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Preface
This is the second edition of this text on logistic regression methods, origi-
nally published in 1994.

As in the first edition, each chapter contains a presentation of its topic in
“lecture-book” format together with objectives, an outline, key formulae,
practice exercises, and a test. The “lecture-book” has a sequence of illustra-
tions and formulae in the left column of each page and a script (i.e., text) in
the right column. This format allows you to read the script in conjunction
with the illustrations and formulae that highlight the main points, formulae,
or examples being presented.

This second edition has expanded the first edition by adding five new chap-
ters and a new appendix. The five new chapters are

Chapter   9. Polytomous Logistic Regression
Chapter 10. Ordinal Logistic Regression
Chapter 11. Logistic Regression for Correlated Data: GEE
Chapter 12. GEE Examples
Chapter 13. Other Approaches for Analysis of Correlated Data

Chapters 9 and 10 extend logistic regression to response variables that have
more than two categories. Chapters 11–13 extend logistic regression to gener-
alized estimating equations (GEE) and other methods for analyzing corre-
lated response data.

The appendix is titled “Computer Programs for Logistic Regression” and pro-
vides descriptions and examples of computer programs for carrying out the
variety of logistic regression procedures described in the main text. The soft-
ware packages considered are SAS Version 8.0, SPSS Version 10.0, and
STATA Version 7.0.

Also, Chapter 8 on the Analysis of Matched Data Using Logistic Regression
has been expanded to include a discussion of three issues:

• Assessing interaction involving the matching variables
• Pooling exchangeable matched sets
• Analysis of matched follow-up data

This text was originally intended for self-study, but in the eight years since the
first edition was published it has also been effectively used as a text in a stan-
dard lecture-type classroom format. The text may be used to supplement
material covered in a course or to review previously learned material in a self-
instructional course or self-planned learning activity. A more individualized
learning program may be particularly suitable to a working professional who
does not have the time to participate in a regularly scheduled course.

Suggestions
for Use



The order of the chapters represents what the authors consider to be the
logical order for learning about logistic regression. However, persons with
some knowledge of the subject can choose whichever chapter appears
appropriate to their learning needs in whatever sequence desired.

The last three chapters on methods for analyzing correlated data are some-
what more mathematically challenging than the earlier chapters, but have
been written to logically follow the preceding material and to highlight the
principal features of the methods described rather than to give a detailed
mathematical formulation.

In working with any chapter, the user is encouraged first to read the abbre-
viated outline and the objectives and then work through the presentation.
After finishing the presentation, the user is encouraged to read the detailed
outline for a summary of the presentation, review key formula and other
important information, work through the practice exercises, and, finally,
complete the test to check what has been learned.

The ideal preparation for this text is a course on quantitative methods in epi-
demiology and a course in applied multiple regression. The following are
recommended references on these subjects, with suggested chapter readings:

Kleinbaum, D., Kupper, L., and Morgenstern, H., Epidemiologic Research:
Principles and Quantitative Methods, John Wiley and Sons Publishers, New
York, 1982, Chaps. 1–19.

Kleinbaum, D., Kupper, L., Muller, K., and Nizam, A., Applied Regression
Analysis and Other Multivariable Methods, Third Edition, Duxbury Press,
Pacific Grove, 1998, Chaps. 1–16.

A first course on the principles of epidemiologic research would be helpful
as all modules in this series are written from the perspective of epidemio-
logic research. In particular, the learner should be familiar with the basic
characteristics of epidemiologic study designs (follow-up, case control, and
cross sectional) and should have some idea of the frequently encountered
problem of controlling or adjusting for variables.

As for mathematics prerequisites, the reader should be familiar with natural
logarithms and their relationship to exponentials (powers of e) and, more
generally, should be able to read mathematical notation and formulae.

Atlanta, Georgia David G. Kleinbaum
Mitchel Klein

Recommended
Preparation
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Introduction 2
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Presentation 4
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Key Formulae 31
Practice Exercises 32
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Answers to Practice Exercises 37
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This introduction to logistic regression describes the reasons for the popu-
larity of the logistic model, the model form, how the model may be applied,
and several of its key features, particularly how an odds ratio can be derived
and computed for this model.

As preparation for this chapter, the reader should have some familiarity
with the concept of a mathematical model, particularly a multiple-regres-
sion-type model involving independent variables and a dependent variable.
Although knowledge of basic concepts of statistical inference is not
required, the learner should be familiar with the distinction between popu-
lation and sample, and the concept of a parameter and its estimate.

The outline below gives the user a preview of the material to be covered by
the presentation. A detailed outline for review purposes follows the presen-
tation.

I. The multivariable problem (pages 4–5)

II. Why is logistic regression popular? (pages 5–7)

III. The logistic model (pages 7–8)

IV. Applying the logistic model formula (pages 9–11)

V. Study design issues (pages 11–15)

VI. Risk ratios versus odds ratios (pages 15–16)

VII. Logit transformation (pages 16–22)

VIII. Derivation of OR formula (pages 22–25)

IX. Example of OR computation (pages 25–26)

X. Special case for (0, 1) variables (pages 27–28)

2 1. Introduction to Logistic Regression

Introduction

Abbreviated
Outline



Upon completing this chapter, the learner should be able to:

1. Recognize the multivariable problem addressed by logistic regression
in terms of the types of variables considered.

2. Identify properties of the logistic function that explain its popularity.
3. State the general formula for the logistic model and apply it to spe-

cific study situations.
4. Compute the estimated risk of disease development for a specified set

of independent variables from a fitted logistic model.
5. Compute and interpret a risk ratio or odds ratio estimate from a fitted

logistic model.
6. Identify the extent to which the logistic model is applicable to follow-

up, case-control, and/or cross-sectional studies.
7. Identify the conditions required for estimating a risk ratio using a

logistic model.
8. Identify the formula for the logit function and apply this formula to

specific study situations.
9. Describe how the logit function is interpretable in terms of an “odds.”

10. Interpret the parameters of the logistic model in terms of log odds.
11. Recognize that to obtain an odds ratio from a logistic model, you

must specify X for two groups being compared.
12. Identify two formulae for the odds ratio obtained from a logistic

model.
13. State the formula for the odds ratio in the special case of (0, 1) vari-

ables in a logistic model.
14. Describe how the odds ratio for (0, 1) variables is an “adjusted” odds

ratio.
15. Compute the odds ratio, given an example involving a logistic model

with (0, 1) variables and estimated parameters.
16. State a limitation regarding the types of variables in the model for use

of the odds ratio formula for (0, 1) variables.

Objectives 3

Objectives



This presentation focuses on the basic features of
logistic regression, a popular mathematical modeling
procedure used in the analysis of epidemiologic data.
We describe the form and key characteristics of the
model. Also, we demonstrate the applicability of logis-
tic modeling in epidemiologic research.

We begin by describing the multivariable problem fre-
quently encountered in epidemiologic research. A typ-
ical question of researchers is: What is the relationship
of one or more exposure (or study) variables (E) to a
disease or illness outcome (D)?

To illustrate, we will consider a dichotomous disease
outcome with 0 representing not diseased and 1 rep-
resenting diseased. The dichotomous disease outcome
might be, for example, coronary heart disease (CHD)
status, with subjects being classified as either 0 (“with-
out CHD”) or 1 (“with CHD”).

Suppose, further, that we are interested in a single
dichotomous exposure variable, for instance, smoking
status, classified as “yes” or “no.” The research question
for this example is, therefore, to evaluate the extent to
which smoking is associated with CHD status.

To evaluate the extent to which an exposure, like
smoking, is associated with a disease, like CHD, we
must often account or “control for” additional vari-
ables, such as age, race, and/or sex, which are not of
primary interest. We have labeled these three control
variables as C1, C2, and C3.

In this example, the variable E (the exposure variable),
together with C1, C2, and C3 (the control variables),
represent a collection of independent variables that
we wish to use to describe or predict the dependent
variable D.

4 1. Introduction to Logistic Regression

Presentation

I. The Multivariable Problem

• form
• characteristics
• applicability

?E D

EXAMPLE

D(0,1) = CHD

E(0,1) = SMK

“control for”

C1 = AGE

C2 = RACE

C3 = SEX

SMK CHD

independent

?E, C1, C2, C3 D}

dependent

FOCUS



More generally, the independent variables can be
denoted as X1, X2, and so on up to Xk where k is the
number of variables being considered.

We have a flexible choice for the X’s, which can represent
any collection of exposure variables, control variables, or
even combinations of such variables of interest.

For example, we may have:

X1 equal to an exposure variable E
X2 and X3 equal to control variables C1 and C2,

respectively
X4 equal to the product E�C1
X5 equal to the product C1�C2
X6 equal to E2

Whenever we wish to relate a set of X’s to a dependent
variable, like D, we are considering a multivariable
problem. In the analysis of such a problem, some kind
of mathematical model is typically used to deal with
the complex interrelationships among many variables.

Logistic regression is a mathematical modeling approach
that can be used to describe the relationship of several X’s
to a dichotomous dependent variable, such as D.

Other modeling approaches are possible also, but
logistic regression is by far the most popular modeling
procedure used to analyze epidemiologic data when
the illness measure is dichotomous. We will show why
this is true.

To explain the popularity of logistic regression, we
show here the logistic function, which describes the
mathematical form on which the logistic model is
based. This function, called f(z), is given by 1 over 1
plus e to the minus z. We have plotted the values of this
function as z varies from �� to ��.

Presentation: II. Why Is Logistic Regression Popular? 5

Independent variables:
X1, X2, . . . , Xk

X’s may be E’s, C’s, or combinations

EXAMPLE

X1 = E X4 = E�C1

X2 = C1 X5 = C1�C2

X3 = C2 X6 = E2

The Multivariable Problem

The analysis:
mathematical model

Logistic model:
dichotomous D

Logistic is most popular

II. Why Is Logistic 
Regression Popular?
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Logistic
function:
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Notice, in the balloon on the left side of the graph, that
when z is ��, the logistic function f(z) equals 0.

On the right side, when z is ��, then f(z) equals 1.

Thus, as the graph describes, the range of f(z) is
between 0 and 1, regardless of the value of z.

The fact that the logistic function f(z) ranges between
0 and 1 is the primary reason the logistic model is so
popular. The model is designed to describe a probabil-
ity, which is always some number between 0 and 1. In
epidemiologic terms, such a probability gives the risk
of an individual getting a disease.

The logistic model, therefore, is set up to ensure that
whatever estimate of risk we get, it will always be some
number between 0 and 1. Thus, for the logistic model,
we can never get a risk estimate either above 1 or
below 0. This is not always true for other possible mod-
els, which is why the logistic model is often the first
choice when a probability is to be estimated.

Another reason why the logistic model is popular
derives from the shape of the logistic function. As
shown in the graph, if we start at z= �� and move to
the right, then as z increases, the value of f(z) hovers
close to zero for a while, then starts to increase dra-
matically toward 1, and finally levels off around 1 as z
increases toward ��. The result is an elongated, S-
shaped picture.

6 1. Introduction to Logistic Regression

0
z ∞�∞

1/2

1

f(z)

f
e

e

+∞( ) =

=

=

− +∞( )

−∞

1

1+

1

1+

1

f
e

e

−∞( ) =

=

=

− −∞( )

∞

1

1+

1

1+

0

Range: 0 ≤ f(z) ≤ 1

0 ≤ probability ≤ 1
(individual risk)

0
z

�∞�∞

1

f(z
) in

creasin
g

S-shape
f z( ) ≈ 0

f z( ) ≈1

Shape:



The S-shape of the logistic function appeals to epidemi-
ologists if the variable z is viewed as representing an
index that combines contributions of several risk fac-
tors, and f(z) represents the risk for a given value of z.

Then, the S-shape of f(z) indicates that the effect of z on
an individual’s risk is minimal for low z’s until some
threshold is reached. The risk then rises rapidly over a
certain range of intermediate z values, and then remains
extremely high around 1 once z gets large enough.

This threshold idea is thought by epidemiologists to
apply to a variety of disease conditions. In other words,
an S-shaped model is considered to be widely applica-
ble for considering the multivariable nature of an epi-
demiologic research question.

Now, let’s go from the logistic function to the model,
which is our primary focus.

To obtain the logistic model from the logistic function,
we write z as the linear sum � plus �1 times X1 plus �2
times X2, and so on to �k times Xk, where the X’s are
independent variables of interest and � and the �i are
constant terms representing unknown parameters.

In essence, then, z is an index that combines the X’s.

We now substitute the linear sum expression for z in
the right-hand side of the formula for f(z) to get the
expression f(z) equals 1 over 1 plus e to minus the
quantity � plus the sum of �iXi for i ranging from 1 to
k. Actually, to view this expression as a mathematical
model, we must place it in an epidemiologic context.

z����1	1��2	2�…��k	k
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SUMMARY So, the logistic model is popular because the logistic
function, on which the model is based, provides:

• Estimates that must lie in the range between zero
and one

• An appealing S-shaped description of the com-
bined effect of several risk factors on the risk for a
disease.

III. The Logistic Model
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The logistic model considers the following general epi-
demiologic study framework: We have observed
independent variables X1, X2, and so on up to Xk on a
group of subjects, for whom we have also determined
disease status, as either 1 if “with disease” or 0 if “with-
out disease.”

We wish to use this information to describe the proba-
bility that the disease will develop during a defined
study period, say T0 to T1, in a disease-free individual
with independent variable values X1, X2, up to Xk
which are measured at T0.

The probability being modeled can be denoted by 
the conditional probability statement P(D=1⎥ X1, X2,
. . . , Xk).

The model is defined as logistic if the expression for
the probability of developing the disease, given the X’s,
is 1 over 1 plus e to minus the quantity � plus the sum
from i equals 1 to k of �i times Xi.

The terms � and �i in this model represent unknown
parameters that we need to estimate based on data
obtained on the X’s and on D (disease outcome) for a
group of subjects.

Thus, if we knew the parameters � and the �i and we
had determined the values of X1 through Xk for a par-
ticular disease-free individual, we could use this for-
mula to plug in these values and obtain the probability
that this individual would develop the disease over
some defined follow-up time interval.

For notational convenience, we will denote the proba-
bility statement P(D=1 ⎥ X1, X2, . . . , Xk) as simply P(X)
where the bold X is a shortcut notation for the collec-
tion of variables X1 through Xk.

Thus, the logistic model may be written as P(X) equals
1 over 1 plus e to minus the quantity � plus the sum
�iXi.

8 1. Introduction to Logistic Regression

DEFINITION
Logistic model:

P(D=1⎥ X1, X2, . . . , Xk)

↑ ↑
unknown parameters

=
+ − +( )

1

1 e i iXα βΣ

NOTATION
P(D=1⎥ X1, X2, . . . , Xk)

=P(X)

P X( ) =
+ − +( )

1

1 e i iXα βΣ

Model formula:

Epidemiologic framework

X1, X2, . . . , Xk measured at T0

P(D=1⎥ X1, X2, . . . , Xk)

Time: T0 T1

X1, X2, . . . , Xk D(0, 1)



To illustrate the use of the logistic model, suppose the
disease of interest is D equals CHD. Here CHD is coded
1 if a person has the disease and 0 if not.

We have three independent variables of interest:
X1=CAT, X2=AGE, and X3=ECG. CAT stands for cate-
cholamine level and is coded 1 if high and 0 if low, AGE
is continuous, and ECG denotes electrocardiogram sta-
tus and is coded 1 if abnormal and 0 if normal.

We have a data set of 609 white males on which we
measured CAT, AGE, and ECG at the start of study.
These people were then followed for 9 years to deter-
mine CHD status.

Suppose that in the analysis of this data set, we con-
sider a logistic model given by the expression shown
here.

We would like to “fit” this model; that is, we wish to
use the data set to estimate the unknown parameters �,
�1, �2, and �3.

Using common statistical notation, we distinguish the
parameters from their estimators by putting a hat
symbol on top of a parameter to denote its estimator.
Thus, the estimators of interest here are � “hat,” �1
“hat,” �2 “hat,” and �3 “hat.”

The method used to obtain these estimates is called
maximum likelihood (ML). In two later chapters
(Chapters 4 and 5), we describe how the ML method
works and how to test hypotheses and derive confi-
dence intervals about model parameters.

Suppose the results of our model fitting yield the esti-
mated parameters shown on the left.

Presentation: IV. Applying the Logistic Model Formula 9

IV. Applying the Logistic 
Model Formula

EXAMPLE

D = CHD(0, 1)

X1 = CAT(0, 1)

X2 = AGEcontinuous

X3 = ECG(0, 1)

n = 609 white males

9-year follow-up

P
CAT AGE ECG2 3

X( ) =
+ − + + +( )

1

1 1e α β β β

DEFINITION
fit: use data to estimate

�, �1, �2, �3

NOTATION
hat= ˆ

parameter ⇔ estimator

� �1 �2 � �1 �2
ˆ ˆ ˆ

Method of estimation:
maximum likelihood (ML)—
see Chapters 4 and 5

EXAMPLE

� = �3.911

�1 = 0.652

�2 = 0.029

�3 = 0.342

ˆ

ˆ

ˆ

ˆ



Our fitted model thus becomes  (X) equals 1 over 1
plus e to minus the linear sum �3.911 plus 0.652 times
CAT plus 0.029 times AGE plus 0.342 times ECG. We
have replaced P by   on the left-hand side of the for-
mula because our estimated model will give us an esti-
mated probability, not the exact probability.

Suppose we want to use our fitted model, to obtain the
predicted risk for a certain individual.

To do so, we would need to specify the values of the
independent variables (CAT, AGE, ECG) for this indi-
vidual, and then plug these values into the formula for
the fitted model to compute the estimated probability,
P̂ for this individual. This estimate is often called a
“predicted risk,” or simply “risk.”

To illustrate the calculation of a predicted risk, sup-
pose we consider an individual with CAT=1, AGE=40,
and ECG=0.

Plugging these values into the fitted model gives us 1
over 1 plus e to minus the quantity �3.911 plus 0.652
times 1 plus 0.029 times 40 plus 0.342 times 0. This
expression simplifies to 1 over 1 plus e to minus the
quantity �2.101, which further reduces to 1 over 1 plus
8.173, which yields the value 0.1090.

Thus, for a person with CAT=1, AGE=40, and ECG=0,
the predicted risk obtained from the fitted model is
0.1090. That is, this person’s estimated risk is about 11%.

Here, for the same fitted model, we compare the pre-
dicted risk of a person with CAT=1, AGE=40, and
ECG=0 with that of a person with CAT=0, AGE=40,
and ECG=0.

We previously computed the risk value of 0.1090 for
the first person. The second probability is computed
the same way, but this time we must replace CAT=1
with CAT=0. The predicted risk for this person turns
out to be 0.0600. Thus, using the fitted model, the per-
son with a high catecholamine level has an 11% risk
for CHD, whereas the person with a low catecholamine
level has a 6% risk for CHD over the period of follow-
up of the study.

10 1. Introduction to Logistic Regression

EXAMPLE (continued)

P(X)=?

CAT =1

AGE = 40

ECG = 0

        CAT = 0

        AGE = 40

        ECG = 0

ˆ

ˆ
P

P

0.1090
0.0600

11% risk 6% risk

1

0

X

X

( )
( )

=

ˆ

P̂ X( )
CAT = ?
AGE = ?
ECG = ?

predicted
risk

CAT =1
AGE = 40
ECG = 0

ˆ

.
.

. . . .

.

P

1 40 0

X( )
=

+

=
+

=
+

=

− − + ( )+ ( )+ ( )[ ]

− −( )

1

1
1

1
1

1 8 173
0 1090

3 911 0 652 0 029 0 342

2 101

e

e

ˆ

. . . .

P

CAT AGE ECG

X( )
=

+ − − + ( )+ ( )+ ( )[ ]
1

1 3 911 0 652 0 029 0 342e

P̂

P̂



Note that, in this example, if we divide the predicted risk
of the person with high catecholamine by that of the
person with low catecholamine, we get a risk ratio esti-
mate, denoted by RR, of 1.82. Thus, using the fitted
model, we find that the person with high CAT has
almost twice the risk of the person with low CAT,
assuming both persons are of AGE 40 and have no pre-
vious ECG abnormality.

We have just seen that it is possible to use a logistic model
to obtain a risk ratio estimate that compares two types of
individuals. We will refer to the approach we have illus-
trated above as the direct method for estimating RR.

Two conditions must be satisfied to estimate RR
directly. First, we must have a follow-up study so that
we can legitimately estimate individual risk. Second, for
the two individuals being compared, we must specify
values for all the independent variables in our fitted
model to compute risk estimates for each individual.

If either of the above conditions is not satisfied, then
we cannot estimate RR directly. That is, if our study
design is not a follow-up study or if some of the X’s are
not specified, we cannot estimate RR directly.
Nevertheless, it may be possible to estimate RR indi-
rectly. To do this, we must first compute an odds
ratio, usually denoted as OR, and we must make some
assumptions that we will describe shortly.

In fact, the odds ratio (OR), not the risk ratio (RR), is
the only measure of association directly estimated from
a logistic model (without requiring special assumptions),
regardless of whether the study design is follow-up, case-
control, or cross-sectional. To see how we can use the
logistic model to get an odds ratio, we need to look more
closely at some of the features of the model.

An important feature of the logistic model is that it is
defined with a follow-up study orientation. That is,
as defined, this model describes the probability of
developing a disease of interest expressed as a function
of independent variables presumed to have been mea-
sured at the start of a fixed follow-up period. For this
reason, it is natural to wonder whether the model can
be applied to case-control or cross-sectional studies.
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• RR (direct method)

Conditions for RR (direct method)
✓ follow-up study
✓ specify all X’s

• RR (indirect method)
✓ OR
✓ assumptions

V. Study Design Issues

★ Follow-up study orientation

• OR: direct estimate from
✓ follow-up
✓ case-control
✓ cross-sectional

X1, X2, . . . , Xk D(0, 1)

EXAMPLE

ˆ

ˆ
.
.

.
P

P

1

0

X

X

( )
( ) = =0 109

0 060
1 82 risk ratio (RR)ˆ ˆ



The answer is yes: logistic regression can be applied to
study designs other than follow-up.

Two papers, one by Breslow and Day in 1981 and the
other by Prentice and Pike in 1979 have identified
certain “robust” conditions under which the logistic
model can be used with case-control data. “Robust”
means that the conditions required, which are quite
complex mathematically and equally as complex to
verify empirically, apply to a large number of data sit-
uations that actually occur.

The reasoning provided in these papers carries over to
cross-sectional studies also, though this has not been
explicitly demonstrated in the literature.

In terms of case-control studies, it has been shown
that even though cases and controls are selected first,
after which previous exposure status is determined,
the analysis may proceed as if the selection process
were the other way around, as in a follow-up study.

In other words, even with a case-control design, one
can pretend, when doing the analysis, that the depen-
dent variable is disease outcome and the independent
variables are exposure status plus any covariates of
interest. When using a logistic model with a case-con-
trol design, you can treat the data as if it came from a
follow-up study, and still get a valid answer.

Although logistic modeling is applicable to case-con-
trol and cross-sectional studies, there is one important
limitation in the analysis of such studies. Whereas in
follow-up studies, as we demonstrated earlier, a fitted
logistic model can be used to predict the risk for an
individual with specified independent variables, this
model cannot be used to predict individual risk for
case-control or cross-sectional studies. In fact, only
estimates of odds ratios can be obtained for case-con-
trol and cross-sectional studies.

12 1. Introduction to Logistic Regression

LIMITATION

case-control and 
cross-sectional studies:

individual risk

✓ OR

✓ case-control
✓ cross-sectional

Breslow and Day (1981)
Prentice and Pike (1979)

robust conditions
case-control studies

robust conditions
cross-sectional studies

Case control:

Follow-up:

Treat case control like follow-up

D E

E D



The fact that only odds ratios, not individual risks, can
be estimated from logistic modeling in case-control or
cross-sectional studies is not surprising. This phenom-
enon is a carryover of a principle applied to simpler
data analysis situations, in particular, to the simple
analysis of a 2�2 table, as shown here.

For a 2�2 table, risk estimates can be used only if the
data derive from a follow-up study, whereas only odds
ratios are appropriate if the data derive from a case-
control or cross-sectional study.

To explain this further, recall that for 2�2 tables, the
odds ratio is calculated as ÔR equals a times d over b
times c, where a, b, c, and d are the cell frequencies
inside the table.

In case-control and cross-sectional studies, this OR
formula can alternatively be written, as shown here, as
a ratio involving probabilities for exposure status con-
ditional on disease status.

In this formula, for example, the term (E=1⎥ D=1) is
the estimated probability of being exposed, given that
you are diseased. Similarly, the expression (E=1⎥
D=0) is the estimated probability of being exposed
given that you are not diseased. All the probabilities in
this expression are of the general form P(E⎥ D).

In contrast, in follow-up studies, formulae for risk esti-
mates are of the form P(D⎥ E), in which the exposure
and disease variables have been switched to the oppo-
site side of the “given” sign.

For example, the risk ratio formula for follow-up stud-
ies is shown here. Both the numerator and denomina-
tor in this expression are of the form P(D⎥ E).

P̂

P̂
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a b

c d

E = 1 E = 0

D = 1

D = 0

Risk: only in follow-up
OR: case-control or cross-sectional

OR = ad/bcˆ
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ˆ
ˆ

ˆ
ˆ

P
P

P
P

E D
E D

E D
E D

= =( )
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ˆ

ˆ
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� 
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↓
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P

P
=

= =( )
= =( )

ˆ

ˆ
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D E

1 1

1 0

� 

� 

=

Simple Analysis

P(E⎥ D) (general form)
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Thus, in case-control or cross-sectional studies, risk
estimates cannot be estimated because such estimates
require conditional probabilities of the form P(D⎥E),
whereas only estimates of the form P(E⎥D) are possi-
ble. This classic feature of a simple analysis also car-
ries over to a logistic analysis.

There is a simple mathematical explanation for why
predicted risks cannot be estimated using logistic
regression for case-control studies. To see this, we con-
sider the parameters � and the �’s in the logistic model.
To get a predicted risk P̂(X) from fitting this model, we
must obtain valid estimates of � and the �’s, these esti-
mates being denoted by “hats” over the parameters in
the mathematical formula for the model.

When using logistic regression for case-control data,
the parameter � cannot be validly estimated without
knowing the sampling fraction of the population.
Without having a “good” estimate of �, we cannot
obtain a good estimate of the predicted risk P̂ (X)
because �̂ is required for the computation.

In contrast, in follow-up studies, � can be estimated
validly, and, thus, P(X) can also be estimated.

Now, although � cannot be estimated from a case-con-
trol or cross-sectional study, the �’s can be estimated
from such studies. As we shall see shortly, the �’s pro-
vide information about odds ratios of interest. Thus,
even though we cannot estimate � in such studies, and
therefore cannot obtain predicted risks, we can, never-
theless, obtain estimated measures of association in
terms of odds ratios.

Note that if a logistic model is fit to case-control data,
most computer packages carrying out this task will
provide numbers corresponding to all parameters
involved in the model, including �. This is illustrated
here with some fictitious numbers involving three vari-
ables, X1, X2, and X3. These numbers include a value
corresponding to �, namely, �4.5, which corresponds
to the constant on the list.

ˆ
ˆ ˆP X( ) =

+
−⎛

⎝
⎞
⎠

1

1 e
+ iXiα Σβ

estimates

Case control:

⇒ (X)P̂α̂

ˆ ˆ

Follow-up:

⇒ (X)P̂α̂

Case-control and cross-sectional:

✓ �i, OR

Case-control or cross-sectional studies: 
P(D⎥ E)

✓ P(E⎥ D) ⇒ risk

EXAMPLE

Printout

Variable Coefficient

constant �4.50 = �

X1 0.70 = �1

X2 0.05 = �2

X3 0.42 = �3

�

ˆ

ˆ

ˆ

ˆ



However, according to mathematical theory, the value
provided for the constant does not really estimate �. In
fact, this value estimates some other parameter of no
real interest. Therefore, an investigator should be fore-
warned that, even though the computer will print out a
number corresponding to the constant �, the number
will not be an appropriate estimate of � in case-control
or cross-sectional studies.

The use of an odds ratio estimate may still be of some
concern, particularly when the study is a follow-up
study. In follow-up studies, it is commonly preferred to
estimate a risk ratio rather than an odds ratio.

We previously illustrated that a risk ratio can be esti-
mated for follow-up data provided all the independent
variables in the fitted model are specified. In the exam-
ple, we showed that we could estimate the risk ratio for
CHD by comparing high catecholamine persons (that
is, those with CAT=1) to low catecholamine persons
(those with CAT=0), given that both persons were 40
years old and had no previous ECG abnormality. Here,
we have specified values for all the independent vari-
ables in our model, namely, CAT, AGE, and ECG, for
the two types of persons we are comparing.
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SUMMARY We have described that the logistic model can be
applied to case-control and cross-sectional data, even
though it is intended for a follow-up design. When
using case-control or cross-sectional data, however, a
key limitation is that you cannot estimate risks like 
P̂ (X), even though you can still obtain odds ratios.
This limitation is not extremely severe if the goal of the
study is to obtain a valid estimate of an exposure–
disease association in terms of an odds ratio.

Logistic Model P(X) OR

Follow-up ✓ ✓ ✓

Case-control ✓ X ✓

Cross-sectional ✓ X ✓

ˆ

OR

vs. follow-up study

RR ?
EXAMPLE

RR =
P CHD   CAT , AGE , ECG

P CHD   CAT , AGE , ECG

Model :

P
1 2 3CAT AGE ECG

ˆ

ˆ
= = = =( )
= = = =( )

( ) =
+ −( )

1 1 40 0

1 0 40 0

1

1
X

e + + +α β β β

EXAMPLE (repeated)

Printout

Variable Coefficient

constant �4.50 = �

X1 0.70 = �1

X2 0.05 = �2

X3 0.42 = �3

�

ˆ

ˆ

ˆ

ˆ

VI. Risk Ratios Versus Odds Ratios

ˆ



Nevertheless, it is more common to obtain an estimate
of a risk ratio or odds ratio without explicitly specify-
ing the control variables. In our example, for instance,
it is typical to compare high CAT with low CAT persons
keeping the control variables like AGE and ECG fixed
but unspecified. In other words, the question is typi-
cally asked, What is the effect of the CAT variable con-
trolling for AGE and ECG, considering persons who
have the same AGE and ECG regardless of the values of
these two variables?

When the control variables are generally considered to
be fixed, but unspecified, as in the last example, we
can use logistic regression to obtain an estimate of the
odds ratio directly, but we cannot estimate the risk
ratio. We can, however, stretch our interpretation to
obtain a risk ratio indirectly provided we are willing
to make certain assumptions. The key assumption
here is that the odds ratio provides a good approxima-
tion to the risk ratio.

From previous exposure to epidemiologic principles,
you may recall that one way to justify an odds ratio
approximation for a risk ratio is to assume that the dis-
ease is rare. Thus, if we invoke the rare disease
assumption, we can assume that the odds ratio esti-
mate from a logistic regression model approximates a
risk ratio.

If we cannot invoke the rare disease assumption, we
cannot readily claim that the odds ratio estimate
obtained from logistic modeling approximates a risk
ratio. The investigator, in this case, may have to review
the specific characteristics of the study before making
a decision. It may be necessary to conclude that the
odds ratio is a satisfactory measure of association in its
own right for the current study.

Having described why the odds ratio is the primary
parameter estimated when fitting a logistic regression
model, we now explain how an odds ratio is derived
and computed from the logistic model.
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Control variables unspecified:

OR directly

RR indirectly
provided OR ≈ RR

OR ≈ RR if rare disease

EXAMPLE (continued)

AGE uspecified but fixed

ECG unspecified but fixed

RR =
P CHD   CAT , AGE , ECG

P CHD   CAT , AGE , ECG

ˆ

ˆ
= = = =( )
= = = =( )

1 1 40 0

1 0 40 0

ˆ ˆ

ˆˆ
ˆ

ˆ

Rare disease OR RR
yes ✓ ✓
no ✓ ?

VII. Logit Transformation

OR: Derive and Compute

ˆ



To begin the description of the odds ratio in logistic
regression, we present an alternative way to write the
logistic model, called the logit form of the model. To
get the logit from the logistic model, we make a trans-
formation of the model.

The logit transformation, denoted as logit P(X), is
given by the natural log (i.e., to the base e) of the quan-
tity P(X) divided by one minus P(X), where P(X)
denotes the logistic model as previously defined.

This transformation allows us to compute a number,
called logit P(X), for an individual with independent
variables given by X. We do so by:

(1) computing P(X) and
(2) 1 minus P(X) separately, then
(3) dividing one by the other, and finally
(4) taking the natural log of the ratio.

For example, if P(X) is 0.110, then 

1 minus P(X) is 0.890, 

the ratio of the two quantities is 0.123, 

and the log of the ratio is �2.096.

That is, the logit of 0.110 is �2.096.

Now we might ask, what general formula do we get
when we plug the logistic model form into the logit
function? What kind of interpretation can we give
to this formula? How does this relate to an odds
ratio?

Let us consider the formula for the logit function. We
start with P(X), which is 1 over 1 plus e to minus the
quantity � plus the sum of the �iXi.
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Also, using some algebra, we can write 1�P(X) as:

e to minus the quantity � plus the sum of �iXi divided
by one over 1 plus e to minus � plus the sum of the 
�iXi.

If we divide P(X) by 1�P(X), then the denominators
cancel out,

and we obtain e to the quantity � plus the sum of the 
�iXi.

We then compute the natural log of the formula just
derived to obtain:

the linear sum � plus the sum of �i Xi.

Thus, the logit of P(X) simplifies to the linear sum
found in the denominator of the formula for P(X).

For the sake of convenience, many authors describe
the logistic model in its logit form rather than in its
original form as P(X). Thus, when someone describes
a model as logit P(X) equal to a linear sum, we should
recognize that a logistic model is being used.

Now, having defined and expressed the formula for the
logit form of the logistic model, we ask, where does the
odds ratio come in? As a preliminary step to answering
this question, we first look more closely at the definition
of the logit function. In particular, the quantity P(X)
divided by 1�P(X), whose log value gives the logit,
describes the odds for developing the disease for a per-
son with independent variables specified by X.

In its simplest form, an odds is the ratio of the proba-
bility that some event will occur over the probability
that the same event will not occur. The formula for an
odds is, therefore, of the form P divided by 1�P, where
P denotes the probability of the event of interest.
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For example, if P equals 0.25, then 1�P, the probabil-
ity of the opposite event, is 0.75 and the odds is 0.25
over 0.75, or one-third.

An odds of one-third can be interpreted to mean that
the probability of the event occurring is one-third the
probability of the event not occurring. Alternatively,
we can state that the odds are 3 to 1 that the event will
not happen.

The expression P(X) divided by 1�P(X) has essentially
the same interpretation as P over 1�P, which ignores
X.

The main difference between the two formulae is that
the expression with the X is more specific. That is, 
the formula with X assumes that the probabilities
describe the risk for developing a disease, that this risk
is determined by a logistic model involving indepen-
dent variables summarized by X, and that we are inter-
ested in the odds associated with a particular specifi-
cation of X.

Thus, the logit form of the logistic model, shown again
here, gives an expression for the log odds of develop-
ing the disease for an individual with a specific set 
of X’s.

And, mathematically, this expression equals � plus the
sum of the �i Xi.

As a simple example, consider what the logit becomes
when all the X’s are 0. To compute this, we need to
work with the mathematical formula, which involves
the unknown parameters and the X’s.

If we plug in 0 for all the X’s in the formula, we find
that the logit of P(X) reduces simply to �.

Because we have already seen that any logit can be
described in terms of an odds, we can interpret this
result to give some meaning to the parameter �.

One interpretation is that � gives the log odds for a
person with zero values for all X’s.
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A second interpretation is that � gives the log of the
background, or baseline, odds.

The first interpretation for �, which considers it as the
log odds for a person with 0 values for all X’s, has a
serious limitation: There may not be any person in the
population of interest with zero values on all the X’s.

For example, no subject could have zero values for nat-
urally occurring variables, like age or weight. Thus, it
would not make sense to talk of a person with zero val-
ues for all X’s.

The second interpretation for � is more appealing: to
describe it as the log of the background, or baseline,
odds.

By background odds, we mean the odds that would
result for a logistic model without any X’s at all.

The form of such a model is 1 over 1 plus e to minus �.
We might be interested in this model to obtain a base-
line risk or odds estimate that ignores all possible pre-
dictor variables. Such an estimate can serve as a start-
ing point for comparing other estimates of risk or odds
when one or more X’s are considered.

Because we have given an interpretation to �, can we
also give an interpretation to �i? Yes, we can, in terms
of either odds or odds ratios. We will turn to odds
ratios shortly.

With regard to the odds, we need to consider what hap-
pens to the logit when only one of the X’s varies while
keeping the others fixed.

For example, if our X’s are CAT, AGE, and ECG, we
might ask what happens to the logit when CAT changes
from 0 to 1, given an AGE of 40 and an ECG of 0.

To answer this question, we write the model in logit
form as � � �1CAT � �2AGE � �3ECG.
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EXAMPLE (continued)

(2) � = log of background odds

LIMITATION OF (1)
All Xi = 0 for any individual?

↓
AGE ≠ 0

WEIGHT ≠ 0

(2) � = log of background odds

DEFINITION OF (2)
background odds: ignores all X’s

model : P
1

1
X( ) =

+ −e α

� ✓
�i?

X1, X2, . . . , Xi, . . . , Xk
fixed          varies           fixed

EXAMPLE

CAT changes from 0 to 1;
AGE = 40, ECG = 0

fixed

}
logit P(X) = ���1CAT��2AGE��3ECG



The first expression below this model shows that when
CAT=1, AGE=40, and ECG=0, this logit reduces to � �
�1 � 40�2.

The second expression shows that when CAT=0, but
AGE and ECG remain fixed at 40 and 0, respectively,
the logit reduces to � � 40 �2.

If we subtract the logit for CAT=0 from the logit for
CAT=1, after a little arithmetic, we find that the differ-
ence is �1, the coefficient of the variable CAT.

Thus, letting the symbol � denote change, we see that
�1 represents the change in the logit that would result
from a unit change in CAT, when the other variables
are fixed.

An equivalent explanation is that �1 represents the
change in the log odds that would result from a one
unit change in the variable CAT when the other vari-
ables are fixed. These two statements are equivalent
because, by definition, a logit is a log odds, so that the
difference between two logits is the same as the differ-
ence between two log odds.

More generally, using the logit expression, if we focus
on any coefficient, say �L, for i=L, we can provide the
following interpretation:

�L represents the change in the log odds that would
result from a one unit change in the variable XL, when
all other X’s are fixed.
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EXAMPLE (continued)

(1)  CAT = 1, AGE = 40, ECG = 0
logit P(X) = ���11��240��30

= ���1�40�2

(2)  CAT = 0, AGE = 40, ECG = 0
logit P(X) = ���10��240��30

= ��40�2

logit P1(X) � logit P0(X)

= (���1�40�2) � (��40�2)

= �1

NOTATION

� = change

�1 = � logit

= � log odds
when � CAT = 1 
AGE and ECG fixed

logit P(X) = ��
�i Xi

i = L:

�L= � ln (odds)

when = � XL = 1, other X’s fixed

SUMMARY In summary, by looking closely at the expression for
the logit function, we provide some interpretation for
the parameters � and �i in terms of odds, actually log
odds.

logit P(X)

� = background �i = change in 
log odds log odds



Now, how can we use this information about logits to
obtain an odds ratio, rather than an odds? After all,
we are typically interested in measures of association,
like odds ratios, when we carry out epidemiologic
research.

Any odds ratio, by definition, is a ratio of two odds,
written here as odds1 divided by odds0, in which the
subscripts indicate two individuals or two groups of
individuals being compared.

Now we give an example of an odds ratio in which we
compare two groups, called group 1 and group 0.
Using our CHD example involving independent vari-
ables CAT, AGE, and ECG, group 1 might denote per-
sons with CAT=1, AGE=40, and ECG=0, whereas
group 0 might denote persons with CAT=0, AGE=40,
and ECG=0.

More generally, when we describe an odds ratio, the
two groups being compared can be defined in terms of
the bold X symbol, which denotes a general collection
of X variables, from 1 to k.

Let X1 denote the collection of X’s that specify group 1
and let X0 denote the collection of X’s that specify
group 0.

In our example, then, k, the number of variables,
equals 3, and

X is the collection of variables CAT, AGE, and ECG,
X1 corresponds to CAT=1, AGE=40, and ECG=0,

whereas
X0 corresponds to CAT=0, AGE=40 and ECG=0.

Notationally, to distinguish the two groups X1 and X0
in an odds ratio, we can write ORX1

, X0
equals the

odds for X1 divided by the odds for X0.

We will now apply the logistic model to this expression
to obtain a general odds ratio formula involving the
logistic model parameters.
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VIII. Derivation of OR Formula

?logit OR

OR =
odds1

odds0

EXAMPLE

(1)  CAT = 1, AGE = 40, ECG = 0

(0)  CAT = 0, AGE = 40, ECG = 0

X = (X1, X2, . . . , Xk)

(1) X1 = (X11, X12, . . . , X1k)

(0) X0 = (X01, X02, . . . , X0k)

EXAMPLE

X = (CAT, AGE, ECG)

(1) X1 = (CAT = 1, AGE = 40, ECG = 0)
(0) X0 = (CAT = 0, AGE = 40, ECG = 0)

NOTATION

OR
odds for 
odds for 1 0,

1

0
X X

X
X

=



Given a logistic model of the general form P(X),

we can write the odds for group 1 as P(X1) divided by
1�P(X1)

and the odds for group 0 as P(X0) divided by 1�P(X0).

To get an odds ratio, we then divide the first odds by
the second odds. The result is an expression for the
odds ratio written in terms of the two risks P(X1) and
P(X0), that is, P(X1) over 1�P(X1) divided by P(X0)
over 1�P(X0).

We denote this ratio as ROR, for risk odds ratio, as
the probabilities in the odds ratio are all defined as
risks. However, we still do not have a convenient 
formula.

Now, to obtain a convenient computational formula,
we can substitute the mathematical expression 1 over
1 plus e to minus the quantity (��
�iXi) for P(X) into
the risk odds ratio formula above.

For group 1, the odds P(X1) over 1�P(X1)  reduces
algebraically to e to the linear sum � plus the sum of �i
times X1i, where X1i denotes the value of the variable Xi
for group 1.

Similarly, the odds for group 0 reduces to e to the lin-
ear sum � plus the sum of �i times X0i, where X0i
denotes the value of variable Xi for group 0.

To obtain the ROR, we now substitute in the numera-
tor and denominator the exponential quantities just
derived to obtain e to the group 1 linear sum divided by
e to the group 0 linear sum.

The above expression is of the form e to the a divided by
e to the b, where a and b are linear sums for groups 1
and 0, respectively. From algebraic theory, it then fol-
lows that this ratio of two exponentials is equivalent to e
to the difference in exponents, or e to the a minus b.
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We then find that the ROR equals e to the difference
between the two linear sums.

In computing this difference, the �’s cancel out and the
�i’s can be factored for the ith variable.

Thus, the expression for ROR simplifies to the quan-
tity e to the sum �i times the difference between X1i
and X0i.

We thus have a general exponential formula for the
risk odds ratio from a logistic model comparing any
two groups of individuals, as specified in terms of X1
and X0. Note that the formula involves the �i’s but 
not �.

We can give an equivalent alternative to our ROR for-
mula by using the algebraic rule that says that the
exponential of a sum is the same as the product of the
exponentials of each term in the sum. That is, e to the
a plus b equals e to the a times e to the b.

More generally, e to the sum of zi equals the product 
of e to the zi over all i, where the zi’s denote any set of
values.

We can alternatively write this expression using the
product symbol �, where � is a mathematical notation
which denotes the product of a collection of terms.

Thus, using algebraic theory and letting zi correspond
to the term �i times (X1i � X0i),

we obtain the alternative formula for ROR as the
product from i=1 to k of e to the �i times the difference
(X1i � X0i)

That is, � of e to the �i times (X1i � X0i) equals e to the
�1 times (X11 � X01) multiplied by e to the �2 times (X12
� X02) multiplied by additional terms, the final term 

being e to the �k times (X1k � X0k).
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The product formula for the ROR, shown again here,
gives us an interpretation about how each variable in a
logistic model contributes to the odds ratio.

In particular, we can see that each of the variables Xi
contributes jointly to the odds ratio in a multiplicative
way.

For example, if 

e to the �i times (X1i � X0i) is 

3 for variable 2 and 

4 for variable 5, 

then the joint contribution of these two variables to the
odds ratio is 3 � 4, or 12.

Thus, the product or � formula for ROR tells us that,
when the logistic model is used, the contribution of the
variables to the odds ratio is multiplicative.

A model different from the logistic model, depending
on its form, might imply a different (for example, an
additive) contribution of variables to the odds ratio. An
investigator not willing to allow a multiplicative rela-
tionship may, therefore, wish to consider other models
or other OR formulae. Other such choices are beyond
the scope of this presentation.

Given the choice of a logistic model, the version of the
formula for the ROR, shown here as the exponential of
a sum, is the most useful for computational purposes.

For example, suppose the X’s are CAT, AGE, and ECG,
as in our earlier examples.

Also suppose, as before, that we wish to obtain an
expression for the odds ratio that compares the follow-
ing two groups: group 1 with CAT=1, AGE=40, and
ECG=0, and group 0 with CAT=0, AGE=40, and ECG=0.

For this situation, we let X1 be specified by CAT=1,
AGE=40, and ECG=0,

Presentation: IX. Example of OR Computation 25

ROR
1 0

1 0
,

1
X X = −( )

=
∏ e i i iX X

i

k
β

• Multiplicative

EXAMPLE

e X Xβ2 12 02 3−( ) =

e X Xβ5 15 05 4−( ) =

3 4 1× = 2

Logistic model ⇒ multiplicative
OR formula

Other models ⇒ other OR formulae

ROR
1 0

1 0
1,X X = −( )

=
∑e i i i

i

k
X Xβ

EXAMPLE

X = (CAT, AGE, ECG)
(1)  CAT = 1, AGE = 40, ECG = 0
(0)  CAT = 0, AGE = 40, ECG = 0

X1 = (CAT = 1, AGE = 40, ECG = 0)

IX. Example of OR Computation



and let X0 be specified by CAT=0, AGE=40, and
ECG=0.

Starting with the general formula for the ROR, we
then substitute the values for the X1 and X0 variables
in the formula.

We then obtain ROR equals e to the �1 times (1 � 0)
plus �2 times (40 � 40) plus �3 times (0 � 0).

The last two terms reduce to 0,

so that our final expression for the odds ratio is e to
the �1, where �1 is the coefficient of the variable CAT.

Thus, for our example, even though the model involves
the three variables CAT, ECG, and AGE, the odds ratio
expression comparing the two groups involves only the
parameter involving the variable CAT. Notice that of
the three variables in the model, the variable CAT is the
only variable whose value is different in groups 1 and
0. In both groups, the value for AGE is 40 and the value
for ECG is 0.

The formula e to the �1 may be interpreted, in the con-
text of this example, as an adjusted odds ratio. This is
because we have derived this expression from a logistic
model containing two other variables, namely, AGE,
and ECG, in addition to the variable CAT. Further-
more, we have fixed the values of these other two vari-
ables to be the same for each group. Thus, e to �1 gives
an odds ratio for the effect of the CAT variable
adjusted for AGE and ECG, where the latter two vari-
ables are being treated as control variables.

The expression e to the �1 denotes a population odds
ratio parameter because the term �1 is itself an
unknown population parameter.

An estimate of this population odds ratio would be
denoted by e to the �1. This term, �1, denotes an esti-
mate of �1 obtained by using some computer package
to fit the logistic model to a set of data.
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EXAMPLE (continued)

X0 = (CAT = 0, AGE = 40, ECG = 0)

ROR
1 0

1 0
1,X X = −( )

=
∑e i i i

i

k
X Xβ

= −( )+ −( )+ −( )eβ β β1 2 31 0 40 40 0 0

= + +eβ1 0 0

= eβ1

logit P CAT AGE ECG1 2 3X( ) = + + +α β β β
coefficient of CAT in

ROR
1 0

1
,X X = eβ

(1)  CAT = 1, AGE = 40, ECG = 0
(0)  CAT = 0, AGE = 40, ECG = 0

ROR
1 0,X X = eβ1

= an “adjusted” OR

AGE and ECG:

• fixed
• same
• control variables

e�1: population ROR

e�1: estimated RORˆ
ˆ ˆ



Our example illustrates an important special case of
the general odds ratio formula for logistic regression
that applies to (0, 1) variables. That is, an adjusted
odds ratio can be obtained by exponentiating the coef-
ficient of a (0, 1) variable in the model.

In our example, that variable is CAT, and the other two
variables, AGE and ECG, are the ones for which we
adjusted.

More generally, if the variable of interest is Xi, a (0, 1)
variable, then e to the �i, where �i is the coefficient of
Xi, gives an adjusted odds ratio involving the effect of
Xi adjusted or controlling for the remaining X variables
in the model.

Suppose, for example, our focus had been on ECG, also
a (0, 1) variable, instead of on CAT in a logistic model
involving the same variables CAT, AGE, and ECG.

Then e to the �3, where �3 is the coefficient of ECG,
would give the adjusted odds ratio for the effect of
ECG, controlling for CAT and AGE.

Note, however, that the example we have considered
involves only main effect variables, like CAT, AGE
and ECG, and that the model does not contain product
terms like CAT � AGE or AGE � ECG.
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X. Special Case for (0, 1)
Variables

Adjusted OR = e�

where � = coefficient of (0, 1) variable

EXAMPLE

logit P    CAT   AGE ECG1 2 3X( ) = + + +α β β β

adjusted

Xi(0, 1): adj. ROR = e�i

controlling   for other X’s

EXAMPLE

logit P CAT AGE    ECG1 2 3X( ) = + + +α β β β

adjusted

SUMMARY Thus, we can obtain an adjusted odds ratio for each
(0, 1) variable in the logistic model by exponentiating
the coefficient corresponding to that variable. This
formula is much simpler than the general formula for
ROR described earlier.

X e

e

i

X X

i

i i i
i

k

 is 0,  1 :  ROR

General OR formula :

ROR 1 0
1

( ) =

= −( )
=
∑

β

β

EXAMPLE

logit P CAT AGE ECG1 2 3X( ) = + + +α β β β

main effect variables

ECG (0, 1): adj. ROR = e�3

controlling for CAT and AGE



When the model contains product terms, like CAT �
AGE, or variables that are not (0, 1), like the continuous
variable AGE, the simple formula will not work if the
focus is on any of these variables. In such instances, we
must use the general formula instead.

This presentation is now complete. We suggest that
you review the material covered here by reading the
summary section. You may also want to do the prac-
tice exercises and the test which follows. Then con-
tinue to the next chapter entitled, “Important Special
Cases of the Logistic Model.”
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product terms
or

non-(0, 1) variables

general OR
formula

CAT AGE, AGE ECG× ×

e i i iX XΣβ 1 0−( )

AGE

Chapters

✓ 1. Introduction
2. Important Special Cases



I. The multivariable problem (pages 4–5)
A. Example of a multivariate problem in epidemiologic research,

including the issue of controlling for certain variables in the
assessment of an exposure–disease relationship.

B. The general multivariate problem: assessment of the relationship
of several independent variables, denoted as X’s, to a dependent
variable, denoted as D.

C. Flexibility in the types of independent variables allowed in most
regression situations: A variety of variables is allowed.

D. Key restriction of model characteristics for the logistic model:
The dependent variable is dichotomous.

II. Why is logistic regression popular? (pages 5–7)
A. Description of the logistic function.
B. Two key properties of the logistic function: Range is between 0

and 1 (good for describing probabilities) and the graph of func-
tion is S-shaped (good for describing combined risk factor effect
on disease development).

III. The logistic model (pages 7–8)
A. Epidemiologic framework
B. Model formula: P(D = 1⎥ X1,..., Xk) = P(X)

= 1/{1 � exp[�(� � 
�iXi)]}.
IV. Applying the logistic model formula (pages 9–11)

A. The situation: independent variables CAT (0, 1), AGE (constant),
ECG (0, 1); dependent variable CHD(0, 1); fit logistic model to
data on 609 people.

B. Results for fitted model: estimated model parameters are 
=�3.911, 1(CAT)=0.65, 2(AGE)=0.029, and 3 (ECG)=0.342.

C. Predicted risk computations:
(X) for CAT=1, AGE=40, ECG=0: 0.1090, 
(X) for CAT=0, AGE=40, ECG=0: 0.0600.

D. Estimated risk ratio calculation and interpretation:
0.1090/0.0600=1.82.

E. Risk ratio (RR) vs. odds ratio (OR): RR computation requires
specifying all X’s; OR is more natural measure for logistic model.

V. Study design issues (pages 11–15)
A. Follow-up orientation.
B. Applicability to case-control and cross-sectional studies? Yes.
C. Limitation in case-control and cross-sectional studies: cannot

estimate risks, but can estimate odds ratios.
D. The limitation in mathematical terms: for case-control and cross-

sectional studies, cannot get a good estimate of the constant.

β̂β̂β̂α̂
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VI. Risk ratios versus odds ratios (pages 15–16)
A. Follow-up studies:

i. When all the variables in both groups compared are speci-
fied. [Example using CAT, AGE, and ECG comparing group 1
(CAT=1, AGE=40, ECG=0) with group 0 (CAT=0, AGE=40,
ECG=0).]

ii. When control variables are unspecified, but assumed fixed
and rare disease assumption is satisfied.

B. Case-control and cross-sectional studies: when rare disease
assumption is satisfied.

C. What if rare disease assumption is not satisfied? May need to
review characteristics of study to decide if the computed OR
approximates an RR.

VII. Logit transformation (pages 16–22)
A. Definition of the logit transformation:

logit P(X) = lne[P(X)/(1�P(X))].
B. The formula for the logit function in terms of the parameters of

the logistic model: logit P(X) = � � 
�iXi.
C. Interpretation of the logit function in terms of odds:

i. P(X)/[1�P(X)] is the odds of getting the disease for an indi-
vidual or group of individuals identified by X.

ii. The logit function describes the “log odds” for a person or
group specified by X.

D. Interpretation of logistic model parameters in terms of log odds:
i. � is the log odds for a person or group when all X’s are zero—

can be critiqued on grounds that there is no such person.
ii. A more appealing interpretation is that � gives the “back-

ground or baseline” log odds, where “baseline” refers to a
model that ignores all possible X’s.

iii. The coefficient �i represents the change in the log odds that
would result from a one unit change in the variable Xi when
all the other X’s are fixed.

iv. Example given for model involving CAT, AGE, and ECG: �1
is the change in log odds corresponding to one unit change in
CAT, when AGE and ECG are fixed.

VIII. Derivation of OR formula (pages 22–25)
A. Specifying two groups to be compared by an odds ratio: X1 and

X0 denote the collection of X’s for groups 1 and 0.
B. Example involving CAT, AGE, and ECG variables:

X1=(CAT=1, AGE=40, ECG=0), X0=(CAT=0, AGE=40, ECG=0).
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C. Expressing the risk odds ratio (ROR) in terms of P(X):

D. Substitution of the model form for P(X) in the above ROR for-
mula to obtain general ROR formula:
ROR=exp[
�i(X1i � X0i)] = �{exp[�i(X1i � X0i)]}

E. Interpretation from the product (�) formula: The contribution of
each Xi variable to the odds ratio is multiplicative.

IX. Example of OR computation (pages 25–26)
A. Example of ROR formula for CAT, AGE, and ECG example using

X1 and X0 specified in VIII B above:
ROR=exp(�1), where �1 is the coefficient of CAT.

B. Interpretation of exp(�1): an adjusted ROR for effect of CAT,
controlling for AGE and ECG.

X. Special case for (0, 1) variables (pages 27–28)
A. General rule for (0, 1) variables: If variable is Xi, then ROR for

effect of Xi controlling for other X’s in model is given by the for-
mula ROR=exp(�i), where �i is the coefficient of Xi.

B. Example of formula in A for ECG, controlling for CAT and AGE.
C. Limitation of formula in A: Model can contain only main effect

variables for X’s, and variable of focus must be (0, 1).
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[exp(a)=ea for any number a]

LOGISTIC FUNCTION: f(z)=1/[1�exp(�z)]

LOGISTIC MODEL: P(X)=1/{1�exp[�(��
�iXi)]}

LOGIT TRANSFORMATION: logit P(X)= ��
�iXi

RISK ODDS RATIO (general formula): 
RORX1, X0

: =exp[
�i(X1i � X0i)]=�{exp[�i(X1i � X0i)]}

RISK ODDS RATIO [(0, 1) variables]: ROR=exp(�i) for the effect of the
variable Xi adjusted for the other X’s

KEY FORMULAE

ROR
odds for 

odds for 

P 1 P

P 1 P
.

1

0

1 1

0 0

=
( )
( )

=
( ) − ( )
( ) − ( )

X

X

X X

X X



Suppose you are interested in describing whether social status, as measured
by a (0, 1) variable called SOC, is associated with cardiovascular disease
mortality, as defined by a (0, 1) variable called CVD. Suppose further that
you have carried out a 12-year follow-up study of 200 men who are 60 years
old or older. In assessing the relationship between SOC and CVD, you
decide that you want to control for smoking status [SMK, a (0, 1) variable]
and systolic blood pressure (SBP, a continuous variable).

In analyzing your data, you decide to fit two logistic models, each involving
the dependent variable CVD, but with different sets of independent vari-
ables. The variables involved in each model and their estimated coefficients
are listed below:

Model 1 Model 2

VARIABLE COEFFICIENT VARIABLE COEFFICIENT

CONSTANT �1.1800 CONSTANT �1.1900
SOC �0.5200 SOC �0.5000
SBP 0.0400 SBP 0.0100
SMK �0.5600 SMK �0.4200
SOC � SBP �0.0330
SOC � SMK 0.1750

1. For each of the models fitted above, state the form of the logistic model
that was used (i.e., state the model in terms of the unknown population
parameters and the independent variables being considered).

Model 1:

Model 2:

2. For each of the above models, state the form of the estimated model in
logit terms.

Model 1: logit P(X)=

Model 2: logit P(X)=

32 1. Introduction to Logistic Regression

Practice
Exercises



3. Using Model 1, compute the estimated risk for CVD death (i.e., CVD=1)
for a high social class (SOC=1) smoker (SMK=1) with SBP=150. (You
will need a calculator to answer this. If you don’t have one, just state the
computational formula that is required, with appropriate variable val-
ues plugged in.)

4. Using Model 2, compute the estimated risk for CVD death for the fol-
lowing two persons:

Person 1: SOC=1, SMK=1, SBP=150.
Person 2: SOC=0, SMK=1, SBP=150.
(As with the previous question, if you don’t have a calculator, you may
just state the computations that are required.)

Person 1:

Person 2:

5. Compare the estimated risk obtained in Exercise 3 with that for person
1 in Exercise 4. Why aren’t the two risks exactly the same?

6. Using Model 2 results, compute the risk ratio that compares person 1
with person 2. Interpret your answer.

7. If the study design had been either case-control or cross-sectional,
could you have legitimately computed risk estimates as you did in the
previous exercises? Explain.

8. If the study design had been case-control, what kind of measure of asso-
ciation could you have legitimately computed from the above models?

9. For Model 2, compute and interpret the estimated odds ratio for the
effect of SOC, controlling for SMK and SBP? (Again, if you do not have
a calculator, just state the computations that are required.)
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10. Which of the following general formulae is not appropriate for comput-
ing the effect of SOC controlling for SMK and SBP in Model 1? (Circle
one choice.) Explain your answer.

a. exp(�S), where �S is the coefficient of SOC in model 1.
b. exp[
�i(X1i � X0i)].
c. �{exp[�i(X1i � X0i)]}.

True or False (Circle T or F)

T F 1. We can use the logistic model provided all the independent vari-
ables in the model are continuous.

T F 2. Suppose the dependent variable for a certain multivariable
analysis is systolic blood pressure, treated continuously. Then, a
logistic model should be used to carry out the analysis.

T F 3. One reason for the popularity of the logistic model is that the
range of the logistic function, from which the model is derived,
lies between 0 and 1.

T F 4. Another reason for the popularity of the logistic model is that the
shape of the logistic function is linear.

T F 5. The logistic model describes the probability of disease develop-
ment, i.e., risk for the disease, for a given set of independent 
variables.

T F 6. The study design framework within which the logistic model is
defined is a follow-up study.

T F 7. Given a fitted logistic model from case-control data, we can esti-
mate the disease risk for a specific individual.

T F 8. In follow-up studies, we can use a fitted logistic model to esti-
mate a risk ratio comparing two groups provided all the inde-
pendent variables in the model are specified for both groups.

T F 9. Given a fitted logistic model from a follow-up study, it is not pos-
sible to estimate individual risk as the constant term cannot be
estimated.

T F 10. Given a fitted logistic model from a case-control study, an odds
ratio can be estimated.

T F 11. Given a fitted logistic model from a case-control study, we can
estimate a risk ratio if the rare disease assumption is appropri-
ate.

T F 12. The logit transformation for the logistic model gives the log odds
ratio for the comparison of two groups.

T F 13. The constant term, �, in the logistic model can be interpreted as
a baseline log odds for getting the disease.
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T F 14. The coefficient �i in the logistic model can be interpreted as the
change in log odds corresponding to a one unit change in the
variable Xi that ignores the contribution of other variables.

T F 15. We can compute an odds ratio for a fitted logistic model by iden-
tifying two groups to be compared in terms of the independent
variables in the fitted model.

T F 16. The product formula for the odds ratio tells us that the joint con-
tribution of different independent variables to the odds ratio is
additive.

T F 17. Given a (0, 1) independent variable and a model containing only
main effect terms, the odds ratio that describes the effect of that
variable controlling for the others in the model is given by e to
the �, where � is the constant parameter in the model.

T F 18. Given independent variables AGE, SMK [smoking status (0, 1)],
and RACE (0, 1), in a logistic model, an adjusted odds ratio for
the effect of SMK is given by the natural log of the coefficient for
the SMK variable.

T F 19. Given independent variables AGE, SMK, and RACE, as before,
plus the product terms SMK � RACE and SMK � AGE, an
adjusted odds ratio for the effect of SMK is obtained by expo-
nentiating the coefficient of the SMK variable.

T F 20. Given the independent variables AGE, SMK, and RACE as in
Question 18, but with SMK coded as (1, �1) instead of (0, 1),
then e to the coefficient of the SMK variable gives the adjusted
odds ratio for the effect of SMK.

21. Which of the following is not a property of the logistic model? (Circle
one choice.)
a. The model form can be written as P(X)=1/{1�exp[�(��
�iXi)]},

where “exp{.}” denotes the quantity e raised to the power of the
expression inside the brackets.

b. logit P(X)=��
�iXi is an alternative way to state the model.
c. ROR=exp[
�i(X1i�X0i)] is a general expression for the odds ratio

that compares two groups of X variables.
d. ROR=�{exp[�i(X1i�X0i)]} is a general expression for the odds ratio

that compares two groups of X variables.
e. For any variable Xi, ROR=exp[�i], where �i is the coefficient of Xi,

gives an adjusted odds ratio for the effect of Xi.

Suppose a logistic model involving the variables D=HPT[hypertension status
(0, 1)], X1=AGE(continuous), X2=SMK(0, 1), X3=SEX(0, 1), X4=CHOL (cho-
lesterol level, continuous), and X5=OCC[occupation (0, 1)] is fit to a set of
data. Suppose further that the estimated coefficients of each of the variables
in the model are given by the following table:
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VARIABLE COEFFICIENT

CONSTANT �4.3200
AGE 0.0274
SMK 0.5859
SEX 1.1523
CHOL 0.0087
OCC �0.5309

22. State the form of the logistic model that was fit to these data (i.e., state
the model in terms of the unknown population parameters and the
independent variables being considered).

23. State the form of the estimated logistic model obtained from fitting the
model to the data set.

24. State the estimated logistic model in logit form.
25. Assuming the study design used was a follow-up design, compute the

estimated risk for a 40-year-old male (SEX=1) smoker (SMK=1) with
CHOL=200 and OCC=1. (You need a calculator to answer this question.)

26. Again assuming a follow-up study, compute the estimated risk for a 40-
year-old male nonsmoker with CHOL=200 and OCC=1. (You need a
calculator to answer this question.)

27. Compute and interpret the estimated risk ratio that compares the risk
of a 40-year-old male smoker to a 40-year-old male nonsmoker, both of
whom have CHOL=200 and OCC=1.

28. Would the risk ratio computation of Question 27 have been appropriate
if the study design had been either cross-sectional or case-control?
Explain.

29. Compute and interpret the estimated odds ratio for the effect of SMK
controlling for AGE, SEX, CHOL, and OCC. (If you do not have a cal-
culator, just state the computational formula required.)

30. What assumption will allow you to conclude that the estimate obtained
in Question 29 is approximately a risk ratio estimate?

31. If you could not conclude that the odds ratio computed in Question 29
is approximately a risk ratio, what measure of association is appropri-
ate? Explain briefly.

32. Compute and interpret the estimated odds ratio for the effect of OCC
controlling for AGE, SMK, SEX, and CHOL. (If you do not have a cal-
culator, just state the computational formula required.)

33. State two characteristics of the variables being considered in this
example that allow you to use the exp(�i) formula for estimating the
effect of OCC controlling for AGE, SMK, SEX, and CHOL.

34. Why can you not use the formula exp(�i) formula to obtain an adjusted
odds ratio for the effect of AGE, controlling for the other four variables?
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1. Model 1: P(X)=1/(1�exp{�[�1.18�0.52(SOC)�0.04(SBP)�0.56(SMK)
�0.033(SOC�SBP)�0.175(SOC�SMK)]}).

Model 2: P(X)=1/(1�exp{�[�1.19�0.50(SOC)�0.01(SBP)�0.42(SMK)]}).

2. Model 1: logit P(X) =�1.18�0.52(SOC)�0.04(SBP)�0.56(SMK)
�0.033(SOC�SBP)�0.175(SOC�SMK).

Model 2: logit P(X)=�1.19�0.50(SOC)�0.01(SBP)�0.42(SMK).

3. For SOC=1, SBP=150, and SMK=1,
X=(SOC, SBP, SMK, SOC�SBP, SOC�SMK)=(1, 150, 1, 150, 1) and

Model 1 P(X)=1/(1�exp{�[�1.18�0.52(1)�0.04(150)�0.56(1)
�0.033(1�150)�0.175(1�1)]}).

=1/{1�exp[�(�1.035)]}
=1/(1�2.815)
=0.262

4. For Model 2, person 1 (SOC=1, SMK=1, SBP=150):

P(X)=1/(1�exp{�[�1.19 � 0.50(1) � 0.01 (150) � 0.42(1)]})
=1/{1 � exp [� (�0.61)]}
=1/(1 � 1.84)
=0.352

For Model 2, person 2 (SOC=0, SMK=1, SBP=150):

P(X)=1/(1 � exp{�[�1.19 � 0.50(0) � 0.01(150) � 0.42(1)]})
=1/{1 � exp[�(�0.11)]}
=1/(1 � 1.116)
=0.473

5. The risk computed for Model 1 is 0.262, whereas the risk computed for
Model 2, person 1 is 0.352. Note that both risks are computed for the
same person (i.e., SOC=1, SMK=150, SBP=150), yet they yield different
values because the models are different. In particular, Model 1 contains
two product terms that are not contained in Model 2, and consequently,
computed risks for a given person can be expected to be somewhat dif-
ferent for different models.
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6. Using model 2 results,

P(SOC=0, SMK=1, SBP=150)

P(SOC=1, SMK=1, SBP=150)

= 0.352/0.473 = 1/1.34 = 0.744

This estimated risk ratio is less than 1 because the risk for high social
class persons (SOC=1) is less than the risk for low social class per-
sons (SOC=0) in this data set. More specifically, the risk for low
social class persons is 1.34 times as large as the risk for high social
class persons.

7. No. If the study design had been either case-control or cross-sectional,
risk estimates could not be computed because the constant term (�) in
the model could not be estimated. In other words, even if the com-
puter printed out values of �1.18 or �1.19 for the constant terms,
these numbers would not be legitimate estimates of �.

8. For case-control studies, only odds ratios, not risks or risk ratios, can
be computed directly from the fitted model.

9. OR(SOC=1 vs. SOC=0 controlling for SMK and SBP)

=e�, where �=�0.50 is the estimated coefficient of SOC in the fitted
model

=exp(�0.50)
=0.6065 = 1/1.65.

The estimated odds ratio is less than 1, indicating that, for this data
set, the risk of CVD death for high social class persons is less than the
risk for low social class persons. In particular, the risk for low social
class persons is estimated as 1.65 times as large as the risk for high
social class persons.

10. Choice (a) is not appropriate for the effect of SOC using model 1.
Model 1 contains interaction terms, whereas choice (a) is appropriate
only if all the variables in the model are main effect terms. Choices (b)
and (c) are two equivalent ways of stating the general formula for cal-
culating the odds ratio for any kind of logistic model, regardless of the
types of variables in the model.
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In this chapter, several important special cases of the logistic model involv-
ing a single (0, 1) exposure variable are considered with their corresponding
odds ratio expressions. In particular, focus is on defining the independent
variables that go into the model and on computing the odds ratio for each
special case. Models that account for the potential confounding effects and
potential interaction effects of covariates are emphasized.

The outline below gives the user a preview of the material to be covered by
the presentation. A detailed outline for review purposes follows the presen-
tation.

I. Overview (page 42)
II. Special case—Simple analysis (pages 43–46)

III. Assessing multiplicative interaction (pages 46–52)
IV. The E, V, W model—A general model containing a (0, 1) 

exposure and potential confounders and effect modifiers
(pages 52–61)

V. Logistic model for matched data (pages 61–64)

Upon completion of this chapter, the learner should be able to:

1. State or recognize the logistic model for a simple analysis.
2. Given a model for simple analysis:

a. state an expression for the odds ratio describing the exposure–dis-
ease relationship;

b. state or recognize the null hypothesis of no exposure–disease rela-
tionship in terms of parameter(s) of the model;

c. compute or recognize an expression for the risk for exposed or
unexposed persons separately;

d. compute or recognize an expression for the odds of getting the 
disease for exposed or unexposed persons separately.

3. Given two (0, 1) independent variables:
a. state or recognize a logistic model which allows for the assessment

of interaction on a multiplicative scale;
b. state or recognize the expression for no interaction on a multi-

plicative scale in terms of odds ratios for different combinations of
the levels of two (0, 1) independent variables;

c. state or recognize the null hypothesis for no interaction on a multi-
plicative scale in terms of one or more parameters in an appropri-
ate logistic model.
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4. Given a study situation involving a (0, 1) exposure variable and sev-
eral control variables:
a. state or recognize a logistic model which allows for the assessment

of the exposure–disease relationship, controlling for the potential
confounding and potential interaction effects of functions of the
control variables;

b. compute or recognize the expression for the odds ratio for the
effect of exposure on disease status adjusting for the potential con-
founding and interaction effects of the control variables in the
model;

c. state or recognize an expression for the null hypothesis of no inter-
action effect involving one or more of the effect modifiers in the
model;

d. assuming no interaction, state or recognize an expression for the
odds ratio for the effect of exposure on disease status adjusted for
confounders;

e. assuming no interaction, state or recognize the null hypothesis for
testing the significance of this odds ratio in terms of a parameter
in the model.

5. Given a logistic model involving interaction terms, state or recognize
that the expression for the odds ratio will give different values for the
odds ratio depending on the values specified for the effect modifiers
in the model.

6. Given a study situation involving matched case-control data:
a. state or recognize a logistic model for the analysis of matched data

that controls for both matched and unmatched variables;
b. state how matching is incorporated into a logistic model using

dummy variables;
c. state or recognize the expression for the odds ratio for the expo-

sure–disease effect that controls for both matched and unmatched
variables;

d. state or recognize null hypotheses for no interaction effect, or for
no exposure–disease effect, given no interaction effect.
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This presentation describes important special cases of
the general logistic model when there is a single (0, 1)
exposure variable. Special case models include simple
analysis of a fourfold table; assessment of multiplica-
tive interaction between two dichotomous variables;
controlling for several confounders and interaction
terms; and analysis of matched data. In each case, we
consider the definitions of variables in the model and
the formula for the odds ratio describing the expo-
sure–disease relationship.

Recall that the general logistic model for k indepen-
dent variables may be written as P(X) equals 1 over 1
plus e to minus the quantity � plus the sum of �iXi,
where P(X) denotes the probability of developing a dis-
ease of interest given values of a collection of indepen-
dent variables X1, X2, through Xk, that are collectively
denoted by the bold X. The terms � and �i in the
model represent unknown parameters which we need
to estimate from data obtained for a group of subjects
on the X’s and on D, a dichotomous disease outcome
variable.

An alternative way of writing the logistic model is
called the logit form of the model. The expression for
the logit form is given here.

The general odds ratio formula for the logistic model is
given by either of two formulae. The first formula is of
the form e to a sum of linear terms. The second is of the
form of the product of several exponentials; that is,
each term in the product is of the form e to some
power. Either formula requires two specifications, X1
and X0, of the collection of k independent variables X1,
X2, . . ., Xk.

We now consider a number of important special cases
of the logistic model and their corresponding odds
ratio formulae.
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We begin with the simple situation involving one
dichotomous independent variable, which we will
refer to as an exposure variable and will denote it as
X1 = E. Because the disease variable, D, considered by
a logistic model is dichotomous, we can use a two-way
table with four cells to characterize this analysis situa-
tion, which is often referred to as a simple analysis.

For convenience, we define the exposure variable as a
(0, 1) variable and place its values in the two columns
of the table. We also define the disease variable as a (0,
1) variable and place its values in the rows of the table.
The cell frequencies within the fourfold table are
denoted as a, b, c, and d, as is typically presented for
such a table.

A logistic model for this simple analysis situation can
be defined by the expression P(X) equals 1 over 1 plus
e to minus the quantity � plus �1 times E, where E
takes on the value 1 for exposed persons and 0 for
unexposed persons. Note that other coding schemes
for E are also possible, such as (1,�1), (1, 2), or even (2,
1). However, we defer discussing such alternatives
until Chapter 3.

The logit form of the logistic model we have just
defined is of the form logit P(X) equals the simple lin-
ear sum � plus �1 times E. As stated earlier in our
review, this logit form is an alternative way to write the
statement of the model we are using.

The term P(X) for the simple analysis model denotes the
probability that the disease variable D takes on the value
1, given whatever the value is for the exposure variable
E. In epidemiologic terms, this probability denotes the
risk for developing the disease, given exposure status.
When the value of the exposure variable equals 1, we
call this risk R1, which is the conditional probability
that D equals 1 given that E equals 1. When E equals 0,
we denote the risk by R0, which is the conditional prob-
ability that D equals 1 given that E equals 0.
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We would like to use the above model for simple analy-
sis to obtain an expression for the odds ratio that com-
pares exposed persons with unexposed persons. Using
the terms R1 and R0, we can write this odds ratio as R1
divided by 1 minus R1 over R0 divided by 1 minus R0.

To compute the odds ratio in terms of the parameters
of the logistic model, we substitute the logistic model
expression into the odds ratio formula.

For E equal to 1, we can write R1 by substituting the
value E equals 1 into the model formula for P(X). We
then obtain 1 over 1 plus e to minus the quantity � plus
�1 times 1, or simply 1 over 1 plus e to minus � plus �1.

For E equal to zero, we write R0 by substituting E
equal to 0 into the model formula, and we obtain 1
over 1 plus e to minus �.

To obtain ROR then, we replace R1 with 1 over 1 plus
e to minus � plus �1, and we replace R0 with 1 over 1
plus e to minus �. The ROR formula then simplifies
algebraically to e to the �1, where �1 is the coefficient
of the exposure variable.

We could have obtained this expression for the odds
ratio using the general formula for the ROR that we
gave during our review. We will use the general formula
now. Also, for other special cases of the logistic model,
we will use the general formula rather than derive an
odds ratio expression separately for each case.
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The general formula computes ROR as e to the sum of
each �i times the difference between X1i and X0i, where
X1i denotes the value of the ith X variable for group 1
persons and X0i denotes the value of the ith X variable
for group 0 persons. In a simple analysis, we have only
one X and one �; in other words, k, the number of vari-
ables in the model, equals 1.

For a simple analysis model, group 1 corresponds to
exposed persons, for whom the variable X1, in this case
E, equals 1. Group 0 corresponds to unexposed per-
sons, for whom the variable X1 or E equals 0. Stated
another way, for group 1, the collection of X’s denoted
by the bold X can be written as X1 and equals the col-
lection of one value X11, which equals 1. For group 0,
the collection of X’s denoted by the bold X is written as
X0 and equals the collection of one value X01, which
equals 0.

Substituting the particular values of the one X variable
into the general odds ratio formula then gives e to the
�1 times the quantity X11 minus X01, which becomes e
to the �1 times 1 minus 0, which reduces to e to the �1.

We can estimate this odds ratio by fitting the simple
analysis model to a set of data. The estimate of the
parameter �1 is typically denoted as 1. The odds ratio
estimate then becomes e to the 1.
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The reader should not be surprised to find out that an
alternative formula for the estimated odds ratio for the
simple analysis model is the familiar a times d over b
times c, where a, b, c, and d are the cell frequencies in
the fourfold table for simple analysis. That is, e to the �̂1
obtained from fitting a logistic model for simple analy-
sis can alternatively be computed as ad divided by bc
from the cell frequencies of the fourfold table.

Thus, in the simple analysis case, we need not go to the
trouble of fitting a logistic model to get an odds ratio
estimate as the typical formula can be computed with-
out a computer program. We have presented the logis-
tic model version of simple analysis to show that the
logistic model incorporates simple analysis as a special
case. More complicated special cases, involving more
than one independent variable, require a computer
program to compute the odds ratio.

We will now consider how the logistic model allows
the assessment of interaction between two indepen-
dent variables.

Consider, for example, two (0, 1) X variables, X1 and
X2, which for convenience we rename as A and B,
respectively. We first describe what we mean concep-
tually by interaction between these two variables. This
involves an equation involving risk odds ratios corre-
sponding to different combinations of A and B. The
odds ratios are defined in terms of risks, which we now
describe.

Let RAB denote the risk for developing the disease,
given specified values for A and B; in other words, RAB
equals the conditional probability that D equals 1,
given A and B.

Because A and B are dichotomous, there are four pos-
sible values for RAB, which are shown in the cells of a
two-way table. When A equals 1 and B equals 1, the
risk RAB becomes R11. Similarly, when A equals 1 and
B equals 0, the risk becomes R10. When A equals 0 and
B equals 1, the risk is R01, and finally, when A equals 0
and B equals 0, the risk is R00.
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Note that the two-way table presented here does not
describe a simple analysis because the row and column
headings of the table denote two independent variables
rather than one independent variable and one disease
variable. Moreover, the information provided within
the table is a collection of four risks corresponding to
different combinations of both independent variables,
rather than four cell frequencies corresponding to dif-
ferent exposure–disease combinations.

Within this framework, odds ratios can be defined to
compare the odds for any one cell in the two-way table
of risks with the odds for any other cell. In particular,
three odds ratios of typical interest compare each of
three of the cells to a referent cell. The referent cell is
usually selected to be the combination A equals 0 and
B equals 0. The three odds ratios are then defined as
OR11, OR10, and OR01, where OR11 equals the odds for
cell 11 divided by the odds for cell 00, OR10 equals the
odds for cell 10 divided by the odds for cell 00, and
OR01 equals the odds for cell 01 divided by the odds for
cell 00.

As the odds for any cell A,B is defined in terms of risks
as RAB divided by 1 minus RAB, we can obtain the fol-
lowing expressions for the three odds ratios: OR11
equals the product of R11 times 1 minus R00 divided by
the product of R00 times 1 minus R11. The correspond-
ing expressions for OR10 and OR01 are similar, where
the subscript 11 in the numerator and denominator of
the 11 formula is replaced by 10 and 01, respectively.

In general, without specifying the value of A and B, we
can write the odds ratio formulae as ORAB equals the
product of RAB and 1 minus R00 divided by the product
of R00 and 1� RAB, where A takes on the values 0 and 1
and B takes on the values 0 and 1.
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Now that we have defined appropriate odds ratios for
the two independent variables situation, we are ready
to provide an equation for assessing interaction. The
equation is stated as OR11 equals the product of OR10
and OR01. If this expression is satisfied for a given
study situation, we say that there is “no interaction on
a multiplicative scale.” In contrast, if this expression is
not satisfied, we say that there is evidence of interac-
tion on a multiplicative scale.

Note that the right-hand side of the “no interaction”
expression requires multiplication of two odds ratios,
one corresponding to the combination 10 and the
other to the combination 01. Thus, the scale used for
assessment of interaction is called multiplicative.

When the no interaction equation is satisfied, we can
interpret the effect of both variables A and B acting
together as being the same as the combined effect of
each variable acting separately.

The effect of both variables acting together is given by
the odds ratio OR11 obtained when A and B are both
present, that is, when A equals 1 and B equals 1.

The effect of A acting separately is given by the odds
ratio for A equals 1 and B equals 0, and the effect of B
acting separately is given by the odds ratio for A equals
0 and B equals 1. The combined separate effects of A
and B are then given by the product OR10 times OR01.

Thus, when there is no interaction on a multiplicative
scale, OR11 equals the product of OR10 and OR01.
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OR OR OR11 10 01= ×
no interaction 
on a 
multiplicative
scale

DEFINITION

multiplication

multiplicative
scale

No interaction :

effect of  and 
acting together

combined effect
of  and 

acting separately

A B
A B

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

↑
OR11

↑
×OR OR10 01

no interaction formula :

OR OR OR11 10 01= ×



As an example of no interaction on a multiplicative
scale, suppose the risks RAB in the fourfold table are
given by R11 equal to 0.0350, R10 equal to 0.0175, R01
equal to 0.0050, and R00 equal to 0.0025. Then the cor-
responding three odds ratios are obtained as follows:
OR11 equals 0.0350 times 1 minus 0.0025 divided by
the product of 0.0025 and 1 minus 0.0350, which
becomes 14.4; OR10 equals 0.0175 times 1 minus
0.0025 divided by the product of 0.0025 and 1 minus
0.0175, which becomes 7.2; and OR01 equals 0.0050
times 1 minus 0.0025 divided by the product of 0.0025
and 1 minus 0.0050, which becomes 2.0.

To see if the no interaction equation is satisfied, we
check whether OR11 equals the product of OR10 and
OR01. Here we find that OR11 equals 14.4 and the
product of OR10 and OR01 is 7.2 times 2, which is also
14.4. Thus, the no interaction equation is satisfied.

In contrast, using a different example, if the risk for the
11 cell is 0.0700, whereas the other three risks remained
at 0.0175, 0.0050, and 0.0025, then the corresponding
three odds ratios become OR11 equals 30.0, OR10 equals
7.2, and OR01 equals 2.0. In this case, the no interaction
equation is not satisfied because the left-hand side
equals 30 and the product of the two odds ratios on the
right-hand side equals 14. Here, then, we would con-
clude that there is interaction because the effect of both
variables acting together is twice the combined effect of
the variables acting separately.
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EXAMPLE

R11�0.0350 R10�0.0175

R01�0.0050 R00�0.0025

B�1 B�0

A�1
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R01�0.0050 R00�0.0025

B�1 B�0

OR
0.0350 1 0.0025
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0.0025 1 0.0175
7

OR
0.0050 1 0.0025
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Note that in determining whether or not the no inter-
action equation is satisfied, the left- and right-hand
sides of the equation do not have to be exactly equal. If
the left-hand side is approximately equal to the right-
hand side, we can conclude that there is no interaction.
For instance, if the left-hand side is 14.5 and the right-
hand side is 14, this would typically be close enough to
conclude that there is no interaction on a multiplica-
tive scale.

A more complete discussion of interaction, including
the distinction between multiplicative interaction
and additive interaction, is given in Chapter 19 of
Epidemiologic Research by Kleinbaum, Kupper, and
Morgenstern (1982).

We now define a logistic model which allows the
assessment of multiplicative interaction involving two
(0, 1) indicator variables A and B. This model contains
three independent variables, namely, X1 equal to A, X2
equal to B, and X3 equal to the product term A times B.
The variables A and B are called main effect variables
and the product term is called an interaction effect
variable.

The logit form of the model is given by the expression
logit of P(X) equals � plus �1 times A plus �2 times B
plus �3 times A times B. P(X) denotes the risk for devel-
oping the disease given values of A and B, so that we
can alternatively write P(X) as RAB.

For this model, it can be shown mathematically that
the coefficient �3 of the product term can be written in
terms of the three odds ratios we have previously
defined. The formula is �3 equals the natural log of the
quantity OR11 divided by the product of OR10 and
OR01. We can make use of this formula to test the null
hypothesis of no interaction on a multiplicative scale.
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EXAMPLE (continued)

Note: “�” means approximately equal
(�)
e.g., 14.5 � 14.0 ⇒ no interaction

REFERENCE
multiplicative interaction vs. 
additive interaction
Epidemiologic Research, Chapter 19
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One way to state this null hypothesis, as described ear-
lier in terms of odds ratios, is OR11 equals the product
of OR10 and OR01. Now it follows algebraically that
this odds ratio expression is equivalent to saying that
the quantity OR11 divided by OR10 times OR01 equals
1, or equivalently, that the natural log of this expres-
sion equals the natural log of 1, or, equivalently, that
�3 equals 0. Thus, the null hypothesis of no interaction
on a multiplicative scale can be equivalently stated as
�3 equals 0.

In other words, a test for the no interaction hypotheses
can be obtained by testing for the significance of the
coefficient of the product term in the model. If the test
is not significant, we would conclude that there is no
interaction on a multiplicative scale and we would
reduce the model to a simpler one involving only main
effects. In other words, the reduced model would be of
the form logit P(X) equals � plus �1 times A plus �2
times B. If, on the other hand, the test is significant,
the model would retain the �3 term and we would con-
clude that there is significant interaction on a multi-
plicative scale.

A description of methods for testing hypotheses for
logistic regression models is beyond the scope of this
presentation (see Chapter 5). The main point here is
that we can test for interaction in a logistic model by
testing for significance of product terms that reflect
interaction effects in the model.

As an example of a test for interaction, we consider a
study that looks at the combined relationship of
asbestos exposure and smoking to the development of
bladder cancer. Suppose we have collected case-con-
trol data on several persons with the same occupation.
We let ASB denote a (0, 1) variable indicating asbestos
exposure status, SMK denote a (0, 1) variable indicat-
ing smoking status, and D denote a (0, 1) variable for
bladder cancer status.
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MAIN POINT:
Interaction test ⇒ test for product terms

EXAMPLE

Case-control study

ASB � (0, 1) variable for asbestos
exposure

SMK � (0, 1) variable for smoking 
status

D � (0, 1) variable for bladder
cancer status

⇔

⇔

⇔

⇔

H  no interaction on a multiplicative scale0



EXAMPLE

To assess the extent to which there is a multiplicative
interaction between asbestos exposure and smoking,
we consider a logistic model with ASB and SMK as
main effect variables and the product term ASB times
SMK as an interaction effect variable. The model is
given by the expression logit P(X) equals � plus �1
times ASB plus �2 times SMK plus �3 times ASB times
SMK. With this model, a test for no interaction on a
multiplicative scale is equivalent to testing the null
hypothesis that �3, the coefficient of the product term,
equals 0.

If this test is not significant, then we would conclude
that the effect of asbestos and smoking acting together
is equal, on a multiplicative scale, to the combined
effect of asbestos and smoking acting separately. If this
test is significant and �3 is greater than 0, we would
conclude that the joint effect of asbestos and smoking
is greater than a multiplicative combination of sepa-
rate effects. Or, if the test is significant and �3 is less
than zero, we would conclude that the joint effect of
asbestos and smoking is less than a multiplicative
combination of separate effects.

We are now ready to discuss a logistic model that con-
siders the effects of several independent variables and,
in particular, allows for the control of confounding
and the assessment of interaction. We call this model
the E, V, W model. We consider a single dichotomous
(0, 1) exposure variable, denoted by E, and p extrane-
ous variables C1, C2, and so on, up through Cp. The
variables C1 through Cp may be either continuous or
categorical.

As an example of this special case, suppose the disease
variable is coronary heart disease status (CHD), the
exposure variable E is catecholamine level (CAT);
where 1 equals high and 0 equals low; and the control
variables are AGE, cholesterol level (CHL), smoking
status (SMK), electrocardiogram abnormality status
(ECG), and hypertension status (HPT).
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EXAMPLE (continued)

Test Result Conclusion

Not Significant No interaction on 
multiplicative scale

Significant (�3 0) Joint effect 
combined effect

Significant (�3� 0) Joint effect �
combined effect

logit ASB SMK

ASB SMK

1 2

3

X( ) = + +

+ ×

α β β

β

H : no interaction (multiplicative)

H : 0
0

0 3⇔ =β

IV. The E, V, W Model—A General
Model Containing a (0, 1)
Exposure and Potential
Confounders and Effect
Modifiers

The variables:
E � (0, 1) exposure
C1, C2, …,Cp continuous or categorical

D � CHD(0, 1)
E � CAT(0, 1)
C1� AGEcontinuous
C2 � CHLcontinuous
C3� SMK(0, 1)
C4� ECG(0, 1)
C5� HPT(0, 1)

control
variables

}

ˆ

ˆ

ˆ

ˆ



We will assume here that both AGE and CHL are
treated as continuous variables, that SMK is a (0, 1)
variable, where 1 equals ever smoked and 0 equals
never smoked, that ECG is a (0, 1) variable, where 1
equals abnormality present and 0 equals abnormality
absent, and that HPT is a (0, 1) variable, where 1
equals high blood pressure and 0 equals normal blood
pressure. There are, thus, five C variables in addition to
the exposure variable CAT.

Corresponding to these variables is a model with eight
independent variables. In addition to the exposure
variable CAT, the model contains the five C variables
as potential confounders plus two product terms
involving two of the C’s, namely, CHL and HPT, which
are each multiplied by the exposure variable CAT.

The model is written as logit P(X) equals � plus � times
CAT plus the sum of five main effect terms �1 times
AGE plus �2 times CHL and so on up through �5 times
HPT plus the sum of �1 times CAT times CHL plus �2
times CAT times HPT. Here the five main effect terms
account for the potential confounding effect of the
variables AGE through HPT and the two product terms
account for the potential interaction effects of CHL
and HPT.

Note that the parameters in this model are denoted as
�, �, �’s, and �’s, whereas previously we denoted all
parameters other than the constant � as �i’s. We use �,
�’s, and �’s here to distinguish different types of vari-
ables in the model. The parameter � indicates the coef-
ficient of the exposure variable, the �’s indicate the
coefficients of the potential confounders in the model,
and the �’s indicate the coefficients of the potential
interaction variables in the model. This notation for
the parameters will be used throughout the remainder
of this presentation.

Analogous to the above example, we now describe the
general form of a logistic model, called the E, V, W
model, that considers the effect of a single exposure
controlling for the potential confounding and interac-
tion effects of control variables C1, C2, up through Cp.
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EXAMPLE (continued)

Model with eight independent variables:

Parameters:
�, �, �’s, and �’s instead of � and �’s

where
�: exposure variable

�’s: potential confounders
�’s: potential interaction variables

logit P CATX( ) = +α β

+ + + + +

+ × + ×

γ γ γ γ γ

δ δ

1 2 3 4 5

main effects

1 2

interaction effects

AGE CHL SMK ECG HPT

CAT CHL CAT HPT

1 24444444444 34444444444

1 2444444 3444444

The general E, V, W Model

single exposure, controlling for 
C1, C2, …, Cp



The general E, V, W model contains p1 plus p2 plus 1
variables, where p1 is the number of potential con-
founders in the model, p2 is the number of potential
interaction terms in the model, and the 1 denotes the
exposure variable.

In the CHD study example above, there are p1 equal to
five potential confounders, namely, the five control
variables, and there are p2 equal to two interaction
variables, the first of which is CAT � CHL and the sec-
ond is CAT � HPT. The total number of variables in the
example is, therefore, p1 plus p2 plus 1 equals 5 plus 2
plus 1, which equals 8. This corresponds to the model
presented earlier, which contained eight variables.

In addition to the exposure variable E, the general
model contains p1 variables denoted as V1, V2 through
Vp1

. The set of V’s are functions of the C’s that are
thought to account for confounding in the data. We
call the set of these V’s potential confounders.

For instance, we may have V1 equal to C1, V2 equal to
(C2)2, and V3 equal to C1�C3.

The CHD example above has five V’s that are the same
as the C’s.

Following the V’s, we define p2 variables which are
product terms of the form E times W1, E times W2, and
so on up through E times WP2

, where W1, W2, through
WP2

denote a set of functions of the C’s that are poten-
tial effect modifiers with E.

For instance, we may have W1 equal to C1 and W2
equal to C1 times C3.

The CHD example above has two W’s, namely, CHL
and HPT, that go into the model as product terms of
the form CAT � CHL and CAT � HPT.
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E, V, W Model

k � p1 � p2 � 1 � # of variables in model
p1 � # of potential confounders
p2 � # of potential interactions
1 � exposure variable

e.g., ,  ,  1 1 2 2
2

3 1 3V C V C V C C= = ( ) = ×

• W1, …, Wp
2

are potential effect modifiers

• W’s are functions of C’s

e.g., ,  1 1 2 1 3W C W C C= = ×

CHD EXAMPLE

p1 � 5: AGE, CHL, SMK, ECG, HPT
p2 � 2: CAT � CHL, CAT � HPT
p1 � p2 � 1 � 5 � 2 � 1 � 8

• V1, …, Vp1
are potential confounders

• V’s are functions of C’s

CHD EXAMPLE

V1 � AGE, V2 � CHL, V3 � SMK,
V4 � ECG, V5 � HPT

CHD EXAMPLE

W1 � CHL, W2 �  HPT



It is beyond the scope of this presentation to discuss
the subtleties involved in the particular choice of the
V’s and W’s from the C’s for a given model. More depth
is provided in a separate chapter (Chapter 6) on mod-
eling strategies and in Chapter 21 of Epidemiologic
Research by Kleinbaum, Kupper, and Morgenstern.

In most applications, the V’s will be the C’s themselves
or some subset of the C’s and the W’s will also be the
C’s themselves or some subset thereof. For example, if
the C’s are AGE, RACE, and SEX, then the V’s may be
AGE, RACE, and SEX, and the W’s may be AGE and
SEX, the latter two variables being a subset of the C’s.
Here the number of V variables, p1, equals 3, and the
number of W variables, p2, equals 2, so that k, which
gives the total number of variables in the model, is p1
plus p2 plus 1 equals 6.

Note that although more details are given in the above
references, you cannot have a W in the model that is
not also contained in the model as a V; that is, W’s have
to be a subset of the V’s. For instance, we cannot allow
a model whose V’s are AGE and RACE and whose W’s
are AGE and SEX because the SEX variable is not con-
tained in the model as a V term.

A logistic model incorporating this special case con-
taining the E, V, and W variables defined above can be
written in logit form as shown here.

Note that � is the coefficient of the single exposure
variable E, the �’s are coefficients of potential con-
founding variables denoted by the V’s, and the �’s are
coefficients of potential interaction effects involving E
separately with each of the W’s.

We can factor out the E from each of the interaction
terms, so that the model may be more simply written
as shown here. This is the form of the model that we
will use henceforth in this presentation.

REFERENCES FOR CHOICE OF V’s AND
W’s FROM C’s

• Chapter 6: Modeling Strategy Guidelines
• Epidemiologic Research, Chapter 21
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Assume: V’s and W’s are C’s or subset of C’s

NOTE
W’s ARE SUBSET OF V’s

EXAMPLE

C1 � AGE, C2 � RACE, C3 � SEX
V1 � AGE, V2 � RACE, V3 � SEX
W1 � AGE, W2 � SEX
p1 � 3, p2 � 2, k � p1 � p2 � 1 � 6

EXAMPLE

V1 � AGE, V2 � RACE
W1 � AGE, W2 � SEX
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1 1 2 2
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logit P

1

p

1

p1 2

X( ) = +

+ +
= =
∑ ∑

α β

γ δ

E

V E Wi i
i

j j
j



We now provide for this model an expression for an
adjusted odds ratio that describes the effect of the expo-
sure variable on disease status adjusted for the poten-
tial confounding and interaction effects of the control
variables C1 through Cp. That is, we give a formula for
the risk odds ratio comparing the odds of disease devel-
opment for exposed versus unexposed persons, with
both groups having the same values for the extraneous
factors C1 through Cp. This formula is derived as a spe-
cial case of the odds ratio formula for a general logistic
model given earlier in our review.

For our special case, the odds ratio formula takes the
form ROR equals e to the quantity � plus the sum from
1 through p2 of the �j times Wj.

Note that � is the coefficient of the exposure variable
E, that the �j are the coefficients of the interaction
terms of the form E times Wj, and that the coefficients
�i of the main effect variables Vi do not appear in the
odds ratio formula.

Note also that this formula assumes that the dichoto-
mous variable E is coded as a (0, 1) variable with E
equal to 1 for exposed persons and E equal to 0 for
unexposed persons. If the coding scheme is different,
for example, (1, �1) or (2, 1), or if E is an ordinal or
interval variable, then the odds ratio formula needs to
be modified. The effect of different coding schemes on
the odds ratio formula will be described in Chapter 3.

This odds ratio formula tells us that if our model con-
tains interaction terms, then the odds ratio will involve
coefficients of these interaction terms and that, more-
over, the value of the odds ratio will be different depend-
ing on the values of the W variables involved in the
interaction terms as products with E. This property of
the OR formula should make sense in that the concept
of interaction implies that the effect of one variable, in
this case E, is different at different levels of another
variable, such as any of the W’s.

Adjusted odds ratio for E � 1 vs. E � 0
given C1, C2, …, Cp fixed
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ROR exp
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• �i terms not in formula
• Formula assumes E is (0, 1)
• Formula is modified if E has other 

coding, e.g., (1, �1), (2, 1), ordinal, or
interval
(see Chapter 3 on coding)

• �j � 0 ⇒ OR depends on Wj
• Interaction ⇒ effect of E differs at 

different levels of W’s

Interaction :

ROR exp= +( )∑β δ j jW



Although the coefficients of the V terms do not appear
in the odds ratio formula, these terms are still part of
the fitted model. Thus, the odds ratio formula not only
reflects the interaction effects in the model but also
controls for the confounding variables in the model.

In contrast, if the model contains no interaction terms,
then, equivalently, all the �j coefficients are 0; the odds
ratio formula thus reduces to ROR equals to e to �,
where � is the coefficient of the exposure variable E.
Here, the odds ratio is a fixed constant, so that its
value does not change with different values of the inde-
pendent variables. The model in this case reduces to
logit P(X) equals � plus � times E plus the sum of the
main effect terms involving the V’s, and contains no
product terms. For this model, we can say that e to �
represents an odds ratio that adjusts for the poten-
tial confounding effects of the control variables C1
through Cp defined in terms of the V’s.

As an example of the use of the odds ratio formula for
the E, V, W model, we return to the CHD study example
we described earlier. The CHD study model contained
eight independent variables. The model is restated here
as logit P(X) equals � plus � times CAT plus the sum of
five main effect terms plus the sum of two interaction
terms.

The five main effect terms in this model account for
the potential confounding effects of the variables AGE
through HPT. The two product terms account for the
potential interaction effects of CHL and HPT.

For this example, the odds ratio formula reduces to the
expression ROR equals e to the quantity � plus the sum
�1 times CHL plus �2 times HPT.
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• V’s not in OR formula but V ’s in model,
so OR formula controls confounding:

logit P         X( ) = + + +α β γ δE V E Wi i j jΣ Σ

No interaction :

all 0 ROR expδ βj = ⇒ = ( )
↑

constant

↑
confounding

effects adjusted

logit P X( ) = + +α β γE Vi iΣ

EXAMPLE

The model :

logit P CAT

AGE CHL SMK ECG HPT

CAT CHL HPT

main effects

1 2
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δ δ

1 2 3 4 51 24444444444 34444444444

1 24444 34444

ROR exp CHL HPT1 2= + +( )β δ δ

logit P CAT

AGE CHL SMK ECG HPT

CAT CHL HPT

main effects: confounding

1 2

product terms: interaction
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δ δ

1 2 3 4 51 24444444444 34444444444
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In using this formula, note that to obtain a numerical
value for this odds ratio, not only do we need estimates
of the coefficients � and the two �’s, but we also need
to specify values for the variables CHL and HPT. In
other words, once we have fitted the model to obtain
estimates of the coefficients, we will get different val-
ues for the odds ratio depending on the values that
we specify for the interaction variables in our model.
Note, also, that although the variables AGE, SMK, and
ECG are not contained in the odds ratio expression for
this model, the confounding effects of these three vari-
ables plus CHL and HPT are being adjusted because
the model being fit contains all five control variables as
main effect V terms.

To provide numerical values for the above odds ratio,
we will consider a data set of 609 white males from
Evans County, Georgia, who were followed for 9 years
to determine CHD status. The above model involving
CAT, the five V variables, and the two W variables was
fit to this data, and the fitted model is given by the list
of coefficients corresponding to the variables listed
here.

Based on the above fitted model, the estimated odds
ratio for the CAT, CHD association adjusted for the five
control variables is given by the expression shown
here. Note that this expression involves only the coeffi-
cients of the exposure variable CAT and the interaction
variables CAT times CHL and CAT times HPT, the lat-
ter two coefficients being denoted by �’s in the model.
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ROR exp CHL HPT1 2= + +( )ˆ ˆ ˆβ δ δ

• varies with values of CHL and HPT

AGE, SMK, and ECG are adjusted for 
confounding

n � 609 white males from Evans County,
GA 9-year follow-up

Fitted model:

Variable Coefficient

Intercept
CAT
AGE
CHL
SMK
ECG
HPT
CAT � CHL
CAT � HPT

ˆ
ˆ

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ

ˆ

α
β

γ
γ
γ
γ
γ
δ
δ

= −
= −
=
= −
=
=
=
=
= −

4.0497

12.6894
    0.0350
 0.0055
    0.7732
    0.3671
    1.0466

    0.0692

2.3318

1

2

3

4

5

1

2

ROR � exp (�12.6894 � 0.0692CHL �2.3318 HPT)

exposure coefficient     interaction coefficient

ˆ

EXAMPLE (continued)



This expression for the odds ratio tells us that we
obtain a different value for the estimated odds ratio
depending on the values specified for CHL and HPT.
As previously mentioned, this should make sense con-
ceptually because CHL and HPT are the only two inter-
action variables in the model, and by interaction, we
mean that the odds ratio changes as the values of the
interaction variables change.

To get a numerical value for the odds ratio, we con-
sider, for example, the specific values CHL equal to 220
and HPT equal to 1. Plugging these into the odds ratio
formula, we obtain e to the 0.2028, which equals 1.22.

As a second example, we consider CHL equal to 200
and HPT equal to 0. Here, the odds ratio becomes e to
1.1506, which equals 3.16.

Thus, we see that depending on the values of the inter-
action variables, we will get different values for the
estimated odds ratios. Note that each estimated odds
ratio obtained adjusts for the confounding effects of all
five control variables because these five variables are
contained in the fitted model as V variables.

In general, when faced with an odds ratio expression
involving interaction (W) variables, the choice of val-
ues for the W variables depends primarily on the inter-
est of the investigator. Typically, the investigator will
choose a range of values for each interaction variable
in the odds ratio formula; this choice will lead to a
table of estimated odds ratios, such as the one pre-
sented here, for a range of CHL values and the two val-
ues of HPT. From such a table, together with a table of
confidence intervals, the investigator can interpret the
exposure–disease relationship.

As a second example, we consider a model containing
no interaction terms from the same Evans County data
set of 609 white males. The variables in the model are
the exposure variable CAT, and five V variables,
namely, AGE, CHL, SMK, ECG, and HPT. This model
is written in logit form as shown here.

Presentation: IV. The E, V, W Model 59

Choice of W values depends on investigator

EXAMPLE

TABLE OF POINT ESTIMATES ROR̂

HPT � 0 HPT � 1

CHL � 180 0.79 0.08

CHL � 200 3.16 0.31

CHL � 220 12.61 1.22

CHL � 240 50.33 4.89

EXAMPLE

No interaction model for Evans County
data (n � 609)

logit P CAT

AGE CHL SMK ECG HPT

X( ) = +

+ + + + +

α β

γ γ γ γ γ1 2 3 4 5

EXAMPLE (continued)

interaction variables

ROR varies with values of CHL and HPTˆ

• CHL � 220, HPT � 1
ROR � exp[�12.6894 � 0.0692(220) �2.3318(1)]

� exp (0.2028) � 1.22
ˆ

• CHL � 200, HPT � 0
ROR � exp[�12.6894 � 0.0692(200) �2.3318(0)]

� exp (1.1506) � 3.16

CHL � 220, HPT � 1 ⇒ ROR � 1.22
CHL � 200, HPT � 0 ⇒ ROR � 3.16

controls for the confounding effects of
AGE, CHL, SMK, ECG, and HPT

ˆ

ˆ
ˆ



Because this model contains no interaction terms, the
odds ratio expression for the CAT, CHD association is
given by e to the �̂, where �̂ is the estimated coefficient
of the exposure variable CAT.

When fitting this no interaction model to the data, we
obtain estimates of the model coefficients that are
listed here.

For this fitted model, then, the odds ratio is given by e to
the power 0.5978, which equals 1.82. Note that this odds
ratio is a fixed number, which should be expected, as
there are no interaction terms in the model.

In comparing the results for the no interaction model
just described with those for the model containing
interaction terms, we see that the estimated coefficient
for any variable contained in both models is different
in each model. For instance, the coefficient of CAT in
the no interaction model is 0.5978, whereas the coef-
ficient of CAT in the interaction model is �12.6894.
Similarly, the coefficient of AGE in the no interaction
model is 0.0322, whereas the coefficient of AGE in the
interaction model is 0.0350.
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EXAMPLE (continued)

ROR � exp( )

ROR � exp (0.5978) � 1.82

β̂ˆ

ˆ

Fitted model:

Variable Coefficient

Intercept
CAT
AGE
CHL
SMK
ECG
HPT

ˆ
ˆ

ˆ
ˆ
ˆ
ˆ
ˆ

α
β

γ
γ
γ
γ
γ

= −
=
=
=
=
=
=

6.7747
  0.5978
  0.0322
  0.0088
  0.8348
  0.3695
  0.4392

1

2

3

4

5

EXAMPLE COMPARISON

interaction no interaction
model model

Intercept �4.0497 �6.7747
CAT �12.6894 0.5978
AGE 0.0350 0.0322
CHL �0.0055 0.0088
SMK 0.7732 0.8348
ECG 0.3671 0.3695
HPT 1.0466 0.4392
CAT�CHL 0.0692 —
CAT�HPT �2.3318 —



It should not be surprising to see different values for
corresponding coefficients as the two models give a
different description of the underlying relationship
among the variables. To decide which of these models,
or maybe what other model, is more appropriate for
this data, we need to use a strategy for model selection
that includes carrying out tests of significance. A dis-
cussion of such a strategy is beyond the scope of this
presentation but is described elsewhere (see Chapters
6 and 7).

We will now consider a special case of the logistic
model and the corresponding odds ratio for the analy-
sis of matched data. This topic is discussed in more
detail in Chapter 8. Our focus here will be on matched
case-control studies, although the formulae provided
also apply to matched follow-up studies.

An important principle about modeling matched data
is that a matched analysis is a stratified analysis.
The strata are the matched sets, for example, the pairs
in a matched pair design, or combinations of matched
sets, such as pooled pairs within a close age range.

Moreover, when we use logistic regression to do a
matched analysis, we define the strata using dummy,
or indicator, variables.

In defining a model for a matched analysis, we again
consider the special case of a single (0, 1) exposure
variable of primary interest, together with a collection
of control variables C1, C2, and so on up through Cp, to
be adjusted in the analysis for possible confounding
and interaction effects. We assume that some of these
C variables have been matched in the study design,
either by using pair matching, R-to-1 matching, or fre-
quency matching. The remaining C variables have not
been matched, but it is of interest to control for them,
nevertheless.

Which model? Requires strategy
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V. Logistic Model for Matched
Data (Chapter 8)

Focus: matched case-control studies

Principle:
matched analysis ⇒ stratified analysis

• strata are matched sets, e.g., pairs 
or
combinations of matched sets, e.g.,
pooled pairs

• strata defined using dummy (indicator)
variables

E � (0, 1) exposure

C1, C2, …, Cp control variables

• some C’s matched by design
• remaining C’s not matched



Given the above context, we will now define the fol-
lowing set of variables to be incorporated into a logis-
tic model for matched data. We have a (0, 1) disease
variable D and a (0, 1) exposure variable X1 equal to E.
We also have a collection of X’s that are dummy vari-
ables indicating the different matched strata; these
variables are denoted as V1i variables.

Further, we have a collection of X’s that are defined
from the C’s not involved in the matching. These X’s
represent potential confounders in addition to the
matched variables and are denoted as V2i variables.

Finally, we have a collection of X’s which are product
terms of the form E times Wj, where the W’s denote
potential effect modifiers. Note that the W’s will usu-
ally be defined in terms of the V2 variables.

The logistic model for a matched analysis is shown
here. Note that the �1i are coefficients of the dummy
variables for the matching strata, the �2i are the coeffi-
cients of the potential confounders not involved in the
matching, and the �j are the coefficients of the interac-
tion variables.

As an example of dummy variables defined for matched
strata, consider a study involving pair matching by
age, race, and sex, and containing 100 matched pairs.
Then the above model requires defining 99 dummy
variables to incorporate the 100 matched pairs. For
example, we can define these variables as V1i equals 1
if an individual falls into the ith matched pair and 0
otherwise. Thus, V11 equals 1 if an individual is in the
first matched pair and 0 otherwise, V12 equals 1 if an
individual is in the second matched pair and 0 other-
wise, and so on up to V1, 99, which equals 1 if an indi-
vidual is in the 99th matched pair and 0 otherwise.

D � (0, 1) disease
X1 � E � (0, 1) exposure

Some X’s: V1i dummy variables 
(matched status)

Some X’s: V2i variables
(potential confounders)

Some X’s: product terms EWj
(potential interaction variables)
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logit P

  matching   confounders

      interaction

X( ) = +

+ +

+

∑ ∑

∑

α β

γ γ

δ

E

V V

E W

i i i i

j j

1 1 2 21 24 34 1 24 34

124 34

EXAMPLE

Pair matching by AGE, RACE, SEX
100 matched pairs
99 dummy variables

V
i

i

V

V

V

i1

11

12

1, 99

1 if th matched pair

0 otherwise

1, 2, ,  99

1 if first matched pair

0 otherwise

1 if second matched pair

0 otherwise

1 if 99th matched pair

0 otherwise

=
⎧
⎨
⎩

=

=
⎧
⎨
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=
⎧
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⎩

=
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Alternatively, when we use the above dummy variable
definition, a person in the first matched set will have
V11 equal to 1 and the remaining dummy variables
equal to 0, a person in the 99th matched set will have
V1, 99 equal to 1 and the other dummy variables equal
to 0, and a person in the last matched set will have all
99 dummy variables equal to 0.

The odds ratio formula for the matched analysis model
is given by the expression ROR equals e to the quantity �
plus the sum of the �j times the Wj. This is exactly the
same odds ratio formula as given earlier for the E, V, W
model for (0, 1) exposure variables. The matched analy-
sis model is essentially an E, V, W model also, even
though it contains two different types of V variables.

As an example of a matched pairs model, consider a
case-control study using 2-to-1 matching that involves
the following variables: The disease variable is myocar-
dial infarction status (MI); the exposure variable is
smoking status (SMK), a (0, 1) variable.

There are six C variables to be controlled. The first four
of these variables—age, race, sex, and hospital status—
are involved in the matching, and the last two vari-
ables—systolic blood pressure (SBP) and electrocardio-
gram status (ECG)—are not involved in the matching.

The study involves 117 persons in 39 matched sets or
strata, each strata containing 3 persons, 1 of whom is a
case and the other 2 are matched controls.

A logistic model for the above situation is shown here.
This model contains 38 terms of the form �1i times V1i,
where V1i are dummy variables for the 39 matched
sets. The model also contains two potential con-
founders, SBP and ECG, not involved in the matching,
as well as two interaction variables involving these
same two variables.
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EXAMPLE (continued)

1st matched set :

1,  0

99th matched set :

1,  0

100th matched set :

0

11 12 13 1, 99

1, 99 11 12 1, 98

11 12 1, 99

V V V V

V V V V

V V V

= = = = =

= = = = =

= = = =

L

L

L

ROR exp= +( )∑β δ j jW

• OR formula for E, V, W model
• two types of V variables are controlled

EXAMPLE

Case-control study
2-to-1 matching
D � MI(0, 1)
E � SMK(0, 1)

C C C C

C C

1 2 3 4

5 6

= = = =

= =

AGE, RACE, SEX, HOSPITAL

SBP, ECG
matched

not matched

1 244444444444 344444444444

1 24444 34444

n � 117 (39 matched sets)

logit P  SMK V

SBP ECG

SMK SBP ECG

1 1
1

38

21 22

1 2

X( ) = + +

+ +

+ +( )

=
∑α β γ

γ γ

δ δ

i i
i



The odds ratio for the above logistic model is given by
the formula e to the quantity � plus the sum of �1 times
SBP and �2 times ECG. Note that this odds ratio
expression does not contain any V terms or corre-
sponding � coefficients as such terms are potential
confounders, not interaction variables. The V terms
are nevertheless being controlled in the analysis
because they are part of the logistic model being used.

This presentation is now complete. We have described
important special cases of the logistic model, namely,
models for

We suggest that you review the material covered here
by reading the detailed outline that follows. Then do
the practice exercises and test.

All of the special cases in this presentation involved a
(0, 1) exposure variable. In the next chapter, we con-
sider how the odds ratio formula is modified for other
codings of single exposures and also examine several
exposure variables in the same model, controlling for
potential confounders and effect modifiers.
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EXAMPLE (continued)

• does not contain V’s or γ ’s
• V’s controlled as potential con-

founders

ROR exp SBP ECG1 2= + +( )β δ δ

SUMMARY

1. Introduction

✓ 2. Important Special Cases

• simple analysis
• interaction assessment involving two variables
• assessment of potential confounding and interac-

tion effects of several covariates
• matched analyses

3. Computing the Odds Ratio



I. Overview (page 42)
A. Focus:

• simple analysis
• multiplicative interaction
• controlling several confounders and effect modifiers
• matched data

B. Logistic model formula when X = (X1, X2, . . ., Xk):

C. Logit form of logistic model:

D. General odds ratio formula:

II. Special case—Simple analysis (pages 43–46)
A. The model:

B. Logit form of the model:
logit P(X) = � � �1E

C. Odds ratio for the model: ROR = exp(�1)
D. Null hypothesis of no E, D effect: H0: �1 = 0.
E. The estimated odds ratio exp( ) is computationally equal to

ad/bc where a, b, c, and d are the cell frequencies within the four-
fold table for simple analysis.

III. Assessing multiplicative interaction (pages 46–52)
A. Definition of no interaction on a multiplicative scale:

OR11 = OR10�OR01,
where ORAB denotes the odds ratio that compares a person in
category A of one factor and category B of a second factor with a
person in referent categories 0 of both factors, where A takes on
the values 0 or 1 and B takes on the values 0 or 1.

B. Conceptual interpretation of no interaction formula: The effect
of both variables A and B acting together is the same as the com-
bined effect of each variable acting separately.
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Detailed
Outline
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C. Examples of no interaction and interaction on a multiplicative
scale.

D. A logistic model that allows for the assessment of multiplicative
interaction:
logit P(X) = � � �1A � �2B � �3A�B

E. The relationship of �3 to the odds ratios in the no interaction for-
mula above:

F. The null hypothesis of no interaction in the above two factor
model: H0:�3 = 0.

IV. The E, V, W model—A general model containing a (0, 1) exposure
and potential confounders and effect modifiers (pages 52–61)
A. Specification of variables in the model: start with E, C1, C2, . . .,

Cp; then specify potential confounders V1, V2, . . ., Vp1
, which are

functions of the C’s, and potential interaction variables (i.e.,
effect modifiers) W1, W2, . . ., Wp2

, which are also functions of
the C’s and go into the model as product terms with E, i.e., E�Wi.

B. The E, V, W model:

C. Odds ratio formula for the E, V, W model, where E is a (0, 1) 
variable:

D. Odds ratio formula for E, V, W model if no interaction: 
ROR = exp(�).

E. Examples of the E, V, W model: with interaction and without
interaction

V. Logistic model for matched data (pages 61–64)
A. Important principle about matching and modeling: A matched

analysis is a stratified analysis. The strata are the matched sets,
e.g., pairs in a matched pairs analysis. Must use dummy variables
to distinguish among matching strata in the model.

B. Specification of variables in the model:
i. Start with E and C1, C2, . . ., Cp.
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ii. Then specify a collection of V variables that are dummy vari-
ables indicating the matching strata, i.e., V1i, where i ranges
from 1 to G�1, if there are G strata.

iii. Then specify V variables that correspond to potential con-
founders not involved in the matching (these are called V2i
variables).

iv. Finally, specify a collection of W variables that correspond to
potential effect modifiers not involved in the matching (these
are called Wj variables).

C. The logit form of a logistic model for matched data:

D. The odds ratio expression for the above matched analysis model:

E. The null hypothesis of no interaction in the above matched
analysis model:
H0: all �j = 0.

F. Examples of a matched analysis model and odds ratio.

True or False (Circle T or F)
T F 1. A logistic model for a simple analysis involving a (0, 1) exposure

variable is given by logit P(X) = � � �E, where E denotes the (0,
1) exposure variable.

T F 2. The odds ratio for the exposure–disease relationship in a logistic
model for a simple analysis involving a (0, 1) exposure variable is
given by �, where � is the coefficient of the exposure variable.

T F 3. The null hypothesis of no exposure–disease effect in a logistic
model for a simple analysis is given by H0: � = 1, where � is the
coefficient of the exposure variable.

T F 4. The log of the estimated coefficient of a (0, 1) exposure variable
in a logistic model for simple analysis is equal to ad / bc, where a,
b, c, and d are the cell frequencies in the corresponding fourfold
table for simple analysis.

T F 5. Given the model logit P(X) = � � �E, where E denotes a (0, 1)
exposure variable, the risk for exposed persons (E = 1) is express-
ible as e�.

T F 6. Given the model logit P(X) = � � �E, as in Exercise 5, the odds of
getting the disease for exposed persons (E = 1) is given by e���.
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Practice
Exercises
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T F 7. A logistic model that incorporates a multiplicative interaction
effect involving two (0, 1) independent variables X1 and X2 is
given by
logit P(X) = � � �1X1 � �2X2 � �3X1X2.

T F 8. An equation that describes “no interaction on a multiplicative
scale” is given by
OR11 = OR10 / OR01.

T F 9. Given the model logit P(X) = � � �E � �SMK � �E � SMK,
where E is a (0, 1) exposure variable and SMK is a (0, 1) variable
for smoking status, the null hypothesis for a test of no interac-
tion on a multiplicative scale is given by H0: � = 0.

T F 10. For the model in Exercise 9, the odds ratio that describes the
exposure disease effect controlling for smoking is given by 
exp(� � �).

T F 11. Given an exposure variable E and control variables AGE, SBP,
and CHL, suppose it is of interest to fit a model that adjusts for
the potential confounding effects of all three control variables
considered as main effect terms and for the potential interaction
effects with E of all three control variables. Then the logit form
of a model that describes this situation is given by
logit P(X) = � � �E � �1 AGE � �2 SBP � �3 CHL � �1
AGE�SBP � �2 AGE�CHL � �3 SBP�CHL.

T F 12. Given a logistic model of the form
logit P(X) = � � �E � �1 AGE � �2 SBP � �3 CHL,
where E is a (0, 1) exposure variable, the odds ratio for the effect
of E adjusted for the confounding of AGE, CHL, and SBP is
given by exp(�).

T F 13. If a logistic model contains interaction terms expressible as
products of the form EWj where Wj are potential effect modi-
fiers, then the value of the odds ratio for the E, D relationship
will be different, depending on the values specified for the Wj
variables.

T F 14. Given the model logit P(X) = � � �E � �1 SMK � �2 SBP, where
E and SMK are (0, 1) variables, and SBP is continuous, then the
odds ratio for estimating the effect of SMK on the disease, con-
trolling for E and SBP is given by exp(�1).

T F 15. Given E, C1, and C2, and letting V1 = C1 = W1 and V2 = C2 = W2,
then the corresponding logistic model is given by 
logit P(X) = � � �E � �1 C1 � �2 C2 � E(�1C1 � �2C2).

T F 16. For the model in Exercise 15, if C1 = 20 and C2 = 5, then the odds
ratio for the E, D relationship has the form exp(� � 20�1 � 5�2).
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Given a matched pairs case-control study with 100 subjects (50
pairs), suppose that in addition to the variables involved in the
matching, the variable physical activity level (PAL) was mea-
sured but not involved in the matching.

T F 17. For the matched pairs study described above, assuming no
pooling of matched pairs into larger strata, a logistic model for
a matched analysis that contains an intercept term requires 49
dummy variables to distinguish among the 50 matched pair
strata.

T F 18. For the matched pairs study above, a logistic model assessing
the effect of a (0, 1) exposure E and controlling for the con-
founding effects of the matched variables and the unmatched
variable PAL plus the interaction effect of PAL with E is given
by the expression

where the Vi are dummy variables that indicate the matched
pair strata.

T F 19. Given the model in Exercise 18, the odds ratio for the expo-
sure–disease relationship that controls for matching and for 
the confounding and interactive effect of PAL is given by 
exp(� � �PAL).

T F 20. Again, given the model in Exercise 18, the null hypothesis for a
test of no interaction on a multiplicative scale can be stated as
H0: � = 0.

True or False (Circle T or F)

T F 1. Given the simple analysis model, logit P(X) = � ��Q, where �
and � are unknown parameters and Q is a (0, 1) exposure vari-
able, the odds ratio for describing the exposure–disease rela-
tionship is given by exp(�).

T F 2. Given the model logit P(X) = � � �E, where E denotes a (0, 1)
exposure variable, the risk for unexposed persons (E = 0) is
expressible as 1/exp(� �).

T F 3. Given the model in Question 2, the odds of getting the disease
for unexposed persons (E = 0) is given by exp(�).

T F 4. Given the model logit P(X) =� � �HPT � �ECG � �HPT�ECG,
where HPT is a (0, 1) exposure variable denoting hypertension
status and ECG is a (0, 1) variable for electrocardiogram status,
the null hypothesis for a test of no interaction on a multiplica-
tive scale is given by H0: exp(�) = 1.
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T F 5. For the model in Question 4, the odds ratio that describes the
effect of HPT on disease status, controlling for ECG, is given by
exp(� ��ECG).

T F 6. Given the model logit P(X) = � � �E �� HPT �� ECG, where E,
HPT, and ECG are (0, 1) variables, then the odds ratio for esti-
mating the effect of ECG on the disease, controlling for E and
HPT, is given by exp(�).

T F 7. Given E, C1, and C2, and letting V1 = C1 = W1, V2 = (C1)2, and 
V3 = C2, then the corresponding logistic model is given by
logit P(X) = � � � E � �1C1 � �2C1

2 � �3C2 � �EC1.
T F 8. For the model in Question 7, if C1 = 5 and C2 = 20, then the odds

ratio for the E, D relationship has the form exp(� � 20�).
Given a 4-to-1 case-control study with 100 subjects (i.e., 20 matched sets),
suppose that in addition to the variables involved in the matching, the vari-
ables obesity (OBS) and parity (PAR) were measured but not involved in the
matching.
T F 9. For the matched pairs study above, a logistic model assessing

the effect of a (0, 1) exposure E, controlling for the confounding
effects of the matched variables and the unmatched variables
OBS and PAR plus the interaction effects of OBS with E and
PAR with E, is given by the expression

T F 10. Given the model in Question 9, the odds ratio for the expo-
sure–disease relationship that controls for matching and for the
confounding and interactive effects of OBS and PAR is given by
exp(� � �1E�OBS � �2E�PAR).

Consider a 1-year follow-up study of bisexual males to assess the relation-
ship of behavioral risk factors to the acquisition of HIV infection. Study
subjects were all in the 20 to 30 age range and were enrolled if they tested
HIV negative and had claimed not to have engaged in “high-risk” sexual
activity for at least 3 months. The outcome variable is HIV status at 1 year,
a (0, 1) variable, where a subject gets the value 1 if HIV positive and 0 if HIV
negative at 1 year after start of follow-up. Four risk factors were considered:
consistent and correct condom use (CON), a (0, 1) variable; having one or
more sex partners in high-risk groups (PAR), also a (0, 1) variable; the num-
ber of sexual partners (NP); and the average number of sexual contacts per
month (ASCM). The primary purpose of this study was to determine the
effectiveness of consistent and correct condom use in preventing the acqui-
sition of HIV infection, controlling for the other variables. Thus, the vari-
able CON is considered the exposure variable, and the variables PAR, NP,
and ASCM are potential confounders and potential effect modifiers.
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11. Within the above study framework, state the logit form of a logistic
model for assessing the effect of CON on HIV acquisition, controlling
for each of the other three risk factors as both potential confounders
and potential effect modifiers. (Note: In defining your model, only use
interaction terms that are two-way products of the form E�W, where E
is the exposure variable and W is an effect modifier.)

12. Using the model in Question 11, give an expression for the odds ratio
that compares an exposed person (CON = 1) with an unexposed person
(CON = 0) who has the same values for PAR, NP, and ASCM.

Suppose, instead of a follow-up study, that a matched pairs case-control
study involving 200 pairs of bisexual males is performed, where the match-
ing variables are NP and ASCM as described above, where PAR is also deter-
mined but is not involved in the matching, and where CON is the exposure
variable.

13. Within the matched pairs case-control framework, state the logit form
of a logistic model for assessing the effect of CON on HIV acquisition,
controlling for PAR, NP, and ASCM as potential confounders and only
PAR as an effect modifier.

14. Using the model in Question 13, give an expression for the risk of an
exposed person (CON = 1) who is in the first matched pair and whose
value for PAR is 1.

15. Using the model in Question 13, give an expression for the same odds
ratio for the effect of CON, controlling for the confounding effects of
NP, ASCM, and PAR and for the interaction effect of PAR.

1. T

2. F: OR = e �

3. F: H0: � = 0

4. F: e � = ad/bc

5. F: risk for E = 1 is 1/[1 � e�(���)]

6. T

7. T
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8. F: OR11 = OR10 � OR01

9. T

10. F: OR = exp(� � �SMK)

11. F: interaction terms should be E�AGE, E�SBP, and E�CHL

12. T

13. T

14. T

15. T

16. T

17. T

18. T

19. T

20. F: H0: � = 0
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In this chapter, the E, V, W model is extended to consider other coding
schemes for a single exposure variable, including ordinal and interval expo-
sures. The model is further extended to allow for several exposure variables.
The formula for the odds ratio is provided for each extension, and examples
are used to illustrate the formula.

The outline below gives the user a preview of the material covered by the
presentation. Together with the objectives, this outline offers the user an
overview of the content of this module. A detailed outline for review pur-
poses follows the presentation.

I. Overview (pages 76–77)
II. Odds ratio for other codings of a dichotomous E (pages 77–79)

III. Odds ratio for arbitrary coding of E (pages 79–82)
IV. The model and odds ratio for a nominal exposure variable (no

interaction case) (pages 82–84)
V. The model and odds ratio for several exposure variables (no

interaction case) (pages 85–87)
VI. The model and odds ratio for several exposure variables with

confounders and interaction (pages 87–91)

74 3. Computing the Odds Ratio in Logistic Regression

Introduction

Abbreviated
Outline



Upon completing this chapter, the learner should be able to:

1. Given a logistic model for a study situation involving a single expo-
sure variable and several control variables, compute or recognize the
expression for the odds ratio for the effect of exposure on disease sta-
tus that adjusts for the confounding and interaction effects of func-
tions of control variables:
a. when the exposure variable is dichotomous and coded (a, b) for

any two numbers a and b;
b. when the exposure variable is ordinal and two exposure values are

specified;
c. when the exposure variable is continuous and two exposure values

are specified.
2. Given a study situation involving a single nominal exposure variable

with more than two (i.e., polytomous) categories, state or recognize a
logistic model which allows for the assessment of the exposure–dis-
ease relationship controlling for potential confounding and assuming
no interaction.

3. Given a study situation involving a single nominal exposure variable
with more than two categories, compute or recognize the expression
for the odds ratio that compares two categories of exposure status,
controlling for the confounding effects of control variables and
assuming no interaction.

4. Given a study situation involving several distinct exposure variables,
state or recognize a logistic model that allows for the assessment 
of the joint effects of the exposure variables on disease controlling 
for the confounding effects of control variables and assuming no
interaction.

5. Given a study situation involving several distinct exposure variables,
state or recognize a logistic model that allows for the assessment of
the joint effects of the exposure variables on disease controlling for
the confounding and interaction effects of control variables.

Objectives 75
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This presentation describes how to compute the odds
ratio for special cases of the general logistic model
involving one or more exposure variables. We focus on
models that allow for the assessment of an expo-
sure–disease relationship that adjusts for the potential
confounding and/or effect modifying effects of control
variables.

In particular, we consider dichotomous exposure vari-
ables with arbitrary coding; that is, the coding of expo-
sure may be other than (0, 1). We also consider single
exposures which are ordinal or interval scaled vari-
ables. And, finally, we consider models involving sev-
eral exposures, a special case of which involves a single
polytomous exposure.

In the previous chapter we described the logit form
and odds ratio expression for the E, V, W logistic
model, where we considered a single (0, 1) exposure
variable and we allowed the model to control several
potential confounders and effect modifiers.

Recall that in defining the E, V, W model, we start with
a single dichotomous (0, 1) exposure variable, E, and p
control variables C1, C2, and so on, up through Cp. We
then define a set of potential confounder variables,
which are denoted as V’s. These V’s are functions of the
C’s that are thought to account for confounding in the
data. We then define a set of potential effect modifiers,
which are denoted as W’s. Each of the W’s goes into the
model as product term with E.

The logit form of the E, V, W model is shown here.
Note that � is the coefficient of the single exposure
variable E, the gammas (�’s) are coefficients of poten-
tial confounding variables denoted by the V’s, and the
deltas (�’s) are coefficients of potential interaction
effects involving E separately with each of the W’s.

• dichotomous E—arbitrary coding
• ordinal or interval E
• polytomous E
• several E’s

Chapter 2—E, V, W model:
• (0, 1) exposure
• confounders
• effect modifiers

The variables in the E, V, W model:
E: (0, 1) exposure
C’s: control variables
V’s: potential confounders
W’s: potential effect modifiers (i.e., go into

model as E � W)

The E, V, W model:
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For this model, the formula for the adjusted odds
ratio for the effect of the exposure variable on disease
status adjusted for the potential confounding and
interaction effects of the C’s is shown here. This for-
mula takes the form e to the quantity � plus the sum of
terms of the form �j times Wj. Note that the coefficients
�i of the main effect variables Vi do not appear in the
odds ratio formula.

Note that this odds ratio formula assumes that the
dichotomous variable E is coded as a (0, 1) variable
with E equal to 1 when exposed and E equal to 0
when unexposed. If the coding scheme is different—
for example, (�1, 1) or (2, 1), or if E is an ordinal or
interval variable—then the odds ratio formula needs to
be modified.

We now consider other coding schemes for dichoto-
mous variables. Later, we also consider coding schemes
for ordinal and interval variables.

Suppose E is coded to take on the value a if exposed
and b if unexposed. Then, it follows from the general
odds ratio formula that ROR equals e to the quantity (a
� b) times � plus (a � b) times the sum of the �j times
the Wj.

For example, if a equals 1 and b equals 0, then we are
using the (0, 1) coding scheme described earlier. It fol-
lows that a minus b equals 1 minus 0, or 1, so that the
ROR expression is e to the � plus the sum of the �j
times the Wj. We have previously given this expression
for (0, 1) coding.

In contrast, if a equals 1 and b equals �1, then a minus
b equals 1 minus �1, which is 2, so the odds ratio
expression changes to e to the quantity 2 times � plus 2
times the sum of the �j times the Wj.

As a third example, suppose a equals 100 and b equals
0, then a minus b equals 100, so the odds ratio expres-
sion changes to e to the quantity 100 times � plus 100
times the sum of the �j times the Wj.

Adjusted odds ratio for effect of E adjusted
for C’s:
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(�i terms not in formula)

II. Odds Ratio for Other Codings
of a Dichotomous E

Need to modify OR formula if coding of E is
not (0, 1)

Focus: ✓ dichotomous
ordinal
interval

E a
b

= ⎧
⎨
⎩

if exposed
if unexposed

ROR exp vs. 
1

2
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p

a b a b W= =
=
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⎣
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⎤

⎦
⎥
⎥∑β δ

EXAMPLES
(A) 1,  0 ( ) (1 0) 1a b a b= = ⇒ − = − =

ROR exp 1 1= × + ×( )∑β δ j jW

(B) 1,  1 ( ) (1 [ 1]) 2a b a b= = − ⇒ − = − − =

ROR exp 2 2= +( )∑β δ j jW

(C) 100, 0 ( ) (100 0) 1a b a b= = ⇒ − = − = 00

ROR exp 100 100= +( )∑β δ j jW

↓ ↓

↓ ↓

↓ ↓



Thus, depending on the coding scheme for E, the odds
ratio will be calculated differently. Nevertheless, even
though and the �j will be different for different cod-
ing schemes, the final odds ratio value will be the same
as long as the correct formula is used for the corre-
sponding coding scheme.

As shown here for the three examples above, which are
labeled A, B, and C, the three computed odds ratios
will be the same, even though the estimates and �j
used to compute these odds ratios will be different for
different codings.

As a numerical example, we consider a model that con-
tains no interaction terms from a data set of 609 white
males from Evans County, Georgia. The study is a fol-
low-up study to determine the development of coro-
nary heart disease (CHD) over 9 years of follow-up.
The variables in the model are CAT, a dichotomous
exposure variable, and five V variables, namely, AGE,
CHL, SMK, ECG, and HPT.

This model is written in logit form as logit P(X) equals
� plus � times CAT plus the sum of five main effect
terms �1 times AGE plus �2 times CHL, and so on up
through �5 times HPT.

We first describe the results from fitting this model
when CAT is coded as a (0, 1) variable. Then, we con-
trast these results with other codings of CAT.

Because this model contains no interaction terms and
CAT is coded as (0, 1), the odds ratio expression for the
CAT, CHD association is given by e to , where is the
estimated coefficient of the exposure variable CAT.

β̂β̂

β̂

β̂
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EXAMPLE: No Interaction Model

Evans County follow-up study:
n = 609 white males
D = CHD status
E = CAT, dichotomous
V1 = AGE, V2 = CHL, V3 = SMK, 
V4 = ECG, V5 = HPT

logit P CAT

AGE CHL SMK

ECG HPT
1 2 3

4 5

X( ) = +

+ + +

+ +

α β

γ γ γ

γ γ

CAT: (0, 1) versus other codings

ROR = exp (�)ˆ ˆ

}
↓

ˆ
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ˆ
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ˆ



Fitting this no interaction model to the data, we obtain
the estimates listed here.

For this fitted model, then, the odds ratio is given by e
to the power 0.5978, which equals 1.82. Notice that, as
should be expected, this odds ratio is a fixed number as
there are no interaction terms in the model.

Now, if we consider the same data set and the same
model, except that the coding of CAT is (�1, 1) instead
of (0, 1), the coefficient of CAT becomes 0.2989,
which is one-half of 0.5978. Thus, for this coding
scheme, the odds ratio is computed as e to 2 times the
corresponding of 0.2989, which is the same as e to
0.5978, or 1.82. We see that, regardless of the coding
scheme used, the final odds ratio result is the same, as
long as the correct odds ratio formula is used. In con-
trast, it would be incorrect to use the (�1, 1) coding
scheme and then compute the odds ratio as e to 0.2989.

We now consider the odds ratio formula for any single
exposure variable E, whether dichotomous, ordinal,
or interval, controlling for a collection of C variables
in the context of an E, V, W model shown again here.
That is, we allow the variable E to be defined arbitrar-
ily of interest.

β̂

β̂
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EXAMPLE (continued)

(0, 1) coding for CAT

Variable Coefficient

Intercept � = � 6.7747
CAT � =     0.5978
AGE �1 =     0.0322
CHL �2 =    0.0088
SMK �3 =     0.8348
ECG �4 =     0.3695
HPT �5 =     0.4392

ROR = exp(0.5978) = 1.82
No interaction model: ROR fixed

ˆ
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ

ˆ

−( ) = = ⎛
⎝⎜

⎞
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= ( ) = ×( )
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1,  1  coding for CAT: 0.2989
0.5978

2

               ROR exp 2 exp 2 0.2989

                                       exp 0.5978

                                       1.82

ˆ

ˆ

β

β

same ROR as for (0, 1) coding

Note: ROR ≠ exp (0.2989) = 1.35

incorrect value
↑

III. Odds Ratio for Arbitrary
Coding of E

Model:

dichotomous, ordinal or interval}
↓

logit P  
11

21

X( ) = + + +
==
∑∑α β γ δE V E W  i i j j
j

p

i

p

ˆ

ˆ
ˆ



To obtain an odds ratio for such a generally defined E,
we need to specify two values of E to be compared. We
denote the two values of interest as E* and E**. We
need to specify two values because an odds ratio
requires the comparison of two groups—in this case
two levels of the exposure variable E—even when the
exposure variable can take on more than two values, as
when E is ordinal or interval.

The odds ratio formula for E* versus E**, equals e to
the quantity (E* � E**) times � plus (E* � E**) times
the sum of the �j times Wj. This is essentially the same
formula as previously given for dichotomous E, except
that here, several different odds ratios can be com-
puted as the choice of E* and E** ranges over the pos-
sible values of E.

We illustrate this formula with several examples. First,
suppose E gives social support status as denoted by
SSU, which is an index ranging from 0 to 5, where 0
denotes a person without any social support and 5
denotes a person with the maximum social support
possible.

To obtain an odds ratio involving social support sta-
tus (SSU), in the context of our E, V, W model, we
need to specify two values of E. One such pair of values
is SSU* equals 5 and SSU** equals 0, which compares
the odds for persons who have the highest amount of
social support with the odds for persons who have the
lowest amount of social support. For this choice, the
odds ratio expression becomes e to the quantity (5 � 0)
times � plus (5 � 0) times the sum of the �j times Wj,
which simplifies to e to 5� plus 5 times the sum of the
�j times Wj.

Similarly, if SSU* equals 3 and SSU** equals 1, then
the odds ratio becomes e to the quantity (3 � 1) times
� plus (3 � 1) times the sum of the �j times Wj, which
simplifies to e to 2� plus 2 times the sum of the �j times
Wj.
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EXAMPLE

E = SSU = social support status (0–5)

(A) SSU* = 5 vs. SSU** = 0

ROR5,0 = exp [(SSU* � SSU**)
��(SSU* � SSU**) 
 �j Wj]

= exp [(5 � 0) � � (5 � 0)
 �j Wj]

= exp (5� � 5
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Note that if SSU* equals 4 and SSU** equals 2, then
the odds ratio expression becomes 2� plus 2 times the
sum of the �j times Wj, which is the same expression as
obtained when SSU* equals 3 and SSU** equals 1.
This occurs because the odds ratio depends on the dif-
ference between E* and E**, which in this case is 2,
regardless of the specific values of E* and E**.

As another illustration, suppose E is the interval variable
systolic blood pressure denoted by SBP. Again, to obtain
an odds ratio, we must specify two values of E to com-
pare. For instance, if SBP* equals 160 and SBP** equals
120, then the odds ratio expression becomes ROR equals
e to the quantity (160 � 120) times � plus (160 � 120)
times the sum of the �j times Wj, which simplifies to 40
times � plus 40 times the sum of the �j times Wj.

Or if SBP* equals 200 and SBP** equals 120, then the
odds ratio expression becomes ROR equals e to the 80
times � plus 80 times the sum of the �j times Wj.

Note that in the no interaction case, the odds ratio for-
mula for a general exposure variable E reduces to e to
the quantity (E* � E**) times �. This is not equal to e
to the � unless the difference (E* � E**) equals 1, as,
for example, if E* equals 1 and E** equals 0, or E*
equals 2 and E** equals 1.

Thus, if E denotes SBP, then the quantity e to � gives
the odds ratio for comparing any two groups which
differ by one unit of SBP. A one unit difference in SBP
is not typically of interest, however. Rather, a typical
choice of SBP values to be compared represent clini-
cally meaningful categories of blood pressure, as previ-
ously illustrated, for example, by SBP* equals 160 and
SBP** equals 120.

One possible strategy for choosing values of SBP* and
SBP** is to categorize the distribution of SBP values in
our data into clinically meaningful categories, say,
quintiles. Then, using the mean or median SBP in each
quintile, we can compute odds ratios comparing all
possible pairs of mean or median SBP values.
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(C) SSU* 4 vs. SSU * * 2
ROR exp 4 2 4 2

exp 2 2
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Note: ROR depends on the difference
(E* � E**) , e.g., (3 � 1) = (4 � 2) = 2

No interaction:
RORE* vs. E** = exp [(E* � E**)�]
If (E* � E**) = 1, then ROR = exp(�)

e.g., E* = 1 vs. E** = 0
or E* = 2 vs. E** = 1

EXAMPLE

E = SBP
ROR = exp(�) ⇒ (SBP* � SBP**) = 1

not interesting

Choice of SBP:
Clinically meaningful categories, 
e.g., SBP* = 160, SBP* = 120

Strategy: Use quintiles of SBP

Quintile # 1 2 3 4 5

Mean or median 120 140 160 180 200

↑

EXAMPLE

(A) SBP* 1  vs. SBP * * 120
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E = SBP = systolic blood pressure
(interval)



For instance, suppose the medians of each quintile are
120, 140, 160, 180, and 200. Then odds ratios can be
computed comparing SBP* equal to 200 with SBP**
equal to 120, followed by comparing SBP* equal to 200
with SBP** equal to 140, and so on until all possible
pairs of odds ratios are computed. We would then have
a table of odds ratios to consider for assessing the rela-
tionship of SBP to the disease outcome variable. The
check marks in the table shown here indicate pairs of
odds ratios that compare values of SBP* and SBP**.

The final special case of the logistic model that we will
consider expands the E, V, W model to allow for sev-
eral exposure variables. That is, instead of having a sin-
gle E in the model, we will allow several E’s, which we
denote by E1, E2, and so on up through Eq. In describ-
ing such a model, we consider some examples and then
give a general model formula and a general expression
for the odds ratio.

First, suppose we have a single nominal exposure vari-
able of interest; that is, instead of being dichotomous,
the exposure contains more than two categories that
are not orderable. An example is a variable such as
occupational status, which is denoted in general as
OCC, but divided into four groupings or occupational
types. In contrast, a variable like social support, which
we previously denoted as SSU and takes on discrete
values ordered from 0 to 5, is an ordinal variable.

When considering nominal variables in a logistic model,
we use dummy variables to distinguish the different
categories of the variable. If the model contains an
intercept term �, then we use k�1 dummy variables
E1, E2, and so on up to Ek�1 to distinguish among k
categories.
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EXAMPLE (continued)

SBP* SBP** OR

200 120 ✓
200 140 ✓
200 160 ✓
200 180 ✓
180 120 ✓
180 140 ✓
180 160 ✓
160 140 ✓
160 120 ✓
140 120 ✓

IV. The Model and Odds Ratio
for a Nominal Exposure
Variable (No Interaction
Case)

Several exposures: E1, E2, . . . , Eq
• model
• odds ratio

Nominal variable: > 2 categories

e.g., ✓ occupational status in four groups

SSU (0 – 5) ordinal

k categories ⇒ k � 1 dummy variables
E1, E2, . . . , Ek�1



So, for example, with occupational status, we define
three dummy variables OCC1, OCC2, and OCC3 to
reflect four occupational categories, where OCCi is
defined to take on the value 1 for a person in the ith
occupational category and 0 otherwise, for i ranging
from 1 to 3.

A no interaction model for a nominal exposure vari-
able with k categories then takes the form logit P(X)
equals � plus �1 times E1 plus �2 times E2 and so on up
to �k�1 times Ek�1 plus the usual set of V terms, where
the Ei are the dummy variables described above.

The corresponding model for four occupational status
categories then becomes logit P(X) equals � plus �1
times OCC1 plus �2 times OCC2 plus �3 times OCC3
plus the V terms.

To obtain an odds ratio from the above model, we need
to specify two categories E* and E** of the nominal
exposure variable to be compared, and we need to
define these categories in terms of the k � 1 dummy
variables. Note that we have used bold letters to iden-
tify the two categories of E; this has been done
because the E variable is a collection of dummy vari-
ables rather than a single variable.

For the occupational status example, suppose we want
an odds ratio comparing occupational category 3 with
occupational category 1. Here, E* represents category
3 and E** represents category 1. In terms of the three
dummy variables for occupational status, then, E* is
defined by OCC1* = 0, OCC2* = 0, and OCC3* = 1,
whereas E** is defined by OCC1** = 1, OCC2** = 0, and
OCC3** = 0.

More generally, category E* is defined by the dummy
variable values E1*, E2*, and so on up to Ek�1*, which
are 0’s or 1’s. Similarly, category E1** is defined by the
values E1**, E2**, and so on up to Ek�1**, which is a
different specification of 0’s or 1’s.
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EXAMPLE

E = OCC with k = 4 ⇒ k � 1 = 3
OCC1, OCC2,
OCC3

where OCCi = 1 if category i
0 if otherwise

for i = 1, 2, 3

}

logit P

                    

1 1 2 2

1 1
1

1

X( ) = + + +

+ +− −
=
∑

α β β

β γ

E E

E Vk k i i
i

p

K

logit P OCC OCC

                   OCC  

1 1 2 2

3 3
1

1

X( ) = + +

+ +
=
∑

α β β

β γ i i
i

p

V

Specify E* and E** in terms of k � 1 dummy
variables where

E = (E1, E2, . . . , Ek�1)

EXAMPLE

E = occupational status (four categories)

E* = category 3 vs. E** = category 1

E* = (OCC1* = 0, OCC2* = 0, OCC3* = 1)

E** = (OCC1** = 1, OCC2** = 0, OCC3** = 0)

Generally, define E* and E** as
E* = (E1*, E2*, . . . , Ek�1*)

and
E* = (E1**, E2**, . . . , Ek�1**)

No interaction model:



The general odds ratio formula for comparing two
categories, E* versus E** of a general nominal expo-
sure variable in a no interaction logistic model, is
given by the formula ROR equals e to the quantity (E1*
� E1**) times �1 plus (E2* � E2**) times �2, and so on
up to (Ek�1* � Ek�1**) times �k�1. When applied to a
specific situation, this formula will usually involve
more than one �i in the exponent.

For example, when comparing occupational status cat-
egory 3 with category 1, the odds ratio formula is com-
puted as e to the quantity (OCC1* � OCC1**) times �1
plus (OCC2* � OCC2**) times �2 plus (OCC3* � OCC3**)
times �3.

When we plug in the values for OCC* and OCC**, this
expression equals e to the quantity (0 � 1) times �1
plus (0 � 0) times �2 plus (1 � 0) times �3, which
equals e to �1 times �1 plus 0 times �2 plus 1 times �3,
which reduces to e to the quantity (��1) plus �3.

We can obtain a single value for the estimate of this
odds ratio by fitting the model and replacing �1 and �3
with their corresponding estimates 1 and 3. Thus,
ROR for this example is given by e to the quantity 
(� 1) plus 3.

In contrast, if category 3 is compared to category 2,
then E* takes on the values 0, 0, and 1 as before,
whereas E** is now defined by OCC1** = 0, OCC2** = 1,
and OCC3** = 0.

The odds ratio is then computed as e to the (0 � 0)
times �1 plus (0 � 1) times �2 plus (1 � 0) times �3,
which equals e to the 0 times �1 plus �1 times �2 plus
1 times �3, which reduces to e to the quantity (��2)
plus �3.

This odds ratio expression involves �2 and �3, whereas
the previous odds ratio expression that compared cate-
gory 3 with category 1 involved �1 and �3.

β̂β̂

β̂β̂

No interaction model

RORE* vs. E**

= exp [(E1* � E1**) �1 � (E2* � E2**)�2

� … � (Ek�1* � Ek�1**)�k�1]
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EXAMPLE (OCC)

ROR3 vs. 1 = exp [(OCC1* � OCC1**)�1

� (OCC2* � OCC2**)�2

� (OCC3* � OCC3**)�3]

= exp [(0 � 1)�1 � (0 � 0)�2
� (1 � 0)�3 ]

= exp [(� 1)�1 � (0)�2 � (1)�3 ]

= exp (� �1 � �3)

ROR = exp (� �1 � �3)

E* = category 3 vs. E** = category 2:

E* = (OCC1* = 0, OCC2* = 0, OCC3* = 1)

E** = (OCC1** = 0, OCC2** = 1, OCC3** = 0)

ROR3 vs. 2 = exp [(0 � 0)�1 � (0 � 1)�2
� (1 � 0)�3 ]

= exp [(0)�1 � (� 1)�2 � (1)�3 ]

= exp (� �2 � �3)

Note: ROR3 vs. 1 = exp (� �1 � �3)

0 1

0 0

1 0

ˆ ˆˆ

ˆ



We now consider the odds ratio formula when there
are several different exposure variables in the model,
rather than a single exposure variable with several cat-
egories. The formula for this situation is actually no
different than for a single nominal variable. The differ-
ent exposure variables may be denoted by E1, E2, and
so on up through Eq. However, rather than being
dummy variables, these E’s can be any kind of vari-
able—dichotomous, ordinal, or interval.

For example, E1 may be a (0, 1) variable for smoking
(SMK), E2 may be an ordinal variable for physical
activity level (PAL), and E3 may be the interval variable
systolic blood pressure (SBP).

A no interaction model with several exposure variables
then takes the form logit P(X) equals � plus �1 times E1
plus �2 times E2, and so on up to �q times Eq plus the
usual set of V terms. This model form is the same as
that for a single nominal exposure variable, although
this time there are q E’s of any type, whereas previ-
ously we had k � 1 dummy variables to indicate k
exposure categories. The corresponding model involv-
ing the three exposure variables SMK, PAL, and SBP is
shown here.

As before, the general odds ratio formula for several
variables requires specifying the values of the exposure
variables for two different persons or groups to be com-
pared—denoted by the bold E* and E**. Category E* is
specified by the variable values E1*, E2*, and so on up to
Eq*, and category E** is specified by a different collec-
tion of values E1**,  E2**,  and so on up to Eq**.

The general odds ratio formula for comparing E* ver-
sus E** is given by the formula ROR equals e to the
quantity (E1* � E1* ) times �1 plus (E* � E**) times �2,
and so on up to (Eq* � Eq** ) times �q.
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V. The Model and Odds Ratio
for Several Exposure Variables
(No Interaction Case)

q variables: E1, E2, . . ., Eq

(dichotomous, ordinal, or interval)

EXAMPLE

E1 = SMK (0,1)

E2 = PAL (ordinal)

E3 = SBP (interval)

logit P

                    

1 1 2 2

1

1

X( ) = + + + +

+
=
∑

α β β β

γ

E E E

V

q q

i i
i

p

K

No interaction model:

EXAMPLE

logit P SMK PAL SBP

                  

1 2 3

1

1

X( ) = + + +

+
=
∑

α β β β

γ i i
i

p

V

• q ≠ k � 1 in general

E* vs. E**
E* = (E1*, E2*, . . . , Eq*)
E** = (E1** , E2** , . . . , Eq**)

ROR exp* vs. ** 1
*

1
**

1

2
*

2
**

2

* **

E E = −( )[
+ −( ) +

+ −( ) ]

E E

E E

E Eq q q

β

β

β
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This formula is the same as that for a single exposure
variable with several categories, except that here we
have q variables, whereas previously we had k � 1
dummy variables.

As an example, consider the three exposure variables
defined above—SMK, PAL, and SBP. The control vari-
ables are AGE and SEX, which are defined in the
model as V terms.

Suppose we wish to compare a nonsmoker who has a
PAL score of 25 and systolic blood pressure of 160 to a
smoker who has a PAL score of 10 and systolic blood
pressure of 120, controlling for AGE and SEX. Then,
here, E* is defined by SMK*=0, PAL*=25, and
SBP*=160, whereas E** is defined by SMK**=1,
PAL**=10, and SBP**=120.

The control variables AGE and SEX are considered
fixed but do not need to be specified to obtain an odds
ratio because the model contains no interaction terms.

The odds ratio is then computed as e to the quantity
(SMK* � SMK**) times �1 plus (PAL* � PAL**) times
�2 plus (SBP* � SBP**) times �3,

which equals e to (0 � 1) times �1 plus (25 � 10) times
�2 plus (160 � 120) times �3,

which equals e to the quantity �1 times �1 plus 15
times �2 plus 40 times �3,

which reduces to e to the quantity � �1 plus 15�2 plus
40�3.

An estimate of this odds ratio can then be obtained by
fitting the model and replacing �1, �2, and �3 by their
corresponding estimates 1, 2, and 3. Thus, ROR
equals e to the quatity � 1 plus 15 2 plus 40 3.

β̂β̂β̂
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EXAMPLE

logit P(X) = � � �1 SMK � �2 PAL
� �3 SBP
� �1 AGE � �2 SEX

Nonsmoker, PAL = 25, SBP = 160
vs.

Smoker, PAL = 10, SBP = 120

E* = (SMK*=0, PAL*=25, SBP*=160)

E** = (SMK**=1, PAL**=10, SBP**=120)

AGE and SEX fixed, but unspecified

In general

• q variables ≠ k � 1 dummy variables

ROR exp SMK * SMK * *

 PAL * PAL * *

 SBP * SBP * *

* vs. ** 1

2

3

E E = −( )[
+ −( )
+ −( ) ]

β

β

β

= −( )[ + −( ) + −( ) ]exp 0 1 25 10 160 1201 2 3β β β

= −( )[ +( ) + ( ) ]exp 1 15 401 2 3β β β

= − + +( )exp 15 401 2 3β β β

ROR exp 15 401 2 3= − + +( )ˆ ˆ ˆβ β βˆ

β̂ β̂ β̂
ˆ



As a second example, suppose we compare a smoker
who has a PAL score of 25 and a systolic blood pres-
sure of 160 to a smoker who has a PAL score of 5 and
a systolic blood pressure of 200, again controlling for
AGE and SEX.

The ROR is then computed as e to the quantity (1 � 1)
times �1 plus (25 � 5) times �2 plus (160 � 200) times
�3, which equals e to 0 times �1 plus 20 times �2 plus
�40 times �3, which reduces to e to the quantity 20�2
minus 40�3.

We now consider a final situation involving several
exposure variables, confounders (i.e., V’s), and
interaction variables (i.e., W’s), where the W’s go into
the model as product terms with one of the E’s.

As an example, we again consider the three exposures
SMK, PAL, and SBP and the two control variables AGE
and SEX. We add to this list product terms involving
each exposure with each control variable. These prod-
uct terms are shown here.

The corresponding model is given by logit P(X) equals
� plus �1 times SMK plus �2 times PAL plus �3 times
SBP plus the sum of V terms involving AGE and SEX
plus SMK times the sum of � times W terms, where the
W’s are AGE and SEX, plus PAL times the sum of addi-
tional � times W terms, plus SBP times the sum of
additional � times W terms. Here the �’s are coeffi-
cients of interaction terms involving one of the three
exposure variables—either SMK, PAL, or SEX—and
one of the two control variables—either AGE or SEX.

To obtain an odds ratio expression for this model, we
again must identify two specifications of the collection
of exposure variables to be compared. We have referred
to these specifications generally by the bold terms E*
and E**. In the above example, E* is defined by SMK*
= 0, PAL* = 25, and SBP* = 160, whereas E** is defined
by SMK** = 1, PAL** = 10, and SBP** = 120.
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ANOTHER EXAMPLE

E* = (SMK*=1, PAL*=25, SBP*=160)

E** = (SMK**=1, PAL**=5, SBP**=200)

controlling for AGE and SEX

ROR exp 1 1 25 5 160 200

exp 0 20 40

exp 20 40

* vs. ** 1 2 3

1 2 3

2 3

E E = −( )[ + −( ) + −( ) ]
= ( )[ +( ) + −( ) ]
= −( )

β β β

β β β

β β

VI. The Model and Odds Ratio
for Several Exposure
Variables with Confounders
and Interaction

EXAMPLE: The Variables

E1 = SMK, E2 = PAL, E3 = SBP

V1 = AGE = W1, V2 = SEX = W2

E1W1 = SMK � AGE, E1W2 = SMK � SEX

E2W1 = PAL � AGE, E2W2 = PAL � SEX

E3W1 = SBP � AGE, E3W2 = SBP � SEX

EXAMPLE: The Model

logit P SMK PAL SBP

AGE SEX

SMK AGE SEX

PAL AGE SEX

SBP AGE SEX

1 2 3

1 2

11 12

21 22

31 32

X( ) = + + +

+ +

+ +( )
+ +( )
+ +( )

α β β β

γ γ

δ δ

δ δ

δ δ

EXAMPLE: The Odds Ratio

E* vs. E**

E* = (SMK*=0, PAL*=25, SBP*=160)

E** = (SMK**=1, PAL**=10, SBP**=120)



The previous odds ratio formula that we gave for sev-
eral exposures but no interaction involved only � coef-
ficients for the exposure variables. Because the model
we are now considering contains interaction terms, the
corresponding odds ratio will involve not only the �
coefficients, but also � coefficients for all interaction
terms involving one or more exposure variables.

The odds ratio formula for our example then becomes
e to the quantity (SMK* � SMK**) times �1 plus (PAL*
� PAL**) times �2 plus (SBP* � SBP**) times �3 plus
the sum of terms involving a � coefficient times the dif-
ference between E* and E** values of one of the expo-
sures times a W variable.

For example, the first of the interaction terms is �11
times the difference (SMK* � SMK**) times AGE, and
the second of these terms is �12 times the difference
(SMK* � SMK**) times SEX.

When we substitute into the odds ratio formula the val-
ues for E* and E**, we obtain the expression e to the
quantity (0 � 1) times �1 plus (25 � 10) times �2 plus
(160 � 120) times �3 plus several terms involving inter-
action coefficients denoted as �’s.

The first set of these terms involves interactions of
AGE and SEX with SMK. These terms are �11 times the
difference (0 � 1) times AGE plus �12 times the differ-
ence (0 � 1) times SEX. The next set of � terms
involves interactions of AGE and SEX with PAL. The
last set of � terms involves interactions of AGE and
SEX with SBP.

After subtraction, this expression reduces to the
expression shown here at the left.

We can simplify this expression further by factoring
out AGE and SEX to obtain e to the quantity minus �1
plus 15 times �2 plus 40 times �3 plus AGE times the
quantity minus �11 plus 15 times �21 plus 40 times �31
plus SEX times the quantity minus �12 plus 15 times
�22 plus 40 times �32.
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ROR (no interaction): �’s only

ROR (interaction): �’s and �’s

EXAMPLE (continued)

ROR exp SMK * SMK * *

PAL * PAL * *

SBP * SBP * *

SMK * SMK * * AGE

SMK * SMK * * SEX

PAL * PAL * * AGE

PAL * PAL * * SEX

SBP * SBP * * AGE

* vs. ** 1

2

3

11

12

21

22

31

E E = −( )[
+ −( )
+ −( )
+ −( )
+ −( )
+ −( )
+ −( )
+ −( )

β

β

β

δ

δ

δ

δ

δ

ROR = exp [(0 � 1)�1 � (25 � 10)�2
� (160 � 120)�3

interaction with SMK

� �11 (0 � 1) AGE� �12 (0 � 1) SEX

interaction with PAL

� �21 (25 � 10) AGE� �22 (25 � 10) SEX

interaction with SBP

� �31 (160 � 120) AGE � �32 (160 � 120) SEX

= − + +
− −
+ +
+ +

(

)

exp 15 40

AGE SEX
15 AGE 15 SEX

40 AGE 40 SEX

1 2 3

11 12

21 22

31 32

β β β
δ δ

δ δ
δ δ

= − + +

+ − + +

+ − + +

(
( )
( )]

exp 15 40

AGE 15 40

SEX 15 40

1 2 3

11 21 31

12 22 32

β β β

δ δ δ

δ δ δ



Note that this expression tells us that once we have
fitted the model to the data to obtain estimates of the
� and � coefficients, we must specify values for the
effect modifiers AGE and SEX before we can get a
numerical value for the odds ratio. In other words, the
odds ratio will give a different numerical value depend-
ing on which values we specify for the effect modifiers
AGE and SEX.

For instance, if we choose AGE equals 35 and SEX
equals 1 say, for females, then the estimated odds ratio
becomes the expression shown here.

This odds ratio expression can alternatively be written
as e to the quantity minus 1 plus 15 times 2 plus 40
times 3 minus 35 times �11 plus 525 times �21 plus
1400 times �31 minus �12 plus 15 times �22 plus 40
times �32. This expression will give us a single numeri-
cal value for 35-year-old females once the model is fit-
ted and estimated coefficients are obtained.

We have just worked through a specific example of the
odds ratio formula for a model involving several expo-
sure variables and controlling for both confounders
and effect modifiers. To obtain a general odds ratio
formula for this situation, we first need to write the
model in general form.

This expression is given by the logit of P(X) equals �
plus �1 times E1 plus �2 times E2, and so on up to �q
times Eq plus the usual set of V terms of the form �iVi
plus the sum of additional terms, each having the form
of an exposure variable times the sum of � times W
terms. The first of these interaction expressions is given
by E1 times the sum of �1j times Wj, where E1 is the first
exposure variable, �1j is an unknown coefficient, and Wj
is the jth effect modifying variable. The last of these
terms is Eq times the sum of �qj times Wj, where Eq is the
last exposure variable, �qj is an unknown coefficient,
and Wj is the jth effect modifying variable.

β̂β̂
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EXAMPLE (continued)

Note: Specify AGE and SEX to get a
numerical value.

e.g., AGE = 35, SEX = 1:

ROR exp 15 40

35 525 1

15

1 2 3

11 21 31

12 22 32

= − + +(
− + +

− + + )

ˆ ˆ ˆ

ˆ ˆ ˆ
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General model
Several exposures
Confounders
Effect modifiers

logit P

     

   

1 1 2 2

1

1 1
1

2 2
1

1

1

2 2

2

X( ) = + + + +

+

+ +

+ +

=

= =

=

∑

∑ ∑

∑

α β β β

γ

δ δ

δ

E E E

V

E W E W

E W

q q

i i
i

p

j j
j

p

j j
j

p

q qj j
j

p

K

K

               

               

               

ˆ β̂ ˆ ˆ
ˆ ˆ ˆ

ˆ

AGE

SEX

ROR exp 15 401 2 3= − + +[ ˆ ˆ ˆβ β β

+ − + +( )35 15 411 21 31
ˆ ˆ ˆδ δ δ0

+ − + +( )]1 15 412 22 32
ˆ ˆ ˆδ δ δ0

ˆ



Note that this model assumes that the same effect
modifying variables are being considered for each
exposure variable in the model, as illustrated in our
preceding example above with AGE and SEX.

A more general model can be written that allows for
different effect modifiers corresponding to different
exposure variables, but for convenience, we limit our
discussion to a model with the same modifiers for each
exposure variable.

To obtain an odds ratio expression for the above model
involving several exposures, confounders, and interac-
tion terms, we again must identify two specifications
of the exposure variables to be compared. We have
referred to these specifications generally by the bold
terms E* and E**. Group E* is specified by the vari-
able values E1*, E2*, and so on up to Eq*; group E** is
specified by a different collection of values E1**, E2**,
and so on up to Eq**.

The general odds ratio formula for comparing two
such specifications, E* versus E**, is given by the for-
mula ROR equals e to the quantity (E1* � E1**) times �1
plus (E2* � E2**) times �2, and so on up to (Eq* � Eq**)
times �q plus the sum of terms of the form (E* � E**)
times the sum of � times W, where each of these latter
terms correspond to interactions involving a different
exposure variable.
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We assume the same Wj for each exposure
variable

e.g., AGE and SEX are W’s for each E.

Odds ratio for several E’s:

E* = (E1*, E2*, . . . , E*q)
vs.

E** = (E1**, E2**, . . . , Eq**)

General Odds Ratio Formula :
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In our previous example using this formula, there are q
equals three exposure variables (namely, SMK, PAL,
and SBP), two confounders (namely, AGE and SEX),
which are in the model as V variables, and two effect
modifiers (also AGE and SEX), which are in the model
as W variables. The odds ratio expression for this exam-
ple is shown here again.

This odds ratio expression does not contain coeffi-
cients for the confounding effects of AGE and SEX.
Nevertheless, these effects are being controlled because
AGE and SEX are contained in the model as V vari-
ables in addition to being W variables.

Note that for this example, as for any model containing
interaction terms, the odds ratio expression will yield
different values for the odds ratio depending on the
values of the effect modifiers—in this case, AGE and
SEX—that are specified.

In the next chapter (Chapter 4), we consider how the
method of maximum likelihood is used to estimate the
parameters of the logistic model. And in Chapter 5, we
describe statistical inferences using ML techniques.

• AGE and SEX controlled as V’s as well
as W’s

• ROR’s depend on values of W’s (AGE
and SEX)

4. Maximum Likelihood (ML)
Techniques: An Overview

5. Statistical Inferences Using ML
Techniques

Presentation: VI. The Model and Odds Ratio for Several Exposure Variables 91

SUMMARY
Chapters up to this point:

1. Introduction
2. Important Special Cases

✓ 3. Computing the Odds Ratio

This presentation is now complete. We have described
how to compute the odds ratio for an arbitrarily coded
single exposure variable that may be dichotomous,
ordinal, or interval. We have also described the odds
ratio formula when the exposure variable is a polyto-
mous nominal variable like occupational status. And,
finally, we have described the odds ratio formula when
there are several exposure variables, controlling for
confounders without interaction terms and control-
ling for confounders together with interaction terms.

EXAMPLE: q = 3

ROR exp SMK * SMK * *

PAL * PAL * * SBP * SBP * *

SMK * SMK * * AGE

SMK * SMK * * SEX

PAL * PAL * * AGE

PAL * PAL * * SEX

SBP * SBP * * AGE

SBP * SBP * * SEX

* vs. ** 1

2 3

11
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21
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31

32

E E = −( )[
+ −( ) + −( )
+ −( )
+ −( )
+ −( )
+ −( )
+ −( )
+ −( )
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δ

δ
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δ ]]



I. Overview (pages 76–77)
A. Focus: computing OR for E, D relationship adjusting for con-

founding and effect modification.
B. Review of the special case—the E, V, W model:

i. The model: 

ii. Odds ratio formula for the E, V, W model, where E is a 
(0, 1) variable:

II. Odds ratio for other codings of a dichotomous E (pages 77–79)
A. For the E, V, W model with E coded as E = a if exposed and as

E = b if unexposed, the odds ratio formula becomes

B. Examples: a = 1, b = 0: ROR = exp(�)
a = 1, b = �1: ROR = exp(2�)
a = 100, b = 0: ROR = exp(100�)

C. Final computed odds ratio has the same value provided the cor-
rect formula is used for the corresponding coding scheme, even
though the coefficients change as the coding changes.

D. Numerical example from Evans County study.
III. Odds ratio for arbitrary coding of E (pages 79–82)

A. For the E, V, W model where E* and E** are any two values of
E to be compared, the odds ratio formula becomes

B. Examples: E = SSU = social support status (0–5)
E = SBP = systolic blood pressure (interval).

C. No interaction odds ratio formula: 
RORE* vs. E** = exp[(E* � E**)�].

D. Interval variables, e.g., SBP: Choose values for comparison that
represent clinically meaningful categories, e.g., quintiles.
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IV. The model and odds ratio for a nominal exposure variable (no
interaction case) (pages 82–84)
A. No interaction model involving a nominal exposure variable

with k categories:

where E1, E2, . . ., Ek�1 denote k � 1 dummy variables that dis-
tinguish the k categories of the nominal exposure variable
denoted as E, i.e.,
Ei = 1 if category i or 0 if otherwise.

B. Example of model involving k = 4 categories of occupational
status:

where OCC1, OCC2, and OCC3 denote k � 1 = 3 dummy vari-
ables that distinguish the four categories of occupation.

C. Odds ratio formula for no interaction model involving a nomi-
nal exposure variable:

where E* = (E1*, E2*, . . ., Ek�1*) and E** = (E1**, E2**, . . ., Ek�1**)
are two specifications of the set of dummy variables for E to be
compared.

D. Example of odds ratio involving k = 4 categories of occupa-
tional status:

V. The model and odds ratio for several exposure variables (no
interaction case) (pages 85–87)
A. The model:

where E1, E2, . . ., Eq denote q exposure variables of interest.
B. Example of model involving three exposure variables:
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C. The odds ratio formula for the general no interaction model:

where E* = (E1*, E2*, . . ., Eq*) and E** = (E1*, E2**, . . ., Eq**) are
two specifications of the collection of exposure variables to be
compared.

D. Example of odds ratio involving three exposure variables:

VI. The model and odds ratio for several exposure variables with
confounders and interaction (pages 87–91)
A. An example of a model with three exposure variables:

B. The odds ratio formula for the above model:

C. The general model:

D. The general odds ratio formula:
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Given the model

where SMK (smoking status) and HPT (hypertension status) are dichoto-
mous variables, 

Answer the following true or false questions (circle T or F):
T F 1. If E is coded as (0=unexposed, 1=exposed), then the odds ratio

for the E, D relationship that controls for SMK and HPT is given
by
exp[� � �1(E � SMK) � �2(E � HPT)].

T F 2. If E is coded as (�1, 1), then the odds ratio for the E, D relation-
ship that controls for SMK and HPT is given by
exp[2� � 2�1(SMK) � 2�2(HPT)].

T F 3. If there is no interaction in the above model and E is coded as
(�1, 1), then the odds ratio for the E, D relationship that controls
for SMK and HPT is given by exp(�).

T F 4. If the correct odds ratio formula for a given coding scheme for E
is used, then the estimated odds ratio will be the same regardless
of the coding scheme used.

Given the model

where CHL and AGE are continuous variables, 

Answer the following true or false questions (circle T or F):
T F 5. The odds ratio that compares a person with CHL=200 to a per-

son with CHL=140 controlling for AGE is given by exp(60�).
T F 6. If we assume no interaction in the above model, the expression

exp(�) gives the odds ratio for describing the effect of one unit
change in CHL value, controlling for AGE.

Suppose a study is undertaken to compare the lung cancer risks for samples
from three regions (urban, suburban and rural) in a certain state, control-
ling for the potential confounding and effect modifying effects of AGE,
smoking status (SMK), RACE, and SEX.
7. State the logit form of a logistic model that treats region as a polytomous

exposure variable and controls for the confounding effects of AGE, SMK,
RACE, and SEX. (Assume no interaction involving any covariates with
exposure.)
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8. For the model of Exercise 7, give an expression for the odds ratio for the
E, D relationship that compares urban with rural persons, controlling
for the four covariates.

9. Revise your model of Exercise 7 to allow effect modification of each
covariate with the exposure variable. State the logit form of this revised
model.

10. For the model of Exercise 9, give an expression for the odds ratio for the
E, D relationship that compares urban with rural persons, controlling
for the confounding and effect modifying effects of the four covariates.

11. Given the model

logit P(X) = � � �1(SMK) � �2(ASB) � �1(AGE)
� �1(SMK � AGE) � �2(ASB � AGE),

where SMK is a (0, 1) variable for smoking status, ASB is a (0, 1) variable for
asbestos exposure status, and AGE is treated continuously, 

Circle the (one) correct choice among the following statements:
a. The odds ratio that compares a smoker exposed to asbestos to a non-

smoker not exposed to asbestos, controlling for age, is given by 
exp(�1 � �2 � �1 � �2).

b. The odds ratio that compares a nonsmoker exposed to asbestos to a
nonsmoker unexposed to asbestos, controlling for age, is given by 
exp[�2 � �2(AGE)].

c. The odds ratio that compares a smoker exposed to asbestos to a
smoker unexposed to asbestos, controlling for age, is given by 
exp[�1 � �1(AGE)].

d. The odds ratio that compares a smoker exposed to asbestos to a non-
smoker exposed to asbestos, controlling for age, is given by 
exp[�1 � �1(AGE) � �2(AGE)].

e. None of the above statements is correct.
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1. Given the following logistic model
logit P(X) = � � �CAT � �1AGE � �2CHL,
where CAT is a dichotomous exposure variable and AGE and CHL are
continuous, answer the following questions concerning the odds
ratio that compares exposed to unexposed persons controlling for
the effects of AGE and CHL:
a. Give an expression for the odds ratio for the E, D relationship,

assuming that CAT is coded as (0=low CAT, 1=high CAT).
b. Give an expression for the odds ratio, assuming CAT is coded as 

(0, 5).
c. Give an expression for the odds ratio, assuming that CAT is coded

as (�1, 1).
d. Assuming that the same dataset is used for computing odds ratios

described in parts a–c above, what is the relationship among odds
ratios computed by using the three different coding schemes of
parts a–c?

e. Assuming the same data set as in part d above, what is the rela-
tionship between the �’s that are computed from the three differ-
ent coding schemes?

2. Suppose the model in Question 1 is revised as follows:
logit P(X) = � � �CAT � �1AGE � �2CHL � CAT(�1AGE � �2CHL).

For this revised model, answer the same questions as given in parts
a–e of Question 1.

a.

b.

c.

d.

e.

3. Given the model
logit P(X) = � � �SSU � �1AGE � �2SEX � SSU(�1AGE � �2SEX),
where SSU denotes “social support score” and is an ordinal variable
ranging from 0 to 5, answer the following questions about the
above model:
a. Give an expression for the odds ratio that compares a person who

has SSU=5 to a person who has SSU=0, controlling for AGE and
SEX.
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b. Give an expression for the odds ratio that compares a person who
has SSU=1 to a person who has SSU=0, controlling for AGE and
SEX.

c. Give an expression for the odds ratio that compares a person who
has SSU=2 to a person who has SSU=1, controlling for AGE and
SEX.

d. Assuming that the same data set is used for parts b and c, what is
the relationship between the odds ratios computed in parts b and c?

4. Suppose the variable SSU in Question 3 is partitioned into three cate-
gories denoted as low, medium, and high.
a. Revise the model of Question 3 to give the logit form of a logistic

model that treats SSU as a nominal variable with three categories
(assume no interaction).

b. Using your model of part a, give an expression for the odds ratio
that compares high to low SSU persons, controlling for AGE and
SEX.

c. Revise your model of part a to allow for effect modification of SSU
with AGE and with SEX.

d. Revise your odds ratio of part b to correspond to your model of
part c.

5. Given the following model
logit P(X) = � � �1NS � �2OC � �3AFS � �1AGE � �2RACE,
where NS denotes number of sex partners in one’s lifetime, OC denotes
oral contraceptive use (yes/no), and AFS denotes age at first sexual
intercourse experience, answer the following questions about the
above model:
a. Give an expression for the odds ratio that compares a person who

has NS=5, OC=1, and AFS=26 to a person who has NS=5, OC=1,
and AFS=16, controlling for AGE and RACE.

b. Give an expression for the odds ratio that compares a person who
has NS=200, OC=1, and AFS=26 to a person who has NS=5, OC=1,
and AFS=16, controlling for AGE and RACE.

6. Suppose the model in Question 5 is revised to contain interaction
terms:
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For this revised model, answer the same questions as given in parts a
and b of Question 5.
a.

b.

1. F: the correct odds ratio expression is exp[� � �1(SMK) � �2(HPT)]

2. T

3. F: the correct odds ratio expression is exp(2�)

4. T

5. F: the correct odds ratio expression is exp[60� � 60�(AGE)]

6. T

7. logit P(X) = � � �1R1 � �2R2 � �1AGE � �2SMK � �3RACE � �4SEX,
where R1 and R2 are dummy variables indicating region, e.g., R1 = (1
if urban, 0 if other) and R2 = (1 if suburban, 0 if other).

8. When the above coding for the two dummy variables is used, the odds
ratio that compares urban with rural persons is given by exp(�1).

9. logit P(X) = � � �1R1 � �2R2 � �1AGE � �2SMK � �3RACE �
�4SEX � R1(�11AGE � �12SMK � �13RACE � �14SEX)
� R2(�21AGE � �22SMK � �23RACE � �24SEX).

10. Using the coding of the answer to Question 7, the revised odds ratio
expression that compares urban with rural persons is
exp(�1 � �11AGE � �12SMK � �13RACE � �14SEX).

11. The correct answer is b.
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In this chapter, we describe the general maximum likelihood (ML) proce-
dure, including a discussion of likelihood functions and how they are max-
imized. We also distinguish between two alternative ML methods, called the
unconditional and the conditional approaches, and we give guidelines regard-
ing how the applied user can choose between these methods. Finally, we
provide a brief overview of how to make statistical inferences using ML esti-
mates.

The outline below gives the user a preview of the material to be covered by
the presentation. Together with the objectives, this outline offers the user an
overview of the content of this module. A detailed outline for review pur-
poses follows the presentation.

I. Overview (page 104)
II. Background about maximum likelihood procedure (pages

104–105)
III. Unconditional versus conditional methods (pages 105–109)
IV. The likelihood function and its use in the ML procedure 

(pages 109–115)
V. Overview on statistical inferences for logistic regression 

(pages 115–119)
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Upon completing this chapter, the learner should be able to:

1. State or recognize when to use unconditional versus conditional ML
methods.

2. State or recognize what is a likelihood function.
3. State or recognize that the likelihood functions for unconditional 

versus conditional ML methods are different.
4. State or recognize that unconditional versus conditional ML methods

require different computer programs.
5. State or recognize how an ML procedure works to obtain ML 

estimates of unknown parameters in a logistic model.
6. Given a logistic model, state or describe two alternative procedures

for testing hypotheses about parameters in the model. In particular,
describe each procedure in terms of the information used (log likeli-
hood statistic or Z statistic) and the distribution of the test statistic
under the null hypothesis (chi square or Z).

7. State, recognize, or describe three types of information required for
carrying out statistical inferences involving the logistic model: the
value of the maximized likelihood, the variance–covariance matrix,
and a listing of the estimated coefficients and their standard errors.

8. Given a logistic model, state or recognize how interval estimates are
obtained for parameters of interest; in particular, state that interval
estimates are large sample formulae that make use of variance and
covariances in the variance–covariance matrix.

9. Given a printout of ML estimates for a logistic model, use the printout
information to describe characteristics of the fitted model. In particu-
lar, given such a printout, compute an estimated odds ratio for an
exposure–disease relationship of interest.
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This presentation gives an overview of maximum like-
lihood (ML) methods as used in logistic regression
analysis. We focus on how ML methods work, we dis-
tinguish between two alternative ML approaches, and
we give guidelines regarding which approach to
choose. We also give a brief overview on making statis-
tical inferences using ML techniques.

Maximum likelihood (ML) estimation is one of sev-
eral alternative approaches that statisticians have devel-
oped for estimating the parameters in a mathematical
model. Another well-known and popular approach is
least squares (LS) estimation, which is described in
most introductory statistics courses as a method for
estimating the parameters in a classical straight line or
multiple linear regression model. ML estimation and
least squares estimation are different approaches that
happen to give the same results for classical linear
regression analyses when the dependent variable is
assumed to be normally distributed.

For many years, ML estimation was not widely used
because no computer software programs were avail-
able to carry out the complex calculations required.
However, ML programs have been widely available 
in recent years. Moreover, when compared to least
squares, the ML method can be applied in the estima-
tion of complex nonlinear as well as linear models. In
particular, because the logistic model is a nonlinear
model, ML estimation is the preferred estimation
method for logistic regression.
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Presentation

FOCUS

II. Background About Maximum
Likelihood Procedure

Maximum likelihood (ML) estimation

Least squares (LS) estimation: used in 
classical linear regression

• ML � LS when normality is assumed

ML estimation

• computer programs available
• general applicability
• used for nonlinear models, e.g., the

logistic model

I. Overview

• how ML methods
work

• two alternative ML
approaches

• guidelines for choice
of ML approach

• overview of 
inferences



Until the availability of computer software for ML esti-
mation, the method used to estimate the parameters of
a logistic model was discriminant function analysis.
This method has been shown by statisticians to be
essentially a least squares approach. Restrictive nor-
mality assumptions on the independent variables in
the model are required to make statistical inferences
about the model parameters. In particular, if any of the
independent variables are dichotomous or categorical
in nature, then the discriminant function method tends
to give biased results, usually giving estimated odds
ratios that are too high.

ML estimation, on the other hand, requires no restric-
tions of any kind on the characteristics of the indepen-
dent variables. Thus, when using ML estimation, the
independent variables can be nominal, ordinal, and/or
interval. Consequently, ML estimation is to be pre-
ferred over discriminant function analysis for fitting
the logistic model.

There are actually two alternative ML approaches that
can be used to estimate the parameters in a logistic
model. These are called the unconditional method and
the conditional method. These two methods require
different computer programs. Thus, researchers using
logistic regression modeling must decide which of these
two programs is appropriate for their data. (See Com-
puter Appendix).

Three of the most widely available computer packages
for unconditional ML estimation of the logistic model
are SAS, SPSS, and Stata. Programs for conditional
ML estimation are available in all three packages, but
some are restricted to special cases. (See Computer
Appendix.)

Discriminant function analysis

• previously used for logistic model
• restrictive normality assumptions
• gives biased results—odds ratio too high
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ML estimation

• no restrictions on independent variables
• preferred to discriminant analysis

III. Unconditional Versus
Conditional Methods

Two alternative ML approaches

(1) unconditional method
(2) conditional method
• require different computer programs
• user must choose appropriate program

Computer Programs

SAS
SPSS
Stata



In making the choice between unconditional and con-
ditional ML approaches, the researcher needs to con-
sider the number of parameters in the model relative
to the total number of subjects under study. In general,
unconditional ML estimation is preferred if the num-
ber of parameters in the model is small relative to the
number of subjects. In contrast, conditional ML esti-
mation is preferred if the number of parameters in the
model is large relative to the number of subjects.

Exactly what is small versus what is large is debatable
and has not yet nor may ever be precisely determined
by statisticians. Nevertheless, we can provide some
guidelines for choosing the estimation method.

An example of a situation suitable for an unconditional
ML program is a large cohort study that does not
involve matching, for instance, a study of 700 subjects
who are followed for 10 years to determine coronary
heart disease status, denoted here as CHD. Suppose,
for the analysis of data from such a study, a logistic
model is considered involving an exposure variable E,
five covariables C1 through C5 treated as confounders
in the model, and five interaction terms of the form E
� Ci, where Ci is the ith covariable.

This model contains a total of 12 parameters, one for
each of the variables plus one for the intercept term.
Because the number of parameters here is 12 and the
number of subjects is 700, this is a situation suitable
for using unconditional ML estimation; that is, the
number of parameters is small relative to the number
of subjects.
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The Choice

Unconditional—preferred if number of
parameters is small relative to number
of subjects

Conditional—preferred if number of 
parameters is large relative to number
of subjects

Small vs. large? debatable

Guidelines provided here

EXAMPLE: Unconditional Preferred

Cohort study: 10-year follow-up
n � 700
D � CHD outcome
E � exposure variable

C1, C2, C3, C4, C5 � covariables

E � C1, E � C2, E � C3, E � C4, E � C5
� interaction terms

Number of parameters � 12
(including intercept)

small relative to n � 700



In contrast, consider a case-control study involving
100 matched pairs. Suppose that the outcome variable
is lung cancer and that controls are matched to cases
on age, race, sex, and location. Suppose also that
smoking status, a potential confounder denoted as
SMK, is not matched but is nevertheless determined
for both cases and controls, and that the primary expo-
sure variable of interest, labeled as E, is some dietary
characteristic, such as whether or not a subject has a
high-fiber diet.

Because the study design involves matching, a logistic
model to analyze this data must control for the match-
ing by using dummy variables to reflect the different
matching strata, each of which involves a different
matched pair. Assuming the model has an intercept,
the model will need 99 dummy variables to incorpo-
rate the 100 matched pairs. Besides these variables, the
model contains the exposure variable E, the covariable
SMK, and perhaps even an interaction term of the
form E � SMK.

To obtain the number of parameters in the model, we
must count the one intercept, the coefficients of the 99
dummy variables, the coefficient of E, the coefficient
of SMK, and the coefficient of the product term E �
SMK. The total number of parameters is 103. Because
there are 100 matched pairs in the study, the total
number of subjects is, therefore, 200. This situation
requires conditional ML estimation because the
number of parameters, 103, is quite large relative to
the number of subjects, 200.

A detailed discussion of logistic regression for matched
data is provided in Chapter 8.
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EXAMPLE: Conditional Preferred

Case-control study
100 matched pairs
D � lung cancer

Matching variables:
age, race, sex, location

Other variables:
SMK (a confounder)
E (dietary characteristic)

Case-control study
100 matched pairs

Logistic model for matching:
• uses dummy variables for matching

strata
• 99 dummy variables for 100 strata
• E, SMK, and E � SMK also in

model

Number of parameters �
1 � 99 � 3 �  103
↑ ↑ ↑

dummy
intercept variables E, SMK E � SMK

large relative to 100 matched 
pairs ⇒ n � 200

REFERENCE
Chapter 8: Analysis of Matched Data Using
Logistic Regression



The above examples indicate the following guidelines
regarding the choice between unconditional and con-
ditional ML methods or programs:

• Use conditional ML estimation whenever
matching has been done; this is because the
model will invariably be large due to the number
of dummy variables required to reflect the
matching strata.

• Use unconditional ML estimation if matching
has not been done, provided the total number of
variables in the model is not unduly large relative
to the number of subjects.

Loosely speaking, this means that if the total number of
confounders and the total number of interaction terms
in the model are large, say 10 to 15 confounders and 10
to 15 product terms, the number of parameters may be
getting too large for the unconditional approach to give
accurate answers.

A safe rule is to use conditional ML estimation when-
ever in doubt about which method to use, because, the-
oretically, the conditional approach has been shown
by statisticians to give unbiased results always. In con-
trast, the unconditional approach, when unsuitable, can
give biased results and, in particular, can overestimate
odds ratios of interest.

As a simple example of the need to use conditional ML
estimation for matched data, consider again a pair-
matched case-control study such as described above.
For such a study design, the measure of effect of inter-
est is an odds ratio for the exposure–disease relation-
ship that adjusts for the variables being controlled.

Guidelines
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• use conditional if matching

• use unconditional if no matching and
number of variables not too large

EXAMPLE

Unconditional questionable if
• 10 to 15 confounders
• 10 to 15 product terms

Safe rule:
Use conditional when in doubt
• gives unbiased results always
• unconditional may be biased 

(may overestimate odds ratios)

EXAMPLE: Conditional Required

Pair-matched case-control study
measure of effect: OR



If the only variables being controlled are those involved
in the matching, then the estimate of the odds ratio
obtained by using unconditional ML estimation, which
we denote by ORU, is the square of the estimate obtained
by using conditional ML estimation, which we denote
by ORC. Statisticians have shown that the correct esti-
mate of this OR is given by the conditional method,
whereas a biased estimate is given by the uncondi-
tional method.

Thus, for example, if the conditional ML estimate
yields an estimated odds ratio of 3, then the uncondi-
tional ML method will yield a very large overestimate
of 3 squared, or 9.

More generally, whenever matching is used, even R-to-
1 matching, where R is greater than 1, the uncondi-
tional estimate of the odds ratio that adjusts for covari-
ables will give an overestimate, though not necessarily
the square, of the conditional estimate.

Having now distinguished between the two alternative
ML procedures, we are ready to describe the ML 
procedure in more detail and to give a brief overview of
how statistical inferences are made using ML techniques.

To describe the ML procedure, we introduce the likeli-
hood function, L. This is a function of the unknown
parameters in one’s model and, thus can alternatively
be denoted as L(θ), where θ denotes the collection of
unknown parameters being estimated in the model. In
matrix terminology, the collection θ is referred to as a
vector; its components are the individual parameters
being estimated in the model, denoted here as �1, �2,
up through �q, where q is the number of individual
components.

For example, using the E, V, W logistic model previ-
ously described and shown here again, the unknown
parameters are �, �, the �i’s, and the �j’s. Thus, the vec-
tor of parameters θ has �, �, the �i’s, and the �j’s as its
components.

Presentation: IV. The Likelihood Function and Its Use in the ML Procedure 109

EXAMPLE: (Continued)

Assume: only variables controlled are
matched

Then
ORU � (ORC)2

↑ ↑
biased correct

e.g.,
ORC � 3 ⇒ ORU � (3)2 � 9

ˆ

ˆ ˆ

ˆ
ˆ

ˆ

R-to-1 matching
⇓

unconditional is overestimate of (correct)
conditional estimate

IV. The Likelihood Function and
Its Use in the ML Procedure

E V W

E V E W

,  ,   model:

logit P   

,  ,  ,  , , ,  ,

i i
i 1

p

j j
j 1

p

1 2 1 2

1 2

X( ) = + + +

= ( )
= =
∑ ∑α β γ δ

α β γ γ δ δθ K K

L = L(θ) = likelihood function

θ = (�1, �2, . . . ,�q)



The likelihood function L or L(θ) represents the
joint probability or likelihood of observing the data
that have been collected. The term “joint probability”
means a probability that combines the contributions
of all the subjects in the study.

As a simple example, in a study involving 100 trials of
a new drug, suppose the parameter of interest is the
probability of a successful trial, which is denoted by p.
Suppose also that, out of the n equal to 100 trials stud-
ied, there are x equal to 75 successful trials and n � x
equal to 25 failures. The probability of observing 75
successes out of 100 trials is a joint probability and can
be described by the binomial distribution. That is, the
model is a binomial-based model, which is different
from and much less complex than the logistic model.

The binomial probability expression is shown here.
This is stated as the probability that X, the number of
successes, equals 75 given that there are n equal to 100
trials and that the probability of success on a single
trial is p. Note that the vertical line within the proba-
bility expression means “given.”

This probability is numerically equal to a constant c
times p to the 75th power times 1�p to the 100�75 or
25th power. This expression is the likelihood function
for this example. It gives the probability of observing
the results of the study as a function of the unknown
parameters, in this case the single parameter p.

Once the likelihood function has been determined for
a given set of study data, the method of maximum
likelihood chooses that estimator of the set of
unknown parameters θ which maximizes the likeli-
hood function L(θ). The estimator is denoted as θ and
its components are �1, �2, and so on up through �q.

In the binomial example described above, the maxi-
mum likelihood solution gives that value of the param-
eter p which maximizes the likelihood expression c
times p to the 75th power times 1�p to the 25th power.
The estimated parameter here is denoted as p.

L � L (θ)
� joint probability of observing the data
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EXAMPLE

n � 100 trials
p � probability of success
x � 75 successes
n � x � 25 failures

Pr (75 successes out of 100 trials)
has binomial distribution

Pr (X � 75 ⎥ n � 100, p)
↑

given

Pr (X � 75 ⎥ n � 100, p)

� c � p75 � (1 � p)100 � 75

� L(p)

ML method maximizes the likelihood func-
tion L (θ)

ˆ ˆ ˆ ˆθθ = ( ) =θ θ θ1 2, , , ML estimatorK q

EXAMPLE (Binomial)

ML solution:
p maximizes
L(p) � c � p75 � (1 � p)25
ˆ

ˆ
ˆ ˆ ˆ

ˆ



The standard approach for maximizing an expression
like the likelihood function for the binomial example
here is to use calculus by setting the derivative dL/dp
equal to 0 and solving for the unknown parameter or
parameters.

For the binomial example, when the derivative dL/dp is
set equal to 0, the ML solution obtained is p equal to
0.75. Thus, the value 0.75 is the “most likely” value for p
in the sense that it maximizes the likelihood function L.

If we substitute into the expression for L a value for p
exceeding 0.75, this will yield a smaller value for L than
obtained when substituting p equal to 0.75. This is why
0.75 is called the ML estimator. For example, when p
equals 1, the value for L using the binomial formula is
0, which is as small as L can get and is, therefore, less
than the value of L when p equals the ML value of 0.75.

Note that for the binomial example, the ML value p
equal to 0.75 is simply the sample proportion of the
100 trials which are successful. In other words, for a
binomial model, the sample proportion always turns
out to be the ML estimator of the parameter p. So for
this model, it is not necessary to work through the cal-
culus to derive this estimate. However, for models
more complicated than the binomial, for example, the
logistic model, calculus computations involving deriv-
atives are required and are quite complex.

In general, maximizing the likelihood function L(θ) is
equivalent to maximizing the natural log of L(θ), which
is computationally easier. The components of θ are
then found as solutions of equations of partial deriva-
tives as shown here. Each equation is stated as the par-
tial derivative of the log of the likelihood function with
respect to �j equals 0, where �j is the jth individual
parameter.

If there are q parameters in total, then the above set of
equations is a set of q equations in q unknowns. These
equations must then be solved iteratively, which is no
problem with the right computer program.
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EXAMPLE (continued)

Maximum value obtained by solving

for p:

dL
dp

= 0

p � 0.75     “most likely”

p p L p L p

p L c

L

 �

�

ˆ = ⇒ ( ) =( )

= ⇒ ( ) = × × −( )
= ( )

0.75 0.75

e.g.,

1 1 1 1 1

0 0.75

75 25

maximum
↓

binomial formula

p̂ = =0.75
75

100
, a sample proportion

Binomial model

 is ML estimator⇒ =p̂
X
n

More complicated models ⇒ complex
calculations

Maximizing L(θ) is equivalent to maximiz-
ing ln L(θ)

q equations in q unknowns require iterative
solution by computer

Solve:  
ln

0,  1,  2, ,
∂

∂θ
L

j q
j

θθ( )
= = K

ˆ
ˆ

ˆ



As described earlier, if the model is logistic, there are
two alternative types of computer programs to choose
from, an unconditional versus a conditional program.
These programs use different likelihood functions,
namely, LU for the unconditional method and LC for
the conditional method.

The formulae for the likelihood functions for both the
unconditional and conditional ML approaches are
quite complex mathematically. The applied user of
logistic regression, however, never has to see the for-
mulae for L in practice because they are built into their
respective computer programs. All the user has to do is
learn how to input the data and to state the form of the
logistic model being fit. Then the program does the
heavy calculations of forming the likelihood function
internally and maximizing this function to obtain the
ML solutions.

Although we do not want to emphasize the particular
likelihood formulae for the unconditional versus con-
ditional methods, we do want to describe how these
formulae are different. Thus, we briefly show these for-
mulae for this purpose.

The unconditional formula is given first, and directly
describes the joint probability of the study data as the
product of the joint probability for the cases (dis-
eased persons) and the joint probability for the non-
cases (nondiseased persons). These two products are
indicated by the large � signs in the formula. We can
use these products here by assuming that we have
independent observations on all subjects. The proba-
bility of obtaining the data for the lth case is given by
P(Xl), where P(X) is the logistic model formula for
individual X. The probability of the data for the lth
noncase is given by 1�P(Xl).

When the logistic model formula involving the param-
eters is substituted into the likelihood expression
above, the formula shown here is obtained after a cer-
tain amount of algebra is done. Note that this expres-
sion for the likelihood function L is a function of the
unknown parameters � and the �i.

Two alternatives:
unconditional program (LU)

vs.
conditional program (LC)

Formula for L is built into 
computer programs

User inputs data and
computer does calculations

L formulae are different for unconditional
and conditional methods

The unconditional formula:
(a joint probability)
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likelihoods
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The conditional likelihood formula (LC) reflects the
probability of the observed data configuration relative
to the probability of all possible configurations of
the given data. To understand this, we describe the
observed data configuration as a collection of m1 cases
and n�m1 noncases,. We denote the cases by the X
vectors X1, X2, and so on through Xm1

and the non-
cases by Xm1�1

, Xm1�2
, through Xn.

The above configuration assumes that we have re-
arranged the observed data so that the m1 cases are
listed first and are then followed in listing by the n�m1
noncases. Using this configuration, the conditional
likelihood function gives the probability that the first
m1 of the observations actually go with the cases, given
all possible configurations of the above n observations
into a set of m1 cases and a set of n�m1 noncases.

The term configuration here refers to one of the possi-
ble ways that the observed set of X vectors can be parti-
tioned into m1 cases and n�m1 noncases. In example 1
here, for instance, the last m1 X vectors are the cases
and the remaining X’s are noncases. In example 2, how-
ever, the m1 cases are in the middle of the listing of all
X vectors.

The number of possible configurations is given by the
number of combinations of n things taken m1 at a
time, which is denoted mathematically by the expres-
sion shown here, where the C in the expression denotes
combinations.

The formula for the conditional likelihood is then given
by the expression shown here. The numerator is exactly
the same as the likelihood for the unconditional
method. The denominator is what makes the condi-
tional likelihood different from the unconditional like-
lihood. Basically, the denominator sums the joint
probabilities for all possible configurations of the m
observations into m1 cases and n�m1 noncases. Each
configuration is indicated by the u in the LC formula.

m1 cases: (X1, X2, …, Xm1
)

n�m1 noncases: (Xm1�1
, Xm1�2

, …, Xn)

LC � Pr(first m1 X’s are cases ⎥ all possible

configurations of X’s)
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The conditional formula :

Pr observed data

Pr all possible configurations
LC =

( )
( )

EXAMPLE: Configurations

(1) Last m1 X’s are cases
(X1, X2, …, Xn)

cases
(2) Cases of X’s are in middle of listing

(X1, X2, …, Xn)
cases

Possible configurations
� combinations of n things taken m1 at a

time

� C
m
n

1

L

L

C

l
l

m

l
l m

n

ul ul
l m
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When the logistic model formula involving the param-
eters is substituted into the conditional likelihood expres-
sion above, the resulting formula shown here is obtained.
This formula is not the same as the unconditional 
formula shown earlier. Moreover, in the conditional for-
mula, the intercept parameter � has dropped out of the
likelihood.

The removal of the intercept � from the conditional
likelihood is important because it means that when a
conditional ML program is used, estimates are obtained
only for the �i coefficients in the model and not for �.
Because the usual focus of a logistic regression analy-
sis is to estimate an odds ratio, which involves the �’s
and not �, we usually do not care about estimating �
and, therefore, consider � to be a nuisance parameter.

In particular, if the data come from a case-control
study, we cannot estimate � because we cannot esti-
mate risk, and the conditional likelihood function does
not allow us to obtain any such estimate.

Regarding likelihood functions, then, we have shown
that the unconditional and conditional likelihood func-
tions involve different formulae. The unconditional for-
mula has the theoretical advantage in that it is developed
directly as a joint probability of the observed data. The
conditional formula has the advantage that it does not
require estimating nuisance parameters like �.

If the data are stratified, as, for example, by matching,
it can be shown that there are as many nuisance param-
eters as there are matched strata. Thus, for example, if
there are 100 matched pairs, then 100 nuisance param-
eters do not have to be estimated when using condi-
tional estimation, whereas these 100 parameters would
be unnecessarily estimated when using unconditional
estimation.
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1

1

β

β

Note: � drops out of LC
Conditional program:
• estimate �’s
• does not estimate � (nuisance

parameter)

Note: OR involves only �’s

Case-control study: cannot estimate �

LU ≠ LC

direct joint does not require 
probability estimating nuisance

parameters

Stratified data, e.g., matching,

many nuisance parameters

100 nuisance parameters

are not estimated unnecessarily 
using LC estimated using LU

⇒



If we consider the other parameters in the model for
matched data, that is, the �’s, the unconditional likeli-
hood approach gives biased estimates of the �’s,
whereas the conditional approach gives unbiased esti-
mates of the �’s.

We have completed our description of the ML method
in general, distinguished between unconditional and
conditional approaches, and distinguished between
their corresponding likelihood functions. We now pro-
vide a brief overview of how statistical inferences are
carried out for the logistic model. A detailed discussion
of statistical inferences is given in the next chapter.

Once the ML estimates have been obtained, the next
step is to use these estimates to make statistical infer-
ences concerning the exposure–disease relationships
under study. This step includes testing hypotheses and
obtaining confidence intervals for parameters in the
model.

Inference-making can be accomplished through the
use of two quantities that are part of the output pro-
vided by standard ML estimation programs.

The first of these quantities is the maximized likeli-
hood value, which is simply the numerical value of the
likelihood function L when the ML estimates (θ) are
substituted for their corresponding parameter values
(θ). This value is called L(θ) in our earlier notation.

The second quantity is the estimated variance–
covariance matrix. This matrix, V of θ, has as its diag-
onal the estimated variances of each of the ML esti-
mates. The values off the diagonal are the covariances
of pairs of ML estimates. The reader may recall that
the covariance between two estimates is the correla-
tion times the standard error of each estimate.

Matching:

Unconditional ⇒ biased estimates of �’s
Conditional ⇒ unbiased estimates of �’s
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V. Overview on Statistical
Inferences for Logistic
Regression

Chapter 5: Statistical Inferences Using
Maximum Likelihood Techniques

Statistical inferences involve
• testing hypotheses
• obtaining confidence intervals

Quantities required from computer output:

(1) Maximized likelihood value L(θ)
(2) Estimated variance–covariance matrix

Note: cov (�1, �2) = r12s1s2

ˆ

ˆ ( ˆ )V θθ =
variances on

diagonal

covariances off
the diagonal

ˆ ˆ ˆ

ˆ

ˆ

ˆ ˆ



The variance–covariance matrix is important because
the information contained in it is used in the computa-
tions required for hypothesis testing and confidence
interval estimation.

In addition to the maximized likelihood value and the
variance–covariance matrix, other information is also
provided as part of the output. This information typi-
cally includes, as shown here, a listing of each vari-
able followed by its ML estimate and standard
error. This information provides another way to carry
out hypothesis testing and interval estimation. More-
over, this listing gives the primary information used
for calculating odds ratio estimates and predicted
risks. The latter can only be done, however, if the study
has a follow-up design.

An example of ML computer output giving the above
information is provided here. This output considers
study data on a cohort of 609 white males in Evans
County, Georgia, who were followed for 9 years to
determine coronary heart disease (CHD) status. The
output considers a logistic model involving eight vari-
ables, which are denoted as CAT (catecholamine level),
AGE, CHL (cholesterol level), ECG (electrocardiogram
abnormality status), SMK (smoking status), HPT
(hypertension status), CC, and CH. The latter two vari-
ables are product terms of the form CC=CAT � CHL
and CH=CAT � HPT.

The exposure variable of interest here is the variable
CAT, and the five covariables of interest, that is, the C’s
are AGE, CHL, ECG, SMK, and HPT. Using our E, V,
W model framework described in the review section,
we have E equals CAT, the five covariables equal to the
V’s, and two W variables, namely, CHL and HPT.

The output information includes �2 times the natural
log of the maximized likelihood value, which is 347.23,
and a listing of each variable followed by its ML esti-
mate and standard error. We will show the variance–
covariance matrix shortly.

Importance of V (θ):

inferences require accounting for 
variability and covariability

(3) Variable listing
Variable ML Coefficient S. E.
Intercept � s�

X1 �1 s�1. .
. . .
. . .
Xk �k s�k
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ˆ ˆ

ˆ
ˆ

ˆ ˆ

ˆ
ˆ

EXAMPLE

Cohort study—Evans County, GA

n = 609 white males
9-year follow-up 
D = CHD status

Output: �2 ln L = 347.23

Variable ML Coefficient S. E.
Intercept �4.0497 1.2550

CAT �12.6894 3.1047

AGE 0.0350 0.0161

CHL �0.0055 0.0042

ECG 0.3671 0.3278

SMK 0.7732 0.3273

HPT 1.0466 0.3316

CC 0.0692 0.3316

CH �2.3318 0.7427

CC = CAT � CHL and CH = CAT � HPT

W’s

ˆ

}

V’s



We now consider how to use the information provided
to obtain an estimated odds ratio for the fitted model.
Because this model contains the product terms CC
equal to CAT � CHL, and CH equal to CAT � HPT, the
estimated odds ratio for the effect of CAT must con-
sider the coefficients of these terms as well as the coef-
ficient of CAT.

The formula for this estimated odds ratio is given by 
the exponential of the quantity plus �1 times CHL plus
�2 times HPT, where � equals �12.6894 is the coefficient
of CAT, �1 equals 0.0692 is the coefficient of the interac-
tion term CC and �2 equals �2.3318 is the coefficient of
the interaction term CH.

Plugging the estimated coefficients into the odds ratio
formula yields the expression: e to the quantity �12.6894
plus 0.0692 times CHL plus �2.3318 times HPT.

To obtain a numerical value from this expression, it is
necessary to specify a value for CHL and a value for
HPT. Different values for CHL and HPT will, therefore,
yield different odds ratio values, as should be expected
because the model contains interaction terms.

The table shown here illustrates different odds ratio
estimates that can result from specifying different val-
ues of the effect modifiers. In this table, the values of
CHL are 200, 220, and 240; the values of HPT are 0 and
1, where 1 denotes a person who has hypertension. The
cells within the table give the estimated odds ratios
computed from the above expression for the odds ratio
for different combinations of CHL and HPT.

For example, when CHL equals 200 and HPT equals 0,
the estimated odds ratio is given by 3.16; when CHL
equals 220 and HPT equals 1, the estimated odds ratio
is 1.22. Note that each of the estimated odds ratios in
this table describes the association between CAT and
CHD adjusted for the five covariables AGE, CHL, ECG,
SMK, and HPT because each of the covariables is con-
tained in the model as V variables.

β̂
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EXAMPLE (continued)

OR considers coefficients of CAT, CC,
and CH

OR = exp(� � �1CHL � �2HPT)

where

� = �12.6894
�1 = 0.0692
�2 = �2.3318

OR = exp[�12.6894 � 0.0692CHL
� (�2.3318)HPT]

Must specify:

CHL and HPT

effect modifiers

Note: OR different for different values
specified for CHL and HPT

OR = exp(�12.6894 �
0.0692CHL�2.3318HPT)

HPT

0 1

200 3.16 0.31

220 12.61 1.22

240 50.33 4.89

CHL = 200, HPT = 0: OR = 3.16

CHL = 220, HPT = 1: OR = 1.22

OR adjusts for AGE, CHL, ECG, SMK,
and HPT (the V variables)

ˆ ˆ ˆ ˆ

ˆ
ˆ
ˆ

ˆ

ˆ

CHL

ˆ

ˆ

ˆ

ˆ
ˆ

ˆ
ˆ ˆ

ˆ
ˆ



The estimated model coefficients and the correspond-
ing odds ratio estimates that we have just described are
point estimates of unknown population parameters.
Such point estimates have a certain amount of vari-
ability associated with them, as illustrated, for exam-
ple, by the standard errors of each estimated coeffi-
cient provided in the output listing. We consider the
variability of our estimates when we make statistical
inferences about parameters of interest.

We can use two kinds of inference-making procedures.
One is testing hypotheses about certain parameters;
the other is deriving interval estimates of certain param-
eters.

As an example of a test, we may wish to test the null
hypothesis that an odds ratio is equal to the null value.

Or, as another example, we may wish to test for evi-
dence of significant interaction, for instance, whether
one or more of the coefficients of the product terms in
the model are significantly nonzero.

As an example of an interval estimate, we may wish to
obtain a 95% confidence interval for the adjusted odds
ratio for the effect of CAT on CHD, controlling for the
five V variables and the two W variables. Because this
model contains interaction terms, we need to specify
the values of the W’s to obtain numerical values for the
confidence limits. For instance, we may want the 95%
confidence interval when CHL equals 220 and HPT
equals 1.

When using ML estimation, we can carry out hypothe-
sis testing by using one of two procedures, the likeli-
hood ratio test and the Wald test. The likelihood
ratio test is a chi-square test which makes use of maxi-
mized likelihood values such as shown in the output.
The Wald test is a Z test; that is, the test statistic is
approximately standard normal. The Wald test makes
use of the standard errors shown in the listing of vari-
ables and associated output information. Each of these
procedures is described in detail in the next chapter.

OR’s = point estimators

Variability of OR considered for 
statistical inferences

Two types of inferences:
(1) testing hypotheses
(2) interval estimation
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ˆ

ˆ

EXAMPLES

(1) Test for H0: OR = 1

(2) Test for significant interaction, 
e.g., �1 ≠ 0?

(3) Interval estimate: 95% confidence
interval for ORCAT, CHD controlling
for 5 V’s and 2 W’s

Interaction: must specify W’s
e.g., 95% confidence interval when 
CAT = 220 and HPT = 1

Two testing procedures:
(1) Likelihood ratio test: a chi-square 

statistic using �2 ln L.
(2) Wald test: a Z test using standard

errors listed with each variable.

ˆ



Both testing procedures should give approximately the
same answer in large samples but may give differ-
ent results in small or moderate samples. In the lat-
ter case, statisticians prefer the likelihood ratio test to
the Wald test.

Confidence intervals are carried out by using large
sample formulae that make use of the information in
the variance–covariance matrix, which includes the
variances of estimated coefficients together with the
covariances of pairs of estimated coefficients.

An example of the estimated variance–covariance matrix
is given here. Note, for example, that the variance of
the coefficient of the CAT variable is 9.6389, the vari-
ance for the CC variable is 0.0002, and the covariance
of the coefficients of CAT and CC is �0.0437.

If the model being fit contains no interaction terms
and if the exposure variable is a (0, 1) variable, then
only a variance estimate is required for computing a
confidence interval. If the model contains interaction
terms, then both variance and covariance estimates
are required; in this latter case, the computations
required are much more complex than when there is
no interaction.

We suggest that the reader review the material covered
here by reading the summary outline that follows.
Then you may work the practice exercises and test.

In the next chapter, we give a detailed description of
how to carry out both testing hypotheses and confi-
dence interval estimation for the logistic model.

Large samples: both procedures give approx-
imately the same results

Small or moderate samples: different results
possible; likelihood ratio test preferred
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Confidence intervals
• use large sample formulae
• use variance–covariance matrix

EXAMPLE V(θ)
Intercept CAT AGE . . . CC CH

Intercept 1.5750 �0.6629 �0.0136 0.0034 0.0548

CAT 9.6389 �0.0021 �0.0437 �0.0049

AGE 0.0003 0.0000 �0.0010

. . .

. . .

. . .
CC 0.0002 �0.0016

CH 0.5516

No interaction: variance only

Interaction: variances and covariances

SUMMARY
Chapters up to this point:

1. Introduction
2. Important Special Cases
3. Computing the Odds Ratio

✓ 4. ML Techniques: An Overview

This presentation is now complete. In summary, we
have described how ML estimation works, have dis-
tinguished between unconditional and conditional
methods and their corresponding likelihood func-
tions, and have given an overview of how to make sta-
tistical inferences using ML estimates.

5. Statistical Inferences Using ML
Techniques

ˆ ˆ



I. Overview (page 104)
Focus
• how ML methods work
• two alternative ML approaches
• guidelines for choice of ML approach
• overview of statistical inferences

II. Background about maximum likelihood procedure
(pages 104–105)
A. Alternative approaches to estimation: least squares (LS), maxi-

mum likelihood (ML), and discriminant function analysis.
B. ML is now the preferred method—computer programs now

available; general applicability of ML method to many different
types of models.

III. Unconditional versus conditional methods (pages 105–109)
A. Require different computer programs; user must choose appro-

priate program.
B. Unconditional preferred if number of parameters small relative

to number of subjects, whereas conditional preferred if number
of parameters large relative to number of subjects.

C. Guidelines: use conditional if matching; use unconditional if no
matching and number of variables not too large; when in doubt,
use conditional—always unbiased.

IV. The likelihood function and its use in the ML procedure
(pages 109–115)
A. L = L(θ) = likelihood function; gives joint probability of observing

the data as a function of the set of unknown parameters given by
θ = (�1, �2, . . ., �q).

B. ML method maximizes the likelihood function L(θ).
C. ML solutions solve a system of q equations in q unknowns; this

system requires an iterative solution by computer.
D. Two alternative likelihood functions for logistic regression:

unconditional (LU) and conditional (LC); formulae are built into
unconditional and conditional programs.

E. User inputs data and computer does calculations.
F. Conditional likelihood reflects the probability of observed data

configuration relative to the probability of all possible configura-
tions of the data.

G. Conditional program estimates �’s but not � (nuisance parameter).
H. Matched data: unconditional gives biased estimates, whereas

conditional gives unbiased estimates.
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V. Overview on statistical inferences for logistic regression
(pages 115–119)
A. Two types of inferences: testing hypotheses and confidence inter-

val estimation.
B. Three items obtained from computer output for inferences:

i. Maximized likelihood value L(θ);
ii. Estimated variance–covariance matrix V(θ): variances on

diagonal and covariances on the off-diagonal;
iii. Variable listing with ML estimates and standard errors.

C. Two testing procedures:
i. Likelihood ratio test: a chi-square statistic using �2 ln L.

ii. Wald test: a Z test using standard errors listed with each
variable.

D. Both testing procedures give approximately same results with
large samples; with small samples, different results are possible;
likelihood ratio test is preferred.

E. Confidence intervals: use large sample formulae that involve
variances and covariances from variance–covariance matrix.

True or False (Circle T or F)
T F 1. When estimating the parameters of the logistic model, least

squares estimation is the preferred method of estimation.
T F 2. Two alternative maximum likelihood approaches are called

unconditional and conditional methods of estimation.
T F 3. The conditional approach is preferred if the number of parame-

ters in one’s model is small relative to the number of subjects in
one’s data set.

T F 4. Conditional ML estimation should be used to estimate logistic
model parameters if matching has been carried out in one’s
study.

T F 5. Unconditional ML estimation gives unbiased results always.
T F 6. The likelihood function L(θ) represents the joint probability of

observing the data that has been collected for analysis.
T F 7. The maximum likelihood method maximizes the function ln

L(θ).
T F 8. The likelihood function formulae for both the unconditional

and conditional approaches are the same.
T F 9. The maximized likelihood value L(θ) is used for confidence

interval estimation of parameters in the logistic model.
T F 10. The likelihood ratio test is the preferred method for testing

hypotheses about parameters in the logistic model.
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True or False (Circle T or F)
T F 1. Maximum likelihood estimation is preferred to least squares

estimation for estimating the parameters of the logistic and
other nonlinear models.

T F 2. If discriminant function analysis is used to estimate logistic
model parameters, biased estimates can be obtained that result
in estimated odds ratios that are too high.

T F 3. In a case-control study involving 1200 subjects, a logistic model
involving 1 exposure variable, 3 potential confounders, and 3
potential effect modifiers is to be estimated. Assuming no
matching has been done, the preferred method of estimation for
this model is conditional ML estimation.

T F 4. Until recently, the most widely available computer packages for
fitting the logistic model have used unconditional procedures.

T F 5. In a matched case-control study involving 50 cases and 2-to-1
matching, a logistic model used to analyze the data will contain
a small number of parameters relative to the total number of
subjects studied.

T F 6. If a likelihood function for a logistic model contains 10 parame-
ters, then the ML solution solves a system of 10 equations in 10
unknowns by using an iterative procedure.

T F 7. The conditional likelihood function reflects the probability of
the observed data configuration relative to the probability of all
possible configurations of the data.

T F 8. The nuisance parameter � is not estimated using an uncondi-
tional ML program.

T F 9. The likelihood ratio test is a chi-square test that uses the maxi-
mized likelihood value L in its computation.

T F 10. The Wald test and the likelihood ratio test of the same hypothe-
sis give approximately the same results in large samples.

T F 11. The variance–covariance matrix printed out for a fitted logistic
model gives the variances of each variable in the model and the
covariances of each pair of variables in the model.

T F 12. Confidence intervals for odds ratio estimates obtained from the
fit of a logistic model use large sample formulae that involve
variances and possibly covariances from the variance–covari-
ance matrix.
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The printout given below comes from a matched case-control study of 313
women in Sydney, Australia (Brock et al., 1988), to assess the etiologic role
of sexual behaviors and dietary factors on the development of cervical can-
cer. Matching was done on age and socioeconomic status. The outcome
variable is cervical cancer status (yes/no), and the independent variables
considered here (all coded as 1, 0) are vitamin C intake (VITC, high/low), the
number of lifetime sexual partners (NSEX, high/low), age at first inter-
course (SEXAGE, old/young), oral contraceptive pill use (PILLM ever/
never), and smoking status (CSMOK, ever/never).

Variable Coefficient S.E. OR P 95% Confidence Interval

VITC �0.24411 0.14254 0.7834 .086 0.5924 1.0359
NSEX 0.71902 0.16848 2.0524 .000 1.4752 2.8555
SEXAGE �0.19914 0.25203 0.8194 .426 0.5017 1.3383
PILLM 0.39447 0.19004 1.4836 .037 1.0222 2.1532
CSMOK 1.59663 0.36180 4.9364 .000 2.4290 10.0318

MAX LOG LIKELIHOOD = �73.5088

Using the above printout, answer the following questions:
13. What method of estimation should have been used to fit the logistic

model for this data set? Explain.
14. Why don’t the variables age and socioeconomic status appear in the

printout?
15. Describe how to compute the odds ratio for the effect of pill use in

terms of an estimated regression coefficient in the model. Interpret
the meaning of this odds ratio.

16. What odds ratio is described by the value e to �0.24411? Interpret
this odds ratio.

17. State two alternative ways to describe the null hypothesis appropriate
for testing whether the odds ratio described in Question 16 is signifi-
cant.

18. What is the 95% confidence interval for the odds ratio described in
Question 16, and what parameter is being estimated by this interval?

19. The P-values given in the table correspond to Wald test statistics for
each variable adjusted for the others in the model. The appropriate Z
statistic is computed by dividing the estimated coefficient by its stan-
dard error. What is the Z statistic corresponding to the P-value of .086
for the variable VITC?

20. For what purpose is the quantity denoted as MAX LOG LIKELIHOOD
used?

Test 123



1. F: ML estimation is preferred
2. T
3. F: conditional is preferred if number of parameters is large
4. T
5. F: conditional gives unbiased results
6. T
7. T
8. F: LU and LC are different
9. F: The variance–covariance matrix is used for confidence interval

estimation
10. T
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We begin our discussion of statistical inference by describing the computer
information required for making inferences about the logistic model. We
then introduce examples of three logistic models that we use to describe
hypothesis testing and confidence interval estimation procedures. We con-
sider models with no interaction terms first, and then we consider how to
modify procedures when there is interaction. Two types of testing proce-
dures are given, namely, the likelihood ratio test and the Wald test.
Confidence interval formulae are provided that are based on large sample
normality assumptions. A final review of all inference procedures is
described by way of a numerical example.

The outline below gives the user a preview of the material to be covered by
the presentation. A detailed outline for review purposes follows the presen-
tation.

I. Overview (page 128)
II. Information for making statistical inferences (pages 128–129)

III. Models for inference-making (pages 129–130)
IV. The likelihood ratio test (pages 130–134)
V. The Wald test (pages 134–136)

VI. Interval estimation: one coefficient (pages 136–138)
VII. Interval estimation: interaction (pages 138–142)

VIII. Numerical example (pages 142–149)
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Upon completion of this chapter, the learner should be able to:

1. State the null hypothesis for testing the significance of a collection of
one or more variables in terms of regression coefficients of a given
logistic model.

2. Describe how to carry out a likelihood ratio test for the significance
of one or more variables in a given logistic model.

3. Use computer information for a fitted logistic model to carry out a
likelihood ratio test for the significance of one or more variables in
the model.

4. Describe how to carry out a Wald test for the significance of a single
variable in a given logistic model.

5. Use computer information for a fitted logistic model to carry out a
Wald test for the significance of a single variable in the model.

6. Describe how to compute a 95% confidence interval for an odds
ratio parameter that can be estimated from a given logistic model
when
a. the model contains no interaction terms;
b. the model contains interaction terms.

7. Use computer information for a fitted logistic model to compute a
95% confidence interval for an odds ratio expression estimated from
the model when
a. the model contains no interaction terms;
b. the model contains interaction terms.
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In the previous chapter, we described how ML meth-
ods work in general and we distinguished between two
alternative approaches to estimation—the uncondi-
tional and the conditional approach.

In this chapter, we describe how statistical inferences
are made using ML techniques in logistic regression
analyses. We focus on procedures for testing hypothe-
ses and computing confidence intervals about logistic
model parameters and odds ratios derived from such
parameters.

Once ML estimates have been obtained, these esti-
mates can be used to make statistical inferences con-
cerning the exposure–disease relationships under study.
Three quantities are required from the output pro-
vided by standard ML estimation programs.

The first of these quantities is the maximized likeli-
hood value, which is the numerical value of the likeli-
hood function L when the ML estimates are substi-
tuted for their corresponding parameter values; this
value is called L of θ in our earlier notation.

The second quantity is the estimated variance–covari-
ance matrix, which we denote as V of θ.

The estimated variance-covariance matrix has on its
diagonal the estimated variances of each of the ML
estimates. The values off the diagonal are the covari-
ances of pairs of ML estimates.

(1) Maximized likelihood value:
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Presentation

• testing
hypotheses

• computing
confidence
intervals

FOCUS

II. Information for Making
Statistical Inferences

Quantities required from output:

L( )θ̂θ

(2) Estimated variance–covariance matrix:
ˆ ˆV ( )θθ

covariances off
the diagonal

ˆ ( ˆ )V θθ =
variances on

diagonal

I. Overview
Previous chapter:
• how ML methods work
• unconditional vs. conditional

approaches

ˆ
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The reader may recall that the covariance between two
estimates is the correlation times the standard errors
of each estimate.

The variance–covariance matrix is important because
hypothesis testing and confidence interval estimation
require variances and sometimes covariances for com-
putation.

In addition to the maximized likelihood value and the
variance–covariance matrix, other information is also
provided as part of the output. This typically includes,
as shown here, a listing of each variable followed by
its ML estimate and standard error. This informa-
tion provides another way of carrying out hypothesis
testing and confidence interval estimation, as we will
describe shortly. Moreover, this listing gives the pri-
mary information used for calculating odds ratio esti-
mates and predicted risks. The latter can only be done,
however, provided the study has a follow-up type of
design.

To illustrate how statistical inferences are made using
the above information, we consider the following three
models, each written in logit form. Model 1 involves
two variables X1 and X2. Model 2 contains these same
two variables and a third variable X3. Model 3 contains
the same three X’s as in model 2 plus two additional
variables, which are the product terms X1X3 and X2X3.

Let L1, L2, and L3 denote the maximized likelihood val-
ues based on fitting models 1, 2, and 3, respectively.
Note that the fitting may be done either by uncondi-
tional or conditional methods, depending on which
method is more appropriate for the model and data set
being considered.

Because the more parameters a model has, the better it
fits the data, it follows that L1 must be less than or
equal to L2, which, in turn, must be less than or equal
to L3.

Importance of

Inferences require variances and 
covariances

(3) Variable listing:
ML

Variable Coefficient S.E.
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Model 1: logit P

Model 2 : logit P

Model 3 : logit P

1 1 1 2 2

2 1 1 2 2 3 3

3 1 1 2 2 3 3

4 1 3 5 2 3

X

X

X

( ) = + +

( ) = + + +

( ) = + + +

+ +

α β β

α β β β

α β β β

β β

X X

X X X

X X X

X X X X

ˆ ˆ ˆ ˆL L L L1 2 3,  ,   are ’s for models 1– 3

ˆ ˆ ˆL L L1 2 3≤ ≤

ˆ

ˆ
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This relationship among the Ls is similar to the prop-
erty in classical multiple linear regression analyses
that the more parameters a model has, the higher is
the R square statistic for the model. In other words,
the maximized likelihood value L is similar to R
square, in that the higher the L, the better the fit.

It follows from algebra that if L1 is less than or equal to
L2, which is less than L3, then the same inequality rela-
tionship holds for the natural logarithms of these Ls.

However, if we multiply each log of L by �2, then the
inequalities switch around so that �2 ln L3 is less than
or equal to �2 ln L2, which is less than �2 ln L1.

The statistic �2 ln L1 is called the log likelihood sta-
tistic for model 1, and similarly, the other two statis-
tics are the log likelihood statistics for their respective
models. These statistics are important because they
can be used to test hypotheses about parameters in the
model using what is called a likelihood ratio test,
which we now describe.

Statisticians have shown that the difference between
log likelihood statistics for two models, one of which is
a special case of the other, has an approximate chi-
square distribution in large samples. Such a test statis-
tic is called a likelihood ratio or LR statistic. The
degrees of freedom (df) for this chi-square test are
equal to the difference between the number of param-
eters in the two models.

Note that one model is considered a special case of
another if one model contains a subset of the parame-
ters in the other model. For example, Model 1 above is
a special case of Model 2; also, Model 2 is a special case
of Model 3.

130 5. Statistical Inferences Using Maximum Likelihood Techniques

L̂ R similar to 2

ln ln ln 1 2 3
ˆ ˆ ˆL L L≤ ≤

− ≤ − ≤ −2 ln 2 ln 2 ln 3 2 1
ˆ ˆ ˆL L L

− =2 ln log likelihood statisticL̂

used in likelihood ratio (LR) test

Note: special case � subset

Model 1 special case of Model 2
Model 2 special case of Model 3

IV. The Likelihood Ratio Test

− − −( ) =2 ln 2 ln LR 

is approximate chi square

1 2L L

df � difference in number of parameters
(degrees of freedom)

Model 1: logit P

Model 2 : logit P

1 1 1 2 2

2 1 1 2 2 3 3

X

X

( ) = + +

( ) = + + +

α β β

α β β β

X X

X X X

ˆ

ˆ
ˆ

ˆ
ˆ ˆ

ˆ

ˆ
ˆ

ˆ ˆ

ˆ



In general, the likelihood ratio statistic, like an F sta-
tistic in classical multiple linear regression, requires
the identification of two models to be compared, one
of which is a special case of the other. The larger model
is sometimes called the full model and the smaller
model is sometimes called the reduced model; that is,
the reduced model is obtained by setting certain param-
eters in the full model equal to zero.

The set of parameters in the full model that is set
equal to zero specify the null hypothesis being tested.
Correspondingly, the degrees of freedom for the likeli-
hood ratio test are equal to the number of parameters
in the larger model that must be set equal to zero to
obtain the smaller model.

As an example of a likelihood ratio test, let us now
compare Model 1 with Model 2. Because Model 2 is the
larger model, we can refer to Model 2 as the full model
and to model 1 as the reduced model. The additional
parameter in the full model that is not part of the
reduced model is �3, the coefficient of the variable X3.
Thus, the null hypothesis that compares Models 1 and
2 is stated as �3 equal to 0. This is similar to the null
hypothesis for a partial F test in classical multiple lin-
ear regression analysis.

Now consider Model 2, and suppose that the variable
X3 is a (0, 1) exposure variable E and that the variables
X1 and X2 are confounders. Then the odds ratio for the
exposure–disease relationship that adjusts for the con-
founders is given by e to �3.

Thus, in this case, testing the null hypothesis that �3
equals 0 is equivalent to testing the null hypothesis
that the adjusted odds ratio for the effect of exposure is
equal to e to 0, or 1.

To test this null hypothesis, the corresponding likeli-
hood ratio statistic is given by the difference �2 ln L1
minus �2 ln L2.

LR statistic (like F statistic) compares two
models:
full model � larger model
reduced model � smaller model

H0: parameters in full model equal to zero

df � number of parameters set equal to
zero
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EXAMPLE

Model 1 vs. Model 2

Model 2 (full model) :

logit P2 1 1 2 2 3 3X( ) = + + +α β β βX X X

Model 1 (reduced model) :

logit P1 1 1 2 2X( ) = + +α β βX X

Model 2 :

logit P2 1 1 2 2 3 3X( ) = + + +α β β βX X X

Then OR 3= eβ

H  0 H : OR 10 3 0
0: β = ⇔ = =e

LR 2 ln 2 ln 1 2= − − −( )ˆ ˆL L

Suppose X3 = E(0, 1) and X1, X2 confounders.

H0: �3 = 0 (similar to partial F)
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Algebraically, this difference can also be written as �2
times the natural log of the ratio of L1 divided by L2,
shown on the right-hand side of the equation here.
This latter version of the test statistic is a ratio of max-
imized likelihood values; this explains why the test is
called the likelihood ratio test.

The likelihood ratio statistic for this example has
approximately a chi-square distribution if the study
size is large. The degrees of freedom for the test is one
because, when comparing Models 1 and 2, only one
parameter, namely, �3, is being set equal to zero under
the null hypothesis.

We now describe how the likelihood ratio test works
and why the test statistic is approximately chi square.
We consider what the value of the test statistic would be
if the additional variable X3 makes an extremely large
contribution to the risk of disease over that already con-
tributed by X1 and X2. Then, it follows that the maxi-
mized likelihood value L2 is much larger than the maxi-
mized likelihood value L1.

If L2 is much larger than L1, then the ratio L1 divided by
L2 becomes a very small fraction; that is, this ratio
approaches 0.

Now the natural log of any fraction between 0 and 1 is
a negative number. As this fraction approaches 0, the
log of the fraction, which is negative, approaches the
log of 0, which is ��.

If we multiply the log likelihood ratio by �2, we then
get a number that approaches ��. Thus, the likelihood
ratio statistic for a highly significant X3 variable is
large and positive and approaches ��. This is exactly
the type of result expected for a chi-square statistic.
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How the LR test works:
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Thus, X3 highly significant ⇒ LR large and
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In contrast, consider the value of the test statistic if the
additional variable makes no contribution whatsoever
to the risk of disease over and above that contributed
by X1 and X2. This would mean that the maximized
likelihood value L2 is essentially equal to the maxi-
mized likelihood value L1.

Correspondingly, the ratio L1 divided by L2 is approxi-
mately equal to 1. Therefore, the likelihood ratio sta-
tistic is approximately equal to �2 times the natural
log of 1, which is 0, because the log of 1 is 0. Thus, the
likelihood ratio statistic for a highly nonsignificant X3
variable is approximately 0. This, again, is what one
would expect from a chi-square statistic.

In summary, the likelihood ratio statistic, regardless of
which two models are being compared, yields a value
that lies between 0, when there is extreme nonsignifi-
cance, and � �, when there is extreme significance.
This is the way a chi-square statistic works.

Statisticians have shown that the likelihood ratio sta-
tistic can be considered approximately chi square, pro-
vided that the number of subjects in the study is large.
How large is large, however, has never been precisely
documented, so the applied researcher has to have as
large a study as possible and/or hope that the number
of study subjects is large enough.

As another example of a likelihood ratio test, we con-
sider a comparison of Model 2 with Model 3. Because
Model 3 is larger than Model 2, we now refer to Model
3 as the full model and to Model 2 as the reduced
model.
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Model 2 :  logit P

(reduced model)

2 1 1 2 2 3 3X( ) = + + +α β β βX X X

Model 3 :  logit P
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There are two additional parameters in the full model
that are not part of the reduced model; these are �4 and
�5, the coefficients of the product variables X1X3 and
X2X3, respectively. Thus, the null hypothesis that com-
pares models 2 and 3 is stated as �4 equals �5 equals 0.
This is similar to the null hypothesis for a multiple-
partial F test in classical multiple linear regression
analysis. The alternative hypothesis here is that �4
and/or �5 are not 0.

If the variable X3 is the exposure variable E in one’s study
and the variables X1 and X2 are confounders, then the
product terms X1X3 and X2X3 are interaction terms for
the interaction of E with X1 and X2, respectively. Thus,
the null hypothesis that �4 equals �5 equals 0 is equiva-
lent to testing no joint interaction of X1 and X2 with E.

The likelihood ratio statistic for comparing models 2
and 3 is then given by �2 ln L2 minus �2 ln L3, which
also can be written as �2 times the natural log of the
ratio of L2 divided by L3. This statistic has an approxi-
mate chi-square distribution in large samples. The
degrees of freedom here equals 2 because there are two
parameters being set equal to 0 under the null hypoth-
esis.

When using a standard computer package to carry out
this test, we must get the computer to fit the full and
reduced models separately. The computer output for
each model will include the log likelihood statistics of
the form �2 ln L. The user then simply finds the two
log likelihood statistics from the output for each model
being compared and subtracts one from the other to
get the likelihood ratio statistic of interest.

There is another way to carry out hypothesis testing in
logistic regression without using a likelihood ratio test.
This second method is sometimes called the Wald
test. This test is usually done when there is only one
parameter being tested, as, for example, when compar-
ing Models 1 and 2 above.
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The Wald test statistic is computed by dividing the esti-
mated coefficient of interest by its standard error. This
test statistic has approximately a normal (0, 1), or Z,
distribution in large samples. The square of this Z sta-
tistic is approximately a chi-square statistic with one
degree of freedom.

In carrying out the Wald test, the information required
is usually provided in the output, which lists each vari-
able in the model followed by its ML coefficient and its
standard error. Several packages also compute the chi-
square statistic and a P-value.

When using the listed output, the user must find the row
corresponding to the variable of interest and either com-
pute the ratio of the estimated coefficient divided by its
standard error or read off the chi-square statistic and its
corresponding P-value from the output.

The likelihood ratio statistic and its corresponding
squared Wald statistic give approximately the same
value in very large samples; so if one’s study is large
enough, it will not matter which statistic is used.

Nevertheless, in small to moderate samples, the two
statistics may give very different results. Statisticians
have shown that the likelihood ratio statistic is better
than the Wald statistic in such situations. So, when in
doubt, it is recommended that the likelihood ratio sta-
tistic be used. However, the Wald statistic is somewhat
convenient to use because only one model, the full
model, needs to be fit.

As an example of a Wald test, consider again the com-
parison of Models 1 and 2 described above. The Wald
test for testing the null hypothesis that �3 equals 0 is
given by the Z statistic equal to �3 divided by the stan-
dard error of �3. The computed Z can be compared to
percentage points from a standard normal table.

Wald statistic (for large n):
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Or, alternatively, the Z can be squared and then com-
pared to percentage points from a chi-square distribu-
tion with one degree of freedom.

The Wald test we have just described considers a null
hypothesis involving only one model parameter. There
is also a Wald test that considers null hypotheses involv-
ing more than one parameter, such as when comparing
Models 2 and 3 above. However, this test requires knowl-
edge of matrix theory and is beyond the scope of this
presentation. The reader is referred to the text by
Kleinbaum, Kupper, and Morgenstern (Epidemiologic
Research, Chapter 20, p. 431) for a description of this
test.

Yet another method for testing these hypotheses
involves the use of a score statistic (see Kleinbaum et
al., Communications in Statistics, 1982). Because this
statistic is not routinely calculated by standard ML
programs, and because its use gives about the same
numerical chi-square values as the two techniques just
presented, we will not discuss it further in this chaper.

We have completed our discussion of hypothesis test-
ing and are now ready to describe confidence interval
estimation. We first consider interval estimation when
there is only one regression coefficient of interest. The
procedure typically used is to obtain a large sample
confidence interval for the parameter by computing
the estimate of the parameter plus or minus a per-
centage point of the normal distribution times the
estimated standard error.

Wald test for more than one parameter:
requires matrices
(see Epidemiologic Research, Chapter 20,
p. 431)

Third testing method:

Score statistic
(see Kleinbaum et al., Commun. in
Statist., 1982)
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EXAMPLE (continued)

or
Z2 is approximately �2 with one df

VI. Interval Estimation: One
Coefficient

Large sample confidence interval:

estimate ± (percentage point of Z �
estimated standard error)



As an example, if we focus on the �3 parameter in
Model 2, the 100 times (1��)% confidence interval
formula is given by �3 plus or minus the corresponding
(1��/2)th percentage point of Z times the estimated
standard error of �3.

In this formula, the values for �3 and its standard error
are found from the printout. The Z percentage point is
obtained from tables of the standard normal distribu-
tion. For example, if we want a 95% confidence inter-
val, then � is 0.05, 1��/2 is 1�0.025 or 0.975, and
Z0.975 is equal to 1.96.

Most epidemiologists are not interested in getting a
confidence interval for the coefficient of a variable in a
logistic model, but rather want a confidence interval
for an odds ratio involving that parameter and possi-
bly other parameters.

When only one exposure variable is being consid-
ered, such as X3 in Model 2, and this variable is a (0, 1)
variable, then the odds ratio of interest, which adjusts
for the other variables in the model, is e to that para-
meter, for example e to �3. In this case, the corre-
sponding confidence interval for the odds ratio is
obtained by exponentiating the confidence limits
obtained for the parameter.

Thus, if we consider Model 2, and if X3 denotes a (0, 1)
exposure variable of interest and X1 and X2 are con-
founders, then a 95% confidence interval for the adjusted
odds ratio e to �3 is given by the exponential of the con-
fidence interval for �3, as shown here.

This formula is correct, provided that the variable X3 is
a (0, 1) variable. If this variable is coded differently,
such as (�1, 1), or if this variable is an ordinal or inter-
val variable, then the confidence interval formula given
here must be modified to reflect the coding.
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A detailed discussion of the effect of different codings
of the exposure variable on the computation of the
odds ratio is described in Chapter 3 of this text. It is
beyond the scope of this presentation to describe in
detail the effect of different codings on the corre-
sponding confidence interval for the odds ratio. We do,
however, provide a simple example to illustrate this sit-
uation.

Suppose X3 is coded as (�1, 1) instead of (0, 1), so that
�1 denotes unexposed persons and 1 denotes exposed
persons. Then, the odds ratio expression for the effect
of X3 is given by e to 1 minus �1 times �3, which is e to
2 times �3. The corresponding 95% confidence interval
for the odds ratio is then given by exponentiating the
confidence limits for the parameter 2�3, as shown
here; that is, the previous confidence interval formula
is modified by multiplying �3 and its standard error by
the number 2.

The above confidence interval formulae involving a
single parameter assume that there are no interaction
effects in the model. When there is interaction, the
confidence interval formula must be modified from
what we have given so far. Because the general con-
fidence interval formula is quite complex when there 
is interaction, our discussion of the modifications
required will proceed by example.

Suppose we focus on Model 3, which is again shown
here, and we assume that the variable X3 is a (0, 1)
exposure variable of interest. Then the formula for the
estimated odds ratio for the effect of X3 controlling for
the variables X1 and X2 is given by the exponential of
the quantity �3 plus �4 times X1 plus �5 times X2, where
�4 and �5 are the estimated coefficients of the interac-
tion terms X1X3 and X2X3 in the model.

Chapter 3: Computing OR for different 
codings
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EXAMPLE

X3 coded as
1 unexposed

1 exposed

−⎧
⎨
⎩

OR exp 1 1 3
2 3= − −( )[ ] =β βe

95% CI :

exp 2 1.96 23 3
ˆ ˆβ β± ×( )s

VII. Interval Estimation:
Interaction

No interaction: simple formula

Interaction: complex formula
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We can alternatively write this estimated odds ratio for-
mula as e to the l, where l is the linear function �3 plus
�4 times X1 plus �5 times X2, and l is the estimate of this
linear function using the ML estimates.

To obtain a 100 times (1��)% confidence interval for
the odds ratio e to l, we must use the linear function l
the same way that we used the single parameter �3 to
get a confidence interval for �3. The corresponding
confidence interval is thus given by exponentiating the
confidence interval for l.

The formula is therefore the exponential of the quan-
tity l plus or minus a percentage point of the Z distrib-
ution times the square root of the estimated variance
of l. Note that the square root of the estimated variance
is the standard error.

This confidence interval formula, though motivated by
our example using Model 3, is actually the general for-
mula for the confidence interval for any odds ratio of
interest from a logistic model. In our example, the lin-
ear function l took a specific form, but, in general, the
linear function may take any form of interest.

A general expression for this linear function makes
use of the general odds ratio formula described in our
review. That is, the odds ratio comparing two groups
identified by the vectors X1 and X0 is given by the for-
mula e to the sum of terms of the form �i times the dif-
ference between X1i and X0i, where the latter denote
the values of the ith variable in each group. We can
equivalently write this as e to the l, where l is the linear
function given by the sum of the �i times the difference
between X1i and X0i. This latter formula is the general
expression for l.
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The difficult part in computing the confidence interval
for an odds ratio involving interaction effects is the cal-
culation for the estimated variance or corresponding
square root, the standard error. When there is no inter-
action, so that the parameter of interest is a single
regression coefficient, this variance is obtained directly
from the variance–covariance output or from the list-
ing of estimated coefficients and corresponding stan-
dard errors.

However, when the odds ratio involves interaction
effects, the estimated variance considers a linear sum
of estimated regression coefficients. The difficulty here
is that, because the coefficients in the linear sum are
estimated from the same data set, these coefficients
are correlated with one another. Consequently, the cal-
culation of the estimated variance must consider both
the variances and the covariances of the estimated
coefficients, which makes computations somewhat
cumbersome.

Returning to the interaction example, recall that the con-
fidence interval formula is given by exponentiating the
quantity l plus or minus a Z percentage point times the
square root of the estimated variance of l, where l is given
by �3 plus �4 times X1 plus �5 times X2.

It can be shown that the estimated variance of this lin-
ear function is given by the formula shown here.

The estimated variances and covariances in this for-
mula are obtained from the estimated variance–co-
variance matrix provided by the computer output.
However, the calculation of both l and the estimated
variance of l requires additional specification of values
for the effect modifiers in the model, which in this case
are X1 and X2.

Interaction: variance calculation difficult

No interaction: variance directly from
printout
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For example, if X1 denotes AGE and X2 denotes smok-
ing status (SMK), then one specification of these vari-
ables is X1 = 30, X2 = 1, and a second specification is X1
= 40, X2 = 0. Different specifications of these variables
will yield different confidence intervals. This should be
no surprise because a model containing interaction
terms implies that both the estimated odds ratios and
their corresponding confidence intervals vary as the
values of the effect modifiers vary.

A recommended practice is to use “typical” or “repre-
sentative” values of X1 and X2, such as their mean val-
ues in the data, or the means of subgroups, for exam-
ple, quintiles, of the data for each variable.

Some computer packages for logistic regression do
compute the estimated variance of linear functions like
l as part of the program options. (See Computer
Appendix.)

For the interested reader, we provide here the general
formula for the estimated variance of the linear func-
tion obtained from the E, V, W model described in the
review. Recall that the estimated odds ratio for this
model can be written as e to l, where l is the linear
function given by the sum of � plus the sum of terms of
the form �j times Wj.

The corresponding confidence interval formula is
obtained by exponentiating the confidence interval for
l, where the variance of l is given by the general for-
mula shown here.

In applying this formula, the user obtains the estimated
variances and covariances from the variance–covariance
output. However, as in the example above, the user
must specify values of interest for the effect modifiers
defined by the W’s in the model.

Some computer packages compute

var(l)
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EXAMPLE (continued)
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Note that the example described earlier involving
Model 3 is a special case of the formula for the E, V, W
model, with X3 equal to E, X1 equal to both V1 and W1,
and X2 equal to both V2 and W2. The linear function l
for Model 3 is shown here, both in its original form
and in the E, V, W format.

To obtain the confidence interval for the Model 3
example from the general formula, the following sub-
stitutions would be made in the general variance for-
mula: � = �3, p2 = 2, W1 = X1, W2 = X2, �1 = �4, and �2 =
�5.

Before concluding this presentation, we illustrate the ML
techniques described above by way of a numerical exam-
ple. We consider the printout results provided below and
on the following page. These results summarize the com-
puter output for two models based on follow-up study
data on a cohort of 609 white males from Evans County,
Georgia.

The outcome variable is coronary heart disease status,
denoted as CHD, which is 1 if a person develops the
disease and 0 if not. There are six independent vari-
ables of primary interest. The exposure variable is cat-
echolamine level (CAT), which is 1 if high and 0 if low.
The other independent variables are the control vari-
ables. These are denoted as AGE, CHL, ECG, SMK,
and HPT.

The variable AGE is treated continuously. The variable
CHL, which denotes cholesterol level, is also treated
continuously. The other three variables are (0, 1) vari-
ables. ECG denotes electrocardiogram abnormality
status, SMK denotes smoking status, and HPT denotes
hypertension status.
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VIII. Numerical Example

EVANS COUNTY, GA
n � 609

EXAMPLE

D � CHD (0, 1)
E � CAT
C’s � AGE, CHL, ECG, SMK, HPT

(conts) (conts)   (0, 1) (0, 1) (0, 1)

Model A Output:

Variable Coefficient S.E. Chi sq P
Intercept �6.7747 1.1402 35.30 0.0000

CAT 0.5978 0.3520 2.88 0.0894
AGE 0.0322 0.0152 4.51 0.0337
CHL 0.0088 0.0033 7.19 0.0073
ECG 0.3695 0.2936 1.58 0.2082
SMK 0.8348 0.3052 7.48 0.0062
HPT 0.4392 0.2908 2.28 0.1310

unconditional ML estimation
n � 609, # parameters � 7

− =2 ln 400.39L̂

V’s{



The first set of results described by the printout infor-
mation considers a model—called Model A—with no
interaction terms. Thus, Model A contains the expo-
sure variable CAT and the five covariables AGE, CHL,
ECG, SMK and HPT. Using the E, V, W formulation,
this model contains five V variables, namely, the
covariables, and no W variables.

The second set of results considers Model B, which
contains two interaction terms in addition to the vari-
ables contained in the first model. The two interaction
terms are called CH and CC, where CH equals the prod-
uct CAT � HPT and CC equals the product CAT � CHL.
Thus, this model contains five V variables and two W
variables, the latter being HPT and CHL.

Both sets of results have been obtained using uncondi-
tional ML estimation. Note that no matching has been
done and that the number of parameters in each model
is 7 and 9, respectively, which is quite small compared
with the number of subjects in the data set, which is
609.

We focus for now on the set of results involving the no
interaction Model A. The information provided con-
sists of the log likelihood statistic �2 ln L at the top fol-
lowed by a listing of each variable and its correspond-
ing estimated coefficient, standard error, chi-square
statistic, and P-value.

For this model, because CAT is the exposure variable
and there are no interaction terms, the estimated odds
ratio is given by e to the estimated coefficient of CAT,
which is e to the quantity 0.5978, which is 1.82. Because
Model A contains five V variables, we can interpret this
odds ratio as an adjusted odds ratio for the effect of the
CAT variable which controls for the potential con-
founding effects of the five V variables.

We can use this information to carry out a hypothesis
test for the significance of the estimated odds ratio
from this model. Of the two test procedures described,
namely, the likelihood ratio test and the Wald test, the
information provided only allows us to carry out the
Wald test.
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EXAMPLE (continued)

Model A results are at bottom of 
previous page

Model B Output:

Variable Coefficient S.E. Chi sq P
Intercept �4.0497 1.2550 10.41 0.0013

CAT �12.6894 3.1047 16.71 0.0000
AGE 0.0350 0.0161 4.69 0.0303
CHL �0.0055 0.0042 1.70 0.1923
ECG 0.3671 0.3278 1.25 0.2627
SMK 0.7732 0.3273 5.58 0.0181
HPT 1.0466 0.3316 9.96 0.0016
CH �2.3318 0.7427 9.86 0.0017
CC 0.0692 0.3316 23.20 0.0000

CH � CAT � HPT and CC � CAT � CHL
unconditional ML estimation
n � 609, # parameters � 9

− =2 ln 3ˆ .L 47 23

V’s{
interaction W’s

{

Model A: no interaction

Variable Coefficient S.E. Chi sq P
Intercept �6.7747 1.1402 35.30 0.0000

CAT 0.5978 0.3520 2.88 0.0894
� �

HPT 0.4392 0.2908 2.28 0.1310

− =2 ln 400.39L̂

OR � exp(0.5978) � 1.82

test statistic info. available?
LR no

Wald yes

ˆ

ˆ



To carry out the likelihood ratio test, we would need
to compare two models. The full model is Model A as
described by the first set of results discussed here. The
reduced model is a different model that contains the
five covariables without the CAT variable.

The null hypothesis here is that the coefficient of the
CAT variable is zero in the full model. Under this null
hypothesis, the model will reduce to a model without
the CAT variable in it. Because we have provided nei-
ther a printout for this reduced model nor the corre-
sponding log likelihood statistic, we cannot carry out
the likelihood ratio test here.

To carry out the Wald test for the significance of the
CAT variable, we must use the information in the row
of results provided for the CAT variable. The Wald sta-
tistic is given by the estimated coefficient divided by its
standard error; from the results, the estimated coeffi-
cient is 0.5978 and the standard error is 0.3520.

Dividing the first by the second gives us the value of
the Wald statistic, which is a Z, equal to 1.70. Squaring
this statistic, we get the chi-square statistic equal to
2.88, as shown in the table of results.

The P-value of 0.0894 provided next to this chi square
is somewhat misleading. This P-value considers a two-
tailed alternative hypothesis, whereas most epidemiol-
ogists are interested in one-tailed hypotheses when
testing for the significance of an exposure variable.
That is, the usual question of interest is whether the
odds ratio describing the effect of CAT controlling for
the other variables is significantly higher than the null
value of 1.

To obtain a one-tailed P-value from a two-tailed P-
value, we simply take half of the two-tailed P-value.
Thus, for our example, the one-tailed P-value is given
by 0.0894 divided by 2, which is 0.0447. Because this P-
value is less than 0.05, we can conclude, assuming this
model is appropriate, that there is a significant effect
of the CAT variable at the 5% level of significance.
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EXAMPLE (continued)

LR test:

full model reduced model
model A model A w/o CAT

H0: � � 0

where � � coefficient of CAT in model A

reduced model (w/o CAT) printout not
provided here

WALD TEST:
Variable Coefficient S.E. Chi sq P
Intercept �6.7747 1.1402 35.30 0.0000

CAT 0.5978 0.3520 2.88 0.0894
AGE 0.0322 0.0152 4.51 0.0337
CHL 0.0088 0.0033 7.19 0.0073
ECG 0.3695 0.2936 1.58 0.2082
SMK 0.8348 0.3052 7.48 0.0062
HPT 0.4392 0.2908 2.28 0.1310

Z

Z

= =

= =

0.5978
0.3520

1.70

CHISQ 2.882

P � 0.0896 misleading
(Assumes two-tailed test)
usual question: OR > 1? (one-tailed)

one - tailed 
two - tailed

2
0.0894

2

P
 P=

= = 0 0447.

P < 0.05 ⇒ significant at 5% level



The Wald test we have just described tests the null
hypothesis that the coefficient of the CAT variable is 0
in the model containing CAT and five covariables. An
equivalent way to state this null hypothesis is that the
odds ratio for the effect of CAT on CHD adjusted for
the five covariables is equal to the null value of 1.

The other chi-square statistics listed in the table pro-
vide Wald tests for other variables in the model. For
example, the chi-square value for the variable CHL is
the squared Wald statistic that tests whether there is a
significant effect of CHL on CHD controlling for the
other five variables listed, including CAT. However, the
Wald test for CHL, or for any of the other five covari-
ables, is not of interest in this study because the only
exposure variable is CAT and because the other five
variables are in the model for control purposes.

A 95% confidence interval for the odds ratio for the
adjusted effect of the CAT variable can be computed
from the set of results for the no interaction model as
follows: We first obtain a confidence interval for �, the
coefficient of the CAT variable, by using the formula �
plus or minus 1.96 times the standard error of �. This
is computed as 0.5978 plus or minus 1.96 times 0.3520.
The resulting confidence limits for � are �0.09 for the
lower limit and 1.29 for the upper limit.

Exponentiating the lower and upper limits gives the
confidence interval for the adjusted odds ratio, which
is 0.91 for the lower limit and 3.63 for the upper limit.

Note that this confidence interval contains the value 1,
which indicates that a two-tailed test is not significant
at the 5% level statistical significance from the Wald
test. This does not contradict the earlier Wald test
results, which were significant at the 5% level because
using the CI, our alternative hypothesis is two-tailed
instead of one-tailed.
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EXAMPLE (continued)

H0: � � 0
equivalent to
H0: adjusted OR � 1

Variable Coefficient S.E. Chi sq P
Intercept

CAT
AGE
CHL 0.0088 0.0033 7.18 0.0074

�

HPT ↑
not of interest

95% CI for adjusted OR:
First, 95% CI for �:

ˆ ˆβ

β

β± ×

± ×
−( )

1.96

0.5978 1.96 0.3520

CI limits for :  0.09,  1.29

s

exp CI limits for 

,

0.91, 3.63

0.09 1.29

β( )
= ( )
= ( )

−e e

CI contains 1,
so

do not reject H0
at

5% level (two-tailed)

ˆ

ˆ

ˆ



Note that the no interaction model we have been focus-
ing on may, in fact, be inappropriate when we compare
it to other models of interest. In particular, we now com-
pare the no interaction model to the model described by
the second set of printout results we have provided.

We will see that this second model, B, which involves inter-
action terms, is a better model. Consequently, the results
and interpretations made about the effect of the CAT vari-
able from the no interaction Model A may be misleading.

To compare the no interaction model with the interac-
tion model, we need to carry out a likelihood ratio
test for the significance of the interaction terms.
The null hypothesis here is that the coefficients �1 and
�2 of the two interaction terms are both equal to 0.

For this test, the full model is the interaction Model B
and the reduced model is the no interaction Model A.
The likelihood ratio test statistic is then computed by
taking the difference between log likelihood statistics
for the two models.

From the printout information given on pages 142–143,
this difference is given by 400.39 minus 347.23, which
equals 53.16. The degrees of freedom for this test is 2
because there are two parameters being set equal to 0.
The chi-square statistic of 53.16 is found to be signifi-
cant at the .01 level. Thus, the likelihood ratio test indi-
cates that the interaction model is better than the no
interaction model.

We now consider what the odds ratio is for the inter-
action model. As this model contains product terms CC
and CH, where CC is CAT�CHL and CH is CAT�HPT,
the estimated odds ratio for the effect of CAT must
consider the coefficients of these terms as well as the
coefficient of CAT. The formula for this estimated odds
ratio is given by the exponential of the quantity � plus
�1 times CHL plus �2 times HPT, where � (�12.6894) is
the coefficient of CAT, �1 (0.0692) is the coefficient of
the interaction term CC, and �2 (�2.3318) is the coeffi-
cient of the interaction term CH.
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EXAMPLE (continued)

no interaction model
vs.

other models?

Model B   vs.   Model A

LR test for interaction:

where �’s are coefficients of interac-
tion terms CC and CH in model B

Full Model Reduced Model
model B model A

(interaction) (no interaction)

H :     00 1 2δ δ= =

LR 2 ln 2 ln 

400.39 347.23

53.16

model A model B= − − −( )
= −
=

ˆ ˆL L

df � 2
significant at .01 level

OR for interaction model (B):

OR exp CHL HPT

12.6894 for CAT

  0.0692 for CC

2.3318 for CH

1 2

1

2

= + +( )
= −

=

= −

ˆ ˆ ˆ

ˆ

ˆ

ˆ

β δ δ

β

δ

δ

ˆ

ˆ

ˆ
ˆ ˆ ˆ

ˆ
ˆ



Plugging the estimated coefficients into the odds ratio
formula yields the expression: e to the quantity �12.6894
plus 0.0692 times CHL plus �2.3318 times HPT.

To obtain a numerical value from this expression, it is
necessary to specify a value for CHL and a value for
HPT. Different values for CHL and HPT will, therefore,
yield different odds ratio values. This should be expected
because the model with interaction terms should give
different odds ratio estimates depending on the values
of the effect modifiers, which in this case are CHL
and HPT.

The table shown here illustrates different odds ratio
estimates that can result from specifying different val-
ues of the effect modifiers. In this table, the values 
of CHL used are 200, 220, and 240; the values of HPT
are 0 and 1. The cells within the table give the esti-
mated odds ratios computed from the above expres-
sion for the odds ratio for different combinations of
CHL and HPT.

For example, when CHL equals 200 and HPT equals 0,
the estimated odds ratio is given by 3.16; when CHL
equals 220 and HPT equals 1, the estimated odds ratio
is 1.22. Each of the estimated odds ratios in this table
describes the association between CAT and CHD
adjusted for the five covariables AGE, CHL, ECG,
SMK, and HPT because each of the covariables are
contained in the model as V variables.

To account for the variability associated with each of
the odds ratios presented in the above tables, we can
compute confidence intervals by using the methods we
have described. The general confidence interval for-
mula is given by e to the quantity l plus or minus a per-
centage point of the Z distribution times the square
root of the estimated variance of l, where l is the linear
function shown here.
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EXAMPLE (continued)

OR exp CHL HPT

exp 12.6894 0.0692CHL 2.3318 HPT

1 2= + +[ ]
= − + + −( )[ ]

β δ δ

Must specify 
CHL and HPT

↑ ↑
effect modifiers

adjusted OR:

ˆ

ˆ

ˆ

HPT

0 1

200 3.16 0.31

CHL 220 12.61 1.22

240 50.33 4.89

CHL � 200, HPT � 0 ⇒ OR � 3.16

CHL � 220, HPT � 1 ⇒ OR � 1.22

OR adjusts for AGE, CHL, ECG, SMK,
and HPT (V variables)

ˆ

Confidence intervals :

exp var1
2

ˆ ˆl Z l± ( )⎡
⎣⎢

⎤
⎦⎥− α

where

1

2

l̂ Wj j
j

p

= +
=
∑β δ

ˆ

ˆ

ˆ

ˆ



For the specific interaction model (B) we have been
considering, the variance of l is given by the formula
shown here.

In computing this variance, there is an issue concerning
round-off error. Computer packages typically maintain
16 decimal places for calculations, with final answers
rounded to a set number of decimals (e.g., 4) on the
printout. The variance results we show here were
obtained with such a program (see Computer Appendix)
rather than using the rounded values from the variance-
covariance matrix presented at left.

For this model, W1 is CHL and W2 is HPT.

As an example of a confidence interval calculation, we
consider the values CHL equal to 220 and HPT equal 
to 1. Substituting �, �1, and �2 into the formula for l,
we obtain the estimate l equals 0.1960.

The corresponding estimated variance is obtained by
substituting into the above variance formula the esti-
mated variances and covariances from the variance–
covariance matrix. The resulting estimate of the vari-
ance of l is equal to 0.2279. The numerical values used
in this calculation are shown at left.

We can combine the estimates of l and its variance to
obtain the 95% confidence interval. This is given by
exponentiating the quantity 0.1960 plus or minus 1.96
times the square root of 0.2279. The resulting confi-
dence limits are 0.48 for the lower limit and 3.10 for
the upper limit.

The 95% confidence intervals obtained for other com-
binations of CHL and HPT are shown here. For exam-
ple, when CHL equals 200 and HPT equals 1, the con-
fidence limits are 0.10 and 0.91. When CHL equals 240
and HPT equals 1, the limits are 1.62 and 14.52.
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EXAMPLE
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95% CI for adjusted OR:

exp 0.1960 1.96 0.2279

CI limits:  0.48,  3.10
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CHL OR:3.16 OR:0.31
� 200 CI: (0.89, 11.03) CI: (0.10, 0.91)

CHL OR:12.61 OR:1.22
� 220 CI: (3.65, 42.94) CI: (0.48, 3.10)
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All confidence intervals are quite wide, indicating that
their corresponding point estimates have large vari-
ances. Moreover, if we focus on the three confidence
intervals corresponding to HPT equal to 1, we find that
the interval corresponding to the estimated odds ratio
of 0.31 lies completely below the null value of 1. In
contrast, the interval corresponding to the estimated
odds ratio of 1.22 surrounds the null value of 1, and
the interval corresponding to 4.89 lies completely
above 1.

From a hypothesis testing standpoint, these results
therefore indicate that the estimate of 1.22 is not sta-
tistically significant at the 5% level, whereas the other
two estimates are statistically significant at the 5%
level.

We suggest that the reader review the material covered
here by reading the summary outline that follows.
Then you may work the practice exercises and test.

In the next chapter, “Modeling Strategy Guidelines,”
we provide guidelines for determining a best model for
an exposure–disease relationship that adjusts for the
potential confounding and effect-modifying effects of
covariables.
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EXAMPLE

Wide CIs ⇒ estimates have 
large variances

HPT � 1:

OR � 0.31, CI: (0.10, .91) below 1

OR � 1.22, CI: (0.48, 3.10) includes 1

OR � 4.89, CI: (1.62, 14.52) above 1

ˆ
ˆ
ˆ

(two-tailed)
OR significant?

CHL � 200: 0.31 Yes
220: 1.22 No
240: 4.89 Yes

SUMMARY

Chapter 5: Statistical Inferences 
Using ML Techniques

This presentation is now complete. In summary, we
have described two test procedures, the likelihood
ratio test and the Wald test. We have also shown how
to obtain interval estimates for odds ratios obtained
from a logistic regression. In particular, we have
described confidence interval formula for models with
and without interaction terms.

Chapter 6: Modeling Strategy Guidelines

ˆ



I. Overview (page 128)
Focus

• testing hypotheses
• computing confidence intervals

II. Information for making statistical inferences (pages 128–129)
A. Maximized likelihood value: L(θ).
B. Estimated variance–covariance matrix: V(θ) contains variances

of estimated coefficients on the diagonal and covariances
between coefficients off the diagonal.

C. Variable listing: contains each variable followed by ML estimate,
standard error, and other information.

III. Models for inference-making (pages 129–130)
A.

B. 1, 2, 3 are maximized likelihoods ( ) for models 1–3,
respectively.

C. is similar to R square:
D.

where �2 ln is called the log likelihood statistic.
IV. The likelihood ratio (LR) test (pages 130–134)

A. LR statistic compares two models: full (larger) model versus
reduced (smaller) model.

B. H0: some parameters in full model are equal to 0.
C. df � number of parameters in full model set equal to 0 to obtain

reduced model.
D. Model 1 versus Model 2: , where

H0: �3 � 0. This LR has approximately a chi-square distribution
with one df under the null hypothesis.

E.

F. How the LR test works: LR works like a chi-square statistic. 
For highly significant variables, LR is large and positive; for 
nonsignificant variables, LR is close to 0.

L̂

L̂

L̂L̂L̂L̂
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Detailed
Outline
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G. Model 2 versus Model 3: where 
H0: �4 � �5 � 0. This LR has approximately a chi-square 
distribution with two df under the null hypothesis.

H. Computer prints �2 ln separately for each model, so LR test
requires only subtraction.

V. The Wald test (pages 134–136)
A. Requires one parameter only to be tested, e.g., H0: �3 � 0.

B. Test statistic:        which is approximately N(0, 1) under H0.

C. Alternatively, Z2 is approximately chi square with one df under
H0.

D. LR and Z are approximately equal in large samples, but may 
differ in small samples.

E. LR is preferred for statistical reasons, although Z is more 
convenient to compute.

F. Example of Wald statistic for H0: �3 � 0 in Model 2:
VI. Interval estimation: one coefficient (pages 136–138)

A. Large sample confidence interval:
estimate � percentage point of Z � estimated standard error.

B. 95% CI for �3 in Model 2:
C. If X3 is a (0, 1) exposure variable in Model 2, then the 95% CI for

the odds ratio of the effect of exposure adjusted for X1 and X2 is
given by

D. If X3 has coding other than (0, 1), the CI formula must be 
modified.

VII. Interval estimation: interaction (pages 138–142)

A. Model 3 example: 

where

L̂
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B. General 100(1 � �)% CI formula for OR:

C. 100(1 � �)% CI formula for OR using E, V, W model:

D. Model 3 example of E, V, W model: X3 � E, X1 � V1, X2 � V2,
and for interaction terms, p2 � 2, X1 � W1, X2 � W2.

VIII. Numerical example (pages 142–149)
A. Printout provided for two models (A and B) from Evans County,

Georgia data.
B. Model A: no interaction terms; Model B: interaction terms.
C. Description of LR and Wald tests for Model A.
D. LR test for no interaction effect in Model B: compares model B

(full model) with Model A (reduced model). Result: significant
interaction.

E. 95% CI for OR from Model B; requires use of CI formula for
interaction, where p2 � 2, W1 � CHL, and W2 � HPT.

A prevalence study of predictors of surgical wound infection in 265 hospi-
tals throughout Australia collected data on 12,742 surgical patients (McLaws
et al., 1988). For each patient, the following independent variables were
determined: type of hospital (public or private), size of hospital (large or
small), degree of contamination of surgical site (clean or contaminated),
and age and sex of the patient. A logistic model was fit to this data to predict
whether or not the patient developed a surgical wound infection during hos-
pitalization. The largest model fit included all of the above variables and all
possible two-way interaction terms. The abbreviated variable names and
the manner in which the variables were coded in the model are described as
follows:
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Variable Abbreviation Coding

Type of hospital HT 1 � public, 0 � private
Size of hospital HS 1 � large, 0 � small
Degree of contamination CT 1 � contaminated, 0 � clean
Age AGE continuous
Sex SEX 1 � female, 0 � male

1. State the logit form of a no interaction model that includes all of the
above predictor variables.

2. State the logit form of a model that extends the model of Exercise 1
by adding all possible pairwise products of different variables.

3. Suppose you want to carry out a (global) test for whether any of the
two-way product terms (considered collectively) in your interaction
model of Exercise 2 are significant. State the null hypothesis, the
form of the appropriate (likelihood ratio) test statistic, and the distri-
bution and degrees of freedom of the test statistic under the null
hypothesis of no interaction effects in your model of Exercise 2.

Suppose the test for interaction in Exercise 3 is nonsignificant, so that 
you felt justified to drop all pairwise products from your model. The
remaining model will, therefore, contain only those variables given in 
the above listing.

4. Consider a test for the effect of hospital type (HT) adjusted for the
other variables in the no interaction model. Describe the likelihood
ratio test for this effect by stating the following: the null hypothesis,
the formula for the test statistic, and the distribution and degrees of
freedom of the test statistic under the null hypothesis.

5. For the same question as described in Exercise 4, that is, concerning
the effect of HT controlling for the other variables in the model,
describe the Wald test for this effect by providing the null hypothesis,
the formula for the test statistic, and the distribution of the test statis-
tic under the null hypothesis.

6. Based on the study description preceding Exercise 1, do you think
that the likelihood ratio and Wald test results will be approximately
the same? Explain.
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7. Give a formula for a 95% confidence interval for the odds ratio
describing the effect of HT controlling for the other variables in the
no interaction model.

(Note: In answering all of the above questions, make sure to state
your answers in terms of the coefficients and variables that you speci-
fied in your answers to Exercises 1 and 2.)

Consider the following printout results that summarize the computer
output for two models based on follow-up study data on 609 white
males from Evans County, Georgia:

Model I OUTPUT:
�2 ln � 400.39

Variable Coefficient S.E. Chi sq P

Intercept �6.7747 1.1402 35.30 0.0000
CAT 0.5978 0.3520 2.88 0.0894
AGE 0.0322 0.0152 4.51 0.0337
CHL 0.0088 0.0033 7.19 0.0073
ECG 0.3695 0.2936 1.58 0.2082
SMK 0.8348 0.3052 7.48 0.0062
HPT 0.4392 0.2908 2.28 0.1310

Model II OUTPUT:
�2 ln � 357.05

Variable Coefficient S.E. Chi sq P

Intercept �3.9346 1.2503 9.90 0.0016
CAT �14.0809 3.1227 20.33 0.0000
AGE 0.0323 0.0162 3.96 0.0466
CHL �0.0045 0.00413 1.16 0.2821
ECG 0.3577 0.3263 1.20 0.2729
SMK 0.8069 0.3265 6.11 0.0134
HPT 0.6069 0.3025 4.03 0.0448

CC = CAT�CHL 0.0683 0.0143 22.75 0.0000

L̂

L̂
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In the above models, the variables are coded as follows: CAT(1 � high,
0 � low), AGE(continuous), CHL(continuous), ECG(1 � abnormal,
0 � normal), SMK(1 � ever, 0 � never), HPT(1 � hypertensive,
0 � normal). The outcome variable is CHD status(1 � CHD, 0 � no CHD).

8. For Model I, test the hypothesis for the effect of CAT on the develop-
ment of CHD. State the null hypothesis in terms of an odds ratio 
parameter, give the formula for the test statistic, state the distribution
of the test statistic under the null hypothesis, and, finally, carry out
the test for a one-sided alternative hypothesis using the above print-
out for Model I. Is the test significant?

9. Using the printout for Model I, compute the point estimate and a 95%
confidence interval for the odds ratio for the effect of CAT on CHD
controlling for the other variables in the model.

10. Now consider Model II: Carry out the likelihood ratio test for the
effect of the product term CC on the outcome, controlling for the
other variables in the model. Make sure to state the null hypothesis in
terms of a model coefficient, give the formula for the test statistic and
its distribution and degrees of freedom under the null hypothesis, and
report the P-value. Is the test result significant?

11. Carry out the Wald test for the effect of CC on outcome, controlling
for the other variables in Model II. In carrying out this test, provide
the same information as requested in Exercise 10. Is the test result
significant? How does it compare to your results in Exercise 10?
Based on your results, which model is more appropriate, Model I 
or II?

12. Using the output for Model II, give a formula for the point estimate of
the odds ratio for the effect of CAT on CHD, which adjusts for the
confounding effects of AGE, CHL, ECG, SMK, and HPT and allows
for the interaction of CAT with CHL.

13. Use the formula for the adjusted odds ratio in Exercise 12 to compute
numerical values for the estimated odds ratio for the following 
cholesterol values: CHL = 220 and CHL = 240.

14. Give a formula for the 95% confidence interval for the adjusted odds
ratio described in Exercise 12 when CHL = 220. In stating this 
formula, make sure to give an expression for the estimated variance
portion of the formula in terms of variances and covariances obtained
from the variance–covariance matrix.
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The following printout provides information for the fitting of two logistic
models based on data obtained from a matched case-control study of cervi-
cal cancer in 313 women from Sydney, Australia (Brock et al., 1988). The
outcome variable is cervical cancer status (1 = present, 0 = absent). The
matching variables are age and socioeconomic status. Additional indepen-
dent variables not matched on are smoking status, number of lifetime sex-
ual partners, and age at first sexual intercourse. The independent variables
not involved in the matching are listed below, together with their computer
abbreviation and coding scheme.

Variable Abbreviation Coding

Smoking status SMK 1 � ever, 0 � never
Number of sexual partners NS 1 � 4�, 0 � 0–3
Age at first intercourse AS 1 � 20�, 0 � ≤ 19

PRINTOUT:
Model I
�2 ln � 174.97

Variable � S.E. Chi sq P

SMK 1.4361 0.3167 20.56 0.0000
NS 0.9598 0.3057 9.86 0.0017
AS �0.6064 0.3341 3.29 0.0695

Model II
�2 ln � 171.46

Variable � S.E. Chi sq P

SMK 1.9381 0.4312 20.20 0.0000
NS 1.4963 0.4372 11.71 0.0006
AS �0.6811 0.3473 3.85 0.0499
SMK�NS �1.1128 0.5997 3.44 0.0635

L̂

L̂
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Variance–Covariance Matrix (Model II)

SMK NS AS SMK � NS

SMK 0.1859
NS 0.1008 0.1911
AS �0.0026 �0.0069 0.1206
SMK�NS �0.1746 �0.1857 0.0287 0.3596

1. What method of estimation was used to obtain estimates of parameters
for both models, conditional or unconditional ML estimation? Explain.

2. Why are the variables age and socioeconomic status missing from the
printout, even though these were variables matched on in the study
design?

3. For Model I, test the hypothesis for the effect of SMK on cervical can-
cer status. State the null hypothesis in terms of an odds ratio parame-
ter, give the formula for the test statistic, state the distribution of the
test statistic under the null hypothesis, and, finally, carry out the test
using the above printout for Model I. Is the test significant?

4. Using the printout for Model I, compute the point estimate and 95%
confidence interval for the odds ratio for the effect of SMK controlling
for the other variables in the model.

5. Now consider Model II: Carry out the likelihood ratio test for the effect
of the product term SMK � NS on the outcome, controlling for the
other variables in the model. Make sure to state the null hypothesis in
terms of a model coefficient, give the formula for the test statistic and
its distribution and degrees of freedom under the null hypothesis, and
report the P-value. Is the test significant?

6. Carry out the Wald test for the effect of SMK � NS, controlling for the
other variables in Model II. In carrying out this test, provide the same
information as requested in Question 3. Is the test significant? How
does it compare to your results in Question 5?

7. Using the output for Model II, give a formula for the point estimate of
the odds ratio for the effect of SMK on cervical cancer status, which
adjusts for the confounding effects of NS and AS and allows for the
interaction of NS with SMK.
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8. Use the formula for the adjusted odds ratio in Question 7 to compute
numerical values for the estimated odds ratios when NS � 1 and when
NS � 0.

9. Give a formula for the 95% confidence interval for the adjusted odds
ratio described in Question 8 (when NS � 1). In stating this formula,
make sure to give an expression for the estimated variance portion of
the formula in terms of variances and covariances obtained from the
variance–covariance matrix.

10. Use your answer to Question 9 and the estimated variance–covariance
matrix to carry out the computation of the 95% confidence interval
described in Question 7.

11. Based on your answers to the above questions, which model, point esti-
mate, and confidence interval for the effect of SMK on cervical cancer
status are more appropriate, those computed for Model I or those com-
puted for Model II? Explain.

1. logit P(X) = � � �1HT � �2HS � �3CT � �4AGE � �5SEX.
2. logit P(X) = � � �1HT � �2HS � �3CT � �4AGE � �5SEX

� �6HT � HS � �7HT � CT � �8HT � AGE � �9HT � SEX
� �10HS � CT � �11HS � AGE � �12HS � SEX
� �13CT � AGE � �14CT � SEX � �15AGE � SEX.

3. H0: �6 = �7 = . . . = �15 = 0, i.e., the coefficients of all product terms
are zero;
likelihood ratio statistic: LR = �2 ln L1 � (�2 ln L2), where L1 is the
maximized likelihood for the reduced model (i.e., Exercise 1 model)
and L2 is the maximized likelihood for the full model (i.e., Exercise 2
model);
distribution of LR statistic: chi square with 10 degrees of freedom.

4. H0: �1 = 0, where �1 is the coefficient of HT in the no interaction
model; alternatively, this null hypothesis can be stated as H0: OR = 1,
where OR denotes the odds ratio for the effect of HT adjusted for the
other four variables in the no interaction model.
likelihood ratio statistic: LR = �2 ln L0 � (�2 ln L1), where L0 is the
maximized likelihood for the reduced model (i.e., Exercise 1 model
less the HT term and its corresponding coefficient) and L1 is the max-
imized likelihood for the full model (i.e., Exercise 1 model);
distribution of LR statistic: approximately chi square with one degree
of freedom.
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5. The null hypothesis for the Wald test is the same as that given for the
likelihood ratio test in Exercise 4. H0: �1 = 0 or, equivalently, H0: OR
= 1, where OR denotes the odds ratio for the effect of HT adjusted for
the other four variables in the no interaction model;

Wald test statistic: , where �1 is the coefficient of HT in the no
interaction model;
distribution of Wald statistic: approximately normal (0, 1) under H0;
alternatively, the square of the Wald statistic, i.e., Z2, is approximately
chi square with one degree of freedom.

6. The sample size for this study is 12,742, which is very large; conse-
quently, the Wald and LR test statistics should be approximately the
same.

7. The odds ratio of interest is given by e�1, where �1 is the coefficient of
HT in the no interaction model; a 95% confidence interval for this
odds ratio is given by the following formula:

where var(�1) is obtained from the variance–covariance matrix or,
alternatively, by squaring the value of the standard error for �1 pro-
vided by the computer in the listing of variables and their estimated
coefficients and standard errors.

8. H0: �CAT = 0 in the no interaction model (Model I), or alternatively,
H0: OR = 1, where OR denotes the odds ratio for the effect of CAT on
CHD status, adjusted for the five other variables in Model I;

test statistic: Wald statistic ,which is approximately normal 

(0, 1) under H0, or alternatively,
Z2 is approximately chi square with one degree of freedom under H0;

test computation: ; alternatively, Z2 = 2.88;

the one-tailed P-value is 0.0894/2 = 0.0447, which is significant at the
5% level.

9. The point estimate of the odds ratio for the effect of CAT on CHD
adjusted for the other variables in model I is given by e0.5978 = 1.82.
The 95% interval estimate for the above odds ratio is given by
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10. The null hypothesis for the likelihood ratio test for the effect of CC:
H0: �CC = 0 where �CC is the coefficient of CC in model II.
Likelihood ratio statistic: LR = �2 ln LI � (�2 ln LII) where LI and LII
are the maximized likelihood functions for Models I and II, respec-
tively. This statistic has approximately a chi-square distribution with
one degree of freedom under the null hypothesis.
Test computation: LR = 400.4 �357.0 = 43.4. The P-value is 0.0000 to
four decimal places. Because P is very small, the null hypothesis is
rejected and it is concluded that there is a significant effect of the CC
variable, i.e., there is significant interaction of CHL with CAT.

11. The null hypothesis for the Wald test for the effect of CC is the same
as that for the likelihood ratio test: H0: �CC = 0, where �CC is the coef-
ficient of CC in model II.

Wald statistic: , which is approximately normal (0, 1) under 

H0, or alternatively,
Z2 is approximately chi square with one degree of freedom under H0;

test computation: ; alternatively, Z2 = 22.75;

the two-tailed P-value is 0.0000, which is very significant.
The LR statistic is 43.4, which is almost twice as large as the square of
the Wald statistic; however, both statistics are very significant, result-
ing in the same conclusion of rejecting the null hypothesis.
Model II is more appropriate than model I because the test for inter-
action is significant.

12. The formula for the estimated odds ratio is given by

where the coefficients come from model II and the confounding
effects of AGE, CHL, ECG, SMK, and HPT are adjusted.

13. Using the adjusted odds ratio formula given in Exercise 12, the esti-
mated odds ratio values for CHL equal to 220 and 240 are
CHL = 220: exp[�14.0809 � 0.0683(220)] = exp(0.9451) = 2.57;
CHL = 240: exp[�14.0809 � 0.0683(240)] = exp(2.3111) = 10.09.

14. Formula for the 95% confidence interval for the adjusted odds ratio
when CHL = 220:

and

where                                                                       are obtained from 

the printout of the variance–covariance matrix.
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We begin this chapter by giving the rationale for having a strategy to deter-
mine a “best” model. Focus is on a logistic model containing a single
dichotomous exposure variable which adjusts for potential confounding
and potential interaction effects of covariates considered for control. A
strategy is recommended which has three stages: (1) variable specification,
(2) interaction assessment, and (3) confounding assessment followed by
consideration of precision. The initial model has to be “hierarchically well
formulated,” a term to be defined and illustrated. Given an initial model, we
recommend a strategy involving a “hierarchical backward elimination pro-
cedure” for removing variables. In carrying out this strategy, statistical test-
ing is allowed for assessing interaction terms but is not allowed for assessing
confounding. Further description of interaction and confounding assess-
ment is given in the next chapter (Chapter 7).

The outline below gives the user a preview of the material in this chapter. A
detailed outline for review purposes follows the presentation.

I. Overview (page 164)
II. Rationale for a modeling strategy (pages 164–165)

III. Overview of recommended strategy (pages 165–169)
IV. Variable specification stage (pages 169–171)
V. Hierarchically well-formulated models (pages 171–173)

VI. The hierarchical backward elimination approach (page 174)
VII. The Hierarchy principle for retaining variables (pages 175–176)

VIII. An example (pages 177–181)
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Upon completion of this chapter, the learner should be able to:

1. State and recognize the three stages of the recommended modeling
strategy.

2. Define and recognize a hierarchically well-formulated logistic model.
3. State, recognize, and apply the recommended strategy for choosing

potential confounders in one’s model.
4. State, recognize, and apply the recommended strategy for choosing

potential effect modifiers in one’s model.
5. State and recognize the rationale for a hierarchically well-formulated

model.
6. State and apply the hierarchical backward elimination strategy.
7. State and apply the Hierarchy Principle.
8. State whether or not significance testing is allowed for the assessment

of interaction and/or confounding.
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This presentation gives guidelines for determining the
“best” model when carrying out mathematical model-
ing using logistic regression. We focus on a strategy
involving three stages. The goal of this strategy is to
obtain a valid estimate of an exposure–disease rela-
tionship that accounts for confounding and effect
modification.

We begin by explaining the rationale for a modeling
strategy.

Most epidemiologic research studies in the literature,
regardless of the exposure–disease question of interest,
provide a minimum of information about modeling
methods used in the data analysis. Typically, only the
final results from modeling are reported, with little
accompanying explanation about the strategy used in
obtaining such results.

For example, information is often not provided as to
how variables are chosen for the initial model, how
variables are selected for the final model, and how
effect modifiers and confounders are assessed for their
role in the final model.

Without meaningful information about the modeling
strategy used, it is difficult to assess the validity of the
results provided. Thus, there is a need for guidelines
regarding modeling strategy to help researchers know
what information to provide.

In practice, most modeling strategies are ad hoc; in
other words, researchers often make up a strategy as
they go along in their analysis. The general guidelines
that we recommend here encourage more consistency
in the strategy used by different researchers.

Minimum information in most study reports
e.g., little explanation about strategy

Information often not provided:
• how variables chosen
• how variables selected
• how effect modifiers assessed
• how confounders assessed

Guidelines needed
• to assess validity of results
• to help researchers know what 

information to provide
• to encourage consistency in strategy
• for a variety of modeling procedures
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Presentation

• guidelines for “best”
model

• three-stage strategy
• valid estimate of E–D

relationship (con-
founding and effect
modification)

FOCUS

I. Overview

II. Rationale for a Modeling
Strategy



Modeling strategy guidelines are also important for
modeling procedures other than logistic regression. In
particular, classical multiple linear regression and Cox
proportional hazards regression, although having dif-
fering model forms, all have in common with logistic
regression the goal of describing exposure–disease
relationships when used in epidemiologic research.
The strategy offered here, although described in the
context of logistic regression, is applicable to a variety
of modeling procedures.

There are typically two goals of mathematical model-
ing: One is to obtain a valid estimate of an exposure–
disease relationship and the other is to obtain a good
predictive model. Depending on which of these is the
primary goal of the researcher, different strategies for
obtaining the “best” model are required.

When the goal is “prediction,” it may be more appro-
priate to use computer algorithms, such as backward
elimination or all possible regressions, which are built
into computer packages for different models. (See
Kleinbaum et al., (1998)).

Our focus in this presentation is on the goal of obtain-
ing a valid measure of effect. This goal is characteristic
of most etiologic research in epidemiology. For this goal,
standard computer algorithms do not apply because
the roles that variables—such as confounders and effect
modifiers—play in the model must be given special
attention.

The modeling strategy we recommend involves three
stages: (1) variable specification, (2) interaction
assessment, and (3) confounding assessment fol-
lowed by consideration of precision. We have listed
these stages in the order that they should be addressed.

Variable specification is addressed first because this
step allows the investigator to use the research litera-
ture to restrict attention to clinically or biologically
meaningful independent variables of interest. These
variables can then be defined in the model to provide
the largest possible meaningful model to be initially
considered.

Guidelines applicable to
logistic regression, 
multiple linear regression 
Cox PH regression

Two modeling goals
(1) to obtain a valid E–D estimate
(2) to obtain a good predictive model

(different strategies for different goals)

Prediction goal:
use computer algorithms

Validity goal
• our focus
• for etiologic research
• standard computer algorithms not

appropriate
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III. Overview of Recommended
Strategy

Three stages
(1) variable specification
(2) interaction assessment
(3) confounding assessment followed by

precision
Variable specification
• restricts attention to clinically or 

biologically meaningful variables
• provides largest possible initial model



Interaction assessment is carried out next, prior to the
assessment of confounding. The reason for this order-
ing is that if there is strong evidence of interaction
involving certain variables, then the assessment of con-
founding involving these variables becomes irrelevant.

For example, suppose we are assessing the effect of an
exposure variable E on some disease D, and we find
strong evidence that gender is an effect modifier of the
E–D relationship. In particular, suppose that the odds
ratio for the effect of E on D is 5.4 for males but only
1.2 for females. In other words, the data indicate that
the E–D relationship is different for males than for
females, that is, there is interaction due to gender.

For this situation, it would not be appropriate to com-
bine the two odds ratio estimates for males and females
into a single overall adjusted estimate, say 3.5, that
represents an “average” of the male and female odds
ratios. Such an overall “average” is used to control for
the confounding effect of gender in the absence of
interaction; however, if interaction is present, the use
of a single adjusted estimate is a misleading statistic
because it masks the finding of a separate effect for
males and females.

Thus, we recommend that if one wishes to assess inter-
action and also consider confounding, then the assess-
ment of interaction comes first.

However, the circumstances of the study may indicate
that the assessment of interaction is not of interest or
is biologically unimportant. In such situations, the
interaction stage of the strategy can then be skipped,
and one proceeds directly to the assessment of con-
founding.

For example, the goal of a study may be to obtain a sin-
gle overall estimate of the effect of an exposure
adjusted for several factors, regardless of whether or
not there is interaction involving these factors. In such
a case, then, interaction assessment is not appropriate.

Interaction prior to confounding
• if strong interaction, then confounding

irrelevant

166 6. Modeling Strategy Guidelines

EXAMPLE

Suppose gender is effect modifier for
E–D relationship:

OR males = 5.4, OR females = 1.2

interaction

Overall average = 3.5
not appropriate

Misleading because of separate effects
for males and females

ˆ ˆ

Assess interaction before confounding

Interaction may not be of interest:
• skip interaction stage
• proceed directly to confounding

EXAMPLE

Study goal: single overall estimate. Then
interaction not appropriate



On the other hand, if interaction assessment is consid-
ered worthwhile, and, moreover, if significant interac-
tion is found, then this precludes assessing confound-
ing for those variables identified as effect modifiers.
Also, as we will describe in more detail later, assessing
confounding for variables other than effect modifiers
can be quite difficult and, in particular, extremely sub-
jective, when interaction is present.

The final stage of our strategy calls for the assessment
of confounding followed by consideration of preci-
sion. This means that it is more important to get a
valid point estimate of the E–D relationship that con-
trols for confounding than to get a narrow confidence
interval around a biased estimate that does not control
for confounding.

For example, suppose controlling for AGE, RACE, and
SEX simultaneously gave an adjusted odds ratio esti-
mate of 2.4 with a 95% confidence interval ranging
between 1.2 and 3.7, whereas controlling for AGE
alone gave an odds ratio of 6.2 with a 95% confidence
interval ranging between 5.9 and 6.4.

Then, assuming that AGE, RACE, and SEX are con-
sidered important risk factors for the disease of
interest, we would prefer to use the odds ratio of 2.4
over the odds ratio of 6.2. This is because the 2.4 value
results from controlling for all the relevant variables
and, thus, gives us a more valid answer than the value
of 6.2, which controls for only one of the variables.

Thus, even though there is a much narrower confi-
dence interval around the 6.2 estimate than around the
2.4, the gain in precision from using 6.2 does not offset
the bias in this estimate when compared to the more
valid 2.4 value.

In essence, then, validity takes precedence over pre-
cision, so that it is more important to get the right
answer than a precise answer. Thus, in the third
stage of our strategy, we seek an estimate that controls
for confounding and is, over and above this, as precise
as possible.

If interaction present
• do not assess confounding for effect

modifiers
• assessing confounding for other 

variables difficult and subjective
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Confounding followed by precision:

valid
imprecise✓

(                  )

biased
precise�

(      )

EXAMPLE

Control
Variables aOR 95% CI

✓AGE. RACE. SEX 2.4 (1.2, 3.7)

AGE 6.2 (5.9, 6.4)

VALID
↑

BIASED
↑

(                  ) (      )

0 2.4 6.2
1.2 3.7 5.9 6.4

VALIDITY BEFORE PRECISION

✓ right answer precise answer
↓ ↓

ˆ

narrow
↑

wide
↑



When later describing this last stage in more detail we
will emphasize that the assessment of confounding
is carried out without using statistical testing. This
follows from general epidemiologic principles in that
confounding is a validity issue which addresses sys-
tematic rather than random error. Statistical testing is
appropriate for considering random error rather than
systematic error.

Our suggestions for assessing confounding using logis-
tic regression are consistent with the principle that
confounding is a validity issue. Standard computer
algorithms for variable selection, such as forward
inclusion or backward elimination procedures, are not
appropriate for assessing confounding because they
involve statistical testing.

Before concluding this overview section, we point out
a few statistical issues needing attention but which are
beyond the scope of this presentation. These issues are
multicollinearity, multiple testing, and influential
observations.

Multicollinearity occurs when one or more of the
independent variables in the model can be approxi-
mately determined by some of the other independent
variables. When there is multicollinearity, the esti-
mated regression coefficients of the fitted model can
be highly unreliable. Consequently, any modeling
strategy must check for possible multicollinearity at
various steps in the variable selection process.

Multiple testing occurs from the many tests of signifi-
cance that are typically carried out when selecting or
eliminating variables in one’s model. The problem with
doing several tests on the same data set is that the more
tests one does, the more likely one can obtain statisti-
cally significant results even if there are no real associa-
tions in the data. Thus, the process of variable selection
may yield an incorrect model because of the number of
tests carried out. Unfortunately, there is no foolproof
method for adjusting for multiple testing, even though
there are a few rough approaches available.
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Confounding : no statistical testing

Validity—systematic error

(Statistical testing—random error)

Confounding in logistic 
regression—a validity issue

Computer algorithms no good
(involve statistical testing)

Statistical issues beyond scope of this 
presentation:

• multicollinearity
• multiple testing
• influential observations

Multicollinearity
• independent variables approximately 

determined by other independent vari-
ables

• regression coefficients unreliable

Multiple testing
• the more tests, the more likely signifi-

cant findings, even if no real effects
• variable selection procedures may yield

an incorrect model because of multiple
testing

↓



Influential observations refer to data on individuals
that may have a large influence on the estimated
regression coefficients. For example, an outlier in one
or more of the independent variables may greatly
affect one’s results. If a person with an outlier is dropped
from the data, the estimated regression coefficients
may greatly change from the coefficients obtained
when that person is retained in the data. Methods for
assessing the possibility of influential observations
should be considered when determining a best model.

At the variable specification stage, clinically or biolog-
ically meaningful independent variables are defined in
the model to provide the largest model to be initially
considered.

We begin by specifying the D and E variables of inter-
est together with the set of risk factors C1 through Cp to
be considered for control. These variables are defined
and measured by the investigator based on the goals of
one’s study and a review of the literature and/or bio-
logical theory relating to the study.

Next, we must specify the V’s, which are functions of
the C’s that go into the model as potential confounders.
Generally, we recommend that the choice of V’s be
based primarily on prior research or theory, with some
consideration of possible statistical problems like mul-
ticollinearity that might result from certain choices.

For example, if the C’s are AGE, RACE, and SEX, one
choice for the V’s is the C’s themselves. Another choice
includes AGE, RACE, and SEX plus more complicated
functions such as AGE2, AGE � RACE, RACE � SEX,
and AGE � SEX.

We would recommend any of the latter four variables
only if prior research or theory supported their inclu-
sion in the model. Moreover, even if biologically rele-
vant, such variables may be omitted from considera-
tion if multicollinearity is found.

Influential observations
• individual data may influence regres-

sion coefficients, e.g., outlier
• coefficients may change if outlier is

dropped from analysis

Presentation: IV. Variable Specification Stage 169

IV. Variable Specification Stage

• define clinically or biologically mean-
ingful independent variables

• provide initial model
Specify D, E, C1, C2, . . . , CP based on
• study goals
• literature review
• theory

Specify V’s based on
• prior research or theory
• possible statistical problems

EXAMPLE

C’s: AGE, RACE, SEX

V’s:

Choice 1: AGE, RACE, SEX

Choice 2: AGE, RACE, SEX, AGE2,
AGE � RACE, RACE � SEX,
AGE � SEX



The simplest choice for the V ’s is the C’s themselves. If
the number of C’s is very large, it may even be appro-
priate to consider a smaller subset of the C’s consid-
ered to be most relevant and interpretable based on
prior knowledge.

Once the V ’s are chosen, the next step is to determine
the W ’s. These are the effect modifiers that go into the
model as product terms with E, that is, these variables
are of the form E times W.

We recommend that the choice of W ’s be restricted
either to the V ’s themselves or to product terms involv-
ing two V ’s. Correspondingly, the product terms in the
model are recommended to be of the form E times V
and E times Vi times Vj, where Vi and Vj are two dis-
tinct V ’s.

For most situations, we recommend that both the V ’s
and the W ’s be the C’s themselves, or even a subset of
the C’s.

As an example, if the C’s are AGE, RACE, and SEX,
then a simple choice would have the V’s be AGE,
RACE, and SEX and the W’s be a subset of AGE,
RACE, and SEX thought to be biologically meaningful
as effect modifiers.

The rationale for our recommendation about the W’s
is based on the following commonsense considera-
tions:

• product terms more complicated than EViVj are
usually difficult to interpret even if found signifi-
cant; in fact, even terms of the form EViVj are
often uninterpretable.

• product terms more complicated than EViVj typi-
cally will cause multicollinearity problems; this is
also likely for EViVj terms, so the simplest way to
reduce the potential for multicollinearity is to use
EVi terms only.

✓ Simplest choice for V ’s

the C’s themselves (or a subset of C’s)

Specify W’s: (in model as E � W)

restrict W ’s to be V ’s themselves or
products of two V’s

(i.e., in model as E � V and E � Vi � Vj)

Most situations:

specify V’s and W’s as C’s or subset of C’s
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EXAMPLE

C1, C2, C3, = AGE, RACE, SEX

V1, V2, V3, = AGE, RACE, SEX

W’s = subset of AGE, RACE, SEX

Rationale for W ’s (common sense):

Product terms more complicated than
EViVj are

• difficult to interpret
• typically cause multicollinearity
✓ Simplest choice: use EVi terms only



In summary, at the variable specification stage, the
investigator defines the largest possible model initially
to be considered. The flow diagram at the left shows
first the choice of D, E, and the C’s, then the choice of
the V’s from the C’s and, finally, the choice of the W’s in
terms of the C’s.

When choosing the V and W variables to be included in
the initial model, the investigator must ensure that the
model has a certain structure to avoid possibly mis-
leading results. This structure is called a hierarchi-
cally well-formulated model, abbreviated as HWF,
which we define and illustrate in this section.

A hierarchically well-formulated model is a model sat-
isfying the following characteristic: Given any variable
in the model, all lower-order components of the vari-
able must also be contained in the model.

To understand this definition, let us look at an example
of a model that is not hierarchically well formulated.
Consider the model given in logit form as logit P(X)
equals � plus �E plus �1V1 plus �2V2 plus the product
terms �1EV1 plus �2EV2 plus �3EV1V2.

For this model, let us focus on the three-factor product
term EV1V2. This term has the following lower-order
components: E, V1, V2, EV1, EV2, and V1V2. Note that
the last component V1V2 is not contained in the model.
Thus, the model is not hierarchically well formulated.

In contrast, the model given by logit P(X) equals � plus
�E plus �1V1 plus �2V2 plus the product terms �1EV1
plus �2EV2 is hierarchically well formulated because
the lower-order components of each variable in the
model are also in the model. For example, the compo-
nents of EV1 are E and V1, both of which are contained
in the model.

Variable Specification Summary Flow
Diagram

Presentation: V. Hierarchically Well-Formulated Models 171

Choose D, E, C1, . . . , Cp

Choose V’s from C’s

Choose W’s
from C’s as
Vi or ViVj i.e.,
interactions
of form EVi
or EViVj

↓

↓

V. Hierarchically Well-Formulated
Models

Model contains all lower-order 
components

Initial model structure: HWF

EXAMPLE

Not HWF model:

Components of EV1V2:

E, V1, V2, EV1, EV2, V1V2

not in model

EXAMPLE

HWF model:

Components of EV1:

E, V1 both in model

logit P 1 1 2 2

1 1 2 2 3 1 2

X( ) = + + +

+ + +

α β γ γ

δ δ δ

E V V

EV EV EV V

↑

logit P 1 1 2 2

1 1 2 2

X( ) = + + +

+ +

α β γ γ

δ δ

E V V

EV EV



For illustrative purposes, let us consider one other
model given by logit P(X) equals � plus �E plus �1V1

2

plus �2V2 plus the product term �1EV1
2. Is this model

hierarchically well formulated?

The answer here can be either yes or no depending on
how the investigator wishes to treat the variable V1

2 in
the model. If V1

2 is biologically meaningful in its own
right without considering its component V1, then the
corresponding model is hierarchically well formulated
because the variable EV1

2 can be viewed as having only
two components, namely, E and V1

2, both of which are
contained in the model. Also, if the variable V1

2 is con-
sidered meaningful by itself, it can be viewed as having
no lower-order components. Consequently, all lower-
order components of each variable are contained in
the model.

On the other hand, if the variable V1
2 is not considered

meaningful separately from its fundamental compo-
nent V1, then the model is not hierarchically well for-
mulated. This is because, as given, the model does not
contain V1, which is a lower-order component of V1

2

and EV1
2, and also does not contain the variable EV1

which is a lower-order component of EV1
2.

Now that we have defined and illustrated an HWF model,
we discuss why such a model structure is required. The
reason is that if the model is not HWF, then tests about
variables in the model—in particular, the highest-order
terms—may give varying results depending on the cod-
ing of variables in the model. Such tests should be
independent of the coding of the variables in the
model, and they are if the model is hierarchically well
formulated.

To illustrate this point, we return to the first example
considered above, where the model is given by logit
P(X) equals � plus �E plus �1V1 plus �2V2 plus the
product terms �1EV1 plus �2EV2 plus �3EV1V2. This
model is not hierarchically well formulated because it
is missing the term V1V2. The highest-order term in
this model is the three-factor product term EV1V2.
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EXAMPLE

HWF model?

Yes, if V1
2 is biologically meaningful

components of EV1
2: E and V1

2

components of V1
2: none

No, if V1
2 is not meaningful separately

from V1:

model does not contain

• V1, component of V1
2

• EV1, component of EV1
2

logit P 1 1
2

2 2 1 1
2

X( ) = + +

+ +

α β γ

γ δ

E V

V EV

Why require HWF model?

Answer:

HWF? Tests for highest-order variables?

No dependent on coding

Yes independent of coding

EXAMPLE

Not HWF model: 

V1V2 missing

logit P 1 1 2 2

1 1 2 2 3 1 2

X( ) = + + +

+ + +

α β γ γ

δ δ δ

E V V

EV EV EV V



Suppose that the exposure variable E in this model is a
dichotomous variable. Then, because the model is not
HWF, a test of hypothesis for the significance of the
highest-order term, EV1V2, may give different results
depending on whether E is coded as (0, 1) or (�1, 1) or
any other coding scheme.

In particular, it is possible that a test for EV1V2 may be
highly significant if E is coded as (0, 1), but be non-
significant if E is coded as (�1, 1). Such a possibility
should be avoided because the coding of a variable is
simply a way to indicate categories of the variable and,
therefore, should not have an effect on the results of
data analysis.

In contrast, suppose we consider the HWF model
obtained by adding the V1V2 term to the previous
model. For this model, a test for EV1V2 will give exactly
the same result whether E is coded using (0, 1), (�1, 1),
or any other coding. In other words, such a test is
independent of the coding used.

We will shortly see that even if the model is hierarchi-
cally well formulated, then tests about lower-order
terms in the model may still depend on the coding.

For example, even though, in the HWF model being
considered here, a test for EV1V2 is not dependent on
the coding, a test for EV1 or EV2—which are lower-
order terms—may still be dependent on the coding.

What this means is that in addition to requiring that
the model be HWF, we also require that no tests be
allowed for lower-order components of terms like
EV1V2 already found to be significant. We will return
to this point later when we describe the hierarchy prin-
ciple for retaining variables in the model.
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EXAMPLE (continued)

E dichotomous:

Then if not HWF model, 
testing for EV1V2 may depend on
whether E is coded as

E = (0, 1), e.g., significant

or

E = (�1, 1), e.g., not significant

or

other coding

EXAMPLE

HWF model:

Testing for EV1V2 is independent of
coding of E: (0, 1), (�1, 1), or other.

logit P 1 1 2 2 3 1 2

1 1 2 2 3 1 2

X( ) = + + + +

+ + +

α β γ γ δ

δ δ δ

E V V V V

EV EV EV V

HWF model: Tests for lower-order terms
depend on coding

EXAMPLE

HWF model:

EV1V2: not dependent on coding

EV1 or EV2: dependent on coding

logit P 1 1 2 2 3 1 2

1 1 2 2 3 1 2

X( ) = + + + +

+ + +

α β γ γ γ

δ δ δ

E V V V V

EV EV EV V

Require
• HWF model
• no test for lower-order components of

significant higher-order terms



We have now completed our recommendations for
variable specification as well as our requirement that
the model be hierarchically well formulated. When we
complete this stage, we have identified the largest pos-
sible model to be considered. This model is the initial
or starting model from which we attempt to eliminate
unnecessary variables.

The recommended process by which the initial model
is reduced to a final model is called a hierarchical
backward elimination approach. This approach is
described by the flow diagram shown here.

In the flow diagram, we begin with the initial model
determined from the variable specification stage.

If the initial model contains three-factor product terms
of the form EViVj, then we attempt to eliminate these
terms first.

Following the three-factor product terms, we then
eliminate unnecessary two-factor product terms of the
form EVi.

The last part of the strategy eliminates unnecessary Vi
and ViVj terms.

As described in later sections, the EViVj and EVi prod-
uct terms can be eliminated using appropriate statisti-
cal testing methods.

However, decisions about the Vi and ViVj terms, which
are potential confounders, should not involve statisti-
cal testing.

The strategy described by this flow diagram is called
hierarchical backward because we are working back-
ward from our largest starting model to a smaller final
and we are treating variables of different orders at dif-
ferent steps. That is, there is a hierarchy of variable
types, with three-factor interaction terms considered
first, followed by two-factor interaction terms, fol-
lowed by two-factor, and then one-factor confounding
terms.

174 6. Modeling Strategy Guidelines

VI. The Hierarchical Backward
Elimination Approach

✓ Variable specification
✓ HWF model
Largest model considered 
= initial (starting) model

Initial model Final model

hierarchical
backward
elimination

Initial Model

Eliminate EViEj terms

Eliminate EVi terms

Eliminate Vi and ViVj terms

EVi and EVj (interactions):
use statistical testing

Vi and ViVj (confounders):
do not use statistical testing

Hierarchical Backward

3 factors: EViVj
↓

2 factors: EVi
↓

2 factors:ViVj
↓

1 factor: Vi

Large starting
model

↓
Smaller final
model



As we go through the hierarchical backward elimina-
tion process, some terms are retained and some terms
are dropped at each stage. For those terms that are
retained at a given stage, there is a rule for identifying
lower-order components that must also be retained in
any further models.

This rule is called the Hierarchy Principle. An analo-
gous principle of the same name has been described by
Bishop, Fienberg, and Holland (1975).

To illustrate the Hierarchy Principle, suppose the ini-
tial model contains three-factor products of the form
EViVj. Suppose, further, that the term EV2V5 is found
to be significant during the stage which considers the
elimination of unimportant EViVj terms. Then, the
Hierarchy Principle requires that all lower-order com-
ponents of the EV2V5 term must be retained in all fur-
ther models considered in the analysis.

The lower-order components of EV2V5 are the vari-
ables E, V2, V5, EV2, EV5, and V2V5. Because of the
Hierarchy Principle, if the term EV2V5 is retained, then
each of the above component terms cannot be elimi-
nated from all further models considered in the back-
ward elimination process. Note the initial model has to
contain each of these terms, including V2V5, to ensure
that the model is hierarchically well formulated.

In general, the Hierarchy Principle states that if a
product variable is retained in the model, then all
lower-order components of that variable must be
retained in the model.

As another example, if the variables EV2 and EV4 are to
be retained in the model, then the following lower-
order components must also be retained in all further
models considered: E, V2, and V4. Thus, we are not
allowed to consider dropping V2 and V4 as possible
nonconfounders because these variables must stay in
the model regardless.

Hierarchical Backward Elimination

retain terms drop terms
↓

Hierarchy Principle

(Bishop, Fienberg, and Holland, 1975)

retain lower-order components
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VII. The Hierarchy Principle for
Retaining Variables

EXAMPLE

Initial model: EViVj terms

Suppose: EV2V5 significant

Hiearchy Principle: all lower-order
components of EV2V5 retained

i.e., E, V2, V5, EV2, EV5, and V2V5
cannot be eliminated

Note: Initial model must contain V2V5
to be HWF

Hierarchy Principle
If product variable retained, then all
lower-order components must be retained

EXAMPLE

EV2 and EV4 retained:
Then
E, V2 and V4 also retained

cannot be considered as nonconfounders



The rationale for the Hierarchy Principle is similar
to the rationale for requiring that the model be HWF.
That is, tests about lower-order components of vari-
ables retained in the model can give different conclu-
sions depending on the coding of the variables tested.
Such tests should be independent of the coding to be
valid. Therefore, no such tests are appropriate for
lower-order components.

For example, if the term EV2V5 is significant, then a
test for the significance of EV2 may give different results
depending on whether E is coded as (0, 1) or (�1, 1).

Note that if a model is HWF, then tests for the highest-
order terms in the model are always independent of
the coding of the variables in the model. However, tests
for lower-order components of higher-order terms are
still dependent on coding.

For example, if the highest-order terms in an HWF
model are of the form EViVj, then tests for all such
terms are not dependent on the coding of any of the
variables in the model. However, tests for terms of the
form EVi or Vi are dependent on the coding and, there-
fore, should not be carried out as long as the corre-
sponding higher-order terms remain in the model.

If the highest-order terms of a hierarchically well-for-
mulated model are of the form EVi, then tests for EVi
terms are independent of coding, but tests for Vi terms
are dependent on coding of the V’s and should not be
carried out. Note that because the V’s are potential
confounders, tests for V’s are not allowed anyhow.

Note also, regarding the Hierarchy Principle, that any
lower-order component of a significant higher-order
term must remain in the model or else the model will
no longer be HWF. Thus, to ensure that our model is
HWF as we proceed through our strategy, we cannot
eliminate lower-order components unless we have
eliminated corresponding higher-order terms.

Hiearchy Principle rationale
• tests for lower-order components

depend on coding
• tests should be independent of coding
• therefore, no tests allowed for lower-

order components
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EXAMPLE

Suppose EV2V5 significant: then the test
for EV2 depends on coding of E, e.g., 
(0, 1) or (�1, 1)

HWF model:
tests for highest-order terms independent
of coding

but
tests for lower-order terms dependent on
coding

EXAMPLE

HWF: EViVj highest-order terms
Then tests for 

EViVj independent of coding but
tests for
EVi or Vj dependent on coding

EXAMPLE

HWF: EVi highest-order terms
Then tests for 

EVi independent of coding but tests for
Vi dependent on coding

Hierarchy Principle
• ensures that the model is HWF
e.g., EViVj is significant ⇒ retain lower-

order compo-
nents or else
model is not
HWF



We review the guidelines recommended to this point
through an example. We consider a cardiovascular dis-
ease study involving the 9-year follow-up of persons
from Evans County, Georgia. We focus on data involv-
ing 609 white males on which we have measured 6
variables at the start of the study. These are cate-
cholamine level (CAT), AGE, cholesterol level (CHL),
smoking status (SMK), electrocardiogram abnormality
status (ECG), and hypertension status (HPT). The out-
come variable is coronary heart disease status (CHD).

In this study, the exposure variable is CAT, which is 1
if high and 0 if low. The other five variables are control
variables, so that these may be considered as con-
founders and/or effect modifiers. AGE and CHL are
treated continuously, whereas SMK, ECG, and HPT,
are (0, 1) variables.

The question of interest is to describe the relationship
between E (CAT) and D (CHD), controlling for the pos-
sible confounding and effect modifying effects of AGE,
CHL, SMK, ECG, and HPT. These latter five variables
are the C’s that we have specified at the start of our
modeling strategy.

To follow our strategy for dealing with this data set, we
now carry out variable specification in order to define
the initial model to be considered. We begin by speci-
fying the V variables, which represent the potential
confounders in the initial model.

In choosing the V ’s, we follow our earlier recommen-
dation to let the V ’s be the same as the C’s. Thus, we
will let V1 = AGE, V2 = CHL, V3 = SMK, V4 = ECG, and
V5 = HPT.

We could have chosen other V ’s in addition to the five
C’s. For example, we could have considered V ’s which
are products of two C ’s, such as V6 equals AGE � CHL
or V7 equals AGE � SMK. We could also have consid-
ered V ’s which are squared C’s, such as V8 equals AGE2

or V9 equals CHL2.
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VIII. An Example

EXAMPLE

Cardiovascular Disease Study
9-year follow-up Evans County, GA
n = 609 white males

The variables:

CAT, AGE, CHL, SMK, ECG, HPT

at start
CHD = outcome

CAT: (0, 1) exposure
AGE, CHL: continuous
SMK, ECG, HPT: (0, 1)

}
control
variables}

E = CAT D = CHD

controlling for

AGE, CHL, SMK, ECG, HPT

C ’s

Variable specification stage:
V ’s: potential confounders in initial model

}
Here, V’s = C’s:

V1 = AGE, V2 = CHL, V3 = SMK, 
V4 = ECG, V5 = HPT

Other possible V’s:
V6 = AGE � CHL
V7 = AGE � SMK
V8 = AGE2

V9 = CHL2

?



However, we have restricted the V’s to the C’s them-
selves primarily because there are a moderately large
number of C’s being considered, and any further addi-
tion of V’s is likely to make the model difficult to inter-
pret as well as difficult to fit because of likely collinear-
ity problems.

We next choose the W’s, which are the variables that go
into the initial model as product terms with E(CAT).
These W’s are the potential effect modifiers to be con-
sidered. The W’s that we choose are the C’s themselves,
which are also the V’s. That is, W1 through W5 equals
AGE, CHL, SMK, ECG, and HPT, respectively.

We could have considered other choices for the W’s.
For instance, we could have added two-way products
of the form W6 equals AGE � CHL. However, if we
added such a term, we would have to add a corre-
sponding two-way product term as a V variable, that is,
V6 equals AGE � CHL, to make our model hierarchi-
cally well formulated. This is because AGE � CHL is a
lower-order component of CAT � AGE � CHL, which
is EW6.

We could also have considered for our set of W’s some
subset of the five C’s, rather than all five C’s. For
instance, we might have chosen the W’s to be AGE and
ECG, so that the corresponding product terms in the
model are CAT � AGE and CAT � ECG only.

Nevertheless, we have chosen the W’s to be all five C’s
so as to consider the possibility of interaction from any
of the five C’s, yet to keep the model relatively small to
minimize potential collinearity problems.

Thus, at the end of the variable specification stage, we
have chosen as our initial model, the E, V, W model
shown here. This model is written in logit form as logit
P(X) equals a constant term plus terms involving the
main effects of the five control variables plus terms
involving the interaction of each control variable with
the exposure variable CAT.
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EXAMPLE (continued)

Restriction of V’s to C’s because
• large number of C’s
• additional V’s difficult to interpret
• additional V’s may lead to collinearity

Choice of W’s:
(go into model as EW)

W’s = C’s:
W1 = AGE, W2 = CHL, W3 = SMK,
W4 = ECG, W5 = HPT

Other possible W’s:
W6 = AGE � CHL

(If W6 is in model, then 
V6 = AGE � CHL also in HWF model.)

Alternative choice of W’s:
Subset of C’s, e.g.,

AGE ⇒ CAT � AGE in model

ECG ⇒ CAT � ECG in model

Rationale for W’s = C’s:
• allow possible interaction
• minimize collinearity

Initial E, V, W model

where Vi’s = C’s = Wj’s

logit P CAT CAT
1

5

1

5
X( ) = + + +

= =
∑ ∑α β γ δi i
i

j j
j

V W



According to our strategy, it is necessary that our ini-
tial model, or any subsequently determined reduced
model, be hierarchically well formulated. To check
this, we assess whether all lower-order components of
any variable in the model are also in the model.

For example, the lower-order components of a product
variable like CAT � AGE are CAT and AGE, and both
these terms are in the model as main effects. If we
identify the lower-order components of any other vari-
able, we can see that the model we are considering is
truly hierarchically well formulated.

Note that if we add to the above model the three-way
product term CAT � ECG � SMK, the resulting model
is not hierarchically well formulated. This is because
the term ECG � SMK has not been specified as one of
the V variables in the model.

At this point in our model strategy, we are ready to con-
sider simplifying our model by eliminating unnecessary
interaction and/or confounding terms. We do this using
a hierarchical backward elimination procedure which
considers eliminating the highest-order terms first, then
the next highest-order terms, and so on.

Because the highest-order terms in our initial model
are two-way products of the form EW, we first con-
sider eliminating some of these interaction terms. We
then consider eliminating the V terms, which are the
potential confounders.

Here, we summarize the results of the interaction
assessment and confounding assessment stages and
then return to provide more details of this example in
Chapter 7.

The results of the interaction stage allow us to elimi-
nate three interaction terms, leaving in the model the
two product terms CAT � CHL and CAT � HPT.

Thus, at the end of interaction assessment, our remain-
ing model contains our exposure variable CAT, the five
V’s namely, AGE, CHL, SMK, ECG, and HPT plus two
product terms CAT � CHL and CAT � HPT.
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EXAMPLE (continued)

HWF model?

i.e., given variable, are lower-order
components in model?

e.g., CAT � AGE

CAT and AGE both in model as main
effects

HWF model? YES

If CAT � ECG � SMK in model, then 
not HWF model

because
ECG � SMK not in model

Next

Hierarchical Backward Elimination
Procedure

First, eliminate EW terms

Then, eliminate V terms

Interaction assessment
and

confounding assessments (details in
Chapter 7)

Results of Interaction Stage
CAT � CHL and CAT � HPT
are the only two interaction terms to
remain in the model
Model contains

CAT, AGE, CHL, SMK, ECG, HPT,

V’s
CAT � CHL and CAT � HPT

⇒
}



The reason why the model contains all five V’s at this
point is because we have not yet done any analysis to
evaluate which of the V’s can be eliminated from the
model.

However, because we have found two significant inter-
action terms, we need to use the Hierarchy Principle to
identify certain V’s that cannot be eliminated from any
further models considered.

The hierarchy principle says that all lower-order com-
ponents of significant product terms must remain in
all further models.

In our example, the lower-order components of
CAT � CHL are CAT and CHL, and the lower-order
components of CAT � HPT are CAT and HPT. Now the
CAT variable is our exposure variable, so we will leave
CAT in all further models regardless of the hierarchy
principle. In addition, we see that CHL and HPT must
remain in all further models considered.

This leaves the V variables AGE, SMK, and ECG as still
being eligible for elimination at the confounding stage
of the strategy.

As we show in Chapter 7, we will not find sufficient
reason to remove any of the above three variables as
nonconfounders. In particular, we will show that deci-
sions about confounding for this example are too sub-
jective to allow us to drop any of the three V terms eli-
gible for elimination.

Thus, as a result of our modeling strategy, the final
model obtained contains the variables CAT, AGE,
CHL, SMK, ECG, and HPT as main effect variables,
and it contains the two product terms CAT � CHL and
CAT � HPT.
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EXAMPLE (continued)

All five V’s in model so far

Hierarchy Principle

identify V’s that cannot be eliminated
EVi significant

E and Vi must remain

CAT � CHL ⇒ CAT and CHL remain
CAT � HPT ⇒ CAT and HPT remain

Thus,
CAT (exposure) remains

plus
CHL and HPT remain

AGE, SMK, ECG
eligible for elimination

Results (details in Chapter 7):

Cannot remove AGE, SMK, ECG
(decisions too subjective)

Final model variables:
CAT, AGE, CHL, SMK, ECG, HPT,
CAT � CHL, and CAT � HPT

⇒



The computer results for this final model are shown
here. This includes the estimated regression coeffi-
cients, corresponding standard errors, and Wald test
information. The variables CAT � HPT and CAT � CHL
are denoted in the printout as CH and CC, respectively.

Also provided here is the formula for the estimated
adjusted odds ratio for the CAT, CHD relationship.
Using this formula, one can compute point estimates
of the odds ratio for different specifications of the
effect modifiers CHL and HPT. Further details of these
results, including confidence intervals, will be pro-
vided in Chapter 7.
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EXAMPLE (continued)

Printout

Variable Coefficient S.E. Chi sq P

Intercept �4.0497 1.2550 10.41 0.0013
CAT �12.6894 3.1047 16.71 0.0000
AGE 0.0350 0.0161 4.69 0.0303
CHL �0.00545 0.0042 1.70 0.1923
ECG 0.3671 0.3278 1.25 0.2627
SMK 0.7732 0.3273 5.58 0.0181
HPT 1.0466 0.3316 9.96 0.0016

CH �2.3318 0.7427 9.86 0.0017
CC 0.0692 0.3316 23.20 0.0000

interaction
CH = CAT � HPT and 
CC = CAT � CHL

ROR = exp (�12.6894 �
0.0692CHL�2.3881HPT)

Details in Chapter 7.

ˆ

SUMMARY As a summary of this presentation, we have recom-
mended a modeling strategy with three stages: (1)
variable specification, (2) interaction assessment,
and (3) confounding assessment followed by consid-
eration of precision.

The initial model has to be hierarchically well for-
mulated (HWF). This means that the model must
contain all lower-order components of any term in the
model.

Given an initial model, the recommended strategy
involves a hierarchical backward elimination pro-
cedure for removing variables. In carrying out this
strategy, statistical testing is allowed for interaction
terms, but not for confounding terms.

When assessing interaction terms, the Hierarchy
Principle needs to be applied for any product term
found significant. This principle requires all lower-
order components of significant product terms to
remain in all further models considered.

Three stages

(1) variable specification
(2) interaction
(3) confounding/precision
Initial model: HWF model

Hierarchical backward elimination 
procedure
(test for interaction, but do not test for 
confounding)

Hierarchy Principle
significant product term

retain lower-order components

⇒

}

V’s

}



Chapters up to this point
1. Introduction
2. Special Cases

.

.

.
✓  6. Modeling Strategy Guidelines

7. Strategy for Assessing Interaction
and Confounding

182 6. Modeling Strategy Guidelines

This presentation is now complete. We suggest that the
reader review the presentation through the detailed
outline on the following pages. Then, work through the
practice exercises and then the test.

The next chapter is entitled: “Modeling Strategy for
Assessing Interaction and Confounding.” This contin-
ues the strategy described here by providing a detailed
description of the interaction and confounding assess-
ment stages of our strategy.



I. Overview (page 164)
Focus:
• guidelines for “best” model
• 3-stage strategy
• valid estimate of E–D relationship

II. Rationale for a modeling strategy (pages 164–165)
A. Insufficient explanation provided about strategy in published

research; typically only final results are provided.
B. Too many ad hoc strategies in practice; need for some guide-

lines.
C. Need to consider a general strategy that applies to different kinds

of modeling procedures.
D. Goal of strategy in etiologic research is to get a valid estimate of

E–D relationship; this contrasts with goal of obtaining good pre-
diction, which is built into computer packages for different kinds
of models.

III. Overview of recommended strategy (pages 165–169)
A. Three stages: variable specification, interaction assessment, and

confounding assessment followed by considerations of precision.
B. Reason why interaction stage precedes confounding stage: con-

founding is irrelevant in the presence of strong interaction.
C. Reason why confounding stage considers precision after con-

founding is assessed: validity takes precedence over precision.
D. Statistical concerns needing attention but beyond scope of this

presentation: collinearity, controlling the significance level, and
influential observations.

E. The model must be hierarchically well formulated.
F. The strategy is a hierarchical backward elimination strategy 

that considers the roles that different variables play in the model
and cannot be directly carried out using standard computer algo-
rithms.

G. Confounding is not assessed by statistical testing.
H. If interaction is present, confounding assessment is difficult in

practice.
IV. Variable specification stage (pages 169–171)

A. Start with D, E, and C1, C2, . . ., Cp.
B. Choose V’s from C’s based on prior research or theory and con-

sidering potential statistical problems, e.g., collinearity; simplest
choice is to let V’s be C’s themselves.

C. Choose W’s from C’s to be either V’s or product of two V’s; usu-
ally recommend W’s to be C’s themselves or some subset of C’s.

Detailed Outline 183

Detailed
Outline



V. Hierarchically well-formulated (HWF) models (pages 171–173)
A. Definition: given any variable in the model, all lower-order 

components must also be in the model.
B. Examples of models that are and are not hierarchically well 

formulated.
C. Rationale: If model is not hierarchically well formulated, then

tests for significance of the highest-order variables in the model
may change with the coding of the variables tested; such tests
should be independent of coding.

VI. The hierarchical backward elimination approach (page 174)
A. Flow diagram representation.
B. Flow description: evaluate EViVj terms first, then EVi terms, then

Vi terms last.
C. Use statistical testing for interaction terms, but decisions about

Vi terms should not involve testing.
VII. The Hierarchy Principle for retaining variables (pages 175–176)

A. Definition: If a variable is to be retained in the model, then all
lower-order components of that variable are to be retained in the
model forever.

B. Example.
C. Rationale: Tests about lower-order components can give differ-

ent conclusions depending on the coding of variables tested;
such tests should be independent of coding to be valid; therefore,
no such tests are appropriate.

D. Example.
VIII. An example (pages 177–181)

A. Evans County CHD data description.
B. Variable specification stage.
C. Final results.

A prevalence study of predictors of surgical wound infection in 265 hospitals
throughout Australia collected data on 12,742 surgical patients (McLaws et
al., 1988). For each patient, the following independent variables were deter-
mined: type of hospital (public or private), size of hospital (large or small),
degree of contamination of surgical site (clean or contaminated), and age
and sex of the patient. A logistic model was fitted to these data to predict
whether or not the patient developed a surgical wound infection during hos-
pitalization. The abbreviated variable names and the manner in which the
variables were coded in the model are described as follows:
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Variable Abbreviation Coding

Type of hospital HT 1 = public, 0 = private
Size of hospital HS 1 = large, 0 = small
Degree of contamination CT 1 = contaminated, 0 = clean
Age AGE Continuous
Sex SEX 1 = female, 0 = male

In the questions that follow, we assume that type of hospital (HT) is consid-
ered the exposure variable, and the other four variables are risk factors for
surgical wound infection to be considered for control.

1. In defining an E, V, W model to describe the effect of HT on the devel-
opment of surgical wound infection, describe how you would deter-
mine the V variables to go into the model. (In answering this ques-
tion, you need to specify the criteria for choosing the V variables,
rather than the specific variables themselves.)

2. In defining an E, V, W model to describe the effect of HT on the devel-
opment of surgical wound infection, describe how you would deter-
mine the W variables to go into the model. (In answering this ques-
tion, you need to specify the criteria for choosing the W variables,
rather than the specifying the actual variables.)

3. State the logit form of a hierarchically well-formulated E, V, W model
for the above situation in which the V’s and the W’s are the C’s them-
selves. Why is this model hierarchically well formulated?

4. Suppose the product term HT � AGE � SEX is added to the model
described in Exercise 3. Is this new model still hierarchically well for-
mulated? If so, state why; if not, state why not.

5. Suppose for the model described in Exercise 4, that a Wald test is car-
ried out for the significance of the three-factor product term
HT � AGE � SEX. Explain what is meant by the statement that the
test result depends on the coding of the variable HT. Should such a
test be carried out? Explain briefly.

6. Suppose for the model described in Exercise 3 that a Wald test is car-
ried out for the significance of the two-factor product term
HT � AGE. Is this test dependent on coding? Explain briefly.

7. Suppose for the model described in Exercise 3 that a Wald test is car-
ried out for the significance of the main effect term AGE. Why is this
test inappropriate here?

8. Using the model of Exercise 3, describe briefly the hierarchical
backward elimination procedure for determining the best model.

9. Suppose the interaction assessment stage for the model of Example 3
finds the following two-factor product terms to be significant: HT � CT
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and HT � SEX; the other two-factor product terms are not significant
and are removed from the model. Using the Hierarchy Principle, what
variables must be retained in all further models considered. Can these
(latter) variables be tested for significance? Explain briefly.

10. Based on the results in Exercise 9, state the (reduced) model that is
left at the end of the interaction assessment stage.

True or False? (Circle T or F)
T F 1. The three stages of the modeling strategy described in this chap-

ter are interaction assessment, confounding assessment, and
precision assessment.

T F 2. The assessment of interaction should precede the assessment of
confounding.

T F 3. The assessment of interaction may involve statistical testing.
T F 4. The assessment of confounding may involve statistical testing.
T F 5. Getting a precise estimate takes precedence over getting an

unbiased answer.
T F 6. During variable specification, the potential confounders should

be chosen based on analysis of the data under study.
T F 7. During variable specification, the potential effect modifiers

should be chosen by considering prior research or theory about
the risk factors measured in the study.

T F 8. During variable specification, the potential effect modifiers
should be chosen by considering possible statistical problems
that may result from the analysis.

T F 9. A model containing the variables E, A, B, C, A2, A�B, E�A,
E�A2, E�A�B, and E�C is hierarchically well formulated.

T F 10. If the variables E�A2 and E�A�B are found to be significant
during interaction assessment, then a complete list of all com-
ponents of these variables that must remain in any further
models considered consists of E, A, B, E�A, E�B, and A2.

The following questions consider the use of logistic regression on data
obtained from a matched case-control study of cervical cancer in 313
women from Sydney, Australia (Brock et al., 1988). The outcome variable is
cervical cancer status (1 = present, 0 = absent). The matching variables are
age and socioeconomic status. Additional independent variables not
matched on are smoking status, number of lifetime sexual partners, and age
at first sexual intercourse. The independent variables are listed below
together with their computer abbreviation and coding scheme.
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Variable Abbreviation Coding

Smoking status SMK 1 = ever, 0 = never
Number of sexual partners NS 1 = 4�, 0 = 0–3
Age at first intercourse AS 1 = 20�, 0 = <19
Age of subject AGE Category matched
Socioeconomic status SES Category matched

11. Consider the following E, V, W model that considers the effect of smok-
ing, as the exposure variable, on cervical cancer status, controlling for
the effects of the other four independent variables listed:

where the Vi* are dummy variables indicating matching strata and the
�i* are the coefficients of the Vi* variables. Is this model hierarchically
well formulated? If so, explain why; if not, explain why not.

12. For the model in Question 1, is a test for the significance of the three-
factor product term SMK � NS � AS dependent on the coding of
SMK? If so, explain why; if not explain, why not.

13. For the model in Question 1, is a test for the significance of the two-
factor product term SMK � NS dependent on the coding of SMK? If so,
explain why; if not, explain why not.

14. For the model in Question 1, briefly describe a hierarchical backward
elimination procedure for obtaining a best model.

15. Suppose that the three-factor product term SMK � NS � AS is found
significant during the interaction assessment stage of the analysis.
Then, using the Hierarchy Principle, what other interaction terms must
remain in any further model considered? Also, using the Hierarchy
Principle, what potential confounders must remain in any further mod-
els considered?

16. Assuming the scenario described in Question 15 (i.e., SMK � NS � AS
is significant), what (reduced) model remains after the interaction
assessment stage of the model? Are there any potential confounders
that are still eligible to be dropped from the model. If so, which ones?
If not, why not?

Test 187

logit P SMK NS AS NS AS

SMK NS SMK AS SMK NS AS,

1 2 3

1 2 3

X( ) = + + + + + ×

+ × + × + × ×
∑α β γ γ γ γ

δ δ δ
i
*

i
*V



1. The V variables should include the C variables HS, CT, AGE, and SEX
and any functions of these variables that have some justification
based on previous research or theory about risk factors for surgical
wound infection. The simplest choice is to choose the V’s to be the C’s
themselves, so that at least every variable already identified as a risk
factor is controlled in the simplest way possible.

2. The W variables should include some subset of the V’s, or possibly all
the V’s, plus those functions of the V’s that have some support from
prior research or theory about effect modifiers in studies of surgical
wound infection. Also, consideration should be given, when choosing
the W’s, of possible statistical problems, e.g., collinearity, that may
arise if the size of the model becomes quite large and the variables
chosen are higher-order product terms. Such statistical problems may
be avoided if the W’s chosen do not involve very high-order product
terms and if the number of W’s chosen is small. A safe choice is to
choose the W’s to be the V’s themselves or a subset of the V’s.

3. logit P(X) = � � �HT � �1HS � �2CT � �3AGE � �4SEX �
�1HT � HS � �2HT � CT � �3HT � AGE � �4HT � SEX.
This model is HWF because given any interaction term in the model,
both of its components are also in the model (as main effects).

4. If HT � AGE � SEX is added to the model, the new model will not be
hierarchically well formulated because the lower-order component
AGE � SEX is not contained in the original nor new model.

5. A test for HT � AGE � SEX in the above model is dependent on 
coding in the sense that different test results (e.g., rejection versus
nonrejection of the null hypothesis) may be obtained depending on
whether HT is coded as (0, 1) or (�1, 1) or some other coding. Such a
test should not be carried out because any test of interest should be
independent of coding, reflecting whatever the real effect of the vari-
able is.

6. A test for HT � AGE in the model of Exercise 3 is independent of cod-
ing because the model is hierarchically well formulated and the
HT � AGE term is a variable of highest order in the model. (Tests for
lower-order terms like HT or HS are dependent on the coding even
though the model in Exercise 3 is hierarchically well formulated.)

7. A test for the variable AGE is inappropriate because there is a higher-
order term, HT � AGE, in the model, so that a test for AGE is depen-
dent on the coding of the HT variable. Such a test is also inappropri-
ate because AGE is a potential confounder, and confounding should
not be assessed by statistical testing.

Answers to
Practice
Exercises
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8. A hierarchical backward elimination procedure for the model in
Exercise 3 would involve first assessing interaction involving the four
interaction terms and then considering confounding involving the
four potential confounders. The interaction assessment could be done
using statistical testing, whereas the confounding assessment should
not use statistical testing. When considering confounding, any V vari-
able which is a lower-order component of a significant interaction
term must remain in all further models and is not eligible for deletion
as a nonconfounder. A test for any of these latter V’s is inappropriate
because such a test would be dependent on the coding of any variable
in the model.

9. If HT � CT and HT � SEX are found significant, then the V variables
CT and SEX cannot be removed from the model and must, therefore,
be retained in all further models considered. The HT variable remains
in all further models considered because it is the exposure variable of
interest. CT and SEX are lower-order components of higher-order
interaction terms. Therefore, it is not apropriate to test for their inclu-
sion in the model.

10. At the end of the interaction assessment stage, the remaining model is
given by
logit P(X) = � � �HT � �1HS � �2CT � �3AGE � �4SEX �
�2HT � CT � �4HT � SEX.
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This chapter continues the previous chapter (Chapter 6) that gives general
guidelines for a strategy for determining a best model using a logistic
regression procedure. The focus of this chapter is the interaction and con-
founding assessment stages of the model building strategy.

We begin by reviewing the previously recommended (Chapter 6) three-stage
strategy. The initial model is required to be hierarchically well formulated.
In carrying out this strategy, statistical testing is allowed for assessing inter-
action terms but is not allowed for assessing confounding.

For any interaction term found significant, a Hierarchy Principle is required
to identify lower-order variables which must remain in all further models
considered. A flow diagram is provided to describe the steps involved in
interaction assessment. Methods for significance testing for interaction
terms are provided.

Confounding assessment is then described, first when there is no interac-
tion, and then when there is interaction; the latter often being difficult to
accomplish in practice.

Finally, an application of the use of the entire recommended strategy is
described, and a summary of the strategy is given.

The outline below gives the user a preview of the material to be covered in
this chapter. A detailed outline for review purposes follows the presenta-
tion.

I. Overview (pages 194–195)
II. Interaction assessment stage (pages 195–198)

III. Confounding and precision assessment when no interaction
(pages 199–203)

IV. Confounding assessment with interaction (pages 203–211)
V. The Evans County example continued (pages 211–218)
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Upon completing this chapter, the learner should be able to:

1. Describe and apply the interaction assessment stage in a particular
logistic modeling situation.

2. Describe and apply the confounding assessment stage in a particular
logistic modeling situation
a. when there is no interaction;
b. when there is interaction.

Objectives 193

Objectives



This presentation describes a strategy for assessing
interaction and confounding when carrying out math-
ematical modeling using logistic regression. The goal
of the strategy is to obtain a valid estimate of an expo-
sure–disease relationship that accounts for confound-
ing and effect modification.

In the previous presentation on modeling strategy
guidelines, we recommended a modeling strategy with
three stages: (1) variable specification, (2) interac-
tion assessment, and (3) confounding assessment
followed by consideration of precision.

The initial model is required to be hierarchically well
formulated, which we denote as HWF. This means
that the initial model must contain all lower-order
components of any term in the model.

Thus, for example, if the model contains an interaction
term of the form EViVj, this will require the lower-
order terms EVi, EVj, Vi, Vj, and ViVj also to be in the
initial model.

Given an initial model that is HWF, the recommended
strategy then involves a hierarchical backward elim-
ination procedure for removing variables. In carrying
out this strategy, statistical testing is allowed for inter-
action terms but not for confounding terms. Note that
although any lower-order component of a higher-order
term must belong to the initial HWF model, such a
component might be dropped from the model eventu-
ally if its corresponding higher-order term is found to
be nonsignificant during the backward elimination
process.
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If, however, when assessing interaction, a product term
is found significant, the Hierarchy Principle must be
applied for lower-order components. This principle
requires all lower-order components of significant prod-
uct terms to remain in all further models considered.

According to our strategy, we consider interaction
after we have specified our initial model, which must
be hierarchically well formulated (HWF). To address
interaction, we use a hierarchical backward elimina-
tion procedure, treating higher-order terms of the
form EViVj prior to considering lower-order terms of
the form EVi.

A flow diagram for the interaction stage is presented
here. If our initial model contains terms up to the
order EViVj, elimination of these latter terms is consid-
ered first. This can be achieved by statistical testing in
a number of ways, which we discuss shortly.

When we have completed our assessment of EViVj
terms, the next step is to use the Hierarchy Principle to
specify any EVi terms which are components of signif-
icant EViVj terms. Such EVi terms are to be retained in
all further models considered.

The next step is to evaluate the significance of EVi
terms other than those identified by the Hierarchy
Principle. Those EVi terms that are nonsignificant are
eliminated from the model. For this assessment, previ-
ously significant EViVj terms, their EVi components,
and all Vi terms are retained in any model considered.
Note that some of the Vi terms will be of the form ViVj
if the initial model contains EViVj terms.

In carrying out statistical testing of interaction terms,
we recommend that a single “chunk” test for the entire
collection (or “chunk”) of interaction terms of a given
order be considered first.
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For example, if there are a total of three EViVj terms in
the initial model, namely, EV1V2, EV1V3, and EV2V3,
then the null hypothesis for this chunk test is that the
coefficients of these variables, say �1, �2, and �3 are all
equal to zero. The test procedure is a likelihood ratio
(LR) test involving a chi-square statistic with three
degrees of freedom which compares the full model
containing all Vi, ViVj, EVi, and EViVj terms with a
reduced model containing only Vi, ViVj, and EVi terms.

If the chunk test is not significant, then the investiga-
tor may decide to eliminate from the model all terms
tested in the chunk, for example, all EViVj terms. If the
chunk test is significant, then this means that some,
but not necessarily all terms in the chunk, are signifi-
cant and must be retained in the model.

To determine which terms are to be retained, the
investigator may carry out a backward elimination
algorithm to eliminate insignificant variables from the
model one at a time. Depending on the preference of
the investigator, such a backward elimination proce-
dure may be carried out without even doing the chunk
test or regardless of the results of the chunk test.

As an example of such a backward algorithm, suppose
we again consider a hierarchically well-formulated
model which contains the two EViVj terms EV1V2 and
EV1V3 in addition to the lower-order components V1,
V2, V3, V1V2, V1V3, and EV1, EV2, EV3.

Chunk Test
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V1, V2, V3, V1V2, V1V3,
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Using the backward approach, the least significant EViVj
term, say EV1V3, is eliminated from the model first,
provided it is nonsignificant, as shown on the left-hand
side of the flow. If it is significant, as shown on the
right-hand side of the flow, then both EV1V3 and EV1V2
must remain in the model, as do all lower-order com-
ponents, and the modeling process is complete.

Suppose that the EV1V3 term is not significant. Then,
this term is dropped from the model. A reduced model
containing the remaining EV1V2 term and all lower-
order components from the initial model is then fitted.
The EV1V2 term is then dropped if nonsignificant but
is retained if significant.

Suppose the EV1V2 term is found significant, so that as
a result of backward elimination, it is the only three-
factor product term retained. Then the above reduced
model is our current model, from which we now work
to consider eliminating EV terms.

Because our reduced model contains the significant
term EV1V2, we must require (using the Hierarchy
Principle) that the lower-order components E, V1, V2,
EV1, EV2, and V1V2 are retained in all further models
considered.

The next step is to assess the remaining EVi terms. In
this example, there is only one EVi term eligible to be
removed, namely EV3, because EV1 and EV2 are
retained from the Hierarchy Principle.
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To evaluate whether EV3 is significant, we can perform
a likelihood ratio (LR) chi-square test with one degree
of freedom. For this test, the two models being com-
pared are the full model consisting of EV1V2, all three
EVi terms and all Vi terms, including those of the form
ViVj, and the reduced model which omits the EV3 term
being tested. Alternatively, a Wald test can be per-
formed using the Z statistic equal to the coefficient of
the EV3 term divided by its standard error.

Suppose that both the above likelihood ratio and Wald
tests are nonsignificant. Then we can drop the variable
EV3 from the model.

Thus, at the end of the interaction assessment stage for
this example, the following terms remain in the model:
EV1V2, EV1, EV2, V1, V2, V3, V1V2, and V1V3.

All of the V terms, including V1V2 and V1V3, in the ini-
tial model are still in the model at this point. This is
because we have been assessing interaction only,
whereas the V1V2 and V1V3 terms concern confound-
ing. Note that although the ViVj terms are products,
they are confounding terms in this model because they
do not involve the exposure variable E.

Before discussing confounding, we point out that for
most situations, the highest-order interaction terms to be
considered are two-factor product terms of the form EVi.
In this case, interaction assessment begins with such
two-factor terms and is often much less complicated to
assess than when there are terms of the form EViVj.

In particular, when only two-factor interaction terms are
allowed in the model, then it is not necessary to have
two-factor confounding terms of the form ViVj in order
for the model to be hierarchically well formulated. This
makes the assessment of confounding a less complicated
task than when three-factor interactions are allowed.
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LR statistic 1
2�  χ

Full model: EV1V2, EV1, EV2, EV3,
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ˆ

ˆ
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Suppose both LR and Wald tests are 
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Interaction stage results:

EV1V2, EV1, EV2
V1, V2, V3
V1V2, V1V3

All Vi (and ViVj) remain in model after 
interaction assessment

} confounders
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⇓
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The final stage of our strategy concerns the assessment
of confounding followed by consideration of precision.
We have previously pointed out that this stage, in con-
trast to the interaction assessment stage, is carried out
without the use of statistical testing. This is because
confounding is a validity issue and, consequently, does
not concern random error issues which characterize
statistical testing.

We have also pointed out that controlling for con-
founding takes precedence over achieving precision
because the primary goal of the analysis is to obtain
the correct estimate rather than a narrow confidence
interval around the wrong estimate.

In this section, we focus on the assessment of con-
founding when the model contains no interaction
terms. The model in this case contains only E and V
terms but does not contain product terms of the form
E times W.

The assessment of confounding is relatively straight-
forward when no interaction terms are present in one’s
model. In contrast, as we shall describe in the next sec-
tion, it becomes difficult to assess confounding when
interaction is present.

In considering the no interaction situation, we first
consider an example involving a logistic model with a
dichotomous E variable and five V variables, namely,
V1 through V5.

For this model, the estimated odds ratio that describes
the exposure–disease relationship is given by the
expression e to the , where is the estimated coeffi-
cient of the E variable. Because the model contains no
interaction terms, this odds ratio estimate is a single
number which represents an adjusted estimate which
controls for all five V variables.

β̂β̂
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We refer to this estimate as the gold standard esti-
mate of effect because we consider it the best estimate
we can obtain which controls for all the potential con-
founders, namely, the five V’s, in our model.

We can nevertheless obtain other estimated odds
ratios by dropping some of the V’s from the model. For
example, we can drop V3, V4, and V5 from the model
and then fit a model containing E, V1 and V2. The esti-
mated odds ratio for this “reduced” model is also given
by the expression e to the , where is the coefficient
of E in the reduced model. This estimate controls for
only V1 and V2 rather than all five V’s.

Because the reduced model is different from the gold
standard model, the estimated odds ratio obtained
for the reduced model may be meaningful different
from the gold standard. If so, then we say that the
reduced model does not control for confounding
because it does not give us the correct answer (i.e.,
gold standard).

For example, suppose that the gold standard odds ratio
controlling for all five V’s is 2.5, whereas the odds ratio
obtained when controlling for only V1 and V2 is 5.2.
Then, because these are meaningfully different odds
ratios, we cannot use the reduced model containing V1
and V2 because the reduced model does not properly
control for confounding.

Now although use of only V1 and V2 may not control
for confounding, it is possible that some other subset
of the V’s may control for confounding by giving
essentially the same estimated odds ratio as the gold
standard.

For example, perhaps when controlling for V3 alone,
the estimated odds ratio is 2.7 and when controlling
for V4 and V5, the estimated odds ratio is 2.3. The use
of either of these subsets controls for confounding
because they give essentially the same answer as the
2.5 obtained for the gold standard.

β̂β̂
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EXAMPLE (continued)

Gold standard estimate:
controls for all potential confounders
(i.e., all five V ’s)

Other OR estimates:
drop some V ’s
e.g., drop V3, V4, V5

Reduced model

controls for V1 and V2 only

reduced model � gold standard model
correct answer

OR (reduced) � OR (gold standard)

If different, then reduced model does
not control for confounding

Suppose:
Gold standard (all five V’s)

OR � 2.5
reduced model (V1 and V2)

↑ OR � 5.2
does not control                meaningfully
for confounding                    different

If equal, then subset controls 
confounding

OR (V3 alone) � 2.7
OR (V4 and V5) � 2.3
OR (gold standard) � 2.5

All three estimates are “essentially” the
same as the gold standard

logit P 1 1 2 2X( ) = + + +α β γ γE V V

OR = eβ̂ˆ

?ˆ ˆ

ˆ

ˆ

OR
some other

subset of ’s
OR

gold

standardV

⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

?

ˆ
ˆ
ˆ

ˆˆ



EXAMPLE

95% confidence interval (CI)

In general, regardless of the number of V’s in one’s
model, the method for assessing confounding when
there is no interaction is to monitor changes in the
effect measure corresponding to different subsets of
potential confounders in the model. That is, we must
see to what extent the estimated odds ratio given by e
to the for a given subset is different from the gold
standard odds ratio.

More specifically, to assess confounding, we need to
identify subsets of the V’s that give approximately the
same odds ratio as the gold standard. Each of these
subsets controls for confounding.

If we find one or more subset of the V’s which give us
the same point estimate as the gold standard, how then
do we decide which subset to use? Moreover, why
don’t we just use the gold standard?

The answer to both these questions involves consider-
ation of precision. By precision, we refer to how nar-
row a confidence interval around the point estimate is.
The narrower the confidence interval, the more precise
the point estimate.

For example, suppose the 95% confidence interval
around the gold standard OR of 2.5 that controls for all
five V’s has limits of 1.4 and 3.5, whereas the 95% con-
fidence interval around the OR of 2.7 that controls for
V3 only has limits of 1.1 and 4.2.

Then the gold standard OR estimate is more precise
than the OR estimate that controls for V3 only because
the gold standard has the narrower confidence inter-
val. Specifically, the narrower width is 3.5 minus 1.4,
or 2.1, whereas the wider width is 4.2 minus 1.1, or 3.1.

Note that it is possible that the gold standard estimate
actually may be less precise than an estimate resulting
from control of a subset of V’s. This will depend on the
particular data set being analyzed.

β̂

In general, when no interaction, assess 
confounding by

• monitoring changes in effect measure
for subsets of V’s, i.e., monitor changes
in

• identify subsets of V’s giving approxi-
mately same OR as gold standard
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OR = eβ̂ˆ

If OR (subset of V’s) � OR (gold standard),
then
• which subset to use?
• why not use gold standard?

Answer: precision

ˆ ˆ

less precise
CI’s: (___________)

less narrow

more precise
(______)

more narrow

OR � 2.5
Gold standard

all five V’s

3.5 � 1.4 � 2.1
(___________)

1.4  narrower  3.5

more precise

ˆ OR � 2.7
Reduced model

V3 only

4.2 � 1.1 � 3.1
(________________)

1.1       wider       4.2

less precise

ˆ

ˆ

ˆ

ˆ



The answer to the question, Why don’t we just use the
gold standard? is that we might gain a meaningful
amount of precision controlling for a subset of V’s,
without sacrificing validity. That is, we might find a
subset of V’s to give essentially the same estimate as
the gold standard but which also has a much narrower
confidence interval.

For instance, controlling for V4 and V5 may obtain the
same point estimate as the gold standard but a nar-
rower confidence interval, as illustrated here. If so, we
would prefer the estimate which uses V4 and V5 in our
model to the gold standard estimate.

We also asked the question, How do we decide which
subset to use for control? The answer to this is to
choose that subset which gives the most meaningful
gain in precision among all eligible subsets, including
the gold standard.

By eligible subset, we mean any collection of V’s that
gives essentially the same point estimate as the gold
standard.

Thus, we recommend the following general procedure
for the confounding and precision assessment stage of
our strategy:

(1) Identify eligible subsets of V’s giving approxi-
mately the same odds ratio as the gold standard.

(2) Control for that subset which gives the largest
gain in precision. However, if no subset gives
meaningfully better precision than the gold stan-
dard, it is scientifically better to control for all
V’s using the gold standard.

The gold standard is scientifically better because per-
sons who critically appraise the results of the study can
see that when using the gold standard, all the relevant
variables have been controlled for in the analysis.

Why don’t we use gold standard?

Answer: Might find subset of V’s which will

• gain precision (narrower CI)
• without sacrificing validity (same point

estimate)

202 7. Modeling Strategy for Assessing Interaction and Confounding

EXAMPLE

Model OR CI
✓ V4 and V5 same narrower

(2.3) (1.9, 3.1)
Gold same wider

standard (2.5) (1.4, 3.5)

Which subset to control?

Answer: subset with most meaningful gain
in precision

Eligible subset: same point estimate as
gold standard

Recommended procedure:

(1) identify eligible subsets of V’s
(2) control for that subset with largest

gain in precision

However, if no subset gives better precision,
use gold standard

Scientific: Gold standard uses all relevant
variables for control

ˆ



Returning to our example involving five V variables,
suppose that the point estimates and confidence inter-
vals for various subsets of V’s are given as shown here.
Then there are only two eligible subsets other than the
gold standard—namely V3 alone, and V4 and V5 together
because these two subsets give the same odds ratio as
the gold standard.

Considering precision, we then conclude that we
should control for all five V’s, that is, the gold standard,
because no meaningful gain in precision is obtained
from controlling for either of the two eligible subsets
of V’s. Note that when V3 alone is controlled, the CI is
wider than that for the gold standard. When V4 and V5
are controlled together, the CI is the same as the gold
standard.

We now consider how to assess confounding when the
model contains interaction terms. A flow diagram
which describes our recommended strategy for this sit-
uation is shown here. This diagram starts from the
point in the strategy where interaction has already
been assessed. Thus, we assume that decisions have
been made about which interaction terms are signifi-
cant and are to be retained in all further models 
considered.

In the first step of the flow diagram, we start with a
model containing E and all potential confounders ini-
tially specified as Vi and ViVj terms plus remaining
interaction terms determined from interaction assess-
ment. This includes those EVi and EViVj terms found
to be significant plus those EVi terms that are compo-
nents of significant EViVj terms. Such EVi terms must
remain in all further models considered because of the
Hierarchy Principle.

This model is the gold standard model to which all
further models considered must be compared. By gold
standard, we mean that the odds ratio for this model
controls for all potential confounders in our initial
model, that is, all the Vi’s and ViVj’s.

Presentation: IV. Confounding Assessment with Interaction 203

EXAMPLE

logit P 5 5X( ) = + + + +α β γ γE V V1 1 L

V’s in model e 95% CI

V1, V2, V3, V4, V5 2.5 (1.4, 3.5)
V3 only 2.7 (1.1, 4.2)
V4, V5 only 2.3 (1.3, 3.4)
other subsets * —

β̂

wider
same
width

* ˆ
eβ meaningfully different from 2.5

IV. Confounding Assessment with
Interaction

Interaction
Stage completed—
Begin confounding

Start with model containing
E, all Vi, all ViVj

and
remaining EVi and EViVj

gold standard model



In the second step of the flow diagram, we apply the
Hierarchy Principle to identify those Vi and ViVj terms
that are lower-order components of those interaction
terms found significant. Such lower-order components
must remain in all further models considered.

In the final step of the flow diagram, we focus on only
those Vi and ViVj terms not identified by the Hierarchy
Principle. These terms are candidates to be dropped
from the model as nonconfounders. For those vari-
ables identified as candidates for elimination, we then
assess confounding followed by consideration of
precision.

If the model contains interaction terms, the final (con-
founding) step is difficult to carry out and requires
subjectivity in deciding which variables can be elimi-
nated as nonconfounders. We will illustrate such diffi-
culties by the example below.

To avoid making subjective decisions, the safest
approach is to keep all potential confounders in the
model, whether or not they are eligible to be dropped.
This will ensure the proper control of confounding but
has the potential drawback of not giving as precise an
odds ratio estimate as possible from some smaller sub-
set of confounders.

In assessing confounding when there are interaction
terms, the general procedure is analogous to when
there is no interaction. We assess whether the esti-
mated odds ratio changes from the gold standard
model when compared to a model without one or more
of the eligible Vi’s and ViVj’s.

More specifically, we carry out the following two steps:

(1) Identify those subsets of Vi’s and ViVj’s giving
approximately the same odds ratio estimate as
the gold standard.

(2) Control for that subset which gives the largest
gain in precision.

interaction terms in model
⇓

final (confounding) step
difficult—subjective

Safest approach:
keep all potential confounders in model:

controls confounding but may lose
precision

Confounding—general procedure:

OR change?

gold standard   vs.   model without one 
model                 or more Vi and ViVj

(1) Identify subsets so that
ORgold standard ≈ ORsubset

(2) Control for largest gain in precision
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Apply Hierarchy Principle to identify
Vi, and ViVj terms

to remain in all further models

Focus on Vi, and ViVj terms
not identified above:

• candidates for elimination
• assess confounding/precision for

these variables

ˆ

ˆ ˆ

difficult when there is interaction



If the model contains interaction terms, the first step is
difficult in practice. The odds ratio expression, as
shown here, involves two or more coefficients, includ-
ing one or more nonzero �. In contrast, when there is
no interaction, the odds ratio involves the single coeffi-
cient .

It is likely that at least one or more of the and � coef-
ficients will change somewhat when potential con-
founders are dropped from the model. To evaluate how
much of a change is a meaningful change when con-
sidering the collection of coefficients in the odds ratio
formula is quite subjective. This will be illustrated by
the example.

As an example, suppose our initial model contains E,
four V’s, namely, V1, V2, V3, and V4 = V1V2, and four
EV’s, namely, EV1, EV2, EV3, and EV4. Note that EV4
alternatively can be considered as a three-factor prod-
uct term as it is of the form EV1V2.

Suppose also that because EV4 is a three-factor prod-
uct term, it is tested first, after all the other variables
are forced into the model. Further, suppose that this
test is significant, so that the term EV4 is to be retained
in all further models considered.

Because of the Hierarchy Principle, then, we must retain
EV1 and EV2 in all further models as these two terms
are components of EV1V2. This leaves EV3 as the
only remaining two-factor interaction candidate to be
dropped if not significant.

To test for EV3, we can do either a likelihood ratio test
or a Wald test for the addition of EV3 to a model after
E, V1, V2, V3, V4 = V1V2, EV1, EV2 and EV4 are forced
into the model.

Note that all four potential confounders—V1 through
V4—are forced into the model here because we are at
the interaction stage so far, and we have not yet
addressed confounding in this example.

β̂

β̂

Coefficients change when potential con-
founders dropped:

• meaningful change?
• subjective?
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Interaction :  OR exp

 and  nonzero

no interaction : OR exp

= +( )

= ( )

∑ˆ ˆ

ˆ ˆ

ˆ

β δ

β δ

β

j j

j

W

EXAMPLE

Variables in initial model:
E, V1, V2, V3, V4 � V1V2
EV1, EV2, EV3, EV4 � EV1V2

Suppose EV4 (� EV1V2)
significant

Hierarchy Principle:

EV1 and EV2 retained in all further
models

EV3 candidate to be dropped

Test for EV3 (LR or Wald test)

V1, V2, V3, V4 (all potential confounders)
forced into model during interaction stage

ˆ

ˆ
ˆ

ˆ



The likelihood ratio test for the significance of EV3
compares a “full” model containing E, the four V’s,
EV1, EV2, EV3, and EV4 with a reduced model which
eliminates EV3 from the full model.

The LR statistic is given by the difference in the log
likelihood statistics for the full and reduced models.
This statistic has a chi-square distribution with one
degree of freedom under the null hypothesis that the
coefficient of the EV3 term is 0 in our full model at this
stage.

Suppose that when we carry out the LR test for this
example, we find that the EV3 term is not significant.
Thus, at the end of the interaction assessment stage,
we are left with a model that contains E, the four V’s,
EV1, EV2, and EV4. We are now ready to assess con-
founding for this example.

Our initial model contained four potential con-
founders, namely, V1 through V4, where V4 is the prod-
uct term V1 times V2. Because of the Hierarchy
Principle, some of these terms are not eligible to be
dropped from the model, namely, the lower-order
components of higher-order product terms remaining
in the model.

In particular, because EV1V2 has been found signifi-
cant, we must retain in all further models the lower-
order components V1, V2, and V1V2, which equals V4.
This leaves V3 as the only remaining potential con-
founder that is eligible to be dropped from the model
as a possible nonconfounder.

To evaluate whether V3 can be dropped from the
model as a nonconfounder, we consider whether the
odds ratio for the model which controls for all four
potential confounders, including V3, plus previously
retained interaction terms, is meaningfully different
from the odds ratio that controls for previously
retained variables but excludes V3.
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EXAMPLE (continued)

LR test for EV3: Compare full model
containing

with reduced model containing

Suppose EV3 not significant
⇓

model after interaction assessment:

E, V1, V2, V3, V4 , EV1, EV2, EV4

where V4 � V1V2 potential
confounders

Hierarchy Principle:
identify V’s not eligible to be
dropped—lower-order components

EV1V2 significant
⇓ Hierarchy Principle
Retain V1, V2, and V4 � V1V2
Only V3 eligible to be dropped

E V V V V EV EV EV EV

V EV

,  ,  ,  ,  ,  ,  ,  ,   1 2 3 4

’s

1 2 3 4

’s
1 244 344 1 24444 34444

LR 2 ln 2 ln 

is  under H : 0 

reduced full

1df
2

0 3

= −( ) − −( )
=

ˆ ˆL L

EV χ β in full model

OR OR
1 2 3 4 1 2 4, , , , , V V V V V V V≠

?

↑
excludes V3

ˆ ˆ

E V V V V EV EV EV

EV

,  ,  ,  ,  ,  ,  ,   1 2 3 4 1 2 4

without 3

1 244 344



The odds ratio that controls for all four potential con-
founders plus retained interaction terms is given by
the expression shown here. This expression gives a for-
mula for calculating numerical values for the odds
ratio. This formula contains the coefficients , �1, �2,
and �4, but also requires specification of three effect
modifiers—namely, V1, V2, and V4, which are in the
model as product terms with E.

The numerical value computed for the odds ratio will
differ depending on the values specified for the effect
modifiers V1, V2, and V4. This should not be surprising
because the presence of interaction terms in the model
means that the value of the odds ratio differs for dif-
ferent values of the effect modifiers.

The above odds ratio is the gold standard odds ratio
expression for our example. This odds ratio controls
for all potential confounders being considered, and it
provides baseline odds ratio values to which all other
odds ratio computations obtained from dropping can-
didate confounders can be compared.

The odds ratio that controls for previously retained vari-
ables but excludes the control of V3 is given by the expres-
sion shown here. Note that this expression is essentially
of the same form as the gold standard odds ratio. In par-
ticular, both expressions involve the coefficient of the
exposure variable and the same set of effect modifiers.

However, the estimated coefficients for this odds ratio
are denoted with an asterisk (*) to indicate that these
estimates may differ from the corresponding estimates
for the gold standard. This is because the model that
excludes V3 contains a different set of variables and,
consequently, may result in different estimated coeffi-
cients for those variables in common to both models.

In other words, because the gold standard model con-
tains V3, whereas the model for the asterisked odds
ratio does not contain V3, it is possible that � will dif-
fer from �*, and that the � will differ from the �*.

β̂
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EXAMPLE (continued)

OR exp ,
1 2 3 4, , , 1 1 2 2 4 4V V V V V V V= + + +( )ˆ ˆ ˆ ˆβ δ δ δ

where ,  ,  and  are coefficients of 

,  ,  and  
1 2 4

1 2 4 1 2

ˆ ˆ ˆδ δ δ

EV EV EV EV V=

ˆ

OR exp 1 1 2 2 4 4= + + +( )ˆ ˆ ˆ ˆβ δ δ δV V V

OR differs for different specifications of
V1, V2, V4

ˆ
ˆ

gold standard OR,
• controls for all potential confounders
• gives baseline OR

ˆ

ˆ

OR* exp ,

where ,  ,  ,   are 

coefficients in model without  

*
1
*

1 2
*

2 4
*

4

*
1
*

2
*

4
*

3

= + + +⎛
⎝

⎞
⎠

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

β δ δ δ

β δ δ δ

V V V

V

Model without V3:
E, V1, V2, V4, EV1, EV2, EV4

Model with V3:
E, V1, V2, V3, V4, EV1, EV2, EV4

Possible that

,  ,  ,   *
1 1

*
2 2

*
4 4

*ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆβ β δ δ δ δ δ δ≠ ≠ ≠ ≠

ˆ

ˆ ˆ
ˆ

ˆ
ˆ ˆ ˆ



To assess (data-based) confounding here, we must
determine whether there is a meaningful difference
between the gold standard and asterisked odds ratio
expressions. There are two alternative ways to do this.
(The assessment of confounding involves criteria
beyond what may exist in the data.)

One way is to compare corresponding estimated coef-
ficients in the odds ratio expression, and then to make
a decision whether there is a meaningful difference in
one or more of these coefficients.

If we decide yes, that there is a difference, we then
conclude that there is confounding due to V3, so that
we cannot eliminate V3 from the model. If, on the
other hand, we decide no, that corresponding coeffi-
cients are not different, we then conclude that we do
not need to control for the confounding effects of V3.
In this case, we may consider dropping V3 from the
model if we can gain precision by doing so.

Unfortunately, this approach for assessing confound-
ing is difficult in practice. In particular, in this exam-
ple, the odds ratio expression involves four coeffi-
cients, and it is likely that at least one or more of these
will change somewhat when one or more potential
confounders are dropped from the model.

To evaluate whether there is a meaningful change in
the odds ratio therefore requires an overall decision as
to whether the collection of four coefficients, and
three �, in the odds ratio expression meaningfully
change. This is a more subjective decision than for the
no interaction situation when is the only coefficient
to be monitored.

β̂

β̂
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EXAMPLE (continued)

Meaningful difference?

Difference?

Yes ⇒ V3 confounder;
cannot eliminate V3

No ⇒ V3 not confounder; 
drop V3 if precision gain

Overall decision required about change in

More subjective than when no interaction
(only    )

gold standard model :

OR exp

model without :

OR* exp

1 1 2 2 4 4

3

*
1
*

1 2
*

2 4
*

4

= + + +( )

= + + +⎛
⎝

⎞
⎠

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

β δ δ δ

β δ δ δ

V V V

V

V V V

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆβ δ δ δ β δ δ δ,  ,  ,  ,  vs.    ,  ,  ,   1 2 4
*

1
*

2
*

4
*

Difficult approach:
• four coefficients to compare;
• coefficients likely to change

ˆ ˆ ˆ ˆβ δ δ δ,  ,  ,  1 2 4

β̂

ˆ

ˆ

ˆ



Moreover, because the odds ratio expression involves
the exponential of a linear function of the four coeffi-
cients, these coefficients are on a log odds ratio scale
rather than an odds ratio scale. Using a log scale to
judge the meaningfulness of a change is not as clini-
cally relevant as using the odds ratio scale.

For example, a change in from �12.69 to �12.72 and
a change in �1 from 0.0692 to 0.0696 are not easy to
interpret as clinically meaningful because these values
are on a log odds ratio scale.

A more interpretable approach, therefore, is to view
such changes on the odds ratio scale. This involves cal-
culating numerical values for the odds ratio by substi-
tuting into the odds ratio expression different choices
of the values for the effect modifiers Wj.

Thus, to calculate an odds ratio value from the gold
standard formula shown here, which controls for all
four potential confounders, we would need to specify
values for the effect modifiers V1, V2, and V4, where V4
equals V1V2. For different choices of V1 and V2, we
would then obtain different odds ratio values. This
information can be summarized in a table or graph of
odds ratios which consider the different specifications
of the effect modifiers. A sample table is shown here.

To assess confounding on an odds ratio scale, we
would then compute a similar table or graph which
would consider odds ratio values for a model which
drops one or more eligible V variables. In our example,
because the only eligible variable is V3, we, therefore,
need to obtain an odds ratio table or graph for the
model that does not contain V3. A sample table of OR*

values is shown here.

Thus, to assess whether we need to control for con-
founding from V3, we need to compare two tables of
odds ratios, one for the gold standard and the other for
the model which does not contain V3.

β̂
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EXAMPLE (continued)

OR exp 1 1 2 2 4 4

linear function

= + + +( )ˆ ˆ ˆ ˆβ δ δ δV V V
1 24444 34444

ˆ ˆ ˆ ˆβ δ δ δ,  ,  ,   on log odds ratio scale;1 2 4

but odds ratio scale is clinically relevant

ˆ ˆ

ˆ

β β

δ δ

= − = −

= =

12.69 vs. 12.72

0.0692 vs. 0.0696

*

1 1
*

Log odds ratio scale:

Odds ratio scale:

for different choices of Wj

Gold standard OR:

where V4 � V1V2

Specify V1 and V2 to get OR:

Model without V3:

Compare tables of

ORs     vs.     OR*s
gold standard      model without V3

ˆ

calculate OR exp= +( )∑β̂ δ j jW

OR exp 1 1 2 2 4 4= + + +( )ˆ ˆ ˆ ˆβ δ δ δV V V

V1�20 V1�30 V1�40

V2�100 OR OR OR

V2�200 OR OR OR

ˆ ˆ ˆ
ˆ ˆ ˆ

V1�20 V1�30 V1�40

V2�100 OR* OR* OR*

V2�200 OR* OR* OR*

ˆ ˆ ˆ
ˆ ˆ ˆ

OR* exp *
1
*

1 2
*

2 4
*

4= + + +⎛
⎝

⎞
⎠

ˆ ˆ ˆ ˆβ δ δ δV V V

ˆ ˆ

ˆ

ˆ

ˆ

ˆ



If, looking at these two tables collectively, we find that
yes, there is one or more meaningful difference in cor-
responding odds ratios, we would conclude that the
variable V3 needs to be controlled for confounding. In
contrast, if we decide that no, the two tables are not
meaningfully different, we can conclude that variable
V3 does not need to be controlled for confounding.

If the decision is made that V3 does not need to be con-
trolled for confounding reasons, we still may wish to
control for V3 because of precision reasons. That is, we
can compare confidence intervals for corresponding
odds ratios from each table to determine whether we
gain or lose precision depending on whether or not V3
is in the model.

In other words, to assess whether there is a gain in pre-
cision from dropping V3 from the model, we need to
make an overall comparison of two tables of confi-
dence intervals for odds ratio estimates obtained when
V3 is in and out of the model.
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EXAMPLE (continued)

gold standard OR

OR OR OR

OR OR OR

ˆ
ˆ ˆˆ
ˆ ˆˆ

OR* (excludes V3)

OR* OR* OR*

OR* OR* OR*

ˆ
ˆ ˆˆ
ˆ ˆˆ

gold standard CI

CI CI CI

CI CI CI

CI* (excludes V3)

CI* CI* CI* 

CI* CI* CI* 

corresponding odds ratios

yes

no

OR tables
meaningfully

different?

Control V3
for con-
founding

Do not need to control
V3 for confounding

Consider precision with and without
V3 by comparing confidence intervals

Gain in precision?



If, overall, we decide that yes, the asterisked confi-
dence intervals, which exclude V3, are narrower than
those for the gold standard table, we would conclude
that precision is gained from excluding V3 from the
model. Otherwise, if we decide no, then we conclude
that no meaningful precision is gained from dropping
V3, and so we retain this variable in our final model.

Thus, we see that when there is interaction and we
want to assess both confounding and precision, we
must compare tables of odds ratio point estimates fol-
lowed by tables of odds ratio confidence intervals.
Such comparisons are quite subjective and, therefore,
debatable in practice. That is why the safest decision is
to control for all potential confounders even if some
V’s are candidates to be dropped.

We now review the interaction and confounding
assessment recommendations by returning to the
Evans County Heart Disease Study data that we have
considered in the previous chapters.

Recall that the study data involves 609 white males fol-
lowed for 9 years to determine CHD status. The expo-
sure variable is catecholamine level (CAT), and the C
variables considered for control are AGE, cholesterol
(CHL), smoking status (SMK), electrocardiogram
abnormality status (ECG), and hypertension status
(HPT). The variables AGE and CHL are treated contin-
uously, whereas SMK, ECG, and HPT are (0, 1) 
variables.

Confounding assessment when interaction
present (summary):

• compare tables of ORs and CIs
• subjective—debatable
• safest decision—control for all potential

counfounders
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EXAMPLE (continued)

Yes

No

CI*
narrower
than CI?

Precision
gained from
excluding V3

No precision gained
from excluding V3

Retain V3

EXAMPLE

Evans County Heart Disease Study

n � 609 white males
9-year follow-up

D � CHD(0, 1)
E � CAT(0, 1)

C’s : AGE, CHL SMK, ECG, HPT

continuous 0, 1
1 244 344 1 2444 3444

( )

V. The Evans County Example
Continued

Exclude V3



In the variable specification stage of our strategy, we
choose an initial E, V, W model, shown here, contain-
ing the exposure variable CAT, five V’s which are the
C’s themselves, and five W’s which are also the C’s
themselves and which go into the model as product
terms with the exposure CAT.

This initial model is HWF because the lower-order
components of any EVi term, namely, E and Vi, are
contained in the model.

Note also that the highest-order terms in this model
are two-factor product terms of the form EVi. Thus, we
are not considering more complicated three-factor
product terms of the form EViVj nor Vi terms which are
of the form ViVj.

The next step in our modeling strategy is to consider
eliminating unnecessary interaction terms. To do this,
we use a backward elimination procedure to remove
variables. For interaction terms, we proceed by elimi-
nating product terms one at a time.

The flow for our backward procedure begins with the
initial model and then identifies the least significant
product term. We then ask, “Is this term significant?”
If our answer is no, we eliminate this term from the
model. The model is then refitted using the remaining
terms. The least significant of these remaining terms is
then considered for elimination.

This process continues until our answer to the signifi-
cance question in the flow diagram is yes. If so, the
least significant term is significant in some refitted
model. Then, no further terms can be eliminated, and
our process must stop.

For our initial Evans County model, the backward pro-
cedure allows us to eliminate the product terms of CAT
� AGE, CAT � SMK, and CAT � ECG. The remaining
interaction terms are CAT � CHL and CAT � HPT.
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EXAMPLE (continued)

Initial E, V, W model:

where V’s � C’s � W’s
HWF model because
EVi in model

⇓
E and Vi in model

Highest order in model: EVi
no EViVj or ViVj terms

Next step:
interaction assessment using 
backward elimination

logit P CAT
1

5

1

5
X( ) = + + +

= =
∑ ∑α β γ δi i
i

j j
j

V E W

Backward elimination:

Initial model
Find least significant

product term

Do not drop terms
from model

Drop term
from model

STOP Refit
model

significant?

Interaction results:
eliminated remaining
CAT � AGE CAT � CHL
CAT � SMK CAT � HPT
CAT � ECG

Yes No



A summary of the printout for the model remaining
after interaction assessment is shown here. In this
model, the two interaction terms are CH equals CAT �
HPT and CC equals CAT � CHL. The least significant
of these two terms is CH because the Wald statistic for
this term is given by the chi-square value of 9.86,
which is less significant than the chi-square value of
23.20 for the CC term.

The P-value for the CH term is 0.0017, so that this term
is significant at well below the 1% level. Consequently,
we cannot drop CH from the model, so that all further
models must contain the two product terms CH and CC.

We are now ready to consider the confounding assess-
ment stage of the modeling strategy. The first step in
this stage is to identify all variables remaining in the
model after the interaction stage. These are CAT, all
five V variables, and the two product terms CAT �
CHL and CAT � HPT.

The reason why the model contains all five V’s at this
point is that we have only completed interaction
assessment and have not yet begun to address con-
founding to evaluate which of the V’s can be elimi-
nated from the model.

The next step is to apply the Hierarchy Principle to
determine which V variables cannot be eliminated
from further models considered.

The Hierarchy Principle requires all lower-order com-
ponents of significant product terms to remain in all
further models.

The two significant product terms in our model are
CAT � CHL and CAT � HPT. The lower-order compo-
nents of CAT � CHL are CAT and CHL. The lower-
order components of CAT � HPT are CAT and HPT.
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EXAMPLE (continued)

Printout:
Variable Coefficient S.E. Chi sq P
Intercept �4.0497 1.2550 10.41 0.0013

CAT �12.6894 3.1047 16.71 0.0000
AGE 0.0350 0.0161 4.69 0.0303
CHL �0.00545 0.0042 1.70 0.1923
ECG 0.3671 0.3278 1.25 0.2627
SMK 0.7732 0.3273 5.58 0.0181
HPT 1.0466 0.3316 9.96 0.0016
CH �2.3318 0.7427 9.86 0.0017
CC 0.0692 0.3316 23.20 0.0000

CH � CAT � HPT and CC � CAT � CHL
remain  in all further models

V’s{
W ’s

Confounding assessment:
Step 1. Variables in model:

All five V’s still in model after interaction

Hierarchy Principle:

• determine V’s that cannot be 
eliminated

• all lower-order components of 
significant product terms remain

CAT, AGE, CHL, SMK, ECG, HPT

CAT CHL, CAT HPT,
’s

’s

V

EV

1 2444444 3444444

1 244444 344444× ×

CAT � CHL significant ⇒ CAT and CHL
components

CAT � HPT significant ⇒ CAT and HPT
components



Because CAT is the exposure variable, we must leave
CAT in all further models regardless of the Hierarchy
Principle. In addition, CHL and HPT are the two V’s
that must remain in all further models.

This leaves the V variables AGE, SMK, and ECG as still
being candidates for elimination as possible noncon-
founders.

As described earlier, one approach to assessing
whether AGE, SMK, and ECG are nonconfounders is
to determine whether the coefficients in the odds ratio
expression for the CAT, CHD relationship change
meaningfully as we drop one or more of the candidate
terms AGE, SMK, and ECG.

The odds ratio expression for the CAT, CHD relation-
ship is shown here. This expression contains , the
coefficient of the CAT variable, plus two terms of the
form � times W, where the W’s are the effect modifiers
CHL and HPT that remain as a result of interaction
assessment.

The gold standard odds ratio expression is derived
from the model remaining after interaction assess-
ment. This model controls for all potential con-
founders, that is, the V’s, in the initial model. For the
Evans County data, the coefficients in this odds ratio,
which are obtained from the printout above, are 
equals �12.6894, �1 equals 0.0692, and �2 equals
�2.3318.

The table shown here provides the odds ratio coeffi-
cients , �1, and �2 for different subsets of AGE, SMK,
and ECG in the model. The first row of coefficients is
for the gold standard model, which contains all five
V’s. The next row shows the coefficients obtained when
SMK is dropped from the model, and so on down to
the last row which shows the coefficients obtained
when AGE, SMK, and ECG are simultaneously re-
moved from the model so that only CHL and HPT are
controlled.

β̂

β̂

β̂
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EXAMPLE (continued)

Thus, retain CAT, CHL, and HPT in all
further models

Candidates for elimination:
AGE, SMK, ECG

Assessing confounding:
do coefficients in OR expression
change?

where

ˆ

OR exp CHL HPT ,1 2= + +( )ˆ ˆ ˆβ δ δ

ˆ

ˆ

ˆ

β

δ

δ

=

= = ×

= = ×

coefficient of CAT

coefficient of CC CAT CHL

coefficient of CH CAT HPT

1

2

OR exp CHL HPT ,1 2= + +( )ˆ ˆ ˆβ δ δ

Gold standard OR (all V’s):

where

ˆ

ˆ ˆ ˆβ δ δ= − = = −12.6894, 0.0692,  2.33181 2

Vi in model � �1 �2

All five V variables �12.6894 0.0692 �2.3318
CHL, HPT, AGE, ECG �12.7285 0.0697 �2.3836
CHL, HPT, AGE, SMK �12.8447 0.0707 �2.3334
CHL, HPT, ECG, SMK �12.5684 0.0697 �2.2081
CHL, HPT, AGE �12.7879 0.0707 �2.3796
CHL, HPT, ECG �12.6850 0.0703 �2.2590
CHL, HPT, SMK �12.7198 0.0712 �2.2210
CHL, HPT �12.7411 0.0713 �2.2613

ˆ ˆ ˆ

ˆ

ˆ

ˆ

ˆ ˆ

ˆ ˆ



In scanning the above table, it is seen for each coeffi-
cient separately (that is, by looking at the values in a
given column) that the estimated values change some-
what as different subsets of AGE, SMK, and ECG are
dropped. However, there does not appear to be a radi-
cal change in any coefficient.

Nevertheless, it is not clear whether there is sufficient
change in any coefficient to indicate meaningful differ-
ences in odds ratio values. Assessing the effect of a change
in coefficients on odds ratio values is difficult because the
coefficients are on the log odds ratio scale. It is more
appropriate to make our assessment of confounding
using odds ratio values rather than log odds ratio values.

To obtain numerical values for the odds ratio for a given
model, we must specify values of the effect modifiers in
the odds ratio expression. Different specifications will
lead to different odds ratios. Thus, for a given model, we
must consider a summary table or graph that describes
the different odds ratio values that are calculated.

To compare the odds ratios for two different models,
say the gold standard model with the model that
deletes one or more eligible V variables, we must com-
pare corresponding odds ratio tables or graphs.

As an illustration using the Evans County data, we com-
pare odds ratio values computed from the gold standard
model with values computed from the model which
deletes the three eligible variables AGE, SMK, and ECG.

The table shown here gives odds ratio values for the
gold standard model, which contains all five V vari-
ables, the exposure variable CAT, and the two interac-
tion terms CAT � CHL and CAT � HPT. In this table,
we have specified three different row values for CHL,
namely, 200, 220, and 240, and two column values for
HPT, namely, 0 and 1. For each combination of CHL
and HPT values, we thus get a different odds ratio.
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EXAMPLE (continued)

Coefficients change somewhat. No 
radical change

Meaningful differences in OR?

• coefficients on log odds ratio scale
• more appropriate: odds ratio scale

ˆ

OR exp CHL HPT1 2= + +( )ˆ ˆ ˆβ δ δ

Specify values of effect modifiers
Obtain summary table of ORs

Compare
gold standard vs. other models

using (without V’s)

odds ratio tables or graphs

Evans County example:
gold standard

vs.
model without AGE, SMK, and ECG

Gold standard OR:

HPT � 0 HPT � 1

CHL � 200 OR � 3.16 OR � 0.31

CHL � 220 OR � 12.61 OR � 1.22

CHL � 240 OR � 50.33 OR � 4.89

ˆ

OR exp 12.6894 0.0692CHL 2.3318HPT= − + −( )

CHL � 200, HPT � 0 ⇒ OR � 3.16
CHL � 220, HPT � 1 ⇒ OR � 1.22

ˆ

ˆ ˆ

ˆ
ˆ

ˆ ˆ
ˆ ˆ

ˆ



For example, if CHL equals 200 and HPT equals 0, the
computed odds ratio is 3.16, whereas if CHL equals
220 and HPT equals 1, the computed odds ratio is 1.22.

The table shown here gives odds ratio values, indicated
by “asterisked” OR, for a model that deletes the three
eligible V variables, AGE, SMK, and ECG. As with the
gold standard model, the odds ratio expression
involves the same two effect modifiers CHL and HPT,
and the table shown here considers the same combina-
tion of CHL and HPT values.

If we compare corresponding odds ratios in the two
tables, we can see sufficient discrepancies.

For example, when CHL equals 200 and HPT equals 0,
the odds ratio is 3.16 in the gold standard model, but is
4.57 when AGE, SMK, and ECG are deleted. Also,
when CHL equals 220 and HPT equals 1, the corre-
sponding odds ratios are 1.22 and 1.98.

Thus, because the two tables of odds ratios differ
appreciably, we cannot simultaneously drop AGE,
SMK, and ECG from the model.

Similar comparisons can be made by comparing the
gold standard odds ratio with odds ratios obtained by
deleting other subsets, for example, AGE and SMK
together, or AGE and ECG together, and so on. All
such comparisons show sufficient discrepancies in
corresponding odds ratios. Thus, we cannot drop any
of the three eligible variables from the model.

We conclude that all five V variables need to be con-
trolled, so that the final model contains the exposure
variable CAT, the five V variables, and the interaction
variables involving CHL and HPT.
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EXAMPLE (continued)

OR with AGE, SMK, ECG deleted:

HPT � 0 HPT � 1

CHL � 200 OR* � 4.57 OR* � 0.48

CHL � 220 OR* � 19.01 OR* � 1.98

CHL � 240 OR* � 79.11 OR* � 8.34

OR* exp 12.7324 0.0712CHL 2.2584HPT= − + −( )ˆ

ˆ ˆ
ˆ ˆ
ˆ ˆ

Gold standard OR: OR* w/o AGE, SMK, ECG

HPT�0  HPT�1   HPT�0  HPT�1
CHL�200 3.16 0.31 4.57 0.48
CHL�220 12.61 1.22 19.01 1.98
CHL�240 50.33 4.89 79.11 8.34

ˆ

ˆˆ

Cannot simultaneously drop AGE, 
SMK, and ECG from model

Other models: delete AGE and SMK or 
delete AGE and ECG, etc.

vs.

gold standard other models

Result: cannot drop AGE, SMK, or ECG

Final model:

E: CAT
five V’s: CHL, HPT, AGE, SMK, ECG
two interactions: CAT � CHL, CAT � HPT

CHL = 200, HPT = 0 ⇒ OR =  3.16
CHL = 220, HPT = 1 ⇒ OR =  1.22

ˆ
ˆ

ˆ



Note that because we cannot drop either of the vari-
ables AGE, SMK, or ECG as nonconfounders, we do
not need to consider possible gain in precision from
deleting nonconfounders. If precision were consid-
ered, we would compare tables of confidence intervals
for different models. As with confounding assessment,
such comparisons are largely subjective.

This example illustrates why we will find it difficult to
assess confounding and precision if our model contains
interaction terms. In such a case, any decision to delete
possible nonconfounders is largely subjective. Therefore,
we urge caution when deleting variables from our model
in order to avoid sacrificing validity in exchange for what
is typically only a minor gain in precision.

To conclude this example, we point out that, using the
final model, a summary of the results of the analysis
can be made in terms of the table of odds ratios and
the corresponding table of confidence intervals.

Both tables are shown here. The investigator must use
this information to draw meaningful conclusions
about the relationship under study. In particular, the
nature of the interaction can be described in terms of
the point estimates and confidence intervals.

For example, as CHL increases, the odds ratio for the
effect of CAT on CHD increases. Also, for fixed CHL,
this odds ratio is higher when HPT is 0 than when HPT
equals 1. Unfortunately, all confidence intervals are
quite wide, indicating that the point estimates obtained
are quite unstable.
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EXAMPLE (continued)

No need to consider precision in this
example:

compare tables of CIs—subjective

Confounding and precision difficult if
interaction (subjective)

Caution: do not sacrifice validity for
minor gain in precision

Summary result for final model:

Use to draw meaningful conclusions

Table of OR Table of 95% CIs

CHL HPT�0 HPT�1 HPT�0 HPT�1

200 3.16 0.31 (0.89, 11.03) (0.10, 0.91)

220 12.61 1.22 (3.65, 42.94) (0.48, 3.10)

240 50.33 4.89 (11.79, 212.23) (1.62, 14.52)

ˆ

CHL ⇒ ORCAT, CHD

All CIs are wide

CHL fixed :  OR > ORCAT, CHD
HPT 0

CAT, CHD
HPT 1= =

ˆ

ˆ ˆ



Furthermore, tests of significance can be carried out
using the confidence intervals. To do this, one must
determine whether or not the null value of the odds
ratio, namely, 1, is contained within the confidence
limits. If so, we do not reject, for a given CHL, HPT
combination, the null hypothesis of no effect of CAT
on CHD. If the value 1 lies outside the confidence lim-
its, we would reject the null hypothesis of no effect.

For example, when CHL equals 200 and HPT equals 0,
the value of 1 is contained within the limits 0.89 and
11.03 of the 95% confidence interval. However, when
CHL equals 220 and HPT equals 0, the value of 1 is not
contained within the limits 3.65 and 42.94.

Thus, when CHL equals 200 and HPT equals 0, there is
no significant CAT, CHD effect, whereas when CHL
equals 220 and HPT equals 0, the CAT, CHD effect is
significant at the 5% level.

Note that tests based on confidence intervals are two-
tailed tests. One-tailed tests are more common in epi-
demiology for testing the effect of an exposure on 
disease.

When there is interaction, one-tailed tests can be
obtained by using the point estimates and their stan-
dard errors that go into the computation of the confi-
dence interval. The point estimate divided by its stan-
dard error gives a large sample Z statistic which can be
used to carry out a one-tailed test.
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EXAMPLE (continued)

Yes

No

Is
null value

(OR�1) contained
within CI?

Do not
reject H0:
no CAT,

CHD
effect

Reject H0: no effect of
CAT on CHD

95% CI:

(0.89              11.03)
CHL � 200, HPT � 0:

0

1

(3.65              42.94)
CHL � 220, HPT � 0:

1

Test results at 5% level:
CHL � 200, HPT � 0 : no significant

CAT, CHD effect
CHL � 220, HPT � 0 : no significant

CAT, CHD effect

Tests based on CIs are two-tailed
In EPID, most tests of E–D relationship

are one-tailed

One-tailed tests:
use large sample

Z = estimate
standard error

Tests of significance:
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SUMMARY

Chapter 6

• overall guidelines for three stages
• focus: variable specification
• HWF model

Chapter 7

Focus: interaction and confounding
assessment

Interaction: use hierarchical backward
elimination

A brief summary of this presentation is now given.
This has been the second of two chapters on modeling
strategy. In Chapter 6, we gave overall guidelines for
three stages, namely, variable specification, interac-
tion assessment, and confounding assessment, with
consideration of precision. Our primary focus was the
variable specification stage, and an important require-
ment was that the initial model be hierarchically well
formulated (HWF).

In this chapter, we have focused on the interaction
and confounding assessment stages of our modeling
strategy. We have described how interaction assess-
ment follows a hierarchical backward elimination
procedure, starting with assessing higher-order inter-
action terms followed by assessing lower-order inter-
action terms using statistical testing methods.

If certain interaction terms are significant, we use the
Hierarchy Principle to identify all lower-order compo-
nents of such terms, which cannot be deleted from
any further model considered. This applies to lower-
order interaction terms (that is, terms of the form EV)
and to lower-order terms involving potential con-
founders of the form Vi or ViVj.

Confounding is assessed without the use of statistical
testing. The procedure involves determining whether
the estimated odds ratio meaningfully changes when
eligible V variables are deleted from the model.

If some variables can be identified as noncon-
founders, they may be dropped from the model pro-
vided their deletion leads to a gain in precision from
examining confidence intervals.

If there is no interaction, the assessment of confound-
ing is carried out by monitoring changes in the esti-
mated coefficient of the exposure variable.

Use Hierarchy Principle to identify lower-
order components that cannot be
deleted (EV’s, Vi’s, and ViVj’s)

Drop nonconfounders if precision is gained
by examining CIs

No interaction: assess confounding by
monitoring changes in    , the 
coefficient of E

Confounding: no statistical testing:
Compare whether OR meaningfully
changes when V’s are deleted

ˆ

β̂



This presentation is now complete. The reader may
wish to review the detailed summary and to try the
practice exercises and test that follow.

The next chapter concerns the use of logistic modeling
to assess matched data.
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Chapters
1. Introduction
2. Special Cases

•
•

✓ 7. Interaction and Confounding
Assessment

8. Analysis of Matched Data

SUMMARY (continued)

Interaction present: compare tables of odds
ratios and confidence intervals (subjec-
tive)

However, if there is interaction, the assessment of
confounding is much more subjective because it typi-
cally requires the comparison of tables of odds ratio
values. Similarly, assessing precision requires com-
parison of tables of confidence intervals.

Consequently, if there is interaction, it is typically safe
for ensuring validity to keep all potential confounders
in the model, even those that are candidates to be
deleted as possible nonconfounders.

Interaction: Safe (for validity) to keep all
V’s in model



I. Overview (pages 194–195)
Focus:
• assessing confounding and interaction
• obtaining a valid estimate of the E–D relationship
A. Three stages: variable specification, interaction assessment, and

confounding assessment followed by consideration of precision.
B. Variable specification stage

i. Start with D, E, and C1, C2, . . . , Cp.
ii. Choose V’s from C’s based on prior research or theory and

considering potential statistical problems, e.g., collinearity;
simplest choice is to let V’s be C’s themselves.

iii. Choose W’s from C’s to be either V’s or product of two V’s;
usually recommend W’s to be C’s themselves or some subset
of C’s.

C. The model must be hierarchically well formulated (HWF):
given any variable in the model, all lower-order components
must also be in the model.

D. The strategy is a hierarchical backward elimination strategy:
evaluate EViVj terms first, then EVi terms, then Vi terms last.

E. The Hierarchy Principle needs to be applied for any variable
kept in the model: If a variable is to be retained in the model,
then all lower-order components of that variable are to be
retained in all further models considered.

II. Interaction assessment stage (195–198)
A. Flow diagram representation.
B. Description of flow diagram: test higher-order interactions first,

then apply Hierarchy Principle, then test lower-order interac-
tions.

C. How to carry out tests: chunk tests first, followed by backward
elimination if chunk test is significant; testing procedure
involves likelihood ratio statistic.

D. Example.
III. Confounding and precision assessment when no interaction

(pages 199–203)
A. Monitor changes in the effect measure (the odds ratio) corre-

sponding to dropping subsets of potential confounders from the
model.

B. Gold standard odds ratio obtained from model containing all V’s
specified initially.

C. Identify subsets of V’s giving approximately the same odds ratio
as gold standard.

Detailed Outline 221

Detailed
Outline



D. Control for the subset that gives largest gain in precision, i.e.,
tighter confidence interval around odds ratio.

E. Example.
IV. Confounding assessment with interaction (pages 203–211)

A. Flow diagram representation.
B. Use Hierarchy Principle to identify all V’s that cannot be elimi-

nated from the model; the remaining V’s are eligible to be
dropped.

C. Eligible V’s can be dropped as nonconfounders if odds ratio does
not change when dropped; then control for subset of remaining
V’s that gives largest gain in precision.

D. Alternative ways to determine whether odds ratio changes when
different subsets of V’s are dropped.

E. In practice, it is difficult to evaluate changes in odds ratio when
eligible V’s are dropped; consequently, safest strategy is to con-
trol for all V’s.

F. Example.
V. Evans County example continued (pages 211–218)

A. Evans County CHD data descriptions.
B. Variable specification stage.
C. Confounding assessment stage.
D. Final model results.

A prevalence study of predictors of surgical wound infection in 265 hospi-
tals throughout Australia collected data on 12,742 surgical patients
(McLaws et al., 1988). For each patient, the following independent variables
were determined: type of hospital (public or private), size of hospital (large
or small), degree of contamination of surgical site (clean or contaminated),
and age and sex of the patient. A logistic model was fit to this data to predict
whether or not the patient developed a surgical wound infection during hos-
pitalization. The abbreviated variable names and the manner in which the
variables were coded in the model are described as follows:

Variable Abbreviation Coding

Type of hospital HT 1 = public, 0 = private
Size of hospital HS 1 = large, 0 = small
Degree of contamination CT 1 = contaminated, 0 = clean
Age AGE Continuous
Sex SEX 1 = female, 0 = male
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Practice
Exercises



1. Suppose the following initial model is specified for assessing the
effect of type of hospital (HT), considered as the exposure variable, on
the prevalence of surgical wound infection, controlling for the other
four variables on the above list:
logit P(X) = � � �HT � �1HS � �2CT � �3AGE � �4SEX
� �1HT � AGE � �2HT � SEX.
Describe how to test for the overall significance (a “chunk” test) of the
interaction terms. In answering this, describe the null hypothesis, the
full and reduced models, the form of the test statistic, and its distribu-
tion under the null hypothesis.

2. Using the model given in Exercise 1, describe briefly how to carry out
a backward elimination procedure to assess interaction.

3. Briefly describe how to carry out interaction assessment for the
model described in Exercise 1. (In answering this, it is suggested you
make use of the tests described in Exercises 1 and 2.)

4. Suppose the interaction assessment stage for the model in Example 1
finds no significant interaction terms. What is the formula for the
odds ratio for the effect of HT on the prevalence of surgical wound
infection at the end of the interaction assessment stage? What V
terms remain in the model at the end of interaction assessment?
Describe how you would evaluate which of these V terms should be
controlled as confounders.

5. Considering the scenario described in Exercise 4 (i.e., no interaction
terms found significant), suppose you determine that the variables CT
and AGE do not need to be controlled for confounding. Describe how
you would consider whether dropping both variables will improve
precision.

6. Suppose the interaction assessment stage finds that the interaction
terms HT � AGE and HT � SEX are both significant. Based on this
result, what is the formula for the odds ratio that describes the effect
of HT on the prevalence of surgical wound infection?

7. For the scenario described in Example 6, and making use of the
Hierarchy Principle, what V terms are eligible to be dropped as possi-
ble nonconfounders?

8. Describe briefly how you would assess confounding for the model
considered in Exercises 6 and 7.

9. Suppose that the variable SEX is determined to be a nonconfounder,
whereas all other V variables in the model (of Exercise 1) need to be
controlled. Describe briefly how you would assess whether the vari-
able SEX needs to be controlled for precision reasons.

10. What problems are associated with the assessment of confounding
and precision described in Exercises 8 and 9?
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The following questions consider the use of logistic regression on data
obtained from a matched case-control study of cervical cancer in 313
women from Sydney, Australia (Brock et al., 1988). The outcome variable 
is cervical cancer status (1 = present, 0 = absent). The matching variables
are age and socioeconomic status. Additional independent variables not
matched on are smoking status, number of lifetime sexual partners, and age
at first sexual intercourse. The independent variables are listed below
together with their computer abbreviation and coding scheme.

Variable Abbreviation Coding

Smoking status SMK 1 = ever, 0 = never
Number of sexual partners NS 1 = 4�, 0 = 0–3
Age at first intercourse AS 1= 20�, 0 = ≤19
Age of subject AGE Category matched
Socioeconomic status SES Category matched

Assume that at the end of the variable specification stage, the following E,
V, W model has been defined as the initial model to be considered:

where the V*i are dummy variables indicating matching strata, the �*i are the
coefficients of the V*i variables, SMK is the only exposure variable of interest,
and the variables NS, AS, AGE, and SES are being considered for control.

1. For the above model, which variables are interaction terms?
2. For the above model, list the steps you would take to assess interaction

using a hierarchically backward elimination approach.
3. Assume that at the end of interaction assessment, the only interaction

term found significant is the product term SMK � NS. What variables
are left in the model at the end of the interaction stage? Which of the V
variables in the model cannot be deleted from any further models con-
sidered? Explain briefly your answer to the latter question.

4. Based on the scenario described in Question 3 (i.e., the only significant
interaction term is SMK � NS), what is the expression for the odds
ratio that describes the effect of SMK on cervical cancer status at the
end of the interaction assessment stage?

5. Based again on the scenario described in Question 3, what is the
expression for the odds ratio that describes the effect of SMK on cervi-
cal cancer status if the variable NS � AS is dropped from the model
that remains at the end of the interaction assessment stage?

6. Based again on the scenario described in Question 3, how would you
assess whether the variable NS � AS should be retained in the model? (In
answering this question, consider both confounding and precision issues.)
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7. Suppose the variable NS � AS is dropped from the model based on the
scenario described in Question 3. Describe how you would assess con-
founding and precision for any other V terms still eligible to be deleted
from the model after interaction assessment.

8. Suppose the final model obtained from the cervical cancer study data
is given by the following printout results:

Variable � S.E. Chi sq P

SMK 1.9381 0.4312 20.20 0.0000
NS 1.4963 0.4372 11.71 0.0006
AS �0.6811 0.3473 3.85 0.0499
SMK � NS �1.1128 0.5997 3.44 0.0635

Describe briefly how you would use the above information to summa-
rize the results of your study. (In your answer, you need only describe
the information to be used rather than actually calculate numerical
results.)

1. A “chunk” test for overall significance of interaction terms can be carried
out using a likelihood ratio test that compares the initial (full) model with
a reduced model under the null hypothesis of no interaction terms. The
likelihood ratio test will be a chi-square test with two degrees of freedom
(because two interaction terms are being tested simultaneously).

2. Using a backward elimination procedure, one first determines which
of the two product terms HT � AGE and HT � SEX is the least signif-
icant in a model containing these terms and all main effect terms. If
this least significant term is significant, then both interaction terms
are retained in the model. If the least significant term is nonsignifi-
cant, it is then dropped from the model. The model is then refitted
with the remaining product term and all main effects. In the refitted
model, the remaining interaction term is tested for significance. If sig-
nificant, it is retained; if not significant, it is dropped.

3. Interaction assessment would be carried out first using a “chunk” test for
overall interaction as described in Exercise 1. If this test is not significant,
one could drop both interaction terms from the model as being not sig-
nificant overall. If the chunk test is significant, then backward elimina-
tion, as described in Exercise 2, can be carried out to decide if both inter-
action terms need to be retained or whether one of the terms can be
dropped. Also, even if the chunk test is not significant, backward elimina-
tion may be carried out to determine whether a significant interaction
term can still be found despite the chunk test results.

4. The odds ratio formula is given by exp(�), where � is the coefficient of
the HT variable. All V variables remain in the model at the end of the
interaction assessment stage. These are HS, CT, AGE, and SEX. To
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evaluate which of these terms are confounders, one has to consider
whether the odds ratio given by exp(�) changes as one or more of the
V variables are dropped from the model. If, for example, HS and CT
are dropped and exp(�) does not change from the (gold standard)
model containing all V’s, then HS and CT do not need to be controlled
as confounders. Ideally, one should consider as candidates for control
any subset of the four V variables that will give the same odds ratio as
the gold standard.

5. If CT and AGE do not need to be controlled for confounding, then, to
assess precision, we must look at the confidence intervals around the
odds ratio for a model which contains neither CT nor AGE. If this
confidence interval is meaningfully narrower than the corresponding
confidence interval around the gold standard odds ratio, then preci-
sion is gained by dropping CT and AGE. Otherwise, even though these
variables need not be controlled for confounding, they should be
retained in the model if precision is not gained by dropping them.

6. The odds ratio formula is given by exp(� � �1AGE � �2SEX).
7. Using the Hierarchy Principle, CT and HS are eligible to be dropped

as nonconfounders.
8. Drop CT, HS, or both CT and HS from the model and determine

whether the coefficients �, �1, and �2 in the odds ratio expression
change. Alternatively, determine whether the odds ratio itself changes
by comparing tables of odds ratios for specified values of the effect
modifiers AGE and SEX. If there is no change in coefficients and/or
in odds ratio tables, then the variables dropped do not need to be con-
trolled for confounding.

9. Drop SEX from the model and determine if the confidence interval
around the odds ratio is wider than the corresponding confidence
interval for the model that contains SEX. Because the odds ratio is
defined by the expression exp(� � �1AGE � �2SEX), a table of confi-
dence intervals for both the model without SEX and with SEX will
need to be obtained by specifying different values for the effect modi-
fiers AGE and SEX. To assess whether SEX needs to be controlled for
precision reasons, one must compare these tables of confidence inter-
vals. If the confidence intervals when SEX is not in the model are nar-
rower in some overall sense than when SEX is in the model, precision
is gained by dropping SEX. Otherwise, SEX should be controlled as
precision is not gained when the SEX variable is removed.

10. Assessing confounding and precision in Exercises 8 and 9 requires
subjective comparisons of either several regression coefficients, sev-
eral odds ratios, or several confidence intervals. Such subjective com-
parisons are likely to lead to highly debatable conclusions, so that a
safe course of action is to control for all V variables regardless of
whether they are confounders or not.
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Our discussion of matching begins with a general description of the match-
ing procedure and the basic features of matching. We then discuss how to
use stratification to carry out a matched analysis. Our primary focus is on
case-control studies. We then introduce the logistic model for matched data
and describe the corresponding odds ratio formula. Finally, we illustrate the
analysis of matched data using logistic regression with an application that
involves matching as well as control variables not involved in matching.

The outline below gives the user a preview of this chapter. A detailed outline
for review purposes follows the presentation.

I. Overview (page 230)
II. Basic features of matching (pages 230–232)

III. Matched analyses using stratification (pages 232–235)
IV. The logistic model for matched data (pages 235–238)
V. An application (pages 238–241)

VI. Assessing interaction involving matching variables (pages
242–244)

VII. Pooling matching strata (pages 245–247)
VIII. Analysis of matched follow-up data (pages 247–251)
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Upon completion of this chapter, the learner should be able to:

1. State or recognize the procedure used when carrying out matching in
a given study.

2. State or recognize at least one advantage and one disadvantage of
matching.

3. State or recognize when to match or not to match in a given study sit-
uation.

4. State or recognize why attaining validity is not a justification for
matching.

5. State or recognize two equivalent ways to analyze matched data using
stratification.

6. State or recognize the McNemar approach for analyzing pair-matched
data.

7. State or recognize the general form of the logistic model for analyzing
matched data as an E, V, W-type model.

8. State or recognize an appropriate logistic model for the analysis of a
specified study situation involving matched data.

9. State how dummy or indicator variables are defined and used in the
logistic model for matched data.

10. Outline a recommended strategy for the analysis of matched data
using logistic regression.

11. Apply the recommended strategy as part of the analysis of matched
data using logistic regression.
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This presentation describes how logistic regression
may be used to analyze matched data. We describe the
basic features of matching and then focus on a general
form of the logistic model for matched data that con-
trols for confounding and interaction. We also provide
examples of this model involving matched case-control
data.

Matching is a procedure carried out at the design stage
of a study which compares two or more groups. To
match, we select a referent group for our study that is
to be compared with the group of primary interest,
called the index group. Matching is accomplished by
constraining the referent group to be comparable to
the index group on one or more risk factors, called
“matching factors.”

For example, if the matching factor is age, then match-
ing on age would constrain the referent group to have
essentially the same age structure as the index group.

In a case-control study, the referent group consists of
the controls, which is compared to an index group of
cases.

In a follow-up study, the referent group consists of
unexposed subjects, which is compared to the index
group of exposed subjects.

Henceforth in this presentation, we focus on case-
control studies, but the model and methods described
apply to follow-up studies also.

Study design procedure:
• select referent group
• comparable to index group on one or

more “matching factors”
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Presentation

I. Overview

• basics of matching
• model for matched

data
• control for con-

founding and inter-
action

• examples from
case-control studies

FOCUS

II. Basic Features of Matching

EXAMPLE

Matching factor = AGE

referent group constrained to have
same age structure as index group

Case-control study:

↑

our focus
referent = controls
index = cases

Follow-up study:

referent = unexposed
index = exposed



The most popular method for matching is called cate-
gory matching. This involves first categorizing each of
the matching factors and then finding, for each case,
one or more controls from the same combined set of
matching categories.

For example, if we are matching on age, race, and sex,
we first categorize each of these three variables sepa-
rately. For each case, we then determine his or her
age–race–sex combination. For instance, the case may
be 52 years old, white, and female. We then find one or
more controls with the same age–race–sex combination.

If our study involves matching, we must decide on the
number of controls to be chosen for each case. If we
decide to use only one control for each case, we call
this one-to-one or pair-matching. If we choose R con-
trols for each case, for example, R equals 4, then we
call this R-to-1 matching.

It is also possible to match so that there are different
numbers of controls for different cases; that is, R may
vary from case to case. For example, for some cases,
there may be three controls, whereas for other cases
perhaps only two or one control. This frequently hap-
pens when it is intended to do R-to-1 matching, but it
is not always possible to find a full complement of R
controls in the same matching category for some cases.

As for whether to match or not in a given study, there
are both advantages and disadvantages to consider.

The primary advantage for matching over random
sampling without matching is that matching can often
lead to a more statistically efficient analysis. In partic-
ular, matching may lead to a tighter confidence
interval, that is, more precision, around the odds or
risk ratio being estimated than would be achieved
without matching.

1 1 1–1 or pair matching

1 R R-to-1
(e.g., R = 4 → 4-to-1)
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Category matching:

Factor A: ✓

Factor B: ✓

Factor Q: ✓

EXAMPLE

AGE: 20–29 30–39 40–49 50–59 60–69

Race: WHITE NONWHITE

SEX: MALE FEMALE

Control has same age–race–sex
combination as case

combined
set of cate-
gories for
case and its
matched
control

No. of 
Case controls Type

R may vary from case to case

R = 3 for some cases
e.g. R = 2 for other cases

R = 1 for other cases

}

Not always possible to find exactly R con-
trols for each case

To match or not to match

Advantage
Matching can be statistically efficient,
i.e., may gain precision using
confidence interval



The major disadvantage to matching is that it can be
costly, both in terms of the time and labor required to
find appropriate matches and in terms of information
loss due to discarding of available controls not able to
satisfy matching criteria. In fact, if too much informa-
tion is lost from matching, it may be possible to lose
statistical efficiency by matching.

In deciding whether to match or not on a given factor,
the safest strategy is to match only on strong risk fac-
tors expected to cause confounding in the data.

Note that whether one matches or not, it is possible to
obtain an unbiased estimate of the effect, namely the
correct odds ratio estimate. The correct estimate can
be obtained provided an appropriate analysis of the
data is carried out.

If, for example, we match on age, the appropriate
analysis is a matched analysis, which is a special
kind of stratified analysis to be described shortly.

If, on the other hand, we do not match on age, an
appropriate analysis involves dividing the data into age
strata and doing a standard stratified analysis which
combines the results from different age strata.

Because a correct estimate can be obtained whether or
not one matches at the design stage, it follows that valid-
ity is not an important reason for matching. Validity
concerns getting the right answer, which can be obtained
by doing the appropriate stratified analysis.

As mentioned above, the most important statistical rea-
son for matching is to gain efficiency or precision in
estimating the odds or risk ratio of interest; that is,
matching becomes worthwhile if it leads to a tighter
confidence interval than would be obtained by not
matching.

The analysis of matched data can be carried out using
a stratified analysis in which the strata consist of the
collection of matched sets.

Disadvantage

Matching is costly
• to find matches
• information loss due to discarding

controls

Safest strategy

Match on strong risk factors expected to
be confounders
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Matching No matching

Correct estimate?
YES YES

Apropriate analysis?
YES YES
↓ ↓
MATCHED STANDARD
(STRATIFIED) STRATIFIED
ANALYSIS ANALYSIS
↓
SEE SECTION III

OR OR OR1 2 3

combine
1 24444 34444

30–39 40–49 50–59

Validity is not an important reason for
matching (validity: getting the right answer)

Match to gain efficiency or precision

III. Matched Analyses Using
Stratification

Strata = matched sets



As a special case, consider a pair-matched case-control
study involving 100 matched pairs. The total number
of observations, n, then equals 200, and the data con-
sists of 100 strata, each of which contains the two obser-
vations in a given matched pair.

If the only variables being controlled in the analysis are
those involved in the matching, then the complete data
set for this matched pairs study can be represented by
100 2 � 2 tables, one for each matched pair. Each table
is labeled by exposure status on one axis and disease
status on the other axis. The number of observations in
each table is two, one being diseased and the other
(representing the control) being nondiseased.

Depending on the exposure status results for these
data, there are four possible forms that a given stratum
can take. These are shown here.

The first of these contains a matched pair for which
both the case and the control are exposed.

The second of these contains a matched pair for which
the case is exposed and the control is unexposed.

In the third table, the case is unexposed and the con-
trol is exposed.

And in the fourth table, both the case and the control
are unexposed.

If we let W, X, Y, and Z denote the number of pairs in
each of the above four types of table, respectively, then
the sum W plus X plus Y plus Z equals 100, the total
number of matched pairs in the study.

For example, we may have W equals 30, X equals 30, Y
equals 10, and Z equals 30, which sums to 100.

The analysis of a matched pair dataset can then pro-
ceed in either of two equivalent ways, which we now
briefly describe.

Special case
Case-control study
100 matched pairs
n = 200
100 strata = 100 matched pairs
2 observations per stratum
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W + X + Y + Z = total number of pairs

EXAMPLE

W = 30, X = 30, Y = 10, Z = 30
W + X + Y + Z = 30 + 30 + 10 + 30 = 100

Analysis: two equivalent ways



One way is to carry out a Mantel–Haenszel chi-
square test for association based on the 100 strata and
to compute a Mantel–Haenszel odds ratio, usually
denoted as MOR, as a summary odds ratio that adjusts
for the matched variables. This can be carried out
using any standard computer program for stratified
analysis. See Kleinbaum et al., Epidemiologic Research,
(1982) for details.

The other method of analysis, which is equivalent to
the above stratified analysis approach, is to summarize
the data in a single table, as shown here. In this table,
matched pairs are counted once, so that the total num-
ber of matched pairs is 100.

As described earlier, the quantity W represents the
number of matched pairs in which both the case and
the control are exposed. Similarly, X, Y, and Z are
defined as previously.

Using the above table, the test for an overall effect of
exposure, controlling for the matching variables, can
be carried out using a chi-square statistic equal to the
square of the difference X � Y divided by the sum of X
and Y. This chi-square statistic has one degree of free-
dom in large samples and is called McNemar’s test.

It can be shown that McNemar’s test statistic is exactly
equal to the Mantel–Haenszel (MH) chi-square statis-
tic obtained by looking at the data in 100 strata. More-
over, the Mantel–Haenszel odds ratio estimate can be
calculated as X/Y.

As an example of McNemar’s test, suppose W equals
30, X equals 30, Y equals 10, and Z equals 30, as shown
in the table here.

Then based on these data, the McNemar test statistic is
computed as the square of 30 minus 10 divided by 30
plus 10, which equals 400 over 40, which equals 10.
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This statistic has approximately a chi-square distribu-
tion with one degree of freedom under the null hypoth-
esis that the odds ratio relating exposure to disease
equals 1.

From chi-square tables, we find this statistic to be
highly significant with a P-value well below 0.01.

The estimated odds ratio, which adjusts for the match-
ing variables, can be computed from the above table
using the MOR formula X over Y, which in this case
turns out to be 3.

We have thus described how to do a matched pair analy-
sis using stratified analysis or an equivalent McNemar’s
procedure. If the matching is R-to-1 or even involves
mixed matching ratios, the analysis can also be done
using a stratified analysis.

For example, if R equals 4, then each stratum contains
five subjects, consisting of the one case and its four
controls. These numbers can be seen on the margins of
the table shown here. The numbers inside the table
describe the numbers exposed and unexposed within
each disease category. Here, we illustrate that the case
is exposed and that three of the four controls are unex-
posed. The breakdown within the table may differ with
different matched sets.

Nevertheless, the analysis for R-to-1 or mixed matched
data can proceed as with pair-matching by computing
a Mantel–Haenszel chi-square statistic and a Mantel–
Haenszel odds ratio estimate based on the stratified
data.

A third approach to carrying out the analysis of
matched data involves logistic regression modeling.

The main advantage of using logistic regression with
matched data occurs when there are variables other
than the matched variables that the investigator wishes
to control.

Analysis for R-to-1 and mixed matching
use stratified analysis
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EXAMPLE (continued)

�2 chi square 1 df
under H0: OR = 1 

P << 0.01, significant

~

MOR 3= =X
Y

ˆ

EXAMPLE

R = 4: Illustrating one stratum

E E

D 1 0

D 1 3

1

4

5

R-to-1 or mixed matching

use �2 (MH) and MOR for stratified dataˆ

IV. The Logistic Model for
Matched Data

1. Stratified analysis
2. McNemar analysis

✓ 3. Logistic modeling

Advantage of modeling
can control for variables other than
matched variables



For example, one may match on AGE, RACE, and
SEX, but may also wish to control for systolic blood
pressure and body size, which may have also been
measured but were not part of the matching.

In the remainder of the presentation, we describe how
to formulate and apply a logistic model to analyze
matched data, which allows for the control of variables
not involved in the matching.

In this situation, using a stratified analysis approach
instead of logistic regression will usually be inefficient
in that much of one’s data will need to be discarded,
which is not required using a modeling approach.

The model that we describe below for matched data
requires the use of conditional ML estimation for esti-
mating parameters. This is because, as we shall see,
when there are matched data, the number of parame-
ters in the model is large relative to the number of
observations.

If unconditional ML estimation is used instead of con-
ditional, an overestimate will be obtained. In particu-
lar, for pair-matching, the estimated odds ratio using
the unconditional approach will be the square of the
estimated odds ratio obtained from the conditional
approach, the latter being the correct result.

An important principle about modeling matched data
is that such modeling requires the matched data to be
considered in strata. As described earlier, the strata are
the matched sets, for example, the pairs in a matched
pair design. In particular, the strata are defined using
dummy or indicator variables, which we will illustrate
shortly.

In defining a model for a matched analysis, we con-
sider the special case of a single (0, 1) exposure vari-
able of primary interest, together with a collection of
control variables C1, C2, and so on up through Cp, to be
adjusted in the analysis for possible confounding and
interaction effects.
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EXAMPLE

Match on AGE, RACE, SEX 
also, control for SBP and BODYSIZE

Logistic model for matched data includes
control of variables not matched

Stratified analysis inefficient:
data is discarded

Matched data:
use conditional ML estimation
(number of parameters large relative to n)

Pair-matching:

ORU = (ORC )2

↑
overestimate

Principle
matched analysis ⇒ stratified analysis

• strata are matched sets, e.g., pairs
• strata defined using dummy (indicator)

variables

E = (0, 1) exposure

C1, C2, . . ., Cp control variables

ˆ ˆ



We assume that some of these C variables have been
matched in the study design, either using pair-match-
ing or R-to-1 matching. The remaining C variables
have not been matched, but it is of interest to control
for them, nevertheless.

Given the above context, we now define the following
set of variables to be incorporated into a logistic model
for matched data. We have a (0, 1) disease variable D
and a (0, 1) exposure variable X1 equal to E.

We also have a collection of X’s which are dummy vari-
ables to indicate the different matched strata; these
variables are denoted as V1 variables.

Further, we have a collection of X’s which are defined
from the C’s not involved in the matching and repre-
sent potential confounders in addition to the matched
variables. These potential confounders are denoted as
V2 variables.

And finally, we have a collection of X’s which are prod-
uct terms of the form E times W, where the W’s denote
potential interaction variables. Note that the W’s will
usually be defined in terms of the V2 variables.

The logistic model for matched analysis is then given
in logit form as shown here. In this model, the �1i are
coefficients of the dummy variables for the matching
strata, the �2i are the coefficients of the potential con-
founders not involved in the matching, and the �j are
the coefficients of the interaction variables.

As an example of dummy variables defined for matched
strata, consider a study involving pair-matching by
AGE, RACE, and SEX, containing 100 matched pairs.
Then, the above model requires defining 99 dummy
variables to incorporate the 100 matched pairs.

We can define these dummy variables as V1i equals 1 if
an individual falls into the ith matched pair and 0 other-
wise. Thus, it follows that 

V11 equals 1 if an individual is in the first matched pair
and 0 otherwise, 

• some C’s matched by design
• remaining C’s not matched

D = (0, 1) disease
X1 = E = (0, 1) exposure

Some X’s: V1i dummy variables (matched
strata)

Some X’s: V2i variables (potential con-
founders)

Some X’s: product terms EWj
(Note: W’s usually V2’s)

The model
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logit P

1 1 2 2

    matching     confounders

        interaction

X( ) = +

+ +

+

∑ ∑

∑

α β

γ γ

δ

E

V V

E W

i i i i

j j

123 123

123

EXAMPLE

Pair-matching by AGE, RACE, SEX
100 matched pairs
99 dummy variables

V
i

i

i1
1 if th matched pair

0 otherwise

1, 2, ,  99

=
⎧
⎨
⎩

= K

V
1 if first matched pair

0 otherwise
11 =

⎧
⎨
⎩



V12 equals 1 if an individual is in the second matched
pair and 0 otherwise, and so on up to 

V1, 99, which equals 1 if an individual is in the 99th
matched pair and 0 otherwise.

Alternatively, using the above dummy variable defini-
tion, a person in the first matched set will have V11
equal to 1 and the remaining dummy variables equal to
0; a person in the 99th matched set will have V1, 99
equal to 1 and the other dummy variables equal to 0;
and a person in the 100th matched set will have all 99
dummy variables equal to 0.

For the matched analysis model we have just described,
the odds ratio formula for the effect of exposure status
adjusted for covariates is given by the expression ROR
equals e to the quantity � plus the sum of the �j times
the Wj.

This is exactly the same odds ratio formula given in
our review for the E, V, W model. This makes sense
because the matched analysis model is essentially an
E, V, W model containing two different types of V vari-
ables.

As an application of a matched pairs analysis, consider
a case-control study involving 2-to-1 matching which
involves the following variables:

The disease variable is myocardial infarction
status, as denoted by MI.
The exposure variable is smoking status, as
defined by a (0, 1) variable denoted as SMK.
There are six C variables to be controlled. The
first four of these variables, namely age, race,
sex, and hospital status, are involved in the
matching.
The last two variables, systolic blood pressure,
denoted by SBP, and electrocardiogram status,
denoted by ECG, are not involved in the matching.

Note: two types of V variables are controlled

238 8. Analysis of Matched Data Using Logistic Regression

EXAMPLE (continued)

1st matched set
V11 = 1, V12 = V13 = . . . = V1, 99 = 0

99th matched set
V1, 99 = 1, V11 = V12 = . . . = V1, 98 = 0

100th matched set
V11 = V12 = . . . = V1, 99 = 0

V
1 if second matched pair

0 otherwise
12 =

⎧
⎨
⎩

V1, 99
1 if 99th matched pair

0 otherwise
=

⎧
⎨
⎩

Matched pairs model

logit P 1 1 2 2X( ) = + + + +∑ ∑ ∑α β γ γ δE V V E Wi i i i j j

ROR exp= +( )∑β δ j jW

V. An Application

EXAMPLE

Case-control study 
2-to-1 matching

D = MI0, 1
E = SMK0, 1

C C C C1 2 3 4

matched

= AGE, = RACE, = SEX, = HOSPITAL
1 244444444444 344444444444

C C5 6

not matched

= SBP = ECG
1 24444 34444

...



The study involves 117 persons in 39 matched sets, or
strata, each strata containing 3 persons, 1 of whom is a
case and the other 2 are matched controls.

The logistic model for the above situation can be
defined as follows: logit P(X) equals � plus � times
SMK plus the sum of 38 terms of the form �1i times
V1i, where V1i are dummy variables for the 39 matched
sets, plus �21 times SBP plus �22 times ECG plus SMK
times the sum of �1 times SBP plus �2 times ECG.

Here, we are considering two potential confounders
involving the two variables (SBP and ECG) not
involved in the matching and also two interaction vari-
ables involving these same two variables.

The odds ratio for the above logistic model is given by
the formula e to the quantity � plus the sum of �1 times
SBP and �2 times ECG.

Note that this odds ratio expression involves the coeffi-
cients �, �1, and �2, which are coefficients of variables
involving the exposure variable. In particular, �1 and �2
are coefficients of the interaction terms E � SBP and E
� ECG.

The model we have just described is the starting model
for the analysis of the dataset on 117 subjects. We now
address how to carry out an analysis strategy for
obtaining a final model that includes only the most rel-
evant of the covariates being considered initially.

The first important issue in the analysis concerns the
choice of estimation method for obtaining ML esti-
mates. Because matching is being used, the appropri-
ate method is conditional ML estimation. Never-
theless, we also show the results of unconditional ML
estimation to illustrate the type of bias that can result
from using the wrong estimation method.

The next issue to be considered is the assessment of
interaction. Based on our starting model, we, there-
fore, determine whether or not either or both of the
product terms SMK � SBP and SMK � ECG are
retained in the model.
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EXAMPLE (continued)

n = 117 (39 matched sets)

The model:

logit P SMK 1 1
1

38
X( ) = + +

=
∑α β γ i i
i

V

+ +( )SMK SBP ECG1 2δ δ

= �21 SBP + �22 ECG

confounders

modifiers

ROR exp SBP ECG1 2= + +( )β δ δ

β
δ

δ

=
= ×

= ×

coefficient of 

coefficient of SBP

coefficient of ECG
1

2

E

E

E

Starting model

analysis strategy

Final model

Estimation method:
✓ conditional ML estimation
(also, we illustrate unconditional ML
estimation)

Interaction:
SMK � SBP and SMK � ECG?



One way to test for this interaction is to carry out a
chunk test for the significance of both product terms
considered collectively. This involves testing the null
hypothesis that the coefficients of these variables,
namely �1 and �2, are both equal to 0.

The test statistic for this chunk test is given by the likeli-
hood ratio (LR) statistic computed as the difference
between log likelihood statistics for the full model con-
taining both interaction terms and a reduced model
which excludes both interaction terms. The log likelihood
statistics are of the form �2 ln L, where L is the maxi-
mized likelihood for a given model.

This likelihood ratio statistic has a chi-square distribu-
tion with two degrees of freedom. The degrees of free-
dom are the number of parameters tested, namely 2.

When carrying out this test, the log likelihood statistics
for the full and reduced models turn out to be 60.23
and 60.63, respectively.

The difference between these statistics is 0.40. Using
chi-square tables with two degrees of freedom, the P-
value is considerably larger than 0.10, so we can con-
clude that there are no significant interaction effects.
We can, therefore, drop the two interaction terms from
the model.

Note that an alternative approach to testing for inter-
action is to use backward elimination on the interac-
tion terms in the initial model. Using this latter approach,
it turns out that both interaction terms are eliminated.
This strengthens the conclusion of no interaction.

At this point, our model can be simplified to the one
shown here, which contains only main effect terms.
This model contains the exposure variable SMK, 38 V
variables that incorporate the 39 matching strata, and
2 V variables that consider the potential confounding
effects of SBP and ECG, respectively.
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EXAMPLE (continued)

Chunk test

H0: �1 = �2 = 0
where
�1 = coefficient of SMK � SBP
�2 = coefficient of SMK � ECG

LR 2 ln 2 ln= −( ) − −( )ˆ ˆL LR F

R = reduced model F = full model
(no interaction) (interaction)

log likelihood statistics

�2 ln L̂

LR

Number of parameters tested =  2
2
2�χ

− =

− =

2 ln 60.23

2 ln 60.63

ˆ

ˆ

L

L

F

R

LR = 60.63 � 60.23 = 0.40

P > 0.10 (no significant interaction)

Therefore, drop SMK � SBP and 
SMK � ECG from model

Backward elimination: same conclusion

logit P SMK

SBP ECG

1 1

21 22

X( ) = + +

+ +

∑α β γ

γ γ
i iV

ˆ ˆ



Under this reduced model, the estimated odds ratio
adjusted for the effects of the V variables is given by
the familiar expression e to the , where is the coef-
ficient of the exposure variable SMK.

The results from fitting this model and reduced ver-
sions of this model which delete either or both of the
potential confounders SBP and ECG are shown here.
These results give both conditional (C) and uncondi-
tional (U) odds ratio estimates and 95% confidence
intervals (CI) for the conditional estimates only. (See
Computer Appendix.)

From inspection of this table of results, we see that the
unconditional estimation procedure leads to overesti-
mation of the odds ratio and, therefore, should not be
used.

The results also indicate a minimal amount of con-
founding due to SBP and ECG. This can be seen by not-
ing that the gold standard estimated odds ratio of 2.07,
which controls for both SBP and ECG, is essentially the
same as the other conditionally estimated odds ratios
that control for either SBP or ECG or neither.

Nevertheless, because the estimated odds ratio of 2.32,
which ignores both SBP and ECG in the model, is
moderately different from 2.07, we recommend that 
at least one or possibly both of these variables be con-
trolled.

If at least one of SBP and ECG is controlled, and confi-
dence intervals are compared, the narrowest confidence
interval is obtained when only ECG is controlled.

Thus, the most precise estimate of the effect is obtained
when ECG is controlled, along, of course, with the
matching variables.

Nevertheless, because all confidence intervals are quite
wide and include the null value of 1, it does not really
matter which variables are controlled. The overall con-
clusion from this analysis is that the adjusted estimate
of the odds ratio for the effect of smoking on the devel-
opment of MI is about 2, but it is quite nonsignificant.

β̂β̂
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EXAMPLE (continued)

ROR = eβ̂

V’s in model OR = e� 95% CI

SBP and ECG C 2.07 (0.69, 6.23)
U 3.38

SBP only C 2.08 (0.72, 6.00)
U 3.39

ECG only C 2.05 (0.77, 5.49)
U 3.05

Neither C 2.32 (0.93, 5.79)
U 3.71

C = conditional estimate
U = unconditional estimate

Minimal confounding:
gold standard OR = 2.07, essentially
same as other OR

But 2.07 moderately different from 2.32,
so we control for at least one of SBP and
ECG

Narrowest CI: control for ECG only

Most precise estimate:
control for ECG only

All CI are wide and include 1

Overall conclusion: 
adjusted OR � 2, but is
nonsignificant

ˆ
ˆ

ˆ

ˆ



The previous section considered a study of the rela-
tionship between smoking (SMK) and myrocardial
infarction (MI) in which cases and controls were
matched on four variables: AGE, RACE, SEX, and
Hospital. Two additional control variables, SBP and
ECG, were not involved in the matching.

In the above example, interaction was evaluated by
including SBP and ECG in the logistic regression
model as product terms with the exposure variable
SMK. A test for interaction was then carried out using
a likelihood ratio test to determine whether these two
product terms could be dropped from the model.

Suppose the investigator is also interested in consider-
ing possible interaction between exposure (SMK) and
one or more of the matching variables. The proper
approach to take in such a situation is not as clear-cut
as for the previous interaction assessment. We now
discuss two options for addressing this problem.

The first option involves adding product terms of the
form E � V1i to the model for each dummy variable V1i
indicating a matching stratum.

The general form of the logistic model that accommo-
dates interaction defined using this option is shown on
the left. The expression to the right of the equals sign
includes terms for the intercept, the main exposure
(i.e., SMK), the matching strata, other control vari-
ables not matched on, product terms between the
exposure and the matching strata, and product terms
between the exposure and other control variables not
matched on.
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VI. Assessing Interaction
Involving Matching Variables

EXAMPLE

D � MI
E � SMK

AGE, RACE, SEX, HOSPITAL:
matched

SBP, ECG: not matched

Interaction terms:

SMK � SBP, SMK � ECG

tested using LR test

Interaction between

SMK and matching variables?

Two options.

Option 1

Add product terms of the form

E � V1i

where

V1i � dummy variables for matching
strata

V2j � other covariates (not matched)

Wk � effect modifiers defined from
other covariates

logit P(X) =   +   +     +     

                      +      +     

1 1 2 2

1 1

α β γ γ

δ δ

E V V

E V E W

i
i i

j
j j

i i
i

k
k

k
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Using the above (Option 1) interaction model, we can
assess interaction of exposure with the matching vari-
ables by testing the null hypothesis that all the coeffi-
cients of the E � V1i terms (i.e., all the �1i) are equal to
zero.

If this “chunk” test is not significant, we could con-
clude that there is no interaction involving the match-
ing variables. If the test is significant, we might then
carry out backward elimination to determine which of
the E � V1i terms need to stay in the model. (We could
also carry out backward elimination even if the
“chunk” test is nonsignificant)

A criticism of this (Option 1) approach is that if signif-
icant interaction is found, then it will be difficult to
determine which of possibly several matching vari-
ables are effect modifiers. This is because the dummy
variables (V1i) in the model represent matching strata
rather than specific effect modifier variables.

Another problem with Option 1 is that there may not 
be enough data in each stratum (e.g., when pair-
matching) to assess interaction. In fact, if there are
more parameters in the model than there are observa-
tions in the study, the model will not execute.

A second option for assessing interaction involving
matching variables is to consider product terms of the
form E � W1m, where the W1m’s are the actual match-
ing variables.

The corresponding logistic model is shown at the left.
This model contains the exposure variable E, dummy
variables V1i for the matching strata, nonmatched
covariates V2j, product terms E � W1m involving the
matching variables, and E � W2k terms, where the W2k
are effect modifiers defined from the unmatched
covariates.
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EXAMPLE (continued)

Option 1

Test H0: All �1i � 0.
(Chunk test)

Not significant ⇒ No interaction 
involving matching 
variables

Significant ⇒ Interaction involving
matching variables

⇒ Carry out backward 
elimination of 
E � V1i terms

Criticisms of Option 1

• Difficult to determine which of
several matching variables are effect
modifiers. (The V1i represent matching
strata, not matching variables.)

• Not enough data to assess interaction
(number of parameters may exceed n)

Option 2

Add product terms of the form

E � W1m

where W1m are matching variables

where

W1m � matching variables in original
form

W2k � effect modifiers defined from
other covariates (not matched)

logit P( ) =   +   =     +   

                     +    +   

1 1 2 2

2

X α β γ γ

δ δ

E V V

E W E W

i i
i j

j j

m
m m

k
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Using the above (Option 2) interaction model, we can
assess interaction of exposure with the matching vari-
ables by testing the null hypothesis that all of the coef-
ficients of the E � W1m terms (i.e., all of the �1m) equal
zero.

As with Option 1, if the “chunk” test for interaction
involving the matching variables is not significant, we
could conclude that there is no interaction involving
the matching variables. If, however, the chunk test is
significant, we might then carry out backward elimi-
nation to determine which of the E � W1m terms
should remain in the model. We could also carry out
backward elimination even if the chunk test is not sig-
nificant.

A problem with the second option is that the model for
this option is not hierarchically well-formulated
(HWF), since components (W1m) of product terms (E
� W1m) involving the matching variables are not in the
model as main effects. (See Chapter 6 for a discussion
of the HWF criterion.)

Although both options for assessing interaction involv-
ing matching variables have problems, the second
option, though not HWF, allows for a more inter-
pretable decision about which of the matching vari-
ables might be effect modifiers. Also, even though the
model for option 2 is technically not HWF, the match-
ing variables are at least in some sense in the model as
both effect modifiers and confounders.

One way to avoid having to choose between these two
options is to decide not to match on any variable that
you wish to assess as an effect modifier. Another alter-
native is to avoid assessing interaction involving any of
the matching variables, which is often what is done in
practice.
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EXAMPLE (continued)

Option 2

Test H0: All �1m � 0.
(Chunk test)

Not significant ⇒ No interaction 
involving matching 
variables

Significant ⇒ Interaction involving
matching variables

⇒ Carry out Backwards 
Elimination of 
E � W1m terms

Criticism of Option 2

The model is technically not HWF.

E � W1m in model but not W1m

(Also, V1j in model but not E � V1i)

Option 1 Option 2
Interpretable? No Yes

HWF? Yes No (but almost yes)

Alternatives to Options 1 and 2

• Do not match on any variable that you
consider a possible effect modifier.

• Do not assess interaction for any
variable that you have matched on.



Another issue to be considered in the analysis of
matched data is whether to combine, or pool, matched
sets that have the same values for all variables being
matched on.

Suppose smoking status (SMK), defined as ever versus
never smoked, is the only matching variable in a pair-
matched case-control study involving 100 cases.
Suppose further that when the matching is carried out,
60 of the matched pairs are all smokers and the 40
remaining matched pairs are all nonsmokers.

Now, let us consider any two of the matched pairs
involving smokers, say pair A and pair B. Since the
only variable being matched on is smoking, the control
in pair A had been eligible to be chosen as the control
for the case in pair B prior to the matching process.
Similarly, the control smoker in pair B had been eligi-
ble to be the control smoker for the case in pair A.

Even though this did not actually happen after match-
ing took place, the potential interchangeability of these
two controls suggests that pairs A and B should not be
treated as separate strata in a matched analysis.
Matched sets such as pairs A and B are called
exchangeable matched sets.

For the entire study involving 100 matched pairs, the
60 matched pairs all of whom are smokers are
exchangeable and the remaining 40 matched pairs of
nonsmokers are separately exchangeable.

If we ignored exchangeability, the typical analysis of
these data would be a stratified analysis that treats all
100 matched pairs as 100 separate strata. The analysis
could then be carried out using the discordant pairs
information in McNemar’s table, as we described in
Section III.

To Pool or Not to Pool Matched Sets?

Case-control study:

• pair-match on SMK (ever versus never)
• 100 cases (i.e., n � 200)
• Smokers—60 matched pairs
• Nonsmokers—40 matched pairs

Matched pair A Matched pair B

Case A–Smoker Case B–Smoker

Control A–Smoker ↔ Control B–Smoker
(interchangeable)

Controls for matched pairs A and B
are interchangeable

⇓
Matched pairs A and B

are exchangeable
(definition)

Smokers: 60 matched pairs are
exchangeable

Nonsmokers: 40 matched pairs are
exchangeable

Ignoring exchangeability

⇓
Use stratified analysis with
100 strata, e.g., McNemar’s test
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VII. Pooling Matching Strata



But should we actually ignore the exchangeability of
matched sets? We say no, primarily because to treat
exchangeable strata separately artificially assumes
that such strata are unique from each other when, in
fact, they are not. [In statistical terms, we argue that
adding parameters (e.g., strata) unnecessarily to a
model results in a loss of precision.]

How should the analysis be carried out? The answer
here is to pool exchangeable matched sets.

In our example, pooling would mean that rather than
analyzing 100 distinct strata with 2 persons per strata,
the analysis would consider only 2 pooled strata, one
pooling 60 matched sets into a smoker’s stratum and
the other pooling the other 40 matched sets into a non-
smoker’s stratum.

More generally, if several variables are involved in the
matching, the study data may only contain a relatively
low number of exchangeable matched sets. In such a
situation, the use of a pooled analysis, even if appropri-
ate, is likely to have a negligible effect on the estimated
odds ratios and their associated standard errors, when
compared to an unpooled matched analysis.

It is, nevertheless, quite possible that the pooling of
exchangeable matched sets may greatly reduce the num-
ber of strata to be analyzed. For example, in the example
described earlier, in which smoking was the only vari-
able being matched, the number of strata was reduced
from 100 to only 2.

When pooling reduces the number of strata consider-
ably, as in the above example, it may then be appropri-
ate to use an unconditional maximum likelihood pro-
cedure to fit a logistic model to the pooled data.

Ignore exchangeability? No!!!

Treating such strata separately is
artificial,

i.e., exchangeable strata are not unique

Analysis? Pool exchangeable matched sets
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EXAMPLE (match on SMK)

Use two pooled strata:

Stratum 1: smokers (n � 60 � 2)

Stratum 2: nonsmokers (n � 40 � 2)

Matching on several variables

⇓
May be only a few exchangeable

matched sets

⇓
Pooling has negligible effect on

odds ratio estimates

However, pooling may greatly reduce
the number of strata to be analyzed
(e.g., from 100 to 2 strata)

If # of strata greatly reduced by pooling

⇓
Unconditional ML may be used

if “appropriate”



By “appropriate,” we mean that the odds ratio from the
unconditional ML approach should be unbiased, and
may also yield a narrower confidence interval around
the odds ratio. Conditional ML estimation will always
give an unbiased estimate of the odds ratio, however.

To summarize our discussion of pooling, we recom-
mend that whenever matching is used, the investigator
should identify and pool exchangeable matched sets.
The analysis can then be carried out using the reduced
number of strata resulting from pooling using either a
stratified analysis or logistic regression. If the resulting
number of strata is small enough, then unconditional
ML estimation may be appropriate. Nevertheless, con-
ditional ML estimation will always ensure that esti-
mated odds ratios are unbiased.

Thus far we have considered only matched case-
control data. We now focus on the analysis of matched
cohort data.

In follow-up studies, matching involves the selection of
unexposed subjects (i.e., the referent group) to have
the same or similar distribution as exposed subjects
(i.e., the index group) on the matching variables.

If, for example, we match on race and sex in a follow-
up study, then the unexposed and exposed groups
should have the same/similar race by sex (combined)
distribution.

As with case-control studies, matching in follow-up
studies may involve either individual matching (e.g., 
R-to-1 matching) or frequency matching. The latter is
more typically used because it is convenient to carry
out in practice and allows for a larger total sample size
once a cohort population has been identified.

Summary on pooling:

Recommend

• identify and pool exchangeable matched
sets

• carry out stratified analysis or logistic
regression using pooled strata

• consider using unconditional ML esti-
mation (but conditional ML estimation
always unbiased)

Follow-up data:

unexposed � referent

exposed � index

Unexposed and exposed groups have same
distribution of matching variables.

Exposed Unexposed

White male 30% 30%
White female 20% 20%
Nonwhite male 15% 15%
Nonwhite female 35% 35%

Individual matching
or

Frequency matching (more convenient,
larger sample size)
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EXAMPLE (continued)

Unconditional ML estimation
“appropriate” provided

ORunconditional unbiased

and

CIunconditional narrower than

CIconditional

VIII. Analysis of Matched
Follow-up Data



The logistic model for matched follow-up studies is
shown at the left. This model is essentially the same
model as we defined for case-control studies, except that
the matching strata are now defined by exposed/unex-
posed matched sets instead of by case/control matched
sets. The model shown here allows for interaction
between the exposure of interest and the control vari-
ables that are not involved in the matching.

If frequency matching is used, then the number of
matching strata will typically be small relative to the
total sample size, so it is appropriate to consider using
unconditional ML estimation for fitting the model.
Nevertheless, as when pooling exchangeable matched
sets results from individual matching, conditional ML
estimation will always provide unbiased estimates (but
may yield less precise estimates than obtained from
unconditional ML estimation).

In matched-pair follow-up studies, each of the
matched sets (i.e., strata) can take one of four types,
shown at the left. This is analogous to the four types of
stratum for a matched case-control study, except here
each stratum contains one exposed subject and one
unexposed subject rather than one case and control.

The first of the four types of stratum describes a “con-
cordant” pair for which both the exposed and unex-
posed have the disease. We assume there are P pairs of
this type.

The second type describes a “discordant pair” in which
the exposed subject is diseased and an unexposed sub-
ject is not diseased. We assume Q pairs of this type.

The third type describes a “discordant pair” in which
the exposed subject is nondiseased and the unexposed
subject is diseased. We assume R pairs of this type.

where

V1i � dummy variables for matching
strata

V2j � other covariates (not matched)

Wk � effect modifiers defined from other
covariates

Frequency matching
(small # of strata)

⇓
Unconditional ML estimation may be

used if “appropriate”

(Conditional ML always unbiased)

Four types of stratum:

Type 1 Type 2

E E
–

E E
–

D 1 1 D 1 0

D
–

0 0 D
–

0 1

P pairs Q pairs
concordant discordant

Type 3 Type 4

E E
–

E E
–

D 0 1 D 0 0

D
–

1 0 D
–

1 1

R pairs S pairs
discordant concordant
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The fourth type describes a “concordant pair” in which
both the exposed and the unexposed do not have the
disease. Assume S pairs of this type.

The analysis of data from a matched pair follow-up
study can then proceed using a stratified analysis in
which each matched pair is a separate stratum or the
number of strata is reduced by pooling exchangeable
matched sets.

If pooling is not used, then, as with case-control
matching, the data can be rearranged into a McNemar-
type table as shown at the left. From this table, a
Mantel–Haenszel risk ratio can be computed as
(P�Q)/(P�R). Also, a Mantel–Haenszel odds ratio is
computed as Q/R.

Furthermore, a Mantel–Haenszel test of association
between exposure and disease that controls for the
matching is given by the chi-square statistic (Q �
R)2/(Q�R), which has one degree of freedom under the
null hypothesis of no E–D association.

In the formulas described above, both the Mantel–
Haenszel test and odds ratio estimate involve only the
discordant pair information in the McNemar table.
However, the Mantel–Haenszel risk ratio formula
involves the concordant diseased pairs in addition to
the discordant pairs.

As an example, consider a pair-matched follow-up
study with 4830 matched pairs designed to assess
whether vasectomy is a risk factor for myocardial
infarction. The exposure variable of interest is vasec-
tomy status (VS: 0�no, 1�yes), the disease is myocar-
dial infarction (MI: 0�no, 1-yes), and the matching
variables are AGE and YEAR (i.e., calendar year of 
follow-up).

Stratified analysis:

Each matched pair is a stratum

or

Pool exchangeable matched sets

E
–

D D
–

D P QE
D
–

R S

Without pooling → McNemar’s table

MOR and χ2
MH use discordant

pairs information

MRR uses discordant and concordant
pairs information
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           MOR =
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EXAMPLE

Pair-matched follow-up study 4830
matched pairs

E � VS (0�no, 1�yes)

D � MI (0�no, 1�yes)

Matching variables: AGE and YEAR
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If no other covariates are considered other than the
matching variables (and the exposure), the data can be
summarized in the McNemar table shown at the left.

From this table, the estimated MRR, which adjusts for
AGE and YEAR equals 20/16, or 1.25. Notice that since
P � 0 in this table, the MRR equals the MOR � Q/R.

The McNemar test statistic for these data is computed
to be χ2

MH � 0.44 (df�1), which is highly nonsignifi-
cant. Thus, from this analysis we cannot reject the null
hypothesis that the risk ratio relating vasectomy to
myocardial infarction is equal to its null value (i.e., 1).

The analysis just described could be criticized in a
number of ways. First, since the analysis only used the
36 discordant pairs information, all of the information
on the 4790 concordant pairs was not needed, other
than to distinguish such pairs from concordant pairs.

Second, since matching involved only two variables,
AGE and YEAR, a more appropriate analysis should
have involved a stratified analysis based on pooling
exchangeable matched sets.

Third, a more appropriate design would likely have
used frequency matching on AGE and YEAR rather
than individual matching.

Assuming that a more appropriate analysis would have
arrived at essentially the same conclusion (i.e., a nega-
tive finding), we now consider how the McNemar
analysis described above would have to be modified to
take into account two additional variables that were
not involved in the matching, namely obesity status
(OBS) and smoking status (SMK).

Criticism:

• Information on 4790 discordant pairs
not used

• Pooling exchangeable matched sets
more appropriate analysis

• Frequency matching more appropriate
than individual matching

How to modify the analysis to control for
nonmatched variables

OBS and SMK?
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EXAMPLE (continued)

McNemar’s table:

VS = 0
MI =1 MI = 0

MI = 1 P = 0 Q = 20
VS = 1

MI = 0 R = 16 S = 4790

Note: P = 0 ⇒ MRR = MOR.

Cannot reject H0: mRR � 1

MRR = +
+

= +
+

=P Q
P R

0 20
0 16

1 25.

χΜΗ
2

2 220 16
20 16

0 44= −
+

= −
+

=( ) ( )
.

Q R
Q R

ˆ

ˆ ˆ
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When variables not involved in the matching, such as
OBS and SMK, are to be controlled in addition to the
matching variable, we need to use logistic regression
analysis rather than a stratified analysis based on a
McNemar data layout.

A no-interaction logistic model that would accomplish
such an analysis is shown at the left. This model takes
into account the exposure variable of interest (i.e., VS)
as well as the two variables not matched on (i.e., OBS
and SMK), and also includes terms to distinguish the
different matched pairs (i.e., the V1i variables).

It turns out (from statistical theory) that the results
from fitting the above model would be identical
regardless of whether all 4380 matched pairs or just
the 36 discordant matched pairs are input as the data.

In other words, for pair-matched follow-up studies,
even if variables not involved in the matching are being
controlled, a logistic regression analysis requires only
the information on discordant pairs to obtain correct
estimates and tests.

The above property of pair-matched follow-up studies
does NOT hold for pair-matched case-control studies.
For the latter, discordant pairs should only be used if
there are no other control variables other than the
matching variables to be considered in the analysis. In
other words, for pair-matched case-control data, if
there are unmatched variables being controlled, the
complete dataset must be used in order to obtain cor-
rect results.

Matched � nonmatched variables

⇓
Use logistic regression

No interaction model:

4830 total pairs ↔ 36 discordant pairs

same results

Need only analyze discordant pairs

Pair-matched case-control studies:

Use only discordant pairs

provided

no other control variables other than 

matching variables
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The reader may wish review the detailed summary and
to try the practice exercises and the test that follow.

Up to this point we have considered dichotomous out-
comes only. In the next two chapters, the standard logis-
tic model is extended to handle outcomes with three or
more categories.

Logistic Regression Chapters
1. Introduction
2. Important Special Cases

.

.

.
✓ 8. Analysis of Matched Data

9. Polytomous Logistic Regression
10. Ordinal Logistic Regression

252 8. Analysis of Matched Data Using Logistic Regression

SUMMARY
This presentation
• basic features of matching
• logistic model for matched data
• illustration using 2-to-1 matching
• interaction involving matching variables
• pooling exchangeable matched sets
• matched follow-up data

This presentation is now complete. In summary, we
have described the basic features of matching, pre-
sented a logistic regression model for the analysis of
matched data, and have illustrated the model using an
example from a 2-to-1 matched case-control study.
We have also discussed how to assess interaction of
the matching variables with exposure, the issue of
pooling exchangeable matched sets, and how to ana-
lyze matched follow-up data.



I. Overview (page 230)
Focus
• basics of matching
• model for matched data
• control of confounding and interaction
• examples

II. Basic features of matching (pages 230–232)
A. Study design procedure: select referent group to be constrained

so as to be comparable to index group on one or more factors:
i. case-control study (our focus): referent=controls,

index=cases;
ii. follow-up study: referent=unexposed, index=exposed.

B. Category matching: if case-control study, find, for each case, one
or more controls in the same combined set of categories of
matching factors.

C. Types of matching: 1-to-1, R-to-1, other.
D. To match or not to match:

i. advantage: can gain efficiency/precision;
ii. disadvantages: costly to find matches and might lose infor-

mation discarding controls;
iii. safest strategy: match on strong risk factors expected to be

confounders;
iv. validity not a reason for matching: can get valid answer even

when not matching.
III. Matched analyses using stratification (pages 232–235)

A. Strata are matched sets, e.g., if 4-to-1 matching, each stratum
contains five observations.

B. Special case: 1-to-1 matching: four possible forms of strata:
i. both case and control are exposed (W pairs);

ii. only case is exposed (X pairs);
iii. only control is exposed (Y pairs),
iv. neither case nor control is exposed (Z pairs).

C. Two equivalent analysis procedures for 1-to-1 matching:
i. Mantel–Haenszel (MH): use MH test on all strata and com-

pute MOR estimate of OR;
ii. McNemar approach: group data by pairs (W, X, Y, and Z as in

B above). Use McNemar’s chi-square statistic (X�Y)2/(X�Y)
for test and X/Y for estimate of OR.

D. R-to-1 matching: use MH test statistic and MOR.

Detailed
Outline
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IV. The logistic model for matched data (pages 235–238)
A. Advantage: provides an efficient analysis when there are vari-

ables other than matching variables to control.
B. Model uses dummy variables in identifying different strata.
C. Model form:

where V1i are dummy variables identifying matched strata, V2i
are potential confounders based on variables not involved in the
matching, and Wj’s are effect modifiers (usually) based on vari-
ables not involved in the matching.

D. Odds ratio expression if E is coded as (0, 1):

V. An application (pages 238–241)
A. Case-control study, 2-to-1 matching, D = MI (0, 1), 

E = SMK (0, 1),
four matching variables: AGE, RACE, SEX, HOSPITAL,
two variables not matched: SBP, ECG,
n = 117 (39 matched sets, 3 observations per set).

B. Model form:

C. Odds ratio:

D. Analysis: use conditional ML estimation; interaction not 
significant;
No interaction model:

Odds ratio formula:
ROR = exp(�),
Gold standard OR estimate controlling for SBP and ECG: 2.14,
Narrowest CI obtained when only ECG is controlled: OR 
estimate is 2.08,
Overall conclusion: OR approximately 2, but not significant.
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VI. Assessing Interaction Involving Matching Variables (pages
242–244)
A. Option 1: Add product terms of the form E � V1i, where V1i are

dummy variables for matching strata.

where V2j are other covariates (not matched) and Wk are effect
modifiers defined from other covariates.

Criticism of option 1:
• difficult to identify specific effect modifiers
• number of parameters may exceed n

B. Option 2: Add product terms of the form E � W1m, where W1m
are the matching variables in original form.

where V2j are other covariates (not matched) and W2k are effect
modifiers defined from other covariates.

Criticism of option 2:
• model is not HWF (i.e., E � W1m in model but not W1m)
But, matching variables are in model in different ways as both
effect modifiers and confounders.

C. Other alternatives:
• do not match on any variable considered as an effect modifier
• do not assess interaction for any matching variable.

VII. Pooling Matching Strata (pages 245–247)
A. Example: pair-match on SMK (0, 1), 100 cases, 60 matched pairs

of smokers, 40 matched pairs of nonsmokers.
B. Controls for two or more matched pairs that have same SMK sta-

tus are interchangeable. Corresponding matched sets are called
exchangeable.

C. Example (continued): 60 exchangeable smoker matched pairs
40 exchangeable nonsmoker matched pairs.

D. Recommendation:
• identify and pool exchangeable matched sets
• carry out stratified analysis or logistic regression using pooled

strata
• consider using unconditional ML estimation (but conditional

ML estimation always gives unbiased estimates).
E. Reason for pooling: treating exchangeable matched sets as sepa-

rate strata is artificial.
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VIII. Analysis of Matched Follow-up Data (pages 247–251)
A. In follow-up studies, unexposed subjects are selected to have

same distribution on matching variables as exposed subjects.
B. In follow-up studies, frequency matching rather than individual

matching is typically used because of practical convenience and
to obtain larger sample size.

C. Model same as for matched case-control studies except dummy
variables defined by exposed/unexposed matched sets:

D. Analysis if frequency matching used: Consider unconditional ML
estimation when number of strata is small, although conditional
ML estimation will always give unbiased answers.

E. Analysis if pair-matching is used and no pooling is done: Use
McNemar approach that considers concordant and discordant
pairs (P, Q, R, and S) and computes MRR � (P�Q)/(P�R), MOR
� Q/R, and χ2

MH � (Q � R)2/(Q � R).
F. Example: pair-matched follow-up study with 4830 matched pairs,

E�VS (vasectomy status), D�MI (myocardial infarction status),
match on AGE and YEAR (of follow-up); P�0, Q�20, R�16,
S�4790.

MRR � 1.25 � MOR, χ2
MH � 0.44 (N.S.)

Criticisms:
• information on 4790 matched pairs not used
• pooling exchangeable matched sets not used
• frequency matching not used

G. Analysis that controls for both matched and unmatched vari-
ables: use logistic regression on only discordant pairs

H. In matched follow-up studies, need only analyze discordant
pairs. In matched case-control studies, use only discordant pairs,
provided that there are no other control variables other than
matching variables.
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True or False (Circle T or F)

T F 1. In a case-control study, category pair-matching on age and sex
is a procedure by which, for each control in the study, a case is
found as its pair to be in the same age category and same sex
category as the control.

T F 2. In a follow-up study, pair-matching on age is a procedure by
which the age distribution of cases (i.e., those with the disease)
in the study is constrained to be the same as the age distribution
of noncases in the study.

T F 3. In a 3-to-1 matched case-control study, the number of observa-
tions in each stratum, assuming sufficient controls are found
for each case, is four.

T F 4. An advantage of matching over not matching is that a more pre-
cise estimate of the odds ratio may be obtained from matching.

T F 5. One reason for deciding to match is to gain validity in estimat-
ing the odds ratio of interest.

T F 6. When in doubt, it is safer to match than not to match.
T F 7. A matched analysis can be carried out using a stratified analysis

in which the strata consists of the collection of matched sets.
T F 8. In a pair-matched case-control study, the Mantel–Haenszel odds

ratio (i.e., the MOR) is equivalent to McNemar’s test statistic (X
� Y)2/(X�Y). (Note: X denotes the number of pairs for which the
case is exposed and the control is unexposed, and Y denotes the
number of pairs for which the case is unexposed and the control
is exposed.)

T F 9. When carrying out a Mantel–Haenszel chi-square test for 4-to-1
matched case-control data, the number of strata is equal to 5.

T F 10. Suppose in a pair-matched case-control study, that the number
of pairs in each of the four cells of the table used for McNemar’s
test is given by W = 50, X = 40, Y = 20, and Z = 100. Then, the
computed value of McNemar’s test statistic is given by 2.

11. For the pair-matched case-control study described in Exercise 10, let E
denote the (0, 1) exposure variable and let D denote the (0, 1) disease
variable. State the logit form of the logistic model that can be used to
analyze these data. (Note: Other than the variables matched, there are
no other control variables to be considered here.)

Practice
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12. Consider again the pair-matched case-control data described in
Exercise 10 (W = 50, X = 40, Y = 20, Z = 100). Using conditional ML esti-
mation, a logistic model fitted to these data resulted in an estimated
coefficient of exposure equal to 0.693, with standard error equal to
0.274. Using this information, compute an estimate of the odds ratio of
interest and compare its value with the estimate obtained using the
MOR formula X/Y.

13. For the same situation as in Exercise 12, compute the Wald test for the
significance of the exposure variable and compare its squared value and
test conclusion with that obtained using McNemar’s test.

14. Use the information provided in Exercise 12 to compute a 95% confi-
dence interval for the odds ratio, and interpret your result.

15. If unconditional ML estimation had been used instead of conditional
ML estimation, what estimate would have been obtained for the odds
ratio of interest? Which estimation method is correct, conditional or
unconditional, for this data set?

Consider a 2-to-1 matched case-control study involving 300 bisexual males,
100 of whom are cases with positive HIV status, with the remaining 200
being HIV negative. The matching variables are AGE and RACE. Also, the
following additional variables are to be controlled but are not involved in
the matching: NP, the number of sexual partners within the past 3 years;
ASCM, the average number of sexual contacts per month over the past 3
years, and PAR, a (0, 1) variable indicating whether or not any sexual part-
ners in the past 5 years were in high-risk groups for HIV infection. The
exposure variable is CON, a (0, 1) variable indicating whether the subject
used consistent and correct condom use during the past 5 years.

16. Based on the above scenario, state the logit form of a logistic model for
assessing the effect of CON on HIV acquisition, controlling for NP,
ASCM, and PAR as potential confounders and PAR as the only effect
modifier.

17. Using the model given in Exercise 16, give an expression for the odds
ratio for the effect of CON on HIV status, controlling for the confound-
ing effects of AGE, RACE, NP, ASCM, and PAR, and for the interaction
effect of PAR.

18. For the model used in Exercise 16, describe the strategy you would use
to arrive at a final model that controls for confounding and interaction.
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The data below are from a hypothetical pair-matched case-control study
involving five matched pairs, where the only matching variable is smoking
(SMK). The disease variable is called CASE and the exposure variable is
called EXP. The matched set number is identified by the variable STRATUM.

ID STRATUM CASE EXP SMK
1 1 1 1 0
2 1 0 1 0
3 2 1 0 0
4 2 0 1 0
5 3 1 1 1
6 3 0 0 1
7 4 1 1 0
8 4 0 0 0
9 5 1 0 1

10 5 0 0 1

19. How many concordant pairs are there where both pair members are
exposed?

20. How many concordant pairs are there where both members are unex-
posed?

21. How many discordant pairs are there where the case is exposed and
the control is unexposed?

22. How many discordant pairs are there where case is unexposed and
the control is exposed?

The table below summarizes the matched pairs information described in
the previous questions.

not D
E not E

E 1 2
D

not E 1 1

23. What is the estimated MOR for these data?
24. What type of matched analysis is being used with this table, pooled or

unpooled? Explain briefly.

The table below groups the matched pairs information described in
Exercises 19–22 into two smoking strata.

SMK�1 SMK�0
E not E E not E

D 1        1 2 D 2         1 3
not D 0        2 2 not D 2         1 3

4 6
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25. What is the estimated MOR from these data?
26. What type of matched analysis is being used here, pooled or

unpooled?
27. Which type of analysis should be preferred for these matched data

(where smoking status is the only matched variable), pooled or
unpooled?

The data below switches the nonsmoker control of stratum 2 with the non-
smoker control of stratum 4 from the data set provided for Exercises 19–22.
Let W � # concordant (E�1, E�1) pairs, X � # discordant (E�1, E�0)
pairs, Y � # discordant (E�0, E�1) pairs, and Z � # concordant (E�0, E�0)
pairs for the “switched” data.

ID STRATUM CASE EXP SMK
1 1 1 1 0
2 1 0 1 0
3 2 1 0 0
4 2 0 0 0
5 3 1 1 1
6 3 0 0 1
7 4 1 1 0
8 4 0 1 0
9 5 1 0 1

10 5 0 0 1

28. What are the values for W, X, Y, and Z?
29. What are the values of MOR (unpooled) and MOR (pooled)?

Based on the above data and your answers to the above Exercises:

30. Which of the following helps explain why the pooled MOR should be
preferred to the unpooled MOR? (Circle the best answer)
a. The pooled MORs are equal, whereas the unpooled MORs are dif-

ferent.
b. The unpooled MORs assume that exchangeable matched pairs are

not unique.
c. The pooled MORs assume that exchangeable matched pairs are

unique.
d. None of the choices a, b, and c above are correct.
e. All of the choices a, b, and c above are correct.
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True or False (Circle T or F)

T F 1. In a category-matched 2-to-1 case-control study, each case is
matched to two controls who are in the same category as the case
for each of the matching factors.

T F 2. An advantage of matching over not matching is that information
may be lost when not matching.

T F 3. If we do not match on an important risk factor for the disease, it
is still possible to obtain an unbiased estimate of the odds ratio
by doing an appropriate analysis that controls for the important
risk factor.

T F 4. McNemar’s test statistic is not appropriate when there is R-to-1
matching and R is at least 2.

T F 5. In a matched case-control study, logistic regression can be used
when it is desired to control for variables involved in the match-
ing as well as variables not involved in the matching.

6. Consider the following McNemar’s table from the study analyzed by
Donovan et al. (1984). This is a pair-matched case-control study, where
the cases are babies born with genetic anomalies and controls are
babies born without such anomalies. The matching variables are hos-
pital, time period of birth, mother’s age, and health insurance status.
The exposure factor is status of father (Vietnam veteran = 1 or non-
veteran = 0):

Case
E not E

E 2 121

not E 125 8254

For the above data, carry out McNemar’s test for the significance of expo-
sure and compute the estimated odds ratio. What are your conclusions?

7. State the logit form of the logistic model that can be used to analyze the
study data.

8. The following printout results from using conditional ML estimation of
an appropriate logistic model for analyzing the data:

95% CI for OR
Variable � s� P-value OR L U

E 0.032 0.128 0.901 1.033 0.804 1.326

Test
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Use these results to compute the squared Wald test statistic for testing
the significance of exposure and compare this test statistic with the
McNemar chi-square statistic computed in Question 6.

9. How does the odds ratio obtained from the printout given in Question
8 compare with the odds ratio computed using McNemar’s formula
X/Y?

10. Explain how the confidence interval given in the printout is com-
puted.

The following questions consider information obtained from a matched
case-control study of cervical cancer in 313 women from Sydney, Australia
(Brock et al., 1988). The outcome variable is cervical cancer status (1 = pres-
ent, 0 = absent). The matching variables are age and socioeconomic status.
Additional independent variables not matched on are smoking status, num-
ber of lifetime sexual partners, and age at first sexual intercourse. The inde-
pendent variables not involved in the matching are listed below together
with their computer abbreviation and coding scheme.

Variable Abbreviation Coding

Smoking status SMK 1 = ever, 0 = never
Number of sexual partners NS 1 = 4�, 0 = 0 � 3
Age at first intercourse AS 1 = 20�, 0 = ≤19

PRINTOUT:
Variable � S.E. Chi sq P

SMK 1.9381 0.4312 20.20 0.0000
NS 1.4963 0.4372 11.71 0.0006
AS �0.6811 0.3473 3.85 0.0499
SMK � NS �1.1128 0.5997 3.44 0.0635

11. What method of estimation was used to obtain estimates given in the
above printout? Explain.

12. Why are the variables age and socioeconomic status missing from the
printout given above, even though these were variables matched on in
the study design?

13. State the logit form of the model used in the above printout.
14. Based on the printout above, is the product term SMK�NS signifi-

cant? Explain.
15. Using the printout, give a formula for the point estimate of the odds

ratio for the effect of SMK on cervical cancer status which adjusts for
the confounding effects of NS and AS and allows for the interaction
of NS with SMK.
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16. Use the formula computed in Question 15 to compute numerical val-
ues for the estimated odds ratios when NS = 1 and NS = 0.

17. When NS = 1, the 95% confidence interval for the adjusted odds ratio
for the effect of smoking on cervical cancer status is given by the lim-
its (0.96, 5.44). Use this result and your estimate from Question 16 for
NS = 1 to draw conclusions about the effect of smoking on cervical
cancer status when NS = 1.

18. The following printout results from fitting a no interaction model to
the cervical cancer data:

Variable � S.E. Chi sq P

SMK 1.4361 0.3167 20.56 0.0000
NS 0.9598 0.3057 9.86 0.0017
AS �0.6064 0.3341 3.29 0.0695

Based on this printout, compute the odds ratio for the effect of smok-
ing, test its significance, and derive a 95% confidence interval of the
odds ratio. Based on these results, what do you conclude about the
effect of smoking on cervical cancer status?

1. F: cases are selected first, and controls are matched to cases
2. F: the age distribution for exposed persons is constrained to be the

same as for unexposed persons
3. T
4. T
5. F: matching is not needed to obtain a valid estimate of effect
6. F: when in doubt, matching may not lead to increased precision; it is

safe to match only if the potential matching factors are strong risk
factors expected to be confounders in the data

7. T
8. F: the Mantel–Haenszel chi-square statistic is equal to McNemar’s test

statistic
9. F: the number of strata equals the number of matched sets

10. F: the computed value of McNemar’s test statistic is 6.67; the MOR is 2
11.

where the V1i denote dummy variables indicating the different
matched pairs (strata).
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12. Using the printout, the estimated odds ratio is exp(0.693), which
equals 1.9997. The MOR is computed as X/Y equals 40/20 equals 2.
Thus, the estimate obtained using conditional logistic regression is
equal to the MOR.

13. The Wald statistic, which is a Z statistic, is computed as 0.693/0.274,
which equals 2.5292. This is significant at the 0.01 level of signifi-
cance, i.e., P is less than 0.01. The squared Wald statistic, which has a
chi-square distribution with one degree of freedom under the null
hypothesis of no effect, is computed to be 6.40. The McNemar chi-
square statistic is 6.67, which is quite similar to the Wald result,
though not exactly the same.

14. The 95% confidence interval for the odds ratio is given by the formula

which is computed to be
exp (0.693 � 1.96 � 0.274) = exp (0.693 � 0.53704)
which equals (e0.15596, e1.23004) = (1.17, 3.42).
This confidence interval around the point estimate of 2 indicates that
the point estimate is somewhat unstable. In particular, the lower limit
is close to the null value of 1, whereas the upper limit is close to 4.
Note also that the confidence interval does not include the null value,
which supports the statistical significance found in Exercise 13.

15. If unconditional ML estimation had been used, the odds ratio esti-
mate would be higher (i.e., an overestimate) than the estimate
obtained using conditional ML estimation. In particular, because the
study involved pair-matching, the unconditional odds ratio is the
square of the conditional odds ratio estimate. Thus, for this dataset,
the conditional estimate is given by MOR equal to 2, whereas the
unconditional estimate is given by the square of 2, or 4. The correct
estimate is 2, not 4.

16.

where the V1i are 99 dummy variables indicating the 100 matching
strata, with each stratum containing three observations.

17.
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18. A recommended strategy for model building involves first testing for
the significance of the interaction term in the starting model given in
Exercise 16. If this test is significant, then the final model must con-
tain the interaction term, the main effect of PAR (from the Hierarchy
Principle), and the 99 dummy variables for matching. The other two
variables NP and ASCM may be dropped as nonconfounders if the
odds ratio given by Exercise 17 does not meaningfully change when
either or both variables are removed from the model. If the interac-
tion test is not significant, then the reduced (no interaction) model is
given by the expression

Using this reduced model, the odds ratio formula is given by exp(�),
where � is the coefficient of the CON variable. The final model must
contain the 99 dummy variables which incorporate the matching into
the model. However, NP, ASCM, and/or PAR may be dropped as non-
confounders if the odds ratio exp(�) does not change when one or
more of these three variables are dropped from the model. Finally,
precision of the estimate needs to be considered by comparing confi-
dence intervals for the odds ratio. If a meaningful gain of precision is
made by dropping a nonconfounder, then such a nonconfounder may
be dropped. Otherwise (i.e., no gain in precision), the nonconfounder
should remain in the model with all other variables needed for con-
trolling confounding.

19. 1
20. 1
21. 2
22. 1
23. 2
24. Unpooled; the analysis treats all five strata (matched pairs) as unique.
25. 2.5
26. Pooled
27. Pooled; treating the five strata as unique is artificial since there are

exchangeable strata that should be pooled.
28. W � 1, X � 1, Y � 0, and Z � 2.
29. mOR(unpooled) � undefined; mOR(pooled) � 2.5
30. Only choice a is correct.
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In this chapter, the standard logistic model is extended to handle outcome
variables that have more than two categories. Polytomous logistic regression
is used when the categories of the outcome variable are nominal, that is, they
do not have any natural order. When the categories of the outcome variable
do have a natural order, ordinal logistic regression may also be appropriate.

The focus of this chapter is on polytomous logistic regression. The mathe-
matical form of the polytomous model and its interpretation are developed.
The formulas for the odds ratio and confidence intervals are derived, and
techniques for testing hypotheses and assessing the statistical significance
of independent variables are shown.

The outline below gives the user a preview of the material to be covered by
the presentation. A detailed outline for review purposes follows the presen-
tation.

I. Overview (pages 270–271)

II. Polytomous logistic regression: An example with three cate-
gories (pages 272–275)

III. Odds ratio with three categories (pages 275–279)

IV. Statistical inference with three categories (pages 279–282)

V. Extending the polytomous model to G outcomes and p predic-
tors (pages 282–287)

VI. Likelihood function for polytomous model (pages 288–290)

VII. Polytomous versus multiple standard logistic regressions
(page 291)
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Upon completing this chapter, the learner should be able to:

1. State or recognize the difference between nominal and ordinal vari-
ables.

2. State or recognize when the use of polytomous logistic regression
may be appropriate.

3. State or recognize the polytomous regression model.
4. Given a printout of the results of a polytomous logistic regression:

a. state the formula and compute the odds ratio;
b. state the formula and compute a confidence interval for the odds

ratio;
c. test hypotheses about the model parameters using the likelihood

ratio test or the Wald test, stating the null hypothesis and the dis-
tribution of the test statistic with the corresponding degrees of
freedom under the null hypothesis.

5. Recognize how running a polytomous logistic regression differs from
running multiple standard logistic regressions.
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This presentation and the presentation that follows
describe approaches for extending the standard logistic
regression model to accommodate a disease, or out-
come, variable that has more than two categories. Up to
this point, our focus has been on models that involve a
dichotomous outcome variable, such as disease pre-
sent/absent. However, there may be situations in which
the investigator has collected data on multiple levels of
a single outcome. We describe the form and key char-
acteristics of one model for such multilevel outcome
variables: the polytomous logistic regression model.

Examples of outcome variables with more than two lev-
els might include (1) disease symptoms that have been
classified by subjects as being absent, mild, moderate,
or severe, (2) invasiveness of a tumor classified as in
situ, locally invasive, or metastatic, or (3) patients’ pre-
ferred treatment regimen, selected from among three
or more options.

One possible approach to the analysis of data with a
polytomous outcome would be to choose an appropri-
ate cut-point, dichotomize the multilevel outcome
variable, and then simply utilize the logistic modeling
techniques discussed in previous chapters.

For example, if the outcome symptom severity has four
categories of severity, one might compare subjects
with none or only mild symptoms to those with either
moderate or severe symptoms.

Examples of multilevel outcomes:

1. Absent, mild, moderate, severe
2. In situ, locally invasive, metastatic
3. Choice of treatment regimen

One approach: dichotomize outcome

Change

0 1 2

to

0 1 2
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EXAMPLE

Change

none mild moderate severe

to

none or moderate or
mild severe

Presentation

modeling
outcomes with
more than two 

levels

FOCUS

I. Overview



The disadvantage of dichotomizing a polytomous out-
come is loss of detail in describing the outcome of
interest. For example, in the scenario given above, we
can no longer compare mild versus none or moderate
versus mild. This loss of detail may, in turn, affect the
conclusions made about the exposure–disease rela-
tionship.

The detail of the original data coding can be retained
through the use of models developed specifically for
polytomous outcomes. The specific form that the
model takes depends, in part, on whether the multi-
level outcome variable is measured on a nominal or an
ordinal scale.

Nominal variables simply indicate different categories.
An example is histological subtypes of cancer. For
endometrial cancer, three possible subtypes are
adenosquamous, adenocarcinoma, and other.

Ordinal variables have a natural ordering among the
levels. An example is cancer tumor grade, ranging
from well differentiated to moderately differentiated to
poorly differentiated tumors.

An outcome variable that has three or more nominal
categories can be modeled using polytomous logistic
regression. An outcome variable with three or more
ordered categories can also be modeled using polyto-
mous regression, but can also be modeled with ordinal
logistic regression, provided that certain assumptions
are met. Ordinal logistic regression is discussed in
detail in Chapter 10.

Disadvantage of dichotomizing:
loss of detail (e.g., mild versus none?
moderate versus mild?)

Alternate approach: use model for a
polytomous outcome

Nominal or ordinal outcome?

Nominal: different categories; no ordering

Ordinal: levels have natural ordering

Nominal outcome ⇒ Polytomous model

Ordinal outcome ⇒ Ordinal model or
polytomous model

Presentation: I. Overview 271

EXAMPLE

Endometrial cancer subtypes:

• adenosquamous
• adenocarcinoma
• other

EXAMPLE

Tumor grade:

• well differentiated
• moderately differentiated
• poorly differentiated



When modeling a multilevel outcome variable, the epi-
demiological question remains the same: What is the
relationship of one or more exposure or study vari-
ables (E) to a disease or illness outcome (D)?

In this section, we present an example of a polytomous
logistic regression model with one dichotomous expo-
sure variable and an outcome (D) that has three cate-
gories. This is the simplest case of a polytomous
model. Later in the presentation we discuss extending
the polytomous model to more than one predictor vari-
able and then to outcomes with more than three cate-
gories.

The example uses data from the National Cancer
Institute’s Black/White Cancer Survival Study (Hill et
al., 1995). Suppose we are interested in assessing the
effect of age on histological subtype among women
with primary endometrial cancer. AGE, the exposure
variable, is coded as 0 for ages 50–64 or 1 for ages
65–79. The disease variable, histological subtype, is
coded 0 for adenocarcinoma, 1 for adenosquamous,
and 2 for other.

There is no inherent order in the outcome variable.
The 0, 1, and 2 coding of the disease categories is arbi-
trary.

The 3 � 2 table of the data is presented on the left.

?

Simplest case of polytomous model:

• outcome with three categories
• one dichotomous exposure variable

Data source:
Black/White Cancer Survival Study

0 if 50–64
E � AGE

1 if 65–79

0 if Adenocarcinoma
D � SUBTYPE      1 if Adenosquamous

2 if Other

SUBTYPE (0, 1, 2) uses arbitrary coding.

AGE
50–64 65–79
E�0 E�1

Adenocarcinoma
77 109D�0

Adenosquamous
11 34D�1

Other
18 39D�2
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II. Polytomous Logistic
Regression: An Example with
Three Categories

E D

EXAMPLE

}
}



With polytomous logistic regression, one of the cate-
gories of the outcome variable is designated as the ref-
erence category and each of the other levels is com-
pared with this reference. The choice of reference
category can be arbitrary and is at the discretion of the
researcher. See example at left. Changing the reference
category does not change the form of the model, but it
does change the interpretation of the parameter esti-
mates in the model.

In our three-outcome example, the Adenocarcinoma
group has been designated as the reference category.
We are therefore interested in modeling two main
comparisons. We want to compare subjects with an
Adenosquamous outcome (category 1) to those sub-
jects with an Adenocarcinoma outcome (category 0)
and we also want to compare subjects with an Other
outcome (category 2) to those subjects with an
Adenocarcinoma outcome (category 0).

If we consider these two comparisons separately, the
crude odds ratios can be calculated using data from
the preceding table. The crude odds ratio comparing
Adenosquamous (category 1) to Adenocarcinoma (cat-
egory 0) is the product of 77 and 34 divided by the
product of 109 and 11, which equals 2.18. Similarly,
the crude odds ratio comparing Other (category 2) to
Adenocarcinoma (category 0) is the product of 77 and
39 divided by the product of 109 and 18, which equals
1.53.

Recall that for a dichotomous outcome variable coded
as 0 or 1, the logit form of the logistic model, logit
P(X), is defined as the natural log of the odds for devel-
oping a disease for a person with a set of independent
variables specified by X. This logit form can be written
as the linear function shown on the left.
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OR
77  34

109  11
2.181vs0 = ×

×
=

OR
77  39

109  18
12vs0 = ×

×
= .53

= ln
P( 1|
P( 0 |

D
D

=
=

⎡
⎣⎢

⎤
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X
X

)
)

= +
=
∑α βi
i

p

iX
1

Outcome categories:

Reference group � Adenocarcinoma

Two comparisons:

1. Adenosquamous (D�1)
versus Adenocarcinoma (D�0)

2. Other (D�2)
versus Adenocarcinoma (D�0)

Using data from table:

Dichotomous versus polytomous model:
Odds versus “odds-like” expressions

logit P(X)

ˆ

ˆ

EXAMPLE (continued)

A B C D

Reference (arbitrary choice)

Then compare:

A versus C, B vs. C, and D vs. C



The odds for developing disease can be viewed as a
ratio of probabilities. For a dichotomous outcome
variable coded 0 and 1, the odds of disease equals the
probability that disease equals 1 divided by 1 minus
the probability that disease equals 1, or the probability
that disease equals 1 divided by the probability that
disease equals 0.

For polytomous logistic regression with a three-level
variable coded 0, 1, and 2, there are two analogous
expressions, one for each of the two comparisons we
are making. These expressions are also in the form of a
ratio of probabilities.

In polytomous logistic regression with three levels, we
therefore define our model using two expressions for
the natural log of these “odds-like” quantities. The first
is the natural log of the probability that the outcome is
in category 1 divided by the probability that the out-
come is in category 0; the second is the natural log of
the probability that the outcome is in category 2
divided by the probability that the outcome is in cate-
gory 0.

When there are three categories of the outcome, the
sum of the probabilities for the three outcome cate-
gories must be equal to 1, the total probability.
Because each comparison considers only two probabil-
ities, the probabilities in the ratio do not sum to 1.
Thus, the two “odds-like” expressions are not true
odds. However, if we restrict our interest to just the
two categories being considered in a given ratio, we
may still conceptualize the expression as an odds. In
other words, each expression is an odds only if we con-
dition on the outcome being in one of the two cate-
gories of interest. For ease of the subsequent discus-
sion, we will use the term “odds” rather than
“odds-like” for these expressions.

Odds of disease: a ratio of probabilities

Dichotomous outcome:

odds �

Polytomous outcome (three categories):

Use “odds-like” expressions for two
comparisons

(1)               (2) 

The logit form of model uses ln of “odds-
like” expressions

(1)                      (2) 

P(D � 0) � P(D � 1) � P(D � 2) � 1

BUT

P(D � 1) � P(D � 0) � 1

P(D � 2) � P(D � 0) � 1

Therefore:

and

“odds-like” but not true odds
(unless analysis restricted to two 
categories)
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Because our example has three outcome categories
and one predictor (i.e., AGE), our polytomous model
requires two regression expressions. One expression
gives the log of the probability that the outcome is in
category 1 divided by the probability that the outcome
is in category 0, which equals �1 plus �11 times X1.

We are also simultaneously modeling the log of the
probability that the outcome is in category 2 divided by
the probability that the outcome is in category 0,
which equals �2 plus �21 times X1.

Both the alpha and beta terms have a subscript to indi-
cate which comparison is being made (i.e., category 1
versus 0 or category 2 versus 0).

Once a polytomous logistic regression model has been
fit and the parameters (intercepts and beta coeffi-
cients) have been estimated, we can then calculate esti-
mates of the disease–exposure association in a similar
manner to the methods used in standard logistic
regression (SLR).

Consider the special case in which the only indepen-
dent variable is the exposure variable and the exposure
is coded 0 and 1. To assess the effect of the exposure on
the outcome, we compare X1 � 1 to X1 � 0.

Model for three categories, 
one predictor (X1):

�1 �11

1 vs. 0
�2 �21

2 vs. 0

�̂1 �̂2 Estimates obtained
as in SLR

�̂11 �̂21

Special Case for One Predictor
where X1 � 1 or X1 � 0
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Two odds ratios:

OR1 (category 1 versus category 0)
(Adenosquamous versus Adenocarcinoma)

OR2 (category 2 versus category 0)
(Other versus Adenocarcinoma)

Adenosquamous versus Adenocarcinoma

Other versus Adenocarcinoma

They are different!

We need to calculate two odds ratios, one that com-
pares category 1 (Adenosquamous) to category 0
(Adenocarcinoma) and one that compares category 2
(Other) to category 0 (Adenocarcinoma).

Recall that we are actually calculating a ratio of two
“odds-like” expressions. However, we continue the
conventional use of the term odds ratio for our discus-
sion.

Each odds ratio is calculated in a manner similar to
that used in standard logistic regression. The two OR
formulas are shown on the left.

Using our previously defined probabilities of the log
odds, we substitute the two values of X1 for the expo-
sure (i.e., 0 and 1) into those expressions. After divid-
ing, we see that the odds ratio for the first comparison
(Adenosquamous versus Adenocarcinoma) is e to the
�11.

The odds ratio for the second comparison (Other ver-
sus Adenocarcinoma) is e to the �21.

We obtain two different odds ratio expressions, one
utilizing �11 and the other utilizing �21. Thus, quanti-
fying the association between the exposure and out-
come depends on which levels of the outcome are
being compared.
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The special case of a dichotomous predictor can be
generalized to include categorical or continuous pre-
dictors. To compare any two levels (X1 � X1

** versus X1
� X1

*) of a predictor, the odds ratio formula is e to the
�g1 times (X1

**−X1
*), where g defines the category of the

disease variable (1 or 2) being compared to the refer-
ence category (0).

The output generated by a computer package for poly-
tomous logistic regression includes alphas and betas
for the log odds terms being modeled. Packages vary in
the presentation of output, and the coding of the vari-
ables must be considered to correctly read and inter-
pret the computer output for a given package. For
example, in SAS, if D�0 is designated as the reference
category, the output is listed in descending order (see
Appendix). This means that the listing of parameters
pertaining to the comparison with category D�2 pre-
cedes the listing of parameters pertaining to the com-
parison with category D�1, as shown on the left.

The results for the polytomous model examining histo-
logical subtype and age are presented on the left. The
results were obtained from running PROC CATMOD
in SAS.

There are two sets of parameter estimates. The output
is listed in descending order, with �2 labeled as
Intercept 1 and �1 labeled as intercept 2. If D�2 had
been designated as the reference category, the output
would have been in ascending order.

General Case for One Predictor

Computer output for polytomous model:
Is output listed in ascending or 
descending order?
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OR  ( ) where =1,2g 1
**

1
*= −[ ]exp βg X X g1

EXAMPLE

SAS

Reference category: D�0
Parameters for D�2 comparison
precede D�1 comparison.

Variable Estimate symbol

Intercept 1 �̂2

Intercept 2 �̂1

X1 �̂21

X1 �̂11

EXAMPLE

Variable Estimate S.E. Symbol

Intercept 1 �1.4534 0.2618 �̂2

Intercept 2 �1.9459 0.3223 �̂1

AGE 0.4256 0.3215 �̂21

AGE 0.7809 0.3775 �̂11



The equation for the estimated log odds of Other (cat-
egory 2) versus Adenocarcinoma (category 0) is nega-
tive 1.4534 plus 0.4256 times age group.

Exponentiating the beta estimate for age in this model
yields an estimated odds ratio of 1.53.

The equation for the estimated log odds of
Adenosquamous (category 1) versus Adenocarcinoma
(category 0) is negative 1.9459 plus 0.7809 times age
group.

Exponentiating the beta estimate for AGE in this
model yields an estimated odds ratio of 2.18.

The odds ratios from the polytomous model (i.e., 1.53
and 2.18) are the same as those we obtained earlier
when calculating the crude odds ratios from the data
table before modeling. In the special case, where there
is one dichotomous exposure variable, the crude esti-
mate of the odds ratio will match the estimate of the
odds ratio obtained from a polytomous model (or from
a standard logistic regression model).

We can interpret the odds ratios by saying that, for
women diagnosed with primary endometrial cancer,
older subjects (ages 65–79) relative to younger subjects
(ages 50-64) were more likely to have their tumors cat-
egorized as Other than as Adenocarcinoma (OR2 �
1.53) and were even more likely to have their tumors
classified as Adenosquamous than as Adenocarcinoma
(OR1 � 2.18).
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ˆ

ˆ

EXAMPLE (continued)

Other versus Adenocarcinoma:

�1.4534 � (0.4256)AGE

OR2 � exp[�̂21] � exp(0.4256) � 1.53

Adenosquamous versus Adenocarcinoma:

�1.9459 � (0.7809)AGE

OR1 � exp[�̂11] � exp(0.7809) � 2.18

Special case

One dichotomous exposure ⇒

polytomous model ORs � crude ORs

Interpretation of ORs

For older versus younger subjects:

• Other tumor category more likely
than
Adenocarcinoma (OR2 � 1.53)

• Adenosquamous even more likely
than
Adenocarcinoma (OR1 � 2.18)
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What is the interpretation of the alpha coefficients?
They represent the log of the odds where all indepen-
dent variables are set to zero (i.e., Xi � 0 for i � 1 to p).
The intercepts are not informative, however, if sam-
pling is done by outcome (i.e., disease status). For
example, suppose the subjects in the endometrial can-
cer example had been selected based on tumor type,
with age group (i.e., exposure status) determined after
selection. This would be analogous to a case-control
study design in logistic regression. Although the inter-
cepts are not informative in this setting, the odds ratio
is still a valid measure with this sampling method.

In polytomous logistic regression, as with standard logis-
tic regression (i.e., a dichotomous outcome), two types of
statistical inferences are often of interest: (1) testing
hypotheses and (2) deriving interval estimates around
parameters. Procedures for both of these are straightfor-
ward generalizations of those that apply to logistic
regression modeling with a dichotomous outcome vari-
able [i.e., standard logistic regression (SLR)].

The confidence interval estimation is analogous to the
standard logistic regression situation. For one predic-
tor variable, with any levels (X1

** and X1
*) of that vari-

able, the large-sample formula for a 95% confidence
interval is of the general form shown at left.

Continuing with the endometrial cancer example, the
estimated standard errors for the parameter estimates
for AGE are 0.3215 for �̂21 and 0.3775 for �̂11.

Interpretation of alphas

Log odds where all Xs set to 0.

Not informative if sampling done
by outcome (i.e., “disease”) status.

Two types of inferences:

1. Hypothesis testing about parameters
2. Interval estimation around parameters

Procedures for polytomous outcomes
generalizations of SLR

95% CI for OR (one predictor)
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IV. Statistical Inference with
Three Categories

exp ˆ ) ˆβg X X X X s
g1 1

( ) 1.96(1
**

1
*

1
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1
*− ± −{ }β

EXAMPLE

Estimated standard errors:

s sˆ ˆ.       .β β21 11
0 3215 0 3775= =



The 95% confidence interval for OR2 is calculated as
shown on the left as 0.82 to 2.87. The 95% confidence
interval for OR1 is calculated as 1.04 to 4.58.

As with a standard logistic regression, we can use a
likelihood ratio test to assess the significance of the
independent variable in our model. We must keep in
mind, however, that rather than testing one beta coef-
ficient for an independent variable, we are now testing
two at the same time. There is a coefficient for each
comparison being made (i.e., D�2 versus D�0 and
D�1 versus D�0). This affects the number of parame-
ters tested and, therefore, the degrees of freedom asso-
ciated with the test.

In our example, we have a three-level outcome variable
and a single predictor variable, the exposure. As the
model indicates, we have two intercepts and two beta
coefficients.

If we are interested in testing for the significance of the
beta coefficient corresponding to the exposure, we
begin by fitting a full model (with the exposure vari-
able in it) and then comparing that to a reduced model
containing only the intercepts.

The null hypothesis is that the beta coefficients corre-
sponding to the exposure variable are both equal to zero.

The likelihood ratio test is calculated as negative two
times the log likelihood (ln L) from the reduced model
minus negative two times the log likelihood from the
full model. The resulting statistic is distributed approx-
imately chi-square, with degrees of freedom (df) equal
to the number of parameters set equal to zero under
the null hypothesis.

Likelihood ratio test

Assess significance of X1

2 �s tested at the same time
⇓

2 degrees of freedom
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EXAMPLE

3 levels of D and 1 predictor
⇓

2 �s and 2 �s

Full model:

Reduced model:

H0: �11 � �21 � 0

Likelihood ratio test statistic:
�2 ln Lreduced – (�2 ln Lfull) ~ �2

with df � number of parameters set
to zero under H0
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EXAMPLE (continued)

95% CI for OR2
� exp[0.4256 � 1.96(0.3215)]
� (0.82, 2.87)

95% CI for OR1
� exp[0.7809 � 1.96(0.3775)]
� (1.04, 4.58)



In the endometrial cancer example, negative two times
the log likelihood for the reduced model is 514.4, and
for the full model is 508.9. The difference is 5.5. The
chi-square P-value for this test statistic, with two
degrees of freedom, is 0.06. The two degrees of free-
dom are for the two beta coefficients being tested, one
for each comparison. We conclude that AGE is statisti-
cally significant at the 0.10 level but not at the 0.05
level.

Whereas the likelihood ratio test allows for the assess-
ment of the effect of an independent variable across all
levels of the outcome simultaneously, it is possible that
one might be interested in evaluating the effect of the
independent variable at a single outcome level. A Wald
test can be performed in this situation.

The null hypothesis, for each level of interest, is that
the beta coefficient is equal to zero. The Wald test sta-
tistics are computed as described earlier, by dividing
the estimated coefficient by its standard error. This
test statistic has an approximate normal distribution.

Continuing with our example, the null hypothesis for
the Adenosquamous versus Adenocarcinoma compari-
son (i.e., category 1 vs. 0) is that �11 equals zero. The
Wald statistic for �11 is equal to 2.07, with a P-value of
0.04. The null hypothesis for the Other versus
Adenocarcinoma comparison (i.e., category 2 vs. 0) is
that �21 equals zero. The Wald statistic for �21 is equal
to 1.32, with a P-value of 0.19.

Wald test

β for single outcome level tested

For two levels:

H0: β11 � 0 H0: β21 � 0

~ N (0, 1)
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At the 0.05 level of significance, we reject the null
hypothesis for �11 but not for �21. We conclude that
AGE is statistically significant for the Adenosquamous
versus Adenocarcinoma comparison (category 1 vs. 0),
but not for the Other versus Adenocarcinoma compar-
ison (category 2 vs. 0).

We must either keep both betas (�11 and �21) for an
independent variable or drop both betas when model-
ing in polytomous regression. Even if only one beta is
significant, both betas must be retained if the indepen-
dent variable is to remain in the model.

Expanding the model to add more independent vari-
ables is straightforward. We can add p independent
variables for each of the outcome comparisons.

The log odds comparing category 1 to category 0 is
equal to �1 plus the summation of the p independent
variables times their �1 coefficients. The log odds com-
paring category 2 to category 0 is equal to �2 plus the
summation of the p independent variables times their
�2 coefficients.

The procedures for calculation of the odds ratios, con-
fidence intervals, and for hypothesis testing remain the
same.

To illustrate, we return to our endometrial cancer
example. Suppose we wish to consider the effects of
estrogen use and smoking status as well as AGE on his-
tological subtype (D � 0, 1, 2). The model now con-
tains three predictor variables: X1 � AGE, X2 �
ESTROGEN, and X3 � SMOKING.

Conclusion: Is AGE significant?

⇒ Yes: Adenocarcinoma versus
Adenosquamous

⇒ No: Other versus Adenosquamous.

Decision: retain or drop both �11 and �21
from model

Adding More Independent Variables

Same procedures for OR, CI, and
hypothesis testing
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V. Extending the Polytomous
Model to G Outcomes and 
p Predictors
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EXAMPLE

0 if Adenocarcinoma
D � SUBTYPE 1 if Adenosquamous

2 if Other

Predictors

X1 � AGE
X2 � ESTROGEN
X3 � SMOKING

}



Recall that AGE is coded as 0 for ages 50–64 or 1 for
ages 65–79. Both estrogen use and smoking status are
also coded as dichotomous variables. ESTROGEN is
coded as 1 for ever user and 0 for never user. SMOK-
ING is coded as 1 for current smoker and 0 for former
or never smoker.

The log odds comparing Adenosquamous (D�1) to
Adenocarcinoma (D�0) is equal to �1 plus �11 times X1
plus �12 times X2 plus �13 times X3.

Similarly, the log odds comparing Other type (D�2) to
Adenocarcinoma (D�0) is equal to �2 plus �21 times X1
plus �22 times X2 plus �23 times X3.

The output for the analysis is shown on the left. There
are two beta estimates for each of the three predictor
variables in the model. Thus, there are a total of eight
parameters in the model, including the intercepts.
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EXAMPLE (continued)

0 if 50–64
X1 � AGE

1 if 65–79

0 if never user
X2 � ESTROGEN

1 if ever user

0 if former or never 
smoker

X3 � SMOKING
1 if current smoker

Adenosquamous versus 
Adenocarcinoma

Other versus Adenocarcinoma

Variable Estimate S.E. Symbol

Intercept 1 �1.2032 0.3190 �̂2
Intercept 2 �1.8822 0.4025 �̂1

AGE 0.2823 0.3280 �̂21
AGE 0.9871 0.4118 �̂11

ESTROGEN �0.1071 0.3067 �̂22
ESTROGEN �0.6439 0.3436 �̂12

SMOKING �1.7913 1.0460 �̂23
SMOKING 0.8895 0.5254 �̂13

}
}
}
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Suppose we are interested in the effect of AGE, con-
trolling for the effects of ESTROGEN and SMOKING.
The odds ratio for the effect of AGE in the comparison
of Adenosquamous (D�1) to Adenocarcinoma (D�0)
is equal to e to the 11or exp(0.9871) equals 2.68.

The odds ratio for the effect of AGE in the comparison
of Other type (D�2) to Adenocarcinoma (D�0) is equal
to e to the 21 or exp(0.2823) equals 1.33.

Our interpretation of the results for the three-variable
model differs from that of the one-variable model. The
effect of AGE on the outcome is now estimated while
controlling for the effects of ESTROGEN and SMOK-
ING.

If we compare the model with three predictor variables
with the model with only AGE included, the effect of
AGE in the reduced model is weaker for the compari-
son of Adenosquamous to Adenocarcinoma (OR � 2.18
vs. 2.68), but is stronger for the comparison of Other to
Adenocarcinoma (OR � 1.53 vs. 1.33).

These results suggest that estrogen use and smoking
status act as confounders of the relationship between
age group and the tumor category outcome. The
results of the single-predictor model suggest a bias
toward the null value (i.e., 1) for the comparison of
Adenosquamous to Adenocarcinoma, whereas the
results suggest a bias away from the null for the com-
parison of Other to Adenocarcinoma. These results
illustrate that assessment of confounding can have
added complexity in the case of multilevel outcomes.

Adenosquamous versus Adenocarcinoma

� exp �̂11 � exp(0.9871) � 2.68

Other versus Adenocarcinoma

� exp �̂21 � exp(0.2823) � 1.33

Interpretation of ORs

Three-variable versus one-variable model

Three-variable model
⇒ AGE | ESTROGEN, SMOKING

One-variable model:
⇒ AGE | no control variables

Odds ratios for effect of AGE:

Model

AGE
ESTROGEN AGE

Comparison SMOKING

1 vs. 0 2.68 2.18
2 vs. 0 1.33 1.53

Results suggest bias for single-predictor
model:

• toward null for comparison of
category 1 vs. 0

• away from null for comparison of
category 2 vs. 0.
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The 95% confidence intervals are calculated using the
standard errors of the parameter estimates from the
three-variable model, which are 0.4118 and 0.3280 for
�̂11 and �̂12 respectively.

These confidence intervals are calculated with the
usual large-sample formula as shown on the left. For
OR1, this yields a confidence interval of 1.20 to 6.01,
whereas for OR2, this yields a confidence interval of
0.70 to 2.52. The confidence interval for OR2 contains
the null value (i.e., 1.0), whereas the interval for OR1
does not.

The procedures for the likelihood ratio test and for the
Wald tests follow the same format as described earlier
for the polytomous model with one independent vari-
able.

The likelihood ratio test compares the reduced model
without the age group variable to the full model with
the age group variable. This test is distributed approx-
imately chi-square with two degrees of freedom. Minus
two times the log likelihood for the reduced model is
500.97, and for the full model, it is 494.41. The differ-
ence of 6.56 is statistically significant at the 0.05 level
(P�0.04).

The Wald tests are carried out as before, with the same
null hypotheses. The Wald statistic for �11 is equal to
2.40 and for �21 is equal to 0.86. The P-value for �11 is
0.02, while the P-value for �21 is 0.39. We therefore
reject the null hypothesis for �11 but not for �21.

95% confidence intervals

Use standard errors from three-variable
model:

95% CI for OR1

� exp[0.9871 � 1.96(0.4118)
� (1.20, 6.01)

95% CI for OR2

� exp[0.2832 � 1.96(0.3280)
� (0.70, 2.52)

Likelihood ratio test
same procedures

Wald tests as with one predictor

Likelihood ratio test

-2 ln L
reduced: 500.97
full: 494.41

difference: 6.56
(~ �2, with 2 df)
P-value � 0.04

Wald tests

H0: �11 � 0 (category 1 vs. 0)

H0: �21 � 0 (category 2 vs. 0)
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We conclude that AGE is statistically significant for
the Adenosquamous versus Adenocarcinoma compari-
son (category 1 vs. 0), but not for the Other versus
Adenocarcinoma comparison (category 2 vs. 0), con-
trolling for ESTROGEN and SMOKING.

The researcher must make a decision about whether to
retain AGE in the model. If we are interested in both
comparisons, then both betas must be retained, even
though only one is statistically significant.

We can also consider interaction terms in a polyto-
mous logistic model.

Consider a disease variable that has three categories (D
� 0, 1, 2) as in our previous example. Suppose our
model includes two independent variables, X1 and X2,
and that we are interested in the potential interaction
between these two variables. The log odds could be
modeled as �1 plus �g1X1 plus �g2X2 plus �g3X1X2. The
subscript g (g � 1, 2) indicates which comparison is
being made (i.e., category 2 vs. 0, or category 1 vs. 0).

To test for the significance of the interaction term, a
likelihood ratio test with two degrees of freedom can
be done. The null hypothesis is that �13 equals �23
equals zero.

A full model with the interaction term would be fit and
its likelihood compared against a reduced model with-
out the interaction term.

It is also possible to test the significance of the interac-
tion term at each level with Wald tests. The null
hypotheses would be that �13 equals zero and that �23
equals zero. Recall that both terms must either be
retained or dropped.

Conclusion: Is AGE significant?*
⇒ Yes: Adenocarcinoma versus

Adenosquamous
⇒ No: Other versus Adenosquamous.

*Controlling for ESTROGEN and SMOKING

Decision: retain or drop AGE from model.

Adding Interaction Terms

D � (0, 1, 2)

Two independent variables (X1, X2)

log odds � �g � �g1X1 � �g2X2 � �g3X1X2

where g � 1, 2

Likelihood ratio test

To test significance of interaction terms

H0: �13 � �23 � 0

Full model: �g � �g1X1 � �g2X2 � �g3X1X2

Reduced model: �g � �g1X1 � �g2X2

where g � 1, 2

Wald test

To test significance of interaction term at
each level

H0: �13 � 0

H0: �23 � 0
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The model also easily extends for outcomes with more
than three levels.

Assume that the outcome has G levels (0, 1, 2, . . . ,
G–1). There are now G–1 possible comparisons with
the reference category.

If the reference category is 0, we can define the model
in terms of G–1 expressions of the following form: the
log odds of the probability that the outcome is in cate-
gory g divided by the probability the outcome is in cat-
egory 0 equals �g plus the summation of the p inde-
pendent variables times their �g coefficients.

The odds ratios and corresponding confidence inter-
vals for the G–1 comparisons of category g to category
0 are calculated in the manner previously described.
There are now G–1 estimated odds ratios and corre-
sponding confidence intervals, for the effect of each
independent variable in the model.

The likelihood ratio test and Wald test are also calcu-
lated as before.

For the likelihood ratio test, we test G–1 parameter
estimates simultaneously for each independent vari-
able. Thus, for testing one independent variable, we
have G–1 degrees of freedom for the chi-square test
statistic comparing the reduced and full models.

We can also perform a Wald test to examine the signif-
icance of individual betas. We have G–1 coefficients
that can be tested for each independent variable. As
before, the set of coefficients must either be retained
or dropped.

Extending Model to G Outcomes

Outcome variable has G levels:
(0, 1, 2, . . . , G–1)

where g � 1, 2, ..., G–1

Calculation of ORs and CIs as before

Likelihood ratio test
same procedures

Wald tests

Likelihood ratio test

�2 ln Lreduced – (�2 ln Lfull)

~ �2

with df � number of parameters set to zero
under H0 (� G–1 if p � 1)

Wald test

where g � 1, 2, ..., G–1
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We now present the likelihood function for polyto-
mous logistic regression. This section may be omitted
without loss of continuity.

We will write the function for an outcome variable
with three categories. Once the likelihood is defined
for three outcome categories, it can easily be extended
to G outcome categories.

We begin by examining the individual probabilities for
the three outcomes discussed in our earlier example,
that is, the probabilities of the tumor being classified
as Adenocarcinoma (D�0), Adenosquamous (D�1), or
Other (D�2).

Recall that in logistic regression with a dichotomous
outcome variable, we were able to write an expression
for the probability that the outcome variable was in
category 1, as shown on the left, and for the probabil-
ity the outcome was in category 0, which is 1 minus the
first probability.

Similar expressions can be written for a three-level
outcome. As noted earlier, the sum of the probabilities
for the three outcomes must be equal to 1, the total
probability.

To simplify notation, we can let h1(X) be equal to �1
plus the summation of the p independent variables
times their �1 coefficients and h2(X) be equal to �2 plus
the summation of the p independent variables times
their �2 coefficients.

The probability for the outcome being in category 1
divided by the probability for the outcome being in cat-
egory 0 is modeled as e to the h1(X) and the ratio of
probabilities for category 2 and category 0 is modeled
as e to the h2(X).

(Section may be omitted.)
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VI. Likelihood Function for
Polytomous Model

Outcome with three levels

Consider probabilities of three outcomes:
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Rearranging these equations allows us to solve for the
probability that the outcome is in category 1, and for the
probability that the outcome is in category 2, in terms of
the probability that the outcome is in category 0.

The probability that the outcome is in category 1 is
equal to the probability that the outcome is in category
0 times e to the h1(X). Similarly, the probability that
the outcome is in category 2 is equal to the probability
that the outcome is in category 0 times e to the h2(X).

These quantities can be substituted into the total prob-
ability equation and summed to 1.

With some simple algebra, we can see that the proba-
bility that the outcome is in category 0 is 1 divided by
the quantity 1 plus e to the h1(X) plus e to the h2(X).

Substituting this value into our earlier equation for the
probability that the outcome is in category 1, we
obtain the probability that the outcome is in category 1
as e to the h1(X) divided by one plus e to the h1(X) plus
e to the h2(X).

The probability that the outcome is in category 2 can
be found in a similar way, as shown on the left.

Recall that the likelihood function (L) represents the
joint probability of observing the data that have been
collected and that the method of maximum likelihood
(ML) chooses that estimator of the set of unknown
parameters that maximizes the likelihood.

Solve for P(D�1|X) and P(D�2|X) in terms
of P(D�0|X).

P(D�1|X) � P(D�0|X) exp[h1(X)]

P(D�2|X) � P(D�0|X) exp[h2(X)]

P(D�0|X) � P(D�0|X) exp[h1(X)]
� P(D�0|X) exp[h2(X)] � 1

P(D�0|X)[1 � exp h1(X) � exp h2(X)] � 1

With some algebra, we find that

and that

and that

L ⇔ joint probability of observed data.

The ML method chooses parameter
estimates that maximize L
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Assume that there are n subjects in the dataset, num-
bered from j � 1 to n. If the outcome for subject j is in
category 0, then we let an indicator variable, yj0, be
equal to 1, otherwise yj0 is equal to 0. We similarly cre-
ate indicator variables yj1 and yj2 to indicate whether
the subject’s outcome is in category 1 or category 2.

The contribution of each subject to the likelihood is
the probability that the outcome is in category 0,
raised to the yj0 power, times the probability that the
outcome is in category 1, raised to the yj1, times the
probability that the outcome is in category 2, raised to
the yj2.

Note that each individual subject contributes to only
one of the category probabilities, since only one of the
indicator variables will be nonzero.

The joint probability for the likelihood is the product
of all the individual subject probabilities, assuming
subject outcomes are independent.

The likelihood can be generalized to include G out-
come categories by taking the product of each individ-
ual’s contribution across the G outcome categories.

The unknown parameters that will be estimated by
maximizing the likelihood are the alphas and betas in
the probability that the disease outcome is in category
g, where g equals 0, 1, ..., G–1.

Subjects: j � 1, 2, 3, ..., n

yj0 � 1 if outcome � 0
0 otherwise

yj1 � 1 if outcome � 1
0 otherwise

yj2 � 1 if outcome � 2
0 otherwise

yj0 � yj1 � yj2 � 1

since each subject has one outcome

Likelihood for G outcome categories:

1 if the jth subject has D�g
where yjg (g � 0, 1, ..., G–1)

0 if otherwise

Estimated �’s and �’s are those which
maximize L
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One may wonder how using a polytomous model com-
pares with using two or more separate dichotomous
logistic models.

The likelihood function for the polytomous model uti-
lizes the data involving all categories of the outcome
variable in a single structure. In contrast, the likeli-
hood function for a dichotomous logistic model uti-
lizes the data involving only two categories of the out-
come variable. In other words, different likelihood
functions are used when fitting each dichotomous
model separately than when fitting a polytomous
model that considers all levels simultaneously.
Consequently, both the estimation of the parameters
and the estimation of the variances of the parameter
estimates may differ when comparing the results from
fitting separate dichotomous models to the results
from the polytomous model.

In the special case of a polytomous model with one
dichotomous predictor, fitting separate logistic models
yields the same parameter estimates and variance esti-
mates as fitting the polytomous model.

We suggest that you review the material covered here
by reading the detailed outline that follows. Then, do
the practice exercises and test.

Polytomous versus separate logistic models

Polytomous ⇒ uses data on all outcome
categories in L.

Separate standard logistic ⇒ uses data on
only two outcome categories at a time.

⇓

Parameter and variance estimates
may differ.

Special case: One dichotomous predictor
Polytomous and standard logistic models
⇒ same estimates
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VII. Polytomous Versus Multiple
Standard Logistic
Regressions

SUMMARY

✓ Chapter 9:  Polytomous Logistic
Regression

This presentation is now complete. We have described
a method of analysis, polytomous regression, for the
situation where the outcome variable has more than
two categories.



If there is no inherent ordering of the outcome cate-
gories, a polytomous regression model is appropriate.
If there is an inherent ordering of the outcome cate-
gories, then an ordinal logistic regression model may
also be appropriate. The proportional odds model is
one such ordinal model, which may be used if the pro-
portional odds assumption is met. This model is dis-
cussed in Chapter 10.

Chapter 10: Ordinal Logistic Regression
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I. Overview (pages 270–271)
A. Focus: modeling outcomes with more than two levels.
B. Using previously described techniques by combining outcome

categories.
C. Nominal versus ordinal outcomes.

II. Polytomous logistic regression: An example with three 
categories (pages 272–275)
A. Nominal outcome: variable has no inherent order.
B. Consider “odds-like” expressions, which are ratios of probabilities.
C. Example with three categories and one predictor (X1):

III. Odds ratio with three categories (pages 275–279)
A. Computation of OR in polytomous regression is analogous to

standard logistic regression, except that there is a separate odds
ratio for each comparison.

B. The general formula for the odds ratio for any two levels of the
exposure variable (X 1

** and X1
*) is

ORg � exp where g � 1, 2.

IV. Statistical inference with three categories (pages 279–282)
A. Two types of statistical inferences are often of interest in polyto-

mous regression:

ii. testing hypotheses;
ii. deriving interval estimates.

B. Confidence interval estimation is analogous to standard logistic
regression.

C. The general large-sample formula for a 95% confidence interval
for comparison of outcome level g versus the reference category,
for any two levels of the independent variable (X1

** and X1
*), is

D. The likelihood ratio test is used to test hypotheses about the sig-
nificance of the predictor variable(s).
i. With three levels of the outcome variable, there are two com-

parisons and two estimated coefficients for each predictor;
ii. the null hypothesis is that each of the 2 beta coefficients (for

a given predictor) is equal to zero;

( )*βg X X1 1 ( 1
** −[ ]
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iii. the test compares the log likelihood of the full model with the
predictor to that of the reduced model without the predictor.
The test is distributed approximately chi-square, with 2 df for
each predictor tested.

E. The Wald test is used to test the significance of the predictor at a
single outcome level. The procedure is analogous to standard
logistic regression.

V. Extending the polytomous model to G outcomes and 
p predictors (pages 282–287)
A. The model easily extends to include p independent variables.
B. The general form of the model for G outcome levels is

C. The calculation of the odds ratio, confidence intervals, and
hypothesis testing using the likelihood ratio and Wald tests
remain the same.

D. Interaction terms can be added and tested in a manner analo-
gous to standard logistic regression.

VI. Likelihood function for polytomous model (pages 288–290)
A. For an outcome variable with G categories, the likelihood 

function is

P(D�g|X) yjg where yjg 1 if the jth subject has D�g

0 if otherwise

where n is the total number of subjects and g � 0, 1, ..., G–1
VII. Polytomous versus multiple standard logistic regressions 

(page 291)
A. The likelihood for polytomous regression takes into account all

of the outcome categories; the likelihood for the standard logistic
model considers only two outcome categories at a time.

B. Parameter and standard error estimates may differ.

g

G

=

−

∏
0

1

j

n

=
∏

1
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Suppose we are interested in assessing the association between tuberculosis
and degree of viral suppression in HIV-infected individuals on antiretroviral
therapy, who have been followed for 3 years in a hypothetical cohort study.
The outcome, tuberculosis, is coded as none (D�0), latent (D�1), or active
(D�2). The degree of viral suppression (VIRUS) is coded as undetectable
(VIRUS�0) or detectable (VIRUS�1). Previous literature has shown that it
is important to consider whether the individual has progressed to AIDS
(no�0, yes�1), and is compliant with therapy (no�1, yes�0). In addition,
AGE (continuous) and GENDER (female�0, male�1) are potential con-
founders. Also, there may be interaction between progression to AIDS and
compliance with therapy (AIDSCOMP�AIDS � COMPLIANCE).

We decide to run a polytomous logistic regression to analyze these data.
Output from the regression is shown below. (The results are hypothetical.)
The reference category for the polytomous logistic regression is no tubercu-
losis (D�0). This means that a descending option was used to obtain the
polytomous regression output for the model, so Intercept 1 (and the coeffi-
cient estimates that follow) pertain to the comparison of D�2 to D�0, and
Intercept 2 pertains to the comparison of D�1 to D�0.

Variable Coefficient S.E.
Intercept 1 �2.82 0.23 
VIRUS 1.35 0.11
AIDS 0.94 0.13
COMPLIANCE 0.49 0.21
AGE 0.05 0.04
GENDER 0.41 0.22
AIDSCOMP 0.33 0.14

Intercept 2 �2.03 0.21
VIRUS 0.95 0.14
AIDS 0.76 0.15
COMPLIANCE 0.34 0.17
AGE 0.03 0.03
GENDER 0.25 0.18
AIDSCOMP 0.31 0.17
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1. State the form of the polytomous model in terms of variables and
unknown parameters.

2. For the above model, state the fitted model in terms of variables and
estimated coefficients.

3. Is there an assumption with this model that the outcome categories are
ordered? Is such an assumption reasonable?

4. Compute the estimated odds ratio for a 25-year-old noncompliant
male, with a detectable viral load, who has progressed to AIDS, com-
pared to a similar female. Consider the outcome comparison latent
tuberculosis versus none (D�1 vs. D�0).

5. Compute the estimated odds ratio for a 25-year-old noncompliant
male, with a detectable viral load, who has progressed to AIDS, com-
pared to a similar female. Consider the outcome comparison active
tuberculosis versus none (D�2 vs. D�0).

6. Use the results from the previous two questions to obtain an estimated
odds ratio for a 25-year-old noncompliant male, with a detectable viral
load, who has progressed to AIDS, compared to a similar female, with
the outcome comparison active tuberculosis versus latent tuberculosis
(D�2 vs. D�1).

Note: If the same polytomous model was run with latent tuberculosis
designated as the reference category (D�1), the output could be used to
directly estimate the odds ratio comparing a male to a female with the
outcome comparison active tuberculosis versus latent tuberculosis
(D�2 vs. D�1). This odds ratio can also indirectly be estimated with
D�0 as the reference category. This is justified since the OR (D�2 vs.
D�0) divided by the OR (D�1 vs. D�0) equals the OR (D�2 vs. D�1).
However, if each of these three odds ratios were estimated with three
separate logistic regressions, then the three estimated odds ratios are
not generally so constrained since the three outcomes are not modeled
simultaneously.

7. Use Wald statistics to assess the statistical significance of the interac-
tion of AIDS and COMPLIANCE in the model at the 0.05 significance
level.

8. Estimate the odds ratio(s) comparing a subject who has progressed to
AIDS to one who has not, with the outcome comparison active tuber-
culosis versus none (D�2 vs. D�0), controlling for viral suppression,
age, and gender.
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9. Estimate the odds ratio with a 95% confidence interval for the viral
load suppression variable (detectable versus undetectable), comparing
active tuberculosis to none, controlling for the effect of the other
covariates in the model.

10. Estimate the odds of having latent tuberculosis versus none (D�1 vs.
D�0) for a 20-year-old compliant female, with an undetectable viral
load, who has not progressed to AIDS.

True or False (Circle T or F)

T F 1. An outcome variable with categories North, South, East, and West
is an ordinal variable.

T F 2. If an outcome has three levels (coded 0, 1, 2), then the ratio of
P(D�1)/P(D�0) can be considered an odds if the outcome is con-
ditioned on only the two outcome categories being considered
(i.e., D�1 and D�0).

T F 3. In a polytomous logistic regression in which the outcome variable
has five levels, there will be four intercepts.

T F 4. In a polytomous logistic regression in which the outcome variable
has five levels, each independent variable will have one estimated
coefficient.

T F 5. In a polytomous model, the decision of which outcome category is
designated as the reference has no bearing on the parameter esti-
mates since the choice of reference category is arbitrary.

6. Suppose the following polytomous model is specified for assessing the
effects of AGE (coded continuously), GENDER (male�1, female�0),
SMOKE (smoker�1, nonsmoker�0), and hypertension status (HPT)
(yes�1, no�0) on a disease variable with four outcomes (coded D�0
for none, D�1 for mild, D�2 for severe, and D�3 for critical).

ln

where g � 1, 2, 3

Use the model to give an expression for the odds (severe versus
none) for a 40-year-old nonsmoking male. (Note: Assume that the
expression [P(D�g|X / P(D�0|X)] gives the odds for comparing
group g with group 0, even though this ratio is not, strictly speaking,
an odds.)

P( | )
P( 0 | )

AGE GENDER SMOKE HPT1 2 3
D g
D g g g g g

=
=

⎡
⎣⎢

⎤
⎦⎥

= + + + +X
X

α β β β β 4
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7. Use the model in Question 6 to obtain the odds ratio for male versus
female, comparing mild disease to none, while controlling for AGE,
SMOKE, and HPT.

8. Use the model in Question 6 to obtain the odds ratio for a 50-year-old
versus a 20-year-old subject, comparing severe disease to none, while
controlling for GENDER, SMOKE, and HPT.

9. For the model in Question 6, describe how you would perform a likeli-
hood ratio test to simultaneously test the significance of the SMOKE
and HPT coefficients. State the null hypothesis, the test statistic, and
the distribution of the test statistic under the null hypothesis.

10. Extend the model from Question 6 to allow for interaction between
AGE and GENDER and between SMOKE and GENDER. How many
additional parameters would be added to the model?

1. Polytomous model

where g � 1, 2

2. Polytomous fitted model

3. No, the polytomous model does not assume an ordered outcome. The
categories given do have a natural order however, so that an ordinal
model may also be appropriate (see Chapter 10).

4. OR1 vs 0 � exp(0.25) � 1.28

5. OR2 vs 0 � exp(0.41) � 1.51

6. OR2 vs 1 � exp(0.41) / exp(0.25) � exp(0.16) � 1.17

7. Two Wald statistics: H0: �16 � 0; z1 � � 1.82; two-tailed P-value: 0.07

H0: �26 � 0; z2 � � 2.36; two-tailed P-value: 0.02
0 33
0 14
.
.

0 31
0 17

.

.
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The P-value is statistically significant at the 0.05 level for the hypothe-
sis �26 � 0 but not for the hypothesis �16 � 0. Since we must either
keep or drop both interaction parameters from the model, we elect to
keep both parameters because there is a suggestion of interaction
between AIDS and COMPLIANCE. Alternatively, a likelihood ratio test
could be performed. The likelihood ratio test has the advantage that
only one test statistic needs to be calculated.

8. Estimated odds ratios (AIDS progression: yes vs. no):
for COMPLIANCE � 0: exp(0.94) � 2.56
for COMPLIANCE � 1: exp(0.94 � 0.33) � 3.56

9. OR � exp(1.35) � 3.86; 95% CI: exp[1.35 ± 1.96(0.11)] � (3.11, 4.79)

10. Estimated odds � exp[–2.03 � (0.03)(20)] � exp(–1.43) � 0.24
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In this chapter, the standard logistic model is extended to handle outcome
variables that have more than two ordered categories. When the categories
of the outcome variable have a natural order, ordinal logistic regression
may be appropriate.

The mathematical form of one type of ordinal logistic regression model, the
proportional odds model, and its interpretation are developed. The formu-
las for the odds ratio and confidence intervals are derived, and techniques
for testing hypotheses and assessing the statistical significance of indepen-
dent variables are shown.

The outline below gives the user a preview of the material to be covered by
the presentation. A detailed outline for review purposes follows the presen-
tation.

I. Overview (page 304)

II. Ordinal logistic regression: The proportional odds model
(pages 304–310)

III. Odds ratios and confidence limits (pages 310–313)

IV. Extending the ordinal model (pages 314–316)

V. Likelihood function for ordinal model (pages 316–317)

VI. Ordinal versus multiple standard logistic regressions
(pages 317–319)
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Upon completing this chapter, the learner should be able to:

1. State or recognize when the use of ordinal logistic regression may be
appropriate.

2. State or recognize the proportional odds assumption.
3. State or recognize the proportional odds model.
4. Given a printout of the results of a proportional odds model:

a. state the formula and compute the odds ratio;
b. state the formula and compute a confidence interval for the odds

ratio;
c. test hypotheses about the model parameters using the likelihood

ratio test or the Wald test, stating the null hypothesis and the dis-
tribution of the test statistic with the corresponding degrees of
freedom under the null hypothesis.
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This presentation and the presentation in Chapter 9
describe approaches for extending the standard logis-
tic regression model to accommodate a disease, or out-
come, variable that has more than two categories. The
focus of this presentation is on modeling outcomes
with more than two ordered categories. We describe
the form and key characteristics of one model for
such outcome variables: ordinal logistic regression
using the proportional odds model.

Ordinal variables have a natural ordering among the
levels. An example is cancer tumor grade, ranging
from well differentiated to moderately differentiated to
poorly differentiated tumors.

An ordinal outcome variable with three or more cate-
gories can be modeled with a polytomous model, as
discussed in Chapter 9, but can also be modeled using
ordinal logistic regression, provided that certain
assumptions are met.

Ordinal logistic regression, unlike polytomous regres-
sion, takes into account any inherent ordering of the
levels in the disease or outcome variable, thus making
fuller use of the ordinal information.

The ordinal logistic model that we shall develop is
called the proportional odds or cumulative logit
model.

Ordinal: levels have natural ordering

Ordinal outcome ⇒ Polytomous model or
Ordinal model

Ordinal model takes into account order of
outcome levels

Proportional Odds Model /
Cumulative Logit Model
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ordered levels

FOCUS

I. Overview

EXAMPLE

Tumor grade:

• well differentiated
• moderately differentiated
• poorly differentiated

II. Ordinal Logistic Regression:
The Proportional Odds Model



To illustrate the proportional odds model, assume we
have an outcome variable with five categories and con-
sider the four possible ways to divide the five cate-
gories into two collapsed categories preserving the nat-
ural order.

We could compare category 0 to categories 1 through
4, or categories 0 and 1 to categories 2 through 4, or
categories 0 through 2 to categories 3 and 4, or, finally,
categories 0 through 3 to category 4. However, we
could not combine categories 0 and 4 for comparison
with categories 1, 2, and 3, since that would disrupt the
natural ordering from 0 through 4.

More generally, if an ordinal outcome variable D has G
categories (D � 0, 1, 2, ..., G–1), then there are G–1
ways to dichotomize the outcome: (D � 1 vs. D � 1;
D � 2 vs. D � 2, ..., D � G–1 vs. D � G–1). With this cat-
egorization of D, the odds that D � g is equal to the
probability of D � g divided by the probability of D �
g, where (g � 1, 2, 3, ..., G–1).

The proportional odds model makes an important
assumption. Under this model, the odds ratio assessing
the effect of an exposure variable for any of these com-
parisons will be the same regardless of where the cut-
point is made. Suppose we have an outcome with five
levels and one dichotomous exposure (E�1, E�0).
Then, under the proportional odds assumption, the
odds ratio that compares categories greater than or
equal to 1 to less than 1 is the same as the odds ratio
that compares categories greater than or equal to 4 to
less than 4.

In other words, the odds ratio is invariant to where the
outcome categories are dichotomized.

Illustration

But, cannot allow

For G categories ⇒ G–1 ways to
dichotomize outcome:

D � 1 vs. D � 1;
D � 2 vs. D � 2, ...,
D � G–1 vs. D � G–1

odds (D � g ) �

where g � 1, 2, 3, ..., G–1

Proportional odds assumption

Same odds ratio regardless of where 
categories are dichotomized

P(
P( )

D g
D g

≥
<

)
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EXAMPLE

OR (D � 1) � OR (D � 4)
Comparing two exposure groups

e.g., E�1 vs. E�0
where
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 odds [(  1) | 1]
 odds [(  ) | 0]1 )(D

D E
D E≥ = ≥ =

≥ =1
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 odds [(  4) | 1]
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This implies that if there are G outcome categories,
there is only one parameter (�) for each of the predic-
tors variables (e.g., �1 for predictor X1). However,
there is still a separate intercept term (�g) for each of
the G–1 comparisons.

This contrasts with polytomous logistic regression,
where there are G–1 parameters for each predictor
variable, as well as a separate intercept for each of the
G–1 comparisons.

The assumption of the invariance of the odds ratio
regardless of cut-point is not the same as assuming
that the odds for a given exposure pattern is invariant.
Using our previous example, for a given exposure level
E (e.g., E�0), the odds comparing categories greater
than or equal to 1 to less than 1 does not equal the odds
comparing categories greater than or equal to 4 to less
than 4.

We now present the form for the proportional odds
model with an outcome (D) with G levels (D � 0, 1,
2, ..., G–1) and one independent variable (X1). The
probability that the disease outcome is in a category
greater than or equal to g, given the exposure, is 1 over
1 plus e to the negative of the quantity �g plus �1X1.

The probability that the disease outcome is in a cate-
gory less than g is equal to 1 minus the probability that
the disease outcome is greater than or equal to cate-
gory g.

Ordinal

Variable Parameter

Intercept �1, �2, ..., �G–1
X1 �1

Polytomous

Variable Parameter

Intercept �1, �2, ..., �G–1
X1 �11, �21, ..., �(G–1)1

Odds are not invariant

Proportional odds model:
G outcome levels and one predictor (X)

where g � 1, 2, ..., G–1

�P(D � g| X1)
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odds(D � 1) � odds(D � 4)

where, for E � 0,

odds(D � 1) �

odds(D � 4) �

but

OR(D � 1) � OR(D � 4)
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The model can be defined equivalently in terms of the
odds of an inequality. If we substitute the formula 
P(D � g| X1) into the expression for the odds and then
perform some algebra (as shown on the left), we find
that the odds is equal to e to the quantity �g plus �1X1.

The proportional odds model is written differently
from the standard logistic model. The model is formu-
lated as the probability of an inequality, that is, that
the outcome D is greater than or equal to g.

The model also differs from the polytomous model in
an important way. The beta is not subscripted by g.
This is consistent with the proportional odds assump-
tion that only one parameter is required for each inde-
pendent variable.

An alternate formulation of the proportional odds
model is to define the model as the odds of D* less than
or equal to g given the exposure is equal to e to the
quantity �g

* � �1
*X1, where g � 1, 2, 3, ..., G�1 and

where D* � 1, 2, ..., G. The two key differences with
this formulation are the direction of the inequality 
(D* � g) and the negative sign before the parameter �1

*.
In terms of the beta coefficients, these two key differ-
ences “cancel out” so that �1 � �1

*. Consequently, if the
same data are fit for each formulation of the model,
the same parameter estimates of beta would be
obtained for each model. However, the intercepts for
the two formulations differ as �g �� �g

*.

Equivalent model definition

Proportional odds versus Standard logistic
model: model:

P(D � g|X) P(D � g|X)

Proportional odds versus Polytomous model
model:

�1 �g1

no g subscript g subscript

Alternate model formulation:

key differences

where g � 1, 2, 3, ..., G–1
and D* � 1, 2, ..., G

Comparing formulations

�1 � �1
*

but �g � ��g
*
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We have presented two ways of parameterizing the
model because different software packages can present
slightly different output depending on the way the
model is formulated. SAS software presents output
consistent with the way we have formulated the model,
whereas SPSS and Stata software present output con-
sistent with the alternate formulation (see Appendix).

An advantage to our formulation of the model (i.e., in
terms of the odds of D � g) is that it is consistent with
the way that the standard logistic model and polyto-
mous logistic model are presented. In fact, for a two-
level outcome (i.e., D � 0, 1), the standard logistic, poly-
tomous, and ordinal models reduce to the same model.
However, the alternative formulation is consistent with
the way the model has historically often been presented
(McCullagh, 1980). Many models can be parameterized
in different ways. This need not be problematic as long
as the investigator understands how the model is for-
mulated and how to interpret its parameters.

Next, we present an example of the proportional odds
model using data from the Black/White Cancer Survival
Study (Hill et al., 1995). Suppose we are interested in
assessing the effect of RACE on tumor grade among
women with invasive endometrial cancer. RACE, the
exposure variable, is coded 0 for white and 1 for black.
The disease variable, tumor grade, is coded 0 for well-
differentiated tumors, 1 for moderately differentiated
tumors, and 2 for poorly differentiated tumors.

Here, the coding of the disease variable reflects the
ordinal nature of the outcome. For example, it is neces-
sary that moderately differentiated tumors be coded
between poorly differentiated and well-differentiated
tumors. This contrasts with polytomous logistic regres-
sion, in which the order of the coding is not reflective of
an underlying order in the outcome variable.

Formulation affects computer output

• SAS: consistent with first
• SPSS and Stata: consistent with 

alternative formulation

Advantage of (D � g):
consistent with formulations of standard
logistic and polytomous models

⇓

For 2-level outcome (D � 0, 1), all three
reduce to same model.

Ordinal: Coding of disease meaningful

Polytomous: Coding of disease arbitrary
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Black/White Cancer Survival Study

0 if white
E � RACE

1 if black

0 if well differentiated
D � GRADE 1 if moderately differentiated

2 if poorly differentiated

}
}



The 3 � 2 table of the data is presented on the left.

In order to examine the proportional odds assumption,
the table is collapsed to form two other tables.

The first table combines the well-differentiated and
moderately differentiated levels. The odds ratio is 2.12.

The second table combines the moderately and poorly
differentiated levels. The odds ratio for this data is
2.14.

The odds ratios from the two collapsed tables are sim-
ilar and thus provide evidence that the proportional
odds assumption is not violated. It would be unusual
for the collapsed odds ratios to match perfectly. The
odds ratios do not have to be exactly equal; as long as
they are “close,” the proportional odds assumption
may be considered reasonable.

Here is a different 3 � 2 table. This table will be col-
lapsed in a similar fashion as the previous one.

White (0) Black (1)

Well
differentiated

Moderately
differentiated

Poorly
differentiated

A simple check of the proportional odds
assumption:

White Black

Well �
moderately 176 59
differentiated

Poorly 31 22
differentiated

OR � 2.12

White Black

Well
differentiated 104 26

Moderately
� poorly 103 55
differentiated

OR � 2.14

Requirement: Collapsed ORs should
be “close”

E�0 E�1

D�0

D�1

D�2
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31 22

45 30
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50 60
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The two collapsed table are presented on the left. The
odds ratios are 2.27 and 1.25. In this case, we would
question whether the proportional odds assumption is
appropriate, since one odds ratio is nearly twice the
value of the other.

There is also a statistical test—a Score test—designed
to evaluate whether a model constrained by the pro-
portional odds assumption (i.e., an ordinal model) is
significantly different from the corresponding model
in which the odds ratio parameters are not constrained
by the proportional odds assumption (i.e., a polyto-
mous model). The test statistic is distributed approxi-
mately chi-square, with degrees of freedom equal to
the number of odds ratio parameters being tested.

If the proportional odds assumption is inappropriate,
there are other ordinal logistic models that may be
used that make alternative assumptions about the
ordinal nature of the outcome. Examples include a
continuation ratio model, a partial proportional odds
model, and stereotype regression models. These mod-
els are beyond the scope of the current presentation.
[See the review by Ananth and Kleinbaum (1997).]

After the proportional odds model is fit and the parame-
ters estimated, the process for computing the odds ratio
is the same as in standard logistic regression (SLR).

We will first consider the special case where the expo-
sure is the only independent variable and is coded 1
and 0. Recall that the odds comparing D ≥ g versus D �
g is e to the �g plus �1 times X1. To assess the effect 
of the exposure on the outcome, we formulate the ratio
of the odds of D ≥ g for comparing X1�1 and X1�0
(i.e., the odds ratio for X1�1 vs. X1�0).

E�0 E�1 E�0 E�1

D�0�1 85 45 D�0 45 30

D�2 50 60 D�1�2 90 75

OR � 2.27 OR � 1.25

Statistical test of assumption: Score test
Compares ordinal versus polytomous
models

Test statistic ~ χ2 under H0
with df � number of OR parameters
tested

Alternate models for ordinal data

• continuation ratio
• partial proportional odds
• stereotype regression

ORs: same method as SLR to compute ORs.

Special case: one independent variable
X1 � 1 or X1 � 0
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III. Odds Ratios and Confidence
Limits
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This is calculated, as shown on the left, as the odds that
the disease outcome is greater than or equal to g if X1
equals 1, divided by the odds that the disease outcome
is greater than or equal to g if X1 equals 0.

Substituting the expression for the odds in terms of the
regression parameters, the odds ratio for X1�1 versus
X1�0 in the comparison of disease levels ≥ g to levels 
� g is then e to the �1.

To compare any two levels of the exposure variable, X1
**

and X 1
*, the odds ratio formula is e to the �1 times the

quantity X1
** minus X 1

*.

Confidence interval estimation is also analogous to
standard logistic regression. The general large-sample
formula for a 95% confidence interval, for any two lev-
els of the independent variable (X1

** and X 1
*), is shown

on the left.

Returning to our tumor-grade example, the results for
the model examining tumor grade and RACE are pre-
sented next. The results were obtained from running
PROC LOGISTIC in SAS (see Appendix).

We first check the proportional odds assumption with
a Score test. The test statistic, with one degree of free-
dom for the one odds ratio parameter being tested, was
clearly not significant, with a P-value of 0.9779. We
therefore fail to reject the null hypothesis (i.e., that the
assumption holds) and can proceed to examine the
model output.

General case
(levels X1

** and X 1
* of X1)

CIs: same method as SLR to compute CIs

General case (levels X1
** and X 1

* of X1)
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EXAMPLE

Black/White Cancer Survival Study

Test of proportional odds assumption:
H0: assumption holds
Score statistic: χ2 � 0.0008, df�1,
P � 0.9779.
Conclusion: fail to reject null



With this ordinal model, there are two intercepts, one
for each comparison, but there is only one estimated
beta for the effect of RACE. The odds ratio for RACE is
e to β1. In our example, the odds ratio equals
exp(0.7555) or 2.13.

The results indicate that for this sample of women with
invasive endometrial cancer, black women were over
twice (i.e., 2.13) as likely as white women to have
tumors that were categorized as poorly differentiated
versus moderately differentiated or well differentiated
and over twice as likely as white women to have
tumors classified as poorly differentiated or moder-
ately differentiated versus well differentiated. To sum-
marize, in this cohort, black women were over twice as
likely to have a more severe grade of endometrial can-
cer compared with white women.

What is the interpretation of the intercept? The inter-
cept �g is the log odds of D ≥ g where all the indepen-
dent variables are equal to zero. This is similar to the
interpretation of the intercept for other logistic models
except that, with the proportional odds model, we are
modeling the log odds of several inequalities. This
yields several intercepts, with each intercept corre-
sponding to the log odds of a different inequality
(depending on the value of g). Moreover, the log odds
of D ≥ g is greater than the log odds of D ≥ (g�1)
(assuming category g is nonzero). This means that 
�1  �2

...  �G–1.

Variable Estimate S.E.

Intercept 1 –1.7388 0.1765

Intercept 2 –0.0089 0.1368

RACE 0.7555 0.2466

OR � exp(0.7555) � 2.13

Interpretation of OR

Black versus white women with
endometrial cancer over twice as likely
to have more severe tumor grade:

Since OR (D ≥ 2) � OR (D ≥ 1) � 2.13

Interpretation of intercepts (�g)

�g � log odds of D ≥ g where all 
independent variables equal zero;
g � 1, 2, 3, ..., G–1

�g  �g�1

⇓

�1  �2  ...  �G–1
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As the picture on the left illustrates, with five cate-
gories (D � 0, 1, 2, 3, 4), the log odds of D ≥ 1 is greater
than the log odds of D ≥ 2, since for D ≥ 1, the outcome
can be in categories 1, 2, 3, or 4, whereas for D ≥ 2, the
outcome can only be in categories 2, 3, or 4. Thus,
there is one more outcome category (category 1) con-
tained in the first inequality. Similarly, the log odds of
D ≥ 2 is greater than the log odds of D ≥ 3; and the log
odds of D ≥ 3 is greater than the log odds of D ≥ 4.

Returning to our example, the 95% confidence interval
for the OR for AGE is calculated as shown on the left.

Hypothesis testing about parameter estimates can be
done using either the likelihood ratio test or the Wald
test. The null hypothesis is that �1 is equal to 0.

In the tumor grade example, the P-value for the Wald
test of the beta coefficient for RACE is 0.002, indicat-
ing that RACE is significantly associated with tumor
grade at the 0.05 level.

Illustration

�1 � log odds D ≥ 1

�2 � log odds D ≥ 2

�3 � log odds D ≥ 3

�4� log odds D ≥ 4

95% confidence interval for OR

95% CI � exp[0.7555 � 1.96 (0.2466)]
� (1.31, 3.45)

Hypothesis testing

Likelihood ratio test or Wald test

H0: �1 � 0

Wald test
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Expanding the model to add more independent vari-
ables is straightforward. The model with p indepen-
dent variables is shown on the left.

The odds for the outcome greater than or equal to level
g is then e to the quantity �g plus the summation the Xi
for each of the p independent variable times its beta.

The odds ratio is calculated in the usual manner as e to
the �i, if Xi is coded 0 or 1. As in standard logistic
regression, the use of multiple independent variables
allows for the estimation of an odds ratio for one vari-
able controlling for the effects of the other covariates
in the model.

To illustrate, we return to our endometrial tumor
grade example. Suppose we wish to consider the
effects of estrogen use as well as RACE on GRADE.
ESTROGEN is coded as 1 for ever user and 0 for never
user.

The model now contains two predictor variables: X1 �
RACE and X2 � ESTROGEN.

where g � 1, 2, 3, . . . , G–1

Note: P(D ≥ 0|X) � 1

OR � exp(�i), if Xi is coded (0, 1)
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EXAMPLE

0 if well differentiated

D � GRADE �        1 if moderately differentiated

2 if poorly differentiated

0 if white

X1 � RACE �

1 if black

0 if never user

X2 � ESTROGEN �

1 if ever user

}
}

}



The odds that the tumor grade is in a category greater
than or equal to category 2 (i.e., poorly differentiated)
versus in categories less than 2 (i.e., moderately or well
differentiated) is e to the quantity �2 plus the sum of
�1X1 plus �2X2.

Similarly, the odds that the tumor grade is in a cate-
gory greater than or equal to category 1 (i.e., moder-
ately or poorly differentiated) versus in categories less
than 1 (i.e., well differentiated) is e to the quantity �1
plus the sum of �1X1 plus �2X2. Although the alphas
are different, the betas are the same.

Before examining the model output, we first check the
proportional odds assumption with a Score test. The
test statistic has two degrees of freedom because we
have two fewer parameters in the ordinal model com-
pared to the corresponding polytomous model. The
results are not statistically significant, with a P-value
of 0.64. We therefore fail to reject the null hypothesis
that the assumption holds and can proceed to examine
the remainder of the model results.

The output for the analysis is shown on the left. There
is only one beta estimate for each of the two predictor
variables in the model. Thus, there are a total of four
parameters in the model, including the two intercepts.

where X1 � RACE (0, 1)
X2 � ESTROGEN (0, 1)
g � 1, 2

Test of proportional odds assumption

H0: assumption holds
Score statistic: χ2 � 0.9051, 2 df, P � 0.64
Conclusion: fail to reject null

Variable Estimate S.E. Symbol

Intercept 1 –1.2744 0.2286 α̂2
Intercept 2 0.5107 0.2147 α̂1

RACE 0.4270 0.2720 β̂1
ESTROGEN –0.7763 0.2493 β̂2

Presentation: IV. Extending the Ordinal Model 315

P( | )
1

1 [ ( )]1 2 2
D g

X Xg

≥ =
+ − + +

X
exp α β β1

odds
P( 2 | )
P( 2 | )

                       different  's       same
's

odds
P( 1| )
P( 1| )

2 1 1 2 2

1 1 1 2 2

= ≥
<

= + +

= ≥
<

= + +

D
D

X X

D
D

X X

X
X

X
X

exp

exp

( )

( )

α β β

α β β

α
β

EXAMPLE (continued)



The estimated odds ratio for the effect of RACE, con-
trolling for the effect of ESTROGEN, is e to the β̂1,
which equals e to the 0.4270 or 1.53.

The 95% confidence interval for the odds ratio is e to
the quantity β̂1 plus or minus 1.96 times the estimated
standard error of the beta coefficient for RACE. In our
two-predictor example, the standard error for RACE is
0.2720 and the 95% confidence interval is calculated as
0.90 to 2.61. The confidence interval contains one, the
null value.

If we perform the Wald test for the significance of β̂1,
we find that it is not statistically significant in this two-
predictor model (P�0.12). The addition of ESTRO-
GEN to the model has resulted in a decrease in the esti-
mated effect of RACE on tumor grade, suggesting that
failure to control for ESTROGEN biases the effect of
RACE away from the null.

Next, we briefly discuss the development of the likeli-
hood function for the proportional odds model. To for-
mulate the likelihood, we need the probability of the
observed outcome for each subject. An expression for
these probabilities in terms of the model parameters can
be obtained from the relationship P � odds/(odds�1),
or the equivalent expression P � 1/[1�(1/odds)].

Odds ratio

OR � exp 1 � exp(0.4270) � 1.53

95% confidence interval

95% CI � exp[0.4270 � 1.96 (0.2720)]

� (0.90, 2.61)

Wald test

H0: �1 � 0

Conclusion: fail to reject H0

so solving for P,
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In the proportional odds model, we model the proba-
bility of D ≥ g. To obtain an expression for the proba-
bility of D�g, we can use the relationship that the
probability (D�g) is equal to the probability of D ≥ g
minus the probability of D ≥ (g�1). For example, the
probability that D equals 2 is equal to the probability
that D is greater than or equal to 2 minus the probabil-
ity that D is greater than or equal to 3. In this way we
can use the model to obtain an expression for the prob-
ability an individual is in a specific outcome category
for a given pattern of covariates (X).

The likelihood (L) is then calculated in the same man-
ner discussed previously in the section on polytomous
regression—that is, by taking the product of the indi-
vidual contributions.

The proportional odds model takes into account the
effect of an exposure on an ordered outcome and yields
one odds ratio summarizing that effect across outcome
levels. An alternative approach is to conduct a series of
logistic regressions with different dichotomized out-
come variables. A separate odds ratio for the effect of the
exposure can be obtained for each of the logistic models.

For example, in a four-level outcome variable, coded as
0, 1, 2, and 3, we can define three new outcomes:
greater than or equal to 1 versus less than 1, greater
than or equal to 2 versus less than 2, and greater than
or equal to 3 versus less than 3.

P(D�g) � [P(D≥ g)] – [P(D≥ g�1) ]

For g�2

Proportional odds model: order of outcome
considered.

Alternative: several logistic regression
models
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P(D �2) � P(D≥2) � P(D≥3)

Use relationship to obtain probability indi-
vidual is in given outcome category.

L is product of individual contributions.

where
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VI. Ordinal Versus Multiple

Standard Logistic
Regressions

Original variable: 0, 1, 2, 3

Recoded:
≥ 1 vs. <1, ≥ 2 vs. < 2, and ≥ 3 vs. < 3



With these three dichotomous outcomes, we can per-
form three separate logistic regressions. In total, these
three regressions would yield three intercepts and
three estimated beta coefficients for each independent
variable in the model.

If the proportional odds assumption is reasonable,
then using the proportional odds model allows us to
summarize the relationship between the outcome and
each independent variable with one parameter instead
of three.

The key question is whether or not he proportional
odds assumption is met. There are several approaches
to checking the assumption. Calculating and compar-
ing the crude odds ratios is the simplest method, but
this does not control for confounding by other vari-
ables in the model.

Running the separate (e.g., 3) logistic regressions
allows the investigator to compare the corresponding
odds ratio parameters for each model and assess the
reasonableness of the proportional odds assumption in
the presence of possible confounding variables.
Comparing odds ratios in this manner is not a substi-
tute for a statistical test, although it does provide the
means to compare parameter estimates. For the four-
level example, we would check whether the three coef-
ficients for each independent variable are similar to
each other.

The Score test enables the investigator to perform a
statistical test on the proportional odds assumption.
With this test, the null hypothesis is that the propor-
tional odds assumption holds. However, failure to
reject the null hypothesis does not necessarily mean
the proportional odds assumption is reasonable. It
could be that there are not enough data to provide the
statistical evidence to reject the null.

Three separate logistic regressions

Three sets of parameters

� ≥ 1 vs. <1, � ≥ 1 vs. <1

� ≥ 2 vs. <2, � ≥ 2 vs. <2

� ≥ 3 vs. <3, � ≥ 3 vs. <3

Logistic models Proportional odds model

(three parameters) (one parameter)

� ≥ 1 vs. <1

� ≥ 2 vs. <2 �

� ≥ 3 vs. <3

Is the proportional odds assumption met?

• Crude OR’s “close”?
(No control of confounding)

• Beta coefficients in separate logistic
models similar?

(Not a statistical test)

• Score test provides a test of propor-
tional odds assumption

H0: assumption holds
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If the assumption does not appear to hold, one option
for the researcher would be to use a polytomous logis-
tic model. Another alternative would be to select an
ordinal model other than the proportional odds model.
A third option would be to use separate logistic mod-
els. The approach selected should depend on whether
the assumptions underlying the specific model are met
and on the type of inferences the investigator wishes to
make.

We suggest that you review the material covered here
by reading the detailed outline that follows. Then do
the practice exercises and test.

All of the models presented thus far have assumed that
observations are statistically independent, (i.e., are not
correlated). In the next chapter (Chapter 11), we con-
sider one approach for dealing with the situation in
which study outcomes are not independent.

If assumption not met, may

• use polytomous logistic model
• use different ordinal model
• use separate logistic models

Chapter 11: Logistic Regression for
Correlated Data: GEE

Summary 319

SUMMARY

✓ Chapter 10: Ordinal Logistic 
Regression

This presentation is now complete. We have described
a method of analysis, ordinal regression, for the situa-
tion where the outcome variable has more than two
ordered categories. The proportional odds model was
described in detail. This may be used if the propor-
tional odds assumption is reasonable.



I. Overview (page 304)
A. Focus: modeling outcomes with more than two levels.
B. Ordinal outcome variables.

II. Ordinal logistic regression: The proportional odds model 
(pages 304–310)
A. Ordinal outcome: variable categories have a natural order.
B. Proportional odds assumption: the odds ratio is invariant to

where the outcome categories are dichotomized.
C. The form for the proportional odds model with one independent

variable (X1) for an outcome (D) with G levels (D � 0, 1, 2, ..., G–1)
is

where g � 1, 2, ...,G–1

III. Odds ratios and confidence limits (pages 310–313)
A. Computation of the OR in ordinal regression is analogous to

standard logistic regression, except that there is a single odds
ratio for all comparisons.

B. The general formula for the odds ratio for any two levels of the
predictor variable (X1

** and X1
*) is

OR � exp[β1(X1
**−X1

*)].

C. Confidence interval estimation is analogous to standard logistic
regression.

D. The general large-sample formula for a 95% confidence interval
for any two levels of the independent variable (X1

** and X1
*), is

exp[β̂1(X1
**−X1

*)±1.96(X1
**−X1

*)sβ̂1
].

E. The likelihood ratio test is used to test hypotheses about the sig-
nificance of  the predictor variable(s).
i. there is one estimated coefficient for each predictor;

ii. the null hypothesis is that the beta coefficient (for a given 
predictor) is equal to zero;

iii. the test compares the log likelihood of the full model with the
predictor(s) to that of the reduced model without the predic-
tor(s).

F. The Wald test is analogous to standard logistic regression.
IV. Extending the ordinal model (pages 314–316)

A. The general form of the proportional odds model for G outcome
categories and p independent variables is

where g � 1, 2, ..., G–1

Detailed
Outline
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B. The calculation of the odds ratio, confidence intervals, and
hypothesis testing using the likelihood ratio and Wald tests
remain the same.

C. Interaction terms can be added and tested in a manner analo-
gous to standard logistic regression.

V. Likelihood function for ordinal model (pages 316–317)
A. For an outcome variable with G categories, the likelihood func-

tion is

where

yjg=
1 if the jth subject has D�g
0 if otherwise

where n is the total number of subjects, g � 0, 1, ..., G–1
and P(D � g|X) � [P(D ≥ g|X)] – [P(D ≥ g�1)|X)]

VI. Ordinal versus multiple standard logistic regressions 
(pages 317–319)
A. Proportional odds model: order of outcome considered.
B. Alternative: several logistic regressions models

i. one for each cut-point dichotomizing the outcome categories;
ii. example: for an outcome with four categories (0, 1, 2, 3), we

have three possible models.
C. If the proportional odds assumption is met, it allows the use of

one parameter estimate for the effect of the predictor, rather
than separate estimates from several standard logistic models.

D. To check if the proportional odds assumption is met:
i. evaluate whether the crude odds ratios are “close”;

ii. evaluate whether the odds ratios from the standard logistic
models are similar:
a. provides control of confounding but is not a statistical test;

iii. perform a Score test of the proportional odds assumption.
E. If assumption is not met, can use a polytomous model, consider

use of a different ordinal model, or use separate logistic regres-
sions.
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Suppose we are interested in assessing the association between tuberculosis
and degree of viral suppression in HIV-infected individuals on antiretroviral
therapy, who have been followed for 3 years in a hypothetical cohort study.
The outcome, tuberculosis, is coded as none (D�0), latent (D�1), or active
(D�2). Degree of viral suppression (VIRUS) is coded as undetectable
(VIRUS�0) or detectable (VIRUS�1). Previous literature has shown that it
is important to consider whether the individual has progressed to AIDS
(no�0, yes�1) and is compliant with therapy (no�1, yes�0). In addition,
AGE (continuous) and GENDER (female�0, male�1) are potential con-
founders. Also there may be interaction between progression to AIDS and
COMPLIANCE with therapy (AIDSCOMP�AIDS × COMPLIANCE).

We decide to run a proportional odds logistic regression to analyze these
data. Output from the ordinal regression is shown below. (The results are
hypothetical.) The descending option was used, so Intercept 1 pertains to
the comparison D≥ 2 to D<2 and Intercept 2 pertains to the comparison D≥ 1
to D<1.

Variable Coefficient S.E.
Intercept 1 –2.98 0.20
Intercept 2 –1.65 0.18
VIRUS 1.13 0.09
AIDS 0.82 0.08
COMPLIANCE 0.38 0.14
AGE 0.04 0.03
GENDER 0.35 0.19
AIDSCOMP 0.31 0.14

Practice
Exercises
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1. State the form of the ordinal model in terms of variables and unknown
parameters.

2. For the above model, state the fitted model in terms of variables and esti-
mated coefficients.

3. Compute the estimated odds ratio for a 25-year-old noncompliant male
with a detectable viral load, who has progressed to AIDS, compared to a
similar female. Consider the outcome comparison active or latent tuber-
culosis versus none (D≥1 vs. D<1).

4. Compute the estimated odds ratio for a 38-year-old noncompliant male
with a detectable viral load, who has progressed to AIDS, compared to a
similar female. Consider the outcome comparison active tuberculosis
versus latent or none (D≥2 vs. D<2).

5. Estimate the odds of a compliant 20-year-old female, with an unde-
tectable viral load and who has not progressed to AIDS, of having active
tuberculosis (D≥2).

6. Estimate the odds of a compliant 20-year-old female, with an unde-
tectable viral load and who has not progressed to AIDS, of having latent
or active tuberculosis (D≥1).

7. Estimate the odds of a compliant 20-year-old male, with an undetectable
viral load and who has not progressed to AIDS, of having latent or active
tuberculosis (D≥1).

8. Estimate the odds ratio for noncompliance versus compliance. Consider
the outcome comparison active tuberculosis versus latent or no tubercu-
losis (D≥2 vs. D<2).
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True or False (Circle T or F)

T F 1. The disease categories absent, mild, moderate, and severe can be
ordinal.

T F 2. In an ordinal logistic regression (using a proportional odds model)
in which the outcome variable has five levels, there will be four
intercepts.

T F 3. In an ordinal logistic regression in which the outcome variable has
five levels, each independent variable will have four estimated coef-
ficients.

T F 4. If the outcome D has seven levels (coded 1, 2, ..., 7), then 
P(D≥4)/P(D<4) is an example of an odds.

T F 5. If the outcome D has seven levels (coded 1, 2, ..., 7), an assumption
of the proportional odds model is that P(D≥3)/P(D<3) is assumed
equal to P(D≥5)/P(D<5).

T F 6. If the outcome D has seven levels (coded 1, 2, . . . , 7) and an exposure
E has two levels (coded 0 and 1), then an assumption of the propor-
tional odds model is that [P(D≥3|E�1)/P(D<3|E�1)]/[P(D≥3|E�0)/
P(D<3|E�0)] is assumed equal to [P(D≥5|E�1)/P(D<5|E�1)]/
[P(D≥5|E�0)/P(D<5|E�0)].

T F 7. If the outcome D has four categories coded D�0, 1, 2, 3, then the log
odds of D≥2 is greater the log odds of D≥1.

T F 8. Suppose a four level outcome D coded D�0, 1, 2, 3, is recoded D*�
1, 2, 7, 29, then the choice of using D or D* as the outcome in a pro-
portional odds model has no effect on the parameter estimates as
long as the order in the outcome is preserved.

9. Suppose the following proportional odds model is specified assessing
the effects of AGE (continuous), GENDER (female�0, male�1),
SMOKE (nonsmoker�0, smoker�1), and hypertension status (HPT)
(no�0, yes�1) on four progressive stages of disease (D�0 for absent,
D�1 for mild, D�2 for severe, and D�3 for critical).

where g � 1, 2, 3
Use the model to obtain an expression for the odds of a severe or critical
outcome (D ≥ 2) for a 40-year-old male smoker without hypertension.

10. Use the model in Question 9 to obtain the odds ratio for the mild,
severe, or critical stage of disease (i.e., D ≥ 1)] comparing hypertensive
smokers versus nonhypertensive nonsmokers, controlling for AGE and
GENDER.

Test
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11. Use the model in Question 9 to obtain the odds ratio for critical disease
only (D ≥ 3) comparing hypertensive smokers versus nonhypertensive
nonsmokers, controlling for AGE and GENDER. Compare this odds
ratio to that obtained for Question 10.

12. Use the model in Question 9 to obtain the odds ratio for mild or no dis-
ease (D < 2) comparing hypertensive smokers versus nonhypertensive
nonsmokers, controlling for AGE and GENDER.

1. Ordinal model

where g � 1, 2

2. Ordinal fitted model

3. OR � exp(0.35) � 1.42
4. OR � exp(0.35) � 1.42
5. Estimated odds � exp[–2.98 � 20(0.04)] � 0.11
6. Estimated odds � exp[–1.65 � 20(0.04)] � 0.43
7. Estimated odds � exp[–1.65 � 20(0.04) � 0.35] � 0.61
8. Estimated odds ratios for noncompliant (COMPLIANCE�1) versus

compliant (COMPLIANCE�0) subjects:
for AIDS � 0: exp(0.38) � 1.46
for AIDS � 1: exp(0.38 � 0.31) � 1.99

Answers to
Practice
Exercises
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In this chapter, the logistic model is extended to handle outcome variables
that have dichotomous correlated responses. The analytic approach pre-
sented for modeling this type of data is the generalized estimating equations
(GEE) model, which takes into account the correlated nature of the
responses. If such correlations are ignored in the modeling process, then
incorrect inferences may result.

The form of the GEE model and its interpretation are developed. A variety
of correlation structures that are used in the formulation of the model is
described. An overview of the mathematical foundation for the GEE
approach is also presented, including discussions of generalized linear
models, score equations, and “score-like” equations. In the next chapter
(Chapter 12), examples are presented to illustrate the application and inter-
pretation of GEE models. The final chapter in the text (Chapter 13)
describes alternate approaches for the analysis of correlated data.

The outline below gives the user a preview of the material to be covered by
the presentation. A detailed outline for review purposes follows the presen-
tation.

I. Overview (pages 330–331)

II. An example (Infant Care Study) (pages 331–336)

III. Data layout (page 337)

IV. Covariance and correlation (pages 338–340)

V. Generalized linear models (pages 341–344)

VI. GEE models (pages 344–345)

VII. Correlation structure (pages 345–348)

VIII. Different types of correlation structure (pages 349–354)

IX. Empirical and model-based variance estimators 
(pages 354–357)

X. Statistical tests (pages 357–358)

XI. Score equations and “score-like” equations (pages 359–361)

XII. Generalizing the “score-like” equations to form GEE models
(pages 362–366)
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Upon completing this chapter, the learner should be able to:

1. State or recognize examples of correlated responses.
2. State or recognize when the use of correlated analysis techniques may

be appropriate.
3. State or recognize an appropriate data layout for a correlated analysis.
4. State or recognize the form of a GEE model.
5. State or recognize examples of different correlation structures that

may be used in a GEE model.
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In this chapter, we provide an introduction to modeling
techniques for use with dichotomous outcomes in
which the responses are correlated. We focus on one of
the most commonly used modeling techniques for this
type of analysis, known as generalized estimating equa-
tions or GEE, and we describe how the GEE approach
is used to carry out logistic regression for correlated
dichotomous responses.

For the modeling techniques discussed previously, we
have made an assumption that the responses are inde-
pendent. In many research scenarios, this is not a rea-
sonable assumption. Examples of correlated responses
include (1) observations on different members of the
same household, (2) observations on each eye of the
same person, (3) results (e.g., success/failure) of sev-
eral bypass grafts on the same subject, and (4) mea-
surements repeated each month over the course of a
year on the same subject. The last is an example of a
longitudinal study, since individuals’ responses are
measured repeatedly over time.

For the above-mentioned examples, the observations can
be grouped into clusters. In example 1, the clusters are
households, whereas the observations are the individual
members of each household. In example 4, the clusters
are individual subjects, whereas the observations are the
monthly measurements taken on the subject.

Examples of correlated responses:

1. Different members of the same house-
hold.

2. Each eye of the same person.
3. Several bypass grafts on the same 

subject.
4. Monthly measurements on the same

subject.

Observations can be grouped into clusters:

Example Cluster Source of
No. observation

1 Household Household 
members

2 Subject Eyes

3 Subject Bypass grafts

4 Subject Monthly 
repeats
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A common assumption for correlated analyses is that
the responses are correlated within the same cluster
but are independent between different clusters.

In analyses of correlated data, the correlations
between subject responses often are ignored in the
modeling process. An analysis that ignores the correla-
tion structure may lead to incorrect inferences.

We begin by illustrating how statistical inferences may
differ depending on the type of analysis performed. We
shall compare a generalized estimating equations
(GEE) approach with a standard logistic regression that
ignores the correlation structure. We also show the sim-
ilarities of these approaches in utilizing the output to
obtain and interpret odds ratio estimates, their corre-
sponding confidence intervals, and tests of significance.

The data were obtained from an infant care health
intervention study in Brazil (Cannon et al., 2001). As a
part of that study, height and weight measurements
were taken each month from 168 infants over a 
9-month period. Data from 136 infants with complete
data on the independent variables of interest are used
for this example.

The response (D) is derived from a weight-for-height
standardized score (i.e., z-score) based on the weight-
for-height distribution of a reference population. A
weight-for-height measure of more than one standard
deviation below the mean (i.e., z � �1) indicates
“wasting.” The dichotomous outcome for this study is
coded 1 if the z-score is less than negative 1 and 0 oth-
erwise. The independent variables are BIRTHWGT
(the weight in grams at birth), GENDER, and DIAR-
RHEA (a dichotomous variable indicating whether the
infant had symptoms of diarrhea that month).

Assumption:

correlated within clusters

Responses
independent between
clusters

Ignoring within-cluster correlation

⇓

Incorrect inferences

GEE versus standard logistic regression
(Ignores correlation)

• statistical inferences may differ
• similar use of output

Data source: Infant Care Study in Brazil

Subjects: 168 infants
136 with complete data

Response (D): weight-for-height standardized
(z) score

1 if z � �1
D � “Wasting”

0 otherwise

Independent variables:
BIRTHWGT (in grams)
GENDER

1 if symptoms present
DIARRHEA in past month

0 otherwise
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On the left, we present data on three infants to illus-
trate the layout for correlated data. Five of nine
monthly observations are listed per infant. In the com-
plete data on 136 infants, each child had at least 5
months of observations, and 126 (92.6%) had complete
data for all 9 months.

The variable IDNO is the number that identifies each
infant. The variable MO indicates which month the
outcome measurement was taken. This variable is used
to provide order for the data within a cluster. Not all
clustered data have an inherent order to the observa-
tions within a cluster; however, in longitudinal studies
such as this, specific measurements are ordered over
time.

The variable OUTCOME is the dichotomized weight-
for-height z-score indicating the presence or absence
of wasting. Notice that the outcome can change values
from month to month within a cluster.

The independent variable DIARRHEA can also change
values month to month. If symptoms of diarrhea are
present in a given month, then the variable is coded 1;
otherwise it is coded 0. DIARRHEA is thus a time-
dependent variable. This contrasts with the variables
BIRTHWGT and GENDER, which do not vary within a
cluster (i.e., do not change month to month). BIRTH-
WGT and GENDER are time-independent variables.

Infant Care Study: Sample Data

From three infants: five (of nine)
observations listed for each

IDNO MO OUTCOME BIRTHWGT GENDER DIARRHEA

00282 1 0 2000 Male 0

00282 2 0 2000 Male 0

00282 3 1 2000 Male 1

. . . . .

00282 8 0 2000 Male 1

00282 9 0 2000 Male 0

00283 1 0 2950 Female 0

00283 2 0 2950 Female 0

00283 3 1 2950 Female 0

. . . . .

00283 8 0 2950 Female 0

00283 9 0 2950 Female 0

00287 1 1 3250 Male 1

00287 2 1 3250 Male 1

00287 3 0 3250 Male 0

. . . . .

00287 8 0 3250 Male 0

00287 9 0 3250 Male 0

IDNO: identification number

MO: observation month
(provides order to subject-specific
measurements)

OUTCOME: dichotomized z-score
(values can change month to month)

Independent variables:

1. Time-dependent variable: can vary
month to month within a cluster

DIARRHEA: dichotomized variable
for presence of symptoms

2. Time-independent variables: do not
vary month to month within a cluster

BIRTHWGT
GENDER

332 11. Logistic Regression for Correlated Data: GEE



In general, with longitudinal data, independent vari-
ables may or may not vary within a cluster. A time-
dependent variable can vary in value, whereas a time-
independent variable does not. The values of the
outcome variable, in general, will vary within a cluster.
A correlated analysis attempts to account for the varia-
tion of the outcome from both within and between
clusters.

We state the model for the Infant Care Study example
in logit form as shown on the left. In this chapter, we
use the notation �0 to represent the intercept rather
than �, as � is commonly used to represent the corre-
lation parameters in a GEE model.

Next, the output obtained from running a GEE model
using the GENMOD procedure in SAS is presented.
This model accounts for the correlations among the
monthly outcome within each of the 136 infant clus-
ters. Odds ratio estimates, confidence intervals, and
Wald test statistics are obtained using the GEE model
output in the same manner (i.e., with the same formu-
las) as we have shown previously using output gener-
ated from running a standard logistic regression. The
interpretation of these measures is also the same.
What differs between the GEE and standard logistic
regression models are the underlying assumptions and
how the parameters and their variances are estimated.

The odds ratio comparing symptoms of diarrhea ver-
sus no diarrhea is calculated using the usual e to the β̂
formula, yielding an estimated odds ratio of 1.25.

In general, with longitudinal data:

Independent variables may be:

1. time-dependent
2. time-independent

Outcome variable generally varies within a
cluster

Goal of analysis: to account for outcome
variation within and between clusters

Model for Infant Care Study:

logit P(D�1| X) � �0 � �1BIRTHWGT
� �2GENDER � �3DIARRHEA

GEE Model

Empirical Wald
Variable Coefficient Std Err p-value

INTERCEPT -1.3978 1.1960 0.2425

BIRTHWGT -0.0005 0.0003 0.1080

GENDER 0.0024 0.5546 0.9965

DIARRHEA 0.2214 0.8558 0.7958

Interpretation of GEE model similar to SLR

OR estimates Use same
Confidence intervals formulas
Wald test statistics

Underlying assumptions
Method of parameter Differ

estimation

Odds ratio

OR (DIARRHEA � 1 vs. DIARRHEA � 0)

� exp(0.2214) � 1.25
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The 95% confidence interval is calculated using the
usual large-sample formula, yielding a confidence
interval of (0.23, 6.68).

We can test the null hypothesis that the beta coeffi-
cient for DIARRHEA is equal to zero using the Wald
test, in which we divide the parameter estimate by its
standard error. For the variable DIARRHEA, the Wald
statistic equals 0.259. The corresponding P-value is
0.7958, which indicates that there is not enough evi-
dence to reject the null hypothesis.

The output for the standard logistic regression is pre-
sented for comparison. In this analysis, each observa-
tion is assumed to be independent. When there are sev-
eral observations per subject, as with these data, the
term “naive model” is often used to describe a model
that assumes independence when responses within a
cluster are likely to be correlated. For the Infant Care
Study example, there are 1203 separate observations
across the 136 infants.

Using this output, the estimated odds ratio comparing
symptoms of diarrhea versus no diarrhea is 2.17 for
the naive model.

The 95% confidence interval for this odds ratio is cal-
culated to be (0.89, 5.29).

95% confidence interval

95%CI � exp[0.2214 � 1.96(0.8558)]
� (0.23, 6.68)

Wald test

H0: �3�0

Standard Logistic Regression Model

Wald

Variable Coefficient Std Err p-value

INTERCEPT -1.4362 0.6022 0.0171

BIRTHWGT -0.0005 0.0002 0.0051

GENDER -0.0453 0.2757 0.8694

DIARRHEA 0.7764 0.4538 0.0871

Responses within clusters assumed
independent

Also called the “naive” model

Odds ratio

OR (DIARRHEA � 1 vs. DIARRHEA � 0)

� exp(0.7764) � 2.17

95% confidence interval

95%CI � exp[0.7764 � 1.96(0.4538)]
� (0.89, 5.29)
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The Wald test statistic for DIARRHEA in the SLR
model is calculated to be 1.711. The corresponding 
P-value is 0.0871.

This example demonstrates that the choice of analytic
approach can affect inferences made from the data.
The estimates for the odds ratio and the 95% confi-
dence interval for DIARRHEA are greatly affected by
the choice of model.

In addition, the statistical significance of the variable
BIRTHWGT at the 0.05 level depends on which model
is used, as the P-value for the Wald test of the GEE
model is 0.1080, whereas the P-value for the Wald test
of the standard logistic regression model is 0.0051.

The key reason for these differences is the way the out-
come is modeled. For the GEE approach, there are 136
independent clusters (infants) in the data, whereas the
assumption for the standard logistic regression is that
there are 1203 independent outcome measures.

For many datasets, the effect of ignoring the correla-
tion structure in the analysis is not nearly so striking. If
there are differences in the resulting output from using
these two approaches, it is more often the estimated
standard errors of the parameter estimates rather than
the parameter estimates themselves that show the
greatest difference. In this example however, there are
strong differences in both the parameter estimates and
their standard errors.

Wald test

H0: �3�0

Comparison of analysis approaches:

1. OR and 95% CI for DIARRHEA

GEE model SLR model

OR 1.25 2.17

95% CI 0.23, 6.68 0.89, 5.29

2. P-Value of Wald test for BIRTHWGT

GEE model SLR model

P-Value 0.1081 0.0051

Why these differences?

GEE model: 136 independent clusters
(infants)

Naive model: 1203 independent
outcome measures

Effects of ignoring correlation structure:

• not usually so striking
• standard error estimates more often

affected than parameter estimates
• example shows effects on both standard

error and parameter estimates
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To run a GEE analysis, the user specifies a correlation
structure. The correlation structure provides a frame-
work for the estimation of the correlation parameters,
as well as estimation of the regression coefficients
(�0, �1, �2, ..., �p) and their standard errors.

It is the regression parameters (e.g., the coefficients for
DIARRHEA, BIRTWGT, and GENDER) and not the
correlation parameters that typically are the parame-
ters of primary interest.

Software packages that accommodate GEE analyses
generally offer several choices of correlation structures
that the user can easily implement. For the GEE analy-
sis in this example, an AR1 autoregressive correlation
structure was specified. Further details on the AR1
autoregressive and other correlation structures are
presented later in the chapter.

In the next section (section III), we present the general
form of the data for a correlated analysis.

Correlation structure:

⇓
Framework for estimating

• correlations
• regression coefficients
• standard errors

Primary interest?

Regression coefficients Yes
Correlations Usually not

Infant Care Study example:

AR1 autoregressive correlation structure
specified

Other structures possible
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The basic data layout for a correlated analysis is pre-
sented to the left. We consider a longitudinal dataset in
which there are repeated measures for K subjects. The
ith subject has ni measurements recorded. The jth
observation from the ith subject occurs at time tij with
the outcome measured as Yij, and with p covariates,
Xij1, Xij2, ..., Xijp.

Subjects are not restricted to have the same number of
observations (e.g., n1 does not have to equal n2). Also,
the time interval between measurements does not have
to be constant (e.g., t12 – t11 does not have to equal t13
– t12). Further, in a longitudinal design, a variable (tij)
indicating time of measurement may be specified;
however, for nonlongitudinal designs with correlated
data, a time variable may not be necessary or appro-
priate.

The covariates (i.e., X’s) may be time-independent or
time-dependent for a given subject. For example, the
race of a subject will not vary, but the daily intake of
coffee could vary from day to day.

Basic data layout for correlated analysis:

K subjects
ni responses for subject i

S O

u R u

b e t

j p T c Independent Variables

e e i o

c a m m

t t e e

(i) (j) (tij) Yij Xij1 Xij2 . . . Xijp
1 1 t11 Y11 X111 X112 . . . X11p
1 2 t12 Y12 X121 X122 . . . X12p
. . . . . . . 

. . . . . . . 

. . . . . . . 

1 n1 t1n1
Y1n1 X1n11

X1n12
. . . X1n1p

. . . . . . . 

i 1 ti1 Yi1 Xi11 Xi12 . . . Xi1p
i 2 ti2 Yi2 Xi21 Xi22 . . . Xi2p
. . . . . . . 

. . . . . . . 

. . . . . . . 

i ni tini
Yini Xini1

Xini2
. . . Xinip

. . . . . . . 

K 1 tK1 YK1 XK11 XK12 . . . XK1p
K 2 tK2 YK2 XK21 XK22 . . . XK2p
. . . . . . . 

. . . . . . . 

. . . . . . . 

K ni tKni
YKni XKni1

XKni2
. . . XKnip
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In the sections which follow, we provide an overview
of the mathematical foundation of the GEE approach.
We begin by developing some of the ideas that under-
lie correlated analyses, including covariance and cor-
relation.

Covariance and correlation are measures that express
relationships between two variables. The covariance
of X and Y in a population is defined as the expected
value, or average, of the product of X minus its mean
(�x) and Y minus its mean (�y). With sample data, the
covariance is estimated using the formula on the left,
where X̄ and Ȳ are sample means in a sample of size n.

The correlation of X and Y in a population, often
denoted by the Greek letter rho (�), is defined as the
covariance of X and Y divided by the product of the
standard deviation of X (i.e., �x) and the standard devi-
ation of Y (i.e., �y). The corresponding sample correla-
tion, usually denoted as rxy, is calculated by dividing
the sample covariance by the product of the sample
standard deviations (i.e., sx and sy).

The correlation is a standardized measure of covari-
ance in which the units of X and Y are the standard
deviations of X and Y, respectively. The actual units
used for the value of variables affect measures of
covariance but not measures of correlation, which are
scale-free. For example, the covariance between height
and weight will increase by a factor of 12 if the mea-
sure of height is converted from feet to inches, but the
correlation between height and weight will remain
unchanged.

Covariance and correlation are measures of
relationships between variables.

Covariance

Population:

cov(X, Y) � E[(X – �x)(Y – �y)]

Sample:

Correlation

Population:

Sample:

Correlation:

• standardized covariance
• scale free

X1 � height cov(X2, Y) � 12 cov(X1, Y)
(in feet)

X2 � height BUT
(in inches)

Y � weight ρx2y = ρx1y
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A positive correlation between X and Y means that
larger values of X, on average, correspond with larger
values of Y, whereas smaller values of X correspond
with smaller values of Y. For example, persons who are
above mean height will be, on average, above mean
weight, and persons who are below mean height will
be, on average, below mean weight. This implies that
the correlation between individuals’ height and weight
measurements are positive. This is not to say that there
cannot be tall people of below average weight or short
people of above average weight. Correlation is a mea-
sure of average, even though there may be variation
among individual observations. Without any addi-
tional knowledge, we would expect a person 6 ft tall to
weigh more than a person 5 ft tall.

A negative correlation between X and Y means that
larger values of X, on average, correspond with smaller
values of Y, whereas smaller values of X correspond
with larger values of Y. An example of negative corre-
lation might be between hours of exercise per week
and body weight. We would expect, on average, people
who exercise more to weigh less, and conversely, peo-
ple who exercise less to weigh more. Implicit in this
statement is the control of other variables such as
height, age, gender, and ethnicity.

The possible values of the correlation of X and Y range
from negative 1 to positive 1. A correlation of negative
1 implies that there is a perfect negative linear rela-
tionship between X and Y, whereas a correlation of
positive 1 implies a perfect positive linear relationship
between X and Y.

Positive correlation

On average, as X gets larger, Y gets larger;
or, as X gets smaller, Y gets smaller.

Negative correlation

On average, as X gets larger, Y gets smaller;
or as X gets smaller, Y gets larger.
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EXAMPLE

X

Y

(X, Y)
Height X 

Weight Y

Height and weight

X

Y

(X, Y)

Exercise X

Body Weight Y

Hours of exercise
and body weight

Perfect
Linearity

r = + 1 r = – 1



Perfect linear relationship

Y � �0 � �1X, for a given X

X and Y independent ⇒ � � 0

BUT

X and Y independent

� � 0 ⇒ or
X and Y have nonlinear 
relationship

Correlations on same variable

(Y1, Y2, ...,Yn)

ρY1Y2
, ρY1Y3

, ...,etc.

Correlations between dichotomous
variables may also be considered.

By a perfect linear relationship we mean that, given a
value of X, the value of Y can be exactly ascertained
from that linear relationship of X and Y (i.e., Y � �0 �
�1X, where �0 is the intercept and �1 is the slope of the
line). If X and Y are independent, then their correlation
will be zero. The reverse does not necessarily hold. A
zero correlation may also result from a nonlinear asso-
ciation between X and Y.

We have been discussing correlation in terms of two
different variables such as height and weight. We can
also consider correlations between repeated observa-
tions (Y1, Y2, ..., Yn) on the same variable Y.

Consider a study in which each subject has several sys-
tolic blood pressure measurements over a period of
time. We might expect a positive correlation between
pairs of blood pressure measurements from the same
individual (Yj, Yk).

The correlation might also depend on the time period
between measurements. Measurements 5 min apart on
the same individual might be more highly correlated
than measurements 2 years apart.

This discussion can easily be extended from continu-
ous variables to dichotomous variables. Suppose a
study is conducted examining daily inhaler use by
patients with asthma. The dichotomous outcome is
coded 1 for the event (use) and 0 for no event (no use).
We might expect a positive correlation between pairs
of responses from the same subject (Yj, Yk).
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EXAMPLE

EXAMPLE

Daily inhaler use (1�yes, 0�no) on
same individual over time

Expect ρYjYk
> 0 for same subject

t2t1 t3 t4

Y1 Y2 Y3 Y4

Systolic blood pressure on same
individual over time

Expect rYjYk
 > for some j, k

Also,

Expect rY1Y2
 or rY3Y4

 >
rY1Y3

, rY1Y4
, rY2Y3

, rY2Y4
,

(time)



For many statistical models, including logistic regres-
sion, the predictor variables (i.e., independent vari-
ables) are considered fixed and the outcome, or
response (i.e., dependent variable), is considered ran-
dom. A general formulation of this idea can be
expressed as Y � f(X1, X2, ..., Xp) � �, where Y is the
response variable, X1, X2, ..., Xp are the predictor vari-
ables, and � represents random error. In this frame-
work, the model for Y consists of a fixed component
[f(X1, X2, ..., Xp)] and a random component (�). A func-
tion (f) for the fixed predictors and a distribution for
the random error (�) are specified.

Logistic regression belongs to a class of models called
generalized linear models (GLM). Other models that
belong to the class of GLM include linear and Poisson
regression. For correlated analyses, the GLM frame-
work can be extended to a class of models called gen-
eralized estimating equations (GEE) models. Before
discussing correlated analyses using GEE, we shall
describe GLM.

GLM are a natural generalization of the classical linear
model (McCullagh and Nelder, 1989). In classical lin-
ear regression, the outcome is a continuous variable,
which is often assumed to follow a normal distribu-
tion. The mean response is modeled as linear with
respect to the regression parameters.

In standard logistic regression, the outcome is a
dichotomous variable. Dichotomous outcomes are
often assumed to follow a binomial distribution, with
an expected value (or mean, �) equal to a probability
[e.g., P(Y�1)]. It is this probability that is modeled in
logistic regression.

General form of many statistical models:

Y � f(X1, X2, . . . , Xp) � �

where: Y is random
X1, X2, . . . , Xp are fixed
� is random

Specify:

1. a function (f) for the fixed predictors
2. a distribution for the random error (�)

GLM models include:

logistic regression
linear regression
Poisson regression

GEE models are extensions of GLM

GLM: a generalization of the classical
linear model

Linear regression
Outcome

• continuous
• normal distribution

Logistic regression
Outcome

• dichotomous
• binomial distribution:

E(Y) � � � P(Y�1)

Logistic regression used to model
P(Y| X1, X2, ..., Xp)
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The binomial distribution belongs to a larger class of
distributions called the exponential family. Other dis-
tributions belonging to the exponential family are the
normal, Poisson, exponential, and gamma distribu-
tions. These distributions can be written in a similar
form and share important properties.

Let � represent the mean response E(Y), and g(�) rep-
resent a function of the mean response. A generalized
linear model with p independent variables can be
expressed as g(�) equals �0 plus the summation of the
p independent variables times their beta coefficients.

There are three components that comprise GLM: (1) a
random component, (2) a systematic component, and
(3) the link function. These components are described
as follows:

1. The random component is that the outcome (Y) is
required to follow a distribution from the exponential
family. This criterion is met for a logistic regression
(unconditional) since the response variable follows a
binomial distribution, which is a member of the expo-
nential family.

2. The systematic component requires that the X’s
be combined in the model as a linear function

of the parameters. This portion of the
model is not random. This criterion is met for a logistic
model, since the model form contains a linear compo-
nent in its denominator.

( )β β0 + ∑ h hX

Exponential family distributions include:
binomial
normal
Poisson
exponential
gamma

Generalized Linear Model

where: � is the mean response E(Y)
g(�) is a function of the mean

Three components for GLM
1. Random component
2. Systematic component
3. Link function

1. Random component

Y follows a distribution from the
exponential family

2. Systematic component

The X’s are combined in the model
linearly,

Logistic model:

linear component

( )i.e.,  β β0 + ∑ h hX
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3. The link function refers to that function of the
mean response, g(�), that is modeled linearly with
respect to the regression parameters. This function
serves to “link” the mean of the random response and
the fixed linear set of parameters.

For logistic regression, the log odds (or logit) of the
outcome is modeled as linear in the regression para-
meters. Thus, the link function for logistic regression is
the logit function [i.e., g(�) equals the log of the quan-
tity � divided by 1 minus �].

Alternately, one can express GLM in terms of the
inverse of the link function (g�1), which is the mean �.
In other words, g�1(g(�)) � �. This inverse function is
modeled in terms of the predictors (X) and their coef-
ficients (β) (i.e., g�1(X, β)). For logistic regression, the
inverse of the logit link function is the familiar logistic
model of the probability of an event, as shown on the
left. Notice that this modeling of the mean (i.e., the
inverse of the link function) is not a linear model. It is
the function of the mean (i.e., the link function) that is
modeled as linear in GLM.

GLM uses maximum likelihood methods to estimate
model parameters. This requires knowledge of the like-
lihood function (L), which, in turn, requires that the
distribution of the response variable be specified.

If the responses are independent, the likelihood can be
expressed as the product of each observation’s contri-
bution (Li) to the likelihood. However, if the responses
are not independent, then the likelihood can become
complicated, or intractable.

3. Link function: g(�) � β0 +Σ βhXh

g “links” E(Y) with β0 +Σ βhXh

Logistic regression (logit link)

Alternate formulation

Inverse of link function � g-1 satisfies

g�1(g(�)) � �

Inverse of logit function in terms of (X, β)

where

GLM

• uses ML estimation
• requires likelihood function L where

(assumes Yi are independent)

If Yi not independent and not normal
⇓

L complicated or intractable
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For nonindependent outcomes whose joint distribu-
tion is multivariate (MV) normal, the likelihood is 
relatively straightforward, since the multivariate nor-
mal distribution is completely specified by the means,
variances, and all of the pairwise covariances of the
random outcomes. This is typically not the case for
other multivariate distributions in which the outcomes 
are not independent. For these circumstances, quasi-
likelihood theory offers an alternative approach to
model development.

Quasi-likelihood methods have many of the same
desirable statistical properties that maximum likeli-
hood methods have, but the full likelihood does not
need to be specified. Rather, the relationship between
the mean and variance of each response is specified.
Just as the maximum likelihood theory lays the foun-
dation for GLM, the quasi-likelihood theory lays the
foundation for GEE models.

GEE represent a class of models that are often utilized
for data in which the responses are correlated (Liang
and Zeger, 1986). GEE models can be used to account
for the correlation of continuous or categorical out-
comes. As in GLM, a function of the mean g(�), called
the link function, is modeled as linear in the regres-
sion parameters.

For a dichotomous outcome, the logit link is com-
monly used. For this case, g(�) equals logit (P), where
P is the probability that Y �1. If there are p indepen-
dent variables, this can be expressed as: logit P(Y�1|X)
equals �0 plus the summation of the p independent
variables times their beta coefficients.

If Yi not independent but MV normal

⇓

L specified

If Yi not independent and not MV normal

⇓

Quasi-likelihood theory

Quasi-likelihood

• no likelihood
• specify mean variance relationship
• foundation of GEE

GEE: class of models for correlated data

Link function g modeled as

For Y(0, 1) ⇒ logit link
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The logistic model for correlated data looks identical
to the standard logistic model. The difference is in the
underlying assumptions of the model, including the
presence of correlation, and the way in which the para-
meters are estimated.

GEE is a generalization of quasi-likelihood estimation,
so the joint distribution of the data need not be speci-
fied. For clustered data, the user specifies a “working”
correlation structure for describing how the responses
within clusters are related to each other. Between clus-
ters, there is an assumption of independence.

For example, suppose 20 asthma patients are followed
for a week and keep a daily diary of inhaler use. The
response (Y) is given a value of 1 if a patient uses an
inhaler on a given day and 0 if there is no use of an
inhaler on that day. The exposure of interest is daily
pollen level. In this analysis, each subject is a cluster. It
is reasonable to expect that outcomes (i.e., daily
inhaler use) are positively correlated within observa-
tions from the same subject but independent between
different subjects.

_

The correlation and the covariance between measures
are often summarized in the form of a square matrix
(i.e., a matrix with equal numbers of rows and
columns). We use simple matrices in the following dis-
cussion; however, a background in matrix operations
is not required for an understanding of the material.

For simplicity consider two observations, Y1 and Y2.
The covariance matrix for just these two observations
is a 2 × 2 matrix (V) of the form shown at left. We use
the conventional matrix notation of bold capital letters
to identify individual matrices.

Correlated versus Independent

• identical model
but

• different assumptions

GEE

• generalization of quasi-likelihood
• specify a “working” correlation struc-

ture for within-cluster correlations
• assume independence between clusters

Correlation and covariance summarized as
square matrices

Covariance matrix for Y1 and Y2
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EXAMPLE

Asthma patients followed 7 days

Y: daily inhaler use (0,1)
E: pollen level
Cluster: asthma patient

Yi within subjects correlated

but

Yi between subjects independent

VII. Correlation Structure

V =
⎡

⎣
⎢

⎤

⎦
⎥

var( )   cov( ,  )

cov( ,  )   var( )

Y Y Y

Y Y Y
1 1 2

1 2 2



The corresponding 2 × 2 correlation matrix (C) is also
shown at left. Note that the covariance between a vari-
able and itself is the variance of that variable [e.g.,
cov(Y1, Y1) � var(Y1)], so that the correlation between
a variable and itself is 1.

A diagonal matrix has a 0 in all nondiagonal entries.

A 2 × 2 diagonal matrix (D) with the variances along
the diagonal is of the form shown at left.

The definitions of V, C, and D can be extended from 2
× 2 matrices to N × N matrices. A symmetric matrix is
a square matrix in which the (i, j) element of the matrix
is the same value as the (j, i) element. The covariance
of (Yi, Yj) is the same as the covariance of (Yj, Yi); thus
the covariance and correlation matrices are symmetric
matrices.

The covariance between Y1 and Y2 equals the standard
deviation of Y1, times the correlation between Y1 and
Y2, times the standard deviation of Y2.

The relationship between covariance and correlation
can be similarly be expressed in terms of the matrices
V, C, and D as shown on the left.

For logistic regression, the variance of the response Yi
equals �i times (1��i). The corresponding diagonal
matrix (D) has �i(1��i) for the diagonal elements and
0 for the off-diagonal elements. As noted earlier, the
mean (�i) is expressed as a function of the covariates
and the regression parameters [g�1(X, β)].

Corresponding 2 × 2 correlation matrix

Diagonal matrix: has 0 in all nondiagonal
entries.

Can extend to N × N matrices

Matrices symmetric: (i, j) � (j, i) element

cov(Y1, Y2) � cov(Y2, Y1)
corr(Y1, Y2) � corr(Y2, Y1)

Relationship between covariance and
correlation expressed as

Matrix version:

where

Logistic regression

where
var(Yi) � �i(1��i)

�i � g�1 (X, β)
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We illustrate the form of the correlation matrix in
which responses are correlated within subjects and
independent between subjects. For simplicity, con-
sider a dataset with information on only three subjects
in which there are four responses recorded for each
subject. There are 12 observations (3 times 4) in all.
The correlation between responses from two different
subjects is 0, whereas the correlation between
responses from the same subject (i.e., the jth and kth
response from subject i) is �ijk.

This correlation matrix is called a block diagonal
matrix, where subject-specific correlation matrices
are the blocks along the diagonal of the matrix.

The correlation matrix in the preceding example con-
tains 18 correlation parameters (6 per cluster) based
on only 12 observations. In this setting, each subject
has his or her own distinct set of correlation parame-
ters.

Block diagonal matrix: subject-specific
correlation matrices form blocks (Bi)
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EXAMPLE

Three subjects; four observations each
Within-cluster correlation between jth

and kth response from subject i � �ijk
Between-subject correlations � 0

blocks

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0

112 113 114

112 123 124

113 123 134

114 124 134

212 213 214

212 223 224

213 223 234

214 224

1

1

1

1

1

1

1

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

234

312 313 314

312 323 324

313 323 334

314 324 334

0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1

1

1

1

1

⎡

⎣

⎢
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⎢
⎢
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⎢
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⎢
⎢
⎢
⎢
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where B th block
B         

      B

          B

1

2

3

0

0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

=i i

EXAMPLE

18 �’s (6 per cluster/subject) but 12
observations

Subject i: {�i12, �i13, �i14, �i23, �i24, �i34}



If there are more parameters to estimate than observa-
tions in the dataset, then the model is over-parameter-
ized and there is not enough information to yield valid
parameter estimates. To avoid this problem, the GEE
approach requires that each subject have a com-
mon set of correlation parameters. This reduces the
number of correlation parameters substantially. This
type of correlation matrix is presented at the left.

Using the previous example, there are now 6 correla-
tion parameters (�jk) for 12 observations of data.
Giving each subject a common set of correlation para-
meters reduced the number by a factor of 3 (18 to 6). In
general, a common set of correlation parameters for K
subjects reduces the number of correlation parameters
by a factor of K.

The correlation structure presented above is called
unstructured. Other correlation structures, with
stronger underlying assumptions, reduce the num-
ber of correlation parameters even further. Various
types of correlation structure are presented in the
next section.

# parameters  # observations ⇒ β̂i not valid

GEE approach: common set of �’’s for each
subject:

Subject i: {�12, �13, �14, �23, �24, �34}

In general, for K subjects:
ρijk ⇒ ρjk: # of ρ’s ↓ by factor of K

Example above: unstructured correlation
structure

Next section shows other structures.
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EXAMPLE

3 subjects; 4 observations each

Now only 6 �’s for 12 observations:
↓ # �’s by factor of 3 (� # subjects)

1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 1

12 13 14

12 23 24

13 23 34

14 24 34

12 13 14

12 23 24

13 23 34

14 24 34

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ 00 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1

12 13 14

12 23 24

13 23 34

14 24 34

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ
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⎥



We present a variety of correlation structures that are
commonly considered when performing a correlated
analysis. These correlation structures are as follows:
independent, exchangeable, AR1 autoregressive, station-
ary m-dependent, unstructured, and fixed. Software
packages that accommodate correlated analyses typically
allow the user to specify the correlation structure before
providing estimates of the correlation parameters.

Independent correlation structure.
The assumption behind the use of the independent
correlation structure is that responses are uncorre-
lated within a cluster. The correlation matrix for a
given cluster is just the identity matrix. The identity
matrix has a value of 1 along the main diagonal and a
0 off the diagonal. The correlation matrix to the left is
for a cluster that has five responses.

Exchangeable correlation structure.
The assumption behind the use of the exchangeable
correlation structure is that any two responses within
a cluster have the same correlation (ρ). The correlation
matrix for a given cluster has a value of 1 along the
main diagonal and a value of � off the diagonal. The
correlation matrix to the left is for a cluster that has
five responses.

Examples of correlation structures:
independent
exchangeable
AR1 autoregressive
stationary m-dependent
unstructured
fixed

Independent

Assumption: responses uncorrelated within
clusters

Matrix for a given cluster is the identity
matrix.

Exchangeable

Assumption: any two responses within a
cluster have same correlation (�)
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VIII. Different Types of
Correlation Structure

With five responses per cluster
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As in all correlation structures used for GEE analyses,
the same set of correlation parameter(s) are used for
modeling each cluster. For the exchangeable correla-
tion structure, this means that there is only one corre-
lation parameter to be estimated.

A feature of the exchangeable correlation structure is
that the order of observations within a cluster is arbi-
trary. For example, consider a study in which there is a
response from each of 237 students representing 14
different high schools. It may be reasonable to assume
that responses from students who go to the same
school are correlated. However, for a given school, we
would not expect the correlation between the response
of student #1 and student #2 to be different from the
correlation between the response of student #1 and
student #9. We could therefore exchange the order (the
position) of student #2 and student #9 and not affect
the analysis.

It is not required that there be the same number of
responses in each cluster. We may have 10 students
from one school and 15 students from a different
school.

Autoregressive correlation structure. 
An autoregressive correlation structure is generally
applicable for analyses in which there are repeated
responses over time within a given cluster. The
assumption behind an autoregressive correlation
structure is that the correlation between responses
depends on the interval of time between responses. For
example, the correlation is assumed to be greater for
responses that occur 1 month apart rather than 20
months apart.

Only one � estimated

Order of observations within a cluster is
arbitrary.

Can exchange positions of observations.

Number of responses (ni) can vary by i

Autoregressive

Assumption: correlation depends on
interval of time between responses
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K � 14 schools
ni � # students from school i

School i: exchange order #2 ↔ # 9

Will not affect analysis

ni
i

k

=
∑ =

1

237

1    2                                      20
Time

(in months)

�1,2  �1,20



AR1 is a special case of an autoregressive correlation
structure. AR1 is widely used because it assumes only
one correlation parameter and because software pack-
ages readily accommodate it. The AR1 assumption is
that the correlation between any two responses from
the same subject equals a baseline correlation (�)
raised to a power equal to the absolute difference
between the times of the responses.

The correlation matrix to the left is for a cluster that
has four responses taken at time t � 1, 2, 3, 4.

Contrast this to another example of an AR1 correlation
structure for a cluster that has four responses taken at
time t � 1, 6, 7, 10. In each example, the power to
which rho (�) is raised is the difference between the
times of the two responses.

As with the exchangeable correlation structure, the
AR1 structure has just one correlation parameter. In
contrast to the exchangeable assumption, the order of
responses within a cluster is not arbitrary, as the time
interval is also taken into account.

AR1

Special case of autoregressive

Assumption: Y at t1 and t2:

ρt1,t2�
ρ|t1−t2|

With AR1 structure, only one �
BUT

Order within cluster not arbitrary
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Cluster with four responses at time t �
1, 2, 3, 4
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Stationary m-dependent correlation structure. 
The assumption behind the use of the stationary m-
dependent correlation structure is that correlations k
occasions apart are the same for k � 1, 2, ..., m,
whereas correlations more than m occasions apart are
zero. The correlation matrix to the left illustrates a sta-
tionary 2-dependent correlation structure for a cluster
that has six responses. A stationary 2-dependent corre-
lation structure has two correlation parameters. In
general, a stationary m-dependent correlation struc-
ture has m distinct correlation parameters. The
assumption here is that responses within a cluster are
uncorrelated if they are more than m units apart.

Unstructured correlation structure. 
In an unstructured correlation structure there are less
constraints on the correlation parameters. The correla-
tion matrix to the left is for a cluster that has four
responses and six correlation parameters. In general,
for a cluster that has n responses, there are n(n–1)/2
correlation parameters. If there are a large number of
correlation parameters to estimate, the model may be
unstable and results unreliable.

Unlike the correlation structures discussed previously,
an unstructured correlation structure has a separate
correlation parameter for each pair of observations (j,
k) within a cluster, even if the time intervals between
the responses are the same. For example, the correla-
tion between the first and second responses of a cluster
is not assumed to be equal to the correlation between
the third and fourth responses.

Stationary m-dependent

Assumption:
Correlations k occasions apart
same for k � 1, 2, ..., m
correlations  m occasions apart � 0

Stationary m-dependent structure ⇒
m distinct �’s

Unstructured

ni responses ⇒ n(n–1)/2 distinct �’s

�jk � �j�k� unless j � j� and k � k�
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Stationary 2-dependent, cluster with six
responses (m�2, ni�6)
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Like the other correlation structures, the same set of
correlation parameters are used for each cluster. Thus,
the correlation between the first and second responses
for cluster A is the same as the correlation between the
first and second response for cluster B. This means
that the order of responses for a given cluster is not
arbitrary for an unstructured correlation structure. If
we exchange the first and fourth responses of cluster i,
it does affect the analysis, unless we also exchange the
first and fourth responses for all the clusters.

Fixed correlation structure. 
Some software packages allow the user to select fixed
values for the correlation parameters. Consider the
correlation matrix presented on the left. The correla-
tion between the first and fourth responses of each
cluster is fixed at 0.1; otherwise, the correlation is fixed
at 0.3.

For an analysis that uses a fixed correlation structure,
there are no correlation parameters to estimate since
the values of the parameters are chosen before the
analysis is performed. 

Selection of a “working” correlation structure is at
the discretion of the researcher. Which structure
best describes the relationship between correlations is
not always clear from the available evidence. For large
samples, the estimates of the standard errors of the
parameters are more affected by the choice of correla-
tion structure than the estimates of the parameters
themselves.

ρijk � ρi�jk if i � i�

Order {Yi1, Yi2, . . . , Yik} not arbitrary
(e.g., cannot switch YA1 and YA4
unless all Yi1 and Yi4 switched).

Fixed

User specifies fixed values for �.

No � estimated.

Choice of structure not always clear.
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In the next section, we describe two variance estima-
tors that can be obtained for the fitted regression coef-
ficients—empirical and model-based estimators. In
addition, we discuss the effect of misspecification of
the correlation structure on those estimators.

Maximum likelihood estimates in GLM are appealing
because they have desirable asymptotic statistical
properties. Parameter estimates derived from GEE
share some of these properties. By asymptotic, we
mean “as the number of clusters approaches infinity.”
This is a theoretical concept since the datasets that we
are considering have a finite sample size. Rather, we
can think of these properties as holding for large sam-
ples. Nevertheless, the determination of what consti-
tutes a “large” sample is somewhat subjective.

If a GEE model is correctly specified, then the resul-
tant regression parameter estimates have two impor-
tant statistical properties: (1) the estimates are consis-
tent and (2) the distribution of the estimates is
asymptotically normal. A consistent estimator is a
parameter estimate that approaches the true parame-
ter value in probability. In other words, as the number
of clusters becomes sufficiently large, the difference
between the parameter estimate and the true parame-
ter approaches zero. Consistency is an important sta-
tistical property since it implies that the method will
asymptotically arrive at the correct answer. The
asymptotic normal property is also important since
knowledge of the distribution of the parameter esti-
mates allows us to construct confidence intervals and
perform statistical tests.

GEE estimates have desirable
asymptotic properties.

K → � (i.e., K “large”)

where K � # clusters

“Large” is subjective

Two statistical properties of GEE estimates
(if model correct):

1. Consistent
β̂ → β as K → �

2. Asymptotically normal
β̂ ~ normal as K → �

Asymptotic normal property allows:
• confidence intervals
• statistical tests
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To correctly specify a GLM or GEE model, one must
correctly model the mean response [i.e., specify the
correct link function g(�) and use the correct covari-
ates]. Otherwise, the parameter estimates will not be
consistent. An additional issue for GEE models is
whether the correlation structure is correctly specified
by the working correlation structure (Ci).

A key property of GEE models is that parameter esti-
mates for the regression coefficients are consistent
even if the correlation structure is misspecified.
However, it is still preferable for the correlation struc-
ture to be correctly specified. There is less propensity
for error in the parameter estimates (i.e., smaller vari-
ance) if the correlation structure is correctly specified.
Estimators are said to be more efficient if the variance
is smaller.

For the construction of confidence intervals (CIs), it is
not enough to know that the parameter estimates are
asymptotically normal. In addition, we need to esti-
mate the variance of the parameter estimates (not to
be confused with the variance of the outcome). For
GEE models, there are two types of variance estimator,
called model-based and empirical, that can be
obtained for the fitted regression coefficients. The
choice of which estimator is used has no effect on 
the parameter estimate (β̂), but rather the effect is on
the estimate of its variance [var (β̂)].

Model-based variance estimators are of a similar
form as the variance estimators in a GLM, which are
based on maximum likelihood theory. Although the
likelihood is never formulated for GEE models, model-
based variance estimators are consistent estimators,
but only if the correlation structure is correctly speci-
fied.

To correctly specify a GEE model:

• specify correct g(�)
• specify correct Ci

β̂h consistent even if Ci misspecified
but

β̂h more efficient if Ci correct

To construct CIs, need var (β̂)

Two types of variance estimators:

• model-based
• empirical

No effect on β̂

Effect on var (β̂)

Model-based variance estimators:

• similar in form to variance estimators in
GLM

• consistent only if Ci correctly specified
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Empirical (robust) variance estimators are an
adjustment of model-based estimators (see Liang and
Zeger, 1986). Both the model-based approach and the
empirical approach make use of the working correla-
tion matrix. However, the empirical approach also
makes use of the observed correlations between
responses in the data. The advantage of using the
empirical variance estimator is that it provides a con-
sistent estimate of the variance even if the working
correlation is not correctly specified.

There is a conceptual difference between the estimation
of a regression coefficient and the estimation of its vari-
ance [var(β̂)]. The regression coefficient, β, is assumed
to exist whether a study is implemented or not. The dis-
tribution of β̂, on the other hand, depends on character-
istics of the study design and the type of analysis per-
formed. For a GEE analysis, the distribution of β̂
depends on such factors as the true value of β, the num-
ber of clusters, the number of responses within the clus-
ters, the true correlations between responses, and the
working correlation structure specified by the user.
Therefore, the true variance of β̂ (and not just its esti-
mate) depends, in part, on the choice of a working cor-
relation structure.

Empirical (robust) variance estimators:

• an adjustment of model-based 
estimators

• uses observed �jk between responses
• consistent even if Ci misspecified

Advantage of empirical estimator

Estimation of β versus estimation of var (β̂)

• β is estimated by β̂
• var(β̂) is estimated by var(β̂)

The true value of β does not depend on the
study

The true value of var(β̂) does depend on the
study design and the type of analysis

Choice of working correlation structure

⇒ affects true variance of β̂
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For the estimation of the variance of β̂ in the GEE
model, the empirical estimator is generally recom-
mended over the model-based estimator since it is more
robust to misspecification of the correlation structure.
This may seem to imply that if the empirical estimator is
used, it does not matter which correlation structure is
specified. However, choosing a working correlation that
is closer to the actual one is preferable since there is a
gain in efficiency. Additionally, since consistency is an
asymptotic property, if the number of clusters is small,
then even the empirical variance estimate may be unre-
liable (e.g., may yield incorrect confidence intervals) if
the correlation structure is misspecified.

The likelihood ratio test, the Wald test, and the
Score test can each be used to test the statistical sig-
nificance of regression parameters in a standard logis-
tic regression (SLR). The formulation of the likelihood
ratio statistic relies on the likelihood function. The for-
mulation of the Score statistic relies on the score func-
tion, (i.e., the partial derivatives of the log likelihood).
(Score functions are described in Section XI.) The for-
mulation of the Wald test statistic relies on the para-
meter estimate and its variance estimate.

For GEE models, the likelihood ratio test cannot be
used since a likelihood is never formulated. However,
there is a generalization of the Score test designed for
GEE models. The test statistic for this Score test is
based on the generalized estimating “score-like” equa-
tions that are solved to produce parameter estimates
for the GEE model. (These “score-like” equations are
described in Section XI.) The Wald test can also be
used for GEE models since parameter estimates for
GEE models are asymptotically normal.

Empirical estimator generally
recommended.

Reason: robust to misspecification of
correlation structure

Preferable to specify working correlation
structure close to actual one:

• more efficient estimate of β
• more reliable estimate of var(β̂)

if number of clusters is small

_______________________________

In SLR, three tests of significance of β̂h s:

• likelihood ratio test
• Score test
• Wald test

In GEE models, two tests of β̂h:

• Score test
• Wald test

likelihood ratio test
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The Score test, as with the likelihood ratio test, can be
used to test several parameter estimates simultane-
ously (i.e., used as a chunk test). There is also a gener-
alized Wald test that can be used to test several para-
meter estimates simultaneously.

The test statistics for both the Score test and the gen-
eralized Wald test are similar to the likelihood ratio
test in that they follow an approximate chi-square dis-
tribution under the null with the degrees of freedom
equal to the number of parameters that are tested.
When testing a single parameter, the generalized Wald
test statistic reduces to the familiar form β̂h divided by
the estimated standard error of β̂h.

The use of the Score test, Wald test, and generalized
Wald test will be further illustrated in the examples
presented in the Chapter 12.

In the final two sections of this chapter we discuss the
estimating equations used for GLM and GEE models.
It is the estimating equations that form the underpin-
nings of a GEE analysis. The formulas presented use
calculus and matrix notation for simplification.
Although helpful, a background in these mathematical
disciplines is not essential for an understanding of the
material.

To test several β̂h simultaneously use

• Score test
• generalized Wald test

Under H0, test statistics approximate χ2

with df � number of parameters tested.

To test one β̂h
, the Wald test statistic is of

the familiar form

Next two sections:

• GEE theory
• use calculus and matrix notation
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The estimation of parameters often involves solving a
system of equations called estimating equations. GLM
utilizes maximum likelihood (ML) estimation meth-
ods. The likelihood is a function of the unknown para-
meters and the observed data. Once the likelihood is
formulated, the parameters are estimated by finding
the values of the parameters that maximize the likeli-
hood. A common approach for maximizing the likeli-
hood uses calculus. The partial derivatives of the log
likelihood with respect to each parameter are set to
zero. If there are p�1 parameters, including the inter-
cept, then there are p�1 partial derivatives and, thus,
p�1 equations. These estimating equations are called
score equations. The maximum likelihood estimates
are then found by solving the system of score equa-
tions.

For GLM, the score equations have a special form due
to the fact that the responses follow a distribution from
the exponential family. These score equations can be
expressed in terms of the means (�i) and the variances
[var(Yi)] of the responses, which are modeled in terms
of the unknown parameters (�0, �1, �2, ..., �p), and the
observed data.

If there are K subjects, with each subject contributing
one response, and p�1 beta parameters (�0, �1, �2, ...,
�p), then there are p�1 score equations, one equation
for each of the p�1 beta parameters, with �h being the
(h�1)st element of the vector of parameters.

L � likelihood function

ML solves estimating equations called
score equations.

p�1 equations in
p�1 unknowns (�’s)

In GLM, score equations involve �i � E(Yi)
and var(Yi)

K � # of subjects
p�1 � # of parameters (�h, h�0,1,2, ..., p)

Yields p�1 score equations (S1, S2, ..., Sp�1):
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The (h�1)st score equation (Sh�1) is written as shown
on the left. For each score equation, the ith subject
contributes a three-way product involving the partial
derivative of �i with respect to a regression parameter,
times the inverse of the variance of the response, times
the difference between the response and its mean (�i).

The process of obtaining a solution to these equations
is accomplished with the use of a computer and typi-
cally is iterative.

A key property for GLM score equations is that they
are completely specified by the mean and the variance
of the random response. The entire distribution of the
response is not really needed. This key property forms
the basis of quasi-likelihood (QL) estimation.

Quasi-likelihood estimating equations follow the
same form as score equations. For this reason, QL esti-
mating equations are often called “score-like” equa-
tions. However they are not score equations because
the likelihood is not formulated. Instead, a relation-
ship between the variance and mean is specified. The
variance of the response, var(Yi), is set equal to a scale
factor (�) times a function of the mean response,
V(�i). “Score-like” equations can be used in a similar
manner as score equations in GLM. If the mean is
modeled using a link function g(�), QL estimates can
be obtained by solving the system of “score-like” equa-
tions.

For logistic regression, in which the outcome is coded
0 or 1, the mean response is the probability of obtain-
ing the event, P(Y�1|X). The variance of the response
equals P(Y�1|X) times 1 minus P(Y�1|X). So the rela-
tionship between the variance and mean can be
expressed as var(Y)=� V(�) where V(�) equals � times
(1 – �).

partial variance residual
derivative

Solution: iterative (by computer)

GLM score equations:

• completely specified by E(Yi) and
var(Yi)

• basis of QL estimation

QL estimation:

• “score-like” equations
• No likelihood
• var(Yi) � �V(�i)

scale function of �
factor

• g(�) �

• solution yields QL estimates

Logistic regression: Y � (0, 1)

� � P(Y�1|X)

V(�) � P(Y�1|X)[1–P(Y�1|X)]

� �(1–�)
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The scale factor � allows for extra variation (disper-
sion) in the response beyond the assumed mean vari-
ance relationship of a binomial response (i.e., var(Y) �
�(1–�)]. For the binomial distribution, the scale factor
equals 1. If the scale factor is greater (or less) than 1,
then there is overdispersion or underdispersion com-
pared to a binomial response. The “score-like” equa-
tions are therefore designed to accommodate extra
variation in the response, in contrast to the corre-
sponding score equations from a GLM.

The process of ML and QL estimation can be summa-
rized in a series of steps. These steps allow a compari-
son of the two approaches.

ML estimation involves four steps:
Step 1: formulate the likelihood in terms of the
observed data and the unknown parameters from the
assumed underlying distribution of the random data
Step 2: obtain the partial derivatives of the log likeli-
hood with respect to the unknown parameters
Step 3: formulate score equations by setting the partial
derivatives of the log likelihood to zero
Step 4: solve the system of score equations to obtain
the maximum likelihood estimates.

For QL estimation, the first two steps are bypassed by
directly formulating and solving a system of “score-
like” equations. These “score-like” equations are of a
similar form as are the score equations derived for
GLM. With GLM, the response follows a distribution
from the exponential family, whereas with the “score-
like” equations, the distribution of the response is not
so restricted. In fact, the distribution of the response
need not be known as long as the variance of the
response can be expressed as a function of the mean.

Scale factor � �
Allows for extra variation in Y:

var(Y) � �V(�)

If Y binomial: � � 1 and V(�) � �(1 - �)

�  1 indicates overdispersion

� � 1 indicates underdispersion

Equations Allow extra variation?

QL: “score-like” Yes

GLM: score No

Summary: ML Versus QL Estimation

Step ML Estimation QL Estimation

1 Formulate L —

2 For each �, —

obtain

3 Form score Form “score-like”
equations: equations using

var(Y) � �V(�)

4 Solve for ML Solve for QL 
estimates estimates

Presentation: XI. Score Equations and “Score-like” Equations 361

∂
∂
ln L

β

∂
∂

=
⎛

⎝⎜
⎞

⎠⎟
lnL

β
0



The estimating equations we have presented so far
have assumed one response per subject. The estimat-
ing equations for GEE are “score-like” equations that
can be used when there are several responses per sub-
ject or, more generally, when there are clustered data
that contains within-cluster correlation. Besides the
regression parameters (β), that are also present in a
GLM, GEE models contain correlation parameters (α)
to account for within-cluster correlation.

The most convenient way to describe GEE involves the
use of matrices. Matrices are needed because there are
several responses per subject and, correspondingly, a
correlation structure to be considered. Representing
these estimating equations in other ways becomes very
complicated.

Matrices and vectors are indicated by the use of bold
letters. The matrices that are needed are specific for
each subject (i.e., ith subject), where each subject has
ni responses. The matrices are denoted as Yi, mi, Di, Ci,
and Wi and defined as follows:

Yi is the vector (i.e., collection) of the ith subject’s
observed responses.

mi is a vector of the ith subject’s mean responses. The
mean responses are modeled as functions of the pre-
dictor variables and the regression coefficients (as in
GLM).

Ci is the ni × ni correlation matrix containing the cor-
relation parameters. Ci is often referred to as the work-
ing correlation matrix.

GEE models:

• for cluster-correlated data
• model parameters:

β and α

regression correlation
parameters parameters

Matrix notation used to describe GEE

Matrices needed specific to each subject
(cluster): Yi, mi, Di, Ci, and Wi

Yi1
Yi � Yi2 vector of ith subject’s

:. observed responses
Yini

�i1
mi, � �i2 vector of ith subject’s

:. mean responses
µini

Ci � working correlation matrix (ni × ni)
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Di is a diagonal matrix whose jth diagonal (represent-
ing the jth observation of the ith subject) is the vari-
ance function V(�ij). An example with three observa-
tions for subject i is shown at left. As a diagonal matrix,
all the off-diagonal entries of the matrix are 0. Since
V(�ij) is a function of the mean, it is also a function of
the predictors and the regression coefficients.

Wi is an ni x ni variance–covariance matrix for the ith
subjects’ responses, often referred to as the working
covariance matrix. The variance–covariance matrix Wi
can be decomposed into the scale factor (�), times the
square root of Di, times Ci, times the square root of Di.

The generalized estimating equations are of a similar
form as the score equations presented in the previous
section. If there are K subjects, with each subject con-
tributing ni responses, and p�1 beta parameters (�0,
�1, �2, ...,�p), with �h being the (h�1)st element of the
vector of parameters, then the (h�1)st estimating
equation (GEEh�1) is written as shown on the left.

There are p�1 estimating equations, one equation for
each of the p�1 beta parameters. The summation is
over the K subjects in the study. For each estimating
equation, the ith subject contributes a three-way prod-
uct involving the partial derivative of mi with respect to
a regression parameter, times the inverse of the sub-
ject’s variance–covariance matrix (Wi), times the dif-
ference between the subject’s responses and their
mean (mi).

Di � diagonal matrix, with variance
function V(�ij) on diagonal

Wi � working covariance matrix (ni x ni)

GEE: form similar to score equations

If K � # of subjects
ni � # responses of subject i
p�1�# of parameters (�h; h�0, 1, 2, ..., p)

partial residual
derivative covariance

where

Yields p�1 GEE equations of the above form
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The key difference between these estimating equations
and the score equations presented in the previous sec-
tion is that these estimating equations are generalized
to allow for multiple responses from each subject
rather than just one response. Yi and mi now represent
a collection of responses (i.e., vectors) and Wi repre-
sents the variance-covariance matrix for all of the ith
subject’s responses.

There are three types of parameters in a GEE model.
These are as follows.

1. The regression parameters (β) express the relation-
ship between the predictors and the outcome.
Typically, for epidemiological analyses, it is the regres-
sion parameters (or regression coefficients) that are of
primary interest. The other parameters contribute to
the accuracy and integrity of the model but are often
considered “nuisance parameters.” For a logistic
regression, it is the regression parameter estimates
that allow for the estimation of odds ratios.

2. The correlation parameters (α) express the within-
cluster correlation. To run a GEE model, the user spec-
ifies a correlation structure (Ci) which provides a
framework for the modeling of the correlation between
responses from the same subject. The choice of corre-
lation structure can affect both the estimates and the
corresponding standard errors of the regression para-
meters.

3. The scale factor (�) accounts for overdispersion or
underdispersion of the response. Overdispersion
means that the data are showing more variation in the
response variable than what is assumed from the mod-
eling of the mean–variance relationship.

Key difference GEE versus GLM score
equations: GEE allow for multiple
responses per subject

GEE model parameters—three types:

1. Regression parameters (β)

Express relationship between predictors
and outcome.

2. Correlation parameters (α)

Express within-cluster correlation;
user specifies Ci.

3. Scale factor (�)

Accounts for extra variation of Y.
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For a standard logistic regression (SLR), the variance
of the response variable is assumed to be µ(1−µ),
whereas for a GEE logistic regression, the variance of
the response variable is modeled as φµ(1−µ) where φ is
the scale factor. The scale factor does not affect the
estimate of the regression parameters but it does affect
their standard errors (sβ̂ ) if the scale factor is different
from 1. If the scale factor is greater than 1, there is an
indication of overdispersion and the standard errors of
the regression parameters are correspondingly scaled
(inflated).

For a GEE model, the correlation parameters (α) are
estimated by making use of updated estimates of the
regression parameters (β), which are used to model the
mean response. The regression parameter estimates
are, in turn, updated using estimates of the correlation
parameters. The computational process is iterative, by
alternately updating the estimates of the alphas and
then the betas until convergence is achieved.

The GEE model is formulated by specifying a link
function to model the mean response as a function of
covariates (as in a GLM), a variance function which
relates the mean and variance of each response, and a
correlation structure that accounts for the correlation
between responses within each cluster. For the user,
the greatest difference of running a GEE model as
opposed to a GLM is the specification of the correla-
tion structure.

A GEE logistic regression is stated in a similar manner
as a SLR, as shown on the left. The addition of the cor-
relation parameters can affect the estimation of the
beta parameters and their standard errors. However,
the interpretation of the regression coefficients is the
same as in SLR in terms of the way it reflects the asso-
ciation between the predictor variables and the out-
come (i.e., the odds ratios).

SLR: var(Y) � µ(1–µ)

GEE logistic regression

var(Y) � φµ(1–µ)

φ does not affect

φ affects sβ̂ if φ � 1

φ > 1: overdispersion

φ < 1: underdispersion

α and β estimated iteratively:

Estimates updated alternately
⇒ convergence

To run GEE model, specify:

• g(µ) � link function
• V(µ) � mean variance relationship
• Ci � working correlation structure

GLM—no specification of a correlation 
structure

GEE logistic model:

α can affect estimation of β and σβ̂
but

β̂i interpretation same as SLR
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With an SLR, there is an assumption that each obser-
vation is independent. By using an independent corre-
lation structure, forcing the scale factor to equal 1, and
using model-based rather than empirical standard
errors for the regression parameter estimates, we can
perform a GEE analysis and obtain results identical to
those obtained from a standard logistic regression.

GEE Versus Standard Logistic Regression

SLR equivalent to GEE model with:

1. Independent correlation structure
2. � forced to equal 1
3. Model-based standard errors
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SUMMARY

✓ Chapter 11: Logistic Regression for
Correlated Data: GEE

The presentation is now complete. We have described
one analytic approach, the GEE model, for the situa-
tion where the outcome variable has dichotomous
correlated responses. We examined the form and
interpretation of the GEE model and discussed a vari-
ety of correlation structures that may be used in the
formulation of the model. In addition, an overview of
the mathematical theory underlying the GEE model
has been presented.

We suggest that you review the material covered here
by reading the detailed outline that follows. Then, do
the practice exercises and test.

In the next chapter (Chapter 12), examples are pre-
sented to illustrate the effects of selecting different cor-
relation structures for a model applied to a given
dataset. The examples are also used to compare the
GEE approach with a standard logistic regression
approach in which the correlation between responses
is ignored.

Chapter 12: GEE Examples



I. Overview (pages 330–331)
A. Focus: modeling outcomes with dichotomous correlated

responses.
B. Observations can be subgrouped into clusters.

i. Assumption: responses are correlated within a cluster but
independent between clusters;

ii. an analysis that ignores the within-cluster correlation may
lead to incorrect inferences.

C. Primary analysis method examined is use of generalized estimat-
ing equations (GEE) model.

II. An example (Infant Care Study) (pages 331–336)
A. Example is a comparison of GEE to conventional logistic regres-

sion that ignores the correlation structure.
B. Ignoring the correlation structure can affect parameter estimates

and their standard errors.
C. Interpretation of coefficients (i.e., calculation of odds ratios and

confidence intervals) is the same as for standard logistic regres-
sion.

III. Data layout (page 337)
A. For repeated measures for K subjects:

i. the ith subject has ni measurements recorded;
ii. the jth observation from the ith subject occurs at time tij with

the outcome measured as Yij and with p covariates, Xij1, Xij2,
..., Xijp.

B. Subjects do not have to have the same number of observations.
C. The time interval between measurements does not have to be

constant.
D. The covariates may be time-independent or time-dependent for a

given subject.
i. time-dependent variable: values can vary between time inter-

vals within a cluster;
ii. time-independent variables: values do not vary between time

intervals within a cluster.
IV. Covariance and correlation (pages 338–340)

A. Covariance of X and Y: the expected value of the product of X
minus its mean and Y minus its mean:

cov(X ,Y) � E[(X–�x)(Y–�y)].

Detailed
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B. Correlation: a standardized measure of covariance that is scale-
free.

i. correlation values range from –1 to �1;
ii. can have correlations between observations on the same

variable;
iii. can have correlations between dichotomous variables.

C. Correlation between observations in a cluster should be
accounted for in the analysis.

V. Generalized linear models (pages 341–344)
A. Models in the class of GLM include logistic regression, linear

regression, and Poisson regression.
B. Generalized linear model with p predictors is of the form

where � is the mean response and g(�) is a function of the mean
C. Three criteria for a GLM:

i. random component: the outcome follows a distribution from
the exponential family;

ii. systematic component: the regression parameters are mod-
eled linearly, as a function of the mean;

iii. link function [g(�)]: this is the function that is modeled lin-
early with respect to the regression parameters:
a. link function for logistic regression: logit function.
b. inverse of link function [g-1(X, β)] � �;
c. for logistic regression, the inverse of the logit function is

the familiar logistic model for the probability of an event:

D. GLM uses maximum likelihood methods for parameter estima-
tion, which require specification of the full likelihood.

E. Quasi-likelihood methods provide an alternative approach to
model development.
i. a mean-variance relationship for the responses is specified;

ii. the full likelihood is not specified.
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VI. GEE models (pages 344–345)
A. GEE are generalizations of GLM.
B. In GEE models, as in GLM, a link function [g(�)] is modeled as

linear in the regression parameters.
i. the logit link function is commonly used for dichotomous out-

comes:

ii. this model form is identical to the standard logistic model,
but the underlying assumptions differ.

C. To apply a GEE model, a “working” correlation structure for
within-cluster correlations is specified.

VII. Correlation structure (pages 345–348)
A. A correlation matrix in which responses are correlated within

subjects and independent between subjects is in the form of a
block diagonal matrix.
i. subject-specific matrices make up blocks along the diagonal;

ii. all nondiagonal block entries are zero.
B. In a GEE model, each subject (cluster) has a common set of cor-

relation parameters.
VIII. Different types of correlation structures (pages 349–354)

A. Independent correlation structure
i. assumption: responses within a cluster are uncorrelated;

ii. the matrix for a given cluster is the identity matrix.
B. Exchangeable correlation structure

i. assumption: any two responses within a cluster have the same
correlation (�);

ii. only one correlation parameter is estimated;
iii. therefore, the order of observations within a cluster is arbi-

trary.
C. Autoregressive correlation structure

i. often appropriate when there are repeated responses over
time;

ii. the correlation is assumed to depend on the interval of time
between responses;

iii. AR1 is a special case of the autoregressive correlation struc-
ture:
a. assumption of AR1: the correlation between any two

responses from the same subject taken at time t1 and t2 is
ρ |t1�t2|;

b. there is one correlation parameter, but the order within a
cluster is not arbitrary.
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D. Stationary m-dependent correlation structure
i. assumption: correlations k occasions apart are the same for

k � 1, 2, ..., m, whereas correlations more than m occasions
apart are zero;

ii. in a stationary m-dependent structure, there are m correla-
tion parameters.

E. Unstructured correlation structure
i. in general, for n responses in a cluster, there are n(n–1)/2

correlation parameters;
ii. yields a separate correlation parameter for each pair (j, k ,

j�k) of observations within a cluster;
iii. the order of responses is not arbitrary.

F. Fixed correlation structure
i. the user specifies the values for the correlation parameters;
ii. no correlation parameters are estimated.

IX. Empirical and model-based variance estimators (pages 354–357)
A. If a GEE model is correctly specified (i.e., the correct link func-

tion and correlation structure are specified), the parameter esti-
mates are consistent and the distribution of the estimates is
asymptotically normal.

B. Even if the correlation structure is misspecified, the parameter
estimates (β̂) are consistent.

C. Two types of variance estimators can be obtained in GEE:
i. model-based variance estimators.

a. make use of the specified correlation structure;
b. are consistent only if the correlation structure is correctly

specified;
ii. empirical (robust) estimators, which are an adjustment of

model-based estimators:
a. make use of the actual correlations between responses in

the data as well as the specified correlation structure;
b. are consistent even if the correlation structure is misspec-

ified.
X. Statistical tests (pages 357–358)

A. Score test
i. the test statistic is based on the “score-like” equations;

ii. under the null, the test statistic is distributed approximate
chi-square with df equal to the number of parameters tested.
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B. Wald test
i. for testing one parameter, the Wald test statistic is of the

familiar form

ii. for testing more than one parameter, the generalized Wald
test can be used;

iii. the generalized Wald test statistic is distributed approximate
chi-square with df equal to the number of parameters approxi-
mate tested.

C. In GEE, the likelihood ratio test cannot be used because the like-
lihood is never formulated.

XI. Score equations and “score-like” equations (pages 359–361)
A. For maximum likelihood estimation, score equations are for-

mulated by setting the partial derivatives of the log likelihood to
zero for each unknown parameter.

B. In GLM, score equations can be expressed in terms of the means
and variances of the responses.

i. given p�1 beta parameters and �h as the (h�1)st parameter,
the (h�1)st score equation is

where h � (0, 1, 2, . . . , p);
ii. note there are p�1 score equations, with summation over all

K subjects.
C. Quasi-likelihood estimating equations follow the same form as

score equations and are thus are called “score-like” equations.
i. for quasi-likelihood methods, a mean variance relationship

for the responses is specified [V(�)] but the likelihood in not
formulated.

ii. for a dichotomous outcome with a binomial distribution,
var(Y) � �V(�), where V(�) � �(1–�) and ��1; in general �
is a scale factor that allows for extra variability in Y.

XII. Generalizing the “score-like” equations to form GEE models 
(pages 362–366)
A. GEE can be used to model clustered data that contains within-

cluster correlation.
B. Matrix notation is used to describe GEE:

i. Di � diagonal matrix, with variance function V(�ij) on 
diagonal;
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ii. Ci � correlation matrix (or working correlation matrix);
iii. Wi � variance–covariance matrix (or working covariance

matrix).
C. The form of GEE is similar to score equations:

where                       and where h � 0, 1, 2, ..., p.
i. there are p�1 estimating equations, with the summation

over all K subjects;
ii. the key difference between generalized estimating equations

and GLM score equations is that the GEE allow for multiple
responses from each subject.

D. Three types of parameters in a GEE model:
i. regression parameters (b): these express the relationship

between the predictors and the outcome. In logistic regres-
sion, the betas allow estimation of odds ratios.

ii. correlation parameters (a): these express the within-cluster
correlation. A working correlation structure is specified to
run a GEE model.

iii. scale factor (�): this accounts for extra variation (underdis-
persion or overdispersion) of the response.
a. in a GEE logistic regression: var(Y) � ��(1–�);
b. if different from 1, the scale factor (�) will affect the esti-

mated standard errors of the parameter estimates.
E. To formulate a GEE model, specify:

i. a link function to model the mean as a function of covari-
ates;

ii. a function that relates the mean and variance of each
response;

iii. a correlation structure to account for correlation between
clusters.

F. Standard logistic regression is equivalent to a GEE logistic
model with an independent correlation structure, the scale factor
forced to equal 1, and model-based standard errors.
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Questions 1–5 pertain to identifying the following correlation structures
that apply to clusters of four responses each:

A B C

D E

1. Matrix A is an example of which correlation structure?

2. Matrix B is an example of which correlation structure?

3. Matrix C is an example of which correlation structure?

4. Matrix D is an example of which correlation structure?

5. Matrix E is an example of which correlation structure?

True or False (Circle T or F)

T F 6. If there are two responses for each cluster, then the exchange-
able, AR1, and unstructured working correlation structure
reduce to the same correlation structure.

T F 7. A likelihood ratio test can test the statistical significance of sev-
eral parameters simultaneously in a GEE model.

T F 8. Since GEE models produce consistent estimates for the regres-
sion parameters even if the correlation structure is misspecified
(assuming the mean response is modeled correctly), there is no
particular advantage in specifying the correlation structure cor-
rectly.

Practice
Exercises

Practice Exercises 373

1 0 27 0 27 0 27

0 27 1 0 27 0 27

0 27 0 27 1 0 27

0 27 0 27 0 27 1

. . .

. . .

. .. ..

. . .

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 35 0 0

0 35 1 0 35 0

0 0 35 1 0 35

0 0 0 35 1

.

. .

. .

.

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 50 0 25 0 125

0 50 1 0 50 0 25

0 25 0 50 1 0 50

0 125 0 25 0 50 1

. . .

. . .

. . .

. . .

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

1 0 50 0 25 0 125

0 50 1 0 31 0 46

0 25 0 31 1 0 163

0 125 0 46 0 163 1

. . .

. . .

. . .

. . .

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥



T F 9. Maximum likelihood estimates are obtained in a GLM by solving
a system of score equations. The estimating equations used for
GEE models have a similar structure to those score equations
but are generalized to accommodate multiple responses from
the same subject.

T F 10. If the correlation between X and Y is zero, then X and Y are inde-
pendent.

True or False (Circle T or F)

T F 1. It is typically the regression coefficients, not the correlation
parameters, that are the parameters of primary interest in a cor-
related analysis.

T F 2. If an exchangeable correlation structure is specified in a GEE
model, then the correlation between a subject’s first and second
responses is assumed equal to the correlation between the sub-
ject’s first and third responses. However, that correlation can be
different for each subject.

T F 3. If a dichotomous response, coded Y�0 and Y�1, follows a bino-
mial distribution, then the mean response is the probability that
Y�1.

T F 4. In a GLM, the mean response is modeled as linear with respect
to the regression parameters.

T F 5. In a GLM, a function of the mean response is modeled as linear
with respect to the regression parameters. That function is
called the link function.

T F 6. To run a GEE model, the user specifies a working correlation
structure which provides a framework for the estimation of the
correlation parameters.

T F 7. The decision as to whether to use model-based variance estima-
tors or empirical variance estimators can affect both the estima-
tion of the regression parameters and their standard errors.

T F 8. If a consistent estimator is used for a model, then the estimate
should be correct even if the number of clusters is small.

T F 9. The empirical variance estimator allows for consistent estima-
tion of the variance of the response variable even if the correla-
tion structure is misspecified.

T F 10. Quasi-likelihood estimates may be obtained even if the distribu-
tion of the response variable is unknown. What should be speci-
fied is a function relating the variance to the mean response.

Test
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1. Exchangeable correlation structure
2. Stationary 1-dependent correlation structure
3. Independent correlation structure
4. Autoregressive (AR1) correlation structure
5. Unstructured correlation structure
6. T
7. F: the likelihood is never formulated in a GEE model
8. F: the estimation of parameters is more efficient [i.e., smaller var( β̂)] if

the correct correlation structure is specified
9. T

10. F: the converse is true (i.e., if X and Y are independent, then the corre-
lation is 0). The correlation is a measure of linearity. X and Y could
have a non-linear dependence and have a correlation of 0. In the spe-
cial case where X and Y follow a normal distribution, then a correlation
of 0 does imply independence.
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In this chapter, we present examples of GEE models applied to three
datasets containing correlated responses. The examples demonstrate how
to obtain odds ratios, construct confidence intervals, and perform statistical
tests on the regression coefficients. The examples also illustrate the effect of
selecting different correlation structures for a GEE model applied to the
same data, and compare the results from the GEE approach with a standard
logistic regression approach in which the correlation between responses is
ignored.

The outline below gives the user a preview of the material to be covered by
the presentation. A detailed outline for review purposes follows the presen-
tation.

I. Overview (page 380)

II. Example I: Infant Care Study (pages 380–388)

III. Example II: Aspirin–Heart Bypass Study (pages 389–393)

IV. Example III: Heartburn Relief Study (pages 393–395)
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Upon completing this chapter, the learner should be able to:

1. State or recognize examples of correlated responses.
2. State or recognize when the use of correlated analysis techniques may

be appropriate.
3. State or recognize examples of different correlation structures that

may be used in a GEE model.
4. Given a printout of the results of a GEE model:

i. state the formula and compute the estimated odds ratio;
ii. state the formula and compute a confidence interval for the odds

ratio;
iii. test hypotheses about the model parameters using the Wald test,

generalized Wald test, or Score test, stating the null hypothesis
and the distribution of the test statistic, and corresponding
degrees of freedom under the null hypothesis.

5. Recognize how running a GEE model differs from running a standard
logistic regression on data with correlated dichotomous responses.

6. Recognize the similarities in obtaining and interpreting odds ratio
estimates using a GEE model compared to a standard logistic regres-
sion model.
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In this chapter, we provide examples of how the GEE
approach is used to carry out logistic regression for
correlated dichotomous responses.

We examine a variety of GEE models using three data-
bases obtained from the following studies: (1) Infant
Care Study, (2) Aspirin–Heart Bypass Study, and 
(3) Heartburn Relief Study.

In Chapter 11, we compared model output from two
models run on data obtained from an infant care
health intervention study in Brazil (Cannon et al.,
2001). We continue to examine model output using
these data, comparing the results of specifying differ-
ent correlation structures.

Recall that the outcome of interest is a dichotomous
variable derived from a weight-for-height standardized
score (i.e., z-score) obtained from the weight-for-
height distribution of a reference population. The
dichotomous outcome, an indication of “wasting,” is
coded 1 if the z-score is less than negative 1, and 0 oth-
erwise.

Three examples are presented:

1. Infant Care Study
2. Aspirin–Heart Bypass Study
3. Heartburn Relief Study

Introduced in Chapter 11

Response (D):

weight-for-height standardized (z) score

1 if z � �1
D � “Wasting”

0 otherwise
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The independent variables are BIRTHWGT (the weight
in grams at birth), GENDER (1�male, 2�female), and
DIARRHEA, a dichotomous variable indicating whether
the infant had symptoms of diarrhea that month (1�yes,
0�no). We shall consider DIARRHEA as the main expo-
sure of interest in this analysis. Measurements for each
subject were obtained monthly for a 9-month period.
The variables BIRTHWGT and GENDER are time-inde-
pendent variables, as their values for a given individual
do not change month to month. The variable DIAR-
RHEA, however, is a time-dependent variable.

The model for the study can be stated as shown on the
left.

Five GEE models are presented and compared, the 
last of which is equivalent to a standard logistic regres-
sion. The five models in terms of their correlation
structure (Ci) are as follows: (1) AR1 autoregressive, 
(2) exchangeable, (3) fixed, (4) independent, and (5) inde-
pendent with model-based standard errors and scale
factor fixed at a value of 1 [i.e., a standard logistic
regression (SLR)]. After the output for all five models
is shown, a table is presented that summarizes the
results for the effect of the variable DIARRHEA on the
outcome. Additionally, output from models using a
stationary 4-dependent and a stationary 8-dependent
correlation structure is presented in the Practice
Exercises at the end of the chapter. A GEE model using
an unstructured correlation structure did not converge
for the Infant Care dataset using SAS version 8.2.

Independent variables:

BIRTHWGT (in grams)
GENDER

1 if symptoms present
DIARRHEA � in past month

0 otherwise

DIARRHEA

• exposure of interest
• time-dependent variable

Infant Care Study Model

logit P(D�1|X) � �0 � �1BIRTHWGT �
�2GENDER � �3DIARRHEA

Five GEE models presented, with different
Ci:

1. AR1 autoregressive
2. Exchangeable
3. Fixed
4. Independent
5. Independent (SLR)
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Two sections of the output are presented for each
model. The first contains the parameter estimate for
each coefficient (i.e., beta), its estimated standard
error (i.e., the square root of the estimated variance),
and a P-value for the Wald test. Empirical standard
errors rather than model-based are used for all but the
last model. Recall that empirical variance estimators
are consistent estimators even if the correlation struc-
ture is incorrectly specified (see Chapter 11).

The second section of output presented for each model
is the working correlation matrix (Ci). The working
correlation matrix contains the estimates of the corre-
lations, which depend on the specified correlation
structure. The values of the correlation estimates are
often not of primary interest. However, the examina-
tion of the fitted correlation matrices serves to illus-
trate key differences between the underlying assump-
tions about the correlation structure for these models.

There are 168 clusters (infants) represented in the
data. Only nine infants have a value of 1 for both the
outcome and diarrhea variables at any time during
their 9 months of measurements. The analysis, there-
fore, is strongly influenced by the small number of
infants who are classified as “exposed cases” during
the study period.

Output presented:

• β̂h, Sβ̂ (empirical), and Wald test

P-values

• “working” correlation matrix (Ci) con-
taining ρ̂

Sample:

K � 168 infants, ni ≤ 9, but

9 infants “exposed cases”:
(i.e., D� 1 and DIARRHEA � 1
for any month)
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The parameter estimates for Model 1 (autoregres-
sive—AR1 correlation structure) are presented on the
left. Odds ratio estimates are obtained and interpreted
in a similar manner as in a standard logistic regres-
sion.

For example, the estimated odds ratio for the effect of
diarrhea symptoms on the outcome (a low weight-for-
height z-score) is exp(0.2214) � 1.25. The 95% confi-
dence interval can be calculated as exp[0.2214 �
1.96(0.8558)], yielding a confidence interval of (0.23,
6.68).

The working correlation matrix for each of these mod-
els contains nine rows and nine columns, representing
an estimate for the month-to-month correlation
between each infant’s responses. Even though some
infants did not contribute nine responses, the fact that
each infant contributed up to nine responses accounts
for the dimensions of the working correlation matrix.

The working correlation matrix for Model 1 is shown
on the left. We present only columns 1, 2, and 9.
However all nine columns follow the same pattern.

The second-row, first-column entry of 0.5254 for the
AR1 model is the estimate of the correlation between
the first and second month measurements. Similarly,
the third-row, first-column entry of 0.2760 is the esti-
mate of the correlation between the first and third
month measurements, which is assumed to be the
same as the correlation between any two measure-
ments that are 2 months apart (e.g., row 7, column 9).
It is a property of the AR1 correlation structure that
the correlation gets weaker as the measurements are
further apart in time.

Model 1: AR1 correlation structure

Empirical Wald
Variable Coefficient Std Err p-value

INTERCEPT -1.3978 1.1960 0.2425

BIRTHWGT -0.0005 0.0003 0.1080

GENDER 0.0024 0.5546 0.9965

DIARRHEA 0.2214 0.8558 0.7958

Effect of DIARRHEA:

OR � exp(0.2214) � 1.25

95% CI � exp[0.2214 � 1.96(0.8558)]
� (0.23, 6.68)

Working correlation matrix: 9 × 9

AR1 working correlation matrix

(9 × 9 matrix: only three columns shown)

COL1 COL2 . . . COL9

ROW1 1.0000 0.5254 . . . 0.0058

ROW2 0.5254 1.0000 . . . 0.0110

ROW3 0.2760 0.5254 . . . 0.0210

ROW4 0.1450 0.2760 . . . 0.0400

ROW5 0.0762 0.1450 . . . 0.0762

ROW6 0.0400 0.0762 . . . 0.1450

ROW7 0.0210 0.0400 . . . 0.2760

ROW8 0.0110 0.0210 . . . 0.5254

ROW9 0.0058 0.0110 . . . 1.0000

Estimated correlations:

ρ̂ � 0.5254 for responses 1 month apart
(e.g., first and second)

ρ̂ � 0.2760 for responses 2 months apart
(e.g., first and third, seventh and ninth)
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Note that the correlation between measurements 2
months apart (0.2760) is the square of measurements 1
month apart (0.5254), whereas the correlation between
measurements 3 months apart (0.1450) is the cube of
measurements 1 month apart. This is the key property
of the AR1 correlation structure.

Next we present the parameter estimates and working
correlation matrix for a GEE model using the
exchangeable correlation structure (Model 2). The
coefficient estimate for DIARRHEA is 0.6485. This
compares to the parameter estimate of 0.2214 for the
same coefficient using the AR1 correlation structure in
Model 1.

There is only one correlation to estimate with an
exchangeable correlation structure. For this model,
this estimate is 0.4381. The interpretation is that the
correlation between any two outcome measures from
the same infant is estimated at 0.4381 regardless of
which months the measurements are taken.

Next we examine output from a model with a fixed, or
user-defined, correlation structure (Model 3). The
coefficient estimate and standard error for DIAR-
RHEA are 0.2562 and 0.8210, respectively. These are
similar to the estimates in the AR1 model, which were
0.2214 and 0.8558, respectively.

ρ̂ j,j+1 � 0.5254

ρ̂ j,j+2 � (0.5254)2 � 0.2760

ρ̂ j,j+3 � (0.5254)3 � 0.1450

Model 2: exchangeable correlation structure

Empirical Wald
Variable Coefficient Std Err p-value

INTERCEPT -1.3987 1.2063 0.2463

BIRTHWGT -0.0005 0.0003 0.1237

GENDER -0.0262 0.5547 0.9623

DIARRHEA 0.6485 0.7553 0.3906

β̂3 for DIARRHEA � 0.6485

(versus 0.2214 with Model 1)

Exchangeable working correlation matrix

COL1 COL2 . . . COL9

ROW1 1.0000 0.4381 . . . 0.4381

ROW2 0.4381 1.0000 . . . 0.4381

ROW3 0.4381 0.4381 . . . 0.4381

ROW4 0.4381 0.4381 . . . 0.4381

ROW5 0.4381 0.4381 . . . 0.4381

ROW6 0.4381 0.4381 . . . 0.4381

ROW7 0.4381 0.4381 . . . 0.4381

ROW8 0.4381 0.4381 . . . 0.4381

ROW9 0.4381 0.4381 . . . 0.4381

Only one ρ̂: ρ̂ � 0.4381

Model 3: Fixed correlation structure

Empirical Wald
Variable Coefficient Std Err p-value

INTERCEPT -1.3618 1.2009 0.2568

BIRTHWGT -0.0005 0.0003 0.1110

GENDER -0.0304 0.5457 0.9556

DIARRHEA 0.2562 0.8210 0.7550
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A fixed correlation structure has no correlation param-
eters to estimate. Rather, the values of the correlations
are prespecified. For Model 3, the prespecified correla-
tions are set at 0.55 between responses from consecu-
tive months and 0.30 between responses from noncon-
secutive months. For instance, the correlation between
months 2 and 3 or months 2 and 1 is assumed to be
0.55, whereas the correlation between month 2 and the
other months (not 1 or 3) is assumed to be 0.30.

This particular selection of fixed correlation values
contains some features of an autoregressive correla-
tion structure, in that consecutive monthly measures
are more strongly correlated. It also contains some fea-
tures of an exchangeable correlation structure, in that,
for nonconsecutive months, the order of measure-
ments does not affect the correlation. Our choice of
values for this model was influenced by the fitted val-
ues observed in the working correlation matrices of
Model 1 and Model 2.

The choice of correlation values for a fixed working
correlation structure is at the discretion of the user.
However, the parameter estimates are not guaranteed
to converge for every choice of correlation values. In
other words, the software package may not be able to
provide parameter estimates for a GEE model for
some user-defined correlation structures.

The use of a fixed correlation structure contrasts with
other correlation structures in that the working corre-
lation matrix (Ci) does not result from fitting a model
to the data, since the correlation values are all prespec-
ified. However, it does allow flexibility in the specifica-
tion of more complicated correlation patterns.

Fixed structure: � prespecified, not
estimated

In Model 3, � fixed at 0.55 for consecutive
months; 0.30 for nonconsecutive months.

Fixed working correlation matrix

COL1 COL2 . . . COL9

ROW1 1.0000 0.5500 . . . 0.3000

ROW2 0.5500 1.0000 . . . 0.3000

ROW3 0.3000 0.5500 . . . 0.3000

ROW4 0.3000 0.3000 . . . 0.3000

ROW5 0.3000 0.3000 . . . 0.3000

ROW6 0.3000 0.3000 . . . 0.3000

ROW7 0.3000 0.3000 . . . 0.3000

ROW8 0.3000 0.3000 . . . 0.5500

ROW9 0.3000 0.3000 . . . 1.0000

Correlation structure (fixed) for Model 3:
combines AR1 and exchangeable features

Choice of � at discretion of user,
but may not always converge

Allows flexibility specifying complicated Ci

Presentation: II. Example 1: Infant Care Study 385



Next, we examine output from models that incorporate
an independent correlation structure (Model 4 and
Model 5). The key difference between Model 4 and a
standard logistic regression (Model 5) is that Model 4
uses the empirical standard errors, whereas Model 5
uses the model-based standard errors. The other dif-
ference is that the scale factor is not preset equal to 1
in Model 4 as it is in Model 5. These differences only
affect the standard errors of the regression coefficients
rather than the estimates of the coefficients them-
selves.

The working correlation matrix for an independent
correlation structure is the identity matrix—with a 1
for the diagonal entries and a 0 for the other entries.
The zeros indicate that the outcome measurements
taken on the same subject are assumed uncorrelated.

The outputs for Model 4 and Model 5 are shown on the
left. The corresponding coefficients for each model are
identical as expected. However, the estimated standard
errors of the coefficients and the corresponding Wald
test P-values differ for the two models.

Independent correlation structure: two
models

Model 4: uses empirical sβ̂;

� not fixed

Model 5: uses model-based sβ̂;

� fixed at 1

sβ̂ affected

BUT

β̂ not affected

Independent working correlation matrix

COL1 COL2 . . . COL9

ROW1 1.0000 0.0000 . . . 0.0000

ROW2 0.0000 1.0000 . . . 0.0000

ROW3 0.0000 0.0000 . . . 0.0000

ROW4 0.0000 0.0000 . . . 0.0000

ROW5 0.0000 0.0000 . . . 0.0000

ROW6 0.0000 0.0000 . . . 0.0000

ROW7 0.0000 0.0000 . . . 0.0000

ROW8 0.0000 0.0000 . . . 0.0000

ROW9 0.0000 0.0000 . . . 1.0000

Measurements on same subject assumed
uncorrelated.

Model 4: independent correlation structure

Empirical Wald
Variable Coefficient Std Err p-value

INTERCEPT -1.4362 1.2272 0.2419

BIRTHWGT -0.0005 0.0003 0.1350

GENDER -0.0453 0.5526 0.9346

DIARRHEA 0.7764 0.5857 0.1849
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In particular, the coefficient estimate for DIARRHEA
is 0.7764 in both Model 4 and Model 5; however, the
standard error for DIARRHEA is larger in Model 4 at
0.5857 compared to 0.4538 for Model 5. Consequently,
the P-values for the Wald test also differ: 0.1849 for
Model 4 and 0.0871 for Model 5.

The other parameters in both models exhibit the same
pattern, in that the coefficient estimates are the same,
but the standard errors are larger for Model 4. In this
example, the empirical standard errors are larger than
their model-based counterparts, but this does not
always occur. With other data, the reverse can occur.

A summary of the results for each model for the vari-
able DIARRHEA is presented on the left. Note that the
choice of correlation structure affects both the odds
ratio estimates and the standard errors, which in turn
affects the width of the confidence intervals. The
largest odds ratio estimates are 2.17 from Model 4 and
Model 5, which use an independent correlation struc-
ture. The 95% confidence intervals for all of the mod-
els are quite wide, with the tightest confidence interval
(0.89, 5.29) occurring in Model 5, which is a standard
logistic regression. The confidence intervals for the
odds ratio for DIARRHEA include the null value of 1.0
for all five models.

Model 5: standard logistic regression
(naive model)

Model-based Wald
Variable Coefficient Std Err p-value

INTERCEPT -1.4362 0.6022 0.0171

BIRTHWGT -0.0005 0.0002 0.0051

GENDER -0.0453 0.2757 0.8694

DIARRHEA 0.7764 0.4538 0.0871

β̂3 for DIARRHEA same but sβ̂ and Wald P-
values differ.

Model 4 vs. Model 5

• Parameter estimates same
• sβ̂ Model 4  sβ̂ Model 5

Summary: Comparison of model results
for DIARRHEA

Correlation Odds 
structure ratio 95% CI

1 AR(1) 1.25 (0.23, 6.68)

2 Exchangeable 1.91 (0.44, 8.37)

3 Fixed 1.29 (0.26, 6.46)
(user defined)

4 Independent 2.17 (0.69, 6.85)

5 Independent 2.17 (0.89, 5.29)
(SLR)
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Typically, a misspecification of the correlation struc-
ture has a stronger impact on the standard errors than
on the odds ratio estimates. In this example, however,
there is quite a bit of variation in the odds ratio esti-
mates across the five models (from 1.25 for Model 1 to
2.17 for Model 4 and Model 5).

This variation in odds ratio estimates suggests a degree
of model instability and a need for cautious interpreta-
tion of results. Such evidence of instability may not
have been apparent if only a single correlation struc-
ture had been examined. The reason the odds ratio
varies as it does in this example is probably due to the
relatively few infants who are exposed cases (n � 9) for
any of their nine monthly measurements.

It is easier to eliminate prospective models than to
choose a definitive model. The working correlation
matrices of the first two models presented (AR1
autoregressive and exchangeable) suggest that there is
a positive correlation between responses for the out-
come variable. Therefore, an independent correlation
structure is probably not justified. This would elimi-
nate Model 4 and Model 5 from consideration.

The exchangeable assumption for Model 2 may be less
satisfactory in a longitudinal study if it is felt that there
is autocorrelation in the responses. If so, that leaves
Model 1 and Model 3 as the models of choice.

Model 1 and Model 3 yield similar results, with an
odds ratio and 95% confidence interval of 1.25 (0.23,
6.68) for Model 1 and 1.29 (0.26, 6.46) for Model 3.
Recall that our choice of correlation values used in
Model 3 was influenced by the working correlation
matrices of Model 1 and Model 2.

Impact of misspecification

(usually) ➝ sβ̂

➝ OR

For Models 1–5:

OR range suggests model instability.

Instability likely due to small number
(nine) of exposed cases.

Which models to eliminate?

Models 4 and 5 (independent):
evidence of correlated observations

Model 2 (exchangeable):
if autocorrelation suspected

Remaining models: similar results:

Model 1 (AR1)
OR (95% CI) � 1.25 (0.23, 6.68)

Model 3 (fixed)
OR (95% CI) � 1.29 (0.26, 6.46)
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The next example uses data from a study in Sydney,
Australia, which examined the efficacy of aspirin for
prevention of thrombotic graft occlusion after coro-
nary bypass grafting (Gavaghan et al., 1991). Patients
(K�214) were given a variable number of artery
bypasses (up to six) in a single operation, and ran-
domly assigned to take either aspirin (ASPIRIN�1) or
a placebo (ASPIRIN�0) every day. One year later,
angiograms were performed to check each bypass for
occlusion (the outcome), which was classified as
blocked (D�1) or unblocked (D� 0). Additional covari-
ates include AGE (in years), GENDER (1�male,
2�female), WEIGHT (in kilograms), and HEIGHT (in
centimeters).

In this study, there is no meaningful distinction between
artery bypass 1, artery bypass 2, or artery bypass 3 in the
same subject. Since the order of responses within a clus-
ter is arbitrary, we may consider using either the
exchangeable or independent correlation structure.
Other correlation structures make use of an inherent
order for the within-cluster responses (e.g., monthly
measurements), so they are not appropriate here.

The first model considered (Model 1) allows for inter-
action between ASPIRIN and each of the other four
covariates. The model can be stated as shown on the left.

Data source: Gavaghan et al., 1991

Subjects: 214 patients received up to 6
coronary bypass grafts.

Randomly assigned to treatment group:

1 if daily aspirin
ASPIRIN �

0 if daily placebo

Response (D): occlusion of a bypass graft 1
year later

1 if blocked
D �

0 if unblocked

Additional covariates:
AGE (in years)
GENDER (1�male, 2�female)
WEIGHT (in kilograms)
HEIGHT (in centimeters)

Correlation structures to consider:

• exchangeable
• independent

Model 1: interaction model

Interaction terms between ASPIRIN and
the other four covariates included.

logit P(D�1|X) �
�0 � �1ASPIRIN � �2AGE � �3GENDER
� �4WEIGHT � �5HEIGHT
� �6ASPIRIN*AGE � �7ASPIRIN*GENDER
� �8ASPIRIN*WEIGHT
� �9ASPIRIN*HEIGHT
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Notice that the model contains a term for ASPIRIN,
terms for the four covariates, and four product terms
containing ASPIRIN. An exchangeable correlation
structure is specified. The parameter estimates are
shown on the left.

The output can be used to estimate the odds ratio for
ASPIRIN�1 versus ASPIRIN�0. If interaction is
assumed, then a different odds ratio estimate is allowed
for each pattern of covariates where the covariates
interacting with ASPIRIN change values. 

The odds ratio estimates can be obtained by separately
inserting the values ASPIRIN�1 and ASPIRIN�0 in
the expression of the odds shown on the left and then
dividing one odds by the other. 

This yields the expression for the odds ratio, also
shown on the left.

The odds ratio (comparing ASPIRIN status) for a 60-
year-old male who weighs 75 kg and is 170 cm tall can be
estimated using the output as exp[0.3934 � (0.0069)(60)
� (0.9836)(1) � (–0.0147)(75) � (–0.0107)(170)] � 0.32.

A chunk test can be performed to determine if the four
product terms can be dropped from the model. The
null hypothesis is that the betas for the interaction
terms are all equal to zero.

Recall for a standard logistic regression that the likeli-
hood ratio test can be used to simultaneously test the sta-
tistical significance of several parameters. For GEE
models, however, a likelihood is never formulated, which
means that the likelihood ratio test cannot be used. 

Exchangeable correlation structure

Empirical Wald
Variable Coefficient Std Err p-value

INTERCEPT -1.1583 2.3950 0.6286

ASPIRIN 0.3934 3.2027 0.9022

AGE -0.0104 0.0118 0.3777

GENDER -0.9377 0.3216 0.0035

WEIGHT 0.0061 0.0088 0.4939

HEIGHT 0.0116 0.0151 0.4421

ASPIRIN*AGE 0.0069 0.0185 0.7087

ASPIRIN*GENDER 0.9836 0.5848 0.0926

ASPIRIN*WEIGHT -0.0147 0.0137 0.2848

ASPIRIN*HEIGHT -0.0107 0.0218 0.6225

Odds ratio (ASPIRIN�1 vs. ASPIRIN�0)

odds � exp(�0 � �1ASPIRIN � �2AGE
� �3GENDER � �4WEIGHT � �5HEIGHT
� �6ASPIRIN*AGE � �7ASPIRIN*GENDER
� �8ASPIRIN*WEIGHT
� �9ASPIRIN*HEIGHT)

Separate OR for each pattern of covariates:

OR � exp(�1 � �6AGE � �7GENDER
� �8WEIGHT � �9HEIGHT)

Chunk test

H0: �6 � �7 � �8 � �9 � 0

Likelihood ratio test
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There are two other statistical tests that can be utilized
for GEE models. These are the generalized Score test
and the generalized Wald test. The test statistic for the
Score test relies on the “score-like” generalized estimat-
ing equations that are solved to produce the parameter
estimates for the GEE model (see Chapter 11). The test
statistic for the generalized Wald test generalizes the
Wald test statistic for a single parameter by utilizing
the variance-covariance matrix of the parameter esti-
mates. The test statistics for both the Score test and the
generalized Wald test follow an approximate chi-
square distribution under the null with the degrees of
freedom equal to the number of parameters that are
tested.

The output for the Score test and the generalized Wald
test for the four interaction terms are shown on the
left. The test statistic for the Score test is 3.66 with the
corresponding p-value at 0.45. The generalized Wald
test yields similar results, as the test statistic is 3.53
with the p-value at 0.47. Both tests indicate that the
null hypothesis should not be rejected and suggest that
a model without the interaction terms may be appro-
priate.

The no interaction model (Model 2) is presented at
left. The GEE parameter estimates along with the
working correlation matrix using the exchangeable
correlation structure are also shown.

Two tests:

• Score test
• generalized Wald test

Under H0, both test statistics approximate
χ2 with df � # parameters tested.

Chunk test for interaction terms:

Type DF Chi-square P-value

Score 4 3.66 0.4544
Wald 4 3.53 0.4737

Both tests fail to reject H0.

Model 2: No interaction model (GEE)

logit P(D�1|X) �

�0 � �1ASPIRIN � �2AGE � �3GENDER
� �4WEIGHT � �5HEIGHT

Exchangeable correlation structure

Empirical Wald
Variable Coefficient Std Err p-value

INTERCEPT -0.4713 1.6169 0.7707

ASPIRIN -1.3302 0.1444 0.0001

AGE -0.0086 0.0087 0.3231

GENDER -0.5503 0.2559 0.0315

WEIGHT -0.0007 0.0066 0.9200

HEIGHT 0.0080 0.0105 0.4448
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The odds ratio for aspirin use is estimated at
exp(–1.3302) � 0.264, which suggests that aspirin is a
preventive factor toward thrombotic graft occlusion
after coronary bypass grafting.

The Wald test can be used for testing the hypothesis
H0: �1 � 0. The value of the z test statistic is –9.21. The
P-value of 0.0001 indicates that the coefficient for
ASPIRIN is statistically significant.

Alternatively, the Score test can be used to test the
hypothesis H0: �1 � 0. The value of the chi-square test
statistic is 65.34 yielding a similar statistically signifi-
cant P-value of 0.0001.

The correlation parameter estimate obtained from the
working correlation matrix is –.0954, which suggests a
negative association between reocclusion of different
arteries from the same bypass patient compared to
reocclusions from different patients.

The output for a standard logistic regression (SLR) is
presented on the left for comparison with the corre-
sponding GEE models. The parameter estimates for
the standard logistic regression are similar to those
obtained from the GEE model, although their stan-
dard errors are slightly larger.

Odds ratio

OR ASPIRIN�1 vs. ASPIRIN�0 �exp(–1.3302)

�0.264

Wald test

H0: �1 � 0

Score test

H0: �1 � 0

Chi-square � 65.84, P � 0.0001

Exchangeable working correlation matrix

COL1 COL2 . . . COL6

ROW1 1.0000 -0.0954 . . . -0.0954

ROW2 -0.0954 1.0000 . . . -0.0954

ROW3 -0.0954 -0.0954 . . . -0.0954

ROW4 -0.0954 -0.0954 . . . -0.0954

ROW5 -0.0954 -0.0954 . . . -0.0954

ROW6 -0.0954 -0.0954 . . . 1.0000

ρ̂ � �0.0954

Model 3: SLR (naive model)

Model-based Wald
Variable Coefficient Std Err p-value

INTERCEPT -0.3741 2.0300 0.8538

ASPIRIN -1.3410 0.1676 0.0001

AGE -0.0090 0.0109 0.4108

GENDER -0.5194 0.3036 0.0871

WEIGHT -0.0013 0.0088 0.8819

HEIGHT 0.0078 0.0133 0.5580

SCALE 1.0000 0.0000

.
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A comparison of the odds ratio estimates with 95%
confidence intervals for the no-interaction models of
both the GEE model and SLR are shown on the left.
The odds ratio estimates and 95% confidence intervals
are very similar. This is not surprising, since only a
modest amount of correlation is detected in the work-
ing correlation matrix (ρ̂ � –0.0954).

In this example, none of the predictor variables
(ASPIRIN, AGE, GENDER, WEIGHT, or HEIGHT) had
values that varied within a cluster. This contrasts with
the data used for the next example in which the expo-
sure variable of interest is a time-dependent variable.

The final dataset discussed is a fictitious crossover
study on heartburn relief in which 40 subjects are
given two symptom-provoking meals spaced a week
apart. Each subject is administered an active treat-
ment for heartburn (RX�1) following one of the meals
and a standard treatment (RX�0) following the other
meal in random order. The dichotomous outcome is
relief from heartburn, determined from a question-
naire completed 2 hours after each meal.

There are two observations recorded for each subject:
one for the active treatment and the other for the stan-
dard treatment. The variable indicating treatment sta-
tus (RX) is a time-dependent variable since it can
change values within a cluster (subject). In fact, due to
the design of the study, RX changes values in every
cluster.

Comparison of model results for ASPIRIN

Correlation Odds 
structure ratio 95% CI

Exchangeable 0.26 (0.20, 0.35)
(GEE)

Independent 0.26 (0.19, 0.36)
(SLR)

In this example, predictor values did not
vary within a cluster.

Data source: fictitious crossover study on
heartburn relief.

Subjects: 40 patients; 2 symptom-provoking
meals each; 1 of 2 treatments in random
order

1 if active RX
Treatment (RX) �

0 if standard RX

Response (D): relief from symptoms after 2 h

1 if yes
D �

0 if no

Each subject has two observations

RX � 1

RX � 0

RX is time dependent: values change for
each subject (cluster)
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For this analysis, RX is the only independent variable
considered. The model is stated as shown on the left.
With exactly two observations per subject, the only
correlation to consider is the correlation between the
two responses for the same subject. Thus, there is only
one estimated correlation parameter, which is the
same for each cluster. As a result, using an AR1,
exchangeable, or unstructured correlation structure
yields the same 2 × 2 working correlation matrix (Ci).

The output for a GEE model with an exchangeable cor-
relation structure is presented on the left.

The odds ratio estimate for the effect of treatment for
relieving heartburn is exp(0.3008) � 1.35 with the 95%
confidence interval of (0.63, 2.88). The working correla-
tion matrix shows that the correlation between
responses from the same subject is estimated at 0.2634.

A standard logistic regression is presented for compar-
ison. The odds ratio estimate at exp(0.3008) � 1.35 is
exactly the same as was obtained from the GEE model
with the exchangeable correlation structure; however,
the standard error is larger, yielding a larger 95% con-
fidence interval of (0.56, 3.25). Although an odds ratio
of 1.35 suggests that the active treatment provides
greater relief for heartburn, the null value of 1.00 is
contained in the 95% confidence intervals for both
models.

Model 1

logit P(D�1|X) � �0 � �1RX

ni �2: {AR1, exchangeable, or unstructured}

⇒ same 2 × 2 Ci Ci �

Exchangeable correlation structure

Empirical Wald
Variable Coefficient Std Err p-value

INTERCEPT -0.2007 0.3178 0.5278

RX 0.3008 0.3868 0.4368

Scale 1.0127 . .

OR � exp(0.3008) � 1.35
95% CI � (0.63, 2.88)

Exchangeable Ci

COL1 COL2

ROW1 1.0000 0.2634

ROW2 0.2634 1.0000

SLR (naive) model

Model-based  Wald
Variable Coefficient Std Err p-value

INTERCEPT -0.2007 0.3178 0.5278

RX 0.3008 0.4486 0.5826

Scale 1.0000 . .

OR � exp(0.3008) � 1.35
95% CI � (0.56, 3.25)
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These examples illustrate the GEE approach for mod-
eling data containing correlated dichotomous out-
comes. However, use of the GEE approach is not
restricted to dichotomous outcomes. As an extension
of GLM, the GEE approach can be used to model other
types of outcomes, such as count or continuous out-
comes.

We suggest that you review the material covered here
by reading the detailed outline that follows. Then, do
the practice exercises and test.

The GEE approach to correlated data has been used
extensively. Other approaches to the analysis of corre-
lated data are available. A brief overview of several of
these approaches is presented in the next chapter.

Chapter 13: Other Approaches to Analysis 
of Correlated Data

Summary 395

SUMMARY

✓ Chapter 12: GEE Examples

This presentation is now complete. The focus of the
presentation was on several examples used to illus-
trate the application and interpretation of the GEE
modeling approach. The examples show that the
selection of different correlation structures for a GEE
model applied to the same data can produce different
estimates for regression parameters and their stan-
dard errors. In addition, we show that the application
of a standard logistic regression model to data with
correlated responses may lead to incorrect inferences.



I. Overview (page 380)
II–IV. Examples (pages 380–395)

A. Three examples were presented in detail.
i. Infant Care Study;

ii. Aspirin–Heart Bypass Study;
iii. Heartburn Relief Study.

B. Key points from the examples
i. the choice of correlation structure may affect both the coeffi-

cient estimate and the standard error of the estimate,
although standard errors are more commonly impacted;

ii. which correlation structure(s) should be specified depends on
the underlying assumptions regarding the relationship
between responses (e.g., ordering or time interval);

iii. interpretation of regression coefficients (in terms of odds
ratios) is the same as in standard logistic regression.

Detailed
Outline
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The following printout summarizes the computer output from a GEE model
run on the Infant Care Study data and should be used for exercises 1 - 4.
Recall that the data contained monthly information for each infant up to 9
months. The logit form of the model can be stated as follows:

logit P(X) � �0 � �1 BIRTHWGT � �2GENDER � �3DIARRHEA

The dichotomous outcome is derived from a weight-for-height z-score. The
independent variables are BIRTHWGT (the weight in grams at birth), GEN-
DER (1�male, 2�female), and DIARRHEA (a dichotomous variable indi-
cating whether the infant had symptoms of diarrhea that month; coded 1 �
yes, 0 � no).

A stationary 4-dependent correlation structure is specified for this model.
Empirical and model-based standard errors are given for each regression
parameter estimate. The working correlation matrix is also included in the
output.

Empirical Model-based

Variable Coefficient Std Err Std Err

INTERCEPT -2.0521 1.2323 0.8747

BIRTHWGT -0.0005 0.0003 0.0002

GENDER 0.5514 0.5472 0.3744

DIARRHEA 0.1636 0.8722 0.2841

Stationary 4-Dependent Working Correlation Matrix

COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8 COL9

ROW1 1.0000 0.5449 0.4353 0.4722 0.5334 0.0000 0.0000 0.0000 0.0000

ROW2 0.5449 1.0000 0.5449 0.4353 0.4722 0.5334 0.0000 0.0000 0.0000

ROW3 0.4353 0.5449 1.0000 0.5449 0.4353 0.4722 0.5334 0.0000 0.0000

ROW4 0.4722 0.4353 0.5449 1.0000 0.5449 0.4353 0.4722 0.5334 0.0000

ROW5 0.5334 0.4722 0.4353 0.5449 1.0000 0.5449 0.4353 0.4722 0.5334

ROW6 0.0000 0.5334 0.4722 0.4353 0.5449 1.0000 0.5449 0.4353 0.4722

ROW7 0.0000 0.0000 0.5334 0.4722 0.4353 0.5449 1.0000 0.5449 0.4353

ROW8 0.0000 0.0000 0.0000 0.5334 0.4722 0.4353 0.5449 1.0000 0.5449

ROW9 0.0000 0.0000 0.0000 0.0000 0.5334 0.4722 0.4353 0.5449 1.0000

Practice
Exercises
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1.  Explain the underlying assumptions of a stationary 4-dependent corre-
lation structure as it pertains to the Infant Care Study.

2.  Estimate the odds ratio and 95% confidence interval for the variable
DIARRHEA (1 vs. 0) on a low weight-for-height z-score (i.e., outcome 
� 1). Compute the 95% confidence interval two ways: first using the
empirical standard errors and then using the model-based standard
errors.

3.  Referring to Exercise 2: Explain the circumstances in which the model-
based variance estimators yield consistent estimates.

4.  Referring again to Exercise 2: Which estimate of the 95% confidence
interval do you prefer?

The following output should be used for exercises 5–10 and contains the
results from running the same GEE model on the Infant Care data as in the
previous questions, except that in this case, a stationary 8-dependent corre-
lation structure is specified. The working correlation matrix for this model
is included in the output.

Empirical

Variable Coefficient Std Err

INTERCEPT -1.4430 1.2084

BIRTHWGT -0.0005 0.0003

GENDER 0.0014 0.5418

DIARRHEA 0.3601 0.8122

Stationary 8-Dependent Working Correlation Matrix

COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8 COL9

ROW1 1.0000 0.5255 0.3951 0.4367 0.4851 0.3514 0.3507 0.4346 0.5408

ROW2 0.5255 1.0000 0.5255 0.3951 0.4367 0.4851 0.3514 0.3507 0.4346

ROW3 0.3951 0.5255 1.0000 0.5255 0.3951 0.4367 0.4851 0.3514 0.3507

ROW4 0.4367 0.3951 0.5255 1.0000 0.5255 0.3951 0.4367 0.4851 0.3514

ROW5 0.4851 0.4367 0.3951 0.5255 1.0000 0.5255 0.3951 0.4367 0.4851

ROW6 0.3514 0.4851 0.4367 0.3951 0.5255 1.0000 0.5255 0.3951 0.4367

ROW7 0.3507 0.3514 0.4851 0.4367 0.3951 0.5255 1.0000 0.5255 0.3951

ROW8 0.4346 0.3507 0.3514 0.4851 0.4367 0.3951 0.5255 1.0000 0.5255

ROW9 0.5408 0.4346 0.3507 0.3514 0.4851 0.4367 0.3951 0.5255 1.0000

5.  Compare the underlying assumptions of the stationary 8-dependent
correlation structure with the unstructured correlation structure as it
pertains to this model.

398 12. GEE Examples



6.  For the Infant Care data, how many more correlation parameters would
be included in a model that uses an unstructured correlation structure
rather than a stationary 8-dependent correlation structure.

7.  How can the unstructured correlation structure be used to assess
assumptions underlying other more constrained correlation structures?

8.  Estimate the odds ratio and 95% confidence interval for DIARRHEA (1
vs. 0) using the model with the stationary 8-dependent working correla-
tion structure.

9.  If the GEE approach yields consistent estimates of the “true odds ratio”
even if the correlation structure is misspecified, why are the odds ratio
estimates different using a stationary 4-dependent correlation structure
(Exercise 2) and a stationary 8-dependent correlation structure
(Exercise 8).

10.  Suppose that a parameter estimate obtained from running a GEE
model on a correlated data set was not affected by the choice of corre-
lation structure. Would the corresponding Wald test statistic also be
unaffected by the choice of correlation structure?
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Questions 1–6 refer to models run on the data from the Heartburn Relief
Study (discussed in Section IV). In that study, 40 subjects were given two
symptom-provoking meals spaced a week apart. Each subject was adminis-
tered an active treatment following one of the meals and a standard treat-
ment following the other meal, in random order. The goal of the study was
to compare the effects of an active treatment for heartburn with a standard
treatment. The dichotomous outcome is relief from heartburn (coded 1 �
yes, 0 � no). The exposure of interest is RX (coded 1 � active treatment, 0
� standard treatment). Additionally, it was hypothesized that the sequence
in which each subject received the active and standard treatment could be
related to the outcome. Moreover, it was speculated that the treatment
sequence could be an effect modifier for the association between the treat-
ment and heartburn relief. Consequently, two other variables are consid-
ered for the analysis: a dichotomous variable SEQUENCE and the product
term RX*SEQ (RX times SEQUENCE). The variable SEQUENCE is coded
1 for subjects in which the active treatment was administered first and 0 for
subjects in which the standard treatment was administered first.

The following printout summarizes the computer output for three GEE
models run on the heartburn relief data (Model 1, Model 2, and Model 3).
An exchangeable correlation structure is specified for each of these models.
The variance–covariance matrix for the parameter estimates and the Score
test for the variable RX*SEQ are included in the output for Model 1.

Model 1
Empirical

Variable Coefficient Std Err

INTERCEPT -0.6190 0.4688

RX 0.4184 0.5885

SEQUENCE 0.8197 0.6495

RX*SEQ -0.2136 0.7993

Empirical Variance Covariance Matrix

For Parameter Estimates

INTERCEPT RX SEQUENCE RX*SEQ

INTERCEPT 0.2198 -0.1820 -0.2198 0.1820

RX -0.1820 0.3463 0.1820 -0.3463

SEQUENCE -0.2198 0.1820 0.4218 -0.3251

RX*SEQ 0.1820 -0.3463 -0.3251 0.6388

Score test statistic for RX*SEQ = 0.07

Test
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Model 2
Empirical

Variable Coefficient Std Err

INTERCEPT -0.5625 0.4058

RX 0.3104 0.3992

SEQUENCE 0.7118 0.5060

Model 3
Empirical

Variable Coefficient Std Err

INTERCEPT -0.2007 0.3178

RX 0.3008 0.3868

1. State the logit form of the model for Model 1, Model 2, and Model 3.
2. Use Model 1 to estimate the odds ratios and 95% confidence intervals

for RX (active versus standard treatment). Hint: Make use of the vari-
ance–covariance matrix for the parameter estimates.

3. In Model 1, what is the difference between the working covariance
matrix and the covariance matrix for parameter estimates used to
obtain the 95% confidence interval in the previous question?

4. Use Model 1 to perform the Wald test on the interaction term RX*SEQ
at a 0.05 level of significance.

5. Use Model 1 to perform the Score test on the interaction term RX*SEQ
at a 0.05 level of significance.

6. Estimate the odds ratio for RX using Model 2 and Model 3. Is there a
suggestion that SEQUENCE is confounding the association between
RX and heartburn relief. Answer this question from a data-based per-
spective (i.e., comparing the odds ratios) and a theoretical perspective
(i.e., what it means to be a confounder).
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1. The stationary 4-dependent working correlation structure uses four
correlation parameters (�1, �2, �3, and �4). The correlation between
responses from the same infant 1 month apart is �1. The correlation
between responses from the same infant 2, 3, or 4 months apart is �2,
�3, and �4 respectively. The correlation between responses from the
same infant more than 4 months apart is assumed to be 0.

2. Estimated OR � exp(0.1636) � 1.18. 95% CI (with empirical SE):
exp[0.1636 � 1.96(0.8722)]� (0.21, 6.51); 95% CI (with model-based
SE): exp[0.1636 � 1.96(0.2841)] � (0.67, 2.06).

3. The model-based variance estimator would be a consistent estimator if
the true correlation structure was stationary 4-dependent. In general,
model-based variance estimators are more efficient {i.e., smaller
var[var(β̂)]} if the correlation structure is correctly specified.

4. The 95% confidence interval with the empirical standard errors is pre-
ferred since we cannot be confident that the true correlation structure
is stationary 4-dependent.

5. The stationary 8-dependent correlation structure uses eight correlation
parameters. With nine monthly responses per infant, each correlation
parameter represents the correlation for a specific time interval
between responses. The unstructured correlation structure, on the other
hand, uses a different correlation parameter for each possible correla-
tion for a given infant, yielding 36 correlation parameters. With the sta-
tionary 8-dependent correlation structure, the correlation between an
infant’s month 1 response and month 7 response is assumed to equal
the correlation between an infant’s month 2 response and month 8
response since the time interval between responses are the same (i.e., 6
months). The unstructured correlation structure does not make this
assumption, using a different correlation parameter even if the time
interval is the same.

6. There are                correlation parameters using the unstructured

correlation structure on the infant care data and 8 parameters using
the stationary 8-dependent correlation structure. The difference is 28
correlation parameters.

7. By examining the correlation estimates in the unstructured working
correlation matrix, we can evaluate which alternate, but more con-
strained, correlation structures seem reasonable. For example, it the
correlations are all similar, this would suggest that an exchangeable
structure is reasonable.

8. Estimated OR � exp(0.3601) � 1.43. 95% CI: exp[0.3601 � 1.96(0.8122)]
� (0.29, 7.04).

Answers to
Practice
Exercises
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9. Consistency is an asymptotic property. As the number of clusters
approach infinity, the odds ratio estimate should approach the true
odds ratio even if the correlation structure is misspecified. However,
with a finite sample, the parameter estimate may still differ from the
true parameter value. The fact that the parameter estimate for DIAR-
RHEA is so sensitive to the choice of the working correlation structure
demonstrates a degree of model instability.

10. No, because the Wald test statistic is a function of both the parameter
estimate and its variance. Since the variance is typically affected by the
choice of correlation structure, the Wald test statistic would also be
affected.
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In this chapter, the discussion of methods to analyze outcome variables that
have dichotomous correlated responses is expanded to include approaches
other than GEE. Three other analytic approaches are discussed. These
include the alternating logistic regressions algorithm, conditional logistic
regression, and the generalized linear mixed model approach.

The outline below gives the user a preview of the material to be covered by
the presentation. A detailed outline for review purposes follows the presen-
tation.

I. Overview (page 408)

II. Alternating logistic regressions algorithm (pages 409–413)

III. Conditional logistic regression (pages 413–417)

IV. The generalized linear mixed model approach (pages 418–425)
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Upon completing this chapter, the learner should be able to:

1. Contrast the ALR method to GEE with respect to how within-cluster
associations are modeled.

2. Recognize how a conditional logistic regression model can be used to
handle subject-specific effects.

3. Recognize a generalized linear mixed (logistic) model.
4. Distinguish between random and fixed effects.
5. Contrast the interpretation of an odds ratio obtained from a marginal

model with one obtained from a model containing subject-specific
effects.
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In this chapter, we provide an introduction to model-
ing techniques other than GEE for use with dichoto-
mous outcomes in which the responses are correlated.

In addition to the GEE approach, there are a number
of alternative approaches that can be applied to model
correlated data. These include (1) the alternating logis-
tic regressions algorithm, which uses odds ratios
instead of correlations, (2) conditional logistic regres-
sion, and (3) the generalized linear mixed model
approach, which allows for random effects in addition
to fixed effects. We briefly describe each of these
approaches.

This chapter is not intended to provide a thorough
exposition of these other approaches but rather an
overview, along with illustrative examples, of other
ways to handle the problem of analyzing correlated
dichotomous responses. Some of the concepts that are
introduced in this presentation are elaborated in the
Practice Exercises at the end of the chapter.

Conditional logistic regression has previously been
presented in Chapter 8 but is presented here in a some-
what different context. The alternating logistic regres-
sion and generalized linear mixed model approaches
for analyzing correlated dichotomous responses show
great promise but at this point have not been fully
investigated with regard to numerical estimation and
possible biases.

Other approaches for correlated data:

1. Alternating logistic regressions (ALR)
algorithm

2. Conditional logistic regression
3. Generalized linear mixed model
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The alternating logistic regressions (ALR) algorithm is
an analytic approach that can be used to model corre-
lated data with dichotomous outcomes (Carey et al.,
1993; Lipsitz et al., 1991). This approach is very similar
to that of GEE. What distinguishes the two approaches
is that with the GEE approach, associations between
pairs of outcome measures are modeled with correla-
tions, whereas with ALR, they are modeled with odds
ratios. The odds ratio (ORijk) between the jth and kth
responses for the ith subject can be expressed as
shown on the left.

Recall that in a GEE model, the correlation parameters
(α) are estimated using estimates of the regression
parameters (β). The regression parameter estimates
are, in turn, updated using estimates of the correlation
parameters. The computational process alternately
updates the estimates of the alphas and then the betas
until convergence is achieved.

The ALR approach works in a similar manner, except
that the alpha parameters are odds ratio (or log odds
ratio) parameters rather than correlation parameters.
Moreover, for the same data, an odds ratio between the
jth and kth responses that is greater than 1 using an
ALR model corresponds to a positive correlation
between the jth and kth responses using a GEE model.
Similarly, an odds ratio less than 1 using an ALR
model corresponds to a negative correlation between
responses. However, the correspondence is not one-to-
one, and examples can be constructed in which the
same odds ratio corresponds to different correlations
(see Practice Exercises 1–3).

Modeling associations:

GEE approach ALR approach
correlations (�’s) odds ratios (OR’s)

GEE: �’s and �’s estimated by alternately
updating estimates until convergence

ALR: �’s and �’s estimated similarly

BUT

ALR: α are log OR’s
(GEE: α are �’s)

ALR ORjk  1 ⇔ GEE �jk  1

ALR ORjk � 1 ⇔ GEE �jk � 1

Same OR can correspond to different �’s

�a
OR1

�b
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For many health scientists, an odds ratio measure,
such as provided with an ALR model, is more familiar
and easier to interpret than a correlation measure.
However, ALR models can only be used if the outcome
is a dichotomous variable. In contrast, GEE models
are not so restrictive.

The ALR model is illustrated by returning to the
Aspirin–Heart Bypass Study example, which was first
presented in Chapter 12. Recall that in that study,
researchers examined the efficacy of aspirin for pre-
vention of thrombotic graft occlusion after coronary
bypass grafting in a sample of 214 patients (Gavaghan
et al., 1991).

Patients were given a variable number of artery
bypasses (up to six) and randomly assigned to take
either aspirin (ASPIRIN�1) or a placebo (ASPIRIN�0)
every day. One year later, each bypass was checked for
occlusion and the outcome was coded as blocked
(D�1) or unblocked (D�0). Additional covariates
included AGE (in years), GENDER (1�male,
2�female), WEIGHT (in kilograms), and HEIGHT (in
centimeters).

Consider the model presented at left, with ASPIRIN,
AGE, GENDER, WEIGHT, and HEIGHT as covariates.

ALR: dichotomous outcomes only
GEE: dichotomous and other outcomes are
allowed
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EXAMPLE

GEE Versus ALR

Aspirin–Heart Bypass Study
(Gavaghan et al., 1991)

Subjects: received up to six coronary
bypass grafts.

Randomly assigned to treatment group:

1 if daily aspirin
ASPIRIN �

0 if daily placebo

Response (D): occlusion of a bypass
graft 1 year later

1 if blocked
D �

0 if unblocked

Additional covariates:

AGE (in years)
GENDER (1�male, 2�female)
WEIGHT (in kilograms)
HEIGHT (in centimeters)

Model

logit P(X) � �0 � �1ASPIRIN � �2AGE
� �3GENDER � �4WEIGHT �
�5HEIGHT

}

}



Output from using the GEE approach is presented on
the left. An exchangeable correlation structure is
assumed. (This GEE output has previously been pre-
sented in Chapter 12.)

The correlation parameter estimate obtained from the
working correlation matrix of the GEE model is �0.0954,
which suggests a negative association between reocclu-
sions on the same bypass patient.

Output obtained from SAS PROC GENMOD using the
ALR approach is shown on the left for comparison. An
exchangeable odds ratio structure is assumed. The
assumption underlying the exchangeable odds ratio
structure is that the odds ratio between the ith subjec-
t’s jth and kth responses is the same (for all j and k, j �
k). The estimated exchangeable odds ratio is obtained
by exponentiating the coefficient labeled ALPHA1.
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EXAMPLE (continued)

GEE Approach (Exchangeable �)

Empirical z  Wald
Variable Coefficient Std Err p-value

INTERCEPT -0.4713 1.6169 0.7707

ASPIRIN -1.3302 0.1444 0.0001

AGE -0.0086 0.0087 0.3231

GENDER -0.5503 0.2559 0.0315

WEIGHT -0.0007 0.0066 0.9200

HEIGHT 0.0080 0.0105 0.4448

Scale 1.0076

Exchangeable Ci (GEE: ρ̂ � �0.0954)

COL1 COL2 . . . COL6

ROW1 1.0000 -0.0954 . . . -0.0954

ROW2 -0.0954 1.0000 . . . -0.0954

ROW3 -0.0954 -0.0954 . . . -0.0954

ROW4 -0.0954 -0.0954 . . . -0.0954

ROW5 -0.0954 -0.0954 . . . -0.0954

ROW6 -0.0954 -0.0954 . . . 1.0000

ALR approach (Exchangeable OR)

Empirical z  Wald
Variable Coefficient Std Err p-value

INTERCEPT -0.4806 1.6738 0.7740

ASPIRIN -1.3253 0.1444 0.0001

AGE -0.0086 0.0088 0.3311

GENDER -0.5741 0.2572 0.0256

WEIGHT 0.0003 0.0066 0.9665

HEIGHT 0.0077 0.0108 0.4761

ALPHA1 -0.4716 0.1217 0.0001

exp(ALPHA1) = ORjk(exchangeable)ˆ



The regression parameter estimates are very similar
for the two models. The odds ratio for aspirin use on
artery reocclusion is estimated as exp(�1.3302) �
0.264 using the GEE model and exp(�1.3253) � 0.266
using the ALR model. The standard errors for the
aspirin parameter estimates are the same in both mod-
els (0.1444), although the standard errors for some of
the other parameters are slightly larger in the ALR
model.

The corresponding measure of association (the odds
ratio) estimate from the ALR model can be found by
exponentiating the coefficient of ALPHA1. This odds
ratio estimate is exp(�0.4716) � 0.62. As with the esti-
mated exchangeable correlation ( �̂ ) from the GEE
approach, the exchangeable OR estimate, which is less
than 1, also indicates a negative association between
any pair of outcomes (i.e., reocclusions on the same
bypass patient).

A 95% confidence interval for the OR can be calculated
as exp[�0.4716 � 1.96(0.1217)], which yields the con-
fidence interval (0.49, 0.79). The P-value for the Wald
test is also given in the output at 0.0001, indicating the
statistical significance of the ALPHA1 parameter.

For the GEE model output, an estimated standard
error (SE) or statistical test is not given for the correla-
tion estimate. This is in contrast to the ALR output,
which provides a standard error and statistical test for
ALPHA1.
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EXAMPLE (continued)

Odds ratios

OR ASPIRIN�1 vs. ASPIRIN�0 :

GEE → exp (�1.3302) � 0.264

ALR → exp(�1.3253) � 0.266

S.E. (Aspirin) � 0.1444 (GEE and ALR)

Measure of association (ORjk)

ORjk � exp(ALPHA1)

� exp(�0.4716) � 0.62

(Negative association:
similar to �̂ � -0.0954

95% CI for ALPHA1

� exp[(�0.4716 � 1.96(0.1217)]

� (0.49, 0.79)

P-value � 0.0001 ⇒ ALPHA1 significant

GEE (�) ALR (ALPHA1)

SE? No Yes

Test? No Yes

ˆ
ˆ

ˆ



This points out a key difference in the GEE and ALR
approaches. With the GEE approach, the correlation
parameters are typically considered to be nuisance
parameters, with the parameters of interest being the
regression coefficients (e.g., ASPIRIN). In contrast,
with the ALR approach, the association between dif-
ferent responses is also considered to be of interest.
Thus, the ALR approach allows statistical inferences to
be assessed from both the alpha parameter and the
beta parameters (regression coefficients).

Another approach that is applicable for certain types
of correlated data is a matched analysis. This method
can be applied to the Heartburn Relief Study example,
with “subject” used as the matching factor. This exam-
ple was presented in detail in Chapter 12. Recall that
the dataset contained 40 subjects, each receiving an
active or standard treatment for the relief of heart-
burn. In this framework, within each matched stratum
(i.e., subject), there is an exposed observation (the
active treatment) and an unexposed observation (the
standard treatment). A conditional logistic regression
(CLR) model, as discussed in Chapter 8, can then be
formulated to perform a matched analysis. The model
is shown on the left.

This model differs from the GEE model for the same
data, also shown on the left, in that the conditional
model contains 39 dummy variables besides RX. Each
of the parameters (�i) for the 39 dummy variables rep-
resents the (fixed) effects for each of 39 subjects on the
outcome. The fortieth subject acts as the reference
group since all of the dummy variables have a value of
zero for the fortieth subject (see Chapter 8).

Key difference: GEE vs. ALR

GEE: �jk are typically nuisance
parameters

ALR: ORjk are parameters of interest

ALR: allows inferences about both α̂ and
β̂’s
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III. Conditional Logistic
Regression

EXAMPLE

Heartburn Relief Study
(“subject” as matching factor)

40 subjects received:
• active treatment (“exposed”)
• standard treatment (“unexposed”)

CLR model

where
1 for subject i

Vi �
0 otherwise

GEE model

logit P(X) � �0 � �1RX

CLR vs. GEE

↓ ↓

39 Vi no Vi
(dummy
variables)

}

logit P( ) = RX + iX β β0 1
1

39
+

=
∑ γ
i

iV



When using the CLR approach for modeling P(X), the
responses from a specific subject are assumed to be
independent. This may seem surprising since through-
out this chapter we have viewed two or more responses
on the same subject as likely to be correlated.
Nevertheless, when dummy variables are used for each
subject, each subject has his/her own subject-specific
fixed effect included in the model. The addition of
these subject-specific fixed effects can account for cor-
relation that may exist between responses from the
same subject in a GEE model. In other words,
responses can be independent if conditioned by sub-
ject. However, this is not always the case. For example,
if the actual underlying correlation structure is autore-
gressive, conditioning by subject would not account
for the within-subject autocorrelation.

Returning to the Heartburn Relief Study data, the out-
put obtained from running the conditional logistic
regression is presented on the left.

With a conditional logistic regression, parameter esti-
mates are not obtained for the intercept or the dummy
variables representing the matched factor (i.e., sub-
ject). These parameters cancel out in the expression for
the conditional likelihood. However, this is not a prob-
lem because the parameter of interest is the coefficient
of the treatment variable (RX).

The odds ratio estimate for the effect of treatment for
relieving heartburn is exp(0.4055) � 1.50, with a 95%
confidence interval of (0.534, 4.214).

Model 1: conditional logistic regression

Std.       Wald
Variable      Coefficient      error P-value

RX                 0.4055          0.5271   0.4417

No �0 or �i estimates in CLR model
(cancel out in conditional likelihood)

Odds ratio and 95% CI

OR � exp(0.4055) � 1.50

95% CI � (0.534, 4.214)
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EXAMPLE (continued)

CLR approach ⇒
responses assumed independent

Subject-specific �i allows for conditioning by
subject

fixed effect

Responses can be independent if
conditioned by subject

ˆ



The estimated odds ratios and the standard errors for
the parameter estimate for RX are shown at left for the
conditional logistic regression (CLR) model, as well as
for the GEE and standard logistic regression discussed
in Chapter 12. The odds ratio estimate for the CLR
model is somewhat larger than the estimate obtained
at 1.35 using the GEE approach. The standard error
for the RX coefficient estimate in the CLR model is
also larger than what was obtained in either the GEE
model using empirical standard errors or in the stan-
dard logistic regression which uses model-based stan-
dard errors.

An important distinction between the CLR and GEE
analytic approaches concerns the treatment of the pre-
dictor (independent) variables in the analysis. A
matched analysis (CLR) relies on within-subject vari-
ability (i.e., variability within the matched strata) for
the estimation of its parameters. A correlated (GEE)
analysis takes into account both within-subject vari-
ability and between-subject variability. In fact, if there
is no within-subject variability for an independent
variable (e.g., a time-independent variable), then its
coefficient cannot be estimated using a conditional
logistic regression. In that situation, the parameter
cancels out in the expression for the conditional likeli-
hood. This is what occurs to the intercept as well as to
the coefficients of the matching factor dummy vari-
ables when CLR is used.

To illustrate the consequences of only including inde-
pendent variables with no within-cluster variability in
a CLR, we return to the Aspirin–Heart Bypass Study
discussed in the previous section. Recall that patients
were given a variable number of artery bypasses in a
single operation and randomly assigned to either
aspirin or placebo therapy. One year later, angiograms
were performed to check each bypass for reocclusion.
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EXAMPLE (continued)
Model comparison

Model OR sβ̂

CLR 1.50 0.5271
GEE 1.35 0.3868
SLR 1.35 0.4486

Estimation of predictors

Within- Between-
subject subject

Analysis variability variability

Matched (CLR) !
Correlated (GEE) ! !

No within-subject variability for an 
independent variable ⇒ parameter will 
not be estimated in CLR

EXAMPLE

CLR with time-independent predictors
(Aspirin–Heart Bypass Study)

Subjects: 214 patients received up to 6
coronary bypass grafts.

Treatment:
1 if daily aspirin

ASPIRIN �
0 if daily placebo

1 if graft blocked
D �

0 if graft unblocked

}
}



Besides ASPIRIN, additional covariates include AGE,
GENDER, WEIGHT, and HEIGHT. We restate the
model from the previous section at left.

The output from running a conditional logistic regres-
sion is presented on the left. Notice that all of the coef-
ficient estimates are zero with their standard errors
missing. This indicates the model did not execute. The
problem occurred because none of the independent
variables changed their values within any cluster (sub-
ject). In this situation, all of the predictor variables are
said to be concordant in all the matching strata and
uninformative with respect to a matched analysis.
Thus the conditional logistic regression, in effect, dis-
cards all of the data.

If at least one variable in the model does vary within a
cluster (e.g., a time-dependent variable), then the
model will run. However, estimated coefficients will be
obtained only for those variables that have within-
cluster variability.

An advantage of using a matched analysis with subject
as the matching factor is the ability to control for poten-
tial confounding factors that can be difficult or impossi-
ble to measure. When the study subject is the matched
variable, as in the Heartburn Relief example, there is an
implicit control of fixed genetic and environmental fac-
tors that comprise each subject. On the other hand, as
the Aspirin–Heart bypass example illustrates, a disad-
vantage of this approach is that we cannot model the
separate effects of fixed time-independent factors. In
this analysis, we cannot examine the separate effects of
aspirin use, gender, and height using a matched analy-
sis, because the values for these variables do not vary for
a given subject.

logit P(X) � �0 � �1ASPIRIN � �2AGE
� �3GENDER � �4WEIGHT � �5HEIGHT

CLR model

Standard Wald

Variable Coefficient Error p-value

AGE 0 . .

GENDER 0 . .

WEIGHT 0 . .

HEIGHT 0 . .

ASPIRIN 0 . .

All strata concordant ⇒ model will not run

Within-subject variability for one or more
independent variable ⇒

• model will run 
• parameters estimated for only those

variables

Matched analysis:

• Advantage: control of confounding fac-
tors

• Disadvantage: cannot separate effects of
time-independent factors 
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EXAMPLE (continued)



With the conditional logistic regression approach, sub-
ject is modeled as a fixed effect with the gamma param-
eters (�), as shown on the left for the Heartburn Relief
example.

An alternative approach is to model subject as a ran-
dom effect.

To illustrate this concept, suppose we attempted to
replicate the heartburn relief study using a different
sample of 40 subjects. We might expect the estimate
for �1, the coefficient for RX, to change due to sam-
pling variability. However, the true value of �1 would
remain unchanged (i.e., �1 is a fixed effect). In con-
trast, because there are different subjects in the repli-
cated study, the parameters representing subject (i.e.,
the gammas) would therefore also be different. This
leads to an additional source of variability that is not
considered in the CLR, in that some of the parameters
themselves (and not just their estimates) are random.

In the next section, we present an approach for model-
ing subject as a random effect, which takes into
account that the subjects represent a random sample
from a larger population.

Heartburn Relief Model:

(Subject modeled as fixed effect)

where

1 for subject i
Vi �

0 otherwise

Alternative approach:
Subject modeled as random effect

What if study is replicated?

Different sample ⇒ different subjects
�1 unchanged (fixed effect)
γ different

Parameters themselves may be random
(not just their estimates)
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The generalized linear mixed model (GLMM) provides
another approach that can be used for correlated
dichotomous outcomes. GLMM is a generalization of
the linear mixed model. Mixed models refer to the mix-
ing of random and fixed effects. With this approach,
the cluster variable is considered a random effect. This
means that the cluster effect is a random variable fol-
lowing a specified distribution (typically a normal dis-
tribution).

A special case of the GLMM is the mixed logistic model
(MLM). This type of model combines some of the fea-
tures of the GEE approach and some of the features of
the conditional logistic regression approach. As with
the GEE approach, the user specifies the logit link
function and a structure (Ci) for modeling response
correlation. As with the conditional logistic regression
approach, subject-specific effects are directly included
in the model. However, here these subject-specific
effects are treated as random rather than fixed effects.
The model is commonly stated in terms of the ith sub-
ject’s mean response (�i).

We again use the heartburn data to illustrate the model
(shown on the left) and state it in terms of the ith sub-
ject’s mean response, which in this case is the ith sub-
ject’s probability of heartburn relief. The coefficient �1
is called a fixed effect, whereas b0i is called a random
effect. The random effect (b0i) in this model is assumed
to follow a normal distribution with mean 0 and vari-
ance �b0

2. Subject-specific random effects are
designed to account for the subject-to-subject varia-
tion, which may be due to unexplained genetic or envi-
ronmental factors that are otherwise unaccounted for
in the model. More generally, random effects are often
used when levels of a variable are selected at random
from a large population of possible levels.

Mixed models:

• random effects
• fixed effects

Mixed logistic model:

• special case of GLMM
• combines GEE and CLR features

GEE CLR

User specifies Subject-specific
g(�) and Ci effects

GLMM: subject-specific effects random
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IV. The Generalized Linear Mixed
Model Approach

EXAMPLE

Heartburn Relief Study

logit �i � P(D�1|RX) � �0 � �1RXi � b0i

�1 � fixed effect

b0i � random effect

where b0i is a random variable 
� N(0, �b0

2)



With this model, each subject has his/her own baseline
risk, the logit of which is the intercept plus the random
effect (�0 � b0i). This random effect, b0i, is typically
called the subject-specific intercept. The amount of
variation in the baseline risk is determined by the vari-
ance (�b0

2) of b0i.

In addition to the intercept, we could have added
another random effect allowing the treatment (RX)
effect to also vary by subject (see Practice Exercises
4–9). By not adding this additional random effect,
there is an assumption that the odds ratio for the effect
of treatment is the same for each subject, exp(�1).

The output obtained from running the MLM on the
heartburn data is presented on the left. This model was
run using a macro called GLIMMIX on the SAS sys-
tem.

The odds ratio estimate for the effect of treatment for
relieving heartburn is exp(0.3445) � 1.41. The 95%
confidence interval is (0.593, 3.360).

The odds ratio estimate using this model is slightly
larger than the estimate obtained at 1.35 using the
GEE approach, but somewhat smaller than the esti-
mate obtained at 1.50 using the conditional logistic
regression approach. The standard error at 0.4425 is
also larger than what was obtained in the GEE model
(0.3868), but smaller than in the conditional logistic
regression (0.5271).

For each subject:

logit of baseline risk � (�0 � b0i)

b0i � subject-specific intercept

No random effect for RX ⇒ (assumption)

effect is same for each subject = exp(�1)

Mixed logistic model (MLM)

Standard Wald

Variable Coefficient Error p-value

INTERCEPT -0.2285 0.3583 0.5274

RX 0.3445 0.4425 0.4410

Odds ratio and 95% CI:

OR � exp(0.3445) � 1.41

95% CI � (0.593, 3.360)

Model comparison

Model OR sβ̂

MLM 1.41 0.4425
GEE 1.35 0.3868
CLR 1.50 0.5271
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The modeling of any response variable typically con-
tains a fixed and random component. The random
component, often called the error term, accounts for
the variation in the response variables that the fixed
predictors fail to explain.

A model containing a random effect adds another layer
to the random part of the model. With a random
effects model, there are at least two random compo-
nents in the model:

1. The first random component is the variation
explained by the random effects. For the heart-
burn data set, the random effect is designed to
account for random subject-to-subject variation
(heterogeneity). The variance–covariance matrix
of this random component (b) is called the G
matrix.
2. The second random component is the residual
error variation. This is the variation unexplained
by the rest of the model (i.e., unexplained by
fixed or random effects). For a given subject, this
is the difference of the observed and expected
response. The variance–covariance matrix of this
random component is called the R matrix.

For mixed logistic models, the layering of these ran-
dom components is tricky. This layering can be illus-
trated by presenting the model (see left side) in terms
of the random effect for the ith subject (ε1i) and the
residual variation (ε2ij) for the jth response of the ith
subject (Yij).

Typical model for random Y:

• fixed component (fixed effects)
• random component (error)

Random effects model:
• fixed component (fixed effects)
• random components

• random effects
• residual variation (error)

1. Random effects: b

Var(b) � G

2. Residual variation: ε

Var(ε) � R

Random components layered:

random residual 
effects variation
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The residual variation (ε2ij) accounts for the difference
between the observed value of Y and the P(Y�1|X) for
a given subject. The random effect (ε1i), on the other
hand, allows for randomness in the modeling of the
mean response [i.e., P(Y�1|X)], which in contrast is
modeled in a standard logistic regression solely in
terms of fixed predictors (X’s) and coefficients (�’s).

For GLM and GEE models, the outcome Y is modeled
as the sum of the mean and the residual variation [Y �
� � ε2ij, where the mean (�) is fixed] determined by the
subject’s pattern of covariates. For GEE, the residual
variation is modeled with a correlation structure,
whereas for GLM, the residual variation (the R matrix)
is modeled as independent. Neither GLM nor GEE
models contain a G matrix, as they do not contain any
random effects (b).

In contrast, for GLMMs, the mean also contains a ran-
dom component (ε1i). With GLMM, the user can spec-
ify a covariance structure for the G matrix (for the ran-
dom effects), the R matrix (for the residual variation),
or both. Even if the G and R matrices are modeled to
contain zero correlations separately, the combination
of both matrices in the model generally forms a corre-
lated random structure for the response variable.

Another difference between a GEE model and a mixed
model (e.g., MLM) is that a correlation structure is
specified with a GEE model, whereas a covariance
structure is specified with a mixed model. A covariance
structure contains parameters for both the variance
and covariance, whereas a correlation structure con-
tains parameters for just the correlation. Thus, with a
covariance structure, there are additional variance
parameters and relationships among those parameters
(e.g., variance heterogeneity) to consider (see Practice
Exercises 7–9).

ε2ij � Yij - P(Yij�1|X)

where

P(Yij�1|X) � �

GLM GEE

Model Yi � �i � ε2ij Yij � �ij � ε2ij

R Independent Correlated
G — —

GLMM: Yij � g-1(X, β, ε1i) � ε2ij

�ij

User specifies covariance structures for
R, G, or both

GEE: correlation structure specified

GLMM: covariance structure specified

Covariance structure contains parameters
for both the variance and covariance
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If a covariance structure is specified, then the correla-
tion structure can be ascertained. The reverse is not
true, however, since a correlation matrix does not in
itself determine a unique covariance matrix.

For a given subject, the dimensions of the R matrix
depend on how many observations (ni) the subject con-
tributes, whereas the dimensions of the G matrix
depend on the number of random effects (e.g., q)
included in the model. For the heartburn data exam-
ple, in which there are two observations per subject
(ni�2), the R matrix is a 2 × 2 matrix modeled with
zero correlation. The dimensions of G are 1 × 1 (q�1)
since there is only one random effect (b0i), so there is
no covariance structure to consider for G in this
model. Nevertheless, the combination of the G and R
matrix in this model provides a way to account for cor-
relation between responses from the same subject.

We can compare the modeling of subject- specific fixed
effects with subject-specific random effects by examin-
ing the conditional logistic model (CLR) and the mixed
logistic model (MLM) in terms of the ith subject’s
response. Using the heartburn data, these models can
be expressed as shown on the left.

The fixed effect, �i, impacts the modeling of the mean
response. The random effect, b0i, is a random variable
with an expected value of zero. Therefore, b0i does not
directly contribute to the modeling of the mean
response; rather, it is used to characterize the variance
of the mean response. 

Covariance ⇒ unique correlation

but Correlation ⇒ unique covariance

For ith subject:

• R matrix dimensions depend on num-
ber of observations for subject i (ni)

• G matrix dimensions depend on num-
ber of random effects (q)

Heartburn data:

R � 2 × 2 matrix

G � 1 × 1 matrix (only one random effect)

CLR versus MLM: subject-specific effects

CLR: logit �i � �0 � �1RX � �i
where �i is a fixed effect

MLM: logit �i � �0 � �1RX � b0i
where b0i is a random effect

Fixed effect �i: impacts modeling of �

Random effect b0i: used to characterize the
variance
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A GEE model can also be expressed in terms of the ith
subject’s mean response (�i), as shown at left using the
heartburn example. The GEE model contrasts with 
the MLM, and the conditional logistic regression, since
the GEE model does not contain subject-specific
effects (fixed or random). With the GEE approach, the
within-subject correlation is handled by the specifica-
tion of a correlation structure for the R matrix.
However, the mean response is not directly modeled as
a function of the individual subjects.

A GEE model represents a type of model called a mar-
ginal model. With a marginal model, the mean
response E(Y|X) is not directly conditioned on any
variables containing information on the within-cluster
correlation. For example, the predictors (X) in a mar-
ginal model cannot be earlier values of the response
from the same subject or subject-specific effects.

Other examples of marginal models include the ALR
model, described earlier in the chapter, and the stan-
dard logistic regression with one observation for each
subject. In fact, any model using data in which there is
one observation per subject is a marginal model
because in that situation, there is no information avail-
able about within-subject correlation.

Returning to the Heartburn Relief Study example, the
parameter of interest is the coefficient of the RX vari-
able, �1, not the subject-specific effect, b0i. The research
question for this study is whether the active treatment
provides greater relief for heartburn than the standard
treatment. The interpretation of the odds ratio exp(�1)
depends, in part, on the type of model that is run.

GEE versus MLM

GEE model: logit � � �0 � �1RX

No subject-specific
random effects (b0i)

Within-subject correlation specified 
in R matrix

MLM model: logit �i � �0��1RX� b0i

Subject-specific
random effects

Marginal model ⇒ E(Y|X) not conditioned
on cluster specific information

(e.g., not allowed as X

• earlier values of Y
• subject-specific effects)

Marginal models (examples):

GEE
ALR
SLR

Heartburn Relief Study

�1 � parameter of interest

BUT

interpretation of exp(�1) depends on 
type of model
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The odds ratio for a marginal model is the ratio of the
odds of heartburn for RX�1 vs. RX�0 among the
underlying population. In other words, the OR is a pop-
ulation average. The odds ratio for a model with a sub-
ject-specific effect, as in the mixed logistic model, is
the ratio of the odds of heartburn for RX�1 vs. RX�0
for an individual.

What is meant by an odds ratio for an individual? We
can conceptualize each subject as having a probability
of heartburn relief given the active treatment and hav-
ing a separate probability of heartburn relief given the
standard treatment. These probabilities depend on the
fixed treatment effect as well as the subject-specific
random effect. With this conceptualization, the odds
ratio that compares the active versus standard treat-
ment represents a parameter that characterizes an
individual rather than a population (see Practice
Exercises 10–15). The mixed logistic model supplies a
structure that gives the investigator the ability to esti-
mate an odds ratio for an individual, while simultane-
ously accounting for within-subject and between-
subject variation.

The choice of whether a population averaged or indi-
vidual level odds ratio is preferable depends, in part,
on the goal of the study. If the goal is to make infer-
ences about a population, then a marginal effect is pre-
ferred. If the goal is to make inferences on the individ-
ual, then an individual level effect is preferred.

Heartburn Relief Study:

GEE: marginal model

exp (β̂1) is population OR

MLM:

exp (β̂1) is OR for an individual

What is an individual OR?

Each subject has separate probabilities

P(X�1|RX�1)
P(X�1|RX�0)

⇓

OR compares RX�1 vs. RX�0 for an
individual

Goal OR

population ⇒ marginal
inferences

individual ⇒ individual
inferences
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There are various methods that can be used for param-
eter estimation with mixed logistic models. The param-
eter estimates, obtained for the Heartburn Relief data
from the SAS macro GLIMMIX, use an approach
termed penalized quasi-likelihood equations (Breslow
and Clayton, 1993; Wolfinger and O’Connell, 1993).
Alternatively, the SAS procedure NLMIXED (nonlinear
mixed) can also be used to run a mixed logistic model.
NLMIXED fits nonlinear mixed models by maximizing
an approximation to the likelihood integrated over the
random effects. Unlike the GLIMMIX macro, NLMIXED
does not allow the user to specify a correlation struc-
ture for the G and R matrices (SAS Institute, 2000).

Mixed models offer great flexibility by allowing the
investigator to layer random components, model clus-
ters nested within clusters (i.e., perform hierarchical
modeling), and control for subject-specific effects. The
use of mixed linear models is widespread in a variety of
disciplines because of this flexibility.

Despite the appeal of mixed logistic models, their per-
formance, particularly in terms of numerical accuracy,
has not yet been adequately evaluated. In contrast, the
GEE approach has been thoroughly investigated, and
this is the reason for our emphasis on that approach in
the earlier chapters on correlated data (Chapter 11 and
Chapter 12).

Parameter estimation for MLM in SAS:

GLIMMIX

• penalized quasi-likelihood equations
• user specifies G and R

NLMIXED

• maximized approximation to likelihood
integrated over random effects

• user does not specify G and R

Mixed models are flexible:

• layer random components
• handle nested clusters
• control for subject effects

Performance of mixed logistic models not
fully evaluated
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We suggest that you review the material covered here
by reading the detailed outline that follows.

A Computer Appendix is presented in the following
section. This appendix provides details on performing
the analyses discussed in the various chapters using
SAS, SPSS, and Stata statistical software.

Computer Appendix
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SUMMARY

✓ Chapter 13. Other Approaches for
Analysis of Correlated Data

The presentation is now complete. Several alternate
approaches for the analysis of correlated data were
examined and compared to the GEE approach. The
approaches discussed included alternating logistic
regressions, conditional logistic regression, and the
generalized linear mixed (logistic) model.

The choice of which approach to implement for the
primary analysis can be difficult and should be deter-
mined, in part, by the research hypothesis. It may be
of interest to use several different approaches for com-
parison. If the results are different, it can be informa-
tive to investigate why they are different. If they are
similar, it may be reassuring to know the results are
robust to different methods of analysis.
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I. Overview (page 408)
A. Other approaches to analysis of correlated data:

i. alternating logistic regressions (ALR) algorithm;
ii. conditional logistic regression;

iii. generalized linear mixed model (GLMM).
II. Alternating logistic regressions algorithm (pages 409–413)

A. Similar to GEE except that
i. associations between pairs of responses are modeled with

odds ratios instead of correlations:

ii. associations between responses may also be of interest, and
not considered nuisance parameters.

III. Conditional logistic regression (pages 413–417)
A. May be applied in a design where each subject can be viewed as

a stratum (e.g., has an exposed and an unexposed observation).
B. Subject-specific fixed effects are included in the model through

the use of dummy variables [Example: Heartburn Relief Study
(n�40)]:

where Vi � 1 for subject i and Vi � 0 otherwise.
C. In the output, there are no parameter estimates for the intercept

or the dummy variables representing the matched factor, as
these parameters cancel out in the conditional likelihood.

D. An important distinction between CLR and GEE is that a
matched analysis (CLR) relies on the within-subject variability in
the estimation of the parameters, whereas a correlated analysis
(GEE) relies on both the within-subject variability and the
between-subject variability.

IV. The generalized linear mixed model approach (pages 418–425)
A. A generalization of the linear mixed model.
B. As with the GEE approach, the user can specify the logit link

function and apply a variety of covariance structures to the
model.

Detailed
Outline
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C. As with the conditional logistic regression approach, subject-
specific effects are included in the model:

logit �i � P(D�1|RX) � �0 � �1RXi � b0i

where bi is a random variable from a normal distribution with
mean � 0 and variance � �b0

2.
D. Comparing the conditional logistic model and the mixed logistic

model:
i. the conditional logistic model:

logit �i � �0 � �1RX � �i where �i is a fixed effect
ii. the mixed logistic model:

logit �i � �0 � �1RX � b0i where b0i is a random effect.
E. Interpretation of the odds ratio:

i. marginal model: population average OR;
ii. subject-specific effects model: individual OR.
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Practice Exercises 429

The Practice Exercises presented here are primarily designed to elaborate and
expand on several concepts that were briefly introduced in this chapter.

Exercises 1–3 relate to calculating odds ratios and their corresponding cor-
relations. Consider the following 2 × 2 table for two dichotomous responses
(Yj and Yk). The cell counts are represented by A, B, C, and D. The margins
are represented by M1, M0, N1, and N0 and the total counts are represented
by T.

Yk � 1 Yk � 0 Total

Yj � 1 A B M1�A�B
Yj � 0 C D M0�C�D
Total N1�A�C N0�B�D T�A�B�C�D

The formulas for calculating the correlation and odds ratio between Yj and
Yk in this setting are given as follows:

1. Calculate and compare the respective odds ratios and correlations
between Yj and Yk for the data summarized in Tables 1 and 2 to show
that the same odds ratio can correspond to different correlations.

2. Show that if both the B and C cells are equal to 0, then the correlation
between Yj and Yk is equal to 1 (assuming A and D are nonzero). What
is the corresponding odds ratio if the B and C cells are equal to 0? Did
both the B and C cells have to equal 0 to obtain this corresponding
odds ratio? Also show that if both the A and D cells are equal to zero,
then the correlation is equal to -1. What is that corresponding odds
ratio?

3. Show that if AD � BC, then the correlation between Yj and Yk is 0 and
the odds ratio is 1 (assuming nonzero cell counts).

Practice
Exercises

Corr(  
AT –  M

OR =
AD
BC

1Y Yj k, ) ,       .= Ν

Μ Μ Ν Ν
1

1 0 1 0

Table 1
Yk � 1 Yk � 0

Yj � 1 3 1
Yj � 0 1 3

Table 2
Yk � 1 Yk � 0

Yj � 1 9 1
Yj � 0 1 1
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Exercises 4–6 refer to a model constructed using the data from the
Heartburn Relief Study. The dichotomous outcome is relief from heartburn
(coded 1 � yes, 0 � no). The only predictor variable is RX (coded 1 � active
treatment, 0 � standard treatment). This model contains two subject-
specific effects; one for the intercept (b0i) and the other (b1i) for the coeffi-
cient RX. The model is stated in terms of the ith subject’s mean response:

logit �i � P(D�1|RX) � �0 � �1RXi � b0i � b1iRXi

where b0i follows a normal distribution with mean 0 and variance 
�b0

2, b1i follows a normal distribution with mean 0 and variance �b1
2

and where the covariance of b0i and b1i is a 2 × 2 matrix, G.

It may be helpful to restate the model by rearranging the parameters such
that the intercept parameters (fixed and random effects) and the slope param-
eters (fixed and random effects) are grouped together:

logit �i � P(D�1|RX) � (�0 � b0i) � (�1 � b1i)RXi

4. Use the model to obtain the odds ratio for RX�1 vs. RX�0 for subject i.
5. Use the model to obtain the baseline risk for subject i (i.e., risk when

RX�0).
6. Use the model to obtain the odds ratio (RX�1 vs. RX�0) averaged

over all subjects.
Below are three examples of commonly used covariance structures repre-
sented by 3 × 3 matrices. The elements are written in terms of the variance
(�2), standard deviation (�), and correlation (�). The covariance structures
are presented in this form in order to contrast their structures with the cor-
relation structures presented in Chapter 11. A covariance structure not only
contains correlation parameters but variance parameters as well.

Variance Compound
components symmetric Unstructured

The compound symmetric covariance structure has the additional constraint
that � ≥ 0,
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Practice Exercises 431

7. Which of the above covariance structures allow for variance hetero-
geneity within a cluster?

8. Which of the presented covariance structures allow for both variance
heterogeneity and correlation within a cluster.

9. Consider a study in which there are five responses per subject. If a
model contains two subject specific random effects (for the intercept
and slope), then for subject i, what are the dimensions of the G matrix
and of the R matrix?

The next set of exercises is designed to illustrate how an individual level
odds ratio can differ from a population averaged (marginal) odds ratio.
Consider a fictitious data set in which there are only 2 subjects, contribut-
ing 200 observations apiece. For each subject, 100 of the observations are
exposed (E�1) and 100 are unexposed (E�0), yielding 400 total observa-
tions. The outcome is dichotomous (D�1 and D�0). The data are summa-
rized using three 2 × 2 tables. The tables for Subject 1 and Subject 2 sum-
marize the data for each subject; the third table pools the data from both
subjects.

10. Calculate the odds ratio for Subject 1 and Subject 2 separately.
Calculate the odds ratio after pooling the data for both subjects. How
do the odds ratios compare? 
Note: The subject specific odds ratio as calculated here is a conceptu-
alization of a subject specific effect, while the pooled odds ratio is a
conceptualization of a population averaged effect.

11. Compare the baseline risk (where E�0) of Subject 1 and Subject 2. Is
there a difference (i.e., heterogeneity) in the baseline risk between
subjects? Note that for a model containing subject-specific random
effects, the variance of the random intercept is a measure of baseline
risk heterogeneity.

12. Do Subject 1 and Subject 2 have a different distribution of exposure?
This is a criterion for evaluating whether there is confounding by sub-
ject.

Subject 1

E�1 E�0

D�1 50 25
D�0 50 75
Total 100 100

Subject 2

E�1 E�0

D�1 25 10
D�0 75 90
Total 100 100

Pooled subjects

E�1 E�0

D�1 75 35
D�0 125 165
Total 200 200



13. Suppose an odds ratio is estimated using data in which there are
many subjects, each with one observation per subject. Is the odds
ratio estimating an individual level odds ratio or a population aver-
aged (marginal) odds ratio?

For Exercise 14 and Exercise 15, consider a similar scenario as was pre-
sented above for Subject 1 and Subject 2. However, this time the risk ratio
rather than the odds ratio is the measure of interest. The data for Subject 2
have been altered slightly in order to make the risk ratio the same for each
subject allowing comparability to the previous example.

14. Compare the baseline risk (where E�0) of Subject 1 and Subject 2. Is
there a difference (i.e., heterogeneity) in the baseline risk between
subjects?

15. Calculate the risk ratio for Subject 1 and Subject 2 separately.
Calculate the risk ratio after pooling the data for both subjects. How
do the risk ratios compare?
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Subject 1

E�1 E�0

D�1 50 25
D�0 50 75
Total 100 100

Subject 2

E�1 E�0

D�1 20 10
D�0 80 90
Total 100 100

Pooled subjects

E�1 E�0

D�1 70 35
D�0 130 165
Total 200 200



True or false (Circle T or F)
T F 1. A model with subject-specific random effects is an example of a

marginal model.
T F 2. A conditional logistic regression cannot be used to obtain param-

eter estimates for a predictor variable that does not vary its values
within the matched cluster.

T F 3. The alternating logistic regressions approach models relation-
ships between pairs of responses from the same cluster with
odds ratio parameters rather than with correlation parameters
as with GEE.

T F 4. A mixed logistic model is a generalization of the generalized lin-
ear mixed model in which a link function can be specified for
the modeling of the mean.

T F 5. For a GEE model, the user specifies a correlation structure for
the response variable, whereas for a GLMM, the user specifies a
covariance structure.

Questions 6–10 refer to models run on the data from the Heartburn Relief
Study. The following printout summarizes the computer output for two
mixed logistic models. The models include a subject-specific random effect
for the intercept. The dichotomous outcome is relief from heartburn (coded
1 � yes, 0 � no). The exposure of interest is RX (coded 1 � active treatment,
0 � standard treatment). The variable SEQUENCE is coded 1 for subjects in
which the active treatment was administered first and 0 for subjects in
which the standard treatment was administered first. The product term
RX*SEQ (RX times SEQUENCE) is included to assess interaction between
RX and SEQUENCE. Only the estimates of the fixed effects are displayed in
the output.

Model 1

Variable Estimate Std Err

INTERCEPT -0.6884 0.5187

RX 0.4707 0.6608

SEQUENCE 0.9092 0.7238

RX*SEQ -0.2371 0.9038

Model 2

Variable Coefficient Std Err

INTERCEPT -0.6321 0.4530

RX 0.3553 0.4565

SEQUENCE 0.7961 0.564
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6. State the logit form of Model 1 in terms of the mean response of the ith
subject.

7. Use Model 1 to estimate the odds ratios for RX (active versus standard
treatment).

8. Use Model 2 estimate the odds ratio and 95% confidence intervals for RX.
9. How does the interpretation of the odds ratio for RX using Model 2

compare to the interpretation of the odds ratio for RX using a GEE
model with the same covariates (see Model 2 in the Test questions of
Chapter 12)?

10. Explain why the parameter for SEQUENCE cannot be estimated in a
conditional logistic regression using subject as the matching factor.

434 13. Other Approaches for Analysis of Correlated Data



Answers to Practice Exercises 435

1. The odds ratio for the data in Table 1 and Table 2 is 9. The correlation

for the data in Table 1 is , and for the data in 
Table 2,

it is                            So, the odds ratios are the same but the 

correlations are different.
2. If B � C � 0, then M1 � N1 � A and M0 � N0 � D and T � A � D.

The corresponding odds ratio is infinity. Even if just one of the cells (B
or C) were zero, the odds ratio would still be infinity, but the corre-
sponding correlation would be less than 1.

If A � D � 0, then M1 � N0 � B and M0 � N1 � C and T � B � C.

The corresponding odds ratio is zero.
3. If AD � BC, then D � (BC)/A and T � A � B � C � (BC)/A.

OR � (indicating no association between Yj and Yk).

4. exp(�1 � b1i)

5.

6. exp(�1) since b1i is a random variable with a mean of 0 (compare to
Exercise 4).

7. The variance components and unstructured covariance structures
allow for variance heterogeneity.

8. The unstructured covariance structure.
9. The dimensions of the G matrix are 2 × 2 and the dimensions of the R

matrix are 5 × 5 for subject i.

Answers to
Practice
Exercises (3)(8) – 4)(4)(
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10. The odds ratio is 3.0 for both Subject 1 and Subject 2 separately,
whereas the odds ratio is 2.83 after pooling the data. The pooled odds
ratio is smaller.

11. The baseline risk for Subject 1 is 0.25, whereas the baseline risk for
Subject 2 is 0.10. There is a difference in the baseline risk (although
there are only two subjects). Note: In general, assuming there is het-
erogeneity in the subject-specific baseline risk, the population averag-
ing for a marginal odds ratio attenuates (i.e., weakens) the effect of the
individual level odds ratio.

12. Subject 1 and Subject 2 have the same distribution of exposure: 100
exposed out of 200 observations. Note: In a case-control setting we
would consider that there is a different distribution of exposure where
D � 0.

13. With one observation per subject, an odds ratio is estimating a 
population-averaged (marginal) odds ratio since in that setting obser-
vations must be pooled over subjects.

14. The baseline risk for Subject 1 is 0.25, whereas the baseline risk for
Subject 2 is 0.10, indicating that there is heterogeneity of the baseline
risk between subjects.

15. The risk ratio is 2.0 for both Subject 1 and Subject 2 separately and the
risk ratio is also 2.0 for the pooled data. In contrast to the odds ratio, if
the distribution of exposure is the same across subjects, then pooling
the data does not attenuate the risk ratio in the presence of hetero-
geneity of the baseline risk.
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A Appendix:
Computer
Programs for 
Logistic
Regression

437

In this appendix, we provide examples of computer programs to carry out
unconditional logistic regression, conditional logistic regression, polyto-
mous logistic regression, ordinal logistic regression, and GEE logistic
regression. This appendix does not give an exhaustive survey of all com-
puter packages currently available, but, rather, is intended to describe the
similarities and differences among a sample of the most widely used pack-
ages. The software packages that we consider are SAS version 8.2, SPSS
version 10.0, and Stata version 7.0. A detailed description of these packages
is beyond the scope of this appendix. Readers are referred to the built-in
Help functions for each program for further information.

The computer syntax and output presented in this appendix are obtained
from running models on four datasets. We provide each of these datasets on
an accompanying disk in four forms: (1) as text datasets (with a .dat exten-
sion), (2) as SAS version 8.0 datasets (with a .sas7bdat extension), (3) as
SPSS datasets (with a .sav extension), and (4) as Stata datasets (with a .dta
extension). Each of the four datasets is described below. We suggest mak-
ing backup copies of the datasets prior to use to avoid accidentally over-
writing the originals.



Evans County Dataset (evans.dat)
The evans.dat dataset is used to demonstrate a standard logistic regression
(unconditional). The Evans County dataset is discussed in Chapter 2. The
data are from a cohort study in which 609 white males were followed for 7
years, with coronary heart disease as the outcome of interest. The variables
are defined as follows:

ID The subject identifier. Each observation has a unique identifier
since there is one observation per subject.

CHD A dichotomous outcome variable indicating the presence (coded
1) or absence (coded 0) of coronary heart disease.

CAT A dichotomous predictor variable indicating high (coded 1) or
normal (coded 0) catecholamine level.

AGE A continuous variable for age (in years).
CHL A continuous variable for cholesterol.
SMK A dichotomous predictor variable indicating whether the subject

ever smoked (coded 1) or never smoked (coded 0).
ECG A dichotomous predictor variable indicating the presence (coded

1) or absence (coded 0) of electrocardiogram abnormality.
DBP A continuous variable for diastolic blood pressure.
SBP A continuous variable for systolic blood pressure.
HPT A dichotomous predictor variable indicating the presence (coded

1) or absence (coded 0) of high blood pressure. HPT is coded 1 if
the diastolic blood pressure is greater than or equal to 160 or the
systolic blood pressure is greater than or equal to 95.

CH, CC Product terms of CAT � HPT and CAT � CHL, respectively.

MI Dataset (mi.dat)
This dataset is used to demonstrate conditional logistic regression. The MI
dataset is discussed in Chapter 8. The study is a case-control study that
involves 117 subjects in 39 matched strata. Each stratum contains three
subjects, one of whom is a case diagnosed with myocardial infarction and
the other two are matched controls. The variables are defined as follows:

MATCH A variable indicating the subject’s matched stratum. Each stra-
tum contains one case and two controls and is matched on age,
race, sex, and hospital status.

PERSON The subject identifier. Each observation has a unique identifier
since there is one observation per subject.
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MI A dichotomous outcome variable indicating the presence
(coded 1) or absence (coded 0) of myocardial infarction.

SMK A dichotomous variable indicating whether the subject is
(coded 1) or is not (coded 0) a current smoker.

SBP A continuous variable for systolic blood pressure.
ECG A dichotomous predictor variable indicating the presence (coded

1) or absence (coded 0) of electrocardiogram abnormality.

Cancer Dataset (cancer.dat)
This dataset is used to demonstrate polytomous and ordinal logistic regres-
sion. The cancer dataset, discussed in Chapters 9 and 10, is part of a study of
cancer survival (Hill et al., 1995). The study involves 288 women who had
been diagnosed with endometrial cancer. The variables are defined as follows:

ID The subject identifier. Each observation has a unique iden-
tifier since there is one observation per subject.

GRADE A three-level ordinal outcome variable indicating tumor
grade. The grades are well differentiated (coded 0), moder-
ately differentiated (coded 1), and poorly differentiated
(coded 2).

RACE A dichotomous variable indicating whether the race of the
subject is black (coded 1) or white (coded 0).

ESTROGEN A dichotomous variable indicating whether the subject ever
(coded 1) or never (coded 0) used estrogen.

SUBTYPE A three-category polytomous outcome indicating whether
the subject’s histological subtype is Adenocarcinoma
(coded 0), Adenosquamous (coded 1), or Other (coded 2).

AGE A dichotomous variable indicating whether the subject is
within the age group 50–64 (coded 0) or within the age
group 65–79 (coded 1). All 286 subjects are in one of these
age groups.

SMK A dichotomous variable indicating whether the subject is
(coded 1) or is not (coded 0) a current smoker.
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Infant Dataset (infant.dat)
This is the dataset used to demonstrate GEE modeling. The infant dataset,
discussed in Chapters 11 and 12, is part of a health intervention study in
Brazil (Cannon et al., 2001). The study involves 168 infants, each of whom
has at least 5 and up to 9 monthly measurements, yielding 1458 observa-
tions in all. There are complete data on all covariates for 136 of the infants.
The outcome of interest is derived from a weight-for-height standardized
score based on the weight-for-height distribution of a standard population.
The outcome is correlated since there are multiple measurements for each
infant. The variables are defined as follows:

IDNO The subject identifier. Each subject has up to nine observa-
tions. This is the variable that defines the cluster used for
the correlated analysis.

MONTH A variable taking the values 1 through 9 that indicates the
order of an infant’s monthly measurements. This is the vari-
able that distinguishes observations within a cluster.

OUTCOME Dichotomous outcome of interest derived from a weight-for-
height standardized z-score. The outcome is coded 1 if the
infant’s z-score for a particular monthly measurement is less
than �1 and coded 0 otherwise.

BIRTHWGT A continuous variable that indicates the infant’s birth weight
in grams. This is a time-independent variable, as the infant’s
birth weight does not change over time. The value of the
variable is missing for 32 infants.

GENDER A dichotomous variable indicating whether the infant is
male (coded 1) or female (coded 2).

DIARRHEA A dichotomous time-dependent variable indicating whether
the infant did (coded 1) or did not (coded 0) have symptoms
of diarrhea that month.

We first illustrate how to perform analyses of these datasets using SAS, fol-
lowed by SPSS, and, finally, Stata. Not all of the output produced from each
procedure will be presented, as some of the output is extraneous to our dis-
cussion.



Analyses are carried out in SAS by using the appropriate SAS procedure on
a SAS dataset. Each SAS procedure begins with the word PROC. The follow-
ing four SAS procedures are used to perform the analyses in this appendix.

1. PROC LOGISTIC: This procedure can be used to run logistic regres-
sion and ordinal logistic regression using the proportional odds
model.

2. PROC GENMOD: This procedure can be used to run GLM (including
logistic regression and ordinal logistic regression) and GEE models.

3. PROC CATMOD: This procedure can be used to run polytomous logis-
tic regression.

4. PROC PHREG: This procedure can be used to run conditional logistic
regression.

The capabilities of these procedures are not limited to performing the
above-listed analyses. For example, PROC PHREG also may be used to run
Cox proportional hazard models for survival analyses. However, our goal is
to demonstrate only the types of modeling presented in this text.

Unconditional Logistic Regression
PROC LOGISTIC

The first illustration presented is an unconditional logistic regression with
PROC LOGISTIC using the Evans County data. The dichotomous outcome
variable is CHD and the predictor variables are CAT, AGE, CHL, ECG, SMK,
and HPT. Two interaction terms, CH and CC, are also included. CH is the
product CAT � HPT; CC is the product CAT � CHL. The variables repre-
senting the interaction terms have already been included in the datasets
provided on the accompanying disk.

The model is stated as follows:

logit P(CHD�1| X) � �0 � �1CAT � �2AGE � �3CHL � �4ECG � �5SMK �
�6HPT � �7CH � �8CC

For this example, we shall use the SAS permanent dataset evans.sas7bdat.
A LIBNAME statement is needed to indicate the path to the location of the
SAS dataset. In our examples, we assume that the file is located on the A
drive (i.e., on a disk). The LIBNAME statement includes a reference name
as well as the path. We call the reference name REF. The code is as follows:

LIBNAME REF ‘A:\’;
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The user is free to define his/her own reference name. The path to the loca-
tion of the file is given between the single quotation marks. The general
form of the code is

LIBNAME Your reference name ‘Your path to file location’;

All of the SAS programming will be written in capital letters for readability.
However, SAS is not case-sensitive. If a program is written with lowercase
letters, SAS reads them as uppercase. The number of spaces between words
(if more than one) has no effect on the program. Each SAS programming
statement ends with a semicolon.

The code to run a standard logistic regression with PROC LOGISTIC is as
follows:

PROC LOGISTIC DATA = REF.EVANS DESCENDING;

MODEL CHD = CAT AGE CHL ECG SMK HPT CH CC / COVB;

RUN;

With the LIBNAME statement, SAS recognizes a two-level file name: the
reference name and the file name without an extension. For our example,
the SAS file name is REF.EVANS. Alternatively, a temporary SAS dataset
could be created and used for the PROC LOGISTIC. However, a temporary
SAS dataset has to be re-created in every SAS session as it is deleted from
memory when the user exits SAS. The following code creates a temporary
SAS dataset called EVANS from the permanent SAS dataset REF.EVANS.

DATA EVANS;

SET REF.EVANS;

RUN;

The DESCENDING option in the PROC LOGISTIC statement instructs SAS
that the outcome event of interest is CHD�1 rather than the default,
CHD�0. In other words, we are interested in modeling the P(CHD�1)
rather than P(CHD�0). Check the Response Profile in the output to see that
CHD�1 is listed before CHD�0. In general, if the output produces results
that are the opposite of what you would expect, chances are that there is an
error in coding, such as incorrectly omitting (or incorrectly adding) the
DESCENDING option.

Options requested in the MODEL statement are preceded by a forward
slash. The COVB option requests the variance–covariance matrix for the
parameter estimates.
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The LOGISTIC Procedure

Model Information

Data Set REF.EVANS

Response Variable chd

Number of Response Levels 2

Number of Observations 609

Link Function Logit

Optimization Technique Fisher’s scoring

Response Profile

Ordered CHD Count

Value

1 1 71

2 0 538

Model Fit Statistics

Intercept 

Criterion Intercept and 

Only Covariates

AIC 440.558 365.230

SC 444.970 404.936

-2 Log L 438.558 347.230

Analysis of Maximum Likelihood Estimates

Standard 

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -4.0497 1.2550 10.4125 0.0013

CAT 1 -12.6894 3.1047 16.7055 <.0001

AGE 1 0.0350 0.0161 4.6936 0.0303

CHL 1 -0.00545 0.00418 1.7000 0.1923

ECG 1 0.3671 0.3278 1.2543 0.2627

SMK 1 0.7732 0.3273 5.5821 0.0181

HPT 1 1.0466 0.3316 9.9605 0.0016

CH 1 -2.3318 0.7427 9.8579 0.0017

CC 1 0.0692 0.0144 23.2020 <.0001

The output produced by PROC LOGISTIC follows:
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Odds Ratio Estimates

Point 95% Wald 

Effect Estimate Confidence Limits

CAT <0.001 <0.001 0.001

AGE 1.036 1.003 1.069

CHL 0.995 0.986 1.003

ECG 1.444 0.759 2.745

SMK 2.167 1.141 4.115

HPT 2.848 1.487 5.456

CH 0.097 0.023 0.416

CC 1.072 1.042 1.102

Estimated Covariance Matrix

Variable Intercept cat age chl ecg

Intercept 1.575061 -0.66288 -0.01361 -0.00341 -0.04312

CAT -0.66288 9.638853 -0.00207 0.003591 0.02384

AGE -0.01361 -0.00207 0.00026 -3.66E-6 0.00014

CHL -0.00341 0.003591 -3.66E-6 0.000018 0.000042

ECG -0.04312 0.02384 0.00014 0.000042 0.107455

SMK -0.1193 -0.02562 0.000588 0.000028 0.007098

HPT 0.001294 0.001428 -0.00003 -0.00025 -0.01353

CH 0.054804 -0.00486 -0.00104 0.000258 -0.00156

CC 0.003443 -0.04369 2.564E-6 -0.00002 -0.00033

Variable smk hpt ch cc

Intercept -0.1193 0.001294 0.054804 0.003443

CAT -0.02562 0.001428 -0.00486 -0.04369

AGE 0.000588 -0.00003 -0.00104 2.564E-6

CHL 0.000028 -0.00025 0.000258 -0.00002

ECG 0.007098 -0.01353 -0.00156 -0.00033

SMK 0.107104 -0.00039 0.002678 0.000096

HPT -0.00039 0.109982 -0.108 0.000284

CH 0.002678 -0.108 0.551555 -0.00161

CC 0.000096 0.000284 -0.00161 0.000206

The negative 2 log likelihood statistic (i.e., �2 Log L) for the model, 347.230,
is presented in the table titled “Model Fit Statistics.” A likelihood ratio test sta-
tistic to assess the significance of the two interaction terms can be obtained
by running a no-interaction model and subtracting the negative 2 log likeli-
hood statistic for the current model from that of the no-interaction model.
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The parameter estimates are given in the table titled “Analysis of Maximum
Likelihood Estimates.” The point estimates of the odds ratios, given in the
table titled “Odds Ratio Estimates,” are obtained by exponentiating each of
the parameter estimates. However, these odds ratio estimates can be mis-
leading for continuous predictor variables or in the presence of interaction
terms. For example, for continuous variables like AGE, exponentiating the
estimated coefficient gives the odds ratio for a one-unit change in AGE.
Also, exponentiating the estimated coefficient for CAT gives the odds ratio
estimate (CAT�1 vs. CAT�0) for a subject whose cholesterol count is zero,
which is impossible.

PROC GENMOD

Next, we illustrate the use of PROC GENMOD with the Evans County data.
PROC GENMOD can be used to run GLM and GEE models, including
unconditional logistic regression, which is a special case of GLM. The link
function and the distribution of the outcome are specified in the model
statement. LINK�LOGIT and DIST�BINOMIAL are the MODEL state-
ment options that specify a logistic regression. Options requested in the
MODEL statement are preceded by a forward slash. The code that follows
runs the same model as the preceding PROC LOGISTIC:

PROC GENMOD DATA = REF.EVANS DESCENDING;

MODEL CHD = CAT AGE CHL ECG SMK HPT CH CC/LINK = LOGIT DIST = BINOMIAL;

ESTIMATE ‘LOG OR (CHL=220, HPT=1)’ CAT 1 CC 220 CH 1/EXP;

ESTIMATE ‘LOG OR (CHL=220, HPT=0)’ CAT 1 CC 220 CH 0/EXP;

CONTRAST ‘LRT for interaction terms’ CH 1, CC 1;

RUN;

The DESCENDING option in the PROC GENMOD statement instructs SAS
that the outcome event of interest is CHD�1 rather than the default, CHD�0.
However, this may not be consistent with other SAS versions (e.g., CHD�1 is
the default event for PROC GENMOD in version 8.0 but not in version 8.2).
An optional ESTIMATE statement can be used to obtain point estimates, con-
fidence intervals, and a Wald test for a linear combination of parameters (e.g.,
�1 � 1�6 � 220�7). The EXP option in the ESTIMATE statement exponenti-
ates the requested linear combination of parameters. In this example, two
odds ratios are requested using the interaction parameters:

1. exp(�1 � 1�6 � 220�7) is the odds ratio for CAT�1 vs. CAT�0 for
HPT�1 and CHOL�220;

2. exp(�1 � 0�6 � 220�7) is the odds ratio for CAT�1 vs. CAT�0 for
HPT�0 and CHOL�220.
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The quoted text following the word ESTIMATE is a “label” that is printed in
the output. The user is free to define his/her own label. The CONTRAST
statement, as used in this example, requests a likelihood ratio test on the
two interaction terms (CH and CC). The CONTRAST statement also
requires that the user define a label. The same CONTRAST statement in
PROC LOGISTIC would produce a generalized Wald test statistic, rather
than a likelihood ratio test, for the two interaction terms.

The GENMOD Procedure

Model Information

Data Set WORK.EVANS1

Distribution Binomial

Link Function Logit

Dependent Variable chd

Observations Used 609

Response Profile

Ordered Total 

Value chd Frequency

1 1 71

2 0 538

PROC GENMOD is modeling the probability that chd=’1’.

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 600 347.2295 0.5787

Scaled Deviance 600 347.2295 0.5787

Pearson Chi-Square 600 799.0652 1.3318

Scaled Pearson X2 600 799.0652 1.3318

Log Likelihood -173.6148

Algorithm converged

The output produced from PROC GENMOD follows:



Analysis Of Parameter Estimates

Standard Wald 95% Confidence  Chi-

Parameter        Estimate    Error Limits Square Pr > ChiSq

Intercept -4.0497 1.2550 -6.5095 -1.5900 10.41 0.0013

CAT -12.6895 3.1047 -18.7746 -6.6045 16.71 <.0001

AGE 0.0350 0.0161 0.0033 0.0666 4.69 0.0303

CHL -0.0055 0.0042 -0.0137 0.0027 1.70 0.1923

ECG 0.3671 0.3278 -0.2754 1.0096 1.25 0.2627

SMK 0.7732 0.3273 0.1318 1.4146 5.58 0.0181

HPT 1.0466 0.3316 0.3967 1.6966 9.96 0.0016

CH -2.3318 0.7427 -3.7874 -0.8762 9.86 0.0017

CC 0.0692 0.0144 0.0410 0.0973 23.20 <.0001

Scale 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

Contrast Estimate Results

Standard Chi-  Pr >

Label                       Estimate  Error Confidence  Limits  Square ChiSq

Log OR (chl=220, hpt=1) 0.1960 0.4774 -0.7397 1.1318 0.17 0.6814

Exp(Log OR (chl=220, hpt=1)) 1.2166 0.5808 0.4772 3.1012

Log OR (chl=220, hpt=0) 2.5278 0.6286 1.2957 3.7599 16.17 <.0001

Exp(Log OR (chl=220, hpt=0)) 12.5262 7.8743 3.6537 42.9445

Contrast Results

Chi-

Contrast DF Square Pr > ChiSq Type

LRT for interaction terms 2 53.16 <.0001 LR

The table titled “Contrast Estimate Results” gives the odds ratios requested
by the ESTIMATE statement. The estimated odds ratio for CAT�1 vs.
CAT�0 for a hypertensive subject with a 220 cholesterol count is
exp(0.1960) � 1.2166. The estimated odds ratio for CAT�1 vs. CAT�0 for a
nonhypertensive subject with a 220 cholesterol count is exp(2.5278) �
12.5262. The table titled “Contrast Results” gives the chi-square test statistic
(53.16) and P-value (�0.0001) for the likelihood ratio test on the two inter-
action terms.
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EVENTS/TRIALS FORMAT

The Evans County dataset evans.dat contains individual level data. Each
observation represents an individual subject. PROC LOGISTIC and PROC
GENMOD also accommodate summarized binomial data in which each
observation contains a count of the number of events and trials for a partic-
ular pattern of covariates. The dataset EVANS2 summarizes the 609 obser-
vations of the EVANS data into 8 observations, where each observation con-
tains a count of the number of events and trials for a particular pattern of
covariates. The dataset contains five variables:

CASES number of coronary heart disease cases
TOTAL number of subjects at risk in the stratum
CAT serum catecholamine level (1 � high, 0 � normal)
AGEGRP dichotomized age variable (1 � age � 55, 0 � age � 55)
ECG electrocardiogram abnormality (1 � abnormal, 0 � normal)

The code to produce the dataset is shown next. The dataset is small enough
that it can be easily entered manually.

DATA EVANS2;

INPUT CASES TOTAL CAT AGEGRP ECG;

CARDS;

17 274 0 0 0

15 122 0 1 0

7 59 0 0 1

5 32 0 1 1

1 8 1 0 0

9 39 1 1 0

3 17 1 0 1

14 58 1 1 1

;

RUN;

To run a logistic regression on the summarized data EVANS2, the response
is put into an EVENTS/TRIALS form for either PROC LOGISTIC or PROC
GENMOD. The model is stated as follows:

logit P(CHD�1|X) � �0 � �1CAT � �2AGEGRP � �3ECG

The code to run the model in PROC LOGISTIC using the dataset EVANS2 is

PROC LOGISTIC DATA = EVANS2;

MODEL CASES/TOTAL = CAT AGEGRP ECG;

RUN;

448 Appendix: Computer Programs for Logistic Regression



The code to run the model in PROC GENMOD using the dataset EVANS2 is

PROC GENMOD DATA=EVANS2;

MODEL CASES/TOTAL=CAT AGEGRP ECG / LINK=LOGIT 

DIST=BINOMIAL;

RUN;

The DECSENDING option is not necessary if the response is in the
EVENTS / TRIALS form. The output is omitted.

USING FREQUENCY WEIGHTS

Individual level data can also be summarized using frequency counts if the
variables of interest are categorical variables. The dataset EVANS3 contains
the same information as EVANS2, except that each observation represents
cell counts in a four-way frequency table for the variables CHD � CAT �
AGEGRP � ECG. The variable COUNT contains the frequency counts. The
code that creates EVANS3 follows:

DATA EVANS3;

INPUT CHD CAT AGEGRP ECG COUNT;

CARDS;

1 0 0 0 17

0 0 0 0 257

1 0 1 0 15

0 0 1 0 107

1 0 0 1 7

0 0 0 1 52

1 0 1 1 5

0 0 1 1 27

1 1 0 0 1

0 1 0 0 7

1 1 1 0 9

0 1 1 0 30

1 1 0 1 3

0 1 0 1 14

1 1 1 1 14

0 1 1 1 44

;

RUN;
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Whereas the dataset EVANS2 contains 8 observations, the dataset EVANS3
contains 16 observations. The first observation of EVANS2 indicates that
out of 274 subjects with CAT�0, AGEGRP�0, and ECG�0, there are 17
CHD cases in the cohort. EVANS3 uses the first two observations to pro-
duce the same information. The first observation indicates that there are 17
subjects with CHD�1, CAT�0, AGEGRP�0, and ECG�0, whereas the sec-
ond observations indicates that there are 257 subjects with CHD�0,
CAT�0, AGEGRP�0, and ECG�0.

We restate the model:

logit P(CHD�1|X) � �0 � �1CAT � �2AGEGRP � �3ECG

The code to run the model in PROC LOGISTIC using the dataset EVANS3 is

PROC LOGISTIC DATA=EVANS3 DESCENDING;

MODEL CHD = CAT AGEGRP ECG;

FREQ COUNT;

RUN;

The FREQ statement is used to identify the variable (e.g., COUNT) in the
input dataset that contains the frequency counts. The output is omitted.

The FREQ statement can also be used with PROC GENMOD. The code fol-
lows:

PROC GENMOD DATA=EVANS3 DESCENDING;

MODEL CHD = CAT AGEGRP ECG / LINK=LOGIT DIST=BINOMIAL;

FREQ COUNT;

RUN;

THE ANALYST APPLICATION

The procedures described above are run by entering the appropriate code in
the Program (or Enhanced) Editor window and then submitting the pro-
gram. This is the approach commonly employed by SAS users. Another
option for performing a logistic regression analysis in SAS is to use the
Analyst Application. In this application, procedures are selected by pointing
and clicking the mouse through a series of menus and dialog boxes. This is
similar to the process commonly employed by SPSS users.

450 Appendix: Computer Programs for Logistic Regression



The Analyst Application is invoked by selecting Solutions → Analysis →
Analyst from the toolbar. Once in Analyst, the permanent SAS dataset
evans.sas7bdat can be opened into the spreadsheet. To perform a logistic
regression, select Statistics → Regression → Logistic. In the dialog box,
select CHD as the Dependent variable. There is an option to use a Single
trial or an Events/Trials format. Next, specify which value of the outcome
should be modeled using the Model Pr{ } button. In this case, we wish to
model the probability that CHD equals 1. Select and add the covariates to
the Quantitative box. Various analysis and output options can be selected
under the Model and Statistics buttons. For example, under Statistics, the
covariance matrix for the parameter estimates can be requested as part of
the output. Click on OK in the main dialog box to run the program. The
output generated is from PROC LOGISTIC. It is omitted here as it is similar
to the output previously shown. A check of the Log window in SAS shows
the code that was used to run the analysis.

Conditional Logistic Regression
PROC PHREG

Next, a conditional logistic regression is demonstrated with the MI dataset
using PROC PHREG. The MI dataset contains information from a study in
which each of 39 cases diagnosed with myocardial infarction is matched
with two controls, yielding a total of 117 subjects.

The model is stated as follows:

1 if ith matched triplet
Vi � i � 1, 2, ..., 38

0 otherwise

PROC PHREG is a procedure developed for survival analysis, but it can also
be used to run a conditional logistic regression. In order to apply PROC
PHREG for a conditional logistic regression, a time variable must be created
in the data even though a time variable is not defined for use in the study.
The time variable should be coded to indicate that all cases had the event at
the same time and all controls were censored at a later time. This can easily
be accomplished by defining a variable that has the value 1 for all the cases
and the value 2 for all the controls. Do not look for meaning in this variable,
as its purpose is just a tool to get the computer to perform a conditional
logistic regression.
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With the MI data, we shall use the permanent SAS dataset (mi.sas7bdat) to
create a new SAS dataset that creates the time variable (called SURVTIME)
needed to run the conditional logistic regression. The code follows:

LIBNAME REF ‘A:\’;

DATA MI;

SET REF.MI;

IF MI = 1 THEN SURVTIME = 1;

IF MI = 0 THEN SURVTIME = 2;

RUN;

A temporary SAS dataset named MI has been created that contains a vari-
able SURVTIME along with the other variables that were contained in the
permanent SAS dataset stored on the A drive. If the permanent SAS dataset
was stored in a different location, the LIBNAME statement would have to
be adjusted to point to that location.

The SAS procedure, PROC PRINT, can be used to view the MI dataset in the
output window:

PROC PRINT DATA = MI; RUN;

The output for the first nine observations from running the PROC PRINT
follows:

Obs MATCH PERSON MI SMK SBP ECG SURVTIME

1 1 1 1 0 160 1 1

2 1 2 0 0 140 0 2

3 1 3 0 0 120 0 2

4 2 4 1 0 160 1 1

5 2 5 0 0 140 0 2

6 2 6 0 0 120 0 2

7 3 7 1 0 160 0 1

8 3 8 0 0 140 0 2

9 3 9 0 0 120 0 2
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The code to run the conditional logistic regression follows:

PROC PHREG DATA=MI;

MODEL SURVTIME*MI(0) = SMK SBP ECG / TIES=DISCRETE;

STRATA MATCH;

RUN;

The model statement contains the time variable (SURVTIME) followed by
an asterisk and the case status variable (MI) with the value of the noncases
(0) in parentheses. The TIES � DISCRETE option in the model statement
requests that the conditional logistic likelihood be applied, assuming that
all the cases have the same value of SURVTIME. The PROC PHREG output
follows:

The PHREG Procedure

Model Information

Data Set WORK.MI

Dependent Variable survtime

Censoring Variable mi

Censoring Value(s) 0

Ties Handling DISCRETE

Model Fit Statistics

Without With

Criterion Covariates Covariates

-2 LOG L 85.692 63.491

AIC 85.692 69.491

SBC 85.692 74.482

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 22.2008 3 <.0001

Score 19.6785 3 0.0002

Wald 13.6751 3 0.0034

Analysis of Maximum Likelihood Estimates

Parameter Standard Hazard

Variable DF Estimate Error Chi-Square Pr > ChiSq Ratio

SMK 1 0.72906 0.56126 1.6873 0.1940 2.073

SBP 1 0.04564 0.01525 8.9612 0.0028 1.047

ECG 1 1.59926 0.85341 3.5117 0.0609 4.949
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Although the output calls it a hazard ratio, the odds ratio estimate for
SMK�1 vs. SMK�0 is exp(0.72906) � 2.073.

ANALYST APPLICATION

As with PROC LOGISTIC, PROC PHREG can also be invoked in the Analyst
Application. The first step is to open the SAS dataset mi.sas7bdat in the
Analyst spreadsheet. To perform a conditional logistic regression, select
Statistics → Survival → Proportional Hazards. In the dialog box, select
SURVTIME as the Time variable. Select MI as the Censoring variable and
indicate that the Censoring Value for the data is 0 (i.e., the value for the con-
trols is 0). Next, input SMK, SBP, and ECG into the Explanatory box. Under
the Methods button, select “Discrete logistic model” as the “Method to han-
dle failure time ties.” (Breslow is the default setting.) Under the Variables
button, select MATCH as the Strata variable. Click on OK in the main dia-
log box to run the model. The output generated is from PROC PHREG. It is
similar to the output presented previously and is thus omitted here. Again,
the Log window in SAS can be viewed to see the code for the procedure.

Polytomous Logistic Regression
Next, a polytomous logistic regression is demonstrated with the cancer dataset
using PROC CATMOD. If the permanent SAS dataset cancer.sas7bdat is in
the A drive, we can access it by running a LIBNAME statement. If the same
LIBNAME statement has already been run earlier in the SAS session, it is
unnecessary to rerun it.

LIBNAME REF ‘A:\’;

First, a PROC PRINT will be run on the cancer dataset.

PROC PRINT DATA = REF.CANCER; RUN;

The output for the first eight observations from running the PROC PRINT
follows:

Obs ID GRADE RACE ESTROGEN SUBTYPE AGE SMOKING

1 10009 1 0 0 1 0 1

2 10025 0 0 1 2 0 0

3 10038 1 0 0 1 1 0

4 10042 0 0 0 0 1 0

5 10049 0 0 1 0 0 0

6 10113 0 0 1 0 1 0

7 10131 0 0 1 2 1 0

8 10160 1 0 0 0 0 0
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PROC CATMOD is the SAS procedure that is used to run a polytomous logis-
tic regression. (This procedure is not available in the Analyst Application.)

The three-category outcome variable is SUBTYPE, coded as 0 for Adeno-
squamous, 1 for Adenocarcinoma, and 2 for Other. The model is stated as
follows:

where g � 1, 2.

By default, PROC CATMOD assumes the highest level of the outcome vari-
able is the reference group, as does PROC LOGISTIC. Unfortunately, PROC
CATMOD does not have a DESCENDING option, as does PROC LOGISTIC.
If we wish to make SUBTYPE�0 (i.e., Adenosquamous), the reference
group using PROC CATMOD, the variable SUBTYPE must first be sorted in
descending order using PROC SORT and then the ORDER � DATA option
must be used in PROC CATMOD. The code follows:

PROC SORT DATA = REF.CANCER OUT = CANCER;

BY DESCENDING SUBTYPE;

RUN;

PROC CATMOD ORDER = DATA DATA = CANCER;

DIRECT AGE ESTROGEN SMOKING;

MODEL SUBTYPE = AGE ESTROGEN SMOKING;

RUN;

PROC CATMOD treats all independent variables as nominal variables and
recodes them as dummy variables by default. The DIRECT statement in
PROC CATMOD, followed by a list of variables, is used if recoding of those
variables is not desired.

The CATMOD Procedure

Response subtype Response Levels 3

Weight Variable None Populations 8

Data Set CANCER Total Frequency 286

Frequency Missing 2 Observations 286
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The PROC CATMOD output follows:



Response Profiles

Response subtype

1 2

2 1

3 0

Analysis of Maximum Likelihood Estimates

Standard Chi-

Effect Parameter Estimate Error Square Pr > ChiSq

Intercept 1 -1.2032 0.3190 14.23 0.0002

2 -1.8822 0.4025 21.87 <.0001

AGE 3 0.2823 0.3280 0.74 0.3894

4 0.9871 0.4118 5.75 0.0165

ESTROGEN 5 -0.1071 0.3067 0.12 0.7270

6 -0.6439 0.3436 3.51 0.0609

SMOKING 7 -1.7913 1.0460 2.93 0.0868

8 0.8895 0.5254 2.87 0.0904

Notice that there are two parameter estimates for each independent vari-
able, as there should be for this model. Since the response variable is in
descending order (see the response profile in the output), the first parame-
ter estimate compares SUBTYPE�2 vs. SUBTYPE�0 and the second com-
pares SUBTYPE�1 vs. SUBTYPE�0. The odds ratio for AGE�1 vs. AGE�0
comparing SUBTYPE� 2 vs. SUBTYPE�0 is exp(0.2823) � 1.33.

Ordinal Logistic Regression
PROC LOGISTIC

Next, an ordinal logistic regression is demonstrated using the proportional
odds model. Either PROC LOGISTIC or PROC GENMOD can be used to
run a proportional odds model. We continue to use the cancer dataset to
demonstrate this model, with the variable GRADE as the response variable.
The model is stated as follows:

where g �1, 2.
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The code using PROC LOGISTIC follows:

PROC LOGISTIC DATA = REF.CANCER DESCENDING;

MODEL GRADE = RACE ESTROGEN;

RUN;

The LOGISTIC Procedure

Model Information

Data Set REF.CANCER

Response Variable grade

Number of Response Levels 3

Number of Observations 286

Link Function Logit

Optimization Technique Fisher’s scoring

Response Profile

Ordered Total

Value grade Frequency

1 2 53

2 1 105

3 0 128

Score Test for the Proportional Odds Assumption

Chi-Square DF Pr > ChiSq

0.9051 2 0.6360

Analysis of Maximum Likelihood Estimates

Standard 

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 -1.2744 0.2286 31.0748 <.0001

Intercept2 1 0.5107 0.2147 5.6555 0.0174

RACE 1 0.4270 0.2720 2.4637 0.1165

ESTROGEN 1 -0.7763 0.2493 9.6954 0.0018
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The PROC LOGISTIC output for the proportional odds model follows:



Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

RACE 1.533 0.899 2.612

ESTROGEN 0.460 0.282 0.750

The Score test for the proportional odds assumption yields a chi-square
value of 0.9051 and a P-value of 0.6360. Notice that there are two intercepts,
but only one parameter estimate for each independent variable.

PROC GENMOD

PROC GENMOD can also be used to perform an ordinal regression; how-
ever, it does not provide a test of the proportional odds assumption. The
code is as follows:

PROC GENMOD DATA = REF.CANCER DESCENDING;

MODEL GRADE = RACE ESTROGEN/ LINK=CUMLOGIT DIST=

MULTINOMIAL;

RUN;

Recall that with PROC GENMOD, the link function (LINK�) and the distri-
bution of the response variable (DIST�) must be specified. The propor-
tional odds model uses the cumulative logit link function, whereas the
response variable follows the multinomial distribution.

The output is omitted.

ANALYST APPLICATION

The Analyst Application can also be used to run an ordinal regression
model. Once the cancer.sas7bdat dataset is opened in the spreadsheet,
select Statistics → Regression → Logistic. In the dialog box, select GRADE
as the Dependent variable. Next, specify which value of the outcome should
be modeled using the Model Pr{ } button. In this case, we wish to model the
“Upper (decreasing) levels” (i.e., 2 and 1) against the lowest level. Select and
add the covariates (RACE and ESTROGEN) to the Quantitative box.
Various analysis and output options can be selected under the Model and
Statistics buttons. For example, under Statistics, the covariance matrix for
the parameter estimates can be requested as part of the output. Click on OK
in the main dialog box to run the program. The output generated is from
PROC LOGISTIC and is identical to the output presented previously. A
check of the Log window in SAS shows the code that was used to run the
analysis.
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Modeling Correlated Dichotomous Data with GEE
Next, the programming of a GEE model with the infant care dataset is
demonstrated using PROC GENMOD. The model is stated as follows:

logit P(OUTCOME � 1|X)� �0 � �1BIRTHWGT � �2GENDER
� �3DIARRHEA.

The code and output are shown for this model assuming an AR1 correlation
structure. The code for specifying other correlation structures using the
REPEATED statement in PROC GENMOD is shown later in this section,
although the output is omitted.

First, a PROC PRINT will be run on the infant care dataset. Again, the use
of the following LIBNAME statement assumes the permanent SAS dataset
is stored on the A drive.

LIBNAME REF ‘A:\’;

PROC PRINT DATA = REF.INFANT; RUN;

The output for the first nine observations obtained from running the PROC
PRINT is presented. These are data on just one infant. Each observation
represents one of the nine monthly measurements.

Obs IDNO MONTH OUTCOME BIRTHWGT GENDER DIARRHEA

1 00001 1 0 3000 1 0

2 00001 2 0 3000 1 0

3 00001 3 0 3000 1 0

4 00001 4 0 3000 1 1

5 00001 5 0 3000 1 0

6 00001 6 0 3000 1 0

7 00001 7 0 3000 1 0

8 00001 8 0 3000 1 0

9 00001 9 0 3000 1 0

The code for running a GEE model with an AR1 correlation structure follows:

PROC GENMOD DATA=REF.INFANT DESCENDING;

CLASS IDNO MONTH;

MODEL OUTCOME=BIRTHWGT GENDER DIARRHEA / DIST=BIN LINK=LOGIT;

REPEATED SUBJECT=IDNO / TYPE=AR(1) WITHIN=MONTH CORRW;

ESTIMATE ‘log odds ratio (DIARRHEA 1 vs 0)’ DIARRHEA 1/EXP;

CONTRAST ‘Score Test BIRTHWGT and DIARRHEA’ BIRTHWGT 1, DIARRHEA 1;

RUN;
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The variable defining the cluster (infant) is IDNO. The variable defining the
order of measurement within a cluster is MONTH. Both of these variables
must be listed in the CLASS statement. If the user wishes to have dummy
variables defined from any nominal independent variables, these can also
be listed in the CLASS statement.

The LINK and DIST option in the MODEL statement define the link func-
tion and the distribution of the response. Actually, for a GEE model, the dis-
tribution of the response is not specified. Rather, a GEE model requires that
the mean–variance relationship of the response be specified. What the
DIST�BINOMIAL option does is to define the mean–variance relationship
of the response to be the same as if the response followed a binomial distri-
bution [i.e., var(Y) � φ�(1��)].

The REPEATED statement indicates that a GEE model rather than a GLM
is requested. SUBJECT�IDNO in the REPEATED statement defines the
cluster variable as IDNO. There are many options (following a forward
slash) that can be used in the REPEATED statement. We use three of them
in this example. The TYPE�AR(1) option specifies the AR1 working corre-
lation structure, the CORRW option requests the printing of the working
correlation matrix in the output window, and the WITHIN�MONTH option
defines the variable (MONTH) that gives the order of measurements within
a cluster. For this example, the WITHIN�MONTH option is unnecessary
since the default order within a cluster is the order of observations in the
data (i.e., the monthly measurements for each infant are ordered in the data
from month 1 to month 9).

The ESTIMATE statement with the EXP option is used to request the odds
ratio estimate for the variable DIARRHEA. The quoted text in the ESTI-
MATE statement is a label defined by the user for the printed output. The
CONTRAST statement requests that the Score test be performed to simulta-
neously test the joint effects of the variable BIRTHWGT and DIARRHEA. If
the REPEATED statement was omitted (i.e., defining a GLM rather than a
GEE model), the same CONTRAST statement would produce a likelihood
ratio test rather than a Score test. Recall the likelihood ratio test is not valid
for a GEE model. A forward slash followed by the word WALD in the CON-
TRAST statement of PROC GENMOD requests results from a generalized
Wald test rather than a Score test. The CONTRAST statement also requires
a user-defined label.
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The GENMOD Procedure

Model Information

Data Set REF.INFANT

Distribution Binomial

Link Function Logit

Dependent Variable outcome

Observations Used 1203

Missing Values 255

Class Level Information

Class Levels Values

IDNO 136 00001 00002 00005 00008 00009 00010 00011 00012

00017 00018 00020 00022 00024 00027 00028 00030

00031 00032 00033 00034 00035 00038 00040 00044

00045 00047 00051 00053 00054 00056 00060 00061

00063 00067 00071 00072 00077 00078 00086 00089

00090 00092 . . . 

MONTH 9 1 2 3 4 5 6 7 8 9

Response Profile

Ordered Total

Value outcome Frequency

1 1 64

2 0 1139

PROC GENMOD is modeling the probability that outcome=’1’.

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 1199 490.0523 0.4087

Scaled Deviance 1199 490.0523 0.4087

Pearson Chi-Square 1199 1182.7485 0.9864

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Scaled Pearson X2 1199 1182.7485 0.9864

Log Likelihood -245.0262

Algorithm converged.
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The output produced by PROC GENMOD follows:



Analysis Of Initial Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -1.4362 0.6022 -2.6165 -0.2559 5.69 0.0171

BIRTHWGT 1 -0.0005 0.0002 -0.0008 -0.0001 7.84 0.0051

GENDER 1 -0.0453 0.2757 -0.5857 0.4950 0.03 0.8694

DIARRHEA 1 0.7764 0.4538 -0.1129 1.6658 2.93 0.0871

Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.

GEE Model Information

Correlation Structure AR(1)

Within-Subject Effect MONTH (9 levels)

Subject Effect IDNO (168 levels)

Number of Clusters 168

Clusters With Missing Values 32

Correlation Matrix Dimension 9

Maximum Cluster Size 9

Minimum Cluster Size 0

Algorithm converged.

Working Correlation Matrix

Col1 Col2 Col3 Col4 Col5 Col6 Col7 Col8 Col9

Row1 1.0000 0.5254 0.2760 0.1450 0.0762 0.0400 0.0210 0.0110 0.0058

Row2 0.5254 1.0000 0.5254 0.2760 0.1450 0.0762 0.0400 0.0210 0.0110

Row3 0.2760 0.5254 1.0000 0.5254 0.2760 0.1450 0.0762 0.0400 0.0210

Row4 0.1450 0.2760 0.5254 1.0000 0.5254 0.2760 0.1450 0.0762 0.0400

Row5 0.0762 0.1450 0.2760 0.5254 1.0000 0.5254 0.2760 0.1450 0.0762

Row6 0.0400 0.0762 0.1450 0.2760 0.5254 1.0000 0.5254 0.2760 0.1450

Row7 0.0210 0.0400 0.0762 0.1450 0.2760 0.5254 1.0000 0.5254 0.2760

Row8 0.0110 0.0210 0.0400 0.0762 0.1450 0.2760 0.5254 1.0000 0.5254

Row9 0.0058 0.0110 0.0210 0.0400 0.0762 0.1450 0.2760 0.5254 1.0000

Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

Standard 95% Confidence 

Parameter Estimate Error Limits Z Pr > |Z|

Intercept -1.3978 1.1960 -3.7418 0.9463 -1.17 0.2425

BIRTHWGT -0.0005 0.0003 -0.0011 0.0001 -1.61 0.1080

GENDER 0.0024 0.5546 -1.0846 1.0894 0.00 0.9965

DIARRHEA 0.2214 0.8558 -1.4559 1.8988 0.26 0.7958
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Contrast Estimate Results

Standard 95% Confidence Chi- Pr>

Label Estimate Error Limits Square ChiSq

log odds ratio (DIARRHEA 1 vs 0) 0.2214 0.8558 -1.4559 1.8988 0.07 0.7958

Exp(log odds ratio (DIARRHEA 1 vs 0)) 1.2479 1.0679 0.2332 6.6779

Contrast Results for GEE Analysis

Chi-

Contrast DF Square Pr > ChiSq Type

Score Test BIRTHWGT and DIARRHEA 2 1.93 0.3819 Score

The output includes a table containing “Analysis of Initial Parameter
Estimates.” The initial parameter estimates are the estimates obtained from
running a standard logistic regression. The parameter estimation for the
standard logistic regression is used as a numerical starting point for obtain-
ing GEE parameter estimates.

Tables for GEE model information, the working correlation matrix, and
GEE parameter estimates follow the initial parameter estimates in the out-
put. Here, the working correlation matrix is a 9 � 9 matrix with an AR1 cor-
relation structure. The table containing the GEE parameter estimates
includes the empirical standard errors. Model-based standard errors could
also have been requested using the MODELSE option in the REPEATED
statement. The table titled “Contrast Estimate Results” contains the output
requested by the ESTIMATE statement. The odds ratio estimate for DIAR-
RHEA�1 vs. DIARRHEA�0 is given as 1.2479. The table titled “Contrast
Results for GEE Analysis” contains the output requested by the CONTRAST
statement. The P-value for the requested Score test is 0.3819.

Other correlation structures could be requested using the TYPE� option in
the REPEATED statement. Examples of code requesting an independent, an
exchangeable, a stationary 4-dependent, and an unstructured correlation
structure using the variable IDNO as the cluster variable are given below.

REPEATED SUBJECT=IDNO / TYPE=IND;

REPEATED SUBJECT=IDNO / TYPE=EXCH;

REPEATED SUBJECT=IDNO / TYPE=MDEP(4);

REPEATED SUBJECT=IDNO / TYPE=UNSTR MAXITER=1000;
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The ALR approach, which was described in Chapter 13, is an alternative to
the GEE approach with dichotomous outcomes. It is requested by using the
LOGOR� option rather than the TYPE� option in the REPEATED state-
ment. The code requesting the alternating logistic regression (ALR) algo-
rithm with an exchangeable odds ratio structure is

REPEATED SUBJECT=IDNO / LOGOR=EXCH;

The MAXITER� option in the REPEATED statement can be used when the
default number of 50 iterations is not sufficient to achieve numerical con-
vergence of the parameter estimates. It is important that you make sure the
numerical algorithm converged correctly to preclude reporting spurious
results. In fact, the ALR model in this example, requested by the
LOGOR�EXCH option, does not converge for the infant care dataset no
matter how many iterations are allowed for convergence. The GEE model,
using the unstructured correlation structure, also did not converge, even
with MAXITER set to 1000 iterations.

The SAS section of this appendix is completed. Next, modeling with SPSS
software is illustrated.

Analyses are carried out in SPSS by using the appropriate SPSS procedure
on an SPSS dataset. Most users will select procedures by pointing and click-
ing the mouse through a series of menus and dialog boxes. The code, or
command syntax, generated by these steps can be viewed (and edited by
more experienced SPSS users) and is presented here for comparison to the
corresponding SAS code.

The following three SPSS procedures are demonstrated:

LOGISTIC REGRESSION This procedure is used to run a standard logis-
tic regression.

NOMREG This procedure is used to run a standard
(binary) or polytomous logistic regression.

PLUM This procedure is used to run an ordinal
regression.

COXREG This procedure may be used to run a condi-
tional logistic regression for the special case
in which there is only one case per stratum,
with one (or more) controls.

SPSS does not perform GEE logistic regression for correlated data in ver-
sion 10.0.
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Unconditional Logistic Regression
The first illustration presented is an unconditional logistic regression using
the Evans County dataset. As discussed in the previous section, the dichoto-
mous outcome variable is CHD and the covariates are CAT, AGE, CHL,
ECG, SMK, and HPT. Two interaction terms, CH and CC, are also included.
CH is the product CAT � HPT, whereas CC is the product: CAT � CHL. The
variables representing the interaction terms have already been included in
the SPSS dataset evans.sav.

The model is restated as follows:

logit P(CHD � 1|X) � �0 � �1CAT � �2AGE � �3CHL � �4ECG � �5SMK
� �6HPT � �7CH � �8CC

The first step is to open the SPSS dataset, evans.sav, into the Data Editor
window. The corresponding command syntax to open the file from a disk is

GET

FILE=‘A:\evans.sav’.

There are two procedures which can be used to fit a standard (binary) logistic
regression model: LOGISTIC REGRESSION and NOMREG (Multinomial
Logistic Regression). The LOGISTIC REGRESSION procedure performs 
a standard logistic regression for a dichotomous outcome, whereas the 
NOMREG procedure can be used for dichotomous or polytomous outcomes.

To run the LOGISTIC REGRESSION procedure, select Analyze → Regression
→ Binary Logistic from the drop-down menus to reach the dialog box to spec-
ify the logistic model. Select CHD from the variable list and enter it into 
the Dependent Variable box, then select and enter the covariates into the
Covariate(s) box. The default method is Enter, which runs the model with 
the covariates the user entered into the Covariate(s) box. Click on OK to run
the model. The output generated will appear in the SPSS Viewer window.

The corresponding syntax, with the default specifications regarding the
modeling process, is

LOGISTIC REGRESSION VAR=chd

/METHOD=ENTER cat age chl ecg smk hpt ch cc

/CRITERIA PIN(.05) POUT(.10) ITERATE(20) CUT(.5) .
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To obtain 95% confidence intervals for the odds ratios, before clicking on
OK to run the model, select the PASTE button in the dialog box. A new box
appears which contains the syntax shown aobve. Insert /PRINT�CI(95)
before the /CRITERIA line as follows:

LOGISTIC REGRESSION VAR=chd

/METHOD=ENTER cat age chl ecg smk hpt ch cc

/PRINT=CI(95)

/CRITERIA PIN(.05) POUT(.10) ITERATE(20) CUT(.5) .

Then click on OK to run the model.

The LOGISTIC REGRESSION procedure models the P(CHD�1) rather
than P(CHD�0) by default. The internal coding can be checked by examin-
ing the table “Dependent Variable Encoding.”

The output produced by LOGISTIC REGRESSION follows:

Logistic Regression

Case Processing Summary

Unweighted casesa N Percent

Selected Cases Included in Analysis 609 100.0

Missing Cases 0 .0

Total 609 100.0

Unselected Cases 0 .0

Total 609 100.0

a If weight is in effect, see classification table for the total num-

ber of cases.

Dependent Variable Encoding

Original Value Internal Value

.00 0

1.00 1

Model Summary

-2 Log Cox & Snell Nagelkerke

Step likelihood R Square R Square

1 347.230 .139 .271
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Variables in the Equation

B S.E. Wald df Sig. Exp(B) 95.0%

C.I.for

EXP(B)

Lower Upper

Step CAT -12.688 3.104 16.705 1 .000 .000 .000 .001

1a AGE .035 .016 4.694 1 .030 1.036 1.003 1.069

CHL -.005 .004 1.700 1 .192 .995 .986 1.003

ECG .367 .328 1.254 1 .263 1.444 .759 2.745

SMK .773 .327 5.582 1 .018 2.167 1.141 4.115

HPT 1.047 .332 9.960 1 .002 2.848 1.487 5.456

CH -2.332 .743 9.858 1 .002 .097 .023 .416

CC .069 .014 23.202 1 .000 1.072 1.042 1.102

Constant -4.050 1.255 10.413 1 .001 .017

a Variable(s) entered on step 1: CAT, AGE, CHL, ECG, SMK, HPT, CH, CC.

The estimated coefficients for each variable (labeled B) and their standard
errors, along with the Wald chi-square test statistics and corresponding 
P-values, are given in the table titled “Variables in the Equation.” The inter-
cept is labeled “Constant” and is given in the last row of the table. The odds
ratio estimates are labeled exp(B) in the table and are obtained by exponen-
tiating the corresponding coefficients. As noted previously in the SAS sec-
tion, these odds ratio estimates can be misleading for continuous variables
or in the presence of interaction terms.

The negative 2 log likelihood statistic for the model, 347.23, is presented in
the table titled “Model Summary.” A likelihood ratio test statistic to asses
the significance of the two interaction terms can be performed by running a
no-interaction model and subtracting the negative 2 log likelihood statistic
for the current model from that of the no-interaction model.

With the NOMREG procedure, the values of the outcome are sorted in
ascending order with the last (or highest) level of the outcome variable as
the reference group. If we wish to model P(CHD�1), as was done in the pre-
vious analysis with the LOGISTIC REGRESSION procedure, the variable
CHD must first be recoded so that CHD�0 is the reference group. This
process can be accomplished using the dialog boxes. The command syntax
to recode CHD into a new variable called NEWCHD is

RECODE

chd

(1=0) (0=1) INTO newchd .

EXECUTE .
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To run the NOMREG procedure, select Analyze → Regression →
Multinomial Logistic from the drop-down menus to reach the dialog box to
specify the logistic model. Select NEWCHD from the variable list and enter
it into the Dependent Variable box, then select and enter the covariates into
the Covariate(s) box. The default settings in the Model dialog box are “Main
Effects” and “Include intercept in model.” With the NOMREG procedure,
the covariance matrix can be requested as part of the model statistics. Click
on the Statistics button and check “Asymptotic covariances of parameter
estimates” to include a covariance matrix in the output. In the main dialog
box, click on OK to run the model.

The corresponding syntax is

NOMREG

newchd WITH cat age chl ecg smk hpt ch cc

/CRITERIA = CIN(95) DELTA(0) MXITER(100) MXSTEP(5) 

LCONVERGE(0) PCONVERGE

(1.0E-6) SINGULAR(1.0E-8)

/MODEL

/INTERCEPT = INCLUDE

/PRINT = COVB PARAMETER SUMMARY LRT .

Note that the recoded CHD variable NEWCHD is used in the model state-
ment. The NEWCHD value of 0 corresponds to the CHD value of 1.

The output is omitted.

Conditional Logistic Regression
SPSS does not perform conditional logistic regression except in the special
case in which there is only one case per stratum, with one or more controls.
The SPSS survival analysis procedure COXREG can be used to obtain coef-
ficient estimates equivalent to running a conditional logistic regression. The
process is similar to that demonstrated in the SAS section with PROC
PHREG and the MI dataset, although SAS is not limited to the special case.

Recall that the MI dataset contains information on 39 cases diagnosed with
myocardial infarction, each of which is matched with 2 controls. Thus, it
meets the criterion of one case per stratum. As with SAS, a time variable
must be created in the data, coded to indicate that all cases had the event at
the same time and all controls were censored at a later time. In the SAS
example, this variable was named SURVTIME. This variable has already
been included in the SPSS dataset mi.sav. The variable has the value 1 for
all cases and the value 2 for all controls.
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The first step is to open the SPSS dataset, mi.sav, into the Data Editor win-
dow. The corresponding command syntax is

GET

FILE=‘A:\mi.sav’.

To run the equivalent of a conditional logistic regression analysis, select
Analyze → Survival → Cox Regression from the drop-down menus to reach
the dialog box to specify the model. Select SURVTIME from the variable list
and enter it into the Time box. The Status box identifies the variable that
indicates whether the subject had an event or was censored. For this
dataset, select and enter MI into the Status box. The value of the variable
that indicates that the event has occurred (i.e., that the subject is a case)
must also be defined. This is done by clicking on the Define Event button
and entering the value “1” in the new dialog box. Next, select and enter the
covariates of interest (i.e., SMK, SBP, ECG) into the Covariate box. Finally,
select and enter the variable which defines the strata in the Strata box. For
the MI dataset, the variable is called MATCH. Click on OK to run the model.

The corresponding syntax, with the default specifications regarding the
modeling process, is

COXREG

survtime /STATUS=mi(1) /STRATA=match

/METHOD=ENTER smk sbp ecg

/CRITERIA=PIN(.05) POUT(.10) ITERATE(20) .

The model statement contains the time variable (SURVTIME) followed by a
backslash and the case status variable (MI) with the value for cases (1) in
parentheses.

The output is omitted.

Polytomous Logistic Regression
Next, a polytomous logistic regression is demonstrated with the cancer
dataset using the NOMREG procedure described previously.

The outcome variable is SUBTYPE, a three-category outcome indicating
whether the subject’s histological subtype is Adenocarcinoma (coded 0),
Adenosquamous (coded 1), or Other (coded 2). The model is restated as 
follows:

where g = 1,2.
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By default, the highest level of the outcome variable is the reference group in
the NOMREG procedure. If we wish to make SUBTYPE�0 (Adenocarcinoma)
the reference group, as was done in the presentation in Chapter 9, the variable
SUBTYPE must be recoded. The new variable created by the recode is called
NEWTYPE and has already been included in the SPSS dataset cancer.sav.
The command syntax used for the recoding was as follows:

RECODE

subtype

(2=0) (1=1) (0=2) INTO newtype .

EXECUTE .

To run the NOMREG procedure, select Analyze → Regression → Multinomial
Logistic from the drop-down menus to reach the dialog box to specify the
logistic model. Select NEWTYPE from the variable list and enter it into the
Dependent Variable box, then select and enter the covariates (AGE, ESTRO-
GEN, and SMOKING) into the Covariate(s) box. In the main dialog box, click
on OK to run the model with the default settings.

The corresponding syntax is shown next, followed by the output generated
by running the procedure.

NOMREG

newtype WITH age estrogen smoking

/CRITERIA = CIN(95) DELTA(0) MXITER(100) MXSTEP(5)

LCONVERGE(0) PCONVERGE

(1.0E-6) SINGULAR(1.0E-8)

/MODEL

/INTERCEPT = INCLUDE

/PRINT = PARAMETER SUMMARY LRT .

Nominal Regression

Case Processing Summary

N

NEWTYPE .00 57

1.00 45

2.00 184

Valid 286

Missing 2

Total 288
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Parameter Estimates

B Std. Error Wald df Sig.

NEWTYPE

.00 Intercept -1.203 .319 14.229 1 .000

AGE .282 .328 .741 1 .389

ESTROGEN -.107 .307 .122 1 .727

SMOKING -1.791 1.046 2.930 1 .087

1.00 Intercept -1.882 .402 21.869 1 .000

AGE .987 .412 5.746 1 .017

ESTROGEN -.644 .344 3.513 1 .061

SMOKING .889 .525 2.867 1 .090

Exp(B) 95% Confidence Interval

for Exp(B)

NEWTYPE Lower Bound Upper Bound

.00 Intercept

AGE 1.326 .697 2.522

ESTROGEN .898 .492 1.639

SMOKING .167 2.144E-02 1.297

1.00 Intercept

AGE 2.683 1.197 6.014

ESTROGEN .525 .268 1.030

SMOKING 2.434 .869 6.815

There are two parameter estimates for each independent variable and two
intercepts. The estimates are grouped by comparison. The first set com-
pares NEWTYPE�0 to NEWTYPE�2. The second comparison is for NEW-
TYPE�1 to NEWTYPE�2. With the original coding of the subtype variable,
these are the comparisons of SUBTYPE�2 to SUBTYPE�0 and
SUBTYPE�1 to SUBTYPE�0, respectively. The odds ratio for AGE�1 vs.
AGE�0 comparing SUBTYPE�2 vs. SUBTYPE�0 is exp(0.282) � 1.33.

Ordinal Logistic Regression
The final analysis shown is ordinal logistic regression using the PLUM pro-
cedure. We again use the cancer dataset to demonstrate this model. For this
analysis, the variable GRADE is the response variable. GRADE has three
levels, coded 0 for well differentiated, 1 for moderately differentiated, and 2
for poorly differentiated.
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The model is stated as follows:

Note that this is the alternative formulation of the ordinal model discussed
in Chapter 9. In contrast to the formulation presented in the SAS section of
the Appendix, SPSS models the odds that the outcome is in a category less
than or equal to category g*. The other difference in the alternative formu-
lation of the model is that there are negative signs before the beta coeffi-
cients. These two differences “cancel out” for the beta coefficients so that �i
� �i

* however, for the intercepts, �g � ��g
*
*, where �g and �i, respectively,

denote the intercept and ith regression coefficient in the model run using
SAS.

To perform an ordinal regression in SPSS, select Analyze → Regression →
Ordinal from the drop-down menus to reach the dialog box to specify the
logistic model. Select GRADE from the variable list and enter it into the
Dependent Variable box, then select and enter the covariates (RACE and
ESTROGEN) into the Covariate(s) box. Click on the Output button to
request a “Test of Parallel Lines,” which is a statistical test that SPSS pro-
vides that performs a function similar to the Score test of the proportional
odds assumption in SAS. In the main dialog box, click on OK to run the
model with the default settings.

The command syntax for the ordinal regression model is as follows:

PLUM

grade WITH race estrogen

/CRITERIA = CIN(95) DELTA(0) LCONVERGE(0) MXITER(100)

MXSTEP(5) PCONVERGE (1.0E-6) SINGULAR(1.0E-8)

/LINK = LOGIT

/PRINT = FIT PARAMETER SUMMARY .

The output generated by this code follows:
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PLUM - Ordinal Regression

Test of Parallel Lines

-2 Log 

Model Likelihood Chi-Square df Sig.

Null Hypothesis 34.743

General 33.846 .897 2 .638

The null hypothesis states that the location parameters 

(slope coefficients) are the same across response categories.

a Link function: Logit.

Parameter Estimates

Estimate Std. Error Wald df Sig.

Threshold [GRADE = .00] -.511 .215 5.656 1 .017

[GRADE = 1.00] 1.274 .229 31.074 1 .000

Location RACE .427 .272 2.463 1 .117

ESTROGEN -.776 .249 9.696 1 .002

Link function: Logit.

95% Confidence Interval

Lower Bound Upper Bound

-.932 -8.981E-02

.826 1.722

-.106 .960

-1.265 -.288

A test of the parallel lines assumption is given in the table titled “Test of
Parallel Lines.” The null hypothesis is that the slope parameters are the
same for the two different outcome comparisons (i.e., the proportional odds
assumption). The results of the chi-square test statistic are not statistically
significant (P � 0.638), indicating that the assumption is tenable.

The parameter estimates and resulting odds ratios are given in the next
table. As noted earlier, with the alternate formulation of the model, the
parameter estimates for RACE and ESTROGEN match those of the SAS
output, but the signs of the intercepts (labeled “Threshold” on the output)
are reversed.

The SPSS section of this appendix is completed. Next, modeling with Stata
software is illustrated.
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Stata is a statistical software package that has become increasingly popular
in recent years. Analyses are obtained by typing the appropriate statistical
commands in the Stata Command window or in the Stata Do-file Editor
window. The commands used to perform the statistical analyses in this
appendix are listed below. These commands are case sensitive and lower-
case letters should be used. In the text, commands are given in bold font for
readability.

logit This command is used to run logistic regression
binreg This command can also be used to run logistic regression. The bin-

reg command can also accommodate summarized binomial data
in which each observation contains a count of the number of
events and trials for a particular pattern of covariates.

clogit This command is used to run conditional logistic regression.
mlogit This command is used to run polytomous logistic regression.
ologit This command is used to run ordinal logistic regression.
xtgee This command is used to run GEE models.
lrtest This command is used to perform likelihood ratio tests.

Four windows will appear when Stata is opened. These windows are labeled
Stata Command, Stata Results, Review, and Variables. As with SPSS, the
user can click on File → Open to select a working dataset for analysis. Once
a dataset is selected, the names of its variables appear in the Variables win-
dow. Commands are entered in the Stata Command window. The output
generated by commands appears in the Results window after the enter key
is pressed. The Review window preserves a history of all the commands exe-
cuted during the Stata session. The commands in the Review window can
be saved, copied, or edited as the user desires. Command can also be run
from the Review window by double-clicking on the command.

Alternatively, commands can be typed or pasted into the Do-file Editor. The
Do-file Editor window is activated by clicking on Window → Do-file Editor
or by simply clicking on the Do-file Editor button on the Stata tool bar.
Commands are executed from the Do-file Editor by clicking on Tools → Do.
The advantage of running commands from the Do-file Editor is that com-
mands need not be entered and executed one at a time, as they do from the
Stata Command window. The Do-file Editor serves a similar function as the
Program Editor in SAS.
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Unconditional Logistic Regression
Unconditional logistic regression is illustrated using the Evans County data.
As discussed in the previous sections, the dichotomous outcome variable is
CHD and the covariates are CAT, AGE, CHL, ECG, SMK, and HPT. Two
interaction terms, CH and CC, are also included. CH is the product CAT �
HPT; CC is the product CAT � CHL. The variables representing the interac-
tion terms have already been included in the Stata dataset evans.dta.

The model is restated as follows:

logit P(CHD � 1|X) � �0 � �1CAT � �2AGE � �3CHL � �4ECG � �5SMK
� �6HPT � �7CH � �8CC.

The first step is to activate the Evans dataset by clicking on File → Open and
selecting the Stata dataset, evans.dta. The code to run the logistic regres-
sion is as follows.

logit chd cat age chl ecg smk hpt ch cc

Following the command logit comes the dependent variable followed by a
list of the independent variables. Clicking on the variable names in the
Variable Window pastes the variable names into the Command Window. For
logit to run properly in Stata, the dependent variable must be coded zero for
the nonevents (in this case, absence of coronary heart disease) and nonzero
for the event. The output produced in the results window is as follows:

Iteration 0: log likelihood = -219.27915

Iteration 1: log likelihood = -184.11809

Iteration 2: log likelihood = -174.5489

Iteration 3: log likelihood = -173.64485

Iteration 4: log likelihood = -173.61484

Iteration 5: log likelihood = -173.61476
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Logit estimates Number of obs = 609

LR chi2(8) = 91.33

Prob > chi2 = 0.0000

Log likelihood = -173.61476 Pseudo R2 = 0.2082

chd Coef. Std. Err.   z P>|z| [95% Conf. Interval]

cat -12.68953 3.10465 -4.09 0.000 -18.77453 -6.604528

age .0349634 .0161385 2.17 0.030 .0033327 .0665942

chl -.005455 .0041837 -1.30 0.192 -.013655 .002745

ecg .3671308 .3278033 1.12 0.263 -.275352 1.009614

smk .7732135 .3272669 2.36 0.018 .1317822 1.414645

hpt 1.046649 .331635 3.16 0.002 .3966564 1.696642

ch -2.331785 .7426678 -3.14 0.002 -3.787387 -.8761829

cc .0691698 .0143599 4.82 0.000 .0410249 .0973146

_cons -4.049738 1.255015 -3.23 0.001 -6.509521 -1.589955

The output indicates that it took five iterations for the log likelihood to con-
verge at �173.61476. The iteration history appears at the top of the Stata
output for all of the models illustrated in this appendix. However, we shall
omit that portion of the output in subsequent examples. The table shows the
regression coefficient estimates and standard error, the test statistic (z) and
P-value for the Wald test, and 95% confidence intervals. The intercept,
labeled “cons” (for constant), is given in the last row of the table. Also
included in the output is a likelihood ratio test statistic (91.33) and corre-
sponding P-value (0.0000) for a likelihood ratio test comparing the full
model with eight regression parameters to a reduced model containing only
the intercept. The test statistic follows a chi-square distribution with eight
degrees of freedom under the null.

The or option for the logit command is used to obtain exponentiated coef-
ficients rather than the coefficients themselves. In Stata, options appear in
the command following a comma. The code follows:

logit chd cat age chl ecg smk hpt ch cc, or

The logistic command without the or option produces identical output as
the logit command does with the or option. The output follows:
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Logit estimates Number of obs = 609

LR chi2(8) = 91.33

Prob > chi2 = 0.0000

Log likelihood = -173.61476 Pseudo R2 = 0.2082

chd Odds Ratio Std. Err.   z P>|z|    [95% Conf. Interval]

cat 3.08e-06 9.57e-06 -4.09 0.000 7.02e-09 .0013542

age 1.035582 .0167127 2.17 0.030 1.003338 1.068862

chl .9945599 .004161 -1.30 0.192 .9864378 1.002749

ecg 1.443587 .4732125 1.12 0.263 .7593048 2.74454

smk 2.166718 .709095 2.36 0.018 1.14086 4.115025

hpt 2.848091 .9445266 3.16 0.002 1.486845 5.455594

ch .0971222 .0721295 -3.14 0.002 .0226547 .4163692

cc 1.071618 .0153883 4.82 0.000 1.041878 1.102207

The standard errors and 95% confidence intervals are those for the odds
ratio estimates. As discussed in the SAS section of this appendix, care must
be taken in the interpretation of these odds ratios with continuous predic-
tor variables or interaction terms included in the model.

The vce command will produce a variance–covariance matrix of the param-
eter estimates. Use the vce command after running a regression. The code
and output follow.

vce

cat age chl ecg smk hpt _cons

cat .12389

age -.002003 .00023

chl .000283 -2.3e-06 .000011

ecg -.027177 -.000105 .000041 .086222

smk -.006541 .000746 .00002 .007845 .093163

hpt -.032891 -.000026 -.000116 -.00888 .001708 .084574

_cons .042945 -.012314 -.002271 -.027447 -.117438 -.008195 1.30013

The lrtest command can be used to perform likelihood ratio tests. For
example, to perform a likelihood ratio test on the two interaction terms, CH
and CC, in the preceding model, we can save the �2 log likelihood statistic
of the full model in the computer’s memory by typing the following com-
mand:

lrtest, saving(0)
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Now the reduced model (without the interaction terms) can be run (output
omitted):

logit chd cat age chl ecg smk hpt

After the reduced model is run, type the following command to obtain the
results of the likelihood ratio test comparing the full model (with the inter-
action terms) to the reduced model:

lrtest

Logit: likelihood-ratio test chi2(2) = 53.16

Prob > chi2 = 0.0000

The chi-square statistic with two degrees of freedom is 53.16, which is sta-
tistically significant as the P-value is close to 0.

The Evans County dataset contains individual level data. In the SAS section
of this appendix, we illustrated how to run a logistic regression on summa-
rized binomial data in which each observation contained a count of the
number of events and trials for a particular pattern of covariates. This can
also be accomplished in Stata using the binreg command.

The summarized dataset, EVANS2, described in the SAS section contains
eight observations and is small enough to be typed directly into the com-
puter using the input command followed by a list of variables. The clear
command clears the individual level Evans County dataset from the com-
puter’s memory and should be run before creating the new dataset since
there are common variable names to the new and cleared dataset (CAT and
ECG). After entering the input command, Stata will prompt you to enter
each new observation until you type end. The code to create the dataset is
presented below. The newly defined five variables are described in the SAS
section of this appendix.
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clear

input cases total cat agegrp ecg

cases total cat agegrp ecg

1. 17 274 0 0 0

2. 15 122 0 1 0

3. 7 59 0 0 1

4. 5 32 0 1 1

5. 1 8 1 0 0

6. 9 39 1 1 0

7. 3 17 1 0 1

8. 14 58 1 1 1

9. end

The list command can be used to display the dataset in the Results Window
and to check the accuracy of data entry.

The data are in binomial events/trials format in which the variable CASES
represents the number of coronary heart disease cases and the variable
TOTAL represents the number of subjects at risk in a particular stratum
defined by the other three variables. The model is stated as follows:

logit P(CHD � 1)� �0 � �1CAT � �2AGEGRP � �3ECG

The code to run the logistic regression follows:

binreg cases cat age ecg, n(total)

The n( ) option, with the variable TOTAL in parentheses, instructs Stata
that TOTAL contains the number of trials for each stratum. The output is
omitted.

Individual level data can also be summarized using frequency counts if the
variables of interest are categorical variables. The dataset EVANS3, dis-
cussed in the SAS section, uses frequency weights to summarize the data.
The variable COUNT contains the frequency of occurrences of each obser-
vation in the individual level data. EVANS3 contains the same information
as EVANS2 except that it has 16 observations rather than 8. The difference
is that with EVANS3, for each pattern of covariates there is an observation
containing the frequency counts for CHD�1 and another observation con-
taining the frequency counts for CHD�0. The code to create the data is as
follows:
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clear

input chd cat agegrp ecg count

chd cat agegrp ecg count

1. 1 0 0 0 17

2. 0 0 0 0 257

3. 1 0 1 0 15

4. 0 0 1 0 107

5. 1 0 0 1 7

6. 0 0 0 1 52

7. 1 0 1 1 5

8. 0 0 1 1 27

9. 1 1 0 0 1

10. 0 1 0 0 7

11. 1 1 1 0 9

12. 0 1 1 0 30

13. 1 1 0 1 3

14. 0 1 0 1 14

15. 1 1 1 1 14

16. 0 1 1 1 44

17. end

The model is restated as follows:

logit P(CHD�1|X) � �0 � �1CAT � �2AGEGRP � �3ECG

The code to run the logistic regression using the logit command with fre-
quency weighted data is

logit chd cat agegrp ecg [fweight=count]

The [fweight�] option, with the variable COUNT, instructs Stata that the
variable COUNT contains the frequency counts. The [fweight�] option can
also be used with the binreg command:

binreg chd cat agegrp ecg [fweight=count]

The output is omitted.
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Conditional Logistic Regression
Next, a conditional logistic regression is demonstrated with the MI dataset
using the clogit command. The MI dataset contains information from a
case-control study in which each case is matched with two controls. The
model is stated as follows:

1 if ith matched triplet
Vi � i � 1, 2, ..., 38

0 otherwise

Open the dataset mi.dta. The code to run the conditional logistic regression
in Stata is

clogit mi smk sbp ecg, strata(match)

The strata( ) option, with the variable MATCH in parentheses, identifies
MATCH as the stratified variable (i.e., the matching factor). The output fol-
lows:

Conditional (fixed-effects) logistic regression Number of obs = 117

LR chi2(3) = 22.20

Prob > chi2 = 0.0001

Log likelihood = -31.745464 Pseudo R2 = 0.2591

mi Coef. Std. Err.     z   P>|z| [95% Conf. Interval]

smk .7290581 .5612569 1.30 0.194 -.3709852 1.829101

sbp .0456419 .0152469 2.99 0.003 .0157586 .0755251

ecg 1.599263 .8534134 1.87 0.061 -.0733967 3.271923

The or option can be used to obtain exponentiated regression parameter
estimates. The code follows (output omitted):

clogit mi smk sbp ecg, strata(match) or
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Polytomous Logistic Regression
Next, a polytomous logistic regression is demonstrated with the cancer
dataset using the mlogit command.

The outcome variable is SUBTYPE, a three-category outcome indicating
whether the subject’s histological subtype is Adenocarcinoma (coded 0),
Adenosquamous (coded 1), or Other (coded 2). The model is restated as 
follows:

where g � 1, 2.

Open the dataset cancer.dta. The code to run the polytomous logistic
regression follows:

mlogit subtype age estrogen smoking

Stata treats the outcome level that is coded zero as the reference group. The
output follows:

Multinomial regression Number of obs = 286

LR chi2(6) = 18.22

Prob > chi2 = 0.0057

Log likelihood = -247.20254 Pseudo R2 = 0.0355

subtype Coef. Std. Err. z P>|z| [95% Conf. Interval]

1

age .9870592 .4117898 2.40 0.017 .179966 1.794152

estrogen -.6438991 .3435607 -1.87 0.061 -1.317266 .0294674

smoking .8894643 .5253481 1.69 0.090 -.140199 1.919128

_cons -1.88218 .4024812 -4.68 0.000 -2.671029 -1.093331

2

age .2822856 .3279659 0.86 0.389 -.3605158 .925087

estrogen -.1070862 .3067396 -0.35 0.727 -.7082847 .4941123

smoking -1.791312 1.046477 -1.71 0.087 -3.842369 .259746

_cons -1.203216 .3189758 -3.77 0.000 -1.828397 -.5780355

(Outcome subtype==0 is the comparison group)
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Ordinal Logistic Regression
Next, an ordinal logistic regression is demonstrated with the cancer dataset
using the ologit command. For this analysis, the variable GRADE is the
response variable. GRADE has three levels, coded 0 for well differentiated,
1 for moderately differentiated, and 2 for poorly differentiated.

The model is stated as follows:

This is the alternative formulation of the proportional odds model discussed
in Chapter 9. In contrast to the formulation presented in the SAS section of
the appendix, Stata, as does SPSS, models the odds that the outcome is in a
category less than or equal to category g. The other difference in the alter-
native formulation of the model is that there are negative signs before the
beta coefficients. These two differences “cancel out” for the beta coefficients
so that �i � �i

* however, for the intercepts, αg=�αg
*
*, where �g and �i, respec-

tively, denote the intercept and ith regression coefficient in the model run
using SAS.

The code to run the proportional odds model and output follows:

ologit grade race estrogen

Ordered logit estimates Number of obs = 286

LR chi2(2) = 19.71

Prob > chi2 = 0.0001

Log likelihood = -287.60598 Pseudo R2 = 0.0331

grade Coef. Std. Err. z P>|z| [95% Conf. Interval]

race .4269798 .2726439 1.57 0.117 -.1073926 .9613521

estrogen -.7763251 .2495253 -3.11 0.002 -1.265386 -.2872644

_cut1 -.5107035 .2134462 (Ancillary parameters)

_cut2 1.274351 .2272768

Comparing this output to the corresponding output in SAS shows that the
coefficient estimates are the same but the intercept estimates (labeled _cut1
and _cut2 in the Stata output) differ, as their signs are reversed due to the
different formulations of the model.
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Modeling Correlated Dichotomous Data with GEE
Finally, a GEE model is demonstrated in Stata with the infant care dataset
(infant.dta). GEE models are executed with the xtgee command in Stata.

The model is stated as follows:

logit P(OUTCOME�1|X)� �0 � �1BIRTHWGT � �2GENDER
� �3DIARRHEA.

The code to run this model with an AR1 correlation structure is

xtgee outcome birthwgt gender diarrhea, family(binomial)

link(logit) corr(ar1) i(idno) t(month) robust

Following the command xtgee comes the dependent variable followed by a
list of the independent variables. The link( ) and family( ) options define the
link function and the distribution of the response. The corr( ) option allows
the correlation structure to be specified. The i( ) option specifies the cluster
variable and the t( ) option specifies the time the observation was made
within the cluster. The robust option requests empirical-based standard
errors. The options corr(ind), corr(exc), corr(sta 4), and corr(uns), can be
used to request an independent, exchangeable, stationary 4-dependent, and
an unstructured working correlation structure, respectively.

The output using the AR1 correlation structure follows:

GEE population-averaged model Number of obs = 1203

Group and time vars: idno month Number of groups = 136

Link: logit Obs per group: min = 5

Family: binomial avg = 8.8

Correlation: AR(1) max = 9

Wald chi2(3) = 2.73

Scale parameter: 1 Prob > chi2 = 0.4353
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(standard errors adjusted for clustering on idno)

Semi-robust

outcome Coef. Std. Err. z P>|z| [95% Conf. Interval]

birthwgt -.0004942 .0003086 -1.60 0.109 -.0010991 .0001107

gender .0023805 .5566551 0.00 0.997 -1.088643 1.093404

diarrhea .2216398 .8587982 0.26 0.796 -1.461574 1.904853

_cons -1.397792 1.200408 -1.16 0.244 -3.750549 .9549655

The output does not match the SAS output exactly due to different estima-
tion techniques, but the results are very similar. If odds ratios are desired
rather than the regression coefficients, then the eform option can be used
to exponentiate the regression parameter estimates. The code and output
using the eform option follow:

xtgee outcome birthwgt gender diarrhea, family(binomial)

link(logit) corr(ar 1) i(idno) t(month) robust eform

GEE population-averaged model Number of obs = 1203

Group and time vars: idno month Number of groups = 136

Link: logit Obs per group: min = 5

Family: binomial avg = 8.8

Correlation: AR(1) max = 9

Wald chi2(3) = 2.73

Scale parameter: 1 Prob > chi2 = 0.4353

(standard errors adjusted for clustering on idno)

Semi-robust

outcome Coef. Std. Err. z P>|z| [95% Conf. Interval]

birthwgt .9995059 .0003085 -1.60 0.109 .9989015 1.000111

gender 1.002383 .5579818 0.00 0.997 .3366729 2.984417

diarrhea 1.248122 1.071885 0.26 0.796 .2318711 6.718423
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The xtcorr command can be used after running the GEE model to output
the working correlation matrix. The code and output follow:

xtcorr

Estimated within-idno correlation matrix R:

c1 c2 c3 c4 c5 c6 c7 c8 c9

r1 1.0000

r2 0.5252 1.0000

r3 0.2758 0.5252 1.0000

r4 0.1448 0.2758 0.5252 1.0000

r5 0.0761 0.1448 0.2758 0.5252 1.0000

r6 0.0399 0.0761 0.1448 0.2758 0.5252 1.0000

r7 0.0210 0.0399 0.0761 0.1448 0.2758 0.5252 1.0000

r8 0.0110 0.0210 0.0399 0.0761 0.1448 0.2758 0.5252 1.0000

r9 0.0058 0.0110 0.0210 0.0399 0.0761 0.1448 0.2758 0.5252 1.0000

This completes our discussion on the use of SAS, SPSS, and Stata to run dif-
ferent types of logistic models. An important issue for all three of the pack-
ages discussed is that the user must be aware of how the outcome event is
modeled for a given package and given type of logistic model. If the para-
meter estimates are the negative of what is expected, this could be an indi-
cation that the outcome value is not correctly specified for the given pack-
age and/or procedure.

All three statistical software packages presented have built-in Help functions
which provide further details about the capabilities of the programs. The
web-based sites of the individual companies are another source of informa-
tion about the packages: http://www.sas.com/ for SAS, http://www.
spss.com/ for SPSS, and http://www.stata.com/ for Stata.
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True-False Questions:

1. F: any type of independent variable is allowed
2. F: dependent variable must be dichotomous
3. T
4. F: S-shaped
5. T
6. T
7. F: cannot estimate risk using case-control study
8. T
9. F: constant term can be estimated in follow-up study

10. T
11. T
12. F: logit gives log odds, not log odds ratio
13. T
14. F: �i controls for other variables in the model
15. T
16. F: multiplicative
17. F: exp(�) where � is coefficient of exposure
18. F: OR for effect of SMK is exponential of coefficient of SMK
19. F: OR requires formula involving interaction terms
20. F: OR requires formula that considers coding different from (0, 1)

21. e. exp(�) is not appropriate for any X.
22. P(X) = 1/(1 � exp{�[� � �1(AGE) � �2(SMK) � �3(SEX)

� �4(CHOL) � �5(OCC)]}).
23. P(X) = 1/(1 � exp{�[�4.32 � 0.0274(AGE) � 0.5859(SMK)

� 1.1523(SEX) � 0.0087(CHOL) � 0.5309(OCC)]}).
24. logit P(X) = �4.32 � 0.0274(AGE) � 0.5859(SMK) � 1.1523(SEX)

� 0.0087(CHOL) � 0.5309(OCC).
25. For a 40-year-old male smoker with CHOL = 200 and OCC = 1, we

have
X = (AGE = 40, SMK = 1, SEX = 1, CHOL = 200, OCC = 1),
assuming that SMK and SEX are coded as SMK = 1 if smoke, 0 other-
wise, and SEX = 1 if male, 0 if female, and
P(X) = 1/(1 � exp{�[�4.32 � 0.0274(40) � 0.5859(1) � 1.1523(1) �

0.0087(200) � 0.5309(1)]})
= 1/{1 � exp[�(�0.2767)]}
= 1/(1 � 1.319)
= 0.431.
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26. For a 40-year-old male nonsmoker with CHOL = 200 and OCC = 1,
X = (AGE = 40, SMK = 0, SEX = 1, CHOL = 200, OCC = 1)
and
P̂(X) = 1/(1 � exp{�[�4.32 � 0.0274(40) � 0.5859(0) � 1.1523(1)

� 0.0087(200) �0.5309(1)]})
= 1/{1 � exp [�(�0.8626)]}
= 1/(1 � 2.369)
= 0.297

27. The RR is estimated as follows:

= 0.431/0.297
= 1.45
This estimate can be interpreted to say smokers have 1.45 times as
high a risk for getting hypertension as nonsmokers, controlling for
age, sex, cholesterol level, and occupation.

28. If the study design had been case-control or cross-sectional, the risk
ratio computation of Question 27 would be inappropriate because a
risk or risk ratio cannot be directly estimated by using a logistic
model unless the study design is follow-up. More specifically, the con-
stant term � cannot be estimated from case-control or cross-sectional
studies.

29. OR (SMK controlling for AGE, SEX, CHOL, OCC)
= e� where = 0.5859 is the coefficient of SMK in the fitted model
= exp(0.5859)
= 1.80
This estimate indicates that smokers have 1.8 times as high a risk for
getting hypertension as nonsmokers, controlling for age, sex, choles-
terol, and occupation.

30. The rare disease assumption.
31. The odds ratio is a legitimate measure of association and could be

used even if the risk ratio cannot be estimated.
32. OR(OCC controlling for AGE, SEX, SMK, CHOL)

= e�, where � = �0.5309 is the coefficient of OCC in the fitted model
= exp(�0.5309)
= 0.5881 = 1 / 1.70.
This estimate is less than 1 and thus indicates that unemployed per-
sons (OCC = 0) are 1.70 times more likely to develop hypertension
than are employed persons (OCC = 1).

33. Characteristic 1: the model contains only main effect variables
Characteristic 2: OCC is a (0, 1) variable.

β̂
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34. The formula exp(�i) is inappropriate for estimating the effect of AGE
controlling for the other four variables because AGE is being treated
as a continuous variable in the model, whereas the formula is appro-
priate for (0, 1) variables only.

True-False Questions:

1. F: OR = exp(�)
2. F: risk = 1/[1 � exp(��)]
3. T
4. T
5. T
6. T
7. T
8. F: OR = exp(� � 5�)
9. F: the number of dummy variables should be 19

10. F: OR = exp(� � �1 OBS � �2PAR)

11. The model in logit form is given as follows:
logit P(X) = � � �CON � �1PAR � �2NP � �3ASCM � �1CON � PAR
� �2CON � NP � �3CON � ASCM.

12. The odds ratio expression is given by
exp(� � �1PAR � �2NP � �3ASCM).

13. The model for the matched pairs case-control design is given by

where the Vi are dummy variables which indicate the matching strata.
14. The risk for an exposed person in the first matched pair with PAR = 1

is

15. The odds ratio expression for the matched pairs case-control model is
exp(� � �PAR)

1. a. ROR = exp(�)
b. ROR = exp(5�)
c. ROR = exp(2�)
d. All three estimated odds ratios should have the same value.
e. The � in part b is one-fifth the � in part a; the � in part c is one-

half the � in part a.

logit P CON PAR CON PAR,200
1

199
X( ) = + + + + ×

=
∑α β γ γ δi i
i

V

R
1

1 exp PAR
.

1 200

=
+ − + + + +( )[ ]α β γ γ δ
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2. a. ROR = exp(� � �1AGE � �2CHL)
b. ROR = exp(5� � 5�1AGE � 5�2CHL)
c. ROR = exp(2� � 2�1AGE � 2�2CHL)
d. For a given specification of AGE and CHL, all three estimated odds

ratio should have the same value.
e. The � in part b is one-fifth the � in part a; the � in part c is one-

half the � in part a. The same relationships hold for the three �1’s
and the three �2’s.

3. a. ROR = exp(5� � 5�1AGE � 5�2SEX)
b. ROR = exp(� � �1AGE � �2SEX)
c. ROR = exp(� � �1AGE � �2SEX)
d. For a given specification of AGE and SEX, the odds ratios in parts

b and c should have the same value.
4. a. logit P(X) = � � �1S1 � �2S2 � �1AGE � �2SEX, where S1 and S2

are dummy variables which distinguish between the three SSU
groupings, e.g., S1 = 1 if low, 0 otherwise and S2 = 1 if medium, 0
otherwise.

b. Using the above dummy variables, the odds ratio is given by 
ROR = exp(� �1), where X* = (0, 0, AGE, SEX) 
and X** = (1, 0, AGE, SEX).

c. logit P(X) = � � �1S1 � �2S2 � �1AGE � �2SEX � �1(S1 � AGE)
� �2(S1 � SEX) � �3(S2 � AGE) � �4(S2 � SEX)

d. ROR = exp(��1 � �1AGE � �2SEX)
5. a. ROR = exp(10�3)

b. ROR = exp(195�1 � 10�3)
6. a. ROR = exp(10�3 � 10�31AGE � 10�32RACE)

b. ROR = exp(195�1 � 10�3 � 195�11AGE � 195�12RACE
� 10�31AGE � 10�32RACE)

True-False Questions:

1. T
2. T
3. F: unconditional
4. T
5. F: the model contains a large number of parameters
6. T
7. T
8. F: � is not estimated in conditional ML programs
9. T

10. T
11. F: the variance–covariance matrix gives variances and covariances for

regression coefficients, not variables.
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12. T

13. Because matching has been used, the method of estimation should be
conditional ML estimation.

14. The variables AGE and SOCIOECONOMIC STATUS do not appear in
the printout because these variables have been matched on, and the
corresponding parameters are nuisance parameters that are not esti-
mated using a conditional ML program.

15. The OR is computed as e to the power 0.39447, which equals 1.48.
This is the odds ratio for the effect of pill use adjusted for the four
other variables in the model. This odds ratio says that pill users are
1.48 times as likely as nonusers to get cervical cancer after adjusting
for the four other variables.

16. The OR given by e to �0.24411, which is 0.783, is the odds ratio for
the effect of vitamin C use adjusted for the effects of the other four
variables in the model. This odds ratio says that vitamin C is some-
what protective for developing cervical cancer. In particular, since
1/0.78 equals 1.28, this OR says that vitamin C nonusers are 1.28
times more likely to develop cervical cancer than users, adjusted for
the other variables.

17. Alternative null hypotheses:
1. The OR for the effect of VITC adjusted for the other four variables

equals 1.
2. The coefficient of the VITC variable in the fitted logistic model

equals 0.
18. The 95% CI for the effect of VITC adjusted for the other four variables

is given by the limits 0.5924 and 1.0359.
19. The Z statistic is given by Z=�0.24411/0.14254=1.71.
20. The value of MAX LOGLIKELIHOOD is the logarithm of the maxi-

mized likelihood obtained for the fitted logistic model. This value is
used as part of a likelihood ratio test statistic involving this model.

1. Conditional ML estimation is the appropriate method of estimation
because the study involves matching.

2. Age and socioeconomic status are missing from the printout because
they are matching variables and have been accounted for in the model
by nuisance parameters which are not estimated by the conditional
estimation method.

3. H0: �SMK = 0 in the no interaction model (Model I), or alternatively,
H0: OR=1, where OR denotes the odds ratio for the effect of SMK on
cervical cancer status, adjusted for the other variables (NS and AS) in
model I;

test statistic: Wald statistic   which is approximately nor-

mal (0, 1) under H0, or alternatively,
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Z2 is approximately chi square with one degree of freedom under H0;

test computation: ; alternatively, Z2 = 20.56;

the one-tailed P-value is 0.0000/2 = 0.0000, which is highly significant.
4. The point estimate of the odds ratio for the effect of SMK on cervical

cancer status adjusted for the other variables in model I is given by
e1.4361 = 4.20.
The 95% interval estimate for the above odds ratio is given by

5. Null hypothesis for the likelihood ratio test for the effect of 
SMK � NS: H0: �SMK � NS = 0 where �SMK � NS is the coefficient of
SMK � NS in model II;
Likelihood ratio statistic: LR = �2 ln LI � (�2 ln LII) where LI and LII
are the maximized likelihood functions for models I and II, respec-
tively. This statistic has approximately a chi-square distribution with
one degree of freedom under the null hypothesis.
Test computation: LR = 174.97 � 171.46 = 3.51. The P-value is less
than 0.10 but greater than 0.05, which gives borderline significance
because we would reject the null hypothesis at the 10% level but not
at the 5% level. Thus, we conclude that the effect of the interaction of
NS with SMK is of borderline significance.

6. Null hypothesis for the Wald test for the effect of SMK � NS is the
same as that for the likelihood ratio test: H0: �SMK � NS = 0 where
�SMK � NS is the coefficient of SMK � NS in model II;

Wald statistic:                         , which is approximately normal (0, 1) 

under H0, or alternatively, 

Z2 is approximately chi square with one degree of freedom under H0;

test computation: ; alternatively, Z2 = 3.44;

the P-value for the Wald test is  0.0635, which gives borderline signifi-
cance.
The LR statistic is 3.51, which is approximately equal to the square of
the Wald statistic; therefore, both statistics give the same conclusion
of borderline significance for the effect of the interaction term.

7. The formula for the estimated odds ratio is given by
ORadj = exp (�SMK � �SMK�NSNS) = exp (1.9381 � 1.1128 NS)
where the coefficients come from Model II and the confounding
effects of NS and AS are controlled.
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8. Using the adjusted odds ratio formula given in Question 7, the esti-
mated odds ratio values for NS = 1 and NS = 0 are
NS = 1: exp[1.9381 � 1.1128(1)] = exp(0.8253) = 2.28;
NS = 0: exp[1.9381 � 1.1128(0)] = exp(1.9381) = 6.95

9. Formula for the 95% confidence interval for the adjusted odds ratio
when NS = 1:

10.

11. Model II is more appropriate than Model I if the test for the effect of
interaction is viewed as significant. Otherwise, Model I is more appro-
priate than Model II. The decision here is debatable because the test
result is of borderline significance.

True-False Questions:

1. F: one stage is variable specification
2. T
3. T
4. F: no statistical test for confounding
5. F: validity is preferred to precision
6. F: for initial model, V’s chosen a priori
7. T
8. T
9. F: model needs E � B also

10. F: list needs to include A � B
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11. The given model is hierarchically well formulated because for each
variable in the model, every lower-order component of that variable is
contained in the model. For example, if we consider the variable 
SMK � NS � AS, then the lower-order components are SMK, NS, AS,
SMK � NS, SMK � AS, and NS � AS; all these lower-order compo-
nents are contained in the model.

12. A test for the term SMK � NS � AS is not dependent on the coding of
SMK because the model is hierarchically well formulated and 
SMK � NS � AS is the highest-order term in the model.

13. A test for the terms SMK � NS is dependent on the coding because
this variable is a lower-order term in the model, even though the
model is hierarchically well formulated.

14. In using a hierarchical backward elimination procedure, first test for
significance of the highest-order term SMK � NS � AS, then test for
significance of lower-order interactions SMK � NS and SMK � AS,
and finally assess confounding for V variables in the model. Based on
the Hierarchy Principle, any two-factor product terms and V terms
which are lower-order components of higher-order product terms
found significant are not eligible for deletion from the model.

15. If SMK � NS � AS is significant, then SMK � NS and SMK � AS are
interaction terms that must remain in any further model considered.
The V variables that must remain in further models are NS, AS, 
NS � AS, and, of course, the exposure variable SMK. Also the V* vari-
ables must remain in all further models because these variables
reflect the matching that has been done.

16. The model after interaction assessment is the same as the initial
model. No potential confounders are eligible to be dropped from the
model because NS, AS, and NS � AS are lower components of 
SMK � NS � AS and because the V* variables are matching variables.

1. The interaction terms are SMK � NS, SMK � AS, and 
SMK � NS � AS. The product term NS � AS is a V term, not an
interaction term, because SMK is not one of its components.

2. Using a hierarchically backward elimination strategy, one would first
test for significance of the highest-order interaction term, namely,
SMK � NS � AS. Following this test, the next step is to evaluate the
significance of two-factor product terms, although these terms might
not be eligible for deletion if the test for SMK � NS � AS is signifi-
cant. Finally, without doing statistical testing, the V variables need to
be assessed for confounding and precision.

Test Answers 495

Chapter 7



3. If SMK � NS is the only interaction found significant, then the model
remaining after interaction assessment contains the V* terms, SMK,
NS, AS, NS � AS, and SMK � NS. The variable NS cannot be deleted
from any further model considered because it is a lower-order compo-
nent of the significant interaction term SMK � NS. Also, the V* terms
cannot be deleted because these terms reflect the matching that has
been done.

4. The odds ratio expression is given by exp(� � �1NS).
5. The odds ratio expression for the model that does not contain 

NS � AS has exactly the same form as the expression in Question 4.
However, the coefficients � and �1 may be different from the Question
4 expression because the two models involved are different.

6. Drop NS � AS from the model and see if the estimated odds ratio
changes from the gold standard model remaining after interaction
assessment. If the odds ratio changes, then NS � AS cannot be dropped
and is considered a confounder. If the odds ratio does not change, then
NS � AS is not a confounder. However, it may still need to be con-
trolled for precision reasons. To assess precision, one should compare
confidence intervals for the gold standard odds ratio and the odds ratio
for the model that drops NS � AS. If the latter confidence interval is
meaningfully narrower, then precision is gained by dropping NS � AS,
so that this variable should, therefore, be dropped. Otherwise, one
should control for NS � AS because no meaningful gain in precision is
obtained by dropping this variable. Note that in assessing both con-
founding and precision, tables of odds ratios and confidence intervals
obtained by specifying values of NS need to be compared because the
odds ratio expression involves an effect modifier.

7. If NS � AS is dropped, the only V variable eligible to be dropped is
AS. As in the answer to Question 6, confounding of AS is assessed by
comparing odds ratio tables for the gold standard model and reduced
model obtained by dropping AS. The same odds ratio expression as
given in Question 5 applies here, where, again, the coefficients for the
reduced model (without AS and NS � AS) may be different from the
coefficient for the gold standard model. Similarly, precision is
assessed similarly to that in Question 6 by comparing tables of confi-
dence intervals for the gold standard model and the reduced model.

8. The odds ratio expression is given by exp(1.9381 � 1.1128NS). A table
of odds ratios for different values of NS can be obtained from this
expression and the results interpreted. Also, using the estimated vari-
ance–covariance matrix (not provided here), a table of confidence
intervals (CIs) can be calculated and interpreted in conjunction with
corresponding odds ratio estimates. Finally, the CIs can be used to
carry out two-tailed tests of significance for the effect of SMK at dif-
ferent levels of NS.
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True-False Questions:

1. T
2. F: information may be lost from matching: sample size may be

reduced by not including eligible controls
3. T
4. T
5. T
6. McNemar’s chi square: (X � Y)2/(X � Y) = (125 � 121)2/(125 � 121) =

16/246 = 0.065, which is highly nonsignificant. The MOR equals X/Y =
125/121 = 1.033. The conclusion from this data is that there is no
meaningful or significant effect of exposure (Vietnam veteran status)
on the outcome (genetic anomalies of offspring).

7.

where the V1i denote 8501 dummy variables used to indicate the 8502
matched pairs.

8. The Wald statistic is computed as Z = 0.032/0.128 = 0.25. The square
of this Z is 0.0625, which is very close to the McNemar chi square of
0.065, and is highly nonsignificant.

9. The odds ratio from the printout is 1.033, which is identical to the
odds ratio obtained using the formula X/Y.

10. The confidence interval given in the printout is computed using the
formula

where the estimated coefficient � is 0.032 and the square root of the

estimated variance, i.e.,               , is 0.128.
11. Conditional ML estimation was used to fit the model because the

study design involved matching; the number of parameters in the
model, including dummy variables for matching, is large relative to
the number of observations in the study.

12. The variables age and socioeconomic status are missing from the
printout because they are matching variables and have been
accounted for in the model by nuisance parameters (corresponding to
dummy variables) which are not estimated by the conditional ML
estimation method.

13.

where V1i denote dummy variables (the number not specified) used to
indicate matching strata.
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14. The squared Wald statistic (a chi-square statistic) for the product
term SMK � NS is computed to be 3.44, which has a P-value of
0.0635. This is not significant at the 5% level but is significant at the
10% level. This is not significant using the traditional 5% level, but it
is close enough to 5% to suggest possible interaction. Information for
computing the likelihood ratio test is not provided here, although the
likelihood ratio test would be more appropriate to use in this situa-
tion. (Note, however, that the LR statistic is 3.51, which is also not
significant at the 0.05 level, but significant at the 0.10 level.)

15. The formula for the estimated odds ratio is given by
ORadj = exp(�SMK � �SMK�NSNS) = exp(1.9381 � 1.1128NS),
where the coefficients come from the printout and the confounding
effects of NS and AS are controlled.

16. Using the adjusted odds ratio formula given in Question 8, the esti-
mated odds ratio values for NS = 1 and NS = 0 are
NS = 1: exp[1.9381 � 1.1128(1)] = exp[0.8253] = 2.28,
NS = 0: exp[1.9381 � 1.1128(0)] = exp[1.9381] = 6.95.

17. When NS = 1, the point estimate of 2.28 shows a moderate effect of
smoking, i.e., the risk for smokers is about 2.3 times the risk for non-
smokers. However, the confidence interval of (0.96, 5.44) is very wide
and contains the null value of 1. This indicates that the point estimate
is strongly nonsignificant and is highly unreliable. Conclude that, for
NS = 1, there is no significant evidence to indicate that smoking is
related to cervical cancer.

18. Using the printout for the no interaction model, the estimated odds ratio
adjusted for the other variables in model 1 is given by e1.4361 = 4.20.

The Wald statistic is approximately normal (0, 1) 

under H0, or alternatively,
Z2 is approximately chi square with one degree of freedom under H0;

test computation: alternatively, Z2 = 20.56;

the one-tailed P-value is 0.0000/2 = 0.0000, which is highly significant.
The 95% interval estimate for the above odds ratio is given by

The above statistical information gives a meaningfully significant
point estimate of 4.20, which is statistically significant. The confi-
dence interval is quite wide, ranging between 2 and 8, but the lower
limit of 2 suggests that there is real effect of smoking in this data set.
All of these results depend on the no interaction model being the 
correct model, however.
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True-False Questions:

1. F: The outcome categories are not ordered.
2. T
3. T
4. F: There will be four estimated coefficients for each independent variable.
5. F: The choice of reference category will affect the estimates and inter-

pretation of the model parameters.
6. Odds � exp[�2 � �21(40) � �22(1) � �23(0) � �24(HPT)] � exp[�2 �

40�21� �22� (HPT)�24]
7. OR � exp(�12)
8. OR � exp[(50-20)�21] � exp(30�21)
9. H0: �13 � �23 � �33 � �14 � �24 � �34� 0

Test statistic: �2 log likelihood of the model without the smoking and
hypertension terms (i.e., the reduced model), minus �2 log likelihood
of the model containing the smoking and hypertension terms (i.e., the
full model from Question 6).
Under the null hypothesis the test statistic follows an approximate
chi-square distribution with six degrees of freedom.

10.

where g � 1, 2, 3
Six additional parameters are added to the interaction model (�15,
�25, �35, �16, �26, �36).

True-False Questions:

1. T
2. T
3. F: each independent variable has one estimated coefficient
4. T
5. F: the odds ratio is invariant no matter where the cut-point is defined,

but the odds is not invariant
6. T
7. F: the log odds (D�1) is the log odds of the outcome being in category

1 or 2, whereas the log odds of D �2 is the log odds of the outcome
just being in category 2.

8. T: in contrast to linear regression, the actual values, beyond the order
of the outcome variables, have no effect on the parameter estimates
or on which odds ratios are assumed invariant. Changing the values
of the independent variables, however, may affect the estimates of the
parameters.
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9. odds � exp(�2 � 40�1� �2 � �3)
10. OR � exp[(1-0)�3�(1-0) �4] � exp(�3��4)
11. OR � exp(�3��4) the OR is the same as in Question 10 because the

odds ratio is invariant to the cut-point used to dichotomize the out-
come categories

12. OR � exp[–(�3��4)]

True-False Questions:

1. T
2. F: there is one common correlation parameter for all subjects.
3. T
4. F: a function of the mean response is modeled as linear (see next ques-

tion)
5. T
6. T
7. F: only the estimated standard errors of the regression parameter esti-

mates are affected. The regression parameter estimates are unaffected
8. F: consistency is an asymptotic property (i.e., holds as the number of

clusters approaches infinity)
9. F: the empirical variance estimator is used to estimate the variance of

the regression parameter estimates, not the variance of the response
variable

10. T

1. Model 1: logit P(D�1|X) � �0 � �1RX � �2SEQUENCE � �3RX*SEQ
Model 2: logit P(D�1|X) � �0 � �1RX � �2SEQUENCE
Model 3: logit P(D�1|X) � �0 � �1RX

2. Estimated OR (where SEQUENCE � 0) � exp(0.4184) � 1.52
95% CI: exp[0.4184 � 1.96(0.5885)] = (0.48, 4.82)
Estimated OR (where SEQUENCE � 1) � exp(0.4184 – 0.2136) �
1.23

Note: var( 1 � 3) � var( 1) � var( 3) � 2 cov( 1, 3). See Chapter 5.
3. The working covariance matrix pertains to the covariance between

responses from the same cluster. The covariance matrix for parameter
estimates pertains to the covariance between parameter estimates.

4. Wald test: H0: �3 � 0 for Model 1
Test statistic: z � (0.2136 / 0.7993) � 0.2672; P-value � 0.79
Conclusion: do not reject H0.
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5. Score test: H0: �3 � 0 for Model 1
Test statistic � 0.07 (test statistic distributed chi-squared with one
degree of freedom); P-value � 0.79
Conclusion: do not reject H0.

6. OR (from Model 2): exp(0.3104) � 1.36;
OR (from Model 3): exp(0.3008) � 1.35.
The odds ratios for RX are essentially the same whether SEQUENCE
is or is not in the model, indicating that SEQUENCE is not a con-
founding variable by the data-based approach. From a theoretical per-
spective, SEQUENCE should not confound the association between
RX and heartburn relief because the distribution of RX does not dif-
fer for SEQUENCE � 1 compared to SEQUENCE � 0. For a given
patient’s sequence, there is one observation where RX � 1, and one
observation where RX � 0. Thus, SEQUENCE does not meet a crite-
rion for confounding in that it is not associated with exposure status
(i.e., RX).

True-False Questions:

1. F: a marginal model does not include a subject specific effect
2. T
3. T
4. T
5. T 
6. logit �i � �0 � �1RXi � �2SEQUENCEi�β3RXi �SEQi�b0i
7. OR (where SEQUENCE � 0) � exp(0.4707) � 1.60

OR (where SEQUENCE � 1) � exp(0.4707 – 0.2371) � 1.26
8. OR � exp(0.3553) � 1.43

95% CI : exp[0.3553 � 1.96(0.4565)]� (0.58, 3.49)
9. The interpretation of the odds ratio, exp(�1), using the model for this

exercise is that it is the ratio of the odds for an individual (RX � 1 vs.
RX � 0). The interpretation of the odds ratio for using a correspond-
ing GEE model (a marginal model) is that it is the ratio of the odds of
a population average.

10. The variable SEQUENCE does not change values within a cluster
since each subject has one specific sequence for taking the standard
and active treatment. The matched strata are all concordant with
respect to the variable SEQUENCE.
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A
Additive interaction, 50
Adjusted odds ratio, 26, 27, 77
ALR. See Alternating logistic

regressions
Alternating logistic regressions

(ALR), 408, 409–413
Aspirin-Heart Bypass Study,

389–393, 410–413
Asymptotic properties, 

354
Autoregressive correlation

structure, 350
AR1, 336, 351, 383

B
Background odds, 20

Backward elimination approach,
174, 175

Baseline odds, 20
“Best” model, guidelines for, 164
Biased estimates, 115
Binomial-based model, 110
Black/white Cancer Survial

Study, 272, 439
Block diagonal matrix, 347

C
Case-control study, 11–15, 230,

238–241
intercept in, 114
pair-matched, 63–64, 107–109,

233
Category matching, 231



Chi-square tests, 130
Mantel-Haenszel, 234

Chunk test, 195–196
CLR. See Conditional logistic regression
Coding

for dichotomous variables, 77–82
tests dependent on, 173
tests independent of, 172–173

Computer data sets, 437–440
Conditional estimate, 241
Conditional likelihood, 105–109, 113–114
Conditional logistic regression, 236, 241,

413–417
SAS and, 451–454
SPSS and, 468–469
Stata and, 481

Confidence intervals, 119
estimation of, 118, 136–137
interactions and, 138–142
large-sample formula, 119, 285, 311
matching, 231
narrower, 202
odds ratios and, 137, 310–313
one coefficient, 136–138

Confounding
assessment, 167–168, 192–220
general procedure, 204
interactions and, 203–211
modeling strategy for, 192–220
odds ratio and, 87–91, 209
potential, 53, 54, 57, 62, 237
precision and, 199

Consistency, 354, 403
Control variables, 52
Controls, 230
Correlation

autoregressive, 336, 350–351, 383
block diagonal matrix and, 347
covariance and, 338–340
defined, 338
exchangeable, 349
fixed, 353

independent, 349
matrix forms, 345–347
stationary m-dependent, 352
structures, 345–348
types of, 349–354
unstructured, 348, 352–353
See also specific procedures, parameters

Covariance
correlation and, 338–340
defined, 338
matrix forms, 115–116, 128–129, 345

Cox proportional hazards regression, 165
Cross-sectional studies, 11–15

D
Data layout for correlated analysis, 337
Data sets, computer. See Computer

data sets
Degrees of freedom, 287
Dependence, and coding, 172–173
Diagonal matrix, 346
Dichotomous data, 5, 278, 340–341

coding schemes for, 77–82
GEE and, 459–464, 484–486

Discriminant function analysis, 105
Dispersion, 361
Dummy variables, 61, 237

interaction and, 243

E
E, V, W model, 52–61

general, 53–54
logit form of, 76
for several exposure variables, 85–87

Effect modifiers, 62, 243
Eligible subsets, 202
Elimination, candidates for, 204
Epidemiologic study framework, 8
Estimated variance-covariance matrix,

115–116, 128–129
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Evans County Heart Disease Study, 58, 59,
116, 142, 154, 177, 211–218, 438

Exchangeable sets, 245
Exchangeable correlation structure, 349
Exposure variables, 4, 43

EVW model, 85–87
odds ratio for, 87–91
single, 42

Extra variation, 361

F
Fixed correlation structure, 353
Fixed effects, 414, 417
Follow-up studies, 11–15
Full model, 131

G
GEE. See Generalized estimating equations
General odds ratio formula, 84
Generalized linear mixed model (GLMM),

418–425
Generalized linear models (GLM), 341–343,

364
Generalizing estimating equations (GEE)

model, 330–403
ALR model and, 407, 412
Aspirin-Heart Bypass Study, 389–393
asymptotic properties of, 354
defined, 344–345
dichotomous data and, 459–464, 484–486
GLM and, 364
Heartburn Relief Study, 393–395
Infant Care Study, 380–388
matrix notation for, 362–363
parameters in, 364
score-like equations and, 362–366
statistical properties of, 354

GLMM. See Generalized linear mixed model
GLM. See Generalized linear models
Gold standard model, 200–203, 207

H
Hat symbol, 9
Heartburn Relief Study, 393–395
Hierarchical backward-elimination approach,

174, 175
Hierarchically well-formulated (HWF) model,

171–173, 244
Hierarchy principle, 175

applying, 204
product terms and, 180
rationale for, 176
retained variables, 175–176

HWF. See Hierarchically well-formulated
model

Hypothesis testing, 9, 115, 118, 128–136

I
Identity matrix, 349
Independent correlation structure, 349
Independent of coding tests, 172–173
Independent variables, 4–5
Indicator variables, 61, 236–237
Infant care study, 380–388, 440
Inference, statistical, 115–119, 126–145,

279–282. See also specific methods
Influential observation, 169
Interactions

additive, 50
assessment of, 166–167, 179, 195–198
coefficients of, 62
confidence interval estimation with,

138–142
confounding and, 203–211
dummy variables and, 243
likelihood ratio test, 146
matching, 242–244
modeling strategy for, 192–220
multiplicative, 46–52
no interaction, 48–49, 60, 199–203
odds ratio for several exposure variables

with, 87–91



Interactions (continued)
precision and, 203–211
product terms, 243
variables for, 53
Wald tests, 286

Intercept term, 82, 114
Interval estimation. See Confidence interval

estimation
Interval variables, 79
Invariance, 305–306
Iterative methods, 111

J
Joint probability, 110, 112, 289

L
L. See Likelihood function
Large-sample formula, 119, 285, 311
Large versus small number of parameters

debate, 106–108
Least squares (LS) estimation, 104
Likelihood function (L), 109–115

for conditional method, 112, 113
for ordinance model, 316–317
for polytomous model, 288–290
for unconditional method, 112

Likelihood ratio (LR) statistic, 130–134, 287,
357

carrying out, 144
defined, 118
interaction terms, 146

Likelihood statistic, log, 130
Linear regression, 165
Link function, 343, 344
Log odds, logit and, 19–21
Logistic function, shape of, 6–7
Logistic model, 5–8

application of, 9–11
defined, 8
follow-up study and, 14–15
interaction, 46–52, 84

matching and, 61–64, 235–238
multiplicative interaction, 46–52
simple analysis, 43–46
special cases of, 40–64
See also Logistic regression

Logistic regression
ALR, 409–413
basic features of, 4–7
computing odds ratio in, 74–91
conditional, 236, 241, 413–417, 451–454,

468–469, 481
defined, 5
introduction to, 2–31
matching and, 230–242
multiple standard, 317–319
ordinal, 304, 319, 456–459, 471–473, 483
polytomous, 272–291, 454–456, 469–471, 482
statistical inferences for, 115–119, 126–145
stratified analysis, 236
unconditional, 441–451, 465–468, 475–480
See also Logistic model

Logit form, of EVW model, 76
Logit transformation, 16–22

log odds and, 19–21
logistic model and, 17

Log likelihood statistic, 130
LR statistic. See Likelihood ratio
LS. See Least squares estimation

M
Main effect variables, 27, 50
Mantel-Haenszel odds ratio (MOR), 234–235,

249
Marginal model, 423, 424
Matching, 114

application of, 238–241
basic features of, 230–232
case-control studies, 230–247
category matching, 231–232
cohort studies, 247–249
confidence intervals, 231
exchangeability and, 245–246

510 Index



Index 511

follow-up data, 247–251
interaction and, 242–244
logistic model and, 235–238
major disadvantage, 232
matching factors, 230
ML estimation and, 239
pooling, 245–247
precision and, 231
stratification, 232–235
validity and, 232

Mathematical models, 5
Matrix algebra, 115–116, 128–129, 

345, 362
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