ð0; 1Þ, such functions are referred to as strictly

concave and strictly convex, respectively.

Remark 9.131 Note that f ðxÞ is concave if and only if �f ðxÞ is convex, and con-

versely. Consequently most propositions need only be proved in one case, and the other

case will follow once the e¤ect of the minus sign on the result is reflected.

Interestingly, the properties of concavity and convexity are quite strong. As it

turns out, concave and convex functions are always continuous on open intervals

and are in fact Lipschitz continuous.

Proposition 9.132 If f ðxÞ is concave or convex on an open interval I , then it is Lip-

schitz continuous on I.

Proof We demonstrate this for a convex function f ðxÞ. Then, if gðxÞ is concave,

the result follows from the continuity of the convex �gðxÞ. To this end, let y A I be

given, and let J ¼ ðy� a; yþ aÞ be defined so that ½y� a; yþ a�H I . Since I is

open, there is an open interval about y contained in I by definition, and we simply

choose a smaller open interval J whose closure is also in I . Let M ¼ maxð f ðy� aÞ;
f ðyþ aÞÞ. For any x A J, we conclude that f ðxÞaM, since any such point can be

expressed x ¼ ð1� tÞðy� aÞ þ tðyþ aÞ for some t A ð0; 1Þ, and since f ðxÞ is convex,
(9.46) provides this conclusion. Now let x A J be given and assume for the moment

that xb y. To standardize notation, let x ¼ yþ ta for some t A ½0; 1�, then we have

that

y� a < ya x1 yþ ta < yþ a:

Now, by construction,

x ¼ ð1� tÞyþ tðyþ aÞ:
In order to write x as a linear combination of y� a and this same y, an algebraic

exercise produces
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y ¼ t

1þ t
ðy� aÞ þ 1

1þ t
x;

where both t
1þt

; 1
1þt

A ½0; 1�. Now, from the convexity of f ðxÞ, and the definition of

M, we conclude that

f ðxÞa ð1� tÞ f ðyÞ þ tM;

f ðyÞa t

1þ t
M þ 1

1þ t
f ðxÞ:

Using the first inequality for an upper bound, the second for the lower bound,

provides

�t½M � f ðyÞ�a f ðxÞ � f ðyÞa t½M � f ðyÞ�:
That is,

j f ðxÞ � f ðyÞja tjM � f ðyÞj:

Since t ¼ x�y
a

, we have the final result for Lipschitz continuity:

j f ðxÞ � f ðyÞja jM � f ðyÞj
a

ðx� yÞ for xb y:

An identical construction applies when xa y, by expressing x ¼ y� ta, so y� a <

xa y < yþ a. Combining the resulting inequalities, we get

j f ðxÞ � f ðyÞjaCjx� yj: n

Example 9.133 It is important to note that this proposition does not extend to the re-

sult that a convex/concave function on a closed interval is continuous. For example, on

the interval ½0; 1�, define

f ðxÞ ¼ xðx� 1Þ; 0 < xa 1;

�1; x ¼ 0:

�
Then f ðxÞ is apparently concave, and equally apparently, not continuous.

When a function is di¤erentiable, it is relatively easy to confirm when it is either

concave or convex.

Proposition 9.134 There are two derivatives-based tests that characterize convexity

and concavity:
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1. If f ðxÞ is di¤erentiable, then:
(a) f ðxÞ is concave on an interval if and only if f 0ðxÞ is a decreasing function on that

interval.

(b) f ðxÞ is convex on an interval if and only if f 0ðxÞ is an increasing function on that

interval.

(c) f ðxÞ is strictly concave i¤ f 0ðxÞ is strictly decreasing, and strictly convex i¤ f 0ðxÞ
is strictly increasing.

2. If f ðxÞ is twice di¤erentiable, then:
(a) f ðxÞ is concave on an interval if and only if f 00ðxÞa 0 on that interval.

(b) f ðxÞ is convex on an interval if and only if f 00ðxÞb 0 on that interval.

(c) Strict concavity and strict convexity follow from f 00ðxÞ < 0, or f 00ðxÞ > 0,

respectively.

Remark 9.135

1. We use the term ‘‘decreasing’’ in case 1 when we could have used the more compli-

cated notion of ‘‘nonincreasing.’’ The point is that ‘‘decreasing’’ here means that if

x < y, then f ðxÞb f ðyÞ. When we want to specify that x < y ) f ðxÞ > f ðyÞ, we use
the terminology ‘‘strictly decreasing. Similar remarks apply to the term ‘‘increasing.’’

2. It may be apparent that the first five statements in this proposition were stated in

terms of ‘‘f ðxÞ is concave/convex if and only if . . . .’’ For part 2(c), the second de-

rivative statement is not a characterization of strict concavity or convexity but is a

su‰cient condition. That this second derivative restriction is not necessary is easily

exemplified by f ðxÞ ¼Gx4 on the interval ½�1; 1�, say. It is apparent that these func-

tions are strictly convex ðþÞ and concave ð�Þ on the interval, yet f 00ð0Þ ¼ 0.

Proof Treating these statements in turn:

1. Given di¤erentiable f ðxÞ, and y < x, define the function:

gðtÞ ¼ f ðtxþ ð1� tÞyÞ;
for t A ½0; 1�. Note that g 0ðtÞ ¼ f 0ðtxþ ð1� tÞyÞðx� yÞ. Applying (9.33) with n ¼ 0,

and t0 ¼ 0; 1, we get

gðtÞ ¼ gð0Þ þ tg 0ðy1Þ; 0 < y1 < t;

gðtÞ ¼ gð1Þ þ ðt� 1Þg 0ðy2Þ; t < y2 < 1:
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Substituting back the original functions produces

f ðtxþ ð1� tÞyÞ ¼ f ðyÞ þ tðx� yÞ f 0ðyþ y1ðx� yÞÞ;

f ðtxþ ð1� tÞyÞ ¼ f ðxÞ þ ðt� 1Þðx� yÞ f 0ðyþ y2ðx� yÞÞ:
Next, multiplying the first equation by 1� t and the second by t and adding produces

f ðtxþ ð1� tÞyÞ ¼ ð1� tÞ f ðyÞ þ tf ðxÞ þ EðtÞ
where the error function is defined as

EðtÞ ¼ ðx� yÞtð1� tÞ½ f 0ðyþ y1ðx� yÞÞ � f 0ðyþ y2ðx� yÞÞ�:
To investigate the sign of EðtÞ, recall y < x. So the sign of EðtÞ is the same as the

sign of the term in square brackets. Now since y1 < y2 by construction, yþ y1ðx� yÞ
< yþ y2ðx� yÞ and we conclude that:

EðtÞb 0 i¤ f 0ðxÞ is decreasing, and then f ðxÞ is concave,
EðtÞa 0 i¤ f 0ðxÞ is increasing, and then f ðxÞ is convex.
If f 0ðxÞ is strictly monotonic, then f ðxÞ is either strictly concave or strictly convex,

since then EðtÞ > 0 or EðtÞ < 0, respectively.

2. Turning next to twice di¤erentiable f ðxÞ, let y < x be given. Applying (9.33) to

f 0ðxÞ with n ¼ 0, and x0 ¼ y, we get

f 0ðxÞ ¼ f 0ðyÞ þ ðx� yÞ f 00ðyÞ; y < y < x:

Now, if f 00ðyÞa 0, for all y, it is apparent that f 0ðxÞa f 0ðyÞ, and hence f 0ðxÞ is a
decreasing function and f ðxÞ is concave by part 1. Similarly, if f 00ðyÞb 0, we con-

clude that f ðxÞ is convex.
So the restrictions on f 00ðxÞ in parts 2(a) and 2(b) assure concavity and convexity.

To demonstrate that these restrictions on f 00ðxÞ are assured by the assumptions of

convavity or convexity, we argue the concavity result by contradiction, and the con-

vexity result is identical. Assume that f ðxÞ is concave on an interval and that there is

some x in the interval with f 00ðxÞ > 0. Then

lim
t!0

f 0ðxþ tÞ � f 0ðxÞ
t

> 0:

By definition of limit, we conclude that there exists � > 0 so that
f 0ðxþtÞ� f 0ðxÞ

t
> 0 for

jtj < �. Hence, taking 0 < t < �, we conclude that
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f 0ðxþ tÞ > f 0ðxÞ:
So f 0ðxÞ is a strictly increasing function on ½x; xþ �Þ, contradicting the concavity of

f ðxÞ by part 1(a).

Finally, for part 2(c) if f 00ðyÞ < 0 or f 00ðyÞ > 0 for all y, then strict concavity (re-

spectively, strict convexity) is assured by the identity above between f 0ðxÞ and f 0ðyÞ
for y < x. n

Example 9.136

1. As noted in section 3.1.5 for the proof of Young’s inequality, f ðxÞ ¼ ln x is concave,

in fact strictly concave, on ð0;yÞ. This function has derivatives f 0ðxÞ ¼ 1
x
and f 00ðxÞ ¼

� 1
x2 . Observing that f 0ðxÞ is strictly decreasing, or that f 00ðxÞ < 0, on ð0;yÞ, the con-

clusion follows.

2. As noted in section 3.2.2 and in the proof of proposition 6.33, f ðxÞ ¼ xp is strictly

convex on ð0;yÞ for p > 1. Here f 0ðxÞ ¼ pxp�1 and f 00ðxÞ ¼ pðp� 1Þxp�2. Observ-

ing that f 0ðxÞ is strictly increasing, or that f 00ðxÞ > 0, on ð0;yÞ, the conclusion

follows.

3. As a third example, f ðxÞ ¼ ex is strictly convex on R, since f 0ðxÞ ¼ ex is strictly

increasing. Alternatively, f 00ðxÞ ¼ ex > 0 for all x.

Returning to the discussion on points of inflection, we begin with a definition.

Definition 9.137 A point x0 is a point of inflection of f ðxÞ if there is an interval ða; bÞ
containing x0 so that f ðxÞ is concave on ða; x0Þ and convex on ðx0; bÞ, or conversely.
Example 9.138 The point x ¼ 0 is a point of inflection of f ðxÞ ¼ x3, since f 00ðxÞ ¼
6x, which is positive for x > 0, and hence f ðxÞ is convex on ð0;yÞ. Also f 00ðxÞ is neg-
ative for x < 0, and so f ðxÞ is concave on ð�y; 0Þ. For this example, f 0ðxÞ ¼ 0, so

x ¼ 0 is also a critical point. But inflection points need not be critical points. For exam-

ple, gðxÞ ¼ x3 þ bx satisfies g 00ðxÞ ¼ 6x, so x ¼ 0 is again an inflection point, and yet

g 0ð0Þ ¼ b can be any value we choose.

In the same way that potential relative maximums and minimums can be identified

by inspecting the critical points of a function where f 0ðxÞ ¼ 0, there is a necessary

condition in order for a point to be a point of inflection.

Proposition 9.139 If x0 is a point of inflection of a twice di¤erentiable function f ðxÞ
with f 00ðxÞ continuous, then f 00ðx0Þ ¼ 0.

Proof This follows immediately from proposition 9.134 above, since a twice di¤er-

entiable function satisfies f 00ðxÞa 0 when concave and f 00ðxÞb 0 when convex.

9.6 Concave and Convex Functions 499



Since f 00ðxÞ is continuous, f 00ðx0Þ ¼ limx!x0 f ðxÞ, and this common value must

therefore be 0. n

Example 9.140 As noted in section 9.5.1, functions of the form, f ðxÞ ¼ axn, for inte-

ger n > 2, and a A R, provide a variety of possible behaviors when f 00ð0Þ ¼ 0. For n

even, it is apparent that x0 ¼ 0 is a relative minimum if a > 0, and a relative maximum

if a < 0. For n odd, it is also apparent that for a > 0, the second derivative satisfies

f 00ðxÞ > 0 for x > 0 and conversely for x < 0. Hence x0 ¼ 0 is a point in inflection.

The same conclusion is reached for a < 0.

More generally, as noted in remark 9.123, if f ðxÞ is a function with f ð jÞðx0Þ ¼ 0 for

j ¼ 1; . . . ; n� 1, and f ðnÞðx0Þ0 0, with f ðnÞðxÞ continuous, then if n is even, x0 will be

a relative minimum if f ðnÞðx0Þ > 0 and a relative maximum if f ðnÞðx0Þ < 0. This fol-

lows from (9.24):

f ðxÞ ¼ f ðx0Þ þ 1

n!
f ðnÞðyÞðx� x0Þn;

where y is between x and x0. Since f ðnÞðxÞ is continuous, there is an interval about x0,

I , within which f ðnÞðyÞ has the same sign as f ðnÞðx0Þ, as noted in proposition 9.38. Con-

sequently, if f ðnÞðyÞ > 0 for y A I , then since n is even, f ðxÞb f ðx0Þ and x0 is a rela-

tive minimum, and the same argument applies if f ðnÞðyÞ < 0.

It was also noted that if n is odd, x0 will be a point of inflection independent of the

sign of f ðnÞðx0Þ. To see this, note that (9.24) can also be applied to the function gðxÞ ¼
f 00ðxÞ, for which gðx0Þ ¼ 0 and gð jÞðx0Þ ¼ 0 for j ¼ 1; . . . ; n� 3:

gðxÞ ¼ 1

ðn� 2Þ! g
ðn�2ÞðyÞðx� x0Þn�2:

In other words,

f 00ðxÞ ¼ 1

ðn� 2Þ! f
ðnÞðyÞðx� x0Þn�2:

Now, if f ðnÞðyÞ > 0 for y A I , then since n is odd, f 00ðxÞ < 0 for x < x0 and conversely

for x > x0. If f
ðnÞðyÞ < 0 for y A I , the same argument applies and produces f 00ðxÞ > 0

for x < x0, and conversely for x > x0. So since f 00ðxÞ changes sign at x ¼ x0, this point

is a point of inflection by proposition 9.134.

9.6.2 Jensen’s Inequality

An important consequence of a function f ðxÞ being concave or convex is that it

allows the prediction of the relationship between
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E½ f ðX Þ� and f ðE½X �Þ;
where X is a random variable with a given probability density function gðxÞ, and
E denotes the expectation of the given quantity as defined in chapter 7. The result

that will be developed here will apply only to discrete p.d.f.s at this time, but once

the necessary tools are developed, it can be shown to be true in a far more general

context.

To this end, first note that the definition of convexity and concavity, while given in

the context of two points, is true for any finite number.

Proposition 9.141 If f ðxÞ is concave on an interval I , and fxigni¼1 H I and ftigni¼1 H
R with ti b 0 for all i and

P
ti ¼ 1, then

f
Xn
i¼1

tixi

 !
b
Xn
i¼1

ti f ðxiÞ: ð9:47Þ

Similarly, if f ðxÞ is convex, then

f
Xn
i¼1

tixi

 !
a
Xn
i¼1

ti f ðxiÞ: ð9:48Þ

Proof The proof is by induction. The result is true for n ¼ 2 by definition. Assum-

ing it is true for n, let fxignþ1
i¼1 H I , and ftign¼1

i¼1 HR be given. Define

t ¼ t1; x ¼ x1; 1� t ¼
Xnþ1

i¼2

ti; y ¼
Pnþ1

i¼2 tixiPnþ1
i¼2 ti

;

and apply the definition to f ðtxþ ð1� tÞyÞ, obtaining in the convex case

f
Xn
i¼1

tixi

 !
a t1 f ðx1Þ þ

Xnþ1

i¼2

ti

 !
f
Xnþ1

i¼2

sixi

 !
;

where si ¼ ti

T nþ1
i¼2 ti

. Now since
Pnþ1

i¼2 si ¼ 1, apply the assumption that the result holds

for n to this last term, obtaining

f
Xnþ1

i¼2

sixi

 !
a
Xnþ1

i¼2

si f ðxiÞ;

and the proof is complete after substitution for si and multiplication by ðPnþ1
i¼2 tiÞ. n
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This result has two immediate applications. The first is to the proof of the

arithmetic-geometric mean inequality.

Proposition 9.142 If fxigni¼1 HR, and xi b 0 for all i, then

1

n

Xn
i¼1

xi b
Yn
i¼1

xi

 !1=n
: ð9:49Þ

Proof See exercise 12. n

Now consider the earlier question on the relationship between E½ f ðXÞ� and

f ðE½X �Þ. If X is a finite discrete random variable, with p.d.f. gðxÞ and range fxigni¼1,

then since gðxiÞ > 0 for all i, and
Pn

i¼1 gðxiÞ ¼ 1, proposition 9.141 assures that

E½ f ðX Þ�a f ðE½X �Þ if f ðxÞ is concave;
E½ f ðX Þ�b f ðE½X �Þ if f ðxÞ is convex:
Both results follow from

E½ f ðX Þ� ¼
Xn
i¼1

f ðxiÞgðxiÞ;

f ðE½X �Þ ¼ f
Xn
i¼1

xigðxiÞ
 !

:

Rather than formalize this limited result, we generalize it to the case of an arbi-

trary discrete p.d.f., for which we need a new approach.

Proposition 9.143 If f ðxÞ is di¤erentiable, then for any a,

f ðxÞa f ðaÞ þ f 0ðaÞðx� aÞ if f ðxÞ is concave;

f ðxÞb f ðaÞ þ f 0ðaÞðx� aÞ if f ðxÞ is convex:
In addition, if f ðxÞ is strictly concave or strictly convex, then the inequalities are

strict.

Remark 9.144 This result is true without the assumption of di¤erentiability, but

where f 0ðaÞ is replaced by a di¤erent function of a. This function is closely related to

the ‘‘derivative,’’ and in fact is defined as a one-sided derivative whereby in the defini-

tion in (9.8), Dx is restricted to be only positive or only negative. It then turns out that

502 Chapter 9 Calculus I: Di¤erentiation



concave and convex functions have both of these one-sided derivatives at every point,

and that they agree, except perhaps on a countable collection of points. In other words,

concave or convex f ðxÞ is not only Lipschitz continuous as proved in proposition 9.132,

but also di¤erentiable, except perhaps on a countable collection of points. However, we

have no further use for this generalization, so we will not develop it. We will instead

simply assume di¤erentiability.

Proof By the mean value theorem, we have that for any a,

f ðxÞ ¼ f ðaÞ þ f 0ðyÞðx� aÞ;
where y is between x and a. For example, if x > a, then x > y > a. Now, if f ðxÞ
is concave, f 0ðxÞ is a decreasing function, and hence f 0ðyÞa f ðaÞ if x > a, and

f 0ðyÞb f ðaÞ if x < a. In both cases f 0ðyÞðx� aÞa f 0ðaÞðx� aÞ. If f ðxÞ is convex,
the inequalities reverse. When strictly concave or strictly convex, the first derivative

inequalities are sharp and so too are the inequalities in the conclusion. n

We now turn to an important result related to concave and convex functions,

known as Jensen’s inequality, and named for its discoverer, Johan Jensen, (1859–

1925).

Proposition 9.145 (Jensen’s Inequality) Let f ðxÞ be a di¤erentiable function, and X

a discrete random variable with range contained in the domain of f , namely

RngðX ÞHDmnð f Þ. Then
E½ f ðX Þ�a f ðE½X �Þ if f ðxÞ is concave; ð9:50aÞ
E½ f ðX Þ�b f ðE½X �Þ if f ðxÞ is convex: ð9:50bÞ
If strictly concave or strictly convex, the inequalities are strict.

Proof Let a ¼ E½X � in the proposition 9.143. Since E½ f 0ðaÞðx� aÞ� ¼
f 0ðaÞE½ðx� aÞ� ¼ 0, the result follows. n

Remark 9.146

1. Continuous probability distributions will be studied in chapter 10, but it is noted here

that once introduced and the notion of E½ f ðX Þ� is defined, the simplicity of the proof

above will carry over to this case without modification.

2. Note that an easy calculation directly demonstrates that if f ðxÞ is an a‰ne function,

f ðxÞ ¼ axþ b for constants a and b, which is both concave and convex, then

E½ f ðX Þ� ¼ f ðE½X �Þ:
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9.7 Approximating Derivatives

As it turns out, the Taylor series approximations in the earlier sections can be used

not only to approximate a given function but also in developing approximation for-

mulas for its various derivatives.

9.7.1 Approximating f O(x)

For a function with only one derivative, we have directly from the definition in (9.8)

that f 0ðx0Þ can be approximated by
f ðxÞ� f ðx0Þ

Dx
, but this provides no information on

the rate of convergence. Using (9.27) with n ¼ 1 does not help, as even in the case

of continuous f 0ðxÞ the error is seen to be oðDxÞ=Dx ¼ oð1Þ, which just means the

error goes to 0 at some rate of speed, a fact already known from the existence of

f 0ðxÞ.
If we assume that f ðxÞ has two derivatives, we can use (9.27) with n ¼ 2. Spe-

cifically, from f ðxÞ ¼P2
j¼0

1
j!
f ð jÞðx0Þðx� x0Þ j þOðDx2Þ we obtain by subtracting

f ðx0Þ, dividing by Dx, and solving for f 0ðx0Þ,

f 0ðx0ÞA f ðx0 þ DxÞ � f ðx0Þ
Dx

þOðDxÞ: ð9:51Þ

This approximation formula is known as the forward di¤erence approximation, and

the error of OðDxÞ comes from the second derivative term in (9.27) divided by Dx.

This approximation can be improved if there are three derivatives, by applying

(9.27) with n ¼ 3 to both f ðx0 þ DxÞ and f ðx0 � DxÞ and subtracting. Then the sec-

ond derivative terms cancel out, and we obtain

f 0ðx0ÞA f ðx0 þ DxÞ � f ðx0 � DxÞ
2Dx

þOðDx2Þ: ð9:52Þ

This approximation formula is known as the central di¤erence approximation, and

the error term comes from the OðDx3Þ term in (9.27) divided by Dx.

The formula in (9.52) can also be applied if f ðxÞ has only two derivatives, but then

the error is again OðDxÞ as in (9.51).

9.7.2 Approximating f P(x)

Once again applying (9.27) with n ¼ 3 to both f ðx0 þ DxÞ and f ðx0 � DxÞ and add-

ing, then subtracting 2f ðx0Þ, we obtain in the case of three derivatives:

f 00ðxÞA f ðx0 þ DxÞ þ f ðx0 � DxÞ � 2f ðx0Þ
ðDxÞ2 þOðDxÞ: ð9:53Þ
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This approximation formula is also known as the central di¤erence approximation,

and the error term comes from the OðDx3Þ term in (9.27) divided by Dx2. If f ðxÞ
has four derivatives at x0, we can apply (9.27) with n ¼ 4. The resulting error term

will be OðDx2Þ, since then the third derivatives will cancel.

9.7.3 Approximating f (n)(x), nI 2

Methods similar to those above can be applied but are somewhat more complex. The

reason is that one needs to determine collections of increments, fDxjgnj¼1, and numer-

ical coe‰cients, fajgnj¼1, so that the Taylor polynomial for
Pn

j¼1 aj f ðx0 þ DxjÞ will

have all derivative terms cancel, except for the last, which we wish to approximate.

One then solves for this last derivative, producing the desired approximation formula

and associated error term. This problem is readily solvable with the tools of linear

algebra.

9.8 Applications to Finance

9.8.1 Continuity of Price Functions

Continuity is a pervasive notion in many applications, including those in finance, and

one that tends to be assumed in virtually every situation without question, or even

explicit recognition. For example, the value at time t of a $100 investment at time 0

with an annual rate of interest of r is given by

f ðr; tÞ ¼ 100ð1þ rÞ t:
Fixing r for the moment, it would be nearly universally assumed that f is a continu-

ous function of t, in that for any t0,

lim
t!t0

f ðr; tÞ ¼ f ðr; t0Þ:

In other words, the value of the investment grows smoothly with time; there are no

unexpected jumps in the account value. One similarly assumes that for t fixed, if r is

close to r0, it would be expected to be the case that f ðr; tÞ will be close to f ðr0; tÞ, and
limr!r0 f ðr; tÞ ¼ f ðr0; tÞ.

Of course, this function is not uniformly continuous in either r or t unless we re-

strict the range of allowable values to a closed and bounded interval. A 25 basis

point change in r has a much smaller absolute e¤ect on f when r is large than when

r is small. In other words, given �, the value of d needed so that jr� r0j < d implies
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that j f ðr; tÞ � f ðr0; tÞj < � increases as r0 increases. For t ¼ 15 and r0 ¼ 0:05, a value

of � ¼ $1 can be achieved with dA0:0007 or about 7 basis points, whereas for

r0 ¼ 0:25, the associated dA0:00082 or about 8:2 basis points.

This lack of uniform continuity is fairly mild and uneventful over the typical range

of market rates, and is also mild compared to that observed when one considers f as

a function of t. In this case, d decreases as t0 increases. Again starting with t0 ¼ 15

and r ¼ 0:05, a value of � ¼ $1 can be achieved with dA0:0007, whereas for t0 ¼ 30,

the associated dA0:00035 or about 3:5 basis points.

Similar remarks apply to the host of fixed income type pricing formulas. For ex-

ample, a general discounted present value of a series of cash flows

f ðrÞ ¼
Xn
t¼0

ctð1þ rÞ�t;

as well as the counterpart formula for an n-year semiannual coupon bond in (2.15),

Pði; rÞ ¼ F
r

2
a2n; i=2 þ Fv2ni=2;

are given by continuous functions.

A similar conclusion applies to the price of a preferred stock in (2.21),

Pði; rÞ ¼ Fr

i
; i > 0;

or the valuation of common stock using the discounted dividend model with growth

in (2.22),

VðD; g; rÞ ¼ D
1þ g

r� g
; r > g;

as well as to forward prices on a given traded security in (2.24),

F0ðS0; rT ;TÞ ¼ S0ð1þ rTÞT :
Within the domains of these functions, identified with the tools in this chapter as

functions of a single variable by holding the others constant, intuition compels that

each will produce continuous pricing results, although typically not uniformly con-

tinuous. Based on the theory above, we easily confirm that such intuition if formally

verifiable on the respective price function domains.
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9.8.2 Constrained Optimization

The notion of continuity is important for constrained optimization problems. As seen

in chapters 3 and 4, a general problem can be framed as

Maximize ðminimizeÞ: gðxÞ;

Given: x A A1 fx A Rn j f ðxÞ ¼ cg:
Since A ¼ f �1ðcÞ, if f �1 is continuous, then the topological result in proposition

9.67 generalizes and A will be a compact set because c is compact. In addition, gen-

eralizing the proposition 9.39 result for continuous functions on closed and bounded

intervals, if gðxÞ is continuous, it must attain its maximum and minimum on every

compact set. So continuity provides a theoretical assurance of the existence of at least

one solution to such optimization problems. A similar analysis applies if A ¼ fx j
f ðxÞ A Cg where C is any compact set, or if the problem has a finite number of con-

straints, and A ¼ 7
j
fx j fjðxÞ A Cjg where Cj is compact for all j.

9.8.3 Interval Bisection

Another example comes from chapters 4 and 5 where interval bisection was intro-

duced as a method to solve equations of the form

f ðxÞ ¼ c:

In those chapters this method was illustrated with f ðxÞ denoting the price of a bond

with yield x and c denoting the bond’s current price. In other words, the goal was to

find the bond’s yield to maturity.

This method involves constructing two sequences of values: fxþn g and fx�n g with

the property that:

1. xþn a x�n ,

2. f ðx�n Þa ca f ðxþn Þ,
3. jxþn � x�n ja

jxþ
0
�x�

0
j

2 n ; that is, jxþn � x�n j ¼ Oð2�nÞ.

In chapter 5 it was shown that xþn � x�n ! 0 implies that there is an x to which

both sequences converge. Then, if f ðxÞ is a continuous function, as is the case

for the price function of a bond, it is also sequentially continuous. Consequently,

x
þ=�
n ! x assures that f ðxþ=�

n Þ ! f ðxÞ. Finally, because f ðx�n Þa ca f ðxþn Þ, we

conclude that f ðxÞ ¼ c.
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Of course, if f ðxÞ is a continuous function, the intermediate value theorem assures

the existence of x with f ðxÞ ¼ c as soon as the first two terms of the sequences are

found with f ðx�0 Þa ca f ðxþ0 Þ. The method of interval bisection simply provides a

numerical procedure for estimating this value.

9.8.4 Minimal Risk Asset Allocation

Say that two risky assets are given, A1 and A2, to which we desire to allocate a given

dollar investment with weights w1 and w2 ¼ 1� w1. Let the return random variables

be denoted Rj, j ¼ 1; 2, and analogously, the mean returns and standard deviation of

returns denoted mj and sj, j ¼ 1; 2; let the correlation between these returns be r.

The portfolio random return is given as a function of weight w1w1:

R ¼ wR1 þ ð1� wÞR2:

Using the results from chapter 7, we derive

E½R� ¼ wm1 þ ð1� wÞm2; ð9:54aÞ

Var½R� ¼ w2s2
1 þ ð1� wÞ2s2

2 þ 2wð1� wÞrs1s2: ð9:54bÞ

Considered as a function of w, it is apparent that E½R� ¼ m2 þ ðm1 � m2Þw achieves

its maximum and minimum only at the endpoints of any allowable interval for w,

such as ½0; 1� if no short positions are allowed. In other words, E½R� has no critical

points. On the other hand,

Var½R� ¼ ðs2
1 þ s2

2 � 2rs1s2Þw2 þ 2s2ðrs1 � s2Þwþ s2
2 ;

is a quadratic function of w, and hence it has a minimum or maximum depending on

the sign of the coe‰cient of w2.

This coe‰cient of w2 is evidently positive when s1 0 s2, since �1a ra 1 by

proposition 7.43, and

s2
1 þ s2

2 � 2rs1s2 ¼ ðs1 � s2Þ2 þ 2ð1� rÞs1s2:

Hence there is a minimal risk allocation. If s1 ¼ s2, the same conclusion applies

unless r ¼ 1, in which case Var½R� is constant and E½R� is linear, and acheives its

maximum and minimum at the endpoints of any allowable interval for w.

Denoting Var½R� as VðwÞ, we have that

V 0ðwÞ ¼ 2ðs2
1 þ s2

2 � 2rs1s2Þwþ 2s2ðrs1 � s2Þ:
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Hence the risk-minimizing critical point, where V 0ðwminÞ ¼ 0, is given by

wmin ¼ s2ðs2 � rs1Þ
s2
1 þ s2

2 � 2rs1s2
: ð9:55Þ

Since V 00ðwÞ ¼ 2ðs2
1 þ s2

2 � 2rs1s2Þ > 0 except in the trivial case of s1 ¼ s2 and

r ¼ 1, the second derivative test confirms what we already knew, that wmin is a rela-

tive minimum of this variance function.

Since the denominator of wmin is, with one exception, always positive, the sign of

wmin is determined by the sign of the numerator, s2ðs2 � rs1Þ, which is determined

by the sign of s2 � rs1. Specifically, the risk-minimizing allocation to A1 satisfies

wmin > 0 if r <
s2

s1
; ð9:56aÞ

wmin ¼ 0 if r ¼ s1

s2
; ð9:56bÞ

wmin < 0 if r >
s2

s1
: ð9:56cÞ

It is easy to verify that if one of these assets is the risk-free asset, this analysis

yields the obvious conclusion that the minimal risk allocation is wj ¼ 1 in the risk-

free asset. (See exercise 39.)

9.8.5 Duration and Convexity Approximations

The same way that many of the most common pricing functions above can be shown

to be continuous, they are easily shown to be di¤erentiable on their domains of defi-

nition. For instance, the price of an n-year bond with annual cash flows and annual

yield, f ðrÞ ¼Pn
t¼0 ctð1þ rÞ�t, is easily di¤erentiated to produce

f 0ðrÞ ¼ �
Xn
t¼1

tctð1þ rÞ�t�1;

f 00ðrÞ ¼
Xn
t¼1

tðtþ 1Þctð1þ rÞ�t�2:

For the price of a preferred stock, with PðiÞ ¼ Fr
i
, we have P 0ðiÞ ¼ � Fr

i2
and

P 00ðiÞ ¼ 2Fr
i3
.
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With such derivatives, one can then approximate the bond price at r based on

information on the bond price function at r0, and similarly for the preferred stock,

using (9.26) and error estimates based on (9.33) or (9.27). In general, for fixed income

applications, such approximations are restated in terms of relative derivatives,

defined as follows:

Definition 9.147 If f ðrÞ denotes the price of a fixed income security as a function of

its yield r, the (modified) duration of f ðrÞ at r0, denoted Dðr0Þ, and the convexity

of f ðrÞ at r0, denoted Cðr0Þ, are defined when f ðr0Þ0 0 by

Dðr0Þ ¼ � f 0ðr0Þ
f ðr0Þ ð9:57aÞ

¼
Pn

t¼1 tctð1þ r0Þ�t�1Pn
t¼0 ctð1þ r0Þ�t ; ð9:57bÞ

Cðr0Þ ¼ f 00ðr0Þ
f ðr0Þ ð9:58aÞ

¼
Pn

t¼1 tðtþ 1Þctð1þ r0Þ�t�2Pn
t¼0 ctð1þ r0Þ�t : ð9:58bÞ

Of course, duration and convexity are functions of r as is the original price func-

tion, but in practice, one is often focused on the value of these functions at the cur-

rent yield level of r0 rather than in their functional attributes. The formulas above

reflect the assumption of annual cash flows and an annual yield rate r and are easily

generalized. For instance, with semiannual yields and cash flows we have for an

n-year security: f ðrÞ ¼P2n
t¼0 ct=2 1þ r

2

� ��t
; and duration and convexity are again

defined as relative derivatives of this function. For instance,

Dðr0Þ ¼ � f 0ðr0Þ
f ðr0Þ ¼

P2n
t¼1

1
2 tct=2 1þ r0

2

� ��t�1P2n
t¼0 ct=2 1þ r0

2

� ��t :

For the preferred stock, one has Dði0Þ ¼ 1
i0
.

Also note that the definition of duration above is often labeled modified duration

to distinguish it from an earlier notion of Macaulay duration, named for Frederick

Macaulay (1882–1970). Macaulay introduced this calculation in 1938, which in the

annual yield case is
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DMacðr0Þ ¼
Pn

t¼1 tctð1þ r0Þ�tPn
t¼0 ctð1þ r0Þ�t ; ð9:59Þ

with analogous definitions for other yield nominal bases. Modified duration is then

easily seen to equal Macaulay duration divided by ð1þ rÞ, or in the semiannual case

by 1þ r
2

� �
, and so forth.

Note that this Macaulay duration formula can be interpreted as a weighted ‘‘time

to cash receipt’’ measure:

DMacðr0Þ ¼
Xn
t¼1

twt;

wt ¼ ctð1þ rÞ�tPn
t¼0 ctð1þ rÞ�t :

Using the values in (9.57) and (9.58), one then has the following approximations

from (9.26):

f ðrÞA f ðr0Þ½1�Dðr0Þðr� r0Þ�; ð9:60Þ
known as the duration approximation, as well as

f ðrÞA f ðr0Þ 1�Dðr0Þðr� r0Þ þ 1

2
Cðr0Þðr� r0Þ2


 �
; ð9:61Þ

known as the duration approximation with a convexity adjustment. The second for-

mula provides one way to understand and quantify the price sensitivity ‘‘benefit’’ of

a large, positive convexity value. Whether rates increase or decrease, a large positive

convexity value will improve the benefit of duration when this duration e¤ect is pos-

itive, and it will mitigate somewhat the harm of duration when this duration e¤ect is

negative. This convexity benefit is o¤set, of course, by the price one predictably pays

for this extra convexity in terms of a lower yield.

Note that the historical justification for labeling the measure in (9.57) as ‘‘modified

duration’’ was that it was recognized that Macaulay duration could be used to ap-

proximate the price change of a bond, as in (9.60), if this measure was first modified

by dividing by a factor ð1þ rÞ, or in the semiannual case, 1þ r
2

� �
, and so forth,

thereby producing a modified duration measure.

Dollar-Based Measures

In the case where f ðr0Þ ¼ 0, which can easily happen when f ðrÞ denotes the price of
a net portfolio such as a long/short bond portfolio, or a hedged bond portfolio,
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or when f ðrÞ is the price of a derivatives contract such as an interest rate swap or

futures contract, duration and convexity are not defined. In this case one works

with dollar duration, D$ðr0Þ, and dollar convexity, C $ðr0Þ. In general, these measures

are defined in one of two ways as follows:

D$ðr0Þ1Dðr0Þ f ðr0Þ ¼ � f 0ðr0Þ; ð9:62aÞ

C $ðr0Þ1Cðr0Þ f ðr0Þ ¼ f 00ðr0Þ: ð9:62bÞ
When f ðr0Þ ¼ 0 and duration and convexity are not defined, these dollar measures

are defined directly in terms of the price functions derivatives.

In this case of f ðr0Þ ¼ 0, the approximation formulas in (9.60) and (9.61) more

closely resemble standard Taylor series polynomials in (9.34), except for the conven-

tional use of D$ðr0Þ ¼ � f 0ðr0Þ. So the formulas become

f ðrÞA f ðr0Þ �D$ðr0Þðr� r0Þ; ð9:63Þ

f ðrÞA f ðr0Þ �D$ðr0Þðr� r0Þ þ 1

2
C $ðr0Þðr� r0Þ2: ð9:64Þ

From (9.27) we see that in all cases the error in the duration approximation is

OðDrÞ, while with a convexity adjustment it is OðDrÞ2. Using (9.34), one can also

express the maximum error in the duration approximation for
f ðrÞ
f ðr0Þ in terms of the

maximum of the convexity function between r and r0:

f ðrÞ
f ðr0Þ � ½1�Dðr0Þðr� r0Þ�




 



a M

2
ðr� r0Þ2; M ¼ max

~rr A fr; r0g
jCð~rrÞj:

Similarly the formula with a convexity adjustment involves the maximum of
f ð3ÞðrÞ
f ðrÞ




 



on fr; r0g where this notation is intended to denote the interval ½r; r0� or ½r0; r�,
depending on which of r0 and r is larger.

When f ðr0Þ ¼ 0, these error bounds follow directly from (9.34). So M reflects the

maximum of j f 00ðrÞj on fr; r0g for the duration approximation and the maximum of

j f ð3ÞðrÞj on fr; r0g for the approximation with a convexity adjustment.

Embedded Options

For more complicated fixed income price functions, such as those associated with

securities with embedded options, the approximations above are again used. How-

ever, because there is no formulaic approach to calculating derivatives in this case,

such derivatives are approximated using formulas such as in (9.51), (9.52), and (9.53)
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for an appropriately choosen value of Dr. In such cases one often calls the associated

duration and convexity measures e¤ective duration and e¤ective convexity, in part to

highlight the fact that embedded options have been accounted for and in part to

highlight the dependency on an assumed Dr value used in the estimate. More impor-

tant, this terminology is intended to distance such calculations from those for fixed

cash flow securities for which these measures also have interpretations in terms of

the time distribution of the cash flows. When embedded options are present, all

such connections may cease to exist.

For example, a security such as an interest only (IO) strip of a collateralized mort-

gage obligation (CMO) can have a negative e¤ective duration, despite the fact that

all payments are made in the future. This is because such securities have the property

that they increase in value when rates rise. On the other hand, a principal only (PO)

strip of a CMO, because of the extreme sensitivities of the price function, can have an

e¤ective duration measure significantly in excess of the maximum time to receipt of

the last projected cash flow. In both cases this is because of the embedded prepay-

ment option in the underlying mortgages.

Naturally duration approximations apply equally well to price functions of com-

mon and preferred stock, and one sometimes even sees notions of duration and con-

vexity applied to such securities calculated as above. For example, the price of a

common stock with fixed growth rate dividends is given as VðrÞ ¼ D 1þg
r�g

, where here

D denotes the dollar value of the last dividend. This function is clearly di¤erentiable

for r > g, the logical domain of definition. The modified duration of this price func-

tion is then calculated as

Dðr0Þ ¼ 1

r0 � g
:

Rate Sensitivity of Duration

In addition to providing a second-order adjustment to the duration approximation

in (9.61), convexity is relevant for determining the sensitivity of the duration measure

to changes in interest rates, and this is in turn relevant in terms of suggesting how

often duration rebalancing may be necessary for the applications of the next section.

Defining the duration and convexity functions, DðrÞ and CðrÞ, as in (9.57) and (9.58)

on the assumption that PðrÞ0 0, we have

DðrÞ ¼ �P 0ðrÞ
PðrÞ ; CðrÞ ¼ P 00ðrÞ

PðrÞ :

It is straightforward to evaluate D 0ðrÞ and obtain
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D 0ðrÞ ¼ D2ðrÞ � CðrÞ: ð9:65Þ
Consequently, from the first-order Taylor series for DðrÞ,

DðrÞ ¼ Dðr0Þ þ ½D2ðr0Þ � Cðr0Þ�ðr� r0Þ; ð9:66Þ
it is apparent that as yields increase, duration will decrease if D2ðr0Þ < Cðr0Þ, and
conversely, and the opposite is true as yields decrease.

This provides another way to understand the price sensitivity benefit associated

with large positive convexity. Specifically, when Cðr0Þ exceeds D2ðr0Þ, the duration

of the security decreases as rates rise, and increases as rates fall. Consequently the

duration e¤ect on price is enhanced when positive, and mitigated when negative. Of

course, small, and especially negative, convexity works oppositely, enhancing the du-

ration e¤ect on price when negative, and mitigating this e¤ect when positive.

But again it is important to note that convexity in a security is not a ‘‘free good’’

when positive, nor a ‘‘free bad’’ when negative. Convexity attributes of a security in-

fluence its desirability, and hence price, so there is an expected price and yield o¤set

to the e¤ect of the convexity adjustment.

9.8.6 Asset–Liability Management

The most important application of the notions of duration and convexity may be to

hedging interest rate risk in a portfolio, which is a major component of asset–liability

management, also called asset–liability risk management, and to the cognoscenti,

ALM. The general setup is that one has an asset portfolio AðiÞ whose value is mod-

eled as a function which depends on the single interest rate i, as well as a liability

portfolio, LðiÞ, which depends on the same rate. The focus of asset–liability manage-

ment is then on the surplus, net worth, or capital of this entity:

SðiÞ ¼ AðiÞ � LðiÞ:
In particular, the focus is on managing the interest rate risk of this net position or

some function of this net position. In this sense, asset–liability risk management is

in fact surplus risk management or capital risk management. As will be seen below,

neither label for this endeavor adequately describes the broad range and applicability

of this theory.

That A, L, and hence S depend on a single interest rate is of course an oversimpli-

fying assumption in the real world, where both assets and liabilities are likely to be

multivariate functions dependent on many interest rates and, in general, di¤erent in-

terest rates. However, in one application of this general theory, A and L are eval-
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uated on their respective collections of interest rates, and the parameter i denotes the

common change in all rates. In other words, in this application, while the initial in-

terest rate structures are realistic, the simplifying assumption is that all structures

move in parallel. In this application the model is often referred to as the parallel shift

model.

To address these general multivariate price function models requires additional

tools from multivariate calculus. That said, even in this simplistic context, important

notions can be introduced and understood which underlie the generalizations possi-

ble in that framework.

To ground the reader in specific applications of this theory, consider the following:

Example 9.148

1. Assets, liabilities, and surplus for a financial intermediary such as a life insurer,

property and casualty insurer, commercial bank, or pension fund correspond to the re-

spective portfolios on the entities’ balance sheets. However, in these applications it is

important to recognize that the function values AðiÞ, LðiÞ, and SðiÞ are not intended to

denote the firms’ carrying values on their balance sheets. Carrying values are reflective

of various accounting conventions prescribed by generally accepted accounting princi-

ples (GAAP) for publicly traded firms, which can vary from country to country, al-

though these principles are now in the process of converging to an international

accounting standard (IAS). In the case of US insurance companies, there is also an ac-

counting framework known as statutory accounting, promulgated by the state insurance

regulators, the focus of which is on a conservative estimation of the firms’ capital ade-

quacy. For a pension plan, valuation accounting is the common basis which is reflective

of both regulatory and market valuation principles.

Instead of carrying values, the values implied by AðiÞ, LðiÞ, and SðiÞ are intended to

be market values, or in the case of illiquid or nontradable positions, fair values defined

as the market price ‘‘between a willing seller and willing buyer in a competitive mar-

ket.’’ Of course, in many accounting frameworks, it is the market value that determines

the carrying value. The point here is that whether or not it is defined that way, the focus

of asset–liability management is on market value, broadly defined. That said, one im-

portant responsibility of an ALM manager is to ensure that strategies formulated in

this environment will have well-understood, and favorable, or at least acceptably ad-

verse, e¤ects in the respective accounting regime(s).

2. For a fixed income hedge fund or trading desk of an investment bank, AðiÞ and LðiÞ
could denote the market values of the long and short positions, respectively.

9.8 Applications to Finance 515



3. In a general asset-hedging application, AðiÞ is a portfolio of assets, and LðiÞ, which
may not exist at the moment, is the intended hedging portfolio which intuitively will

represent a ‘‘short’’ position in the market, or a financial derivatives overlay. In such

an application, defining SðiÞ ¼ AðiÞ � LðiÞ as the net position is a notational conve-

nience, and one must be careful about ‘‘signs.’’ If LðiÞ denotes the market value of

securities, and if these securities are shorted, then the net risk position is AðiÞ � LðiÞ.
On the other hand, if LðiÞ denotes the market value of the hedging position, then the

net position is AðiÞ þ LðiÞ. To avoid confusion, hedges are often set up within the for-

mer framework, where LðiÞ denotes the value of a position, which is then shorted, and

hence the math works out with a ‘‘�’’ sign.

4. For a general liability-hedging application, such as that related to the issuance of

debt, it is the LðiÞ that is the given, and one might be interested in establishing a hedg-

ing position AðiÞ. Again, it is important to be mindful of the signs used in the analysis.

5. Finally, in fixed income portfolio management such as for a mutual fund, AðiÞ would
naturally denote the value of the portfolio, and one can notionally define LðiÞ as a

position in the portfolio’s benchmark index of the same initial dollar value. Then

AðiÞ � LðiÞ can be evaluated by the portfolio manager to identify interest rate risk posi-

tions vis-à-vis the benchmark, and trades evaluated in the asset portfolio to manage this

exposure.

To develop some results and unambiguously address the sign problem, imagine

that we wish to quantify the risk profile of SðiÞ ¼ AðiÞ � LðiÞ for a firm as in the first

example above. We assume that initially the interest rate variable has value i0, and

hence the initial value of surplus is Sði0Þ ¼ Aði0Þ � Lði0Þ. In the parallel shift model,

i0 ¼ 0, reflecting valuation on today’s interest rate structures, and the general shift

i0 ! i is really 0 ! i.

To calculate duration and convexity of any portfolio is easy, since the portfolio

values reflect simple weighted averages of the individual securities’ values. For exam-

ple, assume that the asset portfolio value is a sum of security values:

AðiÞ ¼
Xn
j¼1

AjðiÞ;

where to avoid definitional problems we assume that Ajði0Þ0 0 for all j and

Aði0Þ0 0. The second condition is not superfluous, since fAjði0Þg values may be

both positive and negative.

Then because derivatives of sums equal sums of derivatives by proposition 9.75, it

is straightforward to derive (see exercise 19) with wj ¼ Ajði0Þ
Aði0Þ :
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DAði0Þ ¼
Xn
j¼1

wjDjði0Þ; ð9:67aÞ

CAði0Þ ¼
Xn
j¼1

wjCjði0Þ; ð9:67bÞ

Of course,
Pn

j¼1 wj ¼ 1, although fwjg may contain both positive and negative

values.

Depending on the goals of the ALM program, the risk in Sði0Þ associated with a

change in interest rates may be defined in one of several ways. If TðiÞ denotes the

target risk measure, three of which are illustrated below, the first step is to calculate

the second-order Taylor series expansion of TðiÞ as in (9.61):

TðiÞATði0Þ 1�DTði0Þði � i0Þ þ 1

2
CT ði0Þði � i0Þ2


 �
:

The error in this approximation is OðDi3Þ by (9.27) if T ð3ÞðiÞ exists, and oðDi3Þ by

(9.28) if T ð3ÞðiÞ is continuous.
The risk to this function from the shift i0 ! i comes from duration risk DTði0Þ,

which presents a signed risk of order OðDiÞ, and from convexity risk CTði0Þ, which
presents an unsigned risk of order OðDi2Þ. By a signed risk is meant that the e¤ect

on TðiÞ by the shift i0 ! i1 i0 þ Di, depends on the sign of Di, as inG, and on the

magnitude of Di, whereas for an unsigned risk the e¤ect does not depend on sign but

only the magnitude of Di.

The Holy Grail of ALM is then to seek to achieve the following structure:

DTði0Þ ¼ 0; ð9:68aÞ

CTði0Þ > 0: ð9:68bÞ
This then results in a target risk measure with the classical immunized risk profile as

graphed in figure 9.4.

To some practitioners, the goal of risk immunization is considered unrealistic, since

the resulting portfolio would appear to represent a risk-free arbitrage in the market.

No matter what becomes of interest rates, a profit is made. This criticism has some

merit as a cautionary statement about what is and is not possible, but the simple no-

tion that ‘‘immunization is impossible because to do so would be to create a risk-free

arbitrage, a free lunch, and this is impossible,’’ overstates the case.
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In order to be a true risk-free arbitrage, all of the following would need to be true,

and in practice, they never are:

1. The trade from the original target portfolio, to the immunized portfolio, can be

done in a cost free way.

2. The resulting immunized portfolio earns more than the risk-free rate at all times.

3. The risk associated with i0 ! i summarizes all the risks of the portfolio; no other

risks exist and no new risks are added.

So, in practice, the pursuit of immunization will not create a risk-free arbitrage but

will create a framework within which many of the risks of the portfolio can be sum-

marized, and various hedging trades evaluated from a cost/benefit perspective.

Three approaches to TðiÞ are developed next. The goal here is not to present the

only, or even the best, approaches but to illustrate the broad applicability of this gen-

eral methodology.

Surplus Immunization, Time tF 0

The target measure is simply the current value of surplus:

TðiÞ ¼ SðiÞ:
Because S 0ðiÞ ¼ A 0ðiÞ � L 0ðiÞ, and similarly for S 00ðiÞ, a simple calculation produces

the following as long as Sði0Þ0 0, and these should be understood as special cases of

(9.67):

Figure 9.4
TðiÞATði0Þ

�
1þ 1

2C
T ði0Þði � i0Þ2

�
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DSði0Þ ¼ Aði0Þ
Sði0ÞD

Aði0Þ � Lði0Þ
Sði0ÞD

Lði0Þ; ð9:69Þ

CSði0Þ ¼ Aði0Þ
Sði0ÞC

Aði0Þ � Lði0Þ
Sði0ÞC

Lði0Þ: ð9:70Þ

To achieve the objectives in (9.68) then requires that

DAði0Þ ¼ Lði0Þ
Aði0ÞD

Lði0Þ; ð9:71Þ

CAði0Þ > Lði0Þ
Aði0ÞC

Lði0Þ: ð9:72Þ

In the case of Aði0Þ ¼ Lði0Þ, and hence Sði0Þ ¼ 0, these conditions formally reduce

to

DAði0Þ ¼ DLði0Þ; ð9:73Þ

CAði0Þ > CLði0Þ: ð9:74Þ
But note that (9.73) is not a legitimate deduction from (9.71), since this latter formula

was developed under the assumption that Sði0Þ0 0, which is to say, Aði0Þ0Lði0Þ.
Still, in the case where Sði0Þ ¼ 0, one can work directly with the original Taylor

series expansions of SðiÞ in (9.27), which is to say, the dollar duration and dollar con-

vexity approach, and it will be seen that the immunizing conditions in (9.73) and

(9.74) are produced, and legitimately so (see exercise 42).

Surplus Immunization, Time tI 0

If ZtðiÞ denotes the market price of a t-period, risk-free zero-coupon bond that

matures for $1 at time t, the forward value of surplus, denoted StðiÞ, is defined by

StðiÞ1 SðiÞ
ZtðiÞ :

The intuition for this definition is that if surplus was now liquidated and invested in

zeros, this would be the value produced at time t with certainty. In that sense, StðiÞ is
the value achievable at time t with the current portfolio and interest rates at level i if

liquidated and reinvested.

Immunizing the forward value of surplus means that

TðiÞ ¼ StðiÞ;
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and this requires conditions that depend on t that reduce to those above when t ¼ 0.

To this end, we first calculate S 0
t ðiÞ and S 00

t ðiÞ. Although a bit messy, the following is

produced if Sði0Þ0 0 (see exercise 46):

DStði0Þ ¼ DSði0Þ �DZtði0Þ; ð9:75aÞ

CStði0Þ ¼ CSði0Þ � CZtði0Þ � 2DZtði0Þ½DSði0Þ �DZtði0Þ�: ð9:75bÞ
Applying (9.68), the immunizing conditions are

DSði0Þ ¼ DZtði0Þ; ð9:76aÞ

CSði0Þ > CZtði0Þ: ð9:76bÞ
Note that as t ! 0, it is apparent that DZtði0Þ ! 0 and CZtði0Þ ! 0, and so the

conditions in (9.76) reduce to those in (9.71) and (9.72). Also, in the case of

Sði0Þ ¼ 0, one can work directly with the Taylor series for StðiÞ ¼ ðAðiÞ � LðiÞÞ=
ZtðiÞ to produce the conditions in (9.73) and (9.74), and hence the result is then inde-

pendent of t.

Surplus Ratio Immunization

The surplus ratio, denoted RðiÞ, is defined by

RðiÞ ¼ SðiÞ
AðiÞ :

It is unnecessary to specify whether this is the time 0 surplus ratio or the time t > 0

ratio, since it is easy to see that

RtðiÞ1 StðiÞ
AtðiÞ ¼

SðiÞ
AðiÞ :

To immunize the surplus ratio is to set

TðiÞ ¼ RðiÞ:
As a ratio, the duration and convexity formulas for RðiÞ are identical to those of

the ratio function StðiÞ in (9.75), with only a change in notation, which we record

here, when Sði0Þ0 0:

DRði0Þ ¼ DSði0Þ �DAði0Þ; ð9:77aÞ

CRði0Þ ¼ CSði0Þ � CAði0Þ � 2DAði0Þ½DSði0Þ �DAði0Þ�: ð9:77bÞ
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Applying (9.68) to these formulas produces

DSði0Þ ¼ DAði0Þ; ð9:78aÞ

CSði0Þ > CAði0Þ: ð9:78bÞ
Note that (9.78) reduces to (9.73) and (9.74) when (9.69) and (9.70) are used to elim-

inate the dependence on SðiÞ.
It is also the case that (9.73) and (9.74) present the correct immunizing conditions

for the surplus ratio when Sði0Þ ¼ 0, as can be derived by working directly with R 0ðiÞ
and R 00ðiÞ, or simply recognizing that immunizing SðiÞ when Sði0Þ ¼ 0 is identical to

immunizing RðiÞ in this case, and hence, (9.73) and (9.74) follow immediately.

9.8.7 The ‘‘Greeks’’

Although duration and convexity, which are relative derivative measures, are the

conventional way to measure and quote the sensitivities of fixed income instruments

and associated interest rate based derivative securities, for most other financial

instruments, sensitivities are expressed directly in terms of the derivatives of the price

functions. For example, the price of a put or call option based on the Black–

Scholes–Merton formulas in chapter 8 is clearly a function of:

S0: stock price

s: stock price volatility

r: risk-free rate

t or T : time to expiry

The name ‘‘Greeks’’ is given to the various derivatives of this price function, and

further applied to other financial derivative securities on currencies, commodities,

common stock indexes, futures contracts, and so forth. With O used to denote the

price of the given security, which is a function of these variables, the derivatives of

O are labeled with Greek letters, and sometimes with a fictional ‘‘Greek’’ letter:

delta: D ¼ dO

dS
; ð9:79aÞ

gamma: G ¼ d 2O

dS2
; ð9:79bÞ

rho: r ¼ dO

dr
; ð9:79cÞ
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‘‘vega’’: n ¼ dO

ds
; ð9:79dÞ

theta: y ¼ dO

dt
: ð9:79eÞ

Note that the Greek symbol for ‘‘vega’’ is actually the lowercase Greek letter nu.

While we will not formally address multivariate functions, for the purposes of the

definitions above, derivatives can be defined as if the price function in question is a

function of only the variable of interest. Also with this convention the Taylor series

results above can be applied. For instance,

OðSÞAOðS0Þ þ DðS � S0Þ þ 1

2
GðS � S0Þ2;

and we know that the error is OðDS2Þ. However, to approximate this price func-

tion simultaneously in all variables will require some new tools from multivariate

calculus.

From the formulas above, the Greeks allow the risk evaluation of general equity-

based and financial derivatives-based portfolios, and with this model, hedging strat-

egies can be formulated that are parallel to those discussed in section 9.8.6 on

asset-liability management.

9.8.8 Utility Theory

An important application of the notions of concavity and convexity in finance and

economics is within the subject of utility theory, which provides a mathematical

framework and model for understanding a given person’s choices among various

risky alternatives. Such risk preferences are expressed all the time, of course, such as

when an individual chooses among various risky investments, or between risky and

risk-free assets, as well as when that individual decides what kind of insurance to

buy, or how much, or even whether or not to buy. Indeed it is also expressed in terms

of an individual’s propensity to gamble, as well as in the particular games of chance

that attract more versus attract less.

While this subject can be studied within a formal axiomatic framework, we instead

take an informal approach but note its origins. The key result is called the von

Neumann–Morgenstern theorem, named for its discoverers: John von Neumann

(1903–1957) and Oskar Morgenstern (1902–1977). This theorem states that if an in-

dividual has risk preferences that are consistent and satisfy certain other logical rela-

tionships, then there is a function uðxÞ, the utility function, so that ‘‘preference’’ can
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be predicted by the expected value of uðWðX ÞÞ, where WðX Þ denotes the value of

the individual’s wealth as a function of the realization of the risky variable X . The

calibration of uðxÞ as an increasing function is done so that ‘‘more is better than

less,’’ or ‘‘greater utility is preferred to less,’’ and hence the objective of a decision

maker is to maximize the ‘‘expected utility’’ of wealth, E½uðWðX ÞÞ�.
In this setting, W0 is often used to denote the initial wealth of the decision maker

at the time of the decision.

Investment Choices

Within this risk-preference framework an investment of I aW0 over time period

½0;T � with risky returns defined by a random variable Y will be deemed attractive

compared to a risk-free investment if and only if

E½uðWðYÞÞ� > uðW0ð1þ rÞTÞ:
Here r denotes the annual risk-free rate for the period, and

WðYÞ ¼ Ið1þ YÞ þ ðW0 � IÞð1þ rÞT :
This framework also works for I > W0, in which case the investment involves a short

position in the risk-free asset.

More generally, this investment will be preferred to another investment with risky

returns defined by a random variable Y 0, for an investment of I , if and only if

E½uðWðYÞÞ� > E½uðWðY 0ÞÞ�;
where the wealth functions, WðY Þ and WðY 0Þ are defined as above.

Of course, the decision of how much to invest can also be addressed in this frame-

work, since the optimum I , given Y , is the value that maximizes E½uðWðY ÞÞ�, for a
given investment. This maximum might well be at I < 0, I ¼ 0, or I > W0.

Insurance Choices

Insurance decisions can also be posed in this framework, where now X denotes a

risky loss that an individual confronts and is contemplating insuring. If insurance

costs P, then the individual will insure if

uðW0 � PÞ > E½uðW0 � XÞ�:
For partial versus complete insurance, the choice would be to completely insure if

uðW0 � PÞ > E½uðW0 � Pl � ð1� lÞXÞ�;
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where Pl is the cost to insure 100l% of the loss. One could also determine the value

of l which maximizes E½uðW0 � Pl � ð1� lÞXÞ�.
Gambling Choices

For a gambling choice, say the purchase of a lottery ticket with a cost of L, the deci-

sion will be to gamble if

E½uðW0 � Lþ YÞ� > uðW0Þ;
where Y is the random pay-o¤ from the gamble.

Utility and Risk Aversion

As noted above, utility functions are calibrated as increasing functions, and hence

given the assumption of di¤erentiability it is always the case that u 0ðxÞ > 0. The es-

sence of the risk preference, however, is defined by the sign of the second derivative,

u 00ðxÞ. Specifically, we have the terminology:

Risk averse: u 00ðxÞ < 0; and so uðxÞ is strictly concave: ð9:80aÞ

Risk neutral: u 00ðxÞ1 0; and so uðxÞ is linear ðaffineÞ: ð9:80bÞ

Risk seeking: u 00ðxÞ > 0; and so uðxÞ is strictly convex: ð9:80cÞ
The motivation for this terminology comes from an application of Jensen’s in-

equality to specific risk preference questions, as will be seen below. Note that by

(9.33) with n ¼ 1, we have u 00ðxÞ1 0 if and only if uðxÞ ¼ axþ b, and hence justify-

ing the terminology that this is a linear utility function (the formal term is ‘‘a‰ne’’

unless b ¼ 0).

To evaluate an investment over a fixed horizon, it must be recognized that the de-

cision to not invest in a risky asset should not be modeled as if the funds will remain

dormant. The more logical alternative would be to assume that the choice is between

a risky and a risk-free investment. Assume that over the investment horizon in ques-

tion, the risk-free rate per period, a year say, can be expressed as r. To invest over

½0;T �, measured in an integer number of periods, with X denoting the risky period

return, the choice is between

Risk-free investment: uðW0 þ Iðð1þ rÞT � 1ÞÞ;

Risky investment: E u W0 þ I
YT
j¼1

ð1þ XjÞ � 1

 ! !" #
:
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The following proposition summarizes the result for an investment choice, and

exercises 22 and 47 assign the task of developing the conclusions as they apply to an

insurance choice or a gamble.

Proposition 9.149 Given a planning horizon of ½0;T �, a decision maker will be indif-

ferent between the risky investment and the risk-free investment, depending on the rela-

tionship between E½QT
j¼1ð1þ XjÞ� and ð1þ rÞT , as follows:

1. If risk averse, indi¤erence requires E½QT
j¼1ð1þ XjÞ� ¼ ð1þ rþ aÞT; for some

a > 0.

2. If risk neutral, indi¤erence requires E½QT
j¼1ð1þ XjÞ� ¼ ð1þ rÞT .

3. If risk seeking, indi¤erence requires E½QT
j¼1ð1þ XjÞ� ¼ ð1þ r� aÞT for some

a > 0.

Remark 9.150

1. Note the intuitive justification for the risk preference terminology. For a risk-averse

investor, in order to be indi¤erent between the risky and risk-free investment, the risky

investment must have an expected return in excess of the risk-free rate. In other words,

a risk-averse investor requires a ‘‘positive risk premium’’ on the expected return in

order to be willing to take the risk of a possible lower return. A risk seeker will be in-

di¤erent even with an expected return below the risk-free rate. In essence, such an in-

vestor is willing to give up expected return for the opportunity to do better with a risky

return. Finally, a risk-neutral investor is ‘‘neutral’’ to risk, and is willing to take risk

with no associated adjustment to the expected return versus the risk-free rate.

2. The proposition above is stated in terms of an annual or period nominal interest rate

r, but it can be equivalently stated in terms of a continuously compounded risk-free rate

r 0. For example, for a risk-neutral investor the condition becomes

E
YT
j¼1

ð1þ XjÞ
" #

¼ er
0T :

Proof The decision maker will be indi¤erent if

uðW0 þ Iðð1þ rÞT � 1ÞÞ ¼ E u W0 þ I
YT
j¼1

ð1þ XjÞ � 1

 ! !" #
:

Now, if the investor is risk averse, and hence with a strictly concave utility function,

we have from Jensen’s inequality in (9.50a) that

9.8 Applications to Finance 525



E u W0 þ I
YT
j¼1

ð1þ XjÞ � 1

 ! !" #
< u W0 þ I E

YT
j¼1

ð1þ XjÞ
" #

� 1

 ! !
:

Comparing, we see that for a risk-averse investor to be indi¤erent requires that

uðW0 þ Iðð1þ rÞT � 1ÞÞ < u W0 þ I E
YT
j¼1

ð1þ XjÞ
" #

� 1

 ! !
;

and recalling that uðxÞ is an increasing function, we obtain the first result. That is, for

some a > 0,

W0 þ Iðð1þ rþ aÞT � 1Þ ¼ W0 þ I E
YT
j¼1

ð1þ XjÞ
" #

� 1

 !
:

For the risk-neutral investor, this second last equation is

uðW0 þ Iðð1þ rÞT � 1ÞÞ ¼ u W0 þ I E
YT
j¼1

ð1þ XjÞ
" #

� 1

 ! !
;

and hence the second result. Finally, for a risk seeker with strictly convex utility

function, by (9.50b),

E u W0 þ I
YT
j¼1

ð1þ XjÞ � 1

 ! !" #
> u W0 þ I E

YT
j¼1

ð1þ XjÞ
" #

� 1

 ! !
;

and the final equation to solve is

uðW0 þ Iðð1þ rÞT � 1ÞÞ > u W0 þ I E
YT
j¼1

ð1þ XjÞ
" #

� 1

 ! !
:

Since uðxÞ is increasing, we obtain the third conclusion. n

Example 9.151

1. The risk-neutral probability was introduced in section 7.8.6, and generalized in sec-

tion 8.8.3 to an arbitrary period of length Dt, and is defined by

qðDtÞ ¼ erDt � edðDtÞ

euðDtÞ � edðDtÞ
:
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Here r denotes the annualized risk-free rate, assumed constant, uðDtÞ and dðDtÞ the

assumed upstate and downstate returns of the stock in the period, and qðDtÞ the proba-
bility of an upstate. As was shown in chapter 7, and easily generalized to a period of

length Dt, the expected value of the stock at time Dt under q satisfies

Eq½SDt� ¼ erDtS0:

In other words, with 1þ X ¼ SDt

S0
equal to the random period return,

E½1þ X � ¼ erDt;

justifying by the proposition above that qðDtÞ is the probability of an upstate for a risk

neutral investor willing to pay S0 for this security.

2. A special risk-averter probability was also introduced in chapter 8 in connection

with the Black–Scholes–Merton pricing formulas and defined in (8.55) by

qðDtÞ ¼ qðDtÞeuðDtÞe�rDt:

A simple calculation now produces, dropping the Dt for notational simplicity, that

1� q ¼ ð1� qÞede�rDt and

Eq½SDt� ¼ qðS0e
uÞ þ ð1� qÞðS0e

dÞ

¼ ½eu � euþd�rDt þ ed �S0:

Although not immediately apparent, Eq½1þ X � > erDt, and so qðDtÞ is the probability

of an upstate for a risk-averse investor willing to pay S0 for this security. This conclu-

sion follows from the algebraic steps:

eu � euþd�rDt þ ed > erDt i¤ :

eu�rDt � euþd�2rDt þ ed�rDt � 1 > 0 i¤ :

ðeu�rDt � 1Þð1� ed�rDtÞ > 0:

The validity of this last inequality follows from dðDtÞ < rDt < uðDtÞ.
Examples of Utility Functions

Remark 9.152 Note that by the definition above of risk preference, we can conclude

that:
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1. If uðxÞ is any utility function, then ~uuðxÞ1 auðxÞ þ b has the same properties for any

a; b A R and a > 0 in terms of risk aversion, risk neutrality or risk seeking because

~uu 00ðxÞ ¼ au 00ðxÞ.
2. In addition, for a; b A R and a > 0, a decision maker with utility function ~uuðxÞ will
make identical decisions as one with uðxÞ. This conclusion follows from the fact that

E½~uuðWðxÞÞ� ¼ aE½uðWðxÞÞ� þ b, and hence in any of the preceding decision inequal-

ities between an expected utility and a fixed utility, or between two expected utilities,

the a and b play no role.

3. Because of 1 and 2, utility functions are sometimes calibrated so that uðW0Þ ¼ 0

and/or uð0Þ ¼ �1.

4. If uðxÞ is a risk-averse utility function, then auðxÞ þ b is risk-seeking for a < 0 and

any b, and conversely.

A few common examples of risk-averse utility functions defined on xb 0 follow.

Each can be made to represent risk seeking preference by multiplying by �1 by re-

mark 4 above.

Example 9.153

1. Exponential Utility:

uðxÞ ¼ 1� e�kx; k > 0:

2. Quadratic Utility:

uðxÞ ¼ ax� bx2; a; b > 0:

Note that this utility function violates the u 0ðxÞ > 0 assumption, at least for x > a
2b .

3. Power Utility:

uðxÞ ¼ 1

l
xl; l > 0:

4. Logarithmic Utility:

uðxÞ ¼ ln 1þ x

c

� �
; c > 0:

9.8.9 Optimal Risky Asset Allocation

Assume that an investor with utility function uðxÞ and initial wealth W0 wants to

make an optimal allocation between a risky asset, with period return random vari-
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able X , and the risk-free asset, with period return r. If I denotes the investment in the

risky asset, this investor’s risky utility after investment for T periods is

u W0ð1þ rÞT þ I
YT
j¼1

ð1þ XjÞ � ð1þ rÞT
 ! !

:

For notational ease, we assume the planning horizon T ¼ 1, so the risky utility value

is

uðW0ð1þ rÞ þ IðX � rÞÞ:
Here r can denote the fixed risk-free return for the period, or the variable com-

pounded risk-free returns over subperiods.

Now, if we temporarily assume that uðxÞ is an analytic function, this risky utility

can be expanded about W0ð1þ rÞ to produce

uðW0ð1þ rÞ þ IðX � rÞÞ ¼
Xy
k¼0

1

k!
uðkÞðW0ð1þ rÞÞðIðX � rÞÞk:

If only di¤erentiable to order m, this expansion holds up to the mth derivative as a

Taylor series, with error no worse than OðDxmÞ with Dx1 IðX � rÞ. For notational
simplicity, we maintain the upper summation limit of y.

To simplify the analysis, and because of the second point made in remark 9.152,

this utility function can be transformed to the form: ~uuðxÞ ¼ auðxÞ þ b with a > 0,

without changing any conclusions that we may draw. Since we assume that

u 0ðW0ð1þ rÞÞ > 0, we define

~uuðxÞ ¼ uðxÞ � uðW0ð1þ rÞÞ
u 0ðW0ð1þ rÞÞ :

This then produces

~uuðW0ð1þ rÞ þ IðX � rÞÞ ¼
Xy
k¼1

1

k!

uðkÞðW0ð1þ rÞÞ
u 0ðW0ð1þ rÞÞ I kðX � rÞk

¼
Xy
k¼1

1

k!
~uukI

kðX � rÞk;

with
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~uuk ¼ uðkÞðW0ð1þ rÞÞ
u 0ðW0ð1þ rÞÞ ;

and so ~uu1 1 1.

The Arrow–Pratt measure of absolute risk aversion, rAP, is defined by

rAP ¼ �~uu2 ¼ � u 00ðW0ð1þ rÞÞ
u 0ðW0ð1þ rÞÞ ; ð9:81Þ

and named for Kenneth J. Arrow (b. 1921) and John W. Pratt (b. 1931). Since

u 0ðW0ð1þ rÞÞ > 0, this measure of risk aversion is positive for a risk-averter, nega-

tive for a risk-seeker, and identically zero for a risk-neutral investor. Moreover a

larger positive rAP implies greater risk aversion, and a more negative rAP implies

greater risk seeking, as will be seen below.

Taking expected values, we derive

E½~uuðW0ð1þ rÞ þ IðX � rÞÞ� ¼
Xy
k¼1

1

k!
~uukI

kE½ðX � rÞk�: ð9:82Þ

Using only the first two terms of this series,

E½~uuðW0ð1þ rÞ þ IðX � rÞÞ�AIE½ðX � rÞ� � I 2rAP

2
E½ðX � rÞ2�; ð9:83Þ

and an optimum value of I can be found for a risk-averse investor, where by opti-

mum is meant utility maximizing.

Letting f2ðIÞ denote the right-hand side of (9.83) as a function of I , we derive

f 0
2 ðIÞ ¼ E½ðX � rÞ� � IrAPE½ðX � rÞ2�;

f 00
2 ðIÞ ¼ �rAPE½ðX � rÞ2�:

So this expected utility function has a critical point at

I0 ¼ E½ðX � rÞ�
rAPE½ðX � rÞ2� ; ð9:84Þ

which will be a relative maximum if f 00
2 ðI0Þ < 0.

For a risk-averse investor, with rAP > 0, or equivalently u 00ðW0ð1þ rÞÞ < 0, I0 is

always a relative maximum of the expected utility. If E½ðX � rÞ� > 0, the typical case
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for risky assets, then I0 > 0, and such an investor will go long to maximize expected

utility. If E½ðX � rÞ� < 0, this investor will short the risky asset, since then I0 < 0.

Note that in either case, as the Arrow–Pratt measure increases, this investor will go

long less (respectively, short less) to obtain the optimum utility.

For a risk-seeker, with rAP < 0, or equivalently u 00ðW0ð1þ rÞÞ > 0, I0 is always a

relative minimum of the expected utility. This is logical since in this case, considered

as a function of I , the expression in (9.83) is of the form gðIÞ ¼ aI þ bI 2, with b > 0,

and so utility is only maximized at the endpoints of whatever interval for I is

allowed. In other words, a risk-seeker will maximize utility by comparing a long po-

sition with maximal leverage, to the maximal short position in the risky asset, and

choose the option with greater utility.

The value of the expected utility function at I0 is given by

E½~uuðW0ð1þ rÞ þ I0ðX � rÞÞ� ¼ E½ðX � rÞ�2
2rAPE½ðX � rÞ2� :

This maximum expected utility can be equivalently expressed in terms of the Sharpe

ratio developed by William F. Sharpe (b. 1934):

E½~uuðW0ð1þ rÞ þ I0ðX � rÞÞ� ¼ s2

2rAP
; ð9:85Þ

where the Sharpe ratio is defined by

s ¼ E½ðX � rÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½ðX � rÞ2�

q : ð9:86Þ

Remark 9.154 The significance of the Sharpe ratio is that for every risk-averse inves-

tor, optimal utility in (9.85) can be increased by choosing the risky asset with the larg-

est Sharpe ratio.

When r is assumed constant, maximizing s is equivalent to maximizing

s 0 ¼ m� r

s
; ð9:87Þ

where m and s are the mean and standard deviation of X . This follows since X � r ¼
ðX � mÞ þ ðm� rÞ and a calculation produces s ¼ s 0ffiffiffiffiffiffiffiffiffiffiffiffi

1þðs 0Þ2
p . Consequently s is maxi-

mized when s 0 is maximized. The formula in (9.87) is also called the Sharpe ratio.
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9.8.10 Risk-Neutral Binomial Distribution as Dt ? 0

In section 8.8.2 was shown that the real world binomial model for equity prices con-

verged to the lognormal distribution. Specifically, as defined in (8.46) and repeated

here, let

S
ðnÞ
T ¼ S0e

TBj ;

where

Bj ¼ mDtþ as
ffiffiffiffiffi
Dt

p
; Pr ¼ p;

mDt� 1
a
s
ffiffiffiffiffi
Dt

p
; Pr ¼ p 0; j ¼ 1; 2; . . . ; n;

(

with a ¼
ffiffiffiffi
p 0
p

q
¼ p 0ffiffiffiffiffi

pp 0
p , and � 1

a
¼ �pffiffiffiffiffi

pp 0
p .

Then as Dt ! 0, we have as in (8.50),

ln S
ðnÞ
T !p Nðln S0 þ mT ; s2TÞ;

where we emphasize the real world probability with the notation ‘‘!p’’. With ST

denoting the limiting random variable, this can be equivalently written as in (8.51):

ST ¼ S0e
X ;

where X @NðmT ; s2TÞ. This is the definition of a lognormal random variable (see

chapter 10 for more details on this distribution).

In this section we investigate the limiting distribution of the same equity prices, but

rather than using the binomial probability p appropriate for real world modeling,

we use the risk-neutral probability q, as is implicitly assumed in the option pricing

formulas in chapters 7 and 8. This limiting distribution is needed for the Black–

Scholes–Merton pricing formulas for European put and call options introduced in

section 8.8.3.

In the next section we investigate the limiting distribution under the special risk

averter probability q, also needed for the Black–Scholes–Merton pricing formulas,

defined in (8.55) by q ¼ qeue�rDt, where u ¼ mDtþ as
ffiffiffiffiffi
Dt

p
.

The added complexity in these investigations is the fact that unlike p, the probabil-

ity q, and hence also q, is a function of Dt as noted in (8.52):

qðDtÞ ¼ erDt � edðDtÞ

euðDtÞ � edðDtÞ
:
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Here r is the assumed constant risk-free interest rate, and rðDtÞ ¼ rDt is assumed lin-

ear in Dt, while the upstate and downstate equity returns for Bj are again given as

uðDtÞ ¼ mDtþ as
ffiffiffiffiffi
Dt

p
;

dðDtÞ ¼ mDt� 1

a
s
ffiffiffiffiffi
Dt

p
:

To facilitate this first inquiry, we require a more accessible formula for qðDtÞ that
makes the functional dependence on Dt more manageable.

Analysis of the Risk-Neutral Probability: q(Dt)

The goal of this section is to derive the following expansion:

Proposition 9.155 With qðDtÞ defined as above, we have that

qðDtÞ ¼ pþ r� m� 1
2s

2
� �

sffiffiffiffiffi
pp 0

p
ffiffiffiffiffi
Dt

p
þ p� 1

2

� �
r� m� s2

6

� �
Dt

þ
ðr� mÞ2 þ ðr� mÞs2 1

6pp 0 � 1
� 	

þ s4

12

2sffiffiffiffiffi
pp 0

p

24 35Dt3=2 þO½Dt2�: ð9:88Þ

First o¤, to investigate the behavior of qðDtÞ as Dt ! 0, we need to do some anal-

ysis, since direct substitution of Dt ¼ 0 leads to 0
0 . Dividing out the common term

edðDtÞ, and then applying (9.35) to each exponential term in this expression produces

qðDtÞ ¼ exp 1
a
s
ffiffiffiffiffi
Dt

p þ ðr� mÞDt� �� 1

exp aþ 1
a

� �
s
ffiffiffiffiffi
Dt

p� �� 1

¼
1
a
s
ffiffiffiffiffi
Dt

p þ 1
2

1
a
s

� �2þðr� mÞ
h i

DtþOðDt3=2Þ
aþ 1

a

� �
s
ffiffiffiffiffi
Dt

p þ 1
2 aþ 1

a

� �
s

� �2
DtþOðDt3=2Þ

:

In this format, we can divide numerator and denominator by the common factorffiffiffiffiffi
Dt

p
, substitute Dt ¼ 0 and obtain

qð0Þ ¼
1
a

aþ 1
a

¼ p:

Perhaps surprisingly, as Dt ! 0 the risk-neutral probability converges to p, the real

world probability:
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qðDtÞ ! p as Dt ! 0:

It would be entirely justified at this point to expect that this conclusion should im-

ply that the limiting distribution under this risk-neutral probability qðDtÞ is the same

as that derived in chapter 8 for the real world probability p. Quite remarkably, this

expectation will be proved to be false, and we will see that although qðDtÞ ! p, it

does so slowly enough that the limiting distribution of prices is changed from what

was earlier derived.

To see this, we need to complete the analysis of qðDtÞ, in e¤ect by deriving more

terms in its Taylor series than the constant term p. To do this, we could just start

taking derivatives of qðDtÞ, but a moment of reflection will prove it a painful pursuit,

so we explore another approach. An approach that is appealing is based on proposi-

tion 9.116 of section 9.4.2. To this end, let us assume that

qðDtÞ ¼ pþ
Xy
n¼1

qnð
ffiffiffiffiffi
Dt

p
Þn: ð9:89Þ

Then since both numerator and denominator of the function qðDtÞ are analytic func-
tions of the variable

ffiffiffiffiffi
Dt

p
about

ffiffiffiffiffi
Dt

p ¼ 0, so too is this ratio function qðDtÞ, as

proved in that section.

Remark 9.156 Note that we do not claim that the numerator or denominator of qðDtÞ,
or qðDtÞ itself, are analytic functions of Dt about Dt ¼ 0, which they cannot be sinceffiffiffiffiffi
Dt

p
is not even di¤erentiable at Dt ¼ 0. For example, while f ðxÞ ¼ ex is an every-

where analytic function of x, gðxÞ ¼ e
ffiffi
x

p
is not even di¤erentiable at x ¼ 0, since

g 0ðxÞ ¼ 1
2
ffiffi
x

p e
ffiffi
x

p
. On the other hand, while not analytic in Dt, all three functions have

absolutely convergent series as functions of
ffiffiffiffiffi
Dt

p
. For example, since the numerator

of qðDtÞ is an analytic function of
ffiffiffiffiffi
Dt

p
, it is absolutely convergent for j ffiffiffiffiffiDtp j < R, for

some R, which in this case we know to be R ¼ y. The same is true for the denominator

of qðxÞ, and hence for qðxÞ itself for 0a ffiffiffiffiffi
Dt

p
< R 0 for some R 0 > 0.

To simplify notation, it is appealing to substitute x ¼ ffiffiffiffiffi
Dt

p
, and express qðxÞ as

qðxÞ ¼ expðpdxþ cx2Þ � 1

expðdxÞ � 1
;

c ¼ r� m; d ¼ sffiffiffiffiffiffiffi
pp 0p :

The Taylor series for numerator and denominator then become

534 Chapter 9 Calculus I: Di¤erentiation



qðxÞ ¼
Py

j¼1
1
j! ðpdxþ cx2Þ jPy
k¼1

1
k! ðdxÞk

:

Expanding these expressions to Oðx4Þ to put in the format of a ratio of power se-

ries, with rðxÞ and sðxÞ denoting the numerator and denominator, respectively, we

obtain

rðxÞ ¼ ðpdÞxþ cþ 1

2
d 2p2

� �
x2 þ cdpþ 1

6
d 3p3

� �
x3 þOðx4Þ;

sðxÞ ¼ dxþ 1

2
d 2x2 þ 1

6
d 3x3 þOðx4Þ:

The goal is to determine fqng in (9.89) so that

pþ
Xy
n¼1

qnx
n

 !
sðxÞ ¼ rðxÞ; ð9:90Þ

which we can implement using (6.24). Although algebraically tedious, and prone to

initial missteps, this approach is significantly easier than evaluating the derivatives of

qðxÞ directly as a ratio function.

Alternatively, since qn ¼ qðnÞð0Þ
n! , we could evaluate the derivatives of qðxÞ indirectly

by di¤erentiating the identity

rðxÞ ¼ qðxÞsðxÞ; ð9:91Þ
and solving. Specifically, we have by the Leibniz formula in (9.42), that for x in the

interval about 0 for which qðxÞ is analytic and hence infinitely di¤erentiable,

rðnÞðxÞ ¼
Xn
k¼0

n

k

� �
qðkÞðxÞsðn�kÞðxÞ:

This can be solved iteratively at x ¼ 0. Then recalling that sð0Þ ¼ 0, we obtain

qð0Þ ¼ r 0ð0Þ
s 0ð0Þ ; ð9:92aÞ

qðn�1Þð0Þ ¼ 1

ns 0ð0Þ rðnÞð0Þ �
Xn�2

k¼0

n

k

� �
qðkÞð0Þsðn�kÞð0Þ

" #
; nb 2; ð9:92bÞ

and substituting qn ¼ qðnÞð0Þ
n! into (9.89) will produce the desired result.
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This is a di¤erent approach only methodologically from what was developed in

(6.24) and not a new approach in theory. Here we developed an iteration for deriva-

tive values of qðxÞ from those of rðxÞ and sðxÞ, and constructed qðxÞ as a Taylor se-

ries. To use (6.24), we would first construct the Taylor series for rðxÞ and sðxÞ, which
reflect these derivatives, and then iteratively generate the coe‰cients of the series for

qðxÞ.
An easy calculation using the definition that sðxÞ ¼ expðdxÞ � 1 produces

sðkÞð0Þ ¼ d k; kb 1:

The function rðxÞ ¼ expðpdxþ cx2Þ � 1 is a bit more complicated because of the

quadratic in the exponent, but to four derivatives we have

r 0ðxÞ ¼ ðpd þ 2cxÞ expðpdxþ cx2Þ;

r 00ðxÞ ¼ ½2cþ ðpd þ 2cxÞ2� expðpdxþ cx2Þ;

rð3ÞðxÞ ¼ ½6cðpd þ 2cxÞ þ ðpd þ 2cxÞ3� expðpdxþ cx2Þ;

rð4ÞðxÞ ¼ ½12c2 þ 12cðpd þ 2cxÞ2 þ ðpd þ 2cxÞ4� expðpdxþ cx2Þ:
Correspondingly,

r 0ð0Þ ¼ pd;

r 00ð0Þ ¼ 2cþ ðpdÞ2;

rð3Þð0Þ ¼ 6cdpþ ðpdÞ3;

rð4Þð0Þ ¼ 12c2 þ 12cðpdÞ2 þ ðpdÞ4:
Substituting into (9.92), we get

qð0Þ ¼ p;

q 0ð0Þ ¼ 1

2s 0ð0Þ ½r
ð2Þð0Þ � qð0Þð0Þsð2Þð0Þ�

¼ c

d
� dpp 0

2
;
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q 00ð0Þ ¼ 1

3s 0ð0Þ rð3Þð0Þ �
X1
k¼0

3

k

� �
qðkÞð0Þsð3�kÞð0Þ

" #

¼ 2 p� 1

2

� �
c� d 2pp 0

6

� �
;

qð3Þð0Þ ¼ 1

4s 0ð0Þ rð4Þð0Þ �
X2
k¼0

4

k

� �
qðkÞð0Þsð4�kÞð0Þ

" #

¼ 3c2

d
þ 3cd

1

6
� pp 0


 �
þ 1

4
ðpp 0Þ2d 3:

Recalling that qn ¼ qðnÞð0Þ
n! , c ¼ r� m, and d ¼ sffiffiffiffiffi

pp 0
p , we obtain the final result in (9.88)

after a bit more algebra.

Of course, ~qqðDtÞ1 1� qðDtÞ, needed below, is easily developed from this expres-

sion by replacing p with p 0 and changing the sign of all other coe‰cients from posi-

tive to negative.

Notation 9.157 Note that we use ~qqðDtÞ to denote the complementary probability of

qðDtÞ, whereas in other applications the complement of p was denoted p 0. The notation
q 0ðDtÞ will be avoided for this purpose because of the confusion it would cause with the

standard notation for the derivative of qðDtÞ.
Remark 9.158 In remark 8.31 was discussed the relationship between the choice of

the real world probability of an upstate, denoted p, and the speed of convergence of

the distribution of binomial lattice prices to the normal distribution in (8.50). There it

was concluded that p ¼ 1=2 provided faster convergence by changing the error term in

the development from Oðn�1=2Þ to Oðn�1Þ. Because the risk neutral probabilities are

also functions of Dt ¼ T=n, it is natural to expect that speed of convergence of the bi-

nomial lattice under the risk-neutral probability depends not only on p but also on other

parameters used in the lattice calibration. Indeed (9.88) indicates that qðDtÞ converges
to p relatively slowly, with order of magnitude Oð ffiffiffiffiffi

Dt
p Þ ¼ Oðn�1=2Þ. But it is also ap-

parent that if a lattice is to be developed only for option pricing, then choosing m ¼
r� s2=2 causes qðDtÞ to converge to p with order of magnitude OðDtÞ ¼ Oðn�1Þ. If
additionally we select p ¼ 1=2, the convergence improves to OððDtÞ3=2Þ ¼ Oðn�3=2Þ.
Of course, choosing p ¼ 1=2 is harmless, but choosing m ¼ r� s2=2 does not provide

a lattice that will, in general, be useful for real world stock price modeling. But this
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calibration is often used in practice for option pricing because it accelerates option

price convergence as a function of Dt. And this choice is further justified by the obser-

vation that in the limit of the Black–Scholes–Merton option-pricing formulas, the real

world parameter m plays no role in any case, as noted in remark 8.34 of section 8.8.3,

so we are justified to choose this value at will. Of course, if the goal is to produce a re-

alistic stock price lattice for real world modeling and option pricing, one must choose a

realistic m and tolerate the fact that option prices will converge more slowly as Dt ! 0.

Risk-Neutral Binomial Distribution as Dt ? 0

We are now in a position to investigate the limiting distribution of the binomial

model under the risk-neutral probabilities. First o¤, with the analogous setup from

chapter 8 in (8.46), we define

S
ðnÞ
T ¼ S0e

TBj ;

where for j ¼ 1; 2; . . . ; n,

Bj ¼ uðDtÞ1 mDtþ as
ffiffiffiffiffi
Dt

p
; Pr ¼ qðDtÞ;

dðDtÞ1 mDt� 1
a
s
ffiffiffiffiffi
Dt

p
; Pr ¼ 1� qðDtÞ;

(

with a ¼
ffiffiffiffi
p 0
p

q
¼ p 0ffiffiffiffiffi

pp 0
p , � 1

a
¼ �pffiffiffiffiffi

pp 0
p and qðDtÞ ¼ e rDt�edðDtÞ

euðDtÞ�edðDtÞ .

The goal of this section is to prove the following:

Proposition 9.159 With S
ðnÞ
T and qðDtÞ defined as above, then as Dt ! 0, in contrast

to (8.50),

ln
S
ðnÞ
T

S0

" #
!q ln

ST

S0


 �
@N r� 1

2
s2

� �
T ; s2T

� �
; ð9:93aÞ

or

ln S
ðnÞ
T !q ln ST @N ln S0 þ r� 1

2
s2

� �
T ; s2T

� �
; ð9:93bÞ

where the limit symbol ‘‘!q’’ is used to emphasize the dependence of this result on the

risk-neutral probability structure.

With ST denoting the limiting random variable, this can be equivalently written as

ST ¼ S0e
X ; ð9:94Þ
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where X @N r� 1
2s

2
� �

T ; s2T
� �

. So ST satisfies the definition of a lognormal random

variable (see chapter 10 for more details on this distribution).

This is truly a remarkable result when contrasted with the limits under the real

world probability p stated in proposition 8.30. Of course, it may not seem remark-

able that changing the binomial probability from p to qðDtÞ changes the moments of

the limiting distribution of ln½ST=S0�, here from NðmT ; s2TÞ to N r� 1
2 s

2
� �

T ; s2TÞ.
What is remarkable is that as seen above, this change occurs despite the fact that

qðDtÞ ! p as Dt ! 0.

As a first step in the investigation, we first note that under qðDtÞ, using (9.88),

E ln
StþDt

St


 �
 �
¼ r� 1

2
s2

� �
DtþO½Dt3=2�; ð9:95aÞ

Var ln
StþDt

St


 �
 �
¼ s2DtþO½Dt3=2�: ð9:95bÞ

This derivation is assigned in exercise 24 below. So even with this relatively simple

calculation it is apparent that despite the fact that qðDtÞ ! p as Dt ! 0, this conver-

gence occurs in a way that introduces a permanent shift in the mean of this distribu-

tion compared to the earlier result.

To now demonstrate the result on the limiting distribution, we again resort to a

moment-generating function argument. Because of the e¤ect qðDtÞ has on the mean

of the distribution, there is no benefit in attempting to parallel the development in

section 8.8.2 in which we worked with the normalized random variable Y ðnÞ rather
than the actual random variable BðnÞ ¼Pn

j¼1 Bj 1 ln½SðnÞ
T =S0�. There, with Y ðnÞ we

could eliminate the Dt-terms and only work with simplified
ffiffiffiffiffi
Dt

p
-terms of Bj. Here,

the normalized variable is actually more di‰cult to work with than the original ran-

dom variable, so we work directly with BðnÞ.
For the moment-generating function of BðnÞ, first note that with a ¼

ffiffiffiffi
p 0
p

q
¼ p 0ffiffiffiffiffi

pp 0
p ,

� 1
a
¼ �pffiffiffiffiffi

pp 0
p and d ¼ sffiffiffiffiffi

pp 0
p as in the qðDtÞ analysis above,

MBj
ðsÞ ¼ emsDt

�
qðDtÞeass

ffiffiffiffi
Dt

p
þ ~qqðDtÞe�ðss ffiffiffiffiDtp Þ=a

	
¼ emsDt

�
qðDtÞedsp 0 ffiffiffiffiDtp

þ ~qqðDtÞe�dsp
ffiffiffiffi
Dt

p 	
;

where ~qqðDtÞ1 1� qðDtÞ. Because the fBjg are independent and identically distrib-

uted, MBðnÞ ðsÞ ¼Qn
j¼1 MBj

ðsÞ, and so since nDt ¼ T ,
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MBðnÞ ðsÞ ¼ emTs
�
qðDtÞedsp 0 ffiffiffiffiDtp

þ ~qqðDtÞe�dsp
ffiffiffiffi
Dt

p 	T=Dt

:

The goal is to show that

MBðnÞ ðsÞ ! eðr�s2=2ÞTsþðs2Ts2Þ=2:

The challenge here is to evaluate

lim
Dt!0

�
qðDtÞedsp 0 ffiffiffiffiDtp

þ ~qqðDtÞe�dsp
ffiffiffiffi
Dt

p 	1=Dt

:

Since f ðyÞ ¼ yT is a continuous function for T b 0, if it is shown that yðDtÞ ! y0 as

Dt ! 0, where

yðDtÞ1
�
qðDtÞedsp 0 ffiffiffiffiDtp

þ ~qqðDtÞe�dsp
ffiffiffiffi
Dt

p 	1=Dt

;

then f ðyðDtÞÞ ! f ðy0Þ, so we can exponentiate this limit after it is evaluated. This

limit of yðDtÞ can in turn be evaluated by working with zðDtÞ1 ln yðDtÞ, since

gðyÞ ¼ ey is continuous, and hence, if zðDtÞ ! z0, then yðDtÞ ¼ ezðDtÞ ! ez0 ¼ y0.

Working with zðDtÞ, which we express for notational simplicity as zðxÞ, we have

zðxÞ ¼
ln
�
qðxÞedsp 0 ffiffixp

þ ~qqðxÞe�dsp
ffiffi
x

p 	
x

;

and the goal is to determine limx!0 zðxÞ. Note that by reversing the above sequence

of steps, we have

MBðnÞ ðsÞ ¼ emTs
h
ezð0Þ

iT
:

So once z0 1 limx!0 zðxÞ is determined, we will conclude from the continuity of the

exponential and power functions that

MBðnÞ ðSÞ ! emTsþz0T : ð9:96Þ

Of course, in order for the claim above in (9.93) to be validated by this derivation,

we must show that

z0 ¼ r� m� 1

2
s2

� �
sþ 1

2
s2s2: ð9:97Þ

The details are a bit messy, and provided below for completeness.
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*Details of the Limiting Result To derive (9.97), note that with

AðxÞ1 qðxÞedsp 0 ffiffixp
þ ~qqðxÞe�dsp

ffiffi
x

p
;

where d ¼ sffiffiffiffiffi
pp 0

p :

1. AðxÞ is continuous on xb 0 and Að0Þ ¼ 1.

2. The series expansions of the 4 functions in the definition of AðxÞ are absolutely

convergent for some interval, 0a x < R 0 for s ¼ 1 as noted in the remark 9.156 fol-

lowing (9.89), and hence this remains true for 0a sa 1. Consequently the series ex-

pansion for AðxÞ can be developed by manipulating these series, and rearranging as

desired (recall the section 6.1.4 discussion on rearrangements of absolutely conver-

gent series).

3. Because of item 1, for any � > 0 there is a d so that if 0a x < d, we have that

jAðxÞ � 1j < �. So we let � ¼ 1
2 , say, and conclude that AðxÞ ¼ 1þ BðxÞ, where

jBðxÞj < 1
2 for 0a x < d. As a small technicality, we only consider 0a x < R 0, with

R 0 defined in item 2 above if R 0 < d.

4. By item 2, the series expansion for BðxÞ is also absolutely convergent for 0a x <

minðd;R 0Þ.
We now complete the derivation of this section’s result by the proof of two claims.

Claim 9.160 If AðxÞ ¼ 1þ x½z0 þ CðxÞ�, where CðxÞ has an absolutely convergent

series expansion on 0a x < minðd;R 0Þ, with Cð0Þ ¼ 0, then

lim
x!0

zðxÞ ¼ z0:

Proof Because zðxÞ ¼ 1
x
ln½AðxÞ� ¼ 1

x
ln½1þ xðz0 þ CðxÞÞ�, and jxðz0 þ CðxÞÞj ¼

jBðxÞj < 1
2 for 0a x < minðd;R 0Þ by item 3 above, the power series for lnð1þ yÞ

can be utilized, and this is an absolutely convergent series:

ln½1þ xðz0 þ CðxÞÞ� ¼
Xy
j¼1

ð�1Þ jþ1
x jðz0 þ CðxÞÞ j

j

¼ xðz0 þ CðxÞÞ þ x2
Xy
j¼2

ð�1Þ jþ1
x j�2ðz0 þ CðxÞÞ j

j
:

Consequently
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zðxÞ ¼ ðz0 þ CðxÞÞ þ x
Xy
j¼2

ð�1Þ jþ1
x j�2ðz0 þ CðxÞÞ j

j
:

Since Cð0Þ ¼ 0, we conclude that zðxÞ ! z0 as x ! 0 as claimed. n

We now show that AðxÞ has the required properties with z0 as given in (9.97) and,

hence by (9.96), will complete the proof of (9.93).

Claim 9.161 AðxÞ ¼ 1þ x r� m� 1
2 s

2
� �

sþ 1
2 s

2s2 þ CðxÞ� �
, where CðxÞ has an ab-

solutely convergent series expansion on 0a x < minðd;R 0Þ, with Cð0Þ ¼ 0.

Proof With AðxÞ1 qðxÞedsp 0 ffiffixp
þ ~qqðxÞe�dsp

ffiffi
x

p
, we have, since qðxÞ þ ~qqðxÞ ¼ 1,

AðxÞ ¼ 1þ qðxÞðedsp 0 ffiffixp
� 1Þ þ ~qqðxÞðe�dsp

ffiffi
x

p
� 1Þ

¼ 1þ
Xy
i¼0

qix
i=2
Xy
j¼1

ðdsp 0Þ jx j=2

j!
þ
Xy
i¼0

~qqix
i=2
Xy
j¼1

ð�dspÞ jx j=2

j!
;

where all series are absolutely convergent for 0a x < minðd;R 0Þ as noted above.

Here fqig are defined as in (9.89) using (9.88) and f~qqig are defined as the correspond-

ing coe‰cients for ~qqðxÞ. Consequently

~qq0 ¼ 1� q0 ¼ p 0; ~qqi ¼ �qi; ib 1:

Each of these two series products in the expansion of AðxÞ can be expanded as in

(6.22) and (6.23), and combined to produce

AðxÞ ¼ 1þ
Xy
n¼1

ðdn þ ~ddnÞxn=2;

with

dn ¼
Xn
k¼1

qn�k

ðdsp 0Þk
k!

; ~ddn ¼
Xn
k¼1

~qqn�k

ð�dspÞk
k!

:

The claim will be complete by now showing that d1 þ ~dd1 ¼ 0 and d2 þ ~dd2 ¼
r� m� 1

2 s
2

� �
sþ 1

2 s
2s2. To this end, recall that d ¼ sffiffiffiffiffi

pp 0
p ,

d1 þ ~dd1 ¼ q0ðdsp 0Þ þ ~qq0ð�dspÞ

¼ pðdsp 0Þ � p 0ðdspÞ ¼ 0:
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Also, since q1 ¼ ½r�m�ðs2=2Þ�
s=
ffiffiffiffiffi
pp 0

p by (9.88),

d2 þ ~dd2 ¼ q1ðdsp 0Þ þ ~qq1ð�dspÞ þ q0
ðdsp 0Þ2

2
þ ~qq0

ð�dspÞ2
2

¼ q1dsþ 1

2
d 2pp 0s2

¼ r� m� 1

2
s2

� �
sþ 1

2
s2s2: n

Putting this all together, we have from (9.96) and the above claims that

MBðnÞ ðSÞ ! emTsþðr�m�ð1=2Þs2ÞTsþð1=2Þs2Ts2

¼ eðr�ð1=2Þs2ÞTsþð1=2Þs2Ts2 :

In other words, as in (9.93),

BðnÞ 1 ln
S
ðnÞ
T

S0

" #
!q N r� 1

2
s2

� �
T ; s2T

� �
:

*9.8.11 Special Risk-Averter Binomial Distribution as Dt? 0

Fortunately, we do not need to repeat the long section above to determine the other

limiting distribution needed for the Black–Scholes–Merton pricing formulas for Eu-

ropean put and call options as noted in section 8.8.3. We simply need to adapt the

work above to this modified situation.

Analysis of the Special Risk-Averter Probability: q(Dt)

Because qðDtÞ ¼ qðDtÞeuðDtÞe�rDt, we can relatively easily determine the series expan-

sion for qðDtÞ from the series expansion for qðDtÞ given in (9.88), and the series ex-

pansion for euðDtÞ�rDt. This derivation is possible because each of these series is

absolutely convergent for 0aDt < R for some R > 0. So we can multiply, using the

section 6.3.1 results on multiplying series in (6.22) and (6.23), and rearrange summa-

tions at will. Consequently, as will be needed below, the series for qðDtÞ is also abso-

lutely convergent.

The goal of this section is to derive the following expansion:

Proposition 9.162 With qðDtÞ defined as above, we have that
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qðDtÞ ¼ pþ r� mþ 1
2 s

2
� �

s=
ffiffiffiffiffiffiffi
pp 0p ffiffiffiffiffi

Dt
p

þ p� 1

2

� �
r� m� 7s2

6

� �
� p2 r� mþ 1

2
s2

� �
 �
Dt

þO½Dt3=2�: ð9:98Þ
Denoting the coe‰cients of the qðDtÞ series as fqig as above, and the correspond-

ing coe‰cients of the qðDtÞ series by fqig, we have from qðDtÞ ¼ qðDtÞeuðDtÞe�rDt that

Xy
n¼0

qnðDtÞn=2 ¼
Xy
k¼0

qkðDtÞk=2
Xy
j¼0

½�cDtþ dp 0 ffiffiffiffiffi
Dt

p � j
j!

:

Here, as in the development of (9.88), we use the simplifying notation c ¼ r� m and

d ¼ sffiffiffiffiffi
pp 0

p . If each of these series is then expanded, (6.23) can be applied to derive the

needed qi-terms.

Knowing from the proof of the second claim for the qðDtÞ analysis that we only

require this expansion up to the
ffiffiffiffiffi
Dt

p
, but calculating the Dt term for good measure,

we derive

Xy
k¼0

qkðDtÞk=2 ¼ q0 þ q1
ffiffiffiffiffi
Dt

p
þ q2Dtþ � � � ;

Xy
j¼0

½�cDtþ dp 0 ffiffiffiffiffi
Dt

p � j
j!

¼ 1þ dp 0 ffiffiffiffiffi
Dt

p
þ �cþ 1

2
ðdp 0Þ2

� �
Dtþ � � � ;

and so

q0 ¼ q0;

q1 ¼ q1 þ q0dp
0;

q2 ¼ q2 þ q1dp
0 þ q0 �cþ 1

2
ðdp 0Þ2

� �
:

Implementing the necessary algebra with the coe‰cients from (9.88), recalling

c ¼ r� m and d ¼ sffiffiffiffiffi
pp 0

p , produces (9.98).
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Special Risk-Averter Binomial Distribution as Dt? 0

We are now in a position to derive the limiting distribution of the binomial model

under the special risk-averter probabilities. Specifically, we begin with the analogous

setup to that above for the risk-neutral analysis:

S
ðnÞ
T ¼ S0e

TBj ;

where for j ¼ 1; 2; . . . ; n,

Bj ¼ uðDtÞ1 mDtþ as
ffiffiffiffiffi
Dt

p
; Pr ¼ qðDtÞ;

dðDtÞ1 mDt� 1
a
s
ffiffiffiffiffi
Dt

p
; Pr ¼ 1� qðDtÞ;

(

with qðDtÞ ¼ qðDtÞeuðDtÞe�rDt, a ¼
ffiffiffiffi
p 0
p

q
¼ p 0ffiffiffiffiffi

pp 0
p , and � 1

a
¼ �pffiffiffiffiffi

pp 0
p .

The goal of this section is to prove the following:

Proposition 9.163 With S
ðnÞ
T and qðDtÞ defined as above, then as Dt ! 0, in contrast

to both (8.50) and (9.93):

ln
S
ðnÞ
T

S0

" #
!q ln

ST

S0


 �
@N rþ 1

2
s2

� �
T ; s2T

� �
; ð9:99aÞ

or

ln S
ðnÞ
T !q ln ST @N ln S0 þ rþ 1

2
s2

� �
T ; s2T

� �
; ð9:99bÞ

where the limit symbol ‘‘!q’’ is used to emphasize the dependence of this result on the

special risk-averter probability structure.

With ST denoting the limiting random variable, this can be equivalently written as

ST ¼ S0e
X ; ð9:100Þ

where X @N rþ 1
2s

2
� �

T ; s2T
� �

. So once again, ST has a lognormal distribution, as

defined and studied in chapter 10.

As a first step in the investigation, we note that under qðDtÞ, using (9.98),

E ln
StþDt

St


 �
 �
¼ rþ 1

2
s2

� �
DtþO½Dt3=2�; ð9:101aÞ

Var ln
StþDt

St


 �
 �
¼ s2DtþO½Dt3=2�: ð9:101bÞ
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This derivation is assigned in exercise 48 below. So even with this relatively simple

calculation, it is apparent that even though qðDtÞ ! p and qðDtÞ � qðDtÞ ! 0 as

Dt ! 0, this convergence occurs slowly enough to cause a di¤erent permanent shift

in the mean of this distribution compared to the earlier results in sections 8.8.2 and

9.8.10.

Details of the Limiting Result

For the limiting result, a moment of review in the risk-neutral case will confirm that

there was only one step in that long derivation where the series for qðDtÞ actually

mattered, and that was in the derivation of the second claim at the end of the section,

in which the z0 needed in (9.97) was derived. We state the modified second claim

here, with all notation the same as before.

Claim 9.164 With AðxÞ defined by AðxÞ1 qðxÞedsp 0 ffiffixp
þ ~qqðxÞe�dsp

ffiffi
x

p
, where ~qqðxÞ ¼

1� qðxÞ, then AðxÞ ¼ 1þ x r� mþ 1
2 s

2
� �

sþ 1
2 s

2s2 þ CðxÞ� �
, where CðxÞ has an ab-

solutely convergent series expansion on 0a x < minðd;R 0Þ, with Cð0Þ ¼ 0.

Proof The derivation that AðxÞ ¼ 1þPy
n¼1ðdn þ ~

ddnÞxn=2 is identical to that above,

with the series coe‰cients in (9.98), qi, replacing those from (9.88), qi. That is,

AðxÞ ¼ 1þ qðxÞðedsp 0 ffiffixp
� 1Þ þ ~qqðxÞðe�dsp

ffiffi
x

p
� 1Þ

¼ 1þ
Xy
i¼0

qix
i=2
Xy
j¼1

ðdsp 0Þ jx j=2

j!
þ
Xy
i¼0

~qqix
i=2
Xy
j¼1

ð�dspÞ jx j=2

j!

¼ 1þ
Xy
n¼1

ðdn þ ~
ddnÞxn=2:

Here

dn ¼
Xn
k¼1

qn�k

ðdsp 0Þk
k!

; ~
ddn ¼

Xn
k¼1

~qqn�k

ð�dspÞk
k!

:

The only steps of the proof that di¤er and need to be checked relate to the first 2

terms of the series. For example,

d1 þ ~
dd1 ¼ 0

because q0 ¼ q0 ¼ p, and d ¼ sffiffiffiffiffi
pp 0

p . Also
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d2 þ ~
dd2 ¼ q1dsþ

1

2
d 2pp 0s2

¼ r� mþ 1

2
s2

� �
sþ 1

2
s2s2;

which follows from q1 ¼
r�mþ1

2s
2½ �

s=
ffiffiffiffiffi
pp 0

p . n

9.8.12 Black–Scholes–Merton Option-Pricing Formulas II

We began the derivation of the famous Black–Scholes–Merton pricing formulas for

European put and call options in section 8.8.3. For a T-period European call on an

equity S, with a strike price of K , it was derived that the price at time 0, defined as

the price of a replicating portfolio on a binomial lattice with Dt ¼ T
n
, is given in the

equation preceding (8.56) by

L0ðS0Þ ¼ S0 Pr BðnÞ b ln
K

S0


 �
 �
� e�rTK Pr BðnÞ b ln

K

S0


 �
 �
:

Recall than BðnÞ ¼
Pn

i¼1 Bi in the Binðq; nÞ model, where fBig are i.i.d. binomials

and have upstate and downstate values of uðDtÞ and dðDtÞ with special risk-averter

probabilities qðDtÞ and 1� qðDtÞ, respectively, and BðnÞ is identically defined in the

Binðq; nÞ model, but with the risk-neutral probability q1 qðDtÞ.
The proofs in the prior two sections show that BðnÞ ! N rþ 1

2 s
2

� �
T ; s2T

� �
and

that BðnÞ ! N r� 1
2 s

2
� �

T ; s2T
� �

. Consequently, with Z1 and Z2 denoting these nor-

mal variates, and FðzÞ the unit normal cumulative distribution function,

Pr BðnÞ b ln
K

S0


 �
 �
! Pr Z1 b ln

K

S0


 �
 �

¼ 1�F
ln K

S0

h i
� rþ 1

2s
2

� �
T

s
ffiffiffiffi
T

p
0@ 1A

¼ F
ln S0

K

h i
þ rþ 1

2 s
2

� �
T

s
ffiffiffiffi
T

p
0@ 1A;

where the last step follows from the symmetry of the normal distribution, which

implies that 1�FðzÞ ¼ Fð�zÞ.
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Similarly

Pr BðnÞ b ln
K

S0


 �
 �
! Pr Z2 b ln

K

S0


 �
 �

¼ F
ln S0

K

h i
þ r� 1

2 s
2

� �
T

s
ffiffiffiffi
T

p
0@ 1A:

Combining results, we have derived the Black–Scholes–Merton pricing formula for a

European call option:

LC
0 ðS0Þ ¼ S0Fðd1Þ � e�rTKFðd2Þ; ð9:102aÞ

d1 ¼
ln S0

K
þ rþ 1

2 s
2

� �
T

s
ffiffiffiffi
T

p ; ð9:102bÞ

d2 ¼
ln S0

K
þ r� 1

2 s
2

� �
T

s
ffiffiffiffi
T

p : ð9:102cÞ

A European put option is now easy to price. While the payo¤ function at expiry

for a call is

LCðSTÞ ¼ maxðST � K ; 0Þ; ð9:103Þ
for a put option we have

LPðSTÞ ¼ maxðK � ST ; 0Þ: ð9:104Þ
Consequently the payo¤ function for a portfolio that includes a short put and a long

call is

LCðSTÞ �LPðST Þ ¼ ST � K :

In other words, this portfolio has value equal to ST � K at time T , which means is

can be replicated by a portfolio of one long share, and a short position in a T-bill

that matures for K . Consequently the price of this options portfolio at t ¼ 0 equals

the price of this replicating portfolio and therefore satisfies

LC
0 ðS0Þ �LP

0 ðS0Þ ¼ S0 � Ke�rT : ð9:105Þ
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This famous identity in prices, forced by this replication argument, is known as put-

call parity.

Exercise 23 assigns the task of deriving the Black–Scholes–Merton pricing formula

for a European put option using put-call parity, the price above of a European call

option, and symmetry properties of the unit normal distribution. The formula with

the same notation as for a call is

LP
0 ðS0Þ ¼ e�rTKFð�d2Þ � S0Fð�d1Þ: ð9:106Þ

Exercises

Practice Exercises

1. For each of the following collections of functions, determine the given composite

functions:

(a) f ðxÞ ¼ x�n and gðiÞ ¼ 1þ i
2 : f ðgðiÞÞ and gð f ðxÞÞ

(b) f ðxÞ ¼Pn
j¼1 x

�j and gðiÞ ¼ 1þ i
2: f ðgðiÞÞ and gð f ðxÞÞ

(c) f ðxÞ ¼ erx, gðyÞ ¼ ln y, hðzÞ ¼Pn
j¼1 z

j : f � g � hðzÞ, g � f � hðzÞ and f � h � gðyÞ
2. Demonstrate that the following functions are continuous at the given points.

(Hint: Demonstrate directly or make use of the propositions on combining known

continuous functions.)

(a) rðiÞ ¼ ð1þ iÞ2 for all i A R.

(b) sðiÞ ¼ ð1þ iÞn for all i A R, where n A N.

(c) f ðxÞ ¼ ð1þ xÞ�n for all x > �1, where n A N.

(d) gðzÞ ¼PN
j¼0 bjz

j for z A R, where bj A R, N A N.

(e) aðiÞ ¼
1�ð1þiÞ�n

i
; i > �1; i0 0

n; i ¼ 0

(
where n A N. (Hint: Consider ð1þ iÞnaðiÞ and

recall the binomial theorem.)

3. Demonstrate that the following functions are not continuous as indicated:

(a) f ðxÞ ¼ sin 1
x
; x0 0;

0; x ¼ 0; is not continuous at x ¼ 0:

�
(b) gðyÞ ¼ 1; xb 3;

�1; x < 3, is not continuous at y ¼ 3:

�
4. Of the functions in exercise 2, demonstrate that 2(a), (b), and (d) are uniformly

continuous on ð�1; 1�, and that 2(c) and (e) are not.
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5. Explicitly write out the definitions of continuous, sequentially continuous, and

uniformly continuous for a function f ðxÞ defined on a metric space ðX ; dÞ, and with

range in:

(a) R, under the standard metric

(b) a general metric space ðY ; d 0Þ
6. Show that if f ðxÞ and gðxÞ are di¤erentiable at x0, then so is hðxÞ. (Hint: The goal

is to express hðxÞ � hðx0Þ in terms of f ðxÞ � f ðx0Þ, gðxÞ � gðx0Þ and other terms that

are easy to work with. Consider (9.10).)

(a) hðxÞ ¼ af ðxÞG bgðxÞ, and h 0ðx0Þ ¼ af 0ðx0ÞG bg 0ðx0Þ
(b) hðxÞ ¼ f ðxÞgðxÞ and h 0ðx0Þ ¼ f 0ðx0Þgðx0Þ þ f ðx0Þg 0ðx0Þ
7. Show that if gðxÞ is di¤erentiable and g 0ðxÞ continuous in an open interval con-

taining x0 and g 0ðx0Þ0 0, then there is an interval about x0, say ðx0 � a; x0 þ aÞ, for
some a > 0, where gðxÞ is one-to-one. (Hint: Assume g 0ðx0Þ > 0, and note that if

limDx!0
gðx0þDxÞ�gðx0Þ

Dx
¼ g 0ðx0Þ > 0, then for � ¼ 1

2 g
0ðx0Þ there is a d so that

gðx0 þ DxÞ � gðx0Þ
Dx

� g 0ðx0Þ




 



< 1

2
g 0ðx0Þ;

for jDxj < d. What does this say about gðx0 þ DxÞ � gðx0Þ? Consider also g 0ðx0Þ <
0:)

8. Show that dax

dx
¼ ax ln a, for a > 0 follows from the identity: ax ¼ ex ln a. (Hint:

ax ¼ f ðgðxÞÞ with gðxÞ ¼ x ln a and f ðyÞ ¼ ey:Þ
9. Calculate the derivative of the functions in exercise 2, and determine if any restric-

tions are needed on the domains given there.

10. Find the Taylor series expansions for the following functions, and determine

when they converge.

(a) f ðxÞ ¼ ð1þ xÞ�1 with x0 ¼ 0

(b) gðyÞ ¼ ð1� yÞ�n with y0 ¼ 0

(c) hðzÞ ¼ e�rz with z0 ¼ 0

11. Confirm where each of the following functions is concave or convex on their

respective domains:

(a) f ðxÞ ¼ e�x2
, x A R

(b) hðyÞ ¼ ð1þ yÞ�n, n a positive integer, y > �1

(c) lðzÞ ¼ lnð1þ zÞ, z > �1
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12. Prove the arithmetic-geometric means inequality. If xi b 0 for all i,

1

n

Xn
i¼1

xi b
Yn
i¼1

xi

 !1=n
:

(Hint: The result is apparently true if some xi ¼ 0, so assume all xi > 0. Take loga-

rithms and consider if ln x is a concave or convex function.)

Remark 9.165 When fxig are both positive and negative, this inequality is satisfied

with the collection, fjxijg.
13. Show by considering the product of Taylor series, that for a; b A R: eaxebx ¼
eðaþbÞx. Justify the reordering of these summations to get the intended result. (Hint:

Use the binomial theorem and (9.41).)

14. Show, using a Taylor series expansion, that if f ðxÞ ¼ lnð1þ xÞ, for x > �1, then

f 0ðxÞ ¼ 1
1þx

. Justify di¤erentiating term by term as well as the convergence of the

final series to the desired answer.

15. Derive the risk-minimizing allocation between two assets, as well as the resulting

portfolio’s mean return and standard deviation of return:

(a) If m1 ¼ 0:05, s1 ¼ 0:09, m1 ¼ 0:08, s1 ¼ 0:15, r ¼ 0:4

(b) If m1 ¼ 0:05, s1 ¼ 0:09, m1 ¼ 0:08, s1 ¼ 0:15, r ¼ 0:6

(c) If m1 ¼ 0:05, s1 ¼ 0:09, m1 ¼ 0:08, s1 ¼ 0:15, r ¼ 0:8

16. For the exponential ðk ¼ 9 � 10�5Þ, quadratic (a ¼ 1, b ¼ 4 � 10�6Þ, power

(l ¼ 0:01Þ, and logarithmic ðc ¼ 10;000Þ utility functions, determine the optimal

risky asset allocation between the risk-free asset with r ¼ 0:03 and a risky asset with

m ¼ 0:10 and s ¼ 0:18, where W0 ¼ 100;000. (Hint: See exercise 38.)

17. Calculate the duration and convexity of the following price functions exactly,

and using the approximation formulas with both Di ¼ 0:01, and Di ¼ 0:001. For du-

ration, compare the results of (9.52) with (9.51). Assume 100 par.

(a) 10-year zero coupon bond with a yield of 8% semiannual

(b) 3-year, 6% semiannual coupon bond, with a yield of 7% semiannual.

18. For each of the price functions in exercise 17, compare the prices predicted by

the forward di¤erence duration approximation with Di ¼ 0:01 to those predicted

with the convexity adjustment, again using the convexity approximation with Di ¼
0:01, and then to the exact prices. Do this exercise shifting the original pricing yields

G3%,G2%,G1% ,G0.5% ,G0.1%.
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19. Prove for a portfolio of fixed income securities with price function given by

PðiÞ ¼
Xn
j¼1

PjðiÞ

that the duration and convexity of the portfolio, assuming PðiÞ0 0, and PjðiÞ0 0

for all j, is given by

DðiÞ ¼
Xn
j¼1

wjDjðiÞ; CðiÞ ¼
Xn
j¼1

wjCjðiÞ;

where wj ¼ PjðiÞ
PðiÞ , and hence

Pn
j¼1 wj ¼ 1.

Remark 9.166 It is important to note that you will not need to make an assumption

about the signs of fPjðiÞg to prove this result. So this result applies equally well to long

positions, PjðiÞ > 0, short positions, PjðiÞ < 0, or a mixed portfolio of longs and shorts.

20. Given an asset portfolio of $250 million of duration 6 bonds, and $225 million

of liabilities of duration 4.5, determine the necessary ‘‘target’’ duration for assets to

achieve immunization of surplus in the following cases, as well as the necessary asset

trade. Assume that bonds are homogeneous and can be sold in any amount, and that

cash is to be reinvested in duration 1 assets. (Hint: Surplus is a long portfolio of

assets and a short portfolio of liabilities. See exercise 19.)

(a) Surplus immunization at t ¼ 0

(b) Surplus immunization at t ¼ 2, where Z2ðiÞ is priced at i ¼ 0:03 semiannual

(c) Surplus ratio immunization

21. Using the Black–Scholes–Merton formula for a call option, from (9.102), derive

the Delta of a call option as

DC ¼ Fðd1Þ:
(Hint: This is a challenging calculation. It is seductive to think that because the first

part of the BSM formula is S0Fðd1Þ, that this derivative, dD
dS0

is obvious, but it is not,

since both d1 and d2 are functions of S0 also. Once you have the derivative expres-

sion, see what is needed to achieve the desired answer.)

22. Develop the relationship between an individual’s risk preference and their will-

ingness to insure a given risk, where the indi¤erence equation is
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uðW0 � PÞ ¼ E½uðW0 � XÞ�;
with P as the insurance premium and X the risk insured against. In other words, how

is the resulting relationship between P and E½X � determined by u 00ðxÞ? (Hint: Use

Jensen’s inequality.)

23. Derive the Black–Scholes–Merton pricing formula for a European put option in

(9.106) using put-call parity, and the Black–Scholes–Merton price of a European call

option in (9.102).

24. Investigate the moments of ln½StþDt=St� under the risk-neutral probability.
(a) Derive (9.95) using the expansion of qðDtÞ in (9.88). (Hint: Only keep track of the

terms in qðDtÞ and 1� qðDtÞ up to Oð ffiffiffiffiffi
Dt

p Þ, since the higher order terms will be part

of the error, O½Dt3=2�, as will be confirmed next.)

(b) Demonstrate that this shift in the mean is caused only by the coe‰cient of
ffiffiffiffiffi
Dt

p
in the expansion of qðDtÞ, and that the higher order terms have no e¤ect on these

moments larger than O½Dt3=2�.
Assignment Exercises

25. For each of the following collections of functions, determine the given composite

functions:

(a) f ðxÞ ¼ e�rx and gðzÞ ¼Pn
j¼1 z

j: f ðgðzÞÞ and gð f ðxÞÞ
(b) f ðxÞ ¼ 1

x
and gðyÞ ¼Pn

j¼1 y
�j: f ðgðyÞÞ and gð f ðxÞÞ

(c) f ðxÞ ¼ 1þ i
12

� �x
, gðyÞ ¼ ln y, hðzÞ ¼Pn

j¼1
z
j
: f � g � hðzÞ, g � f � hðzÞ and

f � h � gðyÞ
26. Demonstrate that the following functions are continuous at the given points.

(Hint: demonstrate directly or make use of the propositions on combining continuous

functions.)

(a) hðxÞ ¼ erx for all x A R, for any r A R.

(b) gðzÞ ¼ 1ffiffiffiffi
2p

p e�z2 for all z A R.

(c) hðzÞ ¼PN
j¼0

bj
z j , where bj A R, N A N, for z > 0.

(d) rðiÞ ¼ m ln 1þ i
m

� �
for m A N and all i > �1. (Note: rðiÞ is the continuous rate

equivalent to the mthly nominal rate i, as will be studied in chapter 10.)

(e) f ðxÞ ¼ 1
x2 for x0 0.

27. Demonstrate that the following functions are not continuous as indicated:

(a) iðzÞ ¼ 1; z rational,

�1; z irrational, is not continuous at any z A R:

�
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(b) f ðxÞ ¼ n; x ¼ n A Z,
1
x2 ; x B Z, is not continuous at any n A Z except n ¼ 1:

�
28. Prove that f ðxÞ is continuous at x0 if and only if it is sequentially contin-

uous at x0. (Hint: If continuous, consider the definition in conjunction with def-

inition of xn ! x0. Prove the reverse implication by contradiction, if f ðxÞ is not

continuous. . . .)

29. Of the functions in exercise 26, demonstrate that the functions in (a), and (b) are

uniformly continuous on ð�1; 1�, that the function in (d) is uniformly continuous on

ð�1; 1� only when m > 1, and that the functions in (c) and (e) are not uniformly con-

tinuous on ð0; 1�. (Note: The function in (c) is constant and hence uniformly continu-

ous in the trivial case when N ¼ 0, so assume N > 0 for this exercise.)

30. (a) Prove that if f ðxÞ is continuous on a compact set KHX , where ðX ; dÞ is a
metric space, then it is uniformly continuous on K . Assume that the range of f ðxÞ is
a general metric space ðY ; d 0Þ, or if easier, first consider the case where f : X ! R.

(Hint: First review the chapter proof when X ¼ R:Þ
(b) Show that if f ðxÞ ¼Py

j¼0 ajðx� x0Þ j is a power series that converges on

I ¼ fx j jx� x0j < Rg;
and if fnðxÞ denotes the partial sum of this series, then fnðxÞ ! f ðxÞ uniformly on

any compact set KH I .

31. Show that if f ðxÞ is an arbitrary function, f : R ! R, then f �1ð ~FFÞ ¼ gf �1ðFÞf �1ðFÞ
for any set F HR.

32. Show that if f ðxÞ and gðxÞ are di¤erentiable at x0, then so is hðxÞ. (Hint: The

goal is to express hðxÞ � hðx0Þ in terms of f ðxÞ � f ðx0Þ, gðxÞ � gðx0Þ, and other

terms that are easy to work with. Consider (9.10).)

(a) hðxÞ ¼ 1
gðxÞ if gðx0Þ0 0, and h 0ðx0Þ ¼ �g 0ðx0Þ

g2ðx0Þ
(b) hðxÞ ¼ f ðxÞ

gðxÞ if gðx0Þ0 0, and h 0ðx0Þ ¼ f 0ðx0Þgðx0Þ� f ðx0Þg 0ðx0Þ
g2ðx0Þ

33. Calculate the derivative of the functions in exercise 26, and determine if any

restrictions are needed on the domains given there.

34. Prove the Leibniz rule for the nth-derivative of the product of two n-times di¤er-

entiable functions as given in (9.42). Namely, if hðxÞ ¼ f ðxÞgðxÞ, then

hðnÞðxÞ ¼
Xn
k¼0

n

k

� �
f ðkÞðxÞgðn�kÞðxÞ;
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where f ð0ÞðxÞ1 f ðxÞ, and similarly gð0ÞðxÞ1 gðxÞ. (Hint: Use mathematical

induction.)

35. Find the Taylor series expansions for the following functions, and determine

when they converge:

(a) PðrÞ ¼ D
r
with r0 ¼ 0:05.

(b) f ðxÞ ¼ sin x with x0 ¼ 0. (Hint: Use (9.16).)

(c) gðxÞ ¼ cos x with x0 ¼ 0.

(d) Confirm using parts (b) and (c), that in terms of the resulting Taylor series,

eix ¼ cos xþ i sin x;

which is Euler’s formula from (2.5) in chapter 2.

36. Confirm where each of the following functions is concave or convex on their re-

spective domains:

(a) jðwÞ ¼ wr, for r > 0, wb 0

(b) aðuÞ ¼ 1
u
, u0 0

(c) zðvÞ ¼ ev, v A R
37. Show, using a Taylor series expansion, that if f ðxÞ ¼ e�rx for r > 0, that f 0ðxÞ ¼
�rf ðxÞ. Justify di¤erentiating term by term.

38. Derive the Arrow–Pratt measure of absolute risk aversion, rAP, for the exponen-

tial ðk ¼ 9 � 10�5Þ, quadratic (a ¼ 1, b ¼ 4 � 10�6), power ðl ¼ 0:01Þ, and logarithmic

ðc ¼ 10;000Þ utility functions where r ¼ 0:03 and W0 ¼ 100;000.

39. Using the general formula for the risk of a portfolio in (9.54b), derive the obvi-

ous result that the risk-minimizing allocation between a risky asset and a risk-free

asset is wj ¼ 1 in the risk-free asset.

40. Calculate the duration and convexity of the following price functions exactly,

and using the approximation formulas with both Di ¼ 0:01, and Di ¼ 0:001. For the

duration, compare the results of (9.52) with (9.51). Assume 100 par for part (a), and

a loan of 100 in part (b).

(a) 8% annual dividend preferred stock, with an annual yield of 10%

(b) A 5-year, monthly repayment schedule loan made with a monthly loan rate of

10%, priced with a yield of 12% monthly

41. For each of the price functions in exercise 40, compare the prices predicted by

the forward di¤erence duration approximation with Di ¼ 0:01, to those predicted

with the convexity adjustment, again using the convexity approximation with Di ¼
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0:01, and then to the exact prices. Do this exercise shifting the original pricing yields

G3%,G2%,G1%,G0.5%,G0.1%.

42. Derive the immunizing conditions in (9.73) where Sði0Þ ¼ 0. (Hint: Determine

what conditions ensure that S 0ði0Þ ¼ 0 and S 00ði0Þ > 0:)

43. Given a fixed income hedge fund with asset portfolio of $900 million of duration

4.5 bonds, and $850 million of debt of duration 2.5, determine the necessary ‘‘target’’

duration for assets to achieve immunization of the hedge fund equity in the following

cases, as well as the necessary asset trade. Assume that bonds are homogeneous and

can be sold in any amount, and reinvested in duration 0.25 assets. (Hint: Equity is a

long portfolio of assets and a short portfolio of liabilities. See exercise 19.)

(a) Equity immunization at t ¼ 0

(b) Equity immunization at t ¼ 1, where Z1ðiÞ is priced at i ¼ 0:025 semiannual

(c) Equity ratio immunization

44. Derive the Delta of a put option as priced by the Black–Scholes–Merton for-

mula from (9.106):

DP ¼ Fðd1Þ � 1:

(Hint: Consider exercise 21 and put-call parity from (9.105).)

45. Using exercises 21 and 44, calculate the gamma of a put and call option as priced

by the Black–Scholes–Merton formulas, and show that they are the same:

GP=C ¼ F 0ðd1Þ
S0s

ffiffiffiffi
T

p ;

where F 0 is the derivative of the normal distribution function, which is the normal

density function: F 0ðd1Þ ¼ fðd1Þ. (See section 10.5.2.)

46. With the forward value of surplus, StðiÞ, defined as

StðiÞ1 SðiÞ
ZtðiÞ ;

calculate S 0
t ðiÞ and S 00

t ðiÞ, as well as the duration and convexity formulas:

DStði0Þ ¼ DSði0Þ �DZtði0Þ;

CStði0Þ ¼ CSði0Þ � CZtði0Þ � 2DZtði0Þ½DSði0Þ �DZtði0Þ�:
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47. Develop the relationship between an individual’s risk preference and their will-

ingness to engage in a given bet, where the indi¤erence equation is

E½uðW0 � Lþ YÞ� ¼ uðW0Þ;
with L ¼ cost of gamble, and Y ¼ potential payo¤. In other words, how is the result-

ing relationship between L and E½Y � determined by u 00ðxÞ? (Hint: Use Jensen’s

inequality.)

48. Repeat exercise 24 for the moments of the special risk-averter distribution in

(9.101).
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10 Calculus II: Integration

10.1 Summing Smooth Functions

In this chapter we study the earliest conception of the integral, or generalized sum-

mation, of a function as it applies to continuous and certain generalizations of con-

tinuous functions. This approach to integration was first introduced on a rigorous

basis by Bernhard Riemann (1826–1866), who despite his short life was responsible

for a remarkable number of acclaimed mathematical discoveries, many of which

bear his name. Here we also develop the relationship between this integral and deriv-

ative, and explore some of the consequences of this relationship. In the final section,

we explore the strengths and limitations of the Riemann integral. This will serve as

background for the more general integration theories of real analysis.

Remark 10.1 In general, the functions that appear to be addressed in calculus are

real-valued functions of a real variable. In other words, these are functions

f : X ! Y ;

where X ;Y HR. However, while the assumption that the domain of f ðxÞ is real is

critical, X ¼ Dmnð f ÞHR, there is often no essential di‰culty in assuming f to be a

complex-valued function of a real variable so that the range of f ðxÞ, Y ¼ Rngð f ÞHC.

This generalization is not often needed in finance, and the characteristic function is one

of the few examples in finance where complex-valued functions are encountered.

One reason that Dmnð f ÞHR is critical in the development of calculus is that

we will often utilize the natural ordering of the real numbers. In other words, given

x; y A R with x0 y, then it must be the case that either x < y or y < x. None of these

proofs would generalize easily to functions of a complex variable where no such order-

ing exists. Indeed it turns out that the calculus of such functions is quite di¤erent and

studied in what is called complex analysis.

Because of the rarity of encountering complex-valued functions of a real variable in

finance, all the statements in this chapter are either silent on the location of Y, or

explicitly assume Y HR. In particular, no e¤ort was made to explicitly frame all

proofs in the general case Y HC, since this overt generality seemed to have little pur-

pose given the objectives of this book.

The applicability of many of the results of calculus to a complex-valued function can

often be justified by splitting the function values into ‘‘real’’ and ‘‘imaginary’’ parts. If

Y HC, we write

f ðxÞ ¼ gðxÞ þ ihðxÞ;
where both gðxÞ and hðxÞ are real valued. For an integration theory, ordering in the

range space matters as will be immediately observed, and so splitting f ðxÞ into ‘‘real’’



and ‘‘imaginary’’ parts, where both gðxÞ and hðxÞ are real valued, is how one must pro-

ceed. The integration theory in this chapter can usually then be applied to f ðxÞ by

applying it separately to gðxÞ and hðxÞ and combining results.

10.2 Riemann Integration of Functions

10.2.1 Riemann Integral of a Continuous Function

The intuitive idea behind the definition of a Riemann integral is that of finding the

‘‘signed area’’ between the graph of a given continuous function f ðxÞ and the x-axis

over the interval ½a; b�, where a < b. By ‘‘signed’’ is meant that area above the x-axis

is counted as ‘‘positive’’ area and that below is ‘‘negative’’ area. This is done by first

approximating this area with a collection of non-overlapping rectangles.

For example, splitting the interval ½a; b� into n-subintervals of length Dx ¼ b�a
n
,

and choosing one point in each subinterval, ~xxi A ½aþ ði � 1ÞDx; aþ iDx� for i ¼ 1;

2; . . . ; n, we can produce an approximation

Signed areaA
Xn
i¼1

f ð~xxiÞDx:

Of course, the goal is then to determine conditions on f ðxÞ that assure that this ap-

proximation converges as Dx ! 0, or equivalently as n ! y, and that it converges

independently of how one chooses the ~xxi values in the subintervals.

When f ðxÞ is a nonnegative function f ðxÞb 0, this signed area corresponds with

the usual notion of area. However, for general f ðxÞ, it is important to note that for

functions that are both positive and negative, the integral provides the ‘‘net’’ area be-

tween the function’s graph and x-axis, whereby area above the axis is counted as pos-

itive area and that below as negative. The integral then provides a ‘‘netting’’ of the

two values, which could be positive, negative, or zero.

If we assume that f ðxÞ is a continuous function, then on every closed subinterval,

½aþ ði � 1ÞDx; aþ iDx�, it attains its maximum value, Mi, and minimum value, mi,

and we can conclude that for any choice of the exixi values,
Xn
i¼1

miDxa
Xn
i¼1

f ð~xxiÞDxa
Xn
i¼1

MiDx:

The smaller summation is referred to as a lower Riemann sum, while the larger sum is

correspondingly referred to as an upper Riemann sum. All other summations of this

type are simply called Riemann sums.

560 Chapter 10 Calculus II: Integration



More generally, one can define these summations with respect to an arbitrary par-

tition of the interval ½a; b� into subintervals ½xi�1; xi�:
a ¼ x0 < x1 < � � � < xn�1 < xn ¼ b;

where we again choose exixi A ½xi�1; xi� and define Dxi ¼ xi � xi�1. We obtain

mðb� aÞa
Xn
i¼1

miDxi a
Xn
i¼1

f ð~xxiÞDxi a
Xn
i¼1

MiDxi aMðb� aÞ; ð10:1Þ

where Mi and mi denote the maximum and minimum values of the continuous f ðxÞ
on the subinterval ½xi�1; xi�, while M and m denote these defined on the full interval

½a; b�.
Even more generally, if f ðxÞ is not continuous on ½a; b� but is bounded, we can

achieve the same set of inequalities by defining Mi, and mi, as the least upper bound,

or l.u.b., and greatest lower bound, or g.l.b., respectively, of f ðxÞ on each subinterval.

Specifically, for i ¼ 1; . . . ; n,

Mi ¼ l:u:b:f f ðxÞ j x A ½xi�1; xi�g
¼ minfy j yb f ðxÞ for x A ½xi�1; xi�g; ð10:2Þ

mi ¼ g:l:b:f f ðxÞ j x A ½xi�1; xi�g
¼ maxfy j ya f ðxÞ for x A ½xi�1; xi�g:

The question of convergence of Riemann sums in the context of a general partition is

now defined in terms of the partition becoming increasingly fine. Specifically, with

m1 max
1aian

fxi � xi�1g; ð10:3Þ

convergence is investigated as m ! 0. The measure m is often referred to as the mesh

size of the partition.

From (10.1) it is clear that both the question of convergence of the Riemann sums,

as well as the independence of these limits from the choice of the exixi values can be

addressed together. Namely both questions can be answered in the a‰rmative if we

can show that the upper and lower Riemann sums converge to the same value as

m ! 0. With this in mind, we have the following definition.

Definition 10.2 f ðxÞ is Riemann integrable on an interval ½a; b� if as m ! 0 we have

that
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Xn
i¼1

MiDxi �
Xn
i¼1

miDxi

" #
! 0; ð10:4Þ

where Mi and mi are defined in (10.2). In this case we define the Riemann integral of

f ðxÞ over ½a; b�, byð b
a

f ðxÞ dx ¼ lim
m!0

Xn
i¼1

f ð~xxiÞDxi; ð10:5Þ

which exists and is independent of the choice of ~xxi A ½xi�1; xi� by (10.1). The function

f ðxÞ is then called the integrand, and the constants a and b the limits of integration of

the integral.

Remark 10.3 Sometimes, for added clarity, the above integral is called a definite inte-

gral, in contrast to an indefinite integral introduced in section 10.5.2 on the derivative

of an integral.

The following result is central to the theory, but it is not the most general result. It

requires both that f ðxÞ be continuous and that the interval ½a; b� be bounded.
Proposition 10.4 If f ðxÞ is continuous on bounded ½a; b�, then f ðxÞ is Riemann

integrable.

Proof Since f ðxÞ must be uniformly continuous on closed and bounded ½a; b� by
proposition 9.35, we have that for any � > 0 there is a d so that

j f ðxÞ � f ðx 0Þj < � if jx� x 0j < d:

Hence, if the mesh size of a given partition of ½a; b� satisfies ma d, then on any

subinterval

jMi �mij < �:

The triangle inequality then produces

Xn
i¼1

MiDxi �
Xn
i¼1

miDxi












a Xn

i¼1

jMi �mijDxi

< �ðb� aÞ;
so the di¤erence between upper and lower summations converges to 0 as � ! 0. n
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Next a Riemann integral over an interval can in fact be calculated in pieces.

Proposition 10.5 If f ðxÞ is continuous on bounded ½a; b� and a < c < b, thenð b
a

f ðxÞ dx ¼
ð c
a

f ðxÞ dxþ
ð b
c

f ðxÞ dx: ð10:6Þ

Proof Clearly, if we choose partitions of the interval ½a; b� so that one of the parti-

tion points xi ¼ c, this result is immediate as we simply split the upper and lower

Riemann sums into those applicable to ½a; c� and those applicable to ½c; b�. More gen-

erally, assume that the point c is within one of the subintervals of a partition. That is,

assume that c A ½xi�1; xi�. Denoting by M 1
i the l.u.b. of f ðxÞ on ½xi�1; c�, and M 2

i the

l.u.b. of f ðxÞ on ½c; xi�, it is clear that Mk
i aMi, the l.u.b. of f ðxÞ on ½xi�1; xi� where

k ¼ 1; 2. With analogous notation, mk
i bmi. Hence, with Dx1

i used as notation for

c� xi�1, and Dx2
i as notation for xi � c,

½M 1
i �m1

i �Dx1
i þ ½M 2

i �m2
i �Dx2

i a ½Mi �mi�Dxi;

and hence, as Dxi ! 0, the terms in the Riemann sums that reflect intervals that con-

tain c converge to 0. n

Remark 10.6 It should be noted that the above proof demonstrated that the terms in

the Riemann sums that reflect intervals that contained c could be discarded since they

converged to 0. In other words, it was demonstrated that for this function, as � ! 0,ð c��

a

f ðxÞ dx !
ð c
a

f ðxÞ dx; ð10:7aÞ

ð b
cþ�

f ðxÞ dx !
ð b
c

f ðxÞ dx: ð10:7bÞ

This observation provides an easy generalization to the proposition above in the case

where f ðxÞ is only continuous on the bounded open interval ða; bÞ, as long as it is also

bounded there.

Proposition 10.7 If f ðxÞ is continuous and bounded on bounded ða; bÞ, then f ðxÞ is

Riemann integrable on ½a; b�. Further, for any �1; �2 ! 0,ð b
a

f ðxÞ dx ¼ lim
�1; �2!0

ð b��2

a��1

f ðxÞ dx: ð10:8Þ
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Proof Given any partition of the interval ½a; b�, say
a ¼ x0 < x1 < � � � < xn�1 < xn ¼ b;

we must prove (10.4). Now, since ½x1; xn�1�H ða; bÞ, we conclude that f ðxÞ is contin-
uous and hence Riemann integrable on this interval. Also, since it is bounded, we can

assume that on ða; x1�U ½xn�1; bÞ the function f ðxÞ satisfies ma f ðxÞaM. Finally,

with Dxi ¼ xi � xi�1, then as m ! 0,

Xn
i¼1

MiDxi �
Xn
i¼1

miDxi














a
Xn
i¼1

jMi �mijDxi

¼ jM �mj½Dx1 þ Dxn� þ
Xn�1

i¼2

jMi �mijDxi

! 0:

So f ðxÞ is Riemann integrable on ½a; b�. Also, since j f ðxÞjaM 0 on ða; a� �1�U
½b� �2; bÞ, we haveð b

a

f ðxÞ dx�
ð b��2

a��1

f ðxÞ dx




 



aM 0ð�1 þ �2Þ;

proving (10.8). n

A useful result in applications is that the Riemann integral of a linear combination

of functions can be easily simplified to integrals of the components summands. In its

simplest form, and one that has an obvious generalization, we have:

Proposition 10.8 If f ðxÞ and gðxÞ are Riemann integrable on ½a; b�, then so too is

cf ðxÞ þ dgðxÞ for any c; d A R, andð b
a

½cf ðxÞ þ dgðxÞ� dx ¼ c

ð b
a

f ðxÞ dxþ d

ð b
a

gðxÞ dx: ð10:9Þ

Proof That f ðxÞ and gðxÞ are Riemann integrable on ½a; b� implies that each can be

expressed as
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ð b
a

f ðxÞ dx ¼ lim
m!0

Xn
i¼1

f ð~xxiÞDxi;

ð b
a

gðxÞ dx ¼ lim
m!0

Xn
i¼1

gð~xxiÞDxi;

where m denotes the mesh size of the partition, and f~xxig are arbitrary points in the

subintervals of each partition. Now, for any partition and collection of subinterval

points,

Xn
i¼1

½cf ð~xxiÞ þ dgð~xxiÞ�Dxi ¼ c
Xn
i¼1

f ð~xxiÞDxi þ d
Xn
i¼1

gð~xxiÞDxi:

Consequently, by taking the limit as m ! 0, we conclude both the integrability of

cf ðxÞ þ dgðxÞ as well as the formula in (10.9). n

Finally, there is a triangle inequality for Riemann integrals that is useful in many

estimation problems.

Proposition 10.9 If f ðxÞ is continuous on bounded ½a; b�, thenð b
a

f ðxÞ dx




 



a ð b

a

j f ðxÞj dx: ð10:10Þ

Proof First o¤, note that if f ðxÞ is continuous on bounded ½a; b�, so too is j f ðxÞj,
and hence the second integral is well defined (see exercise 23). Also, if fxng is any

convergent numerical sequence, then

lim
n!y

xn




 


 ¼ lim
n!y

jxnj;

since if xn ! x, then by (10.139) in exercise 23, jxnj ! jxj. Using these facts and the

definition of this integral in (10.5), we have by the triangle inequality,ð b
a

f ðxÞ dx




 



 ¼ lim

m!0

Xn
i¼1

f ð~xxiÞDxi













¼ lim

m!0

Xn
i¼1

f ð~xxiÞDxi
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a lim
m!0

Xn
i¼1

j f ð~xxiÞjDxi

¼
ð b
a

j f ðxÞj dx: n

Remark 10.10 It is important to note that while f ðxÞ being continuous implies that

j f ðxÞj is continuous, the reverse implication is patently false. A simple example defined

on ½0; 1� is

f ðxÞ ¼ 1; x rational;

�1; x irrational:

�
Then j f ðxÞj1 1 and is therefore continuous, but f ðxÞ is not continuous at any point.

10.2.2 Riemann Integral without Continuity

The result that continuous functions are Riemann integrable on closed and bounded

intervals is a good example of mathematical overkill. Just the brevity of the proof

indicates that continuity is a very powerful assumption, and probably far more than

is actually needed to make the Riemann sums converge. The case of continuous func-

tions on infinite intervals will be addressed below as so-called improper integrals.

Here we address the issue of continuity on the bounded interval ½a; b�.
Finitely Many Discontinuities

Example 10.11 Define the function

f ðxÞ ¼ x2; 0a x < 1;

x2 þ 5; 1a xa 2;

�
with graph in figure 10.1. Based on the proof of (10.6) above, one could hardly be sur-

prised that f ðxÞ is Riemann integrable, and thatð 2
0

f ðxÞ dx ¼
ð 1
0

x2 dxþ
ð2
1

ðx2 þ 5Þ dx;

where the first integral is defined by (10.8). As we will see below, this integral sum has

value 23
3 . The formal verification of this splitting reflects the proofs of (10.6) and

(10.8). The central idea was the fact that the terms in the Riemann sums that reflect

the subintervals that contain any given point c could be shown to converge to 0. In point
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of fact, the proof of (10.6) did not utilize the assumption that f ðxÞ was continuous at c,
but only that the function was bounded in each of the partitions’ subintervals that con-

tained c. This boundedness assumption was explicit in the proof of (10.8). The value of

f ðcÞ is entirely irrelevant as long as the function is bounded in an interval about c.

This example easily generalizes to the case of a bounded function f ðxÞ, continuous
on an interval ½a; b� except at a finite collection of points fx̂xjgn

j¼1, that may contain

one or both of the interval endpoints. Such a function is called piecewise continuous

on ½a; b�. The proof, as in the example above, simply notes that the terms of the Rie-

mann sums that reflect these points of discontinuity add nothing to the value of the

integral in the limit as m ! 0.

Formalizing this notion:

Definition 10.12 A function f ðxÞ is piecewise continuous on ½a; b� if there exists points
aa x̂x0 < x̂x1 < x̂x2 < � � � < x̂xn a b

so that on each open interval, ðx̂xj�1; x̂xjÞ, f ðxÞ is bounded and continuous.

Remark 10.13 Depending on the application, one might be distressed that this defini-

tion does not require that f ðx̂xjÞ is even defined. For the existence of the Riemann inte-

gral we do not need these values to be defined, but only that f ðxÞ is bounded as noted in

Figure 10.1

f ðxÞ ¼ x2; 0a x < 1

x2 þ 5; 1a xa 2

�
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the proof of (10.8). However, if one wishes to define values for f ðx̂xjÞ in this definition,

it would typically be required that f ðx̂xjÞ is defined as one of the limits: limx!x̂xþ
j
f ðxÞ or

limx!x̂x�
j
f ðxÞ.

Of course, the boundedness assumption on f ðxÞ is critical, since this is what limits

the values of Mi and mi in each such interval of the Riemann sum, and is necessary

to support the conclusion that these exceptional terms decrease to 0 as m ! 0. That

is, if ½xij�1; xij � is any such interval in the partition containing the point of discontinu-

ity x̂xj, the associated term of the Riemann sum, for any ~xxij A ½xij�1; xij � satisfies
mijDxij a f ð~xxij ÞDxij aMijDxij :

Consequently, as Dxij ! 0, so too does f ð~xxij ÞDxij ! 0, since Mij cannot increase and

mij cannot decrease, as the intervals about the given point of discontinuity decrease.

Notation 10.14 The notation in the above paragraph and in some of what follows is a

bit cumbersome, but necessary. The problem is that each of the exceptional points fx̂xjg
will be found in one subinterval of every partition which defines a Riemann sum, but not

the same subinterval. So it is inaccurate to claim that x̂xj A ½xj�1; xj �, for instance, since
each x̂xj is fixed, yet the number of subintervals in the partition increases with n. So each

x̂xj will be in a di¤erent subinterval in each partition. So the notation used is x̂xj A
½xij�1; xij �, indicating that ½xij�1; xij � is one of the partition’s ½xi�1; xi� subintervals, and
in particular the subinterval that contains x̂xj.

In addition to boundedness, another critical assumption in this demonstration of

integrability is that the collection of points of discontinuity fx̂xjgn
j¼1 was finite, so

that this collection of points could be contained in a collection of partition sub-

intervals f½xij�1; xij �gn
j¼1, the total lengths of which could be made as small as desired.

Then, despite the fact that Mij �mij n 0 on these subintervals, as in the example

above and figure 10.1, one still has the desired result that these terms will add noth-

ing to the Riemann sum in the limit. This is because the total length of these inter-

vals,
PðMij �mij ÞDxij , can then be made arbitrarily small as m ! 0 even if Mij �mij

do not decrease to 0.

This discussion leads to the following proposition, which we state without separate

proof, relying on the discussion above and proofs that the reader can formalize. Also

in the next section this result will be further generalized with proof.

Proposition 10.15 Let f ðxÞ be a bounded function, continuous on bounded ½a; b� ex-
cept at points fx̂xjgn

j¼1 H ½a; b� written in increasing order. Then f ðxÞ is Riemann inte-

grable on ½a; b�. Generalizing (10.6), we have
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ð b
a

f ðxÞ dx ¼
ð x̂x1
a

f ðxÞ dxþ
Xn�1

j¼1

ð x̂xjþ1

x̂xj

f ðxÞ dxþ
ð b
x̂xn

f ðxÞ dx; ð10:11Þ

where the first integral is 0 if a ¼ x̂x1, and the last is 0 if x̂xn ¼ b. Each integral is to be

interpreted in the sense of (10.8).

*Infinitely Many Discontinuities

The proposition above relied on an important ‘‘covering property’’ of a finite col-

lection of points that is referred to as the property of being a set of measure 0.

The Cantor ternary set in section 4.2 was a set of measure 0. This property means

that this collection of points fx̂xjgn
j¼1 can be contained in a collection of intervals

f½xij�1; xij �gn
j¼1, the total lengths of which,

P
Dxij , can be made as small as desired.

This allows the conclusion that despite the fact that Mij �mij n 0 on ½xij�1; xij �, the
total contribution to the Riemann sum satisfiesX

ðMij �mij ÞDxij ! 0:

This property of being a set of measure 0 is in fact shared by any countable collec-

tion of points. For example, given fx̂xjgyj¼1 and any � > 0, the closed intervals

x̂xj � �

2 jþ1
; x̂xj þ �

2 jþ1


 �� �y
j¼1

have lengths �
2 j

n oy
j¼1

and total length
Py

j¼1
�
2 j ¼ �. In other words, fx̂xjgyj¼1 is a set of

measure 0.

This generalizes to:

Proposition 10.16 If fEjgyj¼1 is a countable collection of sets of measure 0, then 6Ej

has measure 0.

Proof First, we cover each set Ej with intervals of total length �
2 j , which is possible

since Ej has measure 0. Then 6Ej can be covered by the unions of these covering

intervals, and their total length will be no greater than � as noted above. n

We now pursue a proposition that identifies how far the arguments above on the

continuity of f ðxÞ can be pushed and still maintain the conclusion of Riemann inte-

grability. This result was proved by Bernhard Riemann. The critical observation is

that if Mi and mi are defined as in (10.2) for a collection of intervals: fðxi�1; xiÞg,
where all such intervals contain a given point, x 0, then Mi �mi ! 0 as Dxi ! 0 if
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and only if f ðxÞ is continuous on x 0 17ðxi�1; xiÞ. This result follows from the defi-

nition of continuity (see exercise 3).

Generalizing this idea, we introduce a convenient notation which measures the

variability of a function on a given interval, as well as its continuity or discontinuity

at a given point.

Definition 10.17 Given an open interval, I ¼ ðxi�1; xiÞ, denote by oðx; IÞ, the oscilla-
tion of f ðxÞ on I:

oðx; IÞ ¼ ½Mi �mi�;
where Mi and mi are defined as in (10.2) but applied to the open interval I . In addition,

denote by oðxÞ, the oscillation of f ðxÞ at x:
oðxÞ ¼ g:l:b:foðx; IÞg for all I with x A I :

We also define EN by

EN ¼ x joðxÞb 1

N

� �
;

and E16
Nb1

EN ¼ fx joðxÞ > 0g.
By the discussion preceding this definition and exercise 3:

� oðxÞ ¼ 0 if and only if f ðxÞ is continuous at x, and equivalently,

� oðxÞ > 0 if and only if f ðxÞ is discontinuous at x.
Consequently E is the collection of discontinuities if f ðxÞ.

Example 10.18 The function graphed in figure 10.1 has oð1Þ ¼ 5, and oðxÞ ¼ 0 for

all x A ð0; 1ÞU ð1; 2Þ.
We next demonstrate two facts that will be necessary for the proposition below.

Proposition 10.19 The set EN is a closed set for every N. Hence the set of discontinu-

ities of any function is equal to a countable union of closed sets.

Proof Because a set is closed if and only if it contains all of its limit points, we dem-

onstrate that if x is a limit point of EN , then oðxÞb 1
N
and so x A EN . To this end, if

I is any open interval containing x, I also contains a point x 0 A EN by definition of

limit point. Hence, with M and m defined on I by (10.2), we have that M �mb

oðx 0Þ since oðx 0Þ is the g.l.b. of all such values over all such intervals I . But also
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oðx 0Þb 1
N
, since x 0 A EN . Since M �mb 1

N
for any open interval containing x, the

g.l.b. of such values also satisfies this inequality, and hence oðxÞb 1
N
and x A EN . n

Remark 10.20

1. A set that is the countable union of closed sets is sometimes referred to as an Fs-set,

pronounced ‘‘F -sigma set.’’ The F represents the standard notation for a closed set, as

this notion apparently originated in France with the word ‘‘fermé,’’ while the ‘‘sigma’’

denotes the French word for summation or ‘‘union’’ of closed sets, ‘‘somme.’’ An Fs-

set can be open, closed or neither as demonstrated by the examples of 1
n
; 1� 1

n

� �� �
,

� 1
n
; 1þ 1

n

� �� �
, and 1

n
; 1þ 1

n

� �� �
, with respective unions of ð0; 1Þ, ½�1; 2�, and ð0; 2�.

The rational numbers are also an Fs-set and another example of one that is neither

open nor closed.

2. The complement of the sets EN, defined by

~EEN ¼ x joðxÞ < 1

N

� �
;

are consequently open sets. So the set of continuity points of a given function is the

countable intersection of these open sets. Such a set is sometimes referred to as a Gd-

set, pronounced ‘‘G-delta set.’’ The G represents the standard notation for an open set,

as this notion apparently originated in Germany with the word for area, ‘‘Gebiet,’’

while the ‘‘delta’’ denotes the German word for ‘‘intersection’’ of these closed sets, or

‘‘Durchschnitt.’’ A Gd-set can be open, closed, or neither and can be exemplified as

above. The irrational numbers are also a Gd-set that is neither open nor closed, since

this set equals the intersection of the open sets:

Gq ¼ ð�y; qÞU ðq;yÞ
for all q A Q.

3. By De Morgan’s laws, the complement of a Gd-set is an Fs-set, and conversely. For

example, the complement of a countable union of closed sets is a countable intersection

of open sets, and conversely.

The oscillation function is also important in that knowing its values sheds light on

the maximum potential di¤erence between a function’s upper and lower Riemann

sums, as the next proposition formalizes.

Proposition 10.21 If oðxÞ < c for all x A ½a; b�, then there is a partition of this interval

so that
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Xn
i¼1

MiDxi �
Xn
i¼1

miDxi < cðb� aÞ:

Proof Since oðxÞ ¼ g:l:b:foðx; IÞg for all I with x A I , for every x we can choose

an open interval I with oðx; IÞ < c, and by shrinking each such I as necessary, we

can find an open interval J with closure JH I , and oðx; JÞ < c. The collection of

all such J is an open cover of the compact interval ½a; b�, so there is a finite subcover

fJkgm
k¼1. The desired partition is now defined by the collection of endpoints of this

family of intervals that are within ½a; b�, as well as the points a and b. On every such

partition interval fJ 0
kgn

k¼1 we have oðx; J 0
kÞ < c, and so

Xn
i¼1

½Mi �mi�Dxi < c
Xn
i¼1

Dxi ¼ cðb� aÞ: n

We now present the main result, which provides a necessary and su‰cient condi-

tion on a bounded function f ðxÞ in order to ensure Riemann integrability on any

bounded interval ½a; b�. It was proved by Bernhard Riemann.

Proposition 10.22 (Riemann Existence Theorem) If f ðxÞ is a bounded function on the

finite interval ½a; b�, then Ð b
a
f ðxÞ dx exists if and only if f ðxÞ is continuous except on a

collection of points E1 fxag of measure 0. That is, for any � > 0, there is a countable

collection of intervals fIag so that xa A Ia for all a, and
P jIaj < �, where jIaj denotes

the length of the interval Ia.

Proof We first assume that
Ð b
a
f ðxÞ dx exists, which means that

Pn
i¼1½Mi �mi�Dxi

! 0 for any partition with m1maxfDxig ! 0. For a given � and integer N, choose

a partition with

Xn
i¼1

½Mi �mi�Dxi < �

N
:

We now show that EN has measure 0, and hence the countable union E ¼ 6EN

that equals the set of all discontinuities also has measure 0 by proposition 10.16.

Any points of discontinuity of f ðxÞ in EN that happen to be among the endpoints

of this partition’s intervals clearly have measure 0, since there are at most nþ 1

such points. So we consider only such discontinuity points within these subintervals.

Let fIjgm
j¼1 denote the subset of partition intervals that have at least one point of dis-

continuity from EN in their interior. Then on any such interval 1
N
aMj �mj, since

1
N
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is defined as the g.l.b. of such values among all intervals which contain points of EN .

Consequently, as a subset of the original partition,

1

N

Xm
j¼1

jIj ja
Xn
i¼1

½Mi �mi�Dxi < �

N
;

and hence
P jIjj < � as was to be proved.

Next assume that bounded f ðxÞ is continuous except on a collection of points

E1 fxag of measure 0. For any N, EN HE and must also have measure 0, and

hence for any � > 0 there is a family of open intervals fIag so that EN H6 Ia andP jIaj < �. Now, since EN is closed and a subset of the compact set ½a; b�, it must

also be compact and there is a finite subcollection fIjgn
j¼1 with the same properties:

EN H6
jan

Ij and
P

jan jIjj < �. Also note that since f ðxÞ is bounded on ½a; b�, there
is an M and m so that for any partition of ½a; b�, the associated Mi and mi satisfy:

mami aMi aM:

Now ½a; b� �6
jan

Ij equals a finite collection of closed intervals, say fKjgm
j¼1, and

oðxÞ < 1
N
for any x A Kj, since each Kj is in the complement of EN . By proposition

10.21, there is then a partition of each closed interval Kj so that

Xm 0

i¼1

MiDxi �
Xm 0

i¼1

miDxi <
X jKjj

N
;

where m 0 denotes the total number of subintervals in these partitions. With these

partitions for fKjgm
j¼1, and the Ij intervals as their own partitions, we have that the

associated Riemann upper and lower sums can be split between the two groups of

intervals:

Xn
i¼1

MiDxi �
Xn
i¼1

miDxi <

P jKj j
N

þ ðM �mÞ
X

jIjj

<
ðb� aÞ

N
þ ðM �mÞ�;

where M and m are the bounds for f ðxÞ throughout ½a; b�. Since N and � were arbi-

trary, we see that there exist partitions which make the upper and lower Riemann

sums di¤er by an arbitrarily small amount. Now given arbitrary partitions with

m ! 0, these will eventually become finer than the partitions constructed, and
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hence will satisfy the same bounds. Consequently f ðxÞ is Riemann integrable on

½a; b�. n

Remark 10.23

1. Sets of ‘‘measure 0,’’ play a central role in real analysis. There, an integration

theory is introduced which is more general than Riemann integration, and for which

sets of measure 0 again do not matter. However, unlike the Riemann integral, which

requires continuity outside this set, this generalized integral requires less. It is known

as the Lebesgue integral and named for Henri Léon Lebesgue (1875–1941). This gen-

eralization eliminates the counterintuitive properties of the Riemann integral that are

discussed in section 10.3 below on examples of the Riemann integral.

2. As a point on terminology, when a function f ðxÞ has a certain property, ‘‘except on

a set of measure 0,’’ it is often said that f ðxÞ has the certain property almost every-

where, and this is often shortened to (a.e.). For example, proposition 10.22 states that

a bounded function f ðxÞ is Riemann integrable on a bounded interval ½a; b� if and only

if f ðxÞ is continuous (a.e.).

10.3 Examples of the Riemann Integral

In this section we illustrate the range of applicability of the notion of the Riemann

integral to functions that are continuous except on a set of measure 0, and then use

one example to illustrate when the integral fails to exist.

The first example provides the classic case of how one often thinks about Riemann

integration as it applies to functions that are continuous except on a set of measure 0.

This classic example is for a function sðxÞ that is piecewise continuous, which is to say

that sðxÞ is defined as a bounded and continuous function on each of a collection of

non-overlapping intervals. These functions were introduced in section 10.2.2.

The piecewise continuous terminology is descriptive because it literally means

‘‘continuous in pieces.’’ When this continuous function is constant on each interval,

it is typically called a step function, for apparent reasons. A Riemann sum can then

be thought of as an approximation to the integral with a step function defined so that

on each subinterval, the step function assumes some value of f ðxÞ in that interval.

For the upper and lower Riemann sums, these values of f ðxÞ are chosen as the max-

imum and minimum values of the function on each subinterval.
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Example 10.24

1. Define a function on the interval ½0; 2� as follows: First split the interval into

½0; 2� ¼ ½0; 1ÞU 1; 1
1

2


 �
U 1

1

2
; 1

3

4


 �
U 1

3

4
; 1

7

8


 �
U � � � U ½2�:

In other words, split ½0; 2� ¼ 6y
n¼0

In U ½2�, where I0 1 ½0; 1Þ and

In ¼
Xn�1

j¼0

1

2 j
;
Xn
j¼0

1

2 j

" !
for n ¼ 1; 2; 3; . . . :

Next, define a function by

sðxÞ ¼
1
2 n ; x A In;

1; x ¼ 2;

�
which is graphed in figure 10.2. Since this bounded function is continuous except on the

countable collection of points
Pn

j¼0
1
2 j

n oy
n¼0

U f2g, it must be Riemann integrable by

proposition 10.22. As the length of In is 1
2n for all n, and the Riemann sums containing

the points of discontinuity add nothing in the limit, we have that

Figure 10.2
Piecewise continuous sðxÞ
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ð 2
0

sðxÞ dx ¼
Xy
n¼0

ð
In

sðxÞ dx

¼
Xy
n¼0

1

2n

1

2n

¼
Xy
n¼0

1

4n ¼
4

3
;

using the methods of chapter 6 on geometric series.

The next examples generalize this idea, in that there are no longer intervals on

which f ðxÞ is piecewise continuous.
Example 10.25

2. Define a function on the interval ½0; 1� by

f ðxÞ ¼
1; x ¼ 0;
1
n
; x rational; x ¼ m

n
in lowest terms;

0; x irrational,

8<:
which is graphed for n up to n ¼ 13 in figure 10.3. This function is not continuous

at any rational number. For example, if x ¼ m
n
in lowest terms, f ðxÞ ¼ 1

n
and yet any

interval that contains x also contains irrational numbers for which f ðxÞ ¼ 0. So, if

0 < � < 1
n
, there can be no d for which f m

n

� �� f ðxÞ

 

 < � for all x with m
n
� x



 

 < d,

since there are always irrational x for which f m
n

� �� f ðxÞ

 

 ¼ 1
n
. What may be surpris-

ing is that f ðxÞ is continuous at every irrational number. To see this, let x be an irra-

tional number and � > 0 be given. Choose N so that 1
N
< �. From the finite collection

of rationals m
n
j naN;ma n

� �
, there is one that is closest to x; choose d to be smaller

than this closest distance. That is, define

d < min x�m

n





 



 j naN;ma n

� �
:

By construction, any rational in the interval ðx� d; xþ dÞ must be of the form m
M

for

M > N, and so f ðxÞ � f m
M

� �

 

 ¼ 1
M



 

 < 1
N
< �. Consequently f ðxÞ is continuous at

irrational x.

Since the points of discontinuity are the rational numbers that are a set of measure 0,

this function is Riemann integrable by proposition 10.22. It is apparent that
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ð1
0

f ðxÞ dx ¼ 0;

since f ðxÞ ¼ 0 on the points of continuity. This result can also be justified directly by

Riemann sums. For any N, we can construct non-overlapping intervals of total length �

that cover m
n
j naN;ma n

� �
. Since f m

n

� �
a 1 at every point of this set, these Rie-

mann sums add up to no more than �. Moreover, since f ðxÞa 1
Nþ1 outside these inter-

vals by construction, Riemann sums associated with these points can contribute no more

than 1
Nþ1 . In other words, for any � and N we can find a Riemann sum so that

0a
Xn
i¼1

f ð~xxiÞDxi a �þ 1

N þ 1
;

and these Riemann sums can be made to converge to 0 by choosing � ! 0 and N ! y.

3. In the preceding case 2, f ðxÞ can be redefined in many ways in terms of the assign-

ment of values for f m
n

� �
. All that is needed is that the sequence f m

n

� �! 0 as n ! y.

Such an assignment of values is critical for continuity on the irrationals, and hence crit-

ical for the existence of the Riemann integral. For example, if gðnÞ ! 0 monotonically

as n ! y, redefining f m
n

� �¼ gðnÞ provides a comparable result.

Figure 10.3

f ðxÞ ¼
1; x ¼ 0
1
n
; x ¼ m

n
in lowest terms

0; x irrational

8><>:
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4. Note that with f ðxÞ defined above in case 2, if we define

gðxÞ ¼ 1� f ðxÞ;
then gðxÞ is Riemann integrable with integral equal to 1, and gðxÞ is again only contin-

uous on the irrational numbers where it has value identically equal to 1. For the ratio-

nal numbers, gðxÞ assumes values g m
n

� �¼ 1� 1
n
, where m

n
is given in lowest terms.

The next example nudges cases 2 through 4 of example 10.25 one more step and

Riemann integrability now fails.

Example 10.26

5. Define hðxÞ on ½0; 1� by

hðxÞ ¼ 1; x irrational;

0; x rational:

�
Note that except on the rationals, a set of measure 0, hðxÞ ¼ gðxÞ in case 4 of example

10.25. And yet gðxÞ is Riemann integrable with integral 1 and hðxÞ is not integrable.
That hðxÞ is not Riemann integrable is easy to see, since for any partition of ½0; 1� the
upper Riemann sum will equal 1 while the lower sum equals 0.

This series of examples presents much of the range of applicability of Riemann in-

tegration, from its beauty and power as applied to continuous functions and certain

generalizations to its inherent shortcomings, which can be summarized as a con-

flicted relationship between this integral and sets of measure zero:

1. If f ðxÞ is continuous except on a set of measure 0, it is Riemann integrable. This

implies that in this sense, sets of measure 0 are irrelevant.

2. On the other hand, if one starts with a continuous function, say tðxÞ1 1 on ½0; 1�,
and redefines it on a set of measure 0, sometimes integrability is preserved as was the

case for gðxÞ in example 4 above, and sometimes it is not, as is the case for hðxÞ in
example 5 above.

3. For some sets of measure zero, such as finite sets, one can redefine the function at

these points arbitrarily without influencing integrability. This is the case for simple

step functions, with finitely many steps.

4. On the other hand, infinite sets of measure zero can create di¤erent outcomes:

� If the set has accumulation points, like the rationals, an integrable function must be

redefined carefully on this set to maintain Riemann integrability.
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� If the set is sparse with no accumulation points, such as the integers, Riemann

integrability will be independent of the definition of values of the function at these

points. In other words, the integral will exist or not, independent of these values.

As it turns out, this conflicted relationship has more to do with the Riemann

approach to integration than it has to do with some intrinsic property of continuous

functions. In real analysis a di¤erent approach to the integral will eliminate all the

confusion about sets of measure 0 in favor of the simplest answer. Namely, sets of

measure 0 will not matter in that they will not influence integrability, and this conclu-

sion will be independent of whether the set is finite or infinite, and in the latter case,

whether the set has accumulation points, like the rationals, or is sparsely distributed

like the integers.

10.4 Mean Value Theorem for Integrals

The next result is an immediate consequence of the intermediate value theorem for

continuous functions introduced in proposition 9.41. It is known as the ‘‘first’’ mean

value theorem for integrals for a reason that will be seen below in proposition 10.52.

Proposition 10.27 (First Mean Value Theorem for Integrals) Let f ðxÞ be continuous

on bounded ½a; b�. Then there is a c A ½a; b� so thatð b
a

f ðxÞ dx ¼ f ðcÞðb� aÞ: ð10:12Þ

Proof Because f ðxÞ is continuous, it achieves its maximum M and minimum m on

this interval, and hence

mðb� aÞa
ð b
a

f ðxÞ dxaMðb� aÞ:

Consequently 1
b�a

Ð b
a
f ðxÞ dx also has value within the same bounds as f ðxÞ. By the

intermediate value theorem of chapter 9, there must therefore be a c A ½a; b� with
f ðcÞ ¼ 1

b�a

Ð b
a
f ðxÞ dx. n

Remark 10.28 Rewrite (10.12) as

f ðcÞ ¼ 1

b� a

ð b
a

f ðxÞ dx;
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and consider the integral as the net area under f ðxÞ on the interval ½a; b�. Then the

value f ðcÞ can be interpreted as the average value of f ðxÞ on this interval in that this

signed area also equals the signed area of a rectangle with base length b� a, and height

f ðcÞ.
One application of this result that is more interesting than it is applicable in prac-

tice is the following. For any partition of an interval, there is a set of intermediate

points for which the Riemann sum is exact. This is another classic example of an

‘‘existence’’ theorem in mathematics. It confirms existence but provides no insight to

how one identifies or constructs these points.

Proposition 10.29 Let f ðxÞ be continuous on bounded ½a; b�. Then given any partition

a ¼ x0 < x1 < � � � < xn�1 < xn ¼ b;

there exists f~xxign
i¼1, with ~xxi A ½xi�1; xi� so that with Dxi ¼ xi � xi�1,ð b

a

f ðxÞ dx ¼
Xn
i¼1

f ð~xxiÞDxi: ð10:13Þ

Proof By (10.6), we can conclude thatð b
a

f ðxÞ dx ¼
Xn
i¼1

ð xi
xi�1

f ðxÞ dx;

and the proposition above and (10.12) assure that for each integral on the right, there

is a point ~xxi A ½xi�1; xi� that gives the stated result. n

Remark 10.30 This proof demonstrates that for a continuous function and any par-

tition, one can in theory choose the intermediate ~xxi values so that the Riemann sum

exactly reproduces the limiting integral value. Of course, this proof and conclusion

rely on the first mean value theorem for integrals, which sheds no light on how such

intermediates values can be determined; it only confirms their existence. Consequently

this result is not useful in practice in terms of obtaining exact integrals with Riemann

sums.

Two other important corollaries to this Proposition provide simple and also useful

results:

Proposition 10.31 Let f ðxÞ be continuous on bounded ½a; b�, and assume that for

every ½c; d �H ½a; b�,
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ð d
c

f ðxÞ dx ¼ 0:

Then f ðxÞ1 0 on ½a; b�.
Proof By proposition 10.27, we conclude that for every ½c; d �H ½a; b�, there is a

point c 0 A ½c; d � with Ð d
c
f ðxÞ dx ¼ f ðc 0Þðd � cÞ, and hence f ðc 0Þ ¼ 0 for every such

c 0. Letting d ¼ cþ Dc, we conclude that for every Dc there is a c 0 A ½c; cþ Dc� with
f ðc 0Þ ¼ 0. Letting Dc ! 0, we have c 0 ! c and the continuity of f ðxÞ provides

f ðcÞ ¼ 0. This proves f ðcÞ ¼ 0 for all c A ½a; bÞ, and hence f ðbÞ ¼ 0 by continuity.

n

Proposition 10.32 Let f ðxÞ and gðxÞ be continuous on bounded ½a; b�, and assume

that for every ½c; d �H ½a; b�,ð d
c

f ðxÞ dx ¼
ð d
c

gðxÞ dx:

Then f ðxÞ1 gðxÞ on ½a; b�.
Proof The conclusion is immediate, since f ðxÞ � gðxÞ satisfies the hypothesis of

proposition 10.31, and so
Ð d
c
½ f ðxÞ � gðxÞ� dx ¼ 0. n

10.5 Integrals and Derivatives

There are two related results which connect the notions of derivative, as developed in

chapter 9, and that of Riemann integral as developed above. The first is the result

obtained when a derivative is integrated.

10.5.1 The Integral of a Derivative

Proposition 10.33 (Fundamental Theorem of Calculus, Version I ) Let f ðxÞ be a dif-

ferentiable function so that f 0ðxÞ is continuous on bounded ½a; b�. Thenð b
a

f 0ðxÞ dx ¼ f ðbÞ � f ðaÞ: ð10:14Þ

Proof We know that the integral exists since f 0ðxÞ is assumed to be continuous.

Consequently we can define it in terms of any Riemann sums, which is to say, any

partition with m ! 0. Given any partition, we have by the mean value theorem of
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proposition 9.83 that in every subinterval, ½xi�1; xi� there is an ~xxi so that f 0ð~xxiÞDxi
¼ f ðxiÞ � f ðxi�1Þ. Choosing these ~xxi, we have

Xn
i¼1

f 0ð~xxiÞDxi ¼
Xn
i¼1

½ f ðxiÞ � f ðxi�1Þ� ¼ f ðbÞ � f ðaÞ;

since this middle summation ‘‘telescopes’’ by cancellation to only the first and last

terms. n

Notation 10.34 It is common in calculus to use the notation f ðxÞjba for the right-hand

side of (10.14). In other words,

f ðxÞjba 1 f ðbÞ � f ðaÞ:

Example 10.35

1. With f ðxÞ ¼ ex, since f 0ðxÞ ¼ f ðxÞ, we have that for any closed interval ½a; b�,ð b
a

ex dx ¼ eb � ea:

2. With

f ðxÞ ¼ x2; 0a x < 1;

x2 þ 5; 1a xa 2;

�
the example in figure 10.1, then on ð0; 1ÞU ð1; 2Þ, we have that f ðxÞ ¼ F 0ðxÞ, where

F ðxÞ ¼
x3

3 ; 0a x < 1;

x3

3 þ 5x; 1a xa 2:

(

Soð 2
0

f ðxÞ dx ¼ lim
�!0

ð1��

0

x2 dxþ
ð2
1

ðx2 þ 5Þ dx

¼ lim
�!0

x3

3





1��

0

þ x3

3
þ 5x

� �



2
1

¼ 23

3
:
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The applicability of the Fundamental Theorem of Calculus I is apparent. If one is

attempting to integrate a continuous function, f ðxÞ, and this function is recognized

as the derivative of another function FðxÞ, so that F 0ðxÞ ¼ f ðxÞ, then the Riemann

summation and limiting process to evaluating the integral can be circumvented,

sinceð b
a

f ðxÞ dx ¼ FðbÞ � FðaÞ: ð10:15Þ

Because of the Fundamental Theorem, it is the case that in many calculus texts,

integration of a function f ðxÞ is transformed into techniques for determining the

associated function F ðxÞ, the so-called antiderivative of f ðxÞ, since then integration

is simplified. Unfortunately, not all continuous functions are the derivatives of other

recognizable functions, and even for those that are, finding the functional form of the

correct F ðxÞ can be di‰cult at best. Consequently e‰cient numerical techniques are

often useful and will be discussed in section 10.10.

Definition 10.36 Given a continuous function f ðxÞ, the antiderivative of f ðxÞ, some-

times denoted
Ð
f ðxÞ dx and sometimes F ðxÞ when f ðxÞ is clear from the context, is

any function such that

F 0ðxÞ ¼ f ðxÞ: ð10:16Þ
It is important to note that the antiderivative of a function is not unique. In partic-

ular, if F ðxÞ is an antiderivative, so too is FðxÞ þ C for any C A R. Of course, as is

easily seen, for the purpose of evaluating an integral by (10.15), any antiderivative

works equally well, and in practice, one typically uses C ¼ 0.

Also note that the notational convention FðxÞ ¼ Ð f ðxÞ dx is a bit careless and yet

not uncommon. On the left, the variable x denotes the label for the domain variable

of the function F , while on the right, the variable x is a so-called dummy variable,

which could be denoted y, z, l, a, or any other letter. It is the same as the dummy

variable in a summation, in the sense that
Pb

j¼a j2 is identical to
Pb

k¼a k
2. What is

meant by this notation is that FðxÞ is a function with derivative f ðxÞ. Although nota-

tionally careless, to instead define F ðxÞ ¼ Ð f ðyÞ dy, say, is notationally ambiguous.

This notation will be made precise in section 10.5.2, where the second statement of

the Fundamental Theorem is developed.

Remark 10.37 The intuitive framework for the Riemann integral,
Ð b
a
f ðxÞ dx, is one

of ‘‘net area’’ between the curve, y ¼ f ðxÞ, and the x-axis, over the interval ½a; b�, as
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noted above. For this purpose it was assumed that a < b. However, in this case the

meaning of
Ð a
b
f ðxÞ dx can also be introduced in a consistent way by proposition 10.33

above. Namely from (10.14) we can conclude that the definitionð a
b

f ðxÞ dx1�
ð b
a

f ðxÞ dx ð10:17Þ

provides a consistent generalization of the definition of the Riemann integral.

The version above of the Fundamental Theorem in (10.14) also provides another

simple and often utilized conclusion. First recall:

1. It is apparent from the definition of f 0ðxÞ, that if f ðxÞ is increasing, in that

f ðxÞa f ðx 0Þ for all xa x 0, then f 0ðxÞb 0 for all x.

2. If f ðxÞ is strictly increasing, in that f ðxÞ < f ðx 0Þ for all x < x 0, then it is not true

that f 0ðxÞ > 0 for all x, and the conclusion remains only that f 0ðxÞb 0 for all x. For

example, consider f ðxÞ ¼ x3, which is strictly increasing but f 0ð0Þ ¼ 0.

3. Similarly, if f ðxÞ is decreasing or strictly decreasing, then f 0ðxÞa 0 for all x.

The question addressed next is the reversal of these implications. Namely, what if

anything does the ‘‘sign’’ of f 0ðxÞ predict about the behavior of f ðxÞ? The conclu-

sions below will be seen to be a bit weaker than those drawn with the tools of chapter

9. Specifically, using (9.33) with n ¼ 0 provides the same conclusions without the

assumed continuity of f 0ðxÞ. However, there is value in comparing results with dif-

ferent approaches.

Proposition 10.38 Let f ðxÞ be continuous with continuous f 0ðxÞ on an interval ½a; b�.
Then for any ½c; d �H ½a; b�,
1. f 0ðxÞb 0 on ½c; d � ) f ðcÞa f ðdÞ, and f ðxÞ is increasing
2. f 0ðxÞ > 0 on ½c; d � ) f ðcÞ < f ðdÞ, and f ðxÞ is strictly increasing

3. f 0ðxÞa 0 on ½c; d � ) f ðcÞb f ðdÞ, and f ðxÞ is decreasing
4. f 0ðxÞ < 0 on ½c; d � ) f ðcÞ > f ðdÞ, and f ðxÞ is strictly decreasing

Proof Each of these statements easily follows from (10.14), which in the notation

here states that:ð d
c

f 0ðxÞ dx ¼ f ðdÞ � f ðcÞ:
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Now by the definition of the Riemann integral, the sign of
Ð d
c
f 0ðxÞ dx follows from

the sign of f 0ðxÞ on ½c; d � if this sign is consistent, and the proposition’s four state-

ments follow from this observation. n

10.5.2 The Derivative of an Integral

The second result on the relationship between derivative and Riemann integral looks

somewhat di¤erent, but is equivalent. To this end, we introduce the notion of an in-

definite integral, whereby the variable x is used as one of the limits of integration.

This terminology is complemented by sometimes calling
Ð a
b
f ðxÞ dx a definite integral

as noted in remark 10.3 following the definition of this Riemann integral.

Definition 10.39 The indefinite integral of a continuous function f ðxÞ is defined by

F ðxÞ ¼
ð x
a

f ðyÞ dy: ð10:18Þ

If a < x, the value is given directly by the definition of Riemann integral, whereas if

x < a, this function is defined as in (10.17) of remark 10.37 above as �Ð a
x
f ðyÞ dy.

The next result provides an alternative view of the connection between integral

and derivative.

Proposition 10.40 (Fundamental Theorem of Calculus, Version II ) Let f ðxÞ be a

continuous function on bounded ½a; b�, and define

F ðxÞ ¼ F ðaÞ þ
ð x
a

f ðyÞ dy; aa xa b; ð10:19Þ

where F ðaÞ is arbitrarily defined. Then FðxÞ is di¤erentiable on ða; bÞ, and

F 0ðxÞ ¼ f ðxÞ: ð10:20Þ
Proof First o¤, it may not be obvious that F ðxÞ is even continuous. However, the

MVT for integrals in proposition 10.27 assures us that for x 0 < x,

F ðxÞ � Fðx 0Þ ¼
ð x
x 0

f ðyÞ dy

¼ f ðcÞðx� x 0Þ for some c A ½x 0; x�:
Now since f ðxÞ is assumed continuous on ½x 0; x�, we conclude that F ðx 0Þ ! FðxÞ as
x 0 ! x, and so FðxÞ is continuous. This same equation also shows that
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F ðxÞ � Fðx 0Þ
x� x 0 ¼ f ðcÞ for some c A ½x 0; x�:

Hence, as x 0 ! x,
FðxÞ�Fðx 0Þ

ðx�x 0Þ ! f ðxÞ, again due to the continuity of f ðxÞ. n

Remark 10.41

1. This proposition is also called the Fundamental Theorem of Calculus because it is

equivalent to the statement in proposition 10.33 above. Letting x ¼ b, and using the

conclusion that F 0ðxÞ ¼ f ðxÞ, we derive from the FTC II proposition that

F ðbÞ ¼ FðaÞ þ
ð b
a

F 0ðyÞ dy;

which is the statement of the earlier Fundamental Theorem of Calculus I in (10.14)

with a small change in notation.

On the other hand, FTC I clearly holds with b replaced by x, and can be rearranged

to produce

f ðxÞ ¼ f ðaÞ þ
ð x
a

f 0ðyÞ dy;

where f ðxÞ is given and assumed di¤erentiable with continuous derivative. If this same

f ðxÞ could be achieved with a di¤erent continuous function gðxÞ,

f ðxÞ ¼ f ðaÞ þ
ð x
a

gðyÞ dy;

we would conclude that
Ð x
a
½gðyÞ � f 0ðyÞ� dy ¼ 0 for all x. Therefore, by subtraction,Ð xþDx

x
½gðyÞ � f 0ðyÞ� dy ¼ 0 for any x and Dx, and by the proposition 10.32 result

from the MVT we would conclude that gðyÞ ¼ f 0ðyÞ for all y.
2. This statement of the Fundamental Theorem also makes precise the notational care-

lessness of the expression often used for antiderivatives: F ðxÞ ¼ Ð f ðxÞ dx. This is

shorthand for FðxÞ ¼ FðaÞ þ Ð x
a
f ðyÞ dy, in (10.19), utilizing the fact that the values

of both a and F ðaÞ are irrelevant.
Example 10.42

1. A simple application of FTCII is that it provides an interesting new definition of

ln x. Specifically, since f 0ðxÞ ¼ 1
x
for f ðxÞ ¼ ln x, and ln 1 ¼ 0, we can conclude that

for xb 1,
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ln x ¼
ð x
1

dy

y
: ð10:21Þ

2. As another application with f ðxÞ ¼ ex, since f 0ðxÞ ¼ ex, we have for any a and

xb a,

ex ¼ ea þ
ð x
a

ey dy:

Letting a ! �y, we obtain an example of an ‘‘improper integral’’ discussed below:

ex ¼
ð x
�y

ey dy:

10.6 Improper Integrals

10.6.1 Definitions

The preceding sections provide insight as to how one can attempt to extend the

integral of some functions in one of two ways:

1. Define
Ð b
a
f ðxÞ dx for continuous f ðxÞ where b ¼ y and/or a ¼ �y.

2. Define
Ð b
a
f ðxÞ dx for f ðxÞ that is continuous on every closed interval ½c; d �H ½a; b�

but is unbounded at a and/or b.

In both cases the resulting integrals are called improper integrals if they exist

because they are defined outside the general framework of the Riemann existence

theorem in proposition 10.22 above. Recall that this theorem applied to bounded

functions on a bounded interval ½a; b� that are continuous almost everywhere, which

is to say, everywhere except on a set of measure 0.

Each of these extensions can potentially be defined as a limit of well-defined Rie-

mann integrals. For example, if F 0ðxÞ ¼ f ðxÞ is continuous on ½�M;N� for all M,

N, then defineðy
�y

f ðxÞ dx1 lim
N;M!y

ðN
�M

f ðxÞ dx ¼ lim
N;M!y

½FðNÞ � Fð�MÞ�: ð10:22Þ

Similarly, if F 0ðxÞ ¼ f ðxÞ is continuous on ½aþ d; b� �� for all �; d > 0, then define
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ð b
a

f ðxÞ dx1 lim
�; d!0

ð b��

aþd

f ðxÞ dx ¼ lim
�; d!0

½Fðb� �Þ � F ðaþ dÞ�: ð10:23Þ

The only remaining question is the existence of these limits. Since such limits in-

volve two variates, we formalize the definition in the predictable way:

Definition 10.43 limx;y!a f ðx; yÞ ¼ L for a < y and L < y, if for any � > 0

there is a d so that j f ðx; yÞ � Lj < � when jx� aj < d and jy� aj < d. Also,

limx;y!y f ðx; yÞ ¼ L if for any � > 0 there is an N so that j f ðx; yÞ � Lj < � when

x; y > N.

Example 10.44

1.
Ðy
1 x�a dx is well defined i¤ a > 1, since by (10.14), for a0�1,ðy

1

x�a dx ¼ lim
x!y

x1�a

1� a
� 1

1� a


 �

¼
1

a�1 ; if a > 1;

y; if a < 1:

�
Also, if a ¼ �1,ðy
1

x�1 dx ¼ lim
N!y

ln N ¼ y:

2.
Ð 1
0 x

a dx is well defined i¤ a > �1 since for a0�1,ð 1
0

xa dx ¼ 1

aþ 1
� lim

�!0

�aþ1

aþ 1

¼
1

aþ1 ; if a > �1;

y; if a < �1:

�
Also, if a ¼ �1,ð 1
0

x�1 dx ¼ � lim
�!0

ln � ¼ y:

10.6.2 Integral Test for Series Convergence

In this section is introduced another test for the convergence of a numerical series,

the so-called integral test, as noted in chapter 6. At first it may seem odd that the
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Riemann integral can be used to determine the convergence of a series. But since

these integrals are limits of Riemann sums, and each Riemann sum is a finite series,

and for an improper integral, an infinite series, the connection is not so surprising.

To motivate the method, we provide yet another proof of the divergence of the

harmonic series:

Example 10.45 Consider the series:
Py

n¼1
1
n
. For f ðxÞ ¼ ln x, we have from (10.21)

that ln x ¼ Ð x1 dy
y
, and so by definition,

Ðy
1

dy
y
¼ y. Now splitting the integral into unit

intervals, we conclude that

Xy
n¼1

ð nþ1

n

dy

y
¼ y:

Note that on each unit interval, by using a single upper and lower Riemann sum, we

have

1

nþ 1
<

ð nþ1

n

dy

y
<

1

n
;

and hence

Xy
n¼1

ð nþ1

n

dy

y
<
Xy
n¼1

1

n
;

proving divergence.

With this example as motivation, we now present the integral test for a series.

Proposition 10.46 (Integral Test) Let
Py

n¼1 an be a given series, and f ðxÞ a continu-

ous function on ½1;yÞ with
anþ1 a f ðxÞa an for x A ½n; nþ 1�: ð10:24Þ
Then

Py
n¼1 an and

Ðy
1 f ðxÞ dx both converge or both diverge.

Proof By the given assumptions, for all nb 1,

anþ1 a

ð nþ1

n

f ðxÞ dxa an;

and by addition,
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Xy
n¼1

an

 !
� a1 a

ðy
1

f ðxÞ dxa
Xy
n¼1

an:

The result follows by comparison. n

It is important to note that this test not only gives insight to the convergence or

divergence of a given series, but it is also useful for numerical estimates in the case

of convergence, and a growth rate analysis in the case of divergence. To this end,

consider the partial sum version of the inequalities above from n ¼ 1 to N � 1.

It produces

XN
n¼1

an

 !
� a1 a

ðN
1

f ðxÞ dxa
XN
n¼1

an

 !
� aN :

Rearranging, we obtainðN
1

f ðxÞ dxþ aN a
XN
n¼1

an a

ðN
1

f ðxÞ dxþ a1: ð10:25Þ

In the case of series divergence the integral provides an estimate of the rate of

divergence.

In the case of convergence, and so aN ! 0 by letting N ! y, the integral pro-

duces an estimate of the summation:ðy
1

f ðxÞ dxa
Xy
n¼1

an a

ðy
1

f ðxÞ dxþ a1 ð10:26Þ

We next consider an example of each case.

Example 10.47

1. As an application in the case of convergence, recall the power harmonic seriesPy
n¼1

1
np for p > 1, which converges by the analysis in example 6.9. With f ðxÞ ¼ x�p,

a calculation gives thatðy
1

f ðxÞ dx ¼ x1�p

1� p

� �



y
x¼1

¼ 1

p� 1
;

and so

590 Chapter 10 Calculus II: Integration



1

p� 1
a
Xy
n¼1

1

np a
p

p� 1
:

For the partial sums of this series, the same approach provides for all N,

1�N 1�p

p� 1
þN�p a

XN
n¼1

1

np a
p�N 1�p

p� 1
:

2. As an application in the case of divergence, we return to the harmonic series and

f ðxÞ ¼ 1
x
. Since

Ð N
1

dx
x
¼ ln N,

ln N þ 1

N
a
XN
n¼1

1

n
a ln N þ 1;

and so the harmonic series partial sums are larger than, but within 1 unit of, the value

of ln N. A more detailed analysis below demonstrates that the following limit exists:

lim
N!y

XN
n¼1

1

n
� ln N

" #
¼ gA0:577215664902 . . . : ð10:27Þ

This constant, g, is known as the Euler constant, after its discoverer, Leonhard Euler

(1707–1783).

Note that by expressing N ¼ QN�1
n¼1

nþ1
n

� �
, we derive that

XN
n¼1

1

n
� ln N ¼ 1

N
þ
XN�1

n¼1

1

n
� ln 1þ 1

n

� �
 �
:

Consequently, applying (9.33) and n ¼ 1 to lnð1þ xÞ, we obtain that there is fcng with

0 < cn < 1, so that

XN�1

n¼1

1

n
� ln 1þ 1

n

� �
 �
¼
XN�1

n¼1

1

2

n

nþ cn

� �2
1

n2

" #

a
XN�1

n¼1

1

2n2
< y:

So the sequence in (10.27), minus the inconsequential term 1
N
, is increasing and

bounded, and hence converges as N ! y by proposition 5.18.
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10.7 Formulaic Integration Tricks

The most important trick for formulaically evaluating an integral,
Ð b
a
f ðxÞ dx, is

given by the Fundamental Theorem of Calculus in (10.15). Namely one attempts to

find the antiderivative of f ðxÞ, which means any function F ðxÞ so that F 0ðxÞ ¼ f ðxÞ.
We use the term ‘‘any’’ function F ðxÞ, since we know that if F ðxÞ is one such func-

tion, then F ðxÞ þ C is another for any constant C. Of course, this constant is elimi-

nated in the application of (10.15).

There are many tricks that one can use to assist in the identification of such an

antiderivative. In general, these methods allow one to simplify the problem, in one

or many steps, and thereby reveal the antiderivative in pieces. In this section we con-

sider two approaches. The emphasis will be on definite integrals. However, any pro-

cess that allows the general evaluation of a definite integral provides the formula for

an antiderivative by (10.15).

Specifically, any formula of the sortð b
a

f ðxÞ dx ¼ FðbÞ � FðaÞ;

can be rewritten with b ¼ y, say, to produce

F ðyÞ ¼ FðaÞ þ
ð y
a

f ðxÞ dx:

This is an antiderivative of the integrand, f ðyÞ, for any value of a; and any assign-

ment of the value of FðaÞ.
Remark 10.48 In practice, a simple implementation of this idea of finding an anti-

derivative is to convert b to x in the expression F ðbÞ � F ðaÞ, discard any terms in the

formula that are constant and independent of x, and add the arbitrary constant C.

10.7.1 Method of Substitution

The method of substitution is more akin to trompe-l’œil, the art form of tricking the

eye, than it is a new mathematical method. But sometimes tricking the eye into see-

ing a simpler problem is exactly what is needed to get an integration problem started.

This method is an application of the formula for di¤erentiation of a composite

function:

½F ðGðxÞÞ� 0 ¼ f ðGðxÞÞgðxÞ;
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where, of course, F 0ðxÞ ¼ f ðxÞ and G 0ðxÞ ¼ gðxÞ. By the Fundamental Theorem, the

integral of the derivative is easy to evaluate, andð b
a

f ðGðxÞÞgðxÞ dx1
ð b
a

½F ðGðxÞÞ�0 dx

¼ F ðGðbÞÞ � FðGðaÞÞ:
So the di‰culty in applying this result is recognizing when a given integrand is in

fact of this form, and that is where trompe-l’œil helps. We illustrate first with an ex-

ample.

Example 10.49 Let’s evaluate
Ð b
a
exðex þ 4Þ20 dx. One elementary but tedious

approach is to expand the integrand into a summation of terms of the form
P

cie
dix,

which is easy to integrate term by term by the Fundamental Theorem since
Ð
cie

dix dx

¼ ci
di
edix þ ei for arbitrary constant ei. Alternatively, we may observe that this is a com-

posite function, where f ðyÞ ¼ y20, GðxÞ ¼ ex þ 4, and exðex þ 4Þ20 ¼ f ðGðxÞÞgðxÞ,
and hence since F ðyÞ ¼ y21

21 ,ð b
a

exðex þ 4Þ20 dx ¼ 1

21
½ðeb þ 4Þ21 � ðea þ 4Þ21�:

Written as an antiderivative,ð
exðex þ 4Þ20 dx ¼ 1

21
ðex þ 4Þ21 þ C:

Admittedly, this calculation required us to keep track of the various components

of the composite function, and in many cases this mental tracking can be complex.

The method of substitution is intended to simplify the tracking with a neat notational

device.

For this example, the method of substitution is to define a new ‘‘variable’’ u, which

is indeed a function of x by u ¼ ex þ 4, and correspondingly define the ‘‘di¤erential’’

du ¼ du
dx
dx ¼ ex dx. We then have the eye fooled into seeing:ð

exðex þ 4Þ20 dx ¼
ð
u20 du;

where this second antiderivative is elementary and equals u21

21 . One can then substitute

back to get
Ð
exðex þ 4Þ20 dx ¼ ðexþ4Þ21

21 , and with the antiderivative in hand, the Fun-

damental Theorem provides the integration result above.
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Note that we in fact could have modified this process to apply directly to the in-

tegral with limits, by introducing the u limits that correspond to the x limits. That is,ð b
a

exðex þ 4Þ20 dx ¼
ð ebþ4

eaþ4

u20 du:

In this example, the variable u is taking the place of the function GðxÞ in the com-

posite function above, while du is accounting for the gðxÞ dx term. So the method of

substitution can be described as converting something complex looking into some-

thing simple looking. In other words, tricking the eye,ð b
a

f ðGðxÞÞgðxÞ dx ¼
ðGðbÞ
GðaÞ

f ðuÞ du; ð10:28Þ

where the substitution is: u ¼ GðxÞ, du ¼ gðxÞ dx, and the x-limits of integration are

converted into u-limits.

In applications, one sometimes guesses as to an appropriate definition for the vari-

able u and sees how the integral is transformed. For substitution to succeed two

things must occur:

1. There is some substitution u ¼ GðxÞ into the initial integral that converts it into

an integral of the form
Ð
f ðuÞ du in (10.28).

2. The integral produced can be handled directly, or with the further application of

this or another technique.

10.7.2 Integration by Parts

As the name suggests, integration by parts provides an algorithm for reducing an

integrand to a new integrand that is hopefully simper to deal with. It gives ‘‘part’’

of the final result, and is derived from the formula for the derivative of a product of

two functions.

Let FðxÞ and GðxÞ be two di¤erentiable functions with derivatives f ðxÞ and gðxÞ,
respectively. In other words, F 0ðxÞ ¼ f ðxÞ and G 0ðxÞ ¼ gðxÞ. Then the derivative of

F ðxÞGðxÞ is given by

½F ðxÞGðxÞ�0 ¼ f ðxÞGðxÞ þ FðxÞgðxÞ:
By the Fundamental Theorem, it is easy to integrate ½FðxÞGðxÞ� 0, namelyð b
a

½F ðxÞGðxÞ�0 dx ¼ FðbÞGðbÞ � FðaÞGðaÞ:
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So the integration by parts idea is to convert the integral of something ‘‘hard,’’ say

f ðxÞGðxÞ, into an integral of something that is hopefully easier, namely FðxÞgðxÞ,
and a second very easy integral of ½FðxÞGðxÞ� 0. We then get the integration by parts

formula:ð b
a

f ðxÞGðxÞ dx ¼ F ðbÞGðbÞ � FðaÞGðaÞ �
ð b
a

FðxÞgðxÞ dx: ð10:29Þ

Note that the application of (10.29) requires two things in order to succeed in solv-

ing the problem:

1. The integrand can be split into a product f ðxÞGðxÞ of a function f ðxÞ for which
we can find the antiderivative FðxÞ, and a function GðxÞ that we can di¤erentiate to

obtain gðxÞ;
2. This splitting produces a final integrand F ðxÞgðxÞ, which is easier to work with

than the initial integrand f ðxÞGðxÞ.
In some applications, this process is implemented repeatedly. In other applica-

tions, trial and error and/or creative thinking is required, as the next few examples

illustrate.

Example 10.50

1. Consider the evaluation of
Ð b
a
x3ex

2

dx. Since we do not know the antiderivative

of ex
2
, it is natural to guess that we ought to define f ðxÞ ¼ x3 and GðxÞ ¼ ex

2
, produc-

ing F ðxÞ ¼ x4

4 and gðxÞ ¼ 2xex
2
. Unfortunately, the final integral in (10.29) is then

1
2

Ð b
a
x5ex

2

dx, which is worse than what we started with. So, if this method is to work,

and in many cases it does not, we must find a way to move ex
2
into the definition of

f ðxÞ. A little thought reveals that while finding the antiderivative of ex
2

appears impos-

sible, the antiderivative of f ðxÞ ¼ xex
2
is FðxÞ ¼ 1

2 e
x2
. So we define GðxÞ ¼ x2 with

gðxÞ ¼ 2x and obtainð b
a

x3ex
2

dx ¼ 1

2
½b2eb2 � a2ea

2 � �
ð b
a

xex
2

dx

¼ 1

2
½b2eb2 � a2ea

2 � � 1

2
½eb2 � ea

2 �:

Written as an antiderivative,ð
x3ex

2

dx ¼ 1

2
½x2ex

2 � ex
2 � þ C:
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2. Let’s next evaluate
Ð b
a
ln x dx where we assume b > a > 0, to ensure that the inte-

grand is well defined and continuous. The case a > b > 0 is similarly handled by re-

mark 10.37. In this case we have only one function visible, implying that this method

has no chance of success. Certainly we would likely choose GðxÞ ¼ ln x, with gðxÞ ¼ 1
x
,

since to assign ln x to f ðxÞ is to require the calculation of its antiderivative FðxÞ, which
we do not know or else we would just apply the Fundamental Theorem. With this defi-

nition of GðxÞ, there is no other choice than to try f ðxÞ ¼ 1, with F ðxÞ ¼ x, and hope

for the best. We then getð b
a

ln x dx ¼ b ln b� a ln a�
ð b
a

1 dx

¼ b ln b� a ln a� ðb� aÞ:
Again, written as an antiderivative,ð
ln x dx ¼ x ln x� xþ C:

3. Consider
Ð b
a
xnex dx for integer n. Since both xn and ex are easily di¤erentiated as

well as easily integrated, it appears that there is some choice in their assignment to

f ðxÞ and GðxÞ. However, if we assign GðxÞ ¼ ex and f ðxÞ ¼ xn, it is clear that we

are moving in the wrong direction and that the final integral is �1
nþ1

Ð b
a
xnþ1ex dx. Revers-

ing the assignment, we obtain a final integral of �n
Ð b
a
xn�1ex dx, and the process can

be repeated until the final integral is K
Ð b
a
ex dx, for constant K ¼Gn!, at which point it

is easily completed. See exercises 8 and 27.

*10.7.3 Wallis’ Product Formula

As a final application of the method underlying integration by parts, we return

to the development of Wallis’ product formula, introduced in section 8.5.1 in the

derivation of Stirling’s formula. Recall that this product formula, as stated in (8.25),

is

p

2
¼
Yy
n¼1

ð2nÞ2
ð2n� 1Þð2nþ 1Þ : ð10:30Þ

To this end, first note that if hðxÞ ¼ sinn�1 x cos x, then by (9.16) is derived

that
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h 0ðxÞ ¼ ðn� 1Þ sinn�2 x cos2 x� sinn x

¼ ðn� 1Þ sinn�2 xð1� sin2 xÞ � sinn x

¼ ðn� 1Þ sinn�2 x� n sinn x;

where this derivation also used

sin2 xþ cos2 x ¼ 1: ð10:31Þ
Now, for n > 1,

Ð p=2
0 h 0ðxÞ dx ¼ h p

2

� �� hð0Þ ¼ 0, and henceð p=2
0

sinn x dx ¼ n� 1

n

ð p=2
0

sinn�2 x dx; n > 1: ð10:32Þ

This identity can then be applied to even, n ¼ 2m, and odd, n ¼ 2mþ 1, integers

and iterated to produceð p=2
0

sin2m x dx ¼ 2m� 1

2m

2m� 3

2m� 2
. . .

1

2

ð p=2
0

dx

¼ p

2

Ym�1

j¼0

2m� 2j � 1

2m� 2j

� �
;

and similarly since
Ð p=2
0 sin x dx ¼ 1,ð p=2

0

sin2mþ1 x dx ¼ 2m

2mþ 1

2m� 2

2m� 1
. . .

2

3

ð p=2
0

sin x dx

¼
Ym�1

j¼0

2m� 2j

2m� 2j þ 1

� �
:

For the next step, we must divide these expressions and solve for p
2 , producing

p

2
¼
Ym�1

j¼0

2m� 2j

2m� 2j þ 1

� �Ym�1

j¼0

2m� 2j

2m� 2j � 1

� � Ð p=2
0 sin2m x dxÐ p=2

0 sin2mþ1 x dx

¼
Ym�1

j¼0

ð2m� 2jÞ2
ð2m� 2j þ 1Þð2m� 2j � 1Þ

Ð p=2
0 sin2m x dxÐ p=2

0 sin2mþ1 x dx
:
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This formula is then rewritten by defining n ¼ m� j and changing the j product to

an n product from n ¼ 1 to n ¼ m:

p

2
¼
Ym
n¼1

ð2nÞ2
ð2nþ 1Þð2n� 1Þ

Ð p=2
0 sin2m x dxÐ p=2

0 sin2mþ1 x dx
:

The final step is to let m ! y, but to do so requires a demonstration that the ratio

of integrals converges to 1. Because 0 < sin x < 1 for 0 < x < p
2 , it follows that for

any m,ð p=2
0

sin2mþ1 x dx <

ð p=2
0

sin2m x dx <

ð p=2
0

sin2m�1 x dx:

If this set of inequalities is divided by
Ð p=2
0 sin2mþ1 x dx, and (10.32) applied, we obtain

1 <

Ð p=2
0 sin2m x dxÐ p=2

0 sin2mþ1 x dx
< 1þ 1

2m
;

and so this ratio of integrals converges to 1, and (10.30) is demonstrated.

10.8 Taylor Series with Integral Remainder

In sections 9.3.7 and 9.3.8 Taylor series were introduced and some properties studied.

In this section we revisit this idea, and with the aid of integration by parts, develop a

new form for the remainder term which can be contrasted with the representation in

(9.33).

To this end, we first observe that given x0, we have by the second form of the Fun-

damental Theorem in (10.19) that

hðxÞ ¼ hðx0Þ þ
ð x
x0

h 0ðzÞ dz;

where we use the general notation hðxÞ to avoid confusion with the functions in

(10.29). We can now apply integration by parts, expressing h 0ðzÞ ¼ f ðzÞGðzÞ with

f ðzÞ ¼ 1 and GðzÞ ¼ h 0ðzÞ, and using the arbitrary yet convenient constant term to

express FðzÞ ¼ �ðx� zÞ; and we obtain

hðxÞ ¼ hðx0Þ þ h 0ðx0Þðx� x0Þ þ
ð x
x0

h 00ðzÞðx� zÞ dz:
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We then express h 00ðzÞðx� zÞ ¼ f ðzÞGðzÞ with f ðzÞ ¼ ðx� zÞ, GðzÞ ¼ h 00ðzÞ, and
F ðzÞ ¼ � 1

2 ðx� zÞ2, and so on, producing the following:

Proposition 10.51 Let hðxÞ be ðnþ 1Þ-times di¤erentiable on ða; bÞ, with all deriva-

tives continuous on ½a; b�. Then for x; x0 A ða; bÞ,

hðxÞ ¼
Xn
j¼0

1

j!
hð jÞðx0Þðx� x0Þ j þ 1

n!

ð x
x0

hðnþ1ÞðzÞðx� zÞn dz: ð10:33Þ

Proof This follows by mathematical induction, using integration by parts as noted

above. n

The remainder term in the Taylor series expansion in (10.33) is known as the

Cauchy form of the remainder after Augustin Louis Cauchy (1789–1857), who is

credited with the first rigorous proof of the Taylor theorem. Another form of this re-

mainder, named for Joseph-Louis Lagrange was developed in section 9.3.8.

If we compare the remainder terms of Cauchy and Lagrange, adjusting for nota-

tion, we obtain

1

n!

ð x
x0

f ðnþ1ÞðzÞðx� zÞn dz ¼ 1

ðnþ 1Þ! f
ðnþ1ÞðyÞðx� x0Þnþ1; ð10:34Þ

where the point y depends on x and satisfies x0 < y < x or x < y < x0. It turns out

that this relationship between these remainders is a special case of what is known as

the second mean value theorem for integrals:

Proposition 10.52 (Second Mean Value Theorem for Integrals) Let f ðxÞ and gðxÞ be
continuous on bounded ½a; b�, and gðxÞb 0. Then there is a point c A ½a; b� so thatð b
a

f ðxÞgðxÞ dx ¼ f ðcÞ
ð b
a

gðxÞ dx: ð10:35Þ

Proof Since this result is obviously true if gðxÞ1 0, we can assume that gðxÞ > 0

somewhere on this interval and hence that
Ð b
a
gðxÞ dx > 0. Now as f ðxÞ is continuous

on ½a; b�, it attains its maximum, M, and minimum, m, on this interval. From the def-

inition of Riemann integral, we have that ma f ðxÞaM implies that

m

ð b
a

gðxÞ dxa
ð b
a

f ðxÞgðxÞ dxaM

ð b
a

gðxÞ dx;
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which in turn implies that

ma

Ð b
a
f ðxÞgðxÞ dxÐ b
a
gðxÞ dx

aM:

Since this ratio is between the minimum and maximum values attained by f ðxÞ, we
conclude from the intermediate value theorem in (9.1) of proposition 9.41 that there

is a c A ½a; b� so that f ðcÞ equals this ratio. n

Of course, the expression in (10.12), the first mean value theorem for integrals, is a

special case of this result for which gðxÞ1 1. Also the Taylor remainders in (10.34)

are another special case, since is is easy to evaluate the remaining integral:ð x
x0

ðx� zÞn dz ¼ ðx� x0Þnþ1

nþ 1
:

One advantage of the Cauchy form of the remainder is that it reflects an averaging

of the f ðnþ1ÞðzÞ values on the given interval, whereas the Lagrange remainder is a

point estimate. Consequently, to prove convergence of a Taylor series, and hence

the analyticity of a given function, the Cauchy remainder can give more useful esti-

mates than those based on the maximum value of f ðnþ1ÞðzÞ as is required in proposi-

tion 9.103 with the Lagrange remainder.

Recall example 9.106 in the cases for which the Lagrange remainder provided only

partial results.

Example 10.53

1. With f ðxÞ ¼ 1
1�x

¼ ð1� xÞ�1
and x0 ¼ 0, it is easy to justify that f ðnÞðxÞ ¼

n!ð1� xÞ�n�1
and so f ðnÞð0Þ ¼ n!. Although in chapter 6 it was shown that

Py
j¼0 x

j

converges for jxj < 1, it was seen in example 9.106 that the Lagrange remainder only

proved that 1
1�x

¼Py
j¼0 x

j in the case �1 < xa 0, since then the Lagrange remainder

converged to 0 as n ! y. For 0 < x < 1 this remainder diverged. Using the Cauchy

form above, we have

1

n!

ð x
0

f ðnþ1ÞðzÞðx� zÞn dz ¼ ðnþ 1Þ
ð x
0

ð1� zÞ�n�2ðx� zÞn dz

¼ ðnþ 1Þ
ð x
0

x� z

1� z

� �n
ð1� zÞ�2

dz:
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Now on the interval 0a za x, where 0 < x < 1, the function gðzÞ ¼ x�z
1�z

is positive and

deceasing and gðzÞa x. Also on this same interval hðzÞ ¼ ð1� zÞ�2
is positive and in-

creasing and hðzÞa ð1� xÞ�2
. Consequently we obtain that

1

1� x
�
Xn
j¼0

x j












a ðnþ 1Þ xn

ð1� xÞ2
ð x
0

dz ¼ ðnþ 1Þ xnþ1

ð1� xÞ2 ;

and so for 0 < x < 1, this remainder converges to 0 as n ! y. This completes the

demonstration that f ðxÞ ¼ 1
1�x

is an analytic function on ð�1; 1Þ and given by the series

expansion

1

1� x
¼
Xy
j¼0

x j ; �1 < x < 1:

2. With f ðxÞ ¼ lnð1þ xÞ we obtain

f 0ðxÞ ¼ 1

1þ x
; f ð2ÞðxÞ ¼ �1

ð1þ xÞ2 ; . . . ; f
ðnÞðxÞ ¼ ð�1Þnþ1ðn� 1Þ!

ð1þ xÞn :

Consequently f ð0Þ ¼ 0 and f ðnÞð0Þ ¼ ð�1Þn�1ðn� 1Þ! for nb 1. It was shown in ex-

ample 9.106 that
Py

j¼1
ð�1Þ jþ1

j
x j converges for jxj < 1 and x ¼ 1. But as in case 1,

the Lagrange remainder only yields a partial result, that lnð1þ xÞ ¼Py
j¼1

ð�1Þ jþ1

j
x j

in the case of � 1
2 a xa 1, since then the Lagrange remainder converged to 0 as

n ! y. For �1 < x < � 1
2 this remainder diverged. Using the Cauchy form above

obtains

1

n!

ð x
0

f ðnþ1ÞðzÞðx� zÞn dz ¼ ð�1Þnþ2

ð x
0

ðx� zÞnð1þ zÞ�n�1
dz

¼ ð�1Þnþ3

ð0
x

x� z

1þ z

� �n
ð1þ zÞ�1

dz;

where it is noted that the limits of integration were reversed and o¤set by multiplica-

tion by �1 to better accommodate the x-values contemplated. Repeating the analysis

above on this integrand, we have that on the interval xa za 0 for �1 < x < � 1
2 ,

the function gðzÞ ¼ x�z
1þz



 

 is positive and increasing and gðzÞa jxj, while the function

hðzÞ ¼ ð1þ zÞ�1
is positive and decreasing and hðzÞa ð1þ xÞ�1

. We now obtain,

using (10.10),
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lnð1þ xÞ �
Xn
j¼1

ð�1Þ jþ1

j
x j












a

ð0
x

x� z

1þ z





 



nð1þ zÞ�1
dz

a
jxjnþ1

1þ x
;

and so for �1 < x < � 1
2 , this remainder converges to 0 as n ! y. This completes the

demonstration that f ðxÞ ¼ lnð1þ xÞ is an analytic function on ð�1; 1� and given by the

series expansion

lnð1þ xÞ ¼
Xy
j¼1

ð�1Þ jþ1

j
x j ; �1 < xa 1:

10.9 Convergence of a Sequence of Integrals

10.9.1 Review of Earlier Convergence Results

An important situation that often arises in mathematics is related to a sequence of

functions f fnðxÞg that is known to converge in some sense to a function f ðxÞ. If
each function in the sequence is known to have a certain property, can it be con-

cluded that f ðxÞ will also have this property? The typical application, of course,

is where the functions are simple in some way and have a desirable property that is

easy to establish, and the question pursued is whether we can infer that this desirable

property is also shared by f ðxÞ.
For example, it was shown in chapter 9 in section 9.2.7 on convergence of a se-

quence of continuous functions that continuity is a property that does not in general

transfer well from the functions fnðxÞ to the function f ðxÞ if convergence is defined

pointwise. In other words, if for each x the numerical sequence fnðxÞ converges to the

point f ðxÞ, it is possible that each function in the sequence is continuous, yet f ðxÞ is
not. The simple example given there was

f ðxÞ ¼ 1; xa 0;

0; x > 0;

�
and

fnðxÞ ¼
1; xa 0;

1� nx; 0 < xa 1
n
;

0; x > 1
n
:

8><>:
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Although fnðxÞ ! f ðxÞ for all x, the continuity of fnðxÞ is lost at x ¼ 0 because

the convergence becomes increasingly slow, the closer x is to 0. This insight also pro-

duces the solution to the problem, and that is, if fnðxÞ ! f ðxÞ uniformly, continuity

is preserved, where by ‘‘uniformly’’ is meant that j fnðxÞ � f ðxÞj can be made arbi-

trarily small for all x by making n large enough.

For the property of di¤erentiability, it was shown in section 9.4 on convergence

of a sequence of derivatives that neither pointwise nor uniform convergence of

fnðxÞ ! f ðxÞ was enough to ensure that the di¤erentiability of fnðxÞ would either

imply the di¤erentiability of f ðxÞ or, in the case where f 0ðxÞ existed, imply the con-

vergence f 0
n ðxÞ ! f 0ðxÞ. An example for nonexistence of f 0ðxÞ was given by

fnðxÞ ¼ x1þð1=nÞ; xb 0;

ð�xÞ1þð1=nÞ; xa 0;

�
f ðxÞ ¼ jxj;
since here f 0ð0Þ does not exist.

The example for when f 0ðxÞ exists for all x but f 0
n ðxÞ n f 0ðxÞ was given by

fnðxÞ ¼ sin nxffiffiffi
n

p ;

f ðxÞ1 0:

10.9.2 Sequence of Continuous Functions

The general questions of this section are:

Question 1: If fnðxÞ is Riemann integrable over ½a; b� for all n and fnðxÞ ! f ðxÞ
pointwise, will it be the case that

Ð b
a
f ðxÞ dx exists and

Ð b
a
fnðxÞ dx ! Ð b

a
f ðxÞ dx?

Question 2: In general, what kind of convergence of integrable functions fnðxÞ will
ensure integrability of f ðxÞ and the convergence of integral values, and what if any

bearing do properties of the interval of integration have on these results?

As it turns out, question 1 is relatively easy, but question 2 is far more subtle and

di‰cult than is the related investigation on continuity or di¤erentiability. We address

question 1 and an important portion of question 2 here. This discussion will be

greatly expanded within the framework of real analysis.

Answer 1: Pointwise convergence of fnðxÞ that are Riemann integrable over

bounded ½a; b� assures neither the integrability of f ðxÞ nor, in the case where f ðxÞ is
integrable, the convergence of integral values. Examples of these behaviors follow.
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Example 10.54

1. For any ordering of the rational numbers in ½0; 1�, frjgyj¼1, define

fnðxÞ ¼
1; x ¼ rj; 1a ja n;
1
n
; elsewhere:

�
Then fnðxÞ is continuous except at n points and hence is integrable, and

Ð 1
0 fnðxÞ dx ¼

1
n
. However, fnðxÞ ! f ðxÞ pointwise, where

f ðxÞ ¼ 1; x rational;

0; x irrational;

�
which is nowhere continuous and hence not Riemann integrable.

2. Define for nb 1,

fnðxÞ ¼ 2n; 1
2n a na 1

2 n�1 ;

0; elsewhere:

�
Then fnðxÞ converges pointwise on ½0; 1�, but not uniformly, to the continuous and hence

integrable function f ðxÞ1 0. Also, for all n, a simple calculation gives that
Ð 1
0 fnðxÞ dx

¼ 1, but obviously,
Ð 1
0 f ðxÞ dx ¼ 0.

Answer 2: The next two propositions in this and the next section provide two cases

where the desired conclusions follow. The first result calls for the uniform conver-

gence of continuous functions on a bounded interval, the second, found in the next

section, generalizes this result.

Proposition 10.55 If f fnðxÞg is a sequence of continuous functions on a closed and

bounded interval ½a; b�, and there is a function f ðxÞ so that fnðxÞ ! f ðxÞ uniformly,

then f ðxÞ is Riemann integrable andð b
a

fnðxÞ dx !
ð b
a

f ðxÞ dx: ð10:36Þ

In other words,ð b
a

f ðxÞ dx ¼ lim
n!y

ð b
a

fnðxÞ dx: ð10:37Þ

Proof First o¤,
Ð b
a
fnðxÞ dx exists for all n, since these functions are continuous and

the interval is bounded. Also uniform convergence assures the continuity of f ðxÞ by
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proposition 9.51, and hence the existence of
Ð b
a
f ðxÞ dx, so the only question is one of

convergence of the values of the integrals in (10.36), that
Ð b
a
½ fnðxÞ � f ðxÞ� dx ! 0.

To this end, uniform convergence implies that for any � > 0 there is an Nð�Þ so that

j fnðxÞ � f ðxÞj < � for all x A ½a; b� for n > N. Hence for any partition a ¼ x0 < x1
< � � � < xn ¼ b, where yj A ½xjþ1 � xj�, the Riemann sum is bounded:X

j

½ fnðyjÞ � f ðyjÞ�½xjþ1 � xj�












a X
j fnðyjÞ � f ðyjÞj½xjþ1 � xj�

< �
X

½xjþ1 � xj�

¼ �ðb� aÞ; n > N:

Consequently
Ð b
a
½ fnðxÞ � f ðxÞ� dx ! 0, and because of the linearity of the integral in

(10.9) this result is equivalent to demonstrating (10.36). n

Remark 10.56 Note that (10.37) can be rewritten to emphasize that this is another

example of reversing the order of two limiting operations as in proposition 9.58. Recall

that the integral is defined as the limit of Riemann sums, and (10.37) becomesð b
a

lim
n!y

fnðxÞ
h i

dx ¼ lim
n!y

ð b
a

fnðxÞ dx

 �

:

10.9.3 Sequence of Integrable Functions

The preceding result can be generalized, in that the assumption of the continuity of

fnðxÞ can be relaxed to just the assumptions of boundedness and Riemann integrable.

Proposition 10.57 If f fnðxÞg is a sequence of bounded, Riemann integrable functions

on a closed and bounded interval ½a; b�, and there is a function f ðxÞ so that fnðxÞ !
f ðxÞ uniformly, then f ðxÞ is Riemann integrable and (10.36) holds.

Proof First o¤, we show f ðxÞ is indeed Riemann integrable. By the characteriza-

tion of integrability on bounded intervals in the Riemann existence theorem of prop-

osition 10.22, it is enough to prove that f ðxÞ is bounded and continuous except on a

set of measure zero.

To this end, let En denote the set of discontinuity points of fnðxÞ that has measure

0 because of the integrability assumption, and let E ¼ 6En. Then E also has mea-

sure 0 by proposition 10.16, and we will show that f ðxÞ is continuous outside E. It is
important to note that f ðxÞ will also in general be continuous on many, even all, of
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the points in E, but we cannot be assured of this and in any case do not need this for

the desired result.

By uniform convergence we have that for any � > 0 there is an N ¼ Nð�Þ so that

j f ðyÞ � fnðyÞj < � for all y A ½a; b� and all nbN. Let x A ½a; b� � E, and since fNðxÞ
is continuous at x, there is a dN for this same � so that j fNðxÞ � fNðyÞj < � if jx� yj
< dN . By the triangle inequality, if jx� yj < dN , then

j f ðxÞ � f ðyÞja j f ðxÞ � fNðxÞj þ j fNðxÞ � fNðyÞj þ j fNðyÞ � f ðyÞj
< 3�;

and so f ðxÞ is continuous outside E, a set of measure 0.

Boundedness of f ðxÞ also follows from the uniform convergence and the bounded-

ness of fnðxÞ. For nbN above,

j f ðxÞja j f ðxÞ � fnðxÞj þ j fnðxÞj
< �þ Cn;

where Cn denotes the maximum of bounded j fnðxÞj on ½a; b�.
To next show the convergence of integrals in (10.36), uniform continuity implies

that for all x A ½a; b� and nbN,

�� < f ðxÞ � fnðxÞ < �;

which implies that for nbN,

��ðb� aÞ <
ð b
a

½ f ðxÞ � fnðxÞ� dx < �ðb� aÞ:

As � is arbitrary, this demonstrates (10.36). n

10.9.4 Series of Functions

As was the case in section 9.27 on sequences of continuous functions and section 9.4

on sequences of di¤erentiable functions, the propositions above on sequences of inte-

grable functions easily yield comparable results on series of functions which converge

uniformly. We state only the more general case.

Proposition 10.58 If gjðxÞ is a sequence of bounded, Riemann integrable functions,

and there is a function gðxÞ so that on some interval ½a; b� the series
Py

j¼1 gjðxÞ con-

verges uniformly to gðxÞ, then gðxÞ is Riemann integrable, and
Pn

j¼1

Ð b
a
gjðxÞ dx !Ð b

a
gðxÞ dx as n ! y.
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Remark 10.59 The uniform convergence of a series of integrable functions yields an

integrable function whose integral equals the sum of the integrals of terms in the series.

That is, uniform convergence justifies integrating term by term, then summing, which

meansð b
a

gðxÞ dx ¼ lim
n!y

Xn
j¼1

ð b
a

gjðxÞ dx:

Proof Define fnðxÞ ¼
Pn

j¼1 gðxÞ. Then fnðxÞ is bounded and Riemann integrable

for all n as a finite sum of bounded integrable functions, and by assumption,

fnðxÞ ! gðxÞ uniformly. Also
Ð b
a
fnðxÞ dx1

Pn
j¼1

Ð b
a
gjðxÞ dx. So the result follows

from proposition 10.57. n

10.9.5 Integrability of Power Series

We next apply the above result on series of functions to the special case of a power

series. It is largely a corollary to the proposition above on series of functions, but it is

stated here to clarify that a small amount of thought needs to be applied to ensure

the uniformity of convergence as the above result requires.

Proposition 10.60 Assume that a function f ðxÞ is defined by the power series

f ðxÞ ¼
Xy
j¼0

cjðx� x0Þ j ð10:38Þ

and has an interval of convergence given by I ¼ fx j jx� x0j < Rg for some R > 0.

Then f ðxÞ is Riemann integrable on any bounded interval ½a; b�H I , andð b
a

f ðxÞ dx ¼
Xy
j¼0

cj

j þ 1
½ðb� x0Þ jþ1 � ða� x0Þ jþ1�: ð10:39Þ

In other words, a power series can be integrated term by term within its interval of

convergence.

Proof Of course, f ðxÞ is infinitely di¤erentiable as was demonstrated in section

9.42, and hence it is continuous on I and Riemann integrable on any bounded inter-

val within I . Define fnðxÞ as the partial summation associated with f ðxÞ,

fnðxÞ ¼
Xn
j¼0

cjðx� x0Þ j :
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The function fnðxÞ is continuous and hence Riemann integrable for all n. As a finite

summation the integral is given asð b
a

fnðxÞ dx ¼
Xn
j¼0

ð b
a

cjðx� x0Þ j dx

¼
Xn
j¼0

cj

j þ 1
½ðb� x0Þ jþ1 � ða� x0Þ jþ1�:

Because fnðxÞ ! f ðxÞ pointwise on jx� x0j < R, this convergence is uniform on the

compact ½a; b�H I by exercise 30(b) of chapter 9. So by proposition 10.55:ð b
a

f ðxÞ dx ¼ lim
n!y

ð b
a

fnðxÞ dx

¼
Xy
j¼0

cj

j þ 1
½ðb� x0Þ jþ1 � ða� x0Þ jþ1�: n

Remark 10.61

1. Note that in this result on the integral of a series of functions, it is apparent that the

series of integrals is convergent, in fact absolutely convergent. First o¤, by the triangle

inequality,

Xy
j¼0

cj

j þ 1
½ðb� x0Þ jþ1 � ða� x0Þ jþ1�














a
Xy
j¼0

jcjj
j þ 1

jðb� x0Þj jþ1 þ
Xy
j¼0

jcjj
j þ 1

jða� x0Þj jþ1:

Now, by the ratio test, for any x A I ,

lim sup
j!y

jcjþ1j
jþ2 jðx� x0Þj jþ2

jcj j
jþ1 jðx� x0Þj jþ1

¼ lim sup
j!y

jcjþ1j
jcjj jðx� x0Þj;

and this limit is less than 1 exactly when jðx� x0Þj < R, since by definition, 1
R
¼

lim supj!y
jcjþ1j
jcj j .
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2. This proposition applies to absolutely convergent Taylor series of analytic functions,

of course, since the partial sums of these converge pointwise and hence uniformly on

any bounded interval, ½a; b�.

10.10 Numerical Integration

When an integral of a function f ðxÞ is required, there may be no apparent way to

apply the result of the Fundamental Theorem of Calculus version I because the given

function is not the derivative of a recognized function. In such a case a numerical

algorithm is required, and there are many to choose from.

The most basic approach comes from the definition of the Riemann integral itself,

in (10.5). We simply partition the interval into a finite collection of subintervals,

of equal or unequal size, choose a point from each subinterval, and use the

approximation:ð b
a

f ðxÞ dxA
Xn
i¼1

f ð~xxiÞDxi;

where

~xxi A aþ
Xi�1

j¼1

Dxj; aþ
Xi

j¼1

Dxj

" #
:

This is an approximation to the result because, by definition, the exact value of the

integral is produced by this procedure as the mesh size of the partition m, defined in

(10.3), converges to 0. What is unknown, of course, is the quality of this approxima-

tion for a given partition, or the rate at which the error of the approximation goes to

0 as m ! 0.

In the following, we consider only the case of equal partitions, where m ¼
Dx1 b�a

n
.

10.10.1 Trapezoidal Rule

One useful way of defining the ‘‘quality of an approximation methodology’’ is to

determine the class of functions for which the methodology produces an exact re-

sult. The bigger the class, the better is the quality of the approximation. For example,

upper and lower Riemann sums will, in general, only provide an exact answer for

a constant function f ðxÞ ¼ d, or more generally, a piecewise constant function

f ðxÞ ¼ di for x A ½xi; xiþ1�, where x0 ¼ a and xn ¼ b. This piecewise constant func-

tion is also known as a step function.
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Using a slight modification of this technique, we can expand this class of functions

to include all linear or a‰ne functions f ðxÞ ¼ cxþ d, as well as piecewise linear

functions f ðxÞ ¼ cixþ di for x A ½xi; xiþ1�. The simple modification involves defining

f ð~xxiÞ in the Riemann summation above at the midpoint of the interval or, more gen-

erally, for other applications, replacing f ð~xxiÞ with the average of the value of the

function at the endpoints of each subinterval:ð b
a

f ðxÞ dxA
Xn
i¼1

f ðxi�1Þ þ f ðxiÞ
2


 �
Dx:

This methodology produces what is known as the trapezoidal rule and can be re-

written asð b
a

f ðxÞ dxA 1

2
f ðx0Þ þ 2

Xn�1

i¼1

f ðxiÞ þ f ðxnÞ
" #

Dx: ð10:40Þ

It is apparent from geometric considerations that this approximation is exact for

a‰ne functions, and for properly chosen partitions, piecewise a‰ne functions.

To evaluate the error in this approximation, recall from (10.6) that we can evalu-

ate this integral over each subinterval separately, and then simply add up the results.

Similarly we can investigate the quality of a proposed approximation over each sub-

interval, and the overall error of the approximation is simply the sum of the

subinterval errors.

For notational simplicity we evaluate the trapezoidal approximation over the first

subinterval, ½a; aþ Dx�. From the Taylor series expansion in (9.33) with n ¼ 1 and

x0 ¼ a, and assuming continuous f ð2ÞðxÞ, we get

f ðxÞ ¼ f ðaÞ þ f 0ðaÞðx� aÞ þ 1

2
f ð2ÞðyÞðx� aÞ2;

where y1 yðxÞ and a < yðxÞ < x. Since f ðxÞ is continuous, we infer that f ð2ÞðyÞ is
also a continuous function of x.

Integrating this formula over the interval ½a; aþ Dx� produces for I 1Ð aþDx

a
f ðxÞ dx,

I ¼ f ðaÞDxþ 1

2
f 0ðaÞDx2 þ 1

2

ð aþDx

a

f ð2ÞðyðxÞÞðx� aÞ2 dx

¼ f ðaÞDxþ 1

2
f 0ðaÞDx2 þ 1

3!
f ð2ÞðzÞDx3:
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Note that the last step is justified by the second MVT for integrals in (10.35) applied

to the function f ð2ÞðyðxÞÞ. In other words, f ð2ÞðzÞ is defined as f ð2ÞðyðcÞÞ for some

c A ½a; aþ Dx�, and consequently since a < yðxÞ < x, we conclude that z A ½a; aþ Dx�.
The trapezoidal approximation over this interval, using the Taylor expansion

above, is:

I T ¼ 1

2
½ f ðaÞ þ f ðaþ DxÞ�Dx

¼ 1

2
2f ðaÞDxþ f 0ðaÞDx2 þ 1

2
f ð2ÞðyÞDx3


 �
;

where y1 yðDxÞ and a < yðDxÞ < aþ Dx. Subtracting these expressions produces

I � I T ¼ � 1

4
f ð2ÞðzÞ � 1

6
f ð2ÞðyÞ


 �
Dx3 for a < y; z < aþ Dx:

Finally, for d > b > 0, consider the expression

df ð2ÞðzÞ � bf ð2ÞðyÞ
d � b

¼ f ð2ÞðzÞ þ b

d � b
½ f ð2ÞðzÞ � f ð2ÞðyÞ�:

It is apparent that this expression is strictly between f ð2ÞðzÞ and f ð2ÞðyÞ, and hence

by the continuity of f ð2ÞðxÞ and the intermediate value theorem in (9.1), there is a w

between y and z so that f ð2ÞðwÞ ¼ df ð2ÞðzÞ�bf ð2ÞðyÞ
d�b

. Applying this to the trapezoidal ap-

proximation above, where d ¼ 1
4 and b ¼ 1

6 , we conclude that

I � I T ¼ � 1

12
f ð2ÞðwÞDx3 for a < w < aþ Dx:

Summarizing, we have derived the following result:

Proposition 10.62 If f ðxÞ is a twice di¤erentiable function with continuous f ð2ÞðxÞ on
the bounded interval ½a; b�, with partition given by fxign

i¼0 ¼ faþ iDxgn
i¼0 and Dx ¼

b�a
n
, then the error in the trapezoidal approximation defined in (10.40) is given by

I � I T ¼ � 1

12
f ð2ÞðwÞ ðb� aÞ3

n2
ð10:41Þ

for some w A ½a; b�. If j f ð2ÞðxÞjaM2 on ½a; b�, the absolute error bound is given by

jI � I T ja M2ðb� aÞ3
12n2

: ð10:42Þ
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Proof Applying the analysis above to each subinterval and adding, we derive

I � I T ¼ � 1

12

Xn
i¼1

f ð2ÞðwiÞDx3

for aþ ði � 1ÞDx < wi < aþ iDx. Now, since 1
n

Pn
i¼1 f ð2ÞðwiÞ is bounded by the max-

imum and minimum values of f ð2ÞðxÞ on ½a; b�, by the intermediate value theorem

there is a w A ½a; b� that equals this value. Substituting Dx ¼ b�a
n

completes the proof

of (10.41). From this, (10.42) follows by taking absolute values and bounding f ð2ÞðwÞ
by its maximum, M2. n

Remark 10.63 Note that the error estimate of the trapezoidal approximation is

OðDx2Þ. Specifically, since Dx ¼ b�a
n
, we have from (10.42) that

jI � I T ja M2ðb� aÞ
12

Dx2: ð10:43Þ

10.10.2 Simpson’s Rule

With a bit more e¤ort, Simpson’s rule improves the error in the trapezoidal rule ap-

proximation from OðDx2Þ to OðDx4Þ. The additional e¤ort required is to utilize the

midpoint and endpoints from each subinterval defined by the partition above, rather

than just the endpoints. However, Simpson’s rule requires the continuity of the fourth

derivative f ð4ÞðxÞ on ½a; b�.
Specifically, on a given subinterval, say ½a; aþ Dx� for simplicity, the Simpson’s

rule approximation is defined asð aþDx

a

f ðxÞ dxA 1

6
f ðaÞ þ 4f

2aþ Dx

2

� �
þ f ðaþ DxÞ


 �
Dx;

where Dx ¼ b�a
n
. Adding over all subintervals produces Simpson’s rule:ð b

a

f ðxÞ dxA 1

6

Xn
i¼1

f ðxi�1Þ þ 4f
xi�1 þ xi

2

� �
þ f ðxiÞ


 �
Dx:

In terms of the resulting coe‰cients of the function values, a simple calculation

produces the following:ð b
a

f ðxÞ dxA 1

6
f ðx0Þ þ 2

Xn�1

i¼1

f ðxiÞ þ 4
Xn
i¼1

f
xi�1 þ xi

2

� �
þ f ðxnÞ

" #
Dx: ð10:44Þ
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The development of the error in this approximation follows that above for the

trapezoidal rule but utilizes the Taylor approximation up to the f ð4ÞðxÞ term. We

present the final result of these calculations without proof (see exercise 12):

Proposition 10.64 If f ðxÞ is a four times di¤erentiable function with continuous

f ð4ÞðxÞ on the bounded interval ½a; b�, with partition given by fxign
i¼0 ¼ faþ iDxgn

i¼0

and Dx ¼ b�a
n
, then the error in Simpson’s rule defined in (10.44) is given by

I � I S ¼ � 1

180
f ð4ÞðwÞ ðb� aÞ5

ð2nÞ4 ð10:45Þ

for some w A ½a; b�. If j f ð4ÞðxÞjaM4 on ½a; b�, the absolute error bound is given by

jI � I Sja M4ðb� aÞ5
180ð2nÞ4 : ð10:46Þ

Remark 10.65 Note that the error estimate of Simpson’s rule is OðDx4Þ. Specifically,
since Dx ¼ b�a

n
, we have from (10.46) that

jI � I T ja M4ðb� aÞ
2880

Dx4: ð10:47Þ

10.11 Continuous Probability Theory

10.11.1 Probability Space and Random Variables

Recall that chapter 6 on series provided the needed tools to develop most of a dis-

crete probability theory. Exceptions included (7.67), which required some chapter 9

tools, and the statement that the moment-generating function or characteristic func-

tion uniquely characterize a probability density, addressed somewhat in section 8.1.

Similarly the tools of Riemann integration in this chapter 10 are su‰cient to develop

most of the ‘‘continuous’’ counterpart to this theory.

As in chapter 7, we begin with a sample space, S , which we do not require to be

finite or discrete as was the case for discrete probability theory. We might imagine S
to be the real numbers R or Euclidean space Rn, for example. The critical observa-

tion in this generalization is that we can no longer rely on the restriction that S has a

countable collection of sample points.

In this section we introduce many of the relevant aspects of this continuous theory,

and provide a more general ‘‘mixed’’ discrete and continuous model in exercises 40

through 42. The more formal and mathematically more complete development,

10.11 Continuous Probability Theory 613



which provides a framework for an even more general probability theory which

encompasses both the discrete and continuous theories, and more, requires the tools

of real analysis.

Given S , we define the complete collection of events as in definition 7.2, but begin

to emphasize the alternate terminology noted in remark 7.3.

Definition 10.66 Given a sample space, S , a collection of events, E ¼ fA jAHSg, is
called complete, or is a sigma algebra, if it satisfies the following properties:

1. j;S A E .

2. If A A E , then ~AA A E .

3. If Aj A E for j ¼ 1; 2; 3; . . . , then 6
j
Aj A E .

In other words, we require that a sigma algebra of events contain the null event j,
the certain event S , the complement of all events, and that it be closed under count-

able unions. However, while item 3 is stated only for countable unions, it is also true

for countable intersections because of property 2 and De Morgan’s laws. Hence it is

also the case that 7
j
Aj A E . Similarly, if A;B A E , then A@B A E , where A@B1

fx A S j x A A and x B Bg, since A@B ¼ AV ~BB.

Remark 10.67

1. In the discrete sample spaces of chapter 7, E usually contained each of the sample

points and all subsets of S , and was consequently always complete. In a general sample

space that is uncountably infinite, the collection of events will virtually always be a

proper subset of the collection of all subsets. Consequently the structure of the collec-

tion of events implied by the sigma algebra definition is all that we will have to work

with, and hence all that can be assumed about E in the development of this theory.

2. It was noted in chapter 7 that the use of the term ‘‘complete’’ was not standard, but

was introduced there for simplicity. The three conditions in the definition above are

general requirements for E to be a sigma algebra, and this is a more natural language

here given the greater generality of this collection.

3. Although perhaps not formally, but at least intuitively, it should be clear that the

generality of the definition of a sigma algebra of events implies that on any given sam-

ple space, any number of sigma algebras can be defined as long as they satisfy the con-

ditions above. Once that is contemplated, it becomes clear that one might find two

sigma algebras, E and E 0 where E HE 0 in the sense that every event in E is an event in

E 0. In that sense, E 0 is a finer sigma algebra because it contains more events, and E a

coarser sigma algebra because it contains fewer events. One also imagines that there
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may be two sigma algebras where neither E HE 0 nor E 0 HE is true. Outstanding ques-

tions to be pursued in more advanced treatments using the tools of real analysis are:

� IfD is any collection of subsets of S , is there a sigma algebra E that contain the sets

inD so thatDHE?

� If yes, is there a smallest such sigma algebra?

For example, if E and E 0 are two sigma algebras on S , is there a sigma algebra E 00

so that E UE 0 HE 00? For another example, if X : S ! R is a given function, is there

a sigma algebra that contains all sets of the form X�1ða; bÞ for all open intervals

ða; bÞHR?

The notion of a probability measure on E is identical to that in chapter 7. Because

of the generality of the event space and the fact that E does not contain sample points

as events, we use the general notation m, which is standard in the theory, rather than

the notation for the discrete theory of Pr.

Definition 10.68 Given a sample space S , and a sigma algebra of events E ¼ fA j
AHSg, a probability measure is a function m : E ! ½0; 1�, which satisfies the following

properties:

1. mðSÞ ¼ 1.

2. If A A E , then mðAÞb 0 and mð ~AAÞ ¼ 1� mðAÞ.
3. If Aj A E for j ¼ 1; 2; 3; . . . are mutually exclusive events, that is, with Aj VAk ¼ j
for all j0 k, then

m 6
j

Aj

 !
¼
X

mðAjÞ:

In this case the triplet: ðS ;E ; mÞ is called a probability space.

Definition 10.69 An event A A E is a null event under m if mðAÞ ¼ 0. If A is a null

event and every A 0 HA satisfies:

1. A 0 A E ,

2. mðA 0Þ ¼ 0,

then the triplet, ðS ;E ; mÞ is called a complete probability space.

Remark 10.70 Questions on probability spaces to be pursued in more advanced treat-

ments using the tools of real analysis are:

1. If ðS ;E ; mÞ is a probability space that is not complete, can E be expanded to a sigma

algebra E 0 that is complete and hence includes all subsets of null sets?
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2. If ðS ;E ; mÞ is a probability space which is not complete, and E is expanded to include

all subsets of null sets, can the definition of m be expanded to E 0 without changing its

values on E?

3. Given ðS ;E ; mÞ, define n-trial sample space, denoted S n, by

S n ¼ fðs1; s2; . . . ; snÞ j sj A Sg:
How can an associated sigma algebra of events E n be defined and reflective of the sigma

algebra E? Also, how can a probability measure mnðAÞ be defined for A A E n in a way

that allows the identification of up to n-events in E with n-independent events in E n,

which have the same probability measures?

So far not too much of what has been defined is materially di¤erent from the dis-

crete setting of chapter 7. What really distinguishes the discrete and continuous mod-

els is the nature of a random variable defined on S .

Definition 10.71 Given a sample space S , and a sigma algebra of events E ¼ fA jAH
Sg, a continuously distributed random variable is a function

X : S ! R;

so that:

1. For any bounded or unbounded interval fa; bgHR, where fa; bg denotes that this

interval may be open, closed, or half-open,

X�1fa; bg A E :

2. There is a continuous function, denoted f or fX , with f ðxÞb 0, the probability

function (p.f.), or probability density function (p.d.f.) of X so that given any interval

fa; bg,ð b
a

f ðxÞ dx ¼ m½X�1fa; bg�: ð10:48Þ

The distribution function (d.f.), or cumulative distribution function (c.d.f.) associ-

ated with X, denoted F or FX , is then defined on R by

F ðxÞ ¼ m½X�1ð�y; x�� ð10:49aÞ

¼
ð x
�y

f ðyÞ dy: ð10:49bÞ
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Note that for any point a A R, X�1½a� A E , since X�1 a; aþ 1
n

� �
A E for all n, and by

the property of a sigma algebra,

7
n

X�1 a; aþ 1

n


 �
¼ X�1½a� A E :

Of course, if a B Rng½X �, then X�1½a� ¼ j. Also, by (10.48), it must be the case that

m½X�1½a�� ¼ 0 for all a A R:

Consequently the pre-image of any point under X has probability measure 0 and is

a null event in E . In addition the pre-image of any countable collection of points is

again a null event, since given fajgyj¼1, the collection of events fX�1½aj�gyj¼1 are mu-

tually exclusive since X is a function, and so by definition 10.68,

m 6
j

X�1½aj�
" #

¼
X
j

m½X�1½aj�� ¼ 0:

Remark 10.72 These conclusions highlight a stark contrast between continuous and

discrete probability theory. In chapter 7, given any random variable X, there is a finite

or countable collection fajgyj¼1 HR so that fX�1½aj �gyj¼1 HE are mutually independent

events, and Pr½6
j
X�1½aj�� ¼ 1. In continuous probability theory, for any collection

fajgyj¼1 HR, while it is still true that fX�1½aj �gyj¼1 HE and are mutually independent

events, we now have m½6
j
X�1½aj �� ¼ 0.

Note that since the c.d.f. is the integral of a continuous function, we have from the

Fundamental Theorem of Calculus version II that FðxÞ is a di¤erentiable function

and

F 0ðxÞ ¼ f ðxÞ: ð10:50Þ
Note also from the definition of FðxÞ that:

1. FðyÞ ¼ 1, since FðxÞ ¼ m½X�1ð�y; xÞ�, and as x ! y, m½X�1ð�y; xÞ� ! mðSÞ
¼ 1.

2. FðxÞ is nondecreasing, that is, x < x 0 ) FðxÞaF ðx 0Þ, since f ðxÞb 0 and by

(10.49),

F ðx 0Þ � FðxÞ ¼
ð x 0

x

f ðyÞ dyb 0:
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3. F ð�yÞ ¼ 0, since for any x we have S ¼ X�1ð�y; x�UX�1ðx;yÞ. Consequently

F ðxÞ ¼ m½X�1ð�y; x�� ¼ 1� m½X�1ðx;yÞ�;
and by item 1 above, F ðxÞ ! 0 as x ! �y.

Remark 10.73 Note that no comment has been made about the random variable X

being a continuous function defined on S . It would seem natural that a continuous prob-

ability theory ought to be the probability theory of continuous random variables. But to

do so would require that S has more structure than is guaranteed by the sigma algebra

of events. Specifically, in order to be able to define that X is a continuous function

requires either that:

1. S is a metric space so X can be defined to be continuous in the usual �� d sense, or

equivalently, by the condition that X�1½G� is open for any open GHR, or

2. S is a topological space, so X can be defined to be continuous by the condition that

X�1½G� is open in S for any open GHR.

Since it also must be the case that X�1½G�HE for all intervals and hence all open sets,

the sigma algebra must then be defined to contain all the open sets in S . In other words,

in order to be able to define X to be a continuous random variable requires that S have

a topology of sets, and that the sigma algebra E contain all these open sets. In more

advanced treatments based on the tools of real analysis, the minimal sigma algebra

with this property will be called a Borel sigma algebra, and the associated events called

Borel sets, after Émile Borel (1871–1956).

While this extra structure is needed to define the notion of a continuous random vari-

able, it would not be enough to ensure, without a lot of math tools we have not yet

developed, that there is a continuous function f ðxÞ so that (10.48) is satisfied. So this

development is circumvented and continuous probability theory is, in e¤ect, defined

as the probability theory of random variables with continuous probability density

functions.

10.11.2 Expectations of Continuous Distributions

The general structure of the formulas below will be seen to be analogous to those in

section 7.5.1. These formulas again represent what are known as expected value cal-

culations, and sometimes referred to as taking expectations. The general structure of

this calculation is defined first and then specific examples are presented.

Definition 10.74 Given a continuously distributed random variable X : S ! R with

continuous probability density function f ðxÞ, and a continuous function gðxÞ defined on

618 Chapter 10 Calculus II: Integration



the range of X, Rng½X �HR, the expected value of gðXÞ, denoted E½gðXÞ�, is defined
as

E½gðX Þ� ¼
ðy
�y

gðxÞ f ðxÞ dx; ð10:51Þ

as long as the associated integral is absolutely convergent. In other words, since

f ðxÞb 0, it is required thatðy
�y

jgðxÞj f ðxÞ dx < y: ð10:52Þ

If (10.52) is not satisfied, we say that E½gðXÞ� does not exist.
Remark 10.75

1. If there is a small disappointment in the above definition vis-a-vis the discrete case in

definition 7.35, it is that there is no natural counterpart to formula (7.35):

E½gðX Þ� ¼
X
sj AS

gðXðsjÞÞ PrðsjÞ;

where fxjgHR denotes the range of X. In other words, in chapter 7 expected values

could be equivalently defined as a calculation on S using the probability measure Pr, or

as a calculation on R using the probability density function f ðxÞ. At the moment, with-

out the more general tools of real analysis, there is no way to define E½gðXÞ� as a cal-

culation on S using the probability measure m. If there was, we might expect that this

definition would look something like:

E½gðX Þ� ¼
ð
S
gðXðsÞÞ dmðsÞ;

although some amount of work needs to be done to define exactly what such an integral

means.

2. The condition in (10.52) is automatically satisfied if gðxÞ is a bounded function on

the range of X, jgðxÞjaK, since thenðy
�y

jgðxÞj f ðxÞ dxaK

ðy
�y

f ðxÞ dx ¼ K :

So this restriction is ‘‘only’’ important for unbounded functions. That said, in practice

we are primarily interested in the expected value of unbounded functions, so this condi-

tion cannot in general be assumed to be valid.
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*10.11.3 Discretization of a Continuous Distribution

The goal of this section is to better link the notions of expected value in the discrete

and continuous contexts. At the moment it might appear that the summations of def-

inition 7.35 of chapter 7 were simply converted to integrals. To see why this is the

correct answer, and not just a notational trick, we begin with a somewhat long defi-

nition. The idea is simple and natural, but it takes a lot of words to convey.

Definition 10.76 Given a continuously distributed random variable, X : S ! R, a dis-

cretization of X of mesh size d, denoted Xd, is a discrete random variable defined on the

discretization of the sample space S , denoted S d, constructed as follows:

1. A partition of R is defined with mesh size, d. In other words, there is given

fxigyi¼0; fyigyi¼0 HR, with

� � � < y2 < y1 < y0 ¼ x0 < x1 < x2 < � � � ;
with xiþ1 � xi a d and yi � yiþ1 a d for all i, and the partition is defined as

f½xi; xiþ1Þgyi¼0 U f½yiþ1; yiÞgyi¼0.

2. From each partition interval is chosen a point, or interval tag,

~xxi A ½xi; xiþ1Þ; ~yyi A ½yiþ1; yiÞ; ib 0:

3. Mutually exclusive events are defined in E by

Aþ
i ¼ X�1½xi; xiþ1Þ; A�

i ¼ X�1½yiþ1; yiÞ; ib 0:

Then S d is defined as the discrete sample space in which these events are sample points

S d ¼ fAþ
i gyi¼0 U fA�

i gyi¼0; ð10:53Þ

with the complete collection of events, denoted Ed, defined as these sample points plus

all unions and complements of unions of these sample points.

The probability measure, Prd, is then defined on sample points by

Prd½Aþ
i � ¼ m½X�1½xi; xiþ1Þ�; ð10:54aÞ

Prd½A�
i � ¼ m½X�1½yiþ1; yiÞ�; ð10:54bÞ

and extended additively to all events, where in this definition, X�1½xi; xiþ1Þ and

X�1½yiþ1; yiÞ are considered as events in S .
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Finally, the discrete random variable Xd : S d ! R is defined by

XdðAþ
i Þ ¼ ~xxi; XdðA�

i Þ ¼ ~yyi; ð10:55Þ

with associated probability density function, fdðxÞ, defined by

fdð~xxiÞ1Prd½X�1
d ½~xxi�� ¼ Fðxiþ1Þ � F ðxiÞ; ð10:56aÞ

fdð~yyiÞ1Prd½X�1
d ½~yyi�� ¼ F ðyiÞ � F ðyiþ1Þ: ð10:56bÞ

Example 10.77 Other continuous distributions are introduced below, but the unit

normal distribution was introduced in section 8.6 and can be discretized as follows.

In the background is ðS ;E ; mÞ, representing a sample space, sigma algebra, and proba-

bility measure, and also a continuously distributed random variable X : S ! R. So

for any interval fa; bg, which we take to be closed for definitiveness, we have that

X�1½a; b� A E and

m½X�1½a; b�� ¼ 1ffiffiffiffiffiffi
2p

p
ð b
a

e�x2=2 dx:

Although not necessary, it is natural to define a discretization that is symmetric in

terms of the collection of interval tags since fðxÞ ¼ 1ffiffiffiffi
2p

p e�x2=2 is symmetric about

x ¼ 0. To this end, and with mesh size d ¼ 1
n
, it is notationally convenient to eliminate

y0 and x0, and define

xi ¼ 2i � 1

2n
; yi ¼ �xi; i ¼ 1; 2; 3; . . . ;

and associated events in S by

A0 ¼ X�1 � 1

2n
;
1

2n


 �
;

Aþ
i ¼ X�1 2i � 1

2n
;
2i þ 1

2n


 �
; A�

i ¼ X�1 � 2i þ 1

2n
;� 2i � 1

2n


 �
; ib 1:

The discrete sample space S d is then defined as the collection of sample points as in

(10.53) with probability measure Prd as in (10.54). In this case, note that with FðxÞ
denoting the normal cumulative distribution function as defined in (10.49):

Prd½A0� ¼ F
1

2n

� �
�F � 1

2n

� �
;
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Prd½Aþ
i � ¼ F

2i þ 1

2n

� �
�F

2i � 1

2n

� �
;

Prd½A�
i � ¼ F � 2i � 1

2n

� �
�F � 2i þ 1

2n

� �
:

Finally, with interval tags f~xxi; ~yyig defined as interval midpoints,

~xx0 ¼ 0; ~xxi ¼ i

n
; ~yyi ¼ � i

n
; ib 1;

the discretized normal random variable Xd is defined as

XdðA0Þ ¼ 0; XdðAþ
i Þ ¼

i

n
; XdðA�

i Þ ¼ � i

n
; ib 1;

with probability density function given in (10.56).

We can compare the cumulative distribution functions of the normal and its discreti-

zation with d ¼ 0:5 in figure 10.4. Note that using midpoint tags produced a balanced

discretization, in that within each interval of the partition, for example, ½�0:25; 0:25Þ
the discretized normal c.d.f. is below FðxÞ on ½�0:25; 0Þ and above on ½0; 0:25Þ.

Figure 10.4
FðxÞ and FdðxÞ compared for d ¼ 0:5, midpoint tags
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Analogously, left- and right-endpoint tagging produces discretized c.d.f.s that are

almost always above, or below, the continuous c.d.f. FðxÞ.
The connection between expected values in a discrete and continuous context can

now be formulated by the next result. For notational ease, assume yi ¼ �xi.

Proposition 10.78 Given a continuously distributed random variable, X : S ! R, and

discretizations of X of mesh size d, Xd, defined on S d, then for gðxÞ a continuous func-

tion for which (10.52) holds:

E½gðXdÞ� ! E½gðX Þ� as d ! 0: ð10:57Þ
Proof By (7.36) applied with (10.56),

E½gðXdÞ� ¼
Xy
i¼0

gðxþi Þ½Fðxiþ1Þ � F ðxiÞ� þ
Xy
i¼0

gðx�i Þ½F ð�xiÞ � F ð�xiþ1Þ�:

We detail the convergence of the first summation, and leave the analogous derivation

for the second summation as an exercise. Now, since FðxÞ is di¤erentiable, the mean

value theorem in (9.22) yields that

F ðxiþ1Þ � FðxiÞ ¼ F 0ðx 0
i ÞDxi;

where Dxi ¼ xiþ1 � xi and x 0
i A ðxi; xiþ1Þ. Hence, because F 0ðx 0

i Þ ¼ f ðx 0
i Þ by (10.50),

Xy
i¼0

gðxþi Þ½Fðxiþ1Þ � F ðxiÞ� ¼
Xy
i¼0

gðxþi Þ f ðx 0
i ÞDxi:

As gðxÞ f ðxÞ is a continuous function, it achieves its maximum and minimum in

every compact set, and hence in the closure of every interval in the partition. Conse-

quently for every i there exists xmax
i ; xmin

i A ½xi; xiþ1� so that

f ðxmin
i Þgðxmin

i Þa gðxþi Þ f ðx 0
i Þa f ðxmax

i Þgðxmax
i Þ:

As gðxÞ f ðxÞ is assumed absolutely integrable, it is certainly integrable, and so the

Riemann sums defined by either xmax
i or xmin

i converge to this integral as Dxi ! 0.

Consequently, as d ! 0, we have by definition that Dxi ! 0 and can conclude that

Xy
i¼0

gðxþi Þ f ðx 0
i ÞDxi !

ðy
0

gðxÞ f ðxÞ dx:
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The same argument can be applied to the second summation in the definition of

E½gðXdÞ�, which together produces

E½gðXdÞ� !
ðy
�y

gðxÞ f ðxÞ dx:

Finally, this last integral equals E½gðX Þ� since by assumption, gðxÞ satisfies (10.52).

n

Remark 10.79 The proposition above was stated with the relatively strong assumption

that gðxÞ is a continuous function. A review of the proof provides the insight that all

that was needed was that: 1) gðxÞ be continuous except on a set of measure 0 so thatÐy
�y gðxÞ f ðxÞ dx is defined, and, 2) gðxÞ is bounded on every bounded interval, so

that we could produce an upper and lower bound for gðxþi Þ f ðx 0
i Þ on each subinterval.

10.11.4 Common Expectation Formulas

We now list a collection of expectation formulas which includes the moments of X .

As noted above, in each case the expectation is defined only when (10.52) is satisfied.

The notation is consistent with that in section 7.5.1.

nth Moment

m 0
n 1

ðy
�y

xn f ðxÞ dx; n ¼ 1; 2; 3; . . . ð10:58Þ

Mean

m1 m 0
1 ¼

ðy
�y

xf ðxÞ dx ð10:59Þ

nth Central Moment

mn 1

ðy
�y

ðx� mÞnf ðxÞ dx; n ¼ 1; 2; 3; . . . ð10:60Þ

Variance

s2 1 m2 ¼
ðy
�y

ðx� mÞ2f ðxÞ dx ð10:61Þ
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Standard Deviation

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðy
�y

ðx� mÞ2f ðxÞ dx
s

ð10:62Þ

Moment-Generating Function

MX ðtÞ is defined only when the integral is convergent for t in an interval about 0,

MX ðtÞ1
ðy
�y

extf ðxÞ dx ð10:63Þ

Characteristic Function

CX ðtÞ1
ðy
�y

eixtf ðxÞ dx ð10:64Þ

CX ðtÞ is defined for all t since by (10.10),

jCX ðtÞja
ðy
�y

jeixtj f ðxÞ dx

¼
ðy
�y

f ðxÞ dx ¼ 1;

because by Euler’s formula in (2.5), jeixtj ¼ jcos xtþ i sin xtj ¼ 1.

Example 10.80 All of the many formulas in section 7.5.1 involving expectations can

now be shown to be valid in this continuous probability model, except for those that

involve probability density functions of two or more variables. As we do not yet have

either a di¤erential or an integral calculus for these functions, the continuous counter-

parts to the formulas relating to the joint, conditional, and marginal probability densities,

the law of total probability, sample statistics, or sums of independent and identically

distributed random variables must be deferred as an application of multivariate cal-

culus. However, once these tools are developed, these discrete results will again prove

to be applicable in this continuous and in even more general settings.

Examples of formulas that can be derived now follow (see exercises 13 and 32).

1. As in (7.45):

s2 ¼ E½X 2� � E½X �2: ð10:65Þ
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2. As in exercise 12 in chapter 7:

mn ¼
Xn
j¼0

ð�1Þn�j n

j

� �
m 0
jm

n�j ; ð10:66aÞ

m 0
n ¼

Xn
j¼0

n

j

� �
mjm

n�j: ð10:66bÞ

3. As in (7.64) and (7.65):

MX ðtÞ ¼
Xy
n¼0

m 0
nt

n

n!
; ð10:67Þ

m 0
n ¼ M

ðnÞ
X ð0Þ; ð10:68Þ

if all moments exist.

4. As in (7.71) and (7.72):

CX ðtÞ ¼
Xy
n¼0

m 0
nðitÞn
n!

; ð10:69Þ

m 0
n ¼

1

i n
C

ðnÞ
X ð0Þ; ð10:70Þ

if all moments exist.

10.11.5 Continuous Probability Density Functions

As was the case in section 7.6, there are infinitely many continuous probability den-

sity functions in theory. Specifically, if hðxÞ is any continuous function with abso-

lutely convergent integral,

0 <

ðy
�y

jhðxÞj dx ¼ C < y;

then a p.d.f. can be defined by

f ðxÞ ¼ jhðxÞjÐy
�y jhðxÞj :
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While true in theory, it is another question altogether whether this p.d.f. will be

found to be useful or reflective of the probability density of a random variable of

interest.

In this section we identify several of the common continuous probability distribu-

tions, and some of their properties.

Continuous Uniform Distribution

Perhaps the simplest continuous probability density that can be imagined is one

which assumes the same value on every point. The domain of this distribution is

arbitrary, and is conventionally denoted as the interval ½a; b�. The p.d.f. of the contin-
uous uniform distribution, sometimes called the continuous rectangular distribution, is

defined on ½a; b� by the density function

fU ðxÞ ¼
1

b�a
; x A ½a; b�;

0; x B ½a; b�:

�
ð10:71Þ

It is an easy calculation to derive the mean and variance of this distribution:

mU ¼ 1

2
ðbþ aÞ; ð10:72aÞ

s2
U ¼ 1

12
ðb� aÞ2: ð10:72bÞ

Similarly the moment-generating function can be calculated from the integral of

ext, producing

MU ðtÞ ¼ ebt � eat

tðb� aÞ ; t A R: ð10:73Þ

Although MUðtÞ has an apparent singularity at t ¼ 0, the numerator can be

expanded in a Taylor series, and one finds that

MU ðtÞ ¼ 1þ
Xy
n¼2

bn � an

b� a

� �
tn�1

n!
;

which converges for all t.

Letting a ¼ 0 and b ¼ 1 in these formulas produces the limiting results as n ! y
of the discrete rectangular distribution developed in section 7.6.1. Moreover the dis-

crete rectangular distribution can be seen to be a discretization of this continuous

distribution, with d ¼ 1
n
and right-endpoint tags.
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An example of this density function is seen in figure 10.5.

Beta Distribution

The beta distribution contains two shape parameters v > 0 and w > 0, and it is

defined on the interval ½0; 1� by the density function

fbðxÞ ¼ xv�1ð1� xÞw�1

Bðv;wÞ : ð10:74Þ

Here the beta function Bðv;wÞ is one of the ‘‘special functions’’ in mathematics

defined by a definite integral that, in general, requires numerical evaluation:

Bðv;wÞ ¼
ð1
0

yv�1ð1� yÞw�1
dy: ð10:75Þ

By definition, therefore
Ð 1
0 fbðxÞ dx ¼ 1.

If v or w or both parameters are less than 1, the beta density is unbounded at x ¼ 0

or x ¼ 1, or both, and this integral converges as an improper integral discussed

in section 10.6 because the exponent of both x and 1� x exceeds �1. If both

parameters are greater than 1, this density function is 0 at the interval endpoints,

and by the methods of section 9.5 has a unique maximum at x ¼ v�1
vþw�2 . Examples

Figure 10.5
fU ðxÞ ¼ 1

4 , 1a xa 5
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of this density function are displayed in figure 10.6. In this figure the parameters are

defined by

ðv;wÞ ¼
ð0:5; 0:5Þ; dashed line,

ð2; 6Þ; light line,

ð5; 3Þ; bold line.

8><>:
By definition, one has for any positive integer n,

E½xn� ¼ Bðvþ n;wÞ
Bðv;wÞ :

Now the beta function Bðv;wÞ satisfies an important identity that is useful in evaluat-

ing moments of this distribution:

Bðvþ 1;wÞ ¼ v

vþ w
Bðv;wÞ; ð10:76Þ

which is exercise 14.

Applying the iterative formula in (10.76), we have

mb ¼
v

vþ w
; ð10:77aÞ

Figure 10.6

fbðxÞ ¼ x v�1ð1�xÞw�1

Bðv;wÞ

10.11 Continuous Probability Theory 629



m 0
nb ¼

Yn�1

i¼0

vþ i

vþ wþ i

� �
; ð10:77bÞ

s2
b ¼ vw

ðvþ wÞ2ðvþ wþ 1Þ : ð10:77cÞ

Using this same iterative formula, we derive by mathematical induction that if n, m

are positive integers,

Bðn;mÞ ¼ ðn� 1Þ!ðm� 1Þ!
ðnþm� 1Þ! ; ð10:78Þ

which is exercise 33.

Exponential Distribution

The exponential distribution is defined on ½0;yÞ, and with a single scale parameter

l > 0, by the density function:

fEðxÞ ¼ le�lx: ð10:79Þ
It is apparent that

Ðy
0 fEðxÞ dx ¼ 1 as an improper integral for any l > 0, that

fEð0Þ ¼ l and that fEðxÞ is strictly decreasing over ½0;yÞ. This distribution is a spe-

cial case of the gamma distribution discussed next.

Gamma Distribution

The gamma distribution is defined on ½0;yÞ, reflects a scale parameter b > 0 and a

shape parameter c > 0, and is given by the density function

fGðxÞ ¼ 1

b

x

b

� �c�1
e�x=b

GðcÞ : ð10:80Þ

As in the case of the beta distribution, the gamma function GðcÞ is another ‘‘special
function’’ defined by the integral

GðcÞ ¼
ðy
0

yc�1e�y dy; c > 0: ð10:81Þ

When c ¼ 1 and b ¼ 1
l
, the gamma density function is the exponential density func-

tion noted above.

The gamma function exists as an improper integral, and for its evaluation both the

unboundedness of the interval and, in the case of c < 1, the unboundedness of the
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integrand near x ¼ 0 must be considered. The fact that
Ðy
0 fGðxÞ dx ¼ 1 then follows

from the substitution y ¼ x
b
and (10.81).

When ca 1, the gamma density is a strictly decreasing function, since f 0
GðxÞ < 0,

whereas for c > 1, the gamma density has a unique maximum at x ¼ bðc� 1Þ. Also,

as noted above, when c < 1 the gamma density is unbounded at x ¼ 0. Gamma den-

sities are displayed in figure 10.7 for various parameters. In particular, the density

displayed with a bold line is an exponential, with l ¼ 0:5:

ðb; cÞ ¼
ð2; 0:5Þ; light line,

ð2; 2Þ; medium line,

ð2; 1Þ; bold line.

8><>:
The gamma function GðcÞ satisfies an iterative formula that is useful for generating

moments of this distribution, and which follows from an integration by parts:

GðcÞ ¼ ðc� 1ÞGðc� 1Þ: ð10:82Þ
From the substitution y ¼ x

b
,

E½xn� ¼ bnGðcþ nÞ
GðcÞ ;

and this iterative formula produces

Figure 10.7
fGðxÞ ¼ 1

b
x
b

� �c�1e�x=b

GðcÞ
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mG ¼ bc; ð10:83aÞ

m 0
nG ¼ bn

Yn�1

j¼0

ðcþ jÞ; ð10:83bÞ

s2
G ¼ b2c: ð10:83cÞ

The moment-generating function can also be calculated (see exercise 15):

MGðtÞ ¼ ð1� btÞ�c; jtj < 1

b
: ð10:84Þ

As noted above, when c ¼ 1 and b ¼ 1
l
, the gamma density function becomes the ex-

ponential density function, and so the moment and m.g.f. formulas above are easily

converted to that case.

The gamma function GðcÞ satisfies Gð1Þ ¼ 1 by direct integration, so mathematical

induction can be used with (10.82) to prove that for any positive integer n,

GðnÞ ¼ ðn� 1Þ!; ð10:85Þ
and so GðcÞ can be seen to be a continuous generalization of the discrete factorial

function for c > 0. This factorial identity is also the motivation behind defining

0! ¼ 1, which makes perhaps little sense directly. However, considering GðcÞ as a

generalization of this discrete function, the statement 0! ¼ 1 really means that by

(10.85), 0! is defined in terms of the gamma function, and so

0!1Gð1Þ ¼ 1:

Cauchy Distribution

The Cauchy distribution, named for Augustin Louis Cauchy (1789–1857), is of inter-

est as an example of a p.d.f. that has no finite moments. This density function is

defined on R as a function of a location parameter, x0 A R, and a scale parameter

l > 0, by

fCðxÞ ¼ 1

pl

1

1þ x�x0
l

� �2 : ð10:86Þ

This function is symmetric about x ¼ x0, at which point fCðx0Þ ¼ 1
pl
, the density’s

maximum value. The parameter l is a scaling parameter that determines how

quickly (l small) or how slowly (l large) fCðxÞ decreases from this maximum as

jx� x0j ! y.
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When x0 ¼ 0 and l ¼ 1, this function is the probability density of a ratio of inde-

pendent unit normal random variables, but we do not derive this.

That
Ðy
�y f ðxÞ dx ¼ 1 as an improper integral follows from two substitutions. First

o¤, substituting y ¼ x�x0
l

producesðy
�y

fCðxÞ dx ¼ 1

p

ðy
�y

1

1þ y2
dy:

The second substitution is y ¼ tan z, which produces 1þ y2 ¼ sec2 z. Since

tan z ¼ sin z
cos z , this function can then be di¤erentiated using the tools of chapter 9,

and in particular (9.16), to produce that ðtan zÞ0 ¼ sec2 z. Finally, this substitution

changes the limits of integration from y A ð�y;yÞ to z A � p
2 ;

p
2

� �
, soðy

�y
fCðxÞ dx ¼ 1

p

ð p=2
�p=2

dz ¼ 1:

This function has no finite moments, even though it would appear by a cancella-

tion argument that m ¼ x0. But recall that in order for an expectation to be defined,

the associated integral must be absolutely convergent. Simplifying the calculation to

x0 ¼ 0 and l ¼ 1, which is equivalent to making a substitution of y ¼ x�x0
l

, considerðy
�y

jyj fCðyÞ dy ¼ 2

ðy
0

yfCðyÞ dy

¼ 2

p

ðy
0

y

1þ y2
dy:

This integral can be explicitly evaluated by the substitution, z ¼ 1þ y2, producingðy
�y

jyj fCðyÞ dy ¼ lim
N!y

1

p

ðN
1

dz

z

¼ 1

p
lim
N!y

½ln z�jN1

¼ 1

p
lim
N!y

ln N ¼ y:

So the Cauchy distribution has no finite mean nor higher moments, and hence no

moment-generating function. It does have a characteristic function, although (10.70)
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can not be valid here. As it turns out, CCðtÞ is not di¤erentiable at t ¼ 0 since it is a

function of jtj.
This density is graphed in bold in figure 10.8 with x0 ¼ 0 and l ¼ 1. For compari-

son, also graphed are the standard unit normal density (dashed line) and another

normal but with s ¼ ffiffi
p
2

p
A1:2533 (light line) to have the same maximum value as

the Cauchy. The ‘‘fat tails’’ of the Cauchy density are evident.

Normal Distribution

The normal distribution is defined on ð�y;yÞ, and depends on a location parame-

ter, m A R, and a scale parameter, s2 > 0, and is defined by the density function,

where we use exp A1 eA to simplify notation:

fNðxÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp �ðx� mÞ2
2s2

 !
: ð10:87Þ

When m ¼ 0 and s2 ¼ 1, this is known as the unit normal distribution, and often

denoted fðxÞ,

fðxÞ ¼ 1ffiffiffiffiffiffi
2p

p exp � x2

2

� �
; ð10:88Þ

introduced in (8.26) with the De Moivre theorem.

Figure 10.8

fCðxÞ ¼ 1
p

1
1þx2 , fðxÞ ¼ 1

s
ffiffiffiffi
2p

p exp � x2

2s2

� 	
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The normal density is displayed in figure 10.8 with m ¼ 0, for s ¼ 1 (dashed line)

and s ¼ 1:2533 (light line).

The substitution y ¼ x�m
s

into the integral of fNðxÞ shows that this integral equals
the integral of fðyÞ. Unfortunately, there is no approach to demonstrating that this

latter integral has value 1 with the tools currently at our disposal, so a formal proof

will be deferred as an application, surprisingly, of multivariate calculus. We simply

state the result:ðy
�y

fðyÞ dy ¼ 1:

However, since exp � x2

2

� 	
< x�N as x ! y for any N, it is easy to validate thatÐy

�y ynfðyÞ dy < y for any nb 0 using the results from section 10.6 on improper

integrals.

In general, it is easiest to calculate the central moments mnN and to use (10.66b) if

the corresponding moments m 0
nN are needed. To this end, note that using the sub-

stitution y ¼ x�m
s

producesðy
�y

ðx� mÞnfNðxÞ dx ¼ sn

ðy
�y

ynfðyÞ dy:

For n odd, it is apparent that
Ðy
�y ynfðyÞ dy ¼ 0, since with the substitution of

z ¼ �y in the second integral,ðy
�y

ynfðyÞ dy ¼
ðy
0

ynfðyÞ dyþ
ð0
�y

ynfðyÞ dy

¼
ðy
0

ynfðyÞ dy�
ð0
y
ð�zÞnfð�zÞ dz

¼
ðy
0

ynfðyÞ dy�
ðy
0

znfðzÞ dz

¼ 0:

Here ð�zÞn ¼ �zn since n is odd, fð�zÞ ¼ fðzÞ from (10.88), and the interchange of

limits follows from (10.17).

The mean of the normal is easily calculated from this result with the same

substitution:
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ðy
�y

xfNðxÞ dx ¼
ðy
�y

ðsyþ mÞfðyÞ dy

¼ m;

so mN ¼ m.

For n ¼ 2m even, exercise 34 develops the iterative formula:ðy
�y

y2mfðyÞ dy ¼ ð2m� 1Þ
ðy
�y

y2m�2fðyÞ dy;

and this plus mathematical induction will prove thatðy
�y

y2mfðyÞ dy ¼ ð2mÞ!
2mm!

:

Combining with the above, we derive

mnN ¼
0; n ¼ 2mþ 1;
s2mð2mÞ!
2mm! ; n ¼ 2m;

(
ð10:89aÞ

mN ¼ m; ð10:89bÞ

m2N 1 s2
N ¼ s2: ð10:89cÞ

So predictably the parameters m and s2 equal the mean and the variance of this

distribution.

The final derivation is for the moment-generating function:

MNðtÞ ¼
ðy
�y

etxfNðxÞ dx

¼ 1

s
ffiffiffiffiffiffi
2p

p
ðy
�y

exp �ðx� mÞ2 � 2s2tx

2s2

 !
dx:

Now completing the square produces

ðx� mÞ2 � 2s2tx ¼ ½x� ðmþ s2tÞ�2 � 2s2t mþ 1

2
s2t

� �
;

and so
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MNðtÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp mtþ 1

2
s2t2

� �ðy
�y

exp � ½x� ðmþ s2tÞ�2
2s2

 !
dx:

The substitution y ¼ x�ðmþs2tÞ
s

in this integral produces
Ðy
�y fðyÞ dy, which equalsffiffiffiffiffiffi

2p
p

, and so

MNðtÞ ¼ exp mtþ 1

2
s2t2

� �
: ð10:90Þ

Correspondingly for the m.g.f. of the unit normal,

MFðtÞ ¼ exp
1

2
t2

� �
: ð10:91Þ

An analogous derivation produces the following results for the characteristic

function:

CNðtÞ ¼ exp imt� 1

2
s2t2

� �
; ð10:92Þ

CFðtÞ ¼ exp � 1

2
t2

� �
: ð10:93Þ

Lognormal Distribution

The lognormal distribution is defined on ½0;yÞ, depends on a location parameter

m A R and a shape parameter s2 > 0, and unsurprisingly is intimately related to the

normal distribution introduced in section 8.6 and discussed above. However, to some

the name ‘‘lognormal’’ appears to be opposite of the relationship that exists. Stated

one way, a random variable X is lognormal with parameters ðm; s2Þ if X ¼ eZ where

Z is normal with the same parameters. So X can be understood as an exponentiated

normal. Stated another way, a random variable X is lognormal with parameters

ðm; s2Þ if ln X is normal with the same parameters. The name comes from the second

statement, in that the log of a lognormal is normal.

The probability density function of the lognormal is defined as follows, again using

exp A1 eA to simplify notation:

fLðxÞ ¼ 1

sx
ffiffiffiffiffiffi
2p

p exp �ðln x� mÞ2
2s2

 !
: ð10:94Þ

The substitution y ¼ ln x�m
s

produces
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ðy
0

fLðxÞ dx ¼ 1ffiffiffiffiffiffi
2p

p
ðy
�y

exp � y2

2

� �
dy

¼
ðy
�y

fðyÞ dy:

In other words, the integral of the lognormal density over ½0;yÞ equals 1.
This density function is well defined at x ¼ 0, and fLð0Þ ¼ 0. To see this, let

x ¼ e�y and consider y ! y. With this transformation,

fLðe�yÞ ¼ ey

s
ffiffiffiffiffiffi
2p

p exp �ðyþ mÞ2
2s2

 !

¼ 1

s
ffiffiffiffiffiffi
2p

p exp y� ðyþ mÞ2
2s2

 !
:

As y ! y, it is apparent that y� ð yþmÞ2
2s2

h i
! �y, and so fLðe�yÞ ! 0.

Also the density function fLðxÞ has a unique critical point, a maximum, and this is

found at x ¼ expðm� s2Þ. In figure 10.9 is displayed the lognormal (bold line) with

m ¼ 0 and s ¼ 1. A gamma density is also displayed (thin line), and was engineered

to have the same critical point as the lognormal, namely to have a maximum at

Figure 10.9

fLðxÞ ¼ 1

x
ffiffiffiffi
2p

p exp � ðln xÞ2
2

� 	
, fGðxÞ ¼ 1

b
x
b

� �c�1e�x=b

GðcÞ
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x ¼ e�1 equal to 1
e�1

ffiffiffiffi
2p

p exp � ðln e�1Þ2
2

� 	
A0:65774. From the analysis above of the

gamma, the location of the maximum requires bðc� 1Þ ¼ e�1, and the parameters

were numerically estimated as

cA1:5; bA2e�1 ¼ 0:73576:

Finally, fLðxÞ has moments of all orders. Specifically, using the substitution y ¼
ln x�m

s
, we write

m 0
nL ¼

ðy
0

xnfLðxÞ dx

¼
ðy
�y

expðnsyþ nmÞfðyÞ dy

¼ enmMFðnsÞ:
In other words, the moments of the lognormal can be calculated from the moment-

generating function of the unit normal. Specifically, using (10.91), we obtain

m 0
nL ¼ enmþðnsÞ2=2; ð10:95aÞ

mL ¼ emþs2=2; ð10:95bÞ

s2
L ¼ e2mþs2ðes2 � 1Þ: ð10:95cÞ

Surprisingly, although the lognormal distribution has moments of all orders, it

does not have a convergent moment-generating function. To see this, assume that

the m.g.f. exists and by (10.67),

MLðtÞ ¼
Xy
n¼0

m 0
nt

n

n!

¼
Xy
n¼0

enmþðnsÞ2=2tn

n!
; jtj < R:

Then as a power series, its interval of convergence is related to the limits superior and

inferior of the coe‰cient ratios as noted in proposition 6.24 on the ratio test.
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Letting cn ¼ enmþðnsÞ2=2t n
n! , we have lim supn!y

cnþ1

cn




 


 ¼ lim infn!y
cnþ1

cn




 


, and so

L ¼ lim
n!y

cnþ1

cn





 




¼ lim

n!y

emþð2nþ1Þs2=2

nþ 1
t














¼ y;

for all t0 0. So by the ratio test this series is divergent for t0 0, and MLðtÞ only

exists at t ¼ 0. The moments simply grow to fast to allow convergence for any

jtj > 0.

10.11.6 Generating Random Samples

In chapter 7 was introduced a general approach to generating independent and iden-

tically distributed random samples given any discrete probability density function.

The proof of this result depended on the structure of the n-trial sample space, denoted

S n, which was associated with the original sample space S on which this random

variable was defined. This sample space was endowed with a complete collection of

events, denoted E n, and associated probability measure Pn, each intimately related to

the respective notions on S . An independent and identically distributed (i.i.d.) sample

of the random variable X could then be defined as stated in proposition 7.60, which

we repeat for completeness, with additional clarifying references.

Proposition 10.81 Let X be a discrete random variable on a sample space S , with
range fxkgHR, and distribution function F ðxÞ. Then, if frjgn

j¼1 H ½0; 1� is a uniformly

distributed random sample in the sense of (7.117), then fF�1ðrjÞgn
j¼1 is a random

sample of X in the sense of (7.7), where F�1ðrjÞ is defined in (7.118). In other words,

if fxkjgn
j¼1 HRng½X �, then

f ðxk1 ; xk2 ; . . . ; xknÞ ¼
Yn
j¼1

f ðxkj Þ:

Unfortunately, we do not yet have the necessary tools to generalize this result to

the continuous distribution case. However, the discretization result above provides a

useful approach which is nearly identical with the theoretical result in practice.

To develop this application, suppose that we are given a continuously distributed

random variable X for which we wish to generate i.i.d. random samples of size n. To

simplify notation, we assume that Rng½X � is unbounded in only one direction, say
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Rng½X �H ½a;yÞ. Then for any d > 0 a discretization of X with mesh size d can be

constructed, denoted Xd, with range f~xxigHR, with ~xxi A ½xi; xiþ1Þ, and with probabil-

ity density fdðxÞ defined as in (10.56) by fdð~xxiÞ1Fðxiþ1Þ � F ðxiÞ. Recall that the sig-

nificance of d is that xiþ1 � xi a d for all i.

The result above for discrete random variables then assures us that for a uniformly

distributed random sample frjgn
j¼1 H ½0; 1�, that fF�1

d ðrjÞgn
j¼1 is independent and

identically distributed, so that for any f~xxkjgn
j¼1 HRng½Xd�,

fdð~xxk1 ; ~xxk2 ; . . . ; ~xxknÞ ¼
Yn
j¼1

fdð~xxkj Þ:

On the other hand, since fdð~xxiÞ1F ðxiþ1Þ � FðxiÞ, we conclude that

fdð~xxk1 ; ~xxk2 ; . . . ; ~xxknÞ ¼
Yn
j¼1

½F ðxkjþ1Þ � Fðxkj Þ�

¼
Yn
j¼1

Pr½X A ½xkj ; xkjþ1Þ�:

In other words, for any discretization of the random variable X , the procedure above

provides a methodology for generating i.i.d. random samples of size n that have the

correct probability structures. The one compromise in this procedure is that for any

interval ½xi; xiþ1Þ defined by the discretization, the only value of X that can be

sampled is the tagged point ~xxi A ½xi; xiþ1Þ.
In practice, this is of little consequence, since the discretization can be made as fine

as desired. For example, in theory one can define a discretization for which d is

smaller that the precision we wish to use in the measurement of the sample points

~xxi. For example, if one wants a random sample with one decimal accuracy, one could

choose d ¼ 0:05, say, or smaller.

10.12 Applications to Finance

10.12.1 Continuous Discounting

A common application of integrals in finance is for interest manipulations with con-

tinuous compounding. Given an annual rate, r, the equivalent rate based on com-

pounding m times per year, denoted rðmÞ, is defined in (2.14) by
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1þ r ¼ 1þ rðmÞ

m

� �m
: ð10:96Þ

The continuous rate of compounding is defined as

rðyÞ 1 lim
m!y

rðmÞ:

This limit is easily calculated as follows, where we substitute m ¼ 1
Dx

and evaluate

the result as Dx ! 0:

rðmÞ ¼ m½ð1þ rÞ1=m � 1�

¼ ð1þ rÞDx � 1

Dx
:

For Dx ! 0, we recognize this expression from (9.8) as the derivative of the function

f ðxÞ ¼ ð1þ rÞx at x ¼ 0, which from (9.12) is

rðyÞ ¼ lnð1þ rÞ; or ð10:97aÞ

1þ r ¼ er
ðyÞ
: ð10:97bÞ

Put another way, the present value function with continuous compounding for $1

at time t is given by e�dt, while the accumulated value function at time t of $1 at time

0 is edt, using the simplifying notation, d1 rðyÞ. This follows from (10.96) by raising

each side toGt, then taking the limit as m ! y as above.

An alternative approach to this notion of continuous compounding is to denote by

AðtÞ the value at time t of $1 invested at time 0, assuming continuous compounding.

Then, using an annual rate, Aðtþ DtÞ ¼ AðtÞð1þ rÞDt, we conclude that

Aðtþ DtÞ � AðtÞ
Dt

¼ ð1þ rÞDt � 1

Dt

 !
AðtÞ;

and from the calculation above conclude that AðtÞ is a di¤erentiable function and

that A 0ðtÞ ¼ dAðtÞ.
Then from

A 0ðtÞ
AðtÞ ¼ d, and

A 0ðtÞ
AðtÞ ¼ d

dt
½ln AðtÞ�, we derive

d

dt
½ln AðtÞ� ¼ d;
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ðT
0

d

dt
½ln AðtÞ� dt ¼ dT ;

AðTÞ ¼ Að0ÞedT ;
where the last step comes from the Fundamental Theorem of Calculus version I:ðT
0

d

dt
½ln AðtÞ� dt ¼ ln AðTÞ � ln Að0Þ ¼ ln

AðTÞ
Að0Þ :

Naturally one does not need continuous compounding for discrete cash flows, but

this provides a framework for considering the value of a continuously paid cash

flow stream. A continuous function CðtÞ represents a continuously payable cash flow

stream if over any interval of time ½a; b� the total cash paid is given by

Cða; bÞ ¼
ð b
a

CðtÞ dt:

The function CðtÞ represents the ‘‘annualized’’ rate of payment at time t, in that the

amount of cash payable over ½t; tþ Dt� is approximately CðtÞDt. This follows from

the first MVT for integrals in (10.12), which can be restated so that for t 0 A ½t; tþ Dt�,ð tþDt

t

CðsÞ ds ¼ Cðt 0ÞDt:

Also this integral is approximated by CðtÞDt, a single term of a Riemann sum for Dt

small.

The present value at time a, or accumulated value at time b, given continuous

compounding at rate d, then proceeds by starting with a discrete approximation, and

recognizing the Riemann integral in the limit. For example, the present value calcu-

lation requires cash flow over ½t; tþ Dt�, which equals Cðt 0ÞDt, to be discounted to

time a, and this is approximated by a factor of e�dðt 0�aÞ. So with Dt ¼ b�a
n
, we have

a partition defined by faþ jDtgn
j¼0 and subinterval tags denoted t 0j A ðaþ ð j � 1ÞDt;

aþ jDtÞ:

PV½a;b�½CðtÞ� ¼ lim
Dt!0

Xn�1

j¼0

Cðt 0j Þe�dðt 0j�aÞDt:

In other words,
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PV½a;b�½CðtÞ� ¼
ð b
a

CðtÞe�dðt�aÞ dt: ð10:98Þ

When CðtÞ ¼ C, a constant cash flow stream, we get

PV½a;b�½C� ¼ C
1� e�dðb�aÞ

d


 �
: ð10:99Þ

Similarly the accumulated value of this cash flow stream requires cash flow over

½t; tþ Dt� to be accumulated to time b, and this is approximated by a factor of

edðb�s 0Þ:

AV½a;b�½CðtÞ� ¼ lim
Dt!0

Xn�1

j¼0

Cðs 0j Þedðb�s 0j ÞDt;

which is to say

AV½a;b�½CðtÞ� ¼
ð b
a

CðtÞedðb�tÞ dt: ð10:100Þ

When CðtÞ ¼ C, a constant cash flow stream, we get

AV½a;b�½C� ¼ C
edðb�aÞ � 1

d


 �
: ð10:101Þ

Note that in general,

AV½a;b�½CðtÞ� ¼ edðb�aÞPV½a;b�½CðtÞ�; ð10:102Þ
a formula that simply adjusts the valuation from t ¼ a to t ¼ b.

10.12.2 Continuous Term Structures

In chapter 3 was introduced discrete interest rate term structure models, whereby

based on market observations, one calculates the term structure in one or all of the

available bases of bond yields, spot rates, or forward rates. In this section this model

is generalized to a continuous framework.

Bond Yields

Although mathematically possible, the continuous counterpart to the bond yield

structure is rarely used in practice, since to be meaningful, a continuous bond

yield at each time t, denoted it say, would represent the bond yield on a t-period
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bond that paid coupons continuously at rate rt say. Generalizing (3.36) using (10.99),

we obtain the price of this bond, Pt, for a par amount of Ft, is given by

Pt ¼ Ftrt
1� e�itt

it


 �
þ Fte

�itt: ð10:103Þ

Note that the annuity symbol

at; it 1
1� e�itt

it
ð10:104Þ

appears to be the continuous counterpart to the discrete formula in chapter 2 in

(2.11) for continuous interest rates. But it is important to understand that the conti-

nuity of the cash flows is explicitly reflected in (10.104), and that this formula is not

equivalent to the formula in (2.11) under the assumption that the rate alone is con-

tinuous. Indeed, by (10.97), if r ¼ it denotes a continuous rate, and n ¼ t is assumed

an integer, the formula from chapter 2 becomes

an; it 1
1� e�itt

eit � 1
:

Both annuity factors reflect the present value of payment streams of 1 per year using

a continuous rate of interest. But at; it treats this payment as made continuously,

while an; it treats this payment as a lump sum at the end of each year. So intuitively

at; it > an; it , since cash is received earlier. More formally, the continuous cash flow

underlying at; it can be accumulated to the end of each year with (10.101), producing

AV ½1� ¼
ð1
0

eitð1�tÞ dt ¼ eit � 1

it
:

Logically at; it should then equal the value of an annual payment annuity, which pays

AV ½1� at the end of each year, and not surprisingly, we have

at; it ¼
eit � 1

it
an; it :

Forward Rates

It is often convenient to assume that continuous spot rates and forward rates are con-

tinuously denominated in time, and denoted st and ft respectively. This is motivated

by an interest in developing models of future rates that evolve ‘‘stochastically’’ in
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continuous time, which is to say randomly, and an interest in what these models can

tell us about today’s pricing of bonds. These stochastic pricing topics are quite

advanced for the tools developed up to this point. But we can develop the relation-

ship between the continuous forward term structure model at a given point in time

and the prices of bonds.

Imagine a model specification for continuous forward interest rates ft for t > 0.

Intuitively this means that the present value at time t, of 1 payable at time tþ Dt, is

approximately e�Dtft . Extending this idea, the present value at time 0 of 1 payable at

time T is approximately

ZT Aexp �
Xn�1

j¼0

fjDtDt

" #
;

where ZT denotes the price of this T-period zero coupon bond, and with Dt ¼ T
n
.

It is apparent that if the ft model is continuous, which is more than is needed but

often the case in models in practice, this approximate price converges as Dt ! 0. Spe-

cifically, the price of a T -period zero-coupon bond, given a continuous forward rate

specification, satisfies

ZT ¼ exp �
ðT
0

ft dt


 �
: ð10:105Þ

Since a fixed cash flow coupon bond is just a portfolio of zero-coupon bonds, the for-

mula in (10.105) can also be used for these bonds, generalizing (3.39).

So given a model specification for forward rates, one can price fixed cash flow

bonds using this formula. Of course, in practice, such models do not produce a single

specification of this structure, since if that is all one wants, that can generally be

observed in today’s financial markets. The goal of such models is to produce ran-

domly generated collections of future forward rate ‘‘paths,’’ a sample space of such

paths, on which one can then interpret ZT as a random variable. Once done, an en-

tire theory exists for translating these statistical distributions of rate paths and prices

into logical prices for today’s fixed and variable cash flow securities that rely on

these future rates. This is an advanced subject that requires the tools of stochastic

processes.

Fixed Income Investment Fund

A model of interest rates can also be interpreted in the context of providing invest-

ment returns in a fund, such as a money market fund, in which the forward rate ft
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is earned from time t to time tþ Dt. Again, assuming that such a rate path is contin-

uous, if At denotes the fund balance at time t, then

AtþDtAAte
ftDt:

Consequently, since AT

A0
¼Qn�1

j¼0

Að jþ1ÞDt
AjDt

, where Dt ¼ T
n
, we conclude that

AT

A0
Aexp

Xn�1

j¼0

fjDtDt

" #
:

As above, if ft is a continuous function, this summation converges as Dt ! 0, pro-

ducing the investment fund model

AT ¼ A0 exp

ðT
0

ft dt


 �
: ð10:106Þ

This model makes sense in both a ‘‘deterministic’’ setting, where a forward rate path

is specified, or in a statistical context, where various rate paths are generated and the

resulting fund balance, AT for fixed T , is treated as a random variable on the sample

space of rate paths.

Because of the Fundamental Theorem of Calculus version II, AT is a di¤erentiable

function of T when ft is continuous, and we have that

dAT

dT
¼ fTAT :

In this interpretation the instantaneous change in the fund balance at time T is pro-

portional to the fund balance, with proportionality factor of fT . This formula is

sometimes expressed in the di¤erential notation:

dAt ¼ ftAt dt: ð10:107Þ
This notation is best understood in the context of integration theory, as was seen in

section 10.7.1 on integration by the substitution method. In other words, a di¤eren-

tial of a function is a mathematical object one integrates to determine how a function

changes. Now, if we simply integrate both sides of this equation, we getðT
0

dAt ¼
ðT
0

ftAt dt;
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which doesn’t appear very promising. Logically, the left-hand side is the integral of 1,

and soðT
0

dAt ¼ AtjTt¼0 ¼ AT � A0:

But the right-hand side is not readily evaluated.

But if we first divide the equation in (10.107) by At, which is justified since At > 0,

and then integrate, we getðT
0

dAt

At

¼
ðT
0

ft dt:

The left-hand integral is nowðT
0

dAt

At

¼ ln AtjTt¼0 ¼ ln
AT

A0
;

and when equated to the right-hand integral, (10.106) is reproduced.

Spot Rates

If sT denotes the continuous spot rate for term T , it must be the case that in addition

to (10.105), we have by definition,

ZT ¼ exp½�TsT �; ð10:108Þ
and hence from (10.105),

sT ¼ 1

T

ðT
0

ft dt: ð10:109Þ

Recall the first mean value theorem for integrals in proposition 10.27. The contin-

uous spot rate at time T is seen to equal the average value of the continuous forward

rates over the interval ½0;T �.
This continuous spot-forward relationship can be reversed with the help of the Fun-

damental Theorem of Calculus version II above. First, note that if ft is continuous,

then sT is a di¤erentiable function of T for T > 0, since it is the product of 1
T
, which

is di¤erentiable for T 0 0, and
Ð T
0 ft dt, which is di¤erentiable by this theorem. Also

dsT

dT
¼ �1

T 2

ðT
0

ft dtþ 1

T
fT ;
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which can be rewritten as

dsT

dT
¼ 1

T
ð fT � sTÞ ð10:110Þ

and also

fT ¼ dðTsTÞ
dT

: ð10:111Þ

This analysis allows some easy conclusions based on (10.110) and chapter 9 tools:

1. Spot rates increase as a function of t if and only if dst
dt
> 0 for all t, which occurs if

and only if ft > st for all t.

2. Spot rates decrease as a function of t if and only if dst
dt
< 0 for all t, which occurs if

and only if ft < st for all t.

3. If spot rates increase then decrease, or conversely, there is a time t0 so that
dst
dt




t0
¼ 0, and hence ft0 ¼ st0 .

Note further that from (10.111) we can conclude that fT > 0 for all T if and only

if the function gðTÞ ¼ TsT is a strictly increasing function of T . It is not necessary to

have sT an increasing function in order for fT > 0. Indeed,
dðTsT Þ
dT

> 0 simply implies

that dsT
dT

> � sT
T
.

10.12.3 Continuous Stock Dividends and Reinvestment

The analysis above for a fixed income fund carries over readily to the context of an

equity fund. Specifically, if Rt denotes the equity fund return at time t, then with the

same derivation, we have that with ET denoting the fund balance at time T :

ET ¼ E0 exp

ðT
0

Rt dt


 �
: ð10:112Þ

As before, ET is a di¤erentiable function of T when Rt is a continuous function, so

this composite function can be di¤erentiated and expressed in di¤erential notation

as

dEt ¼ RtEt dt: ð10:113Þ
Now, it is often assumed that such an equity will pay continuous cash dividends,

and that these dividends are continuously reinvested in more equity. By continuous
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dividends is meant that if Dt denotes the rate of dividend payout at time t, the total

change in value to the investor at time t is approximately

Total returnAðRtEt þDtEtÞDt.
The investor receives RtEtDt as appreciation/depreciation in the fund, and DtEtDt in

cash dividends.

In this form it is di‰cult to model total investor wealth at some time in the future.

Although this cash could be invested in a risk free asset like a T-bill, the position in

the T-bill is not risk free, since the principal flows into that fund, DtEtDt, reflect the

riskiness of the equity fund. Because it is common to want to partition total invest-

ments between risk assets and risk-free assets, for example when one is replicating a

option, there is a motivation to reinvest these dividends in stock, rather than to accu-

mulate this risky asset in T-bills.

With that goal, we now seek to determine the total value of the fund when divi-

dends are so reinvested. To this end, let Et again denote the value of the equity fund

when dividends are disbursed in cash to the investor, and let Ft denote the value of

this fund when all dividends are continuously reinvested in more stock. Logically the

change in the total fund, FtþDt � Ft, reflects two components:

1. An increment or decrement based on the performance of the equities, as implied

by Rt, which can be captured by the return in the E fund, scaled to reflect the assets

in the F fund:

½EtþDt � Et�
Et

Ft:

2. An increment, since Dt b 0, based on the payment of continuous cash dividends

on the total fund balance of Ft, equal to

FtDtDt;

that are then reinvested in more equities in the F fund.

Combining, we derive that

FtþDt � Ft ¼ ½EtþDt � Et�
Et

Ft þ FtDtDt;

or

FtþDt � Ft

DtFt

¼ EtþDt � Et

DtEt

þDt:
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As Dt ! 0, the limit on the right side of the equation exists because Et is di¤erentia-

ble as noted above. Consequently Ft is also di¤erentiable and

F 0
t

Ft

¼ E 0
t

Et

þDt:

Now
E 0
t

Et
¼ Rt is continuous by assumption, as is Dt, and hence so too is

F 0
t

Ft
. Inte-

grating this expression from t ¼ 0 to t ¼ T , and recalling that
d ln f ðxÞ

dx
¼ f 0ðxÞ

f ðxÞ , we
obtain

ln
FT

F0


 �
¼ ln

ET

E0


 �
þ
ðT
0

Dt dt:

Finally, assuming that F0 ¼ E0, so both funds begin with the same level of assets, we

obtain that

FT ¼ ET exp

ðT
0

Dt dt


 �
: ð10:114Þ

When Dt ¼ D is constant, this simplifies to

FT ¼ ETe
DT : ð10:115Þ

Combining (10.114) with (10.112), we obtain

FT ¼ E0 exp

ðT
0

ðRt þDtÞ dt

 �

: ð10:116Þ

10.12.4 Duration and Convexity Approximations

In section 9.8.5 Taylor series approximations were applied to model the price sensi-

tivity of a fixed income security or portfolio. Using the tools of this chapter, we de-

velop an alternative price sensitivity model.

Recall the definition of the duration of the price function in (9.57):

DðrÞ ¼ �P 0ðrÞ
PðrÞ :

Assuming continuity of DðrÞ and PðrÞ > 0, we can integrate this expression from i0
to i, obtaining
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ð i
i0

DðrÞ dr ¼ �
ð i
i0

P 0ðrÞ
PðrÞ dr

¼ �ln
PðiÞ
Pði0Þ

 �

:

A little algebra then provides the identity

PðiÞ ¼ Pði0Þe�
Ð i
i0
DðrÞ dr

; ð10:117Þ
which can be transformed to an approximation formula with a one-step Riemann

sum:

PðiÞAPði0Þe�Dði0Þði�i0Þ: ð10:118Þ
This approximation can then be improved by analyzing the function in the expo-

nential in (10.117):

f ðiÞ ¼
ð i
i0

DðrÞ dr;

and applying the Fundamental Theorem of Calculus version II in (10.20), and then

(9.65), to obtain

f 0ðiÞ ¼ DðiÞ; f 00ðiÞ ¼ D2ðiÞ � CðiÞ:
Expanding the second-order Taylor series of f ðiÞ about i0, and noting that f ði0Þ ¼ 0,

we obtain an improvement to (10.118):

PðiÞAPði0Þe�Dði0Þði�i0Þ�ð1=2Þ½D2ði0Þ�Cði0Þ�ði�i0Þ2 : ð10:119Þ
It is interesting to compare the approximations above to those developed in chap-

ter 9. To this end, if we apply the formula for an exponential power series in (7.63) to

the approximation in (10.118), we obtain

PðiÞAPði0Þ 1�Dði0Þði � i0Þ þ 1

2
D2ði0Þði � i0Þ2


 �
þOðDi3Þ:

Expanding (10.119) in the same way obtains

PðiÞAPði0Þ 1�Dði0Þði � i0Þ þ 1

2
Cði0Þði � i0Þ2


 �
þOðDi3Þ:
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So to an error of OðDi3Þ, (10.119) provides the same result as the second-order

Taylor approximation in (9.61). The same can be said for (10.118) and (9.60) to an

error of OðDi2Þ. However, for price functions with positive convexity, (10.118) will

generally provide better approximations using only Dði0Þ than will (9.60) because of

the 1
2D

2ði0Þði � i0Þ2 adjustment above.

Finally, as an application of Riemann sums, we demonstrate that by partitioning

the interval ½i0; i�, and applying the simple approximation in (9.60) to each sub-

interval, that in the limit the identity in (10.117) is produced. To this end, define

ij ¼ i0 þ j
n
Di for j ¼ 0; 1; . . . ; n, where Di ¼ i � i0. Apparently,

PðiÞ
Pði0Þ ¼

Yn
j¼1

PðijÞ
Pðij�1Þ ;

and each factor in this product can be approximated by (9.60):

PðijÞ
Pðij�1Þ ¼ 1�Dðij�1ÞDi

n
þO

1

n2

� �
:

Consequently

Yn
j¼1

PðijÞ
Pðij�1Þ

 �

¼
Yn
j¼1

1�Dðij�1ÞDi
n
þO

1

n2

� �
 �
;

and by assuming that DðiÞ is continuous and hence bounded on this interval, we con-

clude that all factors in this product are positive for n large enough, justifying the

taking of natural logarithms. This produces

ln
Yn
j¼1

1�Dðij�1ÞDi
n
þO

1

n2

� �
 �" #
¼
Xn
j¼1

ln 1�Dðij�1ÞDi
n
þO

1

n2

� �
 �

¼ �
Xn
j¼1

Dðij�1ÞDi
n
þO

1

n

� �
;

using (8.20). Note that in this calculation, although the error in each logarithmic

power series is O 1
n2

� 	
, this error increases to O 1

n

� �
because there are n terms in the

summation.

Letting n ! y, the last expression converges as a Riemann sum to the integral of

the continuous function, DðiÞ. In other words,

10.12 Applications to Finance 653



ln
Yn
j¼1

1�Dðij�1ÞDi
n
þO

1

n2

� �
 �" #
! �

ð i
i0

DðrÞ dr:

Now, since gðxÞ ¼ ex is a continuous function, and hence sequentially continuous,

we can exponentiate this sequence and limit to obtain that as n ! y:

PðiÞ
Pði0Þ ¼

Yn
j¼1

1�Dðij�1ÞDi
n
þO

1

n2

� �
 �
! e

�Ð i
i0
DðrÞ dr

:

10.12.5 Approximating the Integral of the Normal Density

The unit normal density function was introduced in section 8.6 and studied in more

detail in section 10.11.5. As given in (10.88), it is defined as

fðxÞ ¼ 1ffiffiffiffiffiffi
2p

p e�x2=2:

It was shown to be a critically important function in chapter 8 due to the De

Moivre–Laplace theorem, and the more general central limit theorem, and this is

even more so because the statement and proof of the latter result can be generalized

much further. The tools that will be needed to generalize this result relate to proper-

ties of multivariate functions that will be used in the study of independent, identically

distributed random variables, as well as a more general integration theory and prob-

ability theory.

In this section we apply some of the results studied above to the question of

approximating integrals of fðxÞ. Of course, if X is a random variable with density

function fðxÞ, then

Pr½aaX a b� ¼
ð b
a

fðxÞ dx:

On the other hand, if Y is a random variable with density function equal to the more

general fNðyÞ, then by a substitution x ¼ y�m
s

,

Pr½caY a d � ¼
ð d
c

fNðyÞ dy ¼
ð b
a

fðxÞ dx;

where a ¼ c� m

s
; b ¼ d � m

s
:

654 Chapter 10 Calculus II: Integration



Consequently, all probability statements about Y can be translated to probabil-

ity statements about X , and so it is the integral of fðxÞ that is addressed in this

section.

As was noted in section 8.6, the most common probability values to develop are of

the form

FðbÞ ¼
ð b
�y

fðxÞ dx; b > 0;

since all other statements can be derived from these as seen in (8.32). However, if

b > 0, it is apparent since Fð0Þ ¼ 0:5, that

FðbÞ ¼ 0:5þ
ð b
0

fðxÞ dx; b > 0;

and only integrals of the form
Ð b
0 fðxÞ dx, for b > 0 need be addressed.

Power Series Method

As was seen in section 10.9.5 on the integrability of power series, a power series can

be integrated term by term over any subinterval of its interval of convergence. Since

fðxÞ is an analytic function which converges for all x, this approach can be utilized

over any interval. To this end, recall that by the Taylor series expansion of the expo-

nential function,

fðxÞ ¼ 1ffiffiffiffiffiffi
2p

p
Xy
j¼0

� 1
2 x

2
� � j

j!

¼ 1ffiffiffiffiffiffi
2p

p
Xy
j¼0

ð�1Þ jx2j

2 j j!
:

Integrating term by term, as noted in (10.39), we get for b > 0,ð b
0

fðxÞ dx ¼ 1ffiffiffiffiffiffi
2p

p
Xy
j¼0

ð�1Þ jb2jþ1

ð2j þ 1Þ2 j j!
: ð10:120Þ

This expression converges absolutely by the above noted section, and as an alternat-

ing series, we have an error estimate associated with any partial summation from sec-

tion 6.1.5. Specifically, by the alternating series convergence test for n large to ensure

that series terms decrease,
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ð b
0

fðxÞ dx� 1ffiffiffiffiffiffi
2p

p
Xn�1

j¼0

ð�1Þ jb2jþ1

ð2j þ 1Þ2 j j!












a 1ffiffiffiffiffiffi

2p
p b2nþ1

ð2nþ 1Þ2nn!
:

This error term decreases to 0 quickly as n increases, as can be seen by an applica-

tion of Stirling’s formula from (8.24):

e1=ð12nþ1Þ <
n!ffiffiffiffiffiffi

2p
p

nnþð1=2Þe�n
< e1=12n;

which produces an error estimate after a bit of algebra:

ð b
0

fðxÞ dx� 1ffiffiffiffiffiffi
2p

p
Xn�1

j¼0

ð�1Þ jb2jþ1

ð2j þ 1Þ2 j j!












a be�1=ð12nþ1Þ

2p
ffiffiffi
n

p ð2nþ 1Þ
b2e

2n

� �n
: ð10:121Þ

Upper and Lower Riemann Sums

Because fðxÞ is a strictly decreasing function on ½0; b� for b > 0, the upper Riemann

sums are defined by the left subinterval endpoints, while the lower sums are defined

by the right endpoints. Consequently, defining the partition of ½0; b�, with Dx ¼ b
n
, we

obtain

1ffiffiffiffiffiffi
2p

p
Xn
j¼1

Dx exp � 1

2
½ jDx�2

� �
a

ð b
0

fðxÞ dx

a
1ffiffiffiffiffiffi
2p

p
Xn�1

j¼0

Dx exp � 1

2
½ jDx�2

� �
:

This can be simplified by defining the sum S ¼Pn�1
j¼1 Dx exp

�� 1
2 ½ jDx�2

�
, to produce

1ffiffiffiffiffiffi
2p

p S þ Dx exp � 1

2
b2

� �� �
a

ð b
0

fðxÞ dxa 1ffiffiffiffiffiffi
2p

p ðS þ DxÞ: ð10:122Þ

With the given definition of S, the range between the upper and lower bounds is
Dxffiffiffiffi
2p

p 1� exp � 1
2 b

2
� �� �

, and so a midpoint estimate gives half this error. Defining I U=L

as this midpoint value produces

I U=L ¼ 1ffiffiffiffiffiffi
2p

p S þ Dx

2
1þ exp � 1

2
b2

� �� �� �
;

and we get
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ð b
0

fðxÞ dx� I U=L





 



a Dx

2
ffiffiffiffiffiffi
2p

p 1� exp � 1

2
b2

� �� �
: ð10:123Þ

So given b > 0, the error on this approach is OðDxÞ ¼ O 1
n

� �
.

Trapezoidal Rule

The trapezoidal rule is defined as the average of the Riemann sums defined with the

left endpoints and the right endpoints, as is clear from (10.40). Consequently in

the case of a monotonic function like fðxÞ, the trapezoidal approximation can also

be defined as the average of the upper and lower Riemann sums. So here the trape-

zoidal approximation I T equals I U=L above.

However, the error estimate for the trapezoidal rule reflects higher order derivative

values of fðxÞ. Specifically, we have from (10.42),ð b
0

fðxÞ dx� I T




 



a M2b

12
ðDxÞ2; ð10:124Þ

where M2 is an upper bound for jfð2ÞðxÞj on ½0; b�. Taking these derivatives, we

obtain

f 0ðxÞ ¼ � xffiffiffiffiffiffi
2p

p e�x2=2; fð2ÞðxÞ ¼ ðx2 � 1Þffiffiffiffiffiffi
2p

p e�x2=2:

To estimate M2, we can locate the critical points of f ðxÞ1 fð2ÞðxÞ by the methods

of section 9.5.1. Evaluating f 0ðxÞ, we have that

f 0ðxÞ ¼ ½xð3� x2Þ�ffiffiffiffiffiffi
2p

p e�x2=2;

so it is apparent that the critical points of f 0ðxÞ occur at x ¼ 0;G
ffiffiffi
3

p
. Also, as

jxj ! y, fð2ÞðxÞ ! 0, and so since fð2Þð0Þ < 0 and fð2ÞðG ffiffiffi
3

p Þ > 0,

M2 ¼ max½jfð2Þð0Þj; fð2ÞðG
ffiffiffi
3

p
Þ�A0:3989:

Consequently we obtain the trapezoidal error estimate:ð b
0

fðxÞ dx� I T




 



a 0:03325bðDxÞ2; ð10:125Þ

which is considerably better than the estimate in (10.123), despite using the same

approximation. This is due to the use of information on this function’s second
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derivative which is ignored above. This information reduces the error to OðDx2Þ
where Dx ¼ b

n
. The graph of fð2ÞðxÞ is seen in figure 10.10.

Note that this graph also indicates that the normal density has second derivative

that is negative on the interval ½�1; 1�, which is the interval ½�s; s� in the general

case, implying that this function is concave on this interval and changes to convex

outside this interval. The points x ¼G1, or more generally x ¼Gs, are therefore

inflection points, or points of inflection, of the normal density function, as noted in

section 9.6. It is also the case that in this example, these inflection points are exactly

the points where fð2ÞðxÞ ¼ 0.

Simpson’s Rule

Simpson’s rule, as can be observed in (10.44), requires three Riemann sums, the same

two used for the trapezoidal rule defined in terms of the subinterval left and right

endpoints, as well as a third Riemann sum defined by the subinterval midpoints.

The weight put on the endpoint Riemann sums is 1
6 each, while the weight on the

midpoint Riemann sum is 4
6 . Denoting by I S the Simpson approximation using the

same partition as above with Dx ¼ b
n
, we obtain by (10.46) that

Figure 10.10

jð2ÞðxÞ ¼ 1ffiffiffiffi
2p

p ðx2 � 1Þeð�x2=2Þ
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jI � I Sja M4b

2880
ðDxÞ4; ð10:126Þ

where M4 is an upper bound for jfð4ÞðxÞj on ½0; b�.
Continuing to take these derivatives, we have

fð3ÞðxÞ ¼ ½xð3� x2Þ�ffiffiffiffiffiffi
2p

p e�x2=2; fð4ÞðxÞ ¼ ½x4 � 6x2 þ 3�ffiffiffiffiffiffi
2p

p e�x2=2:

Again seeking the critical points of f ðxÞ ¼ fð4ÞðxÞ, we obtain

f 0ðxÞ ¼ �x½x4 � 10x2 þ 15�ffiffiffiffiffiffi
2p

p e�x2=2;

and the critical points are obtained by the quadratic formula applied to y2 � 10yþ 15

with y ¼ x2, producing

x ¼ 0;G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ

ffiffiffi
6

pq
;G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�

ffiffiffi
6

pq
:

The upper bound for jfð4ÞðxÞj is again seen to occur at x ¼ 0 by substitution,

producing

M4 ¼ fð4Þð0ÞA1:1968:

Consequently the Simpson error estimate becomes

jI � I Sja 0:00042bðDxÞ4: ð10:127Þ
This error is significantly better than the trapezoidal estimate above due to the error

being OðDx4Þ compared to OðDx2Þ, although it could be argued that the comparison

is not quite fair since Simpson’s rule uses midpoints of subintervals, and hence a finer

partition.

Had the trapezoidal estimate been implemented using this same number of interval

evaluation points, the implied partition would be Dx 0 ¼ b
2n ¼ Dx

2 , and the revised

trapezoidal estimate, denoted I T
0
, stated in terms of the original Dx, would have

an error:ð b
0

fðxÞ dx� I T
0





 



a 0:00832bðDxÞ2:
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So, despite using the same interval points in both estimates, Simpson’s rule is seen to

be far superior because of the way it weighted the various points, and not because it

included more points. The graph of fð4ÞðxÞ can be seen in figure 10.11.

*10.12.6 Generalized Black–Scholes–Merton Formula

This section develops a generalization of the classical Black–Scholes–Merton option

pricing formulas. It is a generalization in that is applies the earlier methodology to

a more general European-style derivative than a European put or call option. By

European-style derivative is meant a financial contract with a general payo¤ function

at time T that depends on the value of an underlying investment asset at time T , and

that does not allow early exercise. As always, we use the language that S is a com-

mon stock, but as noted in section 7.8.6, we really only need to assume that S is an

investment asset to justify the replicating portfolio pricing argument.

It is important to note that this section does not generalize these famous formulas

in the sense that these are ‘‘new’’ and would have been unknown to the authors. In-

deed the mathematical tools used in the original papers certainly handle the payo¤

functions considered here, and the authors certainly knew this. But we have not yet

developed the tools used by these authors, so we will solve these problems, the spe-

cific and the general, with the tools of this chapter.

Figure 10.11

jð4ÞðxÞ ¼ 1ffiffiffiffi
2p

p ðx4 � 6x2 þ 3Þeð�x2=2Þ
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The goals of this section are as follows:

1. Derive a general integration formula for the price of a European-style derivative,

based on a replicating portfolio approach, that reduces to the classical B-S-M formu-

las when the payo¤ function is a European put or call.

2. Demonstrate that this evaluation only utilizes the risk-neutral probability distribu-

tion of stock prices.

3. Develop this formula using the tools of integration theory studied in this chapter,

because the tools of chapter 9, while adequate for a put or call option, do not readily

apply to this general situation.

To begin with, recall the chapter 7 price of a European derivative with expiry

at time T , in (7.147) as generalized in section 8.8.3. The lattice-based price of a

European option or other European-style derivative security on an investment

asset, exercisable in n periods and derived based on a replicating portfolio argument,

is

L0ðS0Þ ¼ e�nr
Xn
j¼0

n

j

� �
q jð1� qÞn�jLðS j

nÞ;

S j
n ¼ S0e

juþðn�jÞd :

In the generalized chapter 8 setting where T is fixed, and time-step periods are

defined by Dt ¼ T
n
, this formula is applicable with risk-neutral probability as in (8.52):

qðDtÞ ¼ erðDtÞ � edðDtÞ

euðDtÞ � edðDtÞ
;

where by (8.53) and (8.54), the binomial asset period returns and risk-free rate are

given by

uðDtÞ ¼ mDtþ
ffiffiffiffiffi
p 0

p

s
s
ffiffiffiffiffi
Dt

p
;

dðDtÞ ¼ mDt�
ffiffiffiffiffi
p

p 0

r
s
ffiffiffiffiffi
Dt

p
;

rðDtÞ ¼ rDt;

where 0 < p < 1 is the real world probability of uðDtÞ and p 0 1 1� p.
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We state the main result of this section in proposition 10.84 below. The only

requirement on the payo¤ function at time T , LðSTÞ, is that it is bounded and piece-

wise continuous with limits. The notion of piecewise continuous was encountered in

section 10.2.2 and will be generalized here with a definition.

Definition 10.82 A function f ðxÞ is piecewise continuous with limits on R if there

exist points

� � � < a�2 < a�1 < a0 < a1 < a2 < � � � :
so that:

1. On each open interval, ðaj; ajþ1Þ, f ðxÞ is bounded and continuous

2. For each aj, limx!aþ
j
f ðxÞ and limx!a�

j
f ðxÞ exist, and f ðajÞ is defined as one of

these limits

3. The collection fajg, if infinite, has no accumulation points, so that min½ajþ1 � aj� ¼
m > 0

A function f ðxÞ is piecewise continuous with limits on ½a; b� if there exist points
aa a0 < a1 < a2 < � � � < an a b

with the same properties.

For the purposes of the existence of the Riemann integral below, as was seen in

section 10.2.2 on the Riemann integral without continuity, only constraint 1 in this

definition is needed, which is the typical definition of piecewise continuous. In order

for such a function to make sense as a payo¤ function for a European-style deriva-

tive, we add constraint 2.

Besides being logical in the financial markets, constraint 2 will also allow us to ex-

press f ðxÞ as a continuous function on each closed interval, ½aj; ajþ1�, redefining f ðxÞ
at the endpoints in terms of its one-sided limits. This partitioning of f ðxÞ will not

change the value of its integral, of course, and will be seen to provide for a needed

technicality in the proof of the proposition below.

Example 10.83 A European binary call option, with an expiry of T and strike price of

K, is defined with the payo¤ function

LðSTÞ ¼ A; ST > S0;

0; ST aS0;

�
ð10:128Þ

for some fixed amount A > 0. A European binary put option is defined with
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LðST Þ ¼ 0; ST bS0;

A; ST < S0:

�
ð10:129Þ

European binary options are the simplest examples of derivative securities with payo¤

functions that are piecewise continuous with limits.

The main result is stated next for bounded payo¤ functions, and will be proved

over the next few sections. In the real world every payo¤ function is of necessity

a bounded function, say jLðSTÞjaM, where M represents global gross domestic

product, say. Strictly speaking, we do not need to assume boundedness for the state-

ment of this result. However, if not bounded, there is the question of the existence of

the integral in the statement of the proposition, and this generalization will create

some unnecessary technical di‰culties since this boundedness assumption is not a re-

striction in any real world application.

Proposition 10.84 For any bounded payo¤ function, LðSTÞ, that is piecewise continu-
ous with limits, we have that as Dt ! 0,

L0ðS0Þ ! e�rT

ðy
�y

LðS0e
xÞ f ðxÞ dx; ð10:130Þ

where f ðxÞ is the probability density function for N r� 1
2 s

2
� �

T ; s2T
� �

, and L0ðS0Þ is
the binomial summation defined in (7.147) generalized for Dt ¼ T=n.

Remark 10.85 Note that by the section 9.8.10 analysis, N r� 1
2 s

2
� �

T ; s2T
� �

is the

limiting distribution of the log-ratio of equity prices under the risk-neutral probability

as developed in (9.93). In other words, (10.130) states that the price of a European-

style derivative, based on a replicating portfolio on a binomial lattice, converges to the

expected present value of the payo¤ function values. This expectation is calculated

under the assumption that future stock prices are lognormally distributed, with mean

returns consistent with the assumption that investors are risk neutral. Here, as in

(7.144), risk neutrality means that investors will pay S0 for the security, equal to the

expected present value of future stock prices:

S0 ¼ e�rT

ðy
�y

ðS0e
xÞ f ðxÞ dx; ð10:131Þ

where f ðxÞ is the probability density function for N r� 1
2 s

2
� �

T ; s2T
� �

. This iden-

tity follows because the right-hand expression equals S0e
�rTMZð1Þ, where Z@

N r� 1
2 s

2
� �

T ; s2T
� �

, which reduces to S0.

We now develop the tools needed to prove this general result.
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The Piecewise ‘‘Continuitization’’ of the Binomial Distribution

In section 10.11.3 the discretization of a continuously distributed random variable

was introduced. Here we introduce the first step in the opposite concept, and that is

for the continuitization of a discrete random variable, where we note that pronunci-

ation of this term is facilitated with meter: ‘‘ba-ba-boom-ba-ba-boom-ba’’. We con-

centrate on the binomial distribution of equity returns, as this is the application in

hand, but it will be clear from the construction that this approach is more generally

applicable.

We first define a piecewise continuitization of the probability density function of

the binomial Binðn; qÞ used in the derivative pricing formula above. Specifically,

given fBð jÞ ¼ n
j

� 	
q jð1� qÞn�j for j ¼ 0; 1; . . . ; n, and interval tags equal to the stock

returns on a binomial lattice after n time steps,

xj ¼ nd þ ðu� dÞ j; j ¼ 0; 1; . . . ; nþ 1;

the piecewise continuitization of fBð jÞ is defined on the interval ½x0; xnþ1Þ by

~ffnðxÞ ¼
1

u� d
fBð jÞ; xj a x < xjþ1; ð10:132Þ

and is defined to be 0 outside the interval ½x0; xnþ1Þ.
With the formulas in (8.53) for uðDtÞ and dðDtÞ, and recalling that n1 T

Dt
, we have

x0 ¼ T m�
ffiffiffiffiffi
p

p 0

r
sffiffiffiffiffi
Dt

p

 �

;

xnþ1 ¼ T mþ
ffiffiffiffiffi
p 0

p

s
sffiffiffiffiffi
Dt

p
" #

þ s
ffiffiffiffiffi
Dt

pffiffiffiffiffiffiffi
pp 0p :

So the interval ½x0; xnþ1Þ grows without bound as Dt ! 0.

In figure 10.12 the piecewise continuitization of the binomial distribution with

n ¼ 6, q ¼ 0:55, u ¼ 0:05 and d ¼ �0:04 is represented by the seven horizontal lines

in bold. On an n period binomial lattice, only fxjgn
j¼0 are produced as equity returns,

of course. Here xnþ1 is defined consistently to simplify the model. To avoid this ex-

traneous return, each of the horizontal bars in this figure could have been ‘‘centered’’

on fxjgn
j¼0, and defined as

f̂fnðxÞ ¼
1

u� d
fBð jÞ; xj � 1

2
ðu� dÞa x < xj þ 1

2
ðu� dÞ;

but this will make the subsequent work a bit messier with little apparent payo¤.

664 Chapter 10 Calculus II: Integration



Note that ~ffnðxÞ is piecewise continuous and has integral 1, since xjþ1 � xj ¼ u� d.

In this case the integral is just the area of rectangles:ð xnþ1

x0

~ffnðxÞ dx ¼
Xn
j¼0

ð xjþ1

xj

~ffnðxÞ dx

¼ ðu� dÞ
Xn
j¼0

1

u� d
fBð jÞ ¼ 1:

In exercise 19 is assigned the development of the following expectation formulas,

with ~XXn denoting the piecewise continuously distributed random variable with prob-

ability density ~ffnðxÞ, and X B
n the discrete random variable with probability density

fBð jÞ and domain fxjgn
j¼0:

E½ ~XXn� ¼ E½X B
n � þ

1

2
½u� d �; ð10:133aÞ

E½ð ~XXnÞ2� ¼ E½ðX B
n Þ2� þ ½u� d �E½X B

n � þ
½u� d �2

3
; ð10:133bÞ

Figure 10.12
Piecewise continuitization and continuitization of the binomial f ðxÞ
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Var½ ~XXn� ¼ Var½X B
n � þ

½u� d �2
12

; ð10:133cÞ

M ~XXn
ðtÞ ¼ etðu�dÞ � 1

tðu� dÞ MX B
n
ðtÞ: ð10:133dÞ

Recall that u� d ¼ s
ffiffiffiffi
Dt

pffiffiffiffiffi
pp 0

p , and by a Taylor series expansion, e tðu�dÞ�1
tðu�dÞ ¼ 1þ

Oðu� dÞ. Hence, as Dt ! 0, the moments above and the moment-generating func-

tion for ~XXn approach the respective values for X B
n , which we recall from section

9.8.10 approach the respective values for Z@N r� 1
2 s

2
� �

T ; s2T
� �

.

The ‘‘Continuitization’’ of the Binomial Distribution

Next we define the continuitization of fBð jÞ in a way that makes integrating this

function easy. In figure 10.12 this continuous function is made up of the the light di-

agonal curves and the connecting portions of the bold horizontal lines. As can be

seen, this function, denoted fnðxÞ, is defined so that
Ð
fnðxÞ dx ¼ Ð ~ffnðxÞ dx, since the

di¤erence in functions is simply a summation of o¤setting triangles.

To formally define fnðxÞ, we choose f�jgnþ1
j¼0 with the restriction that 0 < �j <

u�d
2 ,

although the goal will later be to better specify the rate of convergence of �j ! 0.

This continuitization is now defined for x A ½x0 � �0; xnþ1 þ �n� by

fnðxÞ ¼
~ffnðxÞ; x A ½xj þ �j; xjþ1 � �j�;
ð1� tÞ ~ffnðxj � �jÞ þ t ~ffnðxj þ �jÞ; x ¼ ð1� tÞðxj � �jÞ þ tðxj þ �jÞ:

(
ð10:134Þ

We define fnðxÞ ¼ 0 outside the interval ½x0 � �0; xnþ1 þ �n�. For this definition, j ¼
0; 1; . . . ; n, in the first line, which defines the horizontal portions of fnðxÞ, and j ¼ 0;

1; . . . ; nþ 1 and 0 < t < 1 for the second line, which defines the diagonal portions of

fnðxÞ. Also recall that ~ffnðxÞ ¼ 0 outside ½x0; xnþ1�, and so in particular, this is used in

the second line for ~ffnðx0 � �0Þ and ~ffnðxnþ1 þ �nþ1Þ.
In figure 10.12 is displayed the continuitization of the binomial with n ¼ 6,

q ¼ 0:55, u ¼ 0:05 and d ¼ �0:04 using �j ¼ 0:02 for all j. Note that fnðxÞ is contin-
uous, since at each point xj � �j; we have that fnðxj � �jÞ ¼ ~ffnðxj � �jÞ ¼ ~ffnðxj�1Þ by
the first line, while by the second, t ¼ 0 at this point, and hence the same result is

produced. The same analysis shows continuity at all xj þ �j.

In order to show that fnðxÞ is a probability density function, we show thatÐ ½ fnðxÞ � ~ffnðxÞ� dx ¼ 0. To do this, we only need to demonstrate that this equation

holds over each of the diagonal portions of fnðxÞ, since this integral will of course

equal 0 on the horizontal portions.
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Consider the interval ½xj � �j; xj þ �j� for j ¼ 0; 1; . . . ; nþ 1. We have that with

x ¼ ð1� tÞðxj � �jÞ þ tðxj þ �jÞ,

fnðxÞ � ~ffnðxÞ ¼
t½ ~ffnðxj þ �jÞ � ~ffnðxj � �jÞ�; xj � �j a x < xj;

�ð1� tÞ½ ~ffnðxj þ �jÞ � ~ffnðxj � �jÞ�; xj a xa xj þ �j:

(

Now for
Ð xjþ�j
xj��j

½ fnðxÞ � ~ffnðxÞ� dx, we first need to express fnðxÞ � ~ffnðxÞ explicitly as

a function of x, rather than implicitly in terms of t. To do this, we have from x ¼
ð1� tÞðxj � �jÞ þ tðxj þ �jÞ that

t ¼ x� ðxj � �jÞ
2�j

; 1� t ¼ ðxj þ �jÞ � x

2�j
;

and so with an algebraic step,

fnðxÞ � ~ffnðxÞ ¼
x�ðxj��jÞ

2�j

h i
½ ~ffnðxj þ �jÞ � ~ffnðxj � �jÞ�; x A ½xj � �j; xjÞ;

� ðxjþ�jÞ�x

2�j

h i
½ ~ffnðxj þ �jÞ � ~ffnðxj � �jÞ�; x A ½xj; xj þ �j�:

8><>:
Factoring out the common terms of ½ ~ffnðxj þ �jÞ � ~ffnðxj � �jÞ� and 2�j , and splitting

the integral due to the discontinuity at x ¼ xj, we derive for j ¼ 0; 1; . . . ; nþ 1,

2�j

½ ~ffnðxj þ �jÞ � ~ffnðxj � �jÞ�

ð xjþ�j

xj��j

½ fnðxÞ � ~ffnðxÞ� dx

¼
ð xj
xj��j

½x� ðxj � �jÞ� dx�
ð xjþ�j

xj

½ðxj þ �jÞ � x� dx

¼ 0:

This approach also provides an e‰cient way to evaluate the moments and

moment-generating function for Xn, the continuously distributed random variable

with density function fnðxÞ, in terms of the respective values for ~XXn identified in

(10.133). In other words, for any function gðxÞ,ð
gðxÞ fnðxÞ dx ¼

ð
gðxÞ ~ffnðxÞ dxþ

Xnþ1

j¼0

ð xjþ�j

xj��j

gðxÞ½ fnðxÞ � ~ffnðxÞ� dx: ð10:135Þ

In exercise 38 is assigned the application of (10.135) to gðxÞ ¼ x and x2 to produce

the following formulas:
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E½Xn� ¼ E½ ~XXn� þ 1

6

Xn
j¼0

fBð jÞ
�2jþ1 � �2j
u� d

 !
; ð10:136aÞ

E½X 2
n � ¼ E½ð ~XXnÞ2� þ 1

3

Xn
j¼0

fBð jÞ
�2jþ1 � �2j
u� d

 !
xj þ �2jþ1

" #
; ð10:136bÞ

Var½Xn� ¼ Var½ ~XXn� þ 1

3

Xn
j¼0

fBð jÞ
�2jþ1 � �2j
u� d

 !
ðxj � E½ ~XXn�Þ þ �2jþ1

" #

þ 1

36

Xn
j¼0

fBð jÞ
�2jþ1 � �2j
u� d

 !" #2
: ð10:136cÞ

Note that if �2j ¼ �2 for all j, these messy formulas simplify greatly to

E½Xn� ¼ E½ ~XXn�;

Var½Xn� ¼ Var½ ~XXn� þ �2

3
:

If f�2j g are not constant, some care is needed to ensure that these summations con-

verge as Dt ! 0, since n ¼ O½ðDtÞ�1�. For example, the first moment formula sug-

gests that in order for this summation to converge as Dt ! 0, since
Pn

j¼0 fBð jÞ ¼ 1,

it is simply necessary that
�2
jþ1

��2j
u�d

� �
must converge to 0 uniformly in j. As

u� d ¼ O½ðDtÞ1=2�, if �2jþ1 � �2j ¼ O½ðDtÞð1=2Þþd� for some d > 0, the resulting summa-

tion will be O½ðDtÞd� and converge to 0 with Dt. This condition on �2jþ1 � �2j is gener-

ally stronger than the original defining condition that 0 < �j <
u�d
2 ¼ O½ðDtÞ1=2�.

For the second moment and variance, because maxfjxjjg ¼ O½ðDtÞ�1=2�, which

follows from the definition of xj, we need �2jþ1 � �2j ¼ O½ðDtÞ1þd� as well as �2jþ1 ¼
O½ðDtÞd� to ensure that the terms involving f�2jþ1 � �2j g and those involving f�2j g con-

verge to 0 as Dt ! 0.

In the next section, f�2j g will be chosen to do more than stabilize the limit of

these two moments of Xn as n ! y. The goal will be to ensure that the moment-

generating function of Xn converges to that of ~XXn as n ! y.

The Limiting Distribution of the ‘‘Continuitization’’

The goal of this section is to show that as Dt ! 0, the moment-generating func-

tion for the continuitization of this binomial converges to the m.g.f. of the

N r� 1
2 s

2
� �

T ; s2T
� �

. This will be demonstrated by showing that the moment-
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generating function of this continuitization converges with the m.g.f. of the original

binomial distribution, which, as was demonstrated in section 9.8.10, converges to the

m.g.f. of the N r� 1
2s

2
� �

T ; s2T
� �

as Dt ! 0.

To this end, and to avoid a messy integral with fnðxÞ, we again apply (10.135):ð
etxfnðxÞ dx ¼

ð
etx ~ffnðxÞ dxþ

Xnþ1

j¼0

ð xjþ�j

xj��j

etx½ fnðxÞ � ~ffnðxÞ� dx:

We now show in two steps that the first integral produces the desired result, and that

f�2j g can be chosen so that for all t the second term converges to 0 as n ! y, or

equivalently, as Dt ! 0.

1. As noted in (10.133),ð
etx ~ffnðxÞ dx ¼ etðu�dÞ � 1

tðu� dÞ MBðtÞ;

where MBðtÞ is the moment generating function of the binomial random variable

denoted X B
n above, which takes values fxjg.

Recall that in section 9.8.10 it was demonstrated that MBðtÞ ! MZðtÞ as Dt ! 0,

with Z@N r� 1
2 s

2
� �

T ; s2T
� �

. Also, by expanding etðu�dÞ as a Taylor series, and us-

ing that u� d ¼ s
ffiffiffiffi
Dt

pffiffiffiffiffi
pp 0

p , we have

etðu�dÞ � 1

tðu� dÞ ¼ 1þOððu� dÞÞ

¼ 1þO½ðDtÞ1=2�;
and soð
etx ~ffnðxÞ dx ¼ ð1þO½ðDtÞ1=2�ÞMBðtÞ

! MZðtÞ as Dt ! 0:

2. For the second integral, note that by the analysis in the previous section, only the

subintervals ½xj � �j; xj þ �j� need to be evaluated, since fnðxÞ ¼ ~ffnðxÞ elsewhere. As

noted above,

fnðxÞ � ~ffnðxÞ ¼
x�ðxj��jÞ

2�j

h i
½ ~ffnðxj þ �jÞ � ~ffnðxj � �jÞ�; x A ½xj � �j ; xjÞ;

� ðxjþ�jÞ�x

2�j

h i
½ ~ffnðxj þ �jÞ � ~ffnðxj � �jÞ�; x A ½xj; xj þ �j�:

8><>:
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Now note that the coe‰cient functions of x are bounded in absolute value by 1
2 , and

since ~ffnðxÞ ¼ 1
u�d

fBð jÞ for x A ½xj; xjþ1Þ and fBð jÞa 1 for all j, we conclude that by

the triangle inequality,

j fnðxÞ � ~ffnðxÞja
1

u� d
:

So by (10.10),ð
etx½ fnðxÞ � ~ffnðxÞ� dx





 



a 1

u� d

Xn
j¼0

ð xjþ�j

xj��j

etx dx

¼ 1

u� d

Xn
j¼0

etðxjþ�jÞ � etðxj��jÞ

t
:

Now, using a Taylor series expansion, we derive as �j ! 0,

etðxjþ�jÞ � etðxj��jÞ

2�j t
¼ etxj ð1þO½ð�j tÞ2�Þ:

From this we conclude thatð
etx½ fnðxÞ � ~ffnðxÞ� dx





 



a 2

u� d

Xn
j¼0

�je
txj ð1þO½ð�j tÞ2�Þ

¼ 2

u� d

Xn
j¼0

�je
tnde jðu�dÞð1þO½ð�j tÞ2�Þ:

We are free to choose f�jg at will, subject to the constraints above to preserve

moments, and so we set

�j ¼
ffiffiffiffiffi
Dt

p
e�jðu�dÞ ¼

ffiffiffiffiffi
Dt

p
exp

�js
ffiffiffiffiffi
Dt

pffiffiffiffiffiffiffi
pp 0p" #

: ð10:137Þ

Then, since 0a ja n ¼ T
Dt
, we have that �j ! 0 as Dt ! 0:

ffiffiffiffiffi
Dt

p
exp

�sffiffiffiffiffi
Dt

p ffiffiffiffiffiffiffi
pp 0p" #

a �j a
ffiffiffiffiffi
Dt

p
;
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and it can be checked that these �j values also satisfy the necessary moment condi-

tions above.

Substituting nd ¼ T
Dt

mDt� ps
ffiffiffiffi
Dt

pffiffiffiffiffi
pp 0

p

 �

and u� d ¼ Oð ffiffiffiffiffi
Dt

p Þ, we derive with constants

C, c > 0, since O½ðt�jÞ2� ¼ t2OðDtÞ and n ¼ T
Dt
,ð

etx½ fnðxÞ � ~ffnðxÞ� dx




 



aCð1þ t2OðDtÞÞ

Xn
j¼0

e�ct=
ffiffiffiffi
Dt

p

¼ Cð1þ t2OðDtÞÞ T

Dt
þ 1

� �
e�ct=

ffiffiffiffi
Dt

p
:

That is because there are nþ 1 constant terms in this summation.

To see that as Dt ! 0 this integral converges to 0 for all t, substitute s ¼ 1ffiffiffiffi
Dt

p , and

consider the limit of this upper bound as s ! y:

C 1þ t2O
1

s2

� �� �
ðTs2 þ 1Þe�cts ! 0:

The Generalized Black–Scholes–Merton Formula

We are now in a position to address the result quoted above in (10.130). To simplify

notation, we ignore the e�rT term, which is simply a multiplicative factor in both the

discrete and limiting continuous pricing formulas. The major steps in this demonstra-

tion are:

1. With fnðxÞ defined as in (10.134), and f ðxÞ the normal distribution in (10.130), we

first show that as n ! y, or equivalently, Dt ! 0,ðy
�y

LðS0e
xÞ fnðxÞ dx !

ðy
�y

LðS0e
xÞ f ðxÞ dx:

As shown above, MXn
ðtÞ ! MX ðtÞ pointwise for all t as Dt ! 0. Restricting to any

compact interval ½�N;N�, this pointwise convergence of analytic functions is there-

fore uniform.

Also, by (10.136), the collection of variances, fs2
ng is bounded, and by the Cheby-

shev inequality, for any � > 0 there is an N so that

Pr½jX j > N� < �;

Pr½jXnj > N� < � for all n:
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As noted previously but not proved, the convergence of moment-generating func-

tions also implies the pointwise convergence of fnðxÞ ! f ðxÞ, and as continuous

functions, this convergence is uniform on any compact interval, ½�N;N�. On this

interval, splitting LðS0e
xÞ into its finite number of piecewise continuous functions

on the subintervals ½aj; ajþ1�H ½�N;N�, we have LðS0e
xÞ fnðxÞ ! LðS0e

xÞ f ðxÞ uni-

formly on each subinterval, and consequently as well as on ½�N;N�. Hence, by

proposition 10.55,ð ajþ1

aj

LðS0e
xÞ fnðxÞ dx !

ð ajþ1

aj

LðS0e
xÞ f ðxÞ dx;

for all ½aj; ajþ1�H ½�N;N�, and the same is then true for the integrals over ½�N;N�.
Putting this all together, we can split the integral over ð�y;yÞ into integrals over

½�N;N�, ð�y;N�, and ½N;yÞ. We then have by the triangle inequality and (10.10),

the Chebyshev bounds above, and the assumption that LðS0e
xÞ is bounded and

hence jLðS0e
xÞj < M for some M,ðy

�y
LðS0e

xÞ fnðxÞ dx�
ðy
�y

LðS0e
xÞ f ðxÞ dx





 




a

ðN
�N

LðS0e
xÞ fnðxÞ dx�

ðN
�N

LðS0e
xÞ f ðxÞ dx





 



þ 2M�:

Since the di¤erence of integrals over ½�N;N� converges to 0 as n ! y, we have

shown that the di¤erence of integrals over ð�y;yÞ can be made as small as desired,

proving the result.

2. Next we convert the integrals with fnðxÞ into a summation with binomial proba-

bilities, where we begin with the observationðy
�y

LðS0e
xÞ fnðxÞ dx ¼

X
j

ð ajþ1

aj

LðS0e
xÞ fnðxÞ dx:

On each interval ½aj; ajþ1� the integrand LðS0e
xÞ fnðxÞ is continuous by defining

LðS0e
xÞ at the endpoints in terms of its limiting values. Also fnðxÞ is identically 0

outside the interval ½x0; xnþ1� ¼ ½nd; ðnþ 1Þu� d �. With Dx ¼ xnþ1�x0
nþ1 ¼ u� d, and in-

terval partition defined with xj ¼ nd þ ðu� dÞ j, for j ¼ 0; 1; . . . ; nþ 1, each integral

in the summation above can be expressed as follows, where aj a xk < xkþ1 < � � � <
xl a ajþ1:
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ð ajþ1

aj

LðS0e
xÞ fnðxÞ dx ¼

ð xk
aj

LðS0e
xÞ fnðxÞ dxþ

X
j

ð xjþ1

xj

LðS0e
xÞ fnðxÞ dx

þ
ð ajþ1

xl

LðS0e
xÞ fnðxÞ dx:

Now by the first mean value theorem for integrals in (10.12), there is x̂xj A ðxj; xjþ1Þ
withð xjþ1

xj

LðS0e
xÞ fnðxÞ dx ¼ LðS0e

x̂xj Þ fnðx̂xjÞðxjþ1 � xjÞ;

and similarly for the first and last integrals. For the integrals in the summation, since

x̂xj A ðxj; xjþ1Þ, and this interval’s value of �j can be chosen smaller than defined in

(10.137), we can assume that x̂xj A ðxj þ �j; xjþ1 � �jþ1Þ and so fnðx̂xjÞ ¼ ~ffnðx̂xjÞ ¼
1

u�d
fBð jÞ. Then, since xjþ1 � xj ¼ u� d,ð xjþ1

xj

LðS0e
xÞ fnðxÞ dx ¼ LðS0e

x̂xj Þ ~ffnðx̂xjÞðxjþ1 � xjÞ

¼ LðS0e
x̂xj Þ n

j

� �
q jð1� qÞn�j:

Now, for the integrals that involve a given aj, say xk < aj < xkþ1, we combine the

integral over ½xk; aj� and the integral over ½aj ; xkþ1�, and a similar argument produces

the following, where x̂xk1 A ðxk þ �k; ajÞ, x̂xk2 A ðaj ; xkþ1 � �kþ1Þ, lk1 ¼ aj�xk
xkþ1�xk

, and

lk2 ¼ 1� lk1 ¼ xkþ1�aj
xkþ1�xk

:ð xkþ1

xk

LðS0e
xÞ fnðxÞ dx

¼ n

k

� �
qkð1� qÞn�k½lk1LðS0e

x̂xk1Þ þ lk2LðS0e
x̂xk2Þ�

¼ n

k

� �
qkð1� qÞn�kLðS0e

x̂xk1Þ þ n

k

� �
qkð1� qÞn�k

lk2½LðS0e
x̂xk2Þ �LðS0e

x̂xk1Þ�:

Combining all integrals, we have that
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ðy
�y

LðS0e
xÞ fnðxÞ dx

¼
Xn
j¼0

n

j

� �
q jð1� qÞn�jLðS0e

x̂xj Þ

þ
X

ak A ðxj ;xjþ1Þ

n

j

� �
q jð1� qÞn�j

lj2½LðS0e
x̂xj2Þ �LðS0e

x̂xj1Þ�; ð10:138Þ

where the second summation includes only those values of j for which ak A ðxj ; xjþ1Þ
for some k.

3. The final step is to show that the summations in (10.138) converge to the binomial

summation represented by L0ðS0Þ in (10.130). To this end, we show that the first

summation converges to L0ðS0Þ, and the second converges to 0 as n ! y. First o¤,

L0ðS0Þ �
Xn
j¼0

n

j

� �
q jð1� qÞn�jLðS0e

x̂xj Þ

¼
Xn
j¼0

n

j

� �
q jð1� qÞn�j½LðS0e

xj Þ �LðS0e
x̂xj Þ�;

where by construction, x̂xj A ðxj þ �j; xjþ1 � �jþ1Þ. Also LðS0e
xÞ can be assumed to be

continuous at each xj, perhaps not for a fixed n for which it may happen that xj ¼ ak
for some j and k, but as n ! y, which is our concern. Consequently x̂xj ! xj as

n ! y for each j. Now, because the binomial density in this summation has

bounded variance for all n, we again apply the Chebyshev inequality to derive that

for any � > 0 there is an interval ½�N;N� so that Pr½X B
n A ½�N;N��b 1� � for all n.

On this interval, since LðS0e
xÞ is piecewise continuous with limits, and there are only

a finite number of intervals, ½ak; akþ1�H ½�N;N�, we conclude that as n ! y,

max
xj A ½�N;N�

jLðS0e
xj Þ �LðS0e

x̂xj Þj ! 0:

Hence summing over all j for which xj A ½�N;N� producesX
xj A ½�N;N�

n

j

� �
q jð1� qÞn�j jLðS0e

xj Þ �LðS0e
x̂xj Þj ! 0:

Now for all j for which xj B ½�N;N�, we apply the triangle inequality
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X
xj B ½�N;N�

n

j

� �
q jð1� qÞn�jjLðS0e

xj Þ �LðS0e
x̂xj Þja 2M�;

since LðS0e
xÞ is bounded by M and Pr½X B

n B ½�N;N�� < �. Consequently the first

summation in (10.138) converges to L0ðS0Þ as claimed.

For the second summation in (10.138), by the triangle inequality,X
ak A ðxj ;xjþ1Þ

n

j

� �
q jð1� qÞn�jlj2jLðS0e

x̂xj2Þ �LðS0e
x̂xj1Þj

a 2M
X

ak A ðxj ;xjþ1Þ

n

j

� �
q jð1� qÞn�j ;

since LðS0e
xÞ is bounded by M and 0a lj2 a 1. We can split this summation into

the finite collection of fakgH ½�N;N�, and the rest, and obtainX
ak A ðxj ;xjþ1Þ

n

j

� �
q jð1� qÞn�j <

X
ak A ½�N;N�

n

j

� �
q jð1� qÞn�j þ �:

Now, since this summation includes only those values of j for which ak A ðxj; xjþ1Þ
for some k, this finite summation converges to 0 as n ! y, completing the

derivation.

Exercises

Practice Exercises

1. Demonstrate by explicit evaluation of the Riemann sums, the following integrals

for c A R, where for simplicity assume that 0a a < b:

(a)
Ð b
a
c dx ¼ ðb� aÞc

(b)
Ð b
a
cx dx ¼ c

2 ðb2 � a2Þ (Hint:
Pn

j¼1 j ¼ nðnþ1Þ
2 .)

(c)
Ð b
a
cx2 dx ¼ c

3 ðb3 � a3Þ (Hint:
Pn

j¼1 j2 ¼ nðnþ1Þð2nþ1Þ
6 .)

2. For the function,

f ðxÞ ¼ x2; 0a x < 1

x2 þ 5; 1a xa 2

�
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(a) Verify explicitly thatð 2
0

f ðxÞ dx ¼
ð 1
0

x2 dxþ
ð2
1

ðx2 þ 5Þ dx ¼ 23

3
;

by demonstrating that the contribution of the terms in the Riemann sums containing

the point x ¼ 1 converge to 0.

(b) Confirm that this conclusion is independent of the definition of f ð1Þ.
3. Consider a collection of intervals containing a point x 0: fIjg ¼ fðx 0 � aj; x

0 þ bjÞg,
where fajg and fbjg are positive sequences which converge to 0. Prove that for a

given function, f ðxÞ, with Mj and mj defined as in (10.2), that Mj �mj ! 0 if and

only if f ðxÞ is continuous at x 0.

4. For each of the functions in exercise 1, determine the value of d as promised by

the mean value theorem for whichð b
a

f ðxÞ dx ¼ f ðdÞðb� aÞ:

5. Using the Fundamental Theorem of Calculus version I in (10.15):

(a) Confirm the formulas in exercise 1.

(b) Generalize exercise 1 to show that for a; b A R:ð b
a

cxn dx ¼ c

nþ 1
ðbnþ1 � anþ1Þ; n A R; n0�1:

(c) Confirm that for part (b), if n ¼ �1,ð b
a

cx�1 dx ¼ c ln
b

a

� �
; b > a > 0:

(d) Generalize part (c) if a < b < 0. (Hint: Compare
Ð b
a
cx�1 dx to �Ð b

a
cx�1 dx to

�Ð�a

�b
cx�1 dx.)

6. Use the integral test in the following analyses:

(a) Show that
Py

n¼1 e
�n converges and estimate its value. (Note: This can also be

summed exactly as a geometric series, of course, but that is not what is to be done

here.)

(b) Show that
Py

n¼1 n
m, for mb�1, diverges, and estimate the rate of growth of the

partial sums.
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(c) For 0 < q < 1, determine whether
Py

n¼1 nq
n converges or diverges, and corre-

spondingly estimate its summation value, or the growth rate of its partial sums.

(Hint: Integrate f ðxÞ ¼ xqx ¼ xex ln q using integration by parts.)

7. Evaluate the following definite integrals using the method of substitution, and

then identify an antiderivative of the integrand:

(a)
Ðy
0 xe�x2

dx (Hint: First consider
Ð N
0 xe�x2

dx as a definite integral.)

(b)
Ðy
0 ð4z3 þ 6zÞðz4 þ 3z2 þ 5Þ�2

dz

(c)
Ð 10
0

e2x dx
4e2x�1

8. Evaluate the following definite integrals using integration by parts, and then iden-

tify an antiderivative of the integrand. (General hint: Once a potential antiderivative

is found, this formula can be verified by di¤erentiation.)

(a)
Ð 10
0 xmex dx for positive integer m (Hint: Implement two or three integration by

parts steps and observe the pattern.)

(b)
Ð 20
3 xmex

2

dx for positive odd integer m ¼ 2nþ 1 (Hint: Implement two or three

integration by parts steps and observe the pattern, using xex
2
.)

9. Show using a Taylor series expansion that if f ðyÞ ¼ 1
1þy

, for jyj < 1, thatÐ x
0 f ðyÞ dy ¼ lnð1þ xÞ. Justify integrating term by term as well as the convergence

of the final series to the desired answer.

10. Using the definite integrals over bounded intervals in exercise 7(c), 8(a), and 8(b)

(use m ¼ 5 for exercise 8):

(a) Implement both the trapezoidal rule and Simpson’s rule for several values of n

and compare the associated errors. (Hint: Try n ¼ 5; 10; 25, and 100, say.)

(b) For each approximation, evaluate the error as n increases significantly, to see

if the respective orders of convergence, O 1
n2

� 	
and O 1

n4

� 	
, are apparent. (Hint: If

�Tn ¼ jI � I T j for Dx ¼ b�a
n
, the error �Tn ¼ O 1

n2

� 	
means that n2�Tn aCT for some

constant CT as n ! y, and similarly for �Sn ¼ jI � I Sj, that n4�Sn aCS as n ! y.

Attempt to verify that the CT and CS values obtained are no bigger than the values

predicted in theory using the maxima of the derivatives of the given functions.)

11. Evaluate Pr½�1aX a 2� for the Cauchy distribution with x0 ¼ 1, and a scale

parameter l ¼ 2, by:

(a) Trapezoidal rule with n ¼ 30

(b) Simpson’s rule with n ¼ 30

(c) Evaluate the error in each approximation
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12. Derive the error estimate for Simpson’s rule over the subinterval ½a; aþ Dx�.
(Hint: Use the Taylor approximation:

f ðxÞ ¼ f ðaÞ þ f 0ðaÞðx� aÞ þ 1

2
f ð2ÞðaÞðx� aÞ2

þ 1

3!
f ð3ÞðaÞðx� aÞ3 þ 1

4!
f ð4ÞðyÞðx� aÞ4;

for some y A ½a; aþ Dx�. Calculate Ð aþDx

a
f ðxÞ dx, using the second MVT for inte-

grals in (10.35), and also evaluate the expression for I S over this interval, and sub-

tract, recalling the intermediate value theorem in (9.1).)

13. Prove the following identities:

(a) As in (10.65): s2 ¼ E½X 2� � E½X �2.
(b) As in (10.66):

i. mn ¼
Pn

j¼0ð�1Þn�j n
j

� 	
m 0
jm

n�j (Hint: Use the binomial theorem.)

ii. m 0
n ¼

Pn
j¼0

n
j

� 	
mjm

n�j (Hint: X ¼ ½X � m� þ m.)

14. Prove the iterative formula for the beta function in (10.76):

Bðvþ 1;wÞ ¼ v

vþ w
Bðv;wÞ:

(Hint: Integrate by parts to first show: Bðvþ 1;wÞ ¼ v
w
Bðv;wþ 1Þ. Then by express-

ing ð1� xÞw ¼ ð1� xÞð1� xÞw�1, and simplifying, that Bðv;wþ 1Þ ¼ Bðv;wÞ�
Bðvþ 1;wÞ.)
15. Derive the moment-generating function formula for the gamma distribution:

MGðtÞ ¼ ð1� btÞ�c; jtj < 1

b
:

(Hint:
Ð
etxfGðxÞ dx ¼ 1

GðcÞ
Ð
1
b

x
b

� �c�1
e�ðð1�tbÞ=bÞx dx; substitute y ¼ x

b
, then z ¼

ð1� tbÞy, or do this in one step.)

16. Evaluate the present value of a 50 year annuity, payable continuously at the rate

of $1000 per year, at the continuous rate of 6%.

17. Repeat exercise 16, in the case where the annuity is continuously payable, and

continuously increasing, so that the annualized rate of payment at time t is CðtÞ ¼
1000ð1:08Þ t. (Hint: Consider converting the 8% annual rate to another basis.)

18. Repeat exercise 18 of chapter 9 using the price function approximations in

(10.118) and (10.119).
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19. Derive (10.133). (Hint: Split each integral, such asð xnþ1

x0

x~ffnðxÞ dx ¼
Xn
j¼0

ð xjþ1

xj

x~ffnðxÞ dx:Þ

20. Assume that the price of a t-period zero-coupon bond is given by Zt ¼ 1
1þt

for all

tb 0.

(a) Evaluate the implied continuous forward rates, ft, and spot rates, st for all tb 0.

(b) Confirm (10.111).

21. With r ¼ 0:03 on a continuous basis, S0 ¼ 100, and ln Stþ1

St

h i
@Nð0:12; ð0:18Þ2Þ

over annual periods:

(a) Determine the value of a 0:5-year binary call option on a stock with payo¤

function

LðS0:5Þ ¼ 10; S0:5 > 105;

0; S0:5 a 105:

�
(b) Evaluate the corresponding price for a binary put option, with payo¤ function

LðS0:5Þ ¼ 0; S0:5 b 105;

10; S0:5 < 105:

�
(c) Derive put-call parity for these binary options:

LPðS0Þ þLCðS0Þ ¼ 10e�0:015:

Assignment Exercises

22. Repeat exercise 1 in the cases where:

(a) a < 0 < b

(b) a < b < 0

(Hint: Consider
Ð b
a
¼ Ð 0

a
þ Ð b0 for part (a), and identify the relationship between

Ð 0
a

and
Ð�a

0 of the given functions. For part (b), consider the relationship between
Ð b
a
andÐ�a

�b
of the given functions. In both cases keep track of the sign of f ðxÞ.)

23. Show that if f ðxÞ is continuous on bounded ½a; b�, so too is j f ðxÞj. In other

words, show that f ðxÞ ! f ðx0Þ implies that j f ðxÞj ! j f ðx0Þj. (Hint: To show this,

prove that

j jaj � jbj ja ja� bj:Þ ð10:139Þ
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(a) Give a di¤erent example from what is in the text of where j f ðxÞj continuous does
not imply that f ðxÞ is continuous.
(b) Give a second example where the continuity of f ðxÞ2 does not imply the conti-

nuity of f ðxÞ.
24. For the functions in exercise 5(b) and 5(c), explicitly determine the value of d as

promised by the mean value theorem for whichð b
a

f ðxÞ dx ¼ f ðdÞðb� aÞ:

25. Use the integral test in the following analyses:

(a) Show that
Py

n¼1 n
2e�n converges and estimate its value. (Hint: integrate by

parts.)

(b) Show that
Py

n¼1
n

n2þ10
diverges, and estimate the rate of growth of the partial

sums.

(c) For 0 < q < 1, determine whether
Py

n¼1 n
2qn converges or diverges, and corre-

spondingly estimate its summation value, or the growth rate of its partial sums.

(Hint: Integrate f ðxÞ ¼ x2qx ¼ x2ex ln q using integration by parts.)

26. Evaluate the following definite integrals using the method of substitution, and

then identify an antiderivative of the integrand:

(a)
Ðy
�y ye�y2

dy (Hint: First consider
Ð N
�M

ye�y2 dy as a definite integral.)

(b)
Ð 20
2

ln
ffiffiffi
w

p
w

dw (Hint: Focus on ln
ffiffiffiffi
w

p
.)

(c)
Ð 10
0 ð8x3 þ 10x� 3Þð2x4 þ 5x2 � 3xÞ�1=2

dx (Hint: First consider
Ð 10
a

f ðxÞ dx for

a > 0.)

27. Evaluate the following definite integrals using integration by parts, and then

identify an antiderivative of the integrand (General hint: Once a potential antideriva-

tive is found, this formula can be verified by induction on n:):

(a)
Ð 20
0 xne�rx dx for positive integer n, positive real r

(b)
Ð 10
0 xne�x2

dx for positive integer odd n ¼ 2mþ 1

28. Show using a Taylor series expansion that if f ðyÞ ¼ ey, then
Ð x
0 f ðyÞ dy ¼

ex � 1. Justify integrating term by term as well as the convergence of the final series

to the desired answer.

29. Assume that the value of a t-period continuous forward rate is given by ft ¼
0:03

1þ0:1t for all tb 0.
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(a) Evaluate the implied continuous spot rates, st, and zero-coupon bond prices, Zt,

for all tb 0.

(b) Confirm (10.111).

30. Using the definite integrals over bounded intervals in exercises 26(b) and 26(c),

and 27(a) and 27(b) (use n ¼ 10 and r ¼ 0:10 in exercise 27):

(a) Implement both the trapezoidal rule and Simpson’s rule for several values of n

and compare the associated errors. (Hint: Try n ¼ 5; 10; 25, and 100, say.)

(b) For each, evaluate the error as n increases significantly, to see if the respective

orders of convergence, O 1
n2

� 	
and O 1

n4

� 	
, are apparent. (Hint: If �Tn ¼ jI � I T j for

Dx ¼ b�a
n
, the error �Tn ¼ O 1

n2

� 	
means that n2�Tn aCT for some constant CT as

n ! y, and similarly for �Sn ¼ jI � I Sj, that n4�Sn aCS as n ! y. Attempt to verify

that the CT and CS values obtained are no bigger than the values predicted in theory

using the maxima of the derivatives of the given functions.)

31. Evaluate Pr½1aX a 5� for the gamma distribution with b ¼ 1 and shape pa-

rameter c ¼ 3, by:

(a) Trapezoidal rule with n ¼ 100

(b) Simpson’s rule with n ¼ 100

(c) Evaluate the error in each approximation

32. Prove the following identities:

(a) As in (10.67) that MX ðtÞ ¼
Py

n¼0
m 0
nt

n

n! (Hint: Compare to the discrete derivation in

chapter 9, using section 10.7.2 on convergence of a sequence of integrals.)

(b) As in (10.68) that m 0
n ¼ M

ðnÞ
X ð0Þ (Note: Justify term by term di¤erentiation and

substitution of t ¼ 0.)

33. Show directly that for the beta function: Bð1; 1Þ ¼ 1, and then using the same

hint as in exercise 14, show that

Bðv;wÞ ¼ ðv� 1Þðw� 1Þ
ðvþ w� 1Þðvþ w� 2ÞBðv� 1;w� 1Þ;

and that with this and mathematical induction, derive (10.78).

34. Derive the iterative formulas for moments of the unit normal:

(a) For m ¼ 1; 2; 3; . . . :ðy
�y

y2mfðyÞ dy ¼ ð2m� 1Þ
ðy
�y

y2m�2fðyÞ dy:
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(Hint: Try integration by parts, splitting the integrand into y2m�1 and yfðyÞ, and
note the latter can be integrated by substitution.)

(b) For m ¼ 1; 2; 3; . . . :ðy
�y

y2m�1fðyÞ dy ¼ 0:

(Hint: Consider f ðyÞ and f ð�yÞ, then Riemann sums.)

35. Evaluate the present value of a perpetuity, payable continuously at the rate of

$10,000 per year, at the continuous rate of 10%.

36. Repeat exercise 35 in the case where the annuity is continuously payable, and

continuously increasing, so that the annualized rate of payment at time t is CðtÞ ¼
10;000ð1þ 2tÞ.
37. Repeat exercise 41 of chapter 9 using the price function approximations in

(10.118) and (10.119).

38. Derive (10.136). (Hint: Use (10.135) and recall that by (10.132), for j ¼ 0; 1; . . . ;

nþ 1,

~ffnðxj þ �jÞ � ~ffnðxj � �jÞ ¼ 1

u� d
½ fBð jÞ � fBð j � 1Þ�:Þ

39. Derive the Black–Scholes–Merton formulas for the price of a European put or

call using (10.130). (Hint: Use a substitution in the integral.)

40. The notion of Riemann integral can be generalized to become a Riemann–

Stieltjes integral, in recognition of the work of Thomas Joannes Stieltjes (1856–1894).

Definition 10.86 Given a function, gðxÞ, a function f ðxÞ is Riemann–Stieltjes integra-

ble with respect to gðxÞ on an interval ½a; b� if as m ! 0, with m defined as in (10.3), we

have that

Xn
i¼1

MiDgi �
Xn
i¼1

miDgi

" #
! 0; ð10:140Þ

where Mi and mi are defined in (10.2). Here Dgi ¼ gðx�i Þ � gðxþi�1Þ, where gðx�i Þ ¼
limx!x�

i
gðxÞ and gðxþi�1Þ ¼ limx!xþ

i�1
gðxÞ, are defined as one-sided limits from the

left ð�Þ and right ðþÞ. In this case we define the Riemann–Stieltjes integral of f ðxÞ
with respect to gðxÞ over ½a; b�, by
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ð b
a

f ðxÞ dg ¼ lim
m!0

Xn
i¼1

f ð~xxiÞDgi; ð10:141Þ

which exists and is independent of the choice of exixi A ½xi�1; xi� by (10.140).

(a) Show that if gðxÞ and f ðxÞ are continuous on ½a; b�, and gðxÞ is di¤erentiable on

ða; bÞ with g 0ðxÞ a continuous function with limits as x ! a and x ! b, thenð b
a

f ðxÞ dg ¼
ð b
a

f ðxÞg 0ðxÞ dx; ð10:142Þ

where the integral on the right is a Riemann integral. (Hint: Consider the mean value

theorem from chapter 9.)

(b) Generalize part (a) to the case where there is a partition of ½a; b�:
a ¼ y0 < y1 < � � � < ymþ1 ¼ b

so that gðxÞ satisfies the conditions of part (a) on each subinterval, ½yj; yjþ1� but has
‘‘jumps’’ at fyjgm

j¼1:

lim
x!yjþ

gðxÞ0 lim
x!yj�

gðxÞ; j ¼ 1; 2; . . . ;m:

Show that in this caseð b
a

f ðxÞ dg ¼
Xm
j¼0

ð yjþ1

yj

f ðxÞg 0ðxÞ dxþ
Xm
j¼1

f ðyjÞ½gðyþj Þ � gðy�j Þ�: ð10:143Þ

41. Evaluate
Ð 10
0 x2 dg with:

(a) gðxÞ ¼ e�0:04x

(b) gðxÞ ¼
e�0:04x; 0a x < 2

e�0:04x � 4; 2a x < 6

e�0:04x þ 4; 6a xa 10

8<:
42. This exercise investigates the application of Riemann–Stieltjes integration to

probability theory.

(a) Show that if f ðxÞ is a continuous probability density function with distribution

function FðxÞ, then for any function gðxÞ for which E½gðxÞ� exists,
E½gðxÞ� ¼

ð
gðxÞ dF : ð10:144Þ

(Hint: Use (10.142).)
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(b) Show that if f ðxÞ is a discrete probability density function with domain fxjg
assumed to have no accumulation points, and with distribution function FðxÞ, that
for any function gðxÞ for which E½gðxÞ� exists, (10.144) remains valid. (Hint: Use

(10.143).)

Remark 10.87 A probability density function can be mixed, meaning both with con-

tinuous and discrete components. The distribution function F ðxÞ then is nondecreasing,

0aF ðxÞa 1, has the structure required in exercise 40.b, and E½gðxÞ� is again defined

as in (10.144) using (10.143).

(c) Evaluate the mean and variance of the random variable with mixed distribution

function defined by

F ðxÞ ¼

0; x < 0;

0:25; x ¼ 0;
1
4 1þ x

100

� �
; 0 < x < 50;

0:5; x ¼ 50;
1
3 1þ x

100

� �
; 50 < x < 100;

0:75; x ¼ 100;

1� 1
4 e

100�x; x > 100:

8>>>>>>>>>><>>>>>>>>>>:
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References

I have listed in this section a number of textbook references for the mathematics and

finance presented in this book. All these textbooks provide theoretical and applied

materials in their respective areas beyond their development here, and they are worth

pursuing by the reader interested in gaining greater depth or breadth of knowledge.

This list is by no means complete and is intended only as a guide to further study.

The reader will no doubt observe that the mathematics references are somewhat

older than the finance references and, upon web searching, will find that some of

the older texts in each category have been updated to newer editions, sometimes

with additional authors. Since I own and use the editions listed below, I decided to

present these rather than reference the newer editions that I have not reviewed. As

many of these older texts are considered ‘‘classics,’’ they are also likely to be found

in university and other libraries. That said, there are undoubtedly many very good

new texts by both new and established authors with similar titles that are also worth

investigating.

My rules of thumb for a textbook, whether recommended by a colleague or newly

discovered, are as follows:

1. If it provides a clear and complete exposition that makes it easy to understand

both simple and deep connections, it is a very good textbook.

2. If it provides compelling derivations and applications that motivate the reader to

want to read on and learn more, it is an excellent textbook.

3. If it is di‰cult to understand and does not motivate the reader, it is either poorly

written or ahead of the reader’s current state of knowledge, and in either case the

reader should seek another reference text.

Topic Mapping

Numbers refer to the numbered references that follow.

Finance

Investment markets: 2, 3, 5, 6, 8, 11, 12, 14

Fixed income pricing: 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14

Equity pricing: 1, 2, 3, 5, 7, 12, 14

Portfolio theory: 1, 2, 3, 5, 7, 12, 14

Insurance finance: 4, 10, 12

Utility theory: 4, 5, 7, 12

Option pricing: 1, 2, 3, 5, 6, 7, 8, 11, 12, 13, 14

Risk analysis: 1, 4, 6, 8, 9, 11, 12



Mathematics

Logic: 25, 31

Number systems: 15, 26, 28, 30, 31

Functions: 15, 20, 28, 30, 31, 32

Euclidean and metric spaces: 16, 18, 19, 27, 31

Set theory: 16, 21, 28, 31
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Abelian group, 38
Absolute convergence. See under Convergence
Absolute moments of discrete distribution, 274–

75
Absolute value, 45
Accounting regimes, 515
Accumulated value functions, 55–56
Accumulation point, 130
and convergence, 148, 151, 164
of bounded numerical sequence, 152, 154–55
and ratio test, 195
Advanced Quantitative Finance: A Math Tool Kit,

xxiii, 405–406
A‰ne, 524
Aggregate loss model, 310–13
Aleph, @, 143
Algebra
associative normed division, 73
fundamental theorem of, 49
linear, 323
sigma, 235, 238, 614–15
Borel, 618

ALM (asset–liability management, asset–liability
risk management), 101, 514–21

Almost everywhere (a.e.), 574
Alternating geometric series, 185
Alternating harmonic series, 183, 184–85, 478
Alternating series convergence test, 193–94
American option, 329
Analytic function, 470–73, 477, 482, 486
Annualized basis, of interest-rate calculation,

56
Annual rate basis, 53
Annuity, 55, 221, 645
Antiderivative, 583, 592, 595, 596
Approximation
with binomial lattice, of equity prices, 326, 406
of derivatives, 504–505
of duration and convexity, 509–14, 516–17, 651–

54
of functions, 417, 440
error in, 468
improvement of, 450–52, 465–66
and Taylor polynomials, 470
of integral of normal density, 654–60
and numerical integration, 609
and Simpson’s rule, 612–13
and trapezoidal rule, 609–12
and Stirling’s formula for n!, 371–74
Arbitrage, risk-free, 26, 320, 331, 517–18
Aristotle of Stagira, and wheel of Aristotle, 9–10
Arithmetic, fundamental theorem of, 35, 38
Arithmetic mean–geometric mean inequality,

AGM, 79, 502

Arrow, Kenneth J., 530
Arrow–Pratt measure of absolute risk aversion, 530
Ask price, 137
Asset(s)
consumption, 330
investment, 330
risky, 391–92
Asset allocation, 320
and Euclidean space, 93–95
framework, 319–24
minimal risk, 508–509
optimal risk, 528–31
price function approximation in, 222–23
Asset hedging, 516
Asset–liability management (asset–liability risk

management, ALM), 101, 514–21
Asset portfolio, risk-free, 320, 387–88
Associative normed division algebra, 73
Associativity, of point addition in vector spaces,

72
Assumptions
need to examine, 26, 27
Autocorrelation, 325
Axiomatic set theory, 4–6, 117–21. See also Set

theory
basic operations of, 121–22
Axiom of choice, 118, 120
Axioms, 4, 24, 31
for natural numbers, 32
for set theory, 118–20

Banach, Stefan, 202
Banach space, 199–202
financial application of, 223–24
Barber’s paradox, 10, 139–40
Base-b expansion, 43–44
Basis point, 100
Bell-shaped curve, 378–79, 634
Benchmark bonds, 99
Bernoulli, Jakob, 290
Bernoulli distribution, 290
Bernoulli trial, 290
Beta distribution, 628–30
Beta function, 628
Beta of a stock portfolio, 104
Bézout, Étienne, 35
Bézout’s identity, 35–36
Biconditional, 12
Bid–ask spread (bid–o¤er spread), 103, 137
Bid price, 137
Big O convergence, 440–41, 442
Binary call option, European, 662–63
Binary connectives, 11
Binomial coe‰cients, 249, 467



Binomial distribution, 250, 290–92
and De Moivre–Laplace theorem, 368
and European call option, 402–403
and geometric distribution, 292
negative, 296–99, 314, 350
and Poisson distribution, 299 (see also Poisson
distribution)

Binomial lattice equity price models as Dt ! 0
real world, 392–400
risk-neutral, 532–43
special risk-averter, 543

Binomial lattice model, 326–28, 399, 400, 404,
407

Cox–Ross–Rubinstein, 406
Binomial probabilities, approximation of, 376–77,

379–80
Binomial probability density function
continuitization of, 666–68
piecewise, 664–66
and De Moivre–Laplace theorem, 381
limiting density of, 370

Binomial random variables, 290, 291, 377, 403
Binomial scenario model, 328–29
Binomial stock price model, 395
Binomial theorem, 220, 250
Black, Fischer, 405
Black–Scholes–Merton option-pricing formulas,

404–406, 521, 538, 547–49
generalized, 660–75
and continuitization of binomial distribution,
666–68
and limiting distribution of continuitization,
668–71
and piecewise continuitization of binomial
distribution, 664–66

limiting distributions for, 532, 543
Bond-pricing functions, 57–59
Bond reconstitution, 98
Bonds
classification of, 95
present value of, 56–57
price versus par, 58

Bond yield to maturity, and interval bisection,
167–70

Bond yields, 95, 96, 644–45
conversion to spot rates (bootstrapping), 99
parameters for, 96

Bond yield vector risk analysis, 99–100
Bootstrapping, 99
Borel, Émile, 134, 618
Borel sets, 618
Borel sigma algebra, 618
Bounded derivative, 465
Bounded interval, 122

Boundedness
and continuous functions, 434–35, 438
and convergence, 150, 151
and integrability, 567–68
of sequence, 158
Bounded numerical sequence, 145
accumulation point, 152, 154–55
Bounded subset, 131
Bound variable, 11
Burden of proof, 1, 2
Business school finance students, xxvii

C (field of complex numbers), 45, 48
as metric space, 162, 165
numerical series defined on, 177
Cn (n-dimensional complex space), 72
as metric space, 160, 162
standard norm and inner product for, 74–75
Calculus, xxxiv, 417, 559–60
financial applications of (di¤erentiation)
asset–liability management, 514–21
Black–Scholes–Merton option-pricing formulas,
547–49

constrained optimization, 507
continuity of price functions, 505–506
duration and convexity approximation, 509–14,
516–17

the ‘‘Greeks,’’ 521–22
interval bisection, 507–508
minimal risk asset allocation, 508–509
optimal risky asset allocation, 528–31
risk-neutral binomial distribution, 532–43
special risk-averter binomial distribution, 543–
47

utility theory, 522–28
financial applications of (integration)
approximating integral of normal density, 654–
60

continuous discounting, 641–44
continuous stock dividends and reinvestment,
649–51

continuous term structure, 644–49
duration and convexity approximation, 651–
54

generalized Black–Scholes–Merton formula,
660–75

and functions, 417–20
continuity of, 420–33 (see also Continuous
functions)

fundamental theorem of
version I, 581–84, 586, 592, 609, 643
version II, 585–87, 598, 647, 648, 652
and integration, 559 (see also Integration)
multivariate, 91, 323, 515, 522, 625, 635
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Calderón, Alberto P., xxxvi, 25
Call option, price of, 521. See also European call

option
Cantor, Georg, 38, 42, 125
Cantor’s diagonalization argument, 42, 361, 370
Cantor’s theory of infinite cardinal numbers, 143
Cantor ternary set, 125–27
generalized, 143
Capital letters, in probability theory notation, 280
Capital risk management, 514
Cardinal numbers, Cantor’s theory on, 143
Cartesian plane, 45
Cartesian product, 71
Cash flow vectors, 100–101
Cauchy, Augustin Louis, 42, 75, 162, 475, 599, 632
Cauchy criterion, 162, 163, 445
Cauchy distribution, 632–34
Cauchy form of Taylor series remainder, 476, 599,

600–601
Cauchy–Schwarz inequality, 75, 76, 78, 80
and correlation, 272–74
Cauchy sequences, 42, 162–65, 201–202, 445
and complete metric space, 165–67
and convergence, 178–79
and lp-norms, 197
and lp-space, 201
Cayley, Arthur, 73
Cayley–Dickson construction, 73
c.d.f. See Cumulative distribution function
Central di¤erence approximation, 504, 505
Central limit theorem, xxxiii, 381–86
De Moivre–Laplace theorem as, 368, 381
Central moments of discrete distribution, 274
of continuous distribution, 624
Certain life annuity, m-year, 318
Characteristic function (c.f.), 277–78, 625
and complex-valued functions, 559
of discrete random variable, 484–85
uniqueness of, 347–48
Chebyshev, Pafnuty, 349
Chebyshev estimation of capital risk, 390, 392
Chebyshev’s inequality, 302, 349–52, 392, 408
and Kolmogorov’s inequality, 364
one-sided, 351–52, 387, 390–91
Chooser function, 140
Closed ball about x of radius r, 87, 130
Closed cube about 0 of diameter 2R, 132
Closed interval, 122, 123
and continuous function definition, 421
Closed lp-ball about y of radius r, 85
Closed rectangle, 256
Closed set, 123–27, 129
in general spaces, 129–30
in metric spaces, 128–29

in R, 122–27
in Rn, 127–28
Cluster point, 130
Collateralized mortgage obligation (CMO), 513
Collective loss model, 310–13
Combinatorics (combinatorial analysis), 247
general orderings, 248–52
simple ordered samples, 247–48
and variance of sample variance, 285
Common expectation formulas, 624–26
Common stock-pricing functions, 60–61, 217–18,

506. See also at Stock
Commutative group, 37, 38
Commutativity, of point addition in vector spaces,

72
Compact metric space, 160–61
Compactness, 131, 136
and continuous functions, 436, 438
and Heine–Borel theorem, 131, 132–33, 134
and general metric space, 158

Comparative ratio test, for series convergence, 194
Comparison test, for series convergence, 183, 191–

92, 208
Complement, set as, 121
Complete collection of events, 234–35, 239, 614.

See also Sigma algebra
Complete metric space, 164
and Cauchy sequences, 165–67
under metric d, 165–66
Completeness, of a mathematical theory, 4, 24
Complete normed linear space, 201, 202. See also

Banach space
with compatible inner product, 206 (see also

Hilbert space)
Complete probability space, 237, 615
Complex analysis, 278, 347, 417, 559
Complex conjugate, 45
Complex linear metric space, 160
Complex lp-space, 196, 199, 200
Complex numbers, C, 44–49
generalized, 73
Complex sequence, 145
Complex-valued function, 50, 418
Complex variable, functions of, 50, 559
Composite functions, 420
Composite number, 34
Compounding, continuous, 641–43
Computer systems
and rounding problems, 52
for standard formulas and situations, xxv
Concave function, 79, 80, 494–500, 501
Conclusion of the conditional, 16
Conditional expected value (conditional

expectation), 267
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Conditional probabilities, 238–40
Conditional probability density functions, 260, 261
and independent random variables, 264
and laws of total expectation and total variance,
270

and law of total probability, 261, 270
Conditional statement, 6, 12
Confidence interval, 355
Conjugate index, lp-space, 79
Conjugate pairs, solutions of polynomials, 49
Conjunction (truth tables), 11, 12
Connected set, 131
Consistency, of a mathematical theory, 4, 5
Constrained optimization, 103–10, 111, 507
and sets, 135–37

Constrained variables, 62
Constraint function, 111
Consumption assets, 330
Continuitization
of binomial distribution, 666–68
piecewise, 664–66
limiting distribution of, 668–71

Continuity. See also Continuous functions
piecewise, 567, 574
piecewise with limits, 662
of price function, 139, 505–506

Continuous complex-valued function of a real
variable, 429

Continuous discounting, 641–44
Continuous distributions
discretization of, 620–24
moments of, 618–19

Continuous functions, 171–72, 417, 420–33, 437–
39. See also Calculus

‘‘almost’’ continuous, 422–25
and calculation of derivatives, 454–62
composition of, 432
concave and convex, 494–500, 501 (see also
Concave function; Convex function)

and continuously payable cash flow, 643
convergence of sequence of, 426–27, 442–48, 603–
605
and interchanging of limits, 445–48
pointwise, 442–43
uniform, 443, 444, 445
and convergence of sequence of derivatives, 478–
88

and convergence of sequence of integrals, 602–
605

and critical points analysis, 488–94
and ‘‘discontinuous,’’ 425–28
at the endpoint(s) of a closed interval, 421
exponential and logarithmic, 432–33
Hölder and Lipschitz continuity, 439–42

and improvement of approximation, 450–52,
465–66, 467–73

and integral, 559 (see also Integration)
on an interval, 421
inverse of, 449
and metric notion of continuity, 428–29
at a point, 421, 429
Riemann integral of, 560–66
and sequential continuity, 429–30
series of, 445
sign of, 437
and Taylor series remainder, 473–78
and topological notion of continuity, 448–50
and uniform continuity, 433–37
Continuously distributed random variable, 616
Continuous price function, 58
Continuous probability density functions, 626
bell-shaped curve as, 379, 393
beta distribution, 628, 628–29
Cauchy distribution as, 632
continuous uniform distribution, 627
exponential distribution, 630
lognormal distribution, 638
normal distribution, 377–78, 489, 499, 654–60
unit normal distribution, 378, 654
Continuous probability theory. See Probability

theory, continuous
Continuous stock dividends and reinvestment, 649–

51
Continuous term structures, 644–49
Continuous uniform distribution (continuous

rectangular distribution), 627
Continuum, 143
Continuum hypothesis, 143
generalized, 143
Contradiction, proof by, 19–21, 425, 432, 448, 498
Contrapositive, 7, 17
Contrapositive proof, 18, 425
Convergence, 136–37
absolute, 177, 178–79, 210
and analytic functions, 473, 486, 487–88
and conditional expectation, 267
and expected value, 265
in insurance net premium calculations, 315
and moment-generating function, 275–76
and power series, 207–209, 210–15, 471–72,
483–84, 485

and price of increasing perpetuity, 218–20
of Taylor series, 472, 476, 484
conditional, 177
and continuitization of binomial, 666, 668–69,

671, 674
and interval bisection, 168
and investment fund model, 647
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of moment-generating functions, 672
of numerical sequences, 145–49
and accumulation point, 164
and Cauchy sequences, 162–67
and financial applications, 167–71
and limits, 147, 149–52
limits superior (least upper bound) and inferior
(greatest lower bound), 152–57

and metric space, 157–62
monotonic, 146, 147
of numerical series, 177–83
and pricing of common stock, 218
and pricing of preferred stock, 216–17
and rearrangement, 184–90, 315
subseries of, 183
tests of, 190–95, 588–91
radius of, 207, 209, 210, 483, 486, 487
and Riemann integration, 560, 561, 563, 565, 566,

577
of sequence of continuous functions, 426–27, 438,

442–48
and interchanging of limits, 445–48
pointwise, 443, 444, 445, 473 (see also Pointwise
convergence)

for series of functions, 445
of sequence of derivatives, 478–88
for series of functions, 481
of sequence of integrals, 602–609
for series of functions, 606
slow, 362
speed of, 399–400
as Big O and Little o, 440–42
of binomial lattice under real world probability,
399

of binomial lattice under risk-neutral probability,
537

of Taylor series, 470, 477, 482, 487–88, 600, 609
uniform, 443–44, 445, 446–48, 479–81, 604–605,

607
Convex function, 87, 200, 494–500, 501
Convexity
approximations for, 653
price sensitivity benefit associated with, 514
of price of security, 510–14, 516–17
Convex sets, 87
Coordinates, 71
‘‘Correct’’ price for forward contract, 63
Correlation, 272–74
between types of loss, 391
Cosines, law of, 113
Countable collections, 39
Countable set, 33
Counterexample, 2
Counting multiplicities, 49

Counting numbers. See Natural numbers, N
Coupon stripping, 98
Course design options, xxvii–xxviii
Covariance, 267, 271–72, 273
Covering of short sale, 61, 63
Cox, John C., 406
Cox–Ross–Rubinstein binomial lattice model,

406
Credit risk, 100, 307–312
Critical point analysis, second-derivative test, 488–

90
Critical points, of function, 465
of transformed function, 490, 492
Cubes, closed, 132–33
Cumulative distribution function (c.d.f.), 255, 256,

616, 617, 621
and continuous p.d.f.s, 616
and discrete p.d.f.s, 288
discretization of, 622, 623
joint, 257, 258

Death, probabilities of, 316
Decidability, 4, 24
Decreasing price function, 139
Dedekind, Richard, 31, 41
Dedekind cuts, 41
Deduction. See Inference
Deductive reasoning, in two or more steps, 19
Definite integral, 585
Degenerate probability density, random variable,

351
de Moivre, Abraham, 236, 369
De Moivre–Laplace theorem, 368–77
and central limit theorem, 383
and random variable sums and averages, 381
De Morgan, Augustus, 121
De Morgan’s laws, 121–22
and topology, 124, 129
Dense spaces, 166
Dense subset, 40, 131
Density function, probability. See probability

density function
Denumerable set, 33, 38, 38–39
Dependence of sequence of random variables, 358,

360–62
Derivative (calculus)
approximation of, 504–505
bounded, 465
calculation of, 454–62
convergence of sequence of, 478–88
for series of function, 481
first, 452–54
higher order, 466–67
and integrals, 581–87
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Derivative (calculus) (cont.)
of price functions, 521
product rule for, 469
properties of, 462–65
relative, 510
second, 488–90, 492, 494
and Taylor series, 467–73

Derivatives (financial)
European-style, 660, 661

Derivatives market, 52
Dickson, Leonard Eugene, 73
Di¤erence, between sets, 121
Di¤erentiability of functions, 452–54, 464, 493
and concavity or convexity, 496–97
infinite, 466, 471
for bond pricing, 509–10

Di¤erentiability of power series, 481–88
Di¤erential of function, 647
Direct or Cartesian product, 71
Direct conditional statement, 17
Direct method of proof, 6, 19
Disconnected set, 131
Discontinuous functions, 425–28
Discontinuous price function, 58
Discount, bond sold at, 58
Discounted dividend model, DDM, 60, 217, 506
Discounted value, of series of cash flows, 506
Discounting, continuous, 641–44
Discrete probability density functions, 287–88
binomial distributions, 290–92
discrete rectangular distribution, 288–90
geometric distributions, 292–93
and moment-generating or characteristic function,
278

multinomial distribution, 293–96
negative binomial distribution, 296–99
Poisson distribution, 299–301

Discrete probability theory. See Probability theory,
discrete

Discrete random variable, 254–55
continuitization of, 664
moment-generating function and characteristic
function for, 278, 484–85

Discrete random vector, 257
Discrete rectangular distribution (discrete uniform

distribution), 288–90
Discrete sample space, 233–34, 235, 237, 242, 243,

246
Discrete time European option pricing
lattice-based, 329–36
scenario-based, 336–37

Discrete uniform probability density function
(p.d.f.), 303

Discretization
of continuous distribution, 620–24

of random variable, 641
normal, 622
of sample space, 620
of unit normal distribution, 621
Discretization error, 406, 409
Disjunction (truth tables), 12
mathematical vs. common-language version of,

12–13
Distance function, 82. See also Metric
Distributional dependence on Dt, binomial lattice,

395–96
Distribution function (d.f.). See Cumulative

distribution function
Distributive law, in vector spaces, 72
Divergence
of harmonic series, 180–81, 589–91
of infinite series, 177
of numerical sequences, 146, 147
Dividend rate, 59
Dividends, in common-stock pricing, 60
Doctrine of Chances, The (de Moivre), 236
Dollar convexity, 512, 519
Dollar duration, 512, 519
Domain, of function, 50, 418
Dot product, 74. See also Inner product
Dummy variable, 583
Duration
approximation of, 511, 651–54
with convexity adjustment, 511
modified vs. Macaulay, 510–11
of price of security, 510–14, 516–17
rate sensitivity of, 513–14

En (n-dimensional Euclidean space), 71. See also
Euclidean space of dimension n; Rn

Ease of sale, liquidity, 137
E¤ective convexity, 513
E¤ective duration, 513
Embedded options, 512–13
Empty set, axiom of, 119, 120
Empty sets, 41
Enumeration, 33
Epsilon switch in asset allocation, 323–24
Equality, in axiomatic set theory, 121
Equity price models, binomial lattice, 392–400
Equity price models in discrete time, 325–29
Equity prices, limiting distribution of, 396–400
Equivalence (equivalence relation), 89
of metrics, 88–93
of nominal rates, 57
of term structures, 98–100
Equivalence relations and classes, 89–90
Equivalent topologies, 129–30
Error
discretization, 406, 409
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rebalancing, 410–11
rounding, 52
Error estimates, 510
and power series, 655, 656
and Simpson’s rule, 613, 659
for trapezoidal approximation, 612, 657
Error term in Taylor polynomial, 468, 473–78,

598–601
Estimation error, 409
Euclid of Alexandria, 5, 6, 34, 35, 71
Euclidean geometry, 5–6
Euclidean space of dimension n (Euclidean

n-space), En, Rn, 71–73
as applied to finance, 93–101
inner product inequalities for Rn, 75–77
norm inequalities for Rn, 77–82
standard norm and inner product for Cn, 74
standard norm and inner product for Rn, 73–74
Euclid’s algorithm, 36
Euclid’s Elements, 5–6, 7, 34, 71
Euclid’s lemma, 35, 36
Euler, Leonhard, 47, 591
Euler constant, 591
Euler’s formula, 47, 277, 458, 459
Euler’s identity, 47
European binary call option, 662–63
European call option, 330
Black–Scholes–Merton formula for, 405, 547, 548
illustration of, 402–404
European option, 329, 661
European option pricing, discrete time
lattice-based, 329–36
scenario-based, 336–37
European put option, 330
Black–Scholes–Merton formula for, 405, 548
European-style derivative, 660, 661
Events, 234–35
Ex ante explanation, 325
Excluded middle, law of, 20
Existence theorems in mathematics, 580
Existential quantifier, 11, 15
Expectation formulas, 265, 618
and sample data expectations, 278
Expectation formulas, common, 264–77, 624–

26
Expectations. See Expected values
Expected present value
of insurance premium, 317
of option, 334
of payo¤s, 331
Expected return, and risk, 525
Expected utility, maximizing of, 333, 523
Expected value calculations, 618
Expected values (expectations), 264–66, 619
in aggregate loss model, 311

conditional, 267
and covariance, 271
joint, 266–67
and joint probability density functions, 266
of sample mean, 281
of sample variance, 283
Exponential probability density function, 630
Exponential function
derivative of, 457–58
natural exponential, 461
power series, 275
Taylor series expansion of, 477
Exponential series, 476
Exponential utility function, 528
Ex post explanation, 325
Extensionality, axiom of, 119, 120

Factorial function, 247–48
Factorial notation, 467
Factorization, unique, 33, 34, 35
‘‘Fair bet,’’ 236, 237
‘‘Fair coin,’’ 232
Fairness, liquidity as measure of price, 137–38
Fair values of assets, 515
Fat tails, 325, 634
Feasible solution space, 94
Field, 38
Finance, applications to
and calculus (di¤erentiation)
asset–liability management, 514–21
Black–Scholes–Merton option-pricing formulas,
547–49

constrained optimization, 517
continuity of price functions, 505–506
duration and convexity approximation, 509–14,
516–17

the ‘‘Greeks,’’ 521–22
interval bisection, 507–508
minimal risk asset allocation, 508–509
optimal risky asset allocation, 528–31
risk-neutral binomial distribution, 532–43
special risk-averter binomial distribution, 543–
47

utility theory, 522–28
and calculus (integration)
approximating integral of normal density, 654–
60

continuous discounting, 641–44
continuous stock dividends and reinvestment,
649–51

continuous term structures, 644–49
duration and complexity approximations, 651–
54

generalized Black–Scholes–Merton formula,
660–75
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Finance, applications to (cont.)
and convergence, 167–71
of discrete probability theory
asset allocation framework, 319–24
discrete time European option pricing, 329–37
equity price models in discrete time, 325–29
insurance loss models, 313–14
insurance net premium calculations, 314–19
loan portfolio defaults and losses, 307–13
and Euclidean space, 93–101
and functions, 54–63
of fundamental probability theorems
binomial lattice equity price models, 392–400
insurance claim and loan loss tail events, 386–92
lattice-based European option prices, 400–406
scenario-based European option prices, 406–11
and interval bisection, 168–71
and mathematical logic, 24–27
of metrics and norms, 101–11
and number systems, 51–53
and numerical series, 215–24
of set theory, 134–39

Finance literature, xxiii–xxiv
Finance quants, xxiv, xxv
Finance references, 685–87
Financial intermediary, 515
First derivative, 452–54
First mean value theorem for integrals, 579, 580,

600, 648
First-order predicate calculus (first-order logic), 24
Fixed income hedge fund, 515
Fixed income investment fund, 646–48
Fixed income portfolio management, 516
Flat term structure, 402
Formal symbols, 24, 31
for natural numbers, 32
for set theory, 118

Formula
as function, 54
in truth tables, 11, 24

Forward contract, 62
Forward di¤erence approximation, 504
Forward price functions, 62–63, 506
Forward rates, 95, 97–98, 645–46
parameters for, 96

Forward shifts, 187
Forward value of surplus, 519
Fourier, Jean Baptiste Joseph, 206
Fourier series, 206
Fraenkel, Adolf,
Free variable, 11
Frequentist interpretation, probability, 235–36, 236
and ‘‘fair bet,’’ 236

Friction, of real world markets, 335

Fs-set (F-sigma set), 571
Functions, 49–51, 54, 418–20. See also Analytic

function; Characteristic function; Cumulative
distribution function; Discrete probability
density function; Moment-generating function;
Probability density function; other types of
function

approximating derivatives of, 504–505
approximation of, 417, 440, 450–52, 465–66, 468,

470
complex-valued, 50, 418
of a complex variable, 50, 559
composite, 420
concave, 79, 80, 494–500, 501
continuous, 171–72, 417, 420–33, 437–39
‘‘almost’’ continuous, 422–25
and calculation of derivatives, 454–62
composition of, 432
concave and convex, 494–500, 501
and continuously payable cash flow, 643
convergence of sequence of, 426–27, 442–48,
603–605

and convergence of sequence of derivatives, 478–
88

and critical points analysis, 488–94
at the endpoint(s) of a closed interval, 421
exponential and logarithmic, 432–33
first derivative of, 452–54
higher order derivatives, 466–67
Hölder and Lipschitz continuity, 439–42
and improvement of approximation, 450–52,
465–66, 467–73

on an interval, 421
inverse of, 449
and metric notion of continuity, 428–29
at a point, 421, 429
and properties of derivatives, 462–65
Riemann integral of, 560–66
sequence of, 603–605
and sequential continuity, 429–30
series of, 445
sign of, 437
and Taylor series, 467–73
and Taylor series remainder, 473–78
and topological notion of continuity, 448–50
and uniform continuity, 433–37
convex, 87, 200, 494–500, 501
‘‘decreasing’’ and ‘‘increasing,’’ 497
di¤erentiable, 493
concave and convex, 496–97
and relative minimums or maximums, 464
di¤erential of, 647
discontinuous, 425–28
financial applications of, 54–63
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inflection point of, 489, 499
integral of, 559 (see also Integration)
inverse, 51, 419
and Jensen’s inequality, 500–503
as many-to-one or one-to-one, 51, 419
multivariate, 50, 654
one-to-one and onto, 184
piecewise continuous with limits, 662
point of inflection, 489, 499
ratio, 226, 488, 520, 534
rearrangement, for series, 184
relative maximum or minimum of, 464
and Riemann integral, 560–74
examples of, 574–79
and Riemann–Stieltjes integral, 682
‘‘smooth,’’ 417
transformed, 490–94
unbounded, 465, 619
utility, 333, 522–23, 527–28, 529
Fundamental probability theorems. See Probability

theorems, fundamental
Fundamental theorem of algebra, 49
Fundamental theorem of arithmetic, 35, 38
Fundamental theorem of calculus
equivalence of statements of, 586
version I, 581–84, 592, 609, 643
version II, 585–87, 598, 647, 648, 652
Futures contract, 330

Gambling choices, and utility theory, 524
Gamma distribution, 630
Gamma function, 630–32, 638–39
Gauss, Johann Carl Friedrich, 48, 378
Gaussian distribution, 378
Gd-set (G-delta set), 571
General binomial random variable, 290, 291
Generalized Black–Scholes–Merton formula, 660–

75
and continuitization of binomial distribution,

666–68
and limiting distribution of continuitization, 668–

71
and piecewise continuitization of binomial

distribution, 664–66
Generalized Cantor set, 143
Generalized complex numbers, 73
Generalized continuum hypothesis, 143
Generalized geometric distribution, 315
Generalized n-trial sample space, 245
Generally accepted accounting principles (GAAP),

515
General metric space sequences, 157–62
General moments of discrete distribution, 214
General optimization framework, 110–11

General orderings, in combinatorics, 248–52
Generation of random samples, 301–307
Geometric distribution, 292–93, 314–15
and negative binomial, 296–97
Geometric sequence, 180
Geometric series, 180
alternating, 185
and ratio test, 195
Geometry, 5–6. See also at Euclid
Global maximum or minimum, 464
Gödel, Kurt, 24
Gödel’s incompleteness theorems, 24
Graves, John T., and octonions, 73
Greatest common divisor (g.c.d.), 36
Greatest lower bound (g.l.b.), 152–57, 561
Greedy algorithm, base-b expansions, 43–44
‘‘Greeks,’’ the, 521–22
Gregory, James, and Taylor series, 468
Group under an operation, 37
Growth rate series, 325–26

Half-interval adjustment (half-integer adjustment),
for normal approximation, 380

Hamilton, Sir William Rowan, and quaternions,
73

Harmonic series, 162, 180–81
alternating, 183, 184–85, 478
divergence of, 180–81, 589–91
power harmonic series, 181–82, 197
Hedge fund, fixed income, 515
Hedging portfolio or strategies, 100, 516
Heine, Eduard, 134
Heine–Borel theorem, 131, 133, 134, 136, 151, 435
and numerical sequences, 157
and convergence, 157–58
and general metric space, 158

Higher order derivatives, 466–67
Higher sample moment estimation formula, 286–

87
Hilbert, David, 206
Hilbert space, 202–206
financial application of, 223–24
Histogram, 325
Historical simulation, 321–23
Hölder, Otto, 78, 439
Hölder continuity, 439–42, 463–64
and approximation, 451
Hölder’s inequality, 78, 80, 81, 203
Homogeneous distance function, 83
Hypothesis of the conditional, 16

i.i.d. See at Independent and identically distributed
Imaginary numbers or units, 45, 52, 73, 277, 418,

559–60
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Immunization
against risk, 517–18
for surplus, 518–20
for surplus ratio immunization, 520–21

Immunized risk profile, 517
Implication, 6
Implied yield, implied yield to maturity, 138
Improper integrals, 587–92
Incompleteness theorems of Gödel, 24
Increasing payment security, price of, 220–22
Increasing perpetuity, price of, 218–20
Indefinite integral, 585
Independence of sequential random variables, 358,

359–60
Independent events, 240–41
vs. uncorrelated events, 272

Independent and identically distributed (i.i.d)
binomials, 326, 368

Independent and identically distributed (i.i.d.)
random variables, 280, 352, 640

Independent random variables, 261–64, 272, 308,
309

Independent trials, 241–42, 278, 279
Indeterminate cases, in tests of convergence, 191
Indexed collection of sets, 121
Indirect method of proof, 7, 19–21
Individual loss model, 307–10
Induced topology, 130
Induction, mathematical induction, proof by, 21–

23
Induction axiom, 32
Inference, rules of, 4, 6–7, 24
Infimum, 152–157
Infinitely di¤erentiable function, 466, 471
Infinite products, theory of, 360, 475
Infinite product sample space, 359
Infinite series
associated with sequence, 177
convergence of, divergence of, 177

Infinity, axiom of, 119, 120
Inflection point, 489, 499, 658
Information processes, 325
Inner product, 74, 75, 202
for Cn, 75
and Cauchy–Schwarz inequality, 273
and complete normed linear space, 206
and Hölder’s inequality, 203
norm associated with, 74
for Rn, 74

Inner product inequalities
for Rn and Cn, 75–80
for lp, 200–203

Insurance choices, and utility theory, 523–29
Insurance claim and loan loss tail events, 386–92

Insurance loss models, 313–14
Insurance net premium calculations, 314–19
Integer lattice model, 189–90
Integers, Z, 37–39, 50
Integer-valued function, 50
Integrals
in Black–Scholes–Merton formula, 672–73
definite and indefinite, 562, 585
of function, 559
improper, 587–92
mean value theorem for, 579
first, 579–81, 600, 648
second, 599–602, 611
normal density of (approximation), 654–60
Integral test, for series convergence, 191, 588–91
Integrand, 562
Integration, 559–60
and continuous probability theory
common expectation formulas, 624–26
continuous probability density functions, 626–40
discretization of continuous distribution, 620–24
moments of continuous distribution, 618–19
probability space and random variables, 613–18
and convergence of sequence of integrals, 602–609
formulaic tricks for, 592–98
improper integrals, 587–92
integrals and derivatives, 581–87
mean value theorem for integrals, 579–81
numerical, 609
by parts, 594–96
Riemann integration, 560–74
examples of, 574–79
Riemann–Stieltjes integration, 682–83
and Simpson’s rule, 612–13
by substitution, 592–94
and Taylor series with integral remainder, 598–

602
and trapezoidal rule, 609–12
Interchanging of limits (functions), 445
Interest rate risk, in asset–liability management,

514
Interest rates, nominal, 56–57
continuous, 641–43
Interest rate term structures, 95–100
continuous, 644–48
Intermediate value theorem, 439, 494
International accounting standard (IAS), 515
Intersection of sets, 121
Interval, 122–23
with endpoints equal to the limits superior and

inferior, 156–57
open, closed, semi-open, 122
in definition of continuous function, 421
in definition of random variables, 254, 616
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Interval bisection, 96, 99, 138, 507–508
financial applications of, 168–72
Interval bisection algorithm, 170
Interval bisection assumptions analysis, 170–71
Interval of convergence, of power series, 207,

209
Interval tags, 620, 664
Intuition, 134–35, 279
as absent from mathematical logic, 23
Inverse distribution function, of discrete random

variable, 303–304
Inverse function, 51, 419
Inverted term structure, 402
Investment assets, 330
Investment choices, and utility theory, 523
Irrational numbers, 39, 40, 41
and financial applications, 51
as uncountable, 44
Isolated point, 130
Isometric, as for metric spaces, 167
Ito’s lemma, 15

Jensen, Johan, 503
Jensen’s inequality, 500–503
and risk preference, 524
Joint cumulative distribution function ( joint

distribution function), discrete, 257, 258
Joint expectation, 266–67
Joint probability density function ( joint probability

function), discrete, 257
and Cauchy–Schwarz inequality, 272
characteristic function for, 278
conditional probability functions of, 260
and expected value calculations, 266, 273
and independent random variables, 264
and laws of total expectation and total variance,

270
and law of total probability, 261, 270
marginal probability functions of, 259, 260

Kolmogorov, Andrey, 363
Kolmogorov’s inequality, 363–65
k-year deferred life annuity, 319

Lagrange, Joseph-Louis, 475, 599
Lagrange form of Taylor series remainder, 475–78,

599, 600–601
Laplace, Pierre-Simon, and De Moivre–Laplace

theorem, 369
Large numbers, strong law of, 357–58, 359, 362–

63, 365–68
Large numbers, weak law of, 352–57, 362
Lattice
binomial model of stocks, 326–28, 399, 400

n-dimensional integer, 72
positive integer, 189–90
Lattice-based European option pricing, 329–36
Lattice-based European option prices as Dt ! 0,

400–406, 661
Lattice-based equity price model as Dt ! 0, 392–

400
Lattice model, nonrecombining, 329, 336
Law of cosines, 113
Law of the excluded middle, 20
Law of large numbers
strong, xxxiii, 357–58, 359, 362–63, 365–68
weak, xxxiii, 352–57, 362
Law of total expectation, 268, 269, 270
Law of total probability, 239–40, 261, 270
Law of total variance, 269, 270
Least upper bound (l.u.b.), 42, 152–57, 561
Lebesgue, Henri Léon, 134
Lebesgue integral, 574
Legal trial, logic in, 1–2, 3
Leibniz, Gottfried Wilhelm, 486
Leibniz rule, 454, 486, 488
Lemma, 15
Length of point in Rn, 73. See also Norm in Cn,

73
LGD (loss given default) model, 307
Liability-hedging, 516
Liar’s paradox, 8
Life annuity, 318–19
Life insurance periodic net premiums, 319
Life insurance single net premium, 317–18
Limit
definition of, 359
for moment-generating functions, 289
of numerical sequence convergence, 147, 148,

149–52
in metric space, 159

Limit inferior, 152–57
and ratio test, 195
Limiting distribution of binomial model, 368, 369,

532, 534, 538–43, 545, 546
and Black–Scholes–Merton formula, 405, 663
of ‘‘continuitization,’’ 668–71
of equity prices, 396–400
Limit point, 130, 148
Limits of integration, 562
Limit superior, 152–57
and ratio test, 195
Linear approximation, 223
Linear combination of vectors, 204
Linear metric spaces, 160
ly-norm (‘‘l infinity norm’’), 78, 82, 108–109
optimization with, 104–105
Lipschitz, Rudolf, 89, 439
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Lipschitz continuity, 439–42, 454
of concave and convex functions, 495

Lipschitz equivalence of metrics, 89, 90, 91–92,
128

and general metric space, 159
and lp-norms, 90–91
norms as, 92
as equivalence relation, 89
and topological equivalence, 92–93

Liquidity, of security, 137
Little o convergence, 440–41, 442, 466
Loan portfolio defaults and losses, 307–13
Loan-pricing functions, 59
Loan recovery, 308
Logarithmic utility function, 528
Logic, 1–2
axiomatic theory in, 4–6
first-order, 24
inferences in, 6
mathematical, xxviii–xxix, 3, 7, 23–27
in mathematics, 2–4
and paradoxes, 7–10
propositional
framework of proof in, 15–17
method of proof in, 17–23
and truth tables, 10–15

Logical equivalence, 17
Logical operators, 24
Lognormal distribution, 399, 637–40
Log-ratio return series, 325–26
Long position in a security, 62
Loss given default (LGD) model, 307
Loss model
aggregate or collective, 310–13
individual, 307–10

Loss ratio, 308
Loss ratio random variable, 386–87, 388, 391
Loss simulation, 388–91
Lottery, and utility theory, 524
Lowercase letters, in probability theory notation,

280
Lower Riemann sum, 560
lp-ball definitions, 85–86
lp-metrics, 85, 201
lp-norms, 77
and Lipschitz equivalence, 90–91
and real lp-space, 196
and sample statistics, 101
tractability of, 105–10

Lp-spaces, 202
pronunciation of, 196

lp-spaces, 196–99
Banach spaces, 199–202

Hilbert space, 202–206
pronunciation of, 196
l2-norm, optimization with, 105
Lyapunov, Aleksandr, 385
Lyapunov’s condition, 385–86

Macaulay, Frederick, 510
Macaulay duration, 510–11
Maclaurin, Colin, 468
Maclaurin series, 468
Mappings, functions as, 50, 419
Marginal distributions, 258–59
Marginal probability density functions, 258–61,

266–70
and independent random variables, 264
and laws of total expectation and total variance,

270
and law of total probability, 261, 270
Market-value neutral trade, 116
Markov, Andrey, 351
Markov’s inequality, 351
Mathematical finance, xxiii
Mathematical logic, xxviii–xxix, 3, 7, 23–24
as applied to finance, 24–27
Mathematics, logic in, 2–4
Mathematics references, 685–88
‘‘Math tool kit,’’ xxiv–xxv
Maximizing of expected utility, 333
Maximum, 438, 489
global, 464
relative, 464, 489, 490
Maximum likelihood estimator (MLE) of the

sample variance, 283–84
MBS (mortgage-backed security), 100
Mean, 268, 624
as a random variable, 280–81
mean of, 281
variance of, 281–82
conditional mean, law of total expectation,

268
sample, 102
of sample variance, 283–84
of sum of random variables, 273
Mean value theorem (MVT), 462–63
for integrals, 579
first, 579–81, 600, 643, 648
second, 599–602, 611

Membership, in axiomatic set theory, 121
Merton, Robert C., 405. See also Black–Scholes–

Merton option-pricing formulas
Mesh size of partition, 561, 562, 609, 620
Method of substitution (integration), 592–94
Method of truncation, 353
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Metric(s), 82
as applied to finance, 101–11
and calculus, 417–18
equivalence of, 88–93
Lipschitz equivalence, 89, 90, 91–92, 128 (see also

Lipschitz equivalence)
norms compared with, 84–88
topological equivalence of, 88–93
Metric notion of continuity for functions, 428–29
Metrics induced by the lp-norms, 85
Metric space(s), 82–83, 162, 165
compact, 160–61
complete, 164
and Cauchy sequences, 165–67
and Heine–Borel theorem, 134
and numerical sequences, 157–62
subsets of, 128–29, 130–33
m.g.f. See Moment-generating function
Minimal number of axioms, as requirement, 5, 15
Minimal risk asset allocation, 508–509
Minimum, 438, 489
global, 464
relative, 464, 489, 490
Minkowski, Hermann, 78
Minkowski’s inequality, 78, 81, 200, 201
Mode, of binomial, 291–92
Modified duration, 510–11
and Macaulay duration, 511
‘‘Modus moronus,’’ 28
Modus ponens, 7, 16–17, 24, 26
and modus tollens, 18
Modus tollens, 7, 18–19
Moment-generating function (m.g.f.), 275–77, 625
convergence of, 672
and discrete probability density functions, 278,

289, 291, 293, 295, 298, 301
of discrete random variable, 484–85
and limiting distribution of binomial model, 539–

40
and normal distribution, 382
sample m.g.f., 287
of sample mean, 282
uniqueness of, 347–48
Moments, of sample, 101
about the mean, 102–103
about the origin, 102
Moments of distributions, 264, 618
absolute, 274–75
central, 274, 624
and characteristic function, 277–78
conditional and joint expectations, 266–67
covariance and correlation, 271–74
expected value, 264–66, 618

mean, 268, 624
and moment-generating function, 275–77
of sample data, 278–87
standard deviation, 268–71, 624
variance, 268–71, 624
Monotonic convergence, 146, 147
Monotonic price function, 139
Monthly nominal rate basis, 53
Morgenstern, Oskar, 522
Mortality probability density function, 316–17
survival function, 317
Mortality risk, 316
Mortgage-backed security (MBS), 100
Mortgage-pricing functions, 59
Multinomial coe‰cients, 251
Multinomial distribution, 252, 293–96
Multinomial theorem, 252
Multi-period pricing, 333–36
Multivariate calculus, 91, 323, 515, 522, 625, 635
Multivariate function (function of several

variables), 50, 654
Mutually exclusive events, 237, 615
Mutually independent events, 241. See also

Independent events; Independent trials
Mutually independent random variables, 262, 264.

See also Independent and identically distributed
(i.i.d.) random variables

MVT. See Mean value theorem
m-year certain life annuity, 318
m-year certain, n-year temporary life annuity,

319

N (natural numbers), 32
Naive set theory, 117
Natural exponential, e, 458, 461
Natural logarithm series, 371–72, 477, 601
Natural numbers, N, 32–37
as closed under addition and multiplication, 33
modern axiomatic approach to, 31
Natural sciences, theory in, 3–4
n-dimensional complex space, Cn, 72
n-dimensional Euclidean space, Rn, En. See

Euclidean space of dimension n
n-dimensional integer lattice, Zn, 72
Negation, in truth table, 11, 12
Negative binomial distribution, 296–99, 314, 350
Negative correlation, 272
Negative series, 177
Neighborhood of x of radius r, 123, 127, 128
Nominal interest rates, 56–57
equivalence of, 57
Nondenumerably infinite collection, 43
Nonrecombining lattice models, 329, 336
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Norm(s), 73, 76, 77–78, 82
as applied to finance, 101–11
and inner products, 74
ly-norm (‘‘l infinity norm’’), 78, 82, 108–109
optimization with, 104–105
ly-norms, 77, 78, 90–91, 101, 105–10, 196, 492–
94

l2-norm (optimization with), 105
metrics compared with, 84–88
optimization with, 104–105
on Rn, 77–78
on real vector space X, 76
standard, on Rn, 73–74
on Cn, 74–75
and standard metric, 82

Normal probability density function, 377–78
approximating integral of, 654–60
inflection points of, 658
and moment-generating function, 382

Normal distribution function, 284, 377–80, 634–
37

Normalized random variable, 369
Normal random variable, discretization of, 622
Normal return model, and binomial lattice model,

392–96
Normal term structure, 402
Normed vector space, 76
Norm inequalities
for lp, 200–203
for Cn, Rn, 75–82

Notation, factorial, 467
nth central moment, 274, 624
nth moment, 274, 624
n-trial sample space, 242, 352, 616, 640
Null event, 237, 615
Numbers and number systems, 31
complex numbers, C, 44–49
financial applications of, 51–53
integers, Z, 37–39
irrational numbers, 39, 40, 41, 44, 51
natural numbers, N, 31, 32–37
prime numbers, 34
rational numbers, Q, 38–41, 44, 51
quaternions, 73
real numbers, R, 41–44 (see also Real
numbers)

Numerical integration, 609
Numerical sequences, 145
convergence of, 145–49
and accumulation point, 164
and Cauchy sequences, 162–67
financial applications of, 167–71
and limits, 147, 149–52

limits superior (least upper bound) and inferior
(greatest lower bound), 152–57

and metric space, 157–62
monotonic, 146, 147
divergence of, 146, 147
financial applications of, 215–24
real or complex, 145
Numerical series, 177
convergence of, 177
and pricing of increasing perpetuity, 218–20
and pricing of common stock, 218
and pricing of preferred stock, 216–17
subseries of, 183
tests of, 190–95, 588
rearrangement of, 184–90
and convergence, 184, 185, 186, 187–89, 190
in insurance net premium calculations, 315

n-year temporary life annuity, 319

Objective function, 94
in constrained optimization, 111
Octonions, 73
O¤er (ask) price, 137
One-to-one function, 184
One-sided derivative, 452
Onto function, 184
Open ball about x of radius r, 87, 123, 127, 128
Open cover, 131, 132
Open interval, 122, 123, 125
and continuity, 421, 429
and definition of random variable, 254, 616
open subsets of R, 122–27
Open lp-ball about y of radius r, 86
Open rectangle, 256
Open set or subset, 123–27, 135–36
in general spaces, 129–30
in metric spaces, 128–29
of Rn, 127–28
Operation, 24
Optimization, constrained, 103–10, 111, 507
and sets, 135–137
Optimization framework, general, 110–11
Option price estimates as N ! y, scenario-based,

407–409
Option pricing
Black–Scholes–Merton formulas for, 404–406,

547–49 (see also Black–Scholes–Merton
option-pricing formulas)

lattice-based European, 329–336
scenario-based European, 406–11
Options, embedded, 512–13
Orthogonality, 204
Orthonormal basis, 204, 205
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Orthonormal vectors, 204
Oscillation function, 570, 571
Outstanding balance, of loan, 59

Pairing, axiom of, 119, 120
Par, bond sold at, 58
Paradoxes, xxix, 7–10, 120–21
Parallel shift model, 515, 516
Parameter dependence on Dt, binomial equity

model, 394–95
Parseval, Marc-Antoine, 206
Parseval’s identity, 206
Parsimony in set of axioms, 5, 15
Partial sums, of a series, 177
Partition
of interval for function, 561
of random vector, 261
Par value, of a bond, 57
Pascal, Blaise, 250
Pascal’s triangle, 250–51
p.d.f. See Probability density function
Peano, Giuseppe, 31
Peano’s axioms, 31, 32
Pension benefit single net premium, 318–19
Period-by-period cash flow vectors, 100
Period returns, 325
Perpetual preferred stock, 59
Perpetual security pricing
for common stock, 217–18, 222
for preferred stock, 215–17, 222
Perpetuities, increasing, price of, 218–20
Piecewise continuity, 567, 574, 662
Piecewise continuitization, of binomial distribution,

664–66
Point of inflection, 489, 499, 658
Points (Euclidean space), 71
collection of as vector space, 72
collection of as a metric space, 82–83
Pointwise addition in Rn, 71
Pointwise convergence, 443, 444, 445
and continuity, 602
and generalized Black–Scholes–Merton formula,

671–72
and interchange of limits, 446
and power series, 483, 608
of sequence of di¤erentiable functions, 478–80
of sequence of integrals, 602, 603
and Taylor series, 473, 609
Poisson, Siméon-Denis, 299
Poisson distribution, 299–301, 417
and de Moivre–Laplace theorem, 376
Polar coordinate representation, 46
Polynomial function, derivative of, 457

Polynomials, with real coe‰cients, 45
Portfolio beta value, stock, 104
Portfolio management, fixed income, 516
Portfolio random return, 508
Portfolio return functions, 61–62
Portfolio trade, 94
Positive correlation, 272
Positive integer lattice, in R2, 189–90
Positive series, 177
Power harmonic series, 181–82, 197
Power series, 206–209, 471–72
and approximation, 655–56
centered on a, 209
di¤erentiability of, 481–88
exponential function, 477
in finance, 222
integrability of, 607–609
logarithmic function, 477, 601
product of, 209–12, 486
quotient of, 212–15, 488
Taylor series as, 482
Power series expansion, 275, 417
as unique, 483, 484
Power set, 140
Power set, axiom of, 119, 120
Power utility function, 528
Pratt, John W., 530
Predicate, 24
Preference
and asset allocation, 319–20, 324–25
and utility theory, 522–23
Preferred stock-pricing functions, 59–60, 215–17,

506. See also at Stock
Pre-image, 257, 261–62, 448, 617
of set A under f, 419
Premium, bond sold at, 58
Present value, 54–55, 96–98, 641
of bond cash flows, 56–57
of common stock dividends, 60–61, 217–18
of increasing cash flow securities, 218–22
of mortgage payments, 59
of preferred stock dividends, 59–60, 215–17
Price function approximations, 222
in asset allocation, 222–23
Price(ing) functions, 54–63, 137. See also Option

pricing; Present value
continuity of, 139, 505–506
derivatives of, 509–10, 521
Price sensitivity model, 100, 509, 521, 651
Pricing of financial derivatives, and Ito’s lemma,

15
Prime number, 34
Primitive concepts, 6
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Primitive notions
for natural numbers, 32
for set theory, 118
in probability theory, 233–34

Probability density function (p.d.f.; probability
function), 255, 616. See also Discrete
probability density function; Continuous
probability density function

conditional, 260, 261, 264, 270
continuous, 626–40
degenerate, 351
discrete, 287–300
joint, 257 (see also Joint probability density
function)

marginal, 260, 261, 264, 268, 270
mixed, 684
and random variables, 254, 616

Probability distributions, and random variables,
254, 616

Probability measures, 235–38, 615, 620, 621
Probability space, 237, 615–16
complete, 615

Probability theorems, fundamental
central limit theorem, xxxiii, 381–86
Chebyshev’s inequality, 349–52 (see also
Chebyshev’s inequality)

De Moivre–Laplace theorem, 368–77 (see also De
Moivre–Laplace theorem)

financial applications of
binomial lattice equity price models, 392–400
insurance claim and loan loss tail events, 386–92
lattice-based European option prices, 400–406
scenario-based European option prices, 406–11
Kolmogorov’s inequality, 363
strong law of large numbers, xxxiii, 357–58, 359,
363–63, 365–68

uniqueness of moment-generating function and
characteristic function, 347–48

weak law of large numbers, xxxiii, 352–57, 362
Probability theory, 231
continuous vs. discrete, 617
and random outcomes, 231–32

Probability theory, continuous
common expectation formulas, 624–26
continuous probability density functions, 626–40
beta distribution, 628, 628–29
Cauchy distribution as, 632
continuous uniform distribution, 627
exponential distribution, 630
lognormal distribution, 638
normal distribution, 377–78, 489, 499, 654–60
unit normal distribution, 378, 654
discretization of continuous distribution, 620–24
moments of continuous distribution, 618–19

probability space and random variables, 613–18
and random sample generation, 640
Probability theory, discrete, 231, 254
combinatorics, 247–52
discrete probability density functions, 287–88
binomial distributions, 290–92
discrete rectangular distribution, 288–90
geometric distribution, 292–93
generalized geometric, distribution, 314
and moment-generating or characteristic
function, 278

multinomial distribution, 293–96
negative binomial distribution, 296–99
Poisson distribution, 299–301
financial applications of
asset allocation framework, 319–24
discrete time European option pricing, 329–37
equity price models in discrete time, 325–29
insurance loss models, 313–14
insurance net premium calculations, 314–19
loan portfolio defaults and losses, 307–13
moments of discrete distributions, 264, 274–75
and characteristic function, 277–78
conditional and joint expectations, 266–67
covariance and correlation, 271
expected values, 264–66
mean, 268
and moment-generating function, 275–77, 278
of sample data, 278–87
standard deviation, 268–71
variance, 268–71
and random sample generation, 301–307
random variables, 252–54 (see also Random

variables)
capital letters for, 280
independent, 261–64
marginal and conditional distributions, 258–
61

and probability distributions, 254–56
random vectors and joint probability
distribution, 256–58

sample spaces in (see also Sample spaces)
and conditional probabilities, 238–40
events in, 234–35
independence of trials in, 236, 240–47
probability measures, 235–38
undefined notions on, 233–34

Product space, 71
Program trading, automation of, xxv
Proof
framework of, 15–17
methods of, 17–23
by contradiction, 19–21, 425, 432, 448
direct, 19
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by induction, 21–23
of theory, 31
Propositional logic, 23
framework of proof in, 15–17
methods of proof in, 17–23
truth tables in, 10–15
Propositions, 15, 31
Punctuation marks, 24
Put-call parity, 345, 548
Put option, price of, 521. See also European put

option
Pythagorean theorem, 45, 46, 74

Q (field of rational numbers), 38
Qn (n-dimensional, vector space of rationals), 197
Quadratic utility function, 528
Qualitative theory and solution, 136
‘‘Quant,’’ as in finance, xxiv, xv
Quantitative finance, xxiii
Quantitative theory and solution, 136
Quaternions, 73

R (field of real numbers), 41
interval in, 122–23
as metric space, 162, 165
as not countable, 42
numerical series defined on, 177
open and closed subsets of, 122–27
Ry (infinite Euclidean vector space), 196, 197
Rn (n-dimensional Euclidean space), 71. See also

Euclidean space of dimension n
‘‘diagonal’’ in, 86, 91, 106, 108
and lp norms, 196
metrics on, 85
as metric space, 160, 162, 165
norm and inner product inequalities for, 75–77
open and closed subsets of, 127–28
Radian measure, 46
Radius of convergence, of power series, 207, 209,

210, 483, 486, 487
Random outcomes, 231
stronger vs. weaker sense of, 231–32
Random return, portfolio, 508
Random sample, 241–42, 278–80
generation of, 301–307, 640–41
from X of size n, 280
Random variable, 62, 252–54, 279, 281, 287, 613.

See also Discrete random variable
in aggregate loss model, 313
binomial, 290, 291, 377, 403
capital letters for, 280
continuously distributed, 616
degenerate, 351
discretization of, 641

and expected values, 266
independent, 261–64
independent and identically distributed, 280, 352
in individual loss model, 308
interest rates as, 314
and joint probability distributions, 257–58
loan loss ratio, 386–87, 388, 391
marginal and conditional distributions, 258–61
mean of sum of, 394
normalized, 369, 384
and probability distributions, 254–56
and random vectors, 256–57
and strong law of large numbers, 357–68 (see also

Strong law of large numbers)
summation of, 397
variance of sum of, 273, 394
and weak law of large numbers, 352–57 (see also

Weak law of large numbers)
Random vector, 256–57
and joint expectations, 266–67
partition of, 261
and random sample, 279
Random vector moment-generating function, 278
Range
of function, 50, 418–19
branches in, 419
and Riemann integral, 574, 578
of potential p.d.f.s, 288, 626
of random variable, 254, 255, 287, 616
Rate sensitivity of duration, 513–14
Ratio function, surplus, 520
Rational function, 431
derivative of, 457
Rational numbers, Q, 38–41
as countable, 44
and financial applications, 51
Ratio test, for series convergence, 195
Real analysis, 152, 223, 231, 235, 243, 278, 347,

362, 614, 615, 619, 625
and Borel sigma algebra, 618
and Lp-space, 196, 202
and L2-space, 206
and Riemann integral, 579
Realization, of random variable, 280
Real linear metric spaces, 160
Real lp-space, 196, 199, 200
Real numbers, R, 40, 41–44, 50, 71, 347, 350, 419–

20, 459–60
natural ordering of, 559
Real sequence, 145
Real-valued function, 50
Real variable, 50
and calculus, 559
continuous complex-valued function of, 429
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Real vector spaces, 72
Real world binomial distribution as Dt ! 0, 396–

400
Real world binomial stock model, 335
Rearrangement, of a series, 184–90, 398
Rearrangement function, 184
Rebalancing error, option replication, 410–11
Rebalancing of portfolio, 335
Recombining lattice model, 329, 406, 407
Reductio ad absurdum, 19–21
Reflexive relations, 89
Regularity, axiom of, 119, 120
Reinvestment, continuous model, 649–51
Relative maximum and minimum, 464, 489, 490
Relative topology, 130
Remainder term, Taylor series
Lagrange form, 473
Cauchy form, 599

Replacement, axiom of, 119, 120
Replication
of forward contract, 62, 98–99
and option pricing, 331, 335, 400–401, 406, 409–
11
in Black–Scholes–Merton approach, 405

Reverse engineering, 436–37
Riemann, Bernhard, 186, 559, 569, 572
Riemann existence theorem, 572
Riemann integrability, 561–62, 569, 572–74, 578,

603–605, 607–608
Riemann integral, 605, 662
without continuity, 566–74
of continuous function, 560–66
and convergence, 606
examples of, 574–79
and improper integrals, 587
sequence of, 605

Riemann series theorem, 186–87
Riemann–Stieltjes integral, 682–83
Riemann sums, 560, 574, 577, 580, 583
as bounded, 605, 606
in duration approximation, 652, 653
limits of, 568, 589, 605
and Simpson’s rule, 658
and trapezoidal rule, 610, 657
upper and lower, 609, 656–57

Risk
in optimal asset allocation, 528–31
and utility functions, 524–27

Risk aversion
absolute (Arrow–Pratt measure of), 530–31
and Sharpe ratio, 531

Risk-averter, 524, 530, 531
Risk-averter binomial distribution as Dt ! 0,

special, 543

Risk-averter probability, special, 403, 527
Risk evaluation, and ‘‘Greeks,’’ 522
Risk-free arbitrage, 320, 331
Risk-free asset portfolio, 320, 387–88
Risk-free rate, 401–402, 406, 521, 525, 661
Risk immunization, 514–20
Risk neutral, 524
Risk-neutral binomial distribution
as Dt ! 0, 532–43
and risk-neutral probability, 533–38
Risk-neutral probability, 332, 403–404, 526–27,

532, 533–38
Risk preferences, 522
Risk premium, 525
Risk seeker, 524, 530, 531
Robustness of mathematical result, assumption of,

25
Rolle’s theorem, 463, 464, 469
Ross, Stephen A., 406
Rounding errors, 52
Rubinstein, Mark, 406
Rules of inference, 4, 6–7
modus ponens, 7, 16–17, 18, 24, 26
modus tollens, 7, 18–19
Russell, Bertrand, 10, 117
Russell’s paradox, 10, 117, 139–40

Sample data, moments of, 278–80
higher order, 286–87
sample mean, 280–81
sample variance, 282–86
Sample mean, 280–81
mean of, 281
variance of, 281–82
Sample moment-generating function, 287
Sample option price, 337, 407
Sample points, 233, 235, 239, 240, 243, 613, 620,

640
and binomial models, 249
in discrete vs. general sample space, 617
and independent random variables, 263
lowercase letters for, 280
as undefined notion, 233
Sample spaces
and conditional expectation, 267
and conditional probabilities, 238–40
discrete, 233–34, 235, 237, 242, 243, 246
discretization of, 620
events (trials) in, 234–35, 613
independence of trials in, 236, 240–41, 640
and absence of correlation, 272
for multiple sample spaces, 245–47
for one sample space, 241–45
infinite product, 359
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n-trial, 242, 616, 640
and probability measures, 235–38
and random variables, 253
as undefined notion, 233
Sample statistics, 101–103
Sample variance, 282
mean of, 283–84
variance of, 284–86
Scalar multiplication in Rn, 71
Scalars, 71
Scenario-based European option prices as N ! y,

406–11
Scenario-based option-pricing methodology, 336–

37, 406
Scenario-based prices and replication, 409–11
Scenario model, binomial, 328–29
Scholes, Myron S., 405. See also Black–Scholes–

Merton option-pricing formulas
Schwarz, Hermann, 75
Secant line, and derivative, 452
Second-derivative test, critical points, 488–90, 492,

494
Second mean value theorem for integrals, 599–602
Securities, yield of, 137–39. See also at Bond; Price;

Stock
Semi-open or semi-closed interval, 122, 123
Sequences, 158
bounded, 158
in compact metric space, 161
of continuous functions, 426–27, 438, 442–48
of di¤erentiable functions, 478–80
divergent, 159
of integrals, 602–605
and lp-spaces, 197
subsequences of, 158, 434 (see also Subsequence)
Sequential continuity (functions), 429–30
Series. See also Numerical series
and lp-spaces, 196–99
power series, 206–209
product of, 209–12
quotient of, 212–15

Series convergence, integral test for, 191, 588–91
Series of functions, and convergence, 445, 481,

606–607
Set, 118
empty, 41
Fs and Gd, 571
of measure 0, 126, 569
Set of limit points, 130, 152
Set of measure 0, 126, 569
Set theory, 117
axiomatic, 117–21 (see also Axiomatic set theory)
financial applications of, 134–39
naive, 117

and paradoxes, 10
and probability theory, 233
Sharp bounds, 91
Sharpe, William F., 531
Sharpe ratio, 531
Shifted binomial random variable, 290–91, 377
Short position in a security, 62
Short sale, 61
Short-selling, 62
Sigma algebra, 235, 238, 614–15
Borel, 618
finer and coarser, 614–15
Signed areas, 560
Signed risk of order OðDiÞ, duration as, 517
Simple ordered samples, 247–48
Simpson’s rule, 477, 612–13, 658–60
Simulation, historical, 321–23
Simulation, loss, 388–91
Singulary connective, 11
Smooth functions, xxxiv, 417. See also Continuous

functions; Di¤erentiability of functions
Sparseness, of random variable range, 304
Special risk-averter binomial distribution as

Dt ! 0, 543
Special risk-averter probability, 403
Speed benchmark, and convergent series, 194
Spot rates, 58, 95, 96–97, 645, 648–49
and bond yield vector risk analysis, 100
conversion to bond yields, 99
time parameters for, 96
Spurious solution, 53
Square roots and irrational numbers, 39
Standard binomial random variable, 291, 292, 302,

361, 377
shifted, 290–91
i.i.d., 368
Standard deviation, 101, 102, 268, 625
and strong law of large numbers, 367
and weak law of large numbers, 353
Standard inner product, 74
absolute value of, 80
on Cn, 75
on Rn, 74
Standard (unit) normal density function, 378
Standard metric, 82
Standard norm
on Cn, 74–75
on Rn, 73–74
and standard metric, 82
Statement, in truth tables, 10, 24
Statement calculus, 23. See also Propositional logic
Statement connectives, 11
Statistics (discipline), 301
Statistics, sample, 101–103
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Statutory accounting, 515
Step function, 255, 574, 609
Stieltjes, Thomas Joannes, 682
Stirling, James, 371
Stirling’s formula (Stirling’s approximation), 371
Stochastic calculus, 405
Stochastic independence, 240–41, 262
Stochastic processes, 223, 314, 646
and forward rates, 645–46

Stock dividends, continuous, 649–51
Stock price data analysis, 325–26
Stock price paths (stock price scenarios), 328, 329
Stock-pricing functions
for common stock, 60–61, 217–18, 506
for preferred stock, 59–60, 215–17, 506

Strict concavity, 79, 495
Strict convexity, 495
Strike price, 330
Strong law of large numbers, xxxiii, 357–58, 359,

362–63, 365–68
Subsequence, 158, 434
of numerical sequence, 145
and boundedness, 151, 152, 155

Subset, axiom of, 119, 120
Subsets
in axiomatic set theory, 121
open and closed
in general spaces, 129–30
in metric spaces, 128–29

Substitution, method of (integration), 592–94
Supremum, 152–57
Surplus immunization, 518–20
Surplus ratio, 520
Surplus ratio immunization, 520–21
Surplus risk management, 514
Survival function, 317
Survival model, 315–16
Syllogism, 19, 27. See also Logic
Symbols, 24
Symmetric relation, 89

Tail events, insurance claim and loan loss, 386–92
Taking expectations, 264, 618
Tangent line, and derivative, 452
Target risk measure function, 517
Tautology, 14, 24
Taylor, Brook, 468
Taylor polynomial, 470–71, 471, 505
nth-order, 468

Taylor series expansions, 459, 467–78, 504–505
and analytic functions, 482
convergence of, 470, 477, 482, 487–88, 600, 609
and derivative of price function, 522
division of, 487–88

with integral remainder, 598–602
product of, 486–87
remainder of, 473–78, 600
and surplus immunization, 519
uniqueness of, 482
Temporary life annuity, n-year, 319
Term life insurance, 317
Term structures of interest rates, 95–100, 402, 644–

48
Tests
of convergence for series, 190–95, 588–91
second-derivative, for critical points, 488–90, 492,

494
Theorems, 4, 15, 24, 25–26, 31. See also Existence

theorems in mathematics; Fundamental
theorem of algebra; Fundamental theorem of
arithmetic; Fundamental theorem of calculus;
Probability theorems, fundamental; other
specific theorems

‘‘Time to cash receipt’’ measure, Macaulay
duration formula as, 511

Time series of returns, 325
Topological equivalence, 92–93
Topology, 129
and continuous functions, 448–50
equivalent, 129–30
induced by the metric d, 129
relative or induced, 130
Total expectation, law of, 268, 269, 270
Total probability, law of, 239–40, 261, 270
Total variance, law of, 269, 270
Transformation, 50
Transformed functions, critical points of, 490–94
Transitive relation, 89
Translation invariant distance function, 83
Trapezoidal rule, 609–12, 657–58
Triangle inequality, 47–48, 76–77, 83, 85
and Minkowski inequality, 200
and norms, 78
for Riemann integrals, 565
Trigonometric applications, of Euler’s formula,

47
Truncation, method of, 353
Truth
of axioms, 5
of ‘‘best theorems,’’ 25–26
Truth tables, 10–15

Unary connective, 11
Unbiased sample variance, 282, 283
Unbounded function, 465
expected value of, 619
Unbounded interval, 122–23
Unbounded subset, 131
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Uncountably infinite collection, 43
Uniform continuity, 433–37
on an interval, 434
for price functions, 505–506
Uniform convergence (functions), 443–44, 445,

446–48, 479–81, 604–605, 607
Uniformly distributed random sample, 302–307
Union, axiom of, 119, 120
Union, of sets, 121
Unique factorization, 33, 34, 35
Unit circle, 46
Unitizing, relative vs. absolute in asset allocation,

320
Unit (standardized) normal density function, 378,

654
Unit normal distribution, 621, 634
Univariate function, 50
Univariate function of a real variable, 50
Universal quantifier, 11, 15
Unsigned risk of order OðDi2Þ, convexity as, 517
Upper Riemann sum, 560
Urn problem, 239–40, 240, 241
vs. dealing cards, 253
and loan portfolio defaults and losses, 307
with or without replacement, 234, 247–48
Utility function(s), 333, 522–23, 529
examples of, 527–28
Utility maximization, 333
Utility theory, 522–28

Valuation accounting, pension, 515
Value functions
accumulated value, 55–56
present value, 54–55
Variable, 24
constrained, 62
random, 62, 252, 613
Variance, 101, 102–103, 268–71, 624
as a random variable, 282
mean of, 283
variance of, 284–86
conditional variance, law of total variance, 269–

70
sample, 102
of sample mean, 281–82
of sum of independent random variables, 274
of sum of random variables, 273
Vectors, 71
Vector space, 72
Vector space over a field, 72
Vector space over the real field R, Rn as, 72
Vector-valued random variable, 256
von Neumann, John, 522
von Neumann–Morgenstern theorem, 522

Wallis, John, 373
Wallis’ product formula, 373, 596–98
Weak law of large numbers, xxxiii, 352–57, 362
Wheel of Aristotle, 9
Whole life insurance, 317

Yield curve
continuous, 644–49
and Euclidean space, 93–94
Yield of securities, 137–39. See also at Bond; Price;

Stock
Young, W. H., 78
Young’s inequality, 78, 80

Z (integers), 37
Zeno of Elea, 9
Zeno’s paradox, 9
Zermelo, Ernst, 117
Zermelo axioms, 117
Zermelo–Fraenkel axioms, 118
Zermelo–Fraenkel set theory (ZF set theory), 118
Zermelo set theory, 117–18
Zero coupon pricing, 98, 646
ZFC set theory, 118, 120

Index 709




	Contents
	List of Figures and Tables
	Introduction
	1 Mathematical Logic
	2 Number Systems and Functions
	3 Euclidean and Other Spaces
	4 Set Theory and Topology
	5 Sequences and Their Convergence
	6 Series and Their Convergence
	7 Discrete Probability Theory
	8 Fundamental Probability Theorems
	9 Calculus I: Di¤erentiation
	10 Calculus II: Integration
	References
	Index



