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Preface 

Almost all research in the social and behavioral sciences, and also in eco­
nomic and marketing research, criminological research, and social medical 
research deals with the analysis of categorical data. Categorical data are 
quantified as either nominal or ordinal variables. This volume is a collec­
tion of up-to-date studies on modern categorical data analysis methods, 
emphasizing their application to relevant and interesting data sets. 

Different scores on nominal variables distinguish groups. Examples 
known to everyone are gender, socioeconomic status, education, religion, 
and political persuasion. Other examples, perhaps less well known, are 
the type of solution strategy used by a child to solve a mental problem 
in an intelligence test and different educational training programs used to 
teach language skills to eight-year old pupils. Because nominal scores only 
identify groups, calculations must use this information but no more; thus, 
addition and multiplication of such scores lead to meaningless results. 

Different scores on ordinal variables distinguish levels of interest, but 
differences between such numbers hold no additional information. Such 
scores are rank numbers or transformations of rank numbers. Examples 
are the ordering of types of education according to level of sophistication, 
the choice of most preferred politician to run for president, the preference 
for type of punishment in response to burglary without using violence, and 
the degree in which someone who recently underwent surgery rates his or 
her daily quality of life as expressed on an ordered rating scale. 

Originally, the analysis of categorical data was restricted to counting 
frequencies, collecting them in cross tables, and determining the strength 
of the relationship between variables. Nowadays, a powerful collection of 
statistical methods is available that enables the researcher to exhaust his or 
her categorical data in ways that seemed illusory only one or two decades 
ago. 

A prominent breakthrough in categorical data analysis is the devel­
opment and use of latent variable models. This volume concentrates on 
two such classes of models, latent class analysis and item response theory. 
These methods assume latent variables to explain the relationships among 
observed categorical variables. Roughly, if the latent variable is also cate­
gorical the method is called latent class analysis and if it is continuous the 
method is called item response theory. 

Latent class analysis basically yields the classification of a group of re­
spondents according to their most likely pattern of scores on the categorical 
variables. Not only does this provide insight into the mechanisms producing 

vii 



viii Preface 

the data, but modern latent class analysis also allows for the estimation of, 
for example, factor structures and regression models conditional on the la­
tent class structure. Item response theory leads to the identification of one 
or more ordinal or interval scales. In psychological and educational testing 
these scales are used for individual measurement of abilities and person­
ality traits. Item response theory has been extended to also deal with, 
for example, hierarchical data structures and cognitive theories explaining 
performance on tests. 

These developments are truly exiting because they enable us to get so 
much more out of our data than was ever dreamt of before. In fact, when 
realizing the potential of modern days statistical machinery one is tempted 
to dig up all those data sets collected not-so-long ago and re-analyze them 
with the latent class analysis and item response theory methods we now 
have at our disposal. To give the reader some flavor of these methods, 
the focus of most contributions in this volume has been kept applied; that 
is, after a method is explained, the potential of the method for analyzing 
categorical data is illustrated by means of a real data example. The purpose 
is to explain methods at a level that is accessible to researchers not trained 
explicitly in applied statistics and then show how it can be used effectively 
for solving a real data problem. 

We thank the following colleagues who provided critical comments on 
early drafts of the papers in this volume: Coen Bernaards (AMC Cancer 
Research Center, Denver), Jeff Douglas (University of Illinois at Urbana-
Champaign), Joop Hox (Utrecht University), Brian Junker (Carnegy Mel-
lon University), Steffen Kiihnel (Georg-August-Universitat Gottingen). John 
J. McArdle (University of Virginia), Ernesto San Martin (Pontificia Univer­
sidad Catolica de Chile), Marijtje van Duijn (University of Groningen), Pe­
ter van der Heijden (Utrecht University), and Han van der Maas (University 
of Amsterdam). Thanks are also due to series editor George Marcoulides, 
the reviewers of Lawrence Erlbaum Associates for their useful comments, 
and Debra Riegert, Jason Planer, and Kerry Breen of Lawrence Erlbaum 
Associates for technically supporting us to prepare this volume. 

If there is a "latent" motivation for us to prepare this volume it is to 
raise interest in modern categorical data analysis in such a way that readers 
will find it impossible to ignore these methods in their future data analysis. 
If we succeed in doing this of course, this is due primarily to the contributors 
to this volume, whom we thank for their efforts in making it a success. 

—L. Andries van der Ark 
Marcel A. Croon 

Klaas Sijtsma 
Tilburg University 
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Chapter 1 

Statistical Models 
for Categorical Variables 

L. Andries van der Ark, Marcel A. Croon, and Klaas Sijtsma 
Tilburg University 

This volume contains a collection of papers on the analysis of categorical 
data by means of advanced statistical methods. Most methods presented 
use one or more latent variables to explain the relationships among the 
observed categorical variables. If the latent variables are also categorical the 
method is called latent class analysis (LCA) and if they are continuous the 
method is called item response theory (IRT) or latent variable modelling. 

Both LCA and IRT are used to analyze categorical data from at least 
two, but often many variables collected in a multidimensional contingency 
table. It is for this reason that this introductory chapter starts with a brief 
introduction into the analysis of contingency tables, and then introduces 
log-linear models, LCA and IRT at a conceptual level. The chapter ends 
with a brief outline of the contributions to this volume. 

The focus of the contributions is applied; that is, after a method is 
explained, the potential of the method for analyzing categorical data is 
illustrated by means of a real data example. The editors express their hope 
that this volume is helpful in guiding applied researchers in the social and 
the behavioral sciences, and possibly in other fields (e.g., language studies, 
marketing, political science, social medical research) as well, to use the 
advanced and multi-purpose models discussed here in their own research. 

1 



2 Van der Ark et al. 

1.1 Categorical Data and Analysis of Contin­
gency Tables 

Many variables collected in social and behavioral science research are cat­
egorical. Agresti (2002) distinguishes two kinds of categorical variables. 
Nominal variables have two or more numerical values that distinguish class­
es, for example, gender [men (e.g., score 0) and women (e.g., score 1)], reli­
gion [e.g., catholic (1), protestant (2), Jewish (3), islamic (4)], and political 
persuasion [democratic (1), republican (2)]. The scores serve to distinguish 
group membership. Ordinal variables have numerical values that describe 
an ordering. Examples are level of education [low (1), intermediate (2), 
high (3)], preference for a brand of beer (e.g., scores 1,.. . ,10 ; a higher 
score indicates a stronger preference), and level of agreement with a par­
ticular statement about abortion (e.g., 0 , . . .  , 4; a higher score indicates a 
stronger endorsement). In these examples, the scores serve to order the 
respondents on the variable of interest. 

Traditionally, relationships between categorical variables are studied by 
means of contingency tables. The simplest contingency table gives the 
two-dimensional layout for two variables, such as gender and political per­
suasion. In the example, the table has two rows (gender) and two columns 
(political persuasion). For a sample of respondents, the cells of the table 
give the number of democratic men, republican men, democratic women, 
and republican women. The margins of the table give the sample frequency 
distributions of gender and political persuasion. An example of such a sim­
ple two-way contingency table is Panel A of Table 2.6 on page 29. 

The relationship between gender and political persuasion can be studied 
by means of several statistics. For tables of any dimension (i.e., number 
of variables) and any order (i.e., number of categories per variable), the 

2) canchi-square statistic (denoted x  be used to test a null hypothesis of 
expected cell frequencies under a particular model for the data against an 
unspecified alternative. An example of a more general two-way contingency 
table is Table 5.1 on page 85. These expected frequencies can only be 
calculated under certain assumptions about the population. A common 
assumption is that the observed marginal distributions are the population 
distributions, which are kept fixed, and used to calculate cell frequencies 
expected under independence of the variables. The assumption then is that 
the variables' marginal distributions generated the data. If the chi-squared 
statistic is significant, the null hypothesis is rejected and it is inferred that 
there is a relationship between the variables. Other null models can be 
formulated, and expected cell frequencies calculated and tested against the 
observed cell frequencies, using the chi-squared statistic. 
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For some simple tables, the strength of the relationship can be expressed 
by association coefficients. For example, in a 2 x 2 table for gender (rows; 
scored 0,1 ) and political persuasion (columns; scored 1, 2), assuming the 
marginal distributions fixed one can easily verify that the table has one 
degree of freedom. Consider the "democratic men" cell [i.e., the (0, 1) 
cell]. Given fixed marginals and a given sample size, AT, the expected 
frequency of democratic men can be calculated and compared with the 
observed frequency. Obviously, the observed frequency can deviate from 
the expected frequency by being either higher or lower, and the more it 
deviates in either direction, the stronger the relationship. The strength 
of this relationship can be expressed by the 0 coefficient. To define this 
coefficient, denote the cell frequencies of the gender by political persuasion 
table as noi, no2, ^11, and ni2, and the marginal frequencies of the rows 
as TZO+ and n\+, and of the columns as n+i, and n+2- The 0 coefficient is 
defined as 

The dependence of 0 on the x2 statistic is clear through 

This relationship shows that, given fixed N, the higher x2 0-e., the greater 
the discrepancy between observed and expected cell frequencies), the higher 
0, either positive or negative (i.e., the stronger the association between 
gender and political persuasion). The 4> coefficient is equal to the Pearson 
product-moment correlation, applied to the respondents' nominal scores on 
gender (0,1) and political persuasion (1,2), and thus attains values on the 
interval [—1; 1] provided that the marginal distributions of the variables are 
equal. The more the marginal distributions are different, the smaller the 
range of rf>. 

The dependence of 0 on the marginal distributions of the table obviously 
impairs its interpretation. This drawback is remedied by Mokken's (1971; 
see Loevinger, 1948) H coefficient. Let 0max denote the maximum corre­
lation given the marginals of the table; then, the H coefficient is defined 

Division by 0max guarantees that the maximum H is always 1. 
Probably the best known association coefficient for contingency tables is 

the odds-ratio (e.g., Agresti, 2002, pp. 44-47). For cell frequencies denoted 
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; . 77,02, Wi i i and r?.i2, the odds ratio, denoted 0, is defined as 

It takes values in the interval [0, oo). An odds ratio smaller than 1 indicates 
a negative relationship and an odds ratio greater than 1 a positive relation­
ship. The odds ratio is not influenced by the marginal distributions of 
the table. All three coefficients can be generalized to two-way contingency 
tables of greater order. 

Another example of a contingency table in which association can be 
determined is the following. Imagine two psychologists who independently 
rated children's inclination to engage in self-directed behavior. Assume 
that inclination is taken as the degree to which children exhibit this kind 
of behavior, recorded by means of a checklist, when they are observed in 
a playground among their peers. Assume that both psychologists observe 
each child for a fixed period of time, and then rate the child as cither "low­
level," "average," or "high-level." For N rated children, the ratings of the 
two psychologists can be collected in a 3 x 3 contingency table, with diagonal 
cells containing the frequencies by which they agreed, and the off-diagonal 
cells the frequencies by which they disagreed. The marginal distributions 
express each psychologist's propensity for assigning children from the popu­
lation of interest to the three categories. Assuming the marginals fixed, the 
expected frequencies can be calculated and compared to the observed fre­
quencies, using a chi-squared test. The degree to which the psychologists 
agree can be expressed by means of Cohen's K coefficient, which is nor­
malized to have a maximum of 1 independent of the marginals, expressing 
maximum agreement, a 0 value expressing independence, and a negative 
minimum which depends on the marginals. Cohen's K has been generalized 
to more raters and different numbers of categories used per rater, and also 
the differential weighing of the off-diagonal cells. 

The methods discussed thus far are suited especially for small tables, 
but may miss several interesting effects in tables based on more variables 
and/or more categories per variable. For example, consider a 3 x 4 table 
with level of education in the rows (low, intermediate, high) and religion 
in the columns (catholic, protestant, Jewish, islamic). A researcher may 
hypothesize, in particular, that people with a low educational level arc more 
often catholic than expected on the basis of the marginal frequencies of low 
educational level and catholic religion alone. Similarly, he/she may expect 
higher or lower frequencies elsewhere in the table, but not everywhere. The 
overall chi-squared statistic and the association coefficients cannot reveal 
such specific effects, but log-linear models can. 

Conceptually, log-linear models may be compared with analysis of vari­
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ance models (Stevens, 1992, p. 502). Log-linear models compare effects of 
rows and columns of a contingency table with a "grand mean" and are also 
capable of explaining deviates from marginal effects in cells by means of 
interaction effects. Let X and Y be two categorical variables with values 
x = 1, . . . , mx and y = 1, . . . , my, respectively. The natural logarithm of 
the expected frequency in cell (x,y), denoted exy, is modelled to be the 
sum of a grand mean, A, a row effect, A*, a column effect, Ay, and an 

yinteraction effect, A*y , such that 

Log-linear models that contain all main effect and interaction effect param­
eters— so-called saturated models— cannot be tested because there are no 
degrees of freedom left in the data. More importantly, the principle of 
parsimony requires models to be as simple as possible and this is realized 
best when the researcher defines the effects of interest before he/she starts 
analyzing the data. The other effects can be set to 0, comparable to what 
one does with the factor loadings in a confirmatory factor analysis, and the 
fit of the restricted model to the data can be tested using chi-squared test 
statistics. Also, competing models which are nested can be tested against 
one another. For example, for cell (x, y) nested models with and without the 
interaction parameter can be tested against each other. A significant result 
means that observed frequency is different from the expected frequency 
under the null model. See Wickens (1989), Hagenaars (1990), Agresti (1996, 
2002), Stevens (1992), and Andrefi, Hagenaars, and Kuhnel (1997) for more 
information on log-linear models; also see Bergsma and Croon (chap. 5, this 
volume). 

1.2 Categorical Data and Latent Class 
Analysis 

LCA models assume that the frequency counts in a contingency table can 
be explained by finding an appropriate subgrouping of respondents, such 
that in each table corresponding to a subgroup the cell frequencies can be 
explained from the marginal distributions for that table. As the subgroups 
are not defined a priori but estimated from the data, they are considered 
to be latent; hence, latent class analysis. 

Assume a discrete latent variable on which homogeneous classes of re­
spondents can be distinguished, and denote this variable 6, with W classes, 
indexed w = 1, . . . , W. Also, assume an arbitrary number, say, J, of ob­
served categorical variables, denoted X j  , with j = 1, . . . , J, and collected 
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in a vector X with realization x. The LCA model assumes independence 
between the observed variables given a fixed value of 9. This is known as 
local independence (LI), which means that 

Now, using the property of independent events, A and 5, that P(A/\B) — 
P(B)P(A), and applying LI to P(A), we may write the LCA model as 
(Goodman, 2002; Heinen, 1996, p. 44; McCutcheon, 2002), 

The probability that a randomly chosen respondent produces score pattern 
X = x, is 

This equation shows how the LCA models the J-variate distribution of 
the observable variables in terms of latent class probabilities, P(0 = w), 
and probabilities of having particular scores Xj on observable variable Xj 
(j = 1, . . . , J) given class membership, P(Xj = Xj\9 = w). 

The class probabilities and the conditional probabilities can be esti­
mated from the data for several choices of the number of latent classes, W. 
In practical data analysis, W often varies between 1 and 5. The parameter 
estimates for the best-fitting model are used to estimate the discrete distri­
bution of 9, P(6 = w), with w — 1, . . . , W. This distribution can be used 
together with the conditional probabilities, P(Xj = Xj\0 = w), to assign 
people to latent classes. For respondent v, this is done using probabilities 
P(0 = w\Xv —xw), for iw = 1, . . . , W, after which he/she is assigned to the 
class that has the greatest subjective probability. 

For a given number of latent classes, one thus finds a typology for a 
population in terms of response patterns on J variables; that is, different 
classes are characterized by different patterns of scores on the J observable 
variables. For example, a sociologist may be interested in the types of atti­
tudes with respect to male and female role patterns, interpreted in terms of 
the typical answer pattern on the J items in a questionnaire. Heinen (1996, 
pp. 44-49) found that three classes fitted the data best. One class (45% of 
the respondents) represented a pro- women's lib point of view, another class 
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(11%) was traditional, and the third (44%) was liberal on some issues but 
traditional on others. Another example comes from developmental psychol­
ogy, where researchers may be interested in different developmental groups. 
Each group may be characterized by another solution strategy for a partic­
ular cognitive problem, which reflects the cognitive stage of the group (e.g., 
Bouwmeester, Sijtsma, & Vermunt, 2004; Jansen & Van der Maas, 1997; 
Laudy, Boom, & Hoijtink, chap. 4, this volume). 

It may be noted that, thus far, latent classes have been assumed to be 
unordered, that is, to have nominal measurement level. This leads to an 
unrestricted LCA model. A recent development is to put order restrictions 
on the conditional probabilities, P(Xj = Xj\6 = u>), so as to express the 
assumption that there is an ordering among the latent classes, such that 
people in a higher latent class have a higher probability, P(Xj = Xj 8 — w), 
to give a particular answer to the item. This makes sense, for example, 
when a higher class stands for a higher reading ability and the items con­
tain questions about a reading text, or when higher classes correspond to 
progressively higher levels of endorsement with abortion and the items are 
positively worded statements about abortion that have to be answered on 
a rating scale. Croon (1990, 2002) introduced these ordered latent class 
models, which were studied further by Hoijtink and Molenaar (1997), Ver­
munt (2001) Vermunt and Magidson (chap. 3, this volume), and Van Onna 
(2002); see Emons, Glas, Meijer, and Sijtsma (2003) for an application 
to the analysis of odd response patterns on sets of cognitive test items, 
and Laudy, Boom, and Hoijtink (chap. 4, this volume) for a application 
to balance-scale data. Haberman (1979) and Heinen (1996) discussed the 
close mathematical relationships between log-linear models and LCA mod­
els. More information on LCA models can be found in McCutcheon (1987) 
and Hagenaars and McCutcheon (2002). 

1.3 Categorical Data and Item Response 
Theory 

IRT models assume that the frequency counts in a J-dimensional contin­
gency table based on the J items from a test can be explained by one ore 
more continuous latent variables on which the respondents are located. For 
one latent variable, given a fixed value, each contingency table correspond­
ing to this value can be explained from the marginal distributions for that 
table. This is the assumption of local independence (LI) for IRT models. 

The item scores usually are ordinal, expressing progressively higher lev­
els of endorsement (e.g., Masters, 1982; Samejima, 1969), and sometimes 
nominal, as with multiple-choice items when students select one option 
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from four or five unordered options (e.g.. Bock, 1972; Thissen & Steinberg, 
1997). Assume that we have Q continuous latent variables, enumerated 
#1, . . . , #Q, and collected in vector 6. Then, LI is defined as 

For simplicity we assume that one latent variable, 6, suffices to explain the 
data structure, and that the probability density of 0 is denoted g(0). Then, 
the multivariate distribution of the data can be written as 

The difference with the multivariate distribution of the data in an LCA 
model is that in IRT the latent variable is continuous, thus introducing an 
integral instead of a summation, while in LCA models the latent variable 
is discrete. 

IRT models impose restrictions on the conditional response probabili­
ties, P(Xj =• Xj\9). These restrictions can be orderings only (e.g., the re­
sponse probability increases in the latent variable) or consist of the choice 
of a parametric function, such as the normal-ogive or the logistic. Once a 
model is chosen, it is fitted to the data. If a misfit is obtained, either the 
restrictions on the conditional response probabilities, P(Xj — Xj\9), or the 
dimensionality of the model are changed, or items that were badly fitted 
by the model are removed from the analysis. Either way, the new model is 
fitted to the complete data set or the original model is fitted to the modified 
data set. When a fitted model is obtained, parameter estimates for items 
are used to calibrate a scale (0) for respondents, on which respondent v 
is located by means of ML (or Bayesian) estimates of 9V (v = 1,. . . , N). 
This scale is then used as a measurement rod for the psychological property 
operationalized by the items. 

Many applications of IRT models exist. For example, they are used to 
build large item collections—item pools—with known measurement prop­
erties (Kolen & Brennan, 1995), from which tests with desirable properties 
can be assembled (Van der Linden, 1998). Item pools are also the basis 
of computerized adaptive testing, which is the one by one adminstration 
of items to individuals where the choice of the next item is determined by 
the estimate of the individual's value on the latent variable based on the 
previous items, until an estimate of sufficient accuracy is obtained (Van der 
Linden & Glas, 2000). IRT models are also used to detect items that are 
biased against a particular minority group (Holland & Wainer, 1993). and 
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individuals that show atypical test performance (Meijer & Sijtsma, 2001). 
Another application is the study of the cognitive process underlying the 
item responses by means of an appropriate re-parametrization of the item 
parameters in an IRT model (e.g., Fischer, 1974; Embretson, 1997). 

An interesting development in the 1990s has been that IRT models 
have become part of a larger, more encompassing statistical tool box. For 
example, they have become the measurement part of linear hierarchical 
models for analyzing nested data (Fox, chap. 12, this volume; Fox & Glas, 
2001; Patz, Junker, Johnson, & Mariano, 2002). This development in IRT 
is comparable to the integration of multilevel models, event-history mod­
els, regression models, and factor analysis models in LCA. See Vermunt 
(1997) for the development of the general framework in which these mod­
els were incorporated. Both developments reflect the increased availability 
of advanced statistical machinery for analyzing complex data, integrating 
structural analysis with the analysis of differences between groups (LCA) 
or individual differences (IRT). 

Another interesting development is the integration of LCA and IRT. For 
example, nonparametric IRT models often restrict the conditional probabil­
ities, P(Xj — Xj\0), to be nondecreasing. This assumption reflects the idea 
that a higher latent variable value, for example, arithmetic ability increases 
the probability of solving arithmetic problems correctly. This monotonicity 
assumption has recently inspired the approximation of continuous nonpara­
metric IRT models by discrete ordered LCA models (Hoijtink & Molenaar. 
1997; Van Onna, 2002). The idea is that a small number of ordered la­
tent classes can approximate the continuous latent variable with sufficient 
accuracy, and then make available for nonparametric IRT the repertoire 
of standard statistical techniques needed for investigating model fit. LCA 
models have also been used in the context of parametric IRT models, for 
example, the Rasch model; see Rost (1990). Introductions to IRT models 
can be found in Embretson and Reise (2000), Fischer and Molenaar (1995), 
Van der Linden and Hambleton (1997), and Sijtsma and Molenaar (2002). 

1.4 Contents of This Volume 

Hagenaars (chap. 2) discusses how misclassification and measurement er­
rors in categorical variables lead to phenomena that are similar to the well-
known regression toward the mean effect for continuous variables. He argues 
that for categorical variables one should rather speak of tendency toward 
the mode and shows by means of well-chosen examples how frequently this 
phenomenon occurs in social science research. He also discusses how ten­
dency toward the mode can be fixed by appropriate latent class analyses of 
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the data. 
Vermunt and Magidson (chap. 3) attempt to bridge the differences be­

tween the linear factor analysis model for continuous data and the latent 
class model for categorical data. In their approach, a linear approximation 
to the parameter estimates obtained under a particular latent class model, 
the latent class factor analysis model is obtained. By means of this model 
they ensure that the output of their analysis is similar to that of standard 
factor analysis, which may be easier to interpret than the output from the 
original LCA. 

Laudy, Boom, and Hoijtink (chap. 4) use LCA to test hypotheses in­
volving inequality restrictions (e.g., Group A is expected to perform better 
on test T than Group B), and discuss how a researcher may choose among 
competing hypotheses. The authors analyze categorical balance-task data 
obtained from 900 children of different age groups, and compare several 
theories explaining the associations in these data. 

Bergsma and Croon (chap. 5) discuss a broad class of models for testing 
complex hypotheses about marginal distributions for categorical data. The 
models are defined by means of the nonlinear equality constraints imposed 
on the cell probabilities in the corresponding contingency table. Further­
more, the authors discuss how the maximum likelihood estimates of these 
constrained cell probabilities may be obtained, and how the corresponding 
model can be tested. 

Moustaki and Knott (chap. 6) use the EM estimation procedure and a 
Baycsian estimation procedure to estimate the parameters of three latent 
variable models for categorical data. The authors demonstrate how latent 
variable models for categorical data can be formulated on the basis of sub­
stantial theory. They discuss the merits and the pitfalls of both estimation 
procedures using software that is freely available. 

Van Rijn and Molenaar (chap. 7) discuss dynamic latent variable mod­
els that allow the analysis of categorical time series observations on a single 
subject. The authors describe a model that integrates the basic principles 
of the Rasch measurement model and the assumptions of a simple stochas­
tic model for describing individual change. They also discuss parameter 
estimation for this dynamic Rasch model. 

Van der Ark and Sijtsma (chap. 8) discuss the imputation of item scores 
for missing values in data stemming from the administration of tests and 
questionnaires. They consider simple and more complex methods for miss­
ing data handling and single and multiple imputation. They apply their 
methods to three real data sets in which a priori fixed numbers of scores 
have been deleted artificially using several missing data mechanisms, and 
then impute scores for the missingness thus created. The effects of each 
imputation method on confirmatory and exploratory IRT scale analysis is 



 11 1. Statistical Models for Categorical Variables

investigated. 
Kelderman (chap. 9) formulates measurement models for categorical 

data in terms of graphical independence models, exchangeability models, 
and log-linear models. By bringing these concepts under a single umbrella, 
he demonstrates how to start from scratch and construct an IRT model 
using important concepts such as exchangeability and internal and external 
consistency as building blocks. 

Bechger, Maris, Verstralen, and Verhelst (chap. 10) discuss the Nedel­
sky IRT model for the analysis of test data from multiple-choice items on 
which some of the examinees may have guessed for the correct answer. The 
model rests on the assumptions that an examinee first eliminates the item's 
distracters he or she recognizes to be incorrect, and then guesses at random 
from the remaining options. They apply the model to data from a national 
test administered to eighth grade elementary school pupils, assessing their 
follow-up school level. 

Draney and Wilson (chap. 11) discuss the saltus IRT model. This is 
a mixture Rasch model. The saltus model is especially suited for devel­
opmental data stemming from several subpopulations who are in different 
developmental stages. The model assumes one item difficulty parameter 
for each item and formalizes change from one subpopulation to the next 
by means of a small number of parameters. The authors apply the saltus 
model to data obtained from 460 children ranging in age from 5 to 17 years, 
who took a test assessing proportional reasoning, and show how the data 
should be analyzed and the results interpreted. 

Fox (chap. 12) discusses a multilevel IRT model. He analyzes the data 
of a mathematics test administered to 2196 pupils (level 1 of the multilevel 
IRT model) from 97 elementary schools (level 2). This chapter focuses on 
the goodness of fit of the multilevel IRT model and the detection of outlying 
response patterns. 
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Chapter 2 

Misclassification Phenomena 
in Categorical Data Analysis: 
Regression Toward the Mean 
and Tendency Toward 
the Mode 

Jacques A. Hagenaars 
Tilburg University 

"Regression toward the mean is as inevitable as death and taxes. 
... But even more remarkable than the ubiquitousness of regres­
sion toward the mean is how commonly the phenomenon is mis­
understood, usually with undesirable consequences." (Reichardt, 
1999, p. ix) 

2.1 Introduction 

Methodologists and statisticians have warned researchers time and again 
about the regression-toward-the-mean fallacy, which is essentially about 
confounding true changes and observed changes due to random errors 
(Campbell & Clayton 1961; Campbell & Kenny 1999; Desrosieres 1998; 
Friedman 1992; Stigler 1997, 1999; Thorndike 1942; among many others). 
As Stigler remarks "The recurrence of regression fallacies is testimony to its 
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subtlety, deceptive simplicity . .  . History suggests that this will not change 
soon" (Stigler 1997, p. 113). 

The regression toward the mean phenomenon is usually formulated 
within the framework of the statistical regression model with its standard 
implications of linear relationships, continuous variables and normally dis­
tributed errors, However, the basic mechanisms underlying the regression 
artifact and its consequent deceiving appearances can be formulated and 
are valid outside the domain of the standard regression model. The core 
element in the regression artifact is the working of a random component 
in the observations of the dependent characteristic at the first and sec­
ond time of measurement, that is, in the pre- and posttest, the before and 
after measurement. The error term in the statistical regression model is 
an instance of the random component. A probabilistic reformulation of 
the random term as a kind of 'misclassification' without reference to the 
statistical regression model is possible and provides a different but illumi­
nating insight into regression artifacts. By means of such a reformulation 
it can be shown that regression toward the mean is essentially an instance 
of the more general tendency toward the mode and that, for instance, for 
U-shaped distributions 'regression toward the extremes' must be expected. 

Furthermore, this reformulation enables one to see the analogous deceiv­
ing consequences of the 'regression' artifact for categorical data analysis, 
especially, for the analysis of turnover or transition tables. Suttcliffe and 
Kuha and Skinner, among many others, have presented overviews of ran­
dom components, that is, unreliability and misclassifications, in categorical 
data (Kuha & Skinner, 1997; Suttcliffe, 1965a, 1965b). Their work can 
be put into a more general framework by formulating the misclassification 
problem within the context of a latent class model. In general, latent vari­
able models provide an appropriate and flexible framework to deal with 
many kinds of 'error' in continuous and categorical data. The latent class 
model is the most appropriate latent variable model for categorical data 
and is used here. Besides the well known founding fathers of latent class 
analysis, Lazarsfeld, Goodman, and Haberman, many other authors have 
dealt with 'errors' in categorical data explicitly using the latent class frame­
work (Bassi, Hagenaars, Croon, & Vermunt, 2000; Goodman, 1974a, 1974b; 
Haberman, 1974; Hagenaars, 1975, 1990, 1993, 1994, 1998; Hagenaars & 
McCutcheon, 2002; Harper, 1973; Langeheine & Van de Pol, 2002; Lazars­
feld, 1950; Lazarsfeld & Henry, 1969; Maccoby, 1956; Poulsen, 1982; Van 
de Pol & Langeheine, 1997; Vermunt, 1997; Wiggins, 1955). Several of 
these authors, especially, Lazarsfeld, Maccoby, and Hagenaars have also 
explicitly pointed to phenomena such as the frequently observed tendency 
for smaller groups, 'minorities' to show much more changes over time than 
'majorities' and have unmasked this observed tendency as a kind of regres­
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sion artifact from which no substantive conclusions may be drawn in terms 
of true changes over time. 

Nevertheless, the literature containing analyses of categorical data is 
still flooded with misleading statements and conclusions in this respect. 
By establishing more explicitly the connection between 'misclassifications' 
in categorical data and the classical regression phenomenon, a better un­
derstanding may be achieved that will prevent these kinds of fallacies. The 
traditional exposition of regression toward the mean using the statistical 
regression model will be presented in section 2.2. It will be followed by 
an explanation of the regression phenomenon in terms of 'misclassifica­
tions' and as an instance of a general tendency toward the mode. This 
tendency toward the mode will be exemplified for turnover or transition 
tables, along with the possibly misleading conclusions in section 2.3. The 
way the tendency toward the mode works out in more complicated settings 
(bigger turnover tables, turnover tables for several subgroups, data from the 
nonequivalent control group design with its accompanying phenomenon of 
Lord's paradox) will be discussed in section 2.4. A short discussion of the 
meanings of the key terms, such as error, random component, misclassifi­
cation, true scores and latent variables will conclude this chapter. 

2.2 Regression Toward the Mean and Ten­
dency Toward the Mode 

2.2.1 Statistical Regression 
Regression toward the mean is in a way a natural consequence of the stan­
dard regression model. Consider the simple standard regression equation 
with dependent variable V, independent variable X and error term e 

If the standard deviations of X and Y are equal to each other: sx = sy, 
then Equation 2.1 can be rewritten, in terms of Xi and ?/;, the deviations 
from their respective means, as 

Whenever sx = sy, then, according to Equation 2.2, if a person deviates c 
X -units from the mean of X, that person's expected value on Y will deviate 
less than c F-units from the mean of V, namely, rxy x c units (assuming 
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without any real loss of generality that the correlation is positive and not 
perfect). 

If the standard deviations of X and Y are not the same, the same 
phenomenon occurs, but now in terms of the standardized scores 

A person's predicted z-score on the dependent variable will always be closer 
to 0, the mean z-score of Y, than that person's z-score on the independent 
variable is to 0, the mean z-score of X. In that sense, in terms of z-scores, 
regression toward the mean is tautological with a nonperfect correlation 
coefficient, that is, with the absolute value of r being less than one. 

How and under what circumstances do these simple and well-known 
facts confuse so many researchers, as stated in the Introduction? Borrowing 
freely from one of the earliest documented examples of the misleading effects 
of regression toward the mean (McNemar, 1940), imagine a researcher that 
has at her disposal the results of an IQ test administered to young orphaned 
children the moment they enter the orphanage. After a stay of one year 
in the orphanage, the researcher applies the same IQ test again to these 
children. The correlation between the first and second measurement turned 
out to be .70. Because the researcher is interested in what exactly happened 
to the orphans' IQ over time, she made groups of children having the same 
score on the first IQ test and computed the mean IQ on the second test for 
each group. Assuming that the relationship between the first and second 
measurement is linear, these mean values lie on the regression line and are 
the expected values of Y2 (IQ at time 2) regressed on YI (IQ at time 1). The 
outcomes are depicted in Figure 2.1, with scores on a scale from 0 to 10 and 
mean 5, and show impressive evidence that being raised in a homogeneous 
environment such as an orphanage leads to homogenization of intelligence. 
Obviously, the more dull persons are stimulated by their environment and 
have improved on the IQ test, while the comparatively bright children were 
not inspired by their environment and regressed toward mediocrity. The 
pattern is such that everybody moves toward the mean over time, but the 
more extreme the initial score, the bigger the change. More precisely, in 
regression terms given r = .70, Figure 2.1 shows that if a child is 5 points 
away from the mean at the first measurement, the expected score of the 
second measurement will be .70 x 5 = 3.5 points away from the overall 
mean at time 2 and will have regressed (1 — .70) x 5 = 1.5 points toward 
that mean; for those children that are 1 point away at time 1, the expected 
deviation score will be .7, regressing .3 points, etc. 

The pattern shown in Figure 2.1 occurs a lot and has led to many 
(misleading) substantive conclusions in a variety of research situations. At 
first sight, it is not strange that from such outcomes it has been concluded 
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A: Scores at time 1; B: expected scores at time 2 

Figure 2.1: Regression to the Mean. 

that pupils that performed bad at school and therefore participated in a 
remedial teaching program improved after a while, especially those doing 
worst. The regression pattern is also implicit in many evaluation studies 
using time scries analyses, for example, a time series of the number of 
street robberies in certain areas of the city. When things go worse, that is, 
when the number rises and seriously gets above the mean, police will start 
patrolling those streets leading to a decrease of the number of robberies. 
In more intricate ways, the regression phenomenon is connected to possibly 
misleading conclusions from studies interpreting substantively a negative 
correlation between the difference scores (Yjj —YI ) and the initial scores Y\ 
or from research designs that rely on the matching of groups with different 
initial scores on the dependent variable Y or from quasi-experiments like 
the nonequivalent control group design with its accompanying appearance 
of Lord's paradox (Campbell & Kenny, 1999; Lord, 1967). 

But why call these regression patterns possibly misleading? After all, 
patrolling the streets can make the neighborhood safer, remedial teaching 
may help children, etcetera (as we know from randomized experiments). 
Let us return to our imaginary researcher. Luckily, this investigator had 
heard about regression artifacts and applied the two crucial tests proposed 
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by McNcmar (1940). If there really had been a homogenization effect of the 
orphanage environment on IQ development over time, the variance of the IQ 
test at time 2 should be less than the variance at time 1. However, this was 
not found here, but s\ — $2- Obviously, there was enough spread around the 
expected values of the second measurement to make the variances of time 
one and two equal to each other, contrary to the homogenization hypothesis. 
For the second test, the time reversal test, the researcher switched the roles 
of time 1 and 2, grouping the children together on the basis of the time 2 
measurements and computing mean time 1 scores for each group. Exactly 
the same picture as in Figure 2.1 emerged but now with the roles of time 
1 and 2 reversed showing a homogenization tendency toward the past. In 
other words, being in the orphanage leads to more diversity. 

On the basis of the 'variance' and 'time reversal' tests, the researcher 
concluded that there was no real evidence that being in the orphanage leads 
to homogenization of intelligence. The pattern found in Figure 2.1 arose 
because of the random component in the model. If one selects children that 
have high observed scores on the first IQ test, one also selects dispropor­
tionately children with positive error terms, that just happened to be in the 
(extremely) high IQ group. Our best guess upon re-measurement is that 
the error terms will tend to zero, causing the high IQ group as a whole to 
score more toward the mean the second time, if nothing else changes. 

To put it a bit more formally, let us assume that YI, the observed 
IQ score at time 1, has a systematic (or true or latent) intelligence part 
denoted by T, and a random component e\ (unreliability if one likes) and 
that the same is true for Y%. Mainly for the sake of ease of exposition, a 
few simplifying assumptions will be made: the variances of the error terms 
are the same at both points in time, e\ and 62 are not correlated, and the 
systematic or true scores T do not change over time: 

If the correlation in Figure 2.2 between T and Y is 0.837 (V^TO) at both 
points in time, the correlation between the two IQ measurements will be 
.70 and exactly the pattern observed in Figure 2.1 will be found. Given 
the restrictions, the model implies equal variances and will yield the time 
reversal pattern, without any changes in the 'true' score T. but completely 
due to the random part. 

2.2.2 Regression and Misclassifications 

The simple model in Figure 2.2 (and Equation 2.4) can be formulated for 
categorical data as well. In this exposition, the categorical data conven­
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Figure 2.2: Error Model Without Latent Change. 

tion will be followed where the true (latent) scores are denoted by X and 
the observed pretest and posttest scores by A and B respectively. In this 
subsection, all variables will be treated as categorical interval level vari­
ables. It is assumed that the true scores X do not change over time (see 
Figure 2.2). The true scores X are not observed perfectly, but a random 
part comes in, termed misclassifications. It is assumed that the probabil­
ities of misclassincation are the same at times one and two and that the 
misclassifications at time 1 are independent of the misclassifications at time 
2. Table 2.1 contains the assumed symmetrical frequency distribution of X 
and the 'observed' marginal distribution of A (or B}. The mean value of 
X is 6 and its variance 1.27. Note further that the true categories 2, 3, 9, 
and 10 are empty. The distribution of the observed scores A (or B) is not 
the same as the true distribution, but resulted from the following response 
probabilities. The probability that the score on X is observed exactly as 
it is equals .50 (at both points in time). The probability that the observed 
score is one category higher than the true score is .20, as is the probability 
that the observed score is one category lower. The probability of obtaining 
a score that is two categories higher (lower respectively) than the true score 
is .05. From the distribution of X and the misclassincation probabilities, 
the joint distribution of A and B can be derived, as well as the (identical) 
marginal distributions of A and B. As expected under this simple model, 
the mean of A (or B) is also 6, but the variance of A (or B) is larger than 
the variance of X, due to 'addition' of the random or misclassification part 
(see bottom line Table 2.1). From the obtained joint distribution of A and 
B (not presented here), it can be computed what the expected or mean 
score on B will be for each category of A (or with the same results: what 
the mean score on A will be for each category of B). The results are in Col­
umn E(B\A) in Table 2.1 and show the kind of regression pattern found in 
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Table 2.1: Regression Toward the Mean and Tendency Toward 
the Mode. 

Frequency 
True Observed Regression toward the mean/ 

Score score X score A B E(B\A) Tendency toward the mode 
2 0 3 4.00 +2.00 
3 0 19 4.37 +1.37 
4 60 68 4.71 +0.71 
5 140 129 5.33 +0.33 
6 200 162 6.00 0.00 
7 140 129 6.67 -0.33 
8 60 68 7.29 -0.71 
9 0 19 7.63 -1.37 

10 0 3 8.00 -2.00 
p(A = X) = .50; p(B = X) = .50; 
p(±l) = .20; p(±2) = .05 (see text); 

2s x = 1.27; 4 =  4= 2.07; s2
x/s

2
A = 0.61 

Figure 2.1: Regression toward the mean, and the more extreme a category 
is the more regression occurs. 

This pattern of seemingly systematic change arises from the simple no-
latent-change-and-independent-misclassification model just described. Ta­
ble 2.2 exemplifies in detail how this happens for category A = 5. The 
first two columns of Table 2.2 present the true score distribution of X] 
the third column states the assumed conditional response probabilities of 
scoring A = 5, given the true score; the fourth column indicates how the 
composition of the group of 129 people with A = 5 accordingly is in terms 
of their true score; finally, the last column shows how each of these com­
posing subgroups contributes to E(B\A — 5) = 5.33, given that under this 
simple model the expected observed score equals the true score. For other 
values of A similar tables can be constructed, leading to the outcomes in 
Table 2.1. 

As may be obvious from this example, regression toward the mean has 
to do with the nature of and the assumptions about the distribution of the 
random term, that is, the probabilities of misclassification. Other things 
being equal, if the probability of misclassification increases, as a rule, given 
most common assumptions about the nature of misclassifications, the re­
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Table 2.2: Expected Value of 5, Given A = 5 [i.e., E(B\A = 5)]. 

True score X Freq. X p(A = r | •y
r\ 
/ Freq. A = 5 E(B\A = 5) 

2 0 0 0 
3 0 0.05 0 
4 60 0.20 12 12 x 4= 48 
5 140 0.50 70 70x5 = 350 
6 200 0.20 40 40x6  = 240 
7 140 0.05 7 7 x 7  = 49 
8 60 0 0 
9 0 0 0 

10 0 0 0 
Total 129 687 
E(B\A = 5) = 687/129 = 5.33 

gression toward the mean will increase. Furthermore, the distribution of 
the misclassification terms need not be symmetrical, but may favor, for 
example, obtaining too high scores over obtaining too low scores, giving 
rise to a somewhat different regression pattern. Also, in the example in 
Table 2.1, a certain kind of ceiling and bottom (misclassification) effects 
were avoided by leaving the highest and lowest categories of X empty (but 
existent). These and still other variants of the nature of the misclassifica­
tions, such as dependencies between the misclassifications of time 1 and 2 
can easily be reckoned with and built into the (latent class) models. 

As important as the distribution of the random part, is the distribution 
of the systematic part for the regression pattern. Because of the unimodal, 
symmetric distribution of X in Table 2.1, the 'mistakes' in, for example, 
the observed score A = 5 originate more from X > 5 than from X < 4; 
hence the downward movement toward 6. As is clear from the calculation 
of E(B\A = 5) in Table 2.2, the tendency will be in the direction of the 
largest categories of X. Seen in this way, regression toward the mean is just 
another instance of a more general tendency toward the modal category. 
Given another distribution of X, a U-shaped distribution, for example, 
there may be regression away from the mean toward the (modal) extremes. 
To illustrate this possibility, the model used for the construction of Table 2.1 
is applied again but now starting from a partly U-shaped distribution of 
X. 

A different 'regression' pattern from Table 2.1 emerges in Table 2.3. 
Categories 4 and 7 are the modal categories of the distribution of X. The 
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Table 2.3: Regression From the Mean and Tendency Toward the 
Mode. 

Frequency 
True Observed Tendency 

Score score X score A, B E(B\A) toward to mode 
2 0 10.0 4.00 +2.00 
3 0 45.0 4.11 +1.11 
4 200 122.5 4.20 +0.20 
5 100 105.0 4.81 -0.19 
6 50 85.0 6.00 0.00 
7 100 105.0 7.19 +0.19 
8 200 122.5 7.80 -0.20 
9 0 45.0 7.89 -1.11 

10 0 10.0 8.00 -2.00 
p(A = X) = .50; p(B = X) = .50; 
p(±l) = .20; p(±2) = .05 (see text); 

2 24 = 2.77; S
2
A = s B = 3.57; s x/s\ = 0.78 

observed category A = 4 'moves' .20 toward a higher score because there 
are more people who are truly above than below 4, but the people in A = 
5 'regress' toward the modal category 4, away from the mean. So, the 
regression phenomenon is not confined to and not only a consequence of 
the statistical regression model, but may occur in several different ways and 
directions, and poses a threat not only to the analysis of continuous data, 
but also to categorical and nominal level data analysis. 

2.3 Fickle Minorities: Tendencies Toward the 
Mode in Transition Tables 

The kernel of the analysis of longitudinal categorical data is the turnover 
table, usually in the form of a transition table, showing the changes over 
time conditional upon the initial states. Table 2.4 provides such a table in 
its most elementary form of a 2 x 2 table. From Table 2.4 (Panel A) and 
its rearrangement in Table 2.4 (Panel B) it may be concluded that those 
who had a favorable attitude (in this case: children's attitude toward mi­
norities) in the beginning of the study were still overwhelmingly favorable 
at the second wave, while almost half of those who were unfavorable to 
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Table 2.4: Cross Tabulation of Opinion About Minorities at Two 
Points in Time. 

Panel A Panel B 
Time 2 Time 2 

Fav. Unfav. Total Same Diff. Total 
Time 1 Time 1 
Fav. 89.0 11.0 100 Fav. 89.0 11.0 100 

(81) (10) (91) (81) (10) (91) 
Unfav. 47.6 52.4 100 Unfav. 52.4 47.6 100 

(10) (11) (21) (11) (10) (21) 
Total 81.2 18.8 100 Total 82.1 17.9 100 

(91) (21) (112) (91) (21) (H2) 
Note. Horizontal percentages; frequencies between brackets. Source: see text. 
Fav. = Favorable; Unfav. = Unfavorable; Diff. = Different. 

begin with changed into a favorable attitude. Given that in the meantime 
a documentary was shown on T.V. providing favorable information about 
the culture of minority groups, it would have been concluded that the doc­
umentary was successful. Or, imagine another research context, in which it 
was considered to be important that the unfavorable people were a minority 
in the first wave and that this minority would experience social pressure 
to share the majority opinion. The empirical results seem to confirm this 
expectation: the majority was rather stable, but the minority changed into 
the direction of the majority. 

Hundreds, thousands of transition tables can be found that show this 
pattern: Voters turn out to be much more stable than the smaller group 
of nonvoters; voters for bigger political parties change much less than sup­
porters of smaller parties; employed people are more stable over time than 
the unemployed; pupils who choose bigger academic disciplines, such as 
medicine, follow up that intention much more than those who initially 
choose for smaller disciplines, such as sociology; owners of a type of car 
having a big share of the market switch much less to another brand than 
owners of small brands. There seems to be an omnipresent tendency toward 
the mode, to the Triumph of Majority in Human Life. 

But we know that the study of change is very tricky whenever there may 
be a random component involved. Let us have a closer look at Table 2.4. 
Although thousands of exemplary turnover tables might have been provided 
using real world data, Table 2.4 contains simulated data. So we know how 
it came about. The patterns of change in Table 2.4 look very much like 
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the classical regression toward the mean. If category favorable is coded T 
and unfavorable '0', the overall mean score at time 1 and time 2 is p, the 
proportion in category 1, and equals .812 and so the variances p(l — p) 
at time 1 and 2 are also equal. The expected (mean) value at time 2 
for those who scored '!' the first time is .890. The expected value of the 
majority group whose score of 1 is close to the overall mean of .81 regressed 
.078 toward the overall mean. The time 2 expected (mean) value of the 
minority, with an initial extreme score of 0 far away from the overall mean 
is .476, regressing .336 toward the overall mean. These regressions are in 
exact conformity with the correlation (or the identical regression) coefficient 
in Table 2.3 of .414. However, given the way the data were constructed, 
the conclusions about the larger stability of the favorables compared to the 
unfavorables are wrong. 

In 'reality', from the total group of 112 children, 101 were assigned to 
the category truly favorable and 11 to truly unfavorable. It was assumed 
that these true scores remained completely stable during the period of in­
vestigation. The true attitude was measured twice, but not perfectly. All 
children were given a .90 chance of providing the correct answer, that is, 
an observed answer in agreement with their true score (yielding of course a 
probability of misclassification of .10). The probabilities of a misclassifica­
tion were the same for both points in time and independent of each other. 
The 'observed' data in Table 2.4 resulted from this simple model. Despite 
the dramatic observed differences in Table 2.4 regarding the stability of 
their attitude, the unfavorable children did not truly change more than the 
favorable ones: nobody's' true position changed and, for example, no effects 
of a supposed T.V. documentary is present. Moreover, as far as one would 
like to see the random component (i.e., the probability of a misclassifica­
tion) as a sign of instability or fickleness, this probability was exactly the 
same for the majority, the children in favor, and the minority, the children 
not in favor. In short, all of these kinds of substantive interpretations of 
the observed changes are completely besides the point given the way the 
data were simulated. 

For the data in Table 2.4, it is sure that the observed changes were an ar­
tifact of a small random component. But what if this table had represented 
real world data. Might we not just take the observed changes for granted, 
at face value? Because of the omnipresence of random components in our 
data, the answer is definitely 'no.' First of all, there always will be some 
random component in our data in the form of measurement error. Even 
if we look into the measurement of simple variables such as gender, age, 
education, or religious denomination, we must conclude that these mea­
surements are not or far from perfect (Hagenaars, 1973). How much more 
likely then must be misclassifications when measuring more complicated 
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concepts, such as values, attitudes, intentions, and beliefs. Furthermore, 
besides measurement error in the strict sense, there may be other sources 
of random fluctuations. When stating one's voting preferences or when 
making a decision which car to buy or which university discipline to study, 
random components in the form of incidental factors and the mood the 
people happen to be in will play a role (Kendall, 1954; see also the discus­
sion in the psychometric literature, e.g., Heinen, 1996, chap. 6; Holland, 
1990; Lord & Novick, 1968, chap. 2; Lumsden, 1978; Molenaar, 1995). 
Very small amounts of 'random behavior' and 'misclassifications' may lead 
to big differences in turnover tables. Defining theoretically sensible, alter­
native latent variable (latent class) models (such as in Fig. 2.2), estimate 
(or if necessary 'guess') its parameters and see whether the outcomes make 
substantively sense may prevent one from confusing regression-like artifacts 
with substantive changes. Certainly for more complicated situations, such 
latent variable models may prove necessary to get a good insight into the 
data. 

2.4 Extending the Turnover Table 

The discussion in the previous section concentrated on the simple ques­
tion: how stable is a certain category. But in bigger turnover tables more 
complex patterns of change might occur. Does the random component 
also 'determine' into what direction the observed changes will take place? 
Suppose that in a certain country there is a four party system: A-Labor; 
B-Conservativc; C-Christian-Democratic; D-Extreme Right and that 1000 
people truly preferred party A, 400 party B, 400 party C, and only 20 
party D. When asked about their party preference the probability of a cor­
rect answer is .70 and the probability of mentioning a 'wrong' party is .10 
for each of the remaining parties. As usual it is assumed that the true party 
choice is stable over time and that the (mis)classification probabilities arc 
independent of each other and over time. 

Table 2.5 shows what would have been observed for two points in time, 
given these conditions. First of all, and as expected: The bigger the party, 
the more loyal its voters seem to be. Particularly the extremely low stability 
of the smallest party is remarkable. But this recurring pattern toward the 
mode is also true for the direction of the changes: When the previous party 
is not chosen again, the change is toward the bigger parties. Especially 
the initial voters for D change dramatically toward A, much more so than 
toward B and C, and this despite the fact that in the model the probability 
of choosing a 'wrong' party is always .10 regardless of the party it concerns. 
Obvious substantive conclusions such as that the voters for party D are 



28 Hagenaars 

Table 2.5: Cross Tabulation of Party Choice at Two Points in 
Time. 

Time 2 
A B C D Total 

Time 2 (100=) 
A 63.7 13.1 13.1 10.2 782 
B 24.2 49.8 15.7 10.3 422 
C 24.2 15.7 49.8 10.3 422 
D 40.9 22.4 22.4 14.3 194 
Total 43.0 23.2 23.2 10.7 1820 
Note. Source see text. 

politically much closer to party A than to B or C are clearly false here. 
Real world tables will most probably show a mixture of real and artificial 
changes and affinities. One needs appropriate latent class (latent budget) 
models to disentangle in big turnover tables the two sources of observed 
change (Clogg 1981; Hagenaars 1990; Van der Heijdcn, Van dcr Ark, & 
Mooijaart, 2002). 

Turnover tables are not only studied for the sample as a whole but also 
to compare the changes among certain subgroups. A simple example of 
the consequences of misclassifications that may then arise is presented in 
Table 2.6, again with simulated data. The data are about Vote Intention 
among old and young people. 

We assume that there are 1000 old and 1000 young people. Most of 
the old people are truly voters (900) and a minority not (100). The young 
people arc evenly divided: 500 true voters, 500 true nonvoters. The prob­
ability of a correct answer for both groups is .9. Furthermore, the usual 
assumptions are made: no true change and independent misclassifications. 
The only difference between the two groups concerns the distribution of the 
true scores. 

In terms of the amount of simple gross change (a measure in general 
not to be recommended) old and young people have the same tendency to 
change: 180/1000 = .18. Although nobody changed 'in reality,' at least the 
conclusion that young and old people behave the same is true. However, 
when looking at the conditional changes or using other 'stability' (asso­
ciation) coefficients, large differences between young and old people are 
observed. The voters are almost as stable among the old as among the 
young (.89, .82, respectively), but the nonvoters are very different. Half 
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Table 2.6: Cross Tabulation of Voting Intentions Among Old 
(Panel A) and Young (Panel B) at Two Points in Time. 

Panel A: Old 
Time 2 

Voters Non-Voters Total 
Time 1 
Voters 89.0 11.0 100 

(730) (90) (820) 
Non- voters 50.0 50.0 100 

(90) (90) (180) 
Total 82.0 18.0 100 

(820) (180) (1000) 
r = .39; 7 = .78; odds ratio = 8.11 

Panel B: Young 
Time 2 

Voters Non-Voters Total 
Time 1 
Voters 82.0 18.0 100 

(410) (90) (500) 
Non- voters 18.0 82.0 100 

(90) (410) (580) 
Total 50.0 50.0 100 

(500) (500) (1000) 
r = .64; 7 = .90; odds ratio = 20.75. 
Note. Source see text. 

of the old nonvoters voted the second time, compared to about one fifth 
among the young nonvoters. It looks as if a lot of old nonvoters did not vote 
for accidental reasons and returned to their usual (voter) self the second 
time. Young nonvoters on the other hand did not vote out of conviction 
and remained nonvoter. Such a conclusion, which we know to be false, 
is corroborated by several association coefficients: Young people are much 
more stable and show a much larger association between voting at time 
1 and voting at time 2 than old people. This is true for the correlation 
coefficient (.64 vs. .39), for the gamma coefficient (.90 vs. .78) but also for 
the odds ratio (20.75 vs. 8.11), which was expected to be least influenced 
by the differing true marginal distributions, but obviously not by misclas­
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Table 2.7: Cross Tabulation of Watching T.V. and Opinions 
About Minorities. 

A (Watching T.V.) 
B (Attitude 1) C (Attitude 2) 1 (Yes) 2 (No) Total 
1 (Favorable) 1 (Favorable) 81 326 407 

2 (Unfavorable) 10 89 99 
2 (Unfavorable) 1 (Favorable) 10 89 99 

2 (Unfavorable) 11 484 495 
Total 112 988 1100 

sifications. 
One of the interesting possibilities of panel studies and subgroup com­

parisons is to analyze the resulting longitudinal data from a more explicit 
causal point of view, as coming, for example, from a quasi-experimental de­
sign, more in particular from a nonequivalent control group design (Camp­
bell & Stanley, 1966). The simulated data in Table 2.7 is used to illustrate 
the ('regression') dangers involved in this approach. The data are from an 
imaginary study into children's attitude toward minority groups (and were 
partly used in Table 2.4). In this imaginary study, an attempt was made 
to positively influence the children's attitude by means of a series of T.V. 
shows about the cultures of the minority groups. 

There are several ways of analyzing such data. The two most impor­
tant ones are the unconditional (or marginal) analysis and the conditional 
method. In the first approach, one simply subtracts the pretest differences 
between the 'experimental and the 'control' group from the posttest dif­
ferences in order to determine the effect of the quasi-experimental factor. 
In the second approach, one determines the effect of X, the 'experimen­
tal' variable, on the posttest, while conditioning on and controlling for the 
pretest scores. The two approaches generally do not yield the same out­
comes and may lead to different conclusions (essentially, Lord's paradox). 
Only the latter approach will be discussed here, but then from a categori­
cal rather than the usual continuous data point of view (for more general 
discussions, see Bryk & Weisberg, 1977; Hagenaars, 1990, section 5.3; Judd 
& Kenny, 1981, chap. 6; Kenny & Cohen, 1979; Lord, 1960, 1967). 

The relevant log-linear covariance models for the data in Table 2.7 
are presented in Figure 2.3. The saturated model shows a nonzero three-
variable interaction but its value is very small (effect coding was used where 
the effects sum to zero over any subscript) and not statistically significant. 
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Figure 2.3: Log-linear Covariance Analysis of the Data in Ta­
ble 2.7. 

Not surprisingly then, the no three variable interaction model {AB, AC, 
BC} fitted the data well and showed a significant, moderate direct effect 
of A (Watching T.V.) on C (Attitude 2), (Aftc = .279), controlling for 
the pretest B. Model {AB, BC} in which no direct effect of A on C is 
assumed has to be rejected. The conclusion is clear: The T.V. series was 
successful (except that not that many children watched). More precisely: 
The odds of expressing a favorable attitude rather than a unfavorable one 
at the posttest are three times, [exp(.279)]4 = 3.053, as high for those who 
watched the series compared to those that did not watch, controlling for 
the pretest, that is, within groups that had the same score on the pretest. 

Not surprisingly by now, this conclusion is wrong, given the way the 
data have been constructed. It was assumed that there was a true attitude 
X that was stable over time. The probability of a misclassification was 
.10 both at the pretest and at the posttest. The misclassifications were 
independent of each other. It was further assumed that a favorable attitude 
made one inclined to watch and that not that many children watched. To 
be exact: 112 children watched the T.V. Series, 101 (90%) of which were 
truly favorable and 11 (10%) truly unfavorable; 988 children did not watch, 
395 (40%) of which had a true favorable attitude and 593 (60%) not. In 
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this model, nobody's true position changed and watching T.V. did not have 
any effect on the observed attitude at the time of the posttcst. This model 
generated the data in Table 2.1. It is depicted in Figure 2.4. It can be 
viewed as a log-linear model with a latent variable X or identically, as a 
latent class model. The parameter 'estimates' follow directly from the way 
the data were generated; the A-parameters denote the parameters of the 
log-linear model, it* is the probability of belonging to latent (true) class t 
and ?rt , is the conditional response probability of scoring i on A, given 
X = t. 

Given the model that generated the data, the conclusions based on the 
covariance analysis are obviously wrong. The problem lies in the misclassi­
fications when measuring the attitude. The seemingly clear outcome of the 
covariance analysis and especially the effect of \u(AC — .279 is completely 
the result of the very small amount of misclassifications and the intricate 
workings of the regression artifact. In general, if the true scores had been 
known and had also been used as a covariate rather than the fallible pretest 
scores, no effect would have been found. 

It may be clear from the previous discussion that when studying change, 
small amounts of random error may lead researchers completely astray. 
Very systematically looking patterns in small and large turnover or mobil­
ity tables, in comparisons of subgroups, and in data from the nonequivalent 
control group design may just be appearances of regression artifacts and 
tendencies toward the mode. Other kinds of panel analyses not mentioned 
here may suffer from the same problems. The phenomenon that people that 
changed in the past are more likely to change their position again in the 
next wave than people who were stable in the past may also arise from a 
situation where nobody's true position changed in combination with small 
observation errors. Or take Paul Lazarsfeld's (1972c) ingenious use of the 
observed patterns in the sixteenfold table resulting from two dichotomous 
characteristics, for example, party preference (Democratic/Republican) and 
presidential candidate preference (Democrat/Republican) measured at two 
points in time. Lazarsfeld uses such a table to determine which character­
istic causes which from the way inconsistent positions at time one (prefer­
ence for the Democratic party but the Republican candidate, and so on) 
are resolved at time 2. But also these patterns may result from sheer mea­
surement error and most of the tables he presents can also be explained in 
terms of two characteristics that are stable over time without the possibil­
ity to infer from the outcomes the causal order of the variables (Goodman, 
1974b; Hagenaars, 1990; Lazarsfeld, 1972a; see also the literature on the 
cross-lagged panel correlation technique, mentioned in Hagenaars, 1990, pp. 
240-241). Luckily, the means to prevent this confusion of true change and 
change due to random components is available. Latent variables can be 
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Effects: Estimated A-Parameters (Effect Coding). 

Model {AX, BX, CX] • 

t = l .45 .20 .80 .90 .10 .90 .10 
t = 2 .55 .02 .98 .10 .90 .10 .90 

Figure 2.4: Latent Class Analysis of the Data in Table 2.7. 
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introduced in covariancc analyses; marginal tests on the equality of means 
or odds at the latent level have been introduced recently (Bergsma, Croon. 
& Hagenaars, 2004; Hagenaars 1998). Researchers should take these la­
tent models seriously as an alternative explanation of what seemingly has 
been observed. Above, artificial data have been used to make the argument 
more convincing: We knew what was going on. But hundreds of real world 
examples might be given showing the same kinds of patterns and results. 
For example, an extended real world example about unemployment status 
is provided by Bassi et al. (2000), in which misclassifications occur in com­
bination with true latent changes, and in which the misclassifications are 
no longer independent, but may show rather complex dependencies. 

2.5 Discussion 
The frequent occurrence of regression toward the mean, or rather the ten­
dency toward the mode, is essentially due to the omnipresence of random 
fluctuations, whether or not in combination with correlated 'error.' But 
what is actually understood by error, misclassifications, and random com­
ponents or equivalently, what are true scores and latent variables? First, a 
distinction must be made between latent variables and true scores. Whereas 
true scores always refer to latent scores, the opposite is not true. For ex­
ample, in factor analysis or latent class analysis, latent variables are often 
used as a kind of summary measures, replacing a much bigger amount of ob­
served variables or categories without the notion that these latent variables 
refer to true properties a person possesses. 

Lord and Novick (1968, pp. 27-54) have presented an in-depth analysis 
of the meanings of true scores (see also Suttcliffe 1965a, 1965b). Essentially 
they defend the view that the true score is the expected value coming out of 
a series of independent experiments, that is, out of independent replications 
of the same measurement instrument. Another way to look at the true score 
is as a platonic score: A person has a true score, which in principle exists 
and can be known, but is measured with error. Weight or Marital Status 
might be considered as true platonic scores, while true attitude scores are 
more in line with the 'expectation' definition. 

There are several reasons for error, for not observing directly the true 
score. There is of course proper measurement error, interviewer mistakes, 
and so on. 

But why adopt this idea [of proper measurement error—JH] 
from a psychometric tradition? Certainly if a man changes his 
vote intention it does not mean that the interview is ambiguous; 
much more likely a multiplicity of influences make him oscillate 
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around his "true" position from one interview to the next. And 
in the case of mood [...] every reader knows only too well how 
realistic change is. Mood shifts would manifest themselves irre­
spective of the way they are "measured" (Lazarsfeld, 1972b, p. 
360). 

Lazarsfeld essentially distinguishes three sources of observed instability: 
changes in true scores and changes due to two random components, namely 
'real' random fluctuations around true scores caused by incidental factors, 
and proper measurement errors. Latent variable models 'correct' the data 
for both types of errors, whether due to 'real' random fluctuations or to 
random errors of measurement (ignoring here the possibilities of taking 
into account correlated errors and systematic misclassifications). For many 
purposes, this throwing together of the two random components does not 
matter. But sometimes it docs. If one visits the doctor and this doctor 
wants to know your weight, she or he is usually not really interested in the 
exact 'platonic' weight at that precise moment, having had that amount 
of coffee, two biscuits for breakfast, and so on. But she or he is interested 
in the average (expected) weight over a certain period, which may be ob­
tained by weighing a couple of times, controlling for the incidental factors 
and the measurement errors when reading off the balance. But maybe, just 
before a complicated surgical operation, one's exact weight at that par­
ticular moment may be of interest. Or in terms of our labor force status 
example, the estimates obtained from a latent class cannot always be used 
as estimates for the true number of people that are actually unemployed 
at a certain moment. The latent class model does not distinguish between 
random fluctuations due to proper measurement error and 'real' random 
fluctuations due to incidental factors. That distinction can only be made if 
a perfect measurement, a is available. Whether that is necessary depends 
on the exact purposes of the investigation. In any case, latent variable 
models provide a powerful means of recognizing or even beating the mis­
leading effects of the regression phenomenon. But, remembering Stigler's 
words from the beginning: Will they be used and will we ever learn? 
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Chapter 3 
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3.1 Introduction 

The linear factor analysis (FA) model is a popular tool for exploratory data 
analysis or, more precisely, for assessing the dimensionality of sets of items. 
Although it is well known that it is meant for continuous observed indica­
tors, it is often used with dichotomous, ordinal, and other types of discrete 
variables, yielding results that might be incorrect. Not only parameter es­
timates may be biased, but also goodness-of-fit indices cannot be trusted. 
Magidson and Vermunt (2001) presented a nonlinear factor-analytic model 
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Table 3.1: Four-Fold Classification of Latent Variable Models. 

Latent variables 

Manifest variables Continuous Categorical 

Continuous Factor analysis Latent profile analysis 

Categorical Latent trait analysis Latent class analysis 

based on latent class (LC) analysis that is especially suited for dealing 
with categorical indicators, such as dichotomous, ordinal, and nominal 
variables, and counts. The approach is called latent class factor analysis 
(LCFA) because it combines elements from LC and traditional FA. This 
LCFA model is one of the LC models implemented in the Latent GOLD 
program (Vermunt & Magidson, 2000, 2003). 

A disadvantage of the LCFA model is, however, that its parameters may 
be somewhat more difficult to interpret than the typical factor-analytic 
coefficients—factor loadings, factor-item correlations, factor correlations, 
and communalities. To overcome this problem, we propose using a lin­
ear approximation of the maximum likelihood estimates obtained with a 
LCFA model. This makes it possible to provide the same type of output 
measures as in standard FA, while retaining the fact that the underlying 
factor structure is identified by the more reliable nonlinear factor-analytic 
model. 

Bartholomew and Knott (1999) gave a four-fold classification of latent 
variable models based on the scale types of the latent and observed vari­
ables; that is, factor analysis, latent trait (LT) analysis, latent profile (LP) 
analysis, and latent class analysis. As shown in Table 3.1, in FA and LT 
models, the latent variables are treated as continuous normally distributed 
variables. In LP and LC models on the other hand, the latent variable is 
assumed to be discrete and to come from a multinomial distribution. The 
manifest variables in FA and LP model are continuous. In most cases, their 
conditional distribution given the latent variables is assumed to be normal. 
In LT and LC analysis, the indicators are dichotomous, ordinal, or nominal 
categorical variables and their conditional distributions are assumed to be 
binomial or multinomial. 

The distinction between models for continuous and discrete indicators 
is not a fundamental one since the choice between the two should simply 
depend on the type of data. The specification of the conditional distribu­
tions of the indicators follows naturally from their scale types. A recent 
development in latent variable modelling is to allow for a different distribu­
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tional form for each indicator. This can, for example, be a normal, student, 
log-normal, gamma, or exponential distribution for continuous variables, 
binomial for dichotomous variables, multinomial for ordinal and nominal 
variables, and Poisson, binomial, or negative-binomial for counts. Depend­
ing on whether the latent variable is treated as continuous or discrete, one 
obtains a generalized LT (Moustaki & Knott, 2000) or LC (Vermunt & 
Magidson, 2001) model. 

The more fundamental distinction in Bartholomew's typology is the one 
between continuous and discrete latent variables. A researcher has to de­
cide whether to treat the underlying latent variable(s) as continuous or 
discrete. However, Heinen (1996) demonstrated that the distribution of a 
continuous latent variable can be approximated by a discrete distribution, 
and that such a discrete approximation may even be superior1 to a mis-
specified continuous (usually normal) model. More precisely, Heinen (1996; 
also, see Vermunt, 2001) showed that constrained LC models can be used to 
approximate well-known unidimensional LT or item response theory (IRT) 
models, 2 such as the Rasch, the Birnbaum, the nominal-response, and 
the partial credit model. This suggests that the distinction between con­
tinuous and discrete latent variables is less fundamental than one might 
initially think, especially if the number of latent classes is increased. More 
precisely, as shown by Aitkin (1999; also, see Vermunt and Van Dijk, 2001; 
Vermunt, 2004), a continuous latent distribution can be approximated us­
ing a nonparametric specification; that is, by a finite mixture model with 
the maximum number of identifiable latent classes. An advantage of such 
a nonparametric approach is that it is not necessary to introduce possibly 
inappropriate and unverifiable assumptions about the distribution of the 
random effects. 

The proposed LCFA model is based on a multidimensional generaliza­
tion of Heinen's (1996) idea: It is a restricted LC model with several latent 
variables. As exploratory FA, the LCFA model can be used to determine 
which items measure the same dimension. The idea of defining an LC model 
with several latent variables is not new: Goodman (1974) and Hagenaars 
(1990) proposed such a model and showed that it can be derived from a 
standard LC model by specifying a set of equality constraints on the item 
conditional probabilities. What is new is that we use IRT-like regression-
type constraints on the item conditional means/probabilities3 to be able 

1With superior we refer to the fact that mispecification of the distribution of the 
continuous latent variables may cause bias in the item parameter estimates. In a discrete 
or nonparametric specification,, no assumptions are made about the latent distribution, 
and as a result, parameters cannot be biased because of mispecification of the latent 
distribution. 

2We use the terms latent trait (LT) and item response theory (IRT) interchangeably. 
3With regression-type constraints on the item conditional probabilities we mean that 
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to use the LC model with several latent variables as an exploratory factor-
analytic tool. Our approach is also somewhat more general than Heinen's 
in the sense that it cannot only deal with dichotomous, ordinal, and nom­
inal observed variables, but also with counts and continuous indicators, as 
well as any combination of these. 

Using a general latent variable model as the starting point, it will be 
shown that several important special cases arc obtained by varying the 
model assumptions. In particular, assuming that the latent variables are 
dichotomous or ordinal, and that the effects of these latent variables on 
the transformed means are additive, yields the proposed LCFA model. We 
show how the results of this LCFA model can be approximated using a 
linear FA model, which yields the well-known standard FA output. Special 
attention is given to the meaning of the part that is ignored by the linear 
approximation and to the handling of nominal variables. Several real life 
examples are presented to illustrate our approach. 

3.2 The Latent Class Factor Model 
Let 0 denote a vector of L latent variables and y a vector of K observed 
variables. Indices i and k are used when referring to a specific latent and 
observed variable, respectively. A basic latent variable model has the fol­
lowing form 

where the primary model assumption is that the K observed variables arc 
independent of one another given the latent variables 0, usually referred 
to as the local independence assumption (Bartholomew and Knott, 1999). 
The various types of latent variable models are obtained by specifying the 
distribution of the latent variables f ( 9 ) and the K conditional item dis­
tributions f ( y k \ 0 ) - The two most popular choices for f ( 0 ) are continuous 
multivariate normal and discrete nominal. The specification for the error 
functions f ( y k \ 0 ) will depend on the scale type of indicator fc.4 Besides 
the distributional form of /(y/t #), an appropriate link or transformation 
function <?(•) is defined for the expectation of yk given 0, E(yk\0). With 
continuous 0 (FA or LT), the effects of the latent variables are assumed to 

the probability of giving a particular response given the latent traits is restricted by 
means of a logistic regression model, or another type of regression model. In the case of 
continuous responses, the means are restricted by linear regression models, as in standard 
factor analysis. 

4The term error function is jargon from the generalized linear modelling framework. 
Here it refers to the distribution of the unexplained or unique part (the error) of yk­
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be additive in g(-) ; that is 

where the regression intercepts /3ok can be interpreted as "difficulty" param­
eters and the slopes (3gk as "discrimination" parameters. With a discrete 0 
(LC or LP), usually no constraints are imposed on g[E(yk\0)]-

The new element of the LCFA model is that a set of discrete latent vari­
ables is explicitly treated as multidimensional, and that the same additivity 
of their effects is assumed as in Equation 3.1. In the simplest specification, 
the latent variables are specified to be dichotomous and mutually indepen­
dent, yielding what we call the basic LCFA model. An LCFA model with 
L dichotomous latent variables is, actually, a restricted LC model with 2L 

latent classes (Magidson & Vermunt, 2001). Our approach is an extension 
of Heinen's work to the multidimensional case. Heincn (1996) showed that 
LC models with certain log-linear constraints yield discretized versions 
of unidimensional LT models. The proposed LCFA model is a discretized 
multidimensional LT or IRT model. With dichotomous observed variables, 
for instance, we obtain a discretized version of the multidimensional two-
parameter logistic model (Reckase, 1997). 

A disadvantage of the (standard) LC model compared to the LT and 
LCFA models is that it does not explicitly distinguish different dimensions, 
which makes it less suited for dimensionality detection. Disadvantages of 
the LT model compared to the other two models are that it makes stronger 
assumptions about the latent distribution and that its estimation is compu­
tationally much more intensive, especially with more than a few dimensions. 
Estimation of LT models via maximum likelihood requires numerical in­
tegration: for example, with 3 dimensions and 10 quadrature points per 
dimension, computation of the log-likelihood function involves summation 
over 1000 (=103) quadrature points. The LCFA model shares the advan­
tages of the LT model, but is much easier to estimate, which is a very 
important feature if one wishes to use the method for exploratory pur­
poses. Note that a LCFA model with three dimensions requires summation 
over no more than eight (=23) discrete nodes. Of course, the number of 
nodes becomes larger with more than two categories per latent dimension, 
but will still be much smaller than in the corresponding LT model. 

Let us first consider the situation in which all indicators are dichoto­
mous. In that case, the most natural choices for f ( y k \ 0 ) and g(-) are a 
binomial distribution function and a logistic transformation function. Al­
ternatives to the logistic transformation are probit, log- log, and complemen­
tary log-log transformations. Depending on the specification of f ( 0 ) and 
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model for g[E(yk\0)], we obtain a LT, LC, or LCFA model. In the LCFA 
model 

The parameters to be estimated are the probabilities IT (Of) and the coeffi­
cients /3ok and (3gk • The number of categories of each of the L discrete latent 
variables is at least two, and Ot are the fixed category scores assumed to be 
equally spaced between 0 and 1. The assumption of mutual independence 
between the latent variables &t can be relaxed by incorporation two-variable 
associations in the model for ir(0). Furthermore, the number of categories 
of the factors can be specified to be larger than two: A two-level factor has 
category scores 0 and 1 for the factor levels, a three-level factor scores 0. 
0.5, and 1, and so forth. 

The above LCFA model for dichotomous indicators can easily be ex­
tended to other types of indicators. For indicators of other scale types, 
other distributional assumption are made and other link functions are used. 
Some of the possibilities are described in Table 3.2. For example, the re­
stricted logit model we use for ordinal variables is an adjacent-category 
logit model. Letting s denote one of the Sk categories of variable yk, it can 
be defined as 

for 2 < s < Sk. 
Extensions of the basic LCFA model are among others that local de­

pendencies can be included between indicators and that covariates may 
influence the latent variables and the indicators (Magidson &; Vermunt, 
2001, 2004). These are similar to extensions proposed for the standard la­
tent class model (e.g., see Dayton & Macready, 1988; Hagenaars, 1988; Van 
der Heijden, Dessens & Bockenholt, 1996). 

Similarly to standard LC models and IRT models, the parameters of 
a LCFA model can be estimated by means of maximum likelihood (ML). 
We solved this ML estimation problem by means of a combination of an 
EM and a Newton-Raphson algorithm. More specifically, we start with 
EM and switch to Newton-Raphson when close to the maximum likelihood 
solution. The interested reader is referred to Vermunt and Magidson (2000, 
Appendix). 
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Table 3.2: Distribution and Transformation Functions From Gen­
eralized Linear Modelling Family. 

Scale type yk Distribution f ( y  k \ 0  ) Transformation g [E(yk\0)] 
Dichotomous Binomial Logit 

Nominal Multinomial Logit 
Ordinal Multinomial Restricted logit 
Count Poisson Log 

Continuous Normal Identity 

3.3 Linear Approximation 

As just mentioned, the proposed nonlinear LCFA model is estimated by 
means of ML. However, as a result of the scale transformations <?(•)  , the 
parameters of the LCFA model are more difficult to interpret than the 
parameters of the traditional FA model. To facilitate the interpretation of 
the results, we propose approximating the maximum likelihood solution for 
the conditional means E(yk\0) by a linear model, yielding the same type 
of output as in traditional FA. Although the original model for item k 
may, for example, be a logistic model, we approximate the logistic response 
function by means of a linear function. 

The ML estimates E(yk\0) are approximated by the following linear 
function 

The parameters of the K linear regression models are simply estimated by 
means of ordinary least squares (OLS). The residual term ek>Q is needed 
because the linear approximation will generally not be perfect. 

With two dichotomous factors, a perfect description by a linear model 
is obtained by 

that is, by the inclusion of the interaction between the two factors. Because 
the similarity with standard FA would otherwise get lost, interaction terms 
such as bk\2 are omitted in the approximation. 

Special provisions have to be made for ordinal and nominal variables. 
Because of the adjacent-category logit model specification for ordinal vari­
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ables, it is most natural to define E(y^ 0) = X]s=1 S7r(t/fc = s| 
nominal variables, analogous to the Goodman and Kruskal tau-b (GK-T&), 
each category is treated as a separate dichotomous variable, yielding one 
coefficient per category. These category-specific coefficients are combined 
into a single measure in exactly the same way as is done in the compu­
tation of the GK-T& coefficient. As is shown next, overall measures for 
nominal variables are defined as weighted averages of the category-specific 
coefficients. 

The coefficients reported in traditional linear FA are factor loadings 
(P0eyk)i factor correlations (r0teir}, communalities or proportion explained 
item variances (R^k), factor-item correlations (reiyk). and in the case that 
there are local dependencies, also residual item correlations (refcCfc, ). The 
correlations r^, , r0eyk, and rykyk, can be computed from 7r(0), E(yk\0), 
and the observed item distributions using elementary statistics computa­
tion. For example, the r^, is obtained by dividing the covariance between 
Oe and Oi' by the product of their standard deviations; that is 

where 
The factor-factor (rgege,) and the factor-item (r»tyk) correlations can 

be used to compute OLS estimates for the factor loadings (poeyk), which 
are standardized versions of the regression coefficients appearing in Equa­
tion 3.3. The communalities or R2 values (R^k ) corresponding to the linear 

rapproximation are obtained with r0tyk and potyk: Ryk = E«=i 6tykPOtyk-
The residual correlations (rekek, ) are defined as the difference between rykyk, 
and the total correlation (not only the linear part) induced by the factors, 

denoted by r f  k V k l . 

The linear approximation of E(yk\0) is, of course, not perfect. One 
error source is caused by the fact that the approximation excludes higher-
order interaction effects of the factors. More specifically, in the LCFA model 
presented in Equation 3.2, higher-order interactions are excluded, but this 
does not mean that no higher-order interactions are needed to get a perfect 
linear approximation. Alternatively, with all interaction included, the linear 
approximation would be perfect. For factors having more than two ordered 
levels, there is an additional error source caused by the fact that linear 
effects on the transformed scale are nonlinear on the untransformed scale. 

5The same would apply with other link functions for ordinal variables, such as with 
a cumulative logit link. 
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To get insight in the quality of the linear approximation, we also compute 
the R2 treating the joint latent variable as a set of dummies; that is, as a 
single nominal latent variable. 

As was mentioned above, for nominal variables, we have a separate set 
of coefficients for each of the Sk categories because each category is treated 
as a separate dichotomous indicator. If s denotes one of the Sk categories 
of t/fc, the category-specific R2 (R2*) equals 

where <j~  . ,a^ is the explained variance of the dummy variable corre-
E(yk=s\V) 

spending to category s of item fc, and a2-, is its total variance defined as 
"k 

^(yk — s)[l — n(yk = s)]. The overall R2 for item k is obtained as a 
weighted sum of the Sk category-specific R values, where the weights wy=k 

are proportional to the total variances <r^; that is 

This weighting method is equivalent to what is done in the computation 
of the GK-Tb, an asymmetric association measure for nominal dependent 
variables. 

We propose using the same weighting in the computation o{peeyk, rgeyk, 
and rekek, from their category-specific counterpart. This yields 

As can be seen the signs are lost, but that is, of course, not a problem for 
a nominal variable. 
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3.4 Empirical Examples 

3.4.1 Rater Agreement 

For our first example we factor analyze dichotomous ratings made by seven 
pathologists, each of whom classified 118 slides as to the presence or absence 
of carcinoma in the uterine cervix (Landis & Koch, 1977). This is an 
example of an inter-rater agreement analysis. We want to know whether 
the ratings of the seven raters are similar, and if not, in what sense the 
ratings deviate from each other. 

Agresti (2002), using standard LC models to analyze these data found 
that a two-class solution does not provide an adequate fit to these data. 
Using the LCFA framework, Magidson and Vermunt (2004) confirmed that 
a single dichotomous factor (equivalent to a two-class LC model) did not 
fit the data. They found that a basic two-factor LCFA model provides a 
good fit. 

Table 3.3 presents the results of the two-factor model in terms of the 
conditional probabilities. These results suggest that Factor 1 distinguishes 
between slides that are "true negative" or "true positive" for cancer. The 
first class (6\ = 0) is the "true negative" group because it has lower prob­
abilities of a "+" rating for each of the raters than class two (0\ =.1), 
the "true positive" group. Factor 2 is a bias factor, which suggests that 
some pathologists bias their ratings in the direction of a "false +" error 
(02 = l) and others exhibit a bias toward "false -" error (82 = 0). More 
precisely, for some raters we see a too high probability of a "+" rating if 
#i = 0 and #2 = 1 (raters A, G, E, and B) and for others we see a too high 
probability of a "-" rating if 6\ = 1 and 02 = 0 (raters F and D). These 
results demonstrate the richness of the LCFA model to extract meaningful 
information from these data. Valuable information includes an indication 
of which slides are positive for carcinoma,6 as well as estimates of "false +" 
and "false -" error for each rater. 

The left-most columns of Table 3.4 lists the estimates of the logit coef­
ficients for these data. Although the probability estimates in Table 3.3 are 
derived from these quantities (recall Equation 3.2), the logit parameters are 
not as easy to interpret as the probabilities. For example, the logit effect 
of 9\ on A, a measure of the validity of the ratings of pathologist A, is a 
single quantity, exp(7.74) = 2,298. This means that among those slides 
at #2 = 0, the odds of rater A classifying a "true +" slide as "+" is 2.298 
times as high as classifying a "true -" slide as "+." Similarly, among those 

6For each patient, we can obtain the posterior distribution for the first factor. This 
posterior distribution can be used determine whether a patient has carcinoma, corrected 
for rater bias (the second factor). 
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Table 3.3: Estimates of the Unconditional Latent Class Probabil­
ities and the Conditional Item Probabilities Obtained From the 
Two-Factor LC Model With the Rater Agreement Data. 

0i = 0 (True -) 0! = 1 (True +) 
02 =0 02 = 1 0 2 =  0 02 = 1 

Class size 0.35 0.18 0.31 0.16 
Rater F 1.00 0.99 0.80 0.11 

+ 0.00 0.01 0.20 0.89 
Rater D 1.00 0.98 0.61 0.11 

+ 0.00 0.02 0.39 0.89 
Rater C 1.00 1.00 0.22 0.14 

+ 0.00 0.00 0.78 0.86 
Rater A 0.94 0.59 0.01 0.00 

+ 0.06 0.41 0.99 1.00 
Rater G 0.99 0.46 0.01 0.00 

+ 0.01 0.54 0.99 1.00 
Rater E 0.94 0.28 0.03 0.00 

+ 0.06 0.72 0.97 1.00 
Rater B 0.87 0.01 0.03 0.00 

+ 0.13 0.99 0.97 1.00 

slides at 02 = 1, the corresponding odds ratio is also 2,298. 
We could instead express the effect of Factor 1 in terms of differences 

between probabilities. Such a linear effect is easier to interpret, but is not 
the same for both types of slides. For slides at 02 = 0, the probability of 
classifying a "true +" slide as "+" is .94 higher than classifying a "true -" 
slide as "+"(-99-.06=.94), whereas for slides at 02 = 1, it is .59 higher (1.00 
- .41=.59), markedly different quantities. This illustrates that for the linear 
model, a large interaction term is needed to reproduce the results obtained 
from the logistic LC model. 

Given that a substantial interaction must be added to the linear model 
to capture the differential biases among the raters, it might be expected 
that the traditional (linear) FA model also fails to capture this bias. This 
turns out to be the case, as the traditional rule of choosing the number 
of factors to be equal to the number of eigenvalues greater than 1 yields 
only a single factor: The largest eigenvalue was 4.57, followed by 0.89 for 
the second largest. Despite this result, for purposes of comparison with 
the LCFA solution, we fitted a two-factor model anyway, using maximum 
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Table 3.4: Logit and Linearized Parameter Estimates for the Two-
Factor LC Model Applied to the Rater Agreement Data. 

Logit Communality Linearized 
Rater 0i 02 Linear Total Oi 02 6^62 

F 7.2 3.4 0.45 0.60 0.53 0.38 0.40 
D 6.0 2.6 0.47 0.54 0.62 0.26 0.26 
C 7.2 0.5 0.68 0.68 0.82 0.04 0.04 
A 7.7 2.4 0.72 0.75 0.82 0.18 -0.16 
G 10.1 5.2 0.76 0.82 0.82 0.27 -0.25 
E 6.4 3.8 0.65 0.75 0.72 0.35 -0.31 
B 5.3 6.3 0.59 0.76 0.60 0.47 -0.42 

likelihood for estimation. 
Table 3.5 shows that the results obtained from Varimax (orthogonal) 

and Quartimax (oblique) rotations differ substantially. Hence, without the­
oretical justification for one rotation over another, FA produces arbitrary 
results in this example. 

The three right-most columns of Table 3.4 present results from a lin­
earization of the LCFA model using the following equation to obtain "lin­
earized loadings" for each variable yk 

These three loadings have clear meanings in terms of the magnitude 
of validity and bias for each rater. They have been used to sort the raters 
according to the magnitude and direction of bias. The logit loadings do not 
provide such clearinformation. 

The loading on 6\ corresponds to a measure of validity of the ratings. 
Raters C, A, and G who have the highest loadings on the first linearized 
factor show the highest level of agreement among all raters. The loading 
on 92 relates to the magnitude of bias and the loading on 9\92 indicates the 
direction of the bias. For example, in Table 3.3 we saw that raters F and 
B show the most bias, F in the direction of "false -" ratings and B in the 
direction of "false +." This is exactly what is picked up by the nonlinear 
term: the magnitude of the loadings on the nonlinear term (Table 3.4) is 
highest for these two raters, one occurring as "+," the other as "-." 

Table 3.4 also lists the communalities (Ryk values) for each rater, and 
decomposes these into linear and nonlinear portions (the "Total" column 
includes the sum of the linear and nonlinear portions). The linear portion 
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Table 3.5: Loadings and Communalities Obtained When Ap­
plying a Traditional Two-Factor Model to the Rater Agreement 
Data. 

Commu- Varimax Quartimax 
Rater nality 0i 02 0i 02 

F 0.49 0.23 0.66 0.55 0.43 
D 0.60 0.29 0.72 0.63 0.45 
C 0.62 0.55 0.56 0.77 0.18 
A 0.73 0.71 0.48 0.85 0.03 
G 0.86 0.83 0.42 0.92 -0.09 
E 0.78 0.82 0.31 0.86 -0.18 
B 0.69 0.80 0.24 0.80 -0.22 

is the part accounted for by 6fci#i + b^ii and the nonlinear part concerns 
the factor interaction 6fci2#i#2- Note the substantial amount of nonlinear 
variation that is picked up by the LCFA model. For comparison, the left­
most column of Table 3.5 provides the communalities obtained from the 
FA model, which are quite different from the ones obtained with the LCFA 
model. 

3.4.2 MBTI Personality Items 
In our second example we analyzed 19 dichotomous items from the Mycrs-
Briggs Type Indicator (MBTI) test—seven indicators of the sensing-intuition 
(S-N) dimension, and 12 indicators of the thinking-feeling (T-F) personality 
dimension.7 The total sample size was 8,344. These items were designed 
to measure two hypothetical personality dimensions, which were posited by 
Carl Jung to be latent dichotomies. The purpose of the presented analysis 
was to investigate whether the LCFA model was able to identify these two 
theoretical dimensions and whether results differed from the ones obtained 
with a traditional factor analysis. 

We fitted zero-, one-, two-, and three-factor models for this data set. 
Strict adherence to a fit measure like BIG or a similar criterion suggest 
that more than two latent factors are required to fit these data due to 
violations of the local independence assumption. This is due to similar 
wording used in several of the S-N items and similar wording used in some 

7Each questionnaire item involves making a choice between two categories, such as, 
for example, between thinking and feeling, convincing and touching, or analyze and 
sympathize. 
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of the T-F items. For example, in a three-factor solution, all loadings on 
the third factor are small except those for S-N items S09 and S73. Both 
items ask the respondent to express a preference between "practical" and 
a second alternative (for item S09, 'ingenious;' for item S73, "innovative"). 
In such cases, additional association between these items exists which is not 
explainable by the general S-N (T-F) factor. For our current purpose, we 
ignore these local dependencies and present results of the two-factor model. 

In contrast to our first example, the decomposition of communalities 
(R^k values) in the right-most columns of Table 3.6 shows that a linear 
model can approximate the LCFA model here quite well. Only for a couple 
of items (T35, T49, and T70) is the total communality not explained to two 
decimal places by the linear terms only. The left-most columns of Table 3.6 
compares the logit and linearized "loadings" (petyk) for each variable. The 
fact that the latter numbers are bounded between —1 and +1 offers easier 
interpretation. 

The traditional FA model also does better here than the first example. 
The first four eigenvalues are 4.4, 2.8, 1.1, and 0.9. For comparability to 
the LC solution, Table 3.7 presents the loadings for the two-factor solution 
under Varimax (orthogonal) and Quartimax (oblique) rotations. Unlike 
the first example where the corresponding loadings showed considerable 
differences, these two sets of loadings are quite similar. The results are also 
similar to the linearized loadings obtained from the LCFA solution. 

The right-most column of Table 3.7 shows that the communalities ob­
tained from FA are quite similar to those obtained from LCFA. In general, 
these communalities are somewhat higher than those for LCFA, especially 
for items S27, S44, and S67. 

Figure 3.1 displays the two-factor LCFA bi-plot for these data (see 
Magidson & Vermunt, 2001, 2004). The plot shows how clearly differen­
tiated the S-N items are from the T-F items on both factors. The seven 
S-N items are displayed along the vertical dimension of the plot which is 
associated with Factor 2, and the T-F items are displayed along the hori­
zontal dimension, which is associated with Factor 1. This display turns out 
to be very similar to the traditional FA loadings plot for these data. The 
advantage of this type of display becomes especially evident when nominal 
variables are included among the items. 

3.4.3 Types of Survey Respondents 
We now consider an example that illustrates how these tools are used with 
nominal variables. It is based on the analysis of four variables from the 1982 
General Social Survey (white respondents) given by McCutcheon (1987) to 
illustrate how standard LC modelling can be used to identify different types 
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Table 3.6: Logit and Linearized Parameter Estimates and Com­
munalities for the Two-Factor LC Model as Applied to 19 MBTI 
Items. 

Logit Linear Communality 
Item 0i 02 0i 02 Linear Total 
S02 -0.03 -1.51 -0.01 -0.61 0.37 0.37 
S09 -0.01 -1.16 0.00 -0.50 0.25 0.25 
S27 0.03 1.46 0.01 0.55 0.30 0.30 
S34 -0.07 -1.08 -0.03 -0.45 0.21 0.21 
S44 -0.11 1.13 -0.04 0.47 0.22 0.22 
S67 -0.06 1.54 -0.02 0.53 0.28 0.28 
S73 -0.01 -1.05 0.00 -0.46 0.21 0.21 
TOG 1.01 0.53 0.43 0.19 0.22 0.22 
T29 1.03 0.59 0.44 0.20 0.23 0.23 
T31 -1.23 -0.47 -0.52 -0.15 0.29 0.29 
T35 -1.42 -0.29 -0.55 -0.09 0.31 0.32 
T49 1.05 0.65 0.44 0.22 0.24 0.25 
T51 1.32 0.30 0.53 0.09 0.29 0.29 
T53 1.40 0.77 0.56 0.22 0.36 0.36 
T58 -1.46 -0.12 -0.62 -0.03 0.38 0.38 
T66 -1.23 -0.27 -0.54 -0.09 0.30 0.30 
T70 1.07 0.61 0.43 0.19 0.22 0.23 
T75 -1.01 -0.39 -0.45 -0.14 0.22 0.22 
T87 -1.17 -0.45 -0.50 -0.15 0.28 0.28 
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Table 3.7: Loadings and Communalities From Traditional Factor 
Analysis of the 19 MBTI Items. 

Quartimax Varimax Commu­
0i 02 0i 02 nality 

S02 0.08 -0.63 0.06 -0.63 0.40 
S09 0.07 -0.50 0.06 -0.50 0.26 
S27 -0.06 0.62 -0.05 0.62 0.38 
S34 0.07 -0.46 0.06 -0.46 0.22 
S44 -0.02 0.55 0.00 0.55 0.30 
S67 -0.02 0.64 -0.01 0.64 0.41 
S73 0.06 -0.46 0.05 -0.46 0.21 
TOG -0.49 0.09 -0.49 0.10 0.25 
T29 -0.49 0.10 -0.49 0.11 0.25 
T31 0.56 -0.04 0.56 -0.05 0.32 
T35 0.58 0.05 0.58 0.04 0.34 
T49 -0.50 0.13 -0.50 0.15 0.27 
T51 -0.57 -0.03 -0.57 -0.02 0.33 
T53 -0.61 0.09 -0.61 0.10 0.38 
T58 0.64 0.11 0.64 0.10 0.42 
T66 0.58 0.05 0.58 0.03 0.33 
T70 -0.49 0.10 -0.49 0.11 0.25 
T75 0.50 -0.03 0.50 -0.04 0.25 
T87 0.55 -0.04 0.55 -0.05 0.30 
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Figure 3.1: Bi-plot of Two-Factor LC Model as Applied to the 19

MBTI Items. 
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of survey respondents. 
Two of the variables ascertain the 1202 respondent's opinion regarding 

(a) the purpose of surveys (good, depends, or waste of time and money) 
and (b) how accurate survey are (mostly true or not true), and the others 
are evaluations made by the interviewer of (c) the respondent's levels of 
understanding of the survey questions (good, fair/poor) and (d) coopera­
tion shown in answering the questions (interested, cooperative, or impa-
tient/hostile). McCutcheon initially assumed the existence of two latent 
classes corresponding to 'ideal' and 'less than ideal' types. The purpose of 
the present analysis is to show how to apply the LCFA model with nominal 
indicators; that is, to answer the question as to whether these four items 
measure a single dimension as hypothesized by McCutcheon or whether 
there are two underlying dimensions. Note that it is not possible to use 
traditional factor analytic techniques with nominal indicators. A more 
elaborate analysis of this data set is presented in Magidson and Vermunt 
(2004). 

The two-class LC model—or, equivalently, the one-factor LC model— 
does not provide a satisfactory description of this data set. Two options for 
proceeding are to increase the number of classes or to increase the number 
of factors. The two-factor LC model fits very well, and also much better 
than the unrestricted three-class model that was selected as the final model 
by McCutcheon. 

The logit parameter estimates obtained from the two-factor LC model 
are given in Table 3.8 and the linearized parameters are given in Table 3.9. 
The factor loadings (p0eyk) show much clearer than the logit parameters 
the magnitude of the relation between the observed variables and the two 
factors. As can be seen, the interviewers' evaluations of respondents and 
the respondents' evaluations of surveys are clearly different factors. The 
communalities (R^k) reported in the two right-most columns of Table 3.9 
show that the linear approximation is accurate for each of the four items. 

Figure 3.2 depicts the bi-plot containing the category scores of the four 
indicators. The plot shows that the first dimension differentiates between 
the categories of understanding and cooperation and the second between 
the categories of purpose and accuracy. This display is similar to the plot 
obtained in multiple correspondence analysis (Van der Heijden, Gilula, & 
Van der Ark, 1999). 

3.5 Conclusion 

In this study, we compared LCFA with FA in three example applications 
where the assumptions of FA were violated. In the MBTI example, the 
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Table 3.8: Logit Parameter Estimates for the Two-Factor LC 
Model as Applied to the GSS'82 Respondent-Type Item. 

Item Category 0i 02 

Purpose Good -1.12 2.86 
Depends 0.26 -0.82 
Waste 0.86 3.68 

Accuracy Mostly true -0.52 -1.32 
Not true 0.52 1.32 

Understanding Good -1.61 0.58 
Fair/poor 1.61 -0.58 

Cooperation Interested -2.96 -0.57 
Cooperative -0.60 -0.12 
Impatient/hostile 3.56 0.69 

Table 3.9: Linearized Parameter Estimates and Communali­
ties for the Two-Factor LC Model as Applied to the GSS'82 
Respondent-Type Items. 

Loadings Communalities 
#1 09 Linear Total 

Purpose 0.14 0.45 0.24 0.26 
Accuracy 0.15 0.55 0.33 0.33 
Understanding 0.57 0.14 0.35 0.36 
Cooperation 0.42 0.07 0.18 0.19 

resulting linear factor model obtained from standard FA provided results 
that were quite similar to those obtained with LCFA, although the factors 
were taken to be dichotomous in the LCFA model. In this case, decom­
position of the LCFA solution into linear and nonlinear portions suggested 
that the systematic portion of the results was primarily linear, and the 
linearized LCFA solution was quite similar to the FA solution. However, 
the LCFA model was able to identify pairs and small groups of items that 
have similar wording because of some violations of the assumption of local 
independence. 

In the rater-agreement example, LCFA results suggested that the model 
contained a sizeable nonlinear component, and in this case the standard FA 
was unable to capture differential biases between the raters. Even when a 
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Figure 3.2: Bi-plot of Two-Factor LC Model as Applied to the 
GSS'82 Respondent-Type Items. 

second factor was included in the model, no meaningful interpretation of 
this second factor was possible, and the loadings from two different rotations 
yielded very different solutions. 

The third example illustrated the used of LCFA with nominal indicators, 
a situation for which standard FA techniques cannot be used at all. For this 
example, the factor-analytic loadings and communalities obtained with the 
proposed linear approximation provided much easier interpretation than 
the original logit parameters. 

Overall, the results suggest improved interpretations from the LCFA 
approach, especially in cases where the nonlinear terms represent a signif­
icant source of variation. This is due to the increased sensitivity of the 
LCFA approach to all kinds of associations among the variables, not being 
limited as in the standard linear FA model to the explanation of simple 
correlations. 

The linearized LCFA parameters produced improved interpretation, but 
in the rater agreement example, a third (nonlinear) component model was 
needed in order to extract all of the meaning from the results. This cur­
rent investigation was limited to two dichotomous factors. With three or 
more dichotomous factors, in addition to each two-way interaction, addi­
tional loadings associated with components for each higher-order interac­
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tion might also be necessary. Moreover, for factors containing three or more 
levels, additional terms are required. Further research is needed to explore 
these issues in practice. 
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Chapter 4 

Bayesian Computational 

Methods for Inequality 
Constrained Latent Class 
Analysis 

Olav Laudy, Jan Boom, and Herbert Hoijtink 
Utrecht University 

4.1 Introduction 

Exploratory latent class analysis (ELCA) (Clogg, 1981; Goodman, 1974; 
Haberman, 1988; Vermunt, 1997) is used to group responses Xij of per­
sons i = I,... ,N to items j = 1,..., J into classes q = 1,..., Q such 
that persons with similar responses are assigned to the same class. In this 
chapter we restrict ourselves to dichotomous data Xij6{0,1}. Each class q 
is characterized by J class specific probabilities 7tqj, indicating the proba­
bility of the response '!' on item j in class q, and a weight uq, indicating 
the unconditional probability that a person's latent class membership r 
equals q. Let X = [xi,... ,XN], 0 = [U>,TTI, ... ,TTQ], 7rg = [ i r q i , . . . , T r q j ]  , 
x» = [xn,..., xu} and o> = [u\,..., U>Q] . The density of the data given the 
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parameters of ELCA is then given by 

A key question in ELCA is into how many homogeneous subgroups 
the sample should be divided? Usually fit measures (Everitt, 1988; Lin 
& Dayton, 1997) are used to determine which number of classes is opti­
mal. Another question concerns the interpretation of the resulting classes. 
Sometimes classes can be interpreted independent of other classes. As is il­
lustrated in the next section, one class may account for persons with highly 
developed emotional skills, while an other class accounts for persons with 
highly developed social skills. It can also be that classes can be ordered 
with respect to one or more underlying dimensions (Croon. 1990). An ex­
ample of the latter is an ELCA resulting in three latent classes that can 
be used to order persons with respect to different levels of social skills (a 
one-dimensional ordering). It even might be the case that the persons can 
be ordered with respect to two dimensions, for example, the combinations 
of levels of social skills and the levels of emotional skills. 

A researcher using exploratory analysis behaves as if his research field 
has not yet been explored very thoroughly, and theories are not yet fully 
developed. After the execution of an exploratory analysis, a researcher has 
to determine whether the outcome is in accordance with an existing theory, 
or that a new theory is emerging. This approach has two drawbacks. First 
of all, it may not at all be clear which theory corresponds best to the 
outcomes. This may lead to over- interpretation and guessing. Secondly, 
scientific progress may be larger if the current state of affairs (existing 
knowledge and theories) are properly accounted for in the statistical models 
used for the analyses. 

ELCA has been done in areas that have been thoroughly explored, and 
where theories are well developed, for example, Boom, Hoijtink, and Kun­
nen (2001) and Jansen and Van der Maas (1997). They use ELCA to ana­
lyze data with respect to the Piagetian Balance Scale Task. In section 4.5.1 
new data with respect to this task are analyzed using confirmatory latent 
class analysis (CLCA). There it is also shown how CLCA can be used to 
refine (the best of) the existing theories, that is, how a new theory can be 
generated using the old theory as the point of departure. 

In this chapter, a specific form of CLCA is proposed (Hoijtink & Mole­
naar, 1997; Hoijtink, 1998; Hoijtink, 2001). The approach allows a theory 
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to be translated into a CLCA using inequality constraints among the pa­
rameters of the model. This can be done for several competing theories. 
Two fit measures are presented that can be used to select the model that 
receives the most support from the data. 

4.2 Translation of Theories into CLCA 
Several models can be constructed using constraints of the following types 
for q 7^ q' and/or j ^ j' 

To start with a simple example, suppose that persons have to respond to 
ten items. The first five items can be answered using skills related to so­
cial qualities (e.g., do you think you have a good understanding of other 
people?), the others using skills related to emotional qualities (e.g., do you 
easily succeed in managing yourself?). The answers to these questions are 
coded 1 (well-developed) and 0 (undeveloped). Thus, the response vector 
of each respondent has ten scores with realization 1 or 0. Suppose, sev­
eral theories exist for these data. A researcher thinks skills related social 
and emotional are not distinct, leading to the conclusion that there are 
only two groups of persons: persons who have a higher (social/emotional) 
intelligence and persons who have a lower intelligence. This common intel­
ligence theory can be translated into a latent class model with two latent 
classes. The class specific probabilities for the first class are all high, the 
class specific probabilities for the second class are all low, thus meaning 
that the persons who have both well developed social and emotional skills 
are allocated in class one, and the less intelligent persons who have both 
less developed social and emotional skills are allocated in class two. In 
terms of restrictions (see Table 4.1): For the common intelligence theory, 
the class specific probabilities of all items in the first class are restricted to 
be larger than those of all items in the second class. Note that j is used 
to indicate item numbers, u\ denotes the proportion of persons in class 1, 
and 7T2j denotes the probability of responding '!' to item j in class 2. 

Another researcher might not agree with the common intelligence theory 
and states that there are indeed two groups of persons, but one group 
has higher social related skills, while the other group has higher emotional 
related skills. Prom this specific (social/emotional) intelligence theory it can 
be inferred that in one class the probabilities of responding 'developed'— 
that is, the response indicates that the person has well-developed skills— to 
the social items are higher than for the emotional items, while for the other 
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Table 4.1: Items and Restrictions on the Response Probabilities 
for Common (Social/Emotional) Intelligence Theory. 

Item type Items Restrictions 
Social 1-5 TTij > 

Emotional 6-10 TT > 

Table 4.2: Inequality Constraints for the Specific Intelligence 
Theory. 

Item type Items Restrictions 
Social 1-5 TTij > TT2j 

> < 
Emotional 6-10 KI < TT^ 

class the probabilities of responding 'developed' to the emotional items are 
higher than for the social items. This theory can be translated into a 
CLCA as indicated in Table 4.2: The first five items in the first class have 
probabilities that are restricted to be larger than the first five items in the 
second class. The first five items in the first class are also restricted to 
be larger than the last five items in the first class. The last five items in 
the second class have probabilities that are restricted to be larger than the 
last five items in the first class. The last five items in the second class are 
restricted to be larger than the first five items in the second class. 

An alterative display of the inequality constraints for the 'specific in­
telligence' theory is given in Table 4.3. Here the inequality constraints are 
implicit; for example, a minus sign indicates a class specific probability is 
restricted to be smaller than all the class specific probabilities correspond­
ing to a plus sign. This type of display is used in section 4.5.1, where the 
display with inequality signs is too complicated or impossible. The inequal­
ity constraints are implicit: - < +. Note that a minus sign is not restricted 
with respect to any other minus sign, and a plus sign is not restricted with 
respect to any other plus sign. 
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Table 4.3: Alternative Display of the Inequality Constraints for 
the Specific Intelligence Theory. 

Item type Items Restrictions 
Social 1-5 + 
Emotional 6-10 ­ + 

4.3 Estimates for the CLCA 
In this section we explain how estimates of the parameters are obtained. 
The general algorithm is described by Gelfand, Smith, and Lee (1992) and 
the direct application to CLCA can be found in Hoijtink (1998). The 
basic principle is to use the posterior distribution to obtain a sample of the 
model parameters. This sample can be seen as a discrete representation of 
the posterior distribution. With this sample, further calculations are easy, 
for example, the average of the sampled values is the expected a posteriori 
(EAP) estimate of a parameter, and the 2.5-th and 97.5-th percentile of 
the sampled values constitute a 95% central credibility interval. Since it 
is not trivial to obtain a sample from a multivariate posterior distribution, 
the Gibbs sampler is applied. This algorithm renders a sample from the 
joint posterior of the parameters by repeatedly sampling from conditional 
distributions, that is, the distribution of the parameter at hand given all 
the other parameters. 

4.3.1 Posterior Distribution 
The density of the data given the parameters of the model is given by 
Equation 4.1. For each model k = 1,. . . , K, where K denotes the number 
of models under consideration, the set of inequality constraints is denoted 
by Hk. The latter will be included in the posterior distribution via the 
prior distribution. In this chapter, all the priors are chosen to be uni­
form for all combinations of parameter values allowed by H^. Note that 
since information about the models is included in the prior distributions 
via inequality constraints, in that respect the priors are informative. The 
conjugate prior for a (constrained) class specific probability is a (truncated) 
Beta(l,l) distribution. The conjugate prior for the class weights is a Dirich­
let distribution parameterized such that a priori all combinations of weight 
values summing to one are equally likely, that is, Dirichlet(ai,..., C*Q), with 
ctq — 1. The resulting posterior P(0 \ X, Hk) is proportional to the product 
of the density of the data P(X | 0) and the (truncated) proportional prior 
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P(9 \Hk), that is 

where P(0 \ Hk) has the value 1 if 0 is in accordance with the constraints 
imposed by H^, and 0 otherwise. 

4.3.2 Gibbs Sampler 
The Gibbs sampler is an iterative procedure. In iteration r = 0 initial values 
have to be provided for the class weights and the class specific probabilities. 
Any set of values that is in agreement with the constraints imposed upon 
the parameters can be used. Each iteration r = 1. . . . ,R consists of three 
steps: 

Step 1: For i = 1, . . . , TV, sample class membership Ti,r £ {1, . . . , Q} 
from its posterior distribution given the current values (i.e., the values 
sampled in iteration 1— 1) of the class weights, the class specific probabilities 
and the data. This conditional posterior is a Multinomial distribution with 
probabilities 

for q = 1, . . . , Q. Note that both the numerator and the denominator in 
the right-hand side of Equation 4.2 are defined in Equation 4.1. 

Step 2: For q — 1, . . . , Q and j = 1, . . . . J, sample nqj from its posterior 
distribution given the current values of r, for i — 1, . . . , N, and the data 
and the constraints. This conditional posterior is a (truncated) Beta dis­
tribution with parameters sqj,r + I and Nq^r —sqj^r + 1, where A^<r denotes 
the number of persons allocated to class q in iteration r, and sqj,r denotes 
the number of persons allocated to class q in iteration r that respond 1 to 
item j. Note that the Beta distribution is truncated because the sampled 
value for Ttqj is only acceptable if it is in accordance with the inequality 
constraints involving Trqj. The naive way to do so is: Sample from the 
correct (non-truncated) Beta distribution until a deviate is sampled that 
satisfies the constraints. However, this is quite inefficient when only a small 
range of the distribution is admissible. Inverse probability sampling solves 
this problem. Let nqj be the parameter that has to be sampled from the 
truncated Beta distribution. The lower bound a is given by the largest 
class specific probability that, according to the constraints imposed by the 
model at hand, must be smaller than Trgj. The upper bound b is the small­
est class specific probability that, according to the constraints imposed by 
the model at hand, must be greater than TTW-. The sampling is achieved 
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using a uniform (0,1) deviate U and the computation of 

where ^7rqj (a) is the proportion of the conditional posterior distribution (a 
truncated Beta distribution) of -nqj below a and $7^ (b) is the proportion 
of conditional posterior distribution below b. 3>~l {.} denotes the inverse r- nqj- i j 
cumulative density evaluated at the argument. This procedure always ren­
ders a deviate from the conditional distribution at hand within the bounds 
a and b (Gelfand et al., 1992). 

Step 3: Sample the class weights from their posterior distribution given 
the current values of TJ for i = 1 , . . . , JV . This posterior is a Dirichlet 
distribution with parameters JVi>r + 1, . . . , NQ^ + 1. 

For all analyses executed in the chapter, the Gibbs sampler was run for 
110,000 iterations. After a burn-in period of 10,000 iterations the values 
sampled in the second and third step of each 100-th iteration were saved 
(these iterations are denoted using the superscript ra = 1 , . . . ,M)  . The 
result is 01, . . . , 0m,...,01>00°. This sample can be used to obtain esti­
mates of the model parameters and the corresponding credibility intervals, 
taking into account the prior constraints. The expected a posteriori (EAP) 
estimate of a parameter is simply the average of the 1,000 values of that 
parameter sampled from the posterior distribution. A 95% central credi­
bility for this parameter is given by the 2.5-th and 97.5-th percentile of the 
distribution of these 1,000 sampled values. In the next section it is shown 
that it is easy to compute and evaluate fit measures using the sample from 
the posterior distribution. 

4.4 Model Selection 

After the translation of a number of competing theories into constrained 
latent class models, the support the data provide for each latent class model 
has to be determined. Three fit measures that can be evaluated using 
Bayesian computational methods (the marginal likelihood, posterior model 
probabilities, and the pseudo likelihood ratio test) have been proposed in 
the literature (Kass & Raftery, 1995; Hoijtink, 2001). For a discussion of 
the performance of these measures in the context of inequality constrained 
models, the interested reader is referred to Hoijtink (1998, 2001). These fit 
measures are discussed in the next sections. 
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4.4.1 Marginal Likelihood and Posterior Model Prob­
abilities 

Kass and Raftery (1995) present a comprehensive review of the marginal 
likelihood and posterior probability of a model. The basic idea behind the 
marginal likelihood factors is the same as the basic idea behind more famil­
iar information criteria like AIC, CAIC, and BIG. It can, for example, be 
shown (see Kass & Raftery, 1995), that the Bayesian Information Criterion 
(Schwarz, 1978) is an approximation of minus twice the logarithm of the 
marginal likelihood. Although not explicit in its formulation, the marginal 
likelihood, like the information criteria, contains a trade off between the 
likelihood of the parameters given the data and the number of parameters 
in the model. 

In the remainder of this chapter, minus twice the logarithm of the 
marginal likelihood is used 

which brings comparisons of different models on the same scale as the famil­
iar deviance statistics (Kass & Raftery, 1995). Loosely formulated, minus 
twice the logarithm of the marginal likelihood can be interpreted as the 
distance between the model at hand and the true model: The smaller its 
value, the smaller the distance. 

There are many ways to compute Equation 4.3. In this chapter the 
method proposed by Kass and Raftery (1995) is used. They suggest to 
sample 99% of the parameter vectors (in our case 990) from the posterior 
distribution parameter vectors, and to imagine that 1% of the parameter 
vectors (in our case 10) is sampled from an imaginary distribution where for 
each 6 P(X | 0) is equal to the marginal likelihood. An approximation of 
— 2 log P(X Hk) is denoted as —2 log P and obtained via a simple iterative 
algorithm based on the implicit equation 

If the prior probabilities of the K models under investigation are equal, 
that is, P(Hk) = l/K for k = 1, . . .  , K, the posterior probability of each 
model can be computed as 
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for k = 1, . . . , K. The posterior model probability P(#fc|X) denotes the 
support for model k in the total set of K models given by the data. In 
this chapter, both the marginal likelihood and the posterior probability of 
a model are reported. 

4.4.2 Pseudo Likelihood Ratio Test 
Hoijtink (2001) shows that the likelihood ratio test (Everitt, 1988; Lin & 
Dayton, 1997) is not performing very well if the goal is to select the best of a 
number of inequality constrained models. The performance is much better 
if the pseudo likelihood ratio statistic is used. This statistic is denoted by 
£)fc(X,0fc) and compares for each pair of items, the expected number of 
each possible pair of responses (i.e., 00, 10, 01, and 11, respectively) to 
the corresponding observed number. Let n^ denote for items g and h 
the observed frequencies of the response pattern Xg = v , Xh — w where 
v,w 6 {0,1}. Furthermore, let m^ifc denote the expected frequencies of 
these response patterns given Ok- The pseudo likelihood ratio statistic is 
then defined as 

The expected frequencies conditional on Ok are computed using 

The larger D(X, 0*.), the larger the discrepancy between the data X and 
model k. 

Because Ok is unknown, Equation 4.4 cannot be computed. The clas­
sical solution is to substitute the unknown quantity with the maximum 
likelihood estimate of Ok- The Bayesian solution uses the posterior distri­
bution of Ok (Rubin, 1984; Meng, 1994; Gelman, Meng, & Stern, 1996). 
The posterior distribution summarizes the available information with re­
spect to Ok- The posterior can accurately be represented using a sample 
0J, . . . , 0™, . . . , 0fc°°° from this posterior. Each of the 1000 vectors 0™ can 
be used to generate a replicated data matrix X™ that is in accordance with 
model k. The procedure is simple: For TV persons class membership is sam­
pled from a multinomial distribution with probabilities u>™. Subsequently, 
the class specific probabilities 7r"J fc, . . . , TT™J k of the class to which a person 
is assigned are compared with a vector of pseudo random numbers sampled 
from a U(0,l) distribution. If a class specific probability is larger than the 
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corresponding random number, a person gives the response 1. otherwise 
the response 0 is given. This procedure is repeated for m = 1 , . . .  , 1000. 

For each Ok two discrepancies can be computed: -D(X, 0™), which is a 
discrepancy between the observed data and the model; and, D(X.™,0™), 
which is a discrepancy between replicated data and the model. If D(X™, 0™) 
> Z?(X, 0^), the discrepancy between the observed data and the model is 
equal to or smaller than the discrepancy between the replicated data and the 
model. The posterior predictive p-value is the proportion of 1000 compar­
isons for which D(Xf,0m) > £>(X,0m). The posterior predictive p-value 
is formally defined as 

that is, the probability that the discrepancy between model k and a data 
matrix Xfc generated using model k is equal to or larger than the dis­
crepancy between model k and the observed data matrix X. The pk is 
an absolute fit measure, that can be used to test the pseudo likelihood 
ratio statistic, that is, which can be used to determine whether model k 
accurately describes the data. Stated otherwise, analogous to the interpre­
tation of classical p-values, values smaller than .05 indicate a lack of fit of 
the model, and values larger than .05 indicate that the model at hand was 
able to accurately reproduce the observed frequencies. 

4.5 Strategies to Solve the Piagetian Balance 
Scale Task 

The balance scale task was recognized in the early eighties as a way of 
eliciting different rule-governed response patterns for proportionality rea­
soning (Siegler, 1981). A picture of a simplified balance scale is shown to 
children. While the beam is fixed, a number of identical weights are placed 
on each side at certain distances from the fulcrum. For each of a number 
of balances (the items) the children have to predict which side will tip, if 
any. The weights on the balance differ with respect to their number and 
distance to the center. The formal rule to obtain the correct answer is that 
the balance is in equilibrium when the product of the number of weights 
and the distance from the center is equal at both sides of the balance. 

Applications of ELCA in the context of the balance task can be found 
in Boom et al. (2001) and Jansen and Van der Maas (1997). New balance 
scale data will be used to determine which of the existing theories that 
explain children's responses to the items of the balance scale task is the 
best. As the result is not conclusive, the best of these theories will be used 
as the point of departure for further theoretical developments. 
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Nearly 900 randomly selected Dutch children from 4- to 16-years-old 
participated, with a mean age of 10.35 (standard deviation 2.82). The 
children were tested individually at home by students and did not receive 
feedback until the task had been finished. The assessment was part of a 
training procedure for psychology students. The students were prepared for 
this specific assessment in small groups and had to follow a strict assessment 
protocol. 

4.5.1 Theories and Hypotheses About the Data 

Siegler (1981) distinguished six types of problems. In balance problems, 
weight and distance are equal on both sides. In weight problems, the dis­
tance is the same on both sides but the number of weights is different. 
These first two problem types were not used in this study, since they do 
not differentiate between the postulated rules and were expected to be an­
swered correctly by all children. In distance problems, the weight is the 
same on both sides but the distance is different. In conflict problems, more 
weight is on one side and greater distance on the other, such that the side 
with more weight falls (conflict-weight problem), the side with the greater 
distance falls (conflict-distance problem), or the balance remains horizontal 
(conflict-balance problem). 

Siegler (1981) described four strategies or rules. Each of these strategies 
can be characterized by a specific pattern of scores on the different item 
types. 

rule 1 Children will only consider the number of weights on each arm. 
Therefore it can be expected that they have a higher probability of 
correctly responding to the weight and the conflict-weight items than 
to the other item types. 

rule 2 Children get a grasp of distance: When the number of weights is 
equal on both sides, they judge the influence of distance correctly, oth­
erwise they ignore distance and only consider the number of weights. 
For this strategy, it can be predicted that children have a higher prob­
ability of correctly responding to the weight, distance, and conflict-
weight items than the other item types. 

rule 3 Children will evaluate both the distance and the number of weights 
correctly, but if one side has more weights and the other side more 
distance they will be confused and guess. The probability of success 
will be at chance level (they make a random prediction) for all conflict 
type of problems. 
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Table 4.4: Inequality Constraints for Siegler's Model (for Expla­
nation of the Notation, See Text). 

Restrictions 
Item type Items Rule 1 Rule 2 Rule 3 Torque 
Distance 1-5 
Conflict Weight 
Conflict Distance 

6-9
10-14 

+ + ± 
± I 

Conflict Balance 15-19 ± 

rule 4 Children will apply the correct (torque) rule. The probability of 
responding correctly is high for all item types. 

As can be seen in Table 4.4, the test used in this chapter contains 19 
items of the following types: five distance, four conflict-weight (originally 5 
but one item had a printing error in the test booklet for half of the sample), 
five conflict-distance, and five conflict-balance. In Table 4.4 a translation 
of Siegler's model into CLCA is elaborated upon. Note that the inequality 
constraints are implicitly shown: - indicates a low probability of correctly 
responding to the item, -I- a high probability of correctly responding to an 
item, and ± indicates a random prediction. All the probabilities associated 
with the - signs have to be smaller than the probabilities associated with 
the ± signs, and all the probabilities associated with the + signs have to 
be larger than probabilities associated with ±. 

Wilkenings and Anderson (1982) argue the existence of another strat­
egy. The addition rule suggests that the number of weights and the number 
of distance intervals on the left are summed and compared to the sum of 
weights and distances on the right: the side with the greater sum is ex­
pected to tip. For the existing item types, we designed the items such that 
the addition rule could be detected because two conflict-weight items and 
two conflict-balance items evoke an incorrect response whereas the remain­
ing conflict-weight and conflict-balance and all conflict-distance items evoke 
a correct response when this rule is applied to this set of items. Children 
applying the addition rule will have a low probability of correctly respond­
ing to the items that evoke an incorrect response, and a high probability of 
correctly responding to the remaining conflict-items. Normandeau, Larivee, 
Roulin, and Longeot (1989) argue that rule 3 of Siegler is not homogeneous. 
Their paper supports the existence of the addition rule and they introduce 
yet another rule: qualitative proportion rule. Children using this rule under­
stand that more weights at a small distance from the fulcrum compensates 
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Table 4.5: Inequality Constraints for Normandeau's Model (for 
Explanation of the Notation, See Text). 

Restrictions 
Item Type Items Rule 1 Rule 2 Add QP T 
Distance 1-5 
Conflict Weight 
Conflict Weight Add 
Conflict Distance 

6,9
7,8

 + 
+ 

: ; : : 
Conflict Distance Add 10-14 
Conflict Balance 16,19 
Conflict Balance Add 15,17,18 

Note. T = Torque. 

for fewer weights at a far distance, resulting in a prediction of balance for 
all conflict problems. Thus, the qualitative proportion rule predicts that 
all conflict-weight and conflict-distance items have low probabilities of be­
ing answered correctly, and all the conflict-balance items have a high (or 
higher) probability of a correct response. The five resulting latent classes 
are displayed in Table 4.5. Note that this table is comparable to Table 4.4, 
but extended to differentiate between the addition and non-addition items. 
Moreover, there can be seen that rule 3 has been split up into a latent class 
accounting for the addition rule and a latent class accounting for the qual­
itative proportion rule. In the current item set all conflict distance items 
were solvable using the addition rule. 

4.5.2 Results 

The model selection measures have been computed for Siegler's model and 
for Normandeau's model. Note that the pseudo likelihood p-value indicates 
the absolute fit of the model. A p-value smaller than 0.05 indicates a lack 
of fit of the model, whereas the p-value is larger than 0.05, the model ac­
curately reproduces the observed frequencies. The marginal likelihood can 
be interpreted as the distance between the model at hand and the true 
model: the smaller the value, the smaller the distance. The value of the 
marginal likelihood is on the same scale as the familiar deviance statistics. 
Two or more models can be compared using the value of the marginal like­
lihood. Since the marginal likelihood implicitly uses a parameter penalty, 
the model with the smallest marginal likelihood value has to be preferred. 
The marginal likelihoods of all models analyzed can also be transformed 
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Table 4.6: Fit Evaluation of the Siegler's Model and Norman-
deau's Model for the Balance Scale Data. 

Model Pseudo -21og Marginal Posterior 
Likelihood Likelihood Model Probability 

Siegler 0.003 13421 0 
Normandeau 0.019 13206 1.0 

into the posterior model probability. This number indicates the support 
for each model in the total set of models given the data. 

In Table 4.6, it can be seen from both the marginal likelihood and the 
posterior model probability that Normandeau's model is superior. However, 
as indicated by the p-value of the pseudo likelihood ratio test (smaller than 
.05), it is questionable whether Normandeau's model adequately reproduces 
the frequencies with which the response vectors are observed. This lack of 
fit could be due to existing strategies that are not predicted by the theory. 

Figure 4.1 presents the class specific probabilities of Normandeau's model. 
On the horizontal axis the items arc displayed, on the vertical axis the class 
specific probabilities. Classes one and two clearly represent rule 1 (only 
considering weight leads to a high probability of answering conflict-weight 
items (6-9) correct) and rule 2 (high probability of answering conflict-weight 
(6-9) and distance items (1-5) correct). These rule are dominant, since a 
substantial part of the sample belongs to these classes. The third class 
represents the addition rule, although the probabilities for items 15, 17 and 
18 are lower than expected for this rule. 

Class four represents the qualitative proportion rule. As can be seen 
only a small proportion of the children belong to this class. Furthermore, 
although the class specific probabilities are in accordance with the con­
straints, especially the probabilities for the first and the last five items 
should have been higher to obtain a convincing representation of a quali­
tative proportion rule. It can be a 'true' strategy, but maybe it should be 
specified in more detail than simply by "all conflict items except conflict 
balance items are answered incorrectly." It could be, for example, that chil­
dren do have an intuitive idea how distance and weight work together, but 
only when there is a large difference between the products of weight and 
distance on both sides. 

Knowing that there are very few children that can actually solve the 
balance scale task, a class size of 29% for rule 4 seems extremely large. 
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Figure 4.1: Class-Specific Probabilities of the Normandeau The­
ory. 
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Furthermore, the class specific probabilities for this correct strategy are all 
predicted to be high, but as can be seen in the figure, this is not the case. 
Stated otherwise, class five does not yet give a convincing representation of 
rule 4. 

The results for Normandeau's model are not conclusive. The p-value of 
the pseudo likelihood ratio test indicates that the data are not adequately 
reproduced. Furthermore, for classes four and five the class specific proba­
bilities do not give a clear representation of the presumed underlying rule. 

It could have been an option to represent the torque rule by a class for 
which Trqj > .90 for j — 1, . . .  , J. However, this value of 0.90 seems rather 
arbitrary. From the theory it can be predicted that the probability of a 
correct response in class five has to be higher than the probabilities asso­
ciated with a random prediction. Note that the method of testing models 
via the incorporation of inequality constraints on the model parameters 
explicitly shows that one chooses the best theory from a set of reasonable 
theories. This means that not all possible models are included, nor guaran­
tees this procedure that the 'true' model is in the set. In the next section, 
it is shown how this best theory can be used as the point of departure for 
theory refinement. 

4.5.3 Theory Refinement 

In this section, Normandeau's model is extended with one and two un­
constrained classes, respectively. This constitutes an example of scientific 
exploration using the current state of knowledge as the point of depar­
ture. Note that the results of this exploration are indefinite. To confirm 
the exploratory results, these findings have to be translated into inequality 
constraints and they have to be analyzed using new data. 

As can be seen in Table 4.7, the Normandeau model with two uncon­
strained classes receives the most support from the data. Note, that the 
p-value of the pseudo likelihood ratio test now indicates that the data are 
adequately reproduced by this model. Furthermore, comparing the pos­
terior probabilities of the three Normandeau models, it is clear that the 
variant with two extra unconstrained classes is superior. 

As can be seen in Figure 4.2, the interpretation of the first four classes 
is similar to the interpretation given for the Normandeau model without 
extra classes. Note, however, that the probabilities for items 17 and 18 in 
class three have increased, that is, class three gives a better representation 
of the addition rule. The same holds for the first and last five items in class 
four, which now give a better representation of the Qualitative Proportion 
rule. Class five now represents rule 4 and contains only a small proportion 
of the children (as is expected). 
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Figure 4.2: Class-Specific Probabilities of the Normandeau The­
ory Extended With Two Classes. 
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Table 4.7: Refined Fit Evaluation of Siegler's Model, Norman-
deau's Model, and Two Extended Models for the Balance Scale 
Data. 

Model Pseudo -21og Marginal Post 
Likelihood Likelihood 

Siegler 0.003 13421 
Normandeau 0.019 13206 0.0 
Normandeau Hh 1 class 0.054 12909 0.0 
Normandeau Hh 2 classes 0.082 12837 1.0 

Class 6 accounts for a fairly large proportion of persons. This class is 
difficult to associate with a strategy or rule. Our best guess is that it is 
class of children who are somewhere between rule 2 and the addition rule. 
The second unrestricted class (class 7) is a global pattern, only grouping 
children that have in common that they do not consider the answer 'balance' 
an option (the last five items are almost never correctly answered). This 
class was also mentioned by Jansen and van der Maas (1997). 

In the current version of the balance scale task, the items are chosen 
on the basis of being of a certain type (e.g., conflict balance item). The 
magnitude of the physical quantities is not varied systematically. We sug­
gest that in further research one chooses the items of the same type more 
carefully, such that the role of the physical quantities can be asserted. For 
example, choose addition items within the conflict distance item such that 
the items vary from a big difference between addition torque to a small 
difference in a controlled way. 

4.6 Conclusion 
This chapter illustrated that theories can be included in latent class models 
using inequality constraints among the class specific probabilities. An ex­
ample from the domain of developmental psychology was used to illustrate 
the resulting CLCA. If, in a certain research domain, one or more theories 
exist, CLCA has advantages over ELCA. First of all it provides a straight­
forward way to select the best of a number of competing theories. Secondly, 
as illustrated using the balance scale data, it allows theory refinement using 
the current state of knowledge as the point of departure. 

Siegler and Chen (2002) mention some disadvantages of the LCA. One 
is the arbitrary alpha level of 5% and the unclear interpretation of it. This 
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is acknowledged in Bayesian statistics for quite some time, and a solution 
has been found in the form of posterior model probability (Sellke, Bayarri, 
& Berger, 2001). We use this solution, because instead of a probability of 
incorrectly rejecting the null hypothesis, the posterior model probability 
gives the probability of the data given the model among other models. 

Currently user friendly software containing an implementation of the 
proposed approach is being developed. Readers interested in this software 
can send an e-mail to the first author at o.laudy@fss.uu.nl. The e-mail 
should include a description of the research at hand, the data, and the 
theories involved. 
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5.1 Introduction 

The log-linear model plays a prominent role in the statistical analysis of 
categorical data. Log-linear analysis of a contingency table aims at obtain­
ing a parsimonious model for the cell probabilities (or expected frequen­
cies) that provides a statistically acceptable explanation of the association 
among the observed variables with as few parameters as necessary. In gen­
eral log-linear analysis is applied to the contingency table that contains the 
observed frequencies from the joint distribution of all variables involved in 
the analysis. However, many other substantively interesting questions may 
be asked that pertain not to the original table, but to subsets of marginal 
tables that can be derived from it. Some of these questions may be answered 
by a log-linear analysis on these marginal tables. In longitudinal research, 
for example, changes in the marginal distribution of some variables may 
be studied by testing hypotheses of marginal homogeneity. Furthermore, 
changes in the association among variables over time may be studied by 
testing hypotheses about equality of corresponding interaction parameters 
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in log-linear models for different marginal tables. Some other questions, 
however, cannot be reformulated in terms of log-linear models. As an ex­
ample of this type of research question we consider the question of whether 
the values of some well-known association coefficients change over time. 

In this chapter we discuss how all analyses referred to above can be 
carried out within a unified framework that generalizes the basic log-linear 
modelling approach. In this framework each model is specified by means 
of the constraints it imposes on the cell probabilities in a multidimensional 
contingency table. The maximum likelihood estimates of the constrained 
cell probabilities and the associated tests of significance are obtained by 
the procedures developed by Aitchinson (1962), and Aitchinson and Sil­
vey (1958, 1960). In representing these constrained models a notational 
system is used that is a generalization of that developed by Lang (1996) 
and Bergsma (1997), which was based on earlier work by Grizzle, Starmer, 
and Koch (1969), Forthofer and Koch (1973), and Kritzcr (1977). In a pre­
vious article (Croon, Bergsma, & Hagenaars, 2000) we discussed how this 
approach could be helpful to test several hypotheses about change in dis­
crete variables over time. A similar set of research problems was considered 
by Vermunt, Rodrigo, and Ato-Garcia (2000) but their approach is differ­
ent from ours by requiring the direct estimation of log-linear parameters. 
Moreover, the scope of these two papers was limited to those hypotheses 
that could be formulated in terms of the parameters of log-linear models for 
marginal tables. In this chapter we show how hypotheses that cannot be 
stated as log-linear models can be tested by specifying the models in terms 
of the nonlinear inequality constraints they impose on the cell probabilities. 

We illustrate our discussion with analyses on the data given in Table 5.1. 
These data were obtained in a longitudinal survey in which a panel of re­
spondents was interviewed in September and October of the same year on 
their opinion on the Supreme Court candidate Clarence Thomas (CT) who 
was nominated by President George Bush Senior. This nomination stimu­
lated some public debate because of CT's Afro-American background and 
his allegedly extremely conservative views. Moreover, after the first survey 
was held on September 3-5, a charge for sexual harassment was brought 
against CT by his former aide Anita Hill on September 25. The second 
survey was then conducted on October 9. Table 5.1 cross-classifies three 
variables constructed from these surveys. The variables S and O refer to 
the respondents' opinions on CT in September and October, respectively. 
For the present analyses their responses were coded as: 1 = Favorable, 
2 = Not Favorable, 3 = Undecided or Haven't heard enough. We refer to 
this third response as the No clear opinion response alternative. The vari­
able P refers to the respondents' political orientation. We have grouped the 
original responses to this variable in three categories as follows: 1 = Liberal, 
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Table 5.1: Cross Classification of Opinions on Clarence Thomas 
in September (S) and October (O) (1 = Favorable, 2 = Not Fa­
vorable, 3 = No Clear Opinion) Against Political Orientation (P 
with 1 = Liberal, 2 = Moderate, 3 = Conservative). 

1 
18
4
7
4
43
7
43


O
I 
2
3
1
2
3
1
2
3


S
1 

2

3


P 
2 
77
7 
31


3
99
3
21
8
11
4 
55


12

36

12

108

41
32
 24


54 127 59


2 = Moderate, 3 = Conservative. 
The theoretical probabilities corresponding to the cells of Table 5.1 will 

be denoted by Trf^- In what follows we often assume that these cell prob­
abilities arc assembled in a vector TTSOP with each element in this vector 
corresponding to a particular response pattern on the variables S, O and 
P. In stacking the elements of a multidimensional table in a vector, we will 
always work under the convention that the subscripts of the later variables 
change the fastest. Note also that the symbols for the cell probabilities all 
have the superscript SOP. When we would only discuss analyses on 5.1, 
these superscripts are redundant and could be omitted. However, later, 
when discussing simultaneous analyses on various marginal tables derived 
from the same table, we need a flexible notation to make clear to which 
marginal table a particular probability or observed frequency refers. A no­
tation that makes use of superscripts fulfills this need. We make use of 
a similar notational principle to describe the log-linear parameters in the 
log-linear models for these tables. 

In section 5.2 we introduce our approach by showing how log-linear 
models for contingency tables can be tested by a constrained estimation of 
the theoretical cell probabilities. This approach is based on the observa­
tion that each log-linear model can be characterized by the constraints it 
imposes on these cell probabilities. In section 5.3 we extend this approach 
to the simultaneous log-linear analysis of several marginal tables defined on 
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the original contingency table. In section 5.4 we describe a further general­
ization of it for analyzing marginal tables according to models that cannot 
be cast into a log-linear form. Section 5.5 discusses the more technical 
aspects of the optimization algorithm used in fitting the models. 

5.2 Log-Linear Models for a Total Table 

For Table 5.1, the most general decomposition of the log probabilities is 
given by 

for i, j, k = 1, 2, 3. In Equation 5.1, Af^f is the overall effect; the parame­
ters AfPf , A^f , and Af^f represent the main effects of the categories of 
the three variables; the parameters Af ̂ , Af^, and A^£* represent the 
two- variables interaction effects; finally, the parameters Af ̂  represent the 
three- variables interaction effects. 

The log-linear model defined by Equation 5.1 is not yet identified. For 
example, adding a constant to the terms Af ̂ f and subtracting the same 
constant from the terms Af ̂ f will leave the value of logTrf^ unchanged. 
In order to obtain identified models we have used dummy coding for the 
log-linear effects by setting all log-linear parameters with i = 1, j = 1, or 
k = 1 equal to zero. These identification constraints imply that all log-
linear effects are expressed as deviations from the first response category of 
a variable. 

The model introduced in Equation 5.1 defines a linear structure on the 
logarithms of the cell probabilities. It can be written in matrix notation as 

for some appropriately defined design matrix X that takes into account the 
identifying constraints and that is of full column rank. The notation we 
use assumes that if a scalar function (such as log or exp) is applied to a 
vector, it is actually applied to each coordinate of the vector. Hence, if 
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then for any scalar function /, we have 

In Equation 5.1 the vector \SOP contains the log-linear parameters in 
the appropriate order. Any log-linear model can be written in this matrix 
form for some design matrix X. When we fit a log-linear model to a con­
tingency table, we try to obtain estimates of the log-linear parameters that 
minimize a discrepancy function that quantifies the distance between the 
observed and the expected frequencies. Most often the maximum likelihood 
principle is used in this context. 

Any log-linear model can also be specified by the constraints it imposes 
on the theoretical cell probabilities. Let U be a full column rank matrix 
such that the vector space spanned by the columns of U is the orthocom­
plement of the vector space spanned by the columns of X. If V is the vector 
space spanned by the columns of X, the columns of U span the vector space 
consisting of all vectors that are orthogonal to V. Then, we have w = Xa 
for some vector a if and only if U'w = 0. 

Any log-linear model can then also be characterized by the constraints 
it imposes on the elements of vector TT. If 

for some appropriately defined design matrix X, then also 

Instead of fitting a log- linear model by direct estimation of the log-linear 
parameters, we can fit it by determining the maximum likelihood estimates 
of the cell probabilities under the constraints given in Equation 5.2. As 
we will discuss later, this alternative way to characterize a log-linear model 
by the constraints it imposes on the cell probabilities easily generalizes to 
more complex models for contingency tables. For testing the goodness-of-
fit of such complex models the approach that characterizes the model by 
its constraint equations is often the only feasible one because such models 
cannot be easily described in terms of parametric equations for the cell 
probabilities. This is especially the case for models that cannot be cast in 
a log-linear form. 

The model defined by Equation 5.1 is the saturated model for Table 5.1. 
A saturated model always provides a perfect fit for the data at hand, and 
consequently, cannot be rejected on the basis of a statistical test. However, 
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saturated models serve as baseline models against which the fit of more re­
strictive, parsimonious models can be tested. Each of the more restrictive 
models that are considered in the rest of this section can be characterized 
by the linear constraints it imposes on the logarithms of the cell probabil­
ities for Table 5.1. Hence, each of these models can be represented by an 
equation like Equation 5.2 for an appropriately defined matrix U. Space 
limitations prohibit us to present the matrix U for each of the models we 
will consider. 

A reasonable way to start a search for a more parsimonious model is to 
consider the model with no three- variables interaction terms. This model 
is derived from the saturated model by putting all the three-variables in­
teraction terms equal to zero 

This model is often symbolically represented by [SO, SP, OP] which is the 
list of highest-order interaction terms included in the model. For the present 
data, this model fits very well with the log likelihood ratio test G2 — 7.7988, 
which for df = 8 gives p — 0.453. 

In the search for a more parsimonious model that still provides a sta­
tistically acceptable fit, substantive arguments should play a decisive role. 
Since it may be expected that someone's opinion on CT depends on his 
political orientation, one could test the log-linear model [SP, OP] which 
is derived from the previous model by omitting the interaction terms for 
the pair of variables S and O. This model implies that the association 
between the two variables S and O is completely spurious as a result of 
their association with the third variable P. However, this model does not 
fit the data with G2 = 27.1476, which for df = 12 gives p = 0.007. The 
conditional test of the last model against the model [SO, SP, OP] is even 
clearer: G2 = 19.3488 giving p = 0.0007 with df = 4. These results lead 
to a rejection of the more restrictive model, and show that not all of the 
association between S and O is explained by P. 

An alternative way to define a more parsimonious model is to assume 
that the log-linear structure of the association between Political Orientation 
and Opinion does not change from September to October. This hypothesis 
imposes the following equality constraints on some log-linear parameters in 
the [SO, SP, OP] model 

for i — 1, 2, 3 and A; = 1, 2, 3. This more parsimonious model fits the data 
very well: The unconditional test yields G2 = 13.152 with df = 15 and 
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Table 5.2: Marginal Table for Opinion in September Against Po­
litical Orientation. 

1 29 115 123 
2 54 60 23 
3 129 276 138 

p = 0.591. The conditional test of this model against the no-three-variables 
interaction model gives G2 = 5.354 with df = 7 and p = 0.617. The fact 
that the parsimonious model defined by Equation 5.3 can be accepted for 
the present data implies that important aspects of the association between 
Political Orientation and Opinion do not change over time. The equal­
ity constraints on the log-linear terms in this model are equivalent to the 
following equality constraints on the cell probabilities 

Hence, the odds of responding to the opinion question with the categories i 
and j in that temporal order rather than in the reverse order do not depend 
on Political Orientation. 

5.3 Log- Linear Models for Marginal Tables 
In this section we discuss how models for several marginal tables defined 
on the same original joint table can be tested simultaneously by means of 
a generalized log-linear analysis. We illustrate this approach by further 
analyses on the data from Table 5.1. More specifically, we investigate the 
stability of Opinion over time in its relation with Political Orientation by 
comparing the bivariate marginal distributions SP and OP. The observed 
frequencies of both marginal distributions are given in Table 5.2 and Ta­
ble 5.3. 

The cell probabilities in Tables 5.2 and 5.3 are denoted by Trf^ and 
by Trf^, respectively. They are related to the cell probabilities Trf0^ in 
Table 5.1 in the following way 
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Table 5.3: Marginal Table for Opinion in October Against Polit­
ical Orientation. 

O 
1 65 197 162 
2 79 84 38 
3 68 170 84 

and 

With all cell probabilities collected in the vectors TTSP, TTOP and 7rsop, we 
have for appropriately defined constant matrices AI and A2 

In the present application, both AI and A2 are matrices of order 9 x 
27 whose elements are either 0 or 1. These matrices pick and add the 
appropriate elements of the vector TTSOP in order to obtain the marginal 
probabilities in the vectors TTSP and TTOP. 

A first hypothesis that could be tested when comparing the two bivariate 
marginal distributions is whether these distributions are identical, or not. 
Hence, we would test whether 

holds for all i and k. This is the hypothesis of bivariate marginal homogene­
ity which is here equivalent to the statement that the joint distribution 
of Political Orientation and Opinion on CT does not change over time. 
Since they are both derived from the three-dimensional table, the bivariate 
marginal tables given in Tables 5.2 and 5.3 are not statistically indepen­
dent. Hence, equality of the marginal distributions cannot be tested by 
standard chi-square tests that assume independence of the two samples. To 
circumvent this problem, we rewrite the hypothesis of bivariate marginal 
homogeneity in the form of constraint equations on the cell probabilities 
7rf^P that refer to the total table. The hypothesis of bivariate marginal 
homogeneity can then be tested by checking whether these constraints on 
the cell probabilities in the total table hold for the data at hand. 
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Define 

The bivariate marginal homogeneity model described by Equation 5.4 is 
equivalent to the following constraints on the elements of TTSOP 

This matrix equation is very similar to the one for the log-linear model 
defined by Equation 5.1. For the latter model the matrix A is simply a 
27 x 27 identity matrix, whereas for models defined on marginal tables, 
the matrix A selects and adds the appropriate elements from TTSOP that 
contribute to a particular marginal cell probability. All the models that 
are discussed further on in this section can be written in this form for 
appropriately defined matrices A and U. 

The model of bivariate marginal homogeneity as defined by Equation 5.4 
fits the data very badly: It results in G2 = 138.091 with df = 8 and 
p = 0.000. It is clear that the joint distribution of Opinion and Political 
Orientation changes over time. 

A less stringent hypothesis about similarities between the two bivariate 
marginal distributions states that corresponding local odds ratios from both 
marginals are equal 

for i = 1. 2 and j = 1,2. This model is equivalent to a model that equates 
the two-variables interaction parameters in the log-linear models for the 
marginal tables. If these latter models are written as 

and 

an analysis under the hypothesis of equal local odds ratios is equivalent to 
an analysis that imposes equality constraints of the type 

on the parameters in the log-linear models for the marginal tables. Al­
though these constraints are very similar to the constraints given by Equa­
tion 5.3, it should be noted that they are not equivalent: Whereas Equa­
tion 5.3 imposes constraints on parameters of the log-linear model for the 
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Table 5.4: Univariate Distributions of Opinion in September and 
October. 

Opinion Sept. Oct. 
1 2 6 7 4 2 4 ~ 
2 137 201 
3 543 322 

total table, Equation 5.7 imposes equality constraints on parameters from 
the separate log-linear models for the marginal tables. In general we have 

and 

The model defined by Equation 5.6 fits the data very well: G2 — 7.719 
with df = 4 and p = 0.108. The difference between the two bivariate 
marginal distributions is clearly not due to a change in the structure of 
the association between Opinion and Political Orientation but to other 
aspects of the distributions. As the following analyses show, the most 
striking difference between the two observed marginal tables is the number 
of respondents that have no clear opinion at one of the interviews. Although 
in September 543 (57.3%) respondents have no clear opinion, this number 
decreases to 322 (34.0%) in October. This observation suggests that we 
should compare the univariate distributions of the opinion variable at the 
two time points. Table 5.4 gives the observed frequency distributions for 
opinion in September and October. The hypothesis of univariate marginal 
homogeneity, defined by the constraints 

for i = 1,2,3 fits the data very badly: G2 = 134.986 with df = 2 and 
p = 0.000. 

Now consider the model that states that the proportion of respondents 
with a favorable opinion among those with a clear opinion on CT does not 
change over time. This model that imposes the single constraint 
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fits the data very well: G2 = 0.638 with df = 1 and p = 0.424. The estimate 
of the constant proportion of respondents with a favorable opinion among 
those with a clear opinion on CT is 0.456. Hence, the difference between 
the two univariate marginals seems due to the fact that a significantly 
larger number of respondents express a definite opinion on CT in October 
than in September. The same change in the probability of stating a definite 
opinion is also responsible for the significant difference between the bivariate 
marginal distributions. 

It is important to note here that all models tested in this section can 
be characterized by the linear constraints they impose on the logarithms 
of certain linear combinations of the cell probabilities in nsop. Hence, 
each of these models is described by an equation like Equation 5.5 for some 
appropriately defined matrices U and A. 

5.4 Marginal Models That Cannot Be Cast 
Into a Log-Linear Form 

In this section we discuss how models that cannot be rewritten as log-linear 
models on marginal tables can be fitted and tested by a generalization of the 
methods described in the previous sections. As an illustration we further 
study the association between Political Orientation and Opinion on CT 
and show how hypotheses about changes in the value of the association 
coefficient 7 or the effect estimate e can be tested by this approach. Sec 
Liebetrau (1983) and Gibbons (1993) for an elementary introduction to 
these and other association coefficients. 

We first illustrate for the simple case of a 2 x 2 table how both coefficients 
can be represented by a recursively defined expression in terms of the cell 
probabilities. Suppose we have a 2 x 2 table for the cross-classification of 
two variables X and Y. Let the matrix with the theoretical cell probabilities 
in the 2 x  2 table be given by 

with rows corresponding to X and columns to Y. The same cell probabili­
ties can be stacked row-wise in a column vector like 
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For a 2 x 2 table, the coefficient 7 is given by 

the e-coefficient is defined by 

In computing the association coefficient 7, both variables are treated 
symmetrically, but in computing the coefficient e, variable X is considered 
as the independent variable that has an effect on the dependent variable Y. 
Now define the following matrices 

and 

A tedious but straightforward derivation shows that 

The e-coefficient can be represented in a similar way if we define 

and 
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Then 

The expressions for 7 and e are both generalizations of the notation 
we have for specifying log-linear models. Both expressions can be written 
recursively in terms of a sequence of scalar functions /&. 

For the 7 coefficient we need five functions defined as follows: 

Now let UQ = TT and define recursively 

Then it follows that 

For the e coefficient we need three functions defined as follows 

Then 

Both 7 and e can be defined for general Rx C contingency tables. Let TT^ 
denote an arbitrary cell probability from this table. Now suppose we have 
drawn two observations from this table. These observations are concordant 
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if one of them scores higher on both variables. They are discordant if 
one of them scores higher on one variable and lower on the other variables. 
A tie occurs if both observations score the same on at least one variable. 
Coefficient 7 is then given by 

with the probabilities of concordance and discordance defined as 

and 

Note that 7 is an association coefficient that assumes that the response 
categories of both variables are ordered. 

The generalization of e to arbitrary R x C tables is somewhat more 
involved since (R— l)(C — 1) linearly independent different e values can be 
obtained. For i — 1, • • • , R — 1 and j = 1, • • • , C — 1, one may define 

Note that in defining the e coefficients, one of the variables has to be chosen 
as the response variable. 

The recursive definitions of 7 and e given above for a 2 x 2 table can 
easily be generalized to arbitrary R x C contingency tables by extending the 
A-matrices in appropriate ways. Moreover, hypotheses about equality of 
7's or e's for the same variables measured in different subgroups, or for the 
same variables measured at different time points can easily be formulated 
within this approach but requires in general a few more steps in the recur­
sive definition. As an illustration we investigate whether the association 
between Political Orientation and Opinion changes over time. 

We first test the hypothesis that 7 remains constant over time. Because 
it is not clear how for the opinion variables the response category No clear 
opinion can be meaningfully ordered relative to the two other categories. 
we decided to retain in the computation of 7 only those respondents with 
a clear opinion at the time of measurement. So, 7sp between Opinion and 
Political Orientation is computed on a 2 x 3 table that corresponds to the 



5. Marginal Models 97 

first two rows of Table 5.2. Similarly, 70P is computed on a similarly se­
lected subtable from Table 5.3. In both computations the response category 
Favorable is taken as the positive response, the category Not Favorable as 
the negative response. Note that this way of selecting the subjects has the 
effect that the two 73 are computed on partially different samples: 7sp is 
based on the sample of 404 respondents with a definite opinion in Septem­
ber, 7op is based on the sample of 625 respondents with a definite opinion 
in October, and only the 322 respondents who had a clear opinion at both 
measurement points contributed to both coefficients. 

The estimates of the coefficients are 73p = 0.600 and 70 p = 0.463. The 
test of the hypothesis that both 7*5 are equal yields G2 = 4.02 with df = 1 
and p = 0.045. There seems to be some evidence that the strength of the 
association between Opinion and Political Orientation is somewhat smaller 
in October than in September, but the difference is not outspoken. At both 
time points it is clear that conservative respondents have a more favorable 
opinion than liberal respondents. 

Next we test whether the same conclusions can be drawn in terms of 
the c coefficient. In the present example it seems reasonable to assume 
that Political Orientation has an effect on Opinion, and not the other way 
around. Hence, Opinion is taken as the response variable in the present 
application. Since Political Orientation has three response categories, two 
different linearly independent e should be considered: €21 which is the dif­
ference in the probability of a Favorable opinion between Moderates versus 
Liberals, and 632, which is the difference in the probability of a Favorable 
opinion between Conservatives versus Moderates. 

The observed values of these two e coefficients are 621 = 0.308 and 
632 = 0.185 in September, and €21 = 0.250 and e32 = 0.109 in October. Note 
that here too the es of September and October are computed on samples 
of respondents that only partially overlap. Corresponding values of the es 
are somewhat lower in October than in September, a result that seems to 
confirm our previous conclusion based on 7. However, the hypothesis that 
corresponding e values are equal, that is 

and 

cannot be rejected since G2 = 5.475 with df = 2 and p = 0.065. Here, 
the conclusion is that the strength of the effect of Political Orientation on 
Opinion does not change over time. The estimates of the constant value of 
the es under this hypothesis are €21 = 0.266 and €32 = 0.134. The size of 
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the e's and their signs indicate that the more conservative one's political 
orientation, the more favorable one's opinion on CT. 

5.5 Estimating and Testing Models Specified 
by Constraints on the Cell Probabilities 

In this section we discuss the more technical details of the optimization 
algorithm for estimating and testing a model that is specified by constraints 
on the cell probabilities. 

Suppose that in a particular investigation K categorical variables are 
measured on a sample of TV respondents. If m^ represents the number of 
response categories for variable A;, the number of different response patterns 
is given by M — Ofe771^ ^ ^he response patterns are numbered in a 
particular way from 1 to M, we let TTJ represent the probability of observing 
response pattern i in the sample and TT' = (TTI, • • • , KM] the vector with all 
these response pattern probabilities. The vector f = (/i, • • • , /M) contains 
the corresponding observed frequencies. 

All the models discussed in the previous sections can be specified by 
a set of constraint equations on the cell probabilities in the original total 
table. Let these constraint equations be collected in vector 

with each constraint recursively defined in terms of appropriate scalar func­
tions and matrices. 

Assuming multinomial sampling, the maximum likelihood estimates of 
the cell probabilities are obtained by means of an iterative procedure that 
determines a saddlepoint of the Lagrangian 

in which p, is a vector containing R unknown Lagrangian multipliers. 
Next, we describe a Fisher scoring algorithm proposed by Bergsma 

(1997) to find the MLE. Let m = NTT be the expected cell frequencies 
under the model that is being tested and define the augmented likelihood 

Let H = H(m) be the Jacobian of h(m) with respect to logm. Then 
differentiating L(m, fj.) with respect to logm yields 
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Under suitable regularity conditions, the MLE rii is a vector m for which 
there is a Lagrange multiplier vector /z such that the simultaneous equations 

are satisfied. 
Let D(m) be a diagonal matrix with the vector m on its main diagonal. 

The expected value of the derivative matrix of the vector (l(m,/i),h(m)) 
with respect to (m, fj.) then is 

With f+ equal to the vector f with zeroes replaced by a small positive 
constant (say, 10~10), define the Fisher scoring starting values 

and, for k = 0,1, . .  . 

Then as k —» oo, m^ should go to m. Straightforward matrix algebra 
yields the simplified form 

(see Bergsma, 1997). This algorithm does not always converge, and it can 
be helpful to introduce a step size step^ G (0, 1] as follows 

Note that the update of fj, is left unchanged. 
The step size should be chosen so that the new estimate m^fc+1^ is "bet­

ter" than the old estimate m^fe^. A criterion for deciding this is obtained 
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by denning the following quadratic form measuring the "distance" from 
convergence 

Convergence is reached at m if and only if rf(m) = 0, and therefore, if 
possible, the step size should be chosen so that d(m^k+1^) < d(m^) for 
all k. Sufficiently close to the MLE this is possible, but otherwise not 
necessarily. In such cases, a recommendation which seems to work very 
well in practice is to "jump" to another region by taking a step size equal 
to one. 

After convergence of the estimation procedure, the null hypothesis that 
the model specified by the R constraints h(?r) = 0 provides an acceptable 
fit to the data can be tested against the saturated model by means of a log 
likelihood ratio test. The test statistic is 

G2 = 2f'.log(f/m), 

which follows asymptotically a chi square distribution with R degrees of 
freedom if the null hypothesis is true. 

A Mathematica source code for the maximum likelihood fitting of models 
specified by constraint equations on the cell probabilities is available from 
the authors. 

5.6 Discussion 
The examples given above illustrate the versatility of the approach in which 
marginal models are characterized by the constraints they impose on the cell 
probabilities. Many models for a multidimensional contingency table or for 
some of its marginal tables can be specified by the nonlinear constraints they 
impose on the theoretical cell probabilities of the original table. By using 
a flexible recursive notation that involves sequences of constant matrices 
and scalar functions, these nonlinear constraints can be represented in such 
a way that they can easily be incorporated in a constrained maximum 
likelihood estimation procedure for the cell probabilities. An advantage of 
this approach is that the models need not be written explicitly in terms of 
model parameters. 

In the present chapter we have illustrated this general approach to 
marginal modelling by discussing how it can be used to test hypotheses 
about association coefficients such as 7 and e. However, many more hy­
potheses about the distributions of the variables involved may be tested in 
this way. Among these, hypotheses about differences among coefficients for 
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central tendency and variability arc the most prominent. Also hypotheses 
in terms of information-theoretic measures can be tackled by this approach. 
In a forthcoming book (Bergsma, Croon, & Hagcnaars, 2004) many types 
of marginal models will be considered and treated from the point of view 
that was advocated in this chapter. 
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Chapter 6 

Computational Aspects 
of the E-M and Bayesian 
Estimation in Latent Variable 
Models 

Irini Moustaki 
Athens University of Economics and Business 

Martin Knott 
London School of Economics and Political Science 

6.1 Introduction 

Latent variable models are widely used in Social Sciences for measuring con­
structs (latent variables) such as ability, belief, attitude, behavior, welfare, 
satisfaction, and knowledge. Those unobserved constructs are measured 
through a number of observed indicators (items). Those indicators may be 
binary categorical (yes/no), ordinal categorical (strongly disagree, disagree, 
agree, strongly agree), nominal (political party, religion), or metric (weight, 
height, income, expenditures). Latent variable models have two main ob­
jectives. The first objective is to reduce the dimensionality of multivariate 
observed data by trying to identify a small number of latent dimensions 
that can explain the relationships among the observed items. The second 
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objective is to score population members on those identified latent dimen­
sions based on what they have responded to the observed items. Those 
latent scores can sometimes be used in regression models as dependent 
or independent variables. However, latent variable models have also been 
recently extended to allow effects of explanatory variables directly on the 
latent variables and/or on the indicator variables (Moustaki, 2003; Sammel, 
Ryan, & Legler, 1997). One can distinguish two main groups of estimation 
methods for latent variable models. The first group of methods is based on 
Monte Carlo Markov Chain Bayes estimation (MCMC). The second group 
includes methods based either on Newton-Raphson iteration or on the E-M 
algorithm. MCMC methods have recently become popular in the area of 
latent variable modelling mainly because they allow estimation of complex 
models (see e.g., Albert, 1992; Albert & Chib, 1993; Patz & Junker, 1999a, 
1999b; Dunson, 2000). In the psychometric, educational and medical liter­
ature models have been developed for binary, nominal, ordinal, and metric 
manifest indicators see, for example, Bartholomew and Knott (1999), Bock 
and Aitkin (1981), Bock, Gibbons, and Muraki (1988), Muraki and Carlson 
(1995), and Samejima (1969). Moustaki (1996) and Sammel et al. (1997) 
also looked at models with mixed metric and binary observed indicators 
and recently Moustaki (2000a) and Moustaki and Knott (2000a) presented 
a general exponential family framework for fitting latent variable models 
to any type of observed items or to data including several different types 
of items. The models discussed in those papers are estimated by marginal 
maximum likelihood using an E-M algorithm. 

The aim of the chapter is to compare the E-M and the MCMC estima­
tion methods for latent variable models. The comparison is made in terms 
of parameter estimates, standard errors and computation time needed. Real 
examples with categorical indicators are used to compare the E-M approach 
to the MCMC method. For the comparison we use the software GENLAT 
(Moustaki, 2000b) for the E-M method. GENLAT has been written in 
FORTRAN and it gives parameter estimates, standard errors, factor scores 
and goodness-of-fit statistics. The program deals with missing values as 
well. Examples of other commercial software using estimation methods 
similar to GENLAT are the programs BILOG (Mislevy & Bock, 1990) and 
TESTFACT (Wilson, Wood, & Gibbons, 1991) for binary responses and 
the program MULTILOG (Thissen, 1991) for ordinal responses. For the 
MCMC estimation we use the software BUGS (Bayesian inference Using 
Gibbs Sampling, Spiegelhalter, Thomas, Best, & Gilks, 1996), which can 
be downloaded for free from the url http://www.mrc-bsu.cam.ac.uk/bugs/. 

http://www.mrc-bsu.cam.ac.uk/bugs/
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6.2 Latent Variable Models for Binary and 
Ordinal Responses 

Let us denote by ( y i , . . .  , yp) the p observed variables (we often call them 
indicators) that may in principle be of any type, but here will be either all 
binary or all ordinal responses. 

6.2.1 Binary Responses 
Let us assume that the observed indicator y; takes values 0 and 1. 

For binary indicators we fit the logistic model to the probability of 
getting a positive/correct response 1 conditional on the latent variables, 
denoted by z = (zi,..., zq). The model is 

where TTJ(Z) = P(yi = 1 | z). 
The conditional probability of the variable yj given the vector of latent 

variables z is 

The parameter a^ is used to compute the probability that the median 
individual (z = 0) will respond positively to item i from 

the factor loadings a^ show the effect of the latent variables on the logit 
of the probability of a correct response. For the case of one latent variable 
the model is known as the two parameter logistic model (Bock & Aitkin, 
1981). 

6.2.2 Ordinal Responses 
If the observed variable yi is a Likert type variable with Ci response cate­
gories the model often used in applications is the proportional odds model 
(see Agresti, 1990, pp. 322-331). In this we model the log of the odds of 
the cumulative probability, 7is(z), of being at or below a response category 
s as a function of the latent variables z. The model is 
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where 7is(z) = P (yi < s \ z) and s — 1, • • • , Cj — 1. Note that 7,;,̂  = 1 by 
definition. 

The conditional probability of the variable yi given the vector of latent 
variables z is 

where yi(s) takes the value 1 if indicator i has category score s and 0 
otherwise. 

The parameters aio(s) are usually called cut-off points or thresholds and 
the otij are the factor loadings. The above model is known as the propor­
tional odds model because it assumes that the effect of the latent variables is 
identical for all Ci —1 collapsings of the responses into binary outcomes. For 
a unidimensional latent trait model the proportional odds model reduces 
to the graded response model introduced by Samejima (1969). 

6.2.3 Model for Missing Values 
Finally, we look at a model for binary responses with missing values as 
discussed in Knott, Albanese, & Galbraith (1990), O'Muircheartaigh and 
Moustaki (1999), Moustaki and Knott (2000b), and Moustaki and O'Muir-
cheartaigh (2002). 

To make the exposition of the model clearer, we present the results for 
a two dimensional factor model (z = (za,zr)) in which factor za represents 
the attitude dimension and zr represents response propensity. 

Suppose that we have p observed items (here of binary type) denoted by 
7/1, . . . , yp for each of which a proportion of the individuals fail to respond. 
To reflect that lack of response we create p binary response propensity 
variables denoted by Wi as follows: when an individual gives a response to 
item i the response variable for this individual takes the value 1 (wi = 1); 
when an individual does not give a response the response variable takes the 
value 0 (wi = 0) . The responses and nonresponses to the items are assumed 
to be independent conditional on the two latent variables za and zr. 

For each attitude binary item 

For each response (pseudo) item: 

The logistic model already discussed above for binary responses becomes 
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and 

The model allows attitude and response propensity to affect the proba­
bility of responding to an item leading to a model for nonignorable nonre­
sponse. The model for binary responses is fitted to the 2 xp indicators where 
the first p are attitudinal indicators and the last p are response propensity 
indicators. The factor loadings for the response propensity factor are fixed 
to zero for the p attitudinal items (see Equation 6.1). 

The models presented above are all special cases of the generalized lin­
ear latent variable models framework and can all be fitted with the same 
likelihood (see Moustaki, 2000a; Moustaki & Knott, 2000a). 

6.2.4 Maximum Likelihood Estimation and the E-M 
Algorithm 

The number of parameters to be estimated depends on the type of the 
observed items. For the case of binary items we need to estimate OHQ and 
diij for all the items (i = 1,... , p, j = 1 , . . .  , q). In the ordinal case we need 
to estimate the thresholds c*io(s) where s = 1,... ,Ci — 1 and the factor 
loadings a^ where i — 1 , . . .  , p, j — 1, . . . , q. 

We estimate the parameters by maximizing the marginal likelihood of 
the manifest variables y. For a random sample of size n the complete 
loglikelihood of both manifest and latent variables y, z can be written 

The latent variables z are taken to be independent with standard nor­
mal distributions so that h(z) denotes a product of independent standard 
normal densities, and does not involve any model parameters. The model 
assumes conditional independence of the responses y given the vector z of 
latent variables. The conditional distribution of g(yim \ Zm) is taken here to 
be the Bernoulli and the multinomial for the binary and the ordinal items, 
respectively. The marginal likelihood is obtained by taking the expected 
value of the likelihood over the distribution of the latent variables. 

The marginal likelihood solution is obtained using an E-M algorithm. 
Details can be found in Moustaki and Knott (2000a) and Moustaki (2000a). 
The routines GLLAMMA (Rabe-Hesketh, Pickles, & Skrondal, 2001), which 
run under STATA perform the same maximization using a Newton-Raphson 
algorithm. 
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The E-M algorithm in GENLAT requires initial values which can either 
be set by the program or read from a file. It is recommended to use differ­
ent sets of initial values for each estimation as a check that the convergence 
of the algorithm is to a global rather than a local maximum. The conver­
gence of the E-M algorithm is judged by the difference between successive 
likelihoods. 

GENLAT computes asymptotic standard errors of the parameter esti­
mates based on an approximation of the inverse of the information matrix 
at the maximum likelihood solution given by 

where a is the vector of the estimated parameters. 
Alternatively, the information matrix can be obtained within the E-M 

algorithm, see Louis (1982). 
Instructions on how to use the program GENLAT are given on the URL 

address: http://stats.lse. ac. uk/knott/software/latbug/. 

6.2.5 Bayesian Estimation Using BUGS 
andAn alternative way of estimating the unknown parameters aw, ®io(s)

QJJ is to use a Bayesian estimation approach. In the Bayesian approach the 
model parameters are not considered fixed but stochastic (random vari­
ables), and so probability statements are made about those parameters. In 
BUGS the model is defined as the joint distribution over all unobserved (pa­
rameters) and observed quantities (data). The way information is obtained 
about the unobserved quantities is through the posterior distribution of the 
unobserved quantities conditional on the data. The marginalization of the 
posterior distribution with respect to individual parameters of interest is 
done through Gibbs sampling. 

Likelihood 

Let us denote by v the vector with all the unknown parameters, v' = 
(ctio>#io(s) > &ij, z). The log-likelihood is written as 

The posterior distribution of the parameter vector v is 

http://stats.lse.ac.uk/knott/software/latbug/


6. E-M and Bayesian Estimation in Latent Variable Models 109 

The form of the g(y \ v) is from the exponential distribution with canon­
ical parameter which is, for example, in the binary case equal to QJJO + 
Z^=i aijzj- The main steps of the Bayesian approach are 

1. Inference is based on the posterior distribution of the unknown pa­
rameters, «io, Qfio(s) aij and % conditional on what is known, here y, 
(h(v | y)). Depending on the model fitted, the form of the posterior 
distribution can be very complex. 

2. The mean vector of the posterior distribution h(v \ y) can be used as 
an estimator of v. 

3. Standard errors for the parameter estimates can be computed from 
the standard deviation of h(v \ y). 

4. In general we may use the posterior mean E(ip(v)\y) as a point es­
timate of a function of the parameters ?/>(v), where E(I/J(V) \ y) = 

y)dv. 

5. Analytic evaluation of the above expectation is impossible. Alter­
natives include numerical evaluation, analytic approximations and 
Monte Carlo integration. 

Markov Chain Monte Carlo, MCMC 

To avoid the integration required in the posterior expectation, Monte Carlo 
integration is used that approximates the integrals by an average of quan­
tities calculated from sampling. Samples are drawn from the posterior 
distribution of all the unknown parameters: h(v^ y). Then the posterior 
expectation becomes 

where N is the number of samples drawn. 
The samples drawn from the posterior distribution do not have to be 

independent. Samples are drawn from the posterior distribution through a 
Markov chain with h(v \ y) as its stationary distribution. 

Algorithms such as the Gibbs sampler and Metropolis-Hastings are used 
in BUGS to get the unique stationary distribution. 
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Choosing prior distributions and starting values 

For all the parameters defined in v we have to assume prior distributions. 
Diffuse or vague priors are assumed in all our applications so that the likeli­
hood is emphasized rather than the prior. For example normal distributions 
with mean 0 and variance 100000 are assumed for all the o^o, ®io(s), and 
cx.ij parameters. The latent variables z are assumed to have independent 
standard normal distributions. 

BUGS can give to the random components of a model starting values 
itself but we found that the program works more efficiently if starting values 
are chosen by the user. 

Convergence diagnostics in MCMC 

A main concern in MCMC estimation methods is to assess at what stage the 
distribution of the parameter values produced by the Markov chain may be 
considered to be from the stationary distribution of the chain, which is the 
posterior distribution of the parameters given the data. Different criteria 
have been developed to check convergence. In BUGS there is a 'burn­
in' period usually chosen by the user to be 500 or 1000 iterations before 
monitoring of the parameters through graphs and summary statistics starts. 

The convergence criteria used in this chapter have been obtained from 
the program CODA (Best, Cowles, & Vines, 1996) which can also be ob­
tained (manual and software) from the BUGS web address. The software 
CODA reads the BUGS output and produces a series of convergence diag­
nostics together with diagnostic plots. The plots that can be used to check 
convergence of each model parameter are the trace and the autocorrelation 
function. When we look at the autocorrelation function plot we would ex­
pect to see the autocorrelation reduces as the number of iteration increases. 
High autocorrelations within a chain are indicators of slow convergence. It 
is suggested in the CODA manual that a different parameterization of the 
model might reduce the autocorrelations. With respect to the trace plot 
(estimated values plotted against the iteration number presented as a time 
series plot) we expect that as the series converges the variability from one 
iteration to the other will decrease. 

The convergence diagnostics are based on statistics developed by Gcweke 
(1992) and Raftery and Lewis (1992b). Geweke's criterion uses two sections 
of the Markov chain. The first section contains the first 10% of the itera­
tions and the second section contains the last 50% of the iterations. Those 
are the default values in CODA. If the whole chain is stationary then the 
mean of the parameter values in the early stage and in the late stage should 
be similar. The test is based on a z-score that compares the difference in 
the two means divided by the asymptotic standard error of the difference. 
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As the chain length tends to infinity the distribution of z tends to be a stan­
dard normal. Absolute values of z greater than 2 indicate that the chain 
has not converged. In the case of non convergence when the first 10% is 
compared with the last 50% one can disregard the first 10% and recompute 
the Geweke's diagnostic for comparing the first 20% with the last 50%. 

The Raftery and Lewis (1992b) convergence criterion also applies to 
single chains. Their criterion aims to check the accuracy of the estimation of 
quantiles. The test computes the number of iterations required for achieving 
a certain level of accuracy in estimating quantiles. The default values in 
CODA for the quantile, the accuracy level and the probability are 2.5%, 
+/ —0.005 and 0.95 respectively. A statistic computed within that criterion 
is that of the dependence factor that is computed as / = N/Nmin, where 
N is the maximum number of iterations needed to achieve convergence 
and Nmin is the minimum number. The dependence factor measures the 
increase in the number of iterations needed to reach convergence due to 
dependence between the samples in the chain. Values of / greater than 1.0 
indicate high within-chain correlations and probable convergence failure 
(see CODA manual). Raftery and Lewis (1992a) suggest that 7 > 5.0 
indicates that a reparameterization of the model might be needed. 

6.3 Examples 

We next compare the results obtained from the two estimation methods 
in terms of parameter estimates, standard errors, estimation time, and 
diagnostic procedures available. We use three examples. In the url address 
http://stats.lse.ac.uk/knott/software/latbug we give the BUGS code used 
to estimate the different latent variable models. BUGS also provides a 
graphical interface (DOODLEBUGS) where users can specify their models 
using a graph. 

The examples we chose vary in terms of sample size, number of items, 
and types of responses. The third data set includes missing values. 

6.3.1 Latent Trait Model for Ordinal Responses 
The first example is for ordinal responses. The data set consists of six 
ordinal items on environmental issues each with three response categories. 
The sample size is 291 respondents. The data set has been analyzed in 
Knott and Albanese (1993). For this chapter we have excluded responses 
with missing values and fitted the proportional odds model to the six ordinal 
items. 

Table 6.1 gives the Geweke (1992) convergence diagnostic and the depen­
dence factor / introduced by Raftery and Lewis (1992b) for the one-factor 

http://stats.lse.ac.uk/knott/software/latbug
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Table 6.1: Geweke Convergence Diagnostic (z-score) and the De­
pendence Factor / for the One-Factor Model, Environment Data. 

Geweke Dependence Dependence 
criterion factor (/) factor (7) 

for 2.5% for 50% 
z-value 

"10(1) 1.130 1.15 4.22 
"10(2) 0.365 2.76 8.51 
"20(1) -0.684 3.11 11.90 
"20(2) -1.420 1.15 9.19 
"30(1) -0.909 3.37 11.30 
"30(2) -0.967 3.73 5.87 
"40(1) 0.188 2.90 3.72 
"40(2) -0.039 3.46 6.59 
"50(1) 1.310 4.23 14.60 
"50(2) 1.320 4.21 9.52 
"60(1) -0.774 2.26 12.50 
"60(2) -1.140 2.21 4.46 
"11 0.006 1.32 3.95 
"21 -1.130 3.09 7.37 
"31 -1.090 4.75 13.80 
"41 -0.088 4.23 11.20 
"51 1.270 4.80 13.40 
"61 -1.560 2.54 4.26 

model for the 2.5% and 50% quantiles estimated with precision +/- 0.005 
at 95% confidence level after 10000 iterations with a 1000 burn-in. 

The Geweke criterion showed that all parameters have converged. When 
the 2.5% quantile is estimated, dependence factor / is smaller than 5 for 
all parameters. That is not the case for the 50% quantile. Large values of 
the dependence factor I do not necessarily imply bad fit of the model. If 
nonconvergence is observed for some of the model parameters that means 
that the posterior distribution for that model parameters is not the correct 
one. Therefore the fit of the model will look bad when fitted values are 
checked when it might actually be good. 

We also looked at the Heidelberger and Welch (1983) stationarity and 
interval width tests. All parameters of the model passed that test. 

Table 6.2 gives the parameter estimates and standard errors for the one­
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Table 6.2: Parameter Estimates and Standard Errors From the 
MCMC After 10000 Iterations and From the E-M Algorithm, for 
the One-factor Model, Environment Data. 

MCMC E-M Dif. MCMC E-M Dif. 
mean s.d. s.c. 

"10(1) 0.668 0.653 0.015 0.178 0.222 -0.044 
"10(2) 3.594 3.537 0.057 0.342 0.341 0.001 
"20(1) 2.528 2.443 0.085 0.392 0.342 0.050 
"20(2) 6.025 5.809 0.216 0.770 0.872 -0.102 
"30(1) 2.578 2.396 0.182 0.493 0.350 0.143 
"30(2) 5.906 5.547 0.359 0.884 0.668 0.216 
"40(1) 1.558 1.444 0.114 0.385 0.360 0.025 
"40(2) 7.360 6.944 0.416 1.134 0.909 0.225 
"50(1) 2.485 2.342 0.143 0.442 0.345 0.097 
"50(2) 5.729 5.441 0.288 0.774 0.632 0.142 
"60(1) 0.114 0.109 0.005 0.185 0.231 -0.046 
"60(2) 2.543 2.506 0.037 0.282 0.315 -0.033 
"11 1.441 1.381 0.060 0.226 0.221 0.005 
"21 2.504 2.348 0.156 0.435 0.361 0.074 
"31 3.478 3.139 0.339 0.659 0.424 0.235 
"41 3.563 3.253 0.310 0.670 0.494 0.176 
"51 3.230 2.954 0.276 0.565 0.429 0.136 
"61 1.873 1.792 0.081 0.270 0.279 -0.009 

Note. Dif. = Differences 

factor model estimated using the E-M algorithm and from the Bayesian 
MCMC method. The results presented for MCMC have been obtained 
after 10000 iterations when convergence has been achieved according to 
most of the criteria and for most of the model parameters. Both estimation 
methods gave very similar results. MCMC gave slighter bigger values for 
all the model parameters, perhaps because it is aiming for the mean of a 
skew distribution, whereas maximum likelihood finds modes. The standard 
errors obtained from the standard deviation of the posterior distribution 
of each parameter tend to be greater than the asymptotic standard errors 
obtained from an approximation of the inverse of the information matrix. 
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6.3.2 Latent Trait Model For Binary Responses 

This data set consists of 8445 individuals and eight binary items that mea­
sure women's independence in the society of Bangladesh. The data come 
from the 1989 Fertility survey in Bangladesh (Huq & Clcland, 1990). The 
manifest items analyzed are all binary and they ask married women whether 
they could visit any part of the village, town, or city alone; go outside town 
alone; talk to unknown men; go to the cinema alone; go shopping alone; go 
to a club alone; participate in a political meeting; and visit a health center 
or hospital alone. 

We started the analysis by fitting a one-factor model which did not 
give a satisfactory fit. The fit was checked using residuals from the bivari­
ate and trivariate margins. The residuals are Pearson chi-square statistics 
computed only for pairs and triplets of responses. Those values provide 
information on how well the model predicts the two- and three-way mar­
gins. It must be noted that those residuals are not independent and the 
chance of large values occurring by chance might increase with p. Each 
residual can be treated individually as it follows a chi-square distribution 
with one degree of freedom or a square of a standard normal. In that case 
residuals with values greater than 4 will indicate a bad fit. The chi-square 
statistic on the margins does not give a formal goodness-of-fit test of the 
model but examination of the residuals reveals items or pair of items where 
the model does not fit well. That might suggest collapsing categories or 
omitting variables. The use of the one- and two-way margins to judge the 
fit of the model has been discussed in Bartholomew and Tzamourani (1999) 
for the latent trait model with binary items and in Joreskog and Moustaki 
(2002) for the latent trait model with ordinal responses. 

Although the one-factor model is not a good fit we show in Table 6.3 
the parameter estimates and standard errors for the MCMC after 2000 
iterations and the E-M. Despite the bad fit of the model both methods 
give very close results both for the parameter estimates and the standard 
errors. We continued the analysis by fitting the two-factor latent trait 
model. The two factor solution is not uniquely determined. An orthogonal 
transformation of the factor loadings results in the same likelihood value. 
To use BUGS we fixed the value of one of the loadings to make the factor 
loadings unique. In our example, 0:31 was fixed to 1 to allow for a unique 
solution. 

The Geweke diagnostics after 2000 and 5000 iterations are presented in 
Table 6.4. According to that criterion convergence has not been obtained 
after 2000 iterations for some of the model parameters (see column 2 of 
Table 6.4). The absolute value of the z-score is greater than 2 for thirteen 
parameters. Iterations were increased to 5000 but convergence is still not 
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Table 6.3: Parameter Estimates and Standard Errors From the 
MCMC Sampling Based on 2000 Iterations and From the E-M 
Algorithm, for the One-Factor Model, Women's Mobility Data. 

MCMC E-M Dif. MCMC E-M Dif. 
mean s.d. s.e. 

QIC- 2.275 2.282 -0.007 0.070 0.072 -0.002 
«20 -1.304 -1.301 -0.003 0.045 0.047 -0.002 
Q!30 1.547 1.546 0.001 0.044 0.044 0.000 
Qf40 -1.209 -1.205 -0.004 0.058 0.061 -0.003 
C*50 -6.523 -6.591 0.068 0.278 0.285 -0.007 
oteo -4.476 -4.450 -0.026 0.158 0.144 0.014 
&70 -11.710 -10.715 -0.995 0.949 0.831 0.118 
aso -4.815 -4.813 -0.002 0.169 0.137 0.032 
an 2.098 2.105 -0.007 0.091 0.088 0.003 
«21 2.068 2.069 -0.001 0.069 0.071 -0.002 
«31 1.512 1.508 0.004 0.059 0.059 0.000 
«41 3.016 3.013 0.003 0.121 0.124 -0.003 
"51 4.044 4.094 -0.050 0.209 0.212 -0.003 
«61 3.232 3.211 0.021 0.139 0.132 0.007 
0171 7.033 6.393 0.640 0.622 0.544 0.078 
«81 3.069 3.068 0.001 0.139 0.111 0.028 

Note. Dif. = Differences 

achieved if we compare the first 10% of the chain with the last 50% (see 
column 3 of Table 6.4). However when we compare the first 20% of the chain 
with the last 50% (column 4) the absolute value of the z-score is less than 
2 for all parameters but the ones that related to item 7 and the intercept 
of item 3. Column 5 of Table 6.4 gives the dependence factor I. According 
to that criterion most of the parameters are not accepted. The conclusion 
drawn is that different methods of checking the convergence of the chain can 
produce contradictory results. The same conclusion was drawn in example 
1. Due to the contradictory results obtained from the different diagnostic 
tests one should increase the number of iterations even if that increases 
the computational estimation time significantly. In our case we stopped at 
5000 iterations since the parameter estimates obtained are close to the ones 
produced by the E-M algorithm. 

From Table 6.5 we see that the parameter estimates and the standard 
errors are very close. Item 7 has very large values on all parameters and 
big z-scores (see Table 6.4). That might be the reason why the Geweke 
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Table 6.4: Geweke Convergence Diagnostics (z-score) for the 
Two-Factor Model, Women's Mobility Data. 

Sample size Sample size Sample size Sample size 
2000 5000 5000 5000 

z-score z-score z-score factor I 
10% vs 50% 10% vs 50% 20% vs 50% 

#10 0.208 1.370 0.942 6.51 
#20 -1.290 2.380 -1.530 7.36 
Ot30 -0.872 -1.930 -2.770 1.47 
a40 0.304 -2.590 -1.800 2.06 
#50 3.420 -1.870 -0.688 6.18 
#60 -6.860 -2.270 -1.100 20.40 
#70 40.000 22.200 20.300 30.80 
#80 -3.100 -3.500 -1.230 11.00 
an 0.424 1.520 1.320 5.79 
0(21 1.470 -3.700 1.060 9.64 
#31 1.470 -0.643 -0.908 4.29 
a 41 1.430 0.518 0.368 6.51 
#51 1.700 -1.330 -0.438 6.77 
#61 3.800 -1.580 0.301 5.52 
0:71 -7.120 -11.600 -10.300 22.60 
0(81 4.860 -1.520 -0.109 5.83 
0(22 -2.800 -0.058 -0.131 5.38 
#32 -3.080 -0.118 -0.256 4.88 
#42 -3.160 0.951 0.844 7.01 
#52 -4.270 2.100 0.950 9.09 
#62 6.560 2.540 1.160 10.40 
0(72 -36.100 -22.100 -20.700 16.10 
#82 0.976 3.360 1.130 5.73 
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criterion gave a large z-score. 

Table 6.5: Parameter Estimates and Standard Errors From 
MCMC After 5000 Iterations and From the E-M Algorithm, for 
the Two-Factor Model, Women's Mobility Data. 

MCMC E-M Dif. MCMC E-M Dif. 
mean s.d. s.e. 

aio 2.644 2.663 -0.019 0.142 0.179 -0.037 
a20 -1.612 -1.582 -0.03 0.090 0.087 0.003 
0:30 1.551 1.555 -0.004 0.043 0.045 -0.002 
«4o -1.196 -1.171 -0.025 0.062 0.061 0.001 
«50 -6.541 -6.579 0.038 0.273 0.300 -0.027 
aeo -5.331 -5.109 -0.222 0.283 0.269 0.014 
a7o -19.27 -17.245 -2.025 2.901 94.815 -91.914 
a80 -4.977 -4.936 -0.041 0.179 0.166 0.013 
an 2.429 2.462 -0.033 0.206 0.282 -0.076 
a2i 2.495 2.475 0.02 0.209 0.210 -0.001 
a31 1.238 1.246 -0.008 0.076 0.084 -0.008 
a4i 1-969 1.975 -0.006 0.121 0.160 -0.039 
asi 1.967 1.985 -0.018 0.205 0.229 -0.024 
a6i 1-260 1.323 -0.063 0.169 0.234 -0.065 
an 3.504 2.203 1.301 0.688 0.430 0.258 
a8i 1-486 1.511 -0.025 0.149 0.172 -0.023 
a2i 1-000 0.976 0.024 0.000 0.169 -0.169 
a22 1.374 1.324 0.05 0.108 0.151 -0.043 
a32 0.868 0.857 0.011 0.082 0.100 -0.018 
a42 2.294 2.264 0.03 0.134 0.167 -0.033 
a52 3.523 3.570 -0.047 0.202 0.216 -0.014 
a62 3.802 3.604 0.198 0.260 0.237 0.023 
a72 11.26 10.011 1.249 1.778 58.023 -56.245 
a82 2.828 2.798 0.03 0.164 0.172 -0.008 

Note. Dif. = Differences 

6.3.3 Latent Trait Model for Binary Responses With 
Missing Values 

The data set used here is a random subset of the 1989 Bangladesh Fertility 
Survey. Here, we take a subsample of 540 married women and we use 
only the first five indicators (we have excluded the indicators club alone, 
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political meeting, and health center). The reason for excluding those three 
items is so that the five remaining attitudinal items are unidimcnsional 
before creating the pseudo response indicators and introducing the response 
propensity latent dimension. 

For this example we alter some responses to check how our missing value 
model works. A proportion of 'no' responses to each attitudinal item, but 
none of the 'yes' responses was changed to missing. By doing that we imply 
that women who do not respond are more likely to respond 'no' to the five 
attitude items and, as a result, we have artificially forced the nonresponse 
to depend on attitude. The model with missing values was fitted to those 
five items. This data set was analyzed in Moustaki and Knott (2002b). 

In Table 6.6 we show the Geweke diagnostic criterion for the model after 
4000, 9000 and 14000 iterations and the dependence factor / after 9000 and 
14000 iterations. The Geweke criterion given in the table compares the first 
10% of the chain with the last 50%. Even after 14000 iterations, the z-scorcs 
and the dependence factor / show evidence of non convergence for most of 
the parameters. Estimation problems are encountered with BUGS when 
we tried to increase the number of iterations and therefore we report the 
results obtained after the 14000 iterations. That might well be the reason 
for the differences observed between the E-M and the MCMC parameter 
estimates (see Table 6.7). Bigger differences are found on the loadings of 
the second factor (response propensity). 

6.3.4 Computational Aspects 

Table 6.8 gives the times needed by BUGS and GENLAT to obtain the 
parameter estimates and standard errors for the different examples. It is 
clear that the E-M estimation method is much faster than the MCMC 
method. The MCMC slows down significantly with the increase in the 
number of factors from one to two. 

6.4 Conclusion 

The parameter estimates for the two examples without missing values are 
close both from the MCMC approach and the E-M. The convergence diag­
nostics for the missing values example suggested more iterations but BUGS 
failed to estimate the model when the number of iterations increased. 

Overall the E-M is faster than the MCMC algorithm. The E-M provides 
asymptotic standard errors where the MCMC approach computes the whole 
posterior distribution of each parameter and the standard errors are the 
standard deviations of those posterior distributions. We used BUGS for 
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Table 6.6: Geweke Convergence Diagnostic (z-score) and the De­
pendence Factor 7 for the Missing Values Model. 

z-score I 
4000 9000 14000 9000 14000 

#10 0.412 1.980 0.732 1.22 1.16 
«20 -1.530 1.370 -0.144 2.88 4.03 
C*30 2.580 0.526 -1.410 1.20 1.19 
a40 7.000 -1.570 -0.163 22.80 21.20 
#50 14.400 6.820 1.360 44.60 53.50 
«60 -3.770 2.280 -4.530 3.93 5.60 
0-70 -4.030 -3.580 0.499 1.58 1.47 
"80 -1.130 -4.840 -3.650 3.40 3.32 
C*90 1.900 -1.290 3.650 5.28 5.88 
<*10 1.320 -0.118 -1.760 2.82 4.26 
Qll 0.014 0.822 1.620 2.88 2.59 
0:21 4.060 -0.551 0.926 1.25 2.10 
«31 1.540 -1.430 -1.900 1.44 2.30 
<*41 -6.220 2.590 0.478 10.60 11.80 
«51 -14.600 -6.520 -1.150 23.30 22.10 
0:61 -3.370 1.750 -4.110 3.93 3.78 
"71 -2.880 -2.610 -0.920 1.40 1.33 
«81 -2.000 -3.910 -2.390 3.20 3.12 
<*9l 1.780 -1.070 2.660 4.15 4.83 
010,1 -1.450 -0.755 -1.520 2.68 2.79 
062 -3.200 2.550 -4.650 12.00 8.54 
0172 -3.710 -3.520 0.905 3.62 2.61 
#82 0.803 -4.090 -3.400 1.39 2.09 
t*92 1.330 -1.260 3.780 1.10 2.28 
OllQ, 2 3.570 0.440 -1.360 2.59 2.43 
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Table 6.7: Parameter Estimates and Standard Errors From the 
MCMC Sampling After 14000 Iterations and From the E-M Al­
gorithm for the Missing Values Model. 

MCMC E-M Dif. MCMC E-M Dif. 
mean s.d. s.e. 

«io 1.705 1.683 0.022 0.181 0.190 -0.009 
C*20 -1.195 -1.252 0.057 0.162 0.190 -0.028 
«30 1.422 1.400 0.022 0.159 0.162 -0.003 
a40 -2.925 -3.443 0.518 1.491 43.833 -42.342 
050 -10.130 -12.278 2.148 3.966 261.589 -257.623 
#60 8.889 10.012 -1.123 5.421 40.425 -35.004 
«70 5.629 4.373 1.256 2.500 0.703 1.797 
<*80 6.958 5.793 1.165 2.085 0.993 1.092 
ago 8.225 5.904 2.321 3.745 1.499 2.246 
«10 4.779 4.234 0.545 1.259 0.538 0.721 
an 1.592 1.587 0.005 0.246 0.260 -0.014 
«21 1.813 1.893 -0.08 0.226 0.284 -0.058 
<*31 1.456 1.437 0.019 0.209 0.219 -0.010 
0:41 10.570 10.029 0.541 4.993 113.782 -108.789 
«51 8.387 10.155 -1.768 3.445 224.843 -221.398 
^61 2.552 2.857 -0.305 1.544 10.989 -9.445 
«71 1.165 0.987 0.178 0.599 0.407 0.192 
0181 2.167 1.880 0.287 0.816 0.545 0.271 
«91 3.460 2.343 1.117 2.047 0.988 1.059 
c*io,i 1.703 1.536 0.167 0.508 0.377 0.131 
C*12 0.000 
«22 0.000 
C*32 0.000 
C*42 0.000 
«52 0.000 
«62 3.957 4.795 -0.838 3.230 22.44 -19.21 
«72 1.651 0.842 0.809 1.562 0.710 0.852 
«82 1.521 0.896 0.625 1.168 0.850 0.318 
0:92 1.009 0.267 0.742 0.989 1.133 -0.144 
"10,2 1.046 0.664 0.382 0.873 0.649 0.224 

Note. Dif. = Differences 
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Table 6.8: Time Needed for MCMC and E-M to Converge for the 
Three Examples. 

Conditions Estimation Method 
n p c q MCMC E-M 

CPU sec. Iterations CPU sec. Iterations 
291 6 3 1 750 10000 8 366 

8445 8 1 4787 2000 1 54 
8445 8 2 24480 5000 4 258 

540 10 2 3060 14000 4 46 

other types of data such as nominal, metric and mixed data and it worked 
satisfactorily. As the complexity of the model increases because of large 
numbers of factors and items BUGS has problems converging. The same 
has not been found for the E-M estimation method. 

The models compared in this chapter are large in terms of the number 
of parameters that need to be estimated. The posterior distribution of the 
whole parameter space is too complex to be calculated. 

One of the big issues in MCMC is the convergence of the parameter 
estimates. We used some of the diagnostics available in CODA to check 
the convergence of our models. Contradictory results often arise. We also 
noticed in the second example that, although some of the diagnostics sug­
gest nonconvergence, the parameter estimates are close to the ones obtained 
with the E-M. 

In all the models we have used noninformative priors for the model 
parameters (thresholds, difficulty parameters, and factor loadings). For the 
case where the parameter estimates behave strangely (become very large) 
one could try to use informative priors. 
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Chapter 7 

Logistic Models 

for Single-Subject Time Series 

Peter W. van Rijn and Peter C.M. Molenaar 
University of Amsterdam 

7.1 Introduction 

Statistical methodology developed in psychology is mostly applied to a col­
lection of individuals rather than to a single person (Kratochwill, 1978, p. 
3). The development of psychological testing methods in the first half of the 
20th-century put the individual on the background as the initial objective 
was to differentiate among individuals. Keeping this in mind, the deliber­
ate focus on advancement of analysis techniques based on variation between 
individuals (inter-individual variation, IEV) instead of variation within a 
single individual seems tenable. However, models for time-dependent varia­
tion of a single individual (intra-individual variation, IAV) have been widely 
available for some time. The discovery of the intrinsically stochastic time-
dependent behavior within grains of pollen (Brownian motion) led to the 
development of appropriate models for single systems in the beginning of 
the 20th century. In this regard, the absence of a pure N = 1 perspective 
in psychometrics might be perceived as startling. 

It is not to say that examples of analyses of IAV are missing in the 
psychometric literature. The measurement of (individual) change, for ex­
ample, is a branch of psychometrics with a relatively long history. An early 
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overview of problems encountered in measuring change can be found in 
Harris (1962). In that book, a single-subject analysis of multivariate time 
series is described by Holtzmann, who stresses that psychologists should 
study this type of analysis because of the increasing importance of time 
series in other branches of science such as econometrics and biometrics 
(Holtzmann. 1962, p. 199). More recently, Nesselroadc and Schmidt Mc-
Collam (2000) advocate analyzing IAV in the context of developmental 
processes in psychology and Collins and Sayer (2001) provide an overview 
of newly developed methods for the analysis of change. 

Apart from the historical development, it is difficult to find an explicit 
and convincing rationale for the one-sided focus on IEV in contemporary 
psychometrics. The restriction to IEV appears to be considered to be an 
almost self-evident consequence of the scientific ideal to strive for general 
nomothetic knowledge. The science of psychology should involve theories 
and laws that apply to all human subjects. Such nomothetic knowledge 
would seem to be ill suited by intensive study of single subjects, because 
results thus obtained may not be generalizable in the intended sense. De­
spite its possible appeal, we argue that this kind of rationale is incorrect in 
many instances by making use of a set of well-known mathematical theo­
rems. 

In our criticism of the one-sided focus on IEV we do not take issue with 
the ideal of nomothetic knowledge, that is, the search for psychological 
theories and laws that apply to all human subjects. Our criticism only 
concerns the assumption that theories and laws based on analysis of IEV 
apply to each human subject, and thus, would hold for IAV. To obtain valid 
theories and laws about IAV, one cannot generalize results derived from 
IEV, but one has to study IAV in its own right. That is the implication 
of the mathematical theorems we refer to. Having available the results 
of a sufficient number of individual analyses of IAV, one then can search 
for general characteristics by means of standard inductive techniques. If 
successful this will yield valid nomothetic knowledge about the structure of 
IAV, that is, nomothetic theories and laws about idiographic (individual) 
processes. 

This chapter is divided into two parts. The first part starts out with a 
description of analyses for IEV and IAV and the condition under which there 
exists a relationship between the two types of analysis, namely ergodicity. 
This condition is explained in the context of psychometrics. 

Having thus set the stage for serious consideration of IAV, the second 
part of this chapter discusses latent variable models for single-subject time 
series data. Special attention is given to the logistic model for multivariate 
dichotomous time series which can be seen in its simplest form as a dy­
namic variant of the Rasch model. It must be stated that logistic models 
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for repeated measurements have been discussed by various authors (e.g., 
Kempf, 1977; Fischer 1983, 1989; Verhelst & Glas, 1993; Agresti, 1997). In 
most of these applications, however, the IAV nature of single-subject data 
is not emphasized as much as in the present chapter. To the best of our 
knowledge, an application of the Rasch model to IAV is presented here for 
the first time in the literature. 

7.2 Ergodicity: the Relation Between IEV 
and IAV 

In its basic form, standard statistical analysis in psychology proceeds by 
drawing a sample of subjects, assessing their scores on selected measuring 
instruments, and then computing statistics by taking appropriate averages 
over the scores of all available subjects. If all subjects would yield the 
same score, statistical analysis would be severely reduced. Hence, it is 
the manner in which scores vary across subjects, IEV, which provides the 
information for the analysis. In contrast, in time series analysis the same 
individual subject is repeatedly measured, and statistics are computed by 
taking appropriate averages over her scores obtained at all measurement 
occasions. Hence it is the manner in which a subject's scores vary across 
measurement occasions, IAV, which provides the information for time series 
analysis. 

We already indicated that psychometricians are mainly interested in 
analyses of IEV. A vivid illustration of this tendency can be found in the 
classic treatise of test theory by Lord and Novick (1968). They define the 
concept of true score of a person as the mean of the distribution of scores 
obtained by independent repeated measurement of this person. This is 
obviously a definition in terms of IAV. Lord and Novick then remark that 
repeated measurement of the same person will affect this person's state 
and give rise to fatigue, habituation, or other confounding effects. They 
conclude that therefore, instead of measuring one person a large number of 
times, test theory has to be based on the alternative paradigm in which a 
large number of persons is measured once or twice. The shift to the latter 
alternative paradigm implies that test theory is based on analysis of IEV. 

Notwithstanding that confounding factors such as habituation and fa­
tigue might complicate the implementation of a purely IAV based test the­
ory, a reference to such contingent states of affairs cannot be given as a 
reason for the impossibility of this whole paradigm. In addition, Lord and 
Novick (1968, p. 32) state that the definition of true score in terms of IAV 
would be better suited for individual assessment than an IEV based test 
theory that is meant to differentiate among individuals. It might therefore 
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be expected that psychological tests constructed on the basis of analysis of 
IEV perform suboptimal when applied for the purpose of individual predic­
tion. However, a task that still awaits further elaboration is the assessment 
of situations in which such test performance is suboptimal. 

The urgency to determine the performance of standard tests in the con­
text of individual assessment and prediction becomes even more pressing 
because strong reasons can be given for the conjecture that the differences 
between analysis of IEV and IAV go deeper than a mere difference in degree 
of success in the context of individual prediction. The reasons we have in 
mind are of two kinds: Implications of ergodic theorems and results from 
mathematical biology suggesting the presence of substantial heterogene­
ity in human populations. Ergodic theory concerns the characterization 
of stochastic processes for which analysis of IEV and IAV yield the same 
results (e.g., Petersen, 1983). So for ergodic processes the one-sided fo­
cus on analysis of IEV does not present any problem, because results thus 
obtained also are valid for individual assessment and prediction of IAV. Un­
fortunately, however, the criteria for ergodicity are very strict and involve 
the absence of any time-dependent changes in the distributional characteris­
tics of a stochastic process. Hence all developmental, learning and adaptive 
processes do not obey the criteria for ergodicity and for these classes of non-
ergodic processes there may not exist any lawful relationship between IEV 
and IAV. 

Related to ergodicity is the notion of stationarity, which concerns the 
distributional characteristics of a single realization of a stochastic process. 
Stationarity amounts to the absence of time-dependent changes in distribu­
tional characteristics and is a necessary condition for ergodicity.1 A simple 
example of a stationary process is the coin-tossing model in which the out­
come of each toss is the variable of interest, heads and tails are scored +1 
and —1, and tosses are obtained independently. It is easily seen that the 
distributional properties are time-invariant. Now if we change the variable 
of interest to the sum of the outcomes, we no longer have a stationary 
process as the variance increases with time. 

Even if the distributional characteristics of a stochastic process are in­
variant in time, that is, the process is stationary, it still may be nonergodic. 
The key difference between stationarity and ergodicity concerns the unique­
ness of the so-called equilibrium distribution of a stochastic process, that 
is, the distribution of the values of a stochastic process as time increases 
without bound. Each stationary process gives rise to an equilibrium distri­
bution, but this equilibrium distribution may not be unique. Only if the 
process is ergodic, then this is necessary and sufficient for its equilibrium 

^ote that strict stationarity is mentioned here (see, e.g., Hamilton, 1994, pp. 45-46). 
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distribution to be unique (cf. Mackey, 1992, Theorem 4.6). Hence stationary 
processes are nonergodic if they display a moderate kind of heterogeneity: 
Their equilibrium distribution is not unique. Notice that this is the kind 
of nonergodicity known from Markov chain theory (e.g., Kemeny, Snell, & 
Knapp, 1966). Already the presence of this moderate form of heterogeneity 
with respect to the equilibrium distribution implies the possibility of a lack 
of lawful relationships between IEV and IAV. 

An example of a stationary and ergodic process can be obtained when 
we apply the first coin-tossing model to each coin in a bag of fair coins. The 
process is ergodic as the values of the tosses of each coin are governed by the 
same unique equilibrium distribution. However, if the bag contains unfair 
coins and the average probability of heads remains ^, then we have a noner­
godic, stationary process. This can be inferred from the fact that there ex­
ist equilibrium distributions for different coins, that is, sequences obtained 
from single coins are stationary. Yet, there exists no unique equilibrium 
distribution which governs sequences obtained from randomly drawn coins. 
Hence, the process is nonergodic. 

There are strong indications that heterogeneity in human populations 
may be much more pervasive, transcending the moderate forms associ­
ated with nonergodicity. Mathematical theory about biological pattern 
formation (cf. Murray, 1993) and nonlinear epigenetics (Edelman, 1987) 
shows that growth processes are severely underdetermined by genetic and 
environmental influences. Consequently, growth processes have to be self-
organizing to accomplish their tasks. In particular the maturation of the 
central nervous system results from self-organizing epigenetic processes. 
Self-organization, however, gives rise to substantial endogenous variation 
that is independent from genetic and environmental influences (Molenaar, 
Boomsma, &; Dolan, 1993; Molenaar & Raijmakers, 1999). For instance, 
homologous neural structures on the left-hand and right-hand side of the 
same individual (IAV) can differ as much as the left-hand side of this neu­
ral structure in different individuals (IEV). Insofar as the activity of such 
heterogeneous neural structures is associated with the performance on psy­
chological tests, this performance can be expected to be heterogeneous in 
much stronger forms than is the case with nonergodicity. 

It has been shown by means of simulation experiments as well as math­
ematical proof (Molenaar, Huizenga, & Nesselroade, 2003; Kelderman & 
Molenaar, in press) that standard factor analysis of IEV is insensitive to 
the presence of substantial heterogeneity. For instance, it is an assumption 
of the standard factor model that factor loadings are invariant (fixed) across 
subjects. If, however, these factor loadings would in reality vary randomly 
across subjects (a grave violation of the assumption of fixed factor load­
ings), then the standard factor model still fits satisfactorily. There appears 
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to be only one principled way in which the presence of such heterogeneity 
can be detected, namely by carrying out replicated factor analyses of IAV 
(dynamic factor analysis of multivariate time series; cf. Molenaar, 1985) 
and then compare the solutions thus obtained for distinct subjects. 

In closing this section, it is reiterated that in general one cannot expect 
lawful relationships to exist between the structure of IEV and the structure 
of IAV. Such relationships only obtain under the restrictive condition that 
the processes concerned are ergodic. For nonergodic processes and in cases 
where human subjects are heterogeneous in even more pervasive ways (e.g., 
each subject having its personal factor model with its own distinct number 
of factors, factor loading pattern and/or specific variances), the use of IAV 
paradigms is mandatory. To accomplish this, appropriate time series anal­
ysis extensions of standard statistical techniques are required. Brillinger 
(1975) presents a rigorous derivation of time series analogues of all standard 
multivariate techniques (analysis of variance, regression analysis, principal 
component analysis, canonical correlation analysis). In the next section, 
we present an overview of time series analogues of latent variable models. 

7.3 Latent Variable Models for IAV 

From a general point of view, a stochastic process can be interpreted as a 
random function. That is, as an ensemble of time-dependent functions on 
which a probability measure is defined (cf. Brillinger, 1975, section 2.11). 
Each time-dependent function of this ensemble is called a trajectory (or 
realization). Even if information is available about the entire past of a 
stochastic process up to some time t, then exact prediction for the next 
time point still is impossible. Each trajectory in an ensemble extends over 
the entire time axis. An observed time series, that is, the particular stretch 
of values obtained by repeated measurement of a single subject, constitutes 
a randomly drawn trajectory from the ensemble, where this trajectory is 
clipped by a time window with width equal to the period of repeated mea­
surement. In what follows we denote a stochastic process by yt and an 
observed time series thereof by yt, t = 1 , . . .  , T. We acknowledge that this 
notation is not entirely correct, but it is convenient and customary. 

A subset of latent variable models for IAV is obtained by replacing all 
random variables in a standard latent variable model by stochastic pro­
cesses. Bartholomew (1987) gave a useful classification of standard latent 
variable models based on two features: Whether the observed variable is 
continuous or discrete and whether the common latent variable is continu­
ous or discrete. This classification will be followed in our overview of latent 
variable models for IAV. There is an additional third feature which has 
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to be considered for latent variable models for IAV, namely whether the 
time dimension is continuous or discrete. We, however, restrict attention 
to models in discrete time only, as this is sufficient for our present purposes. 

If both the observed variable and the common latent variable are con­
tinuous, the latent variable model is classified as a factor model. Replace­
ment of all random variables in the factor model by continuous stochastic 
processes, yields the state-space model: yt = ZtOit + et, wherein yt is the 
observed continuous n-variate process, at is a common m-variate latent 
process (also called state process), and et is a n-variate measurement error 
process. Statistical analysis of the state-space model is well developed and 
is treated in several text books (e.g., Durbin & Koopman, 2001). Hamaker, 
Dolan, and Molenaar (2003) discuss applications of the state-space model 
in psychological research.2 

If both the observed variable and the common latent variable are dis­
crete, the latent variable model is classified as a latent class model. Replace­
ment of all random variables in the latent class model by discrete stochastic 
processes yields the hidden Markov model (cf. Elliott, Aggoun, & Moore, 
1995). Visser, Raijmakers, and Molenaar (2000) present applications of 
hidden Markov modelling in psychological research.3 If the observed vari­
able is continuous and the common latent variable is discrete, the latent 
variable model is classified as a latent profile model (Bartholomew, 1987; 
Molenaar & Von Eye, 1994). Replacement of the observed variable by a 
continuous stochastic process and the common latent variable by a discrete 
stochastic process yields a variant of the hidden Markov model (Elliott et 
al., 1995). 

If the observed variable is discrete and the common latent variable is 
continuous, the latent variable model is classified as a generalized linear 
model. Replacement of all random variables in the generalized linear model 
by discrete (observed) and continuous (latent) stochastic processes yields 
the dynamic generalized linear model (Fahrmeir & Tutz, 2001). 

We focus on a subset of dynamic generalized linear models. That is, 
models in which the observed process is dichotomous, related to the con­
tinuous latent process through the logistic response function. 

2Software for the fit of state-space models can be downloaded from 
http://users.fmg.uva.nl/cdolan/. 

3Appropriate software can be found at http://users.fmg.uva.nl/ivisser/hmm. 

http://users.fmg.uva.nl/cdolan/
http://users.fmg.uva.nl/ivisser/hmm
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7.4 A Logistic Model for Dichotomous Time 
Series 

Dichotomous (or binary) time series can be modelled in various ways. Re­
gression models for dichotomous time series are discussed in detail in Ke­
dem and Fokianos (2002) and in Fahrmeir and Tutz (2001). Our focus is 
on modelling dichotomous time series using latent variables which is com­
parable to the modelling of dichotomous variables in item response theory 
(see, e.g., Hambleton & Swaminathan, 1985). Because the latent variable 
is replaced by a stochastic process, it can be seen as a dynamic extension 
of item response modelling. As stated before, this approach is not entirely 
new although the emphasis on the modelling of IAV in this sense is novel. 
Modelling is pursued following Fahrmeir and Tutz (2001), that is, by spec­
ifying the distributional model, the response function, the linear predictor, 
and the transitional model. 

7.4.1 General Outline 
Consider the situation in which we have a dichotomously scored, multivari­
ate time series, that is, an n-dimensional observation vector yt such that 
yt € {0, l}n, at each time point t = 1, . . . , T. Each single univariate obser­
vation yit, i = 1, . . . , n, follows a Bernoulli distribution with parameter TT^ 
as the probability of obtaining a score one, given by 

This probability is modelled by inserting the linear predictor rjit into the 
logistic response function, resulting in 

Next, the n-dimensional linear prediction vector rjt is constructed by linking 
the n x m design matrix Zt with the m-dimensional latent state vector o^ , 
t = 0,1,. . . ,  T 

The linear transition equation, which relates states at t — I to t through 
the m x m transition matrix Ft , is given by 

The state vector at is allowed to contain time-invariant elements. The 
m x p selection matrix Rt is assumed to be a subset of the columns of the 
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m-dimensional identity matrix Im, so that it associates the elements of the 
p-dimensional disturbance vector £t with the p time-varying elements of 
the state vector (Durbin & Koopman, 2001, p. 38).4 The elements of £t arc 
often called innovations. The initial state ao and the disturbance vector £t 

are normally distributed as 

The covariance of ao is represented in this manner so that Qo is nonsingu­
lar, which is somewhat more advantageous (Durbin & Koopman, 2001, p. 
38). Note that ao, Qo, and Qt are hyperparameters to be estimated (see 
Appendix). 

The following three assumptions are stated to completely specify the 
model in terms of densities. The first assumption is that current observa­
tions are dependent on current states 

The second assumption is that the state process is Markovian 

Finally, and in addition to assumption one, it is assumed that the multi­
variate observations are independent given the current state 

Because the specific contents of the state and disturbance vector can be 
freely chosen, a variety of latent processes can be captured with the cur­
rent representation. Depending on the hypothesized dynamic constellation 
of the latent process, one can choose between for instance, autoregressive 
processes, moving average processes, and random walks (for a description, 
see, e.g., Hamilton, 1994). In addition, trends and cyclic change parame­
ters can be included in the current representation. For now, we consider 
the latent process to be a random walk, so that the transition matrix Ft 

is fixed. For other types of processes, the transition matrix can contain 
hyperparameters, for example, autoregression parameters. 

The model can be extended to more than one person (N > 1), more 
than one latent process (p > 1), and also to polytomous variables. For now. 
however, the interest lies in N = 1 and as results of analyses of dichotomous 
time series with this type of models are scarce, we next consider a simple, 
yet illustrative modelling example. 

It is stressed that m = p + n does not necessarily follow. 
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7.4.2 A Dynamic Rasch Model 
We now illustrate how a dynamic variant of the Rasch model can be ob­
tained. We choose to let the state vector o^ consist of two parts. The 
first part describes a person's latent process denoted by the p-dimensional 
vector Of The second part consists of n threshold parameters, denoted 
by [3t. So, we have ctt — (0't,(3't)' and m = p + n. For simplicity and 
sufficiency for present purposes, the following model parameters and ma­
trices are considered time invariant: the design matrix (Z), the threshold 
parameters ((3), the transition matrix (F). the selection matrix (R), and 
the covariance matrix of the state disturbances (Q). 

Consider the situation in which we have four dichotomous variables, a 
single latent factor, a single person, and an observed time series of length 
T — 200. Now, modelling is pursued as follows. We have a four-dimensional 
vector of observations y<, a four-dimensional probability vector 7rt, and 
a four-dimensional linear prediction vector rjt, related to each other as 
stated in Equations 7.1 and 7.2. The five-dimensional state vector has the 
following form 

The specification of the design matrix defines the relation between the 
person process and the threshold parameters and is given by 

The logistic response function relates the linear predictor rjt = Zat to the 
probabilities TTf 

Equation 7.3 can be seen as a dynamic variant of the Rasch model. Note 
that this is the form of the Rasch model without the so-called item-invariant 
discrimination parameter (see Hambleton & Swaminathan, 1985, p. 47). 
The person process is given by a first-order random walk, that is 

The random walk can be perceived as the discrete time analogue of Brow­
nian motion (Klebaner, 1998, p. 80). It should be noted that the process in 
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Equation 7.4 is nonstationary since Var(0t) —+ oo as t —> oo, and therefore 
nonergodic. The transition matrix F is simply the 5 x  5 identity matrix, 
Is, and the selection vector r is given by 

The initial state vector with associated variance 

Estimates of the latent process can be obtained with the extended 
Kalman filter and smoother as described in Fahrmeir (1992). The hyperpa­
rameters can be estimated with an EM-type algorithm which is discussed 
in Fahrmeir and Wagenpfeil (1997). Both procedures are described in the 
Appendix. 

7.5 Analysis of the Dynamic Rasch Model 

7.5.1 Simulated Data Example 

Data were simulated using the model described in section 7.4.2 with the 
following hyperparameter settings 

For identification purposes, OQ is fixed at zero. So we have four items, a 
single latent factor, a single person, and a series of length T = 200. The 
results of filtered and smoothed probabilities, and filtered and smoothed 
states are presented. Results were obtained with the following hyperpa­
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(a) (b) 

(c) (d) 

Figure 7.1: True Versus Filtered Probabilities. The Observed 
Responses are Depicted by Dots. 

rameter estimates (standard errors for thresholds could be obtained only) 

The filtering and smoothing results obtained for the probabilities TT^, 
i = 1, . . .  , 4, t — 1,... 200, are given in Figure 7.1 and Figure 7.2. The 
solid lines are the true probabilities, the dotted lines are the estimated 
probabilities, and the dots on the zero- and one-lines are the simulated 
observations. Figure 7.3 and Figure 7.4 display filtering and smoothing 
results for the estimation of the latent process. In both figures, the solid 
line indicates the true latent process and the dotted line the estimated 
latent process. 
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(a) (b) 

(c) (d) 

Figure 7.2: True Versus Smoothed Probabilities. The Observed 
Responses are Depicted by Dots. 

Although this is a single simulation, some observations can be made. 
These are that the filtered and smoothed latent process are somewhat bi­
ased, but the direction of the true process is well tracked. The smoother 
improves the filter estimates considerably, but has some difficulty in repro­
ducing peaks of the true process. Hyperparameter estimates are reasonable, 
except perhaps the estimates of the threshold parameters. 

7.5.2 Real Data Example 

Real data were analyzed with the described techniques. We selected a single 
subject and a single subscale (neuroticism) containing six items of a data set 
consisting of personality questionnaires containing 30 items scored on seven-
point scales, administered to 22 psychology students on 90 consecutive days 
(Borkenau & Ostendorf, 1998).5 The questionnaires were constructed as to 

5Data were kindly made available by Dr. Borkenau. 
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100 150 

t 

Figure 7.3: True Versus Filtered Latent Process. 

measure the big five personality factors. The data were dichotomized for 
illustrative purposes only to apply the dynamic Rasch model. 

Modelling proceeds as in section 7.4. Starting values for the initial state 
vector a.'0 — {Oo,0i,... ,/?e} were obtained by using the logistic transfor­
mation of proportions of ones in all items as fixed value for #0 and for 
each single item (/9's) corrected for 00. Figure 7.5 shows the filtered and 
smoothed probabilities Tr^, i = 1, . . .  , 6, t — 1,... 90, indicated by the solid 
and dotted lines, respectively. The dots on the zero- and one-lines indicate 
the dichotomized observations. Results were obtained with the following 
hyperparameter estimates 
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0 50 100 150 200 

Figure 7.4: True Versus Smoothed Latent Process. 

We can see in Figure 7.5 that the filter estimated probabilities vary 
widely in the beginning of the series. In addition, the difference between the 
filter and smoother estimates is larger in the first half of the series (t < 40). 
From Figure 7.6, we might infer that this person is relatively stable over 
time in neuroticism. As we are only concerned with an illustration of the 
methods, inspection of the fit is not pursued here. However, goodness of fit 
can be assessed by inspecting deviance statistics, (standardized) residuals or 
comparing AIC values of competing models (see, e.g., Kedem & Fokianos, 
2002, section 1.5). 

7.6 Conclusion 
In this chapter we took a closer look at the rationale for the emphasis in 
psychometrics on the analysis of IEV. It was found that this rationale is 
weak and that arguments for analysis of IAV are too easily brushed aside. 
We provided arguments for the development of models based on IAV. The 
question of the existence of any lawful relationship between analysis of IEV 
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(a) (b) (c) 

(d) (e) ( f  ) 

Figure 7.5: Smoothed Versus Filtered Probabilities. The Ob­
served Responses are Depicted by Dots. 

and IAV was addressed and it was argued that there are criteria for the 
existence of such a relationship. These criteria, however, are very strict 
and are met only when the processes concerned are ergodic. Because, in 
practice, little is known about the relation between analysis of IEV and 
IAV, and thus about ergodicity of the processes concerned in psychometrics, 
investigation of this relation is important. First, however, reliable methods 
have to be developed for analysis of IAV. This chapter attempted to provide 
an outline of methods for analyzing single-subject dichotomous time series. 

The discussed modelling outline requires further investigation. Models 
for polytomous responses can be obtained after appropriate adjustments. 
In addition, it can be investigated if several persons can be analyzed with 
a model with equal thresholds. 
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Figure 7.6: Filtered Versus Smoothed Latent Process. 

Appendix 

Estimation of the Latent Process 

The extended Kalman filter and smoother (EKFS) as described in Fahrmeir 
(1992) are used to obtain estimates of the latent process at. In the pre­
sentation of the EKFS, the hyperparameters 0,9, Qo, and Q are considered 
known. 

Filtering 

First, the filter is initialized by 

andaojo ~ ̂  Vo|o = R-oQoR-o-

The extended Kalman filter consists of two recursive steps, a prediction and 
correction step, which are taken consecutively. The prediction step can be 
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described as follows 

The correction step is given by the following equations 

where bt and Bj are the score function and the expected information matrix 
given by 

where /*(.) is a logistic response function for our situation and, for the 
modelling example considered in section 7.4.2 

and 

Both Dt and St are symmetric and evaluated at the state prediction at|t_1. 
Note that Dt and S4 are equal for our modelling example, although in 
general, this is not the case. 

Smoothing 

The fixed interval smoother is a backward procedure to obtain smoothed 
state estimates a.t_^T, which are based on the results of the filtering recur­
sions. For t = T , . . .  , 1, we obtain 
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where 

Estimation of Hyperparameters 
Hyperparameters are estimated with the EM-type algorithm described in 
Fahrmeir and Wagenpfeil (1997). Only estimation for the time invariant 
version of the state disturbance covariance matrix is considered. The algo­
rithm for estimating ao, Qo, and Q can be described as follows 

1. Choose starting values HQ , QQ , and Q(°) and set iteration index 

2. Smoothing: Compute at\T, Vt|y, t — 1, . . . ,T with the above recur­
sions with unknown parameters replaced by their current estimates 

, Qo?+1)3. EM step: Compute 4?+1) , and Q(P+I) by 

4. Set p = p + 1 and go to 2 until some stopping criterion is reached. 
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Chapter 8 

The Effect of Missing Data 
Imputation on Mokken Scale 
Analysis 

L. Andries van der Ark1 and Klaas Sijtsma 
Tilburg University 

8.1 Introduction 
Tests and questionnaires can be constructed mainly in two ways. The first 
is exploratory. This means that the final test is selected from the initial set 
of items so as to optimize psychometric criteria. For example, the test con­
structor may want to select a subset of items so as to satisfy a lower bound 
for the reliability of person ordering. The second way of test construction 
is confirmatory. This means that the set of items is considered to be fixed 
and the psychometric properties of this set are determined under a partic­
ular model without changing the composition of the item set. For example, 
after fifteen years of use the test constructor may decide that the norms for 
interpretation of test results need to be updated. The stand-alone software 

lrThe first author's research has been supported by the Netherlands Research Council 
(NWO), Grant No. 400.20.011. Thanks are due to Liesbeth van den Munckhof for her 
assistance with the MSP analyses and Joost van Ginkel for correcting an error in the 
initial computation of the statistic MIN. 
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package MSP (Molenaar & Sijtsma, 2000) allows both possibilities. A well 
known problem in data analysis for test and questionnaire construction is 
that some of the N respondents did not supply an answer to some of the 
J items, so that the data matrix X is incomplete. MSP only offers listwise 
deletion to handle the missing data problem. This may result in the loss of 
many cases, biased estimates of parameters of interest, and reduced accu­
racy of estimates. The topic of this chapter is the comparison of imputation 
methods with respect to the outcomes of exploratory and confirmatory test 
construction as implemented in MSP. 

8.1.1 Missing Data Mechanisms 

Missing item scores may be due to many reasons. Often these reasons are 
unknown to the researcher. For example, the respondent may have missed 
a particular item (e.g., due to inattention or time pressure), missed a whole 
page of items, saved the item for later and then forgot about it, did not 
know the answer and then left it open, became bored while taking the test 
or questionnaire and skipped a few items, felt the item was embarrassing 
(e.g., questions about one's sexual habits), threatening (questions about the 
relationship with one's children), or intrusive to privacy (questions about 
one's income and consumer habits), or felt otherwise uneasy and reluctant 
to answer. 

Rubin (1976; also, see Little & Rubin, 1987; Schafer, 1997) formalized 
mechanisms of missing data into three classes. Let i denote the respondent 
index and j the item index, and let Xij be the integer score of respondent i 
on item j. Let M be an N x J indicator matrix of with elements m^ = 1 
if score x^ is missing, and ra^ = 0 if score x^j is observed. The observed 
part of X is denoted X0&s and the missing part is denoted XTOis. Thus, 
X = (X0bs, Xmis). Let /3 be a set of parameters governing the data, X0bs 

and Xmjs, and £ a set of parameters governing the missingness, M. We 
may model the distribution of the missing data as P(M|X7njs,X0{)S,/3, £). 

The missing data are called missing at random (MAR) when the dis­
tribution of the missing data does not depend on the missing item scores; 
that is 

An example of MAR is that missing item scores depend on other observed 
items or covariates. Such a covariate may be gender. For example, for men 
it may be more difficult to admit to the item 'I cry at weddings' than for 
women (item taken from questionnaire by Vingerhoets & Cornelius, 2001). 
Therefore, a larger proportion of the male respondents may decide not to 
respond to this item. 
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A special case of MAR is missing completely at random (MCAR). Data 
are MCAR when the missing data values are a simple random sample of 
all data values; that is, 

For MCAR the parameters in £ only affect the proportion of missing values, 
but not the pattern of missingness. 

Missing data are called nonignorable when their distribution 
P(M|Xmis,Xo6s,/3,£) depends on Xo6s, Xmis, and £, and indirectly on (3 
since these parameters govern X0(,s and Xmis. One example of a nonig­
norable missingness mechanism is that the distribution of the missing data 
depends on values of variables that were not part of the investigation. For 
example, in a personality inventory missingness may depend on general 
intelligence or reading ability. Another example of a nonignorable missing-
ness mechanism is that the distribution of the missing data depends on the 
missing item scores; for example, respondents who cry at weddings have 
a higher probability of not answering the item 'I cry at weddings' than 
respondents who never cry at weddings. Consequently, any missing data 
method based on available item scores would underestimate the missing 
value. 

8.1.2 Test Construction 
Exploratory and confirmatory test construction 

Our frame of reference in this study is nonparametric item response theory 
(NIRT; Boomsma, Van Duijn, & Snijders, 2001; Mokken, 1971; Sijtsma & 
Molenaar, 2002; Van der Linden & Hambleton, 1997). Following NIRT, we 
define a latent trait 0 that stands for a psychological property or a collection 
of psychological properties measured by the J items. For example, the item 
"I cry at weddings" may be indicative of the latent trait "tendency to cry" . 
Parameter 6 thus governs the data and replaces parameter vector /?. Let 
Xj be the random variable for the score on item j. Item scores may be 
dichotomous or polytomous. For example, the item "I cry at weddings" 
may have only two answer categories, "applies" and "does not apply" , which 
may be dichotomously scored Xj = 1 and Xj = 0 with respect to latent trait 
"tendency to cry" , respectively. Another possibility is that the respondent 
indicates on an ordered rating scale the degree to which the item applies 
to him/her, and the corresponding polytomous scoring then may be Xj = 
0, . . . , g. Latent trait 6 is estimated by means of X+ = ̂  Xj (Hemker, 
Van der Ark, & Sijtsma, 2001; Junker, 1991; Stout, 1990). Note that X+ 
may either estimate a unidimensional 6 or a multidimensional 9. 
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The construction of a test or questionnaire mainly follows two possi­
bilities. The first possibility is that one starts from scratch, defining the 
construct of interest and a useful operationalization, and then defines a 
collection of experimental items. Then a clustering method from MSP may 
be used to determine the structure of the data in terms of the underly­
ing latent traits. A cluster is a set of items that measure the same latent 
trait. This is an exploratory approach because the dimensionality structure 
was not hypothesized prior to the application of the clustering method but 
found by the program. The second possibility is that one starts with an 
existing instrument and wants to know whether it can be used in another 
population or at a later point in time. This entails drawing a new sample 
of respondents to which the existing item set is administered, or adminis­
tering the item set to the same respondents once more. Then MSP may be 
used to analyze the item set as one cluster and determine its psychometric 
properties. Because the item set is considered to be fixed, we consider this 
kind of item analysis to be confirmatory in the sense that for this set it is 
determined whether or not it is a useful instrument in a new context. 

Test construction according to MSP 

Scalability coefficients. Both for exploratory and confirmatory test 
construction, MSP uses the scalability coefficient H (Mokkcn, 1971, pp. 
148-153; 1997; Sijtsma & Molenaar, 2002, pp. 49-64) as a scaling crite­
rion. For two items j and A;, Cov(Xj,Xk) defines their covariancc and 
Cov(Xj, Xk)max defines their maximum covariance given the marginal dis­
tributions of their bivariate frequency table. The scalability coefficient for 
these two items is defined as 

Coefficient Hjk is the basis for the scalability coefficient of one item with 
respect to the other J — 1 items; this coefficient is denoted Hj and defined 
as 
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Finally, scalability coefficient H for all J items is defined as 

Monotone homogeneity model. The use of scalability coefficients 
Hjk, HJ, and H is related to the monotone homogeneity model (MHM; 
Mokkcn, 1971, p. 118). The MHM assumes a unidimensional latent trait 9, 
local independence of the item scores given #, and a monotone nondecreas­
ing relationship between P(Xj > Xj\9) and 6. For scores Xj = 1, . . . , <?, the 
conditional probabilities P(Xj > Xj\0) are the item step response functions 
(ISRFs) (for Xj = 0 the ISRF equals 1 by definition). For dichotomous 
items (g = 1) the only relevant ISRF is P(Xj > 1|0) = P(Xj = 1|0). This 
is the item response function (IRF). Together, the assumptions of unidi­
rnensionality, local independence, and monotonicity define the MHM. For 
dichotomous items, the MHM implies the stochastic ordering of latent trait 
6 by means of observable summary score X+; that is, for any t, we have 
that P(6 > t\X+) is nondecreasing in X+ (based on Grayson. 1988; also, 
see Hemker, Sijtsma, Molenaar, & Junker, 1997). Thus, the MHM implies 
ordinal person measurement on 6 using X+. The more complicated case 
for polytomous items is treated by Van der Ark (in press). 

Relationship between MHM and coefficient H. The MHM im­
plies that Hjk > 0 (Holland & Rosenbaum, 1986; Mokken, 1971, pp. 149­
150). By implication, we have that HJ > 0 and H > 0. Based on these 
implications, Mokken (1971, p. 184; Sijtsma & Molenaar, 2002, pp. 67­
68) defined a scale as a set of dichotomously scored items for which, for a 
suitably chosen positive constant c, and for product-moment correlation p, 

and 

Equation 8.1 implies that Hjk > 0. Equation 8.1 also implies that HJ > 0 
and H > 0. In addition, by specifying that HJ > c, Equation 8.2 poses 
minimum requirements on the slope of the IRF. That is, constant c forces a 
minimum level of discrimination power on the individual items. This is not 
implied by the MHM, but because this model allows weakly sloped IRFs 
and even flat IRFs as a borderline case, the addition of a minimum dis­
crimination requirement is a practical measure for reliable person ordering. 
Finally, the definition of a scale can be extended readily to polytomous 
items (Sijtsma & Molenaar, 2002, p. 127). 
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Automated item selection. For exploratory test construction, MSP 
selects items according to the definition of a scale (Equations 8.1 and 8.2). 
The default option for item selection, to be used here, has the following 
steps (Mokken, 1971, pp. 190-194). 

1. From the J available items, MSP selects from the item pairs which 
have a Hjk that is significantly greater than 0, that pair which has 
the highest Hjk that is greater than c. This is the start set for item 
selection. 

2. From the remaining J —2 items, that item is added to the start set 
that (a) has a positive covariance with both selected items (Equa­
tion 8.1); (b) has an Hj value with the selected items that is at least 
c (Equation 8.2); and (c) has the highest common H value with the 
selected items, given all candidate items for selection. 

3. The next items are selected following the logic of Step 2. The item 
selection for the first scale ends when no more items satisfy the criteria 
mentioned in Step 2. 

4. If items remain unselected after the first scale has been formed, from 
the unselected items MSP tries to form a second scale, a third scale, 
and so on, until no more items remain or no more items satisfy the 
criterion in Step 1. 

For confirmatory test construction, the MHM is fitted to the data cor­
responding to the a priori defined test consisting of J items using methods 
implemented in MSP (Molenaar & Sijtsma, 2000; Sijtsma & Molenaar, 
2002). This includes calculating and evaluating the Hj and H coefficients. 

8.2 Methods for Missing Data Imputation 
We introduce four methods for the imputation of item scores for missing 
observations in a data matrix X, plus listwise deletion. Listwise deletion is 
the only method currently implemented in MSP. It was used as a benchmark 
for the other methods. For each of the five methods it was investigated how 
they influence the results of the automated item selection procedure in MSP 
(exploratory test construction) and how they influence the results of fitting 
the MHM to an a priori defined scale (confirmatory test construction). The 
five missing data handling methods are discussed next. 

Listwise Deletion. Listwise deletion (LD) deletes from the analysis all 
cases that have at least one missing item score. Because for data matrices 
that contained at least ten percent missing item scores it was found that 
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LD led to the rejection of almost the whole data matrix, in these cases 
we used the imputation of a random item score as an alternative (called 
Random Imputation; abbreviated RI). 

Two Way Imputation. Because in a unidimensional test or ques­
tionnaire all item scores measure the same latent trait, the scores on the 
available items can be used for imputing scores for missing data. Let PMi 
be the mean item score of person i calculated across his/her available item 
scores; let IMj be the mean score on item j calculated across the item 
scores available in the sample of N persons; and let OM be the mean item 
score calculated across all available item scores in X. Then for missing item 
score ( i , j )  , we calculate 

The item score to be imputed is obtained by rounding TWij to the nearest 
feasible integer. Two-way imputation (TW) was proposed by Bernaards 
and Sijtsma (2000; see Huisman & Molenaar, 2001, for a related method). 

Response Function Imputation. Response function imputation (RF; 
Sijtsma & Van der Ark, 2003) is based on the idea to impute item scores 
Xij as random draws from the distribution P(Xj = Xj\6i). The steps in 
this procedure are the following. 

• First, estimate Oi by means of restscore Ri(-j) = ^Q+ —X^ (e.g., 
Hemker, et al., 1997; Junker, 1993; Sijtsma & Molenaar, 2002, p. 40). 
This is done as follows. Due to missing data, the number of available 
item scores on the remaining J — 1 items may vary across respon­
dents. This number is denoted Ji (Ji < J — 1). Restscore Ri(-j) is 
computed as the sum of these available item scores. Because different 
respondents may have different numbers of available item scores, to 
have all restscores on the same scale each restscore is multiplied by 
(J-l)M. 

• Second, estimate P(Xj — Xj\0i) by means of P[Xj = Xj\Ri(_j)], for 
Xj = 0, . . . , m. The latter probability is computed in the subgroup 
having an observed score on Xj. Each respondent's Xj is weighted 
by the accuracy with which his/her restscore, -Rj(-j> estimates its 
expectation, Ei[Ri^j)]. Because for each respondent one restscore 
is available, the determination of its accuracy is based on its con­
stituent Ji item scores. Let the mean item score of respondent i be 
denoted Xi = 'j~3) . Let al denote the variance of the item scores 

^^ S y _ "y" \2 

of respondent z, estimated by S? = =*—j—— . The inaccuracy of 

Xi is given by SE(Xi) — ^ / S f / J i  . The weight for respondent i in 
computing P[Xj = Xj\Ri(-j)\ is l/SE(Xt). 
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• Third, for a missing score in cell ( i , j  } we impute a random draw from 
P[Xj\Ri(^j)]. In the subgroup of people having a missing score on 
item _;', restscores may exist that did not exist in the group with Xj 
observed that was used for estimating P [ X j \ R i ^ j ) ]  . For example, 
among the latter group Ri(-j) = 2 may not have been observed; thus, 
P[Xj\Ri(^j) = 2] was not estimated. In that case, item score proba­
bilities are obtained by linear interpolation between the two nearest 
restscores from the group with Xj observed. If restscore groups are 
too small for an accurate estimate of P [ X j \ R i ^ j ) ]  . adjacent restscore 
groups may be joined. See Sijtsma and Van der Ark (2003) for more 
details. 

Multiple Response Function Imputation. Multiple response func­
tion imputation (MRF) entails five times the application of the RF proce­
dure. This involves five random draws from P [ X j \ R i ^ j ) ]  , which yields five 
different completed data matrices. Each completed data matrix is analyzed 
separately, and the results are combined later using Rubin's rules (see, e.g., 
Schafer, 1997, pp. 109-110) or a variation to be discussed later. 

Multiple multivariate normal imputation. An imputation method 
for categorical data proposed by Schafer (1997, pp. 257-275) and imple­
mented in publicly available software (program CAT; Schafer, 1998a) was 
considered for item score imputation. This method requires a frequency ta­
ble based on J items with m + 1 answer categories, which thus has (m +1)J 

entries. In our applications, this number was too large for maximum like­
lihood estimation of the imputation model. Thus, CAT could not be used. 
Instead we assumed a multivariate normal imputation model as suggested 
by Schafer (1997, p. 148; program NORM, Schafer, 1998b). The method 
is called multiple multivariate normal imputation (MMNI). Method MMNI 
assumes that the item scores have a J-variate normal distribution. In an 
initial step the model parameters, the mean vector and the covariance ma­
trix, are estimated using an EM algorithm. Then an iterative procedure 
called data augmentation is used to obtain the distribution of the missing 
item scores given the observed item scores and the model parameters. The 
missing values are imputed by random draws from this conditional distribu­
tion. Since these random draws are real-valued and our data integer-valued, 
the random draws were rounded to the nearest feasible integer. For more 
detailed information on data augmentation we refer to Tanner and Wong 
(1987) and for the implementation of EM and data augmentation in NORM 
to Schafer (1997, chap. 5 and chap. 6). 
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8.3 Method 

We investigated the influence of each of the five imputation methods on the 
results of confirmatory and exploratory item analysis using the program 
MSP. Three real data sets (first design factor) were used. These data sets 
are referred to as original data sets. 

• Verbal analogies data (Meijer, Sijtsma, & Smid, 1990). For this 
data set, N — 990 and J = 32, with g + 1 = 2. This test measures 
verbal intelligence in adults. Meijer et al. (1990) found that 31 items 
together formed one scale (each Hj > 0). This was the basis for 
the confirmatory analysis. All 32 items were used in the exploratory 
analysis. 

• Coping data (Cavalini, 1992). For this data set, N = 828 and 
J — 17, with g + I = 4. This questionnaire measures coping styles 
in response to industrial malodors. Cavalini (1992, pp. 53-54) found 
four item subsets (17 items in total) measuring different coping styles. 
Each of these subsets was used separately in the confirmatory analysis. 
The set of 17 items was the input for the exploratory analysis. 

• Crying data (Vingerhoets & Cornelius, 2001). Here, N = 3965 and 
J = 54, with g + 1 = 7. This questionnaire measures determinants of 
adult crying behavior. Scheirs and Sijtsma (2001) found three subsets 
of items (54 items in total), representing three psychological states. 
Each subset was the basis of the confirmatory analysis. All 54 items 
together were subjected to the exploratory analysis. 

Each data set was complete. In each original data set item scores were 
deleted using procedures that resulted in either MCAR, MAR, or nonig­
norable missingness (second design factor). The percentage of missing item 
scores was either 5%, 10%, or 20% (third design factor). The data sets con­
taining missing data are referred to as incomplete data sets. Missingness 
was simulated as follows 

• MCAR. The probability of a missing score was the same for each 
entry in the data set. 

• MAR. Let L = trunc( J/2) be a cut-off value that splits the item set 
into a first half (items 1,. . . , L) and a second half (items L + l , . . .  , J). 
When the missing item scores were MAR, the probability of a missing 
item score in the second half was twice the probability of a missing 
item score in the first half. 
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• Nonignorable missingness. When missingness was nonignorable, 
the missing item scores were MAR in combination with the following 
mechanism: Let G = trunc(<?/2) be a cut-off value that splits the 
item scores into low item scores ( 0 , . . .  , G) and high item scores (G + 
1, . . . , # )  . The probability of a missing value for high item scores was 
twice the probability of a missing value for low item scores. 

The incomplete data sets were imputed using listwise deletion (5% missing 
item scores) or random imputation (10% and 20% missing item scores), two-
way imputation, response function imputation, multiple response function 
imputation, and multiple multivariate normal imputation (fourth design 
factor). These data sets are referred to as completed data sets. Both the 
original and the completed data sets were subjected to exploratory and 
confirmatory data analysis (fifth design factor). 

Exploratory analysis. For the single imputation methods (RI, TW, 
and RF), for each incomplete data set, the MCAR, MAR, and nonignorable 
missingness conditions were used to construct three different completed 
data sets. For each completed data set, MSP found a cluster solution, 
which was compared with the original data cluster solution. Assume that 
an item set consists of five items, indexed j = 1 , . . .  , 5, then the original-
data clustering might be (1,2,2,0,1): The 1 scores indicate that items 1 
and 5 were in the same cluster, the 2 scores that items 2 and 3 were in 
another cluster, and the 0 score that item 4 remained unselected. Now, 
assume that the completed-data clustering is (1,1,1,0,0); then, ignoring 
the cluster numbering (which is nominal) the smallest number of items to 
be moved to reobtain the original-data solution is sought. Here, items 1 and 
5 need to be moved to a separate cluster. Denote the minimum number of 
items to be moved by MIN (with realization mm), then for this example 
MIN = 2. 

For the multiple imputation methods (MRF and MMNI), for each in­
complete data set five completed data sets were generated. The five 
completed-data cluster solutions were combined to one by taking the mode 
of the cluster indices for each item. For example, let the five cluster so­
lutions found be (1,2,2,0,1), (2,2,1,0,1)  , (1,2,1,1,2), (1,2,2,0,1), and 
(0,2,2,0,0); then, the modal solution is (1,2,2,0,1) and the MIN value 
with respect to the original-data clustering, which was (1,2, 2, 0,1) (previ­
ous example), is determined to be 0. 

Confirmatory analysis. The H values of the completed data were 
compared with the H values of the corresponding original data. For multi­
ple imputation the mean H of the five completed data matrices was taken. 

The design was completely crossed with 3 (original data matrices) x 
3 (missingness mechanisms) x 3 (percentages of missing item scores) x 5 
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Table 8.1: Number of Verbal Analogies Items Incorrectly Clus­
tered in Exploratory Analysis, for Five Imputation Methods, 
Three Missingness Mechanisms, and Three Percentages (5, 10, 
and 20) of Imputed Item Scores [J = 32; max(MIN) = 18]. 

Method Missingness Mechanism 
MCAR MAR Nonignorable 

5 10 20 5 10 20 5 10 20 
LD/R I 13 18 18 10 18 16 8 18 18 
TW 8 14 16 5 15 16 4 9 16 
RF 4 3 8 5 3 7 3 8 4 
MRF 2 2 7 5 6 9 3 3 4 
MMNI 10 17 17 12 11 16 6 12 16 

(imputation methods) x 2 (exploratory vs. confirmatory analysis) = 270 
cells. The study was programmed in S-Plus 6 for Windows (2001); the 
exploratory and confirmatory analyses were done using MSP (Molenaar & 
Sijtsma, 2000). 

8.4 Results 

8.4.1 Exploratory Analyses 

Table 8.1 (Verbal Analogies data), Table 8.2 (Coping data), and Table 8.3 
(Crying data) give the value of MIN for the complete design. An unscalable 
set of items is one in which each item forms a unique cluster; for this setup 
MIN was determined, and the result was called max(M/Ar). The value of 
max(MIN) was used as a benchmark. 

Verbal analogies data. Methods LD and RI always led to almost one 
half to all items incorrectly clustered (8 < ram < 18). Method TW led to a 
misclassification of almost all items for 10% and 20% imputed item scores. 
Methods RF and MRF performed best (2 < ram < 8). Method MMNI 
led to high MIN-values (6 < ram < 17). This result was not expected 
and may be related to convergence to a local optimum. This is further 
elaborated in the Discussion. 

Coping data. For 5% imputed item scores, all methods performed 
well. For 10% and 20% imputed item scores, method RI led to large val­
ues of MIN. Methods TW, RF, and MRF led to the misclassification of 
approximately one-fifth of the items for 10% imputed item scores, and to 
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Table 8.2: Number of Coping Data Items Incorrectly Clustered 
in Exploratory Analysis, for Five Imputation Methods, Three 
Missingness Mechanisms, and Three Percentages (5, 10, and 20) 
of Imputed Item Scores [J = 17; max(MIN) = 12]. 

Method Missingness Mechanism 
MCAR MAR Nonignorable 

LD/R I 
TW 
RF 
MRF 
MMNI 

10 
6
3 
2
1 
0 

5
1
0
0
0
0 

20 
10 
6 
6
6 
0 

5
1
1 
0
0
0 

10 20 10 
7
1 
4
3
0 

5
1
0
0
0
0 

20 
10 
4 
4 
5
0 

6
3 
2 
2
0 

10 
5 
5
4
1 

Table 8.3: Number of Crying Data Items Incorrectly Clustered 
in Exploratory Analysis, for Five Imputation Methods, Three 
Missingness Mechanisms, and Three Percentages (5, 10, and 20) 
of Imputed Item Scores [J = 54; max(MIN) = 45]. 

Method Missingness Mechanism 
MCAR MAR Nonignorable 

5 10 20 5
9
2
2 
3 

25 

10 20 
17 
7 
4 
5 

36 

34 
5 
6
7

44 

5
11
3
3
1 

16 

10 20 
21 
3
6
6 

32 

38 
12 
10 
10 
44 

LD/RI 
TW 
RF 
MRF 
MMNI 

16
3 
4 
4 

16 

10 
5 
5
3 

21 

29 
10 
7
6

44 
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Table 8.4: Bias in H (in hundredths; i.e., -2 stands for -.02) 
for One Cluster of Verbal Analogies Items, for Five Imputation 
Methods, Three Missingness Mechanisms, and Three Percentages 
(5, 10, and 20) of Imputed Item Scores (J = 31, H = .25). 

Method Missingness Mechanism 
MCAR MAR Nonignorable 

5 10 20 5 10 20 5 10 20 
LD/ RI 1 9 5 _ j -16 -20 0 -15 -19 
TW -3 -5 -9 -2 -9 -10 -2 -4 -7 
RF 0 0 -1 0 0 -1 0 0 -1 
MRF 0 0 -1 0 0 -1 0 0 -1 
MMNI -2 -5 -10 -2 -7 -10 -2 -5 -9 

the misclassification of approximately one-third of the items for 20% im­
puted item scores. Method MMNI led to a correct clustering except for 
20% item scores that were MAR. Only small differences were found among 
the missing data mechanisms MCAR, MAR and nonignorable. 

Crying data. Method LD/RI led to a misclassification of approxi­
mately one-fifth (5% missing item scores, mm = 9) to two-thirds (20% 
missing item scores, min = 38) of the items. Method MMNI resulted in 
even higher MIN-values (16 < min < 44). Similar to the results for the 
Verbal Analogies data (Table 8.1), this is probably due to a bad model-fit. 
Methods TW, RF, and MRF performed best and yielded misclassifications 
of approximately one-tenth (5% and 10% imputed item scores) to one-fifth 
(20% imputed item scores) of the items. Only small differences were found 
among the missing data mechanisms MCAR, MAR and nonignorable. 

8.4.2 Confirmatory Analysis 

Table 8.4 (Verbal Analogies data), Table 8.5 (Coping data), and Table 8.6 
(Crying data) give the bias in H for the entire design of a single predefined 
cluster of a data set. The bias is defined as H of the completed data minus 
H of the original data. For notational convenience the fractional divisions 
and leading zeros are omitted. Thus, a bias notation of — 2 stands for —0.02. 

Verbal analogies data. For 5% imputed item scores all imputation 
methods led to a small bias (Table 8.4). For 10% and 20% imputed item 
scores, methods TW and MMNI led to a negative bias between —.10 and 
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Table 8.5: Bias in H (in hundredths; i.e., — 2 stands for —.02) for 
Four Clusters of Coping Data Items, for Five Imputation Meth­
ods, Three Missingness Mechanisms, and Three Percentages (5, 
10, and 20) of Imputed Item Scores (Cluster I: J = 7, H = .31; 
Cluster II: J = 4, H = .50; Cluster III: J = 3, H = .56; Cluster IV: 
J = 3,H= .35). 

Missingness Mechanism 
Method MCAR MAR Nonignorable 

5 10 20 5 10 20 5 10 20 
Cluster I 

LD/RI 1 -7 -17 -1 -10 -16 -2 -9 -17 
TW 0 0 2 1 0 0 0 1 2 
RF 1 0 -2 0 -1 -3 -1 0 _3 
MRF 0 0 -2 0 -1 -3 0 _^ -2 
MMNI 0 1 -1 0 0 0 0 0 -1 

Cluster II 
LD/RI -1 -18 -27 -2 -20 -29 1 -16 -31 
TW -1 -6 -2 -3 -7 -7 -2 -6 -7 
RF 0 -3 -6 -2 _2 -11 o -3 -7 
MRF -1 -3 -7 -2 -4 -10 -1 -4 -9 
MMNI 1 -2 -1 0 -1 -1 0 -2 -3 

Cluster III 
LD/RI _2 -13 -21 1 —9 -13 -2 -8 -16 
TW 1 3 3 1 1 2 1 1 4 
RF -2 -4 -14 0 -1 -3 -1 -1 _5 

MRF -2 -3 -13 0 -1 _3 -1 -1 -3 
MMNI -2 _2 -1 0 0 -2 _-JL 0 -2 

Cluster IV 
LD/RI 1 -9 -14 2 -9 -14 0 -9 -16 
TW 3 4 7 4 6 13 3 9 16 
RF 0 -2 -1 2 -3 -5 -3 -2 -3 
MRF 0 -2 -3 0 -3 -4 1 -2 -6 
MMNI 0 -1 0 1 0 1 1 1 3 
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Table 8.6: Bias in H (in hundredths; i.e., —2 stands for —.02) 
for Three Clusters of Crying Data Items, for Five Imputation 
Methods, Three Missingness Mechanisms, and Three Percentages 
(5, 10, and 20) of Imputed Item Scores (Cluster I: J = 22, H = .43; 
Cluster II: J = 14, H = .41; Cluster III: J - 18, H = .30). 

Missingness Mechanism 
Method MCAR MAR Nonignorable 

5 10 20 5 10 20 5 10 20 
Cluster I 

LD/RI 
TW 

1 
_^ 

-12 
-2 

-20 
-4 

0 
-1 

-13 
-2 

-22 
-4 

-2 
-2 

-12 
-4 

-22 
-6 

RF -1 -1 -3 0 -1 -3 -1 -2 -5 
MRF -1 -1 -3 i -1 -3 -1 -2 -5 
MMNI 0 0 0 0 -1 0 0 -1 -1 

Cluster II 
LD/R I -1 -9 -16 2 -9 -16 0 -10 -17 
TW -2 -4 -7 -2 -4 -7 -3 -6 -9 
RF 0 -1 -2 0 -1 -2 -1 _]_ -4 
MRF 0 0 -2 0 -1 -2 0 -1 -4 
MMNI 0 0 0 0 0 0 0 0 -1 

Cluster III 
LD/R I 
TW 

0
0
 -10 

0 
-17 
-1 

0 
0 

-10 
0 

-16 
-1 

-1 
0 

-10 
-1 

-16 
-1 

RF -1 -1 -3 -1 -1 -3 -1 -2 -4 
MRF -1 -1 -4 -1 -1 _3 -1 -1 -4 
MMNI 0 0 -1 0 0 -1 0 -1 -1 
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— .04. Methods RF and MRF performed best yielding unbiased or almost 
unbiased results in all cases. 

Coping data. The results for the four clusters of the Coping data are 
presented in Table 8.5. For Cluster I, all methods except LD/RI yielded a 
small bias in H in all conditions; method MMNI gave the best results. 

For Cluster II, method LD/RI had a small bias for 5% missing item 
scores and a large negative bias for 10% and 20% missing item scores. 
Methods TW, RF, and MRF had a small negative bias within the range 
[—.07, .00], for 5% and 10% imputed item scores, and a larger negative bias 
within the range [—.11, —-02], for 20% imputed item scores. Method MMNI 
was the most successful method, the largest bias in H being —.03. 

Similar to Cluster II, for Cluster III method LD/RI showed a large 
negative bias for 10% and 20% imputed item scores. Method TW led to a 
small positive bias in H, and method MMNI led to a small negative bias. 
Methods RF and MRF showed a large negative bias (—.14) in H when 
applied to data with 20% item scores that were MCAR. This unexpected 
result may be related to the small number of items in Cluster III. This is 
further elaborated in the Discussion. 

Similar to Cluster II and Cluster III, for Cluster IV method LD/RI 
showed a large negative bias for 10% and 20% imputed item scores. Meth­
ods RF, MRF, and MMNI gave the best bias results, which were between 
-.06 and .03. Method TW showed large positive bias (.07, .13, and .16) 
when applied to data with 20% imputed item scores. This unexpected 
result may also be related to the small number of items in Cluster IV. 

For all item clusters it was found that there were only small differences 
among MCAR, MAR, and nonignorable missingness. It was also found for 
all clusters that methods RF and MRF produced approximately the same 
results. 

Crying data. The results for the three clusters of the Crying data are 
presented in Table 8.6. The results were similar for the three clusters. For 
5% imputed item scores all methods led to a small bias in H within the 
range [-.03,02]. For 10% and 20% imputed item scores, methods TW, RF, 
MRF, and MMNI produced satisfactory results although, when applied to 
Cluster II, method TW produced a bias that was a little higher (within the 
range [—.04, —.09]). Method MMNI performed best. There were only small 
differences among MCAR, MAR, and nonignorable missingness. 

8.5 Discussion 

This chapter showed that using method LD in Mokken scale analysis can 
result in cluster solutions that deviate much from the cluster solutions that 
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would have been obtained had the data been complete. For 10% and 20% 
missingness, the number of cases left may be so small that Mokken scale 
analysis becomes impossible. These results are in line with earlier studies 
on method LD (e.g., Schafer, 1997, p. 23). The alternative benchmark, 
method RI, led to large values of MIN and large biases in H. 

By using total scores on the J items, methods TW, RF, and MRF make 
use of the property that all items are indicators of the same latent variable. 
The advantage of method TW is its simplicity, which makes the method 
easy to use for researchers. The values of MIN and the bias in H resulting 
from method TW were large for the Verbal Analogies data and smaller for 
the Coping data and the Crying data. 

The results for methods RF and MRF were similar. The main reason 
for choosing multiple imputation over single imputation is to obtain more 
stable results and correct standard errors. For Mokken scale analysis the 
standard errors of H usually do not play an important role, and the bias 
and the values of H produced by methods RF and MRF were similar. Thus, 
we could not demonstrate the advantage of method MRF over method RF. 
Methods RF and MRF are not as simple as method TW and involve some 
computational decisions, such as the sample size of the restscore-groups 
and the weight given to each restscore. In general, methods RF and MRF 
performed a little better than method TW with respect to MIN values 
and bias. 

We found a large bias in H for imputation methods RF and MRF, 
for a cluster of 3 items (Coping data, Cluster III), 20% missingness, and 
missingness mechanism MCAR. When J = 3, the restscore is based on two 
items. Given these conditions, theoretically under MCAR it is expected 
that 32% of the sample has a missing score on one item and 4% of the 
sample has missing scores on both items. This may have caused inaccurate 
rest-score estimates which led to the large bias. 

Method MMNI yielded the lowest M/7V-values and the smallest bias 
of all methods when the number of items was less than 23 (Crying data, 
Cluster I). For larger item sets (Verbal Analogies data [J — 31], and the 
Crying data [J = 54]), the results for method MMNI were worse than the 
results for method LD/RI. The reason may be the EM-algorithm in program 
NORM reached a local optimum for which the fit was much worse than the 
required fit. The algorithm then kept iterating (without improvement) until 
the maximum number of iterations was reached, yielding a badly fitting 
model. Consulting the auxiliary statistics provided by NORM and keeping 
track of the number of iterations may prevent the researcher from using 
these wrong estimates. The successor of NORM, which is incorporated in 
the software package S-plus 6 for Windows (2001), gives an error message 
in these situations without supplying completed data. 
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Currently, a more systematic investigation (Van Ginkel, Van der Ark, & 
Sijtsma, 2004) is conducted to determine the effect of multiple imputation 
using the methods discussed here on results of Mokken scaling and several 
other psychometric methods. Using simulated data, several comprehensive 
designs were analyzed to obtain a more definitive impression about the 
usefulness of our (multiple) imputation methods. 
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Chapter 9 

Building IRT Models From 
Scratch: Graphical Models, 
Exchangeability, Marginal 
Freedom, Scale Types, 

and Latent Traits 

Henk Kelderman 
Vrije Universiteit Amsterdam 

9.1 Introduction 

Because measurements in the Behavioral and Social Sciences are often quite 
fallible, tests consist of a number of separate items whose responses are 
combined to obtain a more reliable test score (Cronbach, 1951). This, of 
course, only makes sense if all items measure the same attribute, which im­
plies that their response probabilities should satisfy certain requirements 
embodied in a, say, common attribute criterion (CAC). To date, a CAC is 
formulated as a statistical model that explicitly contains a latent variable 
(CACL). The latent variable, say 0, represents the degree to which a sub­
ject possesses the common attribute. See Hambleton and Van der Linden 
(1997) for an overview. Because the interpretation of the latent variable 
is independent of a particular test, they are easily interpreted as the 'true' 

167 



168 Kelderman 

attribute. Consequently they are very attractive from a realist perspective 
(Borsboom, 2003, p. 49). However some conceptual problems arise. 

Because 9 is unobserved, the precise nature of its relations with the item 
responses and other variables cannot be determined on empirical grounds. 
So, one needs a theoretical justification. However, unlike Physics, where 
theory is almost always cast in mathematical form, the Behavioral and 
Social Sciences rarely have such theories and are of a purely semantic nature 
(Borsboom, 2003, p. 5). At best, these theories make statements about the 
absence or presence of relations in a nomological net (Cronbach & Meehl, 
1955; Hempel, 1965). As a result, the definition of the nature of these 
relations is usually based on tradition, mathematical convenience, or even 
faith. 

Because in many research applications, the focus is on the existence of 
relations of the attribute with other constructs in the nomological net, it 
is usually considered not necessary to use latent variables. Unfortunately, 
in practice, most researchers use a rather crude score function such as the 
simple sum of arbitrarily scored item responses. Obviously, these scoring 
functions are far from optimal because items may vary widely in quality 
and meaning. Consequently, even if it is not necessary or one is not willing 
to explicitly assume a latent variable underlying the test response, one still 
has to have an appropriate measurement model that yields a suitable test 
score under some defensible CAC. 

This chapter starts by proposing some minimal qualitative criteria that 
the joint distribution of item responses and other variables in the nomo­
logical net should obey if they are to measure a common attribute. We 
formulate two CACs in terms of manifest variables only (CACMs). Al­
though all these criteria are justified by the fact that the items should 
measure a common attribute they are nonparametric in the sense that no 
latent variable is explicitly introduced to describe the distribution. To a 
certain extend, these assumptions provide a justification for parametric la­
tent variable models. 

Next we describe CACMs embodying various relaxations of DeFinetti 
exchangeability of measurements, depending on what part of the distri­
bution is of interest in a particular application. Various exchangeability 
models for nominal data are discussed and represented as graphical mod­
els. It is shown that under certain realistic assumptions exchangeability 
models may also be formulated for metric item scores. 

To set the stage, we start with CACMs, based on properties of the 
independence graph of the observed variables. 
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Figure 9.1: Independence Graph for Exchangeable Measures in 
a Nomological Net: X\-X±, Items of Raven's Progressive Matrix 
Test; Zi, Peripheral Nerve Conduction; Za, Velocity Frequency 
of the Alpha Wave; Zs, Cerebral Glucose Metabolism; Z±, Im­
pulsiveness; Zs, Crime Prevalence; Zg, School Success; Zy, Job 
Success. 

9.2 Graphical Criteria 

CACMs based on graphical criteria are only concerned with the structure 
of relations of the item responses and other variables in the independence 
graph (Cox & Wermuth; 1996). Figure 9.1 depicts an undirected inde­
pendence graph GO describing the (in)dependence structure of a set of 
observed variables. The vertices in the graph denote variables X\,..., X±, 
Zi , . . .  , Zj. If two variables are connected (not-connected) by an edge they 
are dependent (independent) given the remaining variables in the graph. 
M, V and L are subsets of variables, where M contains items that are sup­
posed to measure a common attribute, V is the set of collateral variables 
to which the responses M are directly related, and L are variables to which 
they are not directly related. Because in most studies subjects respond in­
dependently from each other to categorically scored items, we assume that 
the joint distribution is Poisson, multinomial, or product multinomial, de­
pending on which aspects of the distribution are of interest and depending 
on the sampling scheme under which the data were generated. Furthermore 
we assume, for simplicity, that all item responses have the same number of 
response categories k. 

As a hypothetical example, consider a set M of appropriate measures 
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Figure 9.2: Independence Graph for Exchangeable Measures in a 
Nomological Net: Xi-X%, Orientation in Time; X^-X^, Orientation 
in Space; Z\, Age; Z%, Dementia as Diagnosed From Neurological 
Measurements; £3, Gender. 

of general intelligence such as the items of Raven's progressive matrix test 
(Raven, Raven, & Court, 1991), a set V that contains the physiological 
measures peripheral nerve conduction, Z\, velocity frequency of the alpha 
wave, ZQ, and cerebral glucose metabolism, Zs, and a set L with measures 
of impulsiveness, Z±, crime prevalence, Zs, school success, Ze, and job 
success, Zy (Jensen, 1998, chap. 6). 

The only statistical hypothesis that an undirected graphical model states 
is that (sets of) variables that are not connected by an edge are indepen­
dent given the variables that indirectly connect them in the graph. For 
example, in Figure 9.1 the variables Xi, a test item, and Zy, job success, 
are independent given the physiological variables Zi, Za, and Z^. 

As another example consider a set of items constructed to measure 
dementia. In Figure 9.2 M contains four items, where the first two items 
measure orientation in time, and the last two items orientation in space. 
The other variables from the nomological net are age, Zi, dementia as 
diagnosed from neurological measurements, Z^ and gender, Z$. It is seen 
that the item responses are independent of gender given age and dementia 
measured by neurological instruments. 

The graphs in Figure 9.1 and Figure 9.2 are undirected and do not 
contain any information about the causal direction of the relations. Of 
course there are pervasive substantive arguments that some of the relations 
in the graphs are causal, for example, the relation between cerebral glu­
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cose metabolism and measured intelligence and between age and dementia. 
However, because we want to focus on the properties of the item responses 
and keep the discussion of CACMs completely general, we limit ourselves 
at this stage to the undirected graph. 

9.2.1 Qualitative Internal Consistency 

The qualitative internal consistency (QIC) CACM only imposes restrictions 
on the configuration of the edges between the item responses. Its definition 
is as follows. 

Definition 1 (qualitative internal consistency) The set of measures M is 
a clique. 

A clique is a graph-theoretical term for a maximally connected subgraph, 
that is, a subgraph where all members of the clique are connected to all 
other members of that subgraph. It is seen in Figure 9.1 and Figure 9.2 
that in both examples the items satisfy the QIC CACM. 

The rationale of this CACM is as follows. If two items are conditionally 
independent in the graph, there are two possibilities: Either the items mea­
sure different attributes or the items measure an attribute that is perfectly 
measured by the remaining variables in the graph. In the first case one 
or both items should be removed, in the second case both items would be 
superfluous and should be removed. So a set of test items should satisfy 
QIC. 

9.2.2 Qualitative External Consistency 

The next criterion for items to measure same attribute and that attribute 
alone is qualitative external consistency (QEC). It imposes restrictions on 
the configuration of the edges between the elements of M and the remaining 
vertices in the graph. The boundary, bd(a), of a set a is the set of vertices 
that have an edge with one or more edges in a. In Figure 9.1 and Figure 9.2 
the set V is the boundary of M. The vertices on the boundary of the set 
of test items may be called collateral variables. The QEC criterion states 
that all items should have the same set of collateral variables. QEC can 
formally be defined as 

Definition 2 (qualitative external consistency) 
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It is readily verified that M in the graph in Figure 9.1 satisfies the QEC 
criterion, but the graph in Figure 9.2 does not. In the dementia example, 
the items measuring orientation in time have a direct relation to age. That 
relation is missing in the items measuring orientation in space. Thus, elderly 
people may not necessarily need to suffer from dementia, Z^, to lose track 
of time. They do, however, usually know where they are located, unless 
they are Cemented. If items concerning orientation in time have different 
collateral variables than items concerning orientation in space, both types of 
items cannot measure the same attribute and that attribute alone. Which 
items are functioning differentially and which are not depends on what one 
wants the test to measure. 

If one item of the progressive matrix test is directly related with school 
success and the others are not, some subjects may have had an opportu­
nity to learn the solution process of that particular item but not that of the 
other items. If general intelligence is an attribute not directly related to ed­
ucation, the item functions differentially. Conversely, if general intelligence 
is directly related to cerebral glucose metabolism, every single measure of 
general intelligence should be directly related to it. If an item does not, it 
fails to measure the intended attribute and also functions differentially. 

It should be noted that if a set of items satisfies QIC and QEC, it 
does not necessarily mean that all items measure the same attribute. That 
depends to a large extend on whether the graph is sufficiently complete 
to represent the nomological network around the attributes measured by 
the test. For example, the union of two subsets of items measuring two 
different attributes that have the same sets of collateral variables in the 
graph may satisfy QEC. In that case the graph may represent too small 
a part of the nomological net to distinguish both attributes. As another 
example consider a graph where there are no collateral variables and where 
each item measures a different attribute. If the attributes are all positively 
related, such as is the case with intelligence factors, the total set of items 
may well satisfy QIC. 

QIC and QEC are purely qualitative CACMs. They depend only on the 
presence or absence of edges in the independence graph. They are indepen­
dent in the sense that one does not imply the other, although empirically 
a violation of the QEC may go very well together with a violation of QIC 
and vice versa. QIC and QEC are qualitative in the sense that they do not 
say anything about the strength of the relations between the variables in 
the graph. If it is deemed unacceptable that some items are more strongly 
related to some variables in V than other items, one must impose additional 
restrictions on the items' relations. One way to do this, is to require that 
the items' relations are in some sense exchangeable. 
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9.3 Exchangeability 

Because the variables in M are all independent of L given V, we may limit 
ourselves to describing the joint distribution of M U V. The strongest CAC 
can be derived from DeFinetti's (1937) notion of exchangeability applied 
to the item responses. 

The idea is as follows. If it is completely indifferent which of the items 
is used, their responses should have perfectly identical statistical properties 
in the nomological net. In that case, the joint distribution should be per­
mutation invariant in the item responses, that is, the item responses should 
be exchangeable in the sense of DeFinetti (1937). 

Denote item responses that are in some sense exchangeable by X\, i = 
1, . . .  , m, where m is the number of items, that is, the number of elements, 
|M|, of M. Let the coordinate projections X = (X^i € M) and Z = 
(Zj; j € V) denote random vectors with realizations x and z and with joint 
distribution P(Z,X). 

DeFinetti measurement exchangeability (DME) is formally denned as 

Definition 3 (DeFinetti Measurement Exchangeability) For all permuta­
tions x* = perm(x) 

P(Z = z,X = x) = P(Z = z,X = x*). (9.1) 

Note the following properties of DME. First, this condition is not af­
fected by a single one-to-one transformation of all Xi (i £ M). Second, 
DME implies that any coefficient describing the association between item 
responses Xi and Zj (j 6 V) must, by symmetry, be invariant over items 
and that the associations between responses are all the same. Third, DME 
also holds for all subsets a of M because integrating out unpermuted Xi, 
i & M — a, does not change DME. 

Gulliksen (1968) hinted at this CAC when he required that measure­
ments of the same attribute should be interchangeable in the sense that 'it 
is indifferent as to which of the measures is used.' Lazarsfeld (1959, pp. 
113-117) proposed a similar CAC (see also Mokken, 1971, p. 2). Huynh 
(1978), and more recently Schuster (2001), applied the DME CAC to for­
mulate a model for raters to determine the extend to which it is indifferent 
which of the raters is used. 

However, the DME CACM seems quite unrealistic for most applications 
because, by symmetry, it implies that the distributions P(xa) for all subsets 
a C M should be identical, that is 
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which, for |a| = 1, implies 

In most practical measurement situations, marginal distributions of the 
item responses may be different due to systematic or random measurement 
errors. In principle, DME can be made insensitive to them by ignoring 
certain response marginals. 

9.3.1 Ignoring Marginal Distributions 
DME's implication (Equation 9.2) can be removed by conditioning out the 
distribution of the item responses (Equation 9.1). Joint- variable condition­
ing measurement exchangeability (JCME) is then defined as 

Definition 4 (Joint-variable Conditioning Measurement Exchangeability) 
For all permutations x* = perm(x), 

It is easily shown that Equation 9.4 together with Equation 9.2 is equivalent 
to DME. 

JCME ignores the joint marginal distribution of the item responses. 
Therefore, the CAC is only sensitive to the associations with collateral 
variables V. It is insensitive to deviations from DME due to systematic 
measurement errors affecting associations within M. These measurement 
errors may be caused by method factors that are not necessarily related 
to the collateral variables. Test-taking artifacts may occur when applying 
measures in a short time after one another (Spearman, 1910). 

Instead of leaving the joint distribution of the item responses unre­
stricted in DME, one may relax each of the single-variable marginal item 
response distributions P(xi) in DME. This yields the single-variable condi­
tioning measurement exchangeability (SCME) CAC defined formally as 

Definition 5 (Single- variable Conditioning Measurement Exchangeability) 
For allaCM 

where b = M — a. 

It is readily shown that Equation 9.5 and Equation 9.3 are jointly equivalent 
to Equation 9.1. SCME may be defended on the grounds that random or 
systematic method factors that affect only a single item may level each 
other out in the test score and would only lead to a uniform lowering of the 
relations with other variables in the nomological net. In the next section 
the log-linear model is used to test CME. 
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9.4 Log-linear Models For Exchangeability 
A general parametric model for categorical data is the log-linear model 
(LLM). A LLM arises by setting logP(xz) equal to a linear model. In 
this chapter, we take the linear model to be a hierarchical model with 
main effects describing the effects of one variable and interaction effects 
describing the effects of the combination of two or more variables. To keep 
equations short, we denote the sum of all elementary main and interaction 
terms within a set of variables by the term of the highest order. It is often 
instructive to specify one or more lower order terms explicitly. In that 
case it assumed that the term is subtracted from the sum of terms that is 
specified in the model. For example, the sum of all main and interaction 
effects of the set of measures a is denoted by A*a° whereas in A*4 + A^1 , 
with i € a, A^° denotes the sum of all main and interaction effects except 
A** . Thus, the fully saturated hierarchical LLM can be written as 

or alternatively 

where superscripts are suppressed for simplicity. In Model 9.6, A is the 
general mean effect, Ax the sum of main and interaction effects of and 
between x, Az the sum of main and interaction effects of and between z, 
and Axz the sum of interaction effects between x and z. To obtain an 
identifiable model, the elementary A-parameters are constrained to sum to 
zero over each scalar index. 

To model DME one has to set 

An alternative way to model exchangeability is to use sum scores. Let 
tihfai) — I(zi,h), where I(xi,h] = I if Z; = h and 0 otherwise, and let 
ti(zi) = (tn(xi), . . . ,tih(xi), . . . , t i k ( x i ) )  . Note that ti(xi) is a one-to-one 
function of Xi . Furthermore, let 

As addition is associative, we have 

so instead of the restriction in Equation 9.7, we may set 
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to model DME. 
To model JCME we do not put restrictions on the parameter corre­

sponding to the main and interaction effects of the item responses Ax, so 
we have 

Note that this model does not contain a term At because t is a function of x 
so that At can be fully absorbed in Ax. The model satisfies JCME because 
it is easily shown that because there is a one-to-one correspondence of Ax 

and P(x), the marginal distribution P(x) is unrestricted. 
The model for SOME is 

In this model, the term At should be present because it describes exchange­
able associations between the item responses, whereas the \Xi describe 
only main effects. Furthermore, it is easily shown that in this model, the 
marginal distributions P(xi) are unrestricted. Thus the model corresponds 
to SOME. 

Graphical models for SCME 

Klein, Keiding, and Kreiner (1995) studied the graphical version of SCME 
extensively. In SCME the interactions between the item responses and be­
tween collateral variables and item responses can all be described by their 
relations with t. Therefore, the undirected graph GT, Figure 9.3, has 
a vertex representing the composite test score random variable T. How­
ever, GT is a quasi-independence graph rather than an independence graph; 
since T is a function of X, the probability space of (X', T', Z')' is restricted 
(an apostrophe denotes the transpose of the column vector). Haberman 
(1979) describes the theory of log-linear models for restricted probability 
spaces. In this theory, variables are quasi-independent if—according to the 
model—they would be independent in the unrestricted probability space. 
A quasi-independence model eliminates the associations due to structural 
constraints on the probability space from the empirical associations. Be­
cause graphical models for discrete data are essentially systems of log-linear 
models, we can also formulate graphical models for restricted probability 
spaces. The graph then becomes a quasi-independence graph rather than 
an independence graph. The corresponding graphical model is developed 
as follows: 

Let f^X) ^TI and QZ denote the probability spaces of X, T, and Z 
respectively. Let E be the probability space of (X', T')', that is, the subset 
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Figure 9.3: Quasi-Independence Graph for Exchangeable Mea­
sures and Test Scores in a Nomological Net: X\-X^ Items of 
Raven's Progressive Matrix Test; Zi, Peripheral Nerve Conduc­
tion; Z<2, Velocity Frequency of the Alpha Wave; Z^, Cerebral 
Glucose Metabolism; Zj, Impulsiveness; Zs, Crime Prevalence; 
Ze, School Success; Z?, Job Success. 

of the Carthesian product fix x ̂ T that satisfies the functional constraints. 
Consequently, the corresponding probabilities P(xtz) satisfy 

Using this equation, the quasi- independence graph can now be defined in 
terms of the parametric log-linear models for measurement exchangeability 

where each (conditional) distribution in the right hand side is described by 
the appropriate (quasi) log-linear model for the probability spaces (x', t')' € 
H, (z',t')' e fiz x ^T, and t € 0.^, respectively. 

Similarly, for SOME one has conditional quasi independence of the item 
responses given the score 

because of the additivity in 
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Figure 9.4: Independence Graph for Exchangeable Measures 
With Latent Variable in a Nomological Net: Intelligence Exam­
ple. 

The corresponding quasi-independence graph GT is depicted in Fig­
ure 9.3. Thus, SOME in GO is equivalent to quasi independence in GT- It 
is seen from Figure 9.3 that in GT all empirical associations among Xi-
X^Z\-Zj, in the restricted probability space are explained by T. 

9.5 Latent Variables 
In latent variable models, it is assumed that the measures are uniquely 
related to a vector of latent variables 0, which means that given #, each 
item response is independent of all other variables, that is 

The corresponding independence graph GL is depicted in Figure 9.4. 
A general SCME-type LLM for the associations between item response 

x and latent variables 0 is 

The proportionality constant Ci(0) ensures that the probabilities sum to 
one. Assuming independence of the Xi given 0, the model for the joint 
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response is 

From this we have 

with 

Dividing Equation 9.12 by Equation 9.13 we have 

which does not depend on 0. So we have 

which is identical to Equation 9.11. 
Because t is a function of x we can write 

so one obtains 

The model for the observed data is then 

where 

Because by Equation 9.15, P(t|z) is restricted to be consistent with an 
underlying latent variable 0, CACL (Equation 9.14), is a special case of 
the CACM (Equation 9.10). For the case of the dichotomous Rasch model 
Cressie and Holland (1984) and Hout, Duncan, and Sobel (1987) have stud­
ied the consequences this restriction. The restriction leads to a complicated 
set of inequality constraints on the moments of the test score distribution. 
These constraints are violated if there are gross differences in the proba­
bilities of consecutive score values. So to be consistent with Equation 9.15 
the test score distribution should be smooth. 
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The class of log-linear latent variable models contains a number of well-
known logistic item response models. Relevant for SOME is Rasch' model 
for polytomous items (Rasch, 1960; Andersen, 1973). This model assumes 
that the propensity of answering in a particular type of category h can be 
described by a latent variable Oh (h — 0, . . . , k). Let 5Xi be a parameter 
describing the difficulty of response Xi. To make the parameters identifiable 
SQ = 0 and^o = 0. The vector of subject parameters is denoted by 0 = 
(0i, . . . , Oh, . . . , 6k}' • The polytomous Rasch model for the probability that 
a subject with latent values 0 gives a response Xi is 

The conditional probability of the joint response is 

which is equivalent to Model 9.12 if Y^h=i ^h^h *s written as the vector 

product t'9 and 5Xi as 2 ( A^' —A*4 J , to obtain a contrast with the zero 
category. 

9.6 Some Generalizations and Restrictions 
The models so far all assume that item responses are purely qualitative 
and that the category scores Xi only serve to identify a certain response 
category. Furthermore, it is assumed that the x^ (i = l , . . . , m  ) are all 
the same for categories with the same meaning and different for categories 
with different meaning. This assumption makes the models quite restrictive 
since they imply that all items are equally good predictors of their collateral 
variables. 

One obvious way to generalize CME models is to use category scores 
with metric properties. Kelderman (in press) studied exchangeability of 
transformed continuous multivariate normally distributed item responses. 
Similarly, for multinomially distributed categorical variables one could trans­
form each nominal category score Xi into a metric category score Ui = Si(£j), 
where Sj is a one-to-one function with as domain the set of natural num­
bers and range the set of real numbers. Using this transformation it seems 
that one can obtain exchangeability models for metrically scored item re­
sponses. The only formal differences between metric exchangeability mod­
els and nominal exchangeability models is then that the metric category 
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scores U{ must be exchangeable rather than the nominal scores Xi and 
tih(xi) — I(%i,h) must be replaced by tih(xi) = I(xi,h}ui in all LLMs. 

However, by allowing the category scores to be real numbers, serious 
difficulties arise. As the metric category scores Ui are real numbers they 
are unique, so that the sum score 

identifies the items for which the response is equal to h. Consequently, t will 
be exactly equivalent to the vector of original responses x (Mokken, 1971, 
p. 103), so that At is equivalent to Ax and Atz equivalent to Axz. Therefore, 
in the metric case, all versions of exchangeability LLMs discussed so far 
degenerate into the saturated LLM (Equation 9.6). To make the models 
nondegenerate one must put constraints on the parameters At and/or Atz-

The first way to make CME models nondegenerate is to make use of 
the metric property of U{ to restrict the interaction parameters Atz in GT 
to conform to an association model. For simplicity consider the case of one 
collateral variable Zj and some dichotomous items scored Ui = 0,1. So one 
has Xi — tn = 0,1 and one must set to = 0 for identification. Assuming 
that the collateral variable and the item responses can be scored metrically, 
the log-multiplicative association model for the interaction of each of the 
item responses Xi with a collateral variable is 

with constraints 

and 

In Equation 9.16, the parameter nx* is a category score assigned to category 
Xi of measure i, vz? is a category score for category Zj of collateral variable 
j, and the parameter <j)XiZJ describes the degree of association between Xi 
and Zj. If the restriction in Equation 9.16 is to be used in exchangeability 
models, we have to restrict all association parameters <j)XiZi to be equal over 
items because, by symmetry, exchangeable scores should all have the same 
associations with the collateral variable(s). So (j)XiZi = (j>XZj, where X 
denotes an arbitrary item. Furthermore it is assumed that the associations 
between item responses and the collateral variable are additive, that is, 
there are no higher order interactions between Zj and the item responses. 
Using Equation 9.16 under these restrictions we have the metric JCME 
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model 

where t\ = ̂ Ui with Ui = /uXi . Thus, in this model the t\ x Zj interaction 
has been restricted to conform to a log-multiplicative association model for 
the item by collateral variable interactions. The theory for the estimation 
and testing of log-multiplicative association models has been described by 
Goodman (1986). 

The second way to obtain nondegenerate metric exchangeability models 
is to restrict At and Atz by assuming an underlying latent variable. It is 
easily shown from the JCME (Equation 9.8) or the SOME (Equation 9.9) 
LLM that 

As a result, restrictions on P(t z) will generally lead to restrictions on At + 
Atz. One way to restrict P(t|z) is to specify some distribution function for 
P(0\z) in Equation 9.15, for example, the multivariate normal distribution. 

If one has sufficient confidence in the distribution of the latent vari­
ables, metric exchangeability models may be formulated for GL- They 
would involve a latent variable and conditional independence assumptions 
of the item responses given the latent trait. To estimate latent variable 
LLMs, the distribution of 9 is usually approximated by a discrete multino­
mial with probabilities and scale points fixed according to Gauss-Hcrmite 
Quadrature. By taking enough scale points 9 can be approximated to any 
degree of precision by a log-linear latent-class model (Bock & Aitkin, 1981, 
Heinen, 1993). Heinen (1993) describes more general log- multiplicative la­
tent variable models to which these restricted log-linear latent-class models 
apply. It is a subject of further research to assess to what log-linear latent-
variable models are consistent with exchangeability models. 

Almost all models in this chapter can be estimated and tested with the 
programmes iEM (Vermunt, 1997a, 1997b), LOGIMO (Kelderman, 1992, 
Kelderman & Steen, 1988), or DIGRAM (Kreiner, 1992, 2003). IEM is 
useful in the metric case, LOGIMO in the nominal cases. Graphical models, 
can be queried with the program DIGRAM. DIGRAM can also be used to 
generate iEM or LOGIMO setups for log-linear models that are consistent 
with certain graphical models. 
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9.7 Discussion 
In this chapter we described measurement models that are suitable to test 
whether a set of items measure the same attribute. The development of 
CACs was based both on the relation between the item responses and their 
relations with variables in the nomological net. At various points it became 
apparent that the degree to which a CAC has substantive validity depends 
on the extend to which the graphical model is representative for the nomo­
logical net around the attribute to be measured. Therefore we would like 
to discourage the practice—usually unnecessary—to limit the application 
of a CAC to the relations between the item responses only. In that case, 
differential item functioning may go unnoticed and the result may be an 
invalid or unfair test. 

It is particularly important to have a graphical model that is represen­
tative of the nomological net if normal distributions are assumed for the 
latent traits. Suppose that in the dementia example the variable Z^ = 1,2, 
dementia as diagnosed from neurological measurements, has a substantial 
influence on the item responses. If Zi was not in the graph, some latent 
trait distributions P(6\z) would probably be bi-modal with peaks for the 
demented and the nondemented subpopulation. Thus, care should be exer­
cised in making decisions about the type of distribution P(0\z) if the graph 
does not sufficiently cover the nomological net. However, if the nomological 
net contains the most influential collateral variables, the normal distribu­
tion may be justified by the central limit theorem (Billingsley, 1995, chap. 
6) if there are many omitted collateral variables that are approximately 
independent and identically distributed. 

If a sufficiently large part of the nomological net is measured, theory 
driven researchers may abstain from modelling the relations between the 
item responses. In applied fields such as Education and Personnel Selection 
where fairness of individual scores is an issue, in addition to differential item 
functioning, systematic measurement errors due to test-taking artifacts are 
deemed more problematic. In that case, the CAC should also be sensitive 
to deviations of the expected relations between item responses. 
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10.1 Introduction 

Traditionally multiple choice (MC) items are scored binary. One point is 
earned when the correct answer is chosen and none are when any of the in­
correct options (hereafter called "distractors") are chosen. This facilitates 
data analysis but it also entails the loss of information contained in the 
distracters (e.g., Levine & Drasgow, 1983). That is, we loose the informa­
tion contained in the fact that there are different ways to answer an item 
incorrectly. 

There have been various attempts to include the incorrect options into 
an item response theory (IRT) model (e.g., Bock, 1972; Thissen & Stein­
berg, 1984). Here, we discuss a new IRT model that we call the Nedelsky 
model (NM). We focus on the psychometric properties of the NM and how 
they can be tested, and discuss a practical application. The reader is re­
ferred to research papers by Verstralen (1997a), and Bechger, Maris, Ver­
stralen, and Verhelst (2003) for details about the estimation of the model 
by means of an EM-algorithm. 

187 
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The NM derives its name from a method for standard setting suggested 
by Leo Nedelsky in 1954. Nedelsky's method is based on the idea that a 
person on the borderline between passing and failing responds to an MC 
question by first eliminating the answers he or she recognizes as wrong and 
then guesses at random from the remaining answers. The NM generalizes 
this idea in the sense that the selection of the answers is probabilistic and 
applies to all levels of ability. As in Nedelsky's method, it is assumed that 
the correct alternative is never rejected; that is, respondents will never 
think that the correct answer is wrong. Clearly, the NM is a restrictive 
model and we indicate how some of its assumptions may be relaxed. 

Section 10.2 provides a brief description of the NM. Some of the psy­
chometric properties of the model are discussed in detail in section 10.3 
and we provide an informal procedure to evaluate them in section 10.4. In 
section 10.5, the NM is related to the two-parameter logistic (2PL) model 
and the three-parameter logistic (3PL) model. In section 10.6, the NM 
is applied to real data to see how it works in practice. Section 10.7 con­
cludes the chapter. Mathematical proofs are in an Appendix to enhance 
the readability of the chapter. 

10.2 The Nedelsky Model 
Consider an MC item i with Jj + 1 options arbitrarily indexed 0, 1, . . . , Ji. 
For convenience, 0 indexes the correct alternative. Let the random variable 
Sij indicate whether alternative j is recognized to be wrong, and define Sj 
by the vector (0, 5ii, . . . , SijJ. We refer to Si as a latent subset. The first 
entry in Si is fixed at 0 because it is assumed that the correct alternative 
is never rejected. We comment on this assumption in the Discussion. The 
random variable S* = ]C/li &ij denotes the number of distracters that are 
recognized as wrong. 

The probability that alternative answer j is recognized as wrong by a 
respondent with ability 6 is modelled as 

where Cij represents the difficulty to recognize that option j of item i is 
wrong; SM = 0 implies that £i0 = oc. The discrimination parameter ai is 
assumed to be positive so that E[S^\9] = X^/=i ^T(Sij — 1|#) is increasing 
in 0. It is helpful to think of each distracter as a dichotomous 2PL item 
where a correct answer is produced if the distracter is seen to be wrong. 

As explained in the Introduction, the process that generates the re­
sponse is assumed to consist of two stages. In the first stage, a respondent 
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eliminates the distracters he recognizes to be wrong. Formally, this means 
that he draws a latent subset from the set of possible subsets QS^ • Assum­
ing independence among the options given 9, the probability that a subject 
with ability 9 chooses any latent subset Sj e flsi is given by the likelihood 
of Jj independent 2PL items; that is 

where the sum 53-=isijCij could be interpreted as a location parameter 
for the subset Sj. If one suspects that there are dependencies among the 
options, a more appropriate model can be used instead (e.g., LOGIMO. 
Kelderman, 1984; The chain NM, Verstralen, 1997b). 

Once a latent subset is chosen, a respondent is assumed to guess at 
random from the remaining answers. Thus, the conditional probability of 
responding with option j to item i, given latent subset Sj, is given by 

where Xi = j denotes the event that the respondent chooses alternative 
sj, and v (sf) = X^loU ~ *h) — Ji + I — sf the number of alternatives 

to choose from. If a respondent knows the correct answer, Sij = I for 
j ^ 0, v(s+) = 1, and Pr (Xi = 0\Si = (0, 1, . . . , 1)) = 1. For later refer­
ence, Pr(Xi — j|Sj = Sj) is called the response mapping. Note that once 
a subset is chosen, each alternative in the subset is equally likely to be 
chosen. This assumption can be relaxed by changing the response mapping 
as in Equation 10.3, below. Note further that the second stage involves a 
randomization not involving 9, and hence can carry no information about 
9. 

Combining the two stages of the response process, we find that the 
conditional probability of choosing option j with item i is equal to 

It is assumed that respondents independently choose subsets for different 
items so that the item responses are independent given 9. This is called 
local stochastic independence (LI). 
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Figure 10.1: Conditional Probability of Choosing Option j of Item 
i as a Function of #; j — 0 , . . .  , 4. 

There arc four properties of the model that are readily seen in Figure 
10.1. First, Pr(S+ = 0|0) -> 1 if 0 -» -oo which implies that 

Second, if 9 -* oo, Pr(S+ = Ji\0] -+ 1 and 

Third, 

and the probability of a correct response is always larger than the probabil­
ity to choose a distracter. Finally, Figure 10.1 suggests that Pr(A"j = 0|#) 
is an increasing function of 9 and it can be proven that this is indeed the 
case (see Corollary 1). 

For later reference, we note that because: (a) the latent trait is unidi­
mensional, (b) the probability of a correct response is an increasing function 
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of 0, and (c) LI is assumed, the NM pertains to the class of monotone IRT 
models (Mokken, 1971; Stout, 2002 and references therein). 

10.3 Monotone Options Ratio 

Option ratios are denned as 

where j and t index different answer alternatives. A model is said to have 
monotone option ratios (MOR) if all option ratios are monotone in 0. An 
equivalent definition is that 

is a monotone function of 0. 

Theorem 1 The Nedelsky model has MOR. 

The NM can be shown to have MOR. Specifically, it can be shown that 
V>itj(#) is increasing in 9 for any t and j such that C,it > Cij- As mentioned 
in section 10.2, £io may formally be considered infinite so that tpioj(d) is 
always increasing in 6. If we consider the second definition of MOR this 
means that, if £jt > £jj, 6\Xi — t is larger than 0\Xi = j in the sense of 
likelihood ratio (e.g., Ross, 1996, chap. 9). 

We next mention two properties of the NM that are a consequence of 
MOR: 

Corollary 1 Pr(Xi = 0|0) is an increasing function of 9. 

Corollary 2 //& > Cij, Pr(X4 = t\9) > Pr(Xi = 

Corollary 1 states that Pr(Xj = 0|0) is an increasing function of 9 
and this is true for any model which has MOR. Corollary 2 implies that 
Pr(Xi — t) > Pr(Xi = j) if £it > ^j so that the ordering among the option 
parameters can be inferred from the marginal probabilities. Recall that 
proofs are in the Appendix. 
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10.4 Graphical Investigation of Model Fit 

Consider a test with 7 items. Let -Xjj. denote the number of correct 
responses on the test excluding item i. The following lemma provides the 
key to investigate whether MOR is valid assuming only that the underlying 
model is a monotone IRT model. 

Lemma 1 Let s? > s\. When the model is a monotone IRT model 

for all increasing functions g. 

Let Xi 6 {t,j} denote the event that a respondent chooses either option 
t or option j. Note that 

MOR implies that 

is a monotone function of 9. It follows from Lemma 1 that the probability 
Pr(Xi = t\Xi e {*,j}, A"i~°) is monotone in X^~i}. 

In Table 10.1, n(t, X± ) denotes the number of respondents that have 
chosen response t to item i with X+' correct responses to the other items. 
The proportion Prpfj = t\Xi e {t,j},X+ = s) can be consistently 
estimated by the statistic 

Plots of  X ( + l } against the estimates of Pr(Jf; = t\Xt e {t,j},X^) may 
be used to gain an impression of the validity of MOR. Note that there 
are |(Jj + l)Ji such plots for each item and one would usually look only 
at items and alternatives that are a priori considered suspicious to avoid 
capitalization on chance. Illustrations are given next, in section 10.5. 
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l )Table 10.1: Cross Tabulation of Total Score Deleting Item i [X(
+

Against Item Score Xj. 

0 1 
0 n(0,0) n(0,1) • • • n(0,J) 

Note that many monotone IRT models might satisfy MOR without be­
ing anything like the NM. Thus, if MOR is not violated we should proceed 
to test the exact formulation of the NM before we may conclude that the 
NM fits the data. To this aim, we currently use plots of expected and ob­
served probabilities for each of the response alternatives against estimated 
ability. Illustrations are given in section 10.5. 

10.5 Relations to the 2PL and the 3PL 

Consider a dichotomous item; that is, an item with two alternative answers 
one of which is correct answer. If the item is dichotomous, Ji = 1, and 

where i = Pr(Xi = Q\Sn = 0); the probability to find the correct answer 
by guessing, and Pr(5;i = l\0) is the probability that the respondent knows 
the correct answer. The probability to find the correct answer by guessing 
is fixed at ^ because respondents who failed to eliminate the wrong answer 
find both alternatives equally attractive. 

To relax this assumption, we could include parameters TJJ > 0 to repre­
sent the attractiveness of distracters relative to the correct alternative. In 
general, if Ji > 1, the response mapping would then become 

with TiQ = 1. Figure 10.2 illustrates the effect of the attractiveness param­
eters. 

Consider again a dichotomous item. If Equation 10.3 is used as the 
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Figure 10.2: Conditional Probability of Choosing Option j of Item 
i as a Function of 6; j' = 0 , . . .  , 4. The Upper Figure Shows a NM. In 
the Lower Figure the Attractiveness Parameters of the Incorrect 
Alternatives are Greater than One. As a Consequence, Respon­
dents With Low Abilities Have a Higher Probability Choosing an 
Incorrect Alternative Than Choosing the Correct Alternative. 
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response mapping, Equation 10.2 becomes 

which is equal to the 3PL. Thus, for dichotomous items, the NM is a special 
case of the 3PL where Tii = 1, for all items. The 2PL is obtained when TU —> 
oo; meaning that respondents who did not exclude the incorrect alternative 
will never choose the correct alternative by guessing. When there is more 
than one distracter (Ji > 1), the NM closely resembles the 3PL. That is, 
if we make no distinction between different incorrect responses, NM items 
can be fitted very closely by a 3PL. 

10.6 An Application: The CITO Test 2003 
To see how the NM works in practice we made use of data from the "CITO­
test" which is administered at about 90% of Dutch elementary schools to 
children at the end of the final year of primary education. For our purpose 
we have taken a sample of 2000 children that took the test in the year 
2003 and considered responses to a subset of 20 math items each with four 
alternative answers. An EM-algorithm was used for parameter estimation. 

To assess the behavior of the items we prepared plots of expected and ob­
served probabilities for each of the response alternatives against estimated 
ability. The lines represent expected probabilities although the symbols 
are observed probabilities in ability groups. The estimated abilities are 
posterior means. 

The plots suggest that the NM is appropriate for the large majority 
of the items provided we allow differences in item discrimination. Typical 
plots are given in Figure 10.3 and Figure 10.4. 

Among the items that fitted the NM well, there were quite a few where 
the distracters differ very little from one another (see Figure 10.4). Such 
items basically follow the 3PL. Items that do not appear to behave accord­
ing to the NM show an interesting pattern that is seen in Figure 10.5. 

In all these items, there was one distracter that was preferred over the 
correct alternative by children with relatively low ability respondents. With 
item 3, for instance less able children preferred 34 as an answer, and it is 
clear that they have been misled to think that 3| is the mean of 3| and 
3^ because 3 is the mean of 4 and 2. It would be more appropriate in this 
case to use a model with different attractiveness parameters as in Figure 
10.2. 

We plotted  X ( + l ) against estimates of Pr(Xi = t\Xi e {tj}, X(^l} = s) 

to investigate MOR. Values of Al~^ were grouped to ensure that there 
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Item 11: How expensive is the holiday ? 

Item 18:1004-9.75 = ? 

Figure 10.3: Plots of Observed Option Probabilities (Symbols) 
and Expected Option Probabilities (Curves) as a Function of Es­
timated Ability. 
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Item 4: (2/3) of 30,000 = ? 

Item 20: How many patrol left in the tank ? 

Figure 10.4: Plots of Observed Option Probabilities (Symbols) 
and Expected Option Probabilities (Curves) as a Function of Es­
timated Ability. 
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Item 3: The mean of 3(1/4) and 3(1/2) = ? 

Item 5: How many cans of cola make four bottles ? 

Figure 10.5: Plots of Observed Option Probabilities (Symbols) 
and Expected Option Probabilities (Curves) Against Estimated 
Ability. The Observed Option Probabilities are Connected and 
Can be Compared With the Curves Representing the Expected 
Option Probabilities. It May be Noted That for Some Options the 
Observed Probability May Be Higher or Lower Than Expected 
Under the NM. 
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Item 3: Graphical test for MOR 

Figure 10.6: Plots of Total Score With Item 3 Deleted [XT3 

Against an Estimate of Pr(X3 = Q\X3 e {0, j},X^"3)), for j = 1,2,3. 

would be at least 100 observations to calculate each proportion and ap­
proximate 95% confidence bounds were drawn based on a binomial distri­
bution. Figure 10.6 and Figure 10.7 show these plots for item 3. No visible 
violations of MOR were found among the items. 

Finally, one should note that most items were fairly easy and there 
was little data in the ability range where respondents take refuge to pure 
guessing. As a consequence, the present data were unsuited to test the NM 
against the 2PL which fitted the data well. 

10.7 Conclusion 

The NM is a restrictive model based on a simple theory about the response 
process. We have applied the NM to items from the CITO test and found 
that the model was adequate for most items. Violations of the NM were 
seen with items where respondents were misled to favor a wrong answer over 
the correct alternative. The introduction in the model of attractiveness 
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Item 3: Graphical test for MOR 

Figure 10.7: Plots of Total Score With Item 3 Deleted [X.(-3)1 

Against an Estimate of Pr(X3 = t\X3 e {t,j},X^)3)  for {t,j} = 
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parameters could serve to model such behavior, at the cost of increased 
sampling variability in all parameter estimates. Further extensions of the 
NM are discussed by Verstralen (1997b), and Bechger and Maris (2003). 
We have used informal graphical procedures to investigate the fit of the 
NM. Although we have found plots of expected and observed probabilities 
to be quite informative, it is clear that further tests must be developed 
before the NM could be brought in for our daily work. 

We have assumed that the correct alternative is never rejected. Al­
though this assumption may not appear very plausible, it can be shown 
that an absurd model results if we allow for (possibly empty) subsets with­
out the correct alternative. Assume that the probability to include an 
alternative in the subset is increasing in 6 for the correct alternative, and 
decreasing for any of the incorrect alternatives. Then, as 0 decreases it 
becomes more likely that the subset will not contain the correct alterna­
tive. This means that a respondent with either a very high or a very low 
9 can determine which alternative is correct; it is either the only alterna­
tive in their subset (high ability) or the only alternative not in their subset 
(low ability). Stated otherwise, for some respondents it pays off to choose 
their response at random from the alternatives that are not in their subset; 
alternatives that they think are incorrect. 

In the Introduction it was noted that binary scoring entails loss of in­
formation. Using the missing information principle (Orchard & Woodbury, 
1972; Louis, 1982), it can be shown that binary scoring will indeed diminish 
the precision in estimated abilities to the extent that distracters differ in 
difficulty. It can, however, be shown that precision could be increased much 
more if we could somehow entice respondents to reveal their latent subsets. 
An illustration is given in Figure 10.8, which shows information functions 
for: (a) binary scoring, where it is registered whether the correct answer was 
chosen, (b) option scoring, where it is known what alternative was chosen, 
and (c) set scoring, where the latent subset was observed. It is seen that the 
information gain of option scoring relative to binary scoring is limited for 
the present application although set scoring is a more promising response 
format. Therefore, it is worthwhile to investigate whether set scoring could 
be applied in practice. Not only because it would increase information but 
also because it would, in principle, enable us to test the theory underlying 
the NM. It must be noted that set scoring has already been considered by 
others, although some time ago. For example, Coombs (1953) and Coombs, 
Milholland, and Wormer (1956) asked respondents to eliminate all options 
that they consider wrong. Alternatively, Dressel and Schmid (1953) asked 
respondents to indicate which options might be correct. 
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Figure 10.8: Information Functions for Binary Scoring, Option 
Scoring, and Set Scoring Based on Parameter Values Obtained 
From the Illustration Discussed in Section 10.6. 
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Appendix 

To proof that the NM has MOR we use the following lemmas: 

Lemma 1 Assume that Ji > I and let f20u.t) denote the set of latent sub-
i 

sets without alternative j and t. Then 

Note that the ratio on the left side equals the probability that Xi — j condi­
tional on 9 and given that the alternative is taken into consideration. 

Proof: 
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Lemma 2 

Proof: First, 

The fourth equality holds because E[v(Sf)\«] - v(s+) = Ji- E[S+ \0] + l-
Jt +s+ - 1 = s+ - E[S+\e}. Now, 

which simplifies to give the desired expression. 

Theorem 1 The Nedelsky model has MOR. 

Proof: It follows from Lemma 2 that has the same sign as 

Now, Lemma 1 implies that, for Ji > 1, Equation 10.4 equals 

where 
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If Cit > Cij, Pr(Sit = 1|0) < PT(Sij = 1\0), and it follows that ^itj(0) > 
0 for all 0. Using Equation 10.2 the reader may verify that, if Ji = I  , 
ij)iQj(6) — \ Pr(Sii = 1(0), which is increasing in 0. We have now proven 
that the NM has MOR. 

Corollary 1 Pi(Xi — 0|0) is an increasing function of 6. 

Proof: MOR implies that 

is decreasing in 9. It follows that, 

Hence, ^ Pr(J*Q = 0|#) > 0 and Pr(Xi = 0|0) is increasing in 0. 

Proof: It follows from Equation 10.1 that Iini6)-+_00 (pitj(0] = 1. Hence, if 
Ci* > Oj MOR implies that <pitj(0) > 1 for all 0 and the result follows. 

Lemma 3 Let s%> s\. When the model is a monotone IRT model, 

for all increasing functions g. 

Proof: As we only register whether the answer was correct or not to cal­
culate X+~ , it follows from Theorem 2 in Grayson (1988; see also Huynh, 

i]1994) that 9\X(~  = s2 >LR OlX^ = si if s2 > «i - Likelihood ratio 
ordering implies stochastic ordering which is equivalent to 

for all increasing functions g (Ross, 1996, Proposition 9.1.2). 
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Chapter 11 

Application of the Polytomous 
Saltus Model to Stage-Like 
Proportional Reasoning Data 

Karen Draney and Mark Wilson1 

University of California, Berkeley 

11.1 Introduction 

Mixture IRT models are based on the assumption that the population be­
ing measured is composed of two or more latent subpopulations, each of 
which responds to a set of tasks in predictably different ways. Within 
each subpopulation, a latent trait model holds for the entire set of tasks; 
however, between the subpopulations, there are differences that cannot be 
described within the constraints of the latent trait model used for a given 
subpopulation. 

One of the most general mixture IRT models is the mixed Rasch model 
(Rost, 1990). This model assumes that the population in question is made 
up of N subpopulations, and that a Rasch model holds within each subpop­
ulation. There is no necessary relation between the various Rasch models; 

1We would like to thank Gerald Noelting for generously allowing us the use of his 
data. 
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the ordering of the items, for example, can be entirely different for each sub­
population. This model is exploratory in the sense that it simply divides 
the population into the "best" (e.g., most different) set of subpopulations. 
The user must then determine what is interesting about the differences 
between subpopulations. 

Other mixture IRT models are more confirmatory in nature (e.g., Mis-
levy & Verhelst, 1990). Mislevy and Verhelst's model is an extension of 
the linear logistic test model (LLTM; Fischer, 1983). It posits a particular 
structure for item difficulty parameters within each subpopulation, based 
on characteristics of the tasks. A different LLTM may hold for each sub­
population, if each responds differently to the task characteristics, or to a 
different set of task characteristics. This model is a special case of Host's 
general model just described. 

The saltus model (Wilson, 1984, 1989; Draney, 1996) is another such 
model. It was originally designed for the investigation of developmental 
stages. This model is a special case of both of the preceding models, with 
linear restrictions on the relationships between sets of item difficulties for 
the different subpopulations. It is generally assumed that the subpopula­
tions are ordered in some way (as are developmental stages in children), 
and that groups of items become uniformly easier (or perhaps more diffi­
cult) for higher subpopulations. 

There are many educational and psychological theories that are based 
on the idea of developmental stages. Among these are some of the most in­
fluential theories of human development of the twentieth century, including 
the theories of Jean Piaget (1950; Inhelder & Piaget, 1958), as well as more 
recent variations of this theory by such researchers as Siegler (1981), Bond 
(1995a; 1995b), Noelting (1980a; 1980b), Van Hiele (1986), and Demetriou 
and Efklides (1989). 

For example, Siegler (1981) used the work of Piaget to show how sets of 
items associated with the skills acquired at different developmental stages 
changed in difficulty as children progressed through these stages. Some 
groups of items became easier and some more difficult, while others re­
mained the same. The different developmental stages of the children thus 
resulted in relative shifts in the probability that certain groups of items 
would be answered correctly. The saltus model is suitable for use with 
such sets of items. A more general mixture IRT model, such as the mixed 
Rasch model, would require the estimation of a difficulty parameter for 
each item within each developmental stage (if the items are dichotomous); 
the saltus model can accommodate the developmental theory with one 
difficulty for each item, plus a small number of additional parameters to 
describe the changes associated with developmental stage. 

A polytomous extension to the dichotomous model serves a number of 
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purposes. First, it allows partial credit style scoring of developmental tasks 
(e.g., incorrect, partially correct, correct). Second, it allows one solution to 
a common potential cause of violation of local independence: replication of 
a certain task type with different specifics (e.g., the same problem structure 
but with different numbers, e.g., Rosenbaum, 1988). This solution involves 
summing the individual item scores to form a new, polytomous item (e.g., 
Wilson & Iventosch, 1988). 

11.2 The Saltus Model 

The saltus model is based on the assumption that there are H developmen­
tal stages in the population of interest. Items are constructed to represent 
each one of these stages, such that only persons at or above a stage are 
fully equipped to answer the items associated with that stage correctly. 
Once a person enters the developmental stage with which a set of items 
is associated, that person gains a substantial advantage in answering those 
items. 

In the discussion that follows, the terms person group and item class 
will be used to differentiate between subpopulations of persons and sets of 
items designed to be suitable for such subpopulations. The saltus model 
assumes that all persons in group h answer all items in a manner consistent 
with membership in that group. However, persons within a group may 
differ by proficiency. In a Piagetian context, this means that a child in, 
say, the concrete operational stage is always in that stage, and answers all 
items accordingly. The child does not show formal operational development 
for some items and concrete operational development for others. However, 
some concrete operational children may be more proficient at answering 
items than are other concrete operational children. 

To describe the model, suppose that, as in the partial credit model 
(Masters, 1982), the random variable Xni indicating the response to item 
i (where i ranges from 1 to /) has Ji + I possible response alternatives or 
categories indexed j = 0 ,1 , . . .  , Ji. The parameter indicating step j in item 
i will be indicated by f3ij\ the vector of all (3ij by /3. 

Under the saltus model, an examinee is characterized not only by a 
proficiency parameter 6n, but also by an indicator vector for group mem­
bership 0n. If there are H potential person groups, </>n = (<j)ni, • •  • , 4>nH}, 
where 0n/i takes the value of 1 if the examinee n is in group h and 0 if not. 
The model assumes that each examinee belongs to one and only one group; 
thus, only one of the <j)nh is theoretically nonzero. As with Qn, values of 0n 

are not observable. 
Just as persons are associated with groups, and each person is a mem­
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ber of one and only one group, items are also associated with one and only 
one class. In a developmental context, an item's class would be said to be 
the first developmental stage at which a child would have all of the skills 
necessary to perform that item correctly. It is, of course, possible for chil­
dren at lower developmental stages to perform the item correctly; however, 
this usually occurs because of guessing or a poorly developed strategy that 
happens to produce the correct answer in some cases. Unlike person group 
membership, however, which is unknown and must be estimated, item class 
membership is known a priori, based on the theory that was used to pro­
duce the items. It will be useful to denote item class membership by the 
indicator vector bj. As with <?n, bj = (bu,... ,&i#) , where bik takes the 
value of 1 if item i belongs to item class fc, and 0 otherwise. The set of all 
bj across all items is denoted by b. 

The equation 

indicates the probability of response j to item i in a polytomous item re­
sponse model that has been augmented by the introduction of the saltus 
parameter Thk as an additive element of the logistic argument. The saltus 
parameter describes the additive effect—positive or negative—for people in 
group h on the item parameters of all items in class k. Typically, in devel­
opmental contexts involving stages, this has taken the form of an increase 
in probability of success as the person achieves the stage at which an item 
is located, indicated by Thk > 0 when h > k (although this need not be 
the case). The saltus parameters can be represented together as an H x H 
matrix T. 

The probability that an examinee with group membership parameter 
4>n and proficiency 6n will respond in category j to item i is given by 

As item responses are assumed to be independent given 8n, <j>n, and all 
of the item and saltus parameters, the modelled probability of a response 
vector is 
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The model requires a number of constraints on the parameters. For 
item step parameters, we choose to use two traditional constraints: first, 
/3jo = 0 for every item, and second, the sum of all the /3ij is set equal to zero. 
Some constraints are also necessary on the saltus parameters. This could 
be accomplished in several ways, but once parameters have been estimated 
with one set of restrictions, they can be translated to corresponding values 
under another set. The set of constraints we have chosen is the same as 
that used by Mislevy and Wilson (1996), and allow us to interpret the 
saltus parameters as changes relative to the first (lowest) developmental 
stage. Two sets of constraints are used. First, TH\ — 0; thus, the difficulty 
of the first class of items is held constant for all person groups; changes in 
the difficulty of classes of items greater than 1 are interpreted with respect 
to this first class of items for all person groups. Also r\k = 0; thus, items 
as seen by person groups higher than 1 will be interpreted relative to the 
difficulty of the items as seen by person group 1. 

Note that it would be possible to describe more general versions of this 
model in which the r-parameters were indexed by item, or even by cate­
gory within item (i.e., Tihk or Tijhk). However, many of the developmental 
theories that have been mentioned thus far are quite specific in terms of 
the effects they predict for developmental stage transitions on item per­
formance. These strong theoretical predictions can often be captured in 
a smaller number of parameters. Rather than simply predicting that all 
items will change in difficulty when one enters another stage of develop­
ment (in which case the mixed Rasch model might well be appropriate), 
theorists such as Piaget and Siegler predict that certain groups of tasks will 
change rather uniformly. The specific model described here, and used in 
the example to follow, was designed for just such predictions. 

The EM algorithm (Dempster, Laird, & Rubin, 1977) was used for 
parameter estimation in the models discussed in this chapter.1 This requires 
that some assumption be made about the distribution of proficiency within 
each subpopulation. For the analyses in this chapter, a normal distribution 
is assumed to hold within each person group. However, a semiparametric 
distribution (e.g., Mislevy & Wilson, 1996) could also be used. 

Empirical Bayes estimation is used to produce estimates of the proba­
bility of group membership for each subject, as well as proficiency estimates 
given membership in each group. A person is said to be classified into the 
group for which his or her probability of membership is highest. 

1 Software used for parameter estimation was developed at UC Berkeley, and is cur­
rently available by contacting the first author directly at k.draney@uclink4.berkeley.edu 
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Versus 

Figure' 11.1: Example of Noelting Juice Mixtures Item. Note 
That Dark Indicates Juice and Light Indicates Water. 

11.3 An Example Application 

The data for the first example are a set of responses to Noelting's (1980a; 
1980b) Orange Juice Mixtures test for assessing proportional reasoning. 
The items in this test consist of pictures of a certain number of glasses of 
juice and glasses of water, representing a mixture. In each item, the child 
is shown two such mixtures and asked which would taste more strongly of 
juice, or if they would taste the same. A representation of such an item is 
shown in Figure 11.1. 

Noelting (1980a, 1980b) postulates a Piagetian stage hierarchy consist­
ing of three stages, the intuitive, the concrete operational, and the formal 
operational, for persons solving these items. Noelting develops juice mix­
ture problems to represent the skills that differentiate between each devel­
opmental stage. In the intuitive stage, the child can additively compare the 
relative quantity of an attribute (e.g., more glasses of juice or more glasses 
of water), but tends to pay attention only to one attribute or the other. In 
the concrete operational stage, the child begins to learn the concept of ratio 
and proportionality. Rather than simply comparing the number of glasses 
of juice or water between the two mixtures, the child is able to recognize 
the concept of "one glass of juice for every glass of water" or "twice as 
much juice as water." In the formal operational stage, the child learns to 
deal formally with fractions, ratios, and percentages. Here, the child be­
gins to master the formal mathematical rules for comparing two arbitrary 
mixtures. 

Noelting postulates three problem types (representing ordered substages) 
within a stage and develops between one and four replications of each of 
these substage problem types. These problem types and replications are 
described in Table 11.1. The items were administered to a group of 460 
subjects ranging in age from 5 to 17 years. The number of persons at each 
age is given in Table 11.2. 
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Table 11.1: Noelting Problem Types. 

S IT Description Options 
1 I Focusing on juice. One mixture has more 4:1 vs. 1:4 

glasses of juice. Paying attention to juice alone 2:1 vs. 1:2 
will always produce the right answer. 

CO One-to-one equivalence. One glass of juice 1:1 vs. 2:2 
for every glass of water in both mixtures. 2:2 vs. 3:3 

FO Multiplicity of denominators. Proportion­ 3:1 vs. 5:2 
ality relationship between juice and water can 8:3 vs. 3:1 
be set up in one mixture. Result of the same 
proportionality operation projected on the sec­
ond pair. 

2 I Focusing on water. Glasses of juice equal. 1:0 vs. 1:1 
One mixture has more glasses of water. 1:2 vs. 1:3 

CO One-to-one equivalence. First mixture has 1:2 vs. 2:4 
two glasses of juice for one of water (or vice 2:4 vs. 3:6 
versa). Second mixture is some multiple of 
this. 

FO Finding a common denominator. Any two 5:2 vs. 7:3 
arbitrary mixtures of juice and water for which 3:5 vs. 5:8 
any previous strategy cannot easily be used. 

3 I Compensation. Less juice than water in one 2:3 vs. 1:1 
mixture; amounts are equal in the other mix­ 2:1 vs. 3:4 
ture; or one mixture has more glasses of juice, 
other mixture has more glasses of water. 

CO Multiplication by n. Ratio of juice to water 4:3 vs. 8:6 
in one mixture is n times that in the other. 3:1 vs. 6:2 

FO Addition of percents. Involve adding mix­ 1:0:1 vs. 0:2:0 
tures of different strengths. 0:2:1 vs. 2:0:4 

1:1:1 vs. 1:0:2 
1:1:1 vs. 2:1:2 

Note. S = Substage; It — Item type; I = Intuitive items; CO — Concrete operational 
items; FO — Formal operational items. If an item has options 2:3 vs. 1:1, then the 
respondent must choose between two glasses of juice and three glasses of water and one 
glass of juice and one glass of water. If an item has options 1:1:1 vs. 2:1:2, then the 
respondent must choose between one glass of 40% juice, one glass of 10% juice and one 
glass of water and two glasses of 40% juice, one glass of 10% juice and two glasses of 
water. 
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Table 11.2: Ages of Subjects in the Noelting Sample. 

Age Frequency Percent 
5 3 1 
6 26 6 
7 40 9 
8 53 12 
9 45 10 
10 51 11 
11 60 13 
12 40 9 
13 48 10 
14 26 6 
15 29 6 
16 28 6 
17 11 2 

Total 460 

In cases such as this, where subsets of items are essentially replications 
of a single problem type, there is sometimes concern that the assumption of 
local independence of items will be violated. Although there are a variety 
of methods for dealing with such dependencies, one simple way to proceed 
is to sum the scores of the individual dichotomous items in a substage 
into a single polytomous item (Wilson & Iventosch, 1988). This results in 
three polytomous items representing each stage (and presumably ordered 
in difficulty level), with between two and five categories per item, for a total 
of nine polytomous items. 

The saltus model to be fit to these data will be a three-stage model, 
comparing all three sets of items. In this model, saltus group 1 should 
include the youngest children in the intuitive stage, saltus group 2 should 
include middle-aged children in the concrete operational stage, and saltus 
group 3, the oldest children in the formal operational stage. In this model, 
there will be four between-group saltus parameters: One for concrete opera­
tional children taking concrete operational items, one for the same children 
taking the formal operational items, one for formal operational children 
taking concrete operational items, and one for formal operational children 
taking formal operational items. Two of these saltus parameters, those for 
concrete operational children taking concrete operational items and for for­
mal operational children taking formal operational items, are expected to 
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be positive. There are no specific predictions for the other two parameters. 
Parameter estimates and standard errors for the this model are given in 

Table 11.3. Approximately two-thirds of the sample is classified into saltus 
group 1, and the majority of the remaining children (20% of the sample) 
is classified into group 2. Group 3 is small, comprising only 13% of the 
sample. 

All saltus parameters are statistically different from zero (with magni­
tude more than twice their standard error), indicating that there is some 
systematic effect of class membership on item performance for both con­
crete and formal operational items. Recall that item difficulties as shown in 
Table 11.3 arc interpreted relative to the lowest person group. The follow­
ing is an example of how specific r-parameters may be interpreted. For the 
lowest person group, intuitive item 1 has step parameters —3.60 and —7.68, 
whereas formal item 1 has step parameters 3.45 and 0.12. For person group 
3, intuitive item 1 retains the same step parameters (although the mean 
proficiency of person group 3 is higher than for group 1, and thus the prob­
ability of correct responses to the intuitive items is higher for person group 
3). However, the step parameters for formal item 1 are adjusted by T^ 
when seen by person group 3 as follows: Step 1 becomes 3.45 — 2.10 = 2.35, 
and step 2 becomes 0.12 — 2.10 = —1.98. Not only are persons in group 3 
more likely to score higher on all the items than are persons in group 1 (be­
cause of the higher average proficiency of group 3), the difference between 
the difficulties of intuitive and concrete items is greater for persons in group 
1 than it is for persons in group 3. In probability terms, this means that 
an average person in group 1 has a .00 probability of scoring higher than 0 
on formal item 1. If TM had been zero (and the difficulties of formal items 
had been the same for person group 3 as for person group 1), an average 
person in group 3 would have scored 1 with a probability of approximately 
.07, and 2 with a probability of .88. However, because of the size of raa, 
the average person scores 2 on this item with a probability of .99. 

Average item difficulties for all nine items are shown in Table 11.4. 
Items are ordered in overall difficulty as predicted (average item difficulties 
for substage items increase within a stage; and items related to higher stages 
are on average more difficult than those for lower stages); however, there 
is little difference in the difficulty of concrete operational items two and 
three. This is not surprising, as the item type comprising concrete item 2 
is actually just a subset of the item types comprising concrete item 3. 

Groups are also ordered in mean proficiency as predicted. Group 1 has 
a low average proficiency estimate (—2.24 logits), group 2 has a moderately 
high average proficiency (1.79 logits), and group 3 the highest average pro­
ficiency (2.62 logits). The difference between groups 1 and 2 is more than 
4 times greater than the difference between groups 2 and 3 (4.03 and 0.83 
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Table 11.3: Saltus Model Parameter Estimates and Standard Er­
rors for the Noelting Model. 

Parameter type Parameter Model Estimate SE 
notation SE 

Intuitive item 1 Category 1 0n -3.60 (.854) 
Category 2 #12 -7.86 (.712) 

Intuitive item 2 Category 1 #21 -4.09 (.294) 
Category 2 #22 -4.50 (.294) 

Intuitive item 3 Category 1 #31 -2.43 (.218) 
Category 2 #32 -3.96 (.188) 

Concrete item 1 Category 1 #41 -.97 (.178) 
Category 2 #42 -2.25 (.193) 

Concrete item 2 Category 1 #51 .71 (.184) 
Concrete item 3 Category 1 #61 .83 (.241) 

Category 2 #62 -.59 (.333) 
Category 3 #63 2.36 (.205) 

Formal item 1 Category 1 #71 3.45 (.393) 
Category 2 #72 .12 (.384) 

Formal item 2 Category 1 #81 3.85 (.301) 
Category 2 #82 1.68 (.294) 

Formal item 3 Category 1 #91 7.15 (.342) 
Category 2 #92 4.57 (.353) 
Category 3 #93 1.84 (.352) 
Category 4 #94 3.69 (-) 

Saltus parameter Group 2 class 2 T22 2.59 (.004) 
Group 2 class 3 T23 .93 (.003) 
Group 3 class 2 7"32 .58 (.004) 
Group 3 class 3 733 2.10 (.005) 

Saltus group 1 Proportion TTi .66 (.019) 
Mean A*l -2.24 (.062) 
Standard deviation crl 1.16 (.042) 

Saltus group 2 Proportion 7T2 .21 (.022) 
Mean ^2 1.79 (.104) 
Standard deviation 02 1.06 (.057) 

Saltus group 3 Proportion 
Mean 

7T3 

A*3 

.13 
2.62 

(-) 
(.127) 

Standard deviation 0-3 .95 (.084) 
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Table 11.4: Average Item Difficulties for the Noelting Model. 

Item Average 
difficulty 

Intuitive 1 -5.73 
Intuitive 2 -4.29 
Intuitive 3 -3.20 
Concrete op 1 -1.61 
Concrete op 2 0.71 
Concrete op 3 0.87 
Formal op 1 1.79 
Formal op 2 2.76 
Formal op 3 4.31 

logits, respectively). 
As predicted, there is a positive saltus effect for persons in group 2 taking 

concrete operational items (2.59 logits with respect to group 1). There is 
a similar-size positive saltus effect for persons in group 3 taking formal 
operational items (2.10 logits with respect to group 1). In addition, there 
are smaller positive effects for persons in group 2 taking formal operational 
items (about one logit with respect to persons in group 1), and persons in 
group 3 taking concrete operational items (about half a logit with respect 
to persons in group 1). 

The interpretation of item difficulties and mean abilities for groups is 
often easier when these parameters are displayed in a graphical form some­
times referred to as a Wright Map (see Wilson, in press) in honor of its 
creator: Benjamin D. Wright of the University of Chicago. Maps have long 
been used with Rasch-family models, such as the partial credit and rating 
scale models, and are incorporated into many estimation software packages 
for these models. A Wright Map of the mean group abilities and the item 
difficulties as seen by each group is given in Figure 11.2. In this figure, the 
units of the logit scale (the scale in which parameters for this model are 
estimated), are shown on the far left side of the figure. The column to the 
right of this contains the mean abilities of the person groups, with a range 
of one standard deviation on either side of each group mean. The mean of 
each group is represented by the letter M followed by the group number 
(e.g., Ml for the mean of group 1). Similarly, the upper and lower limits of 
the standard deviation range are represented by the letter S and the group 
number; these limits are connected by dashed lines to the group mean. 
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Figure 11.2: Map of Noelting Three-Level Analysis. 
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The difficulty levels for the various item steps as seen by each group 
are shown in the remaining columns of Figure 11.2. For each group, the 
difficulties for each item class are separated by dashed line. The difficulty 
levels for the items as seen by group 1 are shown in the columns labelled 
"Items wrt to group 1" and similarly for groups 2 and 3. Under each of these 
headings, the items are broken into columns based on their class; intuitive 
items (items 1-3) are in the leftmost column under each heading; concrete 
items (items 4-6) are in the center column, and formal items (items 7-9) 
are in the rightmost column. Individual items steps are represented by the 
item number, a dot, and then the step number (e.g., 3.2 represents item 3, 
step 2). More difficult item steps and more able persons are toward the top 
of the figure, and less difficult item steps and less able persons are toward 
the bottom of the figure. The effect of the saltus parameters for all three 
groups can be seen in this figure: Although the difficulty of the intuitive 
items is held fixed, the difficulty of the formal items drops steadily across 
all three groups, and the difficulty of the concrete items first drops, then 
rises again somewhat. Both groups 2 and 3 have ability considerably above 
that of group 1, whereas the difference between them is somewhat smaller. 

Modelled probabilities of response by a person whose proficiency was 
equal to the mean of each group, using the estimated parameter values, are 
given in Table 11.5. For the intuitive items, all three groups are most likely 
to score 2, and the probability of a score of 2 rounds to 1.00 on all three items 
for the two higher groups. Response probabilities for the concrete items 
are similar for the two higher groups, with the highest response the most 
probable in all cases. This is clearly different from group 1, for which the 
lowest response is most probable. The items that most clearly differentiate 
between groups 2 and 3 are the formal items. For group 1, the probability 
of response 0 rounds to 1.00 in all cases. Group 2 has some probability of 
higher responses to the formal items, but for all but the easiest of these 
items, response 0 still has the highest probability. For group 3, however, 
the most probable response to all items is the highest possible response, 
although for all but the intuitive and the first of the concrete items, there 
is a nonzero probability of some other response as well. 

An example set of person response vectors, classification probabilities, 
ability estimates, and standard errors is listed in Table 11.6. Persons such 
as A or B. who scored any number of points on the intuitive items and no 
points on any other items, are clearly classified into group 1. This is also 
true for persons such as C or D, who scored one or two points on any of the 
concrete operational items (other than the most difficult one) in addition 
to the above points. If a person, in addition to answering most or all of 
the intuitive items correctly, also answered one or two of the subitems of 
concrete item 3 correctly, as did person E, that person began to have some 
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Table 11.5: Response Probabilities by Saltus Group for the Noelt­
ing Model. 

Groups Item Item score 
0 1 2 3 4 

Group 1 Intuitive 1 .00 .00 1.00 
Intuitive 2 .01 .09 .89 
Intuitive 3 .11 .13 .75 
Concrete 1 .64 .18 .18 
Concrete 2 .95 .05 
Concrete 3 .95 .04 .01 .00 
Formal 1 1.00 .00 .00 
Formal 2 1.00 .00 .00 
Formal 3 1.00 .00 .00 .00 .00 

Group 2 Intuitive 1 .00 .00 1.00 
Intuitive 2 .00 .00 1.00 
Intuitive 3 .00 .00 1.00 
Concrete 1 .00 .00 1.00 
Concrete 2 .02 .98 
Concrete 3 .00 .00 .12 .88 
Formal 1 .13 .06 .81 
Formal 2 .45 .14 .41 
Formal 3 .98 .01 .00 .00 .00 

Group 3 Intuitive 1 .00 .00 1.00 
Intuitive 2 .00 .00 1.00 
Intuitive 3 .00 .00 1.00 
Concrete 1 .00 .00 1.00 
Concrete 2 .08 .92 
Concrete 3 .00 .01 .30 .69 
Formal 1 .00 .01 .99 
Formal 2 .02 .04 .94 
Formal 3 .12 .01 .01 .22 .63 
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probability of being classified into group 2. Persons who scored most or all 
of the possible points on both the intuitive and the concrete operational 
items, as with persons F and G, were classified solidly into group 2, although 
if one or two of the subitems of the easier concrete operational items were 
missed (as with person F), there was still some probability of belonging to 
group 1. Person H, who scored, in addition to most of the intuitive and 
concrete items, a few points on the formal operational items, was still most 
likely to be in group 2. With person I, a perfect score on all but formal item 
3 yielded only a 17% probability of being in group 3. Even persons J and K, 
who had a perfect score or only missed one of the subitems of formal item 3, 
did not have over a 90% probability of being in group 3—the probabilities 
of being in group 2 were still 19% and 35%, respectively, although the 
probability of being in group 3 is now more than 60%. The only persons 
with a probability greater than 90% of being in group 3 were like person L, 
who answered the intuitive and most or all of the formal items correctly, and 
who missed points on some of the concrete items. Such persons, it seems, 
were classified into group 3 only because they did not fit well in either of 
the other two groups. In all cases, to be in one of the higher ability groups 
with probability greater than .5, it was necessary to have mastered most or 
all of the items representing that group. 

Even unusual response vectors have an interesting classification story. 
For example, person M, who answered all of the intuitive items correctly, 
only the easiest of the concrete operational items, and all of the subitems 
of item 2 of the formal operational items, has a small probability of being 
in group 3, and no probability of being in group 2, although this person 
is still most likely a member of group 1. Such a response vector seems to 
indicate some degree of misfit of this person to the model, and it would 
be interesting to speak to the person, to see if the two correct answer to 
formal items were the result of lucky guesses or of an idiosyncratic strategy 
that happened to produce the correct result. In this data set, less than 1% 
of all cases showed "misfitting" patterns such as this, suggesting that the 
developmental theory tends to predict student performance well in nearly 
all cases. 

Also of interest is the table of person classification by age, shown in 
Table 11.7. According to the original Piagetian theory, a person should 
enter the formal operational stage sometime during early adolescence, and 
should be solidly into this stage by their late teens. Persons in the mid­
dle and late formal operational stage (i.e., the persons in late adolescence 
and older), should be able to correctly solve, barring trivial errors due to 
carelessness, most or all of the items targeted to this stage: the problems 
involving addition of percents. 

However, an examination of Table 11.7 shows clear differences between 
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Table 11.6: Example of Probabilities of Response Patterns for 13 
Persons for the Noelting Model. 

Person Responses Score Probability Ability SE 
A 000000000 0 1.00 -4.88 .60 

1 .00 -3.85 .52 
2 .00 -1.79 .24 

B 222000000 0 1.00 -2.30 .66 
1 .00 -1.94 .62 
2 .00 -.78 .52 

C 222100000 0 1.00 -1.86 .67 
1 .00 -1.52 .66 
2 .00 -.51 .52 

D 222110000 0 1.00 -1.40 .67 
1 .00 -1.06 .68 
2 .00 -.23 .52 

E 222202000 0 .89 -.51 .66 
1 .10 -.09 .68 
2 .01 .32 .53 

F 222203000 0 .29 -.08 .64 
1 .69 .35 .66 
2 .01 .61 .53 

G 222213000 0 .02 .32 .63 
1 .98 .78 .64 
2 .00 .90 .54 

H 222213210 0 .00 1.31 .48 
1 .92 1.97 .61 
2 .08 1.73 .50 

I 222213220 0 .00 1.51 .40 
1 .83 2.34 .59 
2 .17 1.99 .50 

J 222213224 0 .00 1.85 .19 
1 .19 3.58 .55 
2 .81 3.33 .72 

K 222213223 0 .00 1.80 .23 
1 .35 3.28 .54 
2 .65 2.87 .62 

L 222201224 0 .00 1.65 .33 
1 .00 2.68 .56 
2 1.00 2.24 .51 

M 222200020 0 .81 -.51 .66 
1 .00 -.09 .68 
2 .19 .32 .53 
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Table 11.7: Tabulation of Saltus Class by Age for the Noelting 
Model. 

Age Group 1 Group 2 Group 3

5
6 
7
8
9 
10


3 
26

40

53

43

44


11 46


0
0
0
0 
2 
7 
14


12 25 15


0
0 
0
0
0 
0
0
0 
10
13


14

15

16

17


Totals


14 
3
4 
1 
0 

302


24

11
 12

10 15


16 
7 
60


11 
4 
98


what one might predict based on a strict interpretation of Piaget's orig­
inal theory, and what one observes in this data set. The table seems to 
indicate that the transition between the intuitive and concrete stages (as 
estimated by the model) happens at approximately age 12. This is the 
age at which persons begin to get most or all of the concrete operational 
items correct. Although examination of person classification does show that 
persons need to answer all or nearly all of the concrete operational items 
correctly to be classified into the concrete operational class, this is still 
rather surprising. The transition between the intuitive and the concrete 
operational stages should, according to Piaget and some neo-Piagctian re­
searchers, happen much earlier than age 12, and it seems likely that 10 
and 11-year-old youngsters should be able to answer most or all concrete 
operational items correctly. However, this does not happen in this data set. 
There were 142 persons age 13 and older. Whereas 90 (63.4%) of these per­
sons answered all of the concrete items correctly, only 32 (22.5%) answered 
all of the formal items correctly. Of the oldest persons, those age 16 and 
17, only 15 of 39 (38.5%), or substantially less than half, answered all of 
the formal items correctly, and 17 (43.6%) missed two or more points on 
these items. 

This seems to indicate that either some of the persons at the older age 
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levels in these data sets are not taking the tasks very seriously and are being 
rather careless, or that the difficulty of the tasks is higher than would be 
predicted by a strict interpretation of Piagetian theory. Some researchers 
believe that entry into the formal operational stage, and in particular the 
late formal operational stage, occur at older ages than Piaget's theory orig­
inally stated (cf. Bond, 1995a). Some theorists claim that not all adults 
reach the later substages of the formal operational stage (Bond, 1995b). 
The information in this data set lends at least some support to the con­
tention that entrance into the formal operational developmental stage, and 
particularly the later substages of this stage, might happen later than strict 
interpretation of Piagetian theory would indicate. 

A test of fit for the model against a general multinomial alternative 
yields a chi-square statistic of 4129.54, with degrees of freedom equal to the 
number of observed response patterns, minus the number of parameters 
estimated, minus one, which in this case is 65 — 31 — 1 = 33. This is 
significant at the .01 level, indicating that the fitted saltus model results in 
significantly worse fit than an unrestrictive multinomial model on response 
counts. 

11.4 Discussion 

The use of the saltus model has allowed us to learn some interesting things 
about the example data set. For instance, it would seem that the saltus 
model is more suitable for use with this data than a latent class model. La­
tent class models are similar to mixture IRT models, in that they assume 
the observed population is composed of latent subpopulations; however, 
such models include no person parameters; group membership accounts 
for all explained variation between persons, and within-group variation is 
considered error. However, as seen in Table 11.4, each person group has a 
standard deviation of approximately one logit, indicating that there is some 
amount of within-group variability in these data. The saltus model is also 
similar to multilevel item response models, which include a latent regres­
sion model (see, e.g., Adams, Wilson, & Wu, 1997), using known person 
classification variables. One might, for example have classified persons into 
developmental stages based on age, and estimated effects on the various 
groups of items as regression coefficients. However, as Table 11.7 shows, 
this would likely lead to some inaccuracy. Although all children age 8 and 
under, and most who are 9 are classified into the lowest developmental 
stage, there is no other age at which all children are classified the same, 
and some ages (e.g., age 13) where there seem to be children at all three 
developmental stages. Testing against the unrestricted multinomial logit 
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model indicated that the fit of the saltus model was significantly worse 
than that obtained by simply using a general multinomial model for re­
sponse counts. Tests against an unrestricted model are not often terribly 
useful; they almost always indicate significant misfit, but provide little ad­
ditional information. Tests of fit against other models, such as the partial 
credit model, would be informative; however, likelihood ratio tests between 
one-class IRT models and mixture IRT models are not valid due to bound­
ary problems (Bohning, 1999). Further analysis of fit would prove useful. 
For example, it might be useful to develop a saltus-like model with vari­
able item slopes, as models with equal slopes for all items are often too 
restrictive to fit well. In addition, it might be the case that models which 
included saltus parameters indexed by individual item and/or step, rather 
than simply associating saltus parameters with items as a whole, and es­
timating a single parameter across all items within an item group, might 
yield interesting differences by item and/or step. 
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Chapter 12 

Multilevel IRT Model 
Assessment 

Jean-Paul Fox 
University of Twente 

12.1 Introduction 
Modelling complex cognitive and psychological outcomes in, for example, 
educational assessment led to the development of generalized item response 
theory (IRT) models. A class of models was developed to solve practical 
and challenging educational problems by generalizing the basic IRT models. 
An IRT model can be used to define a relation between observed categor­
ical responses and an underlying latent trait, such as, ability or attitude. 
Subsequently, the latent trait variable can be seen as the outcome in a re­
gression analysis. That is, a regression model defines the relation between 
the latent trait and the set of predictors. The combination of both models, 
a regression model imposed on the ability parameter in an IRT model, can 
be viewed as an extension to the class of IRT models. 

Verhelst and Eggen (1989), and Zwinderman (1991, 1997) considered 
the combination of an IRT model with a structural linear regression model. 
Zwinderman showed that the correlation between the latent trait and other 
variables can be estimated directly without estimating the subject param­
eters. A straightforward extension of this model consists of a structural 
multilevel model imposed on the latent trait variable. Adams, Wilson and 
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Wu (1997) and Raudenbush and Sampson (1999) discussed a multilevel 
model that can be seen as a Rasch model embedded within a hierarchical 
structure, where the first level of the multilevel model describes the rela­
tion between the observed item scores and the ability parameters. This 
multilevel model can be estimated in HLM 5 (Raudenbush, Bryk, Cheong, 
& Congdon, 2000). A multilevel formulation of the Rasch model that can 
be estimated using the HLM software was developed by Kamata (2001). 
Maier (2001), defined a hierarchical Rasch model, that is, the person pa­
rameters in the Rasch model are modelled with a one-way ANOVA with 
random effects. Fox (in press) and Fox and Glas (2001) extended the two-
parameter normal ogive model and the graded response model by imposing 
a multilevel model on the ability parameters with covariates on both levels. 
This multilevel IRT model describes the link between dichotomous or poly­
chotomous response data and a latent dependent variable as the outcome in 
a structural multilevel model. This extension allows to model relationships 
between observed and latent variables on different levels using dichotomous 
and polytomous IRT models that relate the test performances to the latent 
variables. That is, relationships between abilities of students underlying 
the test and other observed variables of some individual or group charac­
teristics can be analyzed taking into account the errors of measurement 
using dichotomous or polytomous indicators. 

Verhelst and Eggen (1989) proclaimed a strict distinction between the 
estimation of the parameters of the measurement model and the structural 
model. One should first calibrate the measurement model before estimating 
the structural model parameters. This way it is possible to distinguish pos­
sible model violations in the measurement model and the structural model. 
Alternatively, a two-stage estimation procedure can cause biased parameter 
estimates and underestimation of some standard errors due to the fact that 
some parameters are held fixed at values estimated from the data, depend­
ing on the available calibration data. Furthermore, in educational testing 
the response data often have a hierarchical structure and the measurement 
model ignores this effect of the clustering of the respondents. In Fox (in 
press) and Fox and Glas (2001) a procedure was developed for estimating 
simultaneously all model parameters. This Bayesian method (Markov chain 
Monte Carlo, MCMC) handles all sources of uncertainty in the estimation 
of the model parameters. 

The goal of this chapter is to develop methods to assess the plausibility 
of the model or some of the assumptions under the preferred Bayesian esti­
mation method. The MCMC estimation procedure is time-consuming and 
it is, therefore, preferable to compute certain fit statistics during the esti­
mation of the parameters or based on the MCMC output. In this chapter, 
methods are proposed for checking the fit of multilevel IRT models, which 
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are simply byproducts of the MCMC procedure for estimating the model 
parameters. Samples of the posterior distributions are obtained from the 
MCMC estimation method. These samples can be directly used to estimate 
the model parameters and the posterior standard deviations, but they can 
also be used to test certain model assumptions or, in general, the fit of the 
model. 

Before using a model it is necessary to investigate the adequacy and 
plausibility of the model. Such investigations include a residual analysis. 
The classical or Bayesian residuals are based on the difference between 
observed and predictive data under the model, but they are difficult to 
define and interpret due to the discrete nature of the response variable. 
Therefore, another approach to a residual analysis is proposed. The di­
chotomous or polytomous outcomes on the item-level are supposed to have 
an underlying normal regression structure on latent continuous data. This 
assumption results in an analysis of Bayesian latent residuals, based on 
the difference between the latent continuous and predictive data under the 
model. We show that the Bayesian latent residuals have continuous-valued 
posterior distributions and are easily estimated with the Gibbs sampler 
(Albert. 1992; Albert & Chib, 1995). Furthermore, Bayesian residuals have 
different posterior variances but the Bayesian latent residuals are identically 
distributed. 

Different statistics to check the model fit or certain assumptions arc 
proposed, all based on posterior distributions. First, the posterior distri­
butions of the random errors are used to detect outliers in the multilevel 
IRT model. An outlier is defined as an observation with a large random er­
ror, generated by the model under consideration (Chaloner & Brant, 1988). 
The posterior distributions can be used to calculate the posterior proba­
bility that an observation is an outlier. These posterior probabilities of an 
observation being an outlier are calculated with the Gibbs sampler. Other 
Bayesian approaches to outlier detection can be found in, for example, Box 
and Tiao (1973) and Zellner (1971). 

Second, hypotheses can be tested using interval estimation. The small­
est interval containing 95% of the probability under the posterior is called 
the 95% highest posterior density (HPD) interval. According to the usual 
form of a hypothesis that a parameter value or a function of parameter 
values is zero, the HPD interval can be used to test if the value differs 
significantly from zero (Box & Tiao, 1973). Here, this concept is used to 
check heteroscedasticity at the individual level (Level 1), that is, to check 
whether grouped Level 1 residuals have the same posterior distribution. 
The parametric forms of the marginal posterior distributions are unknown, 
but samples of the distributions are available through the Gibbs sampler. 
These samples are used to check the homoscedasticity assumption at Level 
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1. 
In section 12.3, after the introduction of the multilevel IRT model, a 

Bayesian residual analysis is described. Next,. a method to detect outliers 
by examining the posterior distribution of the residuals using MCMC is 
discussed. Then, tests based on highest posterior density intervals are de­
scribed to test the homoscedasticity at Level 1. Examples of the procedures 
are given by analyzing a real data set. Finally, the last section contains a 
discussion and suggestions for further research. 

12.2 Multilevel IRT Model 

Suppose that the categorical outcome Yijk represents the item response of 
person i (i = 1, . . . , n^), in group j (j = 1, . . . , J), on item k (k — I  , . . . , K}. 
Let Oij denote the latent abilities of the persons responding to the K items. 
The latent ability parameters are collected in the vector 6. In the present 
chapter, the multilevel IRT model consists of two components, an IRT 
model for p(Y\0, a, b), where a and b are the item parameters, and a 
model p (9 ft, X, W) for the relation between the latent abilities and the 
background variables. Explanatory variables at Level 1 containing infor­
mation regarding the persons are stored in the matrix X. In the same 
way, matrix W contains information regarding the groups at Level 2. Pa­
rameters (3 are the regression coefficients from the regression of 9 on X. 
The regression coefficients may vary across groups using the explanatory 
variables stored in W. The first part, p(Y|0,a, b), is specified by a nor­
mal ogive model in case of binary response data. That is, the probability 
of a student, with latent ability 9, dropping for convenience reasons the 
subscript ij, corresponding correct to an item k is given by 

where $ (.) denotes the standard normal cumulative distribution function, 
and afc and bk are the discrimination and difficulty parameter of item k. 
The relation between the underlying latent ability and the dichotomous 
outcomes can also be explained as follows. Assume a latent independent 
random normally distributed variable Zk with mean a^B — b^ and variance 
1. In addition, the response Yk is the indicator of Zk being positive. Thus, 
a correct response on item k is obtained if a positive value is drawn from 
this normal distribution with mean akd —bk and variance 1. 

In the case of polytomous scored items, the polytomous response, YJt, 
can be viewed as an indicator of Z^ falling into one of the response cate­
gories. Or, the reverse, classifying the latent variable Zk into more than 
two categories is done by the cutoff or threshold parameters K. In this case, 
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the latent variable Zk is defined a 

where ek is assumed to have a standard normal distribution. When the 
value of the latent variable Zk falls between the thresholds ftfcc_i and Kkc, 
the observed response on item k is classified into category c. The threshold 
parameters are unknown and they are estimated using the observed data. 
The ordering of the response categories is displayed as follows 

where there are Ck categories. The number of categories may differ per 
item. Here, for notational convenience, KQ = — oo and the upper cutoff 
parameter «fccfc — oo for every item k (k = 1, . . . , K] . The probability that 
an individual, given some underlying latent ability, 9, obtains a grade c, or 
gives a response falling into category c on item k is defined by 

where <& (.) denotes the standard normal cumulative distribution function. 
This IRT model for polytomously scored items, called the graded response 
model or the ordinal probit model, has been used by several researchers, 
among others, Albert and Chib (1993). Johnson and Albert (1999), Muraki 
and Carlson (1995), and Samejima (1969). 

The second component of the model, p(0|/3,X,W), specifies the re­
lation between the background information and the latent variables via a 
multilevel model, in specific 

where e^ ~ 7V(0, a2) and Uj ~ W (0, T). The apostrophe defines the 
transpose of the vector. Parameters 7, the so-called fixed effects, are the 
regression coefficients from the regression of /3 on W. The location and 
scale indeterminacies can be solved by forcing the intercept in (12.3) to 0 
and the variance of the latent dependent variable to 1. It is also possible 
to put identification restrictions on the item parameters. A Markov chain 
Monte Carlo method can be used to estimate the parameters of interest 
(Fox, in press, Fox & Glas, 2001). Computing the posterior distributions 
of the parameters involves high dimensional integrals but these can be car­
ried out by Gibbs sampling (Gelfand, Hills, Racine-Poon, & Smith, 1990; 
Gelman, Carlin, Stern, &: Rubin, 1995). Within this Bayesian approach, 
all parameters are estimated simultaneously. 
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12.3 Bayesian Residual Analysis 
The regression residuals can be used to check assumptions such as nor­
mality, conditional independence of observations and homoscedasticity of 
variance. There is often an interest in the magnitudes of the errors that 
actually occurred. The realized errors are not observed. They need to be 
estimated from the data together with the uncertainties associated with 
these estimates. In this chapter, realized residuals are viewed as random 
parameters with unknown values. Posterior distributions for realized errors 
need to be calculated and can be used to make posterior probability state­
ments about the values of the realized errors (see, e.g., Box & Tiao, 1973; 
Zellner, 1971). Model criticism and selection is often focused on assess­
ing the adequacy of a model in predicting the outcome of individual data 
points, and summarizing the fit of the model as a whole. Goodness-of-fit 
statistics are used to summarize the model adequacy. Besides checking sev­
eral model assumptions, attention is focused on examining the adequacy of 
the model in predicting individual data points. 

In the binary case, the residuals are defined as r^ = yijk—$ (ak&ij — bk)-
In the classical residual analysis, residuals are usually transformed such that 
they approximately follow a normal distribution. The three most com­
mon normalizing transformations lead to Pearson, deviance, and adjusted 
deviance residuals. But in case of Bernoulli observations such transfor­
mations result in poor approximations of the distributions of the Pearson, 
deviance and adjusted deviance residuals by the Gaussian distribution. A 
fully Bayesian residual analysis does not suffer from this problem. In the 
Bayesian residual analysis attention is focused on the posterior distribu­
tion of each residual. Bayesian residuals have continuous-valued posterior 
distributions which can also be used to detect outliers. 

The Gibbs sampler can be used to estimate the posterior distribution of 
the residuals. Denote an MCMC sample from the posterior distribution of 
the parameters (# i j , a fc ,  bk) by (6\™ ,  a ™ '  , fr™ j , r  a = l , . . . ,M . It follows 
that sampled values from the residual posterior distribution corresponding 
to observation ijk are defined by 

To check that these residuals are normally distributed, the ordered sam­
pled values can be compared to the expected order statistics of the normal 
distribution in a quantile-quantile plot. Furthermore, interest is focused on 
identifying residuals whose distribution is concentrated on an interval not 
containing zero. Checking if a residual r^ is unusually large can be done 
by plotting the quantiles of the posterior distribution of r^ against the 
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posterior mean of the probability pijk — $ (a-kQij — fyt), (Albert & Chib, 
1995). A drawback is that the posterior variances of the residuals differ 
and are not directly comparable. For example, the distribution of the esti­
mated smallest residual may be different from that of the estimated median 
residual. Therefore, it is difficult to assess how extreme each distribution 
is. These problems can be averted by using Bayesian latent residuals as an 
alternative to the Bayesian residuals. 

12.3.1 Computation of Bayesian Latent Residuals 

The Bayesian latent residuals are based on the introduction of the latent 
variable Z. For binary response data, this latent continuous score is denned 
as Zijk, where Zijk > 0 if Yijk = 1 and Z^k < 0 if Y^k = 0. Then, the 
Bayesian latent residuals corresponding to observations Y^k are defined as 

From the definition of the augmented data it follows that given a/t, bk and 
ij, the Bayesian latent residuals e^ are standard normally distributed. 
For more detailed information regarding Bayesian latent residuals, in case 
of binary data, see Albert and Chib (1995) and Johnson and Albert (1999). 
According to Equation 12.1, the Bayesian latent residuals, in case of poly­
tomous response data, are defined as 

Both Bayesian latent residuals (Equations 12.5 and 12.6) are easily esti­
mated as a byproduct of the Gibbs sampler. That is, MCMC samples from 
Zijki &k, bk and 6ij produce samples djk from its posterior distribution. 
Accordingly, posterior means and standard deviations of the Bayesian la­
tent residuals can be computed from the sampled values. A more efficient 
estimator of the Bayesian latent residuals is the conditional expectation 
given a sufficient statistic, called a Rao-Blackwellised estimator (Gelfand & 
Smith, 1990). That is, the sampling error attributable to the Gibbs sampler 
is reduced to obtain a more efficient estimate of the posterior means. The 
unbiased character of the Monte Carlo estimator remains while reducing 
its variance. 

For the binary response data, it follows that, the conditional expec­
tation of the Bayesian latent residuals can be computed given the model 
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parameters. Suppose that Y^k = 1, it follows that 

where (/) represents the density of the standard normal distribution. Like­
wise, it follows for Yijk = 0 that 

It follows, in the same way, for polytomous data using Equations 12.2 and 
12.6, that 

Some elementary calculations have to be done to find expressions for the 
posterior variances of the residuals, but they can be derived in the same 
way. As a result, sampled values of the model parameters can be used to 
compute the estimates for the residuals and their variance. The estimates of 
the Bayesian latent residuals are easily computed within the Gibbs sampling 
procedure. Then, it can be checked if the Bayesian latent residuals are 
normally distributed given the observations by a quantile-quantile plot. 

12.3.2 Detection of Outliers 

The outlier detection problem is addressed from a Bayesian perspective. 
As just discussed, realized regression error terms are treated as unknown 
parameters, see Zellner (1971). The posterior distribution of these residu­
als can be used to calculate the posterior probability that an observation 
is an outlier. Outliers can be detected by examining the posterior distribu­
tion of the error terms. An observation can be considered to be outlying if 
the posterior distribution of the corresponding residual is located far from 
its mean (Albert & Chib, 1995). Here, the posterior distributions of the 
Bayesian latent residuals are examined to detect outliers among the obser­
vations. The Bayesian latent residuals are a function of unknown parame­
ters (Equations 12.5 and 12.6) and the posterior distributions are therefore 
straightforward to calculate. 
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Following Chaloner and Brant (1988), Johnson and Albert (1999) and 
Zellner (1971), Yijk is an outlier if the absolute value of the residual is 
greater than some prespecified value q times the standard deviation. That 
is, observation Y^k is marked as an outlier if P (\£ijk\ > q \ yijk}- In fact 
the augmented continuous scores Zijk are marked as outliers but Zijk has a 
one-to-one correspondence with Yijfc, given the ability and item parameters. 
The probability that an observation exceeds a prespecified value is called 
the outlying probability. The outlying probabilities can be estimated with 
the Gibbs sampler. 

Consider the residuals at the IRT level. It follows that, analogous to 
Equation 12.7, if Yijk = 1 

and if Yijk = 0, then 

In the same way, in case of polytomous data, it follows from Equation 12.2 
and Equation 12.9 that 

Again, these expressions can be used to estimate the outlying probabil­
ities of the estimated Bayesian latent residuals given sampled values of 
the model parameters. It is possible to find q such that the probability 
P (\£ijk\ > q yijk] assumes a given percentage, say v. Therefore, in every 
Gibbs iteration q must be solved in the equation P (\£ijk\ > Q I yijk) = y^o-
The mean of these values is an estimate of the unique root, that is, the 
^-percent value, or the probability that Zijk will deviate from its mean by 
more than q. 

The choice of q is quite arbitrary, but if the model under consideration is 
required to describe the data, then q — 2 might be used to find observations 
that are not well described by the data. There is reason for concern if more 
than 5% of the residuals have high posterior probability of being greater 
than two standard deviations. 

Notice that other complex posterior probabilities can be computed with 
the Gibbs sampler by keeping track of all the possible outcomes of the 
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relevant probability statement. However, this method has the drawback 
that a lot of iterations are necessary to get a reliable estimate. It could 
be possible, for example, that in case of multiple outliers, a test for a 
single outlier does not detect one outlier in the presence of another out­
lier. This so-called masking occurs when two posterior probabilities, for 
example, P(\£ijk\ > q \ Vijk) and P(\eajk\ > q \  y s j k )  , do not indicate any 
outliers but the posterior probability P (\£ijk\ > q and \£sjk\ > q \ y) shows 
that -Cijk and esjk are both outliers. This simultaneous probability can be 
estimated by counting the events that both absolute values of the residuals 
are greater than q times the standard deviation divided by the total number 
of iterations. 

12.4 Heteroscedasticity 

In a standard linear multilevel model (Equation 12.3) the residuals at Level 
1 and 2 are assumed to be homoscedastic. It is possible that the variances 
of the residuals are heteroscedastic when they depend on some explanatory 
variables. Homoscedastic variances can be obtained when modelling the 
variation as a function of the explanatory variables. Neglecting the het­
eroscedasticity may lead to incorrect inferences concerning the hypotheses 
tests for variables which are responsible for the heteroscedasticity (Snijders 
& Bosker, 1999, pp. 126-128). In a Bayesian framework, complex variance 
structures can be defined as prior information. Here, Level 1 variation is 
considered but the same principles apply to higher levels. General func­
tions of more than one explanatory variable can be considered to model 
the variance at Level 1. Examples of complex variation modelling are given 
in, for example, Goldstein (1995, p. 50) and Snijders & Bosker (1999, p. 
110-119). 

Two tests for heteroscedasticity at Level 1 in case of two or more groups 
are considered that are easy to compute using the MCMC output, sampled 
under the assumption of homoscedasticity. Notice that the groups consid­
ered here, denoted as / = 1, . . .  , L, may differ from the groups, j = 1 , . . .  , J, 
defined at Level 2 of the multilevel model. Testing the equality of variances 
of two or more grouped residuals at Level 1 coincides with testing the hy­
pothesis, o\ = ... — cr£ against the alternative of ^ erf, for at least one 
I ^ I'. Highest posterior density intervals (HPD) can be used to test the 
equality of the group specific variances. In the first case, L = 2, the poste­
rior distribution of the group specific variances can be derived, and in the 
general case, the posterior distribution of a function of the group specific 
variances can be approximated to obtain the HPD regions. The second 
approach is based on a normal approximation to the posterior distribution 



 237 12. Multilevel IRT Model Assessment

of the group specific variances. Testing heteroscedasticity at Level 1 can 
be transformed to testing the equality of the means of normal distributed 
variables, which is a much easier problem. 

12.4.1 Highest Posterior Density Intervals 

In a Bayesian posterior inference the marginal posterior distributions are 
summarized. Often, 100(1— a)% posterior credible intervals are given which 
arc easy to obtain, but a highest posterior density interval (HPD) may be 
more desirable when the marginal posterior distributions are not symmetric 
(Box & Tiao, 1973). HPD regions are very appealing because they group 
the most likely parameter values and do not rely on normality or asymptotic 
normality assumptions. Chen and Shao (1999) showed how to obtain these 
HPD intervals given the MCMC samples generated from the marginal pos­
terior distributions. From this it may seem that HPD intervals can only be 
used when MCMC samples from the parameters of interest are available. In 
some cases, HPD intervals can be computed without sampled values from 
the marginal posterior distributions and without evaluating the marginal 
posterior distributions analytically or numerically. This can be useful in 
hypothesis testing when some of the parameters of interest are not esti­
mated in the MCMC procedure. Here, an example is provided for testing 
a particular hypothesis, homoscedasticity, without having to estimate the 
complete model, including all parameters. 

In case of two groups at Level 1, the variances of two Normal distri­
butions, denoted as a\ and a\, are compared. By looking at the highest 
posterior density interval of &\l<7\ it can be judged whether the residual 
variance of group 1 differ from group 2. Because 

where sf = Y,i£i (Oij - ^ijPj] for / = 1, 2, it follows that 

see Box and Tiao (1973, pp. 110-112). The mode of the distribution of F is 
1, thus the mode of the posterior distribution of cr^/of is s^/s\. The limits 
of the HPD interval are specified by the F distribution in combination with 
an estimate of sl/sf, using the sampled values of the parameters 9 and (3 
from their marginal posterior distribution. In general, the group specific 
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variance s2, of group / can be estimated with M samples of (0,/3), that is 

In a more general case, assume L group specific Level 1 variances. To 
assure that comparisons of L scale parameters (of , . . .  , a£) are unaffected 
by any linear receding of the data, consider (L — 1) linearly independent 
contrasts in logo"2. So, let A/ = log of —logo"2. The vector AQ = 0 is 
included in the highest posterior density region of content (I — a) if and 
only if 

The density function p (A | y) is a monotonic decreasing function of a func­
tion with parameters o2 and s2 which is asymptotically distributed as xi_n 
as HI —>• oo, / = 1,..., L, where s2 is the mean sum of squares in group / 
(Box & Tiao, 1973, pp. 133-135). In case of the hypothesis A0 = 0, which 
corresponds to the situation a\ — ... —a\, this function becomes 

where s2 = ^ $3/=i nis¥- ^ follows that 

Hence, for large samples, the point AQ = 0 is included in the (1 — a) 
highest posterior density region if 

For moderate sample sizes, Bartlett's approximation can be used to ap­
proximate the distribution with greater accuracy (Box & Tiao, 1973, pp. 
135-136). It follows that 

where A =  3 / L - i ) \^i=i nTl ~ N~l\. The difficulty in practice with this 
test for equal variances is the sensitivity to the assumption of normality 
(Lehmann, 1986, p. 378). 

The sampled values of the parameters, (0,/3), can be used to compute 
the righthand side of Equation 12.14 using Equation 12.13. Notice that it is 
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not necessary to estimate the model with the assumption of heteroscedas­
ticity at level 1. It is possible to compute the highest posterior density of 
(of, . . . ,cr£) given the observed data by integrating over the random ef­
fects (9, (3) and computing the probability density, in every iteration of the 
Gibbs sampler. The highest posterior density region should be constructed 
in such a way that the probability of every set of interior points is at least as 
large that of any set of exterior points. Furthermore, the region should be 
such that for a given probability, it occupies the smallest possible volume 
in the parameter space. The obtained vectors of parameter values can be 
used to construct such a region. Accordingly, the equality of variances can 
be tested by checking if the vector (a\ , . . . , o^)  =0 lies within the highest 
posterior density region. 

12.4.2 Normal Approximation to the Posterior Distri­
bution 

Another test of equality of variances is obtained by approximating the pos­
terior distribution of the individual group specific variances by a normal 
distribution. If the posterior distributions are unimodal and roughly sym­
metric they can be approximated by a normal distribution centered at the 
mode (Bernardo & Smith, 1994, pp. 287-288; Gelman et al., 1995, pp. 94­
96). The approximation of the posterior distribution of log (of) will turn 
out convenient because unknown parameters enter only into the mean and 
not in the variance of the approximated distribution. Using a Taylor series 
expansion of log (erf) it follows that 

for I = 1 , . . . ,  L where 0' ' and (3^' denote the ability parameters and 
regression coefficients at Level 1 corresponding to group /. Furthermore, 
log of is the mode of the posterior distribution and / (log of) is the observed 
information evaluated at the mode. With a noninformative prior locally 
uniform in log erf , it follows that 

So the problem of testing o\ — . . . — a\ is reduced to that of testing the 
equality of L means of independent normally distributed variables s[ = 
log (sf). This problem simplifies in the particular case that the number of 
observations per group are equal, that is, HI = n. A test for testing the 
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equality of the means of the L normal distributions is 

where I/ (n — 1) is the common variance of the s't and where C is determined 
b 

where a denotes the significance level. If the number of observations per 
group differ then the transformation sJ/Aj, with A; = 2/ (HI — 1) , results in 
a test which rejects the hypothesis of equal variances when 

where C is determined by (12.16), see Lehmann (1986, p. 377). The Gibbs 
sampler is used to estimate the s[ for every group / using the sampled 
values for 6 and ft and Equation 12.13. That is, after a sufficient num­
ber of iterations, the test statistic is computed to test the homogeneity of 
variances. 

12.5 An Analysis of a Dutch Primary School 
Mathematics Test 

This section is concerned with the study of a primary school advancement 
test. In Fox and Glas (2001), this data set was analyzed to compare param­
eter estimates of a multilevel IRT model and an hierarchical linear model 
using observed scores. Here, the goodness of fit of the multilevel IRT model 
is analyzed. Residuals at different levels are analyzed, outliers are identified 
and different models are compared. Also, heteroscedasticity at Level 1 is 
tested. 

The data set consisted of responses from 2156 grade 8 students, un­
equally divided over 97 schools, to 18 dichotomously scored mathematics 
items taken from the school advancement examination developed by the 
National Institute for Educational Measurement (Cito). The 97 schools 
were fairly representative of all Dutch primary schools (Doolaard, 1999). 
Of the 97 schools sampled, 72 schools regularly participated in the school 
advancement examination, denoted as Cito schools and the remaining 25 
schools are denoted as the non-Cito schools. Socioeconomic status (SES), 
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Table 12.1: Parameter Estimates of a Multilevel IRT Model With 
Explanatory Variable End at Level 2. 

Model MI 
Fixed effects Coefficient s.d. HPD 

Too -.273 .210 [-.621, .067] 
7oi (End) .463 .240 [.072, .854] 

Random effects Variance component s.d. HPD 

2a .593 .071 [.476, .707] 
rl .204 .046 [.130, .275] 

scores on a nonverbal intelligence test (ISI; Van Boxtel, Snijders, & Welten, 
1982), and gender were used as predictors for the students' mathematical 
ability. SES was based on four indicators: The education and occupation 
level of both parents (if present). Predictors SES and ISI were standard­
ized. The dichotomous predictor Gender was an indicator variable equal to 
0 for males and equal to 1 for females. Finally, a predictor variable labelled 
End equaled 1 if the school participated in the school advancement test, 
and 0 if this was not the case. 

Students were clustered over schools with a distinction between Cito 
and non-Cito schools. Consider the odel MI given by 

where e^- ~ N (0,a2}, UQJ ~ N (0,TQ) . The model contains random group 
effects and random variation within groups. The dependent latent vari­
able equals the sum of a general mean 700, a random effect at the school 
level, UQJ, and a random effect at the individual level, e^-, corrected for the 
predictor End. The two-parameter normal ogive model was used as the 
measurement model. In Table 12.1, the estimates of the parameters issued 
from the Gibbs sampler are given. The reported standard deviations and 
HPD regions are the posterior standard deviations and the 90% highest 
posterior density intervals, respectively. 

The general mean ability, 700, of the students attending non-Cito schools 
was not significantly different from zero. The positive significant value of 
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7oi indicates a positive effect of participating in the school advancement 
exam on the students' abilities. The intraclass-correlation coefficient was 
approximately .26, which is the proportion of variance accounted for by 
group membership given the explanatory variable End. 

The behavior of the Bayesian latent residuals for this data set were 
considered. The Bayesian latent residuals, the probabilities of a correct 
response, and the outlying probabilities, that is, the probabilities that the 
residuals were larger than 2, were estimated using Equations 12.7, 12.8, 
12.10, and 12.11. In Figure 12.1, all the Bayesian residuals (Equation 12.4), 
and all Bayesian latent residuals (Equation 12.5) are plotted against the 
corresponding fitted probability of a correct response. The observed item 
responses determine the domain of the Bayesian residuals, that is, if Y^ = 
1 then Tijk € (0,1) and otherwise r^ 6 (—1,0). The Bayesian latent 
residuals are also grouped by the value of Y. If the answer is correct, Y^k = 
1, the Bayesian latent residual, e^, is positive, otherwise, it is negative, 
but there is no ceiling-effect for the Bayesian latent residuals. Figure 12.1 
shows that extreme valued Bayesian latent residuals are discovered more 
easily because they are not restricted in size as the Bayesian residuals. 
Next, we show how to identify outliers. The extreme Bayesian residuals 
and Bayesian latent residuals correspond to the same observed data. 

Figure 12.2 displays marginal posterior distributions of Bayesian la­
tent residuals and Bayesian residuals corresponding to, the same, 25 ran­
domly selected answers to item 17. The order of the posterior means of 
the Bayesian residuals and the Bayesian latent residuals is the same. Nega­
tive posterior means correspond to incorrect answers and positive posterior 
means correspond to correct answers. As a result, the marginal posterior 
distributions of the Bayesian residuals are defined on (—1,0) if the corre­
sponding observation equals zero, and on (0,1) otherwise. The marginal 
posterior distributions of the Bayesian residuals differ. This makes it is 
difficult to assess how extreme the marginal posterior distributions are. 
Subsequently, it is difficult to identify outliers given the posterior means 
that are estimates of the Bayesian residuals and their marginal posterior 
distributions. The marginal posterior distributions of the Bayesian latent 
residuals are standard normal, according to Equation 12.5. This provides 
a convenient basis to test the presence of outliers by examining whether 
the posterior means of the marginal posterior distributions are significantly 
different from zero. As a result, the Bayesian latent residuals are easy to 
interpret and interesting for identifying outliers. In Figure 12.2, the four 
smallest posterior means of the Bayesian latent residuals are significantly 
smaller than zero using a 5% significance level, and the corresponding ob­
servations can be regarded as outliers. These outliers cannot be identified 
directly by visual inspection of the marginal posterior distribution of the 
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Figure 12.1: Bayesian Latent Residuals and Bayesian Residuals 
Plotted Against the Probabilities of a Correct Response. 
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Bayesian latent residuals 

Bayesian residuals 

Figure 12.2: Posterior Distributions of Bayesian Latent Residuals 
and Bayesian Residuals Corresponding to Item 17. 
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Figure 12.3: Bayesian Latent Residuals Plotted Against the Prob­
abilities of a Correct Response and the Outlying Probabilities. 

Bayesian residuals. 
In Figure 12.3, all Bayesian latent residuals, e^, are plotted against the 

probabilities of a correct response of person i in group j to item k, and the 
outlying probabilities, where the outlying probabilities were computed for 
g = 2, using Equation 12.10 and Equation 12.11. Successes, 1̂  = 1, with 
fitted probabilities close to one and failures, Yijk = 0, with fitted probabil­
ities close to zero correspond to small absolute values of the residuals. The 
outlying probability increases if the value of the residual increases. The 
points with low fitted probabilities corresponding to correct answers and 
high fitted probabilities corresponding to incorrect answers can be marked 
as outliers. More specific, when the corresponding outlying probability is 
higher than a 5% significance level the corresponding observation can be 
marked as an outlier. Obviously, Figure 12.3 shows that there are a lot of 
outliers, approximately 6% of the observations, so the model doesn't fit the 
data very well. 

Fitted probabilities close to one corresponding to successes and fitted 
probabilities close to zero corresponding to failures have residual distribu­
tions that resemble standard normal curves. That is, the distributions of 
the residuals are not influenced by the observations. However, the observa­
tions have a large influence on the posterior distributions of the residuals 
when the fitted probabilities are in conflict with the observations. In Figure 
12.4, posterior distributions of the Bayesian latent residuals corresponding 
to Item 17 of the math test of several students are plotted. Some of the 
residuals can be marked as outliers because their posterior distributions 
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Figure 12.4: Posterior Densities of the Bayesian Latent Residuals 
Corresponding to Item 17. 

differ from the standard normal distribution. The nonzero location and the 
smaller standard deviation of the posterior distributions of these residuals 
express the conflict between the observations and the fitted probabilities. 
For example, the outlying probability of the largest residual in Figure 12.4 
is .982. The corresponding response pattern showed that all items were 
scored correct except Item 17, although it was answered correctly by 88% 
of the students. 

It was assumed that the nonverbal intelligence test and the socio-economic 
status provide information about the math abilities. Therefore, Model M\ 
(Equation 12.18) was extended with these Level 1 predictors, that is 

where e^ ~ N (0, cr2) and UQJ ~ N (O,TQ). In the sequel, this model is 
labelled Mj. Here, it was assumed that the effects of the scores of the 
intelligence test and the SES of the students did not differ per school, that 
is, the random regression coefficients were fixed over schools. The parameter 
estimates resulting from the Gibbs sampler are shown in Table 12.2. 

The residual variance at Level 1 and Level 2 decreased due to the pre­
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Table 12.2: Parameter Estimates of a Multilevel IRT Model With 
Explanatory Variables ISI and SES at Level 1 and End at Level 
2. 

IRT model M2 

Fixed effects Coefficient s.d. HPD 

7oo -.248 .210 [-.593, .094] 
7oi (End) .348 .238 [.047, .827] 
7io (ISI) .425 .030 [.374, .471] 

720 (SES) .225 .023 [.187, .263] 

Random effects Variance component s.d. HPD 

2a .380 .045 [.294, .442] 
rt .156 .038 [.097, .212] 

dictors at Level 1. The coefficients of both predictors are significant. As 
expected, SES and intelligence (ISI) have a positive effect on the achieve­
ments. The likelihood of model MI is higher than the likelihood of model 
M-2 indicating that model MI fits the data better. On the other hand, 
there are no significant differences between the Bayesian latent residuals of 
model MI and M2. Many outliers under model M\ are also outliers under 
model M2. Also, the estimated posterior means of the residuals are similar. 
Changing the structural multilevel model did not result in major differences 
in the measurement model. It turned out that the explanatory variables, 
ISI and SES, explained variance in the latent dependent variable but did 
not result in different parameter estimates of the measurement model. So, 
the structural multilevel model M2 is preferred, but the introduction of the 
explanatory variables did not reduce the number of outliers. 

The residuals at Level 1 were assumed to have a constant variance, that 
is, they were assumed to be homoscedastic. It was investigated whether 
the residual variance at Level 1 differed between male and female students. 
Model M<2 was estimated again under the assumption of unequal variances, 
that is, each group specific residual error variance was sampled during the 
parameter estimation of model. Also, the other model parameters were 
estimated given the sampled values of the group specific variances. The 
marginal posterior distributions of the group specific error variances, for 
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both the male and the female group, are given in the top-figure of Fig­
ure 12.5. Because the posterior distributions are overlapping, it can be 
concluded that the group specific error variances at Level 1 are not signifi­
cantly different. 

It was investigated whether the statistics for testing heteroscedasticity 
at Level 1 (Equations 12.12, 12.15, and 12.17) yielded the same conclusion 
using the MCMC output generated under the assumption of homoscedastic 
variances at Level 1. The MCMC output was used to compute the sum 
of squares of the group specific residuals (Equation 12.13). A HPD region 
for the ratio of variances was derived from Equation 12.12. The 90% HPD 
region of the ratio of the two group specific residual variances is [.84,1.04]. 
Thus, the point of equal variances is included in the 90% region. In Figure 
12.5, the bottom figure shows the posterior distribution of the variance ratio 
and illustrates the 90% HPD region. This ratio consists of the residual error 
variance within the male group divided by the residual variance within the 
female group. The posterior mean of the variance ratio is shifted toward 
the left of one. Therefore, the residual variance within the female group is 
slightly, but not significantly, higher. This corresponds with the estimated 
posterior means of the group specific residual variances in the top-figure 
of Figure 12.5. The other test statistics (Equations 12.14 and 12.17) were 
computed using the same MCMC output. Both means of the computed test 
statistics correspond with a p-value of .27. Therefore, it can be concluded 
that there are no indications of residual variance differences between the 
male and female groups at Level 1. 

Two multilevel IRT models were investigated using the methods de­
scribed in this chapter. It was shown that the measurement model did not 
fit the data very well because many outliers were detected. Model M^ was 
analyzed to illustrate that changing the structural part will not improve the 
fit of the measurement part. Conclusions drawn from the multilevel analy­
sis can be wrong when the measurement part does not fit the observed data. 
Therefore, a further analysis should at least consider other measurement 
models. 

12.6 Discussion 

Methods for evaluation of the fit of a multilevel IRT model were discussed. 
It was shown that Bayesian latent residuals are easily estimated and par­
ticularly useful in case of dichotomous and polytomous data. Estimates of 
these Bayesian latent residuals can be used to detect outliers. Moreover, 
outlying probabilities of the residuals are easily computed using the MCMC 
output. Together, these estimates provide useful information regarding the 
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Variance Level 1 

Figure 12.5: The Marginal Posterior Distribution of the Resid­
ual Variance at Level 1 in the Male and Female Group and the 
Posterior Distribution of the Ratio of Both Variances. 

fit of the model. One particular assumption of the multilevel IRT model is 
homoscedasticity at Level 1. Several tests are given to check this assump­
tion. They can be computed as a byproduct of the Gibbs sampler. 

Further research will focus on summarizing the information regarding 
the detected outliers. Then, diagnostic tests can be developed to detect 
respondents with misfitting response patterns or items that induce outliers. 
These tests will provide more assistance in the search for a better model 
instead of just providing information regarding the fit of the model. 

Another class of tests not discussed in this chapter, to check the discrep­
ancy between the model and the data, are the so called posterior predictive 
checks, introduced by Rubin (1984). Posterior predictive checks consist of 
quantifying the extremeness of the observed value of a selected discrepancy. 
Several general discrepancies are developed but this can be any function of 
the data and the model parameters (Meng, 1994; Gelman, Meng, & Stern, 
1996). Obviously, these tests can be used to judge the fit of a multilevel 
IRT model. More research is required into the relation between the tests 
described here and posterior predictive checks. 

The connection of the discrete observed responses Yijk to continuous 
latent responses Z^ has several advantages. The problem of estimating all 
parameters reduces to sampling from standard distributions. The Bayesian 
latent residuals provide information concerning the fit of the model and 
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possible outliers are easily detected. This simulation technique introduces 
extra randomness in the estimation procedure, therefore, establishing the 
convergence of the algorithm requires extra attention. 
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