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SERIES EDITOR'S INTRODUCTION 

Logistic regression has pretty much come to replace ordinary least 
squares (OLS) regression as the data analytic tool of choice when 
the equation to be estimated has a dichotomous dependent variable. 
Even beginners know that OLS is simply "not done," or at least not 
published, when Y is binary. This advance in methodological prac­
tice has come about partly as the result of a steady flow, over the 
last 20 years or so, of instructive papers and books. Our series has 
made a major contribution to this educational effort, starting with 
the monograph, Linear Probability, Logit, and Probit Models (Aldrich 
and Nelson, No. 45). Since then, we have also published Logit Mod­
eling: Practical Applications (DeMaris, No. 86), Interpreting Probability 
Models: Logit, Probit, and Other Generalized Linear Models (Liao, No. 
101), and Applied Logistic Regression Analysis (Menard, No. 106), not 
to mention others which look at log linear models in contingency ta­
bles. 

Given all the attention writers and researchers have given to logit 
modeling, one might ask if another treatment is necessary. The an­
swer is "yes," if it is the right one, such as the volume at hand. For 
the budding researcher, logistic regression is tough going in compar­
ison to OLS. Running logit is easy enough, for it is now in virtually 
all statistical packages. However, why run it? In addition, what do 
the results mean? These are questions that the conscientious meth­
ods teacher takes to heart because the subject, in its usual explication, 
appears complicated. What is needed is a primer, something for the 
newcomer who has recently mastered OLS. That is the sort of intro­
duction Professor Pam pel provides us here. 

The first chapter dwells on the logic of logistic regression, when 
the dependent variable is dichotomous. In that circumstance, ordi­
nary regression confronts multiple problems-nonlinearity, nonsense 
prediction, nonnormality, heteroskedasticity-which lead to inefficient 
estimation. Transforming the binary dependent variable into a logit al­
lows this inefficiency to be overcome. Professor Pampel explains the 
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components of the logit (a log of the odds of Y taking place), and 
how it works, along the way providing an especially useful appendix 
on the meaning of logarithms. (I have found that students coming to 
the material fresh always need a review of logarithms. Now they have 
it in convenient accompaniment). 

The second chapter, on interpreting results, composes the meat of 
the monograph. It is with respect to interpretation that most textbook 
expositions have floundered. The central issue is, "What is the effect 
of X?" In OLS, this is answered in summary fashion, by the regres­
sion slope. Things are not so straightforward with logistic regression. 
Essentially, there are three possibilities. First, the slope estimate can 
be used directly to indicate the expected change in the logit, for a 
unit change in X. The difficulty with that is that it has little intuitive 
meaning. Second, the coefficient can be transformed to indicate the 
change in the odds (rather than the log odds) for a unit change in X. 
This is clearly a gain in meaning over the first strategy. Third, effects 
can be described in terms of probabilities. For example, if X changes 
+ 1 standard deviation from a baseline value, say its mean, then the 
probability of Y taking place increases by a calculable amount. The 
difficulty with this interpretation is that the effect of X can only be 
considered from a specific set of X values, rather than from a gen­
eral unit change in X. These, and other difficulties, are evaluated in 
the volume. 

The estimation procedure for ordinary regression is least squares. 
With a binary Y, however, least squares is no longer an efficient es­
timator, due to intrinsic nonlinearities. Therefore, the preferred pro­
cedure is maximum likelihood estimation (MLE), which our author 
explicates for the novice in Chapter 3, eventually presenting good 
coverage of model fit, still an area of some controversy. A further 
controversy, laid to rest in Chapter 4, is whether to use probit rather 
than logit. Mter spelling out the similarities and differences of the 
two methods, a convincing case is made for the use the latter over 
the former. Overall, for the research worker seeking an excellent ini­
tial accounting of the popular technique of logistic regression, the 
Pampel volume is the one to read. 

-Michael S. Lewis-Beck 
Series Editor 



PREFACE 

I call this book a primer because it makes explicit what treatments 
of logistic regression often take for granted. Some treatments explain 
concepts abstractly, assuming readers have a comfortable familiarity 
with odds and logarithms, maximum likelihood estimation, and non­
linear functions. Other treatments skip the logical undergirding of 
logistic regression by proceeding directly to examples and the inter­
pretation of actual coefficients. As a result, students sometimes fail to 
gain an understanding of the intuitive logic behind logistic regression. 
This book aims to introduce this logic with elementary language and 
simple examples. 

Toward that end, Chapter 1 briefly presents a nontechnical expla­
nation of the problems of using linear regression with dichotomous 
dependent variables, and then more thoroughly introduces the logit 
transformation. Chapter 2 presents central material on interpreting 
logistic regression coefficients. Chapter 3 takes up the meaning of 
maximum likelihood estimation, and the explanatory power of mod­
els in logistic regression. Chapter 4 reviews probit analysis, a similar 
way to analyze a binary dependent variable. Chapter 5, the conclusion, 
briefly considers how the fundamentals of logistic regression apply to 
nominal dependent variables with three or more categories. Because 
the basic logic of logistic regression applies to the extensions in the 
last chapters, none of the later topics gets the detailed discussion that 
logistic regression gets in Chapters 1 to 3. Finally, the Appendix re­
views the meaning of logarithms, and may help some students under­
stand the use of logarithms in logistic regression as well as in ordinary 
regression. 

vii 
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LOGISTIC REGRESSION: 
A PRIMER 

FRED C. PAMPEL 
University of Colorado, Boulder 

1. THE LOGIC OF LOGISTIC REGRESSION 

Many social phenomena are discrete or qualitative rather than contin­
uous or quantitative in nature-an event occurs or it does not occur, 
a person makes one choice but not the other, an individual or group 
passes from one state to another. A person can have a child, die, 
move (either within or across national borders), marry, divorce, enter 
or exit the labor force, receive welfare benefits, have their income fall 
below the poverty level, vote for one candidate, favor or oppose an 
issue, commit a crime, be arrested, quit school, enter college, join an 
organization, get sick, belong to a religion, or act in myriad ways that 
either involve a characteristic, event, or choice. Likewise, large social 
units-groups, organizations, and nations--can emerge, break up, go 
bankrupt, face rebellion, join larger groups, or pass from one type of 
discrete state into another. 

Binary discrete phenomena usually take the form of a dichotomous 
indicator or dummy variable. Although it is possible to represent the 
two values with any numbers, employing variables with values of 1 
and 0 has advantages. The mean of a dummy variable equals the 
proportion of cases with a value of 1, and can be interpreted as a 
probability. 

Regression With a Dummy Dependent Variable 

A binary qualitative dependent variable with values of 0 and 1 
seems suitable on the surface for use with multiple regression. Re­
gression coefficients have a useful interpretation with a dummy de­
pendent variable-they show the increase or decrease in the predicted 
probability of having a characteristic or experiencing an event due to a 
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one-unit change in the independent variables. Equivalently, they show 
the change in the predicted proportion of respondents with a value 
of 1 due to a one-unit change in the independent variables. Given 
familiarity with proportions and probabilities, researchers should feel 
comfortable with such interpretations. 

The dependent variable itself only takes values of 0 and 1, but the 
predicted values for regression take the form of mean proportions 
or probabilities conditional on the values of the independent vari­
ables. The higher the predicted value or conditional mean, the more 
likely that any individual with particular scores on the independent 
variables will have a characteristic or experience the event. Linear 
regression assumes that the conditional proportions or probabilities 
define a straight line for values of X. 

To give a simple example, the 1994 General Social Survey (GSS) 
of the National Opinion Research Corporation asked respondents if 
they smoke. Assigning those who smoke a score of 1 and those who 
do not a score of 0 creates a dichotomous dependent variable. Taking 
smoking (S) as a function of years of completed education (E) and 
a dummy variable for gender (G) with females coded 1 produces the 
regression equation: 

S = .661 - .029 * E + .004 * G. 

The coefficient for education indicates that for a I-year increase in 
education, the probability of smoking goes down by .029, the propor­
tion smoking goes down by .029, or the percent smoking goes down 
by 2.9. Male respondents with no education have a predicted proba­
bility of smoking of .661 (the intercept). A male with 10 years of edu­
cation has a predicted probability of smoking of .371 (.661- .029* 10). 
One could also say that the model predicts 37% of such respondents 
smoke. The dummy variable coefficient shows females have a prob­
ability of smoking .004 higher than for males. With no education, 
women have a predicted probability of smoking of .665 (.661 + .004). 

Despite the uncomplicated interpretation of the coefficients for re­
gression with a dummy dependent variable, the regression estimates 
face two sorts of problems. One type of problem is conceptual in na­
ture, while the other type is statistical in nature. Together, the prob­
lems prove serious enough to require use of an alternative to ordinary 
regression with qualitative dependent variables. 
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Problems of Functional Form 

The conceptual problem with linear regression with a dichoto­
mous dependent variable stems from the fact that probabilities have 
maximum and minimum values of 1 and o. By definition, probabili­
ties and proportions cannot exceed 1 or fall below O. Yet, the linear 
regression line can extend upward toward positive infinity as the val­
ues of the independent variables increase indefinitely, and extend 
downward toward negative infinity as the values of the independent 
variables decrease indefinitely. Depending on the slope of the line 
and the observed X values, a model can give predicted values of the 
dependent variable above 1 and below o. Such values make no sense, 
and have little predictive use. 

A few charts can illustrate the problem. The normal scatterplot of 
two continuous variables shows a cloud of points as in Figure 1.1(a). 
Here, a line through the middle of the cloud of points would mini­
mize the sum of squared deviations. Further, at least theoretically, as 
X extends on to higher or lower levels, so does Y. The same straight 
line can predict large Y values associated with large X values as it 
can for medium or small values. The scatterplot of a relationship of 
a continuous independent variable to a dummy dependent variable 
in Figure 1.1(b), however, does not portray a cloud of points. It in­
stead shows two parallel sets of points. Fitting a straight line seems 
less appropriate here. Any line (except one with a slope of zero) will 
eventually exceed 1 and fall below o. 

Some parts of the two parallel sets of points may contain more 
cases than others, and certain graphing techniques reveal the density 
of cases along the two lines. Jittering reduces overlap of the scatter­
plot points by adding random variation to each case. In Figure 1.2, 
the jittered distribution for a binary dependent variable-smokes or 
does not smoke-by years of education suggests a slight relationship. 
Cases with higher education appear less likely to smoke than cases 
with lower education. Still, Figure 1.2 differs from plots between con­
tinuous variables. 

The risk of predicted probabilities below 0 or above 1 can, depend­
ing also on the range of values of the independent variable, increase 
with the skew of the dichotomous dependent variable. With a split of 
around 50:50, predicted values tend to fall toward the center of the 
probability distribution. In the previous example of smoking (where 
the split equals 28:72), the lowest predicted value of .081 occurs for 
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Figure 1.1. (a) Scatterplot, continuous variables, (b) scatterplot, dummy de­
pendent variable. 

males with the maximum education of 20; the highest predicted value 
of .665 occurs for females with the minimum education of O. A more 
skewed dependent variable from the GSS asks respondents if they 
are a member of any group that aims to protect or preserve the 
environment. With the 10% saying yes coded 1 and others coded 0, a 
regression on education and gender gives 

B = -.024 + .008 * E - .006 * G. 
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Figure 1.2. Jittered scatterplot for a binary dependent variable, smoking or 
nonsmoking by years of education. 

The intercept shows the nonsensical probability that a male with no 
education will have a predicted probability of belonging below zero. 
Although a problem in general, reliance on the assumption of linearity 
in this particular model proves particularly inappropriate.1 

One solution to the boundary problem would assume that any value 
equal to or above 1 should be truncated to the maximum value of 1. 
The regression line would be straight until this maximum value, but 
afterward changes in X would have no influence on the dependent 
variable. The same would hold for small values, which could be trun­
cated at O. Such a pattern would define sudden discontinuities in the 
relationship, whereby at certain points the effect of X on Y would 
change immediately to 0 (see Figure l.3(a». 

However, another functional form of the relationship might make 
more theoretical sense than truncated linearity. With a floor and a 
ceiling, it seems likely that the effect of a unit change in the inde­
pendent variable on the predicted probability would be smaller near 
the floor or ceiling than near the middle. Toward the middle of a re­
lationship, the nonlinear curve may approximate linearity, but rather 
than continuing upward or downward indefinitely, the nonlinear curve 
bends slowly and smoothly so as to approach 0 and 1. As values get 
closer and closer to 0 or 1, the relationship requires a larger and 
larger change in the independent variable to have the same impact 
as a smaller change in the independent variable at the middle of the 
curve. To produce a change in the probability of experiencing an event 
from .95 to .96 requires a larger change in X than it does to produce 
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Figure 1.3. (a) Truncated linear relationship, (b) S-shaped curve. 

a change in the probability from .45 to .46. The general principle is 
that the same additional input has less impact on the outcome near 
the ceiling or floor, and that increasingly larger inputs are needed to 
have the same impact on the outcome near the ceiling or floor. 

Several examples illustrate the nonlinear relationship. If income in­
creases the likelihood of owning a home, an increase of 10 thou­
sand dollars of income from $40,000 to $50,000 would increase that 
likelihood more than an increase from $200,000 to $210,000. High­
income persons would no doubt already have a high probability of 
home ownership, and a $10,000 increase would do little to increase 
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their already high probability. The same would hold for an increase 
in income from $0 to $10,000: since neither income is likely to be suf­
ficient to purchase a house, the increase in income has little impact 
on ownership. In the middle-range, however, the additional $10,000 
may make the difference between being able to afford a house and 
not being able to afford a house. 

Similarly, an increase of 1 year in age on the likelihood of first 
marriage may have much stronger effects during the late teens and 
early twenties than at younger or older ages. Few will marry under 
age 15 despite growing a year older, and few unmarried by 50 will 
likely marry by age 51. However, the change from age 21 to 22 may 
result in a substantial increase in the likelihood of marriage. The same 
kind of reasoning would apply in numerous other instances: the effect 
of the number of delinquent peers on the likelihood of committing a 
serious crime, the effect of the hours worked by women on the likeli­
hood of having a child, the effect of the degree of party identification 
on the support for a political candidate, and the effect of drinking be­
havior on premature death are all likely stronger at the midrange of 
the independent variables than the extremes. 

A more appropriate nonlinear relationship would look like that in 
Figure 1.3(b), where the curve levels off and approaches the ceil­
ing of 1 and the floor of O. Approximating the curve would require 
a succession of straight lines, each with different slopes. The lines 
nearer the ceiling and floor would have smaller slopes than those in 
the middle. However, a constantly changing curve more smoothly and 
adequately represents the relationship. Conceptually, the S-shaped 
curve makes better sense than the straight line. 

Within a range of a sample, the linear regression line may approx­
imate a curvilinear relationship by taking the average of the diverse 
slopes implied by the curve. However, the linear relationship still un­
derstates the actual relationships in the middle, and overstates the re­
lationship at the extremes (unless the independent variable has values 
only in a region where the curve is nearly linear). Figure 1.4 com­
pares the S-shaped curve with the straight line; the gap between the 
two illustrates the nature of the error, and the potential inaccuracy of 
linear regression. 

The ceiling and floor create another conceptual problem besides 
nonlinearity in regression models of a dichotomous response. Re­
gression typically assumes additivity-that the effect of one variable 
on the dependent variable stays the same regardless of the levels of 
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Figure 1.4. Linear versus curvilinear relationship. 

the other independent variables. Models can include selected prod­
uct terms to account for nonadditivity, but a dichotomous dependent 
variable likely violates the additivity assumption for all combinations 
of the independent variables. If the value of one independent variable 
reaches a sufficiently high level to push the probability of the depen­
dent variable to near 1 (or to near 0), then the effects of other vari­
ables cannot have much influence. Thus, the ceiling and floor make 
the influence of all the independent variables inherently nonadditive 
and interactive. 

To return to the smoking example, those persons with 20 years of 
education have such a low probability of smoking that only a small 
difference can exist between men and women; in other words, sex 
can have little effect on smoking at high levels of education. In con­
trast, larger sex differences likely exist when education is lower and 
the probability of smoking is higher. Although the effect of sex on 
smoking likely varies with the level of education, additive regression 
models incorrectly assume that the effect of sex on smoking is identi­
cal for all levels of education (and the effect of education is identical 
for both sexes). 

Problems of Statistical Inference 

Even if a straight line approximates the nonlinear relationship in 
some instances, some problems emerge that, despite leaving the es-
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timates unbiased, reduce their efficiency. The problems involve the 
fact that regression with a dummy dependent variable violates the 
assumptions of normality and homoscedasticity. Both these problems 
stem from the existence of only two observed values for the dependent 
variable. Linear regression assumes that in the population a normal 
distribution of error values around the predicted Y is associated with 
each X value, and that the dispersion of the error values for each X 
value is the same. The assumptions imply normal and similarly dis­
persed error distributions. 

Yet, with a dummy variable, only two Y values and only two residu­
als exist for any single X value. For any value Xi' the predicted prob­
ability equals bo + b1Xj • Therefore, the residuals take the value of 

and 

Even in the population, the distribution of errors for any X value 
cannot be normal when the distribution has only two values. 

The error term also violates the assumption of homoscedasticity 
or equal variances because the regression error term varies with the 
value of X.2 To illustrate this graphically, review Figure 1.1(b), which 
plots the relationship between X and a dichotomous dependent vari­
able. Fitting a straight line that goes from the lower left to the upper 
right of the figure would define residuals as the vertical distance from 
the points to the line. Near the lower and upper extremes of X, where 
the line comes close to the floor of 0 and the ceiling of 1, the residu­
als are relatively small. Near the middle values of X, where the line 
falls halfway between the ceiling and floor, the residuals are relatively 
large. As a result, the variance of the errors is not constant. 

While normality creates few problems with large samples, het­
eroscedasticity has more serious implications. The sample estimates 
of the population regression coefficients are unbiased, but they no 
longer have the smallest variance and the sample estimates of the 
standard errors are biased. Thus, even with large samples, the stan­
dard errors in the presence of heteroscedasticity will be incorrect, 
and tests of significance will be invalid. Technical means of weighing 
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least squares estimates can deal with this problem, but more im­
portantly do not solve the conceptual problems of nonlinearity and 
nonadditivity. Use of regression with a dummy dependent variable 
consequently remains inappropriate. 

Transforming Probabilities into Logits 

Linear regression faces a problem in dealing with a dependent vari­
able with a ceiling and a floor: the same change in X has a different 
effect on Y depending on how close the curve corresponding to any 
X value comes to the maximum or minimum Y value. We need a 
transformation of the dependent variable to allow for the decreasing 
effects of X on Y as the predicted Y value approaches the floor or 
ceiling. We need, in other words, to eliminate the floor and ceiling 
inherent in probabilities. 

Although many nonlinear functions can represent the S-shaped 
curve, the logistic or logit transformation, because of its desirable 
properties and relative simplicity, has become popular. To illustrate 
the logit transformation, assume that each case has a probability of 
having a characteristic or experiencing an event, defined as Pj ' Since 
the dependent variable has values of only 0 and 1, this Pi must be 
estimated, but it helps to treat the outcome in terms of probabilities 
for now. Given this probability, the logit transformation involves two 
steps. First, take the ratio of Pj to 1 - Pi' or the odds of experiencing 
the event. Second, take the natural logarithm of the odds. The logit 
thus equals 

L j = In[PJ(1 - P;)), 

or, in short, the logged odds. 
For example, if Pj equals .2 for the first case, its odds equals .25 

or .2/.8, and its logit equals -1.386, the natural log of the odds. If 
Pj for the second case equals .7, its odds equal 2.33 or .7/.3, and its 
logit equals 0.847. If Pi equals .9 for the third case, its odds equals 9 
or .9/.1, and its logit equals 2.197. Although the computational for­
mula to transform probabilities into logits is straightforward, it re­
quires some explanation to show its usefulness. It turns out to describe 
the relationship between independent variables and a distribution of 
probabilities defined by a dichotomous dependent variable. 
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Meaning of Odds 

The logit begins by transfonning probabilities into odds. Probabil­
ities vary between 0 and 1, and express the likelihood of an event 
as a proportion of both occurrences and non occurrences. Odds ex­
press the likelihood of an occurrence relative to the likelihood of a 
nonoccurrence. Both probabilities and odds have a lower limit of zero, 
and both express the increasing likelihood of an event with increasing 
large positive numbers, but otherwise they differ. 

Unlike a probability, odds have no upper bound or ceiling. As a 
probability gets closer to 1, the numerator of the odds becomes larger 
relative to the denominator, and the odds become an increasingly 
large number. The odds thus increase greatly when the probabilities 
change only slightly near their upper boundary of 1. For example, 
probabilities of .99, .999, .9999, .99999, and so on result in odds of 99, 
999, 9999, 99999, and so on. Tiny changes in probabilities result in 
huge changes in the odds, and show that the odds increase toward 
infinity as the probabilities come closer and closer to 1. 

To illustrate the relationship between probabilities and odds, exam­
ine the values 

Pi .01.1 .2 .3 .4 .5 .6 
1 - Pi .99 .9 .8 .7 .6 .5 .4 
Odds .01 .111 .25 .429 .667 1 1.5 

.7 .8.9 .99 

.3 .2.1 .01 
2.33 4 9 99. 

Note that when the probability equals .5, the odds equal 1 or are even. 
As the probabilities increase toward one, the odds no longer have the 
ceiling of the probabilities. As the probabilities decrease toward zero, 
however, the odds still approach zero. At least at one end, then, the 
transformation allows values to extend linearly beyond the previous 
limit. 

Manipulating the formula for odds gives further insight into their 
relationship to probabilities. Beginning with the definition of odds 
(Oi) as the ratio of the probability to one minus the probability, we 
can with simple algebra express the probability in tenns of odds: 

The probability equals the odds divided by one plus the odds.3 

Based on this formula, the probability can never equal or exceed 
one: no matter how large the odds become in the numerator, they 
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will always be smaller by one than the denominator. Of course, as 
the odds become large, the gap between the odds and the odds plus 1 
will become relatively small and the probability will approach (but not 
reach) one. Conversely, the probability can never fall below O. As long 
as the odds equal or exceed 0, the probability must equal or exceed 
zero. The smaller the odds in the numerator become, the larger the 
relative size of the 1 in the denominator. The probability comes closer 
and closer to zero as the odds come closer and closer to O. 

Usually, the odds are expressed as a single number, taken implicitly 
as a ratio to 1. Thus, odds of 10 imply an event will occur 10 times for 
each time it does not occur. Since the single number can be a fraction, 
there is no need to keep both the numerator or denominator as a 
whole number. The odds of 7 to 3 can be expressed equally well as a 
single number of 2.33 (to 1). Thus, even odds equal 1 (1 occurrence 
to 1 nonoccurrence). Odds below 1 mean the event is less likely to 
occur than it is to not occur. If the probability equals .3, the odds 
are .3/.7 or .429. This means the event occurs .429 times per each 
time it does not occur. It could also be expressed as 42.9 occurrences 
per 100 nonoccurrences. 

Expressed as a single number, any odds can be compared to another 
odds. Odds of 9 to 1 are three times higher than odds of 3. Odds of 3 
are one-third the size of odds of 9. Odds of .429 are .429 the size of 
even odds of 1, or half the size of odds of .858. In each example, one 
odds is expressed as a multiple of the other. 

It is often useful to compare two different odds as a ratio. The ratio 
of odds of 8 and 2 equals 4, which shows that the odds of the former 
group are four times (or 400%) larger than for the latter group. If 
the odds ratio is below 1, then the odds of the first group are lower 
than the second group. An odds ratio of .5 means the odds of the 
first group are only half or 50% the size of the second group. The 
closer the odds ratio to zero, the lower the odds of the first group to 
the second. An odds ratio of one means the odds of both groups are 
identical. Finally, if the odds ratio is above one, the odds of the first 
group are higher than the second group. The greater the odds ratio, 
the higher the odds of the first group to the second. 

To prevent confusion, keep in mind the distinction between odds 
and odds ratios. Odds refer to a ratio of probabilities, while odds ra­
tios refer to ratios of odds (or a ratio of probability ratios). According 
to the 1994 GSS, for example, 29.5% of men and 13.1% of women 
own a gun, Since the odds of gun ownership for men equal .418 (.295: 
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.705), it indicates that around 4 men own a gun for 10 who do not. 
The odds of gun ownership for women equal .151 or about 1.5 women 
own a gun for 10 who do not. The ratio of odds of men to women 
equal .418: .151 or 2.77, which means that the odds of gun ownership 
are nearly three times higher for men than women. 

In summary, reliance on odds rather than probabilities provides for 
meaningful interpretation of the likelihood of events, but eliminates 
the upper boundary. Odds will prove useful later in interpreting co­
efficients, but note now that creating odds represents the first step of 
the logit transformation. 

Logged Odds 

Taking the natural log of the odds eliminates the floor of 0 much as 
transforming probabilities into odds eliminates the ceiling of 1. Taking 
the natural log of: 

odds above 0, but below 1 produces negative numbers; 
odds equal to 1 produces 0; and 
odds above 1 produces positive numbers. 

(The logs of values equal to or below zero do not exist; see the Ap­
pendix for an introduction to logarithms and their properties.) 

The first property of the logit, then, is that, unlike a probability, 
it has no upper or lower boundary. The odds eliminate the upper 
boundary of probabilities, and the logged odds eliminate the lower 
bound of probabilities as well. To see this, if Pi = 1, the logit is 
undefined because the odds of 1/0 do not exist. As the probability 
comes closer and closer to 1, however, the logit moves toward positive 
infinity. If Pi = 0, the logit is undefined because the log of the odds 
of 0/1 or 0 does not exist. As the probability comes closer and closer 
to 0, however, the logit proceeds toward negative infinity. Thus, the 
logits vary from negative infinity to positive infinity. The problem of 
a ceiling and floor in the probabilities (or a floor in odds) disappears. 

The second property is that the logit transformation is symmetric 
around the midpoint probability of .5. The logit when Pi = .5 is 0 
(.5: .5 = 1, and the log of 1 equals 0). Probabilities below .5 result 
in negative logits because the odds fall below 1 and above 0; Pi is 
smaller than 1 - Pi' thereby resulting in a fraction, and the log of a 
fraction results in a negative number (see the Appendix). Probabilities 
above .5 result in positive logits because the odds exceed one (Pi is 
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larger than 1 - P;). Further, probabilities the same distance above 
and below .5 (e.g., .6 and .4, .7 and .3, .8 and .2) have the same logits, 
but different signs (e.g., the logits for the probabilities listed above 
equal, in order, .405 and -.405, .847 and -.847, l.386 and -1.386). 
The distance of the logit from 0 reflects the distance of the probability 
from.5 (again noting, however, that the logits do not have boundaries 
as do the probabilities). 

The third property is that the same change in probabilities trans­
lates into different changes in the logits. The simple principle is that 
as Pi comes closer to 0 and 1, the same change in the probability 
translates into a greater change in the logged odds. You can see this 
by example, 

Pi .1 .2 .3 .4 .5 .6 .7 .8 .9 
I-Pi .9 .8 .7 .6 .5 .4 .3 .2 .1 
Odds .111 .25 .429 .667 1 l.5 2.33 4 9 
Logit -2.20 -1.39 -.847 -.405 0 .405 . 847 1.39 2.20 . 

A change in probabilities of .1 from .5 to .6 (or from .5 to .4) results 
in a change of .405 in the logit, whereas the same probability change 
of .1 from .8 to .9 (or from .2 to .1) results in a change of .810 in the 
logit. The change in the logit for the same change in the probability is 
twice as large at this extreme as in the middle. To repeat, the general 
principle is that small differences in probabilities result in increasingly 
larger differences in logits when the probabilities are near the bounds 
of 0 and l. 

Linearizing the Nonlinear 

It helps to view the logit transformation as linearizing the inherent 
nonlinear relationship between X and the probability of Y. We would 
expect the same change in X to have a smaller impact on the proba­
bility of Y near the floor or ceiling than near the midpoint. Because 
the logit expands or stretches the probabilities of Y at extreme values 
relative to the values near the midpoint, the same change in X comes 
to have similar effects throughout the range of the logit transforma­
tion of the probability of Y. Without a floor or ceiling, in other words, 
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the logit can relate linearly to changes in X. One can now compute a 
linear relationship between X and the logit transformation. The logit 
transformation straightens out the nonlinear relationship between X 
and the original probabilities. 

Conversely, the linear relationship between X and the logit im­
plies a nonlinear relationship between X and the original probabili­
ties. A unit change in the logit results in smaller differences in prob­
abilities at high and low levels than at levels in the middle. Just as we 
translate probabilities into logits, we can translate logits into proba­
bilities (the formula to do this is discussed shortly), 

Logit 
Pi 
Change 

-3 -2 
.047 .119 

.072 

-1 
.269 
.150 

o 
.5 
.231 

1 
.731 
. 231 

2 3 
.881 .953 
.150 .072 . 

A one-unit change in the logit translates into a greater change in prob­
abilities near the midpoint than near the extremes. In other words, 
linearity in logits defines a theoretically meaningful nonlinear rela­
tionship with the probabilities. 

Obtaining Probabilities from Logits 

The linear relationships between the independent variables and the 
logit dependent variable imply nonlinear relationships with probabil­
ities. The linear relationship of X to the predicted logit appears in 

To express the probabilities rather than the logit as a function of X, 
first take each side of the equation as an exponent. Since the loga­
rithm of a number as an exponent equals the number itself (e of the 
In X equals X), exponentiation or taking the exponential eliminates 
the logarithm on the left side of the equation: 

Further, the equation can be presented in multiplicative form because 
the exponential of X + Y equals the exponential of X times the expo­
nential of Y. Thus, the odds change as a function of the coefficients 
treated as exponents. 
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Solving for Pj gives the formula4: 

Since the logit L j equals bo + b1Xj , we can replace the longer for­
mula by L j in the equation, remembering that L j is the logged odds 
predicted by the value of Xj and the coefficients bo and b l . Then 

This formula takes the probability as a ratio ofthe exponential ofthe logit 
to 1 plus the exponential of the logit. Given that eLi produces odds, the 
formula corresponds to the equation Pj = 0;/(1 + OJ) presented earlier. 

Moving from logits to exponents of logits to probabilities shows 

-4.61 
.01 

1.01 
. 010 

-2.30 
.1 

1.1 
.091 

-1.61 
.2 

1.2 
.167 

-.2230 
.8 1 

1.8 2 
.444.5 

1.61 
5 
6 
.833 

2.30 
10 
11 
.909 

4.61 
100 
101 
.990 

6.91 
1000 
1001 

.999 . 

Note first that the exponentials of the negative logits fall between 0 
and 1, and that the exponentials of the positive logits exceed one. 
Note also that the ratio of the exponential to the exponential plus 1 
will always fall below one-the denominator will always exceed the 
numerator by 1. However, as the exponential gets larger, the differ­
ence between the numerator and the denominator declines (in other 
words, the extra one unit in the denominator becomes increasingly 
small relative to the other value in the numerator). Further, the ratio 
can never fall below zero since the exponentials of both negative and 
positive numbers end up positive and since the ratio of two positive 
numbers always ends up positive. Given the boundaries of the prob­
abilities, the example shows that the larger L, the larger eL , and the 
larger P. 

This transformation also demonstrates nonlinearity. For a one-unit 
change in X, L changes by a constant amount, but P does not. The 
exponents in the formula for Pj makes the relationship nonlinear. 
Consider an example. If L j = 2 + .3Xj , the logged odds change by .3 
for a one-unit change in X regardless of the level of X. If X changes 
from 1 to 2, L changes from 2 + .3 or 2.3 to 2 + .3 * 2 or 2.6. If X 
changes from 11 to 12, L changes from 5.3 to 5.6. In both cases, the 
change in L is identical. This defines linearity. 
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Take the same values of X, and the L values they give, and note 
the changes they imply in the probabilities: 

X 1 2 11 12 
L 2.3 2.6 5.3 5.6 
eL 9.97 13.46 200.3 270.4 
1 + eL 10.97 14.46 201.3 271.4 
P .909 .931 .995 .996 
Change .022 .001. 

Hence, the same change in L due to a unit change in X results in a 
greater change in the probabilities at lower levels of X and P than at 
higher levels. The same would show at the other end of the probability 
distribu tion. 

This nonlinearity between the logit and the probability creates a 
fundamental problem of interpretation. We can summarize the effect 
of X on the logit simply in terms of a single linear coefficient, but 
we cannot do the same with the probabilities: the effect of X on the 
probability varies with the value of X and the level of probability. 
The complications in interpreting the effects on probabilities require 
a separate chapter on the meaning of logistic regression coefficients. 
However, dealing with problems of interpretation proves easier having 
fully discussed the logic of the logit transformation. 

An Alternative Formula 

For purposes of calculation, the formula for probabilities as a func­
tion of the independent variables and coefficients takes a somewhat 
simpler, but less intuitive form: 

Pi = ebo+bIX; / (1 + ebo+bIX;), 

Pi = 1/(1 + e-(bO+bIX;)) , 

Pi = 1/(1 + e-L ;). 

In this formula, you need to take the exponential after taking the 
negative of the logit. The probability then equals 1 divided by 1 plus 
the exponential of the negative of the logit. This gives exactly the 
same result as the other formula. 5 

Either formula works to translate logits into probabilities. If the 
logit equals -2.302, then we must solve for P = e-2.302 /1 + e-2.302 or 
1/1 + e-(-2.302). The exponential of -2.302 equals approximately .1, 



18 

and the exponential of the negative of -2.302 or 2.302 equals 9.994. 
Thus, the probability equals .1/1.1 or .091, or calculated alternatively 
equals 1/1 +9.994 or .091. The same calculations can be done for any 
other logit value to get probabilities. 

Summary 

This chapter reviews how the logit transforms a dependent vari­
able having inherent nonlinear relationships with a set of independent 
variables into a dependent variable having linear relationships with a 
set of independent variables.6 Logistic regression models (sometimes 
also called logit models) thus estimate the linear determinants of the 
logged odds or logit rather than the nonlinear determinants of proba­
bilities. Obtaining these estimates involves complexities left until later 
chapters. In the meantime, however, it helps to view logistic regression 
in simple terms as regression on a dependent variable that transforms 
nonlinear relationships into linear relationships. 

In linearizing the nonlinear relationships, logistic regression also 
shifts the interpretation of coefficients from changes in probabilities 
to less intuitive changes in logged odds. The loss of interpretabil­
ity with the logistic coefficients, however, is balanced by the gain in 
parsimony: the linear relationship with the logged odds can be sum­
marized with a single coefficient, but the nonlinear relationship with 
the probabilities cannot be so simply summarized. Efforts to interpret 
logistic regression coefficients in a meaningful, yet relatively simple 
way define the topic of the next chapter. 

2. INTERPRETING LOGISTIC REGRESSION 
COEFFICIENTS 

Although it simplifies the estimation issues to come, treating logistic 
regression as a form of regression on a dependent variable trans­
formed into logged odds helps describe the underlying logic of the 
procedure. However, as is true for nonlinear transformations more 
generally, the effects of the independent variables in logistic regres­
sion have multiple interpretations. Effects exist for probabilities, odds, 
and logged odds, and the interpretations of each effect have both ad­
vantages and disadvantages. 
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To preview, the effects of the independent variables on the logged 
odds are linear and additive-each X variable has the same effect 
on the logged odds regardless of its level or the level of other X 
variables-but the units of the dependent variable, logged odds, have 
little intuitive meaning. The effects of the independent variables 
on the probabilities have intuitive meaning, but are nonlinear and 
nonadditive-each X variable has a different effect on the proba­
bility depending on its level and the level of the other independent 
variables. Despite the interpretable units, the effects on probabilities 
cannot be simply summarized in the form of a single coefficient. 

The interpretation of the effects of the independent variables on 
the odds offers a compromise between the previous alternatives. The 
odds have more intuitive appeal than the logged odds, and can express 
effects in single coefficients. The effects on odds are multiplicative 
rather than additive, but still have a straightforward interpretation. 
Other ways to interpret the effects of the independent variables exist. 
The ratios of the coefficients to their standard errors obviously have 
importance in interpreting sample results. Also, various attempts to 
standardize the coefficients for the independent variables and com­
pare their relative size may prove helpful. 

This chapter examines each of these ways to interpret effects in 
logistic regression. Further, it examines the variations in each inter­
pretation for continuous and dummy independent variables. 

Logged Odds 

The first interpretation directly uses the coefficients obtained 
from the estimates of the logistic regression. The logistic regression 
coefficients simply show the change in the predicted logged odds of 
experiencing an event or having a characteristic for a one-unit change 
in the independent variables. The coefficients have exactly the same 
interpretation as the coefficients in regression except that the units 
of the dependent variable represent the logged odds. For example, 
Browne (1997, p. 246) uses logistic regression to predict participation 
in the labor force of 922 female heads of household between ages 
18 and 54 in 1989. The logistic regression coefficient of .13 for years 
employed shows that each additional year of employment increases 
the logged odds of current participation in the labor force by .13. 

For dummy variables, a change in one unit implicitly compares 
the indicator group to the reference or omitted group. Browne uses 
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dummy variables for high school dropouts and high school graduates 
to compare their labor force participation to those women with some 
college education (the reference group). The coefficients of -1.29 and 
-.68 for these two dummy variables indicate that the logged odds of 
being in the labor force are 1.29 lower for high school dropouts than 
for those with some college, and are .68 lower for high school grad­
uates than for those with some college. Excepting the metric of the 
dependent variable, this interpretation represents nothing different 
from that used for dummy variables in ordinary regression. 

These coefficients represent the relationship, as in ordinary re­
gression, with a single coefficient. Regardless of the value of X­
small, medium, or large-or the values of the other independent 
variables, a one-unit change has the same effect on the dependent 
variable. According to the model, the difference in the logged odds 
of participation between a woman with 1 year of experience and 
a woman with 2 years of experience equals the difference in the 
logged odds of participation between a woman with 21 years of ex­
perience and a woman with 22 years of experience. Similarly, the ef­
fect of years employed in the model does not differ between high 
school dropouts, high school graduates, and those with some col­
lege. All one needs to do is copy the coefficient from the printout. 
Indeed, logistic regression aims to simplify the nonlinear and non­
additive relationships inherent in treating probabilities as dependent 
variables. 

Note also that logistic regression, as in linear regression, can in­
clude product terms to represent interactive relationships and poly­
nomial terms to represent curvilinear relationships. The product and 
squared terms in logistic regression have much the same interpre­
tation as in linear regression, except that the units of the dependent 
variable take the form of logged odds. Logistic regression already con­
tains nonadditivity and nonlinearity in the relationships between the 
independent variables and probabilities, but can further model nonad­
ditivity and nonlinearity in the relationship between the independent 
variables and the logged odds (DeMaris, 1992). 

Despite the simplicity of their interpretation, the logistic regres­
sion coefficients, as mentioned, lack a meaningful metric. Statements 
about the effects of variables on changes in logged odds reveal little 
about the relationships and do little to help explain the substantive 
results. Researchers need means to interpret the substantive meaning 
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or importance of the coefficients other than merely reporting the ex­
pected changes in logged odds. 

Odds 

The second interpretation comes from transforming the logistic re­
gression coefficients so that the independent variables affect the odds 
rather than the logged odds of the dependent variable. To find the 
effects on the odds, simply take the exponent or antilogarithm of 
the logistic regression coefficients. As in the two variable model that 
follows, exponentiating both sides of the logistic regression equation 
eliminates the log of the odds and shows the influences of the vari­
ables on the odds, 

In(P/1 - P) = bo + blXl + b2X 2 , 
e1n(P/l-P) = ebu+b,X,+bzXz, 

P/1 - P = e bo * eb,x, * ebzXz . 

As noted in the last chapter, the antilog of the log of a value equals 
the value itself, and the left side of the equation equals the odds. In 
addition, since the exponent of (X + Y) equals the exponent of X 
times the exponent of Y, the right-hand side of the equation becomes 
multiplicative rather than additive. 

The odds are a function of the exponentiated constant (ebo ) mul­
tiplied by the exponentiated product of the coefficient and Xl (eb,X,) 

and the exponentiated product of the coefficient and X 2( ebzXz ). In 
simple terms, the effect of each variable on the odds (rather than 
the logged odds) comes from taking the antilog of the coefficients. 
If not already presented in the computer output, the exponentiated 
coefficients can be obtained from most any calculator by typing the 
coefficient and then the eX function. The exponentiated coefficients 
of .13, -1.29, and -.68 from Browne's study of women's labor force 
participation equal 1.14, .28, and .5l. 

The fact that the equation determining the odds is multiplicative 
rather than additive affects the interpretation of the exponentiated 
coefficients. In an additive equation, a variable has no effect when its 
coefficient equals O. The predicted value of the dependent variable 
sums the values of the variables times the coefficients; when adding 
0, the predicted value does not change. In a multiplicative equation, 
the predicted value of the dependent variable does not change when 



22 

multiplied by a coefficient of 1. Therefore, 0 in the additive equation 
corresponds to 1 in the multiplicative equation. Further, the exponen­
tial of a positive number exceeds 1 and the exponential of a negative 
number falls below 1 (but above zero, as the exponential of any num­
ber is always greater than zero). 

For the exponentiated coefficients, then, a coefficient of 1 leaves 
the odds unchanged, a coefficient greater than 1 increases the odds, 
and a coefficient smaller than 1 decreases the odds. Moreover, the 
more distant the coefficient from 1 in either direction, the greater the 
effect in changing the odds. For example, the exponentiated coeffi­
cient for years of employment, 1.14, indicates that a I-year increase 
in employment multiplies the odds of labor force participation by 1.14 
or increases the odds by a factor of 1.14. If the odds of participation 
for someone employed 12 years equals 4.88, the odds of participa­
tion for someone employed 13 years equals 4.88 * 1.14 or 5.56. The 
odds of participation for someone employed 14 years in turn equals 
5.56 * 1.14 or 6.34.7 

In terms of odds ratios, dividing the odds of someone with 13 years 
of experience by the odds of someone with 12 years of experience 
gives the exponentiated logistic regression coefficient: 5.56/4.48 = 
1.14. Thus, the coefficient shows the ratio of odds for a one-unit in­
crease in the independent variable. 

For dummy variables, a similar interpretation follows. The expo­
nentiated coefficient for the high school dropout dummy variable, .28, 
indicates that a one-unit increase in the variable multiplies the odds of 
labor force participation by .28. Of course, a one-unit increase com­
pares high school dropouts to the reference group of those with some 
college. In either case, multiplying by .28 substantially lowers the odds. 
If the odds of participation for those with some college equal 15.6, 
the odds of participation for high school dropouts equal 15.6 * .28 or 
4.37. For high school graduates, the exponentiated coefficient of .51 
indicates that the odds of participation are .51 times smaller than for 
those with some college. Their odds would equal 15.6 * .51 or 7.96. 
In terms of odds ratios, the exponentiated coefficient for the dummy 
variable equals the ratio of odds for the dummy variable group to the 
odds for the reference group. 

Since the distance of an exponentiated coefficient from 1 indicates 
the size of the effect, a simple calculation can further aid in inter­
pretation. The difference of a coefficient from 1 exhibits the increase 
or decrease in the odds for a unit change in the independent vari-
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able. In terms of a formula, the exponentiated coefficient minus 1 
and times 100 gives the percentage increase or decrease due to a 
one-unit change in the independent variable: 

%.:l = (eb 
- 1) * 100. 

For years of employment, the exponentiated coefficient says that 
the odds of participating in the labor force increase by 14% for an in­
crease of 1 year of employment experience. This appears more mean­
ingful than to say the logged odds increase by .13.8 The size of the 
effect on the odds also depends on the units of measurement of the 
independent variables-the change in odds for variables measured in 
different units do not warrant direct comparison. Still, the interpreta­
tion of percentage change in the odds has intuitive appeal. 

Turning to the dummy variables, the percentage change of the ex­
ponentiated logistic regression coefficient for high school dropouts 
equals (.28 - 1) * 100 or -72. This means that the odds of partic­
ipating are 72% lower for high school dropouts than for those with 
some college. The exponentiated coefficient for high school graduates 
of .51 indicates that their odds of participating are 49% lower than 
for those with some college. 

In interpreting the exponentiated coefficients, remember that they 
refer to multiplicative changes in the odds rather than probabilities. 
It is easy to say that an additional year of work experience makes par­
ticipation 1.14 times more probable or otherwise imply probabilities 
rather than odds (DeMaris, 1995, p. 1960). More precisely, the odds 
of participation are 1.14 times as large or 14% larger for an additional 
year of work. 

Probabilities 

The third strategy of interpreting the logistic regression coefficients 
involves translating the effects on logged odds or odds into the ef­
fects on probabilities. Since the relationships between the indepen­
dent variables and probabilities are nonlinear and nonadditive, they 
cannot be fully represented by a single coefficient. The effect on the 
probabilities has to be identified at a particular value or set of val­
ues. The choice of values to use in evaluating the effect of variables 
on the probabilities depends on the concerns of the researcher and 
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the nature of the data, but an initial strategy has the advantage of 
simplicity: examine the effect on the probability for a typical case. 

Continuous Independent Variables 

One quick way to gauge the influence of a continuous variable on 
probabilities involves calculating the linear slope of the tangent of the 
nonlinear curve at any single point. The slope of the tangent line is 
defined by the partial derivative of the nonlinear equation relating 
the independent variables to the probabilities, but more intuitively 
represents a straight line that meets the logistic curve at a single point 
without crossing to the other side of the curve. Figure 2.1 depicts 
the tangent line where the logistic curve intersects Y = P = .76. 
The tangent line identifies the slope only at that particular point, but 
allows for easy interpretation. Its slope shows the linear change in the 
probability for a one-unit change in the independent variable defined 
at a single point on the logistic curve. 

The change in probability or the linear slope of the tangent line 
comes from a simple equation for the partial derivative. The partial 
derivative reveals the change in the probability for an infinitely small 
change in X, but also defines the slope of the tangent line or the 
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Figure 2.1 . Tangent line of logistic curve at Y = P = .76. 
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change in the tangent line due to a one-unit change in X at that 
value (as discussed shortly, it does not equal the actual change in the 
logistic regression curve due to a one-unit change in X). The partial 
derivative, also referred to as the marginal or instantaneous effect, 
equals 

ap/axk = bk * P * (1 - P). 

Simply multiply the logistic regression coefficient by the selected prob­
ability P and 1 minus the probability. 

The formula for the partial derivative nicely reveals the nonlinear 
effects of an independent variable on probabilities. The effect of b 
(in terms of logged odds) translates into a different effect on the 
probabilities depending on the level of P. The effect will be at its 
maximum when P equals .5 since .5*.5 = .25, .6*.4 = .24, .7*.3 = .21 
and so on. The closer P comes to the ceiling or floor, the smaller the 
value P * (1 - P), and the smaller the effect a unit change in X has 
on the probability. 

Multiplying the coefficient times .5 * .5 shows the maximum effect 
on the probabilities, but may overstate the influence for a sample in 
which the split on the dependent variable is not so even. Substituting 
the mean of the dependent variable, P, in the formula gives a more 
typical effect. In Browne's example, the logistic regression coefficient 
for years employed equals .13; the mean of the dependent variable, 
the expected probability of participating, equals .83; and the probabil­
ity of not participating equals .17. Multiplying all three gives a value 
of .018. An increase of 1 year of employment increases the probability 
of participation by .018 or almost 2% at the mean. The effect reaches 
its maximum of .032 when P = .5. 

As an alternative to the mean, we might compute the predicted 
probability for a typical case on the independent variables, and use 
that probability to calculate the partial derivative. Substituting the 
means of the continuous variables and the value of the modal cate­
gory for dummy variables into the logistic regression equation yields 
the predicted logged odds for that case. Transforming the predicted 
logged odds into a predicted probability allows calculation of the ef­
fects on probabilities for that case. 

In much the same way, a researcher might compute a predicted 
probability for a range of values on the independent variables and 
present the marginal effects for the extremes as well as the middle 
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Ld = Lo + b = 1.586 - 1.29 = .296 logit for high school 
dropouts, 

Pd = 1/1 + e-LJ = 1/1 + .7438 = .573 probability for high 
school dropouts, 

Pd - Po = .573 - .83 = -.257 difference in probabilities. 

Evaluated at the mean of the dependent variable, high school 
dropouts have a probability of participating that is .257 lower than 
those with some college education. As always, the formula translating 
logits into probabilities is nonlinear, and the difference in probabili­
ties for the two groups will vary depending on the value of P and the 
other independent variables. 

Predicted Probabilities for Continuous Independent Variables 

Even for continuous independent variables, the partial derivative 
lends itself to potential misinterpretation: it shows the change in the 
tangent line for a one-unit change in the independent variable rather 
than the change in the logistic curve for a one-unit change in the inde­
pendent variable. Note that in Figure 2.1, the tangent continues up­
ward from P, while the logistic regression curve bends. Consequently, 
the changes in probabilities for a one-unit change in X differ for the 
tangent line and the logistic curve. Because the tangent represents a 
straight line, calculating its slope is easier than calculating the change 
in probabilities for the logistic curve, but it does not reflect the ob­
served change in the probability for a unit change in X . 

As an alternative to the partial derivative, predicted probabilities 
can be used for continuous variables much as for dummy variables. 
Changes in predicted probabilities indicate the actual effect of a dis­
crete change in X -such as one unit-rather than the effect on the 
tangent line implied by an instantaneous or infinitely small change in 
X. For that reason, some prefer the use of predicted probabilities for 
a discrete change over the partial derivative (Kaufman, 1996; Long, 
1997). However, use of predicted probabilities for discrete changes 
in X still depends on the point of the curve chosen to calculate the 
predicted probabilities. Given the nonlinear relationships between in­
dependent variables and probabilities, the effect of X on predicted 
probabilities will vary with the starting value of X. 
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The calculations for predicted probabilities follow the formulas 
used for dummy variables, only they substitute X for the omitted 
group and X + 1 for the dummy variable group. Using the mean of 
the dependent variable or some other value as a starting point for 
X , the procedure then calculates the predicted probability for X + 1. 
Subtracting the probabilities shows the effect of a one-unit change in 
X on the predicted probabilities. More precisely, first find the logged 
odds of P (i.e., the logit before the change in the independent vari­
able). Then add the logistic regression coefficient for the variable 
to the starting logit and compute the probability for this new logit. 
Finally, subtracting the starting probability (at X) from the second 
probability (at X + 1) shows the effect of a one-unit change in X on 
the predicted probability at P. 

In Browne's example, P equals .83 and the coefficient for years em­
ployment equals .13. The logit at P equals the log of .83/.17, or 1.586. 
Adding the coefficient to this logit gives 1.716 (1.586+ .13). Using the 
formula for probabilities as a function of logits (P = 1/1 + e- L ), the 
probability for X + 1 equals .848. The difference between .848 and .83 
equals .018. A one-unit increase in years of employment increases the 
probability of labor force participation by .018 at the mean of the de­
pendent variable. In this case, the discrete and instantaneous change 
in X show the same change in probabilities to three decimal places, 
but in other cases they will produce larger differences (e.g. , Kaufman, 
1996). 

To illustrate the influence of the starting value, consider another 
calculation. Beginning with a P of .5 gives a logit of 0, adding the lo­
gistic regression coefficient gives .13, and computing the probability 
of the .13 logit gives .532. The effect of .532 - .5 thus equals .032-
nearly twice the size of the effect at P = .83. As discussed earlier, 
besides using the mean of the dependent variable as a starting value, 
one can use the predicted probability based on the means of all con­
tinuous variables and the modal categories of the dummy variables. 
As also discussed earlier, one could even deal with the nonlinearity of 
effects on probabilities by calculating a set of effects on probabilities 
defined by various values of the independent variables.9 

The variety of ways to interpret the effects on probabilities indicates 
the difficulty in summarizing nonlinear relationships. Some recom­
mend avoiding these types of interpretations altogether, and focusing 
on the multiplicative changes in the odds rather than on changes in 
probabilities. When focusing on probabilities, however, the quickest 
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and easiest calculations involve the partial derivatives for continuous 
variables and differences in predicted probabilities for dummy vari­
ables computed at the mean probability for the sample. For more 
detail, using marginal effects or predicted probability effects at a va­
riety of points on the curve may prove useful. 

Tests of Significance 

Because tests of significance in logistic regression differ little from 
those in ordinary regression, they do not require the detailed discus­
sion of the coefficients. Like in regression, the size of the coefficient 
relative to its standard error provides the basis for tests of sig­
nificance in logistic regression. The logistic regression program in 
STATA presents the coefficient divided by its standard error, which 
can be evaluated with the z distribution. The significance of the 
coefficient-the likelihood that the coefficient in the sample could 
have occurred by chance alone when the population parameter equals 
O--is then interpreted as usual. However, since we know little about 
the small sample properties of logistic regression coefficients, tests 
of significance for samples less than 100 prove risky (Long, 1997, 
p.54). 

The logistic regression programs in SPSS® and SAS® calculate the 
Wald statistic for a (two-tailed) test of a single coefficient, which 
equals the square of the ratio of the coefficient divided by its standard 
error and has a chi-square distribution. Besides the caveat concern­
ing sample size, another potential problem affects the Wald statistic 
(Long, 1997, pp. 97-98). With a large absolute value for the logistic 
regression coefficient, the estimated standard error may lack preci­
sion because of rounding error, and provide an incorrect test of the 
null hypothesis. In such cases, comparing the log likelihood ratio (dis­
cussed in the next chapter) for models with and without the variable 
can test for its significance. 

Coefficients should exceed standard levels of significance before ap­
plying the interpretations discussed in the previous sections. Because 
statistical significance depends so strongly on sample size, however, 
p values provide little information on the strength, importance, or 
intuitive meaning of the relationship. Large samples, in particular, 
can produce significant p values for otherwise small and unimportant 
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effects. Despite the common reliance of studies on statistical signifi­
cance (and the sign of the coefficient) as the dominant means of in­
terpreting logistic regression coefficients, p values should serve only 
as an initial hurdle to overcome before interpreting the coefficient in 
other ways. 

Raftery (1995) has recently developed a way to deal with the unsat­
isfactory results of traditional hypothesis testing in large samples. He 
proposes a Baysian information criterion (BIC) for a variety of sta­
tistical tests. Applied to individual logistic regression coefficients, the 
BIC differs from p values. Based on some complex derivations and 
approximations, Raftery (1995, p. 139) suggests that, to reject the null 
hypothesis, the squared t or, in this case, the squared z and chi-square 
value for a coefficient should exceed the logarithm of the sample size. 
In terms of formula, the BIC value, 

BIC = z2 -Inn, 

should exceed zero to reach significance. Specifically, the BIC value 
refers to the difference in model information with and without the 
variable and coefficient in question. If the BIC value for a variable 
equals or falls below 0, the data provide little support for including 
the variable in the model. In equivalent terms, the absolute value of 
z should exceed .Jln n. 

For coefficients with BIC differences above zero, Raftery specifies 
a rule of thumb to evaluate the "grades of the evidence" for the inclu­
sion of a variable. He defines a BIC difference of 0-2 as weak, 2-6 as 
positive, 6-10 as strong, and greater than 10 as very strong. By formal­
izing a way to evaluate null hypotheses for samples of varied sizes, the 
BIC test of significance for a coefficient provides more information 
than traditional significance tests. It proves especially helpful to logis­
tic regression, where coefficients measured in terms of logged odds 
do not offer an easy measure of strength. 

In Browne's analysis, years employed has a standard error of .02 
for the logistic regression coefficient of .13. A z value of 6.5 and a 
chi-square value 42.25 easily meet the .01 probability level. The z 
and chi-square values for the high school dropout dummy variable 
equal 4.45 and 19.8, again easily meeting standard significance levels. 
In addition, the log of the sample size of 922 equals 6.83. The BIC 
values (i.e., 42.25 - 6.83 = 35.42, and 19.8 - 6.83 = 12.97) for the two 
variables fall into the very strong range. 
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Standardized Coefficients 

Regression ordinarily multiplies unstandardized coefficients by the 
ratio of the standard deviation of X to the standard deviation of 
Y to obtain standardized coefficients. The product gives coefficients 
identical to those that would be obtained if, before being entered 
into the regression program, the variables were first transformed 
into standard scores (with means of 0 and standard deviations of 1). 
Unlike multiple regression programs, logistic regression programs 
do not routinely compute standardized coefficients. The problem 
with standardized coefficients in logistic regression stems partly from 
ambiguity in the meaning of standard scores or standard units for 
dummy variables. Standardized dummy variables merely translate val­
ues of 0 and 1 into two other values. If the mean of the dependent 
variable equals the probability P, the variance equals P * (1 - P). 
Then, 

Y values of 1 have z values equal to (1 - P)/ J P * (1 - P), 

and 

Y values of 0 have z values equal to (0 - P)/ J P * (1 - P). 

With only two values, a standardized dummy variable does not repre­
sent a matter of degree and reference to a standard deviation change 
lacks concrete reference. Because a standard deviation change in a 
binary variable therefore typically does not have the same meaning as 
a standard deviation change in a continuous variable, some avoid the 
use of standardized coefficients for dummy variables. 

More importantly for logistic regression with a dummy dependent 
variable, the model predicts the logged odds, a transformation which 
represents a dependent variable without bounds and with an arbitrar­
ily defined variance. No simple and obvious standard deviation exists 
for logits, and no simple standardization exists for the dependent vari­
able in logistic regression. 

Standardizing only the independent variables before using them in 
the logistic regression presents no problems. The resulting coefficients 
show the change in the logged odds of experiencing an event or hav­
ing a characteristic due to a one standard deviation change in each of 
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the independent variables. With a comparable metric for the indepen­
dent variables, these semistandardized coefficients reflect the relative 
importance of variables within an equation. Alternatively, multiplying 
by hand the logistic regression coefficient for independent variables in 
their original metric by the standard deviation of the variables gives 
the same result. 10 

Such comparisons identify the effects of different independent vari­
ables for the same dependent variable. However, without standardiz­
ing the dependent variable as well, the coefficients do not have the 
same interpretation as fully standardized coefficients. Indeed, without 
standardizing both the dependent and independent variables, com­
parison of the effects of independent variables on different depen­
dent variables can be misleading. A fully standardized coefficient, B;x' 
would adjust for the standard deviations of both X and Y as in the 
formula 

where byx equals the logistic regression coefficient, Sx equals the 
standard deviation of X and Sy equals the standard deviation of Y. 
However, the problem of how to obtain the standard deviation of Y 
remains. 

Logistic regression in SPSS calculates an analogous partial corre­
lation coefficient that varies from -1 to + 1. The partial correlation 
coefficients are computed from the Wald statistic and the baseline log 
likelihood ratio (discussed in the next chapter); when the Wald statis­
tic falls below 2, SPSS sets the partial correlation to zero. Yet, par­
tial correlation coefficients differ from standardized regression coeffi­
cients, and do not correspond exactly to measures used in regression. 

SAS prints standardized coefficients for logistic regression. The pro­
gram uses the standard deviation of the logit distribution (1.8138 or 
the square root of 'TT2/3) as the standard deviation of the dependent 
variable. This standard deviation does not consider the distribution 
of the actual dependent variable, but assumes it is the same for all 
equations. Again, such a coefficient does not duplicate the usual stan­
dardized coefficients in regression. 

To obtain a more meaningful measure of the standard deviation of 
an actual dependent variable, Long (1997) recommends using the pre-



34 

dicted logits. Logistic regression transforms the probabilities based on 
a dichotomous dependent variable into logged odds to represent an 
underlying continuous variable. The predicted logged odds from logis­
tic regression have an observed variance. In addition, the error term 
in the logistic regression equation has a variance, arbitrarily defined 
in the logistic distribution as 'TT

2/3. Together, the variance of the pre­
dicted logits plus the variance of the error term offers an estimate of 
the variance of the unobserved continuous dependent variable. Tak­
ing the square root of the variance provides a measure of the standard 
deviation of the continuous latent variable. Using this standard devia­
tion in the formula for the standardized coefficient will show that the 
logged odds change by B;x standard deviation units for a one standard 
deviation unit change in X. 

To estimate SY' save the predicted logit values for each case from 
the logistic regression. Since the predicted values have a distribution, 
a command for descriptive statistics will report the variance. If the 
logistic regression program, as in SPSS, saves the predicted probabil­
ities, compute the logged odds from the predicted probabilities and 
obtain the variance of the logged odds. Then add to this variance the 
variance of the error term, defined in logistic regression as 3.2899, 
and take the square root of the sum to obtain a measure of the stan­
dard deviation of the dependent variable. Note that this estimate of 
the standard deviation depends on the predicted values and therefore 
on the particular specification of the model. Unlike the standard de­
viation for a dependent variable in regression, the standard deviation 
will change with new independent variables. 

Menard (1995, p. 46) suggests another way to indirectly estimate 
the standard deviation of the logged odds. In regression, the variance 
explained equals the regression sum of squares divided by the total 
sum of squares. Once dividing the two sum of squares by the sample 
size of n (or n - 1), the variance explained equals the variance of the 
predicted values of the dependent variable divided by the variance of 
the dependent variable: 

Through simple algebra, the variance of Y equals the variance of 
the predicted regression values over the variance explained, and the 
standard deviation of Y equals the square root of the ratio. 
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In summary form, the steps to computing this standardized coeffi­
cient follow: 

1. Save the predicted probabilities frorm logistic regression or save the pre­
dicted logits and transform them into probabilities; 

2. Correlate the predicted probabilities with the dummy dependent vari­
able to obtain Rand R2; 

3. Transform the predicted probabilities into predicted logits or use the 
predicted logits directly; 

4. Find the variance of the predicted lcogits; 

5. Compute the standard deviation of Y as the square root of the variance 
of the predicted logits divided by RZ; and 

6. With the estimated standard deviatiion of Y, the standard deviation of 
X, and the logistic regression coefficient, compute the standardized co­
efficient. The resulting coefficient shows the standard deviation change 
in the logit for a one standard devialtion change in an independent vari­
able. 

An Example 

To review the variety of interpretations of logistic regression coef­
ficients, I consider a simple model olf smoking using the 1994 Gen­
eral Social Survey. The logistic regression includes four independent 
variables: education in years of comlPleted formal schooling; age in 
years since birth; a dummy variable for sex with females coded 1; and 
a dummy variable for marital status with married persons coded l. 
The sample includes 510 respondents with valid data on smoking and 
the four independent variables. Table 2.1 presents partial output from 
the SPSS logistic regression. 

TABLE 2.1 

Partial SPSS Logistic Regression Results: Variable Coefficients 

Variable B S.E. Wald df Sig R Exp(B) 

Education -.2085 .0382 29.8742 .0000 -.2153 .8118 
Age -.0341 .0067 26.1222 .0000 -.2003 .9665 
Marital status -.3746 .2112 3.1443 .0762 -.0436 .6876 
Sex .0964 .2126 .2056 .6502 .0000 1.1012 
Constant 3.3666 .6478 27.0112 .0000 
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1. Identify which of the coefficients differ significantly from zero. Dividing 
the coefficients in the column labeled B by the standard errors in the 
column labeled S.E. gives the z ratio, which can be interpreted with the 
usual z table and selected levels of significance. Squaring the ratio of 
the coefficient to the standard error gives chi-square values-presented 
as the Wald statistic in the SPSS output. Based on the chi-square dis­
tribution, the probability associated with each Wald statistic follows in 
another column headed "Sig." 

Education and age exceed usual significance levels, but marital status 
and sex do not. In addition, the natural log of the sample size used by the 
BIC equals 6.23 for this sample. Subtracting this value from the Wald 
statistic shows a very strong level of evidence for age and education. 
Insignificant by usual standards, marital status and sex also fail to meet 
the BIC for significance. 

2. Interpret the meaning and direction of the coefficients for each variable 
in the equation in terms of logged odds. The coefficients show that a 
I-year increase in age lowers the logged odds of smoking by .034; a 1-
year increase in education lowers the logged odds of smoking by .208; 
the logged odds of smoking are .096 higher for females than males; and 
the logged odds of smoking are .375 lower for married than unmarried 
persons. The differences in logged odds for the categories of sex and 
marital status likely do not differ from zero in the population, but I 
interpret them for the purposes of illustration. 

3. For the continuous independent variables, translate the coefficients into 
effects on the odds of smoking. The SPSS output lists each coefficient 
as an exponent in the last column. Subtracting one from each exponen­
tiated coefficient and multiplying by 100 shows the percentage change 
in the odds of smoking for a one-unit change in X : 

Education: A I-year increase in education reduces the odds by a mul­
tiple of .812, or by 18.8% (since (.812 - 1) * 100 = - 18.8). 

Age: A I-year increase in age reduces the odds by a multiple of .966 
or by 3.40% (since (.966 - 1) * 100 = -3.40). 

Although both education and age are measured in years, the ranges and 
standard deviations of the two variables differ. To make the coefficients 
more comparable, it helps to calculate the percentage change in odds for 
a one standard deviation change. For education, multiply the standard 
deviation of 3.09 by the logistic regression coefficient of -.2085, and 
then find the exponential of the product. The resulting coefficient of 
.525 shows that a standard deviation unit increase in education reduces 
the odds of smoking by 47.5% « .525 - 1) * 100). For age, the standard 
deviation of 17.38 and the logistic regression coefficient of - .0341 yields 
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an exponentiated coefficient of .553; a standard unit increase in age thus 
reduces the odds of smoking by 44.7%. Although not fully standardized, 
these coefficients reveal that the two variables have similar effects. 

4. For the dummy variable groups, compare the odds of smoking. In the 
first case, the comparison involves married relative to unmarried per­
sons, and in the second case involves females relative to males. The 
exponentiated logistic regression coefficients for the dummy variables 
show: 

Marital Status: The odds are (.688 - 1) * 100 or 31.2% lower for 
married than unmarried persons. 

Sex: The odds are (1.10 - 1) * 100 or 10.0% higher for females than 
males. 

The exponentiated coefficients also represent the odds ratios of mar­
ried to unmarried persons and females to males. The odds of smoking 
for married persons as a ratio to the odds for unmarried persons equal 
.688; about 69 married persons smoke per 100 unmarried persons. The 
odds ratio of females to males equals 1.10; about 110 women smoke 
per 100 men. 

5. Calculate the marginal effect of the continuous independent variables 
on the probability of smoking at the sample mean. With the proportion 
smoking equal to .276, use the formula for the partial derivative: 

Education: - .2085 * .276 * .724 = -.042. A I-year increase in educa­
tion reduces the probability of smoking by .042 or 4.2% at the 
mean probability. 

Age: -.034h.276*.724 = -.007. A I-year increase in age reduces the 
probability of smoking by .007 or 0.7% at the mean probability. 

6. Calculate the differences in predicted probabilities for the dummy vari­
able groups at the sample mean. The mean proportion smoking of .276 
equals a logit of -.964. 

Marital Status: The predicted logit for married persons equals 
-.964- .3746 = -1.339, which gives a probability of .208; mar­
ried persons thus have a .068 lower probability of smoking than 
unmarried persons (.208 - .276 = - .068) at the sample mean. 

Sex: The predicted logit for females equals -.964 + .0964 = - .8676, 
which gives a probability of .296; females thus have a .020 
higher probability of smoking than males (.296 - .276) at the 
sample mean. 
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7. Calculate the differences in predicted probabilities for a one-unit 
change in education and age at the mean proportion smoking of .276. 
Again, the logit of the mean proportion smoking equals -.964. Add the 
logistic regression coefficient to this logit and then find the probability. II 

Education: - .964 - .2085 = -1.1725, which gives a probability 
of .236; a I-year increase in education lowers the predicted 
probability of smoking by .04 (.236 - .276 = -.040). 

Age: -.964 - .0341 = -.9981, which gives a probability of .269; 
a I-year increase in age lowers the predicted probability of 
smoking by .007 (.269 - .276 = -.007). 

8. Compute standardized coefficients for the independent variables. SPSS 
saves the predicted probabilities from logistic regression. The predicted 
probabilities for smoking have a correlation with the observed dummy 
dependent variable of .319 and a correlation squared (i.e., variance 
explained in the dependent variable by the independent variables) of 
.1018. Once transformed back into logits, the predicted values have a 
variance of .6195. Following Menard, the variance of Y equals the vari­
ance of the predicted logits divided by the variance explained, and the 
standard deviation equals the square root of this ratio: 

s; = .6195/.1018 = 6.085, and Sy = 2.467. 

Following Long, the variance of Y equals the variance of the predicted 
logits plus the variance of the logistic distribution: 

s; = .6195 + 3.290 = 3.909, and Sy = 1.977. 

Using the formula for standardized coefficients, Table 2.2 makes the 
calculations. One method gives larger standardized coefficients than 
the other method, but both indicate that education and age have the 
strongest influence on smoking. 

TABLE 2.2 

Menard Long 

b S, Sy B" Sy B" 

Education -.2085 3.09 2.467 - .261 1.977 - .326 
Age -.0341 17.38 2.467 -.240 1.977 - .300 
Marital status -.3746 .4985 2.467 -.076 1.977 -.094 
Sex .0964 .4977 2.467 .019 1.977 .024 
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Summary 

Logistic regression coefficients provide a simple linear and additive 
summary of the influence of a variable on the logged odds of having a 
characteristic or experiencing an event, but lack an intuitively mean­
ingful scale of interpretation of change in the dependent variable. 
Raising e to the coefficient b allows interpretation of the resulting co­
efficient in terms of multiplicative odds or percentage change in the 
odds. Various procedures also exist to calculate the effects of inde­
pendent variables on the probability of having a characteristic or ex­
periencing an event. However, effects on probabilities depend on the 
point of the logistic curve at which the effect is calculated. Although 
the mean of the dependent variable supplies a reasonable point for 
the calculation, the inherently nonlinear and nonadditive relationship 
between independent variables and probabilities makes this approach 
controversial. Standard tests of significance offer another common 
way to interpret the results, but by themselves say little about the 
substantive meaning of the coefficients. Calculating standardized co­
efficients may also help, but different methods of calculation can give 
different figures. 

3. ESTIMATION AND MODEL FIT 

The last chapter treated logistic regression coefficients as similar to 
ordinary regression coefficients, only based on a nonlinear and non­
additive transformation of the dependent variable from probabilities 
to logits. In so doing, the discussion focused on the predicted proba­
bilities of experiencing an event or having a characteristic for either 
individual cases or sets of values on the independent variables. How­
ever, data on individuals usually include values of only 0 and 1 for 
the dependent variable rather than the actual probabilities. Without 
known probabilities, the estimation procedure must use observed val­
ues of 0 and 1 on dummy dependent variables to obtain predicted 
probabilities. 

As discussed earlier, the dichotomous dependent variable makes 
estimation using ordinary least squares inappropriate. The error term 
has neither a normal distribution nor equal variances for values 
of the independent variables. Therefore, the estimation procedure 
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derived from the least squares criterion-minimizing the sum of the 
squared deviations between the observed and predicted values of the 
dependent variable-no longer gives efficient estimates. 

Instead of least squares, logistic regression relies on maximum like­
lihood procedures to obtain the coefficient estimates. As a general and 
flexible strategy, maximum likelihood estimation applies to a variety 
of models (Eliason, 1993), but this chapter illustrates the logic of the 
estimation technique for logistic regression. Relying on simple terms 
and examples, the chapter highlights the differences and similarities 
between least squares concepts used in ordinary regression and max­
imum likelihood concepts used in logistic regression. Although not 
essential for interpreting logistic regression coefficients, some knowl­
edge of estimation procedures helps to explain the source of common 
hypothesis tests and measures of model accuracy. The last part of the 
chapter thus extends the discussion of estimation to consider these 
topics. 

Maximum Likelihood Estimation 

Maximum likelihood estimation finds estimates of model parame­
ters that are most likely to give rise to the pattern of observations in 
the sample data. To illustrate the maximum likelihood principle, con­
sider a simple example involving tossing a coin. Suppose a coin tossed 
10 times gives 4 heads and 6 tails. Letting P equal the probability of 
a head and 1 - P the probability of a tail, the probability of obtaining 
4 heads and 6 tails equals: 

P(4 heads, 6 tails) = 1O!/4!6![p4 * (1 _ p)6]. 

We might normally assume that, with a fair coin, P equals .5 and 
compute the probability of obtaining four heads. If P is unknown 
and we need to evaluate the coin's fairness, however, the question 
becomes: how can P be estimated from the observed outcome of 4 
heads over 10 tosses? Maximum likelihood estimation chooses the P 
that makes the probability of getting the observed outcome as large 
as possible. 

In finding the maximum likelihood estimate of P, we can focus on 
the p 4 * (1 - p)6 component of the preceding formula. This formula 
expresses the likelihood of obtaining four heads as a function of var­
ied values of P. Substituting possible values of P into the likelihood 
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function gives the results in Table 3.1. It appears that the maximum 
value occurs when P equals .4. 12 Further checking the likelihood us­
ing the same formula when P varies from .35 to .45 confirms that .4 
produces the maximum likelihood. Given the data, the most likely or 
maximum likelihood estimate of P equals .4. In this way, we pick as 
the parameter estimate for P the value that gives the highest likeli­
hood of producing the actual observations. 

For logistic regression, the procedure begins with an expression for 
the likelihood of observing the pattern of occurrences (Y = 1) and 
nonoccurrences (Y = 0) of an event or characteristic in a given sam­
ple. This expression, termed the likelihood function, depends on un­
known logistic regression parameters. As in the coin tossing example, 
maximum likelihood estimation finds the model parameters that give 
the maximum value for the likelihood function. It thereby identifies 
the estimates for model parameters that are most likely to give rise 
to the pattern of observations in the sample data. 

The maximum likelihood function in logistic regression parallels the 
previous formula: 

where LF refers to the likelihood, Yi refers to the observed value of 
the dichotomous dependent variable for case i, and Pi refers to the 
predicted probability for case i. Recall that the Pi values come from a 
logistic regression model and the formula Pi = 1/(1 + e- L1), where Li 
equals the logged odds determined by the unknown parameters f3 and 
the independent variables. f1 refers to the multiplicative equivalent of 
the summation sign, and means that the function multiplies the values 
for each case. The key is to identify f3 values that produce Li and Pi 
values that maximize LF. 

Consider how this formula works. For a case in which Yj equals 1, 
the formula reduces to Pi because Pi raised to the power 1 equals Pi ' 

TABLE 3.1 

P p4 * (1- P)6 P p 4 * (1 _ P)6 P p4 * (1- P)6 

.1 .0000531 .4 .0011944 .7 .0001750 

.2 .0004194 .5 .0009766 .8 .0000262 

.3 .0009530 .6 .0005308 .9 .0000007 
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and (1 - Pi) raised to the power zero (1 - Yi) equals 1. Thus, when 
Y i = 1 the value for a case equals its predicted probability. If, based 
on the model coefficients, the case has a high predicted probability 
of the occurrence of an event when Yi = 1, it contributes more to the 
likelihood than if it has a low probability of the occurrence of an event. 

For a case in which Yi equals 0, the formula reduces to 1 - Pi be­
cause Pi raised to the power 0 equals 1 while (1 - Pi) raised to the 
power 1 equals 1-Pi. Thus, when Yi = 0 the value for a case equals 1 
minus its predicted probability. If the case has a low predicted prob­
ability of the occurrence of an event based on the model coefficients 
when Yi = 0, it contributes more to the likelihood than if it has a 
high probability (e.g., if Pi = .1, then 1 - Pi = .9, which counts more 
than if Pi = .9 and 1 - Pi = .1). 

Take, for example, four cases. Two have scores of 1 on the depen­
dent variable, and two have scores of O. Assume that the estimated co­
efficients in combination with the values of the independent variables 
produce the predicted probabilities for each of the four cases listed 
in Table 3.2. Using the probabilities with the formula gives the results 
for each case in Table 3.2. For each case, the final value indicates the 
likelihood of the observation given the estimated coefficients; in this 
example, the observations have relatively high likelihoods. Compare 
these resuits to another set of estimated coefficients that in combi­
nation with the values of X produce different predicted probabilities 
and results for the likelihood formula (see Table 3.3). Here, the es­
timated coefficients do worse in producing the actual Y values, and 
the likelihood values are lower. 

Given a set of estimates for the models parameters, then, the max­
imum likelihood function returns for each case a probability of actu­
ally observing the sample values. Multiplying these probabilities gives 
a summary indication over all cases of the likelihood that a set of co­
efficients produces the actual values. Multiplying probabilities means 

TABLE 3.2 

Yj Pj prj (1 - Py-Y; pr' * (1 - P;) I- Yj 

1 .8 .81 =.8 .2° = 1 .8 
1 .7 .7 1 =.7 .3° = 1 .7 
0 .3 .30 = 1 .71 =.7 .7 
0 .2 .2° = 1 .81 = .8 .8 
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TABLE 3.3 

Y; P; pt; (l - P;)I -Y; p;Y; * (1 - P;)I - Y; 

.2 .21 = .2 .2° = 1 .2 
1 .3 .31 = .3 .3° = 1 .3 
0 .7 .3° = 1 .31 =.3 .3 
0 .8 .2° = 1 .21 =.3 .2 

that the total product cannot exceed one or fall below zero. It will 
equal one in the unlikely event that every case with a 1 has a pre­
dicted value of 1 and every case with a 0 has a predicted value of 
O. This likelihood equals .8*.7*.7* .8 or .3136 for the first set of co­
efficients, and .2* .3.*3*.2 or .0036 for the second. What is already 
obvious from the more detailed results shows in a single number. The 
hypothetical coefficients in the first example give a larger likelihood 
function value than the second, and are more likely to have given rise 
to the observed data. 

Log Likelihood Function 

To avoid multiplication of probabilities (and typically having to 
deal with exceedingly small numbers), the likelihood function can be 
turned into a logged likelihood function. Since 

In(X * Y) = InX + In Y, 

and 

In(XZ) = Z * In X, 

the log likelihood function sums the formerly multiplicative terms. 
Taking the natural log of both sides of the likelihood equation gives 
the log likelihood function: 

If the likelihood function varies between 0 and 1, the log likelihood 
function wiII vary from negative infinity to zero (the natural log of 1 
equals 0, and the natural log of 0 is undefined, but as the probabil­
ity gets closer to zero the natural log becomes an increasing negative 
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TABLE 3.4 

Yi Pi Yi*lnPi (1 - Yi ) * In(1 - Pi) [Yi * InP.J + [(1 - Yi ) * In(1 - Pi)] 

.8 1 * -.223 0*-1.609 -.223 
1 .7 1 * - .357 0*-1.204 -.357 
0 .3 0*-1.204 1 * - .357 - .357 
0 .2 0*-1.609 1 * - .223 - .223 

number). The closer the likelihood value is to 1, then the closer the 
log likelihood value is to 0, and the more likely it is that the parame­
ters could produce the observed data. The more distant the negative 
value from zero, the less likely that the parameters could produce the 
observed data. 

To illustrate the log likelihood function, we can go through the same 
examples that appear earlier. In Table 3.4, the sum equals -1.16. 
The same calculation for the second set of coefficients appears in 
Table 3.5. The sum equals -5.626. Again, coefficients that best pro­
duce the observed values show a higher value (i.e., smaller negative 
number) for the log likelihood function . 

Estimation 

Maximum likelihood estimation aims to find those coefficients that 
have the greatest likelihood of producing the observed data. In prac­
tice, this means maximizing the log likelihood function. Hypotheti­
cally, we could proceed in a bivariate model something like this. 

1. Pick coefficients for the parameters, say, for example, 1 and .3 in a 
bivariate model. 

2. For the first case multiply b by the X value and add the product to the 
constant to get a predicted logit (if X equals 2 for the first case, the 
predicted logit equals 1 + 2 * .3 = 1.6). 

TABLE 3.5 

Y, Pi Y, * In PI (1 - Yi) * In(1 - Pi) [Yi * InPi ] + [(1 - Y,) * In(1 - Pi)] 

1 .2 1* - 1.609 0*-.223 - l.609 
1 .3 1*-1.204 0*-.357 -1.204 
0 .7 0* -.357 1*-1.204 -1.204 
0 .8 0* - .223 1 * -1.609 - 1.609 
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P = 1/1 + e- L = eL /1 + eL
. 
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For the first case, the probability equals 1/I+e- 1.6 = 1/1+.2019 = .832. 

4. If Y = 1, then the contribution to the log likelihood function for this 
case equals 1 * In .832 + 0 * In .168 = - .1839. 

5. Repeat steps 1-4 for each of the other cases, and sum the components 
of the log likelihood function to get a total value. 

6. Repeat the steps for another pair of coefficients, and compare the log 
likelihood value to that for the first set of coefficients. 

7. Do this for all possible coefficients and pick the ones that generate the 
largest log likelihood value (i .e., closest to zero). 

Of course, mathematical formulas and computing procedures allow 
logistic regression programs to more efficiently identify the estimates 
that maximize the log likelihood function. A program usually begins 
with a model in which all b coefficients equal the least squares esti­
mates. It then uses an algorithm to successively choose new sets of 
coefficients that produce larger log likelihoods and better fit with the 
observed data. It continues through the iterations or cycles of this 
process until the increase in the log likelihood function from choos­
ing new parameters becomes so small (and the coefficients change so 
little) that little benefit comes from continuing any further. 

Tests of Significance Using Log Likelihood Values 

The log likelihood value reflects the likelihood that the data would 
be observed given the parameter estimates. It can be thought of as the 
deviation from a perfect or saturated model in which the log likeli­
hood equals O. The larger the value (i.e., the closer the negative value 
to zero), the better the parameters do in producing the observed data. 
Although it increases with the effectiveness of the parameters, the log 
likelihood value has little intuitive meaning because it depends on the 
sample size and number of parameters as well as on the goodness of 
fit. We therefore need a standard to help evaluate its relative size. 

One way to interpret the size of the log likelihood involves com­
paring the model value to the initial or baseline value assuming all 
the b coefficients equal zero. The baseline log likelihood comes from 
including only a constant term in the model-the equivalent of using 
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the mean probability as the predicted value for all cases. The greater 
the difference between the baseline log likelihood and the model log 
likelihood, the better the model coefficients (along with the indepen­
dent variables) do in producing the observed sample values. This dif­
ference can be used in hypothesis testing (as well as in measures of 
goodness of fit discussed shortly). Like the F test in regression, the 
difference in the baseline and model log likelihood values evaluates 
the null hypothesis that b l = b2 = .. . = bk = O. It does so by deter­
mining if the difference is larger than would be expected from random 
error alone. 

The test proceeds as follows. Take the difference between the base­
line log likelihood and the model log likelihood. Multiplying that dif­
ference by -2 gives a chi-square value with degrees of freedom equal 
to the number of independent variables (not including the constant, 
but including squared and interaction terms). Used in combination 
with the chi-square table, the chi-square value tests the null hypoth­
esis that all coefficients other than the constant equal O. It reveals if 
the change in the log likelihood due to all independent variables could 
have occurred by chance beyond a prespecified significance level (i.e., 
the improvement in the log likelihood does not differ significantly 
from zero). For a given degree of freedom, the larger the chi-square 
value, the greater the model improvement over the baseline, and the 
less likely that all the variable coefficients equal 0 in the population. 

Multiplying the log likelihood difference by -2 to obtain the chi­
square value is equivalent to multiplying the baseline and model log 
likelihood values by - 2, and then taking the difference in the values 
to measure the model improvement. Reported either way, the results 
are the same. However, keep in mind that multiplying by -2 reverses 
the direction of the log likelihood values. 

Using the four cases presented earlier illustrates this significance 
test. Without knowledge of X, the baseline model would use the 
mean of Y, say .5, as the predicted probability for each case. Us­
ing the likelihood and log likelihood functions, and substituting pre­
dicted probabilities of .5 for each case, gives a likelihood of .0625 and 
a log likelihood of -2.773 for the baseline model. If X relates to Y, 
however, the log likelihood knowing X should be closer to zero and 
reflect a better model than the log likelihood not knowing X. Assume 
that the log likelihood value computed earlier is maximum. It has a 
likelihood value of .3136 and a log likelihood value of -1.160. A sum­
mary comparison of the baseline and final models in Table 3.6 shows 
the improvement from knowing X. 
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TABLE 3.6 

Model LF LLF -2(LLF) 

Baseline model .0625 -2.773 5.546 
Final model .3136 -1.160 2.320 
Difference -.2511 -1.613 3.226 

Although the units of these figures make little intuitive sense, one 
can see improvement in the final model compared to the initial or 
baseline model. A test of significance using the chi-square distribution 
tells if the 3.226 improvement likely could have occurred by chance 
alone (at a preselected probability level). With 1 degree of freedom 
for the one independent variable, the critical chi-square value at .05 
equals 3.8414. Since the actual chi-square does not reach the critical 
value, we can conclude that the independent variable does not sig­
nificantly influence the dependent variable. Of course, this artificial 
example with only four cases makes it difficult to reach any level of 
statistical significance, but it illustrates the use of the chi-square test. 

In review, then, the likelihood values range from 0 to 1, while the 
log likelihood values range from negative infinity to zero. The base­
line model typically shows lower likelihood and log likelihood values 
than the final model. The larger the likelihood and log likelihood val­
ues for the final model are relative to the baseline model values, the 
greater the improvement from estimating nonzero parameters. The 
log likelihood values times -2, which range from 0 to positive in­
finity, reverse the direction of interpretation to be more in line with 
common interpretations of the error in regression models. Because it 
typically performs worse in reproducing the observed data, the base­
line model now shows a higher value than the final model. Again, 
however, the larger the difference between the two models, the larger 
the improvement in the model due to the independent variables. 

Often times researchers refer to the chi-square difference or the 
improvement in the log likelihood as the likelihood ratio. The log of 
the ratio of the baseline likelihood to the model likelihood equals the 
difference between the two log likelihoods. The general principle is 
that 

InX -In Y = In(XjY). 

In the example, the ratio of the likelihood values divides .0625 by 
.3136. The log of this value equals -1.613, which is identical to the 
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difference in the log likelihood values. Multiplying the likelihood ratio 
by -2 gives the chi-square value for the test of the overall model 
significance. 

The same logic of the chi-square test of the difference between the 
baseline and the final models applies to the comparison of any two 
nested models. If a full model contains k (e.g., 10) variables, and a 
restricted model contains h fewer variables than the full model (e.g., 
6 fewer or 4 total), the chi-square can test the null hypothesis that 
the coefficients for the h variables added to the restricted model all 
equal zero. Simply subtract the log likelihood of the full model from 
the log likelihood of the restricted model and multiply that result by 
-2. Equivalently, subtract -2 times the log likelihood for the full 
model from - 2 times the log likelihood for the restricted model. In 
both cases, the result equals a chi-square value with h degrees of 
freedom. The test of the baseline model represents a sub-case of the 
more general nested model where h includes all variables in the full 
model. 

This procedure can test for the significance of a single variable by 
comparing equations with and without the variable in question (i.e., 
h refers to one variable). Subtracting -2 times the log likelihood 
for the model with the variable from -2 times the log likelihood for 
the model without the variable provides a chi-square statistic for the 
individual variable; the test can in certain instances give more precise 
values than the Wald test discussed in the last chapter (Long, 1997, 
pp.97-98). 

Model Evaluation 

Although the dependent variable in logistic regression does not 
have variance in the same way continuous variables do in regression, 
maximum likelihood procedures provide model fit measures analo­
gous to those from least squares regression. As in tests of significance, 
it makes intuitive sense to compare a model knowing the independent 
variables to a model not knowing them. In regression, the total sum of 
squares follows from a model not knowing the independent variables, 
the error sum of squares follows from a model knowing the inde­
pendent variables, and the difference indicates the improvement due 
to the independent variables. In logistic regression, the baseline log 
likelihood (LO) times -2 represents the likelihood of producing the 
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observed data with parameters for the independent variables equal­
ing zero, and corresponds to the total sum of squares. The model 
log likelihood (L1) times -2 represents the likelihood of producing 
the observed data with the estimated parameters for the independent 
variables, and corresponds to the error sum of squares in regression. 
The improvement relative to the baseline in the log likelihood model 
shows the improvement due to the independent variables. Accord­
ingly, these two log likelihoods define an analogy to a proportional 
reduction-in-error measure in regression l3 : 

R2 = [(-2InLO) - (-2InL1)]/(-2InLO). 

The numerator shows the reduction in the model "error" due to the 
independent variables, and the denominator shows the "error" with­
out using the independent variables. The resulting value shows the 
improvement in the log likelihood relative to the baseline. It equals 0 
when all the coefficients equal 0, and has a maximum that comes close 
to 1.14 However, the measure does not represent explained variance 
since log likelihood functions do not deal with variance defined as the 
sum of squared deviations. This and similar measures are therefore 
referred to as the pseudo-variance explained or pseudo R2. 

Another measure builds on the fact that the log likelihood value 
depends on the number of cases. Consequently, the chi-square value 
due to the independent variables (or improvement in -2 times the 
log likelihood in the numerator of the previous equation) can be 
taken as a proportion of the chi-square plus the sample size. Aldrich 
and Nelson (1984) thus present the following measure of the pseudo­
variance explained: 

This measure does not under most circumstances have a maximum 
of 1. Hagle and Mitchell (1992) demonstrate that the maximum value 
depends on the percentage of cases in the largest category of the 
dependent variable. They also list a set of multiples defined by the 
percentage of cases in the largest category that corrects the Aldrich 
and Nelson measure. IS The corrected measure will have a minimum 
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of 0 and maximum of 1 and performs well as a measure of the per­
formance of the model. 

Another measure parallels the variance explained measure in re­
gression. The multiple R in regression equals the correlation between 
the observed and predicted values of the dependent variable, and the 
R2 equals that correlation squared. The same logic applies to logistic 
regression: the correlation between the observed dummy dependent 
variable and probabilities predicted by the logistic regression model 
measures the goodness of fit. Although logistic regression programs 
do not routinely calculate Rand R2 as they do for regression, saving 
predicted probabilities from logistic regression makes for easy calcu­
lation. Simply correlate the saved variable with the original dummy 
variable after doing the logistic regression and then square the value. 

Analysts have suggested numerous other measures to assess the 
model. McKelvey and Zavoina (1975) use the variance of the pre­
dicted logits to define a measure of the pseudo-variance explained. 
Cox and Snell (1989) raise the ratio of the likelihood values to the 
power 2/n to get another measure. In addition, Nagelkerke (1991) 
suggests an adjustment to the Cox and Snell measure to ensure a 
maximum of 1. Long (1997, pp. 104-113) reviews these and several 
other measures that appear in the literature on logistic regression. 

In summary, no consensus has emerged on the single best measure, 
and each measure may give different results. Researchers should use 
these measures as only rough guides without attributing great impor­
tance to a precise figure. In fact, many published articles using logistic 
regression do not present a measure of the pseudo-variance explained. 
Still, used carefully, measures of goodness of fit that vary from 0 to 1 
can be helpful. 

Another approach to model evaluation compares predicted group 
membership with observed group membership. Using the predicted 
probabilities for each case, logistic regression programs also predict 
the expected group membership. Based on a typical cut value of .5, 
those cases with predicted probabilities at .5 or above are predicted 
to score 1 on the dependent variable and those cases with predicted 
probabilities below .5 are predicted to score O. Cross-classifying the 
two categories of the observed dependent variable with the two cate­
gories of the predicted dependent variable produces a 2 x 2 table. 

A highly accurate model would show that most cases fall in the cells 
defined by 0 on the observed and 0 on the predicted group member­
ship and by 1 on the observed and 1 on the predicted group mem-
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bership. Relatively few cases would fall into the cells defined by a 
mismatch of observed and predicted group membership. A simple 
summary measure equals the percentage of all cases in the correctly 
predicted cells. A perfect model would correctly predict group mem­
bership for 100% of the cases; a failed model would do no better than 
chance by correctly predicting 50% of the cases. The percentage of 
correctly predicted cases from 50 to 100 provides a crude measure of 
predictive accuracy. 

However, if one category of the dependent variable is substan­
tially larger than the other, a model can do better than 50% by 
simply predicting the largest category for all cases. A more accurate 
measure takes the percentage of correctly predicted cases beyond 
the percentage that would be predicted by choosing the percent­
age in the largest category of the dependent variable (Long, 1997, 
pp. 107-108). Other measures of association for nominal and ordinal 
variables can also summarize the strength of the relationship between 
predicted and observed values. Menard (1995) discusses numerous 
measures of relationship strength for tabular data such as 4>, T, 'Y 
and A. However, because the focus on predicting group membership 
differs from the focus on model fit, results for predictive accuracy 
can differ substantially from results for model fit. Further, Greene 
(1933, p. 652) identifies several illogical results that can emerge from 
the use of measures of predictive accuracy. Other than an occa­
sional listing of percent correctly predicted, few articles report more 
detail on the cross-classification of observed and predicted group 
membership. 

An Example 

Table 3.7 presents selected SPSS output from the logistic regression 
of smoking on education, age, marital status, and sex. The information 
in Table 3.7 relates to issues of general model fit, and precedes the 
coefficient estimates from the SPSS output shown in Table 2.1. 

1. Compare -2 times the baseline log likelihood with -2 times the model 
log likelihood. The beginning block number 0 shows the initial or 
baseline log likelihood function (i.e., one that includes only a constant 
in the model). This log likelihood times -2 equals 601.38073, but has 
little meaning by itself. After entering four variables in step 1, the es-



52 

TABLE 3.7 

Partial SPSS Logistic Regression Output: Model Fit 

Dependent variable ... DSMOKE 
Beginning block number O. Initial log likelihood function 

-2 Log likelihood 601.38073 

• Constant is included in the model. 

Beginning block number 1. Method: Enter 

Variable(s) entered on step number 1 

Education 
Age 
Marital status 
Sex 

Estimation terminated at iteration number 4 because 
log likelihood decreased by less than .01 % 

-2 Log likelihood 
Goodness of fit 
Cox & Snell-W2 

Nagelkerke-R"2 

544.830 
491.832 

.105 

.152 

Chi-Square 

Model 
Block 
Step 

56.551 
56.551 
56.551 

df 

4 
4 

4 

Classification table for DSMOKE 
The cut value is .50 

Observed 
.00 

1.00 

Predicted 

o 

349 
112 

20 
29 

Overall 

Significance 

.0000 

.0000 

.0000 

Percent co"ect 

94.58 
20.57 
74.12 

timation terminates after four iterations because the log likelihood im­
proves by less than the default of .01 %. Given the estimates, the model 
log likelihood function times -2 equals 544.830. The decrease in these 
values or improvement in the model is 56.551. As presented in the out­
put, this chi-square value meets standard levels of significance with 4 
degrees of freedom. 
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2. Evaluate the goodness of fit of the model. The SPSS output computes 
two measures of the pseudo-variance explained. The Cox and Snell 
measure equals .105 and the Nagelkerke adjustment raises the measure 
to .152. The proportional improvement in the chi-square measure 
equals: 

pseudo R2 = (601.38 - 544.83)/601.38 = 56.55/601.38 
= .0940 or 9.40%. 

The Aldrich and Nelson measure based on the chi-square and sample 
size equals: 

pseudo R2 = 56.551/(56.551 + 510) = .0998 = 9.98%. 

The correction suggested by Hagle and Mitchell (1992) uses the modal 
category of not smoking of 72% and a multiplier of 1.84 to obtain 

pseudo R2 = .0998 * 1.84 = .1836. 

Like the Nagelkerke measure, this adjustment raises the coefficient sub­
stantially, and balances the tendency of the other measures to underesti­
mate the model strength. Finally, saving the predicted probabilities and 
correlating them with the observed dependent variable gives an R of 
.319 and R2 of .102 or 10.2%. 

3. Evaluate the predictive accuracy. The output table cross-classifies ob­
served by predicted group membership and reveals that the model cor­
rectly predicts 74% of the cases. However, relative to the 72% of the 
cases in the nonsmoking category, the 74% figure represents a small 
improvement. 

Summary 

For those familiar with ordinary regression, logistic regression 
provides analogs to commonly used statistics. Rather than choosing 
parameters that minimize the sum of squared errors, estimation in 
logistic regression chooses parameters that maximize the likelihood 
of observing sample values. Since translating familiar terms to the 
unfamiliar terms will make logistic regression easier to understand, 
the columns in Table 3.8 summarize the correspondence between 
ordinary and logistic regression terms. 
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Ordinary Regression 

Total sum of squares 
Error sum of squares 
Regression sum of squares 

F test for model 
Variance explained 

TABLE 3.8 

Logistic Regression 

Baseline log likelihood times -2 
Model log likelihood times -2 
Difference between baseline and model 

log likelihoods times -2 
Chi-square for log likelihood difference 
Pseudo-variance explained 

4. PROBIT ANALYSIS 

Logistic regression deals with the ceiling and floor problems in model­
ing a dichotomous dependent variable by transforming probabilities of 
an event into logits. Although probabilities vary between 0 and 1, log­
its or the logged odds of the probabilities have no such limits-they 
vary from negative to positive infinity. Many other transformations 
also eliminate the ceiling and floor of probabilities. Aldrich and Nel­
son (1984, p. 33) describe a number of S-shaped curves that differ 
in how rapidly or slowly the tails approach 0 and 1. The logit trans­
formation used in logistic regression has the advantage of relative 
simplicity, and finds use most commonly. One other familiar trans­
formation based on the normal curve, however, appears often in the 
published literature. 

Another Way to Linearize the Nonlinear 

Probit analysis transforms probabilities of an event into scores 
from the cumulative standard normal distribution rather than into 
logged odds from the logistic distribution. Despite this difference, 
probit analysis and logistic regression give essentially equivalent re­
sults, making the choice between them one of individual preferences 
and computer program availability. Indeed, many texts introduce 
logit and probit analysis simultaneously to emphasize their similar­
ities. This chapter examines probit analysis separately, but, to also 
emphasize similarities, uses the earlier material on logistic regression 
to explain the logic of probit analysis. 

To transform probabilities with a floor of 0 and a ceiling of 1 into 
scores without these boundaries, the probit transformation relates the 
probability of experiencing an event or having a characteristic to the 
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cumulative standard normal distribution rather than to the logged 
odds. To explain this transformation, it helps to review the informa­
tion contained in tables from any statistics text on areas of the stan­
dard normal curve. The tables match z scores (theoretically ranging 
from negative infinity to positive infinity, but in practice from -3 to 3) 
with a proportion of the area under the curve between the absolute 
value of the z score and the mean z score of O. With some simple cal­
culations, the standard normal table also identifies the proportion of 
the area from negative infinity to the z score. The proportion of the 
curve at or below each of the z scores defines the cumulative standard 
normal distribution. Since the proportion equals the probability that 
a standard normal random variable will fall at or below that z score, 
larger z scores define greater probabilities in the cumulative standard 
normal distribution. 

Conversely, just as any z score defines a probability in the cumu­
lative standard normal distribution, any probability in the cumulative 
standard normal distribution translates into a z score. The greater the 
cumulative probability, the higher the associated z score. Further, be­
cause probabilities vary between 0 and 1, and the corresponding z 
scores vary between positive and negative infinity, it suggests using 
the areas defined by the standard normal curve to transform bounded 
probabilities into unbounded z scores. 

To illustrate, Figures 4.1 and 4.2 depict the standard normal curve 
and the cumulative standard normal curve. The normal curve in Fig­
ure 4.1 plots the height or density on the vertical axis for each z score 
on the horizontal axis, which approximates the probability of a single 
z value. In addition, each z score implicitly divides the curve into two 
portions-the portion between negative infinity and the z score, and 
the portion beyond the z score or between the z score and positive 
infinity. If the former area under the curve equals P, the latter area 
under the curve equals 1 - P. Note also that the height of the nor­
mal curve drops fastest around values near 0, and changes little at the 
tails of the curve. Thus, P and 1 - P change more near the middle of 
the curve than near the extremes. 

The cumulative standard normal curve in Figure 4.2 directly plots 
the area in the standard normal curve at or below each z score. As the 
z scores get larger, the cumulative proportion of the normal curve at 
or below the z score increases. As for the standard normal curve, the 
z scores define the X axis, but the Y axis refers to the proportion of 
area at or below that z score rather than to the height of the normal 
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z 
Figure 4.1. Standard normal curve. 

curve. Drawing a line up to the curve from a z score, and then drawing 
another perpendicular line across to the Y axis, shows the cumulative 
probability associated with each z score and the area of the standard 
normal curve at or below that z score. 

The cumulative standard normal curve resembles the logistic curve, 
only with z scores instead of logged odds along the horizontal axis. 
The curve approaches, but does not reach 0 as the z scores de-

z 

Figure 4.2. Cumulative standard normal curve. 
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crease toward negative infinity, and the curve approaches but does 
not reach 1 as the z scores increase toward positive infinity. Although 
the probit CUIVe approaches the floor and ceiling slightly faster than 
the logit CUIVe, the differences are small. Thus, as logistic regression 
uses the logistic curve to translate probabilities into logits or logged 
odds, probit analysis uses the cumulative standard normal curve to 
translate probabilities into associated z scores. Although related non­
linearly to the probabilities, independent variables relate linearly to 
the z scores from the probit transformation. 

To illustrate the properties of the transformation used in pro­
bit analysis, the numbers below match z scores with probabilities. 
The first row lists z scores, and the second row lists the associated 
probabilities of the cumulative standard normal distribution (i.e., the 
area of the normal curve between negative infinity and the z score), 

-4 -3 -2 -1 0 1 2 3 4 
0.000030.001350.02280.15870.50.84130.9772 0.99865 0.99997. 

Note the nonlinear relationship between the z scores and probabil­
ities: the same one-unit change in the z scores produces a smaller 
change in the probabilities near the floor of 0 and near the ceiling 
of 1 than in the middle. Conversely, the probabilities in the first row 
below define z scores in the second row, 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
- 1.282 -0.842 -0.524 -0.253 o 0.253 0.524 0.842 1.282. 

These figures likewise show nonlinearity: the same change in prob­
abilities results in a bigger change in z scores as the probabilities 
approach 0 and 1. 

These examples show that the probit transformation has the same 
properties of the logit transformation. It has no upper or lower bound­
ary, as the domain of the normal curve extends to infinity in either 
direction. It is symmetric around the midpoint probability of .5; the 
z scores for probabilities .4 and .6 are identical except for the sign. 
Additionally, the same change in probabilities translates into larger 
changes in z scores for probabilities near 0 and 1. The transformation 
thus stretches the probabilities near the boundaries. In short, translat­
ing probabilities into z scores based on the cumulative standard nor­
mal curve has the characteristics necessary to linearize certain types 
of nonlinear relationships. 
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Probit Analysis 

Like logistic regression, probit analysis relies on a transformation to 
make regression on a dichotomous dependent variable similar to re­
gression on a continuous variable. Given a probability of experiencing 
an event or having a characteristic, the predicted probit becomes the 
dependent variable in a linear equation determined by one or more 
independent variables: 

Z represents the nonlinear transformation of probabilities into z 
scores using the cumulative standard normal distribution. By pre­
dicting the z scores with a linear equation, probit analysis implicitly 
describes a nonlinear relationship with probabilities in which the in­
dependent variable has a greater effect on the probabilities near the 
middle of the curve than near the extremes. 

In logistic regression, we can summarize the transformation of prob­
abilities into logged odds and vice-versa with relatively simple formulas. 
For probit analysis, the complex formula for the standard normal curve 
makes for more difficulty. Corresponding to the nonlinear equation for 
determining probabilities in logistic regression, Pi = 1/(1 + e-L ;), the 
nonlinear equation for probit analysis takes Pi as a function of Zi 
in the formula for the cumulative standard normal distribution. The 
formula involves an integral (roughly similar to summation for a con­
tinuous distribution) that transforms z scores from negative to posi­
tive infinity into probabilities with a minimum of 0 and maximum of 1. 
Based on the cumulative standard normal distribution, the cumulative 
probability associated with any z score equals: 

j z 1 
P = ~ exp _(U2 /2) dU, 

-00 v 27T 

where U is a random variable with a mean of 0 and standard devia­
tion of 1. The formula merely says that the probability of the event 
equals the area under the cumulative normal curve between negative 
infinity and Z. The larger the value Z, the larger the cumulative prob­
ability. Because of the complexity of the formula, however, computers 
normally do the calculations. 16 Although hand calculators allow easy 
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calculation of logits from probabilities and vice-versa, they seldom in­
clude functions based on the cumulative standard normal distribution. 
In any case, keep in mind that the goal of the formula is to translate 
the linearly determined Z in the probit equation back to nonlinearly 
determined probabilities. 

Rough approximations to values generated from the formula come 
from the standard normal table in statistics books. For z scores 
from -3 to 3, the table gives the area between the mean of 0 and 
the absolute value of the z score. For negative z scores, subtracting 
the area in the table from .5 gives the area between negative infin­
ity and the z score (i.e., defines the area of the cumulative standard 
normal distribution at or below that z score). For positive z scores, 
adding the area to .5 gives the area between negative infinity and the 
z score. For example, the proportion of a standard normal curve be­
tween the mean of 0 and a z score of 1.5 is .4332. Added to .5, that 
z score defines a probability in the cumulative standard normal curve 
of .9332. For a z score of -1.5, the probability in the cumulative 
standard normal curve equals .5 - .4332 or .0668. 

Corresponding to the formula in logistic regression for the logged 
odds, L; = In(P;/(l-P;», the formula for probit analysis identifies the 
inverse of the cumulative standard normal distribution. If we represent 
the cumulative standard normal distribution by <1>, then the equation 
above equals P = <I>(Z), and the equation for Z equals Z = <I>-I(p), 
where <1>-1 refers to the inverse of the cumulative standard normal 
distribution. Although it cannot be represeJ,1ted by a simple formula, 
the inverse of the cumulative standard normal distribution transforms 
probabilities into linear Z scores that represent the dependent vari­
able in probit analysis. With probits as the dependent variable, the 
estimated coefficients show the change in z score units of the inverse 
of the cumulative standard normal distribution rather than the change 
in probabilities. 

Finding the inverse of the cumulative standard normal distribution, 
or a z score from a probability, is done most easily with a computer 
program,17 but using the normal table again illustrates the logic. lithe 
probability falls below .5, then subtract it from .5 to get the area 
between the unknown z score and the mean of the distribution of O. 
Find that area in the text of the table, and the z score associated with 
the area. Because the probability is less than .5, the z score will be 
negative. If the probability exceeds .5, then subtract .5, find the area 
in the table, and identify the z score associated with the probability. 
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A probability of .4, for example, defines an area of .10 between the 
z score and the mean. The z score closest to that probability in the 
standard normal table is 0.253. Thus, -.253 defines the z score in 
the cumulative standard normal distribution. A probability of .6 again 
defines an area of .10 between the z score and the mean, but this time 
the corresponding z score is 0.253. 

Despite the similarities of the logit and probit transformations, how­
ever, the resulting coefficients differ by an arbitrary constant. The 
microlevel data include only the observed values of the dependent 
variable of 0 and 1 rather than the actual observed probabilities, and 
the predicted logit or probit values can range from negative to posi­
tive infinity. The logit and probit variables therefore have no inherent 
scale, and programs use an arbitrary normalization to fix the scale. 
Probit analysis sets the standard deviation of the error equal to 1, 
where logit analysis sets the standard deviation of the error equal to 
approximately 1.814. 

Different error variances mean that one should not directly com­
pare probit and logit coefficients. The logit coefficients will exceed the 
probit coefficients by an approximate factor of 1.8. Dividing the logit 
coefficients by that factor will make the units comparable,18 but the 
logistic regression and probit coefficients will vary slightly because of 
the small differences between the logistic and normal curves. Nearly 
always, however, probit analysis and logistic regression produce simi­
lar substantive results. 

Interpreting the Coefficients 

Probit Coefficients 

Given the transformed units of the dependent variable, probit coef­
ficients warrant the usual interpretations of coefficients in regression. 
They show the linear and additive change in z-score units of the pro­
bit transformation (i.e. , the inverse of the cumulative standard normal 
distribution) for a one-unit change in the independent variables. Per­
haps even less intuitive than logged odds, standard units of the cumu­
lative normal distribution have little interpretive value. By necessity, 
interpretations usually begin with the sign of the coefficients and the 
value of the t ratios. In a probit analysis of support for capital punish­
ment using the 1993 GSS, for example, the coefficient for education 
equals - .048. A I-year increase in education reduces the probit of the 
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probability of supporting capital punishment by .048 units. More help­
fully, the coefficient divided by its standard error equals -3.76. 

An indication of the relative size of the effects within a probit 
equation can come from simple calculations. Multiplying the probit 
coefficients by the standard deviations of the independent variables 
would show the change in the inverse of the cumulative standard 
normal transformation of the dependent variable for a one standard 
deviation increase in the independent variable. In the example of 
capital punishment, education has a standard deviation of 2.984. Mul­
tiplying the standard deviation by the probit coefficient of -.048 in­
dicates that a one standard deviation increase in education lowers 
support for capital punishment by -.143 probit units. Another vari­
able measuring political views (1 = extremely liberal, 7 = extremely 
conservative) has a probit coefficient of .151 and a standard devia­
tion of 1.359. The product of .205 reveals a stronger effect than for 
education. 

Other types of standardized probit coefficients parallel those for 
logistic regression. Since adding the variance of the predicted logit 
values to the variance of the logistic error term measures the variance 
of the dependent variable in logistic regression, adding the variance 
of the predicted probit values to the variance of 1 for the probit error 
term suggests a probit-specific measure of variance. The square root 
gives a standard deviation measure of Y, and the probit coefficient 
multiplied by the ratio of the standard deviation of X to the standard 
deviation of Y yields a standardized coefficient. 

Similarly, since dividing the variance of the predicted logit values 
by the variance explained in logistic regression offers another mea­
sure of the variance in the dependent variable, dividing the variance 
of the predicted probit values by the variance explained offers another 
measure of the variance of the dependent variable in probit analysis. 
After taking the square root of the variance, the standardized coef­
ficient again comes from simple multiplication. For more details, see 
Chapter 2. 

Otherwise, exponentiating probit coefficients does not, as it does 
for logistic regression coefficients, produce the equivalent of the mul­
tiplicative change in odds. Given the usefulness of multiplicative odds 
coefficients in logistic regression, the lack of comparable coefficients 
in probit analysis may contribute to the greater popularity of logis­
tic regression. Further interpretation of probit coefficients therefore 
requires attention to probabilities. 
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Marginal Effects 

The partial derivative shows the effect of an instantaneous change 
in an independent variable on the probability of experiencing an event 
or having a characteristic (i.e., the slope of the tangent line at a par­
ticular point of the nonlinear curve relating an independent variable 
to the probability). However, the partial derivative for probit analysis 
takes a different form than in logistic regression: 

where [(Z) is the density or height of the normal curve at the point 
Z . As shown in the next formula, the density of the standard normal 
curve at the value of Z differs from the formula for the area at or 
below a z score: 

[(Z) = _1_ exp _ (Z2 /2) . 
.j2; 

Given the continuous nature of the normal distribution, the proba­
bility associated with each z score is infinitely small. However, as the 
change in the z score approaches a limit of 0, the probability ap­
proaches the value defined by the above formula. The distribution 
defined by the formula has its highest value at the mean z score of 0, 
and has successively smaller values as the z score deviates in either 
direction from O. 

The formula shows that the bk coefficients translate into the 
largest instantaneous effects on probabilities when the value of the 
normal density function is largest (i.e., when the Z value is near 0). 
The bk translate into smaller effects on probabilities when the Z 
value is far from 0 and the density of the normal distribution is 
low. Values for the density of the normal curve sometimes appear 
in books of statistical tables, or can be calculated with hand calcu­
lators more easily than values for the cumulative standard normal 
distribution. 19 

Consider the probit analysis of capital punishment again. The mean 
of the dependent variable, .775, corresponds to a z score for the cu­
mulative normal distribution of .755. The density of the normal curve 
at the z score of .755 equals .300. When multiplied by the educa­
tion coefficient of - .048, the ordinate shows that the change in the 
probability for a I-year change in education equals -.014. Of course, 
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the coefficient -.048 would translate into different probabilities for 
different z scores. As in logistic regression, the use of a single par­
tial derivative cannot fully summarize a complex nonlinear and non­
additive relationship. The mean probability offers only one of many 
possible points discussed in Chapter 2 at which to calculate marginal 
effects. 

Effects on Predicted Probabilities 

Because partial derivatives have little meaning for dummy inde­
pendent variables, it helps to calculate predicted probabilities for the 
groups defined by a dummy variable. In addition, because the tan­
gent line defined by the partial derivative may differ from the actual 
change in the probit curve for a one-unit change in a continuous in­
dependent variable, it can help to calculate the predicted change in 
probabilities for continuous variables. Like logistic regression, pro­
bit analysis allows calculation of changes in probabilities for specified 
values of the independent variables. Again, however, the effects of 
dummy and continuous variables on predicted probabilities depend on 
the choice of the starting point. Changes in probabilities will emerge 
larger for points near the middle of the curve than near the floor or 
ceiling. 

To calculate the change in probabilities for a dummy variable, take 
the mean of the dependent variable as the predicted probability for 
the omitted group. Translate that value into a z score for the cumu­
lative normal curve (i.e., the area below the z score) using a table 
or computer function. Then add the probit coefficient for the dummy 
variable to this z score and transform the new z score sum back into 
a new probability using a table or computer function. The new prob­
ability minus the mean shows the difference in predicted probabilities 
between the two groups. 

For example, a dummy variable for sex (1 = female) has a co­
efficient in the probit equation for support of capital punishment 
of -.291. At the mean probability of .775, the predicted probit z score 
equals .755. Adding .755 to -.291 gives a probit z score of .464, and 
the probability associated with .464 is .677. Subtracting the probability 
of .775 from .677 equals - .098. At the mean of the dependent vari­
able, the probability of women supporting capital punishment is .098 
lower than for men. 
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The same logic of calculating predicted probabilities holds for con­
tinuous variables. After translating the mean probability into a probit 
z score, add the coefficient for the continuous variable and transform 
the probit back into a probability. The difference between the two 
probabilities gives the predicted change due to a one-unit change in 
the continuous variable. With a mean probability of .775 and probit 
of .755, adding the coefficient for education of - .048 gives a pre­
dicted probit of .707. The probability associated with .707 is .760, and 
the difference between probabilities is -.015. 

The same qualifications concerning the calculations of marginal 
effects apply to predicted probabilities. A single coefficient cannot 
fully describe the relationship of a variable with probabilities, and 
the effect of a unit change on probabilities differs depending on the 
starting z score and the values of the independent variables. One 
can also summarize the effects of changes in the independent vari­
ables on the probabilities at the mean of all the independent vari­
ables, or at any number of other illustrative values of the independent 
variables. 

Maximum Likelihood Estimation 

Like logistic regression, probit analysis uses maximum likelihood 
estimation techniques. To briefly review the material in Chapter 3, 
maximum likelihood estimation chooses the estimates of model pa­
rameters that are most likely to give rise to the pattern of observa­
tions in the sample data. The likelihood function takes the likelihood 
of observing the pattern of occurrences (Y = 1) and nonoccurrences 
(Y = 0) of an event or characteristic in a given sample as a function 
of unknown model parameters. Maximizing the likelihood function 
therefore identifies the estimates for model parameters that are most 
likely to give rise to the pattern of observations in the sample data. 

Probit analysis maximum likelihood estimation proceeds identically 
to logistic regression maximum likelihood estimation in most ways. 
The likelihood function , defined earlier as 

reaches its largest value when the chosen probit coefficients maximize 
the likelihood of observing the sample values. The procedure differs 
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from logistic regression in its use of the cumulative standard nor­
mal distribution rather than the logistic distribution to obtain P val­
ues from the independent variables and the parameter estimates. To 
make the computations easier, programs maximize the log likelihood 
function rather than the likelihood function. Since the log likelihood 
function produces negative values, the maximum value comes closest 
to O. The estimation procedure uses an iterative method of estima­
tion and re-estimation that proceeds until the log likelihood function 
fails to change by a specified (and small) amount. 

Each probit model therefore produces a log likelihood value that 
reflects the effectiveness of the parameters in producing the observed 
sample values. The larger the negative value of the log likelihood, the 
poorer the model. Comparing the base log likelihood and the model 
log likelihood gives a difference score that, when multiplied by -2, 
produces a chi-square value that tests the null hypothesis that the 
coefficients for all the independent variables equal o. Finally, the log 
likelihood values allow calculation of several pseudo R2 coefficients. 
Again, these coefficients and tests of the overall effectiveness of the 
model do not differ from those for logistic regression discussed in the 
previous chapter. 

An Example 

Table 4.1 presents a probit analysis using STATA that replicates the 
logistic regression model for smoking presented in Chapters 2 and 3. 
The coefficient for education shows that for each additional year of 
schooling, smoking declines by .126 units of the probit transformation 
or the inverse of the cumulative standard normal function, and the 
coefficient for age shows that for a I-year increase, smoking declines 
by .020 probit units. The ratios of both coefficients to their standard 
errors (shown in the column labeled z) exceed critical values. The 
coefficient for the marital status dummy variable shows married per­
sons smoke .245 probit units less than unmarried persons, and the 
coefficient for the sex dummy variable shows females smoke .044 pro­
bit units more than males. The coefficient for marital status reaches 
the .05 level of significance, while the coefficient for sex does not. 

Multiplying the coefficients for education and age by their standard 
deviations allows for comparison of the relative effects of the two 
variables. For a standard unit increase in education, the probit for 
smoking declines by .389; for a standard unit increase in age, the pro-
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TABLE 4.1 

STATA Probit Analysis Results 

Iteration 0: log likelihood = - 300.69036 
Iteration 1: log likelihood = -272.32072 
Iteration 2: log likelihood = - 271.87610 
Iteration 3: log likelihood = -271.87565 

Probit estimates 

Log likelihood = - 271.87565 

Smokes Coe! Std. E" 

Education - .1258692 .0224873 
Age -.0202936 .0038746 
Marital -.2452985 .1246171 
Sex .0442283 .1254098 
Constant 2.034328 .3831415 

z 

-5.597 
-5.238 
-1.968 

0.353 
5.310 

Number of obs = 510 
X(4) = 57.63 
Prob > X' = 0.0000 
Pseudo R2 = 0.0958 

p > Izl 
0.000 
0.000 
0.049 
0.724 
0.000 

bit for smoking declines by .348. These semi-standardized coefficients 
show a slightly stronger effect of education than age. 

Calculations using the predicted probit values produce fully stan­
dardized coefficients. One measure of the variance of the dependent 
variable equals the variance of the predicted probit values divided 
by the variance explained. This value equals 2.3225 and the standard 
deviation equals 1.524. Another measure of the variance of the depen­
dent variable equals the variance of the predicted probit values plus 
the variance of 1 for the probit distribution. This value equals 1.2383 
and the standard deviation equals 1.113. The standardized coefficients 
for education equal, respectively, - .255 and - .350 according to the 
two calculations. The notable difference between the two estimates 
reveals the difficulties in calculating standardized coefficients. How­
ever, the standardized coefficients for age, - .231 and - .317, both 
reflect slightly smaller effects than education. 

Differences appear in the probit and logistic regression results. 
Comparing Table 4.1 with Table 2.1 discloses that the logistic regres­
sion coefficients exceed the corresponding probit coefficients by a fac­
tor varying from 1.5 to 2.2. Part of the differences in coefficients result 
from the different variances of the transformed dependent variables. 
In addition, however, most z scores for the probit analysis are slightly 
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larger than those for the logistic regression (or more precisely, than 
the square root of the Wald statistic). The z score for marital status 
in the probit analysis reaches the .05 level of significance, but does 
not in the logistic regression. 

Probit analysis in STAT A makes it easy to calculate effects on prob­
abilities. With a simple command change, STATA computes the partial 
derivative for continuous variables and differences in predicted proba­
bilities for dummy variables. By default, the program calculates the ef­
fects on probabilities when the independent variables take their mean 
values-a probability similar, but not identical to the mean proba­
bility on the dependent variable. Table 4.2 presents the output from 
this option. The marginal effects for education and age equal -.040 
and - .007; the difference in predicted probabilities for marital status 
and sex equal -.079 and .014. 

For the overall model, the STATA output shows a baseline log like­
lihood of -300.69 and a model log likelihood (reached after three 
iterations) of -271.88. Multiplying the difference of -28.81 by -2 
gives the chi-square value of 57.63. With four degrees of freedom, the 
chi-square easily reaches significance. 

TABLE 4.2 

STATA Probit Analysis Results in Probabilities 

Iteration 0: log likelihood = -300.69036 
Iteration 1: log likelihood = -272.32072 
Iteration 2: log likelihood = -271.87610 
Iteration 3: log likelihood = -271.87565 

Probit estimates 

Log likelihood = -271.87565 

Smokes dF/dx Std. Err 

Education -.0403348 .0071008 
Age -.0065031 .0012264 
Marital" - .0790645 .0402579 
Sex" .0141730 .0400594 

Obs. P .2764706 
Pred. P .2540010 (at x bar) 

z 

-5.60 
-5.24 
-1.97 

0.35 

"dF/dx is for discrete change of dummy variable from 0 to 1. 

Number of obs = 510 
X(4) = 57.63 
Prob > X' = 0.0000 
Pseudo R2 = 0.0958 

P> JzJ x bar 

0.000 13.1431 
0.000 45.9608 
0.049 .545098 
0.724 .552941 
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STATA prints a pseudo R2 of .0958 based on the reduction in the 
log likelihood (i.e., the chi-square 57.63 divided by -2 times the base­
line log likehood). The Aldrich-Nelson measure equals 57.63 divided 
by 57.63 plus the sample size of 510, or .102. Adjusted upward by 
taking this value as a proportion of the maximum possible gives a 
pseudo R2 of .188. The correlation of the predicted probabilities and 
observed values of the dependent variable equals .103. By these mea­
sures, the variance explained in the probit analysis slightly exceeds the 
variance explained in the logistic regression. 

Summary 

Probit analysis deals with the ceiling and floor problems created by 
a dummy dependent variable with a transformation based on the cu­
mulative standard normal distribution. Despite the familiar nature of 
the normal curve, the changes in units of the inverse of the cumula­
tive standard normal distribution described by probit coefficients lack 
intuitive meaning. Further, probit analysis does not allow calculation 
of the equivalent of odds ratios, and makes calculation of changes in 
probabilities more difficult than in logistic regression. In most circum­
stances, researchers will prefer logistic regression, but discussing the 
alternative logic of probit analysis adds to the more general under­
standing of strategies of analysis for dummy dependent variables. 

5. CONCLUSION 

The previous chapters aimed to explain the basic principles under­
lying logistic regression (and the companion probit analysis) rather 
than to offer a comprehensive description or mathematical derivation 
of the techniques for analysis of binary dependent variables. Under­
standing the basic principles, however, can ease subsequent efforts 
to master more complex and advanced discussion of logistic regres­
sion. Equally important, the basic logic of the logit transformation and 
maximum likelihood estimation in binary logistic regression applies to 
a wide variety of other statistical techniques for the analysis of cat­
egorical dependent variables. For example, the same interpretations 
of coefficients for logistic regression with a binary dependent variable 
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fit models with three or more categories of the dependent variable. 
To emphasize the generality of the underlying principles presented 
so far, and to offer an introduction to more advanced material, the 
conclusion briefly reviews the extension of logistic regression to more 
complex dependent variables 

A nominal dependent variable that has three or more categories 
might lend itself to a set of separate logistic regressions. Three cat­
egories might involve three logistic regressions with three dummy 
dependent variables: the first category versus all others, the second 
category versus all others, and the third category versus all others. 
Although the separate logistic regressions would allow for the same 
interpretations of coefficients as in a single logistic regression, at least 
three difficulties emerge. First, the separate maximum likelihood es­
timation for each logistic regression equation ignores overlap across 
equations. A more efficient method would maximize the joint likeli­
hood for all categories of the dependent variable. Second, when the 
separate logistic regressions combine two or more categories in mak­
ing a comparison with one of the categories, they fail to isolate precise 
contrasts between two categories. More exact comparisons would in­
volve category one versus category two, category one versus category 
three, and category two versus category three. Third, the use of three 
logistic regressions for three categories (or four for four categories) 
contains redundancy. Just as two dummy variables can fully repre­
sent three categories of a variable, two logistic regression equations 
can fully represent relationships of independent variables with three 
categories of a dependent variable. 

Multinomial or polytomous logistic regression (and probit anal­
ysis) corrects for these difficulties in analyzing nominal dependent 
variables with three or more categories, but otherwise does little 
to change the principles of interpretation used in binary logistic 
regression. First, multinomial logistic regression jointly maximizes 
the likelihood that the estimates of the parameters predicting each 
category of the dependent variable could generate the observed 
sample data. With only two categories of the dependent variable, 
multinomial logistic regression estimates reduce to binary logis­
tic regression estimates; the logic of maximum likelihood does not 
change, only the number of categories increases. Accordingly, the 
baseline and model log likelihood values, the chi-square statistics, 
and the pseudo-variance explained measures have similar interpreta­
tions in multinomial as in binary logistic regression, except that they 
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apply to models with more than two categories of the dependent 
variable. 

Second, multinomial logistic regression isolates precise contrasts be­
tween categories of the dependent variable; and, third, it avoids re­
dundancy by selecting a reference or baseline category. For example, 
with the last of four categories selected as the baseline, multinomial 
logistic regression would then estimate sets of coefficients for three 
contrasts: category one with category four, category two with category 
four, and category three with category four. Each set of coefficients 
represents the effects of a unit change in the independent variables 
on the logged odds of belonging to each category (coded as 1) relative 
to the reference category (coded as 0). The coefficients are analogous 
to a binary logistic regression coefficients, but the logged odds refer 
only to the subset of cases falling into the two categories used in a 
contrast. 

Computer programs for multinomial logistic regression thus present 
sets of coefficients for each independent variable. Each independent 
variable affects the logged odds of each category relative to the refer­
ence category. The redundancy in all possible contrasts between cate­
gories of the dependent variable allows multinomial logistic regression 
programs to estimate coefficients only for the nonredundant contrasts. 
Given the specific contrast under consideration, then, the use of odds 
ratios, partial derivatives, and standardized coefficients discussed in 
Chapter 2 apply to multinomial logistic regression coefficients. 

Understanding logged odds, partial derivatives, and maximum like­
lihood estimation in binary logistic regression thus provides the tools 
to understand more complex variations on the analysis of categor­
ical dependent variables. Other variations in forms of logistic re­
gression or probit analysis involve ordinal dependent variables (or­
dered logit analysis), truncated or censored categorical variables 
(tobit analysis), and time-dependent categorical variables (event his­
tory analysis). More advanced treatments (e.g., Agresti, 1996; Allison, 
1984; Liao, 1994; Long, 1997) examine these more complex tech­
niques in depth. Still, the principles of binary logistic regression apply 
well beyond the topics reviewed in this short volume. 
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NOTES 

l. Nonsensical predicted values are by no means limited to dichotomous dependent 
variables-unreasonable predictions at the extreme weaken models with continuous 
dependent variables as well. All such problems warrant attention to the functional 
form of the relationship. 

2. Algebraically, the variance of the error term equals 

If the variances are equal for all values of X, they would have no relationship to X . 
Yet, the equation shows just the opposite-X values influence the size of the error. 
Taking bo + b1X; as Pi' the equation becomes 

Var (e;) = (P;) * (1 - P;). 

As X affects Pi' it affects the error variance, which is greatest when P; 
becomes smaller as P; deviates from the midpoint. 

3. The derivation is 

4. The derivation is 

0; =P;/(1 - P;), 
P,=O,*(I-Pi), 
Pi = 0i - 0; * P; , 

Pi + 0i * Pi = 0" 
Pi(I + 0;) = 0" 

P, = 0,/(1 + 0,). 

P;I(I - Pi) = ebo+blX;, 
P; = eho+blXi * (1 - Pi)' 
P; = 1 * (ebo+blXi) - Pi * (ebo+blXi), 

P; + P; * (ebo+blXi) = (ebo+blXi), 
Pi * (1 + ebo+blXi) = (ebo+blXi), 

Pi = ebo+blX; 1(1 + ebo+blX;). 

.5, and 

5. Noting that e-x equals Ilex , and that eX equals lie-X, and letting bo + blXi 
equal L;, the derivation is 

Pi = eLi 1(1 + eLi ), 
Pi = (Ile-l.i)/(I + eLi II), 
Pi = (l/e-L;) * (Ill + eLi), 
P; = l/[(e- L;) * (1 + eLi»), 
Pi = I/(e - Li + eL, *e- Li ). 

Since eX * eY equals eX+Y, and eX-x equals eO or I, the formula reduces to 
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6. Another justification of the logistic regression model and the logit transforma­
tion takes a different approach than offered in this chapter. It assumes an underlying, 
unobserved, or latent continuous dependent variable exists. It then derives the logistic 
regression model by making assumptions about the shape of the distribution of the un­
derlying, unobserved values and its relationship to the observed values of 0 and 1 for 
the dependent variable (see, for example, Long, 1997, pp. 4~51). Logistic regression 
thus describes the relationship of the latent continuous variable to the independent 
variables. 

7. Because of the multiplicative nature of its effects, the actual change in odds 
depends on the starting point for the odds. The higher the starting odds, the greater 
the change from the same multiplicative coefficient. For example, a 1.14 increase raises 
odds of 1 by .14 to 1.14 and odds of 2 by .28 to 2.28. Further, the same multiplicative 
change in odds will translate into different changes in probabilities depending on the 
starting point. By describing multiplicative effects, the factor change makes for a simple 
summary measure, but does not fully overcome the difficulty of interpreting nonlinear 
relationships. 

8. In fact, for logistic coefficients near zero, the logistic coefficient times 100 and the 
percentage change differ only slightly. Note also that, although the logistic regression 
coefficients are symmetric around zero, the factor and percentage change in odds do not 
have this property. The odds, odds ratio coefficients, and percentage change values have 
no upper bound, but have a lower bound of O. To compare negative and positive effects 
on odds, take the inverse. For example, the inverse of an exponentiated coefficient of 
2.5 or a 150% increase in the odds equals 1/2.5 or .40, which translates into a 60% 
decrease. 

9. A variation on computing predicted probabilities involves centering the change 
(Kaufman, 1996). Note that in Figure 2.1 , the shape of the logistic curve above the 
tangent point differs from the shape below that point. In fact , the logistic curve is sym­
metric only at the midpoint of P = .5. With asymmetry, an inconsistency emerges: even 
when evaluated at the same P, the absolute value of the change in the predicted prob­
abilities for a one-unit increase in X usually does not equal the absolute value of the 
change in the predicted probabilities for a one-unit decrease in X . The inconsistency 
does not represent a major problem, as the differences in changes above and below 
any particular point on the logistic curve are seldom huge, but an alternative calcula­
tion avoids the problem. To ensure that the change in the predicted probabilities for a 
one-unit change in X is identical in either direction, it may be helpful (and not all that 
difficult) to center the change. As before, calculate the logit for P, but then add half 
the logistic regression coefficient to the logit and subtract half the logistic regression 
coefficient from the logit. Calculating the probabilities at these two points and tak­
ing the difference still reveals the change in the predicted probabilities for a one-unit 
change in X, but the change is symmetric around P-an increase or decrease in X 
gives the same absolute change in the probabilities. In the example for years employed, 
the logit for P equals 1.586 and the logistic regression coefficient equals .13. The cen­
tered change comes from calculating the predicted probabilities and their difference at 
1.586 - .065 and at 1.586 + .065. 

10. Given the difficulty in interpreting standardized dummy variables, some recom­
mend computing standardized coefficients only for continuous variables. However, even 
if a standard deviation change in a dummy independent variable has little meaning, 
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standardized coefficients for a dummy variable have value in comparing their influence 
relative to continuous variables. 

11. Calculate the differences in predicted probabilities for a one-unit change in ed­
ucation and age centered around the mean proportion smoking of .276. For education, 
the logistic regression coefficient divided by 2 equals -.104. Adding that value to the 
logit of -.964 equals -1.068, and subtracting that value from the mean logit equals 
- .86. The probabilities associated with logits of -1.068 and -.86 equal .256 and .297. 
The centered effect of education on probabilities thus equals -.041, which differs only 
slightly from the uncentered effect. For age, the logistic regression coefficient divided 
by 2 equals - .017. Adding that value to the logit of - .964 equals - .981, and subtracting 
that value from the mean logit equals -.947. The probabilities associated with logits of 
-.981 and -.947 and .273 and .279. The centered effect of education on probabilities 
thus equals -.006, again only slightly different from the uncentered effect. 

12. The maximum likelihood estimate can also be found by setting the derivative of 
the likelihood function to zero, and solving for the parameter. 

13. Using log likelihood values, the formula is (In LO-In L1)/ In LO, or, equivalently, 
1- (InLl/lnLO) . 

14. More precisely, it reaches 1 in practice only in the problematic case where 
the predicted logits explode to infinity and the maximization procedure breaks down 
(Green, 1993, p. 651). 

15. DeMaris (1995, p. 963) shows how to calculate the maximum possible value for 
the Aldrich and Nelson measure. Dividing the initial measure by the maximum then 
gives a corrected measure. 

16. In SPSS, COMPUTE finds the probability of the cumulative standard normal 
distribution for any single number or variable using the CDF.NORMAL transformation. 
With the generate command, STATA uses NORMPROB to find the probability of the 
cumulative standard normal distribution for a z score. SAS uses the PROBNORM 
function. 

17. To find the z score associated with a probability, SPSS uses COMPUTE with 
the inverse cumulative distribution transformation called IDF.NORMAL (or PROBIT 
in early versions of SPSS). STATA uses the INVNORM function, and SAS uses the 
PROBIT function to do the same. 

18. Green (1993 p. 640) indicates that in practice the logit coefficients exceed the 
probit coefficients by a factor of approximately 1.6. 

19. Although the commands in SPSS do not include a function for the density of the 
normal distribution, the formula can be included directly in the COMPUTE command. 
SAS also requires direct use of the formula, but STAT A has a NORMD function that 
does the calculation automatically. 
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APPENDIX: LOGARITHMS 

Researchers often find it useful to distinguish between absolute and 
relative change in a variable. Absolute change ignores the starting 
level at which a change occurs; in absolute terms, income may in­
crease by $1, $100, or $1000, but the change counts the same at all 
income levels. Relative change takes a change as a proportion or per­
centage of the starting level. As a result, the same absolute change 
counts less at higher starting levels than at lower levels. Using the 
income example again, a $100 change at $1000 shows a 10.0% in­
crease «100/1000)* 100), whereas a $100 change at $100,000 shows a 
0.1 % increase. The percentage represents relative change rather than 
absolute change. 

Conversely, the same relative income change results in larger ab­
solute increases at higher levels. Thus, a 10% increase translates into 
$100 at the starting level of $1000, and into $10,000 at the starting 
level of $100,000. Depending on the theoretical meaning of a vari­
able, relative or percentage change may prove more appropriate than 
absolute change in modeling relationships in ordinary regression. It 
certainly is important in dealing with relationships involving odds in 
logistic regression. 

The Logic of Logarithms 

Logarithms offer an effective means of measuring relative change in 
a variable. The idea behind logarithms is simply to count by multiples 
rather than by adding ones. Multiples take the form of exponents or 
powers. For example, using a base of 10, the exponents of 1 to 5 give 

10 1 = 10, 
101 = 100, 
10 3 = 1000, 
104 = 10,000, 
10 5 = 100,000. 

As the power or exponent increases by 1, the resulting value in­
creases by a multiple of 10. The outcome goes from 10 to 100 to 
1000 and so on, with each successive value equaling 10 times the 
previous value. Notice also that a one-unit increase in the exponent 
or power results in a constant percentage increase in the outcome. 
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The absolute outcomes increase by values of 90, 900, 9000, and 
90,000. However, the percentage increases all equal 9 * 100 or 900% 
(e.g., (90/10) * 100 = 900; (900/100) * 100 = 900). In general, the 
percentage increase equals the base multiple of 10 minus 1 and 
times 100. 

To define logarithms, let the base equal b, the power or exponent 
equal n, and the outcome equal X . Then bn = X . Given values of 
X , logarithms measure the power the base must be raised to pro­
duce the X values. They measure the power in the exponent formula 
rather than X. Therefore, we can define n as the log of X such that 
b10gX = X . 

The logarithm of X to the base lO--called a common logarithm­
equals the power 10 must be raised to get X. As 10 raised to the 
second power equals 100, the base 10 log of 100 equals 2. The base 
10 log of 1000 equals 3, the base 10 log of 10,000 equals 4, and so on. 
As before, an increase of one in a logarithm translates into an increase 
in X by a multiple of 10. An increase of 2 in the log translates into 
an increase by a multiple of 100 (10 x 10). 

In this terminology, X remains in its original absolute units, but the 
log of X reflects relative or percentage change. As X gets larger, it 
requires a larger increase to produce a one-unit change in the loga­
rithm. Taking the logarithm thus shrinks values of the original variable 
above 1, and the shrinkage increases as the values increase. Take the 
examples in Table A.1. 

As X increases by multiples of 10, the log of X increases by 1. As 
the log of X goes from 1 to 2, X moves from 10 to 100 or increases 
by 90; as the log of X goes from 2 to 3, X moves from 100 to 1000, 
or increases by 900; and as X goes from 3 to 4, X moves from 1000 
to 10,000, or increases by 9000. Reflecting the nature of percentage 
change, identical changes in the log of X translate into successively 
larger increases in X. 

TABLEA.l 

X logX 

10 1 
100 2 

1000 :3 
10,000 4 

100,000 5 
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Following this logic, the same change in X translates into a smaller 
change in the log of X as X gets larger. A change in X from 10 to 
11 implies a change in the log of X from 1 to 1.04. A change in X 
from 100 to 101 implies a change in the log of X from 2 to 2.004. 
A change in X from 1000 to 1001 implies a change in X from 3 
to 3.0004. Each time X increases by 1, but the log of X increases 
by successively smaller amounts: .04, then .004, and then .0004. This 
simply restates the principle that successively larger increases in X 
are needed to produce the same change in the log of X. 

Taking the logarithm of a variable fits the substantive goal of mod­
eling relative change. If the original X measures absolute change, the 
log of X measures percentage change. In original units, an increase in 
X of one unit means the same regardless of the initial starting point. 
In logged units, an increase in X of one unit translates into a larger 
change at low levels of X than at high levels of X. 

Taking the logarithm also has the benefit of pulling in extreme val­
ues in a skewed distribution. For many variables, the extreme values 
lie on the positive or right side of the distribution. To obtain a more 
normal distribution, and shrink the gap between a few outliers and 
the rest of the distribution, take the log of such variables. Extremely 
large values will count less when taking the log of the original variable 
because of the shift to a percentage scale. In other words, the transfor­
mation may place all the cases on a similarly meaningful scale. It does 
not change the ordering of the cases: the lowest and highest unlogged 
values remain the lowest and highest logged values, but the relative 
position and the size of the gaps between the cases change because 
of the focus on percentage rather than on absolute differences. 

Properties of Logarithms 

Knowing the value of X, you can find the common logarithm of 
X on a hand calculator simply by typing in X and then the LOG 
key. Similarly, knowing the common log of X, you can easily find 
X by typing in the log value and then lOX. To solve for a value of 
X given the logarithm of X, merely treat the log as an exponent. 
In calculating the values of logarithms and their exponents, note the 
following properties. 

Logarithms are defined only for values of X above O. No real number 
exists such that 10 (or any other base) raised to that power produces O. 
The same holds for negative values: no real number exists such that 
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10 (or any other base) raised to that power produces a negative num­
ber. A logarithm exists only for numbers above O. The logarithm of a 
variable with zero or negative values is undefined for those values. It 
is necessary to add a constant to the variable so that all values exceed 
o before taking the logarithm. 

For values of X between 0 and 1, logarithms are negative. This follows 
from the logic of exponents. A negative exponent such as in 10-2 

equals 1/102, 1/100, or .01. Thus, the power that 10 must be raised 
to produce an X value of .01 is -2. As 10-3 equals 1/103, 1/1000, or 
.001, the log of .001 equals -3. As X becomes smaller and smaller, 
and approaches 0, the logarithm of X becomes an increasingly large 
negative number. As X can become infinitely small without reaching 
zero, the log of X can become an infinitely large negative number. 
When X reaches 0, the logarithm is undefined. 

When X equals 1, the logarithm equals 0 because any number raised 
to the power 0 equals 1. When X exceeds 1, logarithms produce positive 
values. As X can increase infinitely, so may the logarithm increase 
infinitely. 

Overall, the X value of 1 and the log X value of 0 define dividing 
points. Values of X between 0 and 1 produce negative logarithms 
between 0 and negative infinity; values of X between 1 and positive 
infinity produce positive logarithms between 0 and positive infinity. 
Conversely, the larger the absolute value of a negative logarithm (i.e., 
the farther it falls from zero), the closer the original value comes to 
zero; the smaller the absolute value of a negative logarithm (i.e., the 
closer it comes to zero), the closer the original value comes to 1. The 
smaller the positive value of a logarithm, the closer the original value 
comes to l. 

Figure A.1(a) illustrates the logarithm function by plotting the com­
mon log of X by X. Figure A.1(b) presents the same graph only for 
values of X up to 20. Negative logarithms show in the graphs for val­
ues of X near 0, while positive logarithms show in the graphs for 
values of X greater than 1. The graphs also illustrate that as X in­
creases, the logarithm changes less per unit change in X. At high 
levels of X, the curve rises very little: as X takes values ranging from 
near 0 to 1000, the common log of X rises only to 3. The graphs thus 
indicate that the logarithm shrinks numbers above 1, with the larger 
numbers shrinking more than smaller numbers. 

The fact that logarithms represent multiples of a base value al­
lows one to translate multiplication into addition of logarithms. Two 
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Figure A.t. (a) Common logarithms (open circles) and natural logarithms 
(open triangles), (b) lower range of common logarithms (open circles) and 
natural logarithms (open triangles). 
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properties of logarithms follow. First, the logarithm of a product of 
two numbers equals the sum of the separate logarithms: 

10g(X * Y) = log X + log Y. 

For example, the log of (100*1000) equals (log 100)+(log 1000): since 
the log of 100 = 2, the log of 1000 = 3, and the log of 100,000 = 5, 
adding the logs gives the same result as logging the product. Second, 
the log of a quotient of two numbers equals the difference of the 
separate logs: 

10g(X/Y) = log X -log Y. 

Thus, the log of (100/1000) equals (log 100) - (log 1000). 
Another property proves useful in manipulating equations with log­

arithms. The logarithm of a power equals the exponent times the log 
of the base: 

10gXk = k * 10gX. 

For example, log UP equals the log of 100,000 or 5; it also equals 
5 * log 10 or 5 * 1. 

Natural Logarithms 

Despite their intuitive appeal, common logarithms find less use than 
another type of logarithm. Natural logarithms use the base of e, or 
approximately 2.718, instead of 10. This base has mathematical prop­
erties that make it useful in a variety of circumstances relating to 
computing compound interest, and solving for derivatives and inte­
grals in calculus. Otherwise, however, the logic of logarithms remains 
the same for e as for 10. The natural logarithm of X (symbolized by 
In X) equals the power e must be raised to get X. Natural logs still 
count by multiples rather than by adding ones, but by multiples of e. 
The exponents of 1 to 5 of e give 

e1 = 2.718, 
e2 = 7.389, 
e3 = 20.086, 
e4 = 54.598, 
e5 = 148.413. 
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As the power or exponent increases by 1, the resulting values increase 
by a multiple of 2.718. The exponentials do not increase as quickly as 
with the base 10, since multiples of 10 exceed multiples of 2.718, but 
they still increase faster than counting by ones. 

To obtain natural logarithms, simply tum this process around. 
Given X values of 2.718, 7.389, 20.086, 54.598, and 148.413, the natu­
rallogs equal 1, 2, 3, 4, and 5. We must raise e by 1 to get 2.718, by 2 
to get 7.389, and so on. Typically, X is an integer, so the log of X is 
not. Let X equal to 5, 27, 62, and 105, to pick some numbers at ran­
dom. For the first number, 2.718 must be raised to a power between 
1 and 2 since 5 falls between 2.718 and 7.389. The exact natural log 
of 5 equals 1.609. The X value of 27 falls between e raised to the 3 
and 4 power. The exact natural log is 3.296. The natural log of 62 is 
4.127, and the natural log of 105 is 4.654. 

You can obtain the natural log from a calculator simply by typing X 
and then the LN key. You can verify that, as X gets larger, a one-unit 
change in X results in increasingly small changes in the natural log of 
X. As illustrated Table A.2 for values of X greater than or equal to 
1, the log of X shrinks the values of X in proportion to their size. 

Note that, as for common logs, the natural log is not defined for 
values of 0 and lower, and that the log of X for values greater than 0 
and less than 1 is negative. If a variable has values of 0 or lower, add 
a constant so that the minimum value exceeds zero before taking the 
natural log. 

The natural log, like the common log, has a straightforward per­
centage interpretation: a change in one logged unit represents a con­
stant percentage increase in the unlogged variable. To show this, note 
that to change the log of X back to X, we simply have to raise e to 
the value of the log of X . For example, on your calculator, type 0, and 

TABLE A.2 

X InX 

1 0 
2 .693 
3 1.099 

101 4.615 
102 4.625 
103 4.635 
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then the key represented by eX. The result equals 1. Transforming the 
log of X into X would show the results in Table A.3. 

To see how the natural log of X reflects a constant percentage or 
relative increase (rather than a constant absolute increase in single 
units), calculate the percentage change in X for a one-unit change in 
the log of X . As the log of X changes from 0 to 1, X changes from 
1 to 2.718. The percentage change equals 

%Ll = [(2.718 - 1)/1] * 100 = 171.8. 

For changes in the log of X from 1 to 2 and from 2 to 3, the percent­
age changes equal 

%Ll = [(7.389 - 2.718)/2.718] * 100 = 171.8, 

and 

%Ll = [(20.086 - 7.389)/7.389] * 100 = 171.8. 

In each case, the percentage change equals 2.718-1 times 100. Hence, 
X changes by the same percentage (171.8) for each unit change in the 
log of X . An increase of 171.8% is the same as multiplying the starting 
value by 2.718. 

Figures A.1(a) and (b) graph X by the natural log of X along with 
the common log of X . Compared to the common log of X, the natural 
log of X reaches higher levels because it takes a larger power to raise 
2.718 to X than it takes to raise 10 to X. Overall, however, the shapes 
of the two curves show important similarities: both show a declining 
rate of change as X increases. 

TABLE A.3 

InX X 

0 1 
1 2.718 
2 7.389 
3 20.086 
4 54.598 
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Summary 

Logarithms provide a means to count by multiples. They show the 
power a base value such a 10 or e must be raised to obtain a nonzero 
positive number. Compared to the original numbers, logarithms rise 
at a decreasing rate. When numbers greater than or equal to one go 
up by one, their logs go up by less than one. Moreover, the larger the 
original number, the smaller the logarithm increases for a one unit 
increase in the original number. All this makes logarithms appropri­
ate for measuring relative or percentage change rather than absolute 
change in ordinary regression. It also makes them appropriate for use 
with the odds of experiencing an event or having a characteristic as 
modeled in logistic regression. 



83 

REFERENCES 

AGRESTI, A. (1996). An introduction to categorical data analysis. New York: Wiley. 
ALDRICH, J. H. & NELSON, F. D. (1984). Linear; probability, logit, and probit models. 

(Sage University Papers Series on Quantitative Applications in the Social Sciences, 
series no. 07-45). Thousands Oaks, CA: Sage. 

ALLISON, P. D. (1984). Euent history analysis: Regression for longitudinal euent data. 
(Sage University Papers Series on Quantitative Applications in the Social Sciences, 
series no. 07-046). Thousands Oaks, CA: Sage. 

BROWNE, I. (1997). Explaining the Black-White gap in labor force participation 
among women heading households. American Sociological Reuiew, 62, 236-252. 

COX, D. R. & SNELL, E. J. (1989). Analysis of binary data (2nd ed.). London: 
Chapman and Hall. 

DEMARIS, A. (1990). Interpreting logistic regression results: A critical commentary. 
Journal of MarrU/ge and the Family, 52, 271-277. 

DEMARIS, A. (1992). Logit modeling: Practical applications. (Sage University Pa­
pers Series on Quantitative Applications in the Social Sciences, series no. 07-86). 
Thousands Oaks, CA: Sage. 

DEMARIS, A. (1993). Odds versus probabilities in logit equations: A reply to Roncek. 
Socwl Forces, 71,1057-1065. 

DEMARIS, A. (1995). A tutorial in logistic regression. Journal of MarrU/ge and the 
Family, 57, 956-968. 

ELIASON, S. R. (1993). Maximum likelihood estimation: Logic and practice. (Sage Uni­
versity Papers Series on Quantitative Applications in the Social Sciences, series no. 
07-096). Newbury Park, CA: Sage. 

GREENE, W. H. (1993). Econometric analysis (2nd ed.). New York: Macmillan. 
HAGLE, T. M. & MITCHELL, G. E., II. (1992). Goodness-of-fit measures for probit 

and logit. American Journal of Political Science, 36, 762-784. 
KAUFMAN, R. L. (1996). Comparing effects in dichotomous logistic regression: A 

variety of standardized coefficients. Socwl Science Quarterly, 77, 90-109. 
LlAO, T. F. (1994). interpreting probability models: Logit, probit, and other generalized 

linear models. (Sage University Papers Series on Quantitative Applications in the 
Social Sciences, Series no. 07-101). Thousands Oaks, CA: Sage. 

LONG, J . S. (1997). Regression models for categorical and limited dependent uariables: 
analysis and interpretation . Thousands Oaks, CA: Sage. 

MCKELVEY, R. D. & ZAVOINA, W. (1975). A statistical model for the analysis of 
ordinal level dependent variables. Journal of Mathematical Sociology, 4, 103-120. 

MENARD, S. (1995). Applied Logistic Regression Analysis. (Sage University Papers 
Series on Quantatitative Applications in the Social Sciences, Series no. 07-106). 
Thousands Oaks, CA: Sage. 

NAGELKERKE, N. J. D. (1991). A note on a general definition of the coefficient of 
determination. Biometrika, 78, 691-692. 

PETERSON, T. (1985). A comment on presenting results from log it and probit models. 
American Sociological Reuiew, 50, 130-131. 



84 

RAFfERY, A. E. (1995). Bayesian model selection in social research. In (P. V. Mars­
den, Ed.) Sociological Methodology 1995 (pp. 111-163). London: Tavistock. 

RONCEK, D. W (1993). When will they ever learn that first derivatives identify the 
effects of continuous independent variables or "Officer you can't give me a ticket, 
I wasn't speeding for an entire hour." Social Forces, 71,1067-1078. 



85 

ABOUT THE AUTHOR 

FRED C. PAMPEL is Professor of Sociology and a Research Asso­
ciate in the Population Program at the University of Colorado, Boul­
der. He received a Ph.D. in sociology from the University of Illinois, 
Champaign-Urbana, in 1977, and has previously taught at the Uni­
versity of Iowa, University of North Carolina, and Florida State Uni­
versity. His research focuses on patterns of demographic change and 
age-based public policies for the high-income nations during the post­
World War II period. Using aggregate data on these nations and years, 
he has published articles on public spending for children and the el­
derly, the effects of relative cohort size on fertility and suicide, and 
sex differences in mortality that have appeared in the American Socio­
logical Review, the American Journal of Sociology, Demography, Social 
Forces, and the European Sociological Review. He is currently working 
on a forthcoming book, tentatively entitled The Institutional Context 
of Population Change. 




